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FOREWORD

It was the best of envelopes, it was the worst of envelopes. It was the
age of adaptation, it was the age of extinction. It was the epoch of
evolution, it was the epoch of stasis. It was the season of Protein, it was
the season of DNA. It was the spring of secretion, it was the winter of
ingestion. We had everything protecting us, we had nothing protecting
us. We were all going directly to mesophillia, we were all going direct
the other way. In short, the period was so far like the present period,
that creatures great and small were evolving, and we had no idea what

was happening.*

The discovery and observation of single cell organisms were performed by Antoni van
Leeuwenhoek in the mid-17th century (Leewenhoeck, 1677). He observed the presence of
“small animals” in his spittle and the spittle of other subjects. He observed (Figure F.1) what
we now assume to be bacilli (Figure F.1.A), micrococci (Figure F.1.E), and Selenomonas
(Figure F.1.B). The Selenomonas are of great interest to this manuscript as they are
Negativicutes, a relatively unknown clade discussed in the introduction section 4.1, which has

been at the forefront of great bacterial discovery.

A e PIES) 5,

Figure F.1. First Observation of Bacteria by Antoni Van Leeuwenhoek.
Taken from (Leewenhoeck, 1677).

The next major step forward in the study of bacterial cell envelopes occurred in the

late 19" century when Hans Christian Gram discovered a mechanism for differentiating

*Modified from “A Tale of Two Cities “ by Charles Dickens



bacteria from the lungs of pneumonia victims (Gram, 1884). This simple four step method
provided easy visual differentiation of bacteria. Whereby, if the bacteria absorbed the stain
they were identified as Gram positive (Bacillus subtilis for example) and if they do not they

are Gram negative (i.e. Escherichia coli).

It took 50 years more until it was possible to properly determine why these two groups
of bacteria are different. In a hallmark paper by (Bladen and Mergenhagen, 1964) they
succeeded in capturing the first image of a double membraned bacteria. It was not E. coli as
you would expect, but another Negativicute, Veillonella parvula (Figure F.2). Since then
work has been done on describing the protein systems, membrane composition, and basic
physiology of both double and single membrane bacteria. However, no one has yet
definitively demonstrated the ancestry of one system or another. This dissertation will focus

on the ancestry of cell envelopes and provide evidence for one system’s ancient origins.

Figure F.2. First Observation of a Bacterial Outer Membrane.
Image of V. parvula showing the OM, peptidoglycan (SM or structural membrane), and cytoplasmic membrane
(PM or plasma membrane). Taken with permission from (Bladen and Mergenhagen, 1964).

Vi



INTRODUCTION



1 Diderm and Monoderm Cell Envelope
Architecture

The basic function of bacterial cell envelopes is to separate the intracellular cytoplasm
from the extracellular medium. In addition, prokaryotes utilize this structure to provide a
framework of the cell. Most components of these envelopes are necessary for providing this
structural barrier or circumventing it. The structure provided by peptidoglycan (PG) or the
transport mechanisms for solute entry are two such examples. Bacteria can be divided into
two groups depending on whether they possess one membrane, as in monoderm, or two, as in
diderm. The mechanisms of transport and structure are often different between diderm and
monoderm bacteria and as such, to understand the origin and division of these cell envelopes
we must first discuss the basic composition and systems of both monoderm, exemplified here
by B. subtilis, and diderm envelopes, exemplified here by E. coli (Figure 1.1).

Outer
Membrane

N 57,05 0 o Ky SIS, TSR BT T O Y A T Peptidoglycan

Periplasm '
| A
000000000 | 0000000 ; it fifne Lnonee
i } il Cytoplasmic i Hil i

Membrane

Cytoplasm

Figure 1.1. Diderm vs Monoderm Cell Envelope Architecture.

Both Diderm (Left) and monoderm (right) share a cytoplasmic space and cytoplasmic membrane, however, they
differ in that diderm bacteria possess an outer membrane with lipopolysaccharides within the outer leaflet. In
addition, diderm bacteria possess a thin layer of peptidoglycan while monoderms have a thick layer.



1.1 Diderm vs. Monoderm Broad Characteristics

Monoderm and diderm bacteria have far more similarities than differences; In general,
they have the same machinery for protein synthesis, DNA replication, lipid biosynthesis, and
basic metabolism. The key differences lie past the cytoplasmic membrane (Figure 1.1).
Monoderm bacteria are so named due to possessing only a single cytoplasmic (CM), while
diderm bacteria have an outer membrane (OM) not found in the other domains of life. The
CM of monoderm and diderm bacteria are homologous, however, they are frequently called
the inner membrane (IM). For the sake of this document the more accurate term of CM will
be used whenever possible, however, you may see the synonymous PM (Plasma Membrane)
or IM. The predominant similarity between diderm and monoderm cell envelopes is the CM.
Distal from this membrane both bacteria have PG (discussed in-depth in introduction section
1.2), however, it is different between the two envelope types. The most striking difference in
the PG is that in diderm bacteria the PG forms a thin exoskeleton (1-4 molecules thick)
located in the periplasm, the space between the CM and the OM, while monoderm bacteria
usually have thick PG which is 30-40 times the thickness of diderms PG (Vollmer et al.,
2008). There are many diderm exclusive systems and machinery (See next section), while

conserved monoderm exclusive systems are rare (Introduction Section 1.4).



1.2 Peptidoglycan

An essential cell envelope component, the PG, has been one of the defining
differences between monoderm and diderm bacteria, with diderm having a thin PG layer and
monoderm possessing a thick PG layer. This difference in width is a historical distinction
between diderm and monoderm bacteria, studied with the model organisms E. coli and B.
subtilis respectively. In E. coli the PG is thin, 2-7 nm, while in B. subtilis and other
monoderm bacteria it is thicker and ranges from 20-80 nm. PG is found in almost all bacteria
(Schleifer and Kandler, 1972) and is involved in several key functions such as cell shape,
osmotic pressure (Turner et al., 2014), size (Schoonmaker et al., 2014), division (Jacquier,
Viollier, & Greub, 2015), and antibiotic susceptibility and resistance (Jacquier et al., 2015).
Aside from these key functions, the PG sacculus has been implicated in most physiological
processes of the bacterial cell (Cava and de Pedro, 2014). In both diderm and monoderm
bacteria, PG consists of a mesh-like polymer constituted of repeating disaccharides alternating
between N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) (Figure 1.2). This
glycan chain is crosslinked through a 3-5-residue peptide chain attached to the NAM. The
basic structure is conserved throughout bacteria however, monoderm bacteria have great

variability in both the peptide chain and the type of cross-link (Schleifer and Kandler, 1972).
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Figure 1.2. The Structure of Peptidoglycan.
Peptidoglycan includes a sugar backbone (NAM & NAG), a peptide side-chain, and crosslinks between the side-
chains.



1.2.1  Biosynthesis

PG biosynthesis is accomplished through a conserved pathway found in nearly all
bacteria. This biosynthesis can be separated into three steps based on the localization of the
enzymes (Figure 1.3). To begin, a precursor is anabolized in the cytoplasm, and then it is
lipidated and flipped through the CM. After the PG monomer is flipped it is polymerized into

a chain and attached to the existing PG sacculus.
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Figure 1.3. Peptidoglycan Biosynthetic Pathway.

Peptidoglycan is synthesized in a series of cytoplasmic steps using MurA-F to build the basic precursor. After a
series of steps occur on the inner leaflet of the CM, it is then flipped via a translocase and added to the sacculus
with penicillin binding proteins that catalyze the transpeptidation and transglycosylation reactions. Taken with
permission from (Pinho et al., 2013)

The initial precursors are synthesized from Fructose-6-phosphate (F6P) to produce
UDP-GIc-NAG using the glucosamine pathway. UDP-Glc-NAG is utilized for the production
of chitin, glycoproteins, and PG. The first committed step in PG biosynthesis is the addition
of a PEP to UDP-GIlc-NAG by MurA. The molecule is then reduced by MurB to prepare the



molecule for amino acid addition and hydrolysis. Then the structurally homologous enzymes
MurC, MurD, MurE, and MurF sequentially add amino acids. The substrates for each of these
enzymes are a single amino acid, except for that of MurF, which adds a dipeptide produced by
the dimerization enzyme Ddl. Each of these four enzymes has a conventional amino acid that
is added however, the amino acids can be different between clades of bacteria or in an
individual strain to produce antibiotic resistance (Barreteau et al., 2008).

After MurF produces the PG subunit a series of lipidation reactions occurs at the CM.
MurG is responsible for lipidating the precursor producing lipid 1. MraY then adds a second
sugar, GIcNAC, to form lipid 11 (Bouhss et al., 2008). The final step before addition to the PG
is flipping Lipid Il to the outer leaflet. There is a debate on which enzyme is responsible for
this process. Two candidates have been put forward, MurJ and FtsW; strong evidence
supports each protein, however, these studies have conflicting results (Mohammadi et al.,
2011; Sham et al., 2014).

After transport through the CM, lipid Il is polymerized and cross-linked to the mature
PG. This process is performed by high molecular weight (HMW) penicillin-binding proteins
(PBP). Polymerization is performed by Class A HMW PBPs. Class A PBPs consists of two
domains: a membrane-linked transglycosylase domain and a transpeptidase domain. The
transglycosylase domain sequentially adds a Lipid Il to a chain producing Lipid IV, Lipid VI,
Lipid VI1II, etc. The transpeptidase domain creates crosslinks with the existing PG structure.
The chain is then further crosslinked by Class B HMW PBPs, which do not have a
transglycosylase domain, rather they have a dimerization domain that is not well
characterized. The chain length is variable in bacteria and the process of chain termination is

unknown (Sauvage et al., 2008a).

1.2.2  Genetic Organization

The genetic localization of most PG synthesis genes is located in a conserved region;
the Division and Cell Wall (DCW) cluster (Figure 1.4). This cluster contains three to four
functional sub regions. The first subregion contains mraZ, mraW, and ftsL. MraZ and MraW
are responsible for negative regulation of cell division including the DCW cluster (Eraso et
al., 2014). FtsL connects the division complex of the cytoplasm with the division complex of
the periplasm. Additionally, ftsL is upstream of the PG biosynthesis genes murA-G, ddl, ftsW,

and mraY. After the PG biosynthetic sub region a second division sub region is found,



containing ftsQ, ftsA, and ftsZ; all essential genes for division. This cluster is well conserved
in all PG producing bacteria with typical division (Eraso et al., 2014).
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Figure 1.4. The Division and Cell Wall Cluster
Genetic organizations of the DCW cluster in a Firmicute, B. subtilis, and a Proteobacteria, E. coli.

1.2.3  Remodeling

To grow, divide, and insert protein complexes in the periplasm the PG must be
remodelled. This is a complex process involving multiple classes of enzymes that create and
cleave the bonds of the PG named autolysins or PG hydrolases. These enzymes are difficult to
classify, as there is a high number present in most genomes and many have redundant or

multiple roles. Nonetheless a biochemical classification does exist based on the types of
bonds that are cleaved (Figure 1.5).
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Figure 1.5. Peptidoglycan Hydrolases and Cleavage Sites.
Peptidoglycan hydrolases are defined on where the type of bond they can cleave, each different bond is shown
with a different colour corresponding to the enzyme type that cleaves the bond.

Four different types of enzymes can cleave the sugar backbone of PG; lysozyme, lytic
transglycosylases (LT), N-acetylglucosaminidase (NAGidase) and the N-acetylmuramidase
(NAMidase). Lysozymes are a non-specific hydrolase that can cleave anywhere on the PG
background and is found in many species. It has been classified into Chicken-type, Goose-
type, phage-type, bacterial-type, and fungal-type. Each group represents a distinct
phylogenetic clade and all lysozymes share structural homology. Most bacteria lack lysozyme
as it is not used for controlled PG remodelling, those that do produce it use it in bacterial
warfare (Pei and Grishin, 2005). Lytic transglycosylases cleave PG at the same location, the
B-1, 4-glycosidic bond between NAM and NAG, yet produce an anhydromuramoyl product
rather than the hydrolyzed sugar. This has an effect of terminating the PG chain at this point
and preventing further additions. The final type is the NAGidase and NAMidase, which



cleave in a mechanism similar to that of lysozyme except they have much more specific
activities; NAGidases hydrolyze the glycosidic bond between an N-acetyl-p-D-glucosamine

residue and the adjacent monosaccharide.

N-Acetylmuramyl-L-Ala amidases (NAM-LAAs) are an essential enzyme in
remodelling, which split the bond between the peptide side chain and the backbone of PG.
These enzymes are used extensively by phages for lysis of the host cell and lack signal
peptides to cross the CM. The peptide side-chain of the PG undergoes extensive remodelling
during growth, division, and sporulation. This remodelling is accomplished through the use of
endopeptidases (EPase) and carboxypeptidases (CPase). EPases cleave in the centre of a
peptide chain or at the crosslink attaching two chains. CPases remove the terminal residue

from a string of amino acids.
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1.3 Diderm Characteristics and Systems

As diderm bacteria possess a relatively impermeable barrier to most molecules,
complex machinery must be present to transport molecules in both directions past the
membrane. Furthermore, proteomic machinery is necessary to assemble the membrane and its
machinery. The key components of the outer membrane relevant to this document will now be

discussed in detail.
1.3.1  Lipopolysaccharides

Lipopolysaccharides (LPS) or endotoxins are the major component of the OM in
diderm bacteria, comprising the entire lipid composition of the outer leaflet of the OM in most
diderm clades. LPS is incredibly important in human health; not only is it a toxin responsible
for endotoxin shock, it is also the ligand of Toll-like receptor 4 on immune cells (Sveen et al.,
1977; Matera et al., 2009). On the opposing side, the LPS of Cyanobacteria has been shown

to have a positive impact on human health (Durai et al., 2015).

1.3.1.1 LPS Structure

O-antigen
repeat 40 units

Core polysaccharide

Disaccharide
diphosphate

Lipid A
Fatty acids

Figure 1.6. The structure of LPS.
LPS contains a hydrophobic Lipid-A moiety consisting of fatty acids and a disaccharide diphosphate, then
extending externally is the core polysaccharide, and finally the polymeric O-antigen.
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Each individual LPS molecule consists of three functional regions: O-Antigen, Core
oligosaccharide, and Lipid A (Figure 1.6). LPS is described as smooth if it contains all three
components, rough if it only contains Lipid A as well as the core oligosaccharide and deep
rough if only Lipid A is present. Lipid A is the most fundamental component and is essential
in many diderm bacteria (Polissi and Sperandeo, 2014). It consists of a phosphorylated
glucosamine disaccharide which has multiple fatty acids covalently attached. The fatty acids
constitute the hydrophobic portion of the outer leaflet of the OM, while the phosphor-
disaccharide constitutes the hydrophobic portion. This provides a functional analogue to
phospholipids however, Lipid A is much larger. Although this moiety can exist without any
further modification, as is found in many cyanobacteria (Opiyo et al., 2010), normally

additional molecules are added.

The further the distance from the hydrophobic fatty acid portion, increased diversity
can be found. In most bacterial species Lipid A is covalently attached to a keto-
doxyoctulosonate (KDO) producing the core oligosaccharide, however, this KDO is usually
modified with additional saccharides and can be further modified with phosphate groups,
amino acids, sugars, polyamines, or acidic molecules (Needham and Trent, 2013). One of the
most diverse antigens found in nature is the final component of LPS, O-antigen. In fact, O-
antigen has been used to type bacterial strains since the 1940°s with over 196 different types
currently identified for E. coli alone (DebRoy et al., 2016). As an example, E.coli O157: H7
belongs to the 157 antigen group of LPS. This incredible diversity is produced through
duplication of small modifications. It can consist of many different monomeric subunits,
however, all O-antigens are polymers to some extent. The length of this polymer varies from

strain to strain.

12



1.3.1.2 KDO-LPS Biosynthesis
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Figure 1.7. The Biosynthetic Pathway of LPS.

The biosynthetic pathway of LPS starts with the attachment of fatty acids to a UDP-GIcNACc sugar, then a
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molecule is phosphorylated and the two molecules are connected. After this a KDO molecule is added, then the

core polysaccharides are added and finally, O-antigen is attached. Taken with permission from (Wang and

Quinn, 2010)
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Of special importance to the data presented in this thesis is the biosynthetic pathway of
LPS (Figure 1.7). First, a UDP-GIcNAc is lipidated by the three soluble enzymes LpxA, LpxC
and LpxD. This produces a lipidated sugar, which is phosphorylated by LpxH and then
dimerized by LpxB. This dimerization produces the Lipid A molecule. Some bacteria stop
here and transport the molecule in this state. Most bacteria, however, produce KDO-Lipid A,
which requires the integral CM proteins LpxK, L, M, and KdtA. LpxK first phosphorylates
the LPS moiety, after which KdtA attaches two KDO residues to the molecule, producing
KDO-Lipid A. Following this two fatty acids are attached by LpxL and LpxM producing the
base molecule (Wang and Quinn, 2010). Due to the diverse nature of O-antigen and core
oligosaccharide structure and corresponding biosynthesis, only the core biosynthetic steps of

Lipid-A biosynthesis will be analyzed and discussed in this thesis.
1.3.1.3 LPS Transport
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Figure 1.8. OM Transport of LPS.

The lipid-A molecule is first flipped to the outer leaflet of the CM and then transported along a chain of carrier
proteins (LptA) by the energy from a CM ATPase (LptBFGC) to the OM translocon (LptDE). Taken with
permission from (Simpson et al., 2015).

Distinct from O-antigen transport, which has a dedicated pathway, Lipid-A is
transported with the Lpt pathway (Figure 1.8). Before the Lpt pathway can act, the LPS
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monomer is flipped to the outer leaflet of the CM by MsbA. The pathway is energized by a
CM ATPase consisting of LptBFGC and the molecule is transferred to the periplasmic carrier
LptA. LptA then transfers the molecule to the OM receptor LptD, a 3-barrel, and LptE, the
cap protein of LptD. The molecule is then incorporated into the OM (Wang and Quinn,
2010).

1.3.2 Flagella
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Figure 1.9. Diderm and Monoderm Flagella.

The bacterial flagella of diderms (left) and monoderms (right). Notice the primary difference is the absence of
the P and L ring in the monoderm type.

The bacterial flagellum (Figure 1.9) is a whip-like appendage that extends from the
envelope of many bacteria for motility. This structure is found in both diderm and monoderm
bacteria. The structures are predominantly similar, however, there are a few key differences.
The components shared among diderm and monoderms form a complex structure that is
assembled with an entourage of 34+ proteins and as such will not be discussed in detail. For a
detailed review please see (Mukherjee and Kearns, 2014). What is important to discuss is the
differences between the monoderm type and the diderm type found in Bacteria. In general, the
diderm flagella and monoderm flagella are nearly identical and share components amongst
themselves with the exception of the diderm flagella having a few extra proteins. These
proteins are FIgA, FlgH, and Flgl. Flgl is the P-ring protein, which mechanistically functions
as a bushing that separates the spinning flagella from the skeletal PG layer. FIgA is a
chaperone for Flgl, aiding in its assembly and preventing proteolytic degradation by the

native residents of the periplasm. FIgH also has a bushing function, however, it resides in the
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OMY/LPS. Aside from the absence of these proteins in monoderm bacteria, genetic clustering
of the flagellar genes are more prevalent in the monoderm groups of Actinobacteria and

Firmicutes (Mukherjee and Kearns, 2014).

1.3.3  Secretion Systems of Diderm Bacteria
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Figure 1.10. Well Characterized Secretion Systems of Diderm Bacteria.
Hypothesized structure of all well-known systems that are used for translocation of proteins past the OM (A).
Names for all major components of each system (B). Figure obtained from KEGG (Kanehisa et al., 2017)

There are currently nine secretion systems for the dedicated transfer of substrates past
the outer membrane in diderm bacteria (Green and Mecsas, 2016), of which six have been
extensively studied (Figure 1.10). These systems are known as TXSS with the X referring to
the number of the system. Many of these systems have unique components that enable
transport of proteins past the OM that are not found in monoderm bacteria, however, few
studies have looked at these systems in monoderm bacteria. In the following sections, I will
discuss the systems of relevance to this thesis, namely Type 1, 2, and 5. For a recent review
and full description of the other systems please see (Abby et al., 2016), which also covers the

distribution of these systems among Bacteria.
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1.3.3.1 Type | Secretion System

OM (

IM

Figure 1.11. The Type | Secretion System.
The T1SS consist of a CM ABC transporter (Green), a periplasmic membrane fusion protein (Blue), and an outer
membrane channel (Red) forming a single mono-directional ATP driven channel.

Type | secretion system (Figure 1.11), or TolC transport, is a SEC independent
mechanism of transport. It bypasses the periplasm and secretes from the cytoplasm directly to
the extracellular space. T1SS utilizes ATP to drive expulsion of proteins with a size range of
10-250 kDa, toxins, and small substrates. It consists of a CM ABC transporter, a periplasmic

channel protein, and an OM channel. For a review please see (Buchanan, 2001).

1.3.3.2 Type IV Pili/ Type Il Secretion System
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Figure 1.12. Type Il Secretion System and Type 4 Pili of Diderms and Monodermes.
The T2SS/T4P consist of a CM platform for hydrolyzing ATP to transport substrate/extend pilins and an OM
pore found only in diderm bacteria.
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The type 2 secretion system (T2SS) (Figure 1.12) is one of the major pathways utilized
by diderm bacteria in the transport of folded enzymes and toxins from the periplasm to the
extracellular space. The T2SS complex is composed of 12-16 proteins, which extend to the
extracellular environment. The proteins exported by this pathway are fully folded before
leaving the cell. These substrates include toxins such as cholera toxin and hydrolytic enzymes
including lipases and proteases. For a recent review see (Zickert, 2014). This system is
homologous to the type 4 pili (T4P) that many bacteria use for adhesion, cohesion, twitching

motility, and competence in both diderm and monoderm bacteria.

The T2SS and T4P share many of the same protein systems, which are used for
function. The main components are the pilin subunits, PilA, which are cleaved using a pre-
pilin peptidase, PilD. The pilin subunits are bundled on a CM platform, PilC, and extend past
the OM through a pore protein or secretin, PilQ, not found in most monoderm bacteria. The
pilus has the unique feature of extension and retraction by the ATPase’s PilB and PilT
respectively. T2SS lack the retraction ATPase and their pili never penetrate the secretin; they

function in the periplasmic space.

1.3.3.3  Secretin

To keep equilibrium within a cell, transport must be precisely controlled. Most
channels in bacterial outer-membranes are small trimeric B barrels inserted via the BAM
complex (Selkrig et al., 2014) (Introduction Section 1.3.4). There are limitations to the size of
substrates which can be exported through these small complexes and as such Bacteria have
developed a larger pore, the secretin, which allows for the passage of large substrates (Collin
etal., 2011).

The secretin is found in most diderm bacteria and used to facilitate trafficking of large
proteins. This pore is common to several systems including the T2SS (Nivaskumar and
Francetic, 2014), the injectisome T3SS (Sha et al., 2004), T4P (Pelicic, 2008), the DNA
uptake systems (Knapp et al., 2017), and the filamentous bacteriophage extrusion system
(Russel, 1994). In T3SS the pore facilitates the passage of the needle complex through the
outer membrane to allow transfer of effector molecules to a target cell. The T4P are
homologous to the T2SS and share a similar structure. The difference is that the pilus in the

T4P extends through the outer membrane to interact with surfaces.
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1.3.34 Type V secretion

Type V secretion systems (TVSS), or autotransporters, were previously thought to be
an autonomous system for targeting proteins to the OM. For a review please see (Grijpstra et
al., 2013). These proteins consist of a [3-barrel and a passenger domain. The R-barrel
incorporates into the OM, while the passenger domain can be cleaved and released to the
extracellular media or remain tethered to the bacterium. Passenger domains have been found
with many activities, including adhesion and enzymatic activity (van Ulsen et al., 2014).
These systems are assembled by the B-barrel assembly complexes discussed in the next

section.

1.3.4  [3-Barrel Assembly

Of all the systems found in the OM of diderm bacteria, one of the most important and
fundamental is the integration of proteins within the OM. Unlike CM proteins, OM proteins
cannot use the SEC pathway for OM insertion as the periplasmic space lacks the necessary
ATP. Within diderm bacteria, the integral proteins of the OM have a [3-barrel fold that spans
the OM (Knowles et al., 2009). In contrast to this, all integral proteins of the CM, as well as
the CM of Archeae and Eukaryotes have an a-helix structure and are inserted via SEC
(Zuckert, 2014). The structure of these B-barrels usually consists of antiparallel strands from
8-26, and most functional porins, those with a central pore, have 16-18 strands. These proteins
are assembled by five known, homologous systems (Figure 1.13): the R-barrel assembly
apparatus (BAM), translocation and assembly module (TAM), the two-partner secretion
system (TPS), the toc75 system of plastids, and the sorting and assembly machinery (SAM) of
mitochondria. These systems are referred to as Omp85 proteins as the key assembly protein
from each belongs to the Omp85 protein family (BamA, TamA, TpsB, Toc75-111-1V, and
Sam50) (Voulhoux et al., 2003). The SAM and Toc75 systems are highly divergent from
Bacteria and as such will not be discussed here, however, a recent review can be found here
(Lee et al., 2014).
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Figure 1.13. Mechanisms of 3-Barrel Assembly.
Showing bacterial systems TPS (A), BAM (B), TAM (C); mitochondrial system SAM (D & E); and plastid
system (F). Taken with permission from (Jacob-Dubuisson et al., 2013).
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Figure 1.14. BAM System of E.coli.

Proteins destined to be inserted by the BAM system are first translocated past the CM by the SEC translocase,
then carried by SurA or Skp to the OM, and finally inserted and folded by the Omp85 protein BamA and the
accessory proteins BamB, C, D, E. Taken with permission from (Leyton et al., 2012).
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The first system to be discovered, and the best described, is the BAM system (Figure
1.14) has been predominantly studied in E. coli. For a recent review please see (Noinaj et al.,
2017). To be assembled the OM proteins must first be translocated past the CM via the SEC
pathway. These proteins are then transported through the periplasm to the OM, which is
completed via two different chaperones: SurA and Skp. SurA has been shown to be the
primary chaperone responsible for transferring the majority of the proteins to the OM while
Skp forms a rescue function to aid SurA (Volokhina et al., 2011). Should both these proteins
fail, or the final protein becomes misfolded, DegP will degrade the protein and recycle the
amino acids. The two chaperones transport the unfolded protein to the five component BAM
complex, consisting of BamA-E. The Omp85 protein BamA, an OM protein, is an essential
part of the complex and performs the necessary integration of the protein to be folded
(Albrecht et al., 2014). In addition to the Omp85 domain, BamA contains POTRA domains
which function as another co-factor necessary for stable integration of proteins into the OM
(Simmerman et al., 2014). The other proteins of the complex, BamB,C, E, are all non-
essential lipoproteins which aid BamA in its function (Noinaj et al., 2011; Warner et al.,
2011; Jeeves et al., 2015) except BamD which has been found to be an essential lipoprotein
(Rossiter et al., 2011). The most important of these proteins, BamB, interacts closely with
BamA while the remainder forms a complex which interacts with BamB.

1342 TAM

e

)

-

TamB

Figure 1.15. TAM System of E.coli.
The TAM complex assembles proteins in the OM with only two proteins: the CM tethered chaperone TamB and
the OM Omp85 TamA. Modified with permission from (Heinz et al., 2015).

Within E. coli a second system of OM [-barrel was discovered, TAM (Figure 1.15)
(Selkrig et al., 2012). This system contains only two proteins; TamA, an Omp85 protein
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found in the OM, and the chaperone TamB. TamB is integrated into the CM and spans the
periplasmic space to interact with TamA (Igbal et al.,, 2016). No other co-factors nor
mechanism have been identified, however, work on the TAM system is still in its infancy.
This two protein complex has been shown to be responsible for insertion of many proteins,
not least of which are the autotransporters. It was recently found that many autotransporters
are in fact assembled using the TAM complex (Selkrig et al., 2012), although others are
assembled via BAM (Grijpstra et al., 2013; van Ulsen et al., 2014).

1341 TPS

The TPS system is a component of the TVSS. They are composed of an OM TpsB
Omp85 transporter and a TpsA cargo protein. Both components are first transported past the
CM via the SEC pathway and then the TpsA cargo is transported through the OM exclusively
via the Omp85 transporter. Although little is known about the mechanism of this system some
details have been determined. A recent review can be found here (Jacob-Dubuisson et al.,
2013).

1.3.4.2  Atypical systems and Evolution

The distinct nature of BAM and TAM for assembling R-barrel proteins was challenged
through a close look at Borrelia 3-barrel assembly. In Borrelia burgdorferi BamA, B, D, Skp
and TamB were found to work in concert to produce functional proteins in the OM (lgbal et
al., 2016). This hybrid system is curious and begs the question “which components of the [3-
barrel assembly system are ancestral?” Since then two papers have focused on the evolution
of the BAM (Webb et al., 2012) and the TAM (Heinz et al., 2015). The Webb paper focuses
on the evolution by means of presence/absence of BamB, C, D, E and POTRA domains
within BamA. They found that only the y-Proteobacteria possess a complete system and most
cofactors are limited in distribution to the Proteobacteria. Notable exceptions were the B.
burgdorferi proteins previously mentioned and BamD in the Bacteroidetes. The paper
focusing on TAM evolution used more diverse and complete methods (Heinz et al., 2015).
They discovered that the true two component TAM system was exclusively confined to the
Proteobacteria and that the ancestor of all 3-barrel assembly is a two-component system with
BamA and TamB that later duplicated and acquired co-factors.
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1.3.5 Lipoproteins
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Figure 1.16. Lipoprotein Modification and Transport to the OM.

Bacterial lipoproteins are first transported via sec past the CM. They are then modified by Lgt, Lsp, and Lnt,
after which they are transferred to the shuttle protein LolA with the energy obtained from the ATPase complex
LolC, D, E. Finally. the lipoprotein is transferred from LolA to LolB and then integrated into the OM. Taken
with permission from (Goolab et al., 2015)

Post-translational lipid modification of proteins is a fundamental component of
bacterial physiology. Lipid modification allows proteins to be tethered to a membrane and
associated locally. For a recent review, please see (Buddelmeijer, 2015). This process is used
by many proteins, with 1-3% being lipid modified (Nakayama et al., 2012). Proteins are
targeted to be lipoproteins through a specific signal sequence known as a lipobox. First, the
proteins have a diacylglycerol group added by the Lgt enzyme. Then Lsp cleaves off the
signal sequence. Finally, they are acylated by Lnt. Lgt and Lsp are universally distributed
among Bacteria, however, Lnt has only been found in Proteobacteria and Actinomycetes. This
process allows lipoproteins to be incorporated into the CM, however, transfer to the OM

requires additional equipment (Figure 1.16).

After the lipidation by Lgt, Lsp, and Lnt, the Lol system is necessary for diderm
bacteria to traffic lipidated proteins for attachment to the OM. The system itself contains

three main components: an OM receptor (LolB), a periplasmic carrier protein (LolA), and an
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ABC transporter complex (LolCDE). The proteins are synthesized in the cytoplasm and
lipidated on the CM. Following the lipidation, they are transported via the sec pathway to the
outer leaflet of the CM. These proteins will stay on this leaflet unless they possess the proper
signal sequence within the first few amino acids. The lipoproteins bind the LoICDE complex
which transfers the lipoprotein to LolA through ATP hydrolysis. Following this LolA passes
the lipoprotein to LolB, which finally releases the protein to the inner leaflet of the OM
(Zuckert, 2014). Most components of this pathway are well conserved throughout diderm

bacteria, however, LolB is restricted to the Proteobacteria (Sutcliffe et al., 2012).

1.3.6  TonB dependent transport
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Figure 1.17. TonB Dependent Transport.

In uptake of molecules by the TonB system, first, a carrier is secreted that binds to the desired ligand. This
ligand/carrier complex is then transported through a TonB receptor that acquires its energy through the
ExbBD/TonB ATPase complex. It is transferred to a binding protein and shuttled into the cytoplasm via an ABC
transporter.

The OM prevents the entry of toxins and other problematic molecules, however, it also
prevents the entry of necessary molecules such as sugar or iron. As such, diderm bacteria
have other systems for dedicated active transport of key molecules; one of the most important
systems is the TonB transport system (Krewulak and VVogel, 2011) (Figure 1.17). Bacteria can
have multiple different copies of this system within their genome, with each being specific to
a different molecule, with most work focused on iron. This system grabs iron by first

secreting a siderophore (other molecules use other chelators). The siderophore-Fe complex
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then binds to the TonB receptor in the OM. As this is active transport the system needs to be
energized for the siderophore-Fe molecule to pass through the OM. This is accomplished
through TonB, ExbB, and ExbD, which can hydrolyze ATP and pass it to the OM receptors.
After passing through the membrane the siderophore-Fe complex binds to a periplasmic
binding protein and passes the CM via an ABC transporter. Although ABC transporters are
found in both diderm and monoderm bacteria it is worth noting that periplasmic binding
proteins of monoderm bacteria are usually lipidated or contain PG binding domains, while in

diderm bacteria they are normally completely soluble.

1.3.7 Outer Membrane Attachment
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Figure 1.18. Lpp.
Structure of the major OM tether of E. coli, Lpp ((PDB ID: 1EQ7) (Left) and sequence characteristics (Right)

Diderm bacteria have a unique requirement not found in organisms with a single
membrane; they must tether their OM to the PG. This tethering method was discovered in E.
coli by Braun and colleagues in the late 1960’s (Braun and Rehn, 1969). This protein, Lpp or
Braun’s Lipoprotein (Figure 1.18), is the most abundant protein at roughly 1 million copies
per cell and it tethers the OM via a lipid moiety which integrates into the lipid bilayer (Guo et
al., 2014). The small, 58 amino acids, molecule forms a trimer in vivo with one of the three
molecules covalently bound to the diaminopimelate residue in the peptide cross bridge of PG
(Shu et al., 2000). Experimental evidence has been found for homologs in Pseudomonas
aeruginosa, E. coli, Salmonella enterocolitica, and other y-Proteobacteria (Ching and Inouye,
1985).
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1.4 Monoderm Characteristics

There are no defining markers that are found in all monoderm bacteria and absent
from diderm bacteria, however, there are a few that are present in most monoderms and
absent from almost all diderms. | will present the best-known systems here both the PG

attachment mechanism of teichoic acids and the sortases (Silhavy et al., 2010).

1.4.1  Teichoic Acids and Lipoteichoic acids
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Figure 1.19. Wall Teichoic Acid Biosynthesis.

The teichoic acids are synthesized in the cytoplasm through lipidation of a saccharide by TarO. The saccharide is
then dimerized by TarA. After which additional saccharides and ribitol are added by TarB, F, L. The molecule is
then flipped past the CM by the TarGH translocase. Taken with permission from (Campbell et al., 2012)

The PG sacculus of monoderm bacteria is a thick mesh of proteins and
polysaccharides in addition to the actual molecule of PG. Within this mesh are teichoic acids;
a diverse family of glycopolymers containing phosphodiester-linked polyol repeat units. Two
main families exist, the membrane anchored lipoteichoic acids (LTA) and the wall teichoic
acids (WTA), which are covalently attached to the peptidoglycan. WTA’s, reviewed in
(Brown et al., 2013), are among the most abundant PG-linked polymers in most monoderm

bacteria and are important for maintaining cell shape. Furthermore, they are required for
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antibiotic resistance in many strains. WTA’s have an incredible diversity in structure and the
only commonality among all of them is the linkage unit that is attached to the PG, a

trisaccharide and the biosynthesis mechanism (Figure 1.19).

LTA’s, broadly speaking, are polymeric chains of poly-hydroxy alkane anchored to
the envelope through a lipid. Five types of LTA’s have been classified based on the type of
polymer, although the most common type is a polymer of 1,2-polyglycerol phosphate. All
other types are deviations on this common theme and have a synthesis pathway that is
completely distinct from that of WTAs (Schneewind and Missiakas, 2014).

1.4.2 Sortases

Sortases are a group of enzymes mostly exclusive to monoderm bacteria that are
responsible for the covalent attachment of proteins to the PG exoskeleton in order to be
displayed on the surface of the bacterium (Spirig et al., 2011). Sortases are found in most
monoderm bacteria, a few diderm bacteria, and some Archeae. Proteins displayed include
virulence factors and enzymes similar to those displayed by SLH proteins or autotransporters.
The archetypal sortase recognizes any protein with a carboxyl terminal sorting signal of
LPXTG. The protein is cleaved between the threonine and the glycine, and then it is
covalently attached to the PG via transpeptidation (Dramsi et al., 2008; Spirig et al., 2011,
Schneewind and Missiakas, 2012).
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2 Current Theories on the Evolutionary History of
the Bacterial Cell Envelope

Over the years several theories have been suggested as to how the bacterial envelope
originated. These theories are divided into two classes: diderm first, where the last common
ancestor (LCA) of Bacteria was a diderm, and monoderm first, where the LCA of Bacteria

was a monoderm.
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2.1 The Blobel Hypothesis

¥
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Figure 1.20. The Blobel Hypothesis.

In the time of primordial cells (A), cellular systems were attached to the outside of a hydrophobic sphere. These
systems developed complexity and the lipid thinned (B). As organization progressed the lipid invaginated and
formed a cell like structure (C). Eventually, the invagination closed on itself and produced the last common
ancestor of Bacteria (D). Monoderm clades then immediately lost the OM (E). Taken with permission from
(Blobel, 1980)

The earliest hypothesis on the origin of bacterial cell envelopes comes from Nobel
Laureate Gunter Blobel in his 1980 paper regarding the origin of the signal sequence and how
proteins originally crossed the membrane (Blobel, 1980). He proposed that cellular systems
originated on the exterior surface of the last universal common ancestor (LUCA) (Figure
1.20). These systems were attached to a vesicle by hydrophobic interactions. As the proteins
gained the capability to integrate into the membrane the vesicle began to invaginate and fold
in on itself. After this folding, the first cellular organism was left with a double membrane.
This theory not only suggests a diderm first origin of Bacteria but of all cellular life. This
paper was based on logic and thought and has no concern for diversity or to phylogeny itself.

Nonetheless, it is still an interesting hypothesis worthy of consideration.
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2.2 Cavalier-Smith Hypothesis
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Figure 1.21. The Cavalier-Smith Hypothesis.
The first cells were diderm bacteria (Negibacteria in the Figure with the description in bottom box), these then
diverged into modern diderm bacteria (the right branch) and monoderms (Left branch, Posibacteria in Figure).
The diderms had many branching lineages with the most recently diverging being the Proteobacteria. Before the
left branch lost the OM the Cyanobacteria diverged and the monoderms diversified and evolved into Eukaryotes
and Archea. Taken with permission from (Cavalier-Smith, 2002)

In a massive 83 page manuscript by Cavalier-Smith (Cavalier-Smith, 2002), a diderm
first view that extends from the Blobel hypothesis is presented. This work places the origin of
cellular life in the diderm bacteria based on transition analysis. He suggests that the diderm
bacteria lost the OM in a single event to form all monoderm bacteria. From this single loss, it
is suggested that all monoderm Bacteria, Eukaryotes, and Archea evolved from a sole diderm

ancestor (Figure 1.21).

This grand hypothesis is presented as a step by step evolution. It is claimed that one of

the earliest inventions in life was the flagella after the Cyanobacteria and Chloroflexi had
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emerged. It is then claimed that all other diderm bacteria must group with the Cyanobacteria
and Chlorflexi, due to the presence of Omp85. Unfortunately, these careful logical steps have
since been disproven; mostly due to the determination that the Chloroflexi are monoderms
(Sutcliffe, 2011). This breaks the theory of a single origin of monoderm life, however many

aspects of the theory may still be true.
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2.3 The Gupta Hypothesis

One of the earliest presentations for the theories of monoderm first evolution comes
from Dr Gupta. The most relevant topic to this discussion is that of Firmicutes, where it is
stated that antibiotic selection led to the development of the OM in monoderm bacteria
(Gupta, 2011). This theory (Figure 1..22) states that monoderm bacteria developed into
diderms in at least three instances, one for the Thermotoga, one for the atypical diderms, and
a third for the traditional diderms such as Proteobacteria (Figure 1.22). This hypothesis is

based on the presence of insertions within the conserved heat shock proteins 60 and 70.

Corynebacterineae
Outer mycolic acid layer

Thermotogae Atypical Diderms
Alternate diderm Negativi Fusob
Outer toga mainly Synergistetes and
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) M PG |
ntibiotic »
Monoderms
Actinobacteria,
Firmicutes

Insert in the
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Chlorofiexi
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'
'
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Deinococcus-Thermus
Simple Diderms
Outer cell envelope
lacking LPS

— Insert in the
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Evolution of genes for
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Archetypical or Traditional
Gram-negative (Diderm) bacteria

Proteobacteria, Bacteroidetes-Chlorobi, Chlamydiae,
Fibrobacter, Aquifex, Acidobacteria, Cyanobacteria,
Spirochetes, Dictyoglomi, Deferribacteres, Nitrospira,
Planctomycetes, Verrucomicrobia, Chrysogenetes,
Gemmatomondete, Lentisphaerae, etc.

Figure 1.22. The Gupta Hypothesis.

The first Bacteria were monoderm. The cells then diverged into at least 4 different types of envelopes that had
different OMs with additional intermediate steps representing other lineages. Obtained from (Gupta, 2011) with
permission.
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Gupta goes on to hypothesize on the selection pressure for this transition from

monoderm to diderm, giving the following four arguments:

1) Monoderm bacteria are the dominant producer of antibiotics

2) Antibiotic production gives an advantage over non-producing bacteria
3) Resistance to antibiotics can develop by a variety of mechanisms

4) Monoderm bacteria have a higher sensitivity to antibiotics than diderms

Although the original evidence does not hold up to modern phylogenetic methods, this

logic of selection pressure is still valid and may have happened in some bacterial clades.
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2.4 The Lake Hypothesis

Double membrane o
Clostridia

Actinobacteria ﬁr Archaea

Bacilli

Figure 1.23. The Lake Hypothesis.
The first Bacteria were monoderm. Through a bacterial fusion of two monoderm groups, the Actinobacteria and
Clostridia, a diderm bacteria was formed. Taken with permission from (Lake, 2009)

Lake proposed an alternative and controversial theory for the origin of the bacterial
OM (Lake, 2009) (Figure 1.23). This theory proposed that the OM is the result of
endosymbiosis of one bacterial clade into another, in this case, Actinobacteria and Firmicutes.
This hypothesis was constructed by searching for protein families that were transferred from
one ancestral group and passed to another. By using roughly 500 protein families it was
determined that an actinobacterium was endosymbiosed by a clostridium. This endosymbiosis

produced a double membraned bacterium, which diverged into all modern diderm lineages.

Unfortunately, this article is plagued with artefacts and has been extensively criticized
and reanalysed (Swithers et al., 2011). The major fault in Lake’s analysis is the assumption
that all diderm clades are monophyletic. This assumption has no basis in the literature or
definitive proof. The taxa selection was quite small, with only 37 taxa to cover the diversity of
all Bacteria and Archaea. Finally, the selection was biased as only small portion of available
PFAM domains was used and the selection criteria were not clear. Due to the complete
debunking of this theory and lack of any support, it will not be considered in any regard for

the remainder of the thesis.
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2.5 Errington or L-form Hypothesis

(a)

primitive cells

(b)

the first bacteria %@
(c)
the bacterial radiation k O

Figure 1.24. The Errington Hypothesis.

The first cells were a primitive sack of cellular systems that replicated by budding off a small portion of the
cellular mass (A). Then PG was invented allowing the first true Bacteria, a monoderm (B). This form diverged
into all Bacteria we know today (C). Taken with permission from (Errington et al., 2016)

One of the most intriguing works of recent years is the L-form bacteria or bacteria
without PG. L-form bacteria are rarely formed in nature with only a single clade, the
Tenericutes, lacking any form of peptidoglycan. The Tenericutes are well known as they
include the Mycoplasma (Whitman, 2011). The Errington laboratory has had great success
transforming B. subtilis into an L-form by deletion of the DCW cluster (Leaver et al., 2009).
L-form bacteria reproduce by budding and have a much simpler cellular structure than another
organism. Errington recently proposed that all life started out as an L-form life form
(Errington et al., 2016) without any major cellular structure (Figure 1.24). This simple life
form would not require any proteinaceous machinery for division or replication and may be
the simplest possible division mechanism. He does not go into depth, but this recent
hypothesis suggests a monoderm first origin of Bacteria as no true diderm L-form bacteria

have been produced (Joseleau-Petit et al., 2007).

35



3 Distribution of Bacterial Envelope Architectures
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3.1 Phylum Level Cell Envelope Architecture

As stated before, the bacterial cell envelope is stereotypically defined into diderm and
monoderm with E.coli representing the former and B. subtilis representing the latter.
Although this is the textbook example of cell envelope architecture it does not account for the
massive bacterial diversity available and any hope of understanding the evolution of
envelopes requires breaking the stereotype. At the beginning of my thesis, the best
representative of bacterial diversity was a review by Dr Sutcliffe (Sutcliffe, 2010) (Table 1.1).
This table summarizes the entire article, where he compiled all available literature for known
diderms with a particular focus on isolated LPS or envelope structure. He then queried
available genomes for LpxC and KdsA to determine if each phylum had the potential for
producing LPS. The data suggests a wider distribution of LPS producing genes than
previously thought from some of the most diverse clades. Both the Cyanobacteria and the
Proteobacteria have described LPS, however, the evolutionary origin of these genes has not
been fully described. It has been suggested that the precise inheritance of LPS biosynthesis
genes is vertical (Opiyo et al., 2010). Aside from this, some clades with atypical envelopes do
exist. The Thermotoga have a slightly different OM components; they lack LPS yet still
produce B-barrels in their OM (Petrus et al., 2012). Another interesting clade is the PVC,
which appears to lack a PG sacculus, yet still encode the genes necessary for biosynthesis
(Jacquier et al., 2015). Apart from these unique cases, the OM of the diderm phyla are

remarkably similar and may have a common origin.

Aside from the diderm groups, there are three clear monoderm phyla; Actinobacteria,
Firmicutes, and Chloroflexi (Table 1.1); with the remainder being diderm or unknown. One of
the classically regarded monoderm groups is the Actinobacteria, which surprisingly contains
diderm members. These diderm members are the Corynebacteriales, which have a unique type
of OM not found elsewhere in life. This OM is comprised of Arabinogalactan covalently
attached to the PG with a hydrophobic layer of mycolic acids on the exterior (Bansal-Mutalik
and Nikaido, 2014). This envelope lacks LPS and B-barrels and is believed to be a recent
development within the clade, a de nova membrane (Jamet et al., 2015). Unfortunately, this
does not tell us if the ancestor of Bacteria was a diderm or monoderm as the Actinobacteria
may have lost their OM and developed a new one later. In contrast, little is known of the

Chloroflexi envelope structure. It was previously thought to be a diderm phylum, however
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high-quality EM has determined it to be a monoderm (Sutcliffe,

phylum, the Firmicutes, is discussed in depth in the next section.

2011). The final monoderm

Phylum Representative genera Characterised LPS LPS biosynthetic Refs
genes detected °
Acidobacteria Acidobacterium , No reported isolation Present in 3/3 genomes [27]
Solibacter
Aquificae Aquifex Present Present in 5/5 genomes [51,66]
Bacteroidetes Bacteroides , Present Present in 7/7 genomes [67,68]
Porphyromonas
Chlamydiae Chlamydia Present Present in 5/5 genomes [69]
Chlorobi Chlorobium Present Present in 10/10 genomes [70]
Chloroflexi Chloroflexis , Absent Absent from 11/11 genomes [57-59]
Herpetisphon ,
Dehalococcoides ,
Thermomicrobium
Chrysiogenetes Chrysiogenes No reported isolation No genome available
Cyanobacteria Prochlorococcus Present but KDO absent in some taxa Present in 8/8 genomes; some [71]
Synecococcus variation in distribution of
KdsA homologues
Deferribacteres Deferribacter , No reported isolation Present in 1/1 genome
Flexistipes , Denitrovibrio
Deinococcales -Thermus Deinococcus , Thermus Absent Absent© [42,45,46)
Dictyoglomi Dictyoglomus No reported isolation; LpxC present in 2/2 genomes; [72,73]
complex intercellular no clear orthologues of KdsA
cell envelope structures evident
Elusimicrobia “Elusimicrobium No reported isolation Present in 1/1 genome [74]
minutum”
Fibrobacteres Fibrobacter Absent No clear orthologues present [62]
Fusobacteria Fusobacterium Present Presentin 10/10 genome [75]
Gemmatimonadetes Gemmatimonas No reported isolation Present in 1/1 genome
Ktedonobacteria Ktedonobacter ¢ No reported isolation No genome available
Lentisphaerae Lentisphaera , Victivallis No reported isolation Present in 1/1 Lentisphaera [27]
genome;
LpxC apparently absent in
Victivallis vadensis
Nitrospira Nitrospira , Present Presentin 1/1 genome [76]
Thermodesulfovibrio
Leptospirillum
Planctomycetes Planctomyces Present Presentin 11/11 genomes [27,77,78]
Verrucomicrobia Verrucomicrobium
Gemmata , Pirullela
Spirochaetes Leptospira , Treponema Present in some genera only Present in 4/4 genomes [34,35,79]
for Brachyspira
and Leptospira ; Absent from
12/12 genomes for
Borellia and Treponema
Synergistetes Anaerobaculum , No reported isolation Present in 3/3 genomes [80]
Dethiosulfovibrio ,
Thermanaerovibrio
Thermodesulfobacteria Thermodesulfobacterium No fully characterized No genome available [65]
representative ©
Thermotogae Thermotoga Absent LpxC absent from [51]
10/10 genomes;
distant homologues of
KdsA detected
in 3/10 genomes

“Only phyla with cultivated representatives, excluding the

Actinobacteria , Firmicutes and Proteobacteria , were included.

PHomologues were identified by unfiltered BLASTP searches of a representative selection of microbial genomes available at http://www.ncbi.nlm.nih.gov/sutils/genom_ta-
ble.cgi?organism=microb . The E. coli K-12 LpxB, LpxC and KdsA sequences were used as queries and searches were performed with low stringency (cut-off, E=0.01).

“LpxC homologues were identified in 2/2 Meiothermus genomes.

9Originally described as *  Ktedobacter ‘. Status as a phylum unclear; might be a class within
“See text.

Chloroflexi  [21,23] .

Table 1.1. The Diversity of Bacterial Cell Envelopes across Bacterial Phyla.
Table showing the major bacterial phyla and whether they have LPS characterized. Taken with permission from
(Sutcliffe, 2010)
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In an ideal world, we would resolve the phylogeny of all Bacteria and compare this
phylogeny to that of OM proteins and determine if the OM was gained, transferred, or lost.
Unfortunately, the Bacterial phylogeny is not yet fully resolved (Wu et al., 2009) and OM
genes do not usually give the necessary resolution as well (Opiyo et al., 2010). Fortunately,

we have an ideal phylum that contains both monoderm and diderm members; The Firmicutes.
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4  Firmicutes: The perfect model clade

As there is no confidence on the envelope structure of the LCA of Bacteria, we need a
model clade which can be studied to provide evidence for the question at large. Allow me to
introduce the Firmicutes, one of the best studied Bacterial phyla.

Firmicutes were originally described to encompass all Bacteria which had a Gram
Positive cell structure, this phylum was later split into two groups with the Actinobacteria
being high GC% Gram-positive and the Firmicutes as low GC% Gram Positives (Whitman,
2011). These names, like Gram-positive itself, have become antiquated as there are many
exceptions in both groups when it comes to naming. The Firmicutes are one of the oldest and
best studied of all the Bacterial phyla with an entire Volume of Bergey’s Manual of
Systematic Bacteriology dedicated to their discussion (Whitman, 2011). They also encompass
a broad range of metabolisms, morphologies, and habitats. As such, very few characteristics
are exclusive to this group, with the exception of sporulation; classical sporulation,
exemplified by B. subtilis and C. difficile is a characteristic of many Firmicutes not found in

other bacterial phyla (Tocheva et al., 2016).

Even their defining characteristic of monoderm envelopes has been broken, for we
have the unexpected. The Firmicutes include two clades that possess an OM: the

Negativicutes and the Halanaerobiales.
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4.1 Negativicutes

Although the Negativicutes were first observed in the 17" century, the first modern
description of a member, V. parvula, came in 1898 by Veillon and Zuber in their landmark
paper on anaerobic bacteria (Veillon and Zuber, 1898). The key defining feature of this clade
is that they are diderm. It was never thought that these bacteria were Firmicutes as, by
definition, they were diderms. It was not known that they were Firmicutes until 16S rRNA
sequencing was available. Before this, many species were placed within the Proteobacteria or
the Bacteroides over the years based on their biochemical and physical characteristics
(Whitman, 2011).

Negativicutes have been proposed to form a Class within Clostridia (Marchandin et
al., 2010). The Negativicutes have been divided into four families (Figure 1.25) (Campbell et
al., 2015) and currently contains 28 described genera (Euzeby, 1997). Most Negativicutes are
anaerobic and live in moderate temperature environments. Some sporulate, and some are

present in the human body.
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Sporomusaceae
Thermosinus carboxydivorans Nor1 Hot Springs + 4
Acetonema longum DSM 6540 Termite Gut =t 7
Sporomusa ovata DSM 2662 Beet Silage + 37
_‘:-Pelosinus fermentans DSM 17108 U Contaminated Water + 9
Anaeromusa acidaminophila DSM 3853 Anaerobic Pufication Plant - 1
Acidaminococcacae
Succinispira mobilis DSM 6222 Anaerobic Solids Digester 1
Acidaminococcus fermentans DSM 20731 Pig Gut - 73
Acidaminococcus intestini RyC-MR95 Human Clinical Samples + 4
Phascolarctobacterium succinatutens YIT 12067 Human Feces 1
Phascolarctobacterium sp. CAG:266 Human Feces MetaGenome 0
Phascolarctobacterium sp. CAG:207 Human Feces MetaGenome 0
Veillonellaceae
Veillonella ratti ACS-216-V-Col6b Human Semen - 5
Veillonella sp. oral taxon 780 str. F0422 Human Oral Cavity - 0
L Veillonella atypica KON Human Saliva + 47
Veillonella dispar ATCC 17748 Human Mouth + 77
Veillonella parvula DSM 2008 Peritoneal Abscess + 298
Dialister micraerophilus DSM 19965 Human Amniotic Fluid + 4
| E Dialister succinatiphilus YIT 11850 Human Feces - 2
Dialister invisus DSM 15470 Infected Human Root Canal + 31
Anaeroglobus geminatus F0357 Human Oral Cavity + 6
Megasphaera micronuciformis F0359 Human Oral Cavity - 4
Megasphaera elsdenii DSM 20460 Sheep Rumen 254
Megasﬁhaera sp. UPII 135-E Human Urogenital tract 1
Megasphaera genomosp type/1 str. 28L Human Vagina 1
Selenomonadaceae
Zymophilus raffinosivorans DSM 20765 Pitching Yeast - 5
Megamonas funiformis YIT 11815 Human Feces - 3
Megamonas rupellensis DSM 19944 Duck Caecum - 2
Selenomonas sputigena ATCC 35185 Human Subgingival Sulcus + 52
Mitsuokella sp. oral taxon 131 str. W9106 Human Oral Cavity + 2
Mitsuokella multacida DSM 20544 Human Feces - 5
Selenomonas ruminantium subsp. lactilytica TAM6421 Cattle Rumen + 536
Selenomonas bovis DSM 23594 Yak Rumen - 69
Selenomonas artemidis F0399 Human Oral Cavity + L)
Selenomonas flueggei ATCC 43531 Human Oral Cavity - 3
Selenomonas noxia ATCC 43541 Human Oral Cavit + 35
Centipeda periodontii DSM 2778 Human Peridontal Lesion + 1
Selenomonas infelix ATCC 43532 Human Subgingival Region - 7
Selenomonas sp. oral taxon 138 str. F0429 Human Dental Plaque + 1

Figure 1.25. Negativicute Genomes Available as of October 2014.
Four major families have been assigned (unique colours) and the strain details and number of PubMed articles

are listed. Phylogeny was taken from (Antunes et al., 2016)



4.1.1 Sporomusaceae

The deep emerging branch of the Negativicutes, the Sporomusaceae, has many unique
characteristics not found elsewhere in life. The Sporomusaceae are the only Negativicutes that
are known to sporulate, with a well-studied pathway in A. longum (Introduction Section
4.4.2). While the remainder of the Negativicutes are usually mammal or bird associated, the
Sporomusaceae inhabit a wide variety of environmental habitats. For instance, the
Thermosinus inhabit hot springs (Sokolova et al., 2004), the Pelosinus live in heavy metal
contaminated ground water (De Ledn et al., 2015), and Acetonema’s niche is the hind-gut of
Termites (Kane and Breznak, 1991). With a wide range of habitats, it is no surprise that the
known Sporomusaceae have a diverse array of metabolism, morphology, and physiology
(Whitman, 2011). Due to the environmental niche of these bacteria, there is the greatest
potential for discovery of new species and genomes. This is due to the fact that they are not
part of the human microbiome project or any of the other mammal sequencing efforts, unlike
the other Negativicute Families (Turnbaugh et al., 2007; Aujoulat et al., 2014).

4.1.2 Selenomonadaceae

The Selenomonadaceae have a much narrower habitat than that of the Sporomusaceae,
being that they predominantly inhabit cattle rumen and the human mouth, although
Megamonoas rupellensis has been isolated from the caecum of a duck (Whitman, 2011). The
group has predominantly been studied as a normal component of cattle rumen (especially
Selenomonas ruminantium), for how it affects milk, digestion, and methane production (Yang
et al., 2016). Aside from being a cattle commensal, it can be a human pathogen responsible
for bacteraemia (Pomeroy et al., 1987) and periodontitis (Tanner et al., 1989). An interesting
feature of many Selenomonadacae is the presence of a lateral helical flagellum, allowing a
“corkscrew” motility (Males et al., 1984; Zhang and Dong, 2009).

4.1.3 Acidaminococcacae

The Acidaminococcae is one of the least diverse families of the Negativicutes, with
only 4 currently described genera and the dominant research focusing on Acidaminococcus.
Along with a restricted diversity, they also are limited in niche as they are only found in
human and porcine digestive tracts. Within these niches, they represent a strong portion of the

environment with Acidaminococcus intestinalis comprising around 1% of the porcine faecal
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bacterial population (Callaway et al., 2010). Furthermore, they have been implicated as an
antibiotic resistance reservoir (Galéan et al., 2000) and can cause human infection in rare cases
(Marchandin et al., 2010).

414  Veillonellaceae

The representative family of the Negativicutes is very similar to the
Acidaminococcacae, as they are found predominantly in the digestive tracts of humans
(Whitman, 2011) and have been implicated in disease states on rare occurrences (Bhatti and
Frank, 2000). Vellonellaceae includes six known genera: The type genus of the group is
Veillonella, with 14 different species being isolated and described from humans and rodents
(Euzeby, 1997). The type species, Veillonella parvula, is found in the gut and oral cavity of
humans and plays a predominant role as a secondary colonizer of the teeth and mouth
(Griffen et al., 2012) by forming a mutualistic biofilm with Streptococcus mutans and other
species (Periasamy and Kolenbrander, 2010). Interestingly Veillonella may play a role in
childhood immune development as epidemiological studies have demonstrated a negative
correlation with Veillonella and asthma (Arrieta et al., 2015), bronchiolitis (Hasegawa et al.,
2016), and autism (Strati et al., 2017).

43



4.2 Halanaerobiales

The second clade of diderm Firmicutes is the Halanaerobiales, a more recently
discovered group of Bacteria (Mavromatis et al., 2009) (Figure 1.26). All members of the
group are strict anaerobes and moderate halophiles. Most members of the order were isolated
from saline lake sediments with some species being isolated from alkaline and acidic
environments (Whitman, 2011). As most halophiles are in fact not Bacteria but Archaea, these
bacteria have been studied for their adaptation to these environments. Very little is known
about the cell structure in this group, however, they do appear to have a diderm cell structure

similar to the Negativicutes.

. = .
Halanaerobiales & o

Halobacteroidaceae _
Acetohalobium arabaticum DSM 5501 Salt Sediment + - 4
—E()n‘niﬂ marismortui DSM 5156 Salt Saturated Mud + - 2
Halobacteroides halobius DSM 5150 Salt Sediment 4+ - 3
Halanaerobiaceae -

Halothermothrix orenii H 168 Hyin‘rs.allnv Sediment ) i 25

Halanaerobium hydrogeniformans Haloalkaline Anaerobic Sediments 6

Halanaerobium praevalens DSM 2228 Haloalkaline Anaerobic Sediments 3

Halanaerobium saccharolyticum subsp. saccharolyticum DSM 6643 Cyanobacterial Mat 5

Figure 1.26. Halanaerobiale Genomes Available as of October 2014.
Two families have been assigned (unique colours) and the strain details and number of PubMed articles are
listed. Phylogeny was taken from (Antunes et al., 2016)

What little work that has been done on this clade is incredibly interesting and has great
potential, however, the studied information is very specific to a single topic that in turn are
from many areas. One of the more interesting features is that Acetohalobium arabaticum
encodes a twenty first-amino acid pyrrolysine, which is produced in the presence of
trimethylamine (Prat et al., 2012). Another interesting feature is that Orenia species have the
capabilities to reduce various metals (Dong et al., 2016). Halanaerobiales have also been
found to cause corrosion in fracking operations by souring the gas (Liang et al., 2016). Aside
from these interesting cases, most research has focused on Halothermothrix and utilizing their
unique enzymes for their temperature and salt resistant capabilities. For a review please see
(Bhattacharya and Pletschke, 2014) or (Roush et al., 2014).
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4.3 Envelope Characteristics of Diderm Firmicutes

Most of the diderm Firmicutes test negative for the Gram stain and positive for the
similar KOH test (Whitman, 2011). This test is not as reliable as once thought, though as
many of the monoderm Firmicutes test the same as the diderm Firmicutes (Whitman, 2011).
The classic Bladen (Bladen and Mergenhagen, 1964) study previously described was the first
thin section microscopy of the diderm Firmicutes, however, it was not the last. Both the
Halanaerobiales and the Negativicutes have had thin section microscopy (Figure 1.27). More
recently an in depth study of the sporulation on the termite gut bacterium Acetonema longum
utilized cryo-tomography to produce the highest resolution pictures of a Negativicute
(Tocheva et al., 2011).

Figure 1.27. Thin Section Microscopy of Diderm Firmicutes
Outer membrane envelope structure of the Acetonema longum (left) (Tocheva et al., 2011) and Halanaeroubium
sehlinese (right) (Abdeljabbar et al., 2013)

One of the features of the diderm envelope that has been well studied is the
mechanism of OM attachment. This method is completely different from that of E. coli. E.
coli utilizes Braun’s lipoprotein (Lpp) for attachment of the OM. In Selenomonas it was
discovered that the peptidoglycan was modified with polyamines, such as putrescine, for
attachment of the OM (Kojima et al., 2010). Later on, a protein, Mep45 or OmpM, was
determined to bind the PG and integrate into the OM (Kojima et al., 2016). This topic is
covered in depth in Results section 2.2.
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The LPS of various Negativicutes has been characterized throughout the years, usually
with a focus on the immunogenicity of the molecule. The LPS of V. parvula was recently
found to activate the Toll-like receptor pathways and stimulated tumour necrosis factor alpha
and interleukin-6 (Matera et al., 2009). The LPS of some species has been characterized, with
the best characterized belonging to the beer spoilage bacteria Pectinatus (Helander et al.,
2004). The LPS of Pectinatus species were found to have unique features including extensive
heterogeneity within strains, a non-repeating polysaccharide that replaces the O-antigen, and
an atypical lipid-A (Figure 1.28). Other Negativicutes have had their LPS isolated including A.
longum (Tocheva et al., 2011) however no structure was determined. Halanaerobiale LPS has
only recently had its LPS characterized. It was found that the deep sea Halobacteroides
lacunaris possessed rough type LPS that inhibited the toxicity of E. coli LPS (Lorenzo et al.,
2017).
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Figure 1.28. Negativicute LPS structure
Structure of the lipid A component of S-form LPS of P. cerevisiiphilus and P. frisingensis (Helander et al.,
2004)

The most exciting and important aspect of this research is the close ties that the
Negativicutes have to sporulation. This not only confirms their position as Firmicutes, it also

has close ties to OM biogenesis.
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4.4 Sporulation

Spore formation is a defining and conserved process among the Firmicutes for

protection and stasis during unfavourable environmental conditions (Figure 1.28).

Solventogenesis and toxin formation
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Figure 1.29. Sporulation Cycle of Firmicutes

Sporulation starts when a vegetative cell (Stage 0) experiences unfavourable conditions sporulation genes are
triggered (Stage 1). The cell undergoes asymmetric division (Stage I1) and a prespore is formed within the
mother cell (Stage I11). The prespore is coated and cellular contents are degraded (Stage 1V, V). The prespore
develops and then emerges from the mother cell (Stage VI, VII). Taken with permission from (Al-Hinai et al.,
2015)

4.4.1  Overview of Sporulation

Within all sporulating Firmicutes sporulation can be observed to go through seven
stages (stage I-VII) (Figure 1.29). Stage O is the growth of vegetative cells done by all
bacteria before the beginning of sporulation. Sporulation is initiated by the induction of the
master regulator SpoOA through a single cascade. In stages | and II, the cell undergoes
asymmetric cell division and forms two compartments, the smaller prespore compartment and
the larger mother cell compartment. At the end of stage Il, the forespore becomes similar to
an intracellular diderm bacterium. This diderm bacteria is formed by two different enzymes
which divide the PG and drag the membrane along to produce a double membraned
bacterium. These enzymes are SpolID and SpollIP. They thin the septal PG starting from the
centre and move towards the edges until a diderm daughter cell is formed (Gutierrez et al.,
2010; Takeshita et al., 2014)
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After this, stage IV has the PG layer thickened around the forespore. The spore coat, a
complex protein structure formed on the forespore, is formed in stage V. In stage VI the spore
becomes resistant to heat and UV radiation. The final stage of spore formation, Stage VII is
release of the spore from the mother cell and exposure to the environment (Hilbert and Piggot,
2004).

442 Sporulation in Diderm Firmicutes

Recently the sporulation of a Negativicute, Acetonema longum, was investigated
(Tocheva et al., 2011). It was found that the process of OM biogenesis in some Negativicutes
is closely tied to sporulation. During sporulation, the bacteria follow the same process as
monoderm Firmicutes (Figure 1.30), yet retains the membrane outside of the PG cortex. This
membrane starts as a CM and ends as the new OM. During the course of their excellent
microscopy work it was found that the cortex contains thick PG, however, this PG is thinned

to the width of traditional diderm bacteria during germination.

modern Bacillus—outer membrane atrophy

. outer spore Y
INNET SPOT€  membrane
membrane

: spore coat
>
modern Veillonellaceae—outer membrane retained
vegetative cell  asymmetric cell ¢ prespore S spore maturation spore release germination and
division engulfment outgrowth

Figure 1.30. Comparison of Sporulation of Diderm and Monoderm Firmicutes
Sporulation in monoderm Firmicute B. subtilis and a diderm Firmicute Acetonema longum. Taken with
permission from (Errington et al., 2016)
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4.5 Evolutionary Relationships of Diderm Firmicutes

The great ant biologist E.O. Wilson once said that for every scientific question there
exists an organism or group of organisms that are perfect for answering the question and for
each organism a perfect question exists (Wilson, 2013). In our case, we have not only one
group of atypically placed diderms, but two! Should we be able to resolve the phylogeny of
the Firmicutes and the Firmicute OM, we will be able to determine if an OM is transferred or
is an ancestral characteristic that is lost in monoderm clades. As this is an exciting question, |

will present the past work on it.

45.1  Another Evolutionary Hypothesis: Sporulation in Diderm

Firmicutes

The authors of the excellent sporulation paper of A. longum published an opinion
paper (Tocheva et al., 2016) shortly after to present their hypothesis on the evolutionary
origin of the OM in Bacteria (Figure 1.31). In their original paper (Tocheva et al., 2011) they
presented a tree of the Omp85 family of proteins. This tree was unresolved, however, it did
not suggest horizontal transfer from any major Bacterial phylum. The authors propose that an
ancestral organism was a sporulating monoderm. This organism developed the capability to
keep the OM during sporulating similar to A. longum. This sporulating diderm is the LCA of
all Bacteria. Then the LCA diversified with loss of the OM and sporulation in Actinobacteria
and Chloroflexi, loss of the OM in monoderm Firmicutes, retention of both in some diderm
Firmicutes and loss of sporulation in all the remaining bacteria. This origin story is plausible;
it suggests that all Bacteria were once capable of sporulating yet no evidence exists for

Firmicute-like sporulation outside of the Firmicutes phylum.
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Figure 1.31. The Tocheva Hypothesis

First, a monoderm ancestor developed sporulation. Then an OM was acquired through sporulation. This
sporulating diderm is the LCA of Bacteria and developed into all modern lineages through loss of the OM,
sporulation, or both. Taken with permission from (Tocheva et al., 2011)

45.2 Transfer of Outer Membrane

In opposition to Tocheva et al. work demonstrating that the OM was not transferred
from another clade, Campbell et al present the opposite hypothesis (Campbell et al., 2014). In
this work, they query each protein from the entire proteome of A. intestini via BLAST and
record the top hits. Interestingly, they find that 7% of the proteome has a top hit within the
Proteobacteria and the predominant portion of these genes relate to the function of the OM,
suggesting that the OM can be transferred. This single genome data is interesting, but cannot
be considered conclusive without further evidence. No comparable analysis has been done

with the Halanaerobiales to see if a similar result is possible.
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Another possibility is that the OM was transferred from Negativicutes to the
Halanaerobiales or vice versa. This idea was presented based on a tree of LPS biosynthetic
genes. In (Mavromatis et al., 2009) they found that the Negativicutes and the Halanaerobiales
grouped together and claimed this was due to a transfer. This data was not strongly supported
due to the tree being constructed with neighbour joining methods and the inclusion of only
one Negativicute and one Halanaerobe.

45.3  Key Questions on Firmicutes

Although the Firmicutes present the perfect opportunity for the study of the
acquisition/loss of an OM, very little is known about the diderm Firmicute envelope. As |
have stated, some work has been done on the Negativicutes cell envelope and structure,
however very little is known about the Halanerobiales. Furthermore, it is not precisely
known as to where these groups fall within the Firmicutes and what their relationship is with

each other. | have endeavoured to answer these questions among others.
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OBJECTIVES AND
APPROACHES

The three goals of my Doctoral work are:

1. Elucidate the evolutionary history Firmicute envelopes

2. Describe the outer membranes of diderm Firmicutes

3. Find a mechanism of transition between diderm and monoderm Firmicutes.

1. Elucidate the evolutionary history of Firmicute envelopes

The evolutionary history of the Firmicute cell envelope will be studied through
phylogeny. First, a robust phylogeny of the Firmicutes will be constructed that contains a
diverse representation of both diderm and monoderm Firmicutes. This phylogeny will be
constructed using a concatenation of ribosomal proteins and RNA polymerase. Then a
phylogeny of the outer membrane will be constructed for the diderm Firmicutes. In this case,
the biosynthetic genes of LPS will be concatenated. These trees will be compared for transfers

both horizontal and vertical.

2. Describe the outer membrane of diderm Firmicutes

To achieve greater insight into the unique cell envelope architecture of diderm
Firmicutes more needs to be done to see what the envelope possess and how this relates to
known systems such as E. coli. Comparative genomics and thorough queries for gene families
will enable us to see if they have the OM systems that have been well characterized before. In
a biochemical fashion, the OM of V. parvula will be extracted and the proteins identified to

verify the bioinformatics approach and identify new targets for study.

3. Find a mechanism of transition between diderm and monoderm Firmicutes.

We have hypothesized that the loss or gain of an OM gene could be due to a change in
regulation of the PG. Therefore, | shall perform comparative genomics on all enzymes active
in PG remodelling and synthesis to see if there is an enzyme that is present in all monoderm
bacteria and absent from diderm or vice versa. Should this be successful I will attempt to

express/delete the gene in V. parvula in hopes of replicating this transition.
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1 Elucidate the evolutionary history of Firmicutes
envelopes.

The first goal of my thesis was to understand the evolutionary history of the cell
envelope. This is what | initially started my doctorate work with and it is how | have ended it.
As such here are two articles that will tell the story of cell envelope history in the Firmicutes.
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1.1 Phylogeny of Negativicutes, Halanaerobiales

The first work of my doctorate was started by a postdoctoral scientist, Dr Antunes and
we worked on much of this article together and discovered the history of the Negativicutes,
Halanaerobiales, and monoderm Firmicutes together. Dr Antunes had begun this work by
constructing a local databank of 212 Firmicutes representing all major clades and groups. She
proceeded to construct a ribosomal phylogeny that proved better than any available in the

literature.

Together we proceeded on the annotation of the genes. She initially proceeded with an
automatic HMM-based approach to search for all major diderm genes. | was able to enhance
these automated results through the use of syntany and conserved domains to provide an
annotation of diderm genes within the Firmicutes that has never been done to this level of
completeness in this many genomes. In addition, this description enabled us to declare the

absence of diderm genes within the monoderm lineages.

We then looked at individual systems to use for construction of an OM phylogeny. We
ideally wanted a system that contained both monoderm and diderm genes in synteny. |
constructed the syntany for the Flagella and T2SS (See Appendix 1), however, she could not
construct a robust phylogeny with these genes. She attempted to construct the phylogeny with
BAM genes, yet they proved to be very uninformative on the sequence level. After these
trials, we moved onto the diderm cluster which we annotated and used the LPS genes to
construct a phylogeny. Our first phylogeny of LPS concatenated IpxABCDK, waaA, and
msbA, however, we noticed that we could improve resolution with just the IpxABCD genes.

The LPS genes were queried by Dr Brochier and I constructed the final tree.

This data was complemented with the beautiful microscopy of Dr Klingl. Luisa had
grown a Negativicute and one Halanaerobiale and they were imaged using the same
technique. This clearly shows that both of these groups have a similar envelope architecture
and firmly establishes them as diderm.

The writing process was highly involved and took several iterations. Many of the
analysis that were performed did not make it into the final version. Upon submission and
receiving the reviewers’ comments | performed hypothesis testing and congruency tests to

discount any possibility that the Negativicutes and the Halanaerobiales form a monophyletic
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group, or that the proteins should not be used in the concatenation. This work was done in
partnership with Dr.Criscuolo.

The takeaway messages of this paper is that the diderm envelope is an ancestral
characteristic of the Firmicutes and the OM was lost multiple times independently. This work
was published in eLIFE and was the focus of a companion article (Mufioz-Gémez and Roger,
2016), was featured on the ASM podcast TWM, and multiple blogs.
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Abstract One of the major unanswered questions in evolutionary biology is when and how the
transition between diderm (two membranes) and monoderm (one membrane) cell envelopes
occurred in Bacteria. The Negativicutes and the Halanaerobiales belong to the classically
monoderm Firmicutes, but possess outer membranes with lipopolysaccharide (LPS-OM). Here, we
show that they form two phylogenetically distinct lineages, each close to different monoderm
relatives. In contrast, their core LPS biosynthesis enzymes were inherited vertically, as in the
majority of bacterial phyla. Finally, annotation of key OM systems in the Halanaerobiales and the
Negativicutes shows a puzzling combination of monoderm and diderm features. Together, these
results support the hypothesis that the LPS-OMs of Negativicutes and Halanaerobiales are
remnants of an ancient diderm cell envelope that was present in the ancestor of the Firmicutes, and
that the monoderm phenotype in this phylum is a derived character that arose multiple times
independently through OM loss.

DOI: 10.7554/eLife.14589.001

Introduction
The bacterial envelope is one of the oldest and most essential cellular components, involved in key
housekeeping functions such as physical integrity, cell division, motility, substrate uptake and secre-
tion, and cell-cell communication (Silhavy et al., 2010). Yet, bacteria show substantial differences in
their cell envelope architectures, among which the most dramatic one is the presence of one (mono-
derm) or two (diderm) membranes (Sutcliffe, 2010). The study of cell envelope architecture has
been mostly narrowed to the Firmicutes and the Gammaproteobacteria as textbook examples of
monoderm and diderm bacteria, respectively. In Bacillus subitilis, teichoic and lipoteichoic acids are
embedded in a thick peptidoglycan wall, while in Escherichia coli a thin peptidoglycan layer is sur-
rounded by an outer membrane (OM) whose biogenesis and functioning involve a complex system
of synthesis and transport for LPS, lipoproteins, and OM proteins (OMPs) (Silhavy et al., 2010).

The transition between monoderm and diderm cell envelopes must have been a significant and
complex process in the evolutionary history of Bacteria. Two major hypotheses have been largely
discussed in the literature, which can be generally defined as diderm-first (Cavalier-Smith, 2006)
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elLife digest The cell envelope is one of the evolutionarily oldest parts of a bacterium. This
structure — made up of a cell wall and either one or two cell membranes — surrounds the bacterial
cell, maintaining the cell’s structure and providing an interface through which bacteria can sense
their environment and communicate.

Bacteria can be broadly classed based on the number of cell membranes that their envelope
consists of. Bacteria that have a single cell membrane are known as “monoderm”, whereas those
with two membranes are termed “diderm”. The number of membranes that bacteria have can affect
how well they resist antibacterial compounds. When, how and why bacteria switched between
monoderm and diderm cell envelopes are some of the major unanswered questions in evolutionary
biology.

The textbook example of a monoderm cell envelope can be found in bacteria called Firmicutes.
This group includes some notoriously harmful bacteria such as Staphylococcus, which can cause
conditions ranging from abscesses to pneumonia. However, some Firmicutes possess two cell
membranes. It was unclear how these unusual diderm Firmicutes developed a second membrane,
and how they are related to their monoderm relatives.

Antunes, Poppleton et al. set out to answer these questions by analyzing the information
contained in the thousands of bacterial genomes that have already been described. The results
indicate that Firmicutes originally had diderm envelopes, and that species with monoderm
envelopes arose independently several times through the loss of their outermost membrane.

Future work is needed to investigate the driving forces and the precise mechanism that led most
Firmicutes to lose their outer membrane. Also, further characterization of diderm Firmicutes will
provide key information about the biology of these poorly understood bacteria.

DOI: 10.7554/eLife.14589.002

and monoderm-first (Gupta, 2011, Lake, 2009) scenarios. The fact that the majority of phyla seem
to possess two membranes might favor the diderm-first scenario, although the actual diversity of cell
envelopes in Bacteria remains largely unexplored (Sutcliffe, 2010). However, the lack of a robustly
resolved phylogeny for Bacteria, notably the uncertainty on its root and the nature of the earliest
branches, has left the relationships between diderm and monoderm phyla unclear, and not allowed
to define in which direction and how many times this transition occurred.

In this respect, the Negativicutes (Marchandin et al., 2010) represent an interesting case: while
belonging phylogenetically to the classical monoderm Firmicutes, they surprisingly display a diderm
cell envelope with an OM and LPS (Delwiche et al., 1985; Vos et al., 2009). The Negativicutes have
been identified in various anaerobic environments, such as soil and lake sediments, industrial waste,
and animal digestive tract (Vos et al., 2009). Their best-characterized member is Veillonella, first
described in 1898 by Veillon and Zuber (Veillon and Zuber, 1898). Curiously, the very first observa-
tion and use of the term ‘outer membrane’ has been based on studies of Veillonella (Bladen and
Mergenhagen, 1964). Veillonella is one of the most abundant components of the human oral flora
(Tanner et al., 2011), and a common inhabitant of the intestinal microbiome (van den Bogert et al.,
2013). Together with other gut microbes, it has been recently associated with maturation of the
immune system and partial protection of asthma in infants (Arrieta et al., 2015), but can also
develop into an opportunistic pathogen (Hirai et al., 2016). Several other Negativicutes members
such as Dialister, Selenomonas, Mitsuokella, and Anaeroglobus show increased incidence in oral
tract disease linked to biofilm formation (Griffen et al., 2012) and involvement in other infections
(Wang et al., 2015). Very little experimental data is available on the nature of the diderm cell enve-
lope of Negativicutes. In Selenomonas ruminantium the abundant OmpM protein appears to replace
the important function of Braun'’s lipoprotein in anchoring the OM to the cell peptidoglycan through
a link with cadaverine (Kojima et al., 2010).

How the OM originated in the Negativicutes represents an evolutionary conundrum. Recently,
Tocheva and colleagues analyzed the sporulation process in the Negativicute Acetonema longum by
cryoelectron microscopy (Tocheva et al., 2011). They showed that, while an outer membrane forms
only transiently during sporulation in classically monoderm Firmicutes such as Bacillus subtilis, it is

Antunes et al. eLife 2016;5:e14589. DOI: 10.7554/eLife.14589 2 of 21
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retained in A. longum leading to its diderm phenotype (Tocheva et al., 2011). This study provided
the first experimental support for the hypothesis that the bacterial OM could have initially evolved in
an ancient sporulating monoderm bacterium (Dawes et al., 1980; Errington, 2013; Vollmer, 2012).
Moreover, a phylogenetic tree of the essential Omp85 protein family for proteins insertion in the
outer membrane, although largely unresolved, did not show the Negativicutes as emerging from any
specific diderm phylum (Tocheva et al., 2011). The authors speculated that the OM of Negativicutes
was not acquired by horizontal gene transfer but was already present in the ancestor of Firmicutes
and would have been lost in the other members of this phylum, although it remained unclear when
and how many times this would have occurred (Tocheva et al., 2011). In contrast, a recent analysis
of the genome of the Negativicute Acidaminococcus intestini revealed that as much as 7% of the
BLAST top hits were from Proteobacteria, the majority of which corresponded to functions related
to OM biogenesis, concluding to a possible acquisition of the OM in Negativicutes by horizontal
gene transfer (Campbell et al., 2014).

Interestingly, the Negativicutes are not the only diderm lineage in the Firmicutes. The Halanaero-
biales are a poorly studied group of moderate halophilic, strictly anaerobic Firmicutes that were iso-
lated from saline environments such as lake and lagoon sediments, and oil reservoirs (Oren, 2006;
Roush et al., 2014). Similarly to the Negativicutes, they display a diderm-type cell envelope, with a
thin peptidoglycan and an outer membrane (Cayol et al., 1994, Zeikus et al., 1983; Zhilina et al.,
1992, Zhilina et al., 2012). When analyzing the first sequenced genome of a member of Halanaero-
biales, Halothermothrix orenii, Mavromatis and colleagues identified a number of OM markers, sug-
gesting the presence of an LPS-diderm cell envelope homologous to the one of Negativicutes and
other diderm bacteria (Mavromatis et al., 2009). In contrast to the few analyses on Negativicutes,
no experimental data are available on the characteristics of the OM in the Halanaerobiales.

The existence of two diderm lineages in the Firmicutes provides a fantastic opportunity to clarify
the monoderm/diderm transition in this major bacterial phylum. However, the origins and evolution-
ary relationships between the OM of Halanaerobiales and Negativicutes have been unclear. In fact,
no Halanaerobiales were present in the analysis of Tocheva (Tocheva et al., 2011). Mavromatis et al.
built a tree from the combined analysis of the genes coding for LPS, which showed a clustering of
Halanaerobiales and Negativicutes, leading the authors to propose a horizontal gene transfer of the
OM between these two lineages (Mavromatis et al., 2009). However, the sequenced genome of
only one member of Halanaerobiales and one of Negativicutes were available at the time, and the
LPS tree was largely unresolved (Mavromatis et al., 2009). Moreover, current phylogenies of the Fir-
micutes have been unclear with respect to the relationships between Negativicutes and Halanaero-
biales. The Negativicutes have been alternatively indicated as branching within Clostridia (Yutin and
Galperin, 2013; Mavromatis et al., 2009, Vesth et al., 2013) or at the base of Bacilli (Kuni-
sawa, 2015). The phylogenetic placement of Halanaerobiales remains also uncertain, as they have
been assigned either to Class Clostridia (Cayol et al., 1994), as a deep branch in the Firmicutes
(Mavromatis et al., 2009; Vos et al., 2009; Kunisawa, 2015), or left unresolved (Yutin and Gal-
perin, 2013). Finally, no detailed genomic analysis has been carried out to infer and compare the
characteristics of the cell envelopes of several Halanaerobiales and Negativicutes.

The large number of Negativicutes and Halanaerobiales genomes currently available prompted
us to carry out a global phylogenomic study. This allowed to robustly clarifying the relative place-
ment of Negativicutes and Halanaerobiales within the Firmicutes, to assess the evolutionary relation-
ships of their cell envelopes, and to perform in depth comparative analysis to understand the
characteristics of key OM-related processes in these two lineages. Our results provide robust sup-
port for an emergence of monoderm Firmicutes from diderm ancestors via multiple independent
losses of the OM.

Results

Electron microscopy of the diderm cell envelopes of Halanaerobiales
and Negativicutes

Although the presence of an OM has been previously shown by electron microscopy for members of
Negativicutes (e.g. Tocheva et al., 2011) and Halanaerobiales (e.g. Zhilina et al., 2012), these
images have been obtained separately and with different techniques, making difficult their
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comparison. We therefore obtained electron microscopy images of one representative of Negativi-
cutes (Megamonas rupellensis) and one of Halanaerobiales (Halanaerobium saccharolyticum). We
used transmission electron microscopy (TEM) following high-pressure freezing, freeze substitution,
plastic embedding and ultrathin sectioning of the samples (see Materials and Methods). The applica-
tion of high-pressure freezing in combination with appropriate freeze-substitution protocols facili-
tates the ultrastructural analysis of microorganisms and their membranes and also results in densely
and homogeneously packed cytoplasm (McDonald, 2007, McDonald et al., 2007a; Rachel et al.,
2010).

Ultrathin sections of high-pressure frozen cells of M. rupellensis and H. saccharolyticum confirmed
the presence of clearly diderm-type cell envelope architecture in both strains (Figure 1). In a cross
section from inside to outside, the densely packed cytoplasm of M. rupellensis is surrounded by a
cytoplasmic membrane followed by the periplasm with a thin peptidoglycan layer and an OM
(Figure 1A). Furthermore, pilus-like structures could be detected, as well as another electron dense
layer outside the OM, which might correspond either to the lipopolysaccharide (LPS) or an S-layer.
Thin sections of H. saccharolyticum also revealed a diderm cell envelope with a densely packed cyto-
plasm enclosed by a membrane surrounded by a relatively electron lucent periplasm so that the thin
line representing the peptidoglycan is clearly visible (Figure 1B). For both organisms, in some cases
the periplasm appeared inflated (Figure 1C and D), which was most likely caused by a preparation
artifact due to swelling of the cells in the freeze substitution process. This effect nevertheless
enabled us to observe the peptidoglycan much better as compared to cells without that artifact.

Robust phylum-level phylogeny of the Firmicutes supports distinct
origins of Halanaerobiales and Negativicutes

We gathered homologues of 47 ribosomal proteins from a local database of 205 Firmicutes taxa and
13 bacteria belonging to eight major phyla as outgroup (Materials and methods). We did not include
the Tenericutes in the analysis, because their reduced genomes and fast evolutionary rates are likely
to cause artifacts in deep phylogenies, but it is known that they phylogenetically belong to the Bacilli
(Davis et al., 2013). We assembled the 47 ribosomal proteins into a large concatenated dataset
(5551 amino acid characters) and carried out Bayesian analysis with a sophisticated site-heteroge-
neous model of protein evolution (CAT) that allows each site to evolve under its own substitution
matrix and is robust against tree reconstruction artifacts that frequently affect deep phylogenies
(Lartillot and Philippe, 2004). The Bayesian tree was well resolved at most nodes (Posterior Proba-
bilities (PP) > 0.95, Figure 2). Despite the weak signal and the stochastic errors frequently associated
to small proteins such as ribosomal ones, topology congruence tests on individual markers showed a
largely congruent phylogenetic signal, especially at high rank taxonomy level, justifying their com-
bined analysis (Figure 2—figure supplement 1 and Materials and methods). Maximum Likelihood
(ML) analysis of the same concatenated dataset and the site-homogeneous LG model (Le and Gas-
cuel, 2008) gave a largely consistent topology although it was much less resolved, especially at
deep nodes (Figure 2—figure supplement 2). With respect to previous analyses, the relative place-
ment of Negativicutes and Halanaerobiales in the Firmicutes phylogeny was robustly resolved (Fig-
ure 2). In fact, the Negativicutes branched within Class Clostridia, specifically related to
Peptococcaceae and other incertae-sedis clostridial families (PP = 1, Figure 2). This placement is
consistent with previous analyses, although performed with less taxa (Yutin and Galperin, 2013,
Mavromatis et al., 2009). As opposed to the diderm nature of Negativicutes, the members of Pep-
tococcaceae have monoderm phenotype (Vos et al., 2009) and no homologues of OM markers.

In contrast, the Halanaerobiales emerged as a distinct, well-supported, and deep-branching line-
age of the Firmicutes (PP = 0.99, Figure 2), robustly grouped with the order Natranaerobiales
(PP = 1, Figure 2). This clustering was also observed in a previous analysis performed with only one
member of Halanaerobiales and one of Natranaerobiales, and its position in the Firmicutes phylog-
eny was left unresolved (Yutin and Galperin, 2013). Natranaerobiales are a poorly known group of
moderately halophilic Firmicutes that appear monoderm under the microscope (Mesbah et al.,
2007) and have no homologues of OM markers.

In order to verify the robustness of the distinct branching of the two diderm Firmicutes lineages,
we ran AU tests on 12 topologies alternative to the Bayesian ribosomal protein concatenate tree,
where Negativicutes or Halanaerobiales were moved ‘up and down’ the six nodes separating them
(N1-Ng for the topologies involving moving the Negativicutes; H;-Hg for the topologies
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A

Figure 1. Transmission electron microscopy of a member of Negativicutes and a member of Halanaerobiales. Ultrathin sections of high-pressure frozen
cells of the Negativicutes member Megamonas rupellensis (A,C), and the Halanerobiales member Halanaerobium saccharolyticum (B,D). A Gram-
negative like cell wall architecture is visible for both taxa (A,B): a cytoplasmic membrane (CM) surrounding the cytoplasm (C), a thin peptidoglycan layer
(PG), and an outer membrane (OM). Pili-like structures (P) are also visible in M. rupelllensis. In some cases and due to a preparation artifact caused by
swelling of the cells, the OM detaches from the IM creating an enlarged periplasmic space (PP) between two dividing cells (C,D). In these cases, the
peptidoglycan becomes more apparent as it is also the case for an electron dense surface coat (SC), which might represent lipopolysaccharide (LPS) or
a potential S-layer. Scale bars: 200 nm (A,C) and 100 nm (B,D).

DOI: 10.7554/eLife.14589.003
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Figure 2. Phylum-level phylogeny of the Firmicutes. Bayesian phylogeny of the Firmicutes based on a concatenation of 47 orthologous ribosomal
proteins comprising 5551 amino acid positions and the CAT+GTR+T'4 model. Values at nodes represent Bayesian posterior probabilities. The scale bar
represents the average number of substitutions per site. For details on analyses, see Materials and methods.

DOI: 10.7554/eLife.14589.004

The following figure supplements are available for figure 2:

Figure supplement 1. Results of IC congruence test for the 47 ribosomal proteins.

DOI: 10.7554/eLife.14589.005

Figure supplement 2. Maximum likelihood phylogeny of the Firmicutes.

DOI: 10.7554/eLife.14589.006

Figure supplement 3. Results of AU test for 12 alternative topologies.

DOI: 10.7554/eLife.14589.007
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involving moving the Halanaerobiales Figure 2—figure supplement 3, Materials and methods and
Additional Data). Unfortunately, topology testing is currently only available in a Maximum Likelihood
framework with site-homogeneous models. Accordingly, these tests should reflect the poor resolu-
tion of the deep nodes of the maximum likelihood tree (Figure 2—figure supplement 2). Neverthe-
less, the Bayesian topology of Figure 2(HgNo) was the preferred one (Figure 2—figure supplement
3). Two alternative topologies only (N1 and Ny) were not rejected by the data, where the Negativi-
cutes branched earlier in the Clostridia. Importantly, the two alternative topologies presenting a
clustering of Halanaerobiales and Negativicutes (Hs and N¢) were strongly rejected by the data, as
well as all topologies where the Halanaerobiales were moved away from the root of the Firmicutes
tree (Hy-Hs) (Figure 2—figure supplement 3 and Additional Data), consistent with the separate ori-
gins of the two diderm lineages.

To sum up, our phylogenetic analysis shows that Halanaerobiales and Negativicutes have distinct
evolutionary origins, and are each related to different monoderm Firmicutes lineages.

The LPS-OM of Negativicutes and Halanaerobiales are homologous
structures with an ancient origin

In contrast to the distinct emergence of Halanaerobiales and Negativicutes in the Firmicutes, the
presence in their genomes of markers related to OM biogenesis and functioning (Campbell et al.,
2014; Mavromatis et al., 2009; Tocheva et al., 2011) clearly indicates that their diderm cell enve-
lopes are homologous structures. However, as discussed in the Introduction section, the specific evo-
lutionary relationships between the OMs of Halanaerobiales and Negativicutes have been unclear.
Interestingly, synteny analyses revealed a large genomic locus that is conserved between Halanaero-
biales and Negativicutes, and is not present in monoderm Firmicutes (Figure 3 and
Supplementary file 1). Other than LPS synthesis and transport (green), the genes belonging to this
genomic locus encode a number of cell envelope systems, such as OMP assembly (blue), motility
(light pink), OM-PG attachment (red), efflux (purple), but also a number of hypothetical proteins
(brown), and proteins not known to be specifically related to the OM (white).

Such clustering is unusual as in E. coli for example these genes are scattered in different regions
of the genome. However, the genes coding for the first four steps of LPS synthesis (lpxABCD) dis-
play a conserved synteny in diderm Bacteria at very large evolutionary distances, suggesting that
they have similar evolutionary histories (Opiyo et al., 2010). Accordingly, synteny is also conserved
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Figure 3. Conserved genomic locus for cell envelope components. Co-localization of the genes coding for LPS synthesis and transport, OMP assembly
and structural OMPs in the Negativicutes and the Halanaerobiales. Representatives of the 2 families of Negativicutes and the 2 families of
Halanaerobiales are shown (for full distribution and accession numbers see Supplementary file 1). Genes are colored according to their functional
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(see text for discussion). White boxes indicate proteins not known to being related to the OM or non-conserved proteins whose connection with the
OM is unclear. The figure was obtained by EasyFig (Sullivan et al., 2011), where vertical lines represent BLAST hits with a cutoff of 0.0001.
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in Halanaerobiales and Negativicutes (Figure 3 and Supplementary file 1). We therefore searched
for these four core LPS genes ([pxABCD) in a local databank of 121 genomes representative of 30
major bacterial phyla (Materials and methods and Supplementary file 2). As compared to what
could be previously inferred from available genomic data (Sutcliffe, 2010; Opiyo et al., 2010), we
show the presence of homologues of the four core LPS coding genes in 26 major bacterial phyla,
eight of which evidenced for the first time: Thermodesulfobacteria, Fibrobacteres, Ignavibacteria,
Nitrospina, Chrysiogenetes, Cloacimonetes, Atribacteria, and Armatimonadetes
(Supplementary file 2). This suggests that LPS-diderm cell envelopes might be even more wide-
spread in Bacteria than currently thought, leaving only four major phyla that appear to lack the cod-
ing capacity for LPS: Thermotogae, Caldiserica, Chloroflexi/Thermomicrobia, and Actinobacteria
(Supplementary file 2). We assembled the four core LPS protein homologues into a concatenated
dataset (898 amino acid characters) also including Halanaerobiales and Negativicutes, and obtained
a Bayesian tree with the CAT+GTR+T; evolutionary model (Figure 4, Materials and methods). In
agreement with their conserved synteny, congruence tests showed that these four core LPS genes
have a consistent phylogenetic signal at large evolutionary distances, in particular concerning the
monophyly of major bacterial phyla, justifying their combined analysis (Materials and methods and
Figure 4—figure supplement 1). Consistently with the notorious difficulty in resolving the global
phylogeny of Bacteria, the tree is not completely resolved. However, it is largely in agreement with
bacterial systematics, showing the monophyly of major phyla (Figure 4). This pattern indicates that
the core LPS genes were present in the ancestor of each of these diderm phyla, and that inter-phy-
lum horizontal gene transfers were surprisingly rare during bacterial evolution. Consistently, the
Halanaerobiales and Negativicutes also form a well-supported monophyletic cluster (PP = 1, Fig-
ure 4), with internal branching pattern matching their respective reference species phylogeny shown
in Figure 2.

These results indicate that the LPS-OM of Halanaerobiales and Negativicutes do not have distinct
origins, but rather that, similarly to the other main diderm bacterial phyla, they were inherited from
their common ancestor, which is also the ancestor of all Firmicutes, in agreement with
Tocheva et al., 2011. The inclusion of a second diderm lineage in our analysis allows us to
strengthen and extend this scenario, and to infer that present-day monoderm Firmicutes would have
emerged from diderm ancestors via not less than five independent losses of the OM (Figure 4B).
The two alternative topologies that were not rejected by AU tests do not affect the inference of a
diderm ancestor and imply four and three independent OM losses, respectively (Figure 2—figure
supplement 3 and Additional Data).

Outer membranes in a monoderm context

Our phylogenetic analyses suggest that the diderm cell envelopes of Halanaerobiales and Negativi-
cutes might be the remnants of ancient bacterial structures that were inherited from the Firmicutes
ancestor. In the absence of experimental characterization, exploration of genomic data can guide
inferences on the nature of these atypical diderm cell envelopes. To this aim, we investigated a few
key processes that are related to OM biogenesis and functioning and are shared between Negativi-
cutes and Halanaerobiales. Because OM markers frequently display low sequence conservation or
are part of large membrane-related protein families often preventing the building of robust phyloge-
nies, we helped tentative annotation by merging information obtained from homology to known
OM markers, the presence of specific protein domains, and genomic synteny. In this respect, the
presence of the conserved OM locus helped annotation greatly and provided important insights into
the unique nature of the cell envelopes of Negativicutes and Halanaerobiales, which show both spe-
cific characteristics as well as an intriguing combination of diderm and monoderm features
(Figure 5).

Diderm Firmicutes synthesize and transport LPS to the OM

LPS is a complex glycolipid exclusively present in the outer leaflet of the OM. Although LPS can be
very heterogeneous in bacteria, it has an overall conserved structure composed of a membrane-
anchored hydrophobic domain (lipid A, or endotoxin), an oligosaccharide (inner and outer core),
which can be extended with a distal polysaccharide (O-antigen) (Wang et al., 2010). The Lipid
A-core portion (known as ‘rough’ LPS) and the O-antigen have independent pathways for their
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Figure 4. Phylogenetic tree of core LPS components. (A) Bayesian phylogeny based on a concatenation of orthologs of the four core components of
the LPS biosynthesis pathway (lpxABCD), comprising 898 amino acid positions and the CAT+GTR+I"4 model. Values at nodes represent Bayesian
posterior probabilities. The scale bar represents the average number of substitutions per site. For details on analyses, see Materials and methods. (B)

Figure 4 continued on next page
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Figure 4 continued

Schematic representation of the Firmicutes phylum-level phylogeny from Figure 2, onto which putative losses of the OM are mapped (red crosses). See
text for discussion.

DOI: 10.7554/eLife.14589.009

The following figure supplement is available for figure 4:

Figure supplement 1. Results of IC congruence test for the 4 LPS core proteins.
DOI: 10.7554/elife.14589.010
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Figure 5. Sketched diagram of inferred characteristics of the diderm Firmicutes cell envelope. The main processes discussed in the text are shown
schematically. Components that were not detected in the genomes of Negativicutes and Halanaerobiales are indicated with a dashed outline and grey
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DOI: 10.7554/eLife.14589.011

The following figure supplements are available for figure 5:

Figure supplement 1. Flagellar gene cluster of Negativicutes and Halanaerobiales.

DOI: 10.7554/eLife.14589.012

Figure supplement 2. Genomic context of the genes coding for flagellar rings in Halanaerobiales and Negativicutes.

DOI: 10.7554/eLife.14589.013

Figure supplement 3. Structure of the main Type IV pilus cluster in Negativicutes and Halanaerobiales.

DOI: 10.7554/eLife.14589.014
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membrane ligase, generating ‘smooth’ LPS. Then, the transport of LPS to the OM is carried out by a
dedicated system (the Lpt pathway) and is independent from O-antigen presence (Wang et al.,
2010).

Both Negativicutes and Halanaerobiales have a complete set of genes for the synthesis of the
Lipid A moiety and inner core of LPS (Figure 5). These are clustered on their genomes ([pxACDIBK/
waaM/waaA/kdsABCD) (Figure 3 and Supplementary file 1). The lack of [pxH and the presence of
Ipxl suggests that they use a recently-described alternative route for lipid A-core synthesis found in
members of various bacterial lineages (Metzger and Raetz, 2010). Moreover, the Ipx gene cluster
also includes a fabZ homologue, which encodes an enzyme involved in a key step of fatty acid syn-
thesis and is also present in monoderm Firmicutes (Parsons and Rock, 2013). Similarly to what is
observed in E. coli, this fabZ homologue shows a conserved position on the chromosome next to
IpxC, which catalyzes the first committed step in lipid A biosynthesis and is subject of tight regula-
tion by the protease FtsH (Fiihrer et al., 2006). Because FabZ acts on a substrate that is shared with
the lipid A pathway, its conserved genomic proximity with LpxC is a strong indication that these two
proteins interact in diderm Firmicutes, likely in a common process that regulates the phospholipid/
LPS balance of the OM as described in E. coli (Klein et al., 2014; Ogura et al., 1999).

Once synthesized, the lipidA-core is translocated through the IM by the flippase MsbA, which is
composed of a typical architecture including an N-terminal ABC-transporter transmembrane domain
and a C-terminal ATP-binding cassette domain (Ruiz et al., 2009). We found homologues with the
same domain arrangement within the LPS synthesis gene cluster (Figure 3 and Supplementary file
1). Although these are part of the very large protein family of ABC transporters that is also present
in monoderm Firmicutes, their genomic location suggests that they are likely bona fide MsbA func-
tional equivalents in diderm Firmicutes (Figure 5).

LPS is then matured and transported across the periplasm to the OM via the Lpt pathway
(Greenfield and Whitfield, 2012; Polissi and Sperandeo, 2014; Ruiz et al., 2009). LPS is extracted
from the IM by LptC and the LptFGB transporter, then mobilized to the OM by the chaperone LptA,
and finally assembled into the OM by LptDE. In all Negativicutes and Hanaerobiales, we identified a
conserved Lpt four-gene cluster next to the LPS synthesis genes (Figure 3 and Supplementary file
1). This includes a homologue of LptB, a single homologue of LptF/G, plus two proteins of ~200aa
containing OstA domains that may represent LptA and LptC (Figure 5). Apart from LptB, which
belongs to the large P-loop-NTPase superfamily, none of the remaining putative components are
present in monoderm Firmicutes. However, we could not find any clear homologues of the OM com-
ponents LptD/E in the gene cluster or elsewhere in the genomes. Either these are too distantly
related to being identified by sequence similarity, or Negativicutes and Halanaerobiales employ a
non-homologous system to address LPS to the OM.

Concerning O-antigen, no obvious homologues of its synthetic pathway, as well as its transport
through the IM and its ligation with the lipidA-core are present in the conserved gene cluster. More-
over, although we could identify some homologues in the genomes of Negativicutes and Halanaero-
biales, these are part of very large protein families and are shared with other pathways, making it
difficult to assess functional homology and infer with confidence if diderm Firmicutes are able to
make smooth LPS.

An ancient bi-functional Bam/Tam machinery?

The genomic locus also encodes homologues of two important components of the E. coli Sec-
dependent OM protein assembly pathway (Selkrig et al., 20714): one copy of the major component
of the Bam system (BamA), which is involved in protein translocation and OM assembly, and three
copies of the periplasmic chaperone Skp (Figure 3 and Supplementary file 1). However, we could
not find any homologues of the associated lipoproteins of the Bam complex (BamBCDE) in the gene
cluster nor elsewhere in the genomes of diderm Firmicutes, though it is known that these are not
well conserved outside Proteobacteria (Webb et al., 2012).

In Proteobacteria, BamA is part of the large Omp85-family with function in protein translocation
and OM assembly (Heinz and Lithgow, 2014; Selkrig et al., 2014). Members of this family have a
conserved C-terminal OM-associated surface antigen domain, and polypeptide transport-associated
(POTRA) domains of variable number that serve to interact with other proteins and accessory factors
(Webb et al., 2012). In Proteobacteria, a close paralogue of BamA was recently discovered, called
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TamA, which has one POTRA domain only, and was shown to be anchored to the OM and to form a
two-pathway system together with the IM protein TamB to promote T5SS autotransporter assembly
and secretion (Selkrig et al., 2012). Based on the large taxonomic distribution of TamB homo-
logues, it has been recently proposed that this protein was present very early in bacterial evolution,
and functioned with BamA, while TamA would have arisen more recently in Proteobacteria through
gene duplication (Heinz et al., 2015).

We found that all analyzed Negativicutes and Halanaerobiales genomes possess a single BamA
homologue, which is part of a gene cluster with a homologue of TamB, and up to three homologues
of the Skp chaperone (Figure 3 and Supplementary file 1). Such conserved synteny may indicate
functional linkage. Interestingly, the same gene arrangement (TamB/BamA/Skp) has been observed
in Spirochaetes (Selkrig et al., 2012), as well as in many other bacterial phyla (Heinz et al., 2015).
The inference of a potential TamB/BamA/Skp system in the ancestor of the Firmicutes strengthens
the hypothesis of an ancestral bi-functional role for BamA in both autotransporter secretion
(together with TamB) and OMP assembly (together with Skp) (Figure 5).

An ancestral system for peptidoglycan anchoring to the OM

The genomic locus also includes multiple homologues of OmpM (Figure 3 and Supplementary file
1), a protein that appears to replace the function of Braun’s lipoprotein in Negativicutes (see Intro-
duction). In S. ruminantium OmpM results from the fusion of a C-terminal porin domain and an
N-terminal S-layer homologous (SLH) domain with an unusual inward orientation towards the peri-
plasm where it drives the correct anchoring of the OM to the peptidoglycan layer via specific interac-
tions with the peptidoglycan-covalently-bound cadaverine (Kalmokoff et al., 2009; Kojima et al.,
2010).

We found that Halanaerobiales also contain in the conserved genomic locus up to three proteins
with an SLH domain (Figure 3 and Supplementary file 1). These likely represent distant homologues
of Negativicutes OmpM and are priority targets for experimental validation to confirm the presence
of an OmpM-dependent system for OM anchoring in this deep-emerging lineage of the Firmicutes.
Interestingly, there have been early reports of distantly related proteins with a domain arrangement
similar to that of diderm Firmicutes OmpM and a proposed similar function in Cyanobacteria
(Hansel et al., 1998) and in Thermotogae (Engel et al., 1992). OmpM-like proteins might therefore
represent a widespread and ancient PG-OM anchoring system (Figure 5), possibly ancestral to the
Braun’s lipoprotein-based system.

Monoderm appendages with diderm features

The monoderm-type flagellum has been mostly studied in B. subtilis (Mukherjee and Kearns, 2014).
It is very similar in overall structure and number of components to the flagellum of diderm bacteria,
to the exception of the absence of the rings P and L, the first spanning the periplasm and the second
spanning the OM, which are coded by flgH, flgl, and flgA and are totally absent in monoderm fla-
gella. Another difference is the absence of the rod cap and flagellar-specific peptidoglycan hydro-
lases, which allow insertion in the PG layer in diderm bacteria, and it is unknown how this process
takes place in the thick PG layer of B. subtilis (Mukherjee and Kearns, 2014).

Most Negativicutes and Halanaerobiales strains analyzed in this study are flagellated (Vos et al.,
2009) and have in fact a complete set of genes coding for the flagellum machinery, most of which
embedded in an operon arrangement that is distinctive of B. subtilis and other monoderm Firmi-
cutes, in particular the presence of the two rod assembly genes flgB and flgC (Figure 5—figure sup-
plement 1) (Mukherjee and Kearns, 2014). This indicates that the flagella of diderm Firmicutes are
closely related to those of their monoderm relatives. However, Negativicutes and Halanaerobiales
also possess homologues of the three genes coding for the P and L rings typical of diderm flagella,
flgH, flgl, and flgA, organized in a second conserved six-genes cluster that also contains the rod
components flgF, flgG, and flgJ (Figure 5—figure supplement 2 and Supplementary file 1). These
data suggest that Negativicutes and Halanaerobiales might possess flagella with chimeric mono-
derm/diderm features (Figure 5). They may represent ancestral motility structures that adapted to
loss of the OM in present-day monoderm Firmicutes lineages, possibly through a single excision of
the flgH, flgl, and flgA gene cluster from the conserved genomic locus. Consistently with this
hypothesis, we observed that representatives of the monoderm Firmicutes lineages that are most
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closely related to Halanaerobiales (i.e. Natranaerobiales: N. thermophilus) and Negativicutes (i.e.
Peptococcaceae: Therminicola potens) still retain an flgJ homologue (Figure 5—figure supplement
1) that may represent a remnant of the ancestral diderm system for rod insertion, which would have
been lost in B. subtilis and other monoderm flagellated Firmicutes.

A similar, although less clear-cut, scenario could be inferred for type IV pili. These have very simi-
lar components in diderm and monoderm bacteria, to the exception of PilQ (also called secretin),
which in diderm bacteria forms a channel that spans the OM and through which the pilus is assem-
bled (Melville and Craig, 2013). In Firmicutes, it is unclear how the pilus passes through the thick
peptidoglycan layer, and if a channel-forming protein is present (Melville and Craig, 2013). Both
Negativicutes and Halanaerobiales have a conserved genomic locus that presumably codes for all
essential components of a type IV pilus (Figure 5—figure supplement 3), consistently with the visu-
alization of a potential pilus structure by microscopy in Figure 1. The gene cluster is similar to those
present in their closely related monoderm relatives, to the exception of the inclusion of a homologue
of PilQ, the secretin, which is present in all Negativicutes and Hanalerobiales (Figure 5—figure sup-
plement 3 and Supplementary file 1). These data suggest that the type IV pili of Negativicutes and
Halanaerobiales may pass through the OM by a secretin-based mechanism similar to that of classical
diderm bacteria (Figure 5).

First suggestion of a Lol system in the Firmicutes

Lipoproteins are a major class of membrane proteins that play important physiological roles and are
widespread in bacteria (Buddelmeijer, 2015; Okuda and Tokuda, 2011; Sutcliffe et al., 2012;
Ziickert, 2014). They are assembled via post-translational modifications after translocation through
the inner membrane in both diderm and monoderm bacteria. The lipid modification occurs on a
‘lipobox’ signal near the N-terminus at the cytoplasmic membrane where the pre-lipoprotein diagly-
cerol transferase Lgt adds a diacylglycerol moiety. The lipobox signal is then cleaved off by the lipo-
protein signal peptidase LspA, which allows anchoring of the lipoprotein to the outer face of the
plasma membrane. A second lipoprotein N-acetyltransferase, Lnt, can add a third amide fatty acid
onto the N-terminus of lipoproteins. Tri-acylated lipoproteins are preferentially targeted to the OM
in diderm bacteria via the Lol machinery. This is a multiprotein system formed by an IM-spanning
ABC-like transporter component (LolCDE) that captures lipoproteins from the IM and delivers them
to the carrier LolA utilizing ATP hydrolysis. LolA then translocates the lipoprotein to the structurally
related LolB, which inserts it into the OM by an unclear mechanism.

While LolCDE are part of the large protein family of ABC transporters, the presence of LolA
homologues is indicative of a functional Lol system (Sutcliffe et al., 2012). We found no homologues
of LolA nor of LolB in any of the Negativicutes genomes, confirming previous reports
(Campbell et al., 2014). It is possible that Negativicutes do not address lipoproteins to the OM or
that they use a still unknown, non-homologous system. In contrast, we found homologues of LolA in
each of the analyzed Halanaerobiales genomes, which correlate to the presence of Lnt homologues
(Supplementary file 1). By looking at the genomic surroundings of these LolA homologues, we iden-
tified a conserved gene cluster in most Halanaerobiales genomes, which likely code for a complete
Lol system, notably the two ABC transporter permeases (LolC/E) and one ATPase (LolD)
(Supplementary file 1). We could not find any homologues of LolB in the genomic locus or else-
where in the Halanaerobiales genomes, although this protein is not well conserved in bacteria
(Sutcliffe et al., 2012). These analyses suggest that Halanaerobiales may harbor a functional Lol sys-
tem (Figure 5).

New OM-related proteins?

Finally, three genes encoding proteins with unclear annotation display a conserved synteny within
the large conserved genomic cluster (Figure 3 and Supplementary file 1) and are present in all
Negativicutes and Halanaerobiales genomes (Supplementary file 1), while absent from monoderm
Firmicutes. The first one belongs to COG0816, which is annotated as ‘Predicted endonuclease
involved in recombination (possible Holliday junction resolvase in Mycoplasmas and B. subtilis)'. The
second one belongs to COG4372, which is annotated as ‘Uncharacterized conserved protein, con-
tains DUF3084 domain’. The third one belongs to COG750, which is annotated as “Predicted mem-
brane-associated Zn-dependent proteases 1", and is predicted to be in the OM by the PSORT
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prediction software (Materials and methods). These proteins might be involved in OM biogenesis
and functioning in diderm Firmicutes and are priority targets for experimental characterization.

Discussion

The origin of the cell envelope has represented one of the most fascinating questions in evolutionary
biology since decades, and has been widely discussed in the literature (Blobel, 1980; Cavalier-
Smith, 1987, 2006, Errington, 2013; Griffiths, 2007; Gupta, 2011; Koch, 2003; Vollmer, 2012).
The main issue mostly revolves around the question of how and when an OM originated in Bacteria,
and whether monoderm cell envelopes predate diderm cell envelopes or instead derived from
them. The complexity of the diderm cell envelope with respect to a perceived more ‘rudimentary’
monoderm type, together with its higher resistance toward antibiotics, are arguments usually put
forward to propose that the OM is a relatively late invention in Bacteria (Koch, 2003; Gupta, 2011).
However, it is now evident that diderm phyla outnumber monoderm ones, and span a large fraction
of bacterial diversity, including early emerging lineages (Sutcliffe, 2010; Errington, 2013). Unfortu-
nately, the evolutionary relationships among monoderm and diderm bacterial phyla are presently
unclear, and do not allow to clarify OM origins. In this respect, the existence of a major bacterial
phylum —the Firmicutes- including both diderm and monoderm lineages, and whose evolutionary
relationships can be resolved, provides a unique opportunity to address the issue.

Our results provide support for the hypothesis that the Firmicutes are ancestrally diderm, and
that the monoderm envelope is a derived cell structure that originated through OM loss, at least in
this phylum. Although previously suggested (Tocheva et al., 2011), the inclusion of both Halanaero-
biales and Negativicutes in our analysis strengthens and extends this scenario. Our robust phylogeny
of the Firmicutes indicates that Halanaerobiales and Negativicutes form two distinct lineages, each
related to different monoderm relatives. This allows inferring that the OM was lost from three to five
times independently in the Firmicutes, and is therefore not a unique event in the history of Bacteria
that would have led to all present-day monoderm lineages, as proposed earlier (Cavalier-
Smith, 2006). The deep branching of Halanaerobiales and the still limited genomic coverage for this
group makes them a priority target for further exploration as their cell envelopes may retain ances-
tral characters.

Our results confirm that the LPS-OMs of Negativicutes and Halanaerobiales are homologous
structures that share a common origin and are evolutionarily related with those of other classically
diderm bacteria, therefore excluding convergence. Indeed, we show that the core enzymatic appara-
tus for producing LPS is even more widespread than previously thought, and that the LPS-OM is an
ancient feature that emerged once and was largely inherited vertically during bacterial evolution,
including in Halanaerobiales and Negativicutes. This is unusual for cytosolic enzymes, and underlines
the key importance of maintaining cell-envelope function. Clearly, the availability of genomic data
from an ever-wider sampling of bacterial diversity is sensibly changing perspective on the evolution
of bacterial cell envelopes. For example, by revealing the presence of an LPS-OM in the ancestor of
Deinococcus/Thermus we show that this phylum does not represent a monoderm-to-diderm inter-
mediate (Gupta, 2011), but rather that LPS was lost in some of their members, a process similar to
what likely occurred in Thermotogae (Cavalier-Smith, 2006). This indicates that, although having an
OM is surely advantageous in certain conditions, the diderm cell envelope is a flexible structure that
can be modified/simplified during evolution.

Although the presence of a large cluster coding for key OM functions might be seen as support-
ing the hypothesis of an acquisition of the OM of diderm Firmicutes via genetic transfer from a
diderm bacterium (Mavromatis et al., 2009; Campbell et al., 2014), our data weaken this hypothe-
sis. Given the distinct branching of the two diderm lineages in the Firmicutes phylogeny, and the
pattern of LPS inheritance similar to all other diderm bacterial phyla, the gene transfer hypothesis
would imply a complex scenario consisting of two independent transfers of a very large genomic
region, a first one to the ancestor of Halanaerobiales or to the ancestor of Negativicutes, and a sec-
ond one between these two ancestors, which would have had to coexist at the same time and in the
same environment. The sudden acquisition of an OM has been already discussed as mechanistically
complicated (Cavalier-Smith, 2006). This would have in fact required the dramatic modification of
an originally monoderm cell envelope through the concerted acquisition of several complex systems
at once, not to mention the replacement of the native inner membrane components of these
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systems or their coordination with the newly acquired ones. Moreover, not all OM systems involved
in OM biogenesis and function in Negativicutes and Halanaerobiales are part of the gene cluster,
and their detailed annotation suggests that their cell envelopes share characteristics with deep-
emerging bacterial phyla (e.g. the OmpM porin instead of Braun’s lipoprotein for OM tethering),
and present a peculiar combination of monoderm/diderm features (e.g. flagella, pili). The OM gene
cluster may therefore represent an ancestral genomic locus for OM-related functions, and it
becomes essential to obtain further experimental characterization of the OM of Halanaerobiales and
Negativicutes, as well as many other poorly explored deep emerging bacterial phyla. Nevertheless,
we have analyzed here only a few OM systems shared between Halanaerobiales and Negativicutes
in order to infer the nature of the ancestral diderm cell envelope in the Firmicutes. There are surely
additional components that are lineage-specific and may have been acquired from diderm bacteria
thriving in the same environment. This is an important future area of investigation, as it could inform
on how the presence of an OM in a Firmicutes background may have helped adaptation to specific
niches, including the human environment.

By which process the ancestral OM would have been lost multiple times independently in the
majority of present-day Firmicutes remains to be understood. It has been proposed that a spontane-
ous mutation leading to hypertrophy of the peptidoglycan layer would be sufficient to transform a
diderm into a monoderm, through disruption of the attachment of the OM, leading to its loss (Cava-
lier-Smith, 2006). Alternatively, we speculate that mutations may have affected the ancestral
OmpM, causing a de-regulation of OM-PG attachment. This transition may have been made easier
during the process of sporulation, where an OM is transiently formed and lost when the vegetative
cell matures. Tocheva et al. (2011) proposed indeed that the OM might have been lost in the Firmi-
cutes to increase sporulation and germination efficiency (Tocheva et al., 2011). A link between OM
loss and sporulation may explain why there is no current evidence of monoderm lineages within
other diderm phyla that do not sporulate. Further genomic and experimental data on the closest
monoderm relatives of Negativicutes and Halanaerobiales might provide key information on the pro-
cess of OM loss.

Our results suggest that the cell envelopes of diderm Firmicutes might be the remnants of an
ancient type of cellular structure, adding up to the ones found in the major diderm bacterial phyla.
Moreover, they seem to have ancestral and simpler cell envelope systems with respect to the well-
studied Proteobacteria. Halanaerobiales and Negativicutes are therefore promising new experimen-
tal models that will provide precious insights into the processes that have shaped the diversity not
only of diderm cell envelopes, but also of monoderm ones.

Materials and methods

Ultrastructural analysis

Negativicutes strain Megamonas rupellensis DSM 19944" was grown anaerobically at 37°C to late
exponential phase on TGY broth (w/v; 3% tryptone, 2% yeast extract, 0.5% glucose, 0.05% L-cyste-
ine hydrochloride) as described previously (Chevrot et al., 2008). Halanaerobiales strain Halanaer-
obium saccharolyticum subsp. saccharolyticum DSM 66437 was grown anaerobically to late
exponential phase at 37°C on a synthetic medium as described in (Zhilina et al., 2012). The ultra-
structure of the respective bacterial strains was determined via transmission electron microscopy
(TEM) following high-pressure freezing, freeze substitution, plastic embedding and ultrathin section-
ing of the samples. Due to a relatively long transportation time to the high-pressure freezer, cells
were pre-fixed with 2% glutaraldehyde. Afterwards, they were centrifuged for 10 min at 14.000 x g,
the supernatant was discarded and the resulting pellet was resuspended in 50ul growth medium.
From this cell suspension, 2ul were high-pressure frozen and freeze substituted as described in
(Peschke et al., 2013). For substitution, acetone containing 0.2% OsO,, 0.25% uranyl acetate and
5% (vol/vol) H,O was used. Embedding of the cells, sectioning and post-staining was carried out as
described in (Rachel et al., 2010). For negative staining of bacteria, 2% uranyl acetate was used for
contrast enhancement following pre-fixation with 2% glutaraldehyde (Rachel et al., 2010). Finally,
transmission electron microscopy was performed either on a JEOL JEM 2100, operated at 120 kV in
combination with a fast-scan 2k x 2k CCD camera F214 (TVIPS, Gauting, Germany) for negatively
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stained samples or on a Zeiss EM 912 equipped with an integrated OMEGA energy filter and oper-
ated at 80 kV in the zero-loss mode for ultrathin sections.

Phylogenetic analyses

We assembled a local databank of 205 complete genomes from a wide representative sampling of
Firmicutes, including 38 Negativicutes and 7 Halanaerobiales genomes available at the beginning of
this analysis (Supplementary file 1). Exhaustive HMM-based homology searches were carried out on
this genome databank by using the HMMER package (Johnson et al., 2010) and as queries the
HMM profiles of the complete set of 54 bacterial ribosomal proteins from the Pfam 29.0 database
(http://pfam.xfam.org, Finn et al., 2016). Additional searches with tblastn (Altschul et al., 1997)
were used to identify eventually misannotated homologues in some genomes. Because it is unclear
which bacterial phylum is closest to the Firmicutes, we included as outgroup 13 taxa representatives
of eight major bacterial phyla (2 Actinobacteria; 2 Cyanobacteria; 1 Deinococcus; 2 Proteobacteria;
1 Spirochaetes; 3 Flavobacteria/Bacteroidetes/Chlorobi; 2 Plactomyces/Chlamydia). Seven ribosomal
proteins (S2, S4, S14, S21, L25, L30, L33) that were absent from >50% of the considered genomes
or had paralogous copies making difficult the identification of orthologues were discarded from the
analysis. The remaining 47 single protein data sets were aligned with MUSCLE v3.8.31 (Edgar, 2004)
with default parameters, and unambiguously aligned positions were selected with BMGE 1.1
(Criscuolo and Gribaldo, 2010) and the BLOSUM30 substitution matrix.

Trimmed datasets were concatenated by allowing a maximum of 11 missing sequences per taxon
into a large character supermatrix (218 taxa and 5551 amino acid characters). PhyloBayes v3.3b
(Lartillot et al., 2009) was used to perform Bayesian analysis using the evolutionary model CAT
+GTR+T4. Two independent chains were run until convergence, assessed by evaluating the discrep-
ancy of bipartition frequencies between independent runs. The first 25% of trees were discarded as
burn-in and the posterior consensus was computed by selecting one tree out of every two . A Maxi-
mum likelihood (ML) tree was also calculated from the ribosomal protein concatenate with PhyML
v3.0 (Guindon et al., 2010) and the evolutionary model LG+T'y (Le and Gascuel, 2008) as suggested
by the Akaike Information Criterion implemented in ProtTest 3 (Darriba et al., 2011). Branch sup-
ports were estimated by standard nonparametric bootstrap based on 100 replicates.

In order to assess whether the ribosomal proteins carried a congruent phylogenetic signal, we
compared each of the 47 corresponding individual gene trees with the Bayesian ribosomal protein
concatenate tree by using the recently proposed ‘Internode Certainty’ (IC) criterion, which measures
the existence of statistically supported conflicting splits between trees (Kobert et al., 2016). ML
phylogenetic trees of individual genes were inferred by IQ-TREE v1.3.12 (Nguyen et al., 2015) with
evolutionary model selected by optimizing the Akaike information criterion. In order to minimize the
negative impact on IC estimation of the large irresolution within most of the single gene trees
caused by the small number of aligned characters, all branches displaying <70% bootstrap support
were collapsed. IC values were then estimated by RAxML 8.2.8 (Stamatakis, 2006) and reported on
the concatenate tree.

Significance of 12 alternative tree topologies was assessed by the approximately unbiased (AU)
test (Shimodaira, 2002). Each alternative topology was obtained by moving specific nodes on the
Bayesian concatenate ribosomal protein tree by using Seaview v4.6 (Gouy et al., 2010). For each
tree topology, log-likelihood per character was estimated by PhyML v3.0 with the evolutionary
model LG+T,. In order to estimate the AU test p-values associated to each topology, the resulting
data were processed with CONSEL v0.20 (Shimodaira and Hasegawa, 2001) with default
parameters.

For the LPS core gene analysis, homologues were searched by using Pfam HMM profiles for
LpxA, LpxB, LpxC, and LpxD. The same approach as the one described above for ribosomal proteins
was used to assemble a 4-gene supermatrix of 898 unambiguously aligned amino acid characters,
which was analysed by PhyloBayes with the evolutionary model CAT+GTR+T';. Congruence among
the four markers was assessed by the IC criterion as described above.

Protein annotation
Given the small number of markers analyzed and their frequently limited conservation at the
sequence level, we followed a semi-manual procedure for annotation based on a combination of
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profile-based homology searches, protein domain identification, and genomic synteny. Profile-based
homology searches of specific OM markers were performed by using the HMMER package
(Johnson et al., 2010). Initial searches were conducted by HMM on the local Firmicute genome
databank by using standard Pfam domain models corresponding to a given protein of interest. The
top-scoring hits were used to build new HMM models and perform a novel search. This process was
iterated until no new hits were found. The resulting homologues were aligned and manually
inspected in order to confirm homology and to eliminate divergent, partial or non-homologous
sequences. Additional searches with tblastn (Altschul et al., 1997) were used to identify eventually
misannotated homologues in some genomes. Protein domains were inspected by querying the Con-
served Domain Database (CDD) at NCBI (Marchler-Bauer et al., 2015). Genomic synteny was inves-
tigated using the interactive web-based visualization tool SyntTax (Oberto, 2013). Local genomic
alignments were generated using EasyFig (Sullivan et al., 2011) with a BLAST cutoff E-value of
0.0001. For localization prediction, we used the PSORT v3.0 server (http://www.psort.org/psortb/,
Yu et al., 2010) with default settings for Gram-negative Bacteria. Protein families were assigned to
Clusters of Orthologous Groups by searching the COG database, which was downloaded from the
NCBI FTP server (ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/) (Tatusov et al., 2000).

Note

While this manuscript was in the last phase of revision, Tocheva et al. published a Perspective paper
(Tocheva, El, Ortega, DR & G Jensen. 2016. Sporulation, bacterial cell envelopes and the origin of
life. Nature Reviews Microbiology 14, 533-542. doi:10.1038/nrmicro.2016.85). It extends the discus-
sion of their previous hypothesis (Tocheva et al., 2011) by focusing on the origin of the outer mem-
brane, and prompts for further genomic and evolutionary analysis, which is timely addressed in the
present work.
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1.2 A New Diderm Lineage Strengthens the OM First

Hypothesis for Firmicutes

Although the evidence for diderm first, presented in the previous article, was
extremely strong, | was never satisfied with it. The combination of having most of the OM
genes residing within a single cluster combined with having only two diderm groups did not
completely exclude transfer. This unlikely transfer would have occurred from the first
Halanaerobiale to the first Negativicute or vice versa. To exclude this possibility |
endeavoured to obtain more diderm Firmicute genomes representing new clades. Within
Bergey’s Manual (Whitman, 2011) there are many Firmicutes with a tenative OM apart from
the Negativicutes and the Halanaerobiales. In an effort to identify more diderm lineages, we
sequenced four new genomes in hopes of discovering new clades; unfortunately, none of the
genomes had any diderm marker genes. These genomes may represent new types of OM or
had imaging artefacts, neither of which aid me in firmly demonstrating that the ancestor of

Firmicutes was a diderm and as such will not be discussed here.

Fortunately, a third diderm group was reported in the literature, the Limnochordales.
The Limnochordales are a new clade of the Firmicutes with only a single-member
Limnochorda pilosa. L. pilosa was isolated from the sediment of a brackish meromictic lake
and found to grow at an optimum temperature 45°C (Watanabe et al., 2015). It was found to
fall near the Symbiobacteriaceae and family XVII Incertae Sedis in the class Clostridia by 16s
phylogeny and this was further confirmed when the genome was sequenced. When the
genome was sequenced and the electron microscopy was performed, the authors discovered
that the bacteria could sporulate and appeared to be diderm (Fukui et al., 2016). Additionally,
they found the presence of many diderm marker genes, however, they did not go into depth.
These bacteria may represent a third diderm clade of Firmicutes, but further analysis was

necessary.

| started by repeating all of the steps from the previous analysis however, | could not
get a proper phylogenetic position for L. pilosa as it moved around the tree depending on the
method. As such, | needed more Limnochordale genomes to improve the resolution of the
tree. | assembled three new genomes from metagenomic samples and this allowed proper

construction of phylogenies, both LPS and ribosomal.
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| present to you a draft of the article we hope to submit as an eLIFE advance in

research in the coming weeks.

79



Limnochorda: a Third Diderm Lineage
Strengthens Diderm Firmicute Ancestry

Daniel | Poppleton?, Najwa Taib?, Guillaume Borrel®, Christophe Beloin?, Simonetta
Gribaldo!*

1Unité de Biologie Moléculaire du Géne chez les Extrémophiles, Département de
Microbiologie, Institut Pasteur, Paris, France

2Unité de Génétique des Biofilms, Département de Microbiologie, Institut Pasteur, Paris,
France

Abstract Among the major transitions in the evolutionary history of Bacteria is that between
cell envelopes with one membrane (monoderm or Gram-positive) or two membranes (diderm
or Gram-negative). Recently, we studied the phylogenetic placement and genome content of the
Negativicutes and the Halanaerobiales, two clades of the Firmicutes that possess outer
membranes. We proposed that the ancestor of this major bacterial phylum was a diderm and
that outer membranes were lost multiple times independently to give rise to the monoderm cell
envelope architecture (Antunes et al,, 2016). The alternative hypothesis of an ancient horizontal
gene transfer between the Negativicutes and the Halanaerobiales could not be totally excluded.
Here, we have updated our analyses to include a third diderm Firmicute lineage, the
Limnochordales, which was recently reported from anaerobic lake sediments. We show that
Limnochordales represent a distinct branch from Halanaerobiales and Negativicutes. The
genomic analysis highlights common features with the other two diderm Firmicutes lineages,
but also interesting peculiarities that shed light on the evolution of outer membranes in
Bacteria. The existence of a third diderm lineage in the Firmicutes weakens the hypothesis of an
ancient horizontal gene transfer and infers even more independent OM losses in this phylum
than previously thought. We anticipate that additional diderm lineages may be found in this
major bacterial phylum.

Introduction

The cell envelope is one of the most ancient features of life; yet, most aspects of its
evolutionary history remain obscure. The phylogenetic relationships among
monoderm and diderm bacterial phyla are ill-resolved and the details of such
transition have been elusive. In this respect, the existence of both monoderm and
diderm lineages within the same phylum represents a unique opportunity to clarify
this issue. This is the case of the Firmicutes, which include two clades that display
outer membranes, the Negativicutes and the Halanaerobiales (Whitman, 2011).

We recently demonstrated that the Negativicutes and Halanaerobiales form two
phylogenetically distinct lineages, each close to different monoderm relatives
(Antunes et al,, 2016). In addition, phylogenetic analysis of the core biosynthetic LPS
genes showed that these were inherited vertically in diderm Firmicutes, as in most
diderm bacterial phyla. Annotation of OM markers in the genomes of Halanaerobiales
and Negativicutes showed that many of these genes are clustered. Furthermore, it
indicated that these two lineages display a puzzling combination of monoderm and
diderm features. We have recently confirmed these bioinformatics predictions by
producing an OM proteome for the model diderm Firmicute Veillonella parvula
(Poppleton et al., 2017). We put forward the hypothesis that the diderm envelope of
Negativicutes and Halanaerobiales is an ancestral characteristic of the Firmicutes that
was retained only in these two lineages, while it was lost multiple times
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independently during the diversification of this phylum to give rise to the classical
Gram-positive cell envelope architecture. An alternative, although less likely, a
scenario wherein a first horizontal gene transfer of the genetic determinants for an
OM from a diderm bacterium to the ancestor of Halanaerobiales or the ancestor of
Negativicutes, followed by a second transfer between these two ancestors.
Recently, the first member of a new lineage belonging to the Firmicutes,
Limnochorda pilosa, was isolated from a brackish meromictic lake (Watanabe et al,
2015). On the basis of 16S phylogeny, it was found to be distantly related to the family
Symbiobacteriaceae and family XVII Incertae Sedis in the class Clostridia (Watanabe et
al,, 2015). The genome of L. pilosa was released the year after, revealing the presence
of classical OM markers, consistent with a ultrastructural evidence for a diderm cell
envelope, and a partial set of sporulating genes, a defining characteristic of the
Firmicutes (Fukui et al.,, 2016). The existence of an additional diderm lineage in the
Firmicutes provides a great opportunity to test our hypothesis. Here, we have
obtained additional genomic data from members of Limnochordales by probing
available metagenomics databases and included them in our analyses. Phylogenetic
analysis and annotation of OM markers further supports the scenario of a diderm
ancestor of the Firmicutes and provides important insights into the biogenesis,
functioning, and evolution of the OM in this phylum, as well as all Bacteria.

Results
Assembly of three new genomes from uncultured Limnochordales
representatives

Table 1. Characteristics of the new Limnochorda genomes obtained from metagenomes. A local databank of all metagenomes
available on JGI IMG (Chen et al., 2017) was queried using the RNA polymerase (3’ of L. pilosa (BAS29096.1) by BLAST (Camacho et
al,, 2009). Phylogenetic analysis of the top hits confirmed that they belonged to strains related to L. pilosa. The corresponding

metagenomes were therefore gathered to reconstruct the genomes of these strains by using tetramer frequency was calculated (Dick

et al, 2009) and binning with emergent self-organizing map (ESOM) (Ultsch and Mdrchen, 2005). The resulting genomes were

checked for ~ completeness, heterogeneity, and  contamination with CheckM (Parks et al, 2015).
Names Limnochorda Gold Project Completion ~ Contamination heterogeneity Bp Contigs Genes GC %
Metagenomes 1D % % %
Limnochorda  Biogas fermentation Gp0056816 97.46 9.36 23.81 523275 54 3024 47.5
sp. B1P2 Plant 1 DNA2
Limnochorda  Biogas fermentation Gp0056815 86.76 6.9 54.55 1848866 246 2007 57.9
sp. B4P1 Plant 4 DNA1
None Given Biogas fermentation Ga0079224 12.83 0 0 - - -
Plant 1 DNA1
Limnochorda  Agricultural soil Gp0056840 54.6 0 0 1406273 173 1427 63.1
sp. UASM microbial
communities from
Utah to study Nitrogen
management
Limnochorda 100 0 0 3817704  Complete 3432 69.7
pilosa HC45 Genome

In order to enrich genome data from the Limnochordales, we queried available
metagenomics databases by using as seed the RNA polymerase (8’ sequence of L.
pilosa. Four metagenomes were identified that contained related sequence homologs
clustering with L. pilosa in preliminary phylogenetic trees and therefore belonging to
candidate Limnochordale strains. Three of these were from an ethanol producing
bioreactor, and the fourth was obtained from agricultural soil samples (Table 1). By
binning and clustering these metagenomes, four Limnochordales genomes were
reconstructed and checked for contamination, completeness, and heterogeneity. Two
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of them (L. sp. BIP2 & L. sp. B4P1) were nearly complete and had low contamination,
one (L. sp. UASM) was 54 % complete, while the fourth (Ga0079224) proved too
incomplete and was excluded from further study.

Limnochordales have a distinct origin from Negativicutes and

Halanaerobiales
To analyze the placement of the Limnochordales within the Firmicutes and their
evolutionary relationships with the other two diderm lineages, we built a phylum-
level phylogenetic tree based on a concatenation of ribosomal proteins and 229
representative taxa, including some new lineages whose genome became available
recently (M&M). Only three Limnochordale genomes could be utilized, as L. sp. UASM
had only less than 50 % of the ribosomal proteins. The Bayesian tree was well
resolved at most nodes and largely consistent with our previous analysis, to the
exception of two deep and poorly supported nodes concerning the yet unresolved
monophyly or paraphyly of Clostridia with respect to Bacilli (Figure 1). The
Limnochordales form a distinct branch from the Negativicutes and Halanaerobiales
and fall within the Clostridia forming a robustly supported cluster with the monoderm
families Symbiobacteriaceae and XVII Incertae Sedis, a position consistent with
previous 16S rDNA analysis (Fukui et al, 2016).
From this analysis, we also managed to assign a robust phylogenetic placement
for the Tissierella, a new clade of Firmicutes recently sequenced from human samples
and including emerging opportunistic pathogens (Alauzet et al, 2014). Also of note is
the position of Dethiobacter alkaliphilus as the first sequenced member of a new deep
branching lineage in the Natranaerobiales/Halanaerobiales clade (Figure 1). This
placement is consistent with the fact that these lineages share similar environmental
distribution in alkaline, thermophilicc and halophilic environments. Further
exploration of these deep clades in the Firmicutes will be key to understand the very
emergence of this important bacterial phylum.

Annotation of OM markers in Limnochordales identifies shared

and unique traits.

The existence of a third diderm lineage provides an exceptional opportunity to gain
further insights into the biogenesis and function of the OM in the Firmicutes.
Therefore, we proceeded to identify and annotate putative OM markers in the genome
of L. pilosa and the three most complete reconstructed genomes (Figure 2). L. pilosa
possess a large genetic cluster that contains many genes responsible for OM
biosynthesis and function (Figure 2), similar to the one that we previously identified
in the Negativicutes and Halanaerobiales (Antunes et al., 2016). Within this cluster are
the genes responsible for the OM rings of diderm-type flagella, LPS biosynthesis and
transport, and -barrel synthesis machinery. Additionally, it has one or multiple
copies of the specific type of OM attachment typical of Negativicutes and
Halanaerobiales (OmpM) that is distinct from Braun’s lipoprotein (Antunes et al.,
2016). Although the Limnochordales assembled from metagenomes did not have a
whole contig containing the entire genetic locus, this cluster may be conserved in the
other members of this lineage as well.
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Figure 1. Phylogenetic placement of Limnochordales. Phylum-level phylogeny of the Firmicutes. Bayesian phylogeny of the
Firmicutes based on a concatenation of 47 orthologous ribosomal proteins comprising 5,551 amino acid positions. The tree was
calculated by PhyloBayes and the CAT+GTR+I'4 model (Lartillot et al, 2009). Values at nodes represent Bayesian posterior

probabilities. The scale bar represents the average number of substitutions per site.

83




TolC  B-barrel Assembly LPS Biosynthesis Outer Membrane Tether

&
Negativicutes s ey P
Ll s pan S S b S y !ée“ 78 Bes NI RN ErS
[Pelosinus fermentans JBW45 E‘“H“‘i& “ _-“ﬁ “ --Jf *a ‘5[- - -.--5
CPO10978.1
L L2SE L YISV I NI N A Y ST
Veilonei parula DSWM2008 it e i i i it G e
CPo01820.1 >
5 P gaies & 5 I o ¢ o0 f Lipde b IS F T Ter e B 4
|Selenomonas ruminantium TAME421 E.’i‘“@iﬁ--é K““Miw““:{wm{f -
AP012292.1 r r ¢ f‘y & i
ga‘f&‘ﬁw‘”ﬂ""‘f 8 | PEITE 3 08 &I p i 8 v Ay g5 £3
Ac(ﬂg‘u%.;nnl?anfmcus intestini MR95 £ “-_“- — -& % 5*-:&% . - g é!g 5!!.%
p e ;jf.rf & s .
2 & A S & s e d £ 2 s dpde & & L ELTES Fero s P PN C T
egasphsera elscen DSM 20460 i e — - D e i i ;e e
T p &

) s T EES A P A F apap po st yad P TESTEINrE £ 5 AL LA )
Cleliter pneumosintes FOST7 L e i Eﬁ!ﬁ g S S o ) E -
Halanaerobiales P ’

y S o £ Fes s PSS fe £ b o P bpre 85 FERTSES £ & EANe
% F
octroides o g-imf-—»-ui-i% S s w e |  deriem -r—n:--t—n;
g JE s g ag & £ es £ & LEITE & EL ST £ N
lacetohalobium arabaticum DSM 5501 ““ﬁm ‘dm Mm --‘ [ H
dEE o A Feps &8 cigia dese £7. A &S o 4 PAred S £ogr Fu
P — i it it i e A ___1} i 5
- ol 7 3 & & & Fa £ "
palangerotium hydtogeniomans é-ﬁ’w e w5 o el e
Limnochordales Fdbg dasd & g f: 5 x?fg‘fgﬁﬁf S sff;:s@ 2 s P
Limnochorda pilosa HC45 ”"w i -'- § Sm—
NZ_AP014924.1
.&nwaf“"?‘uf 5 e .e’\ff:e’ IITI N7 ﬂf‘ s2 I EIRE
Limnochorda sp. B1P2 ) | I} | I |
Contig 00625 ) Contig 03965 Contig 04218
& dages O S oo £ 8 o a%"&r*f f‘jg
imnochorda sp. B4P1 neEs | I L
r s s Comgenner
[Limnochorda sp. UASM e | I e
Proteobacteria T L TR Ly T TNy
Escherichia coli -K12 H M!E!g F- i g H § ey

NC_000913.3

Figure 2. Colocalization of genes encoding LPS synthesis and transport, OMP assembly and structural OMPs in the Negativicutes,
Halanaerobiales, Limnochordales, and Escherichia coli. One representative for each genus with complete genomes of diderm
Firmicutes is shown, with all Limnochordales (for full distribution and accession numbers see Supplementary file 1). Genome
accession number is stated under the name while nucleotide position is given at the start and end of each continuous diderm locus
(solid black bar). Contigs have their names listed underneath and are bordered by double black bars. Genes are coloured according
to their functional class: LPS synthesis and transport (green), OMP assembly (blue), flagellum (light pink), OM-PG attachment (red),
Conserved hypothetical (brown), efflux (purple), and conserved peripheral genes (grey) (see text for discussion). White boxes
indicate proteins not known to being related to the OM or nonconserved proteins whose connection with the OM is unclear. Genomic
synteny was investigated using the interactive web-based visualization tool SyntTax (Oberto, 2013).

Some unique characteristics are evident in the Limnochordales genomes. For
example, they lack homologues of tamB, the IM B-barrel assembly chaperone of a
putative ancestral TAM/BAM system that has a conserved co-localisation with the OM
component bamA and the chaperone skp in both Negativicutes and Halanaerobiales
(Antunes et al,, 2016), as well as other bacteria (Heinz et al., 2015). We could only
detect bamA and skp within the Limnochordales cluster. tamB homologs are absent in
a few deep branching phyla as well, most notably the Thermotoga (Heinz et al., 2015),
suggesting that Limnochordales may not be unique in this aspect. tamB may be
replaced by asmA, a homolog of tamB with unclear function (Prieto et al., 2009), which
is present at a different genetic locus.

Interestingly, the genomic locus of Limnochordales contains two hypothetical OM
proteins (DUF2233-containing protein and YitT-like protein (Figure 2) that we had
previously identified as being conserved in Negativicutes and Halanaerobiales
(Antunes et al., 2016) and were experimentally proven to be in the OM (Antunes et al.,
2016; Poppleton et al, 2017). Additionally, we identified two other conserved
hypothetical proteins within the gene cluster that we did not previously note: a sigma
factor (Sigma 28, FliA family) and ybjH, a B-barrel protein with unknown function
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(Figure 2). The fact that these proteins are conserved in all three diderm Firmicutes
lineages strongly suggests that they may be involved in processes linked to the OM
and makes them priority targets for experimental characterization.
Finally, Limnochordales appear to have a reduced complement of the genes involved
in LPS biosynthesis, which is otherwise present in both Halanaerobiales and
Negativicutes. Most notably, they lack IpxK, an enzyme which phosphorylates lipid A,
IpxL/M, responsible for the addition of a lauryl group, as well as KdsA-D, responsible
for KDO biosynthesis. These functions may be replaced by hypothesized
glycotransferases in the L. pilosa genome (Figure 2).

Phylogenetic analysis of LPS core genes is consistent with a

vertical inheritance of the OM in the Limnochordales
Limnochordales were included in an updated phylogeny of the core genes of LPS
biosynthesis (IpxABCD) including representatives from all major LPS producing
bacterial phyla (Figure 3). The tree is completely congruent with our previous
analysis (Antunes et al, 2016), demonstrating no recent transfer of the LPS
biosynthesis machinery among major phyla. Moreover, Limnochordales robustly
cluster with Halanaerobiales and Negativicutes. This strengthens our previous
hypothesis that the four core LPS genes, and by extension, the other components of
the large genomic locus, were present in the ancestor of all Firmicutes and inherited
vertically in the three diderm lineages.

Previous analyses on the evolution of KDO-LPS biosynthesis in bacteria have
proposed a stepwise acquisition of LPS biosynthesis genes plateauing at Escherichia
coli with a full complement of genes, with the Cyanobacteria and Dictyoglomi
representing the ancestral four-genes reduced state (Opiyo et al, 2010). As
Limnochordales have also a reduced complement of LPS biosynthetic genes and no
KDO genes, we mapped the presence/absence of these genes upon our tree (Figure 3,
Supplemental table 2). The inclusion of a larger taxonomic sampling and of the three
diderm Firmicutes lineages now indicates the presence of reduced pathways in a
number of bacterial lineages other than Limnochordales and Dictyoglomi, namely
Deinococcus-Thermus, Dictyoglomi, and the Atribacteria (Figure 3). This might mean
that this reduction might have arisen multiple times independently during bacterial
diversification led to a wide array of LPS molecules. In the Cyanobacteria we found the
biosynthetic capabilities to produce KDO, however they did not encode waaF, the
attachment enzyme. The Cyanobacteria have a diverse array of LPS types, both with
and without KDO (Durai et al., 2015), and is not likely to be the ancestral state. As for
L. pilosa, it is possible that these genes were replaced by non-homologous
glycotransferases, a hypothesis that remains to be investigated experimentally. These
novel LPS types need isolation and structural characterization, as they might have
interesting properties, as some types of Cyanobacterial LPS have benefits to human
health (Durai et al., 2015).
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Conclusions

The presence of a third diderm lineage in the Firmicutes confirms and extends our
previous analysis and the hypothesis that the ancestor of all Firmicutes possessed an
LPS outer membrane (Antunes et al., 2016). In particular, while the possibility could
not be totally excluded that the last common ancestor of the Negativicutes transferred
the OM to the last common ancestor of the Halanaerobiales, the existence of a third,
independent diderm lineage weakens this scenario. It would, in fact, require at least
three ancestral transfers, a highly improbable evolutionary event. Moreover, the
inclusion of Limnochordales in our analyses leads to inferring even more independent
losses of the outer membrane in this phylum than previously thought.

Bacillales O
Lactobacillales O
4 Bacillales O

= Figure 4. The evolutionary scenario on the
ﬂ Evolution of the OM in the Firmicutes.

The presence of an LPS-OM in the ancestor of all

Firmicutes is indicated by a double red circle.

Thick red lines represent the vertical

Clostridiales O

Clostridiales O inheritance of the ancestral OM in the three
O diderm lineages (Negativicutes, Halanaerobiales,
™ and Limnochordales), whereas thin black lines
Negativicutes © represent the multiple OM losses that gave rise
to the monoderm cell envelope architecture of
ClostridialesO most present-day Firmicutes.

@— Limnochordales @

Clostridiales O

O

O

Clostridiales O

In this respect, the study of diderm Firmicutes and their closely related
monoderm lineages is key understand the processes that led to OM loss, and the
impact on key systems related to the biogenesis and functioning of the cell envelope.
Interestingly, the Symbiobacteriaceae, the monoderm clade that is sister to
Limnochordales, displays interesting characteristics. One of their members,
Symbiobacterium thermophilum, was in fact originally thought to be diderm due to its
relatively thin PG and an apparent OM in electron microscopy images (Hirata et al,,
2000). Indeed, it was later found that this is, in fact, an S-layer, and this was confirmed
by the fact that no sequenced genomes of members of the Symbiobacterium clade
possess any homologs of the genes coding for OM markers (Ueda et al, 2004).
Nonetheless, the cell envelope characteristics and the close phylogenetic relationships
of Symbiobacterium to Limnochordales represent a narrower model to study how the
OM was lost in most Firmicutes. A provocative yet possible hypothesis is that the
apparently reduced number of genes coding for OM components within the
Limnochordales may be an indication that this clade is in the process of losing its OM.

Characterization of the Limnochordales cell envelope will add important insights
into the nature of the diderm Firmicutes outer membrane and further highlight the
diderm/monoderm transition in Bacteria. Finally, we anticipate that additional
Firmicutes diderm lineages may be found through genomic and microscopy
exploration of the vast diversity of this major bacterial phylum.
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Materials and Methods

Phylogenetic analyses

All methods were taken in their entirety from our previous work (Antunes et al.,
2016), with the exception of sequence alignment which was performed with MAFFT
v7.055 (Yamada et al,, 2016).

Metagenome Discovery and Assembly

A database consisting of all metagenomes available on JGI IMG (Chen et al,, 2017) was
constructed. This metagenomics database was translated using Prodigal (Hyatt et al.,
2010) with default settings for metagenomes. A subdatabank was constructed that
consisted of only the proteins that elucidated a positive match to the HMM for RNA
polymerase 3’ (PF00623). This databank was queried using the for RNA polymerase {3’
of L. pilosa (BAS29096.1) by BLAST (Camacho et al., 2009). The top hits were further
analyzed and genome reconstruction was attempted. To reconstruct the genomes
tetramer frequency was calculated (Dick et al.,, 2009) and the genomes were binned
with emergent self-organizing map (ESOM) (Ultsch and Moérchen, 2005). These
genomes were checked for completeness, heterogeneity, and contamination with
CheckM (Parks et al., 2015).
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2 Describe the outer membrane of diderm
Firmicutes

Although the work on phylogeny was extremely informative, further characterization
of the diderm Firmicute envelope was necessary to support and enhance my previous work. In
this section, | present two articles: The first is the OM proteome of V. parvula with
subsequent analysis, while the second is the in-depth phylogenomic analysis of a single

mechanism within all major Bacterial groups.
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2.1 Outer Membrane Proteome of Veillonella parvula

Phylogeny and computation can only progress research so far and it must be built on
fundamental bench science. In this work, | obtained the OM proteome of V. parvula. | chose
V. parvula for multiple reasons, the first and not the least is that the Qi laboratory in the
United States had been working on a genetic system that seemed promising for further
analysis of the species; there was no genetic system in any diderm Firmicute to this point.
Another reason is that V. parvula is closely tied to human health, both positively and
negatively, and our results may enable further research on different components of

Veillonella’s OM components.

These results were a true merging of bioinformatics and wet experimental work that
were combined for some of the best work of this thesis. As we were unable to perform any
mutational assay as a control for our tandem mass spectrometry | combined multiple

prediction programs to obtain a suitable substitute.

In this work, we were able to confirm all of the assertions for the presence of OM
components within the diderm Firmicutes. Additionally, we were able to identify components
that were undescribed in the eLIFE paper, such as LptD the OM LPS translocase.

Surprisingly, we found many unexpected features within the genome and proteome. A
large degree of clustering was found for all the OM genes, with the adhesins forming one
cluster, the TonB dependent receptors forming another, and the previously described diderm

cluster being a third.

These results may be a springboard for other work on Veillonella. The detailed
computational analysis combined with the mass spectrometry opened more questions than it
answered. For instance is the dichotomy of the Firmicute Flagella/adhesins a regular
adaptation? What function do the expressed conserved hypothetical proteins do within these
cells? What about the conserved domains? With such an important commensal these
questions are necessary and need answers. The most abundant protein by mass-spectrometry

sprang me on to the article after this on OM attachment.

We recently published this work in Frontiers in Microbiology
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Paris, France

Veillonella parvula is a biofim-forming commensal found in the lungs, vagina, mouth,
and gastro-intestinal tract of humans, yet it may develop into an opportunistic pathogen.
Furthermore, the presence of Veillonella has been associated with the development
of a healthy immune system in infants. Veillonella belongs to the Negativicutes, a
diverse clade of bacteria that represent an evolutionary enigma: they phylogenetically
belong to Gram-positive (monoderm) Firmicutes yet maintain an outer membrane
(OM) with lipopolysaccharide similar to classic Gram-negative (diderm) bacteria. The
OMs of Negativicutes have unique characteristics including the replacement of Braun’s
lipoprotein by OmpM for tethering the OM to the peptidoglycan. Through phylogenomic
analysis, we have recently provided bioinformatic annotation of the Negativicutes diderm
cell envelope. We showed that it is a unique type of envelope that was present in the
ancestor of present-day Firmicutes and lost multiple times independently in this phylum,
giving rise to the monoderm architecture; however, little experimental data is presently
available for any Negativicutes cell envelope. Here, we performed the first experimental
proteomic characterization of the cell envelope of a diderm Firmicute, producing an
OM proteome of V. parvula. We initially conducted a thorough bioinformatics analysis
of all 1,844 predicted proteins from V. parvula DSM 2008’s genome using 12 different
localization prediction programs. These results were complemented by protein extraction
with surface exposed (SE) protein tags and by subcellular fractionation, both of which
were analyzed by liquid chromatography tandem mass spectrometry. The merging of
proteomics and bioinformatics results allowed identification of 78 OM proteins. These
include a number of receptors for TonB-dependent transport, the main component of
the BAM system for OM protein biogenesis (BamA), the Lpt system component LptD,
which is responsible for insertion of LPS into the OM, and several copies of the major
OmpM protein. The annotation of V. parvula’s OM proteome markedly extends previous
inferences on the nature of the cell envelope of Negativicutes, including the experimental
evidence of a BAM/TAM system for OM protein biogenesis and of a complete Lpt system
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for LPS transport to the OM. It also provides important information on the role of OM
components in the lifestyle of Veillonella, such as a possible gene cluster for O-antigen
synthesis and a large number of adhesins. Finally, many OM hypothetical proteins were
identified, which are priority targets for further characterization.

Keywords: Negativicutes, proteomics, BAM/TAM complex, adhesins, OmpM, LPS, Lpt system, O-antigen

INTRODUCTION

Veillonella parvula, an anaerobic coccus, was discovered and
described 120 years ago when Veillon and Zuber isolated it from
an appendicitis abscess (Veillon and Zuber, 1898). Sixty years
later the same microbe was used in the first observation of an
outer membrane (OM) (Bladen and Mergenhagen, 1964) thereby
demonstrating a key difference between the Gram-negative and
Gram-positive cell envelope architecture. Since then, 13 other
Veillonella species have been isolated and described from both
humans and rodents (Euzeby, 1997). Veillonella strains are found
in several niches of the human body including the mouth
(Do et al, 2015), lungs, gastrointestinal tract (Rosen et al,
2014), and vagina (Africa et al, 2014). V. parvula may serve
an important role in many of these environments, however
its dominant niche is as a secondary colonizer in the mouth
(Griffen et al.,, 2012). This normal component of the human
microbiome may be an opportunistic pathogen; its presence has
been associated with several disease states and was the primary
infectious agent in at least fifty cases since the 1970, both with
and without an underlying condition (Hirai et al., 2016). In direct
opposition to its role as an opportunistic pathogen, recent data
suggests that Veillonella may perform a protective role and aid in
early childhood immune system development. Epidemiological
studies of infants have demonstrated that presence of Veillonella
is negatively correlated with asthma (Arrieta et al, 2015),
bronchiolitis (Hasegawa et al., 2016), and autism (Strati et al.,
2017).

In addition to being an important component of the human
microbiome, Veillonella, and other members of the Negativicutes
are evolutionary enigmas. They phylogenetically belong to the
Firmicutes (low GC Gram-positives or monoderms), yet possess
an OM with lipopolysaccharides (LPS) similar to Gram-negative
(diderm) bacteria (Zeikus et al., 1983; Tocheva et al., 2011;
Campbell et al., 2014). We recently showed that the genomes
of Negativicutes contain genes encoding typical diderm OM
machinery including flagellar rings typical of diderms, Type 4 pili
(T4P) secretin, and an ancestral form of the BAM/TAM system
for OM B-barrel assembly (Antunes et al., 2016). Furthermore,
most OM-related genes were found to reside in a single
genomic cluster (Antunes et al., 2016), hereafter referred to as
the “diderm cluster;” that included genes responsible for LPS
biosynthesis. Through phylogenomic analysis, we proposed that
the diderm cell envelope of Negativicutes represents an ancestral
characteristic that was present in the ancestor of all Firmicutes,
and was lost multiple times independently to give rise to the
monoderm cell envelope in this phylum (Antunes et al., 2016).
Although this work presented important perspectives on the OM
of Veillonella, it was performed in silico and cannot tell us which

proteins are true components of the OM and whether they are
expressed. These predictions can be validated using experimental
proteomic approaches, such as those performed on Bacteroides
fragilis (Wilson et al., 2015) and Actinobacillus pleuropneumoniae
(Chung et al., 2007).

Only two outer membrane proteins from the Negativicutes
have been cloned and studied: OmpM and hemagglutinin-like
adhesins. OmpM is an alternative method for tethering the
OM to the peptidoglycan by binding of polyamine-modified
peptidoglycan through an S-Layer homology (SLH) domain
and a transmembrane B-barrel for OM attachment (Kojima
and Kamio, 2012). This contrasts with Escherichia coli’s Braun’s
lipoprotein (Lpp), which covalently binds PG and integrates into
the OM via a lipid moiety (Braun and Rehn, 1969). In the
case of adhesins, eight were found in Veillonella atypica; one of
which, Hagl, was shown to bind human buccal cells and oral
streptococci (Zhou et al., 2015).

In order to extend these bioinformatic and experimental
data, we have performed the first proteomic analysis of the
OM of V. parvula. By combining bioinformatic prediction and
subcellular fractionation, we have obtained fundamental insight
into the nature of these unique cell envelopes and the lifestyle
of Veillonella, which will help future work on this important
component of the human microbiome.

MATERIALS AND METHODS

Bioinformatic Prediction

To perform in silico prediction, we used 12 distinct bioinformatic
programs on all 1,844 proteins encoded in the V. parvula
DSM 2008 genome. Initial prediction was performed using
three general prediction programs for IM (Inner Membrane),
cytoplasmic, periplasmic, secreted, and OM: PSORTb 3.0.2
(Yu et al,, 2010) using default input parameters for Gram-
negative bacteria, CELLO 2.5 (Yu et al.,, 2004) with default input
parameters for Gram-negative bacteria, and SOSUI-GramN
(Imai et al., 2008) with default parameters. These analyses were
complemented with prediction of transmembrane helices by
TMHMM 2.0 (Krogh et al,, 2001). B-Barrels were predicted
using BOMP (Berven et al., 2004) with the additional BLAST
option. LipoP 1.0 (Juncker et al, 2003) was used to refine
cytoplasmic and IM prediction. Positive lipoprotein prediction
was defined as a consensus from PRED-LIPO (Bagos et al., 2008)
and LipoP. TAT secreted proteins were identified as a consensus
from PRED-TAT (Bagos et al., 2010) and TatP (Bendtsen et al.,
2005). Positive SEC signal sequences were defined as a two out
of three or greater concurrent result of SignalP, PRED-LIPO,
and Phobius (Kall et al., 2007). Extended signal peptides (ESP)
were queried using HMMER (Mistry et al., 2013) with the ESPR
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domain (PF13018) from PFAM within an E-value cutoff of
0.001.

Positive prediction for cytoplasmic proteins was determined
by a three out of four or greater concurrent results of PSORT,
CELLO, LipoP, and SOSUL IM prediction was determined
by three out of five or greater concurrent results of PSORT,
CELLO, TMHMM, LipoP, and SOSUI. Positive OM prediction
was determined by three out of four or greater concurrent results
of PSORT, CELLO, BOMP, and SOSUL Positive periplasmic
prediction and secreted proteins were determined by a two out
of three or greater concurrent results of PSORT, CELLO, and
SOSUL

Search for Conserved Domains and

Homologs

To identify homologs of experimentally identified proteins we
ran a BLAST 2.2.30+ (Camacho et al., 2009) search against two
local databases. The first contains a selection of 255 representative
Firmicutes and the second contains all 112 currently available
Negativicutes genomes. Default settings were used except for an
E-value cutoff of 0.0001. Protein domains were searched using
the conserved domain database (CDD) from NCBI (Marchler-
Bauer et al., 2014), PFAM (Finn et al., 2015), InterPro (Finn et al.,
2017), and PANTHER 10.0 (Mi et al., 2015) with the required E-
value cutoff of 0.00001. Protein folds were predicted with Phyre2
(Kelley et al., 2015).

Outer Membrane Protein Extraction

The extraction protocol was modified from Thein et al. (2010).
Fifty milliliters of V. parvula DSM 2008 were grown anaerobically
in triplicate to an optical density at 600 nm of 0.4 (10 h after a
1:100 dilution) in BHIL (BHI (Bacto) + 0.6% sodium L-lactate).
The bacteria were harvested by centrifugation at 15,000 x g for
20 min at 4°C and resuspended in an equal volume of Tris-
HCI (0.1 M pH 7.3 supplemented with 7 mg of DNAse). Cells
were washed two additional times and suspended in 6 ml of
the same buffer. Cells were lysed by French press at 10,000 kPa
for four passes in Tris-HCI (20 mM pH 7.3). Cellular debris
were pelleted by centrifugation at 15,000 x g for 20 min at
4°C. The supernatant was collected and the pellet was discarded.
This step was repeated an additional time. Supernatant was then
diluted with ice cold 0.1 M Na,CO3 pH 11 to a volume of 60
ml and stirred for 1 h at 4°C. The suspension was separated at
120,000 x g for 1 h at 4°C and the pellet washed in an equal
volume of Tris-HCI (0.1 M pH 7.3) and spun at 85,000 x g
for 20 min at 4°C. The wash was repeated twice. The pellet
was resuspended in ddH,O and proteins were TCA precipitated
before MS analysis.

Surface Exposed and Control Sample

Extraction

For extraction of surface exposed (SE) fraction, as well as for
control samples, a protocol was modified from Voss et al. (2014).
Bacteria were grown in triplicate and harvested as in the OM
protein extraction. Five milliliters of bacterial cells were washed
three times in PBS (0.1 M POy, 0.15 M NaCl pH 8.0). Cells
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were resuspended in PBS containing 20 mM of NHS-PEG4-
Biotin (Thermo Fisher Scientific) and incubated on ice for 30
min. Reaction was quenched by washing cells in quench buffer
(PBS 4 100 mM Glycine) three times. Control samples (WC)
were treated identically except that they were incubated in PBS
without labeling substrate. Cells were lysed by French press at
10,000 kPa for four passes in radioimmunoprecipitation (RIPA)
buffer [25 mM Tris-HCI, pH 7.6, 150 mM NaCl, 1% NP-40, 1%
sodium deoxycholate, and 0.1% sodium dodecyl sulfate (SDS)
containing a 1:100 dilution of protease inhibitors] and cellular
debris were removed by centrifugation at 15,000 x g for 20
min at 4°C twice. Control sample was then TCA precipitated.
For SE fraction 1 ml high Capacity Streptavidin Resin columns
(Thermo Fisher Scientific) and reagents were equilibrated to
room temperature. PBS and elution buffer (8 M guanidine-HCI,
pH 1.5) were filtered and degassed. Column was equilibrated with
five column volumes of PBS at a flow rate of 0.2 mL/min on an
AKTA-FPLC. Sample was then applied to the column using the
same rate and washed with 10 column volumes of PBS before
elution in a single column volume of elution buffer. Eluate then
underwent MS analysis.

Trichloroacetic Acid (TCA) Precipitation
TCA was added to OM samples and WC samples to a final
concentration of 20%. The precipitate was spun at 6,500 x g
for 1 h at 4°C. The pellet was washed with 800 pl of —20°C
acetone overnight and then spun at 6,500 g for 1 h at 4°C. The
washing procedure was performed two additional times before
resuspension or storage at —20°C.

LPS Extraction and Visualization

E. coli strains were kindly provided by Laurent Debarbieux. E. coli
(81009, 81009AwaaF, E47a, E47aArfb3; Szijarto et al., 2014)
and V. parvula DSM 2008 were grown in triplicate to an OD
of 0.4. LPS was isolated using hot phenol extraction without
modification as previously described (Davis et al., 2012). LPS was
then resolved onto either a 0.1% SDS 13% or 17% PAGE gel and
visualized with Pro-Q Emerald 300 (ThermoFisher Scientific) as
per the manufacturer’s instructions.

In-Gel Protein Digestion

Protein samples were loaded on a 0.1% SDS 12% PAGE
gel. After the electrophoretic migration, the gel was stained
with Coomassie Blue, each band of interest was cut, and in-
gel tryptic digestion was performed as described previously
(Wilm et al, 1996). Briefly, gel slices were washed in
100 mM ammonium bicarbonate for 15 min, followed by
several washing steps to eliminate the stain in 100 mM
ammonium bicarbonate/acetonitrile (1:1). Samples were reduced
(10 mM DTT in 100 mM ammonium bicarbonate, 30 min
at 56°C) and alkylated (55 mM iodoacetamide in 100 mM
ammonium bicarbonate, 30 min at room temperature in the
dark). Proteins were digested by 250 ng Sequencing Grade
Modified Trypsin (Promega, Madison, WI, USA) in 10 mM
ammonium bicarbonate overnight at 37°C. Resulting peptides
were extracted, dried in the Speed-Vac and then resuspended in
water/acetronitrile/formic acid (98:2:0.1).
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Liquid Protein Digestion

Tryptic digestion was performed by eFASP (enhanced Filter-
Aided Sample Preparation) as described previously (Erde et al.,
2014). Samples were buffer-exchanged into buffer containing 8
M urea, 100 mM ammonium bicarbonate, and 0.2% deoxycholic
acid using Tween passivated 30-kDa cut-off Amicon filters
(Millipore Inc., USA). Samples were reduced with 5 mM
tris (2-carboxyethyl) phosphine (TCEP) for 30 min at room
temperature, alkylated in iodoacetamide (50 mM final, 30 min
room temperature in the dark), treated with 1 pg of sequencing-
grade modified trypsin (Promega, USA) overnight at 37°C under
agitation. Peptides were recovered by centrifugation.

Mass Spectrometry Analysis

Trypsin-digested peptides coming from gel samples were
analyzed by nano LC-MS/MS using an Ultimate 3000 system
(Dionex, Amsterdam, The Netherlands) coupled to an LTQ-
Orbitrap Velos. File microliters of each sample were loaded on
a Cyg pre-column (300 pm inner diameter x 5 mm; Dionex)
at 30 pL/min in 2% ACN, 0.1% FA. After 5 min of desalting,
the pre-column was switched online an in-house packed 15 cm
nano-HPLC column (75 um inner diameter) with Cig resin (3
pm particles, 100 A pore size, ReproSil-Pur Basic C;g, Dr. Maisch
GmbH, Ammerbuch-Entringen, Germany) and equilibrated in
95% solvent A (2% ACN, 0.1% FA) and 5% solvent B (80%
ACN, 0.08% FA). The peptides were eluted using a 2-50%
gradient of solvent B during 60 min at 300 nL/min flow rate.
The LTQ-Orbitrap Velos (Thermo Fisher Scientific, Bremen) was
operated in data-dependent acquisition mode with the XCalibur
software (Thermo Fisher Scientific, Bremen). Survey scan MS
were acquired in the Orbitrap on the 300-2,000 m/z range with
the resolution set to a value of 60,000 at m/z = 400. The 10 most
intense ions per survey scan were selected for CID fragmentation,
and the resulting fragments were analyzed in the linear trap
(LTQ). The dynamic exclusion was enabled with the following
settings: repeat count, 1; repeat duration, 30 s; exclusion list size,
500; and exclusion duration, 20 s.

Digests coming from liquid samples were analyzed on
an Orbitrap Q Exactive Plus mass spectrometer (Thermo
Fisher Scientific, Bremen) coupled with an EASY nLC 1000
chromatography system (Thermo Fisher Scientific). Sample was
loaded on an in-house packed 40 cm nano-HPLC column (75
pm inner diameter) with Cjg resin (1.9 pm particles, 100
A pore size, Reprosil-Pur Basic Cig-HD resin, Dr. Maisch
GmbH, Ammerbuch-Entringen, Germany) and equilibrated in
98% solvent A (H,O, 0.1% FA) and 2% solvent B (ACN,
0.1% FA). Peptides were eluted using a 2-45% gradient of
solvent B during 120 or 240 min at 250 nL/min flow rate.
The instrument method for the Q Exactive Plus was set up
in the data dependent acquisition mode using XCalibur 2.2
software (Thermo Fisher Scientific, Bremen). After a survey
scan in the Orbitrap (resolution 70,000 at m/z 400), the 10
most intense precursor ions were selected for higher-energy
collision dissociation (HCD) fragmentation with a normalized
collision energy set to 28. Charge state screening was enabled, and
precursors with unknown charge state or a charge state of 1 and
>7 were excluded. Dynamic exclusion was enabled for 35 s.
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In order to increase throughput and sensitivity methods
used to acquire the data with these two mass spectrometer
have been optimized in accordance with recommended settings
from Thermo Fisher Scientific using HeLa extract sample (from
Thermo) and an in-house complex quality control sample.

Data Processing and Analysis

Raw data were searched using MaxQuant (version 1.4.1.2)
(Cox and Mann, 2008; Cox et al., 2014; with the Andromeda
search engine) against V. parvula Uniprot database (1,844
entries, version 10-2015) and concatenated with known MS
contaminants and reversed sequences of all entries. Andromeda
searches were performed choosing trypsin as specific enzyme
with a maximum number of two missed cleavages. Possible
modifications included carbamidomethylation (Cys, fixed),
oxidation (Met, variable), and Nter acetylation (variable).
Maximum peptide charge was set to seven and five amino
acids were required as minimum peptide length. Most peptides
(~89%) were identified with charge states < +3. Less than 10% of
peptides were identified with a charge state > +4. As you may see
on the graph, peptides (~0.1%) were identified with a charge state
of +6 (for details see PSM charges Pourcentage file deposited in
PRIDE). Andromeda default settings were used; an initial search
was performed using a mass tolerance of 20 ppm, followed by
mass recalibration and a main search with a mass tolerance of
5 ppm for parent ions (Tyanova et al., 2016a). In the MS/MS
search, mass tolerance was set to 10 ppm for the Q Exactive
Plus and to 0.5 Da for the LTQ-Orbitrap Velos. Additional
peptides were identified by the “match between run” option with
a maximal retention time window of 1 min. One unique peptide
to the protein group was required for the protein identification.
Only unique peptides were used to distinguish isoforms. If no
unique peptide was identified, isoforms were combined into the
same “protein group” and the quantification was done for this
protein group. A false discovery rate (FDR) cutoff of 1% was
applied at the peptide and protein levels. MaxLFQ, Maxquant’s
label-free quantification (LFQ) algorithm was used to calculate
protein intensity profiles across samples (Cox et al., 2014). Data
were filtered by requiring a minimum peptide ratio count of
two in MaxLFQ. Absolute protein amounts were calculated in
Maxquant as the sum of all peptide peak intensities divided by the
number of theoretically observable tryptic peptides (intensity-
based absolute quantification or iBAQ (Schwanhdusser et al.,
2011).

For statistical and bioinformatics analysis, as well as for
visualization, Perseus environment was used, which is part of
Maxquant (Tyanova et al., 2016b).

The “proteinGroup.txt” file generated with Maxquant was
used by Perseus to identify proteins enriched in Biotin samples.
Protein identifications were filtered, removing hits to the reverse
decoy database as well as proteins only identified by modified
peptides or considered as potential contaminant. Protein LFQ
intensities were logarithmized. Two valid values out of three were
required for each protein for the confident quantification across
all replicates and missing values imputed by values simulating
low abundance values close to the noise level. For pairwise
comparison and identification of enriched proteins, a modified
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t-test were applied with permutation-based FDR statistics set to
1% and a Sy of 1 (Tusher et al., 2001).

The mass spectrometry proteomics data have been deposited
to the ProteomeXchange Consortium via the PRIDE (Vizcaino
et al, 2016) partner repository with the dataset identifier
PXD005929.

Transmission Electron Microscopy

A densely grown culture of V. parvula DSM 2008 was used for
the preparation for transmission electron microscopy (TEM).
After concentration of the cells via centrifugation, the cells were
either chemically fixed with glutaraldehyde or cryo-fixed with a
high-pressure freezer and subsequent freeze substitution.

For chemical fixation, the cell pellet was resuspended in a
fixation buffer consisting of 100 mM cacodylate including 2
mM MgCly, 2.5% glutaraldehyde (final concentration; 25% stock
solution), and 270 mM NaCl to adjust the osmolarity of the
buffer to the original growth medium. After fixation, the cells
were washed five times with buffer, post-fixed for 30 min in
1% osmium tetroxide, washed again two times with buffer and
three times with double distilled water. Afterwards, the cells were
dehydrated in a graded acetone series, infiltrated with Spurr's
resin and polymerized for 72 h at 63°C. The embedded samples
were then ultrathin sectioned (50 nm sections), post-stained with
lead citrate and visualized in a TEM.

High-pressure freezing was performed with 2 pl of the
resuspended concentrated cells in the respective aluminum
platelets using a Leica HPM 100 high-pressure freezer (Leica
Microsystems GmbH, Wetzlar, Germany). Freeze substitution
was performed in a Leica AFS 2 (Leica Microsystems GmbH,
Wetzlar, Germany) according to the following protocol
(substitution solution): —90°C for 20 h (2% OsO4/acetone),
heating to —60°C within 3 h (2% OsO4/acetone), —60°C for
4h (2% OsO4/acetone), —60°C for 4 h (2% Os04/0. 2% uranyl
acetate/acetone), heating to —30°C within 3 h (2% 0s04/0.2%
uranyl acetate/acetone), —30°C for 8 h (2% 0Os04/0.2%
uranyl acetate/acetone), heating to 0°C (2% Os04/0.2% uranyl
acetate/acetone). After washing three times with ice cold acetone,
the samples were infiltrated with epoxy resin (Spurr’s resin) and
polymerized for 72 h at 63°C. The following steps were identical
to the chemical fixation protocol.

Transmission electron microscopy was performed on a Zeiss
EM 912 (Carl Zeiss AG, Oberkochen, Germany), operated at
80 kV in the zero-loss mode and equipped with a 2k x 2k
dual-speed CCD camera (Trondle Restlichtverstirkersysteme,
Moorenweis, Germany).

RESULTS AND DISCUSSION

Bioinformatic Localization Prediction

We started our study with a comprehensive in silico analysis
of all 1,844 annotated protein-coding genes within the genome
of V. parvula DSM 2008 (see Section Materials and Methods).
The localization prediction of these 1,844 proteins are shown
in Figure 1A. We used three general prediction programs
(PSORT, CELLO, and SOSUI) for inner membrane (IM),
cytoplasmic, periplasmic, secreted, and OM, and specific
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FIGURE 1 | Bioinformatic localization prediction. (A) Localization of V. parvula
proteome predicted by PSORT, CELLO, SOSUI, LipoP, TMHMM, and BOMP
(see text for details). (B) Strategy for refining prediction for the sequences with

undefined localization (see text for details).

programs for OM (BOMP), IM (TMHMM and LipoP), and
cytoplasmic (LipoP) localization. With this strategy, we managed
to robustly predict the localization of 85% (1559/1844) of the
proteins: 63% (1,171) cytoplasmic, 17% (309) IM, 2% (44)
periplasmic, 1% (23) OM, 0.5% (12) secreted, whereas 15% (285)
proteins remained with undefined localization (Figure 1A and
Table S1).

The 23 proteins robustly predicted to be in the OM
include many known OM components such as TonB-dependent
receptors, OmpM, components of the BAM/TAM machinery,
TolC, and OmpA (Table S1). Although localization prediction
methods were able to identify these OM components, they
have limitations due to training on datasets of known OM
proteins, most of which are from the phylogenetically distant
Proteobacteria. This could prevent proper prediction of many
proteins and fail to find novel OM proteins. Indeed, they failed
to correctly identify the experimentally characterized trimeric
autotransporters, which were predicted as secreted or had
undefined localization (Table S1).

As such, we more thoroughly investigated the 297 proteins
with undefined prediction or predicted as secreted, as they might
contain additional OM proteins. As shown in Figure 1B, to
do so, we constructed a bioinformatic filter to sort these 297
proteins. Briefly, we identified the proteins that contained a
signal sequence for translocating through the IM, by checking for
the three IM transport mechanisms: SEC, ESP (Extended signal
peptide), and TAT with seven different programs (Figure 1B;
see Section Materials and Methods). Hundred and ninety-one
proteins lacked any recognizable signal sequence and were
excluded. The remaining 106, which included all of the previously
missed trimeric autotransporters, were combined with the 23
predicted OM proteins to provide a final dataset of 129 potential
outer membrane proteins (Table S2).
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Subcellular Fractionation

To validate our in silico prediction and to firmly identify OM
proteins, we carried out a proteomic analysis of the OM of
V. parvula DSM 2008 (see Section Materials and Methods for
details). We performed three extractions: an outer membrane
(OM) extract, a surface exposed (SE) extract, and a control whole
cell (WC) protein extract. For all three extractions, V. parvula
was grown anaerobically in BHIL medium in triplicate and the
extraction was performed during the exponential growth phase.
For OM protein extraction, we performed French press lysis to
produce vesicles and isolated the OM vesicles with a chaotropic
agent. To identify SE proteins we used a cell impermeable
substrate, PEG-Biotin, which would label any primary amine
exposed to the external environment of the cell. For each of the
three extractions, only proteins that were present in all three
biological replicates were considered for further analysis.

To identify proteins that were unique or shared by the
different fractions we constructed a Venn diagram that is
depicted in Figure 2. The WC control extract contained 1,342
proteins, while the OM fraction contained 990 proteins, and
the SE fraction contained 849 proteins. Many false positives,
including ribosomal proteins, were present in all three fractions
(Table S1). This is a known product of the high sensitivity of MS
analysis (Pocsfalvi et al., 2016).

Among the 1,342 proteins present in the WC extract, 696
were also detected in both the OM and SE fractions (Figure 2).
Two hundred and sixty-two were detected in the WC and OM
fractions but not in the SE. These proteins probably lack an
exposed primary amine that would make them available to the
biotinylation substrate. Similarly, 152 proteins were detected in
the WC and SE fractions but not the OM fraction. These included
many cytoplasmic or IM components and are therefore possible
contaminants (Table S1). Finally, we found 32 proteins unique to
the OM extract, and one protein unique to the SE extract. These
discrepancies may be due to the enrichment of specific proteins
by the OM and SE extraction protocols, combined with a too low
concentration for detection in the WC control sample.

Control (1342)

Outer Membrane
(990)

Surface Exposed
(849)

FIGURE 2 | Venn diagram of peptides detected from the three extraction
methods. Overlap of peptides detected in the control sample (Green), OM
extraction (Red), and SE extraction (Blug).
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For the remainder of the analysis we only considered proteins
as potential OM if they were detected in both the OM and the WC
control samples, while we considered proteins as potential SE if
they were present in all three samples, leading to 958 proteins
(WC + OM = 262, WC + OM + SE = 696). In order to
reduce false positives from this dataset, we crossed it with the 129
potential OM proteins obtained by our bioinformatics prediction
(Table S2). This led to a final list of 78 OM proteins (Table 1 and
Table S§3) that we annotated and created a graphical schematic
representation in a V. parvula cell as shown in Figure 3.
Identification of these OM proteins markedly extends previous
inferences on the nature of the cell envelope of Negativicutes
(Antunes et al.,, 2016) and provides information on the role of
OM systems in the lifestyle of Veillonella.

Additionally, among the 1,844 predicted proteins of V. parvula
roughly one quarter of them (502) were not expressed in our
growth conditions or were not detected by MS due to their
low concentration. As an example, we previously detected a
conserved genomic locus coding for all components of a Type
4 pilus (T4P), including an OM secretin (Antunes et al., 2016).
This cluster is similar to characterized Type 4A pili, which are
known to be responsible for twitching motility (Pelicic, 2008) and
natural competence (Knapp et al., 2017). However, we could only
detect three peptides of PilM in one of the three WC control
extraction replicates and three peptides of the component PilA
in one of the three OM extraction replicates (Table S4). All
remaining T4P components were absent in all of our samples,
demonstrating the absence of their production in our growth
conditions. Nonetheless, a T4P and the other undetected proteins
may be produced in other conditions such as in vivo or during
biofilm formation. Indeed, other species of V. parvula have shown
differential competence capabilities in different media; thisislikely
related to T4P expression (Knapp et al., 2017).

An Ancestral g-Barrel Assembly Machinery,
BAM/TAM, Is Present and Functional in the
OM of V. parvula

The detection of OM proteins implies the existence of a
functional system to insert them in the OM. The presence of a
peculiar and probably ancestral BAM/TAM machinery has been
inferred in Negativicutes and other bacteria (Webb et al., 2012;
Heinz et al., 2015; Antunes et al., 2016). This system putatively
contains three components, the BamA/TamA assembly barrel
(Omp85), the TAM IM/periplasmic chaperone (TamB), and the
BAM periplasmic chaperone (Skp). It has been hypothesized
that this ancestral BAM/TAM machinery functions as both BAM
and TAM in diderm Firmicutes (Heinz et al., 2015; Antunes
et al,, 2016). This hypothesis is supported by the detection of
only a single Omp85 homolog in each genome and the fact
all these genes form a conserved genomic cluster, suggesting
functional linkage. Indeed, a recent study on TamB from Borrelia
burgdorferi demonstrated that it interacts with BamA composing
a BAM/TAM system (Igbal et al., 2016).

Twenty-one of the 23 robustly predicted OM proteins were
predicted as B-barrels, of which 17 were detected in our OM.
This provides the first experimental evidence that the BAM/TAM
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TABLE 1 | 78 OM proteins identified by bicinformatic localization and proteomic
analysis. Order follows discussion in text.

Gene ID Gene description Robust WC OM SE
prediction

Vpar_0526 TamB oM + + +
Vpar_0527 BamA/TamA oM + + +
Vpar_0530* Skp (OmpH) Unclear +- + +
Vpar_1840  Skp (OmpH) Unclear + + +
Vpar_1106  Porin Unclear + + +
Vpar_0227 OmpM oM + + +
Vpar_0555 OmpM oM + + +
Vpar_0556 OmpM OM + + +
Vpar_0557 OmpM OM + + +
Vpar_0467 OmpA oM + + +
Vpar_0647  LptD OM + + +
Vpar_0548 LptA Unclear + + +
Vpar_0645 Uncharacterized protein Unclear + + +
Vpar_0646  Uncharacterized protein Unclear o | T+
Vpar_0393  Uncharacterized protein oM + + +
Vpar_0051  Trimeric autotransporter adhesin ~ Secreted + + +
Vpar_0052  Trimeric autotransporter adhesin ~ Secreted + + +
Vpar_0464  Trimeric autotransporter adhesin ~ Unclear + + +
Vpar_0048  Trimeric autotransporter adhesin ~ Unclear + + +
Vpar_0042  Trimeric autotransporter adhesin ~ Unclear + —+ +
Vpar_0046  Trimeric autotransporter adhesin ~ Unclear + + +
Vpar_1413 TpsA Unclear + + +
Vpar_0041  Trimeric autotransporter adhesin ~ Unclear -+ + +
Vpar_0100  Trimeric autotransporter adhesin ~ Unclear + + +
Vpar_1664  Trimeric autotransporter adhesin ~ Unclear + + +
Vpar_0053 Hemagglutinin domain protein Unclear + + +
Vpar_0330 Autotransporter oM + + +
Vpar_0298 Autotransporter-ShdA like Secreted + +

Vpar_1653  S-layer domain protein Unclear + + +
Vpar_1654  S-layer domain protein Unclear + + +
Vpar_1655  Uncharacterized protein Unclear + + +
Vpar_0074  TonB family protein OM + + +
Vpar_0061  TonB family protein OM o + +
Vpar_0065 TonB family protein oM + + +
Vpar_0066  TonB family protein oM + + +
Vpar_0719  TonB family protein oM + + +
Vpar_0525 TolC OM + + +
Vpar_1367 TolC oM + A +
Vpar_1003* RND family efflux pump Unclear o i e o
Vpar_0011* RND family efflux pump Unclear + +

Vpar_1641* Efflux transporter, RND family, Unclear + +

MFP subunit
Vpar_0270 Peptidase: PepSY family Secreted “+ + 0
Vpar_0057 Peptidase M48 family Unclear + + +
Vpar_0246 Peptidase: PepSY family Unclear + + +
Vpar_0412  Uncharacterized protein Unclear + + +
Vpar_0605 Peptidoglycan binding protein Unclear + + +
Vpar_1232* Uncharacterized protein Unclear + + +
Vpar_1579  ATPase involved in DNA Unclear + + +
repair-like protein
(Continued)

TABLE 1 | Continued

Gene ID

Vpar_1589*

Vpar_0136

Vpar_0305
Vpar_0469
Vpar_0473

Vpar_0519

Vpar_0521
Vpar_0562

Vpar_1148
Vpar_1276
Vpar_1760*

Vpar_1516
Vpar_0809
Vpar_1526
Vpar_1767*
Vpar_0144
Vpar_0937*
Vpar_0945*
Vpar_0965
Vpar_1765*

Vpar_0828
Vpar_0593
Vpar_0260*
Vpar_0765*
Vpar_0410*
Vpar_1045*
Vpar_1188

Vpar_1773

Vpar_0358*
Vpar_0764*

*Predicted lipoproteins that may be anchored to the inner membrane.

Gene description

Unknown Protein containing
DUF3829 domain

Unknown protein containing
copper amine oxidase domain

Uncharacterized protein
Peptidase: PepSY family

Unknown Protein containing
DUF541 domain

Unknown Protein containing
DUF2233 domain

Unknown protein

Unknown protein containing
DUF1421 domain

Uncharacterized protein
Uncharacterized protein

Unknown protein containing
DUF3829 domain

Uncharacterized protein
Peptidase M23
Uncharacterized protein

TPR repeat-containing protein

Hypothetical: MAEBL like protein

VanW like protein
Uncharacterized protein
Glycoside hydrolase family 18

Unknown protein containing
DUF3829 domain

HI0933 family protein
SpollD/LytB domain protein
Periplasmic binding protein
Periplasmic binding protein
Periplasmic binding protein
Beta-lactamase domain protein

Hydrogenase (NiFe) small
subunit HydA

Beta-N-acetylhexosaminidase
(EC 8.2.1.52)

Periplasmic binding protein
Periplasmic binding protein

Robust
prediction

Unclear

Unclear

Unclear
Unclear
Unclear

Unclear

Unclear
Unclear

Unclear
Unclear
Unclear

Unclear
Unclear
Unclear
Secreted
Unclear
Unclear
Unclear
Unclear
Unclear

Unclear
Secreted
Unclear
Unclear
Unclear
Unclear
Unclear

Unclear

Unclear
Unclear

wC Oom
+ o+
+ o+
o
+
+ o+
+ o+
+
S
+ o+
T
+
+ o+
+ o+
+
+ o+
+ o+
+ 4
+ o+
o
-
+ o+
+ o+
+ o+
+
+ o+
+ o+
+
+ o+
-
+ o+

SE

+

+ 4+ + + + +

+

system is functional in V. parvula. Moreover, we detected the
major OM component BamA/TamA (Vpar_0527), as well as
TamB (Vpar_0526) in both our SE and OM fractions (Figure 3,
Table 1, and Table $3). While the presence of the OM component
BamA/TamA was expected, that of TamB is surprising, as TamB
in other species is known to be periplasmic and attached to the
IM. One can speculate that in V. parvula an entire complex
containing BamA/TamA and TamB may be captured in the
OM fraction. However, this fails to account for the strong OM
prediction of TamB by localization software PSORT, CELLO, and
SOSUI (Table S1), which indicates that some OM characteristics
must be present within the V. parvula TamB; unfortunately
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FIGURE 3 | Outer membrane proteome schematic demonstrating the different systems detected by our methods. Proteins found in the OM are in bold while SE

. S-Layer like Proteins
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S-Layer associated protein
Vpar_1655

we cannot determine what these characteristics are, due to
the machine learning nature of the programs. Interestingly,
TamB of E. coli (NP_418642.1) is also predicted to be in the
OM by two out of the three programs (not shown), yet its
IM/periplasmic localization has been firmly established through
protease shaving (Selkrig et al., 2012). Discrepancies also exist in
previous fractionation mass-spectrometry studies, as TamB was
found in higher concentration in the OM than in the IM in E. coli
(Martorana et al., 2014). Together, these data suggest that TamB
may actually be both in the OM and the IM, or span the two
membranes.

Four genes potentially encode the chaperone Skp in the
V. parvula DSM 2008 genome (vpar_0528-30, vpar_1840),
three of which are present in the diderm cluster immediately
downstream of the BamA/TamA gene (Antunes et al., 2016). All
four Skp proteins were detected in our OM fraction. However,
two of them were excluded by our localization prediction
procedure because of their strong prediction as periplasmic
proteins (Table S1). Presence of Skp in the OM fraction is not
unusual as Skp in Salmonella was originally thought to be in
the OM, hence the old name OmpH (Thome and Miiller, 1991).
Furthermore, it has been shown experimentally that this protein
interacts strongly with both the BAM system and OmpA, by
functioning as a chaperone helping insertion of proteins in the
OM (Selkrig et al., 2014).

Porins Are a Fundamental Component of

Veillonella’s Outer Membrane
A key component of bacterial OM are porins, which are necessary
for passive diffusion of small molecules (Galdiero et al., 2012).

Frontiers in Microbiology | www.frontiersin.org

The genome of V. parvula contains genes encoding a typical
porin (vpar_1106) consisting entirely of a p-barrel, four copies
of OmpM (vpar_0227, vpar_0555-7) which contains a porin
domain and a periplasmic SLH domain, and a homolog of
the pathogenicity factor OmpA (vpar_0467) containing typical
OmpA and beta-barrel domains (Confer and Ayalew, 2013).

We previously described the presence of three OmpM
encoding genes in tandem within the diderm cluster of V. parvula
(vpar_0555-7) (Antunes et al., 2016). During the course of this
analysis we discovered a fourth (vpar_0227) at a different locus.
The three OmpM proteins found within the diderm cluster
(Vpar_0555-7) are among the most abundant proteins in the OM
fraction by both quantification of our LC-MS/MS data (Table S5)
and SDS-PAGE band excision MS (Bands 4 and 5) (Table S6).
This correlates well with the function as an OM tether, as in E. coli
Braun’s lipoprotein is the most numerous protein in the cell
(Braun, 1975). Furthermore, this supports the hypothesis that all
Negativicutes utilize OmpM as a form of attachment (Kojima and
Kamio, 2012). Moreover, this is consistent with a transcriptomics
study of three Veillonella species from the mouth, which found all
three copies of OmpM to be the most abundant OM transcripts
(Do et al., 2015), further highlighting the importance of these
proteins (Kojima et al., 2016).

We detected all four copies of OmpM in both the OM
and the SE fractions (Figure 3, Table 1, and Table S3). Because
of OmpM’s abundance and dominant role in the OM, an
exposed area of Veillonella’s OmpM may be involved in
adhesion and biofilm formation. Previous bioinformatics studies
have suggested that OmpM in the Negativicute Selenomonas
ruminantium may be SE and interact with other bacteria (Kojima
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et al.,, 2011). We previously wondered why there are multiple
copies of the OmpM tether in diderm Firmicutes (Antunes et al.,
2016); indeed, Braun’s lipoprotein is usually in single copy, with
the exception of Salmonella’s from a recent gene duplication event
(Sha et al., 2004). Because the four OmpM proteins are not
identical, it is possible that they each provide a different surface
for adhesion and/or immune evasion.

We also detected an OmpA homolog (Vpar_0467) in the OM
and SE fractions. OmpA is an important protein in the OM
of bacteria as it has strong pathogenic roles involving cellular
invasion, adhesion, and host cell evasion (Confer and Ayalew,
2013) and therefore may be involved specifically in pathogenicity
of V. parvula. Consistent with this hypothesis, a search for
OmpA homologs in other Negativicutes revealed its presence in
a few other human-related members of the family Veillonellaceae
(Figure 4).

A Complete LPS Transport System

As we previously reported (Antunes et al., 2016), Negativicutes
have the genetic potential to make and transport LPS to the
OM. Most LPS biosynthesis genes are embedded in the diderm
cluster in Negativicutes genomes, including that of V. parvu
(Figure 5A). We were previously unable to identify the OM
flippase components LptD or LptE, nor any component of
potential O-antigen biosynthesis (Antunes et al., 2016). Here,
an LptD homolog (Vpar_0647) was detected in the OM and SE
fractions and identified as being an OM protein by localization
prediction software (Figure3, Table1, and Table S1). This
potential LptD encoding gene is located outside of the diderm
cluster in a different region of the genome (Figure5B).
Interestingly, two proteins encoded by genes upstream of IptD
(vpar_0645 & 0646) were both found in the OM and SE fractions
(Figure 5B and Table S1). In addition, vpar_0646 and IptD are

Anaerovi

from the available literature is also given. For discussion, see main text.

Veillonellaceae

Veillonella dispar ATCC 17748
Veillonella parvula DSM 2008
Veillonella atypica KON

Veillonella montpellierensis DSM 17217
Veillonella ratti ACS-216-V-Col6b
Veillonella magna DSM 19857

Dialister succinatiphilus YIT 11850
Dialister invisus DSM 15470

Dialister micraerophilus DSM 19965
Negativicoccus succinicivorans DORA_17 25
Anacroglobus geminatus F0357
Megasphaera micronuciformis F0359
Megasphaera genomosp. type | str. 28L
Megasphaera elsdenii DSM 20460

Selenomonadaceae

Mitsuokella multacida DSM 20544

Mitsuokella sp. oral taxon 131 str. W9106
Selenomonas bovis DSM 23594

Selenomonas ruminantium subsp. lactilytica TAM6421
Centipeda periodontii DSM 2778

Selenomonas sp. oral taxon 138 str. F0429
Anaerovibrio lipolglicus LB2005

rio sp. RM50

Megamonas funiformis YIT 11815
Megamonas rupellensis DSM 19944
Propionispira raffinosivorans DSM 20765

Acidaminococcaceae
Phascolarctobacterium sp. CAG266
Phascolarctobacterium sp. CAG207

Phascolarctobacterium succinatutens YIT 12067
Acidaminococcus fermentans DSM 20731
Acidaminococcus intestini RyC-MR95
Succinispira mobilis DSM 6222

Sporomusaceae
Anaeromusa acidaminophila DSM 3853
Anaeroarcus burkinensis DSM 6283
Pelosinus fermentans DSM 17108
Acetonema longum DSM 6540
Thermosinus carboxydivorans Norl
Sporomusa ovata DSM 2662

FIGURE 4 | Distribution of selected protein-coding genes in select proteins among Negativicutes. Schematic tree based on phylogeny of the Negativicutes from
previous analysis (Antunes et al., 2016). Presence and absence of key genes are indicated by + and — symbols, respectively. The dominant niche of each strain taken
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FIGURE 5 | Lipopolysaccharide biosynthesis clusters. Biosynthesis clusters found within V. parvula of (A) core biosynthetic and transport machinery, (B) conserved
IptD cluster, (C) proposed LPS modification cluster. Bold arrows represent peptides detected in the OM. Localization is presented by color: Gray, unclear; Blue,
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conserved in sequence and synteny among all Negativicutes
members (Table S3). We were unable to ascertain the function
of Vpar_0645 & 0646 as we could find no conserved domains or
clear homologs in sequence databases. It is possible that these
proteins function with the Lpt complex of V. parvula or are
functional equivalents of LptE, which caps the transport pore of
LptD.

Finally, we detected the periplasmic components LptA
(Vpar_0548) and LptC (Vpar_0547) in our OM and surface-
exposed fractions. LptC was excluded from our final OM dataset
because it did not pass the bioinformatics filter due to a lack
of any discernible signal sequence. While we cannot exclude a
contamination of periplasmic components in our OM fraction, it
is possible that LptA and LptC were dragged to the OM fraction
by strong interaction with LptD, thereby suggesting the existence
of a complete Lpt complex in V. parvula similar to other studied
bacteria (Villa et al., 2013).

O-Antigen in V. parvula?

Despite the presence of a complete pathway to make the lipid-
A core of LPS, we previously could not predict if Negativicutes
make O-antigen or not (Antunes et al., 2016), and the structure
of Veillonella’s LPS is currently unknown. Here, we detected a
protein in the OM fraction that may be used for further LPS
processing (Vpar_0393). Although this protein has no conserved
domains, we could tentatively infer its function based on the
surrounding genomic region (Figure 5C). This region contains
three genes probably involved in sugar anabolism (vpar_0391,
0392, 0394) and is well conserved only among the Negativicutes.
The first protein, Vpar_0391, contains a CE4_SF domain; this
domain is characteristic of polysaccharide deacetylases, such as
PgaB or IcaB. The second protein, Vpar_0392, has the highest
similarity to EpsL from a plasmid of Lactococcus lactis, which
has no known function, yet is the final gene in the eps operon
of exopolysaccharide biosynthesis (Forde and Fitzgerald, 2003).
Although Vpar_0392 and EpsL are clear homologs, none of the
surrounding genes bear any remarkable similarity. Vpar_0394
is annotated as WaaF, an enzyme that is known to be specific
of diderm bacteria. It is responsible for O-antigen attachment
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to LPS by means of transferring a L-glycero-D-manno-heptose
residue to the core oligosaccharide moiety of LPS. Mutation
of this gene in Salmonella results in increase in sensitivity to
antibiotics, detergents, and bile salts (Brooke and Valvano, 1996).
Together, these data suggest that this could represent a new
gene cluster responsible for O-antigen biosynthesis. To confirm
this hypothesis and evaluate whether V. parvula LPS contains
O-antigen we extracted and visualized its LPS on SDS PAGE
(Figure S1). The extraction showed the characteristic ladder-
banding pattern of O-antigen, however further characterization
is necessary to determine V. parvula LPS structure and
function.

V. parvula Has Many Potential Surface
Exposed Adhesins

One of the most prevalent and important aspects of Veillonella’s
lifestyle is its ability to form biofilms and interact with host cells
or other members of the microbiota where it has been identified.
Such interactions are mediated by adhesins and Veillonella has
many of them (Hughes et al., 1992); these adhesins represent
prolonged adaptation and evolution to the biofilm niche of
Veillonella. By controlling the type and quantity of adhesins
expressed it could prefer one substrate or cell and bind with high
affinity. The presence of eight putative hemagglutinins belonging
to the YadA-like family of trimeric autotransporters was recently
reported in V. atypica OK5, and one of them (Hagl) was shown
to be responsible for co-aggregation with resident flora in the oral
cavity (Zhou et al., 2015).

Among the 12 trimeric autotransporters containing a typical
YadA anchor domain in V. parvula DSM 2008 (Figure S2),
we found 10 in all three samples (Table 1). These 10 trimeric
autotransporters possess typical Yad_Head, Yad_Stalk, and Cter
Beta-barrel Yad _anchor domains. They are likely adhesins of
the hemagglutinin family (Bassler et al., 2015). Strikingly, six of
these 10 trimeric autotransporters are located in a massive gene
cluster (56 kb) (Figures S2, S3A). It is difficult to ascertain if this
cluster is conserved in all Negativicutes and how many trimeric
autotransporters it contains, as most of these genomes are
in scaffolds. Trimeric autotransporters contain many repeated
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regions, are modular in nature, contain many recent duplication
events, and may get to be very large; as such, many Negativicutes
scaffolds terminate in these genes thereby preventing synteny
analysis. Two trimeric ATs are notable (Figure S2A): Vpar_0450
was not included in our final list of 78 OM proteins due to
no detection in the OM fraction. It probably had too low of
a concentration to be detected. Vpar_0045 is composed almost
entirely of a Yad_anchor domain and thus is probably not
functional and was not detected in any of our samples.

Interestingly, three trimeric autotransporter adhesins of
V. parvula (Vpar_0041, Vpar_0100, Vpar_1664) possess a
C-terminal SLH motif that is located downstream of the
Beta-barrel YadA_anchor domain (Figure S2). This suggests a
topology where the SLH domain is periplasmic and interacts
with the peptidoglycan, similar to OmpM, to stabilize the
trimeric configuration of these adhesins. We found this type of
architecture between SLH and YadA anchor domains present
in other autotransporters. However, it is restricted to the
Negativicutes pointing to a unique feature potentially linked to
their lifestyle (data not shown).

Upon further analysis, we noticed a distinct pattern
of distribution for the presence of flagella and trimeric
autotransporters in Negativicutes (Figure 4). The Veillonellaceae
and  Acidaminococcaceae  contain  YadA-like  trimeric
autotransporters and lack flagella, while the Selenomonadaceae
and Sporomusaceae typically possess flagella and generally lack
the YadA-like proteins, with only two exceptions (Figure 4).
This peculiar distribution of flagella or adhesins between strains
has not been observed previously and presents a unique case
of evolution driven by lifestyle with the distinct presence of
adhesion or motility. This observation provides a unique
opportunity to study the transition between adhesion and
motile life style, especially in Mitsuokella multacida DSM 20544,
which represents an interesting specimen: it belongs to the
Selenomonadaceae, which are typically flagellated, however
it has lost its flagellum cluster and has acquired adhesins
(Figure 4).

The V. parvula genome also contains two potentially
functional filamentous hemagglutinin (Fha)-like proteins
transported by the two-partner system (TPS) (Figure S2B):
Vpar_0979/Vpar_0980 and Vpar_1413/Vpar_1414 as TpsA
adhesin/TpsB transporter pair. We detected only the TpsA
adhesin Vpar_1413 in the OM and SE fractions (Figure 3,
Table 1, and Table S3). Its transporter Vpar_1414 was detected
in the WC fraction but may have been present at too low
concentration to be detected in the OM or SE fractions. The
other system, Vpar_0979-Vpar_0980, was not detected in any
fraction, including the whole protein fraction, suggesting an
absence of its expression in our growing conditions. It may only
be expressed upon contact with a host cell or when interacting
with other microbial species. Furthermore, Vpar_0979 SEC
secretion signal was only detected by one out of three programs
and may represent a degenerate coding sequence.

In addition to trimeric and TPS systems that almost
exclusively correspond to adhesins, V. parvula encodes classical
autotransporters that contain a C-terminus -barrel domain for
insertion in the OM and an N-terminus passenger domain for
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function. Although some classical autotransporters are adhesins,
within others the passenger domain may carry additional
virulence functions such as protease or lipase domains (van
Ulsen et al., 2014). We found four genes encoding such classical
autotransporters within the genome (vpar_0037, vpar_0298,
vpar_0330, vpar_1322) (Figure S2C). Vpar_0037 seems to be
composed solely of a Beta-Barrel domain without any passenger
domain or signal sequence; as such it is probably not functional.
Vpar_1322 has a passenger domain with no detectable secondary
or tertiary structural homology to known functional domains.
Neither of these two autotransporters were detected in any of
our samples suggesting they are not produced in our growth
conditions. One that was found in the OM fraction, Vpar_0298,
has a detectable homology to ShdA, the AidA-like adhesin
of Salmonella typhimurium. Vpar_0330 is an autotransporter
with no clear functional identification of its passenger domain,
however we could find weak homology to a polysaccharide lyase-
like protein using Phyre2 (see Section Materials and Methods);
we detected Vpar_0330 both in our OM and SE fractions.
Interestingly, vpar_0330 was recently shown to be upregulated in
V. parvula in a mouse tumor colonization model compared to in
vitro growth, both with and without co-culture of Pseudomonas
aeruginosa (Pustelny et al., 2015). Furthermore, it was highly
upregulated in caries when compared to healthy teeth (Do et al.,
2015). These data suggest that this autotransporter may be an
important colonization factor in Veillonella and a priority target
for further investigation.

Other Outer Membrane Features
Lipoproteins

Lipoproteins are found in most diderm bacteria and can be
targeted to the outer membrane by the LOL transport machinery
(Sutcliffe, 2010; Dowdell et al,, 2017). We previously noted
the absence of any LOL transport components (lolA-E) in
any Negativicute genome (Antunes et al.,, 2016), however we
find that 17 out of 78 OM proteins contain a lipoprotein
signal sequence as predicted by LipoP and PRED-LIPO software
(Table 1 and Table S3). To resolve this incongruence, we further
analyzed the MS data of OM proteins that contained a cysteine
residue. We searched for any mono, di, or triacylglycerol with
a saturated C16 or C18 fatty acid as a modification (Data not
shown). No such modification was found on any of the proteins,
supporting the hypothesis that Veillonella does not have OM-
targeted lipoproteins. These data are not conclusive though, as
our MS analysis was not designed specifically for this purpose,
and further studies should be performed. If V. parvula is shown
to possess OM lipoproteins, it may use an alternative pathway,
which remains to be identified. Another possibility is that these
proteins may be tethered to the IM with a lipid moiety and span
the periplasmic space in addition to being in the OM.

Cell Ultrastructure

Although images of Veillonella are available in the literature,
high quality electron microscopy has not been performed. We
carried out ultrastructural analysis of V. parvula cells in two
different ways: via chemical fixation (Figures 6A,C,E) and via
high-pressure freezing of cells (Figures 6B,D,F). Subsequent
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FIGURE 6 | Cell ultrastructure. Ultrathin sections of chemically fixed (A,C,E) or
high-pressure frozen (B,D,F) V. parvula cells. At higher magnification the inner
membrane (IM), the peptidoglycan (PG) containing periplasm (PP), and the
slightly waved outer membrane (OM) become apparent. In chemically fixed
cells, an electron brighter area within the periplasm most likely represents
DNA. Electron dense circular structures (IN) can be seen within the
homogenous cytoplasm of high-pressure frozen cells and, to a less extent also
in chemically fixed cells.

resin embedding and ultrathin sectioning of V. parvula cells
delivered a clear insight into the cell wall composition of
this organism. Within the homogenous cytoplasm, electron
dense particles are visible especially after high-pressure freezing
(Figures 6B,D,F). In chemically fixed cells, an electron brighter
area in the central part of the electron dense cytoplasm might
show the DNA (genome). In both fixation variants, the cytoplasm
is surrounded by the cytoplasmic membrane, which is again
surrounded by a periplasm. Within this periplasm, peptidoglycan
can sometimes be detected as electron dense line (Figure 6C).
At the outermost part of the cell envelope, an outer membrane
covers chemically fixed as well as high-pressure frozen cells. As
the wavy appearance of the outer membrane is present after both
fixation methods, this might either represent a special structural
feature or a preparation artifact due to imperfect adjustment
of the osmolarity of the post-fixation solutions to the original
growth medium of the organism. The relative high thickness

and in some cases fluffy appearance of the outer moiety of the
outer membrane (Figure $4) is a strong indication for presence
of LPS, although an S-layer cannot completely be ruled out (see
below).

An S-Layer in V. parvula?

Surface layer proteins (S-layer proteins) are important cellular
factors, in both monoderms and diderms. They are assembled
as paracrystalline mono-layers on the cell surface of bacteria
and archaea, are attachment sites for enzymes and/or substrates,
or participate in interactions with abiotic surfaces or bacteria
(Sara and Sleytr, 2000; Gerbino et al., 2015). We found two
proteins containing three SLH contiguous domains (Vpar_1653
& Vpar_1654) in our OM and SE fractions (Figure 3, Table 1,
and Table S3). Such domain architecture can be found in
typical S-layer glycoproteins yet may also be associated to
other functional domains such as hydrolases. Unfortunately,
no other functional domains could be detected in Vpar_1653
and Vpar_1654. A classical S-layer has not been documented
in Veillonella. A flufty outer leaflet of the outer membrane was
often visible, especially in high-pressure frozen cells (Figure S4).
This may show the S-layer on top of the outer membrane,
however it is more likely that this structure represents the
LPS moiety. It is unlikely that a complete S-layer is produced,
as these proteins are normally extremely abundant, but were
100 fold less abundant than OmpM in the OM fraction
(Table S5).

Interestingly, vpar_1653 and vpar_1654 genes are in cluster
along with a third gene (vpar_1655), which was also found
in our OM and SE fractions (Table 1, Table S3). This third
gene does not code for an S-layer protein and has no obvious
function or conserved domains, other than one of unknown
function (DUF4163). We could not find this three-gene cluster
outside of Veillonella (Table $3), suggesting that it may have a
genus-specific function. Further functional analysis is required
to determine if Veillonella utilizes this gene cluster to make a
typical S-layer or if it is used for enzymatic activity, interaction
with surfaces and/or biofilm formation.

TonB-Dependent Transport

The TonB system is an OM transport mechanism present
in most diderm bacteria, which has never been described
in any Firmicute. Bacteria generally contain multiple TonB
transport systems specifically associated with the acquisition of
small molecules including vitamin B12 or metals such as iron
(Krewulak and Vogel, 2011). We identified nine such TonB
systems in the V. parvula genome, of which six were present
in the OM and SE fractions (Figure 3, Table 1, and Table S3).
Some of these systems must be functional to provide iron for the
V. parvula haem cluster which has recently been characterized
in V. atypica (Zhou et al, 2016). Interestingly, almost all of
the operons encoding these TonB systems are located within a
single genomic cluster downstream of the previously mentioned
adhesion cluster (Figure S3B). Two other tonB operons are
located at distant loci but were not found in our samples; specific
molecules that were not present in our growing conditions might
induce their expression.
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Efflux Pumps

TolC is an outer membrane channel responsible for export of
antibiotics and other toxic compounds from the cell. These
systems are important in antibiotic resistance and in infection
(Zgurskaya et al., 2011). Among the two TolC-ABC transporters
and three similar RND type efflux pumps that are encoded
in the genome of V. parvula DSM2008, we detected three in
our OM and SE fractions (Vpar_0525, Vpar_1003, Vpar_1367)
and two in only the OM fraction (Vpar_0011, Vpar_1641)
(Figure 3, Table 1, and Tables S1, S3). Intriguingly, it was
previously shown that the RND pump Vpar_1367 is upregulated
in an infectious community responsible for caries (Do et al.,
2015), pointing to the importance of such systems to scavenge
essential molecules in in vivo conditions in a multispecies
context.

Putative OM Proteins of Unknown Function
Among the list of 78 OM proteins, 28 proteins have no clear
function (Figure 3, Table 1, and Table S3), many of which
may correspond to previously undescribed systems and novel
OM-related functions. We represented these unknown function
proteins, as well as six unknown proteins previously described
in other sections, with their detected functional domains in
Figure 7.

Of special interest is Vpar_0521 (COG3064). We previously
found it is well-conserved within the diderm Firmicute, and
hypothesized its possible involvement in a yet unknown OM-
related function (Antunes et al., 2016). Vpar_0521 contains
two domains (Figure7): an N-terminus SpoIVB and a C-
terminal DUF1090. The N-terminus domain, SpoIVB, is an
autoprotease (S5 peptidase) involved in sporulation in the
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Firmicutes; it is normally synthesized in the forespore and
transported to the interspace between the forespore membrane
and the outer spore membrane, where it functions in signal
transduction (Campo and Rudner, 2007). Because V. parvula is
a non-sporulating Firmicute, the role of this SpoIVB domain
remains to be determined. The other domain, DUF1090, is
an uncharacterized domain found in all three domains of life,
and predominantly present in Bacteria. For example, the E.
coli YqjC protein only contains this domain. Only one study
has been performed on the corresponding gene and it was
found to be down regulated when the sigma factor rpoS gene
was mutated (Zhang et al., 2012). In the Stepdb database that
details the localization of all E. coli proteins (Orfanoudaki and
Economou, 2014), YqgjC is annotated as periplasmic. In some
bacteria, this domain constitutes the C-terminal hydrophobic
substrate-binding domain of the chaperone DnaK and it may
have a similar function in Vpar_0521. These indications, and
the conservation of Vpar_0521 in diderm Firmicutes, make this
protein an important target of future study.

We found three proteins corresponding to the DUF3829
domain (Vpar_1589, Vpar_1760, Vpar_1765) (Figure 7).
Although this domain is found in the distantly related
Proteobacteria using a CDD search, the only close BLAST
hits were from human-associated Negativicutes (Figure4),
more specifically the Dialister, Centipeda, Selenomonas, and
Veillonella. We could not detect any homologs in V. ratti or any
of the other rodents-associated Veillonella (Whitman, 2011).
These unstudied proteins may be involved with interactions in
the human niche, both for pathogenic and commensal lifestyles.

Three proteins contain one (Vpar_0246, Vpar_0469,
Vpar_1597) or two (Vpar_0270) PepSY domains, and no other
conserved domains. All proteins containing a PepSY domain
were found in all three extractions except for Vpar_1597,
which was not detected in any sample. This domain has not
been extensively studied, yet it is known to possess a peptidase
inhibitory function and is found throughout bacteria and some
archaeal species (Yeats et al., 2004). The dominantly studied
member of this family is YpeB, an inhibitor of the spore cortex
lytic enzyme SleB in sporulating Firmicutes (Yeats et al., 2004).
The four V. parvula OM PepSY proteins may function similarly
to YpeB and inhibit peptidases of the M4 family or possess some
unknown function.

CONCLUSIONS

In recent years we have learnt how important Veillonella is to
the human microbiome, infection, and immune development
(Whitman, 2011; Arrieta et al, 2015; Hirai et al., 2016).
Moreover, these bacteria deserve to be studied not only for
these characteristics, but also for the evolutionary questions they
pose. This work represents the first proteomic characterization
of a diderm Firmicute cell envelope and provides important
information to guide further characterization. It confirms
that the Negativicutes cell envelope has many aspects of the
classical and well-studied Proteobacterial Gram-negative cell
envelopes, such as LPS, TolC, OmpA, and other components,
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yet it also possesses many unique and potentially ancestral
characteristics, such as the peculiar OM-PG attachment
system, the BAM/TAM complex, as well as potentially new
OM systems. The function of these systems needs to be
further characterized through mutational and expression
studies. Finally, our results are instrumental in increasing
our understanding of the lifestyle of Veillonella, including its
potential for biofilm formation and its role in infection and
host-interaction.
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Figure S1 | Glycostain of LPS. Thirteen and seventeen percentage SDS-PAGE
loaded with identical samples and visualized with Pro-Q emerald glycostain.
O-antigen producing positive control E. coli were loaded in lanes 1 and 3, while
O-antigen negative extractions were loaded in lanes 2-4. Three biological
replicates of V. parvula were loaded in lanes 5-7.

Figure S2 | Adhesins domain structure. Figure demonstrating the domain
structure of all trimeric autotransporters (A), two partner systems (B), and
autotransporters (C).

Figure S3 | Trimeric autotransporter (A) and TonB (B) genomic clusters. Bold
arrows represent peptides detected in the OM. Localization is presented by color:
Gray, Unclear; Blue, Cytoplasmic; Green, IM; Yellow, Periplasmic; Purple,
Secreted; and Red, OM.

Figure S4 | High-pressure frozen cell illustrating LPS. The ultrathin section of a
high-pressure frozen cell shows the cell wall of V. parvula (A). Beside the inner
membrane (IM), the outer membrane (OM), and the peptidoglycan (PG) within the
periplasm, the fluffy outer leaflet of the outer membrane is visible at higher
magnification (B). This might represent the LPS moiety. Bold arrows represent
peptides detected in the OM.
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Table S1 | Localization prediction and Mass spectrometry results for all proteins of
V. parvula DSM 2008. Proteins predicted to be in the OM are in red.

Table S2 | Localization prediction and Mass spectrometry results for 129 potential
OM proteins of V. parvula DSM 2008.

Table S3 | Localization prediction and Mass spectrometry results for 78 OM
proteins of V. parvula DSM 2008.
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2.2 Outer Membrane Attachment in Bacteria

Within this analysis, there is one protein family from the diderm Firmicutes that
continuously peaked my attention, OmpM, the OM tether. The interesting features of this
protein are that it is so drastically different from the textbook example Lpp or Braun’s
lipoprotein. Lpp is a very small lipoprotein that is covalently attached to the PG while OmpM
iIs a large porin that noncovalently interacts with putrescine modified peptidoglycan. I
originally had thought that I would only need to map the distribution of OmpM as Lpp is a
well-described protein and surely some laboratory must have done this analysis, but no this

textbook example has only been studied in a limited set of y-Proteobacteria.

When | started this analysis | was surprised to learn that the reason Lpp is only studied
in the y-Proteobacteria is due to it being a new adaptation of these bacteria. Conversely,
OmpM was found to be widely distributed among the Terrabacteria, aka the Cyanobacteria,
Atribacteria, Deinococcus-Thermus, Thermotoga, Dictyoglomi, and Armatimonadetes. This
impressive distribution was surprising as it accounted for roughly half the bacterial clades,
with a well-known monophyletic group. This did leave the question as to what the remainder
of the bacteria used to attach their OM.

| conducted an intensive literature search and came up with two logical candidates,
OmpA and the TolB/Pal complex. Both OmpA and Pal bind the meso-Dap residue of the PG
with the same domain and both were suggested to have an OM attachment function. The
difference lay in how they integrate into the OM; Pal is a lipoprotein while OmpM is a porin.
After intensive queries for both systems, | found that OmpA had sporadic distribution and
could not be a primary conserved mechanism, conversely, TolB/Pal was found in most clades
that lacked OmpM, barring a few exceptions. This provided a mutual exclusion of systems
with the Terrabacteria using OmpM and most other clades using TolB/Pal with no overlap.

As with any good scientific result, more questions arose than were solved. Why is this
distribution split? | tried to answer this by mapping the peptidoglycan onto the existing tree
and found that PG structure is consistently Meso-DAP among all bacteria that use a TolB/Pal
system, while those that use OmpM have far more variability. | present here a draft of an

article that is ready to publish pending minor analysis.
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ABSTRACT

The mechanism of attachment of the outer membrane
(OM) to the peptidoglycan (PG) is of fundamental
importance in diderm bacteria, not only to maintain cell
integrity but also for resistance to antibiotics and the
production of OM vesicles. While the textbook example
of OM attachment is Escherichia coli’s Lpp (Braun’s
lipoprotein), this mechanism is not universally distributed
and therefore not representative of the diversity of diderm
bacterial lineages. A second mechanism involving the
OmpM protein has been described in diderm Firmicutes,
Deinococci, Cyanobacteria, and Thermotogae. Moreover,
two other mechanisms for OM attachment have been
hypothesized (OmpA and a two-component TolB/Pal
system).

The existence of multiple OM attachment mechanisms
and the biological relevance of this mechanism poses the
question of their distribution in Bacteria and their
evolutionary history. To this aim, we have carried out a
search for homologues of Lpp, OmpM, OmpA, and
TolB/Pal in all major bacterial phyla. Lpp is patchily
restricted to y-Proteobacteria, suggesting a recent origin
in this clade. OmpA is more widely distributed, but is
also patchy, excluding the hypothesis that it represents
the main alternative mechanism of OM-attachment.
Surprisingly, the TolB/Pal and OmpM systems are much
more widely present and follow a mutually exclusive
distribution in Bacteria. In fact, the TolB/Pal system is
largely present in the Gracilicutes. In contrast, OmpM is
widely distributed among deep branching diderm lineages
of the Terrabacteria. Finally, Fusobacteria and
Spirochaetes might represent an intermediary step in the
transition between these two systems, involving OmpA.
Our results highlight an ancient division in OM
attachment in Bacteria. OmpM might represent the
ancestral mechanism, which was replaced by TolB/Pal in
the ancestor of the Gracilicutes. This may be linked to PG
modification, whereas Lpp was a more recent addition to
the arsenal of OM tethering mechanisms in the y-
Proteobacteria. The reasons for these transitions may lie
in the emergence of new PG modifications and
environmental adaptations with changes in lifestyle.
Beyond these important evolutionary implications, and
the possibility of using OM-tethering systems as a marker
for bacterial phylogeny, our results pave the way to
further study of the vast diversity of uncharacterized
bacterial cell envelopes.

INTRODUCTION

Early studies on E. coli’s lipoproteins found the most
abundant one, Lpp, at roughly 1 million copies per cell,
to be responsible for tethering the OM to the

peptidoglycan (PG) (Braun and Rehn, 1969). Lpp is
attached to the OM via a lipid moiety, which integrates
into the lipid bilayer (Figure 1) (Guo et al., 2014). The
small, 58 amino acids, molecule forms a trimer in vivo
with one chain covalently bound to the diaminopimelate
residue in the peptide cross bridge of PG (Shu et al.,
2000). This covalent bond is formed by the L, D
transpeptidases, three of which have been identified in E.
coli: ErfK, YcfS, and YbiS (Magnet et al., 2008). ybiS if
of special interest as it is directly upstream of Ipp in many
species. These peptidases all contain the YkuD active
domain. Experimental evidence has been provided for
homologs in Pseudomonas aeruginosa, Salmonella
enterocolitica, and other y-Proteobacteria (Ching and
Inouye, 1985). Mutants of Lpp in E. coli have the
noticeable phenotypic characteristics of a leaky and
poorly attached OM. These characteristics are
hypersensitivity to bile salts, some antibiotics and
detergents, increased release of outer membrane vesicles
(OMVs), leakage of periplasmic proteins and loss of OM
asymmetry (Chen et al., 2014). While the mechanism of
OM attachment by Lpp is the paradigm written in
introductory textbooks, the fact that it not essential in E.
coli and even absent from many Proteobacteria, such as
Neisseria (Adu-Bobie et al., 2004) indicates that it is not
the main system. In fact, in E. coli two other proteins
have been suggested to have a potential role in OM
attachment: OmpA and Pal (Schwechheimer et al., 2014)
(Figure 1). Pal is an OM lipoprotein that has been studied
extensively as part of the 5-component Tol-Pal complex.
The Tol-Pal complex has a wide variety of proposed
functions. The Tol-Pal system is the target of certain
colicins and bacteriocins that disrupt intermolecular
interactions of this complex, thereby causing cell death
(Kim et al., 2014). One well-characterized feature of this
complex is that disruption of any component results in
increased OMV production and OM instability (Llamas
et al., 2000). Pal is lipidated in the same manner as Lpp
and strongly associates, albeit noncovalently, with the PG
and the periplasmic component TolB. Pal can also form
an independent 2-component TolB/Pal system (Figure 1)
(for a recent review see (Godlewska et al., 2009)), and
has an important role in OM stability (Cascales et al.,
2002). Indeed, overexpression of pal suppresses the
phenotypes associated with Ipp mutations (Cascales et
al., 2002). The PG-binding domain of Pal is named
OmpA (henceforth referred to as D-OmpA to
differentiate it from the protein of the same name)
(Figure 1). The D-OmpA domain is found in many
different proteins including Pal, the flagella stator protein
MotB, the type VI secretion system protein DotU, and of
course OmpA (Confer and Ayalew, 2013).
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Figure 1: Schematic of the four different systems present in Bacteria for OM-attachment:

Lpp, TolB/Pal, OmpA, and OmpM (A), and the corresponding sequence characteristics (B) (see text for details). Structures
are taken from the PDB database (Berman et al., 2000): Lpp (PDB ID: 1EQ7); Pal (PDB ID: 2HQS); OmpA (PDB ID:
2GE4); D-OmpA domain (PDB ID: 4ERH). OmpM (PDB ID: 3PYW).

OmpA is a pathogenicity factor that has many roles in
immune system targeting and evasion, cell host adhesion
and invasion, and as a porin (for a recent review, see
(Confer and Ayalew, 2013). Like Lpp, OmpA is present
in high abundance with around 100,000 copies per cell, it
functions as a porin, and is surface exposed (Confer and
Ayalew, 2013). Other than these roles, OmpA may also
function in OM tethering. In fact, it can integrate into the
OM with an N-terminal B-barrel domain, while it non-
covalently interacts with the PG with the D-OmpA
domain, similarly to Pal (Figure 1). Interestingly, it has
been shown that OmpA can have an alternative
conformation where it loses the PG attachment and
functions solely as a porin (Sugawara et al., 2006). Why
this conformational change happens has not been
determined, but it could allow quick solute exchange via
a porin, or the loss of tethering could function as a
mechanism of inducing OMVs. The function of OmpA in
OM tethering has however never been fully demonstrated
and has only been sparingly attributed, as this function
has been predominantly studied in E. coli where Lpp is

the dominant tether. In fact, while OmpA binds PG (Park
et al., 2012), its mutation does not always produce
heightened OMV production like Lpp or Tol-Pal mutants
(Wessel et al., 2013) (Petrus et al., 2012; Park et al.,
2012). Nonetheless, an ompA mutant was shown to have
all of the characteristics of an OM-tether mutant, most
notably membrane leakage, asymmetry, and sensitivity to
SDS, cholate, and high osmolarity (Park et al., 2012) as
well as a 26 fold increase in OMV production
(Schwechheimer et al., 2014).

Outside of the Proteobacteria, where the Lpp, Pal, and
OmpA systems have been extensively studied, there
exists another form of OM attachment, OmpM. This
mechanism is present in the Negativicutes, a lineage
belonging to the Firmicutes that possess an OM with
lipopolysaccharide (hereafter called “diderm Firmicutes”)
(Whitman, 2011; Antunes et al., 2016; Poppleton et al.,
2017). OmpM has been characterized in detail in the
Negativicute Selenomonas ruminantium (for a recent
review see (Kojima and Kamio, 2012)). It is functionally
similar to OmpA in that it integrates into the OM via a B-
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barrel and attaches to the PG via an SLH (S-like
homology) domain at its N-terminus. The difference is in
how this protein interacts with the PG; Selenomonas PG
is modified with polyamines at the cross bridge where
OmpM binds with the SLH domain (Figure 1). Although
no mutational studies have been done due to a lack of
genetic system in Selenomonas, polyamine depletion
leads to a leaky OM, similar to Lpp and Pal mutants
(Kojima et al., 2011). We have recently suggested using
in silico analysis and experimental characterization that
OmpM is indeed the dominant form of attachment in all
diderm Firmicutes, although some also possess a
homologue of OmpA (Antunes et al. 2016; Poppleton et
al., 2017). Aside from diderm Firmicutes, OmpM has
been identified as the main component of the OM of
Deinococci (Misra et al., 2015) and Cyanobacteria
(Hansel et al., 1998). The Thermotogae possess a two-
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component system that may be derived from OmpM: a B-
barrel peptide (Omp) that constitutes the OM integration
component and a second protein (Ompa) containing an
SLH domain for PG binding (Lupas et al., 1995).

The existence of different ways of OM attachment, and
the biological relevance of this mechanism, poses the
question of their actual distribution in Bacteria as well as
their evolutionary history. The distribution of OmpA,
OmpM, and Lpp has not been done. The distribution of
the 5-component Tol/Pal system was looked at previously
(Sturgis, 2001), however they only queried 22 genomes
for the entire system and may have missed many
important phyla. Therefore, we undertook a search of the
four OM attachment systems in nearly 200 bacterial
genomes representatives of major bacterial phyla, as well
as a more detailed survey of Lpp homologues in the y-
Proteobacteria.
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Figure 2: Distribution of the four OM tethering systems in Bacteria.

Schematic tree of Bacteria, based on a concatenated dataset of RNA polymerase 3 and 3’ subunits (1821 amino acid
positions). Filled circles represent the presence of Braun’s lipoprotein (Lpp) (dark green), TolB/Pal complex (red), OmpA
(light green), and OmpM (blue). Solid bars represent PG.
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RESULTS AND DISCUSSION

We plotted the presence/absence of homologues of Lpp,
TolB/Pal, OmpA, and OmpM on a phylogeny of Bacteria
(Figure 2, Table S1, and M&M).

The monoderm bacterial phyla, including Chloroflexi,
monoderm Firmicutes, and Actinobacteria possess no
homologs of these proteins, providing an ideal negative
control (in grey in Figure 2, Table S1). Caldiserica
(former candidate phylum OP5) is a recently described
phylum which was portrayed as diderm due to the
presence of 3-hydroxy fatty acid because it is frequently
found attached to LPS (Mori et al., 2009). However, this
molecule is likely present for another purpose, or the
Caldiserica have a novel type of OM, as we could not
detect any of the known key OM markers such as
enzymes of LPS biosynthesis or B-barrel synthesis (data
not shown). Mycobacteria also lack any form of known
OM attachment (Table S1) although they have an atypical
OM that is directly bound to PG layer. In these bacteria,
the mycolic acids, which constitute the OM, are bound to
arabinogalactan which in turn are bound to the PG. These
components form a single molecule, avoiding the need
for a protein-based attachment mechanism (Bansal-
Mutalik and Nikaido, 2014).

Number of genomes
containing homologs
6‘17
PN 9
) \Q S
Order sz;(’ @\ A" \QQ
Enterobacterales 123 114 114 113
Orbales 2 2 0 0
Pasteurellales 17 17 16 0

Vibrionales 27 27 27 24
Aeromonadales 7 7 74 6
Alteromonadales 43 43 28 25

Pseudomonadales 63 63 63 42

Chromatiales 19 19 18 5
Oceanospirillales 24 21 18 1
Cellvibrionales 11 11 6 0
Thiotrichales 15 15 8 1
Legionellales 6 6 6 0

Immundisolibacterales 1 1 1 1

Methylococcales 4 4 4 3

Cardiobacteriales 1 1 1 0

Nevskiales 1 1 1 0

Xanthomonadales 30 30 21 0

? Unclassified 8 7 4 1
Total 402 386 343 222

Figure 3: Distribution of Lpp in y-Proteobacteria.
Phylogeny is based on the literature (Campbell et al.,
2014). The first column contains the total number of
genomes in black, the second contains the distribution of
TolB/Pal systems, the third contains the distribution of
YkuD, which is responsible for Lpp attachment to PG,
the fourth column represents the distribution of Lpp

The archetypal OM attachment mechanism, Lpp, has the
lowest distribution among bacterial phyla, being patchily
present in y-Proteobacteria only (Figure 2 and Table S1).
In the absence of Lpp, one of the alternative mechanisms
for OM-tethering must be in place. To further explore its
distribution in this bacterial group, we proceeded to
perform an exhaustive search in a local databank

including 402 genomes corresponding to all currently
described species of y-Proteobacteria with complete
genomes (M&M, Figure 3, and Table S2). Lpp appears to
not be universally distributed among the y-Proteobacteria
and is completely absent from most basal groups.
Generally, we observe co-presence of Lpp with YkuD,
the domain responsible for the covalent bond. However,
there are some instances where Lpp exists without YkuD.
This suggests the existence of a possible alternative
enzyme for the covalent bond in these lineages, or that
Lpp has another function than OM attachment (e.g. just
being surface exposed). In contrast, TolB/Pal is much
more widely spread and might be the main OM-
attachment system in the y-Proteobacteria. Finally, some
genomes lack Lpp and TolB/Pal altogether, and it would
be interesting to investigate experimentally what is used
to attach the OM.

Consistently with these results, the distribution of
TolB/Pal among all bacterial phyla is widespread (Figure
2). Surprisingly, it appears restricted to the Gracilicutes
(Figure 2). In contrasts, OmpM is found specifically in
the diderm Terrabacteria (Battistuzzi and Hedges, 2009)
(Figure 2). Concerning OmpA, its presence is non-
uniformly distributed and most of our analysed genomes
do not possess any homologue, in particular among the
diderm Terrabacteria, apart from two diderm Firmicutes
(Figure 2 and Table S1). Such bimodal distribution of
OM-tethering mechanisms which predominantly match
the phylogeny of Bacteria is stunning and might reflect
the evolution of these systems during the divergence of
the major phyla. We propose the following evolutionary
scenario (Figure 4): OmpM-based OM attachment is the
most ancient system that appeared very early on in
bacterial evolution and represented the main mechanism
of all diderm Terrabacteria; this attachment mechanism
was lost at the divergence of Fusobacteria and coincided
with the origin of OmpA,; Fusobacteria and Spirochaetes
would represent a sort of “transitional” state, while the
TolB/Pal system appeared later in the Gracilicutes
(Cavalier-Smith, 2006b) and gradually replaced OmpA,
becoming the main OM-attachment system in this clade;
finally Lpp represents a recent addition to the TolB/Pal
system in y-Proteobacteria. Therefore, the fact of
possessing one system of the other might represent an
interesting marker for the phylogeny of Bacteria, and the
potential placement of newly sequenced diderm phyla of
unclear affiliation.

The reasons for these important transitions in OM-
attachment mechanisms in Bacteria (from OmpM to
OmpA to TolB/Pal, to Lpp) are puzzling and worth of
speculation. They might reside in the different ways these
systems attach to the PG. We, therefore, carried out an
exhaustive survey of the available literature for PG types
and mapped this information on the bacterial tree (Figure
2). Although most lineages remain totally
uncharacterized, it appears that the presence of Meso-
DAP follows the distribution of TolB/Pal systems in the
Gracilicutes and the use of D-OmpA for binding, while
the Terrabacteria, as well as the ‘transitional’
Fusobacteria and Spirochaetes, seem more variable in
their PG types (Figure 2).

The binding of PG by OmpM in members of the
Negativicutes has been shown to occur through a
polyamine modification of the PG peptide chain (Kamio
and Nakamura, 1987). This modification has not been
demonstrated in the other diderm Terrabacteria clades,
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but might also be present. This mid synthesis addition to
the PG is likely unnecessary in the Thermotogae as some
incorporate lysine into the PG side-chain and therefore
the amine group is exposed for binding (Boniface et al.,
2009). Deinococcus-Thermus may use a similar
mechanism except with ornithine replacing lysine
(Quintela et al., 1999). Unfortunately, early studies on
Cyanobacteria were biased against atypical amino acids
of the PG by removing them with digestion (Jlrgens et
al., 1983), however subsequent work has shown the
presence of lysine in Anabena cylindrica (Kodani et al.,
1999). We anticipate that Armatimonadetes,
Synergistetes, and Dictyoglomus also have a similarly
exposed amine present on their PG, which will need to be
proven experimentally. This would represent a clear
physio-chemical reason for the incorporation of amine
side-chains within the PG.

The Spirochaetes are a peculiar case, as a few have
OmpA homologues, and some have no attachment
mechanism at all (Figure 2 and Table S1). This phylum
possesses many odd and unique features in their cell
envelope including the absence of LPS in some members,
flagella inserted into the periplasmic space, and surface
display mechanisms. No definitive studies have been
done and while some Spirochaetes possess OmpA like
protein, it has been suggested that the function of OM
attachment within this group is done by D-OmpA
lipoproteins (found in abundance) including the
Leptospira pathogenicity factor Loa22 (Koizumi and
Watanabe, 2003). Spirochaetes make strong use of
lipoproteins in the OM and it would be logical to attach
via a lipoprotein domain as opposed to a B-barrel.
Members of the PVC superphylum have very peculiar
cell envelopes but have not been studied extensively.
Within this group a conserved pair of proteins is found
which may function like the leptospiral lipoproteins.
These two proteins lie side-by-side in the genomes and
are both homologs of Pal, including a lipoprotein signal
and D-OmpA. This pair is likely derived from the Tol-Pal
system and, due to the unique envelope structure, requires
a different system (Fuerst, 2013).

Little is known about the unique thermophilic
Deferribacteres. Their OM has had very little study and
our analysis did not discover any Tol-Pal system,
however each genome had many D-OmpA containing
proteins, including one with a predicted p-barrel which
may function in attachment but experimental work is
necessary.

It is possible that the Tol-Pal system emerged initially to
perform a simple function, OM attachment, and that
originally consisted of only Pal and the B-propeller
domain of TolB. This complex was inserted within the
OM via lipidation and tightly clamped the PG between
these two proteins. In contrast, Lpp would have emerged
in the y-Proteobacteria, probably to provide what is the
strongest and least metabolically costly protein, as it
covalently binds to the PG and integrates into the OM via
a lipid. As many Lpp-containing y-Proteobacteria are
pathogens, one advantage to replace a $-barrel by Lpp for
OM attachment might lie in a better shielding from the
immune system of the host, but this hypothesis remains
totally speculative at this stage.

In conclusion, our results illustrate a large diversity of
OM-tethering systems in all major bacterial diderm
phyla. Not only do they allow to discuss important
evolutionary hypotheses, but also open the way to
understand the nature of the very first bacterial ancestor.

Finally, they pave the way to further study of the vast
diversity of uncharacterized bacterial cell envelopes.

Gene Acquisition Gene Loss
® Lpp
@ Tol/Pal
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X

@ OmpM

! .
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[ ]

Figure 4: Evolutionary Hypothesis for OM
Attachment.

MATERIALS AND METHODS

DATABASES AND HMM SEARCH

We assembled a local databank of 198 genomes from a
wide representative sampling of the major bacterial phyla
that have complete genome sequences (Supplementary
file 1). Exhaustive HMM-based homology searches were
carried out on this genome databank by using the
HMMER package (Mistry et al., 2013) with HMM
profiles of each protein from the PFAM 29.0 database
(Finn et al., 2015, http://pfam.xfam.org) as a query.
Additional searches with tBLASTn (Camacho et al.,
2009) were used to identify eventually misannotated
homologues in some genomes.

The database of y-Proteobacteria was constructed by
gathering all complete genomes from NCBI and selecting
named species, leading to 402 genomes.

TREE CONSTRUCTION

Alpha and beta subunits of RNA polymerase were
aligned with MAFFT v7.055 (Yamada et al., 2016) with
default parameters, and unambiguously aligned positions
were selected with BMGE 1.1 (Criscuolo and Gribaldo,
2010) and the BLOSUM30 substitution matrix. Trimmed
datasets were concatenated and PhyloBayes v3.3b
(Lartillot et al., 2009) was used to perform Bayesian
analysis using the evolutionary model CAT+GTR+T4.
Two independent chains were run until convergence,
assessed by evaluating the discrepancy of bi-partition
frequencies between independent runs. The first 25% of
trees were discarded as burn-in and the posterior
consensus was computed by selecting one tree out of
every two.

114



LPP DETECTION

Due to its small size, a number of methods were used to
search for Lpp homologues. Experimentally proven Lpp
homologs were initially used to identify clear
homologues in a selection of representative bacteria.
Results were checked by analysis of multiple alignments
with MAFFT (Yamada et al., 2016), and genome synteny
with SyntTax (Oberto, 2013). An HMM model was then
built with these sequences and used to query the whole
database. We selected sequences that had at least 70%
coverage with the HMM model and E-value less than
0.00001. We proceeded by iteration until more significant
results could not be found. YkuD homologues were also
searched for the more detailed analysis of Lpp
distribution in the y-Proteobacteria.

OMPA DETECTION

OmpA was defined for the scope of this study as a
protein containing a D-OmpA (PF00691) and a B-barrel.
An initial search for D-OmpA was conducted and these
results were limited to those with a positive B-barrel
prediction by PRED-TMBB (Bagos et al., 2004). Each
positive B-barrel prediction was further checked using
BOCTOPUS2 (Hayat et al., 2016) until a positive result
was found. If no protein was found with a positive
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3 Find a mechanism of transition between diderm
and monoderm Firmicutes.

The third and final goal of my thesis was to determine what evolutionary mechanism
resulted in the monoderm/diderm transition. I chose to explore the peptidoglycan enzymes as
they had been proposed by Cavalier-Smith as a mechanism of transition (Cavalier-Smith,
20064a).
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3.1 Survey of Peptidoglycan catalysing domains in

Firmicutes

At the onset of my thesis, Dr Gribaldo and | were discussing potential mechanisms of
the diderm/monoderm transition. At this point, we had not yet firmly established whether the
OM was lost in the Firmicutes or transferred. One of the hypotheses that we discussed was
through controlling PG growth. Should the diderm first hypothesis prove to be true, a loss of
regulation in a key PG enzyme would result in the outgrowth of the peptidoglycan rupturing
the OM. Conversely, should a duplication happen so that an additional enzyme or regulatory
step is added it may be possible for a monoderm to shrink its PG and obtain an OM through

sporulation.

To explore this hypothesis | built upon the work of (Layec et al., 2008). In their work,
they conducted a survey of peptidoglycan enzymes in the available Firmicute genomes. They
focused on the architecture of these proteins and what domains were on each protein apart
from the catalytic domain. Unfortunately, they had no diderm Firmicute genomes included in

their dataset.

Expanding on the same methodology that the authors proposed | performed my
analysis using 80 genomes and 39 domains. Additionally, I included many diderm Firmicute
genomes to enable accurate comparison of monoderm and diderm types. After this survey was
complete | found some interesting PG enzymes of the Negativicutes that were not previously
described including a FtsW homolog and penicillin binding protein. However, my main result
was the identification of spollD in the non-sporulating diderm Firmicutes. This enzyme

immediately suggests a mechanism for the diderm/monoderm transition.

This data is not currently planned for publication, as we were unable to complete the

follow-up work in mutating spolID (Following Section).
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Survey of peptidoglycan catalysing domains
in Firmicutes suggests mechanism of
diderm/monoderm transition

One of the most essential components of the Bacterial
cell envelope is the peptidoglycan. This molecule is
responsible for shape, structure, among other uses.
Diderm (Gram-negative) bacteria possess thin
peptidoglycan, one to two molecules thick, while
monoderms (Gram-positive) have peptidoglycan that is
several molecules thick. Fortunately, a clade of Bacteria
exists that has both types, the Firmicutes. By comparing
the 39 peptidoglycan catalytic domains from 80
genomes we were able to draw conclusions on the
unique characteristics of Firmicute peptidoglycan.
Additionally, we discovered an enzyme that may be
responsible for the diderm/monoderm transition within
Bacterial

Peptidoglycan | Genomics | Sporulation | Evolution

For an in depth discussion of peptidoglycan structure,
synthesis, and remodelling, please see Introduction
Section 1.4 of this dissertation.

The peptidoglycan of Firmicutes is of the most
diverse and well-studied apart from E. coli (Vollmer et
al, 2008). This peptidoglycan has been divided into
many different types based on the branching pattern
which can change from strain to strain in monoderms.
Conversely, the PG of diderm Firmicutes is much
simpler, consisting of a meso-DAP linkage with
sporadic polyamine modifications throughout the
genome (Schleifer and Kandler, 1972; Kamio and
Nakamura, 1987).

Two previous studies have used bioinformatics
methods for broad PG remodelling enzymes: one of
the Firmicutes (Layec et al, 2008) and one of the
mycobacteria(Machowski et al, 2014). The
mycobacterial study focused on resuscitation
promoting factors (Rpfs), penicillin binding proteins,
endopeptidases, L, D-transpeptidases and N-
acetylmuramoyl-L-alanine amidases. They found at
least one copy of each of these enzymes and that they
were highly conserved among the Mycobacteria.

More relevant to this study is the work of Layec et
al,, which used PFAM searches to look for PG enzymes.
They focused on amidases, peptidases, and lytic
transglycosylases. The authors searched for these
genes in 133 genomes belonging to 22 genera. They
looked at accessory domains of the PG hydrolases and
whether they were phage-encoded. The final focus of
the paper was to find the enzymes responsible for
daughter cell-separation. They found that these
enzymes were species-specific, but did not go into

further depth on any of the other enzymes they
studied.

In this study, I compared the enzymes of PG from
monoderm Firmicutes with the diderm Firmicutes
using an in silico approach. I took all known PFAM
domains corresponding to catalysis of PG and
searched a representative selection of Firmicutes for
the presence of the domains. This will build on the
previous study by Layec and provide a more in depth
analysis including diderm Firmicutes. From this data, I
hoped to understand why a drastic difference in PG
depth is found between monoderm and diderm
bacteria. This data will increase our understanding of
PG in evolution, function, and explore the PG in an
unstudied clade, the Negativicutes.

Significance

Peptidoglycan is a fundamental molecule of Bacterial
physiology, which has been a priority antibiotic target
since their advent. Understanding the distribution of
catatalytic sites enables greater discovery potential
for antibiotics. The evolutionary question of
diderm/monoderm transition may prove to be one of
the greatest questions in bacterial physiology.

Results

We studied seventy-two genomes representing
members from nine orders including two diderm
classes, the Negativicutes and the Halanaerobiales,
one order without PG, the Mollicutes, and six orders
with monoderm architecture, the Natranaerobiales,
Bacillales, Lactobacillales, Clostridia
Thermoanaerobacteriales, and the Erysipelotrichia.
The genomes were searched for the presence of
enzymes or domains associated with PG biosynthesis
or remodelling.

Ribosomal Reference Tree. To compare our data
and search results we first constructed a robust
phylogenetic tree (Figure 1) from a concatenation of
ribosomal proteins. It has discrepancies from the best
current phylogeny (Antunes et al., 2016), as the
Clostridia are not monophyletic. This discrepancy is
minor as the rest of the tree is congruent with the data
and better informs the phylogeny of the genomes
chosen.
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Fig 1. Ribosomal Reference Tree: Phylogeny of the Firmicutes derived from ribosomal proteins. The tree was
constructed using PhyloBayes with 6206 residues using GTR+CAT model of substitution.
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Fig 2. The thickness of PG in selected bacteria. Published experimental data for PG thickness in genomes studied.
Pink bars represent diderm organisms, while dark blue represent monoderms. Background colours correspond to
individual orders. * Denote data obtained from cryo-EM. “X” denotes complete absence of peptidoglycan
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Peptidoglycan thickness. To determine if our
question was valid, we first compiled known data on
PG thickness for our organisms of study (Fig 2).
Although little quality cryo-EM work has been done,
the thickness in diderms is generally between 5-
15nm, while monoderms tend to possess PG 20-80nm
wide. This drastic change validates our study and
truly proposes the question “Why is the PG thicker in
monoderms?”

Core cytoplasmic peptidoglycan biosynthetic
enzymes. The core cytoplasmic enzymes of PG
biosynthesis, MurA-G and ddl, were found in all
genomes studied except the Mollicutes, as expected
(Fig 3, Supplementary Table 1). MurA is the first
committed step of PG biosynthesis and functions by
adding a PEP molecule to UDP-GIcNAc. It was present
in multiple copies in many of the genomes and ranged
from one to three without any clear distinction by
class. The second enzyme in the pathway, MurB, is
responsible for reducing the molecule as to prepare it
for the addition of peptides. It was present in a single
copy except in a few Negativicutes, Halanaerobiales,
and Thermoanaerobacteriales. In the next steps of
peptidoglycan biosynthesis, a peptide chain is formed
by the sequential addition of amino acids to the sugar.
The first two enzymes, MurC and MurD, were present
in a single copy each. The third enzyme, MurE, was
found in two copies in several genomes. The final two
amino acids are incorporated as a dimer of D-Alanine.
The dimerization enzyme, ddl, was found in one to
two copies in all genomes. The addition enzyme,
MurF, which adds the dimer, was found as a single
copy in all bacteria studied except the Peptococcaceae,
which had two copies.

Core Peptidoglycan biosynthetic enzymes
involved in lipid-linked intermediates. Before the
subunits can be incorporated into the PG sacculus
they must first cross the inner membrane. The first
step is the attachment of a lipid moiety to the subunit
produced by MurF. This step is performed by MurG at
the inner membrane to produce a lipid-linked
intermediate named lipid I. We found a single copy of
MurG present in all PG producing bacteria studied.
Lipid I is transferred to MraY where a second sugar
moiety is added, GIcNAC, forming lipid II. Again we
found a single copy of MraY in all PG producing
organisms. The final step is to flip lipid II through the
inner membrane to the outer leaflet. Two enzymes
have been proposed to do this function in E. coli. Mur]

(MviN) was absent from most of the diderm bacteria,
and Clostridia and absent from all of the Bacilli. The
other candidate, FtsW, has two close homologs; RodA
is necessary for rod shape and SpoVE is required in
sporulation. We found this class of proteins is present
in all of the Firmicutes studied except the Tenericutes.
Interestingly, we found an additional homolog of the
FtsW family in the Negativicutes. (Fig 4), whose
function is currently unknown.

High Molecular Weight Penicillin Binding Proteins
After transport through the inner-membrane, lipid II
has to polymerize and crosslinked with the mature
PG. This process is performed by high molecular
weight (HMW) penicillin-binding proteins (PBP).
Polymerization is performed by Class A HMW PBPs.
Class A PBPs consist of two domains a membrane-
linked glycosyltransferase domain and a
transpeptidase domain. The glycosyltransferase
domain performs the polymerization of the chain,
while the transpeptidase creates crosslinks with the
existing PG structure. The chain is then further
crosslinked by Class B HMW PBPs, which do not have
a glycosyltransferase domain, instead, they have a
dimerization domain used in interactions.

We found the Class A and B PBPs present in all the
bacteria studied except the Mollicutes (Fig 5). The
class B proteins were present in two or more copies,
except for a few non-spore forming Clostridia. The
Bacilli, Thermoanaerobacteriales, and
Natranaerobiales had a large number of homologs
within their genomes. Class A PBPs were usually
detected as a single copy, except for the same three
clades as the Class B PBPs. Aside from the traditional
PBPs we surprisingly found a large number of
monofunctional glycosyltransferases (MGT). These
proteins consist of a single domain homologous to
that of the glycosyltransferase in PBP class A. They are
known to extend a PG chain without crosslinking it.
We discovered this enzyme in almost every
Negativicute studied, but only in four other
Firmicutes.

To investigate this we constructed a phylogenetic
tree using only the glycosyltransferase domain of PBP
class A and the MGTs (Figure 6). From this data, it
appears the Negativicutes acquired the gene at time of
their separation from the other orders, while the
other Firmicutes appear to be transfered, as in the
case of Tepidanaerobacter, or recent losses of the
transpeptidase domain.
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Fig 5. The copy number of Penicillin Binding Proteins: Figure shows the total number of homologs found for each
enzyme by HMM search. Colours behind numbers indicate copy number, 0=black, 1=yellow, 2-4=green >4=Red.
Background colours correspond to individual orders.
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Fig 6. Phylogeny of the Transglycosylase domain of PBPA and
residues and an LG model with a Gamma distribution.

Division and Cell Wall Cluster.

Recent studies have demonstrated that the enzymes
of primary PG biosynthesis form a complex, consisting
of MurD, MurE, MurF, MurG, MraW, MraZ, Mray, FtsL,
FtsW, PBPA, and FtsZ (Mohammadi et al.,
2007)(Favini-Stabile et al., 2013). We investigated the
genomic location of the peptidoglycan genes to see if
it correlated (Fig 7). We found the cluster of the
Negativicutes, Halanaerobiales, Thermoanaerobiales,
Natranaerobiales, and Clostridia to have a conserved
organization. The scaffold for the protein complex,
MurG, was found at the centre of the complex, with
MurC-F and MraY as neighbouring genes. The flippase
was occasionally found in the centre of the complex,

- MGT

MGT: The tree was constructed with PhyML using 166

and PBPB was located at the start. The PG genes were
flanked by the Fts genes, also called Mre, which are
involved in cell division and cytoskeleton structure.
No biochemical evidence has been presented for
interactions of MurB or MurA in the complex as of yet,
and we rarely found either gene in the cluster. This
organization is near identical to that of E. coli,
suggesting that this is the ancestral gene cluster of
these two groups. The Bacilli and Lactobacilli only had
a few genes of the cluster in this organization and the
fast evolving Erysipeltrichia did not have any usual
organization.
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Fig 8. The copy number of PG backbone cleavage enzymes: Figure shows the total number of homologs found for
each enzyme by HMM search. Colours behind numbers indicate copy number, O=black, 1=yellow, 2-4=green >4=Red.
Background colours correspond to individual orders.
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Fig 9. The copy number of PG amidases: Figure shows the total number of homologs found for each enzyme by HMM
search. Colours behind numbers indicate copy number, 0=black, 1=yellow, 2-4=green >4=Red. Background colours
correspond to individual orders.
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Fig 10. The copy number of PG peptidases: Figure shows the total number of homologs found for each enzyme by
HMM search. Colours behind numbers indicate copy number, 0=black, 1=yellow, 2-4=green >4=Red. Background
colours correspond to individual orders.



Lysozyme type enzymes. We continued our search
for the enzyme(s) responsible for the difference in PG
thickness by looking at enzymes responsible for
cleaving the PG backbone (Fig 8). The true lysozymes,
P, B, and C, were found in low copy number in only a
few species. This is congruent with other bacteria as
these enzymes are rarely used for cell PG maintenance
(Humann and Lenz, 2009). Type 1 and 3 Lytic
transglycosylases were found mostly in Bacilli and
Clostridia, while the type 2 system was found
predominantly in the Thermoanaerobacter,
Negativicutes, but is also in some Clostridia and
Bacilli. Type 4 lytic transglycosylases are usually
prophage-encoded and we only found this type in a
few genomes. It is interesting that the Halanaerobiales
and Natranaerobiales are lacking any traditional class
of lytic transglycosylase. SceD is a recently discovered
enzyme which may be a lytic transglycosylase of a
new type, however no enzymatic evidence has been
done (Stapleton et al., 2007). This enzyme was found
throughout most of the Firmicutes and may be the
primary lytic transglycosylase of this clade.

Amidases. As we could not find any clear candidates
from the lysozymes and lytic transglycosylases, we
continued to look for our candidate in the amidases
(Fig 9). Amidases cleave the PG peptide from the
sugar backbone and all have the same enzymatic
function; the differences among these enzymes is a
different ancestry and fold. We searched for four
classes of amidases: lysostaphin, LytC AmiD/AmpD,
and AmiA/AmiB. AmiC would have been detected in
the AmiA/ AmiB results, but its catalytic domain is not
highly conserved and may not be detected.
Lysostaphin was only found in one species and is a
marker for antibiotic resistance. AmiD/AmpD was
found in several species, but no clear pattern of
monoderm/diderm absence or presence. AmiA/AmiB
was found in high numbers in most of the bacteria.
There was a clear divide in both phylogeny and in the
alignment and this class was divided as to whether it
contained an N-terminal domain or not. There were
no detectable features of this additional domain and it
did not clearly enlighten our solution. The CHAP
catalytic domain found in LytC is usually part of a
phage system.

Peptidases. We continued our search for the
candidate enzyme by looking for peptidases (Figure
10). Peptidases are widespread throughout all life
and as such we searched for those with known PG
involvement. We searched for several domains and
found that most were found sparingly in a few
genomes. Many of these were previously shown to be
phage-encoded (Layec et al., 2008). The two primary
conserved peptidases, CwlO and LytM, are found in
most, but not all, Firmicutes studied. There is no clear
indication of involvement in the control of PG
thickness.

Sporulation. We concluded our study with an
analysis of the enzymes involved sporulation (Figure
11). We started our search by conducting a literature
search and a search for the master regulator spoOA to
determine which bacteria are spore formers. We
found that several bacteria are likely to be spore
formers, such as N thermophilus, as they have many
genes, even though they are noted as non-sporulating
in the literature. The 8-lactam forming enzyme CwlD
was found in all spore formers and some non-spore
formers, however, we could not search for PdaA as it
was indistinguishable from its homologs without
functional similarity. These and the opposing the
degrading enzyme SleB was found in all spore formers
and only one non-sporulating bacteria.

SpolID and SpollIP proved to be an anomaly. These
two genes work in a 1:1 ratio to degrade the PG and
move the second membrane around the daughter cell.
Both enzymes were found in all sporulating bacteria
with their corresponding helper enzymes SpolIM and
SpollIAH. The interesting fact is that spolID is also
found in non-sporulating Negativicutes without any
other sporulating genes. The same is true of the non-
sporulating Halanaerobiales, except they still have
spoOA and sleB. This proved to be interesting so we
went on to do a phylogeny of spolID (Figure 12).

We took a two-pronged method to determine the
function of SpolID in the diderm Firmicutes; we did a
phylogeny and looked at genomic syntany. We found
that spolID falls into one of three families: a
sporulating class found only in sporulating bacteria, a
divergent class, found to be phage-encoded or in
several regions of different genomic syntany, and the
diderm type. The diderm type was found in a few
monoderm clostridia and all of the diderm Firmicutes.

131



3%
3%
06669
[e)
<&

b/’
&
&’»

Bl Acetohalobium arabaticum DSM 5501
Halobacteroides halobius DSM 5150
Halonatronum saccharophilum DSM 13868
Orenia marismortui DSM 5156
Halothermothrix orenii H 168
Halanaerobium hydrogeniformans
Halanaerobium praevalens DSM 2228
Halanaerobium sacc harolyticum subsp. saccharolyticum
Tepidanaerobacter acetatoxydans Rel

[l Caldicellulosiruptor obsidiansis OB47

Bl Thermoanaerobacter tengcongensis MB4
Acetobacterium woodii DSM 1030
Ruminococcus albus 7
Roseburia hominis A2-183
Clostridium difficile 630
Clostridium tetani E88

Bl Thermobacillus comp osti KWC4
Paenibacillus polymyxa E681
Bacillus halodurans C-125

Bl Bacillus subtilis subsp. subtilis str. 168
Staphylococcus aureus 04-02981
Listeria monocytogenes 07PF0776

Bl Lactobacillus casei ATCC 334
Pediococcus pentosaceus ATCC 25745
Streptococcus pneumoniae 670-6B
Enterococcus faecium Aus0004
Coprobacillus sp. 29_1
Allobaculum stercoricanis DSM 13633

Ml Bulleidia extructa W1219
Erysipelothrix rhusio pathiae str. Fujisawa
Mesoplasma florum L1
Mycoplasma pneumoniae M129-B7
Mycoplasma bovis HB0801
Mycoplasma mobile 163K
Desulfosporosinus orientis DSM 765
Heliobacterium mode sticaldum Icel
Thermincola potens JR

Bl Pelotomaculum thermopropionicum Sl
Pelosinus fermentans DSM 17108
Anaeromusa acidaminophila DSM 3853

Bl Anaeroarcus burkinensis DSM 6283
Sporomusa ovata DSM 2662
Acetonema longum DSM 6540
Thermosinus carboxydivorans Norl
Succinispira mobilis DSM 6222
Acidaminococcus fermentans DSM 20731

Bl Acidaminococcus intestini RyC-MR95
Phascolarctobacterium succinatutens YIT 12067
Phascolarctobacterium sp. CAG:207
Phascolarctobacterium sp. CAG:266
Zymophilus raffinosivorans DSM 20765
Megamonas funiformis YIT 11815
Megamonas rupellensis DSM 19944
Anaerovibrio lipolyticus LB2005
Anaerovibrio sp. RM50
Centipeda periodontii DSM 2778
Selenomonas sp. oral taxon 138 str. F0429

Selenomonas ruminantium subsp. lactilytica TAM6421
Selenomonas bovis DSM 23594
Mitsuokella multacida DSM 20544
Mitsuokella sp. oral taxon 131 str. W9106
Anaeroglobus geminatus FO357
Megasphaera micronuciformis FO359
Megasphaera genomosp. type_1 str. 28L
Megasphaera elsdenii DSM 20460
Negativicoccus succinicivorans DORA1725
Dialister micraerophilus DSM 19965
Dialister succinatiphilus YIT 11850
Dialister invisus DSM 15470
Veillonella atypica KON
Veillonella ratti ACS-216-V-Col6b

|l VVeillonella magna DSM 19857
Veillonella montpellierensis DSM 17217
Veillonella dispar ATCC 17748
Veillonella parvula DSM 2008

O O O LSEISEEE N}

HHI—‘!I—‘HHD—'I—'I—'

1
1
al
1
1
1
1
1
1
1
1
1

WNDBRPERPEPBAEBRBRENOW®W

[cNoNoNoNoNal (0 W B W N RF WNEFEFWNWWWWOOU oo

i
(=)

[eNeNeNeNoNeNoNoNeNoNolNeoNoNoNeNoNoloNeloNolloNolNollooNoNoloNa) — — - oe) - - - - - [cNecleolNolNolloNolNooNolloNoNa) — - — - = = = = e - - - clele] - = = = = =

[l © © O O O O LSS R

I

I e e L e e e e e e e e e e e e e e e e e e e e N N Nl = NP S N ENEANANNENI © © © © © © © © © © © © o o [NENENENIEN NI

iwl\)l\)l—‘l—‘OOOOOOOOOOOOOOHH!—‘D—‘HHI—‘HOI\)D—‘I\)

OO0 0000000000000 O0OO0 OOOOO OO OO O O O O [GNGNG

OO0 0000000000000 O0DO0O0 OO0 O0ODO0OCDODO0OOOoO OO OOoEEEEEE O O ESEEEMO O O OO0 OO0 000 OO O OBl
O OO0 0000000000000 O00 O00O00CO0OO0O0O0O0CO O OO OISO OOOO OO0 OO0 0 OO O Ol

[eNeNeNeNeNeNeNeNeNeNe No o No oo oo o -Re o oo o oo NoNoNolel — — — [elal D N N N W ecNeNeleololNelNol
OO0 0000000000000 O0O0O0 OCOO0O0O0OO0OO0OO0O0DO0DO0OO0OO0OO0O0O0O0OCOIEUEEINOOOOOOOo

Fig 11. The copy number of Enzymes involved in PG remodelling in sporulation: Figure shows the total number of
homologs found for each enzyme by HMM search. Colours behind numbers indicate copy number, O=black, 1=yellow,
2-4=green >4=Red. Background colours correspond to individual orders.
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Discussion and Conclusions

The goals of this study were to determine if the PG of
diderm Firmicutes had unique characteristics and to
discover any catalytic remodelling domains that are
found exclusively in the monoderm phyla or
exclusively in the diderm phyla. We managed to
successfully to meet both goals.

Initially, we found that the PG of the Firmicutes
matched up to known stereotypes with the monoderm
bacteria possessing thick PG and the diderm bacteria
having much thinner PG, similar to E. coli (Matias and
Beveridge, 2006). These data were unsurprising but
necessary as no similar comparison could be found in
the literature.

We then proceeded to look at the copy number of the
core biosynthetic machinery and construct
phylogenies when an odd pattern occurs. Our results
matched well with the known components of the
biosynthetic machinery of Bacteria (Sauvage et al.,
2008b; Gautam et al., 2011), however, we did find a
few novel results. Most Negativicutes only possessed a
single PBPA protein but had an additional MGT
protein. This MGT can only potentially perform the
transglycosylation reaction and may replace the
secondary copies of PBPA that are found in most
bacteria (Sauvage et al, 2008a). The other curious
feature of the diderm Firmicutes was the presence of
an additional homolog of FtsW. Three different
paralogs of FtsW exist, one for sporulation, one for
rod shape, and a final copy as the primary PG flippase
(Mohammadi et al., 2011). We could easily group the
different types of the enzyme on B. subtilis homologs,
however, there is no known function for the
Negativicute FtsW homolog and may have a novel
function.

In the end, the primary focus of this analysis was to
identify a candidate, which may be responsible for the
diderm/monoderm transition. Our analysis pointed to
a single candidate spolID. The ideal presence/absence
in our scenario was a gene found in all diderm
Firmicutes and absent from all monoderm Firmicutes.
SpollID did not quite meet that criteria, however, the
copies that were found in the monoderms were all
sporulating associated, while the non-sporulating
diderm Firmicutes had a copy with no clear use in
sporulation. Those diderm Firmicutes that do
sporulate, such as A. longum, possess an additional
copy beyond that of spolIP the functional partner of
SpolID. This could mean that all diderm Firmicutes
have this homolog for a non-canon function, that of
maintaining a thin PG. The peptidoglycan regulation of
E. coli is done through two OM lipoproteins, LpoA and
LpoB, which coordinate the activity of the penicillin-
binding proteins and regulate growth (Typas et al,
2010). These proteins are not found outside the
Proteobacteria (Data not shown), and another system
must perform its function.

SpolID immediately suggests a mechanism for PG
thickness regulation as it is responsible for thinning
and separating the PG and dragging an extra
membrane layer during the incomplete division of
sporulation (Gutierrez et al., 2010). Known data on
spollD is covered in depth in the next chapter of this
thesis.

Materials and Methods

Genomic local databank. We assembled a local
databank of seventy-six genomes representing each of
the seven orders available, with an enrichment of the
Negativicutes and Halanaerobiales.

Table 1. PFAM models used in PG enzyme search:
Known PFAM domains corresponding to PG
remodelling activity

PFAM ID Name of PFAM domain
PF06725 3D

PF01510 Amidase_2
PF01520 Amidase_3
PF05382 Amidase_5
PF12123 Amidase02_C
PF00144 Beta-lactamase
PF05257 CHAP

PF07478 Dala_Dala_lig_ C
PF01820 Dala_Dala_lig N
PF06335 DUF1054
PF02388 FemAB

PF01832 Glucosaminidase
PF05838 Glyco_hydro_108
PF01183 Glyco_hydro_25
PF00933 Glyco_hydro_3
PF04965 GPW_gp25
PF07486 Hydrolase_2
PF00753 Lactamase_B
PF00062 Lys

PF00877 NLPC_P60
PF00246 Peptidase_M14
PF01427 Peptidase_M15
PF13539 Peptidase_M15_4
PF01551 Peptidase_M23
PF03411 Peptidase_M74
PF00768 Peptidase_S11
PF02113 Peptidase_S13
PF02016 Peptidase_S66
PF01464 SLT

PF13406 SLT_ 2

PF08486 SpolID

PF07454 SpolIP

PF00912 Transgly
PF06737 Transglycosylas
PF00905 Transpeptidase
PF14814 UB2H

PF02557 VanY

PF03734 YkuD

PF00959 Phage_lysozyme

HMM construction and use. Core PG biosynthetic
proteins (MurA-G, Mur], MraY, FtsW) were searched
for using a manually created HMM (Hidden Markov
Model). Genes for HMM construction were obtained
using Bacillus subtilis sub species subtilis 168 as a
query. These genes were queried in the non-
redundant database at NCBI with BLAST(Altschul et
al,, 1990). The top twenty genes from distinct genera
were chosen and an HMM profile was constructed
using HMMER2 with default settings(Mistry et al.,
2013).

Searches for active PG remodelling enzymes was
performed using all known PFAM HMM models (Finn
et al, 2014). These models were obtained by three
methods. First, all PFAMs were taken from two other
studies(Layec et al.,, 2008; Machowski et al., 2014). A
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second method was to query the PFAM website with
all known PG modifying enzymes (Appendix A). The
final method was to do a text query of the PFAM
database for databases related to the words
“peptidoglycan”, “murien”, “penicillin”, “lysozyme”,
“lytic transglycosylase”, and “cell wall”. This dataset
was reduced to only the domains with known catalytic
function. A full list of active site domains is listed in
Table 1.1. Some search results were further
characterized by the presence/absence of a second
domain. These criteria can be found in Table 1.2.
Ribosomal proteins were searched using PFAMs for
known domains found in each of the individual
ribosomal proteins. Out of an initial set of 53
ribosomal proteins, 6 were removed due to non-
universal distribution (L25, L30, S4, S14, S21) or
having various paralogs (L33, S4, S14).

Searches were conducted using HMMER2 on default
settings. The selection was further refined after
alignment with MUSCLE v3.8.31 (Edgar, 2004).
Sequences that did not align removed.

Tree Construction. Alignments selected for
phylogenetic reconstruction were trimmed using
BMGE 1.1 (Criscuolo and Gribaldo, 2010b) with a
BLOSSUM30 substitution matrix.

Maximum likelihood (ML) trees were calculated by
PhyML 3.1(Guindon et al,, 2010), with the

PROTGAMMAILG model and four categories of
evolutionary rates, as suggested by the Akaike
Information Criterion (AIC) implemented in ProtTest
3 (Darriba et al,, 2011), and by PhyML 3.1, with the
same model. Branch robustness was estimated with
the nonparametric bootstrap procedure implemented
in PhyML (100 replicates of the original dataset).

A separate ML analysis was conducted using RaxML 8
(Stamatakis, 2014) using the same parameters as
PhyML for independent validation of our datasets.
PhyloBayes 3. 3(Lartillot et al., 2009) was used to
perform Bayesian analysis using the CAT+GTR models
and a gamma distribution with four categories of
evolutionary rates was used to model the
heterogeneity of site evolutionary rates. For each
dataset, two independent chains were run until
convergence as stated in the documentation. The first
25% of trees were discarded as burn-in and the
posterior consensus was computed by selecting one
out of every two trees to compute the 50% majority
consensus tree.

Determination of peptidoglycan thickness

A complete literature review was conducted to
determine PG thickness in all species studied. Many
species lacked data, and only a few had accurate
measurements. When only Negative staining EM
pictures were available, the thickness was measured
using the scale bars or by the magnification.
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Table 2. Criteria for protein classification

Protein class

Known Proteins

Primary search term

Secondary Search term

Core

PBP Class A

MGT

PBP Class B

PBP Class C AMP-H
PBP Class C4

PBP Class C5

PBP Class C7
MurNAc-I-Ala
amidases

L-D transpeptidase
Crosslink cleavage
(D-ala, D-ala)

MurA

MurB

MurC

MurD

MurE

MurF

Ddl

MurG

MraY

Mur]

PBP1a, PBP1b, PBP1c
MGTs

PBP2, PBP3
AMP-H

DacC

DacA, DacB, DacF
PBP7
Lysostaphin

AmiD,AmpD

AmiA/AmiB

AmiA/AmiB +N

LytC
ErfK/YbiS/YcfS/YnhG,YkuD
VanY

Constructed HMM
Constructed HMM
Constructed HMM
Constructed HMM
Constructed HMM
Constructed HMM
Dala_Dala_lig C (PF07478)
Constructed HMM
Constructed HMM
Constructed HMM
Transgly (PF00912)
Transgly (PF00912)
Transpeptidase (PF00905)
Beta-Lactamase (PF00144)
Peptidase_S13(PF02113)
Peptidase_S11 (PF00768)
Peptidase_S11 (PF00768)
Amidase_5 (PF05382)

Amidase_2 (PF01510)
Amidase_3 (PF01520)
Amidase_3 (PF01520)
CHAP (PF05257)
YkuD (PF03734)
VanY (PF02557)

Dala_Dala_lig N (PF01820)

Transpeptidase (PF00905)
No other domain
PDB_dimer (PF03717)
Excluding other Class C PBP

PBP5_C (PF07943)
Without PBP5_C (PF07943)

N-termini domain

CwlK M-15-4 (PF13539)

M15 M15 (PF01427)
LD ldcA Peptidase_S66 (PF02016)
Carboxypeptidase
Endopeptidase LytM Peptidase_M23 (PF01551)

Cwl0,CwlIS,LytF,IytE NLPC_P60 (PF00877)
N-acetyl LytC glucosamididase (PF01832) SH3 (CL0010)
glucosamididase

Glucosamididase glucosamididase (PF01832) Without SH3
Lytic Family 1 /3 SLT (PF01464)
Transglycosylase

Family 2 3D (PF06725)

Family 4 Phage_lysozyme (PF00959)
Lysozyme Fungal Type (B) GPW_gp25(PF04965)

Chicken Type (C) Glyco_hydro_25 (PF01183)

Goose Type (P) Lys (PF00062)
Bacterial Type NagZ Glyco_hydro_3 (PF00933)

SceD Glyco_hydro_108 (PF05838)
Secreted Bacterial SpollIAH SpollIAH

SpolIM SpolIM

SpolIP SpolIP (PF07454)

SpolID SpolID (PF08486)

SleB/Cwl] Hydrolase_2 (PF07486)

Flg]
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Table 3. References for PG thickness data

Species

Source

Acetonema longum DSM 6540
Acidaminococcus fermentans DSM 20731
Acidaminococcus intestini RyC-MR95
Anaeroglobus geminatus F0357
Anaerovibrio lipolyticus LB2005
Centipeda periodontii DSM 2778

Dialister invisus DSM 15470

Dialister micraerophilus DSM 19965
Dialister succinatiphilus YIT 11850
Megamonas funiformis YIT 11815
Megasphaera elsdenii DSM 20460
Megasphaera micronuciformis F0359
Mitsuokella multacida DSM 20544
Negativicoccus succinicivorans DORA1725
Selenomonas bovis DSM 23594
Selenomonas ruminantium subsp. lactilytica
TAM6421

Sporomusa ovata DSM 2662

Thermosinus carboxydivorans Norl
Veillonella dispar ATCC 17748

Veillonella montpellierensis DSM 17217
Veillonella parvula DSM 2008
Acetohalobium arabaticum DSM 5501

Halanaerobium hydrogeniformans
Halanaerobium praevalens DSM 2228

Halanaerobium saccharolyticum subsp.
saccharolyticum DSM 6643
Halothermothrix orenii H 168

Bacillus subtilis subsp. subtilis str. 168
Listeria monocytogenes 07PF0776
Paenibacillus polymyxa E681

Staphylococcus aureus 04-02981
Caldicellulosiruptor obsidiansis 0B47
Thermoanaerobacter tengcongensis MB4
Pelotomaculum thermopropionicum SI
Thermincola potens JR

Enterococcus faecium Aus0004
Lactobacillus casei ATCC 334
Streptococcus pneumoniae 670-6B
Acetobacterium woodii DSM 1030
Clostridium difficile 630

Clostridium tetani E88

Ruminococcus albus 7

Natranaerobius thermophilus JW_NM-WN-LF
Bulleidia extructa W1219

Erysipelothrix rhusiopathiae str. Fujisawa
Mesoplasma florum L1

Mycoplasma bovis HB0801
Mycoplasma mobile 163K

Mycoplasma pneumoniae M129-B7

(Tochevaetal, 2011)
(Rogosa, 1969)
(Jumas-Bilak et al., 2007)
(Carlier et al, 2002)
(Henderson and Hodgkiss, 1973)
(Males et al., 1984)
(Downes et al,, 2003)
(Jumas-Bilak et al., 2005)
(Morotomi et al., 2008)
(Chevrot et al., 2008)
(Costerton et al., 1974)
(Marchandin et al., 2003)
(Kalmokoff et al., 2009)
(Marchandin et al.,, 2010)
(Zhang and Dong, 2009)
(Fulghum and Moore, 1963)

( Bergey’s Manual of Systematic Bacteriology: Volume 3: The
Firmicutes, 2011)

(Lee etal, 2006)

( Bergey’s Manual of Systematic Bacteriology: Volume 3: The
Firmicutes, 2011)

(Unpublished data)

(Bergey’s Manual of Systematic Bacteriology: Volume 3: The
Firmicutes, 2011)

( Bergey’s Manual of Systematic Bacteriology: Volume 3: The
Firmicutes, 2011)

(Zeikus, Hegge, Thompson, Phelps, and T. a. Langworthy,
1983)

(Zeikus, Hegge, Thompson, Phelps, and T. A. Langworthy,
1983)

(Cayol et al., 1994)

(Matias and Beveridge, 2008)

(Goldfine and Shen, 2007)

(Bergey’s Manual of Systematic Bacteriology: Volume 3: The
Firmicutes, 2011)

(Matias and Beveridge, 2006)

(Hamilton-Brehm et al., 2010)

(Xue etal, 2001)

(Imachi et al., 2002)

( Bergey’s Manual of Systematic Bacteriology: Volume 3: The
Firmicutes, 2011)

(Higgins and Shockman, 1970)

(Regulski et al,, 2012)

(Hammerschmidt et al., 2005)

(Mayer et al., 1977)

(Permpoonpattana et al., 2013)

(Takagi et al., 1965)

(Morrison and Miron, 2000)

(Mesbah et al., 2007)

(Downes et al., 2000)

(Shietal, 2012)

( Bergey’s Manual of Systematic Bacteriology: Volume 3: The
Firmicutes, 2011)

(Bergey’s Manual of Systematic Bacteriology: Volume 3: The
Firmicutes, 2011)

( Bergey’s Manual of Systematic Bacteriology: Volume 3: The
Firmicutes, 2011)

( Bergey’s Manual of Systematic Bacteriology: Volume 3: The
Firmicutes, 2011)
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3.2 Attempted mutation of spolID in Veillonella parvula

After identifying spollD as a candidate for the mechanism of monoderm/diderm
transition 1 immediately wanted to mutate/express this gene as we might have been able to
produce the transition in a laboratory setting. We had two possibilities, we could
constitutively express spollD in B. subtilis while the Bacterium underwent sporulation or we
could try and mutate the conserved spolID within a nonsporulating diderm Firmicute. At this
point, we had concluded that the ancestral Firmicute envelope was diderm so we favoured the
mutation route. In addition, a means of mutating V. parvula had been recently developed

(discussed in depth in the following introduction).

Unfortunately, my efforts to mutate the V. parvula were unsuccessful and I could not
obtain any mutants to study. As such the next section will be the shortest section with limited

results and discussion section.
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Attempted mutation of spolID in Veillonella

parvula

One of the most essential components of the Bacterial
cell envelope is the peptidoglycan. This molecule is
responsible for shape, structure, among other uses.
Diderm (Gram-negative) bacteria possess thin
peptidoglycan, one to two molecules thick, while
monoderms (Gram-positive) have peptidoglycan that is
several molecules thick. We recently discovered a
candidate enzyme, which may be responsible for the
diderm/monoderm transition. In this study, we
attempted to mutate spolID with both insertional and in
frame deletion mutagenesis. Both methods failed,
however insight was still obtained.

Peptidoglycan | Mutation | Sporulation | Evolution

In the previous section, [ presented data that suggests
that the diderm/monoderm transition occurred due
to the loss of spolID. SpolID is an important enzyme of
sporulation involved in the second stage when the
daughter cell separates from the mother cell
(Nocadello et al,, 2016). Its enzymatic activity has
been described as a lytic transglycosylase which
cleaves between the NAM and the NAG of the PG. This
cleavage produces a terminal 1,6-anhydro-NAM that

can not be reformed by the penicillin binding proteins.

It works in concert with SpolIP, which cleaves the PG

peptide side chain (Gutierrez et al., 2010).
Furthermore, this enzyme is embedded in the
membrane with an alpha helix and drags this
membrane to form an OM. This immediately suggests
a mechanism of OM formation and regulation in the
diderm Firmicutes.

Mutation of spolID is now possible within the diderm
Firmicutes as a genetic system has recently been
developed in the Qi laboratory in Oklahoma. To
develop this system, they isolated Veillonella strains
from saliva samples and then extracted plasmids from
these isolates (Liu et al.,, 2012). They then modified
this plasmid to produce an E. coli to Veillonella shuttle
plasmid, JBSJL2. This plasmid was tested for
competence efficiency and one strain V. atypica OK5
was found to be suitable.

Building on this work the laboratory went on to
construct a counter-selectable markerless system for
V. atypica OKS5 (Figure 1) (Zhou et al,, 2015). To use
this genetic system, first, a fragment upstream and
downstream of the target deletion must be selected
and cloned into pBST-Pmdh-pheS* within E. coli. The
plasmid is then electroporated into V. atypica where it
can not replicate. The cells are then exposed to the
antibiotic and those that have taken up the plasmid
will show resistance and
survive. When the
bacteria are exposed to a
second marker,
phenylalanine analogue
p-chloro-phenylalanine,
which is toxic when
metabolized by the PheS*
protein. As such cells that
survive will have lost the

plasmid. One of two
events can happen, the
cell can revert to the
native state or the desired

deletion can occur.
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Fig 1. Action of the
SpolIPD complex in
sporulation (A), a close
view of the activity (B),
conserved domains of the
SpolID (C). Taken with
permission from
(Gutierrez etal,, 2010)
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Fig 2. Schematic
presentation of the strategy
for constructing the
markerless deletion
system. Here only
integration at the upstream
region is illustrated.
Integration can also happen
at an equal chance in the
downstream region. When
this happens, the result
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opposite to what illustrated
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wild-type genotype, while
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upstream region would
generate the deletion.
Legend and figure took
with permission from
(Zhou et al,, 2015)

Results

To mutate spolID two distinct vectors were created
(Figure 3), one for insertional mutagenesis, pBST-
PmdH- spolID-INS and another for in-frame deletion,
pBST-PmdH-spolID- pheS*-DEL. A third plasmid,
pBSJL2, which was an empty expression vector, was
used as a control.

For each of the four batches of competent cells 3 were
electroporated with pBST-PmdH- spolID-INS, 3 with
pBST-PmdH PheS*--spolID-DEL, 3 with the positive
control pBSJL2, and 3 as a negative control that were
not provided with a plasmid. These cells were allowed
to recover and then 50% of each sample were plated
on THL containing the antibiotic and 50% on THL
without antibiotics.

I had near identical results in each of the four batches
of competent cells with both deletion strains
producing no living clones, while all of the Positive
controls produced from 10-50 colonies per plate.

Discussion

The mutation of V. parvula could have failed for three
reasons: Strain selection, low competence efficiency,
or spollD is an essential gene.

V. parvula DSM 2008 may have been a poor choice for
performing this study. We chose this bacterium as it is
the type strain for the Family and we had previously
performed an OM proteome and knew SpollD was
present and expressed. Furthermore, we had evidence
that we could obtain a single cross over event from

previous analysis within the laboratory (Data not
shown). Furthermore, the transformation efficiency is
incredibly low, with an average of two colonies per pg
of plasmid. The only successful mutations published
(Liu et al, 2012) have been done with a different
strain, that of V. atypica OK5, which now has a genome
available (Zhou et al., 2017).

Another possibility is that the mutation was possible,
however, there were too few competent bacteria to
obtain a mutant. In our process we used
electroporation for DNA uptake, however, a recent
study has demonstrated that Veillonella species may
use their T4P for competent uptake of DNA at higher
efficiency than that of electroporation (Knapp et al,
2017). I would recommend using the natural system
whenever possible for all future studies to ensure high
numbers of competent cells.

There is a strong likelihood that spolID is an essential
gene in diderm bacteria. First and foremost is that if
our hypothesis is correct, deletion of spolID results in
a monoderm bacteria. With the massive number of
bacterial populations that exist in the natural
environment we would expect the monoderm/diderm
transition to be a common occurrence, instead we
only find evidence for 9 potential transitions in known
Bacteria, in particular, the Actinobacteria, Chlorflexi,
and 4-7 transitions within the Firmicutes (Sutcliffe,
2010; Antunes et al, 2016). Additional support for
spollD being essential comes from our survey of
peptidoglycan remodelling enzymes, spolID is found
in all diderm Firmicutes without exception and is only
found in multiple copies within the diderm Firmicutes
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that sporulate. This contrasts the PG hydrolases which
have sporadic distribution throughout the Firmicutes
and vary widely in copy number. Even the genes
responsible for the cytoplasmic biosynthesis of the PG
precursors are found in a single copy number. In
addition spolID may not mutate due to the local
genomic context; It is downstream from the holiday
junction resolvases and upstream from the sec system
and may be on an operon with both (Figure 3). The
sec genes are essential in E. coli (Gerdes et al, 2003)
and mutation of the holiday junction resolvases can
prevent homologous recombination in and of itself
(Wyatt and West, 2014).
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spolID may be the gene responsible for the
monoderm/diderm transition, however, it may not be
possible to perform this mutation in V. parvula DSM
2008. For future studies, I would recommend
attempting to express a Veillonella type spollD in B.
subtilis during sporulation and see if the OM is
retained. Should mutation be attempted I would
suggest using the strain that has the most successful
mutations, namely V. atypica OK5 (Zhou et al,, 2017)
and attempt overexpression in parallel.

Materials and Methods

The growth of competent cells. V. parvula DSM 2008
C was grown in Todd-Hewitt (TH)
‘*@' *0}?‘ broth (Difco) supplemented with
' 0.6% sodium lactate (THL) for 24
hours. This was subcultured 1:100
into 200 mL and grown for 8 hrs @
37°C to an OD of 0.15. The cells were
harvested by centrifugation at 6000
rpm for 10 min @ 4°C and
resuspended in 100 ml of EpB (10 %
glycerol, 0.5 mM MgCl-2 ). Cells were
harvested using the same speed and
temperature and then resuspended
25 ml of EpB. Cells were harvested
using the same speed and
temperature and then resuspended 1
ml of EpB. Cells were aliquoted into
80 pl fractions and froze immediately.
Cells were stored at -80°C for less
than one week.

Electroporation. 10 pg of pure
plasmid was combined with one 80 pl
aliquot of cells and electroporated in
a 1 mm cuvette with 20 kV*cm-1, 25
uF, and 200 ohms. Cells were diluted
into 5 ml of THL and grown
anaerobically for 16 hrs @ 37°C. 2 ml
of the cells were plated on THL and
additional 2 ml were plated on
BHIL+TET (2.5pg/ml). Plates were
grown anaerobically for at least 72
hours @ 372C.

Fig 3. Local genomic area of spolID (top) and plasmids used in this study (Bottom)
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CONCLUSIONS AND
PERSPECTIVES

We are in the era of microbial genomics. The field is exploding with new genomes,
representing the diversity that was only imagined before. When this doctoral work began
there were genomes available for 38 Negativicutes and 7 Halanaerobiales; now there are 83
Negativicute and 18 Halanaerobiales, a doubling of available genomes. This expansion in
available genomes is not limited to Firmicutes or known strains, as there have been huge leaps
in bacteria characterized from metagenomes and new environments with 73,000 out of
100,000 prokaryote genomes being released during the course of this thesis (2014-2017,
NCBI prokaryotes.txt). A paradigm shift is necessary as an estimated 2% of bacteria are
culturable and of those less than 50% are estimated to be isolated at the species level (Wade,
2002). Through sequencing, we are able to obtain new perspectives on these uncultured,
difficult to study organisms. This comes with a problem as we have increased the amount of
data exponentially, however, the number of researchers has remained relatively constant. This
work represents a consolidated approach to this explosion of data and the generation of new
sequence annotation and genomes.

In this thesis, | used the available sequence data to construct an evolutionary story unlike
that told before. | increased the available knowledge on the Firmicutes, in both annotation of
OM related genes and describing the evolutionary relationship (Results Section 1). In
addition, | have added to the available knowledge by binning three Limnchorda from
metagenomes and describing their novel OM systems (Results Section 1.2). These results
have provided evidence for a unique theory that is a diderm first hypothesis. Our results
present a diderm ancestor of the Firmicutes who lost the OM in multiple lineages. This
contrasts the Cavalier-Smith diderm first hypothesis (Cavalier-Smith, 2006a), as we have
demonstrated multiple independent losses in the Firmicutes alone compared to his declaration
of a single loss in Bacteria. Furthermore, we discredit many of the monoderm first hypothesis,
most especially the Gupta hypothesis (Gupta, 2011). First, we show the loss of the OM, not
the gain, and we have shown the presence of LPS producing enzymes in multiple phyla with
no evidence of transfer (Results Section 1.2). This disproves the development of an OM

multiple times independently.
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This work is on the forefront of science due to the combination of in silico and
experimental work. Science has gone through transitions of philosophy, methodology, and
people. One of the current transitions is from two distinct methods of study, bioinformatics
and laboratory based study, to a holistic approach that encompasses both methodologies. This
approach is exemplified in the OM proteome (Results section 2.1). In this section, we
managed to definitely demonstrate the proteomic characteristics of V. parvula’s OM. Through
this, we were able to characterize ancestral systems such as BAM/TAM and we uncovered
multiple new hypothetical proteins, which will be a priority for future studies. The
quantification from this study directly led to the OM-tethering question; As Lpp is the most
abundant protein in E. coli and the functional similar OmpM is the most abundant protein in
V. parvula, what mechanism do other bacteria use? To this end | combined a literature review
and a thorough bioinformatics search for OM attachments and broke the textbook description
(Results section 2.2); Lpp is drastically limited in distribution and other mechanisms
dominate. These other mechanisms should be explored in more depth to determine their role
in OM-tethering outside of bacteria with Lpp. Furthermore, mutational studies on the diderm
Firmicutes would be informative to determine how the system function.

Although this work did not definitively demonstrate the mechanism of OM loss in the
monoderm Firmicutes, | was able to produce a strong logical hypothesis on the basis of
SpollD (Results section 3). This is the first identification of a single enzyme that may be
responsible for a drastic shift in cell envelope architecture. Unfortunately, the mutagenesis
failed in V. parvula and this demonstrated the need for more developed techniques in the
diderm Firmicutes. The only diderm Firmicute with potential mutagenesis is V. atypica,
however, this needs to be extended out to other Negativicutes, especially Selenomonas
ruminantium, and other diderm Firmicutes. The Halanaerobiales have much to teach us as
they live at the limits of life and being able to study their genetics will extend the knowledge
on bacterial extremophiles and their unique enzymatic and physiological properties. With
genetic systems in the diderm Firmicutes we could explore the nature of the unique proteins
that we have identified. These have been discussed in Results section 1.1, 1.2 and, 2.1,
however, emphasis should be placed on the hypothetical upstream of the BAM system. This
protein may give strong insight into how diderm Firmicutes envelope functions. The many
other hypotheticals discussed in this work could have potential as well and a strong deletion

system such as transposon mutagenesis need development.
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Figure D.1. New Views on the tree of life.

The tree includes 92 named bacterial phyla, 26 archaeal phyla and all five of the Eukaryotic supergroups.
Major lineages are assigned arbitrary colours and named, with well-characterized lineage names, in italics.
Lineages lacking an isolated representative are highlighted with non-italicized names and red dots. For details on
taxon sampling and tree inference, see Methods. The names Tenericutes and Thermodesulfobacteria are
bracketed to indicate that these lineages branch within the Firmicutes and the Deltaproteobacteria, respectively.
Eukaryotic supergroups are noted, but not otherwise delineated due to the low resolution of these lineages. The
CPR phyla are assigned a single colour as they are composed entirely of organisms without isolated
representatives, and are still in the process of definition at lower taxonomic levels. Taken with permission from
(Hug et al., 2016).
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Not only do we need more genetic systems and studies we need more genomes of diderm
Firmicutes. The predominantly studied diderm Firmicutes are associated with mammalian
microbiomes, a very well-studied approach (Turnbaugh et al., 2007). We need to explore
more environments that may contain interesting diderm Firmicutes. To this end, the
metagenomics work that | have performed here (Results section 1.2) should be extended to
the other diderm Firmicutes. In particular, the Halanaerobiales were recently found in
fracking water (Daly et al., 2016) and other locations could have other Halanaerobiales.
Similarly, the Negativicute genus Pelosinus has been found in multiple Uranium
contaminated sites. Continuing to search through metagenomics samples and generating novel
data from untouched environments could increase our knowledge on the diderm Firmicutes
and may enable the discovery of more lineages that represent distinct diderm clades.

In the broader approach, the work on cell envelope architecture has been greatly
expanded in the recent years. | have summarized this data in an updated version of Sutcliffe’s
table (Table D.1). The diversity of Bacterial phyla is incredible as we currently have 30
described phyla in Bergey's manual (Whitman, 2011), however, there is probably 92 phyla
found within available genomic data (Hug et al., 2016). Only 36 of these probable phyla have
an isolated representative and definitive proof of their envelope architecture (Figure D.1).
Four well established monoderm clades are present within Bacteria: Firmicutes, Tenericutes,
Chloroflexi, and the Actinobacteria. The Tenericutes have been shown to be placed within the
Firmicutes (Wolf et al., 2004) and as such, they lost their OM like all other monoderm
Firmicutes. The CPR have been proposed to constitute multiple phyla and have many unique
characteristics. All are extremely small with reduced genomes and most important for this
discussion is that they contain both diderm and monoderm members. Although their
phylogeny is difficult due to a reduced genome and fast evolving members, it has been
suggested that this group is a basal phylum. Repeating the same analysis, we performed on
the Firmicutes with the CPR may enlighten us on the ancestral Bacterial envelope and
whether it was diderm or monoderm. Unfortunately, this group has no cultivated members
and only partially completed genomes. When these problems have remedied a repeat of this
analysis would be ideal to be performed and may let us know what the LCA of bacteria
possessed for a cell envelope.

The Firmicutes have inherited an OM and lost this envelope multiple times within the
phylum, however, the Actinobacteria have an opposing story. Within this phylum diderm

members exist, the Corynebacterineae (Kaur et al., 2009; Bansal-Mutalik and Nikaido, 2014),
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which possess an OM. The Corynebacterineae are a well-known clade as Mycobacterium
tuberculosis is a member. Unlike the Firmicutes the origin of this OM is not a complete
mystery as it has emerged over the development of this order (Jamet et al., 2015). This OM is
non-homologous to any other known diderm bacteria and consists of a layer of
Arabinogalactan covalently attached to the exterior of the PG with hydrophobic mycolic acids
on the exterior ends of the mycolic acids (Kieser and Rubin, 2014). This unique case of
convergent evolution is the only time de nova membrane biosynthesis has been observed
since the origin of life. As this group contains the Mycobacteria many different evolutionary
studies have been performed, however very few have focused on the origin and emergence of
this OM. Although it would be interesting to study the development of an OM, we can extend
beyond and ask did LUCA have an OM? | will address my thoughts on this question in the

opinion section.
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Characterized LPS Genes Characterized BAM/TAM
Phylum Observable OM LPS Detected BAM genes detected

Acidobacteria Present Present Present - Present
Actinobacteria

Present” - Absent - Absent
Aquificae Present Present Present - Present
Armatimonadetes Present (Tamaki et

al., 2011) - Present - Present (NP)
Bacteroidetes Present Present Present Present Present
Caldiserica - - Absent - Absent (NP)
Chlamydiae Present Present Present - Present
Chlorobi Present Present Present Present Present

Absent (Sutcliffe,
Chloroflexi 2011) - Absent - Absent*

Present
Chrysiogenetes (Rauschenbach et al.,

2011) - Present - Present (NP)
Cyanobacteria Present Present** Present** Present Present
Deferribacteres Present - Present - Present (NP)
Deinococcus-
Thermus Present - Present**A Present Present
Dictyoglomi Present - Present** - Present (NP)
Elusimicrobia Present - Present - Present (NP)
Fibrobacteres Present - Present** - Present (NP)
Firmicutes Present” Present**A Present**A - Present”?
Fusobacteria Present Present Present - Present
Gemmatimonadetes Present - Present - Present (NP)

Present (Limam et
Lentisphaerae al., 2010) - Present** - Present (NP)
Nitrospira Present Present Present - Present (NP)
Planctomycetes Present Present Present - Present
Proteobacteria Present Present Present Present Present
Spirochaetes Present Present” Present” Present Present

Present (Jumas-Bilak
Synergistetes etal., 2009) - Present - Present (NP)
Tenericutes Absent - Absent - Absent
Thermodesulfobacteria Present - Present - Present (NP)
Thermotogae Present - Absent - Present (NP)
Verrucomicrobia Present Present Present - Present

*Some homologs found
- Indicates unknown

Table D1. Review of Bacterial Cell Envelope Architecture.

**Key gene absences
(NP) Not published

ANot found in all clades of phylum

The thirty described phyla are from Bergeys (Euzeby, 1997), and probable diderm groups are in bold.
Observable OM references are from (Whitman et al., 2011.) or are included in the table. Characterized LPS is
taken from (Sutcliffe, 2010) while LPS genetic potential is taken from (Antunes et al., 2016). Published data
relating to BAM/TAM system is reviewed in or taken from (Chaille T Webb et al., 2012; Heinz et al., 2015)
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Opinion:
The Origin of the Outer Membrane and Life Itself

During the course of my thesis the fundamental question of “Was the last universal
common ancestor a diderm or monoderm?” has plagued my thoughts. In this opinion section,

| present my ideas on where it began and what | believe happened.
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Current Opinion by

Daniel

Starting Outside the Box: Origin of Life on a Ball

Daniel Poppleton

Unité de Biologie Moléculaire du Géne chez les Extrémophiles, Département de Microbiologie, Institut Pasteur,

Paris, France

In this opinion piece, the origins of life are
described. First abiotic synthesis of molecules
occurred, these grew in complexity and
aggregated. The molecular aggregates or
bioballs underwent selection by uncontrolled
division and selective accumulation of molecules.
Then, more complex equipment evolved by the
evolution of molecules on the outside of the
bioball, which started to develop a cavity. The
bioball invaginates and the protocell continues
development past LUCA. Then the invagination
closes and the LCA of Archea and Eukaryotes
while Bacteria maintained the OM and pore
until they had developed peptidoglycan and the
complex transport machinery.

Step 1: Warm L.ittle Pond

Darwin once stated in a letter to J. D. Hooker “It is
often said that all the conditions for the first
production of a living organism are now present,
which could ever have been present. But if (& oh
what a big if) we could conceive in some warm
little pond with all sorts of ammonia & phosphoric
salts, light, heat, electricity & present, that a protein
compound was chemically formed, ready to
undergo still more complex changes, at the present-
day such matter be instantly devoured, or absorbed,
which would not have been the case before living
creatures were formed. (Darwin and Darwin,
1888)” Darwin’s novel idea was brilliant and since
then many different mechanisms have been
proposed for the chemical synthesis of the original
biomolecules of life (For a recent review see (Ruiz-
Mirazo et al., 2014)). A common feature of
proposed prebiotic reactions, and chemistry in
general, is heterogeneous production. Even in a
controlled laboratory reaction, a yield of 70% of the
desired product is considered good. Alas, most
current researchers on the topic seem to focus on
the production and implications of a single
molecule such as RNA (Materese et al., 2017) or
fatty acids (Mansy, 2010). It is impossible that the
early reactions produced only one product, such as
glycine; Far more likely is the prospect of a
heterogeneous mixture of organic molecules, from
lipids to sugars. There are many examples of messy
prebiotic reactions (Schrum et al., 2010; Ruiz-

Mirazo et al., 2014) as a specific example | will use
the basics of Zhang et al in their paper on Mineral
assisted pathways (Zhang et al., 2004). In this
groundbreaking work, they present data that
suggests that photochemical reactions combined
with mineral colloids can produce small organic
building blocks and longer chain organic
molecules. From these experiments | will make a
drastic  assumption: Life started in a
heterogeneous environment with a wide range of
organic molecules, ranging in size, charge, and
hydrophobicity. Although incredibly interesting, |
will make no assumptions as to how these
molecules are produced or to the location of their
production as this is not the scope of this chapter. |
will assume that it occurred in an aqueous
environment, with a near neutral pH, at
temperatures similar to those promote life today (5-
80°C).

Step 2: Nucleation

Now small molecules react, but for the synthesis of
life, we need large molecules, such as saccharides
and peptides. Here we run into a problem, the
formation of large molecules is difficult as they are
more likely to split than elongate. This is due to the
fact that bond formation is the product of second-
order kinetics, while breakage is first order. To
overcome the hydrolysis hurdle, the concentration
of the reactants has to be incredibly high, either by
high production (unlikely) or by increasing the
working concentration. The working concentration
can be increased by the production of crowding
agents, such as polyethylene glycol. This likely
contributed in a messy environment, but could not
raise the concentration by the amount needed for
the speedy reaction time necessary (Houston,
2006). | propose an alternative mean: Nucleation.
By nucleation, | propose that the hydrophobic
effect would cause the accumulation of
hydrophobic molecules into a single mass
separate from that of water. To form this
hydrophobic interface the free energy must
increase. Logically the interface cost grows linearly
with surface area, while the opposing compensation
forces grow linearly with volume. Therefore this
cluster can only be stable if it exceeds a certain size
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. Large black arrows note
elements are in purple.
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in this case 1nm (Dwivedi et al., 2014). This is
similar to nucleation of crystals, which can only
phase separate after the formation of a seed. 1 nm
is not a problem size. Linear glucose is 1.5 nm and
as such a single five carbon hydrocarbon could act
as a nucleation seed.

In this messy reaction scheme a single hydrophobic
molecule is uninteresting, however, a mass of
amphipathic molecules is. Take one of our previous
assumptions, that this was an incredibly
heterogeneous mixture of organic molecules, all of
the molecules that are hydrophobic will come to
together favourable to form a mass and so will the
amphiphatic ones. This may seem obvious from
vesicle formation, where polar head groups on
hydrophobic tails form a sphere, but most theorists
assume a mass of homogeneous content with a
single type of molecule constituting the vesicle
(Kurihara et al., 2011; Hentrich and Szostak, 2014).
| favour the idea that these organic balls would be
incredibly heterogeneous, containing both fully
saturated hydrocarbons in its core and amphipathic
molecules near the outside. This mass of molecules,
which I shall call a bioball, has key properties that
make it favourable to produce life: catalysis, growth
and division.

Step 3. Abiotic Growth and Division

The first property of the bioball is that it can grow
and divide. The growth aspect is easy to
comprehend; these bioballs will incorporate
whatever is thermodynamically favourable, both
hydrophobic and hydrophilic molecules. As this
will be a completely random process, many of these
incorporations may not decrease the free energy of
the system, as such hydrophobic portions may be
exposed if too many hydrocarbons are present in
the core. Furthermore, the shape of the bio-ball is
determined by the surface tension equation, which
specifies that the tension of the surface inversely
proportional to the cube of the volume. Briefly, this
means that as the ball grows, it is more likely to
lose its shape. This loss of shape will cause a
division into two separate bioballs when the
bioball acquires enough mass. It may seem like
we are on the path to life at this point as we have a
replicating entity, however, there is no selection or
synthesis of components.

Step 4. Specific Capture

At this point, the abiotic replicating bioball is a
complete heterogeneous mess, composed of a
random assortment of molecules. A key phase in its
development is the ability to preferentially grab and
incorporate molecules. Take, for instance, a 10-
carbon molecule, of which 5 carbon atoms are
reduced and hydrophobic, while the other 5 are
negatively charged. This molecule would
preferentially grab positively charged molecules

from the environment. If these “adhesin” molecules
have a hydrophobic portion they will be
incorporated into the bio-ball, otherwise, they will
eventually disperse. Then this incorporated
molecule would preferentially grab positively
charged molecules and the cycle would continue.
Molecules that bind poorly to any exposed
molecule would be repelled from the bio-ball and
this heterogeneous system would develop into a
more homogeneous molecule. This process would
be expanded by messy capture, where a molecule
would preferentially grab a copy of itself, but also a
second molecule that may have another function. If
you extrapolate this idea to more complex
molecules, we can have capture complex
molecules similar to base pairing in DNA. These
exposed molecules would be the earliest form of a
genome, providing the rudimentary code for
incorporation of molecules.

Step 5. Catalysis

A difficult property of these early reactions is
concentration, as stated before; most organic
synthesis reactions are second or third order. If we
take the assumption that longer chain molecules
will be more abundant than smaller molecules,
large molecules will interact with the di and
triatomic molecules before other long chain
molecules. Should some object hold the substrates
in close proximity, such as a bioball, the reaction
order can be decreased and the rate-limiting step
will be the synthesis reaction rather than the
molecules finding each other in the primordial
soup. This means that the structure of the bioball, in
and of itself, would act as a catalyst, but it would
not be the only one.

In our messy environment, some organic molecules
will be produced, by random chance, that exhibit
catalytic activity. Organocatalysis is the field of
chemistry that focuses on catalysis using small
organic molecules, such as those that may have to
be produced in the prebiotic environment. These
molecules can catalyse most organic synthesis
reactions; for example, proline can catalyse
addition reactions (Yao and Yuan, 2013) and a
frustrated Lewis pair can catalyse hydrogenation
(Rochette et al., 2015). | do not want to say all
early chemistry was catalysed by proline, this is
simply a proof of concept until we know the exact
reaction conditions, we will not what acted as
“enzymes”. Organocatalysis may have been one
branch of early reactions, however, an equally
likely form would have been organometallics. This
bioball would have many exposed amine and
carboxyl groups, the same groups that can chelate
iron, manganese, and other metals commonly used
in biochemistry today. These organometallic
complexes could perform many of the necessary
reactions without much-added complexity such as
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reduction such as nickel reduction of carbon. This
small molecule catalysis would be the essence of
early non-protein enzymes.

Step 6. Functional linkage: Coupling of

capture and catalysis

Now let us extend this idea by logical progression.
By random chance, we may have one of the
adhesion molecules that is incorporated in the same
bioball as a catalyst. This may allow capture of a
molecule and specific modification of it. For
example, if you had a dehydrogenation paired with
a capture mechanism, we may have the first lipid
synthesis system. These systems would exist in
isolation, aiding the bioball they are in, yet unable
to replicate to both daughter cells. A drastic
development would be the coupling of such
systems to produce a self-replicating system.

Step 7. First Life form: Development of

complex machinery

At this point, we have the first glimpse of life. We
have a replicating entity that grows in a
preferential manner, incorporating specific
molecules and modifying them with the ancestor
of metabolism. The genetic code is in the functional
molecules it exposes to the environment. Until this
time, the bio-ball developed purely by kinetics and
random chance. Now selection can act on this
proto-lifeform and | would argue that this is the
first living particle. The first self-replicating bioball
would cause depletion of its primary substrates in
the environment. This depletion facilitates diversion
and “mutation”. When the self-replicating
machinery has no substrates the bio-ball would be
susceptible to decay and may incorporate molecules
other than its preferred substrate. These alternative
substrates may confer a different activity or be
disastrous for the bio-ball, similar to what we see in
genomic evolution today.

Inside Out Metabolism

The process of cellular system development would
continue for an incredible amount of time and all
cellular systems would develop exposed to the
environment, as opposed to the interior. | will avoid
discussion on the development of individual
systems such as polymerases, RNA world, as the
bulk of the research in this field has been dedicated
to these systems (Wu et al., 2009; Ruiz-Mirazo et
al., 2014) What I wish to propose is the expansion
of the bio-ball idea to LUCA in terms of cellular
organization.

In this chapter, | am following and developing the
ideas first put forth by Blobel (Blobel, 1980) and
later developed by Cavalier-Smith (Cavalier-Smith,
1987; Cavalier-Smith, 2006a). Blobel first proposed
the idea that the ancestor of all life was a double
membrane organism and lineages later lost the OM.
This work was extensively expanded by Cavalier-

Smith with detail on mechanism and acquisition of
systems. | will not expand on Cavalier-Smith’s
work on individual mechanisms but highlight the
key differences. On this topic, most modern
research suggests that LUCA (Last Universal
Common Ancestor) developed as a cell (For an apt
summary of multiple viewpoints please see
(Koonin, 2014). This work was enhanced by Gunter
Wachtershauser in 1988 (Wachtershauser, 1988),
however, he presented evidence for development on
an inorganic surface, while | propose the
development on an organic surface, the bio-ball.
This development would continue far past the usual
considerations of an early cell and right up to
LUCA and all cellular aspects would evolve on the
surface of the bioball. These aspects include all of
LUCA’s features including ribosome biogenesis,
Nucleic acid biosynthesis, catabolism of major
substrates, anabolism of amino acids and sugars,
and transport mechanisms.

As this is a controversial area, | give my reasons
and logic here.

Current opinions are that the biochemical systems
we know today (RNA polymerase, Ribosome, etc)
would develop in a cellular environment. | disagree
with this hypothesis and follow the logic of surface
metabolism for the following reasons.

Membranes are never synthesized de nova. As of
yet, no one has found the de nova synthesis of a
membrane, all membranes in existence are inherited
from the parent cells (Robertson 1964). Membranes
grow by the incorporation of new molecules and
cells grow by division and budding from an existing
structure. Even in the case of sporulation, where a
complex second membrane is formed, the
membrane is formed from the cytoplasmic
membrane, not de nova. | cannot exclude the
possibility that de nova synthesis existed in the
past, however, if it did; Why wasn’t such a useful
mechanism Kkept in some extant organisms? The
only exception is the Mycobacterium, whose
membrane has a truly unique structure.

Membranes inhibit diffusion. The main advantage
of a membrane is having a semipermeable
separation from the exterior environment of the
cell. All cellular membranes allow passage of small
molecules, but the speed of diffusion increases
exponentially with size. This means only small
molecule chemistry could have existed in the early
days of life, an unlikely proposition.

Cart before the horse. As only small molecules, at
most a single sugar, can readily pass the membrane
we require a transporter or pore and secretion
system before life can develop. These systems
require biosynthesis to be specific enough to be
beneficial. If they are a non-specific pore there is no
advantage to having metabolism on the inside. As
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such the complex transport systems, such as SEC,
require protein biosynthesis, protein biosynthesis
requires ribosomes, and ribosomes required coding
material. This means that we must have complex
mechanical machinery before life can be cellular
hence the horse must come before the cart.

Cellular life could not compete. As | stated before
early life developed in an environment that
favoured organic molecule synthesis. This initial
synthesis must have resulted in at least a self-
replicating molecule, which would be acted on by
selection. If this molecule is separated from its
substrates it would have reduced fitness compared
to the surface metabolism counterparts.

Membrane loss is found in Bacteria. The bulk of
this thesis has focused on the loss of an OM in the
Firmicutes. As such we have no evidence of
membrane acquisition, but we have evidence for
membrane loss in one model case. This follows the
evolutionary theory that evolution is dictated by
gradual change and specialization until a loss
confers an advantage at which point a drastic
diversification is enabled. If you look at terrestrial
Bacteria, 50% of the isolates are monoderm
bacteria which only accounts for 5% of the bacterial
phyla (excluding the newly discovered CPR). The
same could have happened multiple times in
history.

Step 8. Formation of a vesicle

Now the bioball possesses saturated hydrocarbons
at its core. This feature would stay until the
synthesis or incorporation of fatty acids. Once a
typical fatty acid is preferentially synthesized the
ball can develop a cavity within it naturally
(Hentrich and Szostak, 2014). This cavity would
have little use in the initial stages, as all membranes
inhibit the transfer of molecules and all catalysis
activity occur on the surface of this pre-cell. This
membrane could not have the mechanical strength
to hold structure, which would enhance division in
early stages, later stages structure would come from
surface proteins. This division could be facilitated
by crimping of the cell with proteins similar to that
of FtsZ in Bacteria. These systems would have
many features at this stage that are completely
absent from modern life. Almost all molecules
would require some form of lipid attachment and
even coding machinery would have a hydrophobic
domain within the molecule.

Step 9-12 Development of cellular

systems

A key point in the development of the proto-cell is
asymmetry. Once surface organization and
specialized regions have ripened, this starts the
formation of an invagination. The surface
machinery would interact strongly with each other

to both promote catalysis and efficient capture of
new molecules. Should these molecules replicate in
a curved fashion, they could cause invagination of
the cellular structure. At first, this invagination
would allow the hydrophilic interactions of distal
components and slow the diffusion of small
molecules, later this invagination would create a
new cavity, a proto-cytoplasm. This proto-
cytoplasm is where most of the cellular
development would occur, from DNA to ribosomes.
The proto-cytoplasm would extend, aided by
cytoskeletal factors within the proto-cytoplasm and
exterior exoskeleton structure provided by a layer
similar to an S-layer. When the external
environment changed significantly from what
would be favourable for cellular life the cavity
would become an enclosed environment by the
formation of a large controlled pore to facilitate
transport of substrates into the cell. This topic has
been extensively covered by Cavalier-Smith
(Cavalier-Smith, 2001) and I do not wish to dwell
on these features.

Step 13-15 Continued development of

cellular systems

This proto-cell develops for an extended period. All
aspects found in LUCA are developed in this proto-
cell and the invagination pore is not closed until
after the separation of the Arkarya (Group of both
Eukaryotes and Archea) and the Bacteria. | differ
on this point then Cavalier-Smith who proposed
that Arkarya’s ancestor is within the Bacteria. After
my proposed separation the lineages separate due to
the Arkarya losing the outer membrane becoming a
true cell, while Bacteria maintain this structure and
utilize it as a second compartment, the periplasm.
The accounts for the vast differences in Bacteria
and the Arkarya. This compartment does not close
until the peptidoglycan structure has been
developed and efficient transport mechanisms
(ABC transporters, T2SS) have been developed and
is no longer necessary.

Additional points: Mass extinction and

Machinery loss

Why do we not see any bioballs in modern life? My
hypothesis immediately suggests points of mass
extinction. The early self-replicating life forms
(Step 7) appear as nothing but food to any modern
organism and would not exist past the point of
catabolism. These unprotected bioballs would
easily be digested by the later bioballs (Step 10-11)
and disappear off the face of the earth. This same
logic can be applied to LUCA and its extinct
cousins. The loss of the OM in Arkaya gave a
strong metabolic advantage; it was no longer
necessary to synthesize many of the components
found on the exterior. The alternative was Bacteria
which developed the necessary components to
compete with its simpler single membrane relatives.
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A key point is that much of the machinery (pore
proteins, reduction mechanism ) may have
conferred no advantage at key developmental stages
including the LUCA bDottleneck and were
subsequently lost. What we see today is likely a
small portion of the biologically active molecules
that ever existed.

Where to go next

We are nearing the capabilities as a species to
discover and understand one possibility of LUCA.
Although we can never truly know what actually
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1.1 Supplemental Figures from Antunes et al. 2016
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Figure A.1. Results of IC congruence test for the 47 ribosomal proteins.
IC values were mapped onto the ribosomal protein concatenation phylogeny shown in Figure 2 of (Antunes et

al., 2016). Branches in red indicate congruence among markers according to IC tests. Raw results of the test are
provided as Additional Data in Dryad.
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Figure A.2. Maximum likelihood phylogeny of the Firmicutes.
The tree was obtained by PhyML 3.0 based from the same concatenation of 47 orthologous ribosomal proteins as
the Bayesian tree in Figure 2 and the LG+I'4 model. Values at nodes represent non-parametric bootstrap values

calculated on 100 replicates of the original dataset. The scale bar represents the average number of substitutions
per site.
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Hypothesis P value

Ho No 0.775
Hi1 0.042
H2 1.00E-04
H3z 1.00E-05
Ha 9.00E-05
Hs 4.00E-07
He 9.00E-06
N1 0.465
N2 0.081
N3 0.023
N4 0.001
Ns 1.00E-06
Ns 1.00E-04

Results from approximate unbiased test on 12 topologies alternative to the
Bayesian tree in Figure 2 (hypothesis HoNo). P values < 0.05 are in red and
indicate topologies that are significantly different from the original hypothesis
Ho No. Alternative topologies testing the movement of the Halanaerobiales clade
are indicated by Hi.s while those referring to movements of Negativicutes are
indicated by N1.¢. These topologies are provided as Supplementary data. See text
for details.
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Figure A.3. Aproximate unbiased test for 12 alternate topologies.
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Figure A.4. Results of IC congruence test for the 4 LPS core proteins.
IC values were mapped onto the LPS core proteins concatenation phylogeny shown in Figure 3. Branches in red
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Figure A.5. Flagellar gene cluster of Negativicutes and Halanaerobiales.

Structure of the region coding for flagellar components in representative members of Negativicutes and Halanaerobiales, and its conservation with respect to their closely
related monoderm relatives Therminicola potens, and Natranaerobius thermophiles, respectively. By comparison is shown the structure of the operon in Escherichia coli as
representative of a classical diderm. Colors are only meant to highlight synteny.
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Figure A.6. Genomic context of the genes coding for flagellar rings in Halanaerobiales and
Negativicutes.

Structure of the region coding for components of the flagellar rings (flgA, flgH, flgl) in representative members
of Negativicutes and Halanaerobiales, in comparison with their closely related monoderm relatives Therminicola
potens, and Natranaerobius thermophiles, respectively. The genomic structures in Bacillus subtilis and
Escherichia coli are also shown as the most studied models for monoderm and diderm flagella. Colors are only
meant to highlight synteny.
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1.2 Supplemental Figures from Poppleton et al. 2017
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Figure A.8. Glycostain of LPS.

Thirteen and seventeen percentage SDS-PAGE loaded with identical samples and visualized with Pro-Q emerald
glycostain. O-antigen producing positive control E. coli were loaded in lanes 1 and 3, while O-antigen negative
extractions were loaded in lanes 2—4. Three biological replicates of V. parvula were loaded in lanes 5-7.
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Figure A.10. Trimeric autotransporter (A) and TonB (B) genomic clusters.
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Figure A.11. High-pressure frozen cell illustrating LPS.

The ultrathin section of a high-pressure frozen cell shows the cell wall of V. parvula (A). Beside the inner
membrane (IM), the outer membrane (OM), and the peptidoglycan (PG) within the periplasm, the fluffy outer
leaflet of the outer membrane is visible at higher magnification (B). This might represent the LPS moiety. Bold
arrows represent peptides detected in the OM
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A Tale of Two Membranes: Envelope transition in Firmicutes

Abstract: :
The bacterial cell envelope is of the utmost importance in bacterial physiology, constituting the
selective barrier of the bacterial cell. Curiously, two distinct types of cell envelope exist in bacteria:
monoderm (Gram-positive) with a single membrane, and diderm (Gram-negative) with two
membranes. When and how the transition between monoderm and diderm bacteria occurred is one
of the greatest questions in evolutionary biology, and incites intense debate. Fortunately, we have
ideal model organisms that can help better understand this transition: Negativicutes and
Halanaerobiales. These two distinct and diverse clades of bacteria represent an evolutionary enigma;
they belong phylogenetically to the classical monoderm Firmicutes, yet possess outer membranes
(OM) with lipopolysaccharides (LPS) similar to classic diderm bacteria. The three goals of this
Doctoral work are to: 1. Describe the outer membranes of diderm Firmicutes, 2. Elucidate the
evolutionary history of these envelopes, 3. Find a mechanism of transition between diderm and
monoderm Firmicutes.

1. To characterize the cell envelopes of diderm Firmicutes we conducted a thorough
bioinformatics analysis of all 1844 predicted proteins from the genome of Veillonella parvula DSM
2008 using eleven different localization prediction programs. These results were complemented by
protein extraction with surface exposed protein tags and subcellular fractionation, both of which
were analysed by liquid chromatography-tandem mass spectrometry. The merging of proteomics and
bioinformatics results allowed identification of 78 OM proteins. These experimentally prove the
existence of a number of outer membrane systems including an atypical Bam/Tam system for OM
protein biogenesis, a complete LPS transport complex, and a large number of hypothetical proteins.

We also identified OmpM in the outer membrane of V. parvula. This primary mechanism of
outer membrane attachment in Negativicutes is drastically different from that of E. coli, which uses
Braun’s lipoprotein (Lpp). We, therefore, investigate the distribution of these two systems in bacteria
along with Tol-Pal, a less studied tether. Surprisingly, Lpp is restricted to a few y-Proteobacteria,
while OmpM is distributed among most basal bacteria, and Tol-Pal is present in the remainder.
Together, this shows the presence of two different and mutually exclusive mechanisms of OM
attachment in Bacteria, OmpM and Tol-Pal, with Lpp being a recent invention.

2. To elucidate the evolutionary history of Firmicute cell envelope, we undertook a thorough
phylogenomic analysis. In a reconstructed phylogeny of the Firmicutes, the Negativicutes and the
Halanaerobiales formed distinct branches with closely related monoderm lineages. A phylogenetic
tree of the conserved LPS genes demonstrates vertical inheritance. These results strongly suggest
that the OM of Negativicutes and Halanaerobiales did not originate from horizontal gene transfer,
rather it was inherited from a diderm ancestor. This means that monoderm Firmicute lineages arose
through multiple independent losses of the OM.

3. We hypothesized that such losses were due to the loss of a peptidoglycan-remodelling
enzyme that resulted in unregulated outgrowth of peptidoglycan, and a rupture of the OM. To test
this hypothesis, a survey of peptidoglycan hydrolysing enzymes was completed within the Firmicutes.
A hydrolase was identified that was absent in monoderm Firmicutes, yet present in all diderm
Firmicutes. We attempted insertional mutagenesis and in frame deletion of the hydrolase encoding
gene in V. parvula. Neither was successful, suggesting that the gene was essential in our growth
conditions.

Taken together, these results provide precious information on the biogenesis, functioning,
and origin of the diderm cell envelopes of Negativicutes, Halanaerobiales, monoderm Firmicutes and
all Bacteria. They open the way to further characterization of the outer membrane of these
interesting Firmicutes and to a better understanding of the diderm to monoderm transition.



A Tale of Two Membranes: Envelope transition in Firmicutes

Résumé :

L'enveloppe des bactéries est de la plus haute importance pour leur physiologie, constituant la
barriere sélective de la cellule bactérienne. Curieusement, il existe deux types distincts d’enveloppes cellulaires
chez les bactéries : les monodermes (Gram-positives), avec une seule membrane, et les didermes (Gram-
négatives), qui en possedent deux. Quand et comment s’est produite la transition entre bactéries monodermes
et didermes sont parmi les plus grandes questions en Biologie de I’évolution, et sources d’intenses débats.
Nous disposons toutefois d’organismes modeles idéaux pour mieux comprendre cette transition : les
Négativicutes et les Halanaérobiales. Ces deux clades bactériens, distincts et variés, représentent une énigme
évolutionnaire. Phylogénétiquement, ils appartiennent tous deux a la famille des Firmicutes monodermes
typiques. Pourtant, ils possedent également une membrane externe avec des lipopolysaccharides (LPS), de
fagon similaire aux bactéries didermes. Mon travail doctoral a ainsi été orienté sur trois objectifs : 1 - Décrire
les membranes externes des Firmicutes didermes ; 2 - Elucider I'histoire évolutionnaire de ces enveloppes ; 3
- Trouver un mécanisme de transition entre Firmicutes monodermes et didermes.

1. Afin de caractériser I'enveloppe cellulaire des Firmicutes didermes, nous avons procédé a une
analyse bioinformatique approfondie de I'ensemble des 1844 protéines prédites dans le génome de Veillonella
parvula DSM 2008, au moyen de onze logiciels de prédiction de localisation différents. Les résultats obtenus
ont été complétés par extraction protéique avec des marquages de protéines exposées en surface, ainsi que
par fractionnement sous-cellulaire ; dans les deux cas, I'analyse a été effectué via chromatographie liquide
couplée a la spectrométrie de masse en tandem. Le recoupement des résultats de bioinformatique avec ceux
de protéomique a permis d’identifier 78 protéines associées a la membrane externe. Il a ainsi été possible de
prouver expérimentalement la présence de certains systemes relatifs a la membrane externe, notamment un
systeme Bam/Tam atypique pour la biogéneése de protéines de membranes externes, un complexe de transport
de LPS complet, ainsi qu’un grand nombre de protéines hypothétiques.

Nous avons également pu identifier OmpM dans la membrane externe de V. parvula. Ce principal
mécanisme d’attachement de la membrane externe chez les Négativicutes est drastiquement différent a celui
d’E. coli, qui utilise des lipoprotéines de Braun (Lpp). Nous avons donc analysé la distribution de ces deux
systemes chez les Bactéries, ainsi que du systeme Tol-Pal, une ancre moins étudiée. De fagon surprenante, les
Lpp sont limités a quelques y-Protéobactéries, alors qu’OmpM est présent chez la plupart des bactéries basales
et Tol-Pal chez les bactéries restantes. Ceci démontre I'existence de deux mécanismes différents et
mutuellement exclusifs, OmpM et Tol-Pal, pour I'attachement de la membrane externe chez les bactéries,
faisant de Lpp une invention récente.

2. Pour élucider I'histoire évolutionnaire de I'enveloppe cellulaire des Firmicutes, nous avons
entrepris une analyse phylogénomique approfondie. Dans une phylogénie reconstruite des Firmicutes, les
Négativicutes et les Halanaérobiales forment des branches distinctes avec les proches lignées monodermes. Un
arbre phylogénétique des génes conservés codants pour le LPS démontre une transmission verticale. Ces
résultats suggerent fortement que la membrane externe des Négativicutes et des Halanaérobiales n’a pas pour
origine un transfert latéral de génes, mais a plutot été hérité depuis un ancétre diderme. Cela signifierait ainsi
que les différentes lignées monodermes des Firmicutes seraient apparues suite a plusieurs pertes
indépendantes de la membrane externe.

3. Nous avons émis I'hypothése que de telles pertes étaient dues a la perte d’'une enzyme de
modification du peptidoglycane, résultant en une surcroissance non-régulée de ce dernier jusqu’a la rupture de
la membrane externe. Afin de tester notre hypothése, nous avons étudié la présence au sein des Firmicutes
d’enzymes hydrolysant le peptidoglycane. Nous avons pu détecter une hydrolase, absente chez les Firmicutes
monodermes, mais présente chez tous les Firmicutes didermes. Nous avons alors tenté des mutagénéses
insertionnelles et des délétions du géne encodant I’hydrolase chez V. parvula. Aucune des deux approches ne
réussit, ce qui suggere que ce gene est essentiel dans nos conditions de culture.

Dans leur ensemble, mes résultats fournissent de précieuses informations sur la biogénése, le
fonctionnement, et 'origine des enveloppes cellulaires des didermes Négativicutes et Halanaérobiales, des
Firmicutes monodermes, ainsi que de I'ensemble des bactéries. Ils ouvrent ainsi la voie a de futures
caractérisations de la membrane externe de ces Firmicutes intéressants, et a une meilleure compréhension de
la transition diderme/monoderme.



