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Chapter 1

Introduction

Motivation

In this thesis, we mainly talk about the problem of the flow of a viscous incom-

pressible fluid moving in a rigid porous inhomogeneous medium. A good example of

this problem is that water moves in the subsurface.

In the subsurface, rock is deposited in layers. Fluid flow within and between the

rock layers is governed by the permeability of the rocks. However, to account for

permeability, it must be measured in both the vertical and horizontal directions. For

example, shale typically has permeabilities that are much lower vertically than hor-

izontally (assuming flat lying shale beds). This means that it is difficult for fluid to

flow up and down through a shale bed but much easier for it to flow from side to side.

Ultimately, if the pressure difference between a hydraulically fractured zone and a

fresh water aquifer is not great, the distance between the zones is relatively large,

and there are rocks with low vertical permeabilities in between the deeper and the

shallower zones, flow between the zones is unlikely to occur. The exception to this

is where there is a separate flow pathway such as an open bore hole or a series of

faults or joints that intersect both the fractured zone and the fresh water aquifer.

Under either of these circumstances, the pressure difference and distance will be the
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Chapter 1. Introduction

determining factors as to whether fluid can migrate from the lower to the upper zone.

The principle that governs how fluid moves in the subsurface is called Darcy’s law.

Darcy’s law is an equation that defines the ability of a fluid to flow through a porous

media such as rock. The law was formulated by Henry Darcy based on the results of

experiments [33] on the flow of water through beds of sand. It also forms the scientific

basis of fluid permeability used in the earth sciences, particularly in hydrogeology.

Although Darcy’s law (an expression of conservation of momentum) was determined

experimentally by Darcy, it has since been derived from the Navier-Stokes equations

via homogenization. It is analogous to Fourier’s law in the field of heat conduction,

Ohm’s law in the field of electrical networks, or Fick’s law in diffusion theory.

One application of Darcy’s law is to water flow through an aquifer; Darcy’s law along

with the equation of conservation of mass are equivalent to the groundwater flow

equation, one of the basic relationships of hydrogeology. Darcy’s law is also used to

describe oil, water, and gas flows through petroleum reservoirs.

Darcy’s law at constant elevation is a simple proportional relationship between the

instantaneous discharge rate through a porous medium, the viscosity of the fluid and

the pressure drop over a given distance. Darcy found that his data could be described

by

U =
�kA

µ

Pb � Pa

L
, (1.0.1)

where, U(units of volume per time, e.g., m3/s) is equal to the product of the intrinsic

permeability of the medium, k(m2), the cross-sectional area to flow, A (units of area,

e.g., m2), (Pb�Pa) (Pascals) is the total pressure drop, and L, the length over which

the pressure drop.

The negative sign is needed because fluid flows from high pressure to low pressure.

Note: the elevation head must be taken into account if the inlet and outlet are at

different elevations. If the change in pressure is negative (where Pa > Pb), then the

flow will be in the positive 0x0 direction. Dividing both sides of the equation by the

10



Chapter 1. Introduction

area and using more general notation leads

u =
�k

µ
rP, (1.0.2)

where, u is the flux (discharge per unit area, with units of length per time, m/s) and

rP is the pressure gradient vector (Pa/m).

For very short time scales, a time derivative of flux may be added to Darcy’s law,

which results in valid solutions at very small times (in heat transfer, this is called the

modified form of Fourier’s law),

⌧
@u

@t
+ u =

�k

µ
rh, (1.0.3)

where ⌧ is a very small time constant which causes this equation to reduce to the

normal form of Darcy’s law at "normal" times.

At last, in fact the water is the incompressible fluid, so the equation will also satisfy

the incompressible condition:

r · (u) = 0.

A long this thesis we will focus on the following model : find a velocity u and pressure

p solutions of :

8
>>>>>><

>>>>>>:

↵u + grad p = ↵f in ⌦,

div u = 0 in ⌦,

u · n = k on �1,

p = p0 on �2

(1.0.4)

Spectral, spectral element and mortar element methods

Spectral methods are a class of techniques used in applied mathematics and scien-

tific computing to numerically solve certain differential equations, often involving the
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Chapter 1. Introduction

use of the Fast Fourier Transform. The idea is to write the solution of the differential

equation as a sum of certain "basis functions" (for example, as a Fourier series which

is a sum of sinusoids) and then to choose the coefficients in the sum in order to satisfy

the differential equation as well as possible.

Spectral methods have been used extensively during the last decades for the nu-

merical solution of partial differential equations (PDE) due to their bigger accuracy

when compared to Finite Differences (FD) and Finite Elements (FE) methods. The

rate of convergence of spectral approximations depends only on the smoothness of the

solution, yielding the ability to achieve high precision with a small number of data.

This fact is known in literature as "spectral accuracy".

Spectral element techniques are high order methods which allow for either obtain-

ing very accurate results or reducing the number of degrees of freedom for a fixed

standard accuracy. As firstly explained by [51, 41], they rely on high degree piecewise

polynomial approximation, and on the use of tensorized bases of polynomials.

For these reasons, the basic geometries for these methods are tensorized, i.e. they

are square or cubes. We refer to [38, 43, 21] for a general presentation and analysis of

the spectral methods in these geometries, and also to [36, 29, 55] for extensions to tri-

angles or tetrahedra. The discrete spaces for spectral methods are simply polynomial

spaces, and the discretization parameter is the maximal degree of these polynomials.

The mortar element method, introduced in [24], is a domain decomposition tech-

nique which allows for working on general partitions of the domain without con-

formity restrictions. It is particularly important when combined with spectral-type

discretizations, since handling complex geometries from very simple subdomains can

be performed with this method in a very efficient way. It can also be used to couple

different kinds of variational discretizations on the subdomains, such as finite ele-

ments or spectral methods. So it leads to discrete problems which are most often

non-conforming in the Hodge sense, which means that the discrete space is not con-

12



Chapter 1. Introduction

tained in the variational one. It was first analysed in the case of the 2D Laplace

equation [24] which admits a natural variational formulation in the usual Sobolev

space H1(⌦) of functions with square-integrable first-order derivatives. We also refer

to [9] for the first 3D results. It was extended [14] to the bilaplacian equation where

the variational space is the standard space H2(⌦) of functions with square-integrable

first-order and second-order derivatives and also to the Stokes problem which is of

saddle-point type; however, it still involves the usual Sobolev spaces. We also quote

[13] for an application of the mortar technique to weighted Sobolev spaces, in order

to handle discontinuous boundary conditions for the Navier-Stokes equations.

Objectives of the thesis

In this thesis, we mainly talk about the analysis of the mortar spectral element

discretization of the problem (5.1.1 where ⌦ be a bounded, connected, open set in

Rd, d = 2 or 3, with a Lipschitz continuous boundary @⌦, and let n denote the unit

outward normal vector to ⌦ on @⌦, �1 and �2 be a partition of @⌦ without overlop. ↵

is constant or piecewise continuous coefficients. The data are now the function f and

the boundary conditions k and p0 . The unknowns are the velocity u and the pressure

(or hydraulic head, according to the model) p. we are interested in the case where

this function is not globally continuous but only piecewise smooth and also such that

the ratio of its maximal value to its minimal value is large. This models, for instance,

the flow of a viscous incompressible fluid in a rigid porous inhomogeneous medium.

A very interesting and unusual feature of Darcy’s equations is that they admit two

equivalent variational formulations, whether the space of velocities is more regular

than the space of pressures or not, see [6, 2, 19]. The drag coefficient ↵ will be con-

sidered as piecewise constant or piecewise smooth functions. The variational spaces

can be choosen as (u; p) in H(div;⌦) ⇥ L2(⌦) or in L2(⌦) ⇥ H1(⌦). So two mortar

discrete problems based on Galerkin numerical integration (GNI) will be constructed.

Then we obtain the well-posedness and regularity properities of the problems. Next, it

is necessary to prove a priori error estimates of spectral type: the order of convergence

13



Chapter 1. Introduction

only depends on the regularity of the solution, more precisely on its local regularity

in each subdomain. For the implementation of the mortar technique, it mainly relies

on an appropriate treatment of the matching conditions on the interfaces.

In this thesis, we will also develop a spectral method for fourth-order differential equa-

tions in one dimension. A Legendre Petrov-Galerkin method for linear fourth-order

differential equations and a Legendre Petrov-Galerkin and Chebyshev Collocation

method for the nonlinear Kuramoto-Sivashinsky equation will be presented. Also we

will prove the optimal rate of convergence in L2 norm of the method, and numerical

experiments will be given which demonstrate the efficient of proposed schemes.

Thesis outline

The thesis is composed by 2 parts. The first part is dedicated to the main subject

of my work and concerns the numerical analysis of the martar method applied to

the Darcy problem. During the first part of my thesis I worked on the analysis of a

Legendre Petrov-Galekin method for linear fourth-order differential equations in one

dimension and a Legendre Petrov-Galerkin and Chebyshev collocation method for

the nonlinear Kuramoto-Sivashinsky equation have been developed. The second part

contains the description of this contribution This invesgation will be given in the end

of then mauscrit (see Appendix).

After a short introduction given in chapter one, we will consider in chapter 2 the

Darcy’s equations with general boundary conditions and piecewise continuous coeffi-

cients in a bounded domain. This problem can be formulated in two different spaces.

Then we prove the well-posedness of the equivalent variational problem of the Darcy’s

equation. We also give the regularity properties.

In chapter 3 we present the discretization of the steady Darcy problem. We propose

spectral discretizations of this problem based on the Galerkin with Numerical Inte-

gration (G-NI) variants. The Numerical analysis of the discrete problem is performed.

We also present the two-dimensional numerical experiments.

In chapter 4 we consider Darcy’s equations with general boundary conditions and

14



Chapter 1. Introduction

piecewise continuous coefficients in a bounded domain. This problem can be formu-

lated in spaces of square-integrable functions with square-integrable divergence. We

propose a spectral element discretization of this problem which relies on the mortar

domain decomposition technique. The Numerical analysis of the discrete problem is

performed. We also present the two-dimensional numerical experiments. They turn

out to be in good coherency with the theoretical results.

In chapter 5 we also consider Darcy’s equations with general boundary conditions and

piecewise continuous coefficients in a bounded domain. A spectral element discretiza-

tion of this problem relies on the mortar domain decomposition technique is proposed.

We present the numerical analysis and two-dimensional numerical experiments, which

turn out to be in good coherency. This chapter ends with the comparison of the two

spectral element methods will be presented in Chapter 6.
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Chapter 2

Darcy’s Equations

2.1 Introduction

We first talk about the analysis of the mortar spectral element discretization of

the problem introduced by Darcy [33] as follows

8
>>>>>><

>>>>>>:

↵u + grad p = ↵f in ⌦,

div u = 0 in ⌦,

u · n = k on �1,

p = p0 on �2

(2.1.1)

where ⌦ is a bounded, connected, open set in Rd, d equals to 2 or 3, with a Lipschitz

continuous boundary @⌦, and n denotes the unit outward normal vector to ⌦ on @⌦,

�1 and �2, with a positive measure, being a partition of @⌦ without overlop. The

data are now the equation f and the boundary conditions k and p0 . The unknowns

are the velocity u and the pressure (or hydraulic head, according to the model) p.

The coefficients ↵ are constant or piecewise continuous. We are interested in the case

where this function is not globally continuous but only piecewise smooth and also such

17



Chapter 2. Darcy’s equations

that the ratio of its maximal value to its minimal value is large. This models, for

instance, the flow of a viscous incompressible fluid in a rigid porous inhomogeneous

medium.

2.2 Sobolev spaces

In this section, we recall the main notions and results, concerning the classical

Sobolev spaces, which will be used in later sections, also some properties. Although

they are stated without proof, these results are complete, rigorous and fairly general.

We define D(⌦) to be the linear space of infinitely differentiable functions, with

compact support on ⌦. Then we set

D(⌦̄) = {�|⌦;� 2 D(Rd)}

or equivalently, if O denotes any open subset of RN such that ⌦̄ ⇢ O,

Now, let D0
(⌦) denote the dual space of D(⌦), often called the space of distribu-

tions on ⌦. We denote by < ·, · > the duality pairing between D
0
(⌦) and D(⌦) and

we remark that when f is locally integrable function, then f can be identified with a

distribution by

< f,� >=

Z

⌦

f(x)�(x)dx, 8� 2 D(⌦)

In other words, < ·, · > is an extension of the scalar product of L2(⌦).

For v = (v1, v2, ..., vN), we define the divergence operator by:

div v =
NX

i=1

(@vi/@xi).

18



Chapter 2. Darcy’s equations

Note the identity:

div (gradv) = 4v.

So far, we have been mainly interested in subspaces of H1(⌦)N ; but subsequently,

it will be worthwhile to use functions with less regularity. Bearing this in mind, we

introduce the following spaces:

H(div ;⌦) = {v 2 L2(⌦)N; div v 2 L2(⌦)},

which is clearly a Hilbert space for the norm:

||v||H(div ;⌦) = (||v||20,⌦ + ||div v||20,⌦)1/2. (2.2.1)

Next we are coming to the trace theorems. The trace on the boundary � of a

function v 2 Hs(⌦) is ,in a sense to make precise, the value of v restricted to �. If

we denote by C0(⌦̄) the space of continuous functions on ⌦̄, the precise result reads

as follows, see ([40], Chapter I):

Theorem 2.1 Let ⌦ be a bounded open set of RN with Lipschitz-continuous boundary

� and let s > 1/2.

1. There exists a unique linear continuous map �0 : Hs(⌦) ! Hs�1/2(�) such that

�0v = v|� for each v 2 Hs(⌦).

2. There exists a linear continuous map R0 : H
s�1/2(�) ! Hs(⌦) such that �0R0' =

' for each ' 2 Hs�1/2(�).

The next theorem concerns the normal component of boundary values of functions of

H(div ;⌦).

Theorem 2.2 The mapping �n : v ! v · n|� defined on D(⌦̄)N can be extended by

continuity to a linear and continuous mapping, still denoted by �n, from H(div ;⌦)

to H�1/2(�).

19



Chapter 2. Darcy’s equations

By extension, �nv is called the normal component of v on � and is denoted simply

by v · n.

From the above two theorem, we derive the following Green’s formula:

(v,grad�) + (div v,�) =< v · n,� >�, 8v 2 H(div ;⌦), 8� 2 H1(⌦). (2.2.2)

As a consequence, we can now extend Green’s formula for the Laplace operator to a

wider range of functions.

Corollary 2.1 Let u 2 H1(⌦) and 4u 2 L2(⌦). Then @u/@n 2 H�1/2(�) and

(grad u, grad v) = �(4u, v)+ < @u/@n, v >�, 8v 2 H1(⌦). (2.2.3)

Two useful applications of Green’s formula will also be given here.

Lemma 2.1 Let ⌦ be a bounded open subset of RN with a Lipschitz-contunuous

boundary �.

1. For u and v in H1(⌦) and for 1  i  N , we have

Z

⌦

u(@v/@xi)dx = �
Z

⌦

(@u/@xi)vdx+

Z

�

�0u�0vnids (2.2.4)

2. If in addition u 2 H2(⌦) we have

NX

i=1

Z

⌦

@u

@xi

@v

@xi

dx = �
NX

i=1

Z

⌦

@2u

@x2
i

+
NX

i=1

Z

�

(
@u

@xi

v)nids (2.2.5)

Adopting the usual notations

4u =
NX

i=1

@2u

@x2
i

, gradu = (@u/@x1, ...@u/@xN)
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Chapter 2. Darcy’s equations

(2.2.5) becomes:

(gradu,gradv) = �(4u, v) +

Z

�

(@u/@n)�0vds. (2.2.6)

When ⌃ is an open (non-empty) Lipschitz continuous subset of the boundary �, we

introduce the space

H1
⌃(⌦) := {v 2 H1(⌦)|�⌃v = 0}.

An important result, which will find widespread application in the sequel, is the

so-called Poincaré inequality, see ([25], Chapter 1, Lemma 2.6):

Theorem 2.3 Assume that ⌦ is a bounded connected open set of RN . Then there

exists a constant C⌦(⌃) > 0 such that

Z

⌦

v2(x)dx  C⌦(⌃)

Z

⌦

|rv(x)|2dx (2.2.7)

for each v 2 H1
⌃(⌦).

We next recall Sobolev embedding theorem ([3], Chapter 4).

Theorem 2.4 Assume that ⌦ is a (bounded or unbounded) open set of Rd with a

Lipschitz continuous boundary, and that 1  p < 1. Then the following continuous

embedding hold:

1. If 0  sp < d, then W s,p(⌦) ⇢ Lp⇤(⌦) for p⇤ = dp/(d� sp);

2. If sp = d, then W s,p(⌦) ⇢ Lq(⌦) for any q such that p  q < 1;

3. If sp > d, then W s,p(⌦) ⇢ C0(⌦̄).

2.3 Variational formulations

A very interesting feature of Darcy’s equations is that they admit two equivalent

variational formulations, whether the space of velocities is more regular than the space
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of pressures or not, see [6, 2, 19]. The drag coefficient ↵ will be considered as piecewise

constants or piecewise smooth functions. The variational spaces can be choosen as

(u; p) in H(div ;⌦)⇥L2(⌦) or in L2(⌦)⇥H1(⌦). So two variational formulations will

be constructed.

Throughout the thesis, we make the following assumptions on the function ↵: there

exists a finite number of domains ⌦l, 1  l  L, such that :

• they form a partition of ⌦ without overlapping:

⌦̄ =
LX

l=1

⌦̄l, ⌦l \ ⌦l0 = ;, 1  l 6= l
0  L, (2.3.1)

•the restriction of ↵ to each ⌦̄l, 1  l  L, is bounded and positive, i,e. there exists

constants ↵max
l and ↵min

l such that

↵max
l = sup

x2⌦̄l

↵(x) < +1, ↵min
l = inf

x2⌦̄l

↵(x) > 0. (2.3.2)

We set

↵max = max
1lL

↵max
l , ↵min = min

1lL
↵min
l . (2.3.3)

2.3.1 Velocity in H(div ,⌦)

In this subsection, for each domain O in Rd with a Lipschitz-continuous boundary,

we use the full scale of Sobolev spaces Hs(O) and Hs
0(O), s � 0, their trace spaces

on @O and their dual spaces. We denote by C1(Ō) the space of restrictions to O of

indefinitely differentiable functions of Rd and by D(O) its subspace of functions with

a compact support in O.

Let � be any part of @⌦ with positive measure. We also recall that H
1
2
00(�) is defined as

the space of functions in H
1
2 (�) such that their extension by zero belongs to H

1
2 (@⌦).
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We have the following formula

8q 2 H
1
2
00(�), < (v · n), q(x) >=

Z

⌦

(div v) q̄(x)dx +

Z

⌦

v · (grad q̄)(x)dx

where q̄ is any lifting in H1(⌦) of the extension by zero of q to @⌦. So the normal

trace on � of a function v in H(div ,⌦) makes sense in the dual space H
1
2
00(�)

0 of

H
1
2
00(�). In fact, the integral in the left-hand side of the above equality represents a

duality pairing.

We next define

H0(div ,⌦) = {v 2 H(div ,⌦);v · n = 0 on @⌦} (2.3.4)

Then D(⌦)d is dense in H0(div ,⌦), and both H0(div ,⌦) and H(div ,⌦) are Hilbert

spaces for the scalar product associated with the norm defined in (2.2.1).

We now introduce the variational spaces

X(⌦) = H(div ,⌦),

X0(⌦) = {v 2 X(⌦);v · n = 0 on �1}.
(2.3.5)

Both of them are equipped with the norm

||v||X(⌦) = ||v||H(div ,⌦) = (||v||2L2(⌦)d + ||div v||2L2(⌦))
1
2 . (2.3.6)

The variational problem we consider reads: Find (u, p) in X(⌦) ⇥ L2(⌦) such that

u · n = k on �1 and that

8v 2 X0(⌦), a↵(u,v) + b(v, p) = L(v),
8q 2 L2(⌦), b(u, q) = 0,

(2.3.7)
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where the bilinear forms and linear form are defined by

a↵(u,v) =
LX

l=1

↵l

Z

⌦l

u(x) · v(x)dx,

b(v, q) = �
Z

⌦

(div v)(x) · q(x)dx.

L(v) =
LX

l=1

↵l

Z

⌦l

f(x) · v(x)dx �
Z

�2

p0(s) (v · n)(s)ds

We make the following assumption on the data

f 2 X0(⌦)
0
, k 2 (H

1
2
00(�1))

0
, p0 2 H

1
2
00(�2), (2.3.8)

2.3.2 Velocity in L2(⌦)

The variational problem that we consider now reads : Find (u, p) in L2(⌦)d ⇥
H1(⌦) such that p = p0 on �2 and that

8v 2 L2(⌦)d, a↵(u,v) + b(v, p) = L(v),
8q 2 H1

�2
(⌦), b(u, q) =

R
�1
k(⌧) q(⌧)d⌧,

(2.3.9)

where the bilinear forms and linear form are defined by

a↵(u,v) =
LX

l=1

↵l

Z

⌦l

u(x) · v(x)dx, (2.3.10)

b(v, q) =

Z

⌦

v(x) · (grad q)(x)dx. (2.3.11)

and

L(v) =
Z

⌦

↵f(x) · v(x)dx (2.3.12)

H1
�2
(⌦) = {q 2 H1(⌦), q = 0 on �2}. (2.3.13)
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2.4 Well-posedness of the problem

2.4.1 Case of velocity in H(div ,⌦)

Proposition 2.1 Assume that the partition of @⌦ into �1 and �2 is sufficiently

smooth for D(⌦ [ �2) to be dense in X0(⌦). If the data (f, k, p0) satisfy assump-

tion (2.3.8), any smooth enough pair of functions (u, p) in X(⌦)⇥L2(⌦) is a solution

of problem (2.3.7) if and only if it is a solution of problem (2.1.1).

Proof: We refer to [15]. If Y (⌦) = D(⌦̄)(⌦̄) \X0(⌦), then Y (⌦) is dense in X0(⌦).

When multiplying the first line in (2.1.1) by a function v in Y (⌦), integrating by parts,

we obtain that the first equation of (2.3.7) is satisfied for all v in Y (⌦), hence for all

v in X0(⌦) by density. Conversely, letting v run through D(⌦[�2)\X0(⌦) gives the

first line of (2.1.1) in the distribution sense and letting v run through Y (⌦) leads to

the fourth line. Due to the density of D(⌦) in L2(⌦), the second line in (2.1.1), when

taken in the distribution sense, is fully equivalent to the second equation in (2.3.7).

To prove the well-posedness of problem (2.3.7), we first construct a lifting of the

boundary conditions. Before that we introduce the ↵-dependent norms

||v||↵,X(⌦) = (
LX

l=1

↵l(||v||2L2(⌦l)d
+ ||div v||2L2(⌦l)

))
1
2 (2.4.1)

||q||↵⇤,L2(⌦) = (
LX

l=1

1

↵l

||q||L2(⌦l))
1
2 (2.4.2)

Lemma 2.2 There exists a divergence-free function ub in X(⌦) which satisfies

ub · n = k on �1, (2.4.3)
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and

||ub||↵,X(⌦)  C
p
↵max||k||

(H
1
2
00(�1))

0 . (2.4.4)

where C is dependent with ↵.

Proof: We now denote by I(⌦) the space

I(⌦) = {µ 2 H1(⌦); µ = 0 on �2},

and we consider the problem :

Find � in I(⌦) such that ,

8µ 2 I(⌦),
R
⌦
(grad�) · (gradµ)(x)dx =

R
�1
(k µ)(x)d⌧ (2.4.5)

This problem has a unique solution. Moreover the function ub = grad � is divergence-

free on ⌦ and satisfies ub · n = k on �1, and

||ub||↵,X(⌦)  C
p
↵max||k||

(H
1
2
00(�1))

0 . (2.4.6)

To go further, we set: u0 = u� ub, and consider the following problem: Find (u0, p)

in X0(⌦)⇥ L2(⌦) such that

8v 2 X0(⌦), a↵(u0,v) + b(v, p) = �a↵(ub,v) + L(v),
8q 2 L2(⌦), b(u0, q) = 0.

(2.4.7)

Then we can see that the kernel

V (⌦) = {v 2 X0(⌦); 8 q 2 L2(⌦), b(v, q) = 0} (2.4.8)

coincides with the space of functions in X0(⌦) which are divergence-free on ⌦. So it

is easy to have the following Lemma about a↵(·, ·):
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Lemma 2.3 The following ellipticity property holds

8v 2 V (⌦), a↵(v, v) = ||v||2↵,X(⌦). (2.4.9)

Proof: 8 v 2 V (⌦), a↵(v,v) =
LP
l=1

↵l

R
⌦l

v · vdx = ||v||2↵,X(⌦).

Lemma 2.4 There exists a constant � > 0 such that the following inf-sup condition

holds

8q 2 L2(⌦), sup
v2X0(⌦)

b(v, q)

||v||↵,X(⌦)

� �

r
↵min

↵max

||q||↵⇤,L2(⌦). (2.4.10)

Proof: We first define the space

W = {x|x 2 H1(⌦), x = 0 on �2},

then for all q 2 L2(⌦), their exists Y 2 W , such that

8
>>><

>>>:

��Y = q, in ⌦

gradY · n = 0, on �1

Y = 0 on �2

(2.4.11)

Letting v = grad Y , then v 2 X0(⌦) and �div v = q in ⌦. Obviously,

b(v, q) = �
Z

⌦

div v q dx = ||q||2L2(⌦).

Thanks to Green’s formula and Poincaré-Friedrichs inequality

||grad Y ||2L2(⌦) =

Z

⌦

q Y dx  ||q||L2(⌦)||Y ||H1(⌦)  c||q||L2(⌦)||grad Y ||L2(⌦).

It follows with

||v||L2(⌦) = ||grad Y ||L2(⌦)  c||q||L2(⌦)
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So

||v||↵,X(⌦) = (
LX

l=1

↵l(||v||2L2(⌦l)d
+ ||div v||2L2(⌦l)

))
1
2  C

p
↵max||q||L2(⌦)

Then we obtain the result

8q 2 L2(⌦), sup
v2X0(⌦)

b(v, q)

||v||↵,X(⌦)

� c

r
↵min

↵max

||q||↵⇤,L2(⌦).

It follows from Lemma 2.3 and Lemma 2.4 that problem (2.4.7) has a unique

solution (u0, p) in X0(⌦)⇥ L2(⌦) and that this solution satisfies

||u0||↵,X(⌦) + c

r
↵min

↵max

||p||↵⇤,L2(⌦)  C
1p
↵min

(||ub||↵,X(⌦) + ||f||L2(⌦) + ||p0||
H

1
2
00(�2)

)

(2.4.12)

We now obtain the main result of this section.

Theorem 2.5 For any data satisfying (2.3.8), problem (2.3.7) has a unique solution

(u, p) in X(⌦)⇥ L2(⌦). Moreover this solution satisfies

||u||↵,X(⌦)+ c

r
↵min

↵max

||p||L2(⌦)  c
1p
↵min

(
p
↵max||k||

(H
1
2
00(�1))

0 + ||f||L2(⌦)+ ||p0||
H

1
2
00(�2)

).

(2.4.13)

2.4.2 Case of velocity in L2(⌦)

Proposition 2.2 Assume that the partition of @⌦ into �1 and �2 is sufficiently

smooth for D(⌦ [ �1) to be dense in H1
�2
(⌦). Any smooth enough pair of functions

(u, p) is a solution of problem (2.3.9) if and only if it is a solution of problem (2.1.1)

in the distribution sense.

Proof: Due to the density of D(⌦)d in L2(⌦)d, the first line in (2.1.1), when taken

in the distribution sense, is fully equivalent to the first equation in (2.3.9). On the

other hand, when multiplying the second line in (2.1.1) by a function q in D(⌦[�1),
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integrating by parts and using the third line, we obtain that the second equation of

(2.3.9) is satisfied for all q in C1(⌦) \ H1
�2
(⌦), hence for all q in H1

�2
(⌦) by density

according to [15]. Conversely, letting q run through D(⌦ [ �1) gives the second line

of (2.1.1) in the distribution sense and letting q run through C1(⌦) \ H1
�2
(⌦) leads

to the third line.

We now introduce the ↵-dependent norms

||v||↵ = (
LX

l=1

↵l||v||2L2(⌦)d)
1
2 , ||q||↵⇤ = (

LX

l=1

1

↵l

|q|2H1(⌦l)
)
1
2 (2.4.14)

To prove the well-posedness of problem (2.3.9), we first cite the following Property

([48], Chap. I, § 11).

Property 2.1 For all p0 2 H
1
2
00(�2), the extension p̃0 by zero from �2 to @⌦, such

that p̃0|�2 = p0 belongs to H
1
2 (@⌦) and satisfies ||p̃0||H 1

2 (@⌦)
 C ||p0||

H
1
2
00(�2)

.

Then we construct a lifting of the boundary conditions of p̃0. We give the following

lemma.

Lemma 2.5 There exists a linear continuous map R0 : Hs�1/2(�) ! Hs(⌦) such

that R0p̃0 = P̄ , and

inf
�0(P̄ )=p̃0

||P̄ ||H1(⌦) = ||p̃0||H 1
2 (@⌦)

 C||p0||
H

1
2
00(�2)

(2.4.15)

To go further, we set: P1 = p � P̄ , and consider the following problem: Find

(u, P1) in L2(⌦)d ⇥H1
�2
(⌦) such that

8v 2 L2(⌦), a↵(u,v) + b(v, P1) = �b(v, P̄ ) + L(v),
8q 2 H1

�2
(⌦), b(u, q) =< k, q >�1 .

(2.4.16)
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Indeed, the form a↵(·, ·) and b(·, ·) satisfy the continuity properties and we have the

ellipticity property

8 v 2 L2(⌦)d, a↵(v,v) = ||v||2↵. (2.4.17)

We also have the inf-sup condition on the form b(·, ·) as follows:

Lemma 2.6

8 q 2 H1
�2
(⌦), sup

v2L2(⌦)d

b(v, q)

||v||↵ � ||q||↵⇤ (2.4.18)

Proof: 8 q 2 H1
�2
(⌦), letting v = ↵�1rq, then v 2 L2(⌦)d. b(v, q) =

R
⌦
v · rq =

||q||2↵⇤ So b(v,q)
||v||↵ � ||q||2↵⇤

||q||↵⇤ � ||q||↵⇤

It follows from (2.4.17) and (2.4.18) that problem (2.4.16) has a unique solution

(u, P1) in L2(⌦)d ⇥H1
�2
(⌦) and that this solution satisfies

||u||↵ + ||P1||↵⇤  C(||f||↵ + ||P̄ ||↵⇤) (2.4.19)

We are now state the main result of this section.

Theorem 2.6 For any data (f, k, p0) in L2(⌦)d⇥H� 1
2 (�1)⇥H

1
2
00(�2), problem (2.3.9)

has a unique solution (u, p) in L2(⌦)d ⇥H1(⌦). Moreover this solution satisfies

||u||↵ + ||p||↵⇤  C(||f||↵ + ||p0||
H

1
2
00(�2)

+
p
↵max||k||

(H
1
2
00(�1))

0 ). (2.4.20)

Proof: We establish successively the existence and uniqueness of the solution.

1) It follows from the Lax-Milgram lemma, combined with Bramble-Hilbert inequality,

that there exists a unique µ in H1
�2
(⌦) such that

8' 2 H1
�2
(⌦),

Z

⌦

(grad µ) · (grad ')dx =< k,' >�1 . (2.4.21)
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Thus, the function ub = grad µ satisfies

||ub||↵  c
p
↵max||k||

(H
1
2
00(�1))

0 . (2.4.22)

On the other hand, it follows from the standard results on saddle-point problems

([40], Chap,I, Cor.4.1) that the problems

Find (u0, P1) in L2(⌦)d ⇥H1
�2
(⌦) such that

8v 2 L2(⌦), a↵(u0,v) + b(v, P1) = �b(v, P̄ )� a↵(ub,v) + L(v),
8q 2 H1

�2
(⌦), b(u0, q) = 0.

(2.4.23)

has a unique solution (u0, P1) which morever satisfies

||u0||↵ + ||P1||↵⇤  C(||ub||↵ + ||f||↵ + ||P̄ ||↵⇤) (2.4.24)

Then, the pair (u, p) with u = u0 + ub, p = P1 + P̄ , is a solution of problem

(??)-(2.3.9), and estimate (2.4.20) follows from (2.4.22) and (2.4.24). The pair(u =

u0 + ub, p = P1 + P̄ ) is a solution of problem (??)-(2.3.9), and estimate (2.4.20) is a

consequence of (2.4.15) and (2.4.19). On the other hand, let (u1, p1) and (u2, p2) be

two solutions of problem (2.3.9). Then the difference (u1 � u2, p1 � p2) is a solution

of problem (2.4.16) with data ub, f, P1 equal to zero, also p0 equal to zero. Thus, it

follows from (2.4.20) that it is zero. So the solution of problem (2.3.9) is unique.

2.5 Regularity properties

Let O be a subdomain of ⌦ such that ↵ is a constant in a neighbourhood of Ō in

⌦. We first set

H(curl, div ;O) = H(curl,O) \ H(div ,O).
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Then we introduce a space

W0 = {u 2 H(curl, div ;O)|u · n 2 L2(@O)}.

Due to ([5], Remark 2.16) and [30], when O is a general Lipschitz domain, the space

W0 is imbedded in H
1
2 (O). When the domain O is convex, due to ([5], Theorem

2.17), then the space W0 is continuously imbedded in H1(O), in fact, u · n has even

higher regularity, u · n 2 H
1
2 (@O). In the subdomain O, taking the curl of the first

equation in (2.1.1), yields

curl (↵u) = curl (↵f) in O.

This leads to the following local regularity result.

Proposition 2.3 Let O be a subdomain of ⌦ such that ↵ is a constant in a neigh-

bourhood of Ō in ⌦. Then the mapping: (f, k, p0) 7! (u, p), where (u, p) is the so-

lution of problem (2.1.1), is continuous from Hs(⌦)d ⇥ Hs� 1
2 (⌦) ⇥ Hs+ 1

2 (⌦) into

Hs(O)d ⇥Hs+1(O), (i) for 0  s  1
2

in the general case, (ii) for 0  s  1 when Ō
is convex.

It follows from [31] that these results still hold with O replaced by O \ ⌦l

i) in dimension d = 2, when the ⌦l are polygons and Ō does not contain any

vertex of the ⌦l,

ii) in dimension d = 3, when the ⌦l are polyhedras and Ō neither contains a vertex

of the ⌦l nor intersects an edge of the ⌦l.

However when Ō either contains a vertex of the ⌦l or intersects an edge of the ⌦l and

when we consider the global regularity properties, the results will be weaker. More
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properties can be proved only in dimension d = 2 and thus we only consider this case

in what follows.

We first consider the local regularity properties. We introduce here also a space

W = {u 2 H(curl, div ;⌦)|u · n 2 L2(@⌦)}.

We know from [30] when ⌦ is a polygon, a function u in W can be written as

u = ur + gradS, (2.5.1)

where ur belongs to H1(⌦)2 and S is a linear combination of the singularities of the

Laplace equation provided with Neumann boundary conditions. We recall that each

singularity in the neighbourhood of a corner of the polygon with aperture ! has the

form

r
⇡
! ('(✓) + (logr)p (✓)),

where r is the distance to the corner, ✓ the corresponding angular variable, p is equal

to 0 except when ⇡
!

is an integer where it is equal to 1. More generally, any such

function u which has the further property

div u 2 Hs(⌦), curl u 2 Hs(⌦)3, (2.5.2)

admits the expansion (2.5.1) with ur in Hs+1(⌦)2 for all s, 0 < s < 2⇡
!
� 1.

Taking the curl of the fisrt equation in (2.1.1), which yields

curl (↵u) = curl (↵f) in ⌦.

So when ⌦ is a polygon, u admits the expansion (2.5.1), and if curl f belongs to

Hs(⌦)2, 0 < s < 2⇡
!
� 1, where ! denotes the largest angle of ⌦, the regular part ur

in this expansion belongs to Hs+1(⌦).

We next give the regularity property of p. Taking div of the first equation in
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(2.1.1), we consider the following mixed boundary conditions problem:

8
>>><

>>>:

div ( 1
↵

grad p) = div f in ⌦,

1
↵
@
n

p = f · n on �,

p = p0 on �2

(2.5.3)

We know from [34] that there exists a real number s0, 0 < s0 <
1
2
, only depending

on the geometry of ⌦,↵min and ↵max, such that when div f 2 Hs�1(⌦) and p0 2
H

s+ 1
2

⌃ (�2), the solution p of the equation (2.5.3) belongs to Hs+1(⌦) for all s  s0,

where H
s+ 1

2
⌃ (�2) stands for the space of functions such that their restrictions to any

edge e contained in �̄2 belongs to Hs+ 1
2 (e). Morever, when ⌦ is a polygon, according

to ([42],Chapter 5) and [34], p will belong to Hs+1(⌦), s  min{s0, 2⇡! � 1}.
We then consider the local regularity properties when Ō contains either vertex of the

⌦l or intersects an edge of the ⌦l. we are now at the last conclusion of this section.

Suppose f|⌦l
, k, p0 belongs to Hsl(⌦l)

2 ⇥Hsl� 1
2 (⌦l)⇥Hsl+

1
2 (⌦l) for any real positive

number sl: i) When ⌦̄l contains no corner of ⌦, the regularity of (u, p) on ⌦l only

depends on the data f, and (u, p) belongs to Hsl(⌦l)
2 ⇥Hsl+1(⌦l).

ii) When ⌦̄l contains a corner of ⌦ with !, we derive from (2.5.1) that u|⌦l
=

ur + grad S, p|⌦l
= pr + S. So the first equation of (5.1.1) can be rewritten as

1

↵
grad p

0
= f � urwherep0

= pr + (1 + ↵) S. (2.5.4)

Taking the curl of the first equation of (5.1.1) and taking div of the equation (2.5.4),

we can get that (ur, pr) belongs to Hs(⌦l)
2 ⇥Hs+1(⌦l) for s  sl and s < 2⇡

!
.
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Chapter 3

Spectral Discretization of Darcy’s

Equations

3.1 Orthogonal polynomials

We firstly work on the interval ⇤ = [�1, 1], since all results on ⌦ are deduced from

their analogues on ⇤ thanks to tensorization arguments. Over ⇤, all the approxima-

tion properties rely on a proper choice of an orthogonal basis of L2(⇤) : the Legendre

polynomials.

The family of Legendre polynomials is a family (Lk)k�0 of polynomials in one

variable, which are orthogonal to each other in L2(⇤). For any integer k � 0, the

polynomail Lk has degree k. If Lk(x) is normalized so that Lk(1) = 1, then for any

k:

Lk(x) =
1

2k

[k/2]X

(l=0)

(�1)l
✓
k

l

◆✓
2k � 2l

k

◆
xk�2l, (3.1.1)

where [k/2] denotes the integral part of k/2.

It can be noted that, for all k, the k zeros of Lk are distinct real numbers in ⇤ and
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also that the polynomial Lk is even if k is even and odd if k is odd.

The norm of each Lk is given by the formula

Z 1

�1

L2
k(x)dx =

1

k + 1
2

. (3.1.2)

We recall from ([1], Chapter 22) some very important properties of these polynomials,

firstly the differential equation

((1� x2)L
0

k)
0
+ k(k + 1)Lk = 0, k � 0, (3.1.3)

secondly the integral equation

(2k + 1)Lk = L
0

k+1 � L
0

k�1, k � 1, (3.1.4)

thirdly the induction formula, which allows for computing them:

Lk+1(x) =
2k + 1

k + 1
xLk(x)� k

k + 1
Lk�1(x), (3.1.5)

where L0(x) = 1 and L1(x) = x.

We consider now discrete Legendre series. Since explicit formulas for the quadra-

ture nodes are not known, such points have to be computed numerically as zeros of

approximate polynomials. The quadrature weights can be expressed in closed form

in terms of the nodes, as indicated in the following formulas: ([44], Chapter 2)

• Legendre- Gauss (LG) : forj = 1, . . . , N

xj are zeros of LN+1; (3.1.6)

!j =
2

(1� x2
j)[L

0
N+1(xj)]2

. (3.1.7)
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• Legendre -Gauss-Lobatto (LGL) : forj = 0, . . . , N

xj are zeros of (1� x2)L
0

N ; (3.1.8)

!j =
2

N(N + 1)

1

[LN(xj)]2
. (3.1.9)

3.2 Quadrature Formula

As we know that, the most natural quadrature formula in the polynomial context

is the Gauss Lobatto formula associated with the Lebesgue measure, since it allows

for easily handling boundary conditions and leads to diagonal mass matrices. We

firstly describe it, next we study the corresponding interpolation operators.

The Gauss Lobatto formula

Let us set x0 = �1 and xN = 1. There exists a unique set of N � 1 nodes xj, 1 
j  N � 1 and a unique set of N + 1 weights ⇢j, 0  j  N , such that the following

exactness property holds

8� 2 P2N�1(⇤),

Z 1

�1

�(x)dx =
NX

j=0

�(xj)⇢j. (3.2.1)

The zeros xj, 1  j  N � 1, are the zeros of L0
N and the weights ⇢j are positive,

given by

⇢j =
2

N(N + 1)L2
N(xj)

, 0  j  N. (3.2.2)

We conclude with a further useful property of the quadrature formula.

Lemma 3.1 There exists a constant c such that

8�N 2 PN(⇤), ||�N ||2L2(⇤) 
NX

j=0

�2
N(xj)⇢j  3||�N ||2L2(⇤). (3.2.3)
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Proof: We write the expansion of any polynomial �N in L2(⇤) :

�N =
NX

n=0

↵nLn. (3.2.4)

We deduce from the exactness property (3.2.1) that

||�N ||2L2(⇤) =
NX

n=0

↵2
n||Ln||2L2(⇤),

NX

j=0

�2
N(xj)⇢j =

N�1X

n=0

↵2
n||Ln||2L2(⇤) + ↵2

N

NX

j=0

L2
N(xj)⇢j,

so that it suffices to prove the results with �N = LN . Noting that the degree of the

polynomial L2
N + N�2(1 � x2)L

02
N is less than 2N � 1 (this comes by computing the

coefficient of x2N), we derive that

Z 1

�1

(L2
N(x) +N�2(1� x2)L

02
N(x))dx =

NX

j=0

(L2
N(xj) +N�2(1� x2

j)L
02
N(xj))⇢j, (3.2.5)

or equivalently, since the xj are the zeros of (1� x2)L
0
N ,

NX

j=0

L2
N(xj)⇢j =

Z 1

�1

L2
N(x)dx+N�2

Z 1

�1

L
02
N(x)(1� x2)dx. (3.2.6)

The second integral is easily computed, leading to

NX

j=0

L2
N(xj)⇢j = (2 +

1

N
)||LN ||2L2(⇤). (3.2.7)

Since N � 1, this gives the desired result.

38



Chapter 3. Spectral Discretization of Steady Darcy’s Equations

3.3 Polynomial approximation

3.3.1 Polynomial approximation on the interval

Let now N be a fixed positive integer � 2. In what follow, c stands for a positive

constant independent of N . We introduce the orthogonal projection operator ⇡N from

L2(⇤) onto PN(⇤). Then the projection operator can be expressed in the following

way:

8� 2 L2(⇤), ⇡N� =
NX

n=0

�nLn, (3.3.1)

where

�n =
1

||Ln||2L2(⇤)

Z 1

�1

�(x)Ln(x)dx. (3.3.2)

Lemma 3.2 For any real numbers s � 0, the following estimate holds for any � in

Hs(⇤):

||�� ⇡N�||L2(⇤)  cN�s||�||Hs(⇤). (3.3.3)

For the proof of this lemma, we propose ([23], Proposition 1).

We now consider the orthogonal projection operator ⇡1,0
N from H1

0 (⇤) onto P0
N(⇤),

for the scalar product associated with the norm | · |H1(⇤). Its properties are derived

from the formula (⇡1,0
N )

0
= ⇡N�1�

0 for the bounded in H1(⇤), plus a duality argument

for the bounded in L2(⇤).

Proposition 3.1 ([23], Proposition 2) For any real number s � 1, the following

estimate holds for any � in Hs(⇤) \H1
0 (⇤):

|�� ⇡1,0
N �|H1(⇤) +N ||�� ⇡1,0

N �||L2(⇤)  cN1�s||�||Hs(⇤). (3.3.4)

Finally, with any function � in H1(⇤), hence continuous, we associate the function
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�0 defined by

�0(x) = �(x)� �(�1)
1� x

2
� �(1)

1 + x

2
, (3.3.5)

and since it belongs to H1
0 (⇤), we define the polynomial ⇡1

N� by

(⇡1
N�)(x) = (⇡1,0

N �0)(x) + �(�1)
1� x

2
+ �(1)

1 + x

2
. (3.3.6)

This operator does not correspond to an orthogonal projection, but it preserves the

values in ±1 and its properties are easily derived from the formula � � ⇡1
N� = �0 �

⇡1,0
N �0.

Proposition 3.2 ([23], Proposition 3) For any real number s � 1, the following

estimate holds for any � in Hs(⇤) \H1
0 (⇤):

|�� ⇡1
N�|H1(⇤) +N ||�� ⇡1

N�||L2(⇤)  cN1�s||�||Hs(⇤). (3.3.7)

3.3.2 Polynomial approximation on the square or cube

For each n � 0, let Pn(⌦) be the space of polynomials worth degree  n with

respect to each variable, and P0
n be its subspace made of all polynomials which vanish

on the boundary @⌦.

As previously, we fix an integer N � 2. The best fit of a given function is realized

via projection operators onto PN(⌦) or P0
N(⌦), and analyzing their properties relies

on tensorization arguments. For instance, if ⇧N denotes the orthogonal projection

operator from L2(⌦) onto PN(⌦), it coincides with ⇡(x)
N �⇡(y)

N in dimension d = 2, with

⇡
(x)
N �⇡(y)

N �⇡(z)
N in dimension d = 3, where the exponent after an operator denotes the

direction in which it is applied. So the approximation properties of the operator ⇧N

are derived from the triangular inequality, in dimension d = 2 for instance:

||v � ⇧Nv||L2(⌦)  ||v � ⇡
(x)
N v||L2(⌦) + ||⇡(x)

N (v � ⇡
(y)
N v)||L2(⌦). (3.3.8)
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Proposition 3.3 ([23], Proposition 4) For any real number s � 0, the following

estimate holds for any v in Hs(⌦) :

||v � ⇧Nv||L2(⌦)  cN�s||v||Hs(⌦). (3.3.9)

Let now ⇧1,0
N stand for the orthogonal projection operator from H1

0 (⌦) onto P0
N(⌦).

Using a further duality argument, we derive the next proposition.

Proposition 3.4 ([23], Proposition 5) For any real number s � 1, the following

estimate holds for any v in Hs(⌦) \H1
0 (⌦) :

|v � ⇧1,0
N v|H1(⌦) +N ||v � ⇧1,0

N v||L2(⌦)  cN1�s||v||Hs(⌦). (3.3.10)

Finally, the approximation properties of the orthogonal projection operator ⇧1
N

from H1(⌦) onto PN(⌦) are derived from the same triangular inequality .

Proposition 3.5 ([23], Proposition 6) For any real number s � 1, the following

estimate holds for any v in Hs(⌦) :

|v � ⇧1
Nv|H1(⌦) +N ||v � ⇧1

Nv||L2(⌦)  cN1�s||v||Hs(⌦). (3.3.11)

3.4 Polynomial interpolation

In this section, we will introduce the interpolation operator on Gauss-Lobatto

points.
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3.4.1 Polynomial interpolation on the interval

Our aim is to derive the appxoximation properties of the Lagrange interpolation

operator iN at the nodes xj, 0  j  N , with values in PN(⇤), which means that

(iN�)(xj) = �(xj), 0  j  N. (3.4.1)

Lemma 3.3 ([23], Lemma 3) There exists a positive constant c such that, for any

function � in H1
0 (⇤),

||iN�||L2(⇤)  c(||�||L2(⇤) +N�1|�|H1(⇤)). (3.4.2)

Applying the above inequality to the function ��⇡1
N� obviously gives an estimate

for the interpolation error of functions which belongs to H1(⇤). However, we have

rather state a slightly more general result which allows for interpolating less smooth

functions.

Proposition 3.6 ([23], Proposition 7) For any real number s > 1
2
, the following

estimate holds for any � in Hs(⇤):

||�� iN�||L2(⇤)  cN�s||�||Hs(⇤). (3.4.3)

Proposition 3.7 ([21], Theorem 13.4) For any real number r and s satisfying s >

max{1
2
, r} and 0  r  1, there exists a postive constant c depending only on s such

that, for any function � in Hs(⇤), the following estimate holds:

|�� iN�|Hr(⇤)  cN r�s||�||Hs(⇤). (3.4.4)
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3.4.2 Polynomial interpolation on the square or cube

By tensorization, we associate with the nodes xj the grid

⌅N =

8
<

:
{(xi, xj), 0  i, j  N} in dimension d=2,

{(xi, xj, xk), 0  i, j, k  N} in dimension d=3,
(3.4.5)

and also the discrete product: for all continuous functions u and v on ⌦̄,

((u, v))N =

8
>><

>>:

NP
i=0

NP
j=0

u(xi, xj)v(xi, xj)⇢i⇢j in dimension d=2,
NP
i=0

NP
j=0

NP
k=0

u(xi, xj, xk)v(xi, xj, xK)⇢i⇢j⇢k in dimension d=3,
(3.4.6)

Figure 3-1: The Grid of Gauss Lobatto points when N=18 and d=2

We denote by IN the Lagrange interpolation operator on the grid ⌅N , with values

in PN(⌦). The operator coincides with i
(x)
N � i

(y)
N in dimension d = 2, and with

i
(x)
N � i

(y)
N � i

(z)
N in dimension d = 3. So, proving its approximation properties is now

obvious.
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Proposition 3.8 For any real number s > d
2
, the following estimate holds for any v

in Hs(⌦) :

||v � INv||L2(⌦)  cN�s||v||Hs(⌦). (3.4.7)

For any real number r and s satisfying s > max{d
2
, r} and 0  r  1, there exists a

postive constant c depending only on s such that, for any function � in Hs(⌦), the

following estimate holds:

|v � INv|Hr(⌦)  cN r�s||v||Hs(⌦). (3.4.8)

3.5 Spectral discretization of the Darcy’s problem

According to the variational forms in Chapter 2, we here discuss the discrete

problems.

3.5.1 First discretization

According to the variational formulation, we introduce the discrete spaces as fol-

lows:

DN = PN(⌦)
d, (3.5.1)

also we introduce another space:

D0
N = {uN 2 DN , uN · n = 0 on �1}. (3.5.2)

For the space of pressure, there are different choices. Usually we consider the

spurious modes on the pressure, namely the set

Zn = {qN 2 PN(⌦), 8vN 2 D0
N , bN(vN , qN) = 0} (3.5.3)
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which is analyzed in [8] and [25]. The space of pressure MN will be taken as the

orthogonal space of Zn in PN .

But here we choose another pressure space as MN = PN�2(⌦) which has not been

discussed yet in the literature as far as the author’s knowledge. Assuming that the

functions f, k, p0 has continuous restrictions to ⌦̄ and �̄1, �̄2 respectively. Then

the discrete problem built from the variational formulation reads: Find (uN , pN) in

DN ⇥MN such that

uN · n = I�1
N k on �1, (3.5.4)

and

8vN 2 D0
N , aN↵ (uN ,vN) + bN(vN , pN) = LN(vN),

8qN 2 MN , bN(uN , qN) = 0.
(3.5.5)

where the bilinear forms aN↵ (·, ·) and bN(·, ·) are defined by

aN↵ (uN ,vN) = ↵((uN ,vN))N ,

bN(vN , qN) = �((div vN , qN))N ,

LN(vN) = ((↵ f,vN))N � ((p0,vN · n))�2
N .

(3.5.6)

Next we introduce the ↵� dependent norms

||vN ||↵ = (↵(||vN ||2 + ||div vN ||2)) 1
2 ,

||qN ||↵⇤ = (↵�1||qN ||2) 1
2 .

(3.5.7)

Lemma 3.4 There exists a divergence-free function u

b
N in DN which satisfies

u

b
N · n = I�1

N k on �1, (3.5.8)

and

||ub
N ||↵  C

p
↵max||I�1

N k||
(H

1
2
00(�1))

0 . (3.5.9)
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where C is dependent with ↵.

To go further, we set: u

0
N = u � u

b
N , and consider the following problem: Find

(u0
N , p) in D0

N ⇥MN such that

8vN 2 D0
N , aN↵ (u

0
N ,v) + b(v, p) = �aN↵ (u

b
N ,v) + LN(vN),

8q 2 MN , bN(u
0
N , q) = 0.

(3.5.10)

Then we can see that the kernel

VN = {vN 2 D0
N ; 8 qN 2 MN , bN(vN , qN) = 0} (3.5.11)

coincides with the space of functions in D0
N which are divergence-free on ⌦. So it is

easy to have the following Lemma about aN↵ (·, ·):

Lemma 3.5 There exists a constant c independent of the discretization, such that

the following ellipticity property holds

8vN 2 VN , a
N
↵ (vN , vN) � c||vN ||2↵. (3.5.12)

Next, we come to the inf-sup condition.

Lemma 3.6 There exists a constant � > 0 such that the following inf-sup condition

holds

8qN 2 MN , sup
vN2D0

N

bN(vN , qN)

||vN ||↵ � �||qN ||↵⇤ . (3.5.13)

Proof: The proof is given only in the case d = 2, since the corresponding proof in

the case d = 3 is completely similar. Any function qN in MN has the expansion

qN(x, y) =
N�2X

m=0

N�2X

n=0

↵mnLm(x)Ln(y). (3.5.14)

46



Chapter 3. Spectral Discretization of Steady Darcy’s Equations

We can derive that

||qN ||2L2(⌦) =
N�2X

m=0

N�2X

n=0

↵2
mn

1

(m+ 1
2
)(n+ 1

2
)

(3.5.15)

The idea is now to choose vN = (v1N , v2N), with

v1N(x, y) =
N�2X

m=0

mX

n=0

↵mn
Lm+1(x)� Lm�1(x)

2m+ 1
Ln(y) (3.5.16)

and

v2N(x, y) =
N�2X

m=0

N�2X

n=m+1

↵mnLm(x)
Lm+1(y)� Lm�1(y)

2m+ 1
. (3.5.17)

In fact, the polynomial vN belongs to D0
N , and which satisfies div vN = �qN . Next,

we note that
@v1N(x, y)

@x
=

N�2X

m=0

mX

n=0

↵mnLm(x)Ln(y) (3.5.18)

which allows for bounding ||@v1N (x,y)
@x

||L2(⌦) by comparing with (3.5.15). Using a similar

argument for @v2N (x,y)
@y

, we derive that

||@v1N(x, y)
@x

||L2(⌦) + ||@v2N(x, y)
@y

||L2(⌦)  c||qN ||L2(⌦), (3.5.19)

and also, thanks to the Poincaré-Friedrichs inequality applied with respect either to

x or y,

||v1N(x, y)||L2(⌦) + ||v2N(x, y)||L2(⌦)  c||qN ||L2(⌦), (3.5.20)

then the inf-sup condition is obviously.

It follows from Lemma 3.5.12 and Lemma 3.6 that problem (3.5.10) has a unique

solution (u0
N , p) in D0

N ⇥MN and that this solution satisfies

||u0||↵ + ||p||↵⇤  C(||ub||↵ + ||IN f||L2(⌦)d + ||I�2
N p0||

H
1
2
00(�2)

) (3.5.21)

We now state the main result of this section.
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Theorem 3.1 For any data (f, k, p0) such that each f, and k, p0 are continuous on ⌦̄k

and on �1,�2, problem (3.5.4)� (3.5.5) has a unique solution (uN , pN) in DN ⇥MN .

Moreover this solution satisfies

||uN ||↵ + ||pN ||↵⇤  c(||I�1
N k||

(H
1
2 )

0

00 (�1)
+ ||INf||L2(⌦)d + ||I�2

N p0||
H

1
2
00(�2)

). (3.5.22)

Proof: The pair(u = u

0
N+u

b
N , p) is a solution of problem (3.5.4)-(3.5.5), and estimate

(3.5.22) is a consequence of (3.5.21) and (3.5.62). On the other hand, let (u1, p1) and

(u2, p2) be two solutions of problem (3.5.4)-(3.5.5). Then the difference (u1�u2, p1�
p2) is a solution of problem (3.5.10) with data ub, f, p0 equal to zero. Thus, it follows

from (3.5.22) that it is zero. So the solution of problem (3.5.4)-(3.5.5) is unique.

• Error estimate : here we introduce a new norm as follows:

||uN ||↵,L2(⌦) = (↵||uN ||2) 1
2 .

We prove an error estimates, first for the velocity, second for the pressure. Let u be

the solution of equation (2.1.1), uN the solution of equation (3.5.4)-(3.5.5) and !!!N

any function in the kernal VN(⌦). Multiply the first line of (2.1.1) by !!!N gives

↵

Z

⌦

u0 ·!!!Ndx + b(!!!N , p) = ↵

Z

⌦

f ·!!!Ndx � ↵

Z

⌦

ub ·!!!Ndx. (3.5.23)

Using the definition of VN(⌦) thus implies, for any qN in MN(⌦),

↵

Z

⌦

u0 ·!!!Ndx + b(!!!N , p� qN) = ↵

Z

⌦

f ·!!!Ndx � ↵

Z

⌦

ub ·!!!Ndx. (3.5.24)
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In (3.5.24), letting !!!N = u

0
N � vN and subtracting the first line of (3.5.10) leads to

||u0
N � vN ||2↵,L2⌦  ↵

Z

⌦

(u0 � vN) · (u0
N � vN)dx + ↵

Z

⌦

vN · (u0
N � vN)dx

�↵((vN ,u
0
N � vN))

k
N + b(u0

N � vN , p� qN) + ↵((f,u0
N � vN))

k
N

�↵
Z

⌦

f · (u0
N � vN)dx + ↵

Z

⌦

u

b · (u0
N � vN)dx�

↵((ub
N ,u

0
N � vN))

k
N +

Z

�2

p0 · [(u0
N � vN) · n]ds � ((p0, (u

0
N � vN) · n))�2

N .

(3.5.25)

Using a triangle inequality yields

||u � uN ||↵,L2(⌦)  ||u0 � vN ||↵,L2(⌦) + ||u0
N � vN ||↵,L2(⌦) + ||ub � u

b
N ||↵,L2(⌦)

 C{ inf
vN2VN

||u0 � vN ||↵,L2(⌦) + sup
!!!N2DN

{↵
R
⌦
vN ·!!!Ndx � ↵((vN ,!!!N))

k
N

||!!!N ||↵,L2(⌦)

+
↵((f,!!!N))

k
N � ↵

R
⌦
f ·!!!Ndx

||!!!N ||↵,L2(⌦)

+
↵
R
⌦
ub ·!!!Ndx � ↵((ub

N ,!!!N))
k
N

||!!!N ||↵,L2(⌦)

+

R
�2
p0 · (!!!N · n)ds � ((p0, (!!!N · n))�2

N

||!!!N ||↵,L2(⌦)

+
b(!!!N , p� qN)

||!!!N ||↵,L2(⌦)

+ ||ub � u

b
N ||↵,L2(⌦)}.

(3.5.26)

All the items above can be found in ([25], Chapter V), we will not prove here and we

will give the first theorem about the velocity as follows.

Theorem 3.2 Assume that the solution (u, p) of the problem (2.1.1) in Hm(⌦)d ⇥
Hm(⌦) for m � d/2; the function f belongs to Hm(⌦)d for m � d/2; the function

k on �1 in Hs(�1) for s > d�1
2

, and p0 on �2 in H t(⌦) for t > d�1
2

, we have the

following estimate:

||u� uN ||↵,L2(⌦)  c(N�m(||u||Hm(⌦)d + ||p||Hm(⌦))

+N�r||f||Hr(⌦)d +N�s||k||Hs(�1) +N�t||p0||Ht(�2)).
(3.5.27)

Due to the inf � sup condition, for any qN in MN(⌦), we derive that

�D||pN � qN ||↵⇤  sup
vN2D0

N (⌦)

� R
⌦
(pN � qN)(div vN)dx

||vN ||↵ . (3.5.28)
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In order to evaluate � R
⌦
(pN � qN)(div vN)dx, we first use the discrete problem

(3.5.5):

�
Z

⌦

(pN � qN)(div vN)dx = ↵((f,vN))
k
N � ((p0,vN · n))�2

N

�↵((uN ,vN))
k
N +

Z

⌦

qN(div vN)dx.

(3.5.29)

Next, we apply equation (2.1.1) to the function vN , integrate by parts and add it to

the previous line, which yields

�
Z

⌦

(pN � qN)(div vN)dx = ↵((f,vN))
k
N � ↵

Z

⌦

f · vNdx

+↵

Z

⌦

u · vNdx � ↵((u,vN))
k
N

+

Z

�2

p0 · (v · n) ds� ((p0,vN · n))�2
N +

Z

⌦

(qN � p) divvNdx

(3.5.30)

Now, it is easy to derive the next theorem.

Theorem 3.3 Assume that the solution (u, p) of the problem 2.1.1 in Hm(⌦)d ⇥
Hm(⌦) for m � d/2; the function f belongs to Hm(⌦)d for m � d/2; the function

k on �1 in Hs(�1) for s > d�1
2

, and p0 on �2 in H t(⌦) for t > d�1
2

, we have the

following estimate:

||u� uN ||↵,L2(⌦) + ||p� pN ||↵⇤  c(N�m(||u||Hm(⌦)d + ||p||Hm(⌦))

+N�r||f||Hr(⌦)d +N�s||k||Hs(�1) +N�t||p0||Ht(�2)).
(3.5.31)

3.5.2 Second discretization

• Well-posedeness of the solution : According to the variational formulation,

we introduce the discrete spaces as follows:

XN = PN(⌦)
d, MN = PN(⌦), (3.5.32)
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also we introduce another space:

M1
N = {qN 2 MN , qN = 0 on �2}. (3.5.33)

Assuming that the functions f, k, p0 has continuous restrictions to all ⌦̄k, 1  k 
K and �̄1, �̄2 respectively. Then the discrete problem built from the variational

formulation reads: Find (uN , pN) in XN ⇥MN such that

pN = p0 on �2, (3.5.34)

and

8vN 2 XN , aN↵ (uN ,vN) + bN(vN , pN) = LN(vN),

8qN 2 M1
N , bN(uN , qN) = ((k, qN))

�1
N .

(3.5.35)

where the bilinear forms aN↵ (·, ·) and bN(·, ·) are defined by

aN↵ (uN ,vN) = ↵((uN ,vN))N ,

bN(vN , qN) = ((vN ,grad qN))N ,

LN(vN) = ((↵ f,vN))N .

(3.5.36)

We introduce here related norm and semi-norm as follows:

||uN ||↵ = (↵||uN ||2) 1
2 , ||qN ||↵⇤ = (↵�1|qN |2) 1

2 .

We construct a lifting of the boundary condition of p0, we give the following lemma

according to the reference ([25], Th. III.3.1) or ([7], Lemma 4.1).

Lemma 3.7 If p0 is continuous on �2, then there exists a function pbN in MN and a

constant c independent of N , such that

pbN = I�2
N p0 on �2, (3.5.37)
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and

||pbN ||↵⇤  c

r
1

↵min

||I�2
N p0||H 1

2 (�2)
. (3.5.38)

To go further, we set p0N = pN � pbN , and consider the following problem: Find

(uN , p
0
N) in XN ⇥M1

N such that

8vN 2 XN , aN↵ (uN ,vN) + bN(vN , p
0
N) = LN(vN)� bN(vN , p

b
N),

8qN 2 M1
N , bN(uN , qN) = ((k, qN))

�1
N .

(3.5.39)

Lemma 3.8 The form aN↵ (·, ·) satisfies the following continuity and ellipticity prop-

erties

8uN 2 XN , 8vN 2 XN , a
N
↵ (uN , vN)  c||uN ||↵||vN ||↵, (3.5.40)

8uN 2 XN , a
N
↵ (uN ,uN) � ||uN ||2↵. (3.5.41)

Proof: We use the Cauchy-Schwarz inequality to (3.4.6), we can derive

((u,v))N  ((u,u))
1
2
N((v,v))

1
2
N . (3.5.42)

For all uN in XN , because ↵k is piecewise constant, we have

aN↵ (uN ,uN) = ↵
NX

i=0

NX

j=0

u

2
N(xi, xj)⇢i⇢j, (3.5.43)

then we can easily derive:

8uN 2 XN , ||uN ||2↵  aN↵ (uN ,uN)  c||uN ||2↵. (3.5.44)

We next come to the inf-sup condition:
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Lemma 3.9 The bilinear form bN(·, ·) satisfies the inf-sup condition

8qN 2 M1
N , sup

vN2XN

bN(vN , qN)

||vN ||↵ � C ||qN ||↵⇤ . (3.5.45)

Proof: We note that for any qN in M1
N , we can define the function vN by

vN = ↵�1
gradqN , (3.5.46)

It is obvious that vN 2 XN . Then we have the above inf-sup condition. From (3.5.40-

3.5.41) and the inf-sup condition (3.5.45), the saddle-point problem (3.5.39) has a

unique solution (uN , p
0
N) which satisfies

||uN ||↵ + ||p0N ||↵⇤  C (||pbN ||↵⇤ + ||I�1
N k||

H� 1
2 (�1)

+ ||IN f||L2(⌦)d) (3.5.47)

Now we are in the position of the main result of this section:

Theorem 3.4 For any data (f, k, p0) such that each f, and k, p0 are continuous on ⌦̄k

and on �1,�2 respectively, problem (3.5.34)� (3.5.35) has a unique solution (uN , pN)

in XN ⇥ MN . Moreover, there exists a constant c independent of N such that this

solution satisfies

||uN ||↵ + ||pN ||↵⇤  C (||I�2
N p0||H 1

2 (�2)
+ ||I�1

N k||
H� 1

2 (�1)
+ ||INf||L2(⌦)d) (3.5.48)

Proof: We establish successively the existence and uniqueness of the solution.

1) It follows from the Lax-milgram lemma, combined with Bramble-Hilbert inequality,

that there exists a unique 'N in XN such that

8�N 2 M1
N , ((grad 'N ,grad �N))N = ((k,�N))

�1
N . (3.5.49)
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Thus, the function u

b
N = grad 'N , satisfies

||ub
N ||↵  c

p
↵max||I�1

N k||
H� 1

2 (�1)
. (3.5.50)

On the other hand , it follows from the standard results on saddle-point problems

([40], Chap.I, Cor.4.1), that the problem : Find (u0
N , p

0
N) in XN ⇥M1

N such that

8vN 2 XN , aN↵ (u
0
N ,vN) + bN(vN , p

0
N) = LN(vN)� bN(vN , p

b
N)� aN↵ (u

b
N ,vN),

8qN 2 M1
N , bN(uN , qN) = 0.

(3.5.51)

has a unique solution (u0
N , p

0
N) which satisfies

||u0
N ||↵ + ||p0N ||↵⇤  C (||pbN ||↵⇤ + ||ub

N ||↵ + ||IN f||L2(⌦)d) (3.5.52)

Then, the pair (uN , pN), with uN = u

0
N +u

b
N , pN = p0N +pbN , is a solution of problem

(3.5.34) - (3.5.35), and estimate (3.5.48) follows from (3.5.50) and (3.5.52).

2)The pair(uN , pN = p0N+pbN) is a solution of problem (3.5.34) - (3.5.35), and estimate

(3.5.48) is a consequence of (3.5.38) and (3.5.47). On the other hand, let (uN1, pN1)

and (uN2, pN2) be two solutions of problem (3.5.34) - (3.5.35). Then the difference

(uN1 � uN2, pN1 � pN2) is a solution of problem (3.5.39) with data u

b
N , f, p0 equal to

zero. Thus, it follows from (3.5.48) that it is zero. So the solution of problem (3.5.34)

- (3.5.35) is unique.

To conclude, we introduce the discrete kernal

VN = {vN 2 XN ; 8qN 2 M1
N , bN(vN , qN) = 0}. (3.5.53)

As usual, it plays a key role in the numerical analysis of problem (3.5.34) - (3.5.35).

• Error estimate

This section is devoted to the error estimates, first for the velocity, second for the

pressure. We intend to prove here an estimate between the solution (u, p) of problem

(2.3.9) and the solution (uN , pN) of problem (3.5.34)-(3.5.35).

54



Chapter 3. Spectral Discretization of Steady Darcy’s Equations

Let !!!N be any function in the kernal VN . Multiplying the first line of (2.1.1) by !!!N

gives

a↵(u0,!!!N) + b(!!!N , P1) = ↵

Z

⌦

f ·!!!Ndx � a↵(ub,!!!N)� b(!!!N , P̄ ). (3.5.54)

which implies, due to the defination of VN , that for any qN in M1
N(⌦),

a↵(u0,!!!N) + b(!!!N , P1 � qN) = ↵

Z

⌦

f ·!!!Ndx � a↵(ub,!!!N)� b(!!!N , P̄ ). (3.5.55)

Next, we deduce from the ellipticity property, that we have for any vN in VN

||u0
N � vN ||2↵  aN↵ (u

0
N � vN ,u

0
N � vN). (3.5.56)

Adding (3.5.55) with !!!N = u

0
N � vN and substracting the first line of (3.5.35) leads

to

||u0
N � vN ||2↵  aN↵ (u

0
N � vN ,u

0
N � vN)  a↵(u0 � vN ,u

0
N � vN) + a↵(vN ,u

0
N � vN)

�aN↵ (vN ,u
0
N � vN) + b(u0

N � vN , P1 � qN) + ((↵f,u0
N � vN))N

�↵
Z

⌦

f · (u0
N � vN)dx + a↵(ub,u

0
N � vN)

�aN↵ (ub,u
0
N � vN) + b(u0

N � vN , P̄ )� bN(u
0
N � vN , p

b
N).

(3.5.57)

It is obvious that

8vN 2 XN , 8qN 2 M1
N , bN(vN , qN)  ||vN ||↵||qN ||↵⇤ . (3.5.58)

So, combining the above inequality and triangle inequality, we derive that the error

||u � uN ||↵ is bounded, up to a multiplicative constant, by the sum of seven terms:
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• the approximation error in XN

inf
vN2VN

||u0 � vN ||↵, (3.5.59)

• the error approximation in M1
N

inf
qN2M1

N

||P1 � qN ||↵⇤ , (3.5.60)

• three terms issued from numerical integration

sup
!!!N2XN

a↵(vN ,!!!N)� aN↵ (vN ,!!!N)

||!!!N ||↵ , (3.5.61)

sup
!!!N2XN

a↵(ub,!!!N)� aN↵ (u
b
N ,!!!N)

||!!!N ||↵ , (3.5.62)

sup
!!!N2XN

((↵f,!!!N))↵ � ↵
R
⌦
f ·!!!Ndx

||!!!N ||↵ , (3.5.63)

sup
!!!N2XN

b(!!!N , P̄ )� bN(!!!N , p
b
N)

||!!!N ||↵ . (3.5.64)

and

||ub � u

b
N ||↵ (3.5.65)

We refer ([32], Section 2.6.2), the following estimate could be found there.

For r � 2,

sup
!!!N2XN

((↵f,!!!N))↵ � ↵
R
⌦
f ·!!!Ndx

||!!!N ||↵  cN�r||f||Hr(⌦)d . (3.5.66)

For s � 1,

sup
!!!N2XN

a↵(ub,!!!N)� aN↵ (u
b
N ,!!!N)

||!!!N ||↵  cN�s||ub||Hs(⌦)d . (3.5.67)

Lemma 3.10 ([32], Lemma 2.6.2) For all m � d�2, and the function u in Hm(⌦)d,
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we have:

inf
vN2VN

||u0 � vN ||↵  cN�m||u0||Hm(⌦)d . (3.5.68)

Then,

inf
qN2M1

N

||P1 � qN ||↵⇤  cN�m||P1||Hm+1(⌦). (3.5.69)

So, according to the above estimate, we have the first approximation error for the

velocity.

Theorem 3.5 Assume that the solution (u, p) of the problem (2.1.1) in Hm(⌦)d ⇥
Hm+1(⌦) for m � d � 2; the function f belongs to Hr(⌦)d for r � 2; the function

k on �1 in Hs(�1) for s > d�1
2

, and p0 on �2 in H t(⌦) for t > d � 1, we have the

following estimate:

||u� uN ||↵  c(N�m(||u||Hm(⌦)d + ||p||Hm+1(⌦))

+N�r||f||Hr(⌦)d +N�s||k||Hs(�1) +N�t||p0||Ht(�2)).
(3.5.70)

Then we come to the error estimate for the pressure. From the inf � sup condition

(3.5.45), we derive that, for any qN in M1
N ,

�||p0N � q0N ||↵⇤  sup
vN2XN

bN(vN , p
0
N � q0N)

||vN ||↵ . (3.5.71)

We first use the discrete problem (3.5.35)

bN(vN , p
0
N � q0N) = ((↵ f,vN))N �aN↵ (uN �vN)� bN(vN , p

b
N)� bN(vN , q

0
N). (3.5.72)

Next, we apply equation (2.3.9) to the function vN , and adding it to the previous
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line. This yields

bN(vN , p
0
N � q0N) = ↵

Z

⌦

(u � uN) · vNdx + ↵

Z

⌦

uN · vNdx � aN↵ (uN � vN)

+

Z

⌦

vN · grad (P1 � q0N)dx +

Z

⌦

vN · grad (P̄ � pbN)dx

+((↵ f,vN))N↵

Z

⌦

f · vNdx.

(3.5.73)

According to the triangle inequality, we have

||p� qN ||↵⇤ = ||P1 � q0N ||↵⇤ + ||p0N � q0N ||↵⇤ + ||P̄ � pbN ||↵⇤ (3.5.74)

So using the same arguments as in the estimation of terms issued from numerical

integration together with the above triangle inequality yields

||p� qN ||↵⇤  c(||u � uN ||↵ + sup
vN2XN

↵
R
⌦
uN · vNdx � aN↵ (uN ,vN)

||vN ||↵
+||P1 � q0N ||↵⇤ + sup

vN2XN

((↵ f,vN))N � ↵
R
⌦
fN · vNdx

||vN ||↵
+ sup

vN2XN

b(vN , P̄ )� bN(vN , q
0
N)

||vN ||↵ + ||P̄ � pbN ||↵⇤).

(3.5.75)

Then we give the second theorem about the error estimate of the pressure:

Theorem 3.6 Assume that the solution (u, p) of the problem (2.1.1) in Hm(⌦)d ⇥
Hm+1(⌦) for m � d � 2; the function f belongs to Hr(⌦)d for r � 2; the function

k on �1 in Hs(�1) for s > d�1
2

, and p0 on �2 in H t(⌦) for t > d � 1, we have the

following estimate:

||u� uN ||↵ + ||p� pN ||↵⇤  c(N�m(||u||Hm(⌦)d + ||p||Hm+1(⌦))

+N�r||f||Hr(⌦)d +N�s||k||Hs(�1) +N�t||p0||Ht(�2)).
(3.5.76)
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3.6 Numerical results

In this section, we will talk about the numerical computation for the schemes

proposed in the above sections. Because ↵ is piecewise constant in our work, for

simplicity, we suppose here a constant in the whole domain, and we set ↵ = 1.

For the details of the computation, including the linear system, Uzawa algorithm and

the numerical implementation, we refer to ([25], V.4) and ([32], Chapter 2). Here

we only give some numerical results to support our estimate convergence.For the

simplicity of the computation, we set here �1 = @⌦.

3.6.1 The first discretization

N 5 9 13 17 19
||u�uN ||↵

||u||↵ 1.97e-2 9.42e-5 9.42e-9 4.68e-13 4.8e-15
||p�pN ||↵⇤

||p||↵⇤ 4.93e-2 1.99e-5 1.86e-9 1.38e-13 3.4e-15
Table 2: The relative error for the second case

3.6.2 The second discretization

The first example is as follows with analytical velocity and the pressure is also

with regular property:

u(x, y) =

0

@ sin(⇡x) cos(⇡y)

� cos(⇡x) sin(⇡y)

1

A , p(x, y) = sin(⇡(x+ y)). (3.6.1)

The following table indicate the spectral approximation property, which means the

the rate of convergence is exponentional.
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N 5 9 13 17 19
||u�uN ||↵,L2(⌦)

||u||↵,L2(⌦)
3.81e-2 5.42e-5 4.08e-9 4.33e-13 7.83e-15

||p�pN ||↵⇤
||p||↵⇤ 5.73e-2 2.49e-5 1.86e-8 1.09e-12 3.47e-15

Table: The relative error for the first case

Where (uN , pN) is the velocity and pressure respectively computed on the Legendre-

Gauss-Labatto points. We can know that the error with order 10�15. The following

figure represents the logarithm of error, in norm L2(⌦)2 and H1(⌦). It shows that the

error decays fast when N increase. In addition, the error decays expontionaly when N

increase. These results confirm the numerical analysis obtained in the above section.

N
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The Curve of the convergence in L2(+ ) and H1(+ )
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Norm H1(pressure)

Figure 3-2: The curve of convergence in L2(⌦) and H1(⌦)

The second example is given as non-homogeneous:

u(x, y) =

0

@ cos(⇡x) sin(⇡y)

� sin(⇡x) cos(⇡y)

1

A , p(x, y) = sin(⇡(x+ y)). (3.6.2)
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The boundary conditions are:

k(x, y) =

8
<

:
� sin(⇡y), if � 1  y  1 and x = 1 and x = �1

sin(⇡x), if � 1  x  1 and y = 1 and y = �1
(3.6.3)

The next table give the numerical results for the solution given above.

N 9 12 15 18 21
||u�uN ||↵,L2(⌦)

||u||↵,L2(⌦)
e-2 3e-6 4e-9 4.3e-12 2.8e-14

||p�pN ||↵⇤
||p||↵⇤ 2.73e-4 5.49e-7 6e-10 3e-13 1.4e-14

Table : The relative error for the first case

We can know that the error with order 10�14. The following figure represents the

logarithm of error, in norm L2(⌦)2 and H1(⌦). It shows that the error decays fast

when N increase. In addition, the error decays expontionaly when N increase. We

N
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g

1
0

(e
rr

o
r)

10-14

10-12

10-10

10-8
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10-4

10-2
The curve of convergence

Norm L2(velocity)
Norm H1(pressure)

Figure 3-3: The curve of convergence in L2(⌦) and H1(⌦)

are also interested in the case where the solution of the problem is not so regular, so
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the third example as follows:

u(x, y) =

0

@ �5
2
y(x2 + y2)

1
4

5
2
x(x2 + y2)

1
4

1

A , p(x, y) = sin(⇡(x+ y)). (3.6.4)

The boundary conditions are:

k(x, y) =

8
<

:
�5

2
y(1 + y2)

1
4 ), if � 1  y  1 and x = 1 and x = �1

5
2
x(x2 + 1)

1
4 , if � 1  x  1 and y = 1 and y = �1

(3.6.5)

The results are given in the following table:

N 5 9 13 17 19
||u�uN ||↵,L2(⌦)

||u||↵,L2(⌦)
e-3 7e-6 4e-9 6.3e-14 2.8e-15

||p�pN ||↵⇤
||p||↵⇤ 2.4e-3 5.7e-5 e-8 3e-12 8.4e-15

Table : The relative error for the first case

The next figure represents the logarithm of error, in norm L2(⌦)2 and H1(⌦). It shows

that the error decays fast when N increase. In addition, the error decays expontionaly

when N increase.

In the end, we present the following problems, the knowns datas are:

f(x, y) =

0

@ �y2

(1� x2)

1

A , in ⌦, k(x, y) = 0 on @⌦ (3.6.6)
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Figure 3-4: The curve of convergence in L2(⌦) and H1(⌦)
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Figure 3-5: The curve and isovalue of the first component of velocity obtained by
N=48
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Figure 3-6: The curve and isovalue of the second component of velocity obtained by
N=48
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Figure 3-7: The curve and isovalue of the pressure obtained by N=48
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Chapter 4

Mortar Spectral Discretization of

Darcy’s Equations(I)

4.1 Introduction

Let ⌦ be a bounded, connected, open set in Rd, d = 2 or 3, with a Lipschitz

continuous boundary @⌦, and let n denote the unit outward normal vector to ⌦ on

@⌦, �1 and �2 be a partition of @⌦ without overlop. We will talk about the Darcy’s

equations as follows

8
>>>>>><

>>>>>>:

↵u + grad p = ↵f in ⌦,

div u = 0 in ⌦,

u · n = k on �1,

p = p0 on �2

(4.1.1)

The data are now the function f and the boundary conditions k and p0 . The unknowns

are the velocity u and the pressure (or hydraulic head, according to the model) p.

We assume that the function ↵ is piecewise constant: There exists a partition of the
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domain ⌦ without overlap into connected subdomains ⌦l, 1  l  L, such that ↵ is

constant equal to ↵l on ⌦l. We introduce the notation

↵min = min
1lL

↵l and ↵max = max
1lL

↵l,

and, without restriction, we assume that ↵min is positive.

The mortar element method, due to Bernardi, Maday and Petera [24], is a do-

main decomposition technique which allows for working on general partitions of the

domain, without conformity restrications. It is widely used to discrete second-order

elliptic equations when set in standard Sobolev spaces, we refer to [16] and [6]. In

[6], Azaïez, Belgacem and Bernardi extend this method to problems formulated in

spaces of square-integrable functions with square-integrable divergence, where Darcy’s

equations with homogeneous Dirichlet boundary is discussed.

We firstly consider the key situation where the function ↵ is piecewise constant.

We refer to ([58], Subsec. 1.5) for a first application of this method to discontinuous

coefficient in the finite element framwork. For spectral element framwork, we refer to

[16] for the second-order elliptic equations and [32] for Darcy’s equations formulated

in standard Sobolev spaces. For the boundary conditions, we introduce a subspace

of H(div ,⌦) with trace u ·n = 0 on �1. Thanks to the recent paper [15] by Bernard,

we can derive its density results and then the well-posedness of the problem.

The approximation properties of divergence-free functions in the mortar discrete

space are needed for the numerical analysis of the discrete problem. According to this,

wo can prove a spectral type error estimate: the order of convergence only depends on

the regularity of the solution, more precisely on its local regularity in each subdomain.

Finally, an appropriate treatment of the matching conditions on the interface is
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the main point of the implementation of the mortar technique, we refer to [6]. We

also refer to [10] to see another way of treating these conditions. Two dimensional

numerical experiments are presented. They are in good coherency with the numerical

analysis.

4.2 Description of the mortar spectral element dis-

cretization

Throughout this section, we work with a piecewise constant function ↵. We now

assume that ⌦ admits a disjoint decomposition into a finite number of (open) rect-

angles in dimension d = 2, rectangular parallelepipeds in dimension d = 3, denoted

by ⌦k, with edges all parallel to the coordinate axes,

⌦̄ =
K[

k=1

⌦̄k and ⌦k \ ⌦k0 = ;, 1  k 6= k
0  K. (4.2.1)

We make the further assumption that the intersection of each @⌦k with @⌦, if not

empty, is a corner, a whole edge or a whole face of ⌦k. For 1  k  K, we denote by

�k,l, 1  l  L(k), the (open) edges in dimension d = 2, faces in dimension d = 3, of

⌦k which are not contained in @⌦. We denote by nk the unit outward normal vector

to ⌦k on @⌦k. The decomposition is said to be conforming when the intersection of

two different ⌦̄k, if not empty, is a corner or a whole edge or a whole face of both of

them. For simplicity, we denote by ↵k the constant value of ↵ on each ⌦k, 1  k  K.

The skeleton S of the decomposition, equal to
KS
k=1

@⌦k\@⌦, admits a decomposition

without overlapping into mortars

S̄ =
M[

m=1

�̄m and �m \ �m0 = ;, 1  m 6= m
0  M. (4.2.2)

where each �m = �k(m),l(m) is a whole edge in dimension d = 2, face in dimension d = 3,
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of a subdomain ⌦k, denoted by ⌦k(m). Note that the choice of this decomposition is

not unique, however it is decided a priori for all the discretizations we work with.

In order to describe the discrete problem, we introduce the discretization param-

eter �, which is here a K-tuple of positive integers Nk, 1  k  K, with each Nk � 2.

Indeed, the local discrete space on each ⌦k is the space PNk
(⌦k) of restrictions to

⌦k of polynomials with degree  Nk with respect to each variable. In all that fol-

lows, c stands for a generic constant which may vary from line to line but is always

independent of �.

We first introduce the discrete spaces. From the trace theory and (2.3.5) we know

that the space X(⌦) coincides with the space of functions v such that their restrictions

to each ⌦k, 1  k  K, belong to H(div ,⌦k) and their normal traces are continuous

through the skeleton S. For 1  m  M , we define the mortar function ' on each

�m by

'|�m = v�|⌦k(m)
· nk(m).

Then we define the corresponding discrete space of velocities D�(⌦) of functions v�

such that

1. their restrictions v�|⌦k
to each ⌦k, 1  k  K, belong to PNk

(⌦k)
d,

2. such the following matching condition holds on each edge �k,l, 1  k  K, 1  l 
L(k), which is not a mortar:

8 2 PNk�2(�k,l),

Z

�k,l

(v�|⌦ · nk + ')(t) (t)dt = 0. (4.2.3)

We also define the following space

D0
�(⌦) = {v� 2 D�(⌦)| v� · n = 0 on �1} (4.2.4)

According to ([8], Lemma 4.1) and ([24], Thm 24.1), the space M� of the discrete
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pressures is introduced by:

M�(⌦) = {q� 2 L2(⌦); q�|⌦k
2 PNk�2(⌦k), 1  k  K}. (4.2.5)

Assuming that the functions f, k and p0 have continuous restrictions to all ⌦̄k, 1 
k  K and �̄1, �̄2 respectively. Then the discrete problem built from the variational

formulation (2.3.7) by the Galerkin method with numerical integration(GNI) reads :

Find (u�, p�) in D�(⌦)⇥M�(⌦) such that

u� · n = I�1
� k on �1, (4.2.6)

and

8v� 2 D0
�(⌦), a�↵(u�,v�) + b�(v�, p�) = L�(v�),

8q� 2 M�(⌦), b�(u�, q�) = 0.
(4.2.7)

where the bilinear forms a�↵(·, ·) and b� are defined by

a�↵(u�,v�) =
KP
k=1

↵k((u�,v�))
k
� ,

b�(v�, q�) = �
KP
k=1

((div v�, q�))
k
� ,

L�(v�) =
KP
k=1

↵k((f�,v�))
k
� � ((p0,v� · n))�2

� .

(4.2.8)

Thanks to the exactness property of the quadrature formula, we note that

8v� 2 D0
�(⌦), 8q� 2 M�(⌦), b�(v�, q�) = �

Z

⌦

q�(div v�)dx. (4.2.9)

Since D�(⌦) is not contained in H(div ,⌦) in the general case, we need the ”bro-
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ken”norm defined by

||v||↵,� = (
KP
k=1

↵k||v||2H(div ,⌦k)
)
1
2 ,

||q||↵⇤,� = (
KP
k=1

↵�1
k ||q||2L2(⌦k)

)
1
2 .

(4.2.10)

We then construct a lifting of the boundary conditions.

Lemma 4.1 There exists a divergence free function u

b
� in D�(⌦) which satisfies

u

b
� · n = I�1

� k on �1, (4.2.11)

and

||ub
�||↵,�  C

p
↵max||I�1

� k||
H� 1

2 (�1)
. (4.2.12)

where C is independent of � and ↵.

We set u

0
� = u� � u

b
�. To go further, we consider the following problem: Find

(u0
� , p�) in D0

�(⌦)⇥M�(⌦) such that

8v� 2 D0
�(⌦), a�↵(u

0
� ,v�) + b�(v�, p�) = �a�↵(u

b
�,v�) + L�(v�),

8q� 2 M�(⌦), b�(u
0
� , q�) = 0.

(4.2.13)

We introduce the kernel

V�(⌦) = {v� 2 D0
�(⌦); 8q� 2 M�, b�(v�, q�) = 0} (4.2.14)

We can also write it like this:

V�(⌦) = {v� 2 D0
�(⌦); 8q� 2 M�, b(v�, q�) = 0} (4.2.15)

For the sake of generality, we prove the ellipticity property on a space that contains

all the V�(⌦).
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Lemma 4.2 There exists a constant c independent of the discretization, such that

the following ellipticity property about a�↵(·, ·) holds

8v� 2 V�(⌦), a�↵(v�, v�) � c||v�||2↵,� (4.2.16)

We next prove the inf-sup condition: First introduce two spaces associated with D�(⌦)

and M�(⌦):

MD(⌦) = {q 2 L2
0(⌦); q|⌦k

2 R, 1  k  K}; (4.2.17)

Clearly this space only depends on the decomposition.

Next, for a positive integer L, we consider the space DDD(⌦) of functions v� such

that

1. their restrictions v�|⌦k
to each ⌦k, 1  k  K, belong to PL(⌦k),

2. v� · n vanish on @⌦.

3. which are continuous on ⌦̄.

Note that the space only depends on the decomposition and on the integer L.

Note also that it is contained in all spaces D0
�(⌦) such that the Nk are larger than L.

We intend to establish that an inf-sup condition links the spaces DD(⌦) and MD(⌦),

for an appropriate choice of L. According to the reference ([12], Proposition 3.1), we

have the following lemma.

Lemma 4.3 There exists a constant L only depending on the decomposition, such

that for any function q in MD(⌦) satisfiing

8v 2 DD(⌦), b(v, q) = 0,

then q must be zero on the whole domain ⌦̄.

We can then derive the inf-sup condition.
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Lemma 4.4 There exists an integer ND only depending on the decomposition of ⌦

such that, if all the Nk � ND, the following inf-sup condition holds

8q� 2 M�(⌦), sup
v�2D0

�(⌦)

� R
⌦
q�(div v�)dx

||v�||↵,� � �D||q�||↵⇤,�, (4.2.18)

for a positive constant �D depending only on the decomposition of ⌦ but not �.

Proof: Let q� be any function in M�(⌦), according to the Boland and Nicolaides

technique [28], the idea consists in writing q� as

q� = q̄� + q̃�, with q̄�|⌦k
=

1

meas(⌦k)

Z

⌦k

q�(x)dx, 1  k  K.

The decomposition is orthogonal in the sense of

||q�||2L2(⌦) = ||q̄�||2L2(⌦) + ||q̃�||2L2(⌦). (4.2.19)

Since q̃�|⌦k
has a null integral on ⌦k, it follows from [8] that there exists a function

vk in PNk

T
H0(div ,⌦k) such that

�div vk = q̃�|⌦k
and ||vk||H(div ,⌦k)  c̃||q̃�|⌦k

||L2(⌦). (4.2.20)

So, the function ṽ� defined by v�|⌦k
= vk, 1  k  K, belongs to D0

�(⌦) (and even

to H0(div ,⌦)).

Concerning the function q̄�, (note that its integral on ⌦ is equal to the integral of q̃�,

hence to zero) , we refer to ([12], Proposition 3.1) that there exists at least a function

v̄� in DD, with v̄�|⌦k
in PND(⌦k)

d, such that

�div v̄� = q̄� and ||v̄�||H(div ,⌦)  c̄||q̄�||L2(⌦). (4.2.21)

This function v̄� belongs to D0
�(⌦) when all the Nk � ND.

We finally take: v� = ṽ� + µv̄�, for a positive parameter µ. Indeed, div ṽ� is orthog-

onal to q̄� (this comes from the Stokes formula applied on each ⌦k and grad q̄� = 0),
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so that, from the previous two equations, we have

�
Z

⌦

q� (div v�)dx � ||q̃�||2L2(⌦) + µ||q̄�||2L2(⌦) � µ||div v̄�||L2(⌦)||q̃�||L2⌦.

Then it is readily checked that

�
Z

⌦

q� (div v�)dx � ||q̃�||2L2(⌦) + µ||q̄�||2L2(⌦) � µc̄||q̄�||L2(⌦)||q̃�||L2⌦ (4.2.22)

� 1

2
||q̃�||2L2(⌦) + µ(1� µc̄2

2
)||q̄�||2L2(⌦). (4.2.23)

Choosing µ = 1
c̄2

and using (4.2.19) gives

�
Z

⌦

q�(div v�) � c||q�||2L2(⌦).

On the other hand ,we have

||v�||↵,�  c(||q̃�||L2(⌦) + µ||q̄�||L2⌦)  c||q�||↵⇤,�.

This ends the proof.

It follows from Lemma 4.2 and Lemma 4.4 that problem (4.2.13) has a unique

solution (u0
� , p�) in D0

�(⌦)⇥M�(⌦) and that this solution satisfies

||u0
�||↵,� + ||p�||↵⇤,�  C(||ub

�||↵,� + ||f||D0
�(⌦)0 + ||p0||

H
1
2
00(�2)

) (4.2.24)

We now have the main result of this section.

Proposition 4.1 For any data (f, k, p0) such that each f|⌦k
, 1  k  K, and k, p0

are continuous on ⌦̄k and on �1,�2 respectively, problem (4.2.6)�(4.2.7) has a unique

solution (u�, p�) in D�(⌦)⇥M�(⌦). Moreover, there exists a constant c independent

of � such that this solution satisfies

||u�||↵,� + ||p�||↵⇤,�  c(||I�1
� k||

H� 1
2 (�1)

+ ||I�f||D0
�(⌦)0 + ||I�2

� p0||
H

1
2
00(�2)

) (4.2.25)
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Proof: The pair(u� = u

0
� + u

b
�, p�) is a solution of problem (4.2.6) and (4.2.7), and

estimate (4.2.25) is a consequence of (4.2.24) and (4.2.12). On the other hand, let

(u�1, p�1) and (u�2, p�2) be two solutions of problem (4.2.6) and (4.2.7). Then the

difference (u�1 � u�2, p�1 � p�2) is a solution of problem (4.2.13) with data u

b
�, f, p0

equal to zero. Thus, it follows from (4.2.25) that it is zero. So the solution of problem

(4.2.6) and (4.2.7) is unique.

4.2.1 Approximation of divergence-free functions.

We now intend to estimate the distance of a divergence-free function to the space

V�(⌦) introduced in (4.2.14). Here we consider separately the case of dimension

d = 2 and d = 3. For each � = (N1, N2, ..., NL) and ↵ = (↵1,↵2, ...,↵L), we define the

parameter µ�

• equal to the maximum of the ratios ↵l/↵l0 in the case of a conforming decomposition,

• equal to the maximum of the ratios (↵lNl)/(↵l0Nl0) for all adjacent subdomains ⌦l

and ⌦l0 , 1  l, l0  L, where ⌦l and ⌦l0 share a part of an edge in dimension d = 2,

or a part of a face in dimension d = 3.

We also define the quantity µ as the largest ratios of ↵l/↵l0 .

We note that the constant µ only depends on the decomposition and on the choice of

the mortars but not on the discretization parameter. However µ� depends on � for a

nonconforming decomposition.

We introduce here new norms as follows:

||v||↵,L2(⌦) = (
KX

k=1

↵k||v|⌦k
||2L2(⌦k)

)
1
2

||v||↵,H1(⌦) = (
KX

k=1

↵k||v|⌦k
||2H1(⌦k)

)
1
2
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Proposition 4.2 Assume the function u in V such that each u|⌦k
, 1  k  K,

belongs to Hsk(⌦k)
d, sk � 1

2
. In the case of dimensition d = 2, there exists a constant

c independent of � such that

inf
v�2V (⌦)

||u� v�||↵,L2(⌦)  c(1 + µ
1
2 + µ

1
2
� )(

KX

k=1

↵kN
�2sk
k ||u||2Hsk (⌦)d)

1
2 . (4.2.26)

Proof: Since u is divergence-free, there exists a stream-function  in H1(⌦) such

that u = curl , with each  |⌦l
in Hsl+1(⌦l).According to the isotropic case in ([24],

Appendix B) and [16], there exists a function  �:

• which is equal to  on @⌦,

• which preserves the values of  in all the corners of the ⌦l,

• such that each  �|⌦l
belongs to PNl

(⌦l) and satisfies on each �k,l

8� 2 PNl�2(�k,l),

Z

�k,l

( � � �)�d⌧ = 0. (4.2.27)

Here, � stands for the mortar function associated with  �, equal to  �|⌦l(m)
on each

�m.

• and finally which satisfies (refer to ([16], Lemma 3.4))

|| �  �||↵,H1(⌦)  c(1 + µ
1
2 + µ

1
2
� )(

KX

k=1

↵kN
�2sk
k || ||2Hsk+1(⌦)d)

1
2 . (4.2.28)

Taking v� = curl �, the mortar function associated with v� is defined by, for 1 
m  M,

�1 = v�|⌦l(m)
· nl(m) = @⌧⌧⌧ �|⌦l(m)

= �0 (4.2.29)

which gives the results (4.2.26). So we only need to check that it satisfies the matching

condition. Let ⌧⌧⌧ denotes the unit vector dircetly orthogonal to nl(m), the mortar

function associated with v� is defined by, for 1  m  M,

�1 = v�|⌦l(m)
· nl(m) = @⌧⌧⌧ �|⌦l(m)

= �0. (4.2.30)
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So, we have on each �k,l which is not a mortar (recall that  �|⌦k
�� vanishes at each

endpoint of �k,l )

8� 2 PNl�2(�k,l),

Z

�k,l

(v�|⌦k
· nk + �1)�d⌧ = �

Z

�k,l

(@⌧ �|⌦k
� �0)�d⌧

=

Z

�k,l

( �|⌦k
� �)�0d⌧ = 0

which is the desired matching condition.

We now consider the case of dimension d = 3, which is much more complex. In

order to prove the approximation results, we first introduce the mortar space C�(⌦)

which is the analogue of D�(⌦) for the approximations in H(curl,⌦). It is the space

of functions v� such that:

• their restricions v�|⌦k
to each ⌦k, 1  k  K, belongs to PNk

(⌦k)
3,

• the mortar function ' being defined on each �m by

'|�m = v�|⌦k(m)
⇥ nk(m),

the following matching condition holds on each edge �k,l, 1  k  K, 1  l  L(k),

which is not a mortar:

8��� 2 PNk�2(�k,l)
3,

Z

�k,l

(v�|⌦k
⇥ nk + ')(⌧⌧⌧) ·���(⌧⌧⌧)d⌧⌧⌧ = 0. (4.2.31)

Here we first consider the case of a conforming decomposition, with some restrictions

on the choice of the Nk.

Lemma 4.5 Assume that the function u is equal to curl ⇠⇠⇠ for a function ⇠⇠⇠ in

H(curl,⌦), and is such that each u|⌦k
, 1  k  K, belongs to Hsk(⌦k)

d, sk � 3
2
.

In the case of dimension d = 3, if the decomposition is conforming and if morever

for each mortar �m, 1  m  M, which is a face of both ⌦k(m) and ⌦k, Nk(m) � Nk,
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there exists a constant c independent of � such that

inf
⇠⇠⇠�2C�(⌦)

||u� curl ⇠⇠⇠�||↵,L2(⌦)3  c(1 + µ
1
2 )(

KX

k=1

↵kN
�2sk
k ||u||2Hsk (⌦k)3

)
1
2 (4.2.32)

Proof: It follows from ([11], Them 4.9) that for 1  k  K and sk � 3
2
, there exists

a polynomial ⇠⇠⇠k� in PNk
(⌦)3 such that ⇠⇠⇠k� ⇥ n coincide with ⇠⇠⇠k ⇥ n and that

↵k||curl ⇠⇠⇠ � curl ⇠⇠⇠k� ||L2(⌦k)  c↵kN
�sk
k ||u||Hsk (⌦k)3 . (4.2.33)

Morever, for 1  l  L(k), this function ⇠⇠⇠k� satisfies

8g 2 PNk�2(�k,l)
3,

Z

�k,l

(⇠⇠⇠ � ⇠⇠⇠k� )⇥ n · gd⌧⌧⌧ = 0. (4.2.34)

In the case of a conforming decomposition and thanks to the assumption on the Nk,

equation (4.2.34) implies that the function ⇠⇠⇠� defined by ⇠⇠⇠�|⌦k
= ⇠⇠⇠k� , 1  k  K,

belongs to C�, whence the result.

Proposition 4.3 Assume that the function u in V such that each u|⌦k
, 1  k  K,

belongs to Hsk(⌦k)
d, sk � 3

2
. In the case of dimension d = 3, if the decomposition is

conforming and if morever for each mortar �m, 1  m  M, which is a face of both

⌦k(m) and ⌦k, Nk(m)�Nk
, there exists a constant c independent of � such that

inf
v�2V�(⌦)

||u� v�||↵,L2(⌦)3  c(1 + µ
1
2 )(

KX

k=1

↵kN
�2sk
k ||u||2Hsk (⌦k)3

)
1
2 (4.2.35)

Proof: It follows from [5] that there exists a vector potential ⇠ such that u = curl ⇠.

Estimate (4.2.32) yields that the function v� = curl ⇠� satisfies the desired property

(4.2.35). Moreover, it can be checked ([11], Chapter 4) that, on each face � of ⌦k ,

curl ⇠� ·n is equal to the orthogonal projection (in L2(�)) of u ·n onto PNk�1(�). So

the jump of curl ⇠� · n through � is zero (or its trace if � is contained in @⌦), and

the function v� belongs to V�(⌦).
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4.2.2 Error estimate

We prove an error estimates, first for the velocity, second for the pressure. Let u

be the solution of equation (4.1.1), u� the solution of equation (4.2.6)-(4.2.7) and !!!�

any function in the kernal V�(⌦). Multiply the first line of (4.1.1) by !!!� gives

KX

k=1

↵k

Z

⌦k

u

0 ·!!!�dx + b(!!!�, p) =
KX

k=1

↵k

Z

⌦k

f ·!!!�dx �
KX

k=1

↵k

Z

⌦l

u

b ·!!!�dx

�
Z

�2

p ·!!!� · nds �
Z

S

p · [!!!� · n]d⌧⌧⌧

where the notation [·] means the jump across S.

Using the definition of V�(⌦) thus implies, for any q� in M�(⌦),

KX

k=1

↵k

Z

⌦k

u0 ·!!!�dx+ b(!!!�, p� q�) =
KX

k=1

↵k

Z

⌦k

f ·!!!�dx�
KX

k=1

↵k

Z

⌦l

ub ·!!!�dx

�
Z

�2

p ·!!!� · nds�
Z

S

p · [!!!� · n]d⌧⌧⌧
(4.2.36)

Due to (??), we have for any v� in V�

||u0
� � v�||2↵,L2(⌦) 

KX

k=1

↵k((u
0
� � v�,u

0
� � v�))

k
� .

In (4.2.36), letting !!!� = u

0
� � v� and subtracting the first line of (4.2.7) leads to

||u0
� � v�||2↵,L2(⌦) 

KX

k=1

↵k

Z

⌦k

(u0 � v�) · (u0
� � v�)dx +

KX

k=1

↵k

Z

⌦k

v� · (u0
� � v�)dx

�
KX

k=1

↵k((v�,u
0
� � v�))

k
� + b(u0

� � v�, p� q�) +

Z

S

[(u0
� � v�) · n] · pd⌧⌧⌧

+
KX

k=1

↵k((f,u
0
� � v�))

k
� �

KX

k=1

↵k

Z

⌦k

f · (u0
� � v�)dx +

KX

k=1

↵k

Z

⌦k

u

b · (u0
� � v�)dx

�
KX

k=1

↵k((u
b
�,u

0
� � v�))

k
�

Z

�2

p0 · [(u0
� � v�) · n]ds � ((p0, (u

0
� � v�) · n))�2

� .
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Using a triangle inequality yields

||u � u�||↵,L2(⌦)  ||u0 � v�||↵,L2(⌦) + ||u0
� � v�||↵,L2(⌦) + ||ub � u

b
�||↵,L2(⌦)

 C{ inf
v�2V�

||u0 � v�||↵,L2(⌦) + sup
!!!�2D�

{

KP
k=1

↵k

R
⌦k

v� ·!!!�dx �
KP
k=1

↵k((v�,!!!�))
k
�

||!!!�||↵,L2(⌦)

+

KP
k=1

↵k((f,!!!�))
k
� �

KP
k=1

↵k

R
⌦k

f ·!!!�dx

||!!!�||↵,L2(⌦)

+

KP
k=1

↵k

R
⌦k

u

b ·!!!�dx �
KP
k=1

↵k((u
b
�,!!!�))

k
�

||!!!�||↵,L2(⌦)

+

R
�2
p0 · (!!!� · n)ds � ((p0, (!!!� · n))�2

�

||!!!�||↵,L2(⌦)

+
b(!!!�, p� q�)

||!!!�||↵,L2(⌦)

+

R
S

[!!!� · n] (p� q�)d⌧⌧⌧

||!!!�||↵,L2(⌦)

+ ||ub � u

b
�||↵,L2(⌦)}.

(4.2.37)

Next, let ⇧⇧⇧Nk�1 be defined as the orthogonal projection operator from L2(⌦k) onto

PNk�1(⌦k). By adding and subtracting the function ⇧⇧⇧Nk�1u
0, we deduce from the

exactness of the quadrature formula that

KX

k=1

↵k

Z

⌦k

v� ·!!!�dx �
KX

k=1

↵k((v�,!!!�))
k
�

=
KX

k=1

↵k

Z

⌦k

(v� �⇧⇧⇧Nk�1u
0) ·!!!�dx �

KX

k=1

↵k((v� �⇧⇧⇧Nk�1u
0),!!!�))

k
�

(4.2.38)

So we have

sup
!!!�2D�

KP
k=1

↵k

R
⌦k

v� ·!!!�dx �
KP
k=1

↵k((v�,!!!�))
k
�

||!!!�||↵,L2(⌦)

 (3d + 1)(
KX

k=1

↵k||v �⇧⇧⇧Nk�1u
0||2L2(⌦k)

)
1
2

 (3d + 1)||u0 � v�||↵,L2(⌦) + (3d + 1)(
KX

k=1

↵k||u0 �⇧⇧⇧Nk�1u
0||2L2(⌦k)

)
1
2 .
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Suppose the solution u

0
|⌦k

is in Hsk(⌦k)
d, sk � 0, then according to the properity of

the orthogonal projection operator,

sup
!!!�2D�

KP
k=1

↵k

R
⌦k

v� ·!!!�dx �
KP
k=1

↵k((v�,!!!�))
k
�

||!!!�||↵,L2(⌦)

 4||u0 � v�||↵,L2(⌦) + c(
KX

k=1

↵kN
�2sk
k ||u0

|⌦k
||2Hsk (⌦k)d

)
1
2 .

(4.2.39)

Similarly, we also have

KX

k=1

↵k

Z

⌦k

f ·!!!�dx �
KX

k=1

↵k((f,!!!�))
k
�

=
KX

k=1

↵k

Z

⌦k

(f �⇧⇧⇧Nk�1f) ·!!!�dx �
KX

k=1

↵k((f �⇧⇧⇧Nk�1f),!!!�))
k
�

 p
↵max(10(

KX

k=1

||f �⇧⇧⇧Nk�1f||2L2(⌦k)d
)
1
2 + 9||f � I�f||L2(⌦k)d)||!!!�||L2(⌦k)d .

(4.2.40)

Suppose the function f|⌦k
is in H�k(⌦k)

d, �k � 0, then according to the properity of

the orthogonal projection operator ⇧⇧⇧Nk�1 and interpolation operator I�,

sup
!!!�2D�

KP
k=1

↵k((f,!!!�))
k
� �

KP
k=1

↵k

R
⌦k

f ·!!!�dx

||!!!�||↵,L2(⌦)

 c
p
↵max(

KX

k=1

N�2�k
k ||f|⌦k

||2H�k (⌦k)d
)
1
2 .

(4.2.41)

Similarly suppose the function p0 is in H✓k(�2 \ @⌦k), ✓k � 0, then we have

sup
!!!�2D�

R
�2
p0 · (!!!� · n)ds � ((p0, (!!!� · n))�2

�

||!!!�||↵,L2(⌦)

 c

r
1

↵min

(

K0X

k=1

N�2✓k
k ||p0||2H✓k (�2\@⌦k)

)
1
2

(4.2.42)

We refer to ([21], Thm.7.1) and ([21], Thm.14.2) for the approximation properties of
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the operators ⇧⇧⇧Nk�1 and I�, respectively.

According to Lemma 4.1, we also obtain that

sup
!!!�2D�

KP
k=1

↵k

R
⌦k

u

b ·!!!�dx �
KP
k=1

↵k((u
b
�,!!!�))

k
�

||!!!�||↵,L2(⌦)

 c
p
↵max(

KX

k=1

N�2sk
k ||ub

|⌦k
||2Hsk (⌦k)d

)
1
2 .

(4.2.43)

According to ([6], Lemma 6.1 and (6.9)) we know that

Z

S

[!!!� · n](p� q�)d⌧⌧⌧

 c

r
1

↵min

(1 + µ)(
KX

k=1

L(k)X

l=1

N2
k ||p� q�||2L2(�k,l)

)
1
2 ||!!!�||↵,L2(⌦).

(4.2.44)

So we have

sup
!!!�2D�

R
S

[!!!� · n](p� q�)d⌧⌧⌧

||!!!�||↵,L2(⌦)

 c

r
1

↵min

(1 + µ)(
KX

k=1

L(k)X

l=1

N2
k ||p� q�||2L2(�k,l)

)
1
2 . (4.2.45)

the estimation of norm ||p� q�||2L2(�k,l)
will be showed later.

Because of the ellipticity property of a�↵(·, ·) in V�, we have

b(!!!�, p� q�) = �
KX

k=1

Z

⌦k

div (!!!�)(p� q�)dx

 ||div (!!!�)||↵,L2(⌦) ·
KX

k=1

1p
↵min

||p� q�||L2(⌦k)

(4.2.46)

So we can get

sup
!!!�2D�

b(!!!�, p� q�)

||!!!�||↵,L2(⌦)

 c

KX

k=1

1p
↵min

||p� q�||L2(⌦k). (4.2.47)

Next, we choose q� by: q�|⌦k = ⇧⇧⇧1
Nk�2p, where ⇧⇧⇧1

Nk�2 stands for the orthogonal
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projection operator from H1(⌦k) onto PNk�2(⌦k) defined by

8q 2 PNk�2(⌦k),

Z

⌦k

grad(p�⇧⇧⇧1
Nk�2p) · gradqdx = 0,

Z

⌦k

(p�⇧⇧⇧1
Nk�2p)dx = 0

In fact,the following approximation properties of this operator are well-known: if the

function p|⌦k
belongs to Hsk+1(⌦k), sk � 0,

||p�⇧⇧⇧1
Nk�2p||H1(⌦k) +Nk||p�⇧⇧⇧1

Nk�2p||L2(⌦k)  cN�sk
k ||p||Hsk+1(⌦k)

. (4.2.48)

While estimating the norm ||p�⇧⇧⇧1
Nk�2p||L2(�k,l) results from a duality argument and

we refer to ([6], Lemma 6.2) for the following lemma.

Lemma 4.6 For 1  k  K, there exists a constant c independent of N such that,

if the function p|⌦k
belongs to Hsk+1(⌦k), sk � 0,

||p�⇧⇧⇧1
Nk�2p||L2(�k,l)  cN

�sk� 1
2

k ||p||Hsk+1 . (4.2.49)

We are in a position to write the first error estimate, due to the above analysis and

using the approximation properties stated in Propositions 4.2 and Propositions 4.3.
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Theorem 4.1 Assume the data f such that each f|⌦k
, 1  k  K, belongs to

H�k(⌦k)
d, �k >

d
2
, the solution (u, p) of problem (4.1.1) such that each (u|⌦k

, p|⌦k
), 1 

k  K, belongs to Hsk(⌦k)
d ⇥Hsk+1(⌦k), sk � d� 3

2
. Then, in the two cases

1. in dimension d = 2,

2. in dimension d = 3, if the decomposition is conforming and if morever for each

mortar �m, 1  m  M, which is a face of both ⌦k(m) and ⌦k, Nk(m) � Nk,

the following error estimate holds betweem the velocity u and the velocity u� of

problem (4.2.6)� (4.2.7):

||u� u�||↵,L2(⌦)  c
KX

k=1

{(1 + µ+ µ�)
p
↵maxN

�sk
k ||u|⌦k

||Hsk (⌦k)

+(1 + µ�)
1p
↵min

N
�sk+

1
2

k ||p|⌦k
||Hsk+1(⌦k)

+
p
↵maxN

��k
k ||f|⌦k

||H�k (⌦k)}

+c

K0X

k=1

1p
↵min

N
�sk� 1

2
k ||p0||Hsk+1

2 (�2\@⌦k)

+c

K1X

k=1

(1 + µ+ µ�)
p
↵maxN

�sk
k ||k||

Hsk� 1
2 (�1\@⌦k)

.

(4.2.50)

Remark 4.1 Estimate (4.2.50) is not fully optiaml, however, we know that for a

general decomposition (of course inculding the nonconforming case), when

(1 + µ + µ�)max{p↵max,
1p
↵min

} is bounded (in fact, this is most often the case in

practical situations), the lack of optimality is only N
1
2
k . In fact, the estimate results

of the two cases when the decomposition is conforming, seems to be improved, but we

don’t prove the results here.

A more explicit estimate can be deduced from the previously quoted regularity results

in the two-dimension case of a polygon ⌦. We refer to ([6], Corollary 6.4) and [25]

for the next result.
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Corollary 4.1 In the two-dimensional case of a polygon ⌦, we have the same as-

sumptions with Theorem4.1 about the data f . Then the following error estimate

holds between the velocity u and the velocity u� of problem (4.2.6)� (4.2.7):

||u� u�||↵,L2(⌦)  c(1 + µ+ µ�)max{p↵max,
1p
↵min

}
KX

k=1

N
1
2
k Ek||f|⌦k

||H�k (⌦k)

+c

K0X

k=1

1p
↵min

N
� 1

2
k Ek||p0||H�k+1

2 (�2\@⌦k)

+c(1 + µ+ µ�)max{p↵max,
1p
↵min

}
K1X

k=1

Ek||k||H�k� 1
2 (�1\@⌦k)

where Ek, 1  k  K is equal to N��k
k if ⌦̄k contains no corner of

⌦, sup{N��k
k , N

� 4
3

k (log Nk)
1
2}, if ⌦̄k contains a nonconvex corner of ⌦ and

sup{N��k
k , N�4

k (log Nk)
3
2}, if ⌦̄k contains a no nonconvex corner of ⌦.

Next we will estimate the error of the pressure which is easier now.

Theorem 4.2 If the asumptions of Theorem 5.1 are satisfied and in case (i) and (ii)

of this theorem, the following error estimate holds between the pressure p of problem

(4.1.1) and the pressure p� of (4.2.7):

||p� p�||↵⇤,�

 c
KX

k=1

{(1 + µ+ µ�)
p
↵maxN

�sk
k ||u|⌦k

||Hsk (⌦k)

+(1 + µ+ µ�)max{p↵max,
1p
↵min

}N�sk
k max{N

1
2
k , (log Nk)

⌫}||p|⌦k
||Hsk+1(⌦k)

+
p
↵maxN

��k
k ||f|⌦k

||H�k (⌦k)}+ c

K0X

k=1

1p
↵min

N
�sk� 1

2
k ||p0||Hsk+1

2 (�2\@⌦k)

+c

K1X

k=1

(1 + µ+ µ�)
p
↵maxN

�sk
k ||k||

Hsk� 1
2 (�1\@⌦k)

.

where ⌫ is equal to zero if the decomposion is conforming, to 1 otherwise.
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Proof: Due to the inf � sup condition, for any q� in M�(⌦), we derive that

�D||p� � q�||↵⇤,�  sup
v�2D0

�(⌦)

� R
⌦
(p� � q�)(div v�)dx

||v�||↵,� . (4.2.51)

In order to evaluate � R
⌦
(p��q�)(div v�)dx, we first use the discrete problem (4.2.7):

�
Z

⌦

(p� � q�)(div v�)dx =
KX

k=1

↵k((f,v�))
k
� � ((p0,v� · n))�2

�

�
KX

k=1

↵k((u�,v�))
k
� +

Z

⌦

q�(div v�)dx.

(4.2.52)

Next, we apply equation (4.1.1) to the function v�, integrate by parts and add it to

the previous line, which yields

�
Z

⌦

(p� � q�)(div v�)dx =
KX

k=1

↵k((f,v�))
k
� �

KX

k=1

↵k

Z

⌦k

f · v�dx +
KX

k=1

↵k

Z

⌦k

u · v�dx

�
KX

k=1

↵k((u,v�))
k
� +

Z

�2

p0 · (v · n) ds� ((p0,v� · n))�2
�

+

Z

⌦

(q� � p) div v�dx +

Z

S

[v · n] · pd⌧⌧⌧ .

Using a triangle inequality yields

||p� p�||↵⇤,�  c(||p� q�||↵⇤,� + ||u � u�||↵,L2(⌦)

+ sup
!!!�2D0

�

{

KP
k=1

↵k

R
⌦k

u�v�dx �
KP
k=1

↵k((u�,v�))
k
�

||v�||↵,L2(⌦)

+

KP
k=1

↵k((f,v�))
k
� �

KP
k=1

↵k

R
⌦k

f · v�dx

||v�||↵,L2(⌦)

+

R
�2
p0 · (v� · n)ds � ((p0, (v� · n))�2

�

||v�||↵,L2(⌦)

+

R
S
[v� · n]pdx
||v�||↵,� }).

(4.2.53)
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All the right-hand side terms have been estimated previously, except the last one

which corresponds to the consistency error. We refer to ([16], Lemma 3.3) for the

following result:

sup
!!!�2D0

�

R
S
[v� · n]pdx
||v�||↵,�  c(1 + µ)(

KX

k=1

↵kN
�2sk
k (log Nk)

⌫ ||p||2sk+1)
1
2 . (4.2.54)

where ⌫ is equal to zero if the decomposion is conforming, to 1 otherwise.

Combining all the results above, yields the desired estimate.

As in Corollary 4.1, we also have the following result:

Corollary 4.2 In the two-dimensional case of a polygon ⌦, if the same assumptions

as in Theorem4.1 hold about the data f . Then the following error estimate holds

between the velocity p and the velocity p� of problem (4.2.7):

||p� p�||↵⇤,�

 c(1 + µ+ µ�)max{p↵max,
1p
↵min

}
KX

k=1

max{N
1
2
k , (log Nk)

⌫}Ek||f|⌦k
||H�k (⌦k)

+c

K0X

k=1

1p
↵min

N
� 1

2
k Ek||p0||H�k+1

2 (�2\@⌦k)

+c(1 + µ+ µ�)max{p↵max,
1p
↵min

}
K1X

k=1

Ek||k||H�k� 1
2 (�1\@⌦k)

(4.2.55)

where ⌫ is equal to zero if the decomposion is conforming, to 1 otherwise; and Ek, 1 
k  K are given by:

Ek =

8
>>><

>>>:

N��k
k , if ⌦̄k contains no corner of ⌦,

sup{N��k
k , N�4

k (log Nk)
3
2}, if ⌦̄k contains a no nonconvex corner of ⌦,

sup{N��k
k , N

� 4
3

k (log Nk)
1
2}, if ⌦̄k contains a nonconvex corner of ⌦.

(4.2.56)
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4.3 Numerical implementation

Firstly, we briefly explain how to implement the discrete problem in section before.

The full set of unknowns of the discrete system is given by

• the vector U of the values if u� at all nodes (xk
i , y

k
i ), 0  i, j  Nk, 1  k  K,

in dimension d = 2, (xk
i , y

k
i , z

k
p ), 0  i, j, p  Nk, 1  k  K, in dimension d = 3,

• the vector P of the values if p� at all nodes (xk
i , y

k
i ), 0  i, j  Nk, 1  k  K, in

dimension d = 2, (xk
i , y

k
i , z

k
p ), 0  i, j, p  Nk, 1  k  K, in dimension d = 3.

Let (U, P ) denote the vector made of these values. Then the mortar condition can

be expressed in the following way: there exists a rectangular matrix Q such that the

boundary and matching conditions can be enforced, which leads to a new vector QU .

Then problem (4.2.6)� (4.2.7) can now equivalent to the following linear system

0

@ QTAQ QTB

BTQ 0

1

A

0

@ U

P

1

A =

0

@ QTFQ

0

1

A , (4.3.1)

where QT stands for the transposed matrix of Q. The matrix A is fully diagonal, its

diagonal terms are the ⇢x,ki , ⇢y,kj or the ⇢x,ki , ⇢y,kj , ⇢z,kp according to the dimension. The

matrix B is only block-diagonal, with K blocks Bk on the diagonal, one for each ⌦k.

For the first experiment, we concern the 2D L� shaped domain

⌦ = [�1, 3]2 \ [1, 3]2,

partitioned into three subdomains illustrated in Fig.4-1 (upper panel). �1 will be

chosen to be [�1, 1]⇥ {3} [ {�1}⇥ [�1, 1], then �2 = @⌦ \ �1. We divide the three

domains as follows: ⌦1 = [�1, 1] ⇥ [1, 3],⌦2 = [�1, 1] ⇥ [�1, 1],⌦3 = [1, 3] ⇥ [�1, 1],

which associated with N1 = 22, N2 = 17, N3 = 17. We set here ↵1 = 1,↵2 = 10,↵3 =

100. We use our spectral method to compute an approximation of the analytical
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solution (u, p) given by

u(x, y) =

0

@ � sin(⇡x) cos(⇡y)

cos(⇡x) sin(⇡y)

1

A , p(x, y) = sin(⇡(x+ y)). (4.3.2)

The lower panel of Fig.4-1 depicts, in a semi-logarithmic scale, the curves of the

errors ||u � u�||↵,L2(⌦) and ||p � p�||↵⇤,L2(⌦) as a function of N .As can be seen from

estimates in section 5, the convergence rate here is nearly exponential despite the

non-conformity of the discretization.

We then consider the square ⌦ = [�1, 3]2, with a nonconforming decomposition into

two squares ⌦1 = [�1, 1]2, and ⌦3 = [1, 3]⇥[�1, 1] and a rectangle ⌦2 = [�1, 3]⇥[1, 3].

For an integer N � 8, we take all the Nk equal to N . We work here with the solutions

(u, p) given by

u(x, y) =

0

@ � sin(⇡x) cos(⇡y)

cos(⇡x) sin(⇡y)

1

A , p(x, y) = sin(⇡x) cos(⇡y). (4.3.3)

In Fig.5-2 the curves of the errors ||u�u�||↵,L2(⌦) and ||p�p�||↵⇤,L2(⌦) , for both cases

as a function of N, are plotted. For the smooth solution, a linear/logarithmic scale is

used and we observe that the exponential decay of the error is preserved despite the

non-conforming domain decomposition.
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Figure 4-1: The non-matching grids for N = 22 and the velocity and pressure error
curves
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Figure 4-2: The non-matching grids for a non-conforming decomposition with N =
32

Figure 4-3: The error curves for an analytical solution
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Chapter 5

Mortar Spectral Discretization of

Darcy’s Equations(II)

5.1 Introduction

In this chapter, we mainly talk about the analysis of the mortar spectral element

discretization of the problem introduced by Darcy [33] as follows

8
>>>>>><

>>>>>>:

↵u + grad p = ↵f in ⌦,

div u = 0 in ⌦,

u · n = k on �1,

p = p0 on �2

(5.1.1)

where ⌦ be a bounded, connected, open set in Rd, d = 2 or 3, with a Lipschitz

continuous boundary @⌦, and let n denote the unit outward normal vector to ⌦ on

@⌦, �1 and �2 be a partition of @⌦ without overlop. The data are now the function

f and the boundary conditions k and p0 . The unknowns are the velocity u and the

pressure (or hydraulic head, according to the model) p. we are interested in the case
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where this function is not globally continuous but only piecewise smooth and also

such that the ratio of its maximal value to its minimal value is large.

This problem is an expansion of [32], where the problem with special boundary

condition has been discussed. Here the idea of this paper is different: our problem

has the general boundary conditions, including u and p. So new spaces with special

traces have to be introduced.

5.2 Analysis of the mortar SE discretization

Throughout this section, we work with a piecewise constant function ↵. We now

assume that ⌦ admits a disjoint decomposition into a finite number of (open) rect-

angles in dimension d = 2, rectangular parallelepipeds in dimension d = 3, denoted

by ⌦k, with edges all parallel to the coordinate axes,

⌦̄ =
K[

k=1

⌦̄k and ⌦k \ ⌦k0 = ;, 1  k 6= k
0  K. (5.2.1)

We make the further assumption that the intersection of each @⌦k with @⌦, if not

empty, is a corner, a whole edge or a whole face of ⌦k. For 1  k  K, we denote

by �k,l, 1  l  L(k), the (open) edges in dimension d = 2, faces in dimension d = 3,

of ⌦k which are not contained in @⌦ . We denote by nk the unit outward normal

vector to ⌦k on @⌦k. The decomposition is said to be conforming means that the

intersection of two different ⌦̄k, if not empty, is a corner or a whole edge of both of

them.

The skeleton S of the decomposition, equal to
KS
k=1

@⌦k\@⌦, admits a decomposition

without overlapping into mortars

S̄ =
M[

m=1

�̄m and �m \ �m0 = ;, 1  m 6= m
0  M. (5.2.2)
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where each �m = �k(m),l(m) is a whole edge in dimension d = 2, face in dimension d = 3,

of a subdomain ⌦k, denoted by ⌦k(m). Note that the choice of this decomposition is

not unique, however it is decided a priori for all the discretizations we work with.

In order to describe the discrete problem, we introduce the discretization param-

eter �, which is here a K-tuple of positive integers Nk, 1  k  K with each Nk � 2.

Indeed, the local discrete space on each ⌦k is the space PNk
(⌦k) of restrictions to ⌦k

of polynomials with degree  Nk with respect to each variable. In all that follows, c

stands for a generic constant which may vary from one line to the other but is always

independent of �.

We here introduce the discrete space according to (??)-(2.3.9). For each k, 1 
k  K, the discrete space of velocities X� is defined by

X� = {v� 2 L2(⌦)d;v�|⌦k
2 PNk

(⌦k)
d, 1  k  K}. (5.2.3)

We give the mortar function �(q) for each piecewise regular function q: On each

�m, 1  m  M, the restrication of �(q) to �m is equal to the trace of q|⌦k(m). We

then define the discrete space of pressures M� of functions q�:

1. which belong to L2(⌦),

2. their restriction to each ⌦k belongs to PNk
(⌦k),1  k  K,

3. the following matching condition holds on all subdomains ⌦k, 1  k  K, and for

all �k,j of ⌦k that are not contained in @⌦ and not a mortar,

8' 2 PNk�2(�k,j),

Z

�k,j

(q�|⌦k
� �(q�))'d⌧ = 0, (5.2.4)

where PNk�2(�k,j) is the space of polynomials with degree  Nk � 2 on �k,j.
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We also introduce another discrete space M1
� associated with M�:

M1
� = {q� 2 M�| q� = 0 on �2}. (5.2.5)

Assuming that the functions f, k and p0 has continuous restrictions to all ⌦̄k, 1 
k  K and �̄1, �̄2 respectively. Then the discrete problem built from the variational

formulation(2.3.9) reads:

Find (u�, p�) in X�(⌦)⇥M�(⌦) such that

p� = I�2
� p0 on �2, (5.2.6)

and

8v� 2 X�(⌦), a�↵(u�,v�) + b�(v�, p�) = L�(v�),

8q� 2 M1
�(⌦), b�(u�, q�) = ((k, q�))

�1
� .

(5.2.7)

where the bilinear forms a�↵(·, ·) and b� are defined by

a�↵(u�,v�) =
KP
k=1

↵k((u�,v�))
k
� ,

b�(v�, q�) =
KP
k=1

((v�,grad q�))
k
� ,

L�(v�) = ((↵ f,v�))�.

(5.2.8)

Since M� is not contained in H1(⌦), we define the “broken” norm and semi-norm

||v�||↵ = (
KX

k=1

↵k||u�||2L2(⌦k)d
)
1
2 , ||q�||↵⇤ = (

KX

k=1

↵�1
k |q�|2H1(⌦k)

)
1
2

Let M be the maximal number of points of which are contained in the same edge

�k,j. We first introduce the following space M1
D of functions q definedon ⌦, such that:

96



Chapter 5. Mortar Spectral Discretization of Steady Darcy’s Equations(II)

1. which belongs to L2(⌦),

2. their restriction to each ⌦k belongs to H1(⌦k),1  k  K,

3. vanish on �2,

4. the following matching condition holds on all subdomains ⌦k, 1  k  K, and for

all �k,j of ⌦k that are not contained in @⌦ and not a mortar,

8' 2 PM�2(�k,j),

Z

�k,j

(q|⌦k
� �)'d⌧ = 0, (5.2.9)

where PM�2(�k,j) is the space of polynomials with degree  M � 2 on �k,j.

Not that the definition of MD is similar to that of M1
� , however M1

D is no longer a

discrete space: its dimension is infinite and it only depends on the decomposition of

the domain. Not also that M1
D contains all the spaces M1

� , such that the Nk in � are

larger than M .

Lemma 5.1 There exists a constant C independent of � such that

8q 2 M1
D(⌦),

KX

k=1

||q||2L2(⌦k)
 C

p
↵max ||q||2↵⇤ . (5.2.10)

and C is only dependent with the decomposition of ⌦.

Proof: Firstly, we consider a function q in M1
D such that all the right hand side

of (5.2.10) is zero. Thus, q is a constant on each ⌦k and due to the choice of M ,

according to ([22], Proposition 20), which yield that q is zero on ⌦. Next, we observe

that

||q||H1(
S

⌦) = c(||q||2L2(⌦) +
KX

k=1

Z

⌦k

(grad q|⌦k
)2dx)

1
2 . (5.2.11)

Also, since the imbedding of each H1(⌦k) in L2(⌦k) is compact, the imbedding of M1
D

into L2(⌦) is compact. So, the desired result follows from the Peetre-Tartar lemma

([40], Chap.I, Theorem 2.1).
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We construct a lifting of the boundary condition of p0, we give the following lemma

according to the reference ([25], Th. III.3.1) or ([7], Lemma 4.1).

Lemma 5.2 If p0 is continuous on �2, then there exists a function pb� in M�(⌦) and

a constant c independent of �, such that

pb� = I�2
� p0 on �2, (5.2.12)

and

||pb�||↵⇤  c

r
1

↵min

||I�2
� p0||

H
1
2
00(�2)

. (5.2.13)

To go further, we set p0� = p� � pb�, and consider the following problem:

Find (u�, p
0
�) in X�(⌦)⇥M1

�(⌦) such that

8v� 2 X�(⌦), a�↵(u�,v�) + b�(v�, p
0
�) = L�(v�)� b�(v�, p

b
�),

8q� 2 M1
�(⌦), b�(u�, q�) = ((k, q�))

�1
� .

(5.2.14)

Lemma 5.3 The form a�↵(·, ·) satisfies the following continuity and ellipticity prop-

erties

8u� 2 X�(⌦), 8v� 2 X�(⌦), a
�
↵(u�, v�)  c||u�||↵||v�||↵, (5.2.15)

8u� 2 X�(⌦), a
�
↵(u�,u�) � ||u�||2↵. (5.2.16)

The proof is similar to the reference ([32], Chap.3, Lemma 3.21).

We next come to the inf-sup condition:

Lemma 5.4 The bilinear form b�(·, ·) satisfies the inf-sup condition

8q� 2 M1
�(⌦), sup

v�2X�

b�(v�, q�)

||v�||↵ � C ||q�||↵⇤ . (5.2.17)
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Proof: We note that for any q� in M1
�(⌦), we can define the function v� by

v�|⌦k
= ↵�1

k grad(q�|⌦k
), 1  k  K, (5.2.18)

It is obvious that v� 2 X�(⌦). Then we have the above inf-sup condition.

From (5.2.16) and the inf-sup condition (5.2.17), the saddle-point problem (5.2.14)

has a unique solution (u�, p
0
�) which satisfies

||u�||↵ + ||p0�||↵⇤  C (||pb�||↵⇤ + ||I�1
� k||

H� 1
2 (�1)

+ ||IN f||L2(⌦)d) (5.2.19)

Now we are in the position to give the main result of this section:

Theorem 5.1 For any data (f, k, p0) such that each f|⌦k
, 1  k  K, and k, p0 are

continuous on ⌦̄k and on �1,�2 respectively, problem (5.2.6) � (5.2.7) has a unique

solution (u�, p�) in X�(⌦)⇥M�(⌦). Moreover, there exists a constant c independent

of � such that this solution satisfies

||u�||↵ + ||p�||↵⇤  C (||I�2
� p0||H 1

2 (�2)
+ ||I�1

� k||
H� 1

2 (�1)
+ ||INf||L2(⌦)d) (5.2.20)

Proof: We establish successively the existence and uniqueness of the solution.

1) It follows from the Lax-Milgram lemma and (5.2.10),that there exists a unique '�

in X� such that

8�� 2 M1
� , ((grad '�,grad ��))� = ((k,��))

�1
� . (5.2.21)

Thus, the function u

b
� = grad '�, satisfies

||ub
�||↵  c

p
↵max||I�1

� k||
H

1
2 (�1)

. (5.2.22)
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On the other hand , it follows from the standard results on saddle-point problems

([40], Chap.I, Cor.4.1), that the problem

Find (u0
� , p

0
�) in X�(⌦)⇥M1

�(⌦) such that

8v� 2 X�(⌦), a�↵(u
0
� ,v�) + b�(v�, p

0
�) = L�(v�)� b�(v�, p

b
�)� a�↵(u

b
�,v�),

8q� 2 M1
�(⌦), b�(u�, q�) = 0.

(5.2.23)

has a unique solution (u0
� , p

0
�) which morever satisfies

||u0
�||↵ + ||p0�||↵⇤  C (||pb�||↵⇤ + ||ub

�||↵ + ||IN f||L2(⌦)d) (5.2.24)

Then, the pair (u�, p�), with u� = u

0
� + u

b
�, p� = p0� + pb�, is a solution of problem

(5.2.7), and estimate (5.2.20) follows from (5.2.22) and (5.2.24).

2)The pair(u�, p� = p0� + pb�) is a solution of problem (5.2.6) and (5.2.7), and

estimate (5.2.20) is a consequence of (5.2.19) and (5.2.13). On the other hand, let

(u�1, p�1) and (u�2, p�2) be two solutions of problem (5.2.6) and (5.2.7). Then the

difference (u�1 � u�2, p�1 � p�2) is a solution of problem (5.2.14) with data u

b
�, f, p0

equal to zero. Thus, it follows from (5.2.20) that it is zero. So the solution of problem

(5.2.6) and (5.2.7) is unique.

To conclude, we introduce the discrete kernal

V� = {v� 2 X�; 8q� 2 M1
� , b�(v�, q�) = 0}. (5.2.25)

As usual, it plays a key role in the numerical analysis of problem (5.2.7).
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5.3 Error estimates

This section is devoted to the error estimates, first for the velocity, second for the

pressure. We intend to prove here an estimate between the solution (u, p) of problem

(2.3.9) and the solution (u�, p�) of problem (5.2.7).

Let !!!� be any function in the kernal V�. Multiplying the first line of (5.1.1) by !!!�

gives

a↵(u0,!!!�) + b(!!!�, P1) =
KX

k=1

↵k

Z

⌦k

f ·!!!�dx � a↵(ub,!!!�)� b(!!!�, P̄ ). (5.3.1)

which implies, due to the defination of V�, that for any q� in M�(⌦),

a↵(u0,!!!�) + b(!!!�, P1 � q�) =
KX

k=1

↵k

Z

⌦k

f ·!!!�dx � a↵(ub,!!!�)� b(!!!�, P̄ ). (5.3.2)

Next, we deduce from the ellipticity property (5.2.16), that we have for any v� in V�

||u0
� � v�||2↵  a�↵(u

0
� � v�,u

0
� � v�). (5.3.3)

Adding (5.3.2) with !!!� = u

0
� � v� and substracting the first line of (5.2.7) leads to

||u0
� � v�||2↵  a�↵(u

0
� � v�,u

0
� � v�)  a↵(u0 � v�,u

0
� � v�)

+a↵(v�,u
0
� � v�)� a�↵(v�,u

0
� � v�) + b(u0

� � v�, P1 � q�)

+((↵f,u0
� � v�))� �

KX

k=1

↵k

Z

⌦k

f · (u0
� � v�)dx + a↵(ub,u

0
� � v�)

�a�↵(ub,u
0
� � v�) + b(!!!�, P̄ )� b�(!!!�, p

b
�).

(5.3.4)

It is obvious that

8v� 2 X�, 8q� 2 M�, b�(v�, q�)  ||v�||↵||q�||↵⇤ . (5.3.5)
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So, combining the above inequality and triangle inequality, we derive that the error

||u � u�||↵ is bounded, up to a multiplicative constant, by the sum of seven terms:

• the approximation error in X�

inf
v�2V�

||u0 � v�||↵, (5.3.6)

• the error approximation in M1
�

inf
q�2M1

�

||P1 � q�||↵⇤ , (5.3.7)

• three terms issued from numerical integration

sup
!!!�2X�

a↵(v�,!!!�)� a�↵(v�,!!!�)

||!!!�||↵ , (5.3.8)

sup
!!!�2X�

a↵(ub,!!!�)� a�↵(u
b
�,!!!�)

||!!!�||↵ , (5.3.9)

((↵f,!!!�))↵ �
KP
k=1

↵k

R
⌦k

f ·!!!�dx

||!!!�||↵ , (5.3.10)

sup
!!!�2X�

b(!!!�, P̄ )� b�(!!!�, p
b
�)

||!!!�||↵ . (5.3.11)

and

||ub � u

b
�||↵ (5.3.12)

We first estimate the terms issured from numerical integration, which is easy since

they can be evaluated seperately on each subdomain ⌦k. Let ⇧Nk�1 denote the

orthogonal projection operator from L2(⌦k) onto PNk�1(⌦k) for each k, 1  k  K.

For any !!!� in X�, since each product of ⇧Nk�1u by !!!� belongs to P2Nk�1(⌦k), it follows
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from the exactness propertity (??) that

a↵(v�,!!!�)� a�↵(v�,!!!�) =
KX

k=1

↵k(

Z

⌦k

(v� �⇧Nk�1u0) ·!!!�dx� ((v� �⇧Nk�1u0,!!!�))
k
Nk
).

So, we deduce from the continuity property (5.2.15) that

sup
!!!�2X�

a↵(v�,!!!�)� a�↵(v�,!!!�)

||!!!�||↵  10(
KX

k=1

↵k||v� � ⇧Nk�1u0||2L2(⌦k)d
)
1
2

 10||u0 � v�||↵ + 10(
KX

k=1

↵k||u0 � ⇧Nk�1u0||2L2(⌦k)d
)
1
2 .

Because of the well-known properties of the operator ⇧Nk�1 ([21], Theorem 7.3),

we can get the following estimate: if the solution u0 satisfies that u0|⌦k
belongs to

Hsk+1(⌦k)
d, sk � 0

sup
!!!�2X�

a↵(v�,!!!�)� a�↵(v�,!!!�)

||!!!�||↵  4||u0 � v�||↵ + c(
KX

k=1

↵kN
�2sk
k ||u0|⌦k

||2Hsk (⌦k)d
)
1
2 .

(5.3.13)

Similarly, for any !!!� in X�, we have

((↵f,!!!�))↵ �
KX

k=1

↵k

Z

⌦k

f ·!!!�dx =
KX

k=1

↵k(((I�f � ⇧Nk�1f,!!!�))
k
Nk

�
Z

⌦k

(f � ⇧Nk�1f) ·!!!�dx).

So, we also apply the exactness property of the Gauss-Lobatto formula, which yields

((↵f,!!!�))↵ �
KX

k=1

↵k

Z

⌦k

f ·!!!�dx  p
↵max(10(

KX

k=1

||f � ⇧Nk�1f||2L2(⌦k)d
)
1
2

+9||f � I�f||L2(⌦k)d)||!!!�||L2(!)d .

According to the approximation properties of the operator I� ([21], Theorem 7.1) and

⇧Nk�1 ([21], Theorem 7.3), we derive that, if the function f which satisfies that f|⌦k
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belongs to H�k(⌦k)
d, �k > 1.

sup
!!!�2X�

((↵f,!!!�))↵ �
KP
k=1

↵k

R
⌦k

f ·!!!�dx

||!!!�||↵  c
p
↵max(

KX

k=1

N�2�k
k ||f|⌦k

||2H�k (⌦k)d
)
1
2 . (5.3.14)

By analogy, we estimate the numerical integration term (5.3.9), we have

sup
!!!�2X�

a↵(ub,!!!�)� a�↵(u
b
�,!!!�)

||!!!�||↵  c
p
↵max(

KX

k=1

N�2sk
k ||ub|⌦k

||2Hsk (⌦k)d
)
1
2 . (5.3.15)

Also, the term (5.3.11) derives that

sup
!!!�2X�

b(!!!�, P̄ )� b�(!!!�, p
b
�)

||!!!�||↵  c
p
↵max(

KX

k=1

N�2sk
k ||P̄|⌦k

||2Hsk+1(⌦k)d
)
1
2 . (5.3.16)

Due to (2.4.21) and (5.2.21), combined with ([18], Chap. VI, Lemma 5.1), we can

get the estimate results of (5.3.12)

||ub � u

b
�||↵  c

p
↵max

K1X

k=1

N�sk
k ||k||

Hsk� 1
2 (�1\@⌦k)

. (5.3.17)

where K1 is such that �1 \ @⌦k 6= ;.

We are now in the position to derive the approximation error in X� (5.3.6). We

refer to ([32], Chap.3, Lemma. 3.24) for the following lemma.

Lemma 5.5 There exists a constant c independent of � such that

inf
v�2V�

||u0 � v�||↵  c( inf
z�2X�

||u0 � z�||↵ + sup
q�2M1

�

R
S
(u0 · n)[q�]d⌧⌧⌧
||q�||↵⇤

). (5.3.18)

Proof: Let z� be an arbitrary element of X�. The inf � sup condition (5.2.17) and
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([40], Chpt. 1, Lemma 4.1) prove that there exists a unique t� 2 V ?
� such that

b�(t�, q�) = b�(z�, q�), and ||t�||↵  1

�
sup
q�2M1

�

b�(z�, q�)

||q�||↵⇤
. (5.3.19)

Thus, if we set v� = z� � t�, then by combing the exactness property (??), we have

b�(u0, q�) =
KX

k=1

Z

⌦k

u0 · grad q�dx =
KX

k=1

Z

@⌦k

(u0 · n)q�d⌧⌧⌧ =

Z

S

(u0 · n)[q�]d⌧⌧⌧ ,

therefore

||t�||↵  c sup
q�2M1

�

b�(u0 � z�, q�)�
R
S
(u0 · n)[q�]d⌧⌧⌧

||q�||↵⇤
. (5.3.20)

This inequality and triangle inequality implies

||u0 � v�||↵  ||u0 � z�||↵ + ||t�||↵

 c(||u0 � z�||↵ + sup
q�2M1

�

R
S
(u0 · n)[q�]d⌧⌧⌧
||q�||↵⇤

)

Since z� is arbitrary element of X�, this implies the lemma.

So the approximation error in X� (5.3.6) can be divided into two parts, the first

term is the approximatino error in X�, another term is the consistency error.

We first estimate the approximation error in X�. Taking z� equal to the orthogonal

projection operator ⇧Nk�1u0 on each ⌦k, we can derive the following lemma.

Lemma 5.6 Assume that the solution (u, p) of problem (??) � (2.3.9) is such that

each u|⌦k
belongs to Hsk(⌦k)

d for a real number sk, sk � 0. The following estimate

holds

inf
z�2X�

||u0 � z�||↵  c(
KX

k=1

↵kN
�2sk
k ||u|⌦k

||2Hsk (⌦k)d
)
1
2 . (5.3.21)

Next we come to the consistency error. It involves the quantity µ, defined as the
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largest ratio of ↵k
↵
k
0
, it is

µ = (max
↵k

↵k0
)
1
2 . (5.3.22)

We refer to ([16], Lemma 3.3) and ([32], Chap 3, Lemma 3.26) for the following

lemma.

Lemma 5.7 For any function u such that each u|⌦k
, 1  k  K, belongs to Hsk(⌦k)

d

for a real number sk, sk � 1
2
, the following estimate holds

sup
q�2M1

�

R
S
(u0 · n)[q�]d⌧⌧⌧
||q�||↵⇤

 c(1 + µ)(
KX

k=1

↵kN
�2sk
k (log Nk)||u|⌦k

||2Hsk (⌦k)d
)
1
2 . (5.3.23)

Remark 5.1 In fact, (log Nk)
1
2 in (5.3.23) disappears when all the edges of @⌦k

which are not mortars are contained either in @⌦ or in one mortar, however it is

negligible in comparison with the N�sk
k when Nk is large enough.

Estimating the approximation error in M1
� is more technical and more complex. We

first introduce the quantity which depends on �,

µ� = (max(
↵kNk

↵k0Nk0
))

1
2 . (5.3.24)

The nonconforming case for d = 3 is much more complicate, so we here only consider

the conforming case of d = 3 and the general case of d = 2. We refer to ([18], Chap.

V, Theorem 5.1) and ([32], Chap.3, Lemma3.27) for the following lemma.

Lemma 5.8 Assume that the solution (u, p) of problem (??) � (2.3.9) is such that

each p|⌦k
, 1  k  K, belongs to Hsk+1(⌦k) for a real number sk, sk > d�1

2
, then in

the two cases

(i) in dimension d = 2,

(ii) in dimension d = 3, if the decomposition is conforming,
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the following estimate holds

inf
q�2M1

�

||P1 � q�||↵⇤  c(1 + µ+ µ
0

�)(
KX

k=1

↵�1
k N�2sk

k ||P1|⌦k
||2Hsk+1(⌦k)

)
1
2 . (5.3.25)

where

µ
0

� =

8
<

:
µ , for d=2 and 3, and a conforming case,

µ� for d=2, and a nonconforming case.
(5.3.26)

Remark 5.2 When (1 + µ+ µ
0
�) is bounded (this is most often the case in practical

situations), for a general decomposition of dimension d = 3, the lack of optimality is

(log Nk)N
3
2
k . For further more results, we refer to ([18], Chap.V).

According to the above result, now we arrive at the first theorem in this section.

Theorem 5.2 Assume that the function ↵ is constant on each ⌦k, 1  k  K. If

the solution (u, p) of problem (2.3.9) is such that its restriction to each ⌦k, 1  k 
K, belongs to Hsk(⌦k)

d ⇥ Hsk+1(⌦k), sk > d�1
2
, and the function f is such that its

restrication to each ⌦k, 1  k  K, belongs to H�k , �k >
d
2
, in the two cases:

(i) in dimension d = 2,

(ii) in dimension d = 3, if the decomposition is conforming,

the following error estimate holds between this solution (u, p) and the solution (u�, p�)

of problem (5.2.7)

||u� u�||↵  c((1 + µ+ µ
0

�)
KX

k=1

N�sk
k (

p
↵max(log Nk)||u|⌦k

||Hsk (⌦k)d +
p
1/↵min

||p|⌦k
||Hsk+1(⌦k)

) +
p
↵max

KX

k=1

N��k
k ||f|⌦k

||H�k (⌦k)d +
p
↵max

K1X

k=1

N�sk
k ||k||

Hsk� 1
2 (�1\@⌦k)

).

where µ
0
� is the same as it in (5.3.26) and the constant c is independent of the param-

eter � and the function ↵.
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So it is readily checked that the following improved estimate holds for a conforming

decomposition.

Corollary 5.1 If the decomposition is conforming and if the assumptions of Theorem

4.1 are satisfied, the following error estimate holds between the solution (u, p) of

problem (2.3.9) and the solution (u�, p�) of problem (5.2.7)

||u� u�||↵  c((1 + µ)
KX

k=1

N�sk
k (

p
↵max||u|⌦k

||Hsk (⌦k)d +

r
1

↵min

||p|⌦k
||Hsk+1(⌦k)

)

+
p
↵max

KX

k=1

N��k
k ||f|⌦k

||H�k (⌦k)d +
p
↵max

K1X

k=1

N�⌧k
k ||k||H⌧k (�1\@⌦k)).

where the constant c is independent of the parameter � and the function ↵.

Estimating the error on the pressure now is easy.

From the inf � sup condition (5.2.17), we derive that, for any q� in M1
� ,

�||p0� � q0� ||↵⇤  sup
v�2X�

b�(v�, p
0
� � q0� )

||v�||↵ . (5.3.27)

We first use the discrete problem (5.2.7)

b�(v�, p
0
� � q0� ) = ((↵ f,v�))� � a�↵(u� � v�)� b�(v�, p

b
�)� b�(v�, q

0
� ). (5.3.28)

Next, we apply equation (2.3.9) to function v�, and adding it to the previous line.

This yields

b�(v�, p
0
� � q0� ) =

KX

k=1

↵k

Z

⌦k

(u � u�) · v�dx +
KX

k=1

↵k

Z

⌦k

u� · v�dx

� a�↵(u� � v�) +

Z

⌦

v� · grad (P1 � q0� )dx

+

Z

⌦

v� · grad (P̄ � pb�)dx + ((↵ f,v�))� �
KX

k=1

↵k

Z

⌦k

f · v�dx.
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According to the triangle inequality, we have

||p� q�||↵⇤ = ||P1 � q0� ||↵⇤ + ||p0� � q0� ||↵⇤ + ||P̄ � pb�||↵⇤ (5.3.29)

So using the same arguments as in the estimation of terms issued from numerical

integration together with the above triangle inequality yields

||p� q�||↵⇤  c(||u � u�||↵ + sup
v�2X�

KP
k=1

↵k

R
⌦k

u� · v�dx � a�↵(u�,v�)

||v�||↵

+||P1 � q0� ||↵⇤ + sup
v�2X�

((↵ f,v�))� �
KP
k=1

↵k

R
⌦k

f� · v�dx

||v�||↵
+ sup

v�2X�

b(v�, P̄ )� b�(v�, q
0
� )

||v�||↵ + ||P̄ � pb�||↵⇤).

(5.3.30)

All the terms in the right-hand side have been estimated previously except the term

||P̄ � pb�||↵⇤ . Because pb� is in M�, so the estimate result of this term is simily to the

term ||P1 � q0� ||↵⇤ . We refer to ([18], Chap. VI, Lemma 5.1 and Lemma 5.2) for the

following result.

Lemma 5.9 Suppose p0 be a function in H
1
2 (�2) such that each p0|�2\@⌦k

belongs to

Hsk+
1
2 (�2 \ @⌦k), ✓k � 0, in the two cases:

(i) in dimension d = 2,

(ii) in dimension d = 3, if the decomposition is conforming,

the following error estimate holds

||P̄ � pb�||↵⇤  c(1 + µ+ µ
0

�)

r
1

↵min

K2X

k=1

N�sk
k ||p0||Hsk+1

2 (�2\@⌦k)
. (5.3.31)

where µ
0
� is the same as it in (5.3.26) and the constant c is independent of the param-

eter � and the function ↵.

Now we get the second estimate result of this section on the pressure.
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Theorem 5.3 If the assumptions of Theorem6.3 are satisfied in dimension 2. In

dimension 3, it needs that the decomposition be conforming and the the following

error estimate holds between the pressure p of problem (??) and the pressure p� of

problem (5.2.7):

||p� p�||↵⇤  c((1 + µ+ µ
0

�)
KX

k=1

N�sk
k (

p
↵max(log Nk)||u|⌦k

||Hsk (⌦k)d

+

r
1

↵min

||p|⌦k
||Hsk+1(⌦k)

) +
p
↵max

KX

k=1

N��k
k ||f|⌦k

||H�k (⌦k)d

+
p
↵max

K1X

k=1

N�sk
k ||k||

Hsk� 1
2 (�1\@⌦k)

+ (1 + µ+ µ
0

�)

r
1

↵min

K2X

k=1

N�sk
k ||p0||Hsk+1

2 (�2\@⌦k)
).

In the two-dimensional case of a polygon ⌦, a more explicit estimate can be deduced

from the previously quoted regularity results. In the end of this part, we give the

following corollary according to ([20]) and ([6]).

Corollary 5.2 In the two-dimensional case of a polygon ⌦, assume that the date

(f, k, p0) belongs to H�k(⌦k)
2⇥H�k� 1

2 (�1\@⌦k)⇥H�k+
1
2 (�2\@⌦k), �k > 1 Then, the

following error estimate holds between the solution pair (u, p)of problem (??)�(2.3.9)

and the solution pair (u�, p�) of problem (5.2.7):

||u� u�||↵ + ||p� p�||↵⇤  c(1 + µ+ µ
0

�)max{p↵max,

r
1

↵min

}(
KX

k=1

Ek (log Nk)
⌫

||f|⌦k
||H�k (⌦k)2 +

K1X

k=1

Ek||k||H�k� 1
2 (�1\@⌦k)

+

K2X

k=1

Ek||p0||H�k+1
2 (�2\@⌦k)

).

where ⌫ equals to zero in the conforming decomposition and to 1 other-

wise, and Ek, 1  k  K is equal to N��k
k if ⌦̄k contains no corner of

⌦, sup{N��k
k , N

� 4
3

k (log Nk)
1
2}, if ⌦̄k contains a nonconvex corner of ⌦ and

sup{N��k
k , N�4

k (log Nk)
3
2}, if ⌦̄k contains a no nonconvex corner of ⌦.
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5.4 Numerical implementation

Firstly, we briefly explain how to implement the discrete problem in section before.

The full set of unknowns of the discrete system is given by

• the vector U of the values if u� at all nodes (xk
i , y

k
i ), 0  i, j  Nk, 1  k  K,

in dimension d = 2, (xk
i , y

k
i , z

k
p ), 0  i, j, p  Nk, 1  k  K, in dimension d = 3,

• the vector P of the values if p� at all nodes (xk
i , y

k
i ), 0  i, j  Nk, 1  k  K, in

dimension d = 2, (xk
i , y

k
i , z

k
p ), 0  i, j, p  Nk, 1  k  K, in dimension d = 3.

Let (U, P ) denote the vector made of these values. Then the mortar condition can

be expressed in the following way: there exists a rectangular matrix Q such that the

boundary and matching conditions can be enforced, which leads to a new vector QU .

Then problem 5.2.6� 5.2.7 can now equivalent to the following linear system

0

@ A BQ

QTBT 0

1

A

0

@ U

P

1

A =

0

@ F

QTG

1

A , (5.4.1)

where QT stands for the transposed matrix of Q. The matrix A is fully diagonal, its

diagonal terms are the ⇢x,ki , ⇢y,kj or the ⇢x,ki , ⇢y,kj , ⇢z,kp according to the dimension. The

matrix B is only block-diagonal, with K blocks Bk on the diagonal, one for each ⌦k.

Then the system can be solved by conjugate gradient algorithm. We then consider

the square ⌦ = [�1, 3]2, with a nonconforming decomposition into two squares ⌦1 =

[�1, 1]2, and ⌦3 = [1, 3] ⇥ [�1, 1] and a rectangle ⌦2 = [�1, 3] ⇥ [1, 3], see Fig.5-3.

For an integer N � 8, we take all the Nk equal to N . The mortars are chosen here

as {1}⇥ [1, 3] [ [�1, 3]⇥ {1}.

set here ↵1 = 1,↵2 = 10,↵3 = 100. Then we work here with the solutions (u, p) given

by

u(x, y) =

0

@ � sin(⇡x) cos(⇡y)

cos(⇡x) sin(⇡y)

1

A , p(x, y) = sin(⇡x) cos(⇡y). (5.4.2)
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Figure 5-1: Non-matching grids for a non-conforming decomposition with N = 32

5.5 Comparison between the two methods

In our work, we mainly talk about the generally decomposition in d = 2, including

the conforming decomposition and non-conforming decomposition, and the conform-

ing decomposition in the case of d = 3. No convergence results are proven in the case

of dimension 3 and with a non-conforming decomposition. For the same problem with

the same assumptions for f, k, p0, we return to the Theorem 5.1 and Theorem 5.2 in

Chapter 5 for the first decomposition with velocity in H(div ,⌦), and the Theorem 6.2

and Theorem 6.3 in Chapter 6 for the second decomposition with velocity in L2(⌦)d.

For the first decomposition, with velocity in H(div ,⌦) we can observe that from The-

orem 5.1, the estimate about the velocity ||u � u�||↵,L2(⌦) is fully optimal. However,

from Theorem 5.2, the estimate about the pressure ||p� p�||↵⇤,� is not fully optimal,

even if the decomposition for d = 2 and d = 3 are both conforming. The lack of

the optimality is max{N
1
2
k , (log Nk)

⌫}, where ⌫ is equal to 0 if the decomposition is

conforming, to 1 otherwise.
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Figure 5-2: The error curves for an analytical solution

For the second decomposition, with velocity in L2(⌦)d, we can see that from

Theorem 6.3, the estimate about the pressure ||p � p�||↵⇤ is fully optimal. However

from Theorem 6.2, the estimate about the velocity ||u�u�||↵ is not fully optimal, for

both conforming and non-conforming cases. The lack of the optimality is log Nk.

We can see from the above statements that the first mortar spectral discretization

derives a better (optimal) convergence result for the velocity. The second mortar

spectral discretization derives a better (optimal) convergence result for the pressure.

The results about the numerical compution

For the two mortar discretizations, we mainly consider Dary’s equations on the

same domain as follows. We consider the square ⌦ = [�1, 3]2, with a nonconforming

decomposition into two squares ⌦1 = [�1, 1]2, and ⌦3 = [1, 3]⇥[�1, 1] and a rectangle

⌦2 = [�1, 3] ⇥ [1, 3], see Fig.5-3. For an integer N � 8, we take all the Nk equal to

N . The mortars are chosen here as {1}⇥ [�1, 1][ [�1, 3]⇥ {1}. The condition of the
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numerical experment are the same then previousely.

Figure 5-3: Non-matching grids for a non-conforming decomposition with N = 32

In the following figure, we can see the comparison of the error curves for an

analytical solution, where the left subfigure denotes the first discretization and the

right subfigure denotes the second discretization. In Figure 5-4 are plotted, the curves

Figure 5-4: Comparison of the error curves for an analytical solution

of the errors ||u � u�||↵ and ||p � p�||↵⇤ for both cases as a function of N. For the

smooth solution, a linear or logarithmic scale is used. We observe that the exponential

decaying of the error is preserved despite the nonconforming domain decompsotion.
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Chapter 6

Conclusion and Perspectives

In the whole thesis, we are mainly interested to the spectral approximation and

mortar spectral element method for the Darcy’s Equations with general boundary

conditions.

In Chapter 3, we have presented the spectral discretization for the Darcy’s equa-

tions. The spectral method has been proven optimal in the sense that the order of

convergence is only limited by the regularity of the solution. The chapter 4 and Chap-

ter 5 are the key chapters in out thesis. We propose two different discretization relies

on the mortar spectral method. Both the numerical analysis of the discretization

problems are performed and numerical experiments are presented, which turn out to

be in good coherency with the theoretical results. The last Chapter is an appendix,

which is an exception in our thesis, because a spectral scheme have been presented for

fourth-order equations. We here have developed a Legendre-Petrov-Galerkin method

for linear fourth-order differnetial equations in one dimension and a Legnedre-Petrov-

Galerkin and Chebyshev Collocation method for nonlinear fourth-order equations.

We propose two different discretization relies on the mortar spectral method. Both

the numerical analysis of the discretization problems are performed and numerical ex-

periments are presented, which turn out to be in good coherency with the theoretical
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Chapter 8. Conclusion and Perspectives

results.

In our later work, we will extended to unsteady Darcy’s system, which models

the time-dependent flow of an incompressible fluid such as water in a rigid porous

medium.
8
>>>>>>>>><

>>>>>>>>>:

@tu(x, t) + ↵u(x, t) + grad p(x, t) = ↵f(x, t) in ⌦⇥ [0, T ],

div u(x, t) = 0 in ⌦⇥ [0, T ],

u(x, 0) = u0(x, 0) in ⌦,

u(x, t) · n = k(x, t) on �1 ⇥ [0, T ],

p(x, t) = p0(x, t) on �2 ⇥ [0, T ]

(6.0.1)

It also admits two equivalent variational formulations as the steady Darcy’s sys-

tem. For time adaptivity, in order to avoid Courant-Friedrichs-Lévy conditions, an

implicit scheme such as the backward Euler’s scheme could be used. Concerning the

space discretization, it can be extended from the previous problems. A priori error

estimates will also be proved to justify the optimal convergence properties of the

discretizations.
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Chapter 7

Appendix : A Spectral Method for

4-th Differential Equations

In this chapter, we develop a Legendre Petrov-Galekin method for linear fourth-

order differential equations in one dimension and a Legendre Petrov-Galerkin and

Chebyshev collocation method for the nonlinear Kuramoto-Sivashinsky equation. The

numerical experiments are given which demonstrate the efficient of proposed schemes.

Finally, we give the optimal rate of convergence in L2-norm of the methods.

7.1 Introduction

There are many applications of Galerkin methods and collocation methods in the

literatures for fourth-order differential equations. In [52, 53], Shen proposes a class of

spectral-Galerkin methods for the direct solution of second- and fourth-order equa-

tions based on Legendre and Chebyshev polynomials. In [27], a Legendre spectral

Galerkin method is presented for the solution of the biharmonic Dirichlet problem.

Their approach is based on a mixed method which gives rise to a variational formula-
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tion for two second order differential equations. A similar approach has been applied

in the Legendre spectral collocation solution of the same problem in [26]. In [35],

the authors present some efficient spectral algorithms based on the Jacobi-Galerkin

methods for fourth-order equations. Theoretical work of the two methods is referred

to [17, 21, 39].

However, to the authors’ knowledge, there is little previous work on Petrov-

Galerkin methods for fourth-order differential equations. Because of the merits of

Petrov-Galerkin methods, that is, the test functions do not satisfy all the boundary

conditions, they are widely used in computation [37, 45, 49, 50]. This motivated our

interest in such methods.

As is pointed out in [41, 53], the direct application of the tau method for fourth-

order equations is numerically unstable, because it results by ill conditioned system.

Meanwhile, it is difficult to get optimal error estimate in L2-norm. Therefore, in

this study, we present a Legendre Petrov-Galerkin (LPG) method for fourth-order

equations in one dimension. Through the numerical experiments, we can note that

the LPG method is an efficient algorithm. Moreover, optimal error estimates in L2-

norm of the LPG method can be obtained.

In a recent work [54], a linear steady fourth-order equation has been computed

by the LPG method and get desirable numerical results. However, the algebraic sys-

tems and error estimates are not given. In this work, we give the algebraic scheme of

LPG method and prove the optimal rate of convergence in L2-norm for linear fourth-

order differential equations. Moreover, for nonlinear equations such as the Kuramoto-

Sivashinsky(K-S) equation which is an important equation in physical models, a Leg-

endre Petrov-Galerkin and Chebyshev collocation (LPG-CC) method is developed.

The scheme of the linear part is formulated in the LPG form while the nonlinear

term is treated with the Chebyshev collocation method. The time discretization is

a classical leapfrog/Crank-Nicolson scheme. To get optimal error estimate, we apply

the approach of [54] in which a norm stronger than standard L2-norm is used.
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The chapter is organized as follows. In the next section, we propose the LPG

scheme and the LPG-CC scheme for linear and nonlinear fourth-order equations,

respectively. Some numerical experiments are presented in Section 3. In Section 4,

we recall some recent results on some projections and a Chebyshev-Gauss-Lobatto

interpolation with a negative weight. In Section 5, optimal error estimates of the two

schemes are given. The final section is for concluding remarks.

7.2 Chebyshev polynomials

Classical reference on the Chebyshev polynomials are [41]. The Chebyshev poly-

nomials of the first kind, Tk(x), k = 0, 1, ..., are the eigenfunctions of the singular

Sturm-Liouville problem

(
p
1� x2T

0

k(x))
0
+

k2

p
1� x2

Tk(x) = 0.

For any k, Tk(x) is even if k is even ,and odd if k is odd. If Tk is normalized so that

Tk(1) = 1, then

Tk(x) = cos k✓, ✓ = arccosx. (7.2.1)

Thus, the Chebyshev polynomials are nothing but cosine functions after a change of

independent variable. Due to the trigonometric relation

cos(k + 1)✓ + cos(k � 1)✓ = 2 cos ✓ cos(k✓),

we will give the recursion relation of Chebyshev polynomials:

Tk+1(x) = 2xTk(x)� Tk�1(x), (7.2.2)

with T0(x) = 1 and T1(x) = x.
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Next we will introduce the Chebyshev-Gauss-lobatto points and weights:

8
>>><

>>>:

x0 = 1, xN = �1,

!0 = !N = ⇧
2N

,

xj = cos ⇡j
N
,!j =

⇧
N
, 1  j  N � 1.

Let{x � i}Ni=0 be the Chebyshev-Gauss-Lobatto points, i.e. xi = cos i⇧
N

, and u be

a function on [�1, 1]. The Chebyshev interpolation polynomial ICN is defined as a

polynomial of degree less than or equal to N such that

ICNu(xi) = u(xi), i = 0, 1, ..., N. (7.2.3)

7.3 Spectral discretization scheme

7.3.1 Linear equation

At first, we consider the following 1 dimension linear fourth-order equation

8
<

:
@4xU � �@2xU + ↵U = g, x 2 (�1, 1),

U(±1) = @xU(±1) = 0,
(7.3.1)

where ↵, � > 0.

Let VN = PN(I)\H2
0 (I)\H3(I), WN�2 = PN�2(I)\H1

0 (I)\H2(I), where I = [�1, 1].

A Legendre Petrov-Galerkin method for the problem (7.3.1) is to find uN 2 VN such

that for any v 2 WN�2,

↵(uN , v)� �(@2xuN , v)� (@3xuN , @xv) = (g, v). (7.3.2)
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Appropriate base functions of VN and WN�2 are chosen to set up the corresponding

system of equations as in [52]. For 0  n  N � 4, we let

8
<

:
cn = 1/

p
2(2n+ 3)2(2n+ 5),

dn = 1/(2n+ 1),

and
8
<

:
�n(x) = cn[Ln(x)� 2(2n+5)

2n+7
Ln+2(x) +

2n+3
2n+7

Ln+4(x)],

 n(x) = dn+1[Ln(x)� Ln+2(x)],

where Ln(x) is the Legendre polynomial of degree n. We note that all the polynomials

Ln(x), 0  n  N are orthogonal, and

||Ln(x)||2L2(I) =
1

n+ 1
2

.

Expanding uN(x) =
N�4P
n=0

ûn�n(x) and taking v =  m(x) in (7.3.2) lead to

N�4X

n=0

⇥
↵(�n, m)� �(@2x�n, m)� (@3x�n, @x m)

⇤
ûn = (g, m), 0  m  N � 4.

(7.3.3)

Let anm = (�n, m), bnm = (@2x�n, m), pnm = �(@3x�n, @x m), then

anm =

8
>>>>>>>>><

>>>>>>>>>:

2cndm+1(dn + 2dn+3), n = m,

�2cndm+1dn, n = m+ 2,

�2cndm+1(2dn+3 + dn+3dn+4/dn+1), n = m� 2,

2cndm+1dn+3dn+4/dn+1, n = m� 4,

0, otherwise.
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bnm = cn(2n+ 3)((Ln+3 � Ln+1), Lm+1) =

8
>>><

>>>:

2cn(2n+ 3)dn+3, n = m� 2,

�2cn(2n+ 3)dn+1, n = m,

0, otherwise.

pnm = cn(2n+3)(2n+5)(L0
n+2, Lm+1) =

8
<

:
0, m � n+ 1,

cn(2n+ 3)(2n+ 5)(1� (�1)m+n+3), m  n.

We denote

A = {anm}0n,mN�4, B = {bnm}0n,mN�4, P = {pnm}0n,mN�4,

ĝm = (g, m), ĝ = [ĝ0, ĝ1, . . . , ĝN�4]
T .

The scheme (7.3.3) can be written in a matrix form as follows:

(↵A� �B + P )û = ĝ, û = [û0, û1, . . . , ûN�4]
T . (7.3.4)

Remark 7.1 In Table 1, we list the condition numbers of the fourth-order term of

the LPG method and that of the Legendre tau (LT) method which we expand uN(x) =
N�4P
n=0

ûn�n(x) [44] and take v = Lm(x), 0  m  N � 4. The command "cond" is used

in Matlab to compute the condition numbers.

Table 1 Condition numbers for the fourth-order equation

N 16 32 64 128

LT 3.97e+2 4.72e+3 5.46e+4 6.23e+5

LPG 1.58e+1 4.64e+1 1.34e+2 3.82e+2

We note that the condition numbers of the LPG method are smaller than the LT

method from Table 1.
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7.3.2 Nonlinear equation

Next, we consider the Kuramoto-Sivashinsky equation

8
>>><

>>>:

@tU + @xF (U) + @2xU + @4xU = g(x, t) (x, t) 2 (�1, 1)⇥ (0, T )

U(±1, t) = @xU(±1, t) = 0 t 2 (0, T )

U(x, 0) = U0(x) x 2 (�1, 1).

(7.3.5)

where F (z) is a smooth function of z, and T > 0

The semidiscrete LPG-CC method for the problem is to find uN(t) 2 VN such

that for any v 2 WN�2,

8
<

:
(@tuN , v) + (@xI

C
NF (uN), v) + (@2xuN , v)� (@3xuN , @xv) = (ICNg(t), v) t 2 (0, T )

uN(0) = ICNu0,

(7.3.6)

where ICN is the Chebyshev interpolation operator at the Chebyshev-Gauss-Lobatto

points.

Let ⌧ be the step size in time space and St = {k⌧ : k = 1, 2, . . . , nt; t = nt⌧}. For

simplicity, denote ut̂ =
1

2⌧
(u(t+ ⌧)� u(t� ⌧)), ū(t) =

1

2
(u(t+ ⌧) + u(t� ⌧)).

Using leapfrog/Crank-Nicolson scheme in time such that the linear part is treated

implicitly and the nonlinear part explicitly, we get the fully discrete LPG-CC approx-

imation to (7.3.5): to find uN 2 VN such that for any v 2 WN�2,

8
>>><

>>>:

(uNt̂, v) + (@xI
C
NF (uN), v) + (@2xūN , v)� (@3xūN , @xv) = (ICN ḡ, v), t 2 ST�⌧ ,

(uN(⌧), v) = (ICN [u0 + ⌧@tu(0)], v),

uN(0) = ICNu0.

(7.3.7)

Note that @tu(0) = g(0)� @2xu0 � @4xu0 � @xF (u0).

In computation, expanding uN(x) =
N�4P
n=0

ûn�n(x) and taking v =  m(x), the scheme

of the linear part can be written in a matrix form as in (7.3.4). The nonlinear term
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and the right-hand term can be computed by the fast Legendre transform (FLT) [4]

between the coefficients of the Legendre series and its values at the CGL points, such

as

{ûn} FLT�! {uN(xj)} ! {F (uN(xj))} FLT�! {( \ICNF (uN))
L
n},

where ( \ICNF (uN))
L
n are the Legendre expansion coefficients of ICNF (uN).

7.4 Numerical results

We first consider linear fourth-order differential equations.

Example 7.1 The 1-D fourth-order equation

@4xU � @2xU + U = ((k⇡)4 + (k⇡)2 + 1) sin(k⇡x), x 2 I,

with a smooth exact solution U(x) = sin(k⇡x).

We compute Example 7.1 by the LPG method compared with the LT method with

k=6. The maximum error is listed in Table 2.

Table 2 Maximum error for Example 7.1

N 16 32 64 128

LT 4.02 2.37e-5 4.35e-13 4.14e-13

LPG 5.28 1.15e-5 3.71e-13 5.14e-14

From Example 7.1, we note that the Legendre Petrov-Galerkin method is a little more

accurate than the Legendre Tau method although the boundary conditions which test

functions satisfy of the tau method are less than that of the Petrov-Galerkin method.

Furthermore, through the appropriate combination of base functions, the tau method

also possess the property of numerical stability.
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Example 7.2 The 1-D fourth-order equation

@4xU + 4U = 1, x 2 I.

with an analytical solution

U(x) = 0.25(1� (sin(1) sinh(1) sin(x) sinh(xx)

+ cos(1) cosh(1) cos(x) cosh(x))/(cos(2) + cosh(2))).

This example is taken from [56] in order to make a comparison with the Sixth-order

method based on non-polynomial spline functions in [56]. We list the maximum error

in Table 3.

Table 3 Maximum error for Example 7.2

N Sixth-order method in [56] N LPG

16 9.99e-9 8 2.58e-8

32 1.89e-10 10 7.92e-11

64 2.82e-12 12 2.17e-13

Example 7.2 shows that our method is of the same accuracy as the Sixth-order method

in [56] through taking less points.

Example 7.3 The 1-D fourth-order equation

@4xU + xU = �(8 + 7x+ x3)ex, 0 < x < 1.

with an analytical solution U(x) = x(1� x)ex.

This example is also taken from [56] in order to make a comparison with the Sixth-

order method based on non-polynomial spline functions in [56]. The maximum errors

of U and its nth-order derivatives (n = 1, 2, 3, 4) by the Sixth-order method in [56]
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are listed in Table 4. The results by our method are listed in Table 5. Here Ui and

iNi denote the analytical results and numerical results.

Table 4 Maximum errors of U and its nth-order derivatives (n = 1, 2, 3, 4) by the

Sixth-order method in [56] for Example 7.3

N max |Ui � uNi| max |U 0
i � u

0
Ni| max |U 00

i � u
00
Ni| max |U 000

i � u
000
Ni| max |U (iv)

i � u
(iv)
Ni |

8 3.70e-10 4.91e-6 3.42e-4 7.20e-3 1.85e-10

16 7.51e-12 1.99e-7 2.24e-5 1.20e-3 4.16e-12

32 6.99e-14 6.21e-9 1.85e-6 1.78e-4 3.90e-14

Table 5 Maximum errors of U and its nth-order derivatives (n = 1, 2, 3, 4) by our method

for Example 7.3

N max |Ui � uNi| max |U 0
i � u

0
Ni| max |U 00

i � u
00
Ni| max |U 000

i � u
000
Ni| max |U (iv)

i � u
(iv)
Ni |

8 2.80e-8 1.76e-7 1.08e-6 2.36e-5 5.05e-4

12 1.06e-14 1.10e-13 1.12e-12 4.96e-11 2.74e-9

16 5.55e-17 2.22e-16 4.44e-16 8.88e-16 3.11e-15

We note that the maximum errors computed by our method are more accurate than

by the Sixth-order method in [56], especially for the errors of nth-order derivatives

(n = 1, 2, 3, 4).

Finally, we consider a nonlinear evolution equation.

Example 7.4 The Kuramoto-Sivashisky equation

@tU + U@xU + @2xU + @4xU = 0, x 2 I.

with exact solution

U(x, t) = C +
15

19

r
11

19
[11tanh3(k(x� Ct� x0))� 9tanh(k(x� Ct� x0))]
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We compute Example 7.4 by the scheme (7.3.7) at T = 1 with C = 0.1, k =

1
2

q
11
19
, x0 = �10, I = [�30, 30] . To see the order of accuracy,we let ⌧ decrease

from 10�1 to 10�4 for large N = 256 and let N increase from 64 to 256 for small

⌧ = 10�3. The results are given in Table 6.

Table 6 Error at T = 1 for Example 7.4

⌧ N L1 � error L2 � error

1e-1

256

7.21e-5 1.07e-4

1e-2 7.21e-7 1.07e-6

1e-3 7.19e-9 1.07e-8

1e-4 7.08e-11 1.07e-10

1e-3

64 5.25e-2 9.37e-2

128 3.17e-5 1.28e-4

256 7.19e-9 1.07e-8

In Table 7, L1 and L2 errors are recorded at time t = 0.1; 0.3; 0.5; 0.7; 1. We compare

the results with those presented in [57] by the mesh-free collocation method based

on multiquadric (MQ) with c(MQ)=2.5 advancing in time by the Crank-Nicolson

scheme. For the nonlinear term, they linearize it.

Table 7 Maximum error of MQ method in [57] and LPG-CC method for Example 7.4

at time t = 0.1; 0.3; 0.5; 0.7; 1 with N = 120; ⌧ = 0.001; I = [�30, 30];C = 0.1;x0 = �10

t 0.1 0.3 0.5 0.7 1.0

L1 � error
MQ method 1.03e-4 1.85e-4 2.89e-4 3.85e-4 5.23e-4

LPG-CC 2.56e-5 2.58e-5 2.53e-5 2.57e-5 3.52e-5

L2 � error
MQ method 1.73e-5 3.86e-4 7.30e-4 7.13e-4 1.51e-3

LPG-CC 6.77e-5 8.30e-5 9.40e-5 1.03e-4 1.15e-4

It is noticed that the LPG-CC method shows better accuracy than the MQ method

in [57].
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7.5 Preliminaries

In this section, we state approximation properties of some projection operators

and an interpolation operator, which will be needed in the proof of convergence.

Throughout this chapter, C will denote a generic positive constant.

Let I = (�1, 1), and !↵,�(x) = (1�x)↵(1+x)� be a certain weight function in the

usual sense. Denote by (·, ·)!↵,�
and k · k!↵,�

the inner product and the norm of the

weighted space L2
!↵,�

(I), respectively. We adopt the standard notation H�
!↵,�

(I) for

weighted Sobolev space with norm k · k!↵,� ,� and semi-norm | · |!↵,� ,�. The subscript

! will be omitted whenever !↵,�(x) ⌘ 1. Let PN(I) be the space of polynomials of

degree at most N on the interval I.

The Jacobi orthogonal projection operator with the weight !↵,�(x) is defined P↵,�
N :

L2
!↵,�

(I) ! PN(I). For simplicity, we set PN = P0,0
N . Next, we introduce the spectral

projection operator P k
N : Hk(I) ! PN(I) [21, 46, 54] defined by

P k
Nu = u(�1) +

Z x

�1

(P k�1
N�1@⇠u)d⇠, k � 1,

where P 0
N = PN . The projection operator has the following properties [46]:

(@lxP
k
Nu)(1) = @lxu(1), (@lxP

k
Nu)(�1) = @lxu(�1), 0  l  k � 1, (7.5.1)

(@kx(P
k
Nu� u), v) = 0, 8v 2 PN�k. (7.5.2)

Here we need a stronger result, which is in negative weight.

Lemma 7.1 ([54]) If u 2 Hr(I) then it holds that for all 0  l  k  r,

k@lx(P k
Nu� u)k!l�k,l�k

 CN l�rk@rxuk!r�k,r�k
, (7.5.3)
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Denoting by ICN the Chebyshev-Gauss-Lobatto (CGL) interpolation operator, we have

Lemma 7.2 ([46]) If u 2 Hr(I) and r � 1, then it holds that for all 0  l  1,

k@lx(ICNu� u)k!l�1,l�1
 CN l�rk@rxuk!r�1,r�1 . (7.5.4)

7.6 Convergence of the schemes

7.6.1 Linear equation

At first, we give an optimal rate of convergence for the scheme (7.3.2). Assume

that the theoretical solution U(x) is smooth enough. Let ⌘ = U�u⇤ and e = uN �u⇤,

where u⇤ = P 3
NU . From (7.3.1) and (7.3.2), we have

↵(e, v)� �(@2xe, v)� (@3xe, @xv) = ↵(⌘, v)� �(⌘, @2xv). (7.6.1)

where we have used the fact (@3x⌘, @xv) = 0 for all v 2 WN�2, according to (7.5.2).

Because of e(±1) = @xe(±1) = 0 by (7.5.1), we can take v = !�1,�1e. It is easy to

derive the following equalities

�(@3xe, @xv) = 2|@xv(1)|2 + 2|@xv(�1)|2 + 4k@xvk2 + k@2xvk2!1,1
.

�(@2xe, v) = k@xvk2!1,1
+ kvk2.

Therefore, we have

↵kek2!�1,�1
+ �kvk2 + �k@xvk2!1,1

+ 2|@xv(1)|2 + 2|@xv(�1)|2 + 4k@xvk2 + k@2xvk2!1,1

 �k⌘k!�1,�1k@2xvk!1,1 + ↵k⌘kkvk
 �2k⌘k2!�1,�1

+
1

4
k@2xvk2!1,1

+
↵2

�
k⌘k2 + �

4
kvk2,
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According to (7.5.3), we have

kek!�1,�1  C⇤N�r.

Furthermore, from the inverse property of polynomials (see (3.17) of [47]), we have

k@xek  CNkek!�1,�1  CN1�r,

which means the method also admits optimal error estimate in H1-norm.

We arrive at the following convergence result via the triangle inequality and Lemma

7.1.

Theorem 7.1 Assume that r � 3 and U(x) 2 Hr(I), then

kU � uNk  kU � uNk!�1,�1  CN�r,

and

kU � uNk+N�1k@x(U � uN)k  CN�r.

7.6.2 Nonlinear equation

Next, we consider the Kuramoto-Sivashinsky equation (7.3.5). We give the sta-

bility and an optimal rate of convergence for the semidiscrete scheme (7.3.6) of the

LPG-CC method.

Suppose that uN and the term on the right-hand side in (7.3.6) have the error ũN

and g̃, respectively. Then by (7.3.6) we have

(@tũN , v) + (@xI
C
N F̃ , v) + (ũN , @

2
xv)� (@3xũN , @xv) = (g̃, v).
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where F̃ = F (uN + ũN)� F (uN). Taking v = !�1,�1ũN 2 WN�2, we have

1

2

d

dt
kũNk2!�1,�1

+ 2|@xv(1)|2 + 2|@xv(�1)|2 + 4k@xvk2 + k@2xvk2!1,1

 kICN F̃k2 + 1

4
k@xvk2 + kũNk2!�1,�1

+
1

4
k@2xvk2!1,1

+ kg̃k2�1 +
1

4
k@xvk2.

Let

uM = max
0sT

{kuN(s)kL1(I) + k@xuN(s)kL1(I)},

CF (z1, z2) = max
|z||z1|+|z2|

|@zF (z)|+ (|z1|+ |z2|) max
|z||z1|+|z2|

|@2zF (z)|.

Assume

kũN(s)kL1(I)  C1, 8s 2 (0, t].

By (7.5.4), we have

kICN F̃k  kICN F̃k!�1,�1  kICN F̃ � F̃k!�1,�1 + kF̃k!�1,�1

 CN�1k@xF̃k+ kF̃k!�1,�1

 CN�1||
Z 1

0

F̃
00
(uN(s) + ✓ũN(s))(@xuN(s) + ✓@xũN(s))ũN(s) + F̃

0
(uN(s) + ✓ũN(s))@xũN(s)d✓||!�1,�1

+ ||
Z 1

0

F̃
0
(uN(s) + ✓ũN(s))ũN(s)d✓||!�1,�1

 CF (uM , C1)(N
�1||@xũN ||!�1,�1 + ||ũN ||!�1,�1)

 CCF (uM , C1)kũNk!�1,�1

so,

1

2

d

dt
kũNk2!�1,�1

+ 2|@xv(1)|2 + 2|@xv(�1)|2 + 4k@xvk2 + k@2xvk2!1,1

 C⇤kũNk2!�1,�1
+

1

2
k@xvk2 + 1

4
k@2xvk2!1,1

+ kg̃k2�1.

Therefore, integrating the inequality in time leads to

E(t)  ⇢(t) + C⇤
Z t

0

E(⌧)d⌧,
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where C⇤ is a positive constant dependent on CF (uM , C1), and let

E(t) = kũN(t)k2!�1,�1
+

Z t

0

2|@xv(1)|2 + 2|@xv(�1)|2 + 7

2
|@xvk2 + 3

4
k@2xvk2!1,1

ds,

⇢(t) = kũN(0)k2!�1,�1
+

Z t

0

kg̃k2�1ds.

We can get the following theorem. The process of the proof for this theorem is similar

to that of the proof in [54].

Theorem 7.2 If ⇢(T )  2C2
1e

�C⇤T/(N + 1)2, then

E(t)  ⇢(t)eC
⇤t.

Now, we consider the convergence of the scheme (7.3.6). Let u⇤ = P 3
NU , ⌘ = U � u⇤

and e = uN � u⇤. By (7.3.5), (7.3.6), (7.5.2), we have

(@te, v) + (@xI
C
NG̃, v)� (@3xe, @xv)

= (@t⌘, v) + (ICNg � g, v) + (@x(F (U)� ICNF (u⇤)), v)� (e, @2xv) + (⌘, @2xv) + (@3x⌘, @xv)

= (@t⌘, v) + (ICNg � g, v) + (@xI
C
N(F (U)� F (u⇤)), v) + (@x(F (U)� ICNF (U)), v)

� (e, @2xv) + (⌘, @2xv)

= I1 + I2 + I3 + I4 + I5 + I6,

where G̃ = F (u⇤ + e)� F (u⇤). Taking v = !�1,�1e, we can get

|I1| = |(@t⌘, v)|  k@t⌘k2�1 +
1

4
k@xvk2  CN�2rk@tUk2r�1 +

1

4
k@xvk2,

|I2| = |(ICNg � g, v)|  kICNg � gk�1k@xvk
 CN�2rkgk2r�1 +

1

4
k@xvk2.

Let

UM = max
0sT

{kU(s)kL1(I) + k@xU(s)kL1(I)}.
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|I3| = |(ICN(F (U)� F (u⇤)), @xv)|  kICN(F (U)� F (u⇤))k2 + 1

4
k@xvk2

 kICN(F (U)� F (u⇤))� (F (U)� F (u⇤))k2 + kF (U)� F (u⇤)k2 + 1

4
k@xvk2

 CCF (UM , kU � u⇤kL1(I))N�2rkUk2r +
1

4
k@xvk2,

|I4| = |(F (U)� ICNF (U), @xv)|  kF (U)� ICNF (U)k2 + 1

4
k@xvk2

 CN�2rkF (U)k2r +
1

4
k@xvk2,

|I5| = |(e, @2xv)|  kek2!�1,�1
+

1

4
k@2xvk2!1,1

,

|I6| = |(⌘, @2xv)|  k⌘k2!�1,�1
+

1

4
k@2xvk2!1,1

 CN�2rkUk2r +
1

4
k@2xvk2!1,1

,

For the initial error,we have from (7.5.3) and (7.5.4) that

ke(0)k!�1,�1  k(ICN � P 3
N)U0k!�1,�1  CN�rkU0kr.

Just as the proof of stability, we can get the following convergence theorem.

Theorem 7.3 Assume that r � 3 and U 2 H1(0, T ;Hr(I) \H2
0 (I)), F (z) 2 Cr(R)

and g 2 L2(0, T ;Hr�1(I)), then there exists a positive constant C⇤ such that when N

is large enough, we have

kU(t)� uN(t)k  kU(t)� uN(t)k!�1,�1  C⇤N�r, t 2 (0, T ]. (7.6.2)

7.7 Conclusion

In this work, we develop the Legendre Petrov-Galerkin method for linear fourth-

order equation and the Legendre Petrov-Galerkin and Chebyshev collocation method

in space combined with leapfrog/Crank-Nicolson method in time for the Kuramoto-

Sivashinsky equation. We present some numerical results which demonstrate the effi-
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ciency of proposed schemes, and coincide very well with theoretical analysis. Optimal

error estimates in L2-norm of the two methods for fourth-order differential equations

are also given.
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Résumé

Nous parlons essentiellement dans cette thèse la simulation numérique par la méth-

ode spectrale de l’écoulement stable dans un milieu poreux rigide qui est simulé

par les équations de Darcy avec des conditions aux limites générales. La méthode

s’avère optimale en ce sens que l’erreur obtenue n’est limitée que par la régularité

de la fonction. Un des paramètre dépend de la perméabilité du milieu et, lorsqu’il

n’est pas homogène, les variations de ce paramètre peuvent être extrêmement impor-

tantes. Pour traiter ce phénomène, nous proposons deux discrétisation différente par

éléments spectraux avec joints. Nous donnons des estimations a priori de l’erreur

et nous confirmons l’étude théorique par des résultats numériques. En outre, nous

développons une Lagendre-Petrov-Galerkin méthode pour l’équations différentielles

linéaires du 4ème ordre à une dimension, et un Legendre Petrov-Galerkin et Cheby-

shev collocation méthode pour l’équation non linéaire Kuramoto-Sivashinsky. Nous

effectuons l’analyse a priori de cette discrétisation et présentons quelques expériences

numériques qui confirment les résultats de l’analyse.

Mots-clés: milieu poreux, équations de Darcy, méthode spectrale, éléments spec-

traux avec joints, estimation d’erreur, équation de Kuramoto-Sivashinsky.
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Abstract

We mainly talk about in this thesis the numerical simulation of the steady flow

in a rigid porous medium which is simulated by Darcy’s equations with a general

boundary conditions, by spectral method. The method has been proven optimal in

the sense that the order of convergence is only limited by the regularity of the solution.

One of the parameters of the system depends on the permeability of the medium

and, when this one is not homogeneous, the variations of the parameter could be

very high. To handle this phenomenon, we propose two different discretization relies

on the mortar spectral method. Both the numerical analysis of the discretization

problems are performed and numerical experiments are presented, which turn out

to be in good coherency with the theoretical results. In addition, we develop a

Legendre Petrov-Galekin method for linear fourth-order differential equations in one

dimension and a Legendre Petrov-Galerkin and Chebyshev collocation method for

the nonlinear Kuramoto-Sivashinsky equation. The numerical experiments are given

which demonstrate the efficient of proposed schemes. Finally, we give the optimal

rate of convergence in L2-norm of the methods.

Keywords: porous medium, Darcys’s equations, spectral method, mortar spec-

tral element method, piecewise continuous coefficients, fourth-order equations, Kuramoto-

Sivashinsky equation, Legendre Petrov-Galekin method.
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