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Résumé

Le présent travail de thèse traite de la modélisation vibratoire et de la caractérisation dynamique de matériaux multicouches anisotropes. Dans le premier chapitre, une classification de quelques modèles analytiques de multicouche et techniques de caractérisation expérimentales de structures planes est établie sous la forme d'une synthèse bibliographique. Elle regroupe les récents résultats publiés autour du sujet.

Le second chapitre propose une extension d'un modèle équivalent de multicouche au cas des structures anisotropes. Ce modèle décrit les premières courbes de dispersion de la structure et tient compte des phénomènes de cisaillement pouvant agir sur le mode de flexion en hautes fréquences. Le principal avantage du modèle réside dans sa simplicité et sa rapidité grâce à son nombre de variables cinématiques indépendant du nombre de couches. Les caractéristiques du multicouche sont définies par les 5 rigidités de flexion d'une plaque équivalente mince qui est comparée à ce dernier. L'extension de modèle est validée à l'aide d'une étude expérimentale réalisée sur des plaques composites en fibres de carbone.

Un intérêt tout particulier est porté sur la modélisation de l'amortissement structurel. Une définition énergétique du facteur de perte, décrite par une formulation spatiale et temporelle de l'atténuation, est comparée à une définition équivalente. Une nouvelle définition de la formulation spatiale est proposée dans le cas de structures très amorties et est comparée aux résultats de la littérature.

Dans le troisième chapitre, la technique de caractérisation RIC est étendue au cas des structures anisotropes. Cette méthode inverse s'appuie sur l'analyse du champ de déplacement de la structure et possède, grâce à son aspect local, des atouts non négligeables pour des applications industrielles. La méthodologie est tout d'abord présentée pour l'identification de sources (objectif initial de la méthode) et est ensuite adaptée à la caractérisation. Plusieurs applications numériques et expérimentales sont présentées afin de valider cette extension.

Enfin, le quatrième chapitre porte sur la caractérisation expérimentale d'un sandwich en nids d'abeille sur une large bande fréquentielle (1 à 300 kHz). Le comportement dynamique complexe de cette structure épaisse est décrit au travers des résultats prometteurs fournis par les simulations de notre modèle et les estimations de RIC. Ces résultats sont également comparés à ceux d'un modèle de référence et d'autres méthodes de caractérisation. 1

INTRODUCTION G ÉN ÉRALE

Le terme composite englobe tous les matériaux associant une matrice (résine, élastomère, caoutchouc, ciment) à un renfort (tissus, sable, fibres de carbone, de bois, de verre). La distribution géométrique de ces matrices et renforts ainsi que leurs interactions permettent de créer différentes variétés de composites. Les renforts modifient les propriétés mécaniques de la matrice en créant une orthotropie. Dans le cas de multicouche, l'orientation des fibres de chacune des Les matériaux multicouches sont finalement appréciés pour leurs propriétés mécaniques modulables que les matériaux homogènes classiques ne peuvent offrir. La connaissance de leurs comportements dynamiques est cependant nécessaire pour pouvoir pleinement exploiter leurs potentiels. La caractérisation de la structure apparaît alors comme un aspect fondamental du processus de conception. Elle se divise en deux étapes : la modélisation de la structure et l'identification des paramètres matériaux du modèle.

Objectifs

Plusieurs modèles de multicouches existent et sont généralement valides pour une gamme de fréquence donnée ainsi qu'une forme ou un type de structure en particulier. Dans une étude vibroacoustique, on s'intéresse principalement au mode de flexion de la structure puisque son rayonnement acoustique est généralement supérieur à celui des autres modes. Les modèles de plaques minces (Love-Kirchhoff [START_REF] Love | The small free vibrations and deformation of a thin elastic shell[END_REF]) le décrivent avec robustesse pour des matériaux de faibles épaisseurs. Lorsque l'épaisseur de la structure est importante (matériaux sandwichs, composites), le comportement en flexion est modifié par le cisaillement de la structure. Des modèles plus précis, tels que celui de Guyader et Lesueur [START_REF] Guyader | Acoustic transmission through orthotropic multilayered plates, part 1 : Plate vibration modes[END_REF] alliant la théorie des plaques épaisses (Hencky-
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Mindlin [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates[END_REF]) à une description individuelle des couches, sont alors nécessaires pour décrire ce phénomène. Guyader et Cacciolati [START_REF] Guyader | Viscoelastic properties of single layer plate material equivalent to multi-layer composites plate[END_REF] ont proposé, à partir de ce modèle, une méthodologie d'équivalence, développée à l'origine pour les matériaux isotropes, pour caractériser le multicouche. Notre premier objectif consiste à étendre cette méthodologie au cas des multicouches anisotropes (bois, composites, nids d'abeille) abondamment utilisées dans l'industrie. L'amortissement est également une caractéristique importante des matériaux mais elle reste difficile à quantifier. Notre second objectif consiste donc à regrouper différentes définitions d'amortissement structurel et à établir leur relation.

Les techniques expérimentales de caractérisation sont également valides pour une gamme de fréquence et un type de structure donné. Les approches modales sont le plus souvent consacrées à une étude basses fréquences tandis que les techniques ultrasonores sont appliquées en très hautes fréquences. Dans le domaine des moyennes et hautes fréquences, domaine principalement étudié dans ce manuscrit, ce sont les méthodes d'analyses de champs vibratoire qui sont employées. Parmi elles, la méthode non destructive RIC [START_REF] Leclère | Practical implementation of the corrected force analysis technique to identify the structural parameter and load distributions[END_REF] (Résolution Inverse Corrigée) s'appuie sur l'analyse du champs de déplacement de la structure qui est aisément accessible par la mesure. À l'instar du modèle présenté précédemment, la méthode RIC homogénéise une structure multicouche en un monocouche équivalent. Son aspect local permet à la fois d'appliquer la méthode sans avoir connaissance des éléments extérieurs à la zone étudiée (autres sources, conditions aux limites) mais également de cartographier les paramètres matériaux de la structure.

La méthode RIC présente donc des caractéristiques intéressantes pour des applications vibroacoustiques dans le domaine industriel. Notre troisième objectif est d'étendre cette méthode, actuellement développée pour les matériaux isotropes, aux structures anisotropes.

Plan du manuscrit

Le manuscrit est divisé en quatre chapitres. Le chapitre 1 dresse un état de l'art approfondi des connaissances disponibles à ce jour sur le sujet et regroupe les principaux résultats publiés dans la littérature. Dans un premier temps, une classification des modèles réduits de multicouche est proposée et est accompagnée de quelques définitions d'amortissement structurel où la notion de dissipation est introduite. Dans un deuxième temps, nous passons en revue différentes méthodes d'analyses de champs et présentons quelques techniques de caractérisation non destructives.

Le chapitre 2 traite de l'extension de la méthodologie d'équivalence proposée par Guyader et Cacciolati [START_REF] Guyader | Viscoelastic properties of single layer plate material equivalent to multi-layer composites plate[END_REF] aux structures anisotropes. Les différents étapes de construction du modèle analytique sont tout d'abord exposées et ses résultats sont présentés au travers de quelques exemples.

Puis, une étude expérimentale réalisée sur des plaques composites en fibres de carbone permet de valider cette extension. Enfin, une modélisation énergétique et équivalente de l'amortissement structurel sont comparées et une nouvelle définition de la formulation spatiale de l'amortissement énergétique est proposée dans le cas de structures très dissipatives. Les résultats de cette nouvelle formulation sont confrontés à ceux de la littérature.

Le chapitre 3 expose l'extension de la méthode RIC aux structures anisotropes. Cette exten-
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sion est tout d'abord présentée pour l'identification de source, objectif initial de la méthode [START_REF] Leclère | Vibration source identification using corrected finite difference schemes[END_REF],

et est validée numériquement et expérimentalement sur des structures anisotropes. Puis, la méthodologie est adaptée à la caractérisation à l'aide d'une approche itérative et par minimisation. La notion de régularisation du bruit de mesure est également traitée. Enfin, l'extension de la méthode RIC est validée pour la caractérisation à travers quelques exemples numériques ainsi qu'une étude expérimentale sur les plaques composites citées précédemment.

Le dernier chapitre a pour but de caractériser, sur une large bande fréquentielle, un sandwich en nids d'abeille afin d'évaluer les performances de notre modèle analytique et de la méthode RIC pour ce type de structures complexes et épaisses. Les différentes mesures effectuées sur ce sandwich sont dans un premier temps présentées à travers deux protocoles expérimentaux. Dans un deuxième temps, le mode de flexion de la structure est analysé à partir des résultats de RIC et d'autres techniques de caractérisation telles que la corrélation de Hankel, dont la formulation est adaptée au cas orthotrope elliptique. Les résultats de ces méthodes sont également comparés à ceux de notre modèle. Dans un troisième temps, un modèle de référence (Lamb [START_REF] Lamb | On waves in an elastic plate[END_REF]) nous permet à la fois d'étudier les autres modes de la structure et de déterminer les limites de notre modèle.

-4 - Ce chapitre dresse un état de l'art du sujet abordé dans ce manuscrit. Une classification des modèles analytiques de structures multicouches est tout d'abord proposée. La notion de dissipation est également introduite à travers plusieurs définitions de l'amortissement structurel.

Puis, différentes méthodes d'analyses de champs sont présentées. Enfin, quelques techniques de caractérisation non destructives sont décrites.

Modélisation de plaques multicouches

La caractérisation d'une structure passe dans un premier temps par la modélisation de celleci. Deux choix sont alors possibles. Le premier est d'utiliser un modèle exact ou complet [START_REF] Pagano | Exact solutions for rectangular bidirectional composites and sandwich plates[END_REF][START_REF] Noor | Three-dimensional solutions for the free vibrations and buckling of thermally stressed multilayered angle-ply composite plates[END_REF] permettant de décrire le comportement tridimensionnel de la structure à l'aide d'un très grand nombre de degrés de liberté et de paramètres. Ces modèles, de dimensions importantes, sont souvent développés pour un type de structure, cas de chargement ou conditions aux limites précis [START_REF] Srinivas | An exact analysis for vibration of simplysupported homogeneous and laminated thick rectangular plates[END_REF]. Le second est d'utiliser un modèle réduit dont les hypothèses émises sur le comportement de la structure permettent de réduire le nombre de degrés de liberté et de paramètres à CHAPITRE 1. SYNTH ÈSE BIBLIOGRAPHIQUE identifier. L'étude se concentre alors sur les mécanismes dominants où le domaine de validité de chaque solution doit être établi par rapport aux modèles exacts.

Dans la suite ce manuscrit, nous nous intéresserons uniquement aux modèles réduits de plaques multicouches continus, c'est-à-dire constitué de couches viscoélastiques. Les formes discontinus de certains matériaux, tels que, par exemple, les nids d'abeille ou les matériaux poreux (couches poroélastiques) ne seront pas considérés dans notre modélisation.

Les modèles réduits se différentient essentiellement par le choix émis sur la cinématique pour décrire le comportement de la structure. Plusieurs postulats de champs cinématiques sont possibles tels que la formulation par champ de déplacement, de contrainte ou mixte, c'est-àdire les deux à la fois. Cette dernière formulation est intéressante dans le cas de multicouche car elle permet vérifier les conditions de continuité des déplacements et des contraintes aux interfaces entre les couches. Carrera [START_REF] Carrera | c 0 z requirements -models for the two dimensional analysis of multilayered structures[END_REF] fait référence à ces conditions en leur donnant le nom de C 0 z requirements. Ces conditions impliquent également que les couches soient bien collées entre-elles. Cette hypothèse sera gardée tout au long du manuscrit.

Dans le cas de structures planes, l'épaisseur, définie ici suivant l'axe z, est d'un ordre de grandeur relativement plus faible que les longueurs caractéristiques de la structure. En conséquence, les modèles réduits utilisent l'hypothèse de la séparation des composantes spatiales :

H(x, y, z) = G(x, y)F (z), (1.1) 
où F est une fonction décrivant la distribution de la variable cinématique G dans l'épaisseur.

Cette fonction est connue et imposée par le modèle. Le niveau de précision et de complexité du modèle est généralement défini par l'ordre d'expansion de cette fonction.

L'imposante quantité de modèles de multicouche existant dans la littérature ont conduit certains auteurs comme Reddy et al. [START_REF] Reddy | Theories and computational models for composite laminates[END_REF] ou Carrera [START_REF] Carrera | An assessment of mixed and classical theories on global and local response of multilayered orthotropic plates[END_REF][START_REF] Carrera | Theories and finite elements for multilayered, anisotropic, composite plates and shells[END_REF] à en élaborer des classifications.

Trois principales catégories de modèles multicouches ressortent de ces classifications. Les sections suivantes détaillent chacune d'entre-elles avec divers exemples. Une quatrième section porte tout particulièrement sur la définition de l'amortissement dans les modèles réduits.

Modèles monocouches équivalents

L'appellation monocouche équivalent ou ESL pour Equivalent Single Layer regroupe les modèles décrivant le multicouche comme une plaque homogène dans l'épaisseur. La dynamique du multicouche est alors gouvernée par le champ cinématique de la plaque équivalente. Le nombre de variable cinématique ne dépend donc pas du nombre de couche. Chaque composante du champ cinématique peut s'écrire sous la forme d'une somme de variables cinématiques :

H(x, y, z) = G 1 (x, y)F 1 (z) + ... + G N (x, y)F N (z).

(1.2)

Cette formulation permet de réduire considérablement le nombre de degrés de liberté et la complexité du modèle. Ainsi, les modèles équivalents ont facilement été adoptés par la communauté pour leur facilité d'implémentation et leur rapidité de calcul pour n'importe quel nombre 

Modèle de plaque mince

Les modèles monocouches équivalents d'ordre 1 font référence aux théories classiques de plaque telles que le modèle Love-Kirchhoff [START_REF] Love | The small free vibrations and deformation of a thin elastic shell[END_REF] ou CLT pour Classical Lamination Theory. Ce modèle décrit le mode de flexion de la structure, tout en négligeant le cisaillement hors-plan.

Cette formulation permet de limiter le nombre de degrés de liberté à trois variables cinématiques : u 0 x et u 0 y , les déplacements membranaires de la fibre neutre de plaque en x et en y ainsi que u 0 z , le déplacement transverse supposé constant dans l'épaisseur. De plus, les sections planes de la plaque sont supposées rester droites et perpendiculaires à la fibre neutre lors du mouvement, négligeant ainsi leurs effets d'inertie de rotation. Ces hypothèses nous conduisent à la définition du champ de déplacement suivant :    u i (x, y, z) = u 0 i (x, y) -zu 0 z,i (x, y), i = x, y, u z (x, y, z) = u 0 z (x, y).

(1.3)

La vitesse de phase c φ = ω k du mode de flexion décrit par la théorie CLT tend vers l'infini avec la fréquence (voir Figure 1.2b), ce qui, du point de vue physique, n'a pas de sens. Ce phénomène montre la limite haute fréquence du modèle, imposée par les hypothèses précédentes. De plus, le domaine fréquentiel de validité du modèle est d'autant plus faible que la structure est épaisse.

Le modèle de Love-Kirchhoff tire ainsi son attribut de modèle de plaque mince du fait qu'il est CHAPITRE 1. SYNTH ÈSE BIBLIOGRAPHIQUE adapté à la modélisation de plaques de faibles épaisseurs (telles que les composites en fibre de carbone par exemple) dans un domaine où le produit fréquence-épaisseur reste relativement bas.

Des modèles de plaque épaisse ont alors été suggérés pour modéliser des structures telles que des sandwichs dans des domaines de fréquences élevées.

Modèle de plaque épaisse

Par la suite, Hencky [START_REF] Hencky | Über die berücksichtigung der schubverzerrung in ebenen platten[END_REF] et Mindlin [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates[END_REF] ont développé un modèle de plaque épaisse d'ordre 1 connu sous le nom de FSDT pour First order Shear Deformation Theory. Contrairement au modèle de Kirchhoff, la rotation de la section droite est prise en compte et engendre un cisaillement de la structure dans l'épaisseur. Deux nouvelles variables cinématiques φ iz sont utilisées pour décrire ce cisaillement dans l'écriture du champ de déplacement de la structure :    u i (x, y, z) = u 0 i (x, y) -zu 0 z,i (x, y) + F (z)φ iz (x, y), i = x, y, u z (x, y, z) = u 0 z (x, y), (1.4) où F (z) correspond à la distribution du cisaillement suivant l'épaisseur, qui, dans le cas du modèle de Mindlin, est linéaire (voir Tableau 1.1). Tel que Ege [START_REF] Ege | La table d'harmonie du piano. Études modales en basses et moyennes fréquences[END_REF] le mentionne dans les annexes de sa thèse, l'onde de flexion (k ∝ √ ω) se transforme en onde de cisaillement (k ∝ ω) dans les hautes fréquences (voir Figure 1.2a). La vitesse de phase du mode de flexion tend vers la célérité des ondes de cisaillement pures avec la fréquence et n'est donc plus infinie (voir Figure 1.2b). La limite en fréquence du modèle de plaque épaisse est ainsi supérieure à celle du modèle de plaque mince.

(a) Nombre d'onde Fréquence.épaisseur (Hz.mm) (σ iz (z = ±h/2) = 0, h étant l'épaisseur totale de la structure) qui est une condition essentielle dans la modélisation de la réponse dynamique de plaque épaisse [START_REF] Vlasov | On the equations of bending of plates[END_REF]. En conséquence, les courbes de dispersion obtenues à partir de la théorie FSDT sont différentes de celle des modèles tridimensionnelles tel que Lamb [START_REF] Lamb | On waves in an elastic plate[END_REF] ou d'ordres supérieurs comme le modèle de Reddy et al. [START_REF] Reddy | Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory[END_REF],

décrit dans la section suivante (voir Figure 1.3). Ce sujet est également traité par Margerit [START_REF] Margerit | Caractérisation large bande du comportement dynamique linéaire des structures hétérogènes viscoélastiques anisotropes[END_REF] dans sa thèse à l'aide d'une comparaison entre la théorie FSDT et le modèle éléments finis de Shorter [START_REF] Shorter | Wave propagation and damping in linear viscoelastic laminates[END_REF].

(a) Mode de flexion Mindlin [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates[END_REF] propose alors de corriger l'approximation faite sur le cisaillement en ajoutant un facteur multiplicatif au module de cisaillement reliant contrainte et déformation. 

Hencky [START_REF] Hencky | Über die berücksichtigung der schubverzerrung in ebenen platten[END_REF] et Mindlin [START_REF] Mindlin | Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates[END_REF] z

Levinson [START_REF] Levinson | An accurate, simple theory of the statics and dynamics of elastic plates[END_REF] et Reddy [START_REF] Reddy | A simple higher-order theory for laminated composite plates[END_REF] z -4z 3 3h 2

Touratier [START_REF] Touratier | An efficient standard plate theory[END_REF] h π sin( πz h ) Soldatos et Timarci [START_REF] Soldatos | A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories[END_REF] h sinh( z h ) -z cosh( 1 2 ) Karama et al. [START_REF] Karama | Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity[END_REF] ze -2(z/h) 2

Mantari et al. [START_REF] Mantari | A new higher order shear deformation theory for sandwich and composite laminated plates[END_REF] sin( πz h )e

1 2 cos( πz h ) + π 2h z
Tableau 1.1 -Exemple de fonctions F (z) utilisées pour décrire la distribution du cisaillement dans l'épaisseur dans les modèles de plaques épaisses. h représente l'épaisseur totale de la structure.

Levinson [START_REF] Levinson | An accurate, simple theory of the statics and dynamics of elastic plates[END_REF] et Reddy [START_REF] Reddy | A simple higher-order theory for laminated composite plates[END_REF] Les modèles trigonométriques ont été introduit par Touratier [START_REF] Touratier | An efficient standard plate theory[END_REF] avec une fonction sinusoïdale.

Soldatos et Timarci [START_REF] Soldatos | A unified formulation of laminated composite, shear deformable, five-degrees-of-freedom cylindrical shell theories[END_REF] ont ensuite proposé une nouvelle théorie définie à partir de fonctions hyperboliques. Puis, Karama et al. [START_REF] Karama | Mechanical behaviour of laminated composite beam by the new multi-layered laminated composite structures model with transverse shear stress continuity[END_REF] ont montré l'avantage des fonctions exponentielles par 

H l (x, y, z) = G l 1 (x, y)F l 1 (z) + ... + G l N (x, y)F l N (z), l = 1, 2, ..., N L , (1.5 
H(x, y, z) = G 1 (x, y)F l 1 (z) + ... + G N (x, y)F l N (z), (1.6) 
où F l i est une fonction continue par morceaux décrivant la distribution dans l'épaisseur de G i pour chaque couche indépendamment.

MOD ÉLISATION DE PLAQUES MULTICOUCHES

À titre d'exemple, prenons un champ de déplacement de la forme :

   u i (x, y, z) = -zu 0 z,i (x, y) + l i (z)φ iz (x, y), i = x, y, u z (x, y, z) = u 0 z (x, y), (1.7) 
où l i est la fonction Zig-Zag continue par morceaux dont l'expression décrit la distribution du cisaillement pour chaque couche. Une illustration de ce champ est présentée à la Figure 1 Les modèles Zig-Zag font leur apparition avec Lekhnitskii [START_REF] Lekhnitskii | Strength calculation of composite beams[END_REF] dont la formulation par champ de contrainte a été développée pour les poutres puis a été étendue aux structures orthotropes et anisotropes par Ren [START_REF] Ren | A new theory of laminated plates[END_REF]. Les contraintes de cisaillement sont décrites par quatre variables cinématiques indépendantes dont les ordres d'expansion associés sont paraboliques. Une formulation similaire a été proposée par Ambartsumian [START_REF] Ambartsumian | On the theory of bending plates[END_REF] avec deux variables cinématiques pour le cisaillement préservant ainsi le même nombre de variables que la théorie FSDT. Son modèle a été étendu aux structures anisotropes par Whitney [START_REF] Whitney | The effects of transverse shear deformation on the bending of laminated plates[END_REF]. Par la suite, Murakami [START_REF] Murakami | Laminated composite plate theory with improved in-plane responses[END_REF] a appliqué la formulation mixte de Reissner [START_REF] Reissner | On a mixed variational theorem and on a shear deformable plate theory[END_REF] dans le cas de plaque multicouche. Le champ de déplacement proposé dans son modèle consiste en un raffinement de la théorie FSDT par l'ajout d'une fonction Zig-Zag tandis que le champ de contrainte reste indépendant et parabolique dans chaque couche. Une extension d'ordre plus élevé a ensuite été proposée par Toledano et Murakami [START_REF] Toledano | A composite plate theory for arbitrary laminate configurations[END_REF] et plus récemment par Demasi [START_REF] Demasi | Refined multilayered plate elements based on murakami zig-zag functions[END_REF]. On pourra également citer les travaux de Arya et al. [START_REF] Arya | A zigzag model for laminated composite beams[END_REF] où le cisaillement est décrit par une fonction Zig-Zag linéaire couplée à une fonction sinusoïdale globale.

CHAPITRE 1. SYNTH ÈSE BIBLIOGRAPHIQUE

Le modèle de Guyader et Lesueur [START_REF] Guyader | Acoustic transmission through orthotropic multilayered plates, part 1 : Plate vibration modes[END_REF], étudié dans ce manuscrit, s'inscrit dans la catégorie des modèles Zig-Zag. Sa théorie, basée sur les hypothèses de Sun et Whitney [START_REF] Sun | Theories for the dynamic response of laminated plates[END_REF], considère une cinématique semblable à celle de Mindlin pour chaque couche. Les relations de continuité aux interfaces permettent de réduire le nombre de variables cinématiques total aux cinq degrés de liberté de la première couche. Une méthode énergétique basée sur la fonctionnelle d'Hamilton est ensuite utilisée pour écrire les équations du mouvement en fonction de ces cinq variables cinématiques. Une solution particulière de type onde plane est ensuite suggérée pour identifier les courbes de dispersion de la structure.

Par la suite, Guyader et Cacciolati [START_REF] Guyader | Viscoelastic properties of single layer plate material equivalent to multi-layer composites plate[END_REF] comparent le multicouche à un monocouche équivalent régit par la théorie de Love-Kirchhoff afin de déterminer des paramètres matériaux équivalents (rigidités de flexion). À chaque fréquence, le mode de flexion de la plaque équivalente est identifié à celui calculé par le modèle. Cependant, contrairement au modèle de Guyader, la théorie Ce module s'écrit :

E * = E + jE = E(1 + jη), (1.8) 
en utilisant la convention e jωt . Dans un multicouche, cette loi est appliquée pour chacune des couches. De plus, pour des couches anisotropes, chaque coefficient de la loi de comportement possède son propre facteur de perte. L'équation d'équilibre du multicouche fait intervenir une matrice de dissipation D en plus des matrices de raideur K et de masse M :

(K + jωD -ω 2 M )X = F. (1.9) 
Cette matrice peut être modélisée de différentes façons. Quelques exemples de modèles d'amortissement, également résumés dans la thèse de Margerit [START_REF] Margerit | Caractérisation large bande du comportement dynamique linéaire des structures hétérogènes viscoélastiques anisotropes[END_REF], et leurs relations sont présentés dans les paragraphes suivants.

Amortissement modal

Avec une approche modale, on suppose qu'il existe une base modale Φ r permettant de diagonaliser le système :

Φ H r (K + jωD -ω 2 M )Φ r = k r + jωd r -ω 2 m r = 0. (1.10)
Les pulsations modales ω * r sont complexes et l'amortissement modal se définie alors par :

ξ r = d r 2 √ m r k r . (1.11)

Amortissement énergétique

Une approche énergétique, appelée MSE pour Modal Strain Energy [START_REF] Johnson | Finite element prediction of damping in structures with constrained viscoelastic layers[END_REF][START_REF] Manconi | Estimation of the loss factor of viscoelastic laminated panels from finite element analysis[END_REF], utilise les hypothèses de Basile dans sa modélisation de l'amortissement. Le mécanisme de perte est modélisé par une légère perturbation du système conservatif. La méthodologie du modèle MSE repose sur un modèle hystérétique dont l'équation de mouvement libre est :

M Ẍ + (K R + jK I )X = 0. (1.12) CHAPITRE 1. SYNTH ÈSE BIBLIOGRAPHIQUE
La dissipation est alors portée par la matrice K I . Une recherche aux valeurs propres de l'équation précédente conduit à :

(K R + jK I )Φ * r = λ * r M Φ * r , (1.13) 
où λ * r et Φ * r sont les rième valeurs propres et vecteurs propres complexes. Ces valeurs propres peuvent s'exprimer en fonction du facteur de perte η r :

λ * r = λ r (1 + jη r ). (1.14)
On suppose alors que la perturbation est très petite et que les vecteurs propres Φ * r s'apparentent aux vecteurs propres du système conservatif Φ r calculé à partir de l'équation 1.13 avec K I = 0.

Dans ce cas, le facteur de perte peut s'écrire :

η r = Φ H r K I Φ r Φ H r K R Φ r . (1.15)
La MSE est considérée comme l'extension de l'amortissement structurel [127] car, contrairement à ce dernier, le facteur de perte dépend de la fréquence et prend en compte l'hétérogénéité de la structure. Shorter [START_REF] Shorter | Wave propagation and damping in linear viscoelastic laminates[END_REF] définit ce même facteur de perte comme étant le rapport entre l'énergie de dissipation et l'énergie potentielle élastique. La formulation de Shorter implique cependant que la viscoélasticité de chaque couche n soit modélisée par un facteur de perte global η n et que la matrice de dissipation puisse être écrite K I = n η n K R,n . Le modèle de Shorter ne permet donc pas de modéliser l'hétérogénéité de l'amortissement de chaque couche dans le cas anisotrope. Une formulation identique a aussi été utilisée par Ghinet et Atalla [START_REF] Ghinet | Modeling thick composite laminate and sandwich structures with linear viscoelastic damping[END_REF] dans leur modèle Layer-Wise. De plus, Lyon et DeJong [START_REF] Lyon | Theory and application of Statistical Energy Analysis[END_REF] relient l'amortissement énergétique à l'amortissement modal par la relation :

η r = 2ξ r , (1.16) 
Cette relation est cependant valide uniquement sur les modes propres de la structure et pour de faibles dissipations.

Modèle de plaque mince et amortissement spatial

Le modèle de Love-Kirchhoff défini l'amortissement du monocouche équivalent à partir du mode de flexion. Le facteur de perte est introduit sur les rigidités de flexion et est directement fonction du nombre d'onde de flexion k f :

η eq = - Im(k 4 f ) Re(k 4 f )
.

(1.17)

Tel que le mentionne Lyon et DeJong [START_REF] Lyon | Theory and application of Statistical Energy Analysis[END_REF], dans le cas de faibles dissipations, l'amortissement 

η = -2γ c g c φ = -2rγ, (1.18) 
où c φ = ω k correspond à la vitesse de phase et c g = ∂ω ∂k correspond à la vitesse de groupe. L'amortissement spatial représente l'atténuation spatiale de l'onde se propageant dans la structure. Pour une plaque de Love-Kirchhoff, le nombre d'onde de flexion étant proportionnel à la racine carré de la fréquence, le ratio entre c g et c φ est égal à 2 quelle que soit la fréquence. On obtient ainsi : 

η eq = -4γ. (1.19)

Analyse de champs vibratoire

Méthodes hautes résolutions

Analyse Modale

Méthodes ultrasonores [START_REF] Pézerat | Identification of vibration sources[END_REF] En très basses fréquences, les méthodes quasi-statiques telles que la DMA pour Dynamic Mechanical Analysis [START_REF] Menard | Dynamic mechanical analysis : A practical introduction to techniques and applications[END_REF] sont appliquées. Cette méthode mesure les déformations de la structure soumise à différentes contraintes. Les paramètres matériaux sont identifiés à partir de la loi de comportement linéaire (de Hooke) reliant les contraintes et les déformations. La DMA s'applique facilement dans le cas de matériaux isotropes mais présente des limitations dans le cas de structures complexes comme les composites.

En basses fréquences, l'analyse modale étudie les résonances de la structure où le rapport signal sur bruit est le plus fort. Les paramètres viscoélastiques sont identifiés par comparaison CHAPITRE 1. SYNTH ÈSE BIBLIOGRAPHIQUE des fréquences de résonance, des déformés modales (nombre de MAC), et du facteur perte (bande passante à -3 dB) avec un modèle théorique. Ces méthodes ne fournissent des résultats qu'aux fréquences de résonance et sont limitées en moyenne et haute fréquence par le recouvrement modal [START_REF] Parrinello | Modal density of rectangular structures in a wide frequency range[END_REF]. De multiples applications sur des structures complexes existent comme par exemple l'étude de sandwich en composite hybride [START_REF] Nikhil | Modal analysis of hybrid laminated composite sandwich plate[END_REF], de rotor avec des pales en composite [START_REF] Teter | Experimental modal analysis of a rotor with active composite blades[END_REF] ou de l'amortissement de poutre sandwich [START_REF] Wang | Damping of honeycomb sandwich beams[END_REF]. Les méthodes hautes résolutions, telles que la méthode ESPRIT [START_REF] Richard | Esprit -estimation of signal parameters via rotational invariance techniques[END_REF][START_REF] Ege | High-resolution modal analysis[END_REF], viennent compléter l'analyse modale, notamment dans l'étude de matériaux très dissipatif, en étendant efficacement le domaine fréquentiel des caractérisations expérimentales même pour des recouvrements modaux importants. À ce titre, nous pouvons citer également les récents travaux de Margerit et al. [START_REF] Margerit | High resolution wavenumber analysis (hrwa) for the mechanical characterisation of viscoelastic beams[END_REF][START_REF] Margerit | The high-resolution wavevector analysis for the characterization of the dynamic response of composite plates[END_REF] qui ont appliqué la méthode ESPRIT pour l'analyse en nombre d'onde sur des structures 1D (type poutre) et 2D (type plaque) avec des résultats remarquables sur une large gamme fréquentielle.

En hautes fréquences, les méthodes ultrasonores basées sur des modèles ondulatoires, telles que Lamb [START_REF] Lamb | On waves in an elastic plate[END_REF] par exemple, sont utilisées. Elles peuvent notamment permettre l'estimation de tenseur d'élasticité [START_REF] Bodian | Évaluation non destructive des propriétés d'élasticité et d'atténuation ultrasonore dans des matériaux anisotropes[END_REF] ou encore la détection de défauts de petites tailles [START_REF] Alleyne | The interaction of lamb waves with defects[END_REF][START_REF] Su | Guided lamb waves for identification of damage in composite structures : A review[END_REF].

En moyennes fréquences, les techniques de caractérisation correspondent à des analyses de champs vibratoires où les paramètres matériaux sont identifiés à partir du champ de déplacement de la structure. Dans les sections suivantes, nous détaillerons plusieurs techniques de mesure de champs ainsi que ces méthodes de caractérisation qui se divisent en deux groupes : les méthodes globales et les méthodes locales.

Mesure du champ vibratoire

Les techniques de mesure de champ généralement utilisées dans le domaine vibro-acoustique se divisent en deux catégories. La première rassemble les capteurs à contact tels que les accéléromètres ou les cales piézoélectriques. Ce type de capteur est intrusif et ajoute une masse supplémentaire à la structure mesurée. Les accéléromètres mesurent l'accélération en un point sur une gamme de fréquence pouvant aller jusqu'à 50 kHz tandis que les cales piézoélectriques mesurent le déplacement sur une bande de fréquence beaucoup plus élevée. La seconde catégorie rassemble toutes les techniques utilisant des capteurs sans contact telles que l'holographie acoustique, l'holographie optique, la vibrométrie laser, la corrélation d'image ou la déflectométrie. L'holographie acoustique de champ proche [START_REF] Hayek | Nearfield Acoustical Holography[END_REF] mesure le champ de pression rayonné par la structure à une distance d < λ/2. Le champ vibratoire de la structure est ensuite reconstruit à partir du champ de pression par des algorithmes de rétropropagation [START_REF] Veronesi | Nearfield acoustic holography (nah) ii. holographic reconstruction algorithms and computer implementation[END_REF]. La mesure peut être plein champ avec un réseau de microphones (voir Figure La déflectométrie [START_REF] Giraudeau | Measurement of vibrating plate spatial responses using deflectometry and high speed camera[END_REF] 

IWC(k, γ) = Nx i=1 Ny j=1 C(x i , y j )w(x i , y j )σ * k,γ (x i , y j ) Nx i=1 Ny j=1 C(x i , y j )|w(x i , y j )| 2 . Nx i=1 Ny j=1 C(x i , y j )|σ k,γ (x i , y j )| 2 , (1.22) 
où C correspond à la cohérence de la mesure et σ à l'onde inhomogène :

σ k,γ (x, y) = e -jk(1+jγ)(x cos(θ)+y sin(θ)) .

( 

Corrélation par fonctions de Hankel

Roozen et al. [START_REF] Roozen | Estimation of plate material properties by means of a complex wavenumber fit using Hankel's functions and the image source method[END_REF] soulignent cependant le fait que la corrélation d'ondes planes n'est pas réaliste proche des sources. En conséquence, ils optent pour une corrélation avec un noyau de Green prenant en compte les ondes propagatives et évanescentes. La réponse du milieu à une excitation ponctuelle élémentaire positionnée en (x 0 , y 0 ) est modélisée par deux fonctions de Hankel H

(1) 0 de première espèce d'ordre 0. Dans le cas d'une plaque isotrope infinie de Love-Kirchhoff, ce noyau s'écrit :

G ∞ x -x 0 , y -y 0 = 1 8k 2 D H (1) 
0 (kr) -H 

w(x, y) = n α n G ∞ x -x 0 (n), y -y 0 (n) , (1.25 
P (θ) =                c 4 c 2 s 2 s 4 s 4 c 2 s 2 c 4 6c 2 s 2 c 4 -4c 2 s 2 + s 4 6c 2 s 2 4c 3 s 2(cs 3 -c 3 s) -4cs 3 4cs 3 2(c 3 s -cs 3 ) -4c 3 s                , avec c = cos(θ) et s = sin(θ). ( 1 
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Wassereau et al. [START_REF] Wassereau | Experimental identification of flexural and shear complex moduli by inverting the timoshenko beam problem[END_REF] ont appliqué RIFF pour la caractérisation de poutres épaisses modélisées par la théorie de Timoshenko. Ils démontrent par leurs travaux l'adaptabilité de RIFF à tout type de modélisation. À l'instar de la théorie de Mindlin pour les plaques, le modèle de Timoshenko prend en compte le cisaillement de la structure dans l'équation de mouvement : 

I ∂ 4 w ∂x 4 ρIω 2 ∂ 2 w ∂x 2    E E G + 1    = ρSω 2 - ρ 2 I G ω 4 w(x), (1.31 

Résolution Inverse Corrigée (RIC)

En parallèle de la sensibilité au bruit de RIFF, la discrétisation de l'équation de mouvement par différence finie entraine aussi une erreur de modélisation. Leclère et Pézerat [START_REF] Leclère | Vibration source identification using corrected finite difference schemes[END_REF] été développée pour l'identification de source [START_REF] Leclère | Vibration source identification using corrected finite difference schemes[END_REF] puis a été étendue pour la caractérisation de plaque isotrope par Leclère et al. [START_REF] Leclère | Practical implementation of the corrected force analysis technique to identify the structural parameter and load distributions[END_REF] également. RIC fait appel à des coefficients correcteurs (µ, ν) permettant de modifier la pression reconstruite en pondérant l'estimation de chaque dérivée partielle :

p RIC = D µδ 4x + µδ 4y + 2νδ 2x2y -ρhω 2 w(x, y), (1.32) avec µ = ∆ 4 k 4 f 4 1 -cos(k f ∆) 2 , ν = ∆ 4 k 4 f 8 1 -cos k f ∆ √ 2 2 -µ, (1.33) 
où k f est le nombre d'onde de flexion. Les coefficients sont calculés de sorte que la singularité -29 - itération détermine les caractéristiques de la structure en appliquant RIFF. Si l'erreur de biais est importante, ces paramètres seront faux mais permettront de calculer les coefficients correcteurs nécessaires à leur correction dans une seconde itération. L'accumulation des itérations peut ainsi permettre de converger vers les vrais paramètres matériaux. Cependant, cette technique peut également diverger dès lors que la première itération donne des résultats aberrants. La correction est alors inefficace et peut au contraire augmenter l'écart avec la réalité. En conséquence, Leclère et al. [START_REF] Leclère | Practical implementation of the corrected force analysis technique to identify the structural parameter and load distributions[END_REF] suggèrent une approche itérative plus stable de Gauss-Newton. Ils ont par la suite mené une application expérimentale de RIC sur une plaque en aluminium munie d'un patch viscoélastique. Les cartographies de la raideur et de l'amortissement identifiées conduisent aux mêmes conclusions que celles émisent dans l'étude menée par Ablitzer et al. [START_REF] Ablitzer | Identification of stiffness and damping properties of plates by using the local equation of motion[END_REF] (voir Figure 1.17 La correction de RIFF permet également de se passer des méthodes de régularisation par filtrage et fenêtrage pour atténuer le bruit de mesure [START_REF] Leclère | Identification of loads of thin structures with the corrected force analysis technique : An alternative to spatial filtering regularization[END_REF]. En effet, la réponse de RIC se comporte comme un filtre passe-bas où le nombre d'onde de coupure est défini en fonction de n. 

Conclusion

Ce chapitre nous a permis de situer nos objectifs par rapport aux différentes études réalisées sur le sujet jusqu'à présent. Comme indiqué dans l'introduction, ce travail de thèse se concentrera principalement sur l'extension de la méthodologie d'équivalence proposée par Guyader et

Cacciolati [START_REF] Guyader | Viscoelastic properties of single layer plate material equivalent to multi-layer composites plate[END_REF] ainsi que celle de la méthode RIC aux structures anisotropes. Notre choix a été motivé par les caractéristiques de ces deux méthodes, notamment la notion de plaque homogène équivalente, pouvant conduire à des applications industrielles intéressantes.
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Chapitre 2

Modèle analytique équivalent de multicouches anisotropes Sommaire 

Méthodologie

Le modèle de Guyader fait parti de la catégorie des modèles dits Zig-Zag. À partir des hypothèses émises précédemment sur la cinématique du multicouche, nous pouvons dresser le champ de déplacement suivant pour chaque couche n :

               u n x (x, y, z, t) = ψ n x (x, y, t) + (R n -z) ∂W ∂x + φ n x (x, y, t) , u n y (x, y, z, t) = ψ n y (x, y, t) + (R n -z) ∂W ∂y + φ n y (x, y, t) , u n z (x, y, z, t) = W (x, y, t).
(2.1)

CHAPITRE 2. MOD ÈLE ANALYTIQUE ÉQUIVALENT DE MULTICOUCHES ANISOTROPES

Le champ de déformation de la couche n peut être exprimé dans le repère de référence à partir du champ de déplacement postulé précédemment à l'Eq. 2.1 :

               n xx n yy 2 n xy 2 n xz 2 n yz                =                ∂ ∂x 0 0 0 ∂ ∂y 0 ∂ ∂y ∂ ∂x 0 ∂ ∂z 0 ∂ ∂x 0 ∂ ∂z ∂ ∂y                       u n x u n y u n z        . (2.2)
La composante n zz est nulle du fait que l'hypothèse de déplacement transverse constant n'entraine aucune déformation dans l'épaisseur. 

Loi de comportement

{σ} = [Q]{ }, (2.3) 
où [Q] représente le tenseur des raideurs qui, dans ce manuscrit, suit la notation de Voigt.

Dans le modèle étudié, chaque couche n est considérée comme orthotrope dans le repère local Ox n y n z et possède, dans ce même repère, une loi de comportement pouvant s'écrire :

               σ n xnxn σ n ynyn σ n ynz σ n xnz σ n xnyn                =                Q n 11 Q n 12 0 0 0 Q n 12 Q n 22 0 0 0 0 0 Q n 44 0 0 0 0 0 Q n 55 0 0 0 0 0 Q n 66                               n xnxn n ynyn 2 n ynz 2 n xnz 2 n xnyn                . ( 2.4) 
Le tenseur des raideurs de chaque couche est finalement défini par 6 composantes

Q n ij
indépendantes pouvant être directement exprimées à partir des paramètres de l'ingénieur : Afin de modéliser le cas général des structures laminées, l'angle d'orthotropie θ n peut être différent d'une couche à l'autre. L'orientation des couches doit être judicieusement choisie en fonction de l'utilisation du multicouche. En effet, certains couplages entre les modes de la structure peuvent apparaitre en fonction de l'orientation, des paramètres matériaux et de l'épaisseur de chaque couche. À titre d'exemple, Berthelot et Cole [START_REF] Berthelot | Composite Materials : Mechanical Behavior and Structural Analysis[END_REF] ont décrit dans leur livre quelques types d'empilement de stratifié : équilibré (angles opposés), croisé (90 • de différence d'une couche à l'autre), symétrique ou non-symétrique par rapport à la fibre neutre du stratifié. Les stratifiés non-symétrique peuvent présenter un couplage entre la flexion et la membrane créant un flambement statique de la structure. Certaines applications industrielles utilisent ce type de stratifié lors de la conception de profils courbés. Les stratifiés symétriques, au contraire, ne possèdent pas de couplage membrane-flexion.

Q n 11 = E n x 1 -ν n xy ν n yx ; Q n 22 = E n y 1 -ν n xy ν n yx ; Q n 12 = ν n yx E n x 1 -ν n xy ν n yx = ν n xy E n y 1 -ν n xy ν n yx ; Q n 44 = G n yz ; Q n 55 = G n xz ; Q n 66 = G n xy , (2.5 
Par la suite, la loi de comportement de chaque couche est projetée dans le repère de référence à l'aide de la matrice de projection P n permettant de passer du repère (Ox n y n z) au repère (Oxyz) :

P n =        c n -s n 0 s n c n 0 0 0 1        , (2.6 
)

avec c n = cos(θ n ) et s n = sin(θ n ).
Le tenseur des contraintes σ n xyz du repère de référence est alors relié à celui du repère local σ n xnynz par la relation [START_REF] Berthelot | Composite Materials : Mechanical Behavior and Structural Analysis[END_REF][START_REF] Margerit | Caractérisation large bande du comportement dynamique linéaire des structures hétérogènes viscoélastiques anisotropes[END_REF] :

σ n xyz = P n σ n xnynz P n T , (2.7) 
où :

σ n xyz =        σ n xx σ n xy σ n xz σ n xy σ n yy σ n yz σ n xz σ n yz σ n zz        ; σ n xnynz =        σ n xnxn σ n xnyn σ n xnz σ n xnyn σ n ynyn σ n ynz σ n xnz σ n ynz σ n zz        .
La relation précédente peut également être exprimée avec les champs de contrainte sous la forme :

CHAPITRE 2. MOD ÈLE ANALYTIQUE ÉQUIVALENT DE MULTICOUCHES ANISOTROPES                σ n xx σ n yy σ n yz σ n xz σ n xy                =                c 2 n s 2 n 0 0 -2c n s n s 2 n c 2 n 0 0 2c n s n 0 0 c n -s n 0 0 0 s n c n 0 c n s n -c n s n 0 0 c 2 n -s 2 n                               σ n xnxn σ n ynyn σ n ynz σ n xnz σ n xnyn                . ( 2.8) 
À l'inverse, le tenseur des déformations du repère local n xnynz est relié à celui du repère de référence n xyz par la relation [START_REF] Berthelot | Composite Materials : Mechanical Behavior and Structural Analysis[END_REF][START_REF] Margerit | Caractérisation large bande du comportement dynamique linéaire des structures hétérogènes viscoélastiques anisotropes[END_REF] :

n xnynz = P n T n xyz P n , (2.9) 
où :

n xyz =        n xx n xy n xz n xy n yy n yz n xz n yz n zz        ; n xnynz =        n xnxn n xnyn n xnz n xnyn n ynyn n ynz n xnz n ynz n zz        .
La relation précédente peut également être exprimée avec les champs de déformation sous la forme :

               n xnxn n ynyn 2 n ynz 2 n xnz 2 n xnyn                =                c 2 n s 2 n 0 0 c n s n s 2 n c 2 n 0 0 -c n s n 0 0 c n s n 0 0 0 -s n c n 0 -2c n s n 2c n s n 0 0 c 2 n -s 2 n                               n xx n yy 2 n yz 2 n xz 2 n xy                . (2.10)
Les équations (2.4), (2.8) et (2.10) nous permettent ainsi d'établir la loi de comportement de la couche n dans le repère de référence : 

               σ n xx σ n yy σ n yz σ n xz σ n xy                =                Q n 11 Q n 12 0 0 Q n 16 Q n 12 Q n 22 0 0 Q n 26 0 0 Q n 44 Q n 45 0 0 0 Q n 45 Q n 55 0 Q n 16 Q n 26 0 Q n 66                               n xx n yy 2 n yz 2 n xz 2 n xy                , (2.11) 2.1. M ÉTHODOLOGIE avec :                    Q n 11 Q n 22 Q n 12 Q n 66 Q n 16 Q n 26                    =                    c 4 n s 4 n 2c 2 n s 2 n 4c 2 n s 2 n s 4 n c 4 n 2c 2 n s 2 n 4c 2 n s 2 n c 2 n s 2 n c 2 n s 2 n c 4 n + s 4 n -4c 2 n s 2 n c 2 n s 2 n c 2 n s 2 n -2c 2 n s 2 n (c 2 n -s 2 n ) 2 c 3 n s n -s 3 n c n s 3 n c n -c 3 n s n 2(s 3 n c n -c 3 n s n ) s 3 n c n -c 3 n s n c 3 n s n -s 3 n c n 2(c 3 n s n -s 3 n c n )                               Q n 11 Q n 22 Q n 12 Q n 66            , (2.12)        Q n 44 Q n 55 Q n 45        =        c 2 n s 2 n s 2 n c 2 n -c n s n c n s n           Q n 44 Q n 55    . ( 2 

Relations de continuité entre les couches

Tel que mentionné dans la section 1.1.3, les modèles Zig-Zag établissent des relations de couplage entre les variables cinématiques de chaque couche. Ces relations sont définies par la continuité des déplacements et des contraintes de cisaillement aux interfaces entre deux couches successives :

       u n x u n y u n z        x, y, z = R n - h n 2 =        u n-1 x u n-1 y u n-1 z        x, y, z = R n - h n 2 , (2.14) 
   σ n xz σ n yz    x, y, z = R n - h n 2 =    σ n-1 xz σ n-1 yz    x, y, z = R n - h n 2 . (2.15)
En s'appuyant sur la définition du champ de déplacement Eq. (2.1) et de la loi de Hooke Eq. (2.11), ces conditions peuvent être développées de la façon suivante :

ψ n x + h n 2 ∂W ∂x + φ n x = ψ n-1 x - h n-1 2 ∂W ∂x + φ n-1 x , (2.16 
)

ψ n y + h n 2 ∂W ∂y + φ n y = ψ n-1 y - h n-1 2 ∂W ∂y + φ n-1 y , (2.17) CHAPITRE 2. MOD ÈLE ANALYTIQUE ÉQUIVALENT DE MULTICOUCHES ANISOTROPES Q n 55 φ n x + Q n 45 φ n y = Q n-1 55 φ n-1 x + Q n-1 45 φ n-1 y , (2.18) 
Q n 45 φ n x + Q n 44 φ n y = Q n-1 45 φ n-1 x + Q n-1 44 φ n-1 y , (2.19) 
et peuvent également s'écrire sous une forme matricielle :

                   ∂W ∂x φ n x ψ n x ∂W ∂y φ n y ψ n y                    = T n                    ∂W ∂x φ n-1 x ψ n-1 x ∂W ∂y φ n-1 y ψ n-1 y                    =                    1 0 0 0 0 0 0 A n xx 0 0 A n xy 0 B n C n xx 1 0 C n xy 0 0 0 0 1 0 0 0 A n yx 0 0 A n yy 0 0 C n yx 0 B n C n yy 1                                       ∂W ∂x φ n-1 x ψ n-1 x ∂W ∂y φ n-1 y ψ n-1 y                    , (2.20) 
avec :

A n xx = Q n-1 55 Q n 44 -Q n-1 45 Q n 45 Q n 55 Q n 44 -(Q n 45 ) 2 ; A n yy = Q n-1 44 Q n 55 -Q n-1 45 Q n 45 Q n 55 Q n 44 -(Q n 45 ) 2 ; A n xy = Q n-1 45 Q n 44 -Q n-1 44 Q n 45 Q n 55 Q n 44 -(Q n 45 ) 2 ; A n yx = Q n-1 45 Q n 55 -Q n-1 55 Q n 45 Q n 55 Q n 44 -(Q n 45 ) 2 ; B n = -h n-1 -h n 2 ; C n xx = - h n-1 2 - h n 2 A n xx ; C n yy = - h n-1 2 - h n 2 A n yy ; C n xy = - h n 2 A n xy ; C n yx = - h n 2 A n yx .
En appliquant la relation matricielle (2.20) pour toutes les couches, les variables cinématiques de n'importe quelle couche n peuvent être exprimées en fonction de celles de la première couche :

L n = T n T n -1 ... T 3 T 2 L 1 = T n L 1 , (2.21) 
où T n est de la forme suivante :

T n =                    1 0 0 0 0 0 0 α n xx 0 0 α n xy 0 β n γ n xx 1 0 γ n xy 0 0 0 0 1 0 0 0 α n yx 0 0 α n yy 0 0 γ n yx 0 β n γ n yy 1                    , (2.22) 
avec :

β n = n i=1 B i = R 1 -R n .

M ÉTHODOLOGIE

Les autres coefficients de T n peuvent être calculés analytiquement mais ne seront pas mentionnés du fait de leurs complexités. Dans ce manuscrit, ils ont été calculé numériquement par multiplication matricielle. Dans le cas particulier où N L = 1, la matrice de couplage T 1 se résume à la matrice identité.

À l'aide de l'équation (2.21), le champ de déplacement de la couche n peut être réécrit de la façon suivante :

             u n x = ψ 1 x + F w ∂W ∂x + F n xx φ 1 x + F n xy φ 1 y , u n y = ψ 1 y + F w ∂W ∂y + F n yx φ 1 x + F n yy φ 1 y , u n z = W, (2.23) 
où :

F n ij = α n ij (R n -z) + γ n ij , i, j = x, y, et F w = R 1 -z. (2.24)
Ainsi, le comportement de tout le multicouche est décrit uniquement en fonction des 5 variables cinématiques (W, φ 1 x , ψ 1 x , φ 1 y , ψ 1 y ) de la première couche. Il est intéressant de noter que si les fonctions F n xy ou F n yx sont non nulles, le déplacement u n x dépend du cisaillement en y et inversement. Cet aspect apparaît lorsque les axes d'orthotropie de la couche n ne sont pas alignés avec ceux de la première couche et que les modules de cisaillement hors-plan en x sont différents de ceux en y (G n xz = G n yz ). La formulation (2.23) a déjà été écrite par Loredo et Castel [START_REF] Loredo | A multilayer anisotropic plate model with warping functions for the study of vibrations reformulated from Woodcock's work[END_REF] qui en ont donné une expression globale 1 pour tout le multicouche. Les fonctions F ij , appelée warping functions, sont alors continues par morceaux et ne sont plus définies pour chaque couche.

Équations d'équilibre

Les équations d'équilibre de la structure sont établies à partir d'une formulation énergétique basée sur la fonctionnelle d'Hamilton H. Cette formulation définit l'action du système durant un intervalle de temps quelconque [t 0 , t 1 ] : 

H = t 1 t 0 (E c -E d + E w )dt, ( 2 
e c = 1 2 δ 1 ∂ 2 W ∂x∂t 2 + ... + δ 18 ∂ψ 1 x ∂t ∂φ 1 y ∂t , (2.28) 
où les 18 coefficients δ, définis dans l'annexe A.1, dépendent uniquement de l'épaisseur et de la masse volumique de chaque couche ainsi que des fonctions F ij et F w . L'expression complète de l'Eq. (2.28) est écrite dans l'annexe A.3.

Énergie de déformation

De la même manière, la densité d'énergie de déformation du multicouche est définie par la somme de la densité de chacune des couches :

e d = 1 2 n Rn+hn/2 Rn-hn/2 {σ n }{ n } T dz. (2.29)
Cette densité peut se développer de la façon suivante en utilisant la loi de comportement de chaque couche (2.11) : (2.30)

e d = 1 2 n Rn+hn/2 Rn-hn/2 Q n 11 n xx 2 + Q n 22 n yy 2 + 2Q n
La nouvelle définition du champ de déplacement (2.23) nous permet également d'écrire la densité d'énergie de déformation en fonction des 5 variables de référence, sous la forme :

e d = 1 2 λ 1 ∂ 2 W ∂x 2 2 + ... + λ 69 φ 1 x φ 1 y 2 , (2.31) 
où les 69 coefficients λ, définis dans l'annexe A.2, dépendent uniquement de l'épaisseur et de loi de comportement de chaque couche ainsi que des fonctions F ij et F w . L'expression complète de l'Eq. (2.31) est écrite dans l'annexe A.4.

M ÉTHODOLOGIE

Équations de mouvement

Les équations du mouvement de la structure peuvent être définies à partir de la fonctionnelle d'Hamilton en appliquant le principe de moindre action (∆H = 0). Ce principe s'appuie sur la minimisation du Lagragien, L = e c -e d , par rapport à une variable α et est défini par l'équation :

∂L ∂α - ∂ ∂t ∂L ∂α ,t - ∂ ∂x ∂L ∂α ,x - ∂ ∂y ∂L ∂α ,y + ∂ 2 ∂x∂t ∂L ∂α ,xt + ∂ 2 ∂y∂t ∂L ∂α ,yt + ∂ 2 ∂x∂y ∂L ∂α ,xy + ∂ 2 ∂t 2 ∂L ∂α ,tt + ∂ 2 ∂x 2 ∂L ∂α ,xx + ∂ 2 ∂y 2 ∂L ∂α ,yy = 0, (2.32) où α ,i = ∂α ∂i et α ,ij = ∂ 2 α ∂i∂j .
En appliquant l'Eq. (2.32) pour α = W , φ 1 x , ψ 1 x , φ 1 y et ψ 1 y successivement, nous pouvons dresser 5 équations de mouvement et les écrire sous la forme matricielle suivante :

[M ] ∂ 2 ∂t 2 + [K] {W} = {0}, (2.33) 
où {W} = {W, φ 1 x , ψ 1 
x , φ 1 y , ψ 1 y } T est le vecteur déplacement de la première couche, [K] est la matrice de raideurs généralisées obtenue à partir de l'énergie de déformation du système et [M ] est la matrice de masses généralisées obtenue à partir de l'énergie cinétique du système. Les expressions de ces deux matrices sont respectivement détaillées dans les annexes A.6 et A.5.

Solution particulière et équations de dispersion

Plusieurs solutions sont envisageables pour résoudre les équations de mouvement (2.33) établies précédement. Guyader utilise une solution particulière de la forme d'une onde plane se propageant dans la direction x. Bien que la modélisation proposée par Guyader soit écrite pour les structures orhotropes dans son article [START_REF] Guyader | Acoustic transmission through orthotropic multilayered plates, part 1 : Plate vibration modes[END_REF], cette solution se restreint au cas isotrope [START_REF] Guyader | Viscoelastic properties of single layer plate material equivalent to multi-layer composites plate[END_REF].

Dans le cas de multicouches anisotropes, où les paramètres matériaux dépendent de la direction, nous avons considéré une onde plane se propageant dans une direction orientée à un angle θ par rapport à l'axe x du repère de référence. Cette onde est également définie par une pulsation ω et un nombre d'onde k : 

{W} = {W 0 }e -jk[x cos(θ)+y sin(θ)] e jωt , ( 2 
[K] =                   k 4 l 1 jk 3 l 2 jk 3 l 3 jk 3 l 4 jk 3 l 5 -jk 3 l 2 k 2 l 6 k 2 l 7 k 2 l 8 k 2 l 9 -jk 3 l 3 k 2 l 7 k 2 l 10 + l 37 k 2 l 11 k 2 l 12 + l 69 -jk 3 l 4 k 2 l 8 k 2 l 11 k 2 l 13 k 2 l 14 -jk 3 l 5 k 2 l 9 k 2 l 12 + l 69 k 2 l 14 k 2 l 15 + l 38                   , (2.36) [M] =                   k 2 d 1 +
                  . ( 2 

Comparaison à un modèle de référence

Les résultats de notre modèle ont également été comparés à ceux du modèle éléments finis spectral (SFEM) utilisé par Shorter [START_REF] Shorter | Wave propagation and damping in linear viscoelastic laminates[END_REF]. Cette comparaison porte sur l'étude des courbes de dispersion, présentées à la Figure 2 

Équivalence plaque mince

Dans une dernière étape, comme nous l'avons décrit à la section 1.1.3, le multicouche est assimilé à une structure équivalente homogène gouvernée par la théorie de Love-Kirchhoff. Cette comparaison, réalisée à chaque fréquence, permet de caractériser le multicouche à l'aide des paramètres matériaux de la plaque équivalente. La théorie de Love-Kirchhoff décrivant uniquement le mode de flexion de la structure, ces paramètres varieront en fonction de la fréquence selon l'influence du cisaillement dans le multicouche.

M ÉTHODOLOGIE

Cette méthodologie d'équivalence, proposée par Guyader et Cacciolati pour le cas isotrope [START_REF] Guyader | Viscoelastic properties of single layer plate material equivalent to multi-layer composites plate[END_REF],

a été étendue dans notre travail aux structures multicouches orthotropes laminés. Cette adaptation forme l'un principaux apports de notre modélisation analytique par rapport à la bibliographie. D'après l'annexe C, décrivant la théorie de Love-Kirchoff, la plaque équivalente propre à ce type de structures possède une équation de mouvement de la forme : 

D 11 ∂ 4 W ∂x 4 + D 22 ∂ 4 W ∂y 4 + D 12 ∂ 4 W ∂x 2 ∂y 2 + D 16 ∂ 4 W ∂x 3 ∂y + D 26 ∂ 4 W ∂x∂y 3 = -ρh ∂ 2 W ∂t 2 , ( 2 
ρ = n h n ρ n n h n . (2.40) 
Une solution particulière de la forme d'une onde plane a également été choisie pour la structure équivalente : 

W = W 0 e -jk f [x cos(θ)+y sin(θ)] e jωt , ( 2 
∆ =        c 4 1 s 4 1 c 2 1 s 2 1 c 3 1 s 1 c 1 s 3 1 . . . . . . . . . . . . . . . c 4 i s 4 i c 2 i s 2 i c 3 i s i c i s 3 i        ; c 1 = cos(θ 1 )
;

s 1 = sin(θ 1 ); c i = cos(θ i ); s i = sin(θ i ); κ =           1 k 4 f (f, θ 1 ) . . . 1 k 4 f (f, θ i )           ; D =              D 11 (f ) D 22 (f ) D 12 (f ) D 16 (f ) D 26 (f )              .
Les rigidités de flexion sont identifiées grâce à une méthode moindres carrés décrite par l'équation :

D = ρhω 2 ∆ T ∆ -1 ∆ T κ . (2.44) 
La convergence de la méthode moindres carrés dépend du nombre de directions θ i choisi à 

Caractérisation expérimentale sur des plaques en composite

Cette section se concentre sur la caractérisation expérimentale de plaques composites ainsi que la comparaison des résultats avec des simulations provenant du modèle décrit à la section 2.1.

Trois plaques en fibres de carbone, fournies par l'entreprise Hexcel (Dagneux, France), ont été étudiées. Chacune d'entre elle est composée de 4 couches avec différentes orientations des fibres.

Celles de la première sont dans le même sens (0 

• /0 • /0 • /0 • )

Protocole expérimental

Les plaques ont été suspendues par des élastiques à une armature métallique pour simuler Pour chaque plaque, la méthode IWC, présentée à la section 1. L'équivalence plaque mince a été à nouveau appliquée sur cette plaque, que ce soit à partir et les caractéristiques équivalentes obtenues par le modèle concernant ces deux plaques sont conformes à ceux de la méthode IWC.

Modélisation de l'amortissement

Cette section traite de la modélisation de l'amortissement structurel du multicouche dans le modèle présenté dans ce chapitre. Dans une première partie, les courbes de dispersions du système non-conservatif sont présentées au travers d'un exemple. Dans une seconde partie, nous comparons une modélisation équivalente de l'amortissement à une modélisation énergétique basée à la fois sur une définition temporelle et spatiale de la dissipation. Enfin, la section s'achève avec deux comparaisons des résultats de notre modèle à la littérature. 

Courbes de dispersion du système non-conservatif

Nom Définition

Amortissement spatial

γ = Im(k) Re(k) Amortissement équivalent η eq = - Im(k 4 ) Re(k 4 ) Amortissement énergétique (méthode MSE) η = Φ H K I Φ Φ H K R Φ Amortissement énergétique (formulation spatiale) η = -2γ c g c φ = -2rγ Amortissement énergétique (formulation temporelle) η = Im(ω 2 ) Re(ω 2 )
Tableau 2.4 -Résumé des différentes définitions d'amortissement structurel présentées dans ce manuscrit.

Dans cette section, nous étudions et comparons trois de ces définitions : la formulation spatiale et temporelle de l'amortissement énergétique ainsi que l'amortissement équivalent. Ce dernier est défini à partir de la méthodologie d'équivalence retenue dans notre modélisation. Nous pouvons alors faire le lien entre la perturbation ∆k et l'amortissement spatial γ :

γ = - ∆k k , (2.47) 
ainsi qu'entre la perturbation ∆ω et la formulation temporelle de l'amortissement énergétique η :

η = Im (ω + j∆ω) 2 Re ((ω + j∆ω) 2 ) = 2ω∆ω ω 2 -∆ω 2 .
(2.48)

Une nouvelle formulation spatiale de l'amortissement énergétique η peut alors être donnée en assimilant ce dernier à sa formulation temporelle : 

η = 2ωc g ∆k ω 2 -c 2 g ∆k 2 = - 2ωc g γk ω 2 -c 2 g γ 2 k 2 = - 2rγ 1 -r 2 γ 2 , ( 2 

Amortissement d'un vitrage automobile : comparaison au modèle de Shorter

Cette section se concentre sur l'estimation analytique de l'amortissement d'un vitrage feuilleté, initialement étudié par Shorter [START_REF] Shorter | Wave propagation and damping in linear viscoelastic laminates[END_REF]. Cette vitre est composée de deux peaux en verre séparées par une couche de PVB (polybutyral de vinyle) dont les caractéristiques sont résumées dans le Fréquence (Hz) Shorter a estimé, avec le modèle éléments finis SFEM, les amortissements des modes de flexion, de membrane et de cisaillement de ce sandwich à l'aide de la méthode MSE.

CHAPITRE 2. MOD ÈLE ANALYTIQUE ÉQUIVALENT DE MULTICOUCHES ANISOTROPES

Afin de valider les estimations de notre modèle par rapport aux résultats de Shorter, nous avons dans un premier temps estimé l'amortissement énergétique en utilisant la même formulation de la méthode MSE. Tel que nous l'avons mentionné à la section 1.1.4, cette formulation est quelque peu différente de celle présenté dans le Tableau 2.4 et s'écrit pour un mode r donné : Ils sont cependant très faibles puisque, comme le mentionne Shorter, l'énergie de ces ondes est principalement concentrée dans les peaux dont l'amortissement a été fixé à zéro.

η r = n η n Φ H r K R,n Φ r Φ H r K R Φ r , ( 2 

Amortissement d'un sandwich orthotrope : comparaison au modèle de Ghinet

Cette section traite de l'estimation analytique de l'amortissement d'un sandwich orthotrope.

Ce sandwich, initialement étudié par Ghinet et Atalla [START_REF] Ghinet | Modeling thick composite laminate and sandwich structures with linear viscoelastic damping[END_REF] 

Conclusion

Dans ce second chapitre, nous avons développé un modèle analytique équivalent de multicouche anisotrope à partir des travaux de Guyader et Lesueur [START_REF] Guyader | Acoustic transmission through orthotropic multilayered plates, part 1 : Plate vibration modes[END_REF] ainsi que ceux de Loredo et

Castel [START_REF] Loredo | A multilayer anisotropic plate model with warping functions for the study of vibrations reformulated from Woodcock's work[END_REF]. L'extension de la méthodologie de plaque équivalente pour ce type structure forme la principale nouveauté par rapport à la littérature. Le multicouche est caractérisé par cinq rigidités de flexion équivalentes. La robustesse du modèle a été validée par une comparaison au modèle élément finis SFEM utilisé par Shorter [START_REF] Shorter | Wave propagation and damping in linear viscoelastic laminates[END_REF] sur les premiers modes de dispersion de la 

Bibliographie autour de l'identification de source

Cette section présente une courte synthèse bibliographique sur les méthodes inverses (dont RIFF et RIC font parties) appliquées à l'identification de source.

Les problèmes inverses tentent de déterminer les causes à partir des conséquences, c'està-dire les excitations appliquées à la structure à partir de sa réponse. Tel que le mentionne Stevens [START_REF] Stevens | Force identification problems : an overview[END_REF], la structure est alors considérée comme son propre capteur de force. Les problèmes inverses s'opposent aux problèmes directs où l'on utilise des transducteurs afin d'estimer les efforts injectés.

Les méthodes inverses ont initialement été développées avec l'analyse par chemin de transfert ou TPA pour Transfer Path Analysis dont le principe se résume à l'inversion de la matrice de transfert entre les différents points de mesure et excitations. Dans le cas où le nombre de point de mesures est égal au nombre de sources, l'inversion de la matrice laisse apparaître des singularités aux fréquences propres du système. Le surdimensionnement du problème par l'ajout de points de mesure permet de le stabiliser [START_REF] Desanghere | Quantification of noise and vibration sources : state of the art[END_REF]. L'inversion de la matrice rectangulaire ne peut alors être résolue que par une méthode moindres carrés qui génère cependant une solution instable et non unique du point de vue mathématique [START_REF] Hadamard | Sur les problèmes aux dérivées partielles et leur signification physique[END_REF]. De faibles erreurs de mesure, typiquement du bruit, peuvent entrainer de fortes dispersions sur les résultats à cause d'un mauvais conditionnement du système [START_REF] Stevens | Force identification problems : an overview[END_REF]. Ce phénomène a été constaté dès les premier travaux abordant la thématique du problème inverse [START_REF] Fabunmi | Feasibility of dynamic load determination from measured mobilities[END_REF][START_REF] Lee | Response selection and dynamic damper application to improve the identification of multiple input forces of narrow frequency band[END_REF]. La modélisation du système constitue donc un critère important des méthodes inverses.

Afin d'atténuer la sensibilité de la solution aux variations des données d'entrée, des méthodes de régularisation ont été implémentées telles que la troncature en valeurs singulières ou TSVD pour Truncated Singular Value Decomposition et la régularisation de Tikhonov [START_REF] Tikhonov | Méthodes de résolution de problèmes mal posés[END_REF][START_REF] Jacquelin | Force reconstruction : analysis and regularization of a deconvolution problem[END_REF][START_REF] Aucejo | Structural source identification using a generalized Tikhonov regularization[END_REF].

Les dépendances linéaires de la fonction de transfert, généralement masquées par le bruit de mesure, sont définies par son nombre de valeurs singulières. La TSVD établit un seuil en dessous duquel certaines valeurs singulières sont rejetées [START_REF] Powell | Multichannel structural inverse filtering[END_REF]. La régularisation de Tikhonov ajoute un paramètre ajustable [START_REF] Hansen | Analysis of discrete ill-posed problems by means of the l-curve[END_REF] dans la formulation du problème au sens des moindres carrés. Cette régularisation a un effet inverse à la TSVD : les petites valeurs singulières sont rehaussées tandis que celles néfastes ne sont pas amplifiées [START_REF] Blau | Inverse force synthesis : state of the art and future research[END_REF]. La méthode des moindres carrés pondérés [START_REF] Mas | Indirect force identification based upon impedance matrix inversion : a study on statistical and deterministical accuracy[END_REF][START_REF] Guillaume | Source identification from noisy response measurements using an iterative weighted pseudo-inverse approach[END_REF] est également une technique d'optimisation, similaire à celle de Tikhonov. La matrice de transfert est multipliée par une matrice de pondération, basée sur le rapport signal à bruit (RSB) de la mesure, afin d'ajuster en fréquence l'influence de chaque réponse.

3.2 Extension de RIC pour l'identification de source 

∂W ∂x ≈ W (x + ∆ x , y) -W (x -∆ x , y) 2∆ x et ∂W ∂y ≈ W (x, y + ∆ y ) -W (x, y -∆ y ) 2∆ y , (3.2) 
où ∆ x et ∆ y correspondent respectivement à un pas spatial dans les axes x et y. À l'aide de cette méthode, une approximation des différentes dérivées d'ordre 4 de l'Eq. 3.1 peut être établie : 

∂ 4 W ∂x 4 ≈ δ 4x = 1 16∆ 4 x W 4,0 -4W 2,0 + 6W 0,0 -4W -2,0 + W -4,0 , (3.3) 
∂ 4 W ∂y 4 ≈ δ 4y = 1 16∆ 4 y W 0,4 -4W 0,2 + 6W 0,0 -4W 0,-2 + W 0,-4 , (3.4) 
∂ 4 W ∂x 2 ∂y 2 ≈ δ 2x2y = 1 16∆ 2 x ∆ 2 y W 2,2 + W 2,-2 + W -2,2 + W -2,-2 -2(W 2,0 + W -2,0 + W 0,2 + W 0,-2 ) + 4W 0,0 , (3.5) 
∂ 4 W ∂x 3 ∂y ≈ δ 3xy = 1 16∆ 3 x ∆ y W 3,1 -W 3,-1 -W -3,1 + W -3,-1 -3(W 1,1 -W 1,-1 -W -1,1 + W -1,-1 ) , (3.6) 
∂ 4 W ∂x∂y 3 ≈ δ x3y = 1 16∆ x ∆ 3 y W 1,3 -W -1,3 -W 1,-3 + W -1,-3 -3(W 1,1 -W 1,-1 -W -1,1 + W -1,-1 ) , (3.
n x = λ x 2∆ x = π ∆ x k f (θ = 0) ; n y = λ y 2∆ y = π ∆ y k f (θ = π/2) , (3.9) 
où k f représente le nombre d'onde de flexion de la plaque défini par l'Eq. (2.42).

La limite hautes fréquences de la méthode peut alors être définie directement à partir de ces nombres de points à l'aide de la condition de Shannon spatial qui est : 

n x > 2 et n y > 2. ( 3 
∂ 4 W ∂x 4 ≈ δ 4x = 1 ∆ 4 x W 2,0 -4W 1,0 + 6W 0,0 -4W -1,0 + W -2,0 , (3.11) 
∂ 4 W ∂y 4 ≈ δ 4y = 1 ∆ 4 y W 0,2 -4W 0,1 + 6W 0,0 -4W 0,-1 + W 0,-2 , (3.12 
) Avec ce schéma, le nombre de points par longueur d'onde est défini par : 

∂ 4 W ∂x 2 ∂y 2 ≈ δ 2x2y = 1 ∆ 2 x ∆ 2 y W 1,1 + W 1,-1 + W -1,1 + W -1,-1 -2(W 1,0 + W -1,0 + W 0,1 + W 0,-1 ) + 4W 0,0 . (3.13) 
n x = λ x ∆ x = 2π ∆ x k f (θ = 0) ; n y = λ y ∆ y = 2π ∆ y k f (θ = π/2) , (3.14 
W a,b = W (k x , k y )e j(akx∆x+bky∆y) . (3.17) 
À l'aide de la formule d'Euler et de quelques relations trigonométriques, les coefficients δ ij peuvent être exprimés sous la forme suivante :

δ 4x =k 4 x sinc 4 (k x ∆ x ), (3.18) 
δ 4y =k 4 y sinc 4 (k y ∆ y ), (3.19)

δ 2x2y =k 2 x k 2 y sinc 2 (k x ∆ x )sinc 2 (k y ∆ y ), (3.20) 
δ 3xy =k 3 x k y sinc 3 (k x ∆ x )sinc(k y ∆ y ), (3.21) 
δ x3y =k x k 3 y sinc(k x ∆ x )sinc 3 (k y ∆ y ). (3.22) 
Pour plus de facilité, les équations suivantes ont été écrites dans un repère polaire (k, θ) avec

k x = k cos(θ) et k y = k sin(θ).
Les expressions de p et p RIFF montrent que ces deux champs ne sont pas tout à fait identiques. L'erreur E de RIFF peut être définie de la façon suivante : Les résultats de la Figure 3.3 montrent finalement que la réponse de RIFF possède deux singularités. La première correspond à l'annulation du dénominateur de E RIFF et se situe lorsque k = k f . Nous retrouvons d'ailleurs parfaitement la trajectoire du nombre de flexion au niveau de cette singularité. Le schéma aux différences finies surestime alors fortement les résultats autour de ce nombre d'onde. La deuxième singularité correspond à l'annulation du numérateur de E RIFF et se situe après k f . Dans ce cas, le schéma sous-estime fortement les résultats. De plus, la réponse de RIFF dépend du paramètre (n x , n y ) puisque l'écart entre les deux singularités diminue lorsque ce paramètre est important. Cela peut se traduire, pour une fréquence fixée, par une taille de schéma petite devant la longueur d'onde de flexion de la structure à cette même fréquence. Ainsi, les sinus cardinaux contenus dans les coefficients δ ij tendent vers 1 et les champs p et p RIFF sont proches. Par ailleurs, pour une taille de schéma fixée, le paramètre (n x , n y ) nous permet de définir la limite hautes fréquences de la méthode RIFF. 

E RIFF (ω, ∆ x , ∆ y , k, θ) = p RIFF (k, θ) p(k, θ) = K 4 RIFF -k 4 f k 4 -k 4 f , (3.23 

Schéma corrigé de RIC

E RIC (ω, ∆ x , ∆ y , k, θ) = p RIC (k, θ) p(k, θ) = K 4 RIC -k 4 f k 4 -k 4 f , (3.25 
K 4 RIC (k f (θ), θ) = k 4 f (θ). (3.26) 
À l'instar de la méthode d'identification des rigidités de flexion décrite dans la section 2.1.6, une approche numérique peut être utilisée pour déterminer les coefficients correcteurs. L'Eq. (3.26) est considérée pour un nombre i de valeurs arbitraires de θ bien plus grand que le nombre de coefficient à déterminer. La formulation matricielle suivante peut alors être écrite :

[Q]{µ} = {P}, (3.27) 
avec : 

[Q] =        D 11 δ 4x (
       {P} =        ρhω 2 . . . ρhω 2        ; {µ} =                µ 11 µ 22 µ 12 µ 16 µ 26                .
Les coefficients correcteurs sont alors identifiés au moyen d'une méthode moindres carrés : 

{µ} = [Q] T [Q] -1 [Q] T {P}. ( 3 
µ 11 = 1 sinc 4   4 ρhω 2 D 11 ∆ x   , (3.29 
)

µ 22 = 1 sinc 4   4 ρhω 2 D 22 ∆ y   . (3.30)
Les expressions des autres coefficients correcteurs sont légèrement plus complexes et correspondent à :

µ 12 = ∆ 2 x ∆ 2 y D 12     ρhω 2 2     1 sin 4 4 ρhω 2 A 1 + 1 sin 4 4 ρhω 2 A 2     - D 11 µ 11 ∆ 4 x - D 22 µ 22 ∆ 4 y     , (3.31) 
µ 16 = ∆ 3 x ∆ y D 16   ρhω 2 -D 11 µ 11 ∆ 4 x A 4 4 -D 22 µ 22 ∆ 4 y A 4 5 -D 12 µ 12 ∆ 2 x ∆ 2 y A 2 4 A 2 5 -A 3 A 4 A 3 5 (A 3 4 A 5 -A 4 A 3 5 )   , (3.32 
)

µ 26 = ∆ x ∆ 3 y D 26 A 3 - D * 16 µ 16 ∆ 3 x ∆ y , (3.33) 
avec :

A 1 = D 11 ∆ 4 x + D 22 ∆ 4 y + D 12 ∆ 2 x ∆ 2 y + D 16 ∆ 3 x ∆ y + D 26 ∆ x ∆ 3 y , A 2 = D 11 ∆ 4 x + D 22 ∆ 4 y + D 12 ∆ 2 x ∆ 2 y - D 16 ∆ 3 x ∆ y - D 26 ∆ x ∆ 3 y , A 3 = ρhω 2 2     1 sin 4 4 ρhω 2 A 1 - 1 sin 4 4 ρhω 2 A 2     , A 4 = sin   4 ρhω 2 D 11 + D 22 + D 12 + D 16 + D 26 ∆ x   , A 5 = sin   4 ρhω 2 D 11 + D 22 + D 12 + D 16 + D 26 ∆ y   .
Il est important de constater qu'il n'existe pas une expression analytique générale des coeffi- Une solution analytique des fréquences propres ω mn ainsi que des déformées modales Φ mn de la plaque peuvent être données par :

Validation sur champ non bruité

ω mn = π 2 1 ρh D 11 m L x 4 + D 22 n L y 4 + D 12 m L x 2 n L y 2 , (3.34) Φ mn (x, y) = sin mπx L x sin nπy L y . (3.35)
L'amortissement de la structure est défini par un facteur de perte η de 0.5% ajouté à chaque rigidité de flexion. Une excitation ponctuelle d'amplitude F 1 = 1 N a été appliquée au point S 1 de coordonnées (x 1 , y 1 ) = (0.25, 0.25). À une pulsation ω donnée, le champ de déplacement de la structure peut être exprimé dans le repère Oxy par la superposition modale suivante : 3.3 Application de RIC en présence de bruit proposent alors d'adapter la taille du schéma en fonction de la fréquence, de manière à conserver la valeur de n dans cette plage optimale. Développée pour le cas isotrope, cette approche est étendue ici au cas général anisotrope. Un critère de 4 points par longueur d'onde maximum a alors été choisi pour atténuer suffisamment le bruit sans détériorer l'estimation de la méthode.

W (x, y) = ∞ m=1 ∞ n=1 Φ mn (x, y)Φ mn (x 0 , y 0 )F 0 M mn (ω 2 mn -ω 2 ) (3.
Le maillage de mesure étant cartésien, cette condition est appliquée dans les directions x et y indépendamment :

n x < 4; n y < 4. (3.37)
Ce critère, ainsi que celui de Shannon (Eq. (3.10)), doit être respecté sur toute la plage de fréquences en adaptant la taille du schéma qui est alors défini par : 

∆ x = m x (f )∆ x ; ∆ y = m y (f )∆ y , ( 3 

Validation sur champ bruité

Afin d'illustrer la fiabilité de la technique de régularisation de RIC, un bruit blanc N a été ajouté au champ de déplacement de la structure anisotrope étudiée à la section 3.2.4 : L'effet du filtrage dépend également de la direction. À titre d'exemple, la Figure 3 

W bruité = W exact + N, ( 3 

Étude expérimentale sur des plaques en composite

Cette section traite de l'application expérimentale de l'extension de la méthode RIC sur les plaques composites en fibres de carbone d'empilement uniforme et laminé présentées à la section 2.2. Une seconde mesure identique à celle de la section 2. 

F c = jωW (x 0 , y 0 ) Y c , (3.40) 
où Y c s'écrit :

Y c = F 4π ρh √ D 11 D 22
, avec F l'intégrale elliptique de première espèce :

F = π 2 0 1 -0.5 1 - D 12 2 √ D 11 D 22 sin 2 (θ) -0.5
dθ. 3.4 Adaptation de RIC pour la caractérisation

Méthodologie

La méthodologie de RIC peut également être adaptée à la caractérisation de matériaux.

Cette adaptation a déjà été présentée par Leclère et al. [START_REF] Leclère | Practical implementation of the corrected force analysis technique to identify the structural parameter and load distributions[END_REF] dans le cas de structures isotropes.

L'objectif de cette section est donc de proposer une adaptation similaire de la méthode pour les structures anisotropes à l'aide de l'extension présentée à la section 3.2. La technique de caractérisation consiste à appliquer la méthode loin de tout éléments dynamiques ou statiques, tels que les sources, les conditions aux limites ou les points de fixation. Le champ de pression est alors supposé nul dans la zone étudiée (p RIC (x, y) ≈ 0) et les rigidités de flexion D ij deviennent les inconnues du problème : 

D 11 µ 11 δ 4x + D 22 µ 22 δ 4y + D 12 µ 12 δ 2x2y + D 16 µ 16 δ 3xy + D 26 µ 26 δ x3y = ρhω 2 W (x, y). (3.41) 
D = ρhω 2 ∆ T ∆ -1 ∆ T κ , (3.42) avec ∆ 
=        δ 4x 1 δ 4y 1 δ 2x2y 1 δ 3xy 1 δ x3y 1 . . . . . . . . . . . . . . . δ 4x N δ 4y N δ 2x2y N δ 3xy N δ x3y N        ; κ =        W 1 . . . W N        ; D = D
(n) ij = D ij /µ (n) ij .
Cette approche itérative est initialisée par D (0) ij = D ij . La section suivante discute de la convergence de cette méthode ainsi que du critère d'arrêt à travers un exemple.

La deuxième méthodologie correspond à une approche par minimisation qui considère la fonction R RIC (k, θ) sous la forme :

R RIC = K 4 RIC k 4 f -1 = D 11 δ 4x + D 22 δ 4y + D 12 δ 2x2y + D 16 δ 3xy + D 26 δ x3y ρhω 2 -1. (3.43) 
Tel que nous l'avons mentionné à la section 3.2.3, pour une direction θ donnée, la singularité du schéma est atténuée lorsque

K 4 RIC = k 4 f , ce qui revient à R RIC (k f , θ) = 0.
Le nombre d'onde de flexion de la structure peut alors être reconstruit, pour toutes directions θ, en identifiant la valeur complexe de k permettant de minimiser |R RIC (k, θ)|. La relation de dispersion de Love-Kirchhoff permet ensuite d'estimer les rigidités de la structure à l'aide de la méthode moindres carrés décrite par l'Eq. (2.44).

Ces deux approches permettent uniquement de corriger l'erreur de biais du schéma et elles sont toutes les deux sensibles aux valeurs de D ij estimées par la méthode inverse. Une comparaison des résultats obtenus par ces deux approches est présentée à la section suivante à l'aide d'un exemple.

Les rigidités de flexion de la structure peuvent également être identifiées en fonction des paramètres d'espace (x, y) grâce à l'aspect local de la méthode. Une cartographie de chaque rigidité peut alors être établie à chaque fréquence. Pour cela, la structure doit être mesurée N fois, N étant supérieur ou égal au nombre de rigidités à identifier. Ces mesures doivent être effectuées sur un même maillage avec des positions différentes et non corrélées de l'excitation. À une fréquence donnée, les approches moindres carrés précédentes sont alors appliquées sur les N mesures effectuées. Une autre possibilité consiste à mesurer la structure une seule fois et à supposer que les rigidités soient constantes en fréquence. Les approches moindres carrés sont alors appliquées sur les N points de l'échelle fréquentielle. Cet aspect ne sera cependant pas détaillé davantage dans ce chapitre et nous supposerons que les rigidités de toutes les structures étudiées ne dépendent pas des paramètres d'espace.

Applications sur champs non bruités

Cette section illustre les performances de la méthode RIC pour la caractérisation de matériaux anisotropes à travers la simulation de la plaque orthotrope étudiée à la section 3. Au delà de 8 itérations, peu de variations sont visibles. Nous avons donc fixé un critère d'arrêt de la méthode itérative à 30 itérations pouvant être ajusté en fonction de la structure étudiée. Finalement, l'approche itérative et par minimisation fournissent des résultats assez similaires. À l'instar de la méthode IWC, l'approche par minimisation cherche à minimiser R RIC en fonction de 3 paramètres (k, θ mais également γ, l'amortissement spatial, dans le cas où l'on veuille identifier le facteur de perte de la structure). De ce fait, le temps de calcul de l'approche par minimisation est plus long que celui de l'approche itérative.

Applications sur champs bruités

Comparaison de la technique de régularisation de RIFF et de RIC Afin d'illustrer les performances de RIC sur champs bruités, un bruit blanc a été ajouté au champ de déplacement de la plaque composite anisotrope étudiée à la section 3.4.2 et a été normalisé afin de satisfaire un RSB de 30 dB sur toute la plage de fréquences étudiée. Dans le cas de l'identification des paramètres matériaux, la technique de régularisation de RIC reste identique à celle présentée à la section 3. 

ψ 2D (x, y) = ψ 1D (x).ψ 1D (y), (3.44) 
où

ψ 1D (x) =              0.5 1 -cos( πx α ) si 0 < x < α, 1 si α < x < L -α, 0.5 1 -cos( π(x -L + 2α) α ) si L -α < x < L, , (3.45) 
3.4. ADAPTATION DE RIC POUR LA CARACT ÉRISATION avec α =    λ c si L ≥ 2λ c , L/2 sinon et λ c = 2π k c .
L correspond à la longueur effective où le schéma peut être appliqué sur le maillage de mesure.

Par exemple, pour un maillage régulier de N x × N y points, L = (N x -8)∆ x dans la direction x et L = (N y -8)∆ y dans la direction y. Dans un second temps, le champ de pression fenêtré est convolué à la réponse impulsionnelle d'un filtre passe-bas définie par :

H 2D (x, y) = H 1D (x).H 1D (y), (3.46) 
où La technique de régularisation de RIFF a ensuite été appliquée, à l'aide de ce nombre d'onde de coupure optimal, sur les champs bruités W (x, y) et δ ij (x, y) de la structure étudiée. La 

H 1D (x) =      1 λ c N 1 + cos k c x 2 sinc(k c x) si x ∈ [-λ c , λ c ], 0 sinon, (3.47 

Conclusion

Dans ce chapitre, la méthodologie de RIFF et de RIC a été adaptée aux structures anisotropes définies par 5 rigidités de flexion. 

Excitation au laser (protocole B)

Une deuxième série de mesures a été effectuée sur une plage fréquentielle allant de Le bruit de mesure a été atténué en utilisant une nouvelle fois la technique de régularisation de RIFF avec une plage de potentiels nombre d'onde de coupure comprise entre 10 et 600 rad.m -1 .

Enfin, la correction de RIC a été appliquée en utilisant la méthode par itération. 

               D 11 D 22 D 12 D 16 D 26                =                c 4 s 4 c 2 s 2 c 3 s cs 3 s 4 c 4 c 2 s 2 -cs 3 -sc 3 6c 2 s 2 6c 2 s 2 c 4 + s 4 -4c 2 s 2 3(cs 3 -c 3 s) 3(c 3 s -cs 3 ) -4c 3 s 4cs 3 2(c 3 s -cs 3 ) c 4 -3c 2 s 2 -s 4 + 3c 2 s 2 -4cs 3 4c 3 s 2(cs 3 -c 3 s) -s 4 + 3c 2 s 2 c 4 -3c 2 s 2                               D 11 D 22 D 12 D 16 D 26                , ( 4 

Analyse par méthodes globales

Les mesures effectuées avec le protocole A ont également été analysées avec des méthodes de caractérisation globales telles que IWC ou la corrélation de Hankel. La Fréquence (Hz) Une troisième technique d'estimation, la corrélation de Hankel, a été utilisée après RIC et IWC. Afin de l'appliquer sur le sandwich orthotrope étudié, quelques modifications de la méthodologie ont été nécessaires. Tel que nous l'avons vu à la section 1.2.2, cette corrélation fait appel à un champ de Green isotrope [START_REF] Roozen | Estimation of plate material properties by means of a complex wavenumber fit using Hankel's functions and the image source method[END_REF]. Ce champ peut également être adapté aux structures orthotropes elliptiques tel que Berthaut [START_REF] Berthaut | Contribution à l'identification large bande des structures anisotropes : Application aux tables d'harmonie des pianos[END_REF] le présente dans les annexes de sa thèse.

Berthaut indique cependant qu'il est "très délicat, voir impossible, de trouver le noyau de Green analytiquement" pour les structures orthotropes non elliptiques ou anisotropes1 (voir l'annexe B de Berthaut [START_REF] Berthaut | Contribution à l'identification large bande des structures anisotropes : Application aux tables d'harmonie des pianos[END_REF]). Les derniers résultats présentés à la 

G ∞ (r, θ r ) = j 4 √ D 11 D 22 8 ρhω 2 H (1) 0 (κ(θ r )r) -H (1) 0 (jκ(θ r )r) , (4.2) 
où κ(θ r ) est un pseudo nombre d'onde défini par :

κ 4 (θ r ) = ρhω 2 cos 2 (θ r ) √ D 11 + sin 2 (θ r ) √ D 22 2 , (4.3) 
avec r = (x -x 0 ) 2 + (y -y 0 ) 2 et θ r = atan (y -y 0 )/(x -x 0 ) -θ T , le couple (x 0 , y 0 ) représentant la position de la source.

Le procédé de corrélation de Hankel, présenté à la section 1.2. Analyse n 

k 4 (f, θ) = ρhω 2 √ D 11 cos 2 (θ) + √ D 22 sin 2 (θ) 2 . ( 4 

A.1 Définition des coefficients δ

Les coefficients δ sont utilisés dans la définition de l'énergie cinétique (2.28) ainsi que celle de la matrice de masse (2.37) de la structure. Ils dépendent des paramètres matériaux de chaque couche ainsi que des fonctions F ij (Eq. (2.24)) et sont définis par : 

δ i = n Rn+hn/2 Rn-hn/2 ρ n δ n i dz, i = 1 : 18, (A.1) avec δ n 1 = F w 2 , δ n 2 = F n xx 2 + F n yx 2 , δ n 3 =1, δ n 4 =2F w F n xx , δ n 5 =2F w , δ n 6 =2F n xx , δ n 7 = F w 2 , δ n 8 = F n xy 2 + F n

A.6 Matrice de raideurs généralisées

La matrice de raideurs généralisées [K] utilisée à l'Eq. (2.33) est de la forme : la cinématique proposée par Loredo [START_REF] Loredo | A multilayer anisotropic plate model with warping functions for the study of vibrations reformulated from Woodcock's work[END_REF] et Castel [START_REF] Castel | Comportement vibratoire de structures composites intégrant des éléments amortissants[END_REF] avec une forme cubique du cisaillement dans le champ de déplacement. Pour cela, les fonctions F n ij (i, j = x, y), utilisées dans le champ de déplacement de la structure (Eq. (2.23)), seront de la forme :

[K] =                         K 1 -K 2 -K 3 -K 4 -K 5 K 2 K 6 K 7 K 8 K 9 K 3 K 7 K 10 K 11 K 12 K 4 K 8 K 11 K 13 K 14 K 5 K 9 K 12 K 14 K 15                      
F n ij = a ij z 3 + b ij z 2 + c n ij z + d n ij (B.1)
Ces fonctions polynomiales ont déjà été utilisées par Kim [START_REF] Kim | Enhanced modeling of laminated and sandwich plates via strain energy transformation[END_REF]. Elles associent une forme cubique globale à la forme linéaire Zig-Zag. Cette forme globale est nécessaire puisque le nombre d'équation permettant de trouver les coefficients des polynômes est limité (8N L + 8 au total). 

F n ij (z = R n - h n 2 ) = F n-1 ij (z = R n - h n 2 ). (B.3)
Plusieurs conditions sont également imposées sur la couche de référence. À la fibre neutre de cette couche, le champ de déplacement doit être égal au déplacement membranaire de cette même couche, ce qui impose : Le champ de déformation de la structure peut alors être établi à partir de ce champ de déplacement : 

                 xx = -z ∂ 2 W
           σ xx σ yy σ xy            =            Q 11 Q 12 Q 16 Q 12 Q 22 Q 26 Q 16 Q 26 Q 66                     
S = 1 m 2 -m 1 1 R 2 - 1 R 1 ; m s = R 2 m 2 -R 1 m 1 R 1 -R 2 . (D.3)
Cette calibration a été appliquée sur le capteur utilisé à la section 3. Annexe E

Modèle de Lamb isotrope

Le modèle des ondes de Lamb a été développé par Lamb [START_REF] Lamb | On waves in an elastic plate[END_REF] et a notamment été repris par Viktorov [START_REF] Viktorov | Rayleigh and Lamb Waves : Physical Theory and Applications[END_REF]. Dans le cas de structure multicouche composée de N L couches, ce modèle fait partie de la catégorie des modèles Layer-Wise, présenté à la section 1. 
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 1 Figure 1 -Exemples d'applications des matériaux multicouches. Répartition des différents types de matériaux utilisés dans le Boeing ® 787 (a). Cadre de vélo en composite de la marque Dassi ® (b). Toiture en matériau sandwich (c).

Figure 2 -

 2 Figure 2 -Différentes variétés de multicouches. Plaques composites en fibres de carbone (a). Structure sandwich en bois avec une âme en polystyrène (b). Structure sandwich en nids d'abeille avec des peaux en composites (c).

1 . 1 12 1. 1 . 4 15 1. 2

 111214152 Modélisation de plaques multicouches . . . . . . . . . . . . . . . . . . 5 1.1.1 Modèles monocouches équivalents . . . . . . . . . . . . . . . . . . . . . . 6 1.1.2 Modèles Layer-Wise ou par morceaux . . . . . . . . . . . . . . . . . . . 11 1.1.3 Modèles Zig-Zag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Définition et modélisation de l'amortissement . . . . . . . . . . . . . . . Techniques de caractérisation expérimentale non destructives de structures planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1. 2 . 1 18 1. 2 . 2 20 1. 2 . 3

 2118222023 Mesure du champ vibratoire . . . . . . . . . . . . . . . . . . . . . . . . . Méthodes de caractérisation globales . . . . . . . . . . . . . . . . . . . . Méthodes de caractérisation locales . . . . . . . . . . . . . . . . . . . . . 23 1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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 111 Figure 1.1 -Exemples de champs de déplacement d'ordre 1 et 3 postulés par les modèles monocouches équivalents pour un multicouche composé de 4 couches.

Figure 1 . 2 -

 12 Figure 1.2 -Nombre d'onde (a) et vitesse de phase (b) propre au mode de flexion d'une plaque d'aluminium (E = 70 GPa, ρ = 2700 kg.m -3 , ν = 0.3) en fonction du produit fréquenceépaisseur. Modélisation en plaque mince de Love-Kirchhoff ( ) et en plaque épaisse de Hencky-Mindlin ( ).

Figure 1 . 3 -

 13 Figure 1.3 -Vitesse de phase des modes de flexion (a) et de cisaillement (b) d'une plaque d'aluminium (E = 70 GPa, ρ = 2700 kg.m -3 , ν = 0.3) en fonction du produit fréquenceépaisseur. Modélisation en plaque épaisse de Hencky-Mindlin ( ) et de Reddy ().

  ont aussi constaté l'importance de la condition σ iz (z = ±h/2) = 0 dans la dynamique des plaques épaisses. Ils ont alors décidé d'étendre la théorie de Mindlin à l'ordre 3 (ordre minimal pour respecter cette condition) tout en conservant le même nombre de variables cinématiques. La composante d'ordre 3 sur le champ de déplacement permet d'accéder à une distribution parabolique des champs de déformation et de contrainte associés au cisaillement hors-plan. D'autres auteurs ont utilisé des fonctions trigonométriques ou exponentielles pour décrire la distribution du cisaillement dans l'épaisseur. Tout comme les théories utilisant des polynômes d'ordre 3, ces fonctions permettent de satisfaire la condition σ iz (z = ±h/2) = 0.
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 14 Figure 1.4 -Exemples de champs de déplacement d'ordre 1 et 3 postulés par les modèles Layer-Wise pour un multicouche composé de 4 couches.
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 15 Figure 1.5 -Exemples de champs de déplacement postulés par les modèles Zig-Zag avec une description linéaire (ordre 1) et cubique (ordre 3) du cisaillement dans le cas d'un multicouche composé de 4 couches.
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 16 Figure 1.6 -Rigidité de flexion d'un sandwich isotrope, composé de peaux en aluminium (h = 1 mm, E = 70 GPa, ρ = 2700 kg.m -3 , ν = 0.3) et d'une âme visqueuse (h = 10 mm, E = 0.3 GPa, ρ = 400 kg.m -3 , ν = 0.3) calculé à partir de la théorie CLT ( ) et de l'équivalence plaque mince du modèle de Guyader et Cacciolati ( ).
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 17 Figure 1.7 -Domaine de fréquence de quelques méthodes expérimentales non destructives de caractérisation.

Figure 1 . 8 -

 18 Figure 1.8 -Antenne de microphones, image issue de MicrodB (a). Vibromètre laser monopoint, image issue de Polytech (b).
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 19 Figure 1.9 -Application de la méthode IWC sur une plaque en composite. (a) IWC(k x , k y ) à une fréquence. Corrélation maximale ( ). (b) Courbes de dispersion du mode de flexion dans les directions x ( ) et y ( ) obtenues par IWC (cercles) en comparaison avec des valeurs théoriques (lignes). Résultats issus des travaux de Cherif et al. [22].

  r = (x -x 0 ) 2 + (y -y 0 ) 2 la distance à la source et D la rigidité de flexion. À partir des travaux de Cuenca et al. [25], Roozen et al. couplent ce champ à la technique des sources images afin de tenir compte des conditions aux limites de la plaque. Le champ virtuel de corrélation se compose alors de la somme pondérée des champs de Green associés à la source principale et aux sources miroirs :

  la corrélation de Hankel est présenté à la Figure 1.10. On remarque qu'avec quelques sources images, l'erreur décroit relativement vite et le champ virtuel concorde avec des simulations en éléments finis. Cette méthode possède cependant quelques limitations puisqu'elle nécessite de connaitre avec précision la position de la source. De plus, le noyau de Green n'a pour l'instant été développé, à notre connaissance, que pour des plaques minces isotropes et orthotropes elliptiques tel que le décrit Berthaut [10] dans les annexes de sa thèse.
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 110 Figure 1.10 -Courbes de contour des niveaux de vibration d'une plaque libre-libre à une fréquence. Champ de Green couplé aux sources images. 1 source (a). 2 sources (b). 4 sources (c). L'erreur de la corrélation de Hankel est inscrite au-dessus des figures. Champ synthétisé par éléments finies (d). Résultats issus des travaux de Roozen et al. [114].
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 111 Figure 1.11 -Exemple d'opérateur bilaplacien (m -3 ) calculé à partir de champ de déplacement non bruité (a) et bruité avec un rapport signal à bruit RSB=40 dB (b). Résultats issus des travaux de Ablitzer et al. [1].

Figure 1 . 12 -

 112 Figure 1.12 -Rigidité de flexion (a) et amortissement (b) d'une plaque composite en fibres de verre munie de patchs élastomère identifiée par la méthode RIFF isotrope à f = 2 kHz. Résultats issus des travaux de Ablitzer et al. [1].
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 113 Figure 1.13 -Application expérimentale de RIFF sur une plaque en composite en fibres de verre inclinée de 21 • . Rigidités de flexion identifiées (a). Angle mesuré (b). Résultats issus des travaux de Ablitzer et al. [2].

  Figure 1.14 -Paramètres élastiques d'une poutre sandwich en nid d'abeille identifiés à partir de RIFF avec une modélisation d'Euler-Bernouilli : module de Young (a), et une modélisation de Timoshenko : module de Young (b), module de cisaillement (c). Facteurs de perte respectifs (d)-(f). Résultats issus des travaux de Wassereau et al. [133].
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 115 Figure 1.15 -Réponse de RIFF (a) et RIC (b) dans l'espace des nombres d'onde pour n = 5 (haut) et n = 3 (bas). k N est le nombre d'onde de flexion. Résultats issus des travaux de Leclère et Pézerat [58].
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 116 Figure 1.16 -Partie réelle de la rigidité de flexion identifiée par RIFF ( ) et RIC ( ) sur une plaque en aluminium. Valeur de référence ( ). Résultats issus des travaux de Leclère et al. [57].

  ). Le patch augmente localement l'amortissement de la structure tout en diminuant légèrement sa raideur. Leclère et al. montrent également que, contrairement à RIC, l'erreur de biais de RIFF entraine une surestimation de la rigidité en fonction de la fréquence (voir Figure 1.16).
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 117 Figure 1.17 -Application expérimentale de RIC sur une plaque en aluminium munie d'un patch viscoélastique. Montage expérimental (a). Cartographies des paramètres structuraux identifiés par RIC (b). Résultats issus des travaux de Leclère et al. [57].

Figure 2 . 2 .Figure 2 . 1 -Figure 2 . 2 -

 222122 Figure 2.2. Tel que mentionné dans la section 1.1.1, le mode de flexion se transforme en mode de cisaillement dans les hautes fréquences. Cette transformation apparaît d'autant plus rapidement en fréquence que la structure est épaisse. La prise en compte de ce cisaillement dans le modèle analytique nous permettra donc de caractériser des multicouches épais tels que les sandwichs. La théorie de Minlin suppose également que le cisaillement soit linéaire dans l'épaisseur. Cette hypothèse permet de simplifier grandement le modèle mais entraine une mauvaise estimation du mode de flexion en haute fréquence. Cette erreur apparaît cependant dans des domaines de fréquences supérieurs à ceux étudiés et ne sera donc pas prise en compte. Des descriptions plus

  La loi de comportement d'un matériau permet d'établir la relation entre son champ de contraintes {σ} et de déformation { }. Cette relation est supposée linéaire et est définie, dans le cas de structures planes, par :

. 13 )

 13 Le tenseur des raideurs de chaque couche défini à l'Eq. (2.11) correspond à celui d'un matériau orthotrope en dehors de ses axes d'orthotropie, c'est à dire avec un seul plan de symétrie, en l'occurrence Oxy. Ainsi, les composantes des mécanismes plans (indices xx, yy et xy) sont découplées des mécanismes hors-plan (indices xz et yz).

. 25 )-a/ 2 -a/ 2 -b/ 2 -b/ 2 e-a/ 2 -a/ 2 -b/ 2 -b/ 2 e

 2522222222 où E c , E d et E w correspondent respectivement à l'énergie cinétique et de déformation du système ainsi qu'aux travaux des efforts volumiques extérieurs qui y sont appliqués. Nous supposerons ici que les efforts E w sont nuls. L'énergie cinétique et de déformation peuvent également être exprimées par leur densité surfacique respective, notées e c et e d : E c = c dxdy ; E d = d dxdy.(2.26)Énergie cinétiqueDans le cas d'un multicouche, la densité d'énergie cinétique e c correspond à la somme des densités de chacune des couches : nouvelle définition du champ de déplacement (Eq. (2.23)) de chaque couche, la densité d'énergie cinétique peut être écrite en fonction des 5 variables cinématiques de la couche de référence sous la forme :
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 23 Figure 2.3 -Courbes de dispersion dans la direction x d'un sandwich anisotrope (caractéristiques des couches au Tableau 2.1). Flexion ( ), Membrane ( ), Membrane transverse ( ), Cisaillement ( ), Cisaillement transverse ( ).
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Figure 2 .

 2 4c, fait partie de cette catégorie et peut s'apparenter à un mode de flexion évanescent dans ce domaine de fréquence du fait de la symétrie de leur nombre d'onde (voir Figure 2.3). Lorsque la fréquence augmente, le cisaillement de la structure, en particulier celui de l'âme, s'amplifie et permet à l'onde de se propager. Cette transition intervient à la fréquence de coupure du mode (65 kHz ici) pouvant être calculée en fixant k = 0 dans l'Eq. (2.38) et en cherchant ω. Une onde cisaillement ( ) est également décrite dans la direction transverse de la propagation (voir Figure 2.4e).
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 24 Figure 2.4 -Schéma des types d'ondes propagatives décrites par notre modèle. Flexion (a). Membrane (b). Cisaillement (c). Membrane transverse (d). Cisaillement transverse (e). Direction de propagation de l'onde plane (→).
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 125 Figure 2.5 -Surfaces de dispersion (en valeur absolue) à 5 kHz (a) et 50 kHz (b) d'un sandwich anisotrope (caractéristiques des couches au Tableau 2.1). Flexion ( ), Membrane ( ), Membrane transverse ( ), Cisaillement ( ), Cisaillement transverse ( ).

Figure 2 . 6 -

 26 Figure 2.6 -Courbes de dispersion dans la direction x d'un sandwich isotrope (caractéristiques des couches au Tableau 2.2). Résultats du modèle SFEM utilisé par Shorter [115] ( ), Résultats de notre modèle ( ). Schéma du mode de respiration (f).

  l'Eq. (2.43). Un minimum de 5 valeurs angulaires différentes sont requises pour obtenir correctement les 5 rigidités. La précision des résultats augmente en fonction du nombre de directions choisies. De plus, la répartition de ces angles doit permettre de décrire tout le profil du nombre d'onde dans le plan d'onde, en particulier lorsque ce dernier est de forme complexe. Le nombre d'onde étant π périodique, une répartition sur 180 • est généralement suffisante.

26 Figure 2 . 7 -

 2627 Figure 2.7 -Rigidités de flexion équivalentes d'un sandwich anisotrope (caractéristiques des couches au Tableau 2.1). D 11 ( ), D 22 ( ), D 12 ( ), D 16 ( ), D 26 ( ).

  flexion (N.m) avec les effets d'inertie sans les effets d'inertie
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 28 Figure 2.8 -Nombre d'onde de flexion (a) et rigidité équivalente (b) d'un sandwich isotrope (caractéristiques des couches au Tableau 2.2) obtenus à partir d'une matrice de masse avec ( ) et sans ( ) les effets d'inertie.

  de façon réaliste des conditions aux limites libre-libre. L'excitation, sous forme de bruit blanc allant de 1 à 10 kHz, a été réalisée grâce à un pot vibrant (Brüel & Kjaer 4810) collé à l'arrière de la structure. Puis, le champ vibratoire de la plaque a été mesuré en utilisant un vibromètre laser à balayage (PSV-400, Polytec) (voir Figure 2.9a). Uniquement la zone rouge, présenté à la Figure 2.9b, a été scannée à travers un maillage régulier de 67 × 69 points de mesure dont l'espacement entre deux points consécutifs était de 5.3 mm dans les deux directions. Ce maillage a été dimensionné afin d'obtenir au minimum 3 points par longueur d'onde dans la direction de raideur la plus faible et à la plus haute fréquence mesurée afin de respecter les conditions de Shannon spatiales. Les angles décrivant l'empilement des couches des différentes plaques ont pour axe de référence l'axe y du repère de mesure (voir Figure 2.9b), le sens positif étant défini par le sens horaire.
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 29 Figure 2.9 -Montage expérimental. Photo du dispositif (a). Schéma de la zone mesurée et de l'emplacement de la source (b).
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 2210 Figure 2.10 -Nombre d'onde naturel de flexion k f de la plaque composite d'empilement uniforme identifié expérimentalement avec la méthode IWC (a) et calculé analytiquement avec le modèle multicouche (b) en fonction de la fréquence et de la direction.

Tableau 2 . 3 -

 23 Paramètres matériaux d'une couche de fibre de carbone donnés par le constructeur et paramètres optimaux permettant d'obtenir une corrélation maximale avec les résultats expérimentaux obtenus par IWC. Les fibres de la couche sont alignés avec l'axe y. plus, la forme ovale du nombre d'onde, et donc l'orthotropie de la structure, reste identique entre ces deux fréquences. Le pourcentage de corrélation (calculé entre le champ simulé et le champ mesuré pour toutes directions) est faible (au maximum 37%) du fait que la méthode IWC assimile le champ de mesure à une onde plane mais il reste cependant suffisant pour discerner le nombre d'onde naturel de flexion de la plaque.
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 212 Figure 2.12 -Indices de corrélation obtenus par la méthode IWC sur la plaque composite d'empilement uniforme dans le plan d'onde (k x , k y ) pour f = 1 (a) et 10 (b) kHz. Nombre d'onde flexion calculé par le modèle ( ).
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 21312214215 Figure 2.13 -Nombre d'onde naturel de flexion k f de la plaque composite d'empilement croisé identifié expérimentalement avec la méthode IWC (a) et calculé analytiquement avec le modèle multicouche (b) en fonction de la fréquence et de la direction.

2. 2 . 4 Figure 2 . 16 - 26 Figure 2 . 17 -Figure 2 . 18 -

 2421626217218 Figure 2.16 -Nombre d'onde naturel de flexion k f de la plaque composite d'empilement laminé identifié expérimentalement avec la méthode IWC (a) et calculé analytiquement avec le modèle multicouche (b) en fonction de la fréquence et de la direction.
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 219 Figure 2.19 -Courbes de dispersion dans la direction x d'un sandwich isotrope (caractéristiques des couches au Tableau 2.2). Amortissement des peaux : 0.5%. Amortissement du coeur : 4%. Partie réelle (a) et imaginaire (b) du nombre d'onde. Flexion ( ), Membrane ( ), Membrane transverse ( ), Cisaillement ( ), Cisaillement transverse ( ).

2. 3 . 2

 32 Comparaison de différentes définitions de l'amortissement L'amortissement structurel du multicouche est défini pour chaque mode à partir des courbes de dispersion complexes estimées à la section 2.3.1. Plusieurs définitions d'amortissement ont été présentées à la section 1.1.4 et sont résumées dans le Tableau 2.4.
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 3261 Figure 2.20 -(a) Amortissement équivalent ( ) et énergétique avec la formulation temporelle ( ) et spatiale ( ) du mode de flexion d'un sandwich isotrope (caractéristiques des couches au Tableau 2.2). Amortissement des peaux : 0.5%. Amortissement du coeur : 4%. (b) Ratio entre les vitesses de groupe et de phase de ce même mode.
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 222223 Figure 2.22 -Ratio entre les vitesses de groupe et de phase du mode de flexion d'un sandwich isotrope (caractéristiques des couches au Tableau 2.2) avec une épaisseur du coeur de 2 mm (a) et de 100 mm (b).

  .49) où r représente le ratio entre la vitesse de groupe et de phase. Pour de faibles dissipations, γ étant petit, le dénominateur de η a été négligé devant son -64 -2.3. MOD ÉLISATION DE L'AMORTISSEMENT numérateur et l'on retrouve bien la définition précédente de η = -2rγ. Cette nouvelle définition de η est également comparée à la formulation temporelle à la Figure 2.23b pour le même sandwich isotrope. L'amortissement énergétique de structures multicouches très amorties peut ainsi être estimé uniquement à partir de son nombre d'onde complexe. Cet aspect peut s'avérer très intéressant en terme d'applications expérimentales où le nombre d'onde, en particulier celui de flexion, reste un paramètre aisément accessible par la mesure. Les sections suivantes ont pour but de comparer cette nouvelle formulation spatiale de l'amortissement énergétique à des résultats de la littérature obtenus notamment grâce à la méthode MSE.
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 252425 Comme tout polymère, le PVB possède un module de Young et un amortissement dépendant de la fréquence (voir Figure 2.24). De plus, le faible facteur de perte du verre a été négligé devant celui du PVB. 75 mm 1000 kg.m 3 voir Figure 2.24 0.49 voir Figure 2.Paramètres matériaux des couches d'un vitrage de voiture étudié par Shorter [115].
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 224 Figure 2.24 -Évolution fréquentielle des paramètres viscoélatiques de la couche de PVB d'une vitre de voiture (caractéristiques des autres couches au Tableau 2.5). Module de Young (a). Facteur de perte (b).

. 50 )

 50 où η n et K R,n correspondent respectivement à l'amortissement et la matrice de raideur du système conservatif de la couche n tandis que K R = n K R,n . Les vecteurs propres Φ r du mode r sont déterminés à partir d'une recherche aux valeurs propres de la formulation matricielle de l'équation de mouvement(2.35).Dans un second temps, l'amortissement énergétique a également été déterminé via la formulation spatial définie à l'Eq.(2.49). Les résultats obtenus à partir de ces différentes formulations sont comparés à la Figure2.25 pour chaque mode.

Figure 2 . 25 -

 225 Figure 2.25 -Amortissement énergétique des modes de flexion (a), membrane (b) et cisaillement (c) d'une vitrage automobile (caractéristiques des couches au Tableau 2.5) estimés par le modèle SFEM (Shorter [115]) avec la méthode MSE ( ) ainsi que notre modèle avec la formulation spatiale défini à l'Eq. (2.49) ( ) et avec la méthode MSE (×).

Figure 2 . 26 -

 226 Figure 2.26 -Amortissement énergétique du mode de flexion d'un sandwich orthotrope (caractéristiques des couches au Tableau 2.6) estimé par le modèle DLM de Ghinet et Atalla [35] avec la méthode MSE ( ) ainsi que notre modèle avec la formulation spatiale défini à l'Eq. (2.49) ( ) et avec la méthode MSE (×). θ = 0 • (a). θ = 45 • (b). θ = 90 • (c). Moyenne entre 0 • et 90 • (d).

Figure 3 . 1 -

 31 Figure 3.1 -Représentation du schéma aux différences finies de RIFF appliqué sur plaque anisotrope.

Figure 3 . 2 -

 32 Figure 3.2 -Représentation du schéma aux différences finies de RIFF et RIC appliqué sur plaque orthotrope.

D 11 δ

 11 4x + D 22 δ 4y + D 12 δ 2x2y + D 16 δ 3xy + D 26 δ x3y D 11 c 4 + D 22 s 4 + D 12 c 2 s 2 + D 16 c 3 s + D 26 cs 3 , avec c = cos(θ) et s = sin(θ).L'Eq. (3.23) peut également être considérée comme étant la réponse de RIFF dans le domaine des nombres d'onde. À titre d'exemple, la Figure 3.3 présente cette réponse dans le cas de la plaque composite à empilement laminé étudiée dans la section 2.2.4 pour deux valeurs de (n x , n y ).
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 233 Figure 3.3 -Réponse de RIFF dans le domaine des nombres d'onde pour n x = n y = 3 (a) et n x = n y = 6 (b). Résultats obtenus à partir des caractéristiques de la plaque composite à empilement laminé (caractéristiques des couches au Tableau 2.3) à 10 kHz.

  La méthode RIC[START_REF] Leclère | Vibration source identification using corrected finite difference schemes[END_REF] a été développée dans le but d'atténuer les singularités de RIFF en corrigeant l'estimation du schéma aux différences finies, pour le cas des plaques isotropes. Nous proposons ici d'étendre cette méthode au cas général d'une plaque anisotrope. Chaque coefficient δ ij du schéma est multiplié par un facteur correctif µ ij dépendant uniquement de la fréquence : p RIC (x, y) = D 11 µ 11 δ 4x + D 22 µ 22 δ 4y + D 12 µ 12 δ 2x2y + D 16 µ 16 δ 3xy + D 26 µ 26 δ x3y -ρhω 2 w(x, y).

( 3 . 24 )

 324 CHAPITRE 3. M ÉTHODE DE CARACT ÉRISATION EXP ÉRIMENTALE DE PLAQUE ANISOTROPEDe la manière que RIFF, la réponse en nombre d'onde de RIC peut être définie par :

correcteurs tendent vers 1 (Figure 3 . 5 -

 135 Figure 3.5 -Réponse de RIC dans le domaine des nombres d'onde pour n x = n y = 3 (a) et n x = n y = 6 (b). Résultats obtenus à partir des caractéristiques de la plaque composite à empilement laminé (caractéristiques des couches au Tableau 2.3) à 10 kHz.

Figure 3 . 6 -

 36 Figure 3.6 -Valeur des coefficients correcteurs de la méthode RIC en fonction du nombre de points par longueur d'onde (n x = n y ). Résultats obtenus à partir des caractéristiques de la plaque composite à empilement laminé (caractéristiques des couches au Tableau 2.3) à 10 kHz. µ 11 ( ), µ 22 ( ), µ 12 ( ), µ 16 ( ), µ 26 ( ).

CHAPITRE 3 .Figure 3 . 7 -

 337 Figure 3.7 -Réponse de RIC obtenue avec des coefficients correcteurs calculés analytiquement (a) et numériquement (b). Résultats obtenus à partir des caractéristiques de la plaque composite à empilement laminé (caractéristiques des couches au Tableau 2.3) à 10 kHz. n x = n y = 2.

  Afin d'illustrer les performances de l'extension de RIC, nous avons considéré une plaque orthotrope avec des axes d'orthotropie parallèles aux axes d'un repère Oxy (voir Figure 3.8), les fibres de la plaque étant alignées avec l'axe x de ce repère. Les caractéristiques de la plaque correspondent à celles de la plaque composite d'empilement uniforme étudiée à la section 2.2 (voir Tableau 2.3). Les rigidités de flexion ont cependant été supposées constantes en fonction 3.2. EXTENSION DE RIC POUR L'IDENTIFICATION DE SOURCE de la fréquence et égales à celles identifiées en basses fréquences. La plaque a été modélisée avec des dimensions L x = L y = 0.5 m et est supposée simplement supportée sur ses bords.

36 )où M mn = ρhLxLy 4 représenteFigure 3 . 8 -

 36438 Figure 3.8 -Configuration de la simulation modale d'une plaque orthotrope pour l'identification de sources. Position des sources (×). Carré bleu : zone d'application de RIC.
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 39310311 Figure 3.9 -Nombre de points par longueur d'onde (n x , n y ) (a) et coefficients correcteurs µ estimés par RIC (b). Résultats obtenus à partir de la simulation d'une plaque anisotrope (paramètres matériaux au Tableau 3.1).

Figure 3 . 12 -Figure 3 . 13 -

 312313 Figure 3.12 -Réponse de RIC pour n x = n y = 3 (a) et champs de pression reconstruits par RIC intégrés de 1 à 10 kHz (b). Calcul des coefficients correcteurs avec θ ∈ [0 • : 90 • ]. Résultats obtenus à partir de la simulation d'une plaque anisotrope (paramètres matériaux au Tableau 3.1).

Figure 3 . 14 -

 314 Figure 3.14 -Représentation de l'adaptation du schéma aux différences finies de RIC en présence de bruit dans le cas où (m x , m y ) = (2, 1).

. 39 )Figure 3 . 15 -

 39315 Figure 3.15 -Nombre de points par longueur d'onde (n x , n y ) (a) et agrandissement (m x , m y ) (b) du schéma de RIC dans le cas d'un champ de déplacement bruité (RSB=30 dB). Résultats obtenus à partir de la simulation d'une plaque anisotrope (paramètres matériaux au Tableau 3.1).

Figure 3 . 16 -FréquenceFigure 3 . 17 -

 316317 Figure 3.16 -Longueur d'onde de flexion ( ) d'une plaque anisotrope (paramètres matériaux au Tableau 3.1) à 4 kHz (a) et à 10 kHz (b). Le rectangle rouge représente la limite inférieure de (n x , n y ) correspondant au critère de Shannon. Le rectangle bleu représente la limite supérieure de (n x , n y ).

Figure 3 . 18 -

 318 Figure 3.18 -Champs de pression intégrés en fréquence (a) et spectres de la force au point d'excitation ( ) et des efforts résiduels ( ) (b) estimés par RIC dans le cas d'un champ de déplacement bruité (RSB=30 dB). Résultats obtenus à partir de la simulation d'une plaque anisotrope (paramètres matériaux au Tableau 3.1).

Figure 3 .Figure 3 . 19 -

 3319 Figure 3.19 présente les champs de pression estimés par RIC et intégrés en fréquence pour les deux plaques. Ces cartographies permettent d'établir des conclusions similaires à l'application numérique de la section précédente concernant la reconstruction du champ de pression de la structure par CFAT. Les efforts résiduels autour de la zone de chargement sont bien négligeables avec plus de 25 dB d'écart par rapport au maximum de pression. Nous pouvons également remarquer la forme allongée de la zone de chargement qui est due entre autres à l'adaptation du schéma.

Figure 3 . 20 -

 320 Figure 3.20 -Spectres de forces concernant les plaques composites d'empilement uniforme (a) et laminé (b) (caractéristiques des couches au Tableau 2.3). Force au point d'excitation estimée par RIC ( ), force mesurée par le capteur de force ( ), force corrigée ( ), force recalculée ( ).

  Les coefficients correcteurs µ ij étant fonction du nombre d'onde de flexion de la structure, ils dépendent également des rigidités D ij . Le problème est donc non linéaire si l'on tente d'identifier ces rigidités directement à partir de l'Eq.(3.41). Afin d'obtenir un système linéaire, nous allons, dans un premier temps, identifier les coefficients D ij = D ij µ ij qui correspondent aux rigidités estimées par la méthode RIFF. À une fréquence donnée, en supposant que ces rigidités sont constantes sur toutes la surface mesurée, l'Eq. (3.41) peut être écrite pour les N points de mesure. Une approche moindre carré similaire à celle de l'Eq. (2.44) peut alors être utilisée pour identifier les coefficients D ij :

11 D 22 D 12 D 16 D 26 T.

 1122121626 Dans un second temps, les rigidités D ij sont identifiées à partir des coefficients D ij en appliquant la correction de RIC. Pour cela, nous proposons dans ce manuscrit deux méthodologies différentes. La première est une approche itérative qui consiste à calculer, pour une itération n donnée (n ≥ 1), des coefficients correcteurs µ (n) ij à partir de rigidités D (n-1) ij à l'aide de l'Eq. (3.27) 3.4. ADAPTATION DE RIC POUR LA CARACT ÉRISATION et à identifier de nouvelles rigidités D
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 24321322 Figure 3.21 -Configuration de la simulation modale d'une plaque orthotrope pour l'identification de paramètres matériaux. Position de la source (×). Carré bleu : zone d'application de RIC.

3. 4 .

 4 ADAPTATION DE RIC POUR LA CARACT ÉRISATION La Figure 3.23 présente l'erreur d'estimation de la méthode itérative par rapport aux rigidités théoriques en fonction du nombre d'itération. La méthode itérative converge bien et fournit une erreur d'estimation inférieure à 1% à partir de 8 itérations. Ce faible pourcentage est tout de même présent puisque la singularité ne peut être totalement supprimée dans toutes les directions.

26 Figure 3 . 23 -

 26323 Figure 3.23 -Erreur (%) d'estimation, moyennée en fréquence, des rigidités estimées par RIC avec la méthode itérative par rapport aux rigidités théoriques en fonction du nombre d'itération. D 11 ( ), D 22 ( ), D 12 ( ), D 16 ( ), D 26 ( ). Résultats obtenus à partir de la simulation d'une plaque anisotrope (paramètres matériaux au Tableau 3.1).

CHAPITRE 3 .Figure 3 . 24 -

 3324 Figure 3.24 -Rigidités de flexion D 11 ( ), D 22 ( ), D 12 ( ), D 16 ( ), D 26 ( ) , estimées par RIC avec l'approche par minimisation (a). Cartographie de R RIC à 10 kHz (b). Nombre d'onde de flexion théorique (tirets blanc). Résultats obtenus à partir de la simulation d'une plaque anisotrope (paramètres matériaux au Tableau 3.1).
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 31325326327 Figure 3.25 -Rigidités de flexion D 11 ( ), D 22 ( ), D 12 ( ), D 16 ( ), D 26 ( ) , estimées par RIC avec l'approche itérative (a) et par minimisation (b). RSB=30 dB. Technique de régularisation de RIC. Résultats obtenus à partir de la simulation d'une plaque anisotrope (paramètres matériaux au Tableau 3.1).

  ) avec N un paramètre de normalisation défini de sorte que H 1D (x)dx = 1. Dans le cas d'identification de paramètres matériaux, le champ de pression étant supposé nul, le fenêtrage et le filtrage sont appliqués aux coefficients δ ij et au déplacement W puisque la multiplication et la convolution sont distributives. Le nombre de coupure k c est en règle générale choisi proportionnel au nombre d'onde de flexion de la plaque k f . Dans le cas de structures anisotropes, il est préférable, tel que l'ont mentionné Ablitzer et al. [2], de choisir k c = min k f (θ) du fait que la méthode est plus sensible à une sous-régularisation (k c >> k f ) qu'à une surrégularisation (k c << k f ) et que l'information contenue dans des nombres d'onde supérieurs à k f est inutile. Le nombre d'onde de la structure étant inconnu, un ordre de grandeur de k c peut être obtenu à l'aide d'une méthodologie similaire à celle donnée par Ablitzer. À chaque fréquence, plusieurs valeurs arbitraires de k c sont définies. Pour chacune de ces valeurs, les coefficients D ij sont identifiés à partir des champs W (x, y) et δ ij (x, y) fenêtrés et filtrés grâce à la technique de régularisation de RIFF. Le nombre d'onde de flexion de la structure est ensuite reconstruit à partir des coefficients D ij en utilisant soit l'approche par minimisation soit l'approche itérative. La valeur optimale du nombre de coupure correspond à celle minimisant la différence |k c -min k f,r (θ) |, k f,r étant le nombre d'onde reconstruit à partir de la valeur de k c choisie. À titre d'exemple, la Figure 3.28 présente la cartographie de |k c -min k f,r (θ) | en fonction de k c et de la fréquence dans le cas de la structure étudiée dans cette section. Nous pouvons remarquer que la valeur optimale du nombre de coupure correspond bien à la valeur théorique de min k f (θ) .

Figure 3 .Figure 3 . 28 -Figure 3 . 29 -

 3328329 Figure 3.29 présente les rigidités estimées à la fois par RIFF ( D ij ) et par RIC (D ij ) avec la méthode itérative. Les résultats sont beaucoup plus satisfaisants puisqu'ils sont similaires au cas non-bruité (voir Figure 3.22). La technique de régularisation de RIFF a l'avantage, par rapport à celle de RIC, d'être uniforme dans toutes les directions et de ne pas dépendre du maillage de mesure choisi. La correction de RIC reste cependant nécessaire comme nous pouvons le voir à
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 4330331 Figure 3.30 -Configuration de la simulation modale d'un sandwich orthotrope avec des peaux en composite et une âme en bois. Position de la source (×). Carré bleu : zone d'application de RIC.

3. 4 . 4 Figure 3 . 32 -Figure 3 .Figure 3 . 33 -

 443323333 Figure 3.32 -Configuration de la mesure expérimentale réalisée sur les plaques en composites pour l'identification de paramètres matériaux avec RIC. Position des sources (×). Zone mesurée ( ).

Figure 3 . 34 -

 334 Figure 3.34 -Résultats de la caractérisation de la plaque composite d'empilement laminé avec RIC en utilisant la régularisation de RIFF. (a) Nombre d'onde de flexion reconstruit. (b) Rigidités de flexion D 11 (×), D 22 (×), D 12 (×), D 16 (×), D 26 (×) . Valeurs théoriques de notre modèle multicouche ( ).

CHAPITRE 4 .

 4 ÉTUDE EXP ÉRIMENTALE D'UN SANDWICH EN NIDS D'ABEILLE 4.1 Protocoles expérimentaux La plaque, de dimensions 0.73 × 0.52 m 2 , est composée de deux peaux en aluminium de 0.6 mm d'épaisseur chacune et d'une âme en nids d'abeille de 9 mm d'épaisseur. Ces nids d'abeille ont été réalisés en Nomex ® , matériau constitué d'un papier aramidique imprégné d'une résine phénolique (voir Figure 4.1). Il est important de noter que la forme alvéolaire des nids d'abeille rend la structure orthotrope. Dans notre étude, nous modéliserons donc ces nids d'abeille en une couche homogène et orthotrope.

Figure 4 . 1 - 138 ×Figure 4 . 2 -

 4113842 Figure 4.1 -Nids d'abeille en Nomex ® .

Figure 4 . 3 -

 43 Figure 4.3 -Configuration de la mesure effectuée sur la plaque sandwich en nids d'abeille avec une excitation par laser.

4. 2 .

 2 ÉTUDE DU MODE DE FLEXION DE LA STRUCTURE Avec ce dispositif, la réponse de la structure a uniquement été mesurée selon une ligne. De ce fait, nous avons décidé de mesurer la plaque selon ses axes principaux, c'est-à-dire selon les axes x et y du repère de mesure présenté à la Figure 4.2b. La mesure selon l'axe y a simplement été réalisée en tournant la plaque de 90 • . Il est important de rappeler que ces deux axes ne correspondent pas aux axes d'orthotropie du nids d'abeille. Dans chaque direction, les différentes excitations ont été appliquées sur un maillage de 302 points défini par un pas de 0.5 mm. Le point de mesure, aligné avec ce maillage, était positionné à une distance d 0 du premier point d'excitation (voir Figure 4.3), d 0 étant égale à 13 mm pour la mesure selon l'axe x et 17 mm pour la mesure selon l'axe y. La Figure 4.4 présente le déplacement transverse de la plaque en fonction des différents points d'excitation et du temps dans les deux directions étudiées. Nous pouvons tout d'abord remarquer que les phénomènes de dispersion interviennent essentiellement entre 0.8 ms < t < 1.2 ms après l'impulsion. Les ondes réfléchies sont également présentes mais leurs niveaux d'énergie restent faibles par rapport à ceux des ondes directes.

Figure 4 . 4 -

 44 Figure 4.4 -Déplacement transverse mesuré sur le sandwich en nids d'abeille avec une excitation au laser. Axe temporel compris entre 0.75 et 1.5 ms. Résultats dans les directions x (a) et y (b).

4. 2

 2 Étude du mode de flexion de la structure4.2.1 Analyse par méthode localeLes mesures effectuées avec le protocole A ont tout d'abord été analysées avec la méthode RIC dont les résultats en terme de nombre d'onde sont présentés à la Figure4.5. Le schéma aux différences finies a été appliqué sur les points du maillage de mesure situés à plus de 6 cm de la source, distance suffisante pour supposer que le champ de pression soit nul sur ces points.
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 453 Figure 4.5 -Nombre d'onde de flexion du sandwich nids d'abeille reconstruit par RIC en utilisant la technique de régularisation de RIFF.

4. 2 .

 2 ÉTUDE DU MODE DE FLEXION DE LA STRUCTURE

Figure 4 . 6 -

 46 Figure 4.6 -Rigidités de flexion du sandwich nids d'abeille identifiées par RIC (a), IWC (b) et la corrélation de Hankel elliptique (c). D 11 ( ), D 22 ( ), D 12 ( ), D 16 ( ), D 26 ( ) . Valeurs théoriques de notre modèle multicouche ( ).

CHAPITRE 4 .

 4 ÉTUDE EXP ÉRIMENTALE D'UN SANDWICH EN NIDS D'ABEILLE Concernant les paramètres de l'âme du sandwich, nous avons tout d'abord identifié son angle d'orthotropie en utilisant la relation matricielle suivante :

. 1 )

 1 avec c = cos(θ T ) et s = sin(θ T ). Cette relation permet d'écrire les rigidités de flexion D de la structure définies dans le repère Ox y (voir Figure 4.2b) à partir de celles estimées par RIC dans le repère Oxy (voir Figure 4.7a). L'angle d'orthotropie correspond à la valeur de θ T pour laquelle la structure est considérée comme orthotrope dans le repère Ox y , c'est-à-dire D 16 ≈ D 26 ≈ 0. La Figure 4.7b présente l'angle d'orthotropie de la structure estimé par cette technique en fonction de la fréquence. Nous pouvons observer qu'entre 5 et 30 kHz, lorsque le cisaillement de l'âme du sandwich est important, l'angle d'orthotropie est d'environ θ T = -7 • . À plus hautes et plus basses fréquences, les angles d'orthotropie identifiés sont incorrects. En hautes fréquences (f > 30 kHz), la structure équivalente étant isotrope, le modèle n'est plus le bon. En basses fréquences (f < 5 kHz), les estimations de RIC sont incorrectes puisque les longueurs d'ondes sont trop grandes par rapport à la zone de mesure.

Figure 4 . 7 -

 47 Figure 4.7 -Rigidités de flexion D calculées avec l'Eq. (4.1) à partir des rigidités estimées par RIC à 20 kHz (a). Angle d'orthotropie ( ) identifié à partir des résultats de RIC (b). Valeur d'angle d'orthotropie sélectionnée : θ T = -7 • ( ).

Figure 4 .

 4 8 présente les nombres d'onde identifiés par IWC. Nous pouvons remarquer, à l'instar des résultats obtenus sur les plaques en composite étudiées à la section 2.2, que les résultats de IWC restent bruités en hautes fréquences malgré une bonne concordance avec ceux de RIC. Nous avons donc eu recours à un lissage des nombres d'onde identifiés par IWC afin d'atténuer la sensibilité de la méthode moindres carrés lors de l'estimation des rigidités de flexion. Ces rigidités, présentées à la Figure 4.6b restent également proches de celles calculées par le modèle avec les paramètres du Tableau 4.2.

Figure 4 . 8 -

 48 Figure 4.8 -Nombre d'onde de flexion du sandwich nids d'abeille reconstruit par IWC.

Figure 4 . 9 ,

 49 Figure 4.9, forment bien un angle de 7 • par rapport aux axes du repère de mesure. À 50 kHz, le facteur d'orthotropie (D 22 /D 11 ) de la structure s'approche de 1 et les propriétés mécaniques de la structure tendent vers l'isotropie.
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 449 Figure 4.9 -Indice de corrélation de la méthode IWC appliqué au champ mesuré sur le sandwich nids d'abeille à 10 kHz (a) et 50 kHz (b) dans le plan d'onde. Valeurs théoriques du modèle multicouche ( ). Axes d'orthotropie ( ).

Figure 4 .

 4 9 nous offrent cependant la possibilité d'utiliser la corrélation de Hankel avec un champ de Green orthotrope elliptique (D 12 = 2 D 11 D 22 ) sur le sandwich étudié. Ce type de champ s'écrit pour une plaque mince :

. 4 )

 4 Dans cette approche, le fait d'ajouter des sources images n'apporte rien aux résultats de la méthode du fait que l'énergie des ondes réfléchies ait été atténuée grâce à la corde amortissante enroulée sur les bords de la plaque.LaFigure 4.10 présente le nombre d'onde et les rigidités estimés par cette corrélation de Hankel elliptique sur le sandwich nids d'abeille. Nous pouvons remarquer que les résultats semblent moins bruités que ceux obtenus par IWC. Cette dernière constatation est due au fait que l'on suppose une forme parfaitement elliptique du nombre d'onde dans le plan d'onde dépendant uniquement de deux paramètres : D 11 et D 22 . À l'inverse, IWC fournit une estimation du nombre d'onde dans une multitude de directions à chaque fréquence et est donc davantage sujet à une dispersion des résultats. De ce fait, les rigidités identifiées par la corrélation de Hankel elliptique sont également bien plus proches de celles prédites par notre modèle (voir Figure 4.6c).

Figure 4 . 10 -

 410 Figure 4.10 -Nombre d'onde de flexion du sandwich nids d'abeille reconstruit par la corrélation de Hankel elliptique.

Figure 4 . 11 -

 411 Figure 4.11 -Indice de corrélation de la méthode IWC dans les axes x (a) et y (b) représenté sous la forme de contour. Valeurs théoriques du nombre d'onde de flexion calculé par le modèle multicouche ( ). Valeurs asymptotiques basses et hautes fréquences ().

4. 4 .Figure 4 . 14 -

 4414 Figure 4.14 -Indice de corrélation de la méthode IWC appliqué aux champs de déplacement membranaire mesuré par le vibromètre 3D sur le sandwich nids d'abeille. f = 50 kHz. Valeurs théoriques des courbes de dispersion calculées par notre modèle multicouche Membrane ( ), Membrane transverse ( ), Cisaillement ( ), Cisaillement transverse ( ) .

4. 4 22 Tableau 4 . 3 -

 42243 Comparaison des performances des méthodes globales et locales Cette dernière section compare les performances des méthodes RIC, IWC et de la corrélation de Hankel au travers de l'analyse des mesures effectuées sur le sandwich étudié dans ce chapitre. Dans un premier temps, nous avons résumé les caractéristiques principales de ces méthodes dans le Tableau 4.3. La colonne Estimations directes correspond aux valeurs estimées directement par les méthodes tandis que la colonne Estimations indirectes correspond aux valeurs pouvant être reconstruites à partir des estimations directes. Nous remarquons que chaque méthode possède un nombre de paramètres distincts dont leur discrétisation peut avoir une influence sur le temps de calcul lors de l'analyse des champs mesurés. Afin d'observer cette influence, nous avons, dans un second temps, mesuré le délai de posttraitement des donnés obtenues avec le vibromètre laser 3D entre 10 et 50 kHz. Le Tableau 4.4 résume ces temps (par fréquence) pour deux analyses différentes, toutes deux effectuées avec le même ordinateur (Intel Core i7, 4.2 GHz, 32 Go de RAM). Au cours de ces analyses, nous nous sommes intéressés uniquement à l'estimation de la partie réelle des caractéristiques du sandwich, négligeant ainsi les paramètres d'amortissement des méthodes de corrélation. La première analyse imposait des valeurs candidates de k c pour RIC, k pour IWC, ainsi que D 11 et D 22 pour CHAPITRE 4. ÉTUDE EXP ÉRIMENTALE D'UN SANDWICH EN NIDS D'ABEILLE k * (θ, f ) ∀ θ -Nombre d'onde de coupure : k c -Nombre d'itération pour la correction IWC -Fréquence : f k * (θ, f ) -Direction : θ D * ij (f ) -Nombre d'onde : k (moindres carrés) -Amortissement spatial : γ Corrélation -Fréquence : f de Hankel -Rigidité en x : D 11 D * 11 (f ) ; k * (θ, f ) ∀ θ ; elliptique -Rigidité en y : D 22 D * 22 (f ) D * ij (f ) -Amortissement en x : η 11 (elliptique) -Amortissement en y : η Caractéristiques des méthodes IWC, RIC couplée à la technique de régularisation de RIFF et de la corrélation de Hankel elliptique. Symbole * : valeur complexe. Hankel indépendantes de la fréquence et discrétisées en 500 points chacun. Lors de la seconde analyse, ces valeurs candidates dépendaient des résultats obtenus à la fréquence précédente, ce qui nous a permis de réduire leur discrétisation à 50 points et ainsi d'accélérer le post-traitement tout en gardant une forte précision. Cette technique suppose cependant que ces paramètres varient peu d'une fréquence à l'autre et que les résultats obtenus à la fréquence précédente soient justes.

l 1 = 2 (λ 1 c 4 +

 124 λ 39 c 3 s + (λ 13 + λ 22 )c 2 s 2 + λ 54 cs 3 + λ 7 s 4 ), l 2 = λ 5 c 3 + (λ 41 + λ 45 )c 2 s + (λ 19 + λ 29 )cs 2 + λ 56 s 3 , l 3 = λ 4 c 3 + (λ 16 + λ 27 )cs 2 + (λ 40 + λ 42 )c 2 s + λ 55 s 3 , l 4 = λ 49 c 3 + (λ 60 + λ 64 )cs 2 + (λ 15 + λ 30 )c 2 s + λ 11 s 3 , l 5 = λ 48 c 3 + (λ 57 + λ 63 )cs 2 + (λ 14 + λ 28 )c 2 s + λ 10 s 3 , l 6 = 2(λ 3 c 2 + λ 25 s 2 + λ 47 cs), cisaillement Cette section fait suite aux hypothèses émises par notre modèle analytique équivalent sur la cinématique du multicouche à la section 2.1 et présente une formulation décrivant le cisaillement avec une forme cubique dans l'épaisseur. Les résultats du modèle obtenus avec cette formulation seront comparés à ceux obtenus avec la formulation linéaire dans le cas d'une des structures étudiées dans ce manuscrit. Les modèles d'ordres supérieurs, décrits à la section 1.1.1, nous ont permis de montrer l'importance de la description du cisaillement suivant l'épaisseur dans la modélisation de multicouche épais. Le choix d'une description linéaire dans le modèle décrit au Chapitre 2 implique que les contraintes de cisaillement de chaque couche sont constantes dans l'épaisseur et ne peuvent pas s'annuler aux surfaces inférieures et supérieures du multicouche. Le non-respect de cette condition entraine une erreur d'estimation du mode de flexion en hautes fréquences et de la fréquence de coupure du mode de cisaillement. Afin de vérifier ces conditions, nous proposons d'étudier

  Tout d'abord, la continuité des contraintes de cisaillement hors-plan fournit 4N L -4 équations que l'on peut résumer de la façon suivante : R n -h n 2 ), (B.2) pour a = 4, 5, et n = 2 à N L . La continuité des déplacements, quant à elle, correspond à la ANNEXE B. DESCRIPTION CUBIQUE DU CISAILLEMENT continuité des fonctions F ij et fournit également 4N L -4 équations :

F 1 ij

 1 (z = R 1 ) = 0. (B.4) De plus, Loredo normalise la dérivée des fonctions F 1 ij à l'aide de la relation suivante : i = j, 0 si i = j. (B.5) Enfin, les conditions de contraintes nulles aux surfaces inférieures et supérieures apportent les 8 dernières équations permettant de déterminer le reste des coefficients des polynômes F n ij : h tot ) = 0, (B.6) où h tot = n h n est l'épaisseur totale du multicouche. La formulation linéaire du modèle peut également être retrouvée à l'aide des relations précédentes en posant a ij = b ij = 0 dans l'expression des F n ij à l'Eq. (B.6). Afin de résoudre ses relations, nous avons utilisé la toolbox symbolic de Matlab qui a montré une grande rapidité d'exécution. Une comparaison des formulations linéaire et cubique des fonctions F n ij a été menée à l'aide d'une simulation d'un sandwich isotrope classique (Shorter [115]) avec des peaux en aluminium et un coeur en polymère. Les paramètres matériaux des couches de ce sandwich sont résumés dans le Tableau B.1. La Figure B.1 présente la forme de la contrainte σ xz dans l'épaisseur de ce sandwich pour les deux formulations. Nous remarquons tout d'abord que la contrainte de la formulation linéaire est constante dans l'épaisseur et directement égale au module de cisaillement de la première couche. La formulation cubique, quant à elle, respecte bien la condition de contraintes nulles aux surfaces inférieures et supérieures. La contrainte de l'âme reste cependant pratiquement constante dans l'épaisseur. La forme du champs de déplacement n'a pas été présentée ici du fait qu'elle est très similaire pour les deux formulations dans le cas du sandwich simulé. Peaux 1 mm 2700 kg.m 3 70 GPa 0.3 Âme 7 mm 48 kg.m 3 0.8 GPa 0.2 Tableau B.1 -Paramètres matériaux des couches du sandwich isotrope étudié par Shorter [115].

Figure B. 1 -Figure B. 2 -

 12 Figure B.1 -Forme de la contrainte de cisaillement dans l'épaisseur d'un sandwich isotrope (caractéristiques des couches au Tableau B.1). Formulation cubique ( ) et linéaire ( ) des fonctions F ij . Interface entre les couches ( ).

F

  i = (m i + m s )A i , i = 1, 2. (D.1) où m s correspond à la masse interne du capteur. La réponse en fréquence de chaque masse peut alors être écrit en fonction de m s , m i et de la sensibilité du capteur SR i = A i U i = 1 (m i + m s )S i = 1, 2. (D.2)La sensibilité S et la masse interne m s peuvent alors être déterminée à l'aide des réponses en fréquence (R 1 , R 2 ) et des masses (m 1 , m 2 ) :

Figure D. 1 -

 1 Figure D.1 -Sensibilité (a) et masse interne (b) du capteur de force étudié à la section 3.3.3. Résultats obtenus à partir de la calibration du capteur.
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Contexte

Dans une démarche d'amélioration continue, les entreprises mettent au point de nouvelles solutions technologiques pour répondre aux attentes de leurs clients ou encore aux contraintes économiques et environnementales actuelles. Ces solutions passent par le développement et l'utilisation de matériaux innovants dans les produits commercialisés. À titre d'exemple, dans le domaine du transport, l'allègement des véhicules est au coeur des questions actuelles sur l'économie d'énergie. Pour y répondre, le choix des matériaux s'est porté vers les multicouches, notamment ceux en composites, permettant d'associer légèreté et robustesse. Leur utilisation s'est généralisée dans d'autres domaines, tels que le sport afin d'améliorer

  Il est important de noter qu'une première solution de modèle de plaque épaisse avait déjà été proposée par Reissner[START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plates[END_REF][START_REF] Reissner | On bending of elastic plates[END_REF] quelques années avant Mindlin. Les deux théories ont souvent été perçues comme identiques par la communauté alors que leurs cinématiques sont différentes, comme le soulignent Wang et al.[START_REF] Wang | Relationships between bending solutions of reissner and mindlin plate theories[END_REF]. Le modèle de Reissner, développé dans le cas statique, postule une cinématique plus riche que celle de Mindlin avec une formulation en champ de contrainte. La distribution de ce champ suivant l'épaisseur est supposée linéaire pour la flexion et parabolique pour le cisaillement tout en prenant en compte la contrainte transverse. La condition de contraintes nulles aux surfaces inférieures et supérieures de la plaque est alors respectée et aucune correction du cisaillement n'est requise.

Comme le souligne Margerit

[START_REF] Margerit | Caractérisation large bande du comportement dynamique linéaire des structures hétérogènes viscoélastiques anisotropes[END_REF]

, ce coefficient correcteur peut être calculé de différentes façons. La première et la plus connue consiste à égaliser la fréquence de coupure du premier mode de cisaillement donnée par le modèle FSDT avec les modèles tridimensionnels (voir Figure

1

.3b), conduisant à = π 2 /12 dans le cas isotrope. Le facteur π 2 provient des fonctions trigonométriques utilisées dans les modèles tridimensionnels pour décrire le comportement du cisaillement dans l'épaisseur tandis que le facteur 12 provient de la description linéaire du cisaillement dans le modèle d'Hencky-Mindlin. On pourra également noter que = 5/6 dans le cas statique

[START_REF] Pai | A new look at shear correction factors and warping functions of anisotropic laminates[END_REF]

. Une seconde manière de calculer ce coefficient correcteur peut aussi être envisagée en égalisant la valeur asymptotique de la vitesse de phase du mode de flexion (voir Figure

1

.3a). Cette possibilité est bien plus complexe car elle dépend du coefficient de Poisson et reste assez proche des résultats de = π 2 /12. Dans le cas de matériaux anisotropes, la correction s'applique indépendamment sur chacune des raideurs de la matrice de Hooke reliant les contraintes de cisaillement hors-plan au champ de déformation (trois dans le cas orthotrope)

[START_REF] Whitney | Shear correction factors for orthotropic laminates under static load[END_REF]

. CHAPITRE 1. SYNTH ÈSE BIBLIOGRAPHIQUE Modèles d'ordres supérieurs La théorie de Mindlin a inspiré plusieurs auteurs sur le choix de F (z) pour décrire au mieux le comportement du cisaillement dans l'épaisseur. Leurs travaux les ont conduits à développer des théories avec des ordres d'expansion élevés que l'on nomme HSDT pour High order Shear Deformation Theory. Quelques exemples de ces théories sont présentés dans le paragraphe suivant et leurs fonctions F (z) associées sont résumées dans le Tableau 1.1. Théorie F

  1.1. MOD ÉLISATION DE PLAQUES MULTICOUCHES rapport aux fonctions sinusoïdales. Le développement limité des fonctions exponentielles est semblable à un polynôme contenant des ordres d'expansion paires et impaires tandis que les fonctions sinusoïdales ne contiennent que les impaires. Enfin, nous pouvons citer Mantari et al. [71] qui ont associé des fonctions sinusoïdales et exponentielles. Les modèles cités jusqu'à présent ont été développés avec une description d'ordre élevé des déplacements membranaires afin de décrire au mieux le comportement du mode de cisaillement hors-plan. Malgré cela, le déplacement transverse est à chaque fois considéré comme constant suivant l'épaisseur, négligeant ainsi toute déformation selon cet axe. Il existe cependant plusieurs théories appelées HOT pour High Order Theory où les trois composantes du champ cinématique sont d'ordre élevé. Une telle description de la composante transverse du déplacement permet d'accéder à l'identification des modes de "respiration" (modes symétriques de Lamb). Parmi ces modèles, on pourra notamment citer celui de Whitney et Sun [136] d'ordre 1 sur le déplacement

transverse ainsi que celui de Zenkour

[START_REF] Zenkour | Transverse shear and normal deformation theory for bending analysis of laminated and sandwich elastic beams[END_REF]

, développé pour les poutres, prenant en compte un cisaillement d'ordre 3 et une déformation transverse d'ordre 2.

1.1.2 Modèles Layer-Wise ou par morceaux

Les modèles Layer-Wise (LW) sont qualifiés de modèles par morceaux car, contrairement aux modèles ESL, ils décrivent les couches du multicouche indépendamment les unes des autres.

Chaque couche l est interprétée comme une plaque avec sa propre cinématique et son propre nombre de variables cinématiques :

  Une onde émise par un laser est séparée en deux par un prisme donnant naissance à une onde de référence et une onde objet. L'onde de référence est connue et n'est pas perturbée tandis que l'onde objet est perturbée par la structure mesurée. L'hologramme est caractérisé par l'interférence entre ces deux ondes. La différence de phase entre deux hologrammes successifs est proportionnelle au champ de déplacement entre ces deux instants. Dans certains cas, un traitement de la zone de mesure s'avère nécessaire pour permettre une bonne diffusion du faisceau optique. De plus, la mesure ponctuelle du champ implique d'utiliser un champ stationnaire. Les mesures présentées dans ce manuscrit ont toutes été réalisées avec ce type d'appareil.

	1.2. TECHNIQUES DE CARACT ÉRISATION EXP ÉRIMENTALE NON DESTRUCTIVES
	DE STRUCTURES PLANES
	La vibrométrie laser utilise aussi un interféromètre. La vitesse de la structure est déterminée
	par l'effet Doppler observé entre l'onde référence et l'onde objet. Plusieurs modèles de vibromètre
	laser existent (1D, 2D et 3D). Le vibromètre 1D ou monopoint (voir Figure 1.8b) mesure le
	déplacement transverse en un point tandis que le vibromètre 2D le mesure sur tout le champ
	en scannant la structure. Enfin, le vibromètre 3D mesure les trois composantes du champ de
	déplacement en scannant également la structure. Leur facilité de mise en oeuvre ainsi que leurs
	très bonnes résolutions temporelles et fréquentielles en font des outils performants et largement
	utilisés dans la communauté.

1.8a) ou ponctuelle à balayage avec un seul. L'holographie acoustique est utilisée pour la localisation de source vibratoire, la détection de défauts ou le calcul de transfert d'énergie mais son principal avantage reste l'analyse de la relation entre le rayonnement acoustique et le comportement dynamique de la structure. Cependant, la résolution spatiale est faible et les algorithmes de calcul utilisés amplifient grandement le bruit.

Parmi les techniques optiques de mesure sans contact

[START_REF] Grédiac | Full-Field Measurements and Identification in Solid Mechanics[END_REF]

, l'holographie optique

[START_REF] Kreiss | Holographic Interferometry -Principles and Methods[END_REF] 

est une méthode d'interférométrie basée sur le principe d'interférence d'ondes lumineuses cohérentes.

  utilise aussi une caméra rapide afin de filmer le reflet d'une grille de

	1.2. TECHNIQUES DE CARACT ÉRISATION EXP ÉRIMENTALE NON DESTRUCTIVES
	DE STRUCTURES PLANES		CHAPITRE 1. SYNTH ÈSE BIBLIOGRAPHIQUE
	mesure sur l'objet à mesurer. La zone de mesure doit donc être réfléchissante. Les vibrations Inhomogeneous Wave Correlation (IWC)
	de l'objet déforment l'image de la grille capturée par la camera dont la phase est étudiée pour Afin d'estimer l'amortissement de la structure, la méthode de Ferguson a permis d'intro-
	identifier le champ de pentes locales. duire le concept de corrélation du champ de mesure avec un champ virtuel. Ce principe a déjà
	été observé dans les travaux de Hillström et al. [47] où le champ virtuel est composé de deux
	ondes planes (propagative aller et retour) d'amplitude différentes. Mc Daniel et al. [80] ont re-
	1.2.2 Méthodes de caractérisation globales pris la méthode d'Hillström et al. en ajoutant les ondes évanescentes dans le champ virtuel.
	Les différentes amplitudes de chaque onde sont identifiées par une méthode des moindres carrés
	Transformée de Fourier Discrète dont l'erreur entre le champ reconstruit et le champ réel est calculé pour différents nombres
	Parmi les méthodes d'analyse de champs en moyennes et hautes fréquences, nous pouvons d'onde complexes. Une corrélation optimale est obtenue lorsque cette erreur est minimale. Ber-
	distinguer les méthodes dites globales faisant l'hypothèse de paramètres matériaux homogènes thaut et al. [11] proposent une méthode similaire appelée IWC pour Inhomogeneous Wave Cor-
	dans la structure comme par exemple la Transformée de Fourier Discrète (DFT). Cette méthode, relation où le champ virtuel est seulement composé d'une onde plane propagative définie par
	utilisée principalement pour sa rapidité, suppose que le champ est connu sur une grille uniforme un nombre d'onde complexe. Un indice de corrélation, similaire au nombre de MAC utilisé pour
	les comparaisons des déformées modales, est calculé pour chaque fréquence et direction θ en de dimension (N x , N y ) et est 2D-périodique en dehors. La DFT permet d'explorer le contenu en nombre d'onde du champ de déplacement mesuré w(x, y) : fonction du nombre d'onde k et de l'amortissement γ de l'onde plane. Pour un maillage régulier,
	cet indice s'écrit :					
	ŵ(k xp , k yq ) =	1 N x N y	Nx i=1	Ny j=1	w(x i , y j )e -j(kxpx i +kyqy j ) ,	(1.20)
	avec k xp = p∆k x = p 2π Nx∆x et k yq = q∆k y = q 2π Ny∆y . Les variations spatiales des propriétés
	mécaniques peuvent ainsi être observées dans le cas de structures anisotropes. La DFT possède
	quelques avantages comme la rapidité et la bijectivité. Elle ne permet cependant pas d'identifier
	la partie imaginaire du nombre d'onde et est sensible au repliement et aux effets de bord. Ainsi,
	le domaine des nombres d'onde étudié dépend directement de la dimension et de la résolution
	de la grille de mesure (k x ∈ -π ∆x , π ∆x et k y ∈ -π ∆y , π ∆y ).	
	Transformée de Fourier Continue				
	Ferguson et al. [34] suppriment cette dernière limitation de la DFT avec la Transformée de
	Fourier Continue (CFT). Cette méthode est définie, à une constante multiplicative près, par la
	même formulation que la DFT :					
		Nx	Ny			
	ŵ(k x , k y ) =		w(x i , y j )e -j(kxx i +kyy j ) .	(1.21)
		i=1	j=1			
	Elle permet d'augmenter la discrétisation en nombre d'onde (k x , k y ) et ainsi la précision des
	résultats. Tel que l'indique Berthaut [10], cette transformée n'est plus bijective, la CFT "in-
	ventant" de l'information. Berthaut mentionne également le fait que cette méthode fait preuve
	de souplesse puisqu'elle peut être appliquée sur une grille de mesure non-uniforme. Il est ce-
	pendant difficile de maitriser le repliement avec une telle grille. De plus, la CFT reste limitée	à
	l'identification de la partie réelle du nombre d'onde uniquement.	

  Une approche locale similaire aux méthodes RIFF et RIC, appelé VFM pour Virtual Field Method, a été développée à partir de la formulation faible de l'équation de mouvement. Le livre de Pierron et Grédiac[START_REF] Pierron | The virtual fields method[END_REF] présente cette méthode dans le cas de la caractérisation de matériau avec divers exemples sur des structures isotropes et orthotropes. La VFM s'appuie sur le principe des travaux virtuels pouvant se traduire comme le bilan des travaux fournis par des efforts appliqués à un champ de déplacement virtuel. Ces travaux sont au nombre de trois et englobent la quantité d'accélération, les efforts extérieurs et intérieurs. La VFM possède l'avantage d'avoir une sensibilité réduite au bruit par rapport à RIFF et RIC, puisqu'elle ne nécessite qu'une différentiation d'ordre deux du champ de déplacement mesuré. Il est intéressant de noter que dans le cas de mesure par déflectométrie, une seule différentiation est nécessaire. Le principe

	Leclère
	montre que RIC peut être appliquée sur une plage de fréquence où n est compris entre 2 (critère
	de Shannon) et 4 sans que le bruit de mesure soit pénalisant. Il apparaît alors intéressant
	d'adapter la taille du schéma en fonction de la fréquence pour conserver 2 < n < 4 et pouvoir
	appliquer RIC sur toute la plage de fréquences. En appliquant cette technique, le schéma sera
	donc de taille importante en basse fréquence et diminuera en fonction de la fréquence. Dans le cas
	d'un maillage de mesure régulier et de pas égaux dans les deux directions, le schéma peut aussi
	être tourné à 45

• afin d'obtenir une marge de manoeuvre supplémentaire dans son adaptation en fréquence sur un maillage régulier donné. Cette technique ne peut pas être appliquée sur la méthode RIFF à cause de sa singularité autour du nombre d'onde naturel de flexion qui est importante pour des valeurs de n faibles. CHAPITRE 1. SYNTH ÈSE BIBLIOGRAPHIQUE Virtual Field Method (VFM) des travaux virtuels requiert cependant le choix arbitraire d'un champ virtuel étant décrit par une fonction dérivable et continue dans le domaine étudié. Quelques travaux concernant la VFM appliquée à l'identification de source ont été publiés par Berry et al. [9] qui utilisent des polynômes d'Hermite linéairement indépendants en tant que champ virtuel. Cette étude a ensuite été élargie au cas d'excitations spatialement corrélées [8].

  Cet aspect est présenté plus en détail dans la section 2.3. Finalement, les raideurs Q n ij ainsi que l'épaisseur h n , la masse volumique ρ n et l'angle d'orthotropie θ n définissent les paramètres matériaux de chaque couche.

) avec (E n x , E n y ) les modules d'Young, (G n xy , G n xz , G n yz ) les modules de cisaillement et (ν n xy , ν n yx ) les coefficient de Poisson. Afin de modéliser l'amortissement structurel, les raideurs Q n ij peuvent être 2.1. M ÉTHODOLOGIE complexes.

  nombres d'onde naturels des modes de la structure décrit par le modèle. Ainsi, en faisant varier la fréquence et la direction, nous pouvons identifier les courbes et les surfaces de dispersion k(f, θ) de la structure. Les racines peuvent cependant se mélanger lors d'un changement de fréquence ou de direction. Ce phénomène apparaît essentiellement lorsque elles se croisent et peut être corrigé par une étude des pentes de chaque racine. Une

	det [K] -ω 2 [M] = 0, qui correspond à la relation de dispersion de la structure. Pour une fréquence et une direction (2.38) facilement l'évolution et le croisement des racines dans l'espace. Manconi et Sorokin [70] utilisent ce type de représentation dans leur étude concernant les effets de l'amortissement sur les courbes de dispersion. fixée, ce déterminant s'écrit sous la forme d'un polynôme de degré 6 en k représentation tridimensionnelle de la forme (Re(k), Im(k), f ) permet également de suivre plus Simulation d'un sandwich anisotrope

.37)

Les coefficients l et d sont donnés dans l'annexe A.7 et dépendent respectivement des coefficients λ et δ ainsi que de l'angle de propagation θ de l'onde plane. Nous remarquons que ces matrices sont hermitiennes et que que les hypothèses de continuité de notre modèle conduisent à une matrice de masse dépendante des paramètres de raideur des couches. Ainsi, lorsque ces paramètres sont complexes, l'amortissement du multicouche est défini à la fois via la matrice de raideur et de masse. De plus, lorsque le système est conservatif, les matrices restent tout de même complexe. Ces différents aspects seront détaillés plus amplement dans la section 2.3.

Plusieurs techniques peuvent être utilisées pour résoudre l'Eq. (2.35). Shorter

[START_REF] Shorter | Wave propagation and damping in linear viscoelastic laminates[END_REF] 

transforme le problème aux valeurs propres linéaire en ω 2 en un problème quadratique en k. Cette approche lui permet notamment de pouvoir fixer la fréquence. Le vecteur {W 0 } étant non nul, les solutions l'Eq. (2.35) peuvent également être identifiées en résolvant l'équation suivante : 2 . Les coefficients de ce polynôme ne seront pas détaillés dans ce manuscrit mais peuvent être là encore obtenus analytiquement grâce à des logiciels de calcul formel tels que Maple ou Matlab. Les 6 solutions dont la partie réelle est négative correspondent à des ondes se propageant de l'infini vers la source et ne sont pas donc pris en compte à cause des conditions de Sommerfeld. Les 6 solutions 2.1. M ÉTHODOLOGIE restantes correspondent aux À titre d'exemple, la Figure 2.3 présente les courbes de dispersion d'un sandwich anisotrope composé de deux peaux en fibres de carbone et d'une âme en bois d'épicéa avec un empilement spécifique. Les caractéristiques des couches de carbone et du bois sont résumées dans le Tableau 2.1. Les résultats de cette simulation correspondent uniquement à ceux du système conservatif. Un second exemple est présenté à la section 2.3.1 dans le cas d'un système non conservatif. La simulation de ce sandwich a été réalisée sur une plage de fréquences supérieure au seuil audible (jusqu'à 100 kHz) afin de visualiser le comportement de tous les modes en fonction de la fréquence. L'axe des abscisses de la Figure 2.3 est divisé en deux parties : le sens positif correspond à la partie réelle des courbes de dispersion et le sens négatif à la partie imaginaire.

Cette représentation permet de visualiser à la fois les ondes évanescentes et propagatives.

  2. MOD ÈLE ANALYTIQUE ÉQUIVALENT DE MULTICOUCHES ANISOTROPES G xy = G yz = G xz ν xy Paramètres matériaux des couches d'un sandwich anisotrope. Les peaux sont composées de deux couches en fibres de carbone et l'âme est en bois d'épicéa. Orientation des couches : (30 • / -30 • /0 • / -30 • /30 • ).supérieur à ceux des autres modes. Ce mode est largement étudié dans le domaine vibroacoustique puisqu'au dessus de la fréquence critique de la structure, l'énergie des ondes de flexion est transmise efficacement au fluide environnant sous forme de rayonnement. Notre modèle identifie également les ondes de membrane dans la direction de propagation ( ) et dans la direction

		h	ρ	E x	E y	
	Carbone 0.2 mm 1450 kg.m 3 120 GPa 6.5 GPa	3.5 GPa	0.35
	Bois	7 mm	417 kg.m 3	12 GPa 0.18 GPa	0.62 GPa	0.47
	Tableau 2.1 -					

transverse ( ). Ces modes sont représentés par des mouvements de traction et de compression (voir Figures 2.4b et 2.4d). Les ondes évanescentes ou non propagatives sont, quant à elles, définies par un nombre d'onde dont la partie réelle est inférieure à la partie imaginaire et ne possèdent pas assez d'énergie pour pouvoir se propager. L'onde est alors confinée près des singularités telles que les sources ou les limites de la structure. En basse fréquence, le mode de cisaillement ( ), représenté à la

  .6, d'un sandwich isotrope entre 100 Hz et 10 kHz. Les caractéristiques des couches de ce sandwich sont résumées dans le Tableau 2.2. Comme le men-CHAPITRE 2. MOD ÈLE ANALYTIQUE ÉQUIVALENT DE MULTICOUCHES ANISOTROPES ou au premier mode symétrique des ondes de Lamb. Ce mode forme en réalité la continuité du mode de membrane (b) qui voit son nombre d'onde augmenter brusquement jusqu'à atteindre celui du mode de flexion. Cette transition apparaît à une fréquence de coupure que l'on peut appeler fréquence de respiration (8 kHz ici). En hautes fréquences, la contribution du mode de respiration au rayonnement acoustique de la plaque ne peut être négligée. Notre modèle analytique ne permet cependant pas d'identifier ce mode de respiration à cause de l'hypothèse de déplacement transverse constant et présente donc une limite haute fréquence. La cohérence des résultats concernant les autres modes permet tout de même d'assurer la validité de notre modèle sur le reste de la plage fréquentielle.

		h	ρ	E	ν
	Peaux 0.6 mm 2700 kg.m 3 71 GPa 0.3296
	Âme	15 mm	48 kg.m 3	30 MPa	0.2

tionne Margerit

[START_REF] Margerit | Caractérisation large bande du comportement dynamique linéaire des structures hétérogènes viscoélastiques anisotropes[END_REF] 

dans sa thèse, le modèle SFEM fournit une solution exacte du problème et est donc une base de référence pour la validation de notre modèle. Les 5 modes propagatifs (flexion (a), membrane (b), cisaillement (c), membrane transverse (d), et cisaillement transverse (e)) identifiés par notre modèle correspondent bien à ceux du modèle SFEM, qui en fournit également un sixième (f). Ce dernier correspond au mode de respiration de la structure Tableau 2.2 -Paramètres matériaux des couches du sandwich isotrope étudié par Shorter

[START_REF] Shorter | Wave propagation and damping in linear viscoelastic laminates[END_REF]

.

  .39) où les coefficients D ij correspondent aux rigidités de flexion de la plaque et sont considérées comme étant les paramètres matériaux équivalents du multicouche. Plusieurs points particuliers sont à noter sur ces rigidités. Premièrement, si le multicouche possède des couches orthotropes dont les axes d'orthotropie sont alignés avec les axes x et y, les rigidités D 16 et D 26 sont

nulles. Deuxièmement, dans le cas d'une structure isotrope, D 16 et D 26 sont également nulles et D 11 = D 22 = D 12 /2. Le coefficient h correspond à l'épaisseur totale du multicouche et ρ a sa masse volumique équivalente estimée par l'équation :

  D 11 c 4 + D 22 s 4 + D 12 c 2 s 2 + D 16 c 3 s + D 26 cs 3 = ρhω 2 , (2.42)

	En injectant la solution particulière (2.41) dans l'équation de mouvement (2.39), nous obte-
	nons l'équation de dispersion de la plaque équivalente :
	k 4 f

.41) où k f est le nombre d'onde de flexion calculé par le modèle à l'Eq. (2.38). Afin d'identifier facilement ce nombre d'onde, Guyader émet l'hypothèse que la structure est fine et néglige les effets d'inertie des autres modes. Cette hypothèse se traduit par l'annulation de tous les termes δ dans la matrice de masse (Eq. (2.37)) mise à part δ 13 représentant la masse de la structure. Ainsi, uniquement le nombre d'onde de flexion est identifié par l'Eq. (2.38) sans se soucier d'une possible interaction avec les racines des autres modes. avec c = cos(θ) et s = sin(θ). Le nombre d'onde de flexion étant à la fois fonction de la direction et de la fréquence, l'Eq. (2.42) peut être écrite sous la forme matricielle suivante à chaque fréquence f et pour i directions différentes : ∆ D = ρhω 2 κ , (2.43) CHAPITRE 2. MOD ÈLE ANALYTIQUE ÉQUIVALENT DE MULTICOUCHES ANISOTROPES avec

  CARACT ÉRISATION EXP ÉRIMENTALE SUR DES PLAQUES EN COMPOSITE les rigidités équivalentes du sandwich en composite carbone et en épicéa étudié à la section 2.1.5 sont présentées à la Figure2.7. À l'instar de l'exemple présentée à la section 1.1.3, les paramètres équivalents chutent en fréquence sous l'influence du cisaillement dans le multicouche. Ainsi, pour des structures épaisses, le cisaillement apparaît plus rapidement en fréquence et la rigidité équivalente chute également plus rapidement. En basses fréquences, les rigidités tendent vers les valeurs données par la théorie CLT (Eq. (C.8)) tandis qu'en hautes fréquences elles tendent vers la somme des rigidités des peaux[START_REF] Ege | Assessment of the apparent bending stiffness and damping of multilayer plates ; modelling and experiment[END_REF]. Cette dernière asymptote n'apparaît que lorsque les effets d'inertie des autres modes sont négligés. En effet, cette hypothèse modifie la forme du mode de flexion dans les hautes fréquences. La vitesse de phase de ce dernier ne tend plus vers une constante mais vers l'infini, ce qui, comme nous l'avons vu à la section 1.1.1, n'a pas de sens du point de vue physique. En prenant en compte les effets d'inertie, la vitesse de phase tend alors bien vers une constante et les rigidités équivalentes tendent vers zéro. Un exemple

). D 11 ( ), D 22 ( ), D 12 ( ), D 16 ( ), D 26 ( ). En appliquant l'Eq. (2.44) pour toutes les fréquences, les rigidités de flexion D ij permettant de caractériser le multicouche peuvent être décrites en fonction de la fréquence. À titre d'exemple, -50 -2.2. de l'influence des effets d'inertie sur le nombre d'onde de flexion et la rigidité équivalente est présenté à la Figure 2.8 à l'aide d'une simulation du sandwich isotrope étudié à la section 2.1.5. La suppression des effets d'inertie peut donc être appliquée dans le cas d'une étude en basse et moyenne fréquence. Au delà, leur prise en compte devient nécessaire.

  / -60 • / -60 • /60 • ). La résine utilisée dans le processus de fabrication correspond à de l'époxy. Chaque plaque mesure 0.6 × 0.8 m 2 pour une épaisseur totale de 0.748 mm et possède une masse volumique de 1540 kg.m -3 .

tandis que celles de la seconde sont croisées (0 • /90 • /90 • /0 • ). La troisième plaque a un empilement dit symétrique et opposé -51 -(60 •

  CARACT ÉRISATION EXP ÉRIMENTALE SUR DES PLAQUES EN COMPOSITE comparées à celles calculées par le modèle. De plus, comme le montre la photo 2.9a, de la mousse a été scotchée sur les bords de la plaque afin d'augmenter artificiellement l'amortissement de la structure dans cette région et ainsi atténuer les ondes réfléchies (non modélisables par la méthode IWC) pour obtenir un meilleur indice de corrélation. Cette mousse a également permis de diminuer le temps de réverbération de la plaque pour des raisons de temps d'acquisition. Plaque composite d'empilement uniforme (0• /0 • /0 • /0 • )

	Seule l'identification de la partie réelle des rigidités a été menée sur ce premier cas expé-
	rimental, le facteur de perte des fibres de carbone étant beaucoup trop faible (inférieur à 5
	pour mille) pour pouvoir être identifié correctement. Ainsi, l'amortissement spatial γ du champ
	virtuel de la méthode IWC (Eq. (1.23)) a été fixé à zéro.
	2.2.2

2.2, a été utilisée pour analyser les données mesurées. Cette analyse porte sur l'identification du nombre d'onde naturel de flexion k f des plaques en fonction de la fréquence et de la direction. En associant ce nombre d'onde à la théorie de Love-Kirchhoff, les rigidités de flexion identifiées expérimentalement pourront être 2.2. La stratégie du choix du domaine de recherche du nombre d'onde k de la méthode IWC est guidée par les données fournis par le constructeur afin de satisfaire des résultats dans le domaine de fréquences étudiées (voir Tableau 2.3). Ce domaine est compris entre 50 et 400 rad.m -1 . La Figure 2.10a présente les nombres d'onde fournissant les meilleurs indices de corrélation avec la méthode IWC pour chaque fréquence et direction. Cette direction est définie par un angle θ par rapport à l'axe x du repère de mesure présenté à la

  ). Pour cela, les nombres d'ondes identifiés par IWC ont été lissés avec la fonction smooth de Matlab afin de réduire la sensibilité au bruit de la méthode moindres carrés utilisée dans la méthodologie d'équivalence plaque mince. En effet, les erreurs d'estimation des nombres d'onde sont amplifiées par le terme à la puissance 4 de la relation de dispersion (Eq. (2.42)). Dans cette configuration d'empilement des couches, la structure est purement orthotrope dans le repère de mesure et les rigidités D 16 et D 26 de l'équation de dispersion (2.42) sont nulles. xy ). Les paramètres permettant de satisfaire ce minimum d'écart sont résumés dans le Tableau 2.3. Le nombre d'onde ainsi que les rigidités équivalentes obtenues par le modèle avec ces paramètres optimaux sont respectivement présentées aux Figures 2.10bet 2.11. Les écarts moyens entre les rigidités identifiées par IWC et celles calculées par le modèle sont de l'ordre de 4.2% pour D 11 , 2.2% pour D 22 et 11% pour D 12 .

	2.2. CARACT ÉRISATION EXP ÉRIMENTALE SUR DES PLAQUES EN COMPOSITE
				h	ρ		E x	E y	G xy = G yz = G xz ν yx
	Paramètres du constructeur	0.187 mm 1540 kg.m 3 9.6 GPa 145 GPa	4.6 GPa	0.31
	Paramètres optimaux	0.187 mm 1540 kg.m 3 8.8 GPa 133 GPa	6.6 GPa	0.31
			10 1		
								D 22
		Rigidité de flexion (N.m)	10	0			D 11 D 12
			10	-1	2000	4000	6000	8000	10000
							Fréquence (Hz)

Figure 2.11 -Rigidités de flexion équivalentes de la plaque composite d'empilement uniforme identifiées expérimentalement avec la méthode IWC D 11 (×), D 22 (×), D 12 (×) . Valeurs théoriques du modèle multicouche ( ). Le multicouche a également été simulé avec le modèle analytique présenté tout au long de ce chapitre. Les paramètres matériaux des couches ont, dans un premier temps, été choisis égaux à ceux fournis par le constructeur (voir Tableau 2.3). Quelques écarts ont été observés entre les rigidités identifiées par IWC et celles calculées par le modèle. Nous avons donc, dans un second temps,ajusté les paramètres matériaux des couches (uniquement les modules d'Young et de cisaillement) afin d'obtenir le minimum d'écart entre les résultats du modèle et ceux de la mesure sur toute la plage de fréquences étudiées. Dans cette zone de fréquence et pour nos applications, les modules de cisaillement hors-plan (G xz et G yz ) sont supposés égaux au module de cisaillement dans le plan (G Une comparaison entre les résultats obtenus avec la méthode IWC et le modèle a également été réalisée dans le plan d'onde (k x , k y ) pour la plus petite et la plus grande fréquence étudiée (voir Figure 2.12). Nous observons, pour ces deux fréquences, une parfaite cohérence entre la courbe calculée par le modèle et le maximum d'indice de corrélation de la méthode IWC. De

  possède des peaux en composite en fibres de carbone et une âme en polymère. Les caractéristiques de ses couches sont résumées dans le Tableau 2.6. Chaque peau est composée d'une seule couche de carbone alignée avec l'axe x qui est définie par des paramètres élastiques orthotropes et un amortissement isotrope. Le polymère est quant à lui isotrope et possède un fort amortissement. CHAPITRE 2. MOD ÈLE ANALYTIQUE ÉQUIVALENT DE MULTICOUCHES ANISOTROPES à la validité de la méthode MSE pour de fortes dissipations. Nous remarquons également que l'amortissement du multicouche reste bien inférieur à celui du polymère puisque ce dernier est de faible épaisseur devant les peaux et cisaille donc peu.

	h	ρ	E x	E y	G xy = G yz	G xz	ν xy	η
	Peaux 1.52 mm 1600 kg.m 3 125 GPa 12.5 GPa	5.9 GPa	3.0 GPa 0.4 0.01
	Âme 0.127 mm 970 kg.m 3 2.1 MPa 2.1 MPa	0.7 MPa	0.7 MPa 0.49 0.5
	La Figure 2.26 compare les résultats de Ghinet et ceux obtenus par notre modèle avec
	la méthode MSE et la formulation spatiale de l'amortissement énergétique (Eq. (2.49)). Ces
	résultats correspondent uniquement à l'amortissement du mode de flexion et sont présentés pour
	différentes directions ainsi qu'une moyenne sur toutes les directions. À partir de ces résultats,
	nous pouvons tout d'abord observer que l'orthotropie de la structure modifie principalement
	la valeur et la position du maximum d'amortissement selon la direction. Ce comportement est
	bien décrit par les différentes définitions de l'amortissement énergétique. Quelques différences

Tableau 2.6 -Paramètres matériaux des couches d'un sandwich orthotrope étudié par Ghinet et Atalla

[START_REF] Ghinet | Modeling thick composite laminate and sandwich structures with linear viscoelastic damping[END_REF]

. Les peaux sont des composites en fibres de carbone tandis que l'âme est un polymère.

Ghinet a estimé l'amortissement de ce sandwich en utilisant son modèle DLM pour Discrete Laminate Model. Ce modèle fait partie de la catégorie des modèles Layer-Wise et utilise également une cinématique de Mindlin par couche. Dans le cas de structure sandwich, Ghinet a ajouté un degré de liberté supplémentaire à son modèle en supprimant l'hypothèse de déplacement transverse constant pour le coeur du sandwich. Le mode de respiration de la structure est alors décrit par une fonction trigonométrique dans l'épaisseur. Ghinet utilise la méthode MSE, défini à l'Eq. (2.50), pour identifier l'amortissement énergétique du sandwich qui dépend à la fois de la fréquence et de la direction puisque la structure est orthotrope. peuvent tout de fois être notées entre les deux modèles avec la méthode MSE, notamment à 90 • . Ces différences peuvent provenir du mouvement de dilatation du coeur, décrit par le modèle de Ghinet et que notre modèle ne prend pas en compte. De plus, d'autres écarts entre la formulation spatiale et la méthode MSE sont visibles avec notre modèle et peuvent encore une fois être dus

  Dans le cas où la structure mesurée est orthotrope et possède des axes d'orthotropie alignés avec les axes du maillage de mesure, les rigidités D 16 et D 26 sont considérées comme nulles. RIFF peut alors être appliquée sur le champ de déplacement de la structure avec la méthodologie précédente en supposant que δ 3xy , δ x3y , µ 16 et µ 26 sont également nuls. Cette supposition implique cependant que 12 points supplémentaires deviennent inutiles dans le schéma aux différences finies. Il est alors possible de diviser par deux la taille du schéma (∆ x /2, ∆ y /2)

	Structures orthotropes
	(voir Figure 3.2). Ce schéma condensé correspond à celui utilisé sur plaque isotrope [100] avec
	des pas différents dans les deux directions :

.10) 

Il est important de noter que cette condition, qui doit théoriquement être vérifiée dans toutes les directions, ne peut pas l'être avec un maillage cartésien. Nous avons donc choisi les axes 3.2. EXTENSION DE RIC POUR L'IDENTIFICATION DE SOURCE principaux du maillage.

  CHAPITRE 3. M ÉTHODE DE CARACT ÉRISATION EXP ÉRIMENTALE DE PLAQUE ANISOTROPE La méthodologie décrite dans les sections suivantes se concentre essentiellement sur les structures anisotropes. Elle reste cependant valide pour les structures orthotropes en utilisant le schéma de la Figure 3.2. Dans ce chapitre, la méthode sera appliquée avec ce schéma sur toutes les structures orthotropes étudiées. , k y ) = D 11 k 4 x + D 22 k 4 y + D 12 k 2 x k 2 y + D 16 k 3 x k y + D 26 k x k 3 y -ρhω 2 W (k x , k y ), (3.15) p RIFF (k x , k y ) = D 11 δ 4x + D 22 δ 4y + D 12 δ 2x2y + D 16 δ 3xy + D 26 δ x3y -ρhω 2 W (k x , k

	3.2.2 Réponse en nombre d'onde de RIFF
	Afin de comparer le champ reconstruit par RIFF et le champ réel, l'expression de ces deux
	champs a été écrite dans l'espace des nombres d'onde :
	p(k x

) et est donc deux fois plus important que celui du schéma utilisé sur des plaques anisotropes. y ), (3.16) où W , p et p RIFF représentent respectivement la transformée de Fourier de W , p et p RIFF . Les coefficients δ ij ont été déterminés à partir de la transformée de Fourier des points W a,b définie par :

  D 11 µ 11 δ 4x + D 22 µ 22 δ 4y + D 12 µ 12 δ 2x2y + D 16 µ 16 δ 3xy + D 26 µ 26 δ x3y D 11 c 4 + D 22 s 4 + D 12 c 2 s 2 + D 16 c 3 s + D 26 cs 3 . La valeur des coefficients correcteurs est choisie de sorte à égaliser autant que possible le numérateur et le dénominateur de E RIC lorsque k = k f , ce qui peut se traduire pour une direction θ donnée par :

	)
	avec :
	K 4 RIC =

  Figure 3.4 présente un exemple de la variation des coefficients correcteurs identifiés par cette approche moindres carrés en fonction du nombre de valeurs de θ. Cette simulation a également été effectuée à 10 kHz (n x = n y = 3) sur la plaque composite laminé étudiée dans la section 2.2.4.

	La valeur des coefficients correcteurs a été divisée par leur valeur asymptotique calculée pour
	1000 équations. Les estimations de l'approche moindres carrés présentent quelques fluctuations
	jusqu'à 15 équations. Au delà, l'erreur relative par rapport à la valeur asymptotique diminue
	graduellement jusqu'à atteindre des valeurs de moins de 1% pour 35 équations. Finalement, une
	valeur de 100 équations sera utilisée dans ce manuscrit afin de s'assurer de la convergence des
	résultats.						
		1.04					
	Valeur relative des coefficients correcteurs	0.99 1 1.01 1.02 1.03			11 (valeur pour 1000 équations: 2.15) 22 (valeur pour 1000 équations: 2.15) 12 (valeur pour 1000 équations: 0.92)
		0.98					
		5	10	15	20	25	30	35
				Nombre d'équations	
	La réponse de RIC a également été illustrée sur le même exemple que celui utilisé pour RIFF
	à la section 3.2.2 (voir Figure 3.5). Dans cet exemple, les coefficients correcteurs de la méthode
	ont été calculés avec l'approche moindres carrés en utilisant 100 équations. Pour n x = n y = 3,
	la singularité de RIFF est bien atténuée mais n'a pas été totalement supprimée puisque les
	coefficients correcteurs ne dépendent pas de la direction. L'erreur de biais a tout de même dis-
	parue pour quelques points sur la courbe k = k f . La position de ces points est automatiquement
	déterminée par la méthode moindres carrés qui a pour but d'atténuer la singularité dans toutes
	directions le plus équitablement possible. Pour n		

.28) 

La convergence des résultats de la méthode moindres carrés dépend du nombre d'équations dans le système

(3.27)

, le minimum étant 5 dans le cas anisotrope. Afin que l'atténuation de l'erreur de biais soit la plus uniforme possible, les valeurs de θ doivent permettre de décrire le plus précisément la forme de k f (θ) en allant de 0 à π, le nombre d'onde étant π périodique. La 3.2. EXTENSION DE RIC POUR L'IDENTIFICATION DE SOURCE 16 (valeur pour 1000 équations: 1.14) 26 (valeur pour 1000 équations: 1.13) Figure 3.4 -Valeurs des coefficients correcteurs de la méthode RIC en fonction du nombre d'équation de l'approche moindres carrés (divisée par leur valeur pour 1000 équations). Résultats obtenus à partir des caractéristiques de la plaque composite à empilement laminé (caractéristiques des couches au Tableau 2.3) à 10 kHz. n x = n y = 3. µ 11 ( ), µ 22 ( ), µ 12 ( ), µ 16 ( ), µ 26 ( ). x = n y = 6, l'association de la correction avec le haut nombre de points par longueur d'onde renforce davantage l'atténuation de la singularité qui devient presque indiscernable avec la plage dynamique d'affichage choisie. De plus, comme nous l'avons mentionné à la section précédente, l'erreur de biais de RIFF est atténuée lorsque n x et n y sont grands. Dans ce cas, la correction de RIC devient négligeable et les coefficients CHAPITRE 3. M ÉTHODE DE CARACT ÉRISATION EXP ÉRIMENTALE DE PLAQUE ANISOTROPE

  La mesure du champ de déplacement de la structure implique généralement la présence de bruit numérique dans ce dernier. Comme nous l'avons vu à la section 1.2.3, le schéma aux différences finies peut dans certains cas fortement amplifier le bruit. C'est le cas dans les basses fréquences, lorsque la taille du schéma devient petite devant la longueur d'onde. Dans la pratique, CHAPITRE 3. M ÉTHODE DE CARACT ÉRISATION EXP ÉRIMENTALE DE PLAQUE ANISOTROPE méthode utilisable pour des valeurs de n largement inférieures à 4, jusqu'à la limite de Shannon de 2 points par longueur d'onde. Une bande de fréquence apparaît donc, définie pour 2 < n < 4, dans laquelle le biais de schéma est maîtrisé et le bruit de mesure non pénalisant, le filtre RIC se comportant comme un filtre passe bas dans le domaine des nombres d'ondes. Leclère et al. [56]

	le problème apparaît lorsque le parametre n devient supérieur à environ 4. Or, ce nombre de
	4 points par longueur d'onde représente également une limite haute fréquence de la méthode
	RIFF au delà de laquelle l'erreur de biais du schéma devient importante. L'amplification du
	bruit est donc en pratique un problème pour la méthode RIFF sur toute la bande de fréquence
	utile, définie par n < 4. Dans le but d'atténuer le bruit, RIFF applique un filtrage passe-bas

3.3.1 Technique de régularisation du bruit

dans le domaine des nombres d'ondes ainsi qu'un fenêtrage sur le champ mesuré. Cette technique utilise un nombre d'onde de coupure isotrope et n'a pas été développée pour le cas de structures anisotropes, bien qu'elle reste relativement efficace sur des plaques orthotrope

[START_REF] Ablitzer | Identification of the flexural stiffness parameters of an orthotropic plate from the local dynamic equilibrium without a priori knowledge of the principal directions[END_REF]

.

Dans le cas de la méthode RIC, l'erreur de biais du schéma est corrigée, ce qui rend la

  CHAPITRE 3. M ÉTHODE DE CARACT ÉRISATION EXP ÉRIMENTALE DE PLAQUE ANISOTROPE été utilisé pour scanner la zone mesurée de 0.28 × 0.30 cm 2 . Le pas de ce maillage d x = d y = 5.3 mm nous a permis de respecter le critère de Shannon (Eq. (3.10)) jusqu'à 7 kHz pour les deux plaques et ainsi éviter les erreurs d'estimation. Les rigidités de flexion des deux plaques ont été calculées à chaque fréquence à l'aide de l'équivalence plaque mince de notre modèle multicouche et correspondent à celles identifiées sur les Figures 2.11 et 2.17. La plaque d'empilement uniforme étant orthotrope par rapport au maillage de mesure, les dérivées partielles du déplacement ont été estimées à l'aide du schéma de la Figure 3.2. La technique de régularisation de RIC a été appliquée en conservant le critère de l'Eq. (3.37) sur toute la bande de fréquences étudiée. La

2.1 (voir Figure 2.9) a été réalisée pour chaque plaque en ajoutant un capteur de force à l'extrémité du pot vibrant. Le capteur a ensuite été directement collé sur la plaque. Un maillage de 55 × 57 = 3135 points a

  Le schéma aux différences finies permettant d'estimer les dérivées partielles du déplacement est alors composé de 25 points. Les résultats de RIFF montrent une surestimation des efforts résiduels du champ de pression reconstruit lorsque le nombre de points par longueur d'onde (n x , n y ) est faible, c'est-à-dire en hautes fréquences. Cette surestimation provient de l'erreur de biais du schéma et entraine également des erreurs d'estimation des rigidités de flexion lors de la caractérisation de la structure. La correction de RIC permet 3.5. CONCLUSION d'étendre la limite hautes fréquences de RIFF en atténuant les singularités de la méthode à l'aide de 5 coefficients correcteurs µ ij . Notre principal apport dans ce travail réside dans l'estimation de ces coefficients. Pour l'identification de source, nous proposons une solution analytique ou numérique, la méthode numérique permettant cependant d'obtenir une meilleure répartition de la correction en fonction de la direction par rapport à la méthode analytique. Dans le cas de l'identification de paramètres matériaux, nous proposons une approche par minimisation ainsi qu'une approche itérative pour appliquer la correction de RIC. Ces deux approches fournissent des résultats similaires bien que celle par minimisation soit plus longue. Elles dépendent tout de fois fortement de la valeur des rigidités estimées par RIFF en amont. Avec la correction de RIC, des résultats satisfaisants peuvent être obtenus avec un maillage de mesure grossier respectant au minimum le critère de Shannon (3.10) à la plus haute fréquence mesurée. La limite basse fréquence de la méthode est quant à elle définie par la taille de la zone mesurée par rapport à la longueur d'onde de la structure. Protocoles expérimentaux . . . . . . . . . . . . . . . . . . . . . . . . . 110 4.1.1 Excitation avec une cellule piézoélectrique (protocole A) . . . . . . . . . 110 4.1.2 Excitation au laser (protocole B) . . . . . . . . . . . . . . . . . . . . . . 111 4.2 Étude du mode de flexion de la structure . . . . . . . . . . . . . . . . 113 4.2.1 Analyse par méthode locale . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.2.2 Analyse par méthodes globales . . . . . . . . . . . . . . . . . . . . . . . 117 4.2.3 Estimation large bande du nombre d'onde . . . . . . . . . . . . . . . . . 119 4.3 Étude des autres modes de la structure . . . . . . . . . . . . . . . . . 121 4.4 Comparaison des performances des méthodes globales et locales . . 123 4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Ce chapitre traite de l'étude expérimentale d'un sandwich en nids d'abeille, structure épaisse dont les comportements large bande complexes sont difficiles à modéliser. Cette étude forme donc une application intéressante pour notre modèle dont les performances sont mis en lumière à l'aide d'une comparaison au modèle de référence des ondes de Lamb. Les différentes mesures effectuées sur ce sandwich sont analysées avec les méthodes de caractérisation RIC, IWC ou encore la corrélation par fonctions de Hankel. Leurs résultats en terme de nombre d'onde et de rigidités de flexion sont comparés entre eux ainsi qu'aux estimations du modèle de référence des ondes de Lamb et à celles de notre modèle.Cette étude s'inscrit dans le cadre d'un échange de 3 mois que j'ai effectué au cours de ma thèse avec l'université de Louvain (K.U.Leuven) en collaboration avec le professeur Bert Roozen grâce à un financement d'aide à la mobilité des doctorants du labex CeLyA (ANR-10-LABX-0060) de l'Université de Lyon.
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  CHAPITRE 4. ÉTUDE EXP ÉRIMENTALE D'UN SANDWICH EN NIDS D'ABEILLE seconde. Ces pulsations sont de l'ordre de 1 ns, ce qui permet d'exciter tous les modes de la plaque jusqu'au GHz. Le protocole expérimental utilisé dans cette étude et détaillé à la Figure 4.3 est similaire à celui réalisé par Roozen et al. [113] où un sandwich isotrope (acier-polymère-acier) est caractérisé à l'aide du même laser. La plaque est suspendue à une armature afin d'approcher des conditions aux limites libre-libre. La corde, enroulée dans les trous aux bords de la plaque, est conservée afin d'atténuer les ondes réfléchies et d'améliorer les résultats des méthodes par corrélation. De plus, la mesure est effectuée au centre de la plaque afin de s'éloigner le plus possible des bords. La puissance du laser Nd-YAG est ajustée afin de fournir suffisamment d'énergie pour exciter la structure sans la détériorer. Le laser étant fixe, il est plus judicieux d'utiliser le principe de réciprocité et d'exciter la structure sur plusieurs points en mesurant sa réponse sur un seul. Pour cela, le faisceaux du laser est projeté sur la plaque à l'aide d'un miroir positionné sur un slider. La réponse de la plaque est quant à elle mesurée à l'aide de deux vibromètres laser monopoint (LDV1 et LDV2) de références Polytec OFV 353 et Polytec OFV 303 positionnées à 27 • de part et d'autre de l'axe perpendiculaire à la plaque. Cette configuration permet d'identifier le déplacement transverse de la structure en sommant les données mesurées par ces deux vibromètres ainsi que le déplacement membranaire en les soustrayant. Le système d'acquisition utilisé pour recueillir ces données est un oscilloscope de référence LeCroy 9350A doté d'une résolution temporelle de 50 000 points. À chaque position du miroir, un total de 400 moyennes temporelles est effectué pour améliorer le RSB de la mesure. Chaque moyenne est définie par un temps de mesure de 0.05 s

	10	à
	300 kHz en utilisant une excitation par impulsion photo-acoustique à l'aide d'un laser Nd-
	YAG (grenat d'yttrium-aluminium dopé au néodyme). Ce laser possède une longueur d'onde de
	1064 nm et une énergie maximal de 200 mJ par pulsation pour un total de 10 pulsations par
	-111 -	

  Par la suite, nous avons constaté que les modules E x , E y et G xy de l'âme avaient peu d'influence sur les rigidités équivalentes prédites par notre modèle, tandis que les modules de cisaillement transverse G xz et G yz permettaient de définir l'orthotropie de la structure. Cette 4.2. ÉTUDE DU MODE DE FLEXION DE LA STRUCTURE constatation est en accord avec le modèle de poutre sandwich de Nilsson et Nilsson [85] qui défini les paramètres matériaux du nids d'abeille uniquement à partir de ces deux derniers modules. N'ayant pas de matériau Nomex à disposition, il ne nous a pas été possible de le caractériser seul. L'identification de sa densité ρ ainsi que ses modules de cisaillement G xz et

	G yz n'a donc pas pu être menée expérimentalement. Nous avons donc fait des hypothèses ; le
	choix que nous avons retenu est de faire varier ces trois paramètres pour minimiser l'écart aux
	courbes de dispersion (principalement des ondes de flexion, et des couplages modaux avec les
	modes A0/A1/S0, voir section 4.3). Les paramètres optimaux de chaque couche sont finalement
	résumés dans le Tableau 4.2.

• ( ).

  2, reste identique avec ce nouveau champ de Green. À une fréquence f donnée, le champ mesuré est comparé au champ numérique défini par les deux paramètres D 11 et D 22 en supposant que l'angle d'orthotropie connu et égal à θ T = -7 • . Le nombre d'onde de flexion de la structure est ensuite reconstruit à 4.2. ÉTUDE DU MODE DE FLEXION DE LA STRUCTURE partir des valeurs de D 11 et D 22 minimisant l'erreur entre les deux champs :

  CHAPITRE 4. ÉTUDE EXP ÉRIMENTALE D'UN SANDWICH EN NIDS D'ABEILLE dimensionnel et pouvait donc davantage s'apparenter à une onde plane. Afin d'obtenir un taux de corrélation similaire avec les mesures du protocole A, nous avons donc appliqué la méthode IWC uniquement sur les points formant un angle de maximum 2 • entre la source et les axes étudiés, soit x et y. La Figure 4.11 compare le nombre d'onde estimé à la fois par IWC et le modèle analytique dans les deux directions. Nous remarquons, que ce soit à partir des résultats expérimentaux ou analytique, que le nombre d'onde évolue entre deux asymptotes. Ces dernières correspondent également aux limites basses et hautes fréquences des rigidités équivalentes présentées dans les sections précédentes. Ces deux asymptotes sont également identiques entre les axes x et y, ce qui souligne l'isotropie de la structure en basses et hautes fréquences.

	Mesure Protocole A	Mesure Protocole B
	10 2	
	10 4	10 5
	Cette section regroupe les résultats obtenus à partir des deux protocoles expérimentaux
	afin d'étudier le nombre d'onde naturel de la structure sur une large bande fréquentielle. Les
	mesures du protocole A ont été analysées entre 5 et 50 kHz tandis que celles du protocole B ont
	été analysées entre 50 et 300 kHz. Le maillage de mesure choisi dans le protocole B étant mono-
	dimensionnel, nous avons uniquement utilisé la méthode IWC puisque le schéma aux différences
	finies de RIC ne pouvait pas être appliqué sur ces mesures. De plus, les mesures du protocole B

4.2.3 Estimation large bande du nombre d'onde ayant été effectuées uniquement selon les axes x et y parallèles aux bords de la plaque, nous avons également appliqué IWC dans les mêmes directions (θ = 0 • et θ = 90 • ) sur les mesures du protocole A. Il est également important d'indiquer que le taux de corrélation obtenu avec les mesures du protocole B était très élevé (IWC>90%) du fait que le champ corrélé était mono-

  4.3. ÉTUDE DES AUTRES MODES DE LA STRUCTURE 4.3 Étude des autres modes de la structure À l'inverse des deux autres méthodologies de caractérisation qui sont basée sur le modèle de plaque mince de Love-Kirchhoff, IWC n'est pas restreint uniquement à l'étude du mode de flexion. Les résultats fournis par la méthode à la Figure 4.11 nous permettent également d'identifier les courbes de dispersion des autres modes de la structure dans le domaine des hautes fréquences. Il est alors intéressant de comparer ces résultats au modèle des ondes de Lamb généralement utilisé dans la caractérisation non-destructive par ultrasons. Ce modèle offre des solutions exactes pouvant servir de référence aux modèles simplifiés tels que le nôtre puisque, contrairement à ce dernier, il n'émet aucune hypothèse sur la forme du champ de déplacement de la structure. Ainsi, dans cette section, nous comparerons à la fois les estimations de ces deux modèles et les résultats d'IWC. Cette comparaison porte essentiellement sur l'analyse des mesures du protocole B dans les directions x et y du repère de mesure présenté à la Figure 4.2b.De ce fait, nous avons choisi d'utiliser un modèle de Lamb isotrope (détails du modèle dans l'Annexe E) dont les vitesses des ondes longitudinales et transversales de l'âme du sandwich ont été calculées à partir des modules de cisaillement identifiés dans le Tableau 4.2. Le phénomène de locus-veering a notamment été observé par Leissa[START_REF] Leissa | On a curve veering aberration[END_REF] sur les fréquences propres d'une membrane rectangulaire et a ensuite été rapporté sur des applications industrielles telles que les disque-aubes par Pierre[START_REF] Pierre | Mode localization and eigenvalue loci veering phenomena in disordered structures[END_REF] ou les machines tournantes par Crandall et Yeh[START_REF] Crandall | Automatic generation of component modes for rotordynamic substructures[END_REF].Enfin, les autres modes symétriques et antisymétriques identifiés par Lamb forment également des locus-veering avec le mode de flexion plus haut en fréquence.

	Par la suite, nous avons analysé avec la méthode IWC les champs de déplacement membra-
	naire (U,V) mesurés avec le protocole B afin d'identifier les courbes de dispersion des modes
	de membrane et de cisaillement. La Figure 4.13 présente le taux de corrélation obtenu à partir
	de cette analyse dans les axes x et y. Ces résultats sont comparés aux estimations du modèle

La Figure 4.12 compare les estimations de Lamb aux résultats obtenus par IWC sur le champ de déplacement transverse. Le mode de flexion ou premier mode antisymétrique (A0) est correctement identifié par Lamb. Le second mode identifié à la fois par IWC et par Lamb correspond à un mode de respiration ou symétrique (S0) gouverné essentiellement par la compression dans l'épaisseur du nids d'abeille. La courbe de dispersion de ce mode présente une fréquence de coupure autour de 33 kHz où le nombre d'onde augmente jusqu'à rejoindre celui du mode de flexion. À partir de 70 kHz, l'énergie rayonnée par les modes A0 et S0 est donc équivalente. Le troisième mode identifié par le modèle de Lamb correspond au second mode antisymétrique (A1). Il est également visible sur les résultats de IWC par la présence d'un locus-veering ou virage local autour du mode de flexion entre 110 et 150 kHz sur l'axe x. Ce phénomène apparaît lorsque plusieurs modes possèdent des fréquences propres proches les unes des autres, provoquant ainsi une interaction modale. Les courbes de dispersion de ces modes se repoussent alors mutuellement. de Lamb et de notre modèle multicouche. Nous pouvons observer que le taux de corrélation est maximal pour des petits nombres d'onde (k < 400 rad.m -1 ) et correspond aux modes de membrane et de cisaillement prédits par les deux modèles. Les résultats d'IWC ne sont cependant pas suffisamment précis pour discerner ces modes. À l'aide de cette comparaison, nous pouvons

  CONCLUSIONla discrétisation de ces paramètres lors de la deuxième analyse, le temps de calcul devient similaire à celui de IWC. De plus, la cohérence des résultats entre les deux analyses est excellente avec une erreur relative de moins de 1% pour toutes les méthodes. Ainsi, la technique utilisée lors de la seconde analyse permet d'obtenir un gainde temps non négligeable pour des résultats Dans ce chapitre, les méthodes RIC, IWC et la corrélation de Hankel ont été utilisées pour caractériser un sandwich en nids d'abeille sur une large bande fréquentielle allant de 1 à 300 kHz. Les rigidités équivalentes identifiées par ces méthodes diminuent en fonction de fréquence, ce qui indique que le coeur de la structure cisaille dans le domaine de fréquences étudiées. De ce fait, l'évolution du comportement dynamique du multicouche est gouverné par le nids d'abeille et la structure équivalente estimée est anisotrope. L'angle d'orthotropie du nids d'abeille a pu être identifié à l'aide d'une matrice de projection et des rigidités identifiées expérimentalement. Enfin, les prédictions du modèle des ondes de Lamb nous ont permis de confirmer les conclusions émises au Chapitre 2 concernant les limites hautes fréquences de notre modèle multicouche, dues notamment aux hypothèses faites sur la forme de la cinématique de la structure. Notre premier objectif s'est donc concentré sur l'adaptation de cette approche équivalente au cas des structures anisotropes. La plaque est alors régie par cinq rigidités de flexion dans le cas monoclinique et trois dans le cas orthotrope. Notre modèle a été validée expérimentalement sur des plaques composites en fibres de carbone d'empilements différents en comparant les rigidités estimées à celles identifiées par la méthode IWC après analyse des mesures. Les résultats obtenus sur la plaque composite monoclinique nous ont également permis d'observer le couplage entre le mode de flexion et le mode de torsion de cette plaque. CONCLUSION G ÉN ÉRALE ET PERSPECTIVES a quant à lui été défini à la fois avec une formulation spatiale et temporelle. L'intérêt de la formulation spatiale réside dans le fait qu'elle dépend uniquement du nombre d'onde complexe, paramètre facilement identifiable expérimentalement, contrairement à la formulation temporelle qui est défini par une fréquence complexe. Bien que ces deux formulations fournissent des résultats identiques dans le cas de structures peu dissipatives, elles ont montrées quelques différences pour de fortes dissipations. Une nouvelle définition de la formulation spatiale a alors été suggérée et forme, avec la plaque équivalente anisotrope, les principales nouveautés de notre modèle par rapport à la littérature.La synthèse bibliographique nous a également permis de classifier quelques techniques de caractérisation non destructives. Dans la gamme de fréquences étudiées, ce sont les méthodes dites d'analyse de champs qui sont les plus utilisées. Parmi elles, nous nous sommes intéressé aux techniques RIFF[START_REF] Pézerat | Identification of vibration sources[END_REF] et RIC[START_REF] Leclère | Vibration source identification using corrected finite difference schemes[END_REF], qui possèdent, grâce à leur aspect local et leur facilité de mise en oeuvre, des atouts non négligeables pour des applications industrielles. À l'instar de notre modèle multicouche, ces méthodes homogénéisent la structure en une plaque mince équivalente. Les matériaux multicouches pourrait être remplacées par des plaques minces définies avec les paramètres équivalents donnés par notre modèle. Le nombre d'éléments nécessaire pour mailler la structure serrait alors faible, ce qui permettrait de réduire fortement les temps de calcul.Plusieurs perspectives peuvent être proposée dans la formulation même du modèle. Nous pouvons par exemple penser à une équivalence plaque épaisse afin de prendre en compte le cisaillement de la plaque équivalente et ainsi d'étendre le domaine de validité des caractéristiques équivalentes estimées. De plus, les modes de respiration de la structure pourraient être pris en compte en supprimant l'hypothèse de déplacement transverse constant. Loredo[START_REF] Loredo | A multilayered plate theory with transverse shear and normal warping functions[END_REF] a déjà proposé plusieurs solutions à ce sujet. Enfin, d'autres matériaux, tels que les poreux par exemple, ainsi que leurs couplages avec les matériaux classiques pourraient être modélisés. La prise en compte des défauts de collage dans les interfaces entre les couches permettrait également de ce rapprocher de la réalité. Toutes ces modifications entraîneraient cependant une complexification du modèle non négligeable et doivent donc être judicieusement choisies en fonction des conditions exigées.
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	Ce travail de thèse porte sur la modélisation vibratoire et la caractérisation dynamique de matrices du modèle analytique
	matériaux multicouches. Ce type de structures (architecturés ou non), dont l'industrialisation
	est en pleine croissance, possèdent des propriétés mécaniques intéressantes en terme de poids,
	Enfin, RIC a été utilisé pour caractériser un sandwich en nids d'abeille et a montré des
	résultats cohérents avec les estimations de notre modèle pour ce type de structures complexes et
	: 500 points épaisses. Le comportement dynamique du sandwich, notamment le cisaillement du coeur, a été 51 s θ : 500 points 272 s D 11 : 500 points 2450 s k : 500 points décrit au travers des rigidités de flexion identifiées. Nous avons également conclu à travers cette D 22 : 500 points étude que RIC tire un avantage en terme de rapidité par rapport aux méthodes de corrélation
	Analyse n • 2 k c : 50 points mais reste cependant limité à la description du mode de flexion à cause de l'hypothèse faite 6 s θ : 500 points 27 s D 11 : 50 points 29 s
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	une comparaison au modèle de référence de Lamb [55] nous a permis d'observer les erreurs Tableau 4.4 -Propriétés et temps de calcul moyen par fréquence des méthodes IWC, RIC couplée à la technique de régularisation de RIFF et de la corrélation de Hankel elliptique. Application d'estimation et les limites de notre modèle en hautes fréquences.
	sur le sandwich nids d'abeille.
	De plus, la question de la modélisation de l'amortissement a été soulevée. Une définition
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Pour les deux analyses, RIC reste la méthode la plus rapide puisqu'elle ne dépend majoritairement que de k c . Hankel présente un temps de calcul extrêmement long lors de la première analyse qui est notamment dû à la fine discrétisation des rigidités D 11 et D 22 ainsi qu'à la méthode moindres carrés utilisée pour générer le champ virtuel défini à l'Eq.

(1.25)

. En réduisant 4.5.

Les caractéristiques du nids d'abeille ont également pu être identifiées à l'aide de notre modèle multicouche en corrélant les rigidités équivalentes prédites par le modèle à celles identifiées expérimentalement.

À l'aide de cette étude, nous avons pu discerner les avantages et inconvénients de chaque méthode expérimentale. RIC, associé à la technique de régularisation de RIFF, offre un temps d'analyse rapide avec des résultats peu bruités mais reste néanmoins limité à l'étude du mode de flexion. À l'inverse, la méthode IWC permet d'identifier les autres modes de la structure mais demandent énormément de ressources en terme de puissance et de temps de calcul. La corrélation de Hankel reste quant à elle limitée au cas de structures orthotropes elliptiques et se différencie donc de la méthode IWC. Cependant, l'estimation de l'amortissement peut être théoriquement plus juste avec Hankel du fait que le champ de Green considère l'atténuation intrinsèque de l'onde. raideur ou amortissement que les matériaux traditionnels ne peuvent fournir. Leur modélisation reste cependant complexe et les techniques expérimentales de caractérisation peuvent parfois être limitées pour des raisons de mise en oeuvre ou de fiabilité des résultats. Les travaux réalisés au cours de cette thèse ont donc porté sur la recherche, l'étude et l'amélioration de modèles et de techniques de caractérisation simples et robustes en vue d'applications industrielles dans le domaine des moyennes et hautes fréquences. La synthèse bibliographique élaborée dans le premier chapitre nous a permis de classifier les différents types de modèles réduits de multicouches existant dans la littérature. Dans ce travail de thèse, nous nous somme orienté principalement vers le modèle de Guyader et Lesueur [42] permettant de décrire les premiers modes de dispersion (flexion, membrane et cisaillement) de la structure grâce à sa modélisation en plaque épaisse pour chaque couche. Ce modèle offre également un bon compromis entre précision et rapidité de calcul puisque le nombre de variables cinématiques totales ne dépend pas du nombre de couche. L'équivalence plaque mince [40], permettant de caractériser la structure, n'avait cependant été développée originellement que pour des multicouches isotropes. énergétique de l'amortissement structurel a été comparée à une définition équivalente régie par la théorie de plaque mince proposée par notre modèle. Contrairement à la définition énergétique, nous avons observé une surestimation de l'amortissement structurel avec la définition équivalente du fait que sa méthodologie ne considère que la flexion de la structure. L'amortissement énergétique Notre second objectif s'est concentré sur l'adaptation de la méthode RIC, initialement développée pour les structures isotropes, au cas anisotrope. L'estimation des coefficients correcteurs permettant d'étendre la limite haute fréquence de la méthode forme la principale nouveauté apportée par cette adaptation. Cette correction a été appliquée à la fois avec une méthode itérative et par minimisation qui ont montré des résultats similaires. De plus, dans le cas de champs bruités, nous avons montré que la technique de régularisation proposée par RIC n'est pas adaptée pour des structures anisotropes car elle dépend, contrairement à celle de RIFF, du maillage de mesure. L'effet du filtrage n'est alors pas uniforme selon la fréquence et la direction. Enfin, une étude expérimentale réalisée sur les plaques composites citées précédemment nous a permis, d'une part, de valider l'extension de RIC et, d'autre part, d'obtenir des résultats moins bruités que ceux de la méthode globale IWC. Perspectives Notre modèle analytique équivalent de multicouche a montré son efficacité pour des applications vibroacoustiques dans le domaines des moyennes et hautes fréquences. Une première application industrielle envisageable consisterait à implémenter ce modèle dans des logiciels éléments CONCLUSION G ÉN ÉRALE ET PERSPECTIVES finis. La formulation spatiale de l'amortissement énergétique proposée dans ce manuscrit pourrait également être validée expérimentalement en le comparant à un amortissement modal puisque ce dernier se rapproche de la formulation temporelle de l'amortissement énergétique. Il serait intéressant d'observer les résultats de la formulation spatiale sur des structures très amorties telles que, par exemple, des sandwichs avec un coeur thermovisqueux liquide [41]. Une modélisation en plaque épaisse de RIC pourrait former une perspective intéressante pour la méthode. À l'instar de notre modèle analytique, cette extension permettrait de corriger les rigidités estimées par RIC en hautes fréquences. Nous pouvons pour cela nous inspirer du travail de Wassereau [133] qui a adapté la méthode pour des poutres épaisses. De plus, nous pouvons penser à appliquer RIC sur un maillage non régulier adapté en fréquence afin de profiter pleinement du filtrage fourni par sa correction sur une large bande fréquentielle et dans toutes les directions. Enfin, au vue des résultats prometteurs obtenus par RIC et IWC sur le sandwich nids d'abeille étudié dans ce manuscrit, il serait intéressant d'appliquer ces méthodes sur des structures architecturées, telles que les métamatériaux possédant des "band gap" [94] où l'énergie des ondes de flexion est atténuée sur certaines plages de fréquences. Cette annexe contient les détails de quelques éléments du modèle multicouche étudié dans le Chapitre 2.

  Les coefficients λ sont utilisés dans la définition de l'énergie de déformation (2.31) ainsi que celle de la matrice de raideur (2.36) de la structure. Ils dépendent des paramètres matériaux de chaque couche ainsi que des fonctions F ij (Eq. (2.24)) et sont définis par : La matrice de masses généralisées [M ] utilisée à l'Eq. (2.33) est de la forme : = δ 6 , M 8 = 0, M 9 = δ 18 , M 10 = 2δ 2 , M 11 = δ 17 , M 12 = δ 14 , M 13 = 2δ 9 , M 14 = δ 12 , M 15 = 2δ 8 .

	A.2. D ÉFINITION DES COEFFICIENTS λ A.4. ÉNERGIE DE D ÉFORMATION				
	A.2 Définition des coefficients λ λ n 27 =4Q n 66 F w F n xx + 4Q n 26 F w F n yx , λ n 28 =4Q n 66 F w F n yy + 4Q n 16 F w F n xy , λ ∂ 2 W ∂x 2 ∂ 2 W ∂y 2 + λ 14 ∂ 2 W ∂x 2 A.5 Matrice de masses généralisées ∂φ 1 y ∂y	+ λ 15	∂ 2 W ∂x 2	∂ψ 1 y ∂y	+
	yy xy + 2F n 2 , 10 =2F w F n δ n yy , δ n 12 =2F n yy , δ n 14 =2F n xx F n yy F n yx , δ n 16 =2F w F n yx , δ n 18 =2F n xy . i dz, i = 1 : 69, λ n 66 F n Rn+hn/2 Rn-hn/2 yx F n n 16 F n xy , 15 =2F w F n δ n 9 =1, δ n 11 =2F w , δ n 13 =1, δ n δ n 17 =2F n yx , λ i = 11 F w 1 =Q n λ n 2 , λ n 2 =Q n 11 F n xx 2 + 2Q n xx + Q n yx 2 , λ n 3 =Q n 11 , λ n 4 =2Q n 11 F n xx F w + 2Q n 16 F n yx F w , λ n 5 =2Q n 11 F w , λ n 6 =2Q n 11 F n xx + 2Q n 16 F n yx , λ n 7 =Q n 22 F w 2 , λ n 8 =Q n 22 F n yy 2 + 2Q n 16 F n xy F n yy + Q n 66 F n xy 2 , λ n 9 =Q n 22 , λ n 10 =2Q n 22 F n yy F w + 2Q n xy F w , λ n 11 =2Q n 22 F w , λ n 12 =2Q n 22 F n yy + 2Q n 26 F n xy , λ n 13 =2Q n 12 F w 2 , λ n 14 =2Q n 12 F w F n yy + 2Q n 16 F w F n xy , λ n 15 =2Q n 12 F w , λ n 16 =2Q n 12 F w F n xx + 2Q n 26 F w F n yx , λ n 17 =2Q n 12 F n xx F n yy + 2Q n 16 F n xx F n xy + 2Q n 26 F yx F yy + 2Q n 66 F n xy F n yx , λ n 18 =2Q n 12 F n xx + 2Q n 26 F n yx , λ n 19 =2Q n 12 F w , λ n 20 =2Q n 12 F n yy + 2Q n 16 F n xy , λ n 21 =2Q n 12 , λ n 22 =4Q n 66 F w 2 , λ n 23 =Q n 66 F n xx 2 + 2Q n 26 F n xx F n yx + Q n 22 F n yx 2 , λ n 24 =Q n 66 F n yy 2 + 2Q n 16 F n xy F n yy + Q n 11 F n xy 2 , λ n 25 =Q n 66 , λ n 26 =Q n 66 , λ n 44 =2Q n 16 F n xx + 2Q n 66 F n yx , λ n 45 =4Q n 16 F w , λ n 46 =2Q n 16 F n xx + 2Q n 12 F n yx , λ n 47 =2Q n 16 , λ n 48 =2Q n 16 F w F n yy + 2Q n 11 F n xy , λ n 49 =2Q n 16 F w , λ n 50 =2Q n 16 F n xx F n yy + 2Q n 16 F n xy F n yx + 2Q n 11 F n xx F n xy + 2Q n 66 F n yy F n λ n 51 =2Q n 16 F n xx + 2Q n 66 F n yx , λ n 52 =2Q n 16 F n yy + 2Q n xy , λ n 53 =2Q n 16 , λ n 54 =4Q n 26 F w λ n 55 =2Q n 26 F w F n xx + 2Q n 22 F w F n yx , λ n 56 =2Q n 26 F w , λ n 57 =4Q n 26 F w F n yy + 4Q n 66 F w F n xy , λ n 58 =2Q n 26 F n xx F n yy + 2Q n 26 F n xy F n yx + 2Q n 22 F n yy F n yx + 2Q n 66 F n xx F n λ n 59 =2Q n 26 F n yy + 2Q n 66 F n xy , λ 9 ∂ψ 1 y ∂y + λ 10 ∂ 2 W ∂y 2 ∂φ 1 y ∂y + λ 11 ∂ 2 W ∂y 2 ∂ψ 1 y ∂y + λ 12 ∂φ 1 y ∂y ∂y y ∂ψ 1 2 xy , e d = 1 2 λ 1 ∂ 2 W ∂x 2 2 + λ 2 ∂φ 1 x ∂x 2 + λ 3 ∂ψ 1 x ∂x 2 + λ 4 ∂ 2 W ∂x 2 ∂φ 1 x λ 5 ∂ 2 W ∂x 2 ∂ψ 1 x ∂x + λ 6 ∂φ 1 x ∂x ∂ψ 1 x ∂x + λ 7 ∂ 2 W ∂y 2 2 + λ 8 ∂φ 1 y ∂y 2 + λ ∂φ 1 y ∂y ∂ψ 1 y ∂x + λ 67 ∂ψ 1 y ∂y ∂φ 1 y ∂x + λ 68 ∂ψ 1 y ∂y y ∂x + λ 69 φ 1 + x φ 1 y ∂ψ 1 ∂x + λ ∂ 2 W ∂y 2 ∂φ 1 y ∂x + λ 64 ∂ 2 W ∂y 2 ∂ψ 1 y ∂x + λ 65 ∂φ 1 y ∂y y ∂x + ∂φ 1 2 , L'équation ci-dessous correspond à la forme complète de l'énergie de déformation décrite (A.2) avec à l'Eq. (2.31) : λ ∂ 2 W ∂x∂y ∂ψ 1 y ∂y + λ 61 ∂ψ 1 y ∂y ∂φ 1 x ∂y + λ 62 ∂ψ 1 y ∂y x ∂y + ∂ψ 1 11 F n A.4 Énergie de déformation λ ∂ 2 W ∂x∂y ∂φ 1 y ∂y + λ 58 ∂φ 1 y ∂y ∂φ 1 x ∂y + λ 59 ∂φ 1 y ∂y x ∂y + ∂ψ 1 yx , δ 6 ∂φ 1 x ∂t ∂ψ 1 x ∂t + δ 7 ∂ 2 W ∂y∂t 2 + δ 8 ∂φ 1 y ∂t 2 + δ 9 ∂ψ 1 y ∂t 2 + δ 10 ∂ 2 W ∂y∂t ∂φ 1 y δ 11 ∂ 2 W ∂y∂t ∂ψ 1 y ∂t + δ 12 ∂φ 1 y ∂t ∂ψ 1 y ∂t + δ 13 ∂W ∂t 2 + δ 14 ∂φ 1 x ∂t ∂φ 1 y δ 15 ∂ 2 W ∂x∂t ∂φ 1 y ∂t + δ 16 ∂ 2 W ∂y∂t ∂φ 1 x ∂t + δ 17 ∂ψ 1 y ∂t ∂φ 1 x ∂t ∂t λ ∂ 2 W ∂y 2 ∂ 2 W ∂x∂y + λ 55 ∂ 2 W ∂y 2 ∂φ 1 x ∂y + λ 56 ∂ 2 W ∂y 2 x ∂y + ∂ψ 1 ∂t + δ 18 ∂ψ 1 x ∂φ 1 y λ ∂φ 1 x ∂x ∂ψ 1 y ∂x + λ 52 ∂ψ 1 x ∂x ∂φ 1 y ∂x + λ 53 ∂ψ 1 x ∂x y ∂x + ∂ψ 1 ∂t + (A.3) λ ∂ 2 W ∂x 2 ∂φ 1 y ∂x + λ 49 ∂ 2 W ∂x 2 ∂ψ 1 y ∂x + λ 50 ∂φ 1 x ∂x y ∂x + ∂φ 1 ∂t + λ ∂ 2 W ∂x∂y ∂ψ 1 x ∂x + λ 46 ∂ψ 1 x ∂x ∂φ 1 x ∂y + λ 47 ∂ψ 1 x ∂x ∂ψ 1 x ∂y + 16 F n λ n 29 =4Q n 66 F w , λ n 30 =4Q n λ ∂ 2 W ∂y 2 ∂φ 1 x ∂x + λ 17 ∂φ 1 x ∂x ∂φ 1 y ∂y + λ 18 ∂φ 1 x ∂x ∂ψ 1 y + ∂y 66 F w , λ n 31 =2Q n 66 F n xx F n yy + 2Q n 16 F n xx F n xy + 2Q n 26 F n yx F n yy + 2Q n 12 F n xy F n yx , λ n 32 =2Q n 66 F n xx + 2Q n 26 F n yx , λ n 33 =2Q n 66 F n xx + 2Q n 26 F n yx , λ n 34 =2Q n 66 F n yy + 2Q n 26 F n xy , λ n 35 =2Q n 66 F n yy + 2Q n 26 F n xy , λ n 36 =2Q n 66 , λ n 37 =Q n 44 dF n xx dz 2 + 2Q n 45 dF n yx dz dF n xx dz + Q n 55 dF n yx 2 dF n yy dz dF n yx dz . λ ∂ 2 W ∂y 2 ∂ψ 1 x ∂x + λ 20 ∂ψ 1 x ∂x ∂φ 1 y ∂y + λ 21 ∂ψ 1 x ∂x   ∂ψ 1 y ∂y M 1 -M 2 -M 3 -M 4 -M 5 + λ ∂ 2 W ∂x∂y 2 + λ 23 ∂φ 1 x ∂y 2 + λ 24 ∂φ 1 y ∂x 2 + λ 25 ∂ψ 1 x ∂y 2 + λ ∂ψ 1 y ∂x 2 + λ 27 ∂ 2 W ∂x∂y ∂φ 1 x ∂y + λ 28 ∂ 2 W ∂x∂y ∂φ 1 y ∂x + λ ∂ 2 W ∂x∂y ∂ψ 1 x ∂y + λ 30 ∂ 2 W ∂x∂y ∂ψ 1 y ∂x + λ 31 ∂φ 1 x ∂y [M ] =                 M 2 M 6 M 7 M 8 M 9 M 3 M 7 M 10 M 11 M 12 M 4 M 8 M 11 M 13 M 14         , (A.5)         ∂φ 1 y ∂x +  M 5 M 9 M 12 M 14  M 15 , dz λ n 38 =Q n 55 dF n yy dz 2 + 2Q n 45 dF n xy dz dF n yy dz + Q n 44 dF n xy dz 2 , λ n 39 =4Q n 16 F w 2 , λ n 40 =2Q n 16 F w F n xx + 2Q n 12 F w F n yx , λ n 41 =2Q n 16 F w , λ n 42 =4Q n 16 F w F n xx + 4Q n yx , λ n 43 =2Q n 16 F n xx 2 + 2Q n 26 F n yx 2 + 2Q n 12 F n xx F n yx + 2Q n 66 F n xx F n yx , e c = 1 2 δ 1 ∂ 2 W ∂x∂t 2 + δ 2 ∂φ 1 x ∂t 2 + δ 3 ∂ψ 1 x ∂t 2 + δ 4 ∂ 2 W ∂x∂t ∂φ 1 x ∂t + δ 5 ∂ 2 W ∂x∂t ∂ψ 1 x ∂t + λ ∂ 2 W ∂x∂y ∂φ 1 x ∂x + λ 43 ∂φ 1 x ∂x ∂φ 1 x ∂y + λ 44 ∂φ 1 x ∂x ∂ψ 1 x ∂y + 66 F w F n A.3 Énergie cinétique λ ∂φ 1 x ∂y ∂ψ 1 x ∂y + λ 33 ∂φ 1 x ∂y ∂ψ 1 y ∂x + λ 34 ∂ψ 1 x ∂y ∂φ 1 y avec + ∂x λ ∂ψ 1 y ∂x ∂φ 1 y ∂x + λ 36 ∂ψ 1 x ∂y ∂ψ 1 y ∂x + λ 37 φ 1 x 2 + λ 38 φ 1 y 2 + M 1 = 2 δ 13 -δ 1 ∂ 2 ∂x 2 -δ 7 ∂ 2 ∂y 2 , M 2 = δ 5 ∂ ∂x , M 3 = δ 4 ∂ ∂x + δ 16 ∂ , ∂y (A.4) λ ∂ 2 W ∂x 2 ∂ 2 W ∂x∂y + λ 40 ∂ 2 W ∂x 2 ∂φ 1 x ∂y + λ 41 ∂ 2 W ∂x 2 ∂ψ 1 M 4 = δ 11 ∂ ∂y , M 5 = δ 15 ∂ ∂x + δ 10 ∂ , M 6 = 2δ 3 , ∂y x ∂y + M 7

L'équation ci-dessous correspond à la forme complète de l'énergie cinétique décrite à l'Eq. (2.28) :

  K 1 = 2 λ 1 ∂ 4 ∂x 4 + (λ 13 + λ 22 ) ∂ 4 ∂x 2 ∂y 2 + λ 7 ∂ 4 ∂y 4 + λ 39 ∂ 4 ∂x 3 ∂y + λ 54 ∂ 4 ∂x∂y 3 , K 2 = -λ 5 ∂ 3 ∂x 3 + (λ 19 + λ 29 ) ∂ 3 ∂x∂y 2 + (λ 41 + λ 45 ) = -λ 49 ∂ 3 ∂x 3 + (λ 60 + λ 64 ) ∂ 3 ∂x∂y 2 + (λ 15 + λ 30 ) = -λ 48 ∂ 3 ∂x 3 + (λ 57 + λ 63 ) ∂ 3 ∂x∂y 2 + (λ 14 + λ 28 )Les équations suivantes correspondent aux coefficients l et d respectivement contenus dans les matrices [K] et [M] du système (2.35) permettant de dresser les courbes de dispersion du multicouche.

	A.7. D ÉFINITION DES COEFFICIENTS L ET D
	avec :					
							∂ 3 ∂x 2 ∂y	+ λ 56	∂ 3 ∂y 3 ,
	K 3 = -λ 4	∂ 3 ∂x 3 + (λ 16 + λ 27 )	∂ 3 ∂x∂y 2 + (λ 40 + λ 42 )	∂ 3 ∂x 2 ∂y	+ λ 55	∂ 3 ∂y 3 ,
	K 4 ∂ 3 ∂x 2 ∂y	+ λ 11	∂ 3 ∂y 3 ,
	K 5 ∂ 3 ∂x 2 ∂y	+ λ 10	∂ 3 ∂y 3 ,
	K 6 = -2 λ 3	∂ 2 ∂x 2 + λ 25	∂ 2 ∂y 2 + λ 47	∂ 2 ∂x∂y	,
	K 7 = -λ 6	∂ 2 ∂x 2 + λ 32	∂ 2 ∂y 2 + (λ 44 + λ 46 )	∂ 2 ∂x∂y	,
	K 8 = -λ 53	∂ 2 ∂x 2 + λ 62	∂ 2 ∂y 2 + (λ 21 + λ 36 )	∂ 2 ∂x∂y	,
	K 9 = -λ 52	∂ 2 ∂x 2 + λ 59	∂ 2 ∂y 2 + (λ 20 + λ 34 )	∂ 2 ∂x∂y	,
	K 10 = -2 λ 2	∂ 2 ∂x 2 + λ 23	∂ 2 ∂y 2 + λ 43	∂ 2 ∂x∂y	-λ 37 ,
	K 11 = -λ 51	∂ 2 ∂x 2 + λ 61	∂ 2 ∂y 2 + (λ 18 + λ 33 )	∂ 2 ∂x∂y	,
	K 12 = -λ 50	∂ 2 ∂x 2 + λ 58	∂ 2 ∂y 2 + (λ 17 + λ 31 )	∂ 2 ∂x∂y	-λ 69 ,
	K 13 = -2 λ 26	∂ 2 ∂x 2 + λ 9	∂ 2 ∂y 2 + λ 68	∂ 2 ∂x∂y	,
	K 14 = -λ 35	∂ 2 ∂x 2 + λ 12	∂ 2 ∂y 2 + (λ 66 + λ 67 )	∂ 2 ∂x∂y	,
	K 15 = -λ 24	∂ 2 ∂x 2 + λ 8	∂ 2 ∂y 2 + λ 65	∂ 2 ∂x∂y	-λ 38 .
							,	(A.6)
							
							

A.7 Définition des coefficients l et d

  ∂x 2 , Les déformations hors-plan ( zz , xz , yz ) sont nulles du fait que le modèle de Love-Kirchhoff néglige le cisaillement de la plaque. Le champ de contraintes {σ} est quant à lui déterminé à partir de la loi de comportement 143 ANNEXE C. MOD ÈLE DE LOVE KIRCHHOFF de la structure, définie, pour un matériau monoclinique, par la relation :

	yy = -z	∂ 2 W ∂y 2 ,	(C.2)
	xy = -z	∂ 2 W ∂x∂y	.

   où les paramètres Q ij représentent les composantes du tenseur des raideurs. Elles peuvent s'écrire en fonction des paramètres de l'ingénieur et de l'angle d'orthotropie θ à l'aide de l'Eq. (2.12) (nous invitons le lecteur à lire la section 2.1.2 qui détaille déjà cet aspect pour le modèle multicouche étudié dans le Chapitre 2). Une formulation énergétique, identique à celle décrite à la section 2.1.4, a été utilisée pour établir l'équation de mouvement de la structure. Cette formulation s'appuie sur la fonctionnelle d'Hamilton (Eq. (2.25)) faisant l'état de l'énergie cinétique et de déformation du système. Les énergies relatives aux efforts externes sont supposées nulles. Dans le cas d'une plaque mince de Love Kirchhoff, les effets d'inertie du mode flexion sont négligés et la densité d'énergie cinétique s'écrit simplement : où e k et z k correspondent respectivement à l'épaisseur et à la coordonnée en z de la fibre neutre de la couche k.Cette annexe, inspirée des travaux de Leclère[START_REF] Leclère | Practical implementation of the corrected force analysis technique to identify the structural parameter and load distributions[END_REF], décrit la procédure de calibration visant à identifier la masse interne du capteur de force utilisé à la section 3.3.3. Cette calibration, tirée des travaux de thèse de Pinho[START_REF] Pinho | Comportement statique et dynamique d'une suspension de haut-parleur à joint de ferrofluide[END_REF], considère deux masses (m 1 , m 2 ) montées à tour de rôle sur le capteur. Le pot vibrant excite ensuite la structure à l'aide d'un sinus glissant sur la plage de fréquences étudiées. La réponse en fréquence R i correspondant au ratio entre l'accélération A i et le voltage U i du capteur a été mesurée à l'aide du vibromètre laser pour chaque masse en son centre. En considérant chaque masse comme indéformable et en supposant un mouvement de translation pure, la force mesurée par le capteur correspond pour chaque masse i à :

	la forme suivante [12]							
	xx yy 2 xy 12 + 2Q k 11 , )Q k )Q k 22 , e 3 e 3 k 12 e 3 k 12 k + k + (e k z 2 (e k z 2 k + nL nL k=1 nL k=1 D 12 =2 D 11 = D 22 = k=1 (e k z 2 k )(Q k 66 ),            12 D 16 =4 nL k=1 (e k z 2 k + k 12 )Q k 16 , e 3 Calibration du capteur de force . Annexe D	(C.3) (C.8)
							D 26 =4	nL k=1	(e k z 2 k +	e 3 k 12	)Q k 26 .
						e c =	1 2	h/2 -h/2	ρ	∂u z ∂t	2	dz = ρh	∂W ∂t	2	.	(C.4)
	L'énergie de déformation de la plaque est quant à elle égale à :
	e d =	1 2 2Q 12 h/2 -h/2	{σ}{ } T dz = ∂ 2 W ∂x 2 ∂ 2 W ∂y 2 + 4Q 16 h 3 24 Q 11	∂ 2 W ∂x 2 ∂ 2 W ∂x 2	2	+ Q 22 ∂ 2 W ∂x∂y	∂ 2 W ∂y 2 + 4Q 26 2 + 4Q 66 ∂ 2 W ∂x∂y	2 ∂ 2 W ∂ 2 W ∂x∂y ∂y 2	+	.	(C.5)
	L'équation de mouvement de la plaque peut alors être établie en appliquant le principe de
	moindre action (Eq. (2.32) à la fonctionnelle d'Hamilton :
	D 11	∂ 4 W ∂x 4 + D 22	∂ 4 W ∂y 4 + D 12	∂ 4 W ∂x 2 ∂y 2 + D 16	∂ 4 W ∂x 3 ∂y	+ D 26	∂ 4 W ∂x∂y 3 + ρh	∂ 2 W ∂t 2 = 0,	(C.6)
	où les coefficients D ij correspondent aux rigidités de flexion de la plaque :
				D 11 =	h 3 12	Q 11 ; D 22 = D 16 = h 3 3	h 3 12 Q 16 ; D 26 = Q 22 ; D 12 = 3 h 3	h 3 6 Q 26 ; (Q 12 + 2Q 66 ) ;	(C.7)
												-144 --145 -

On peut rappeler que la relation entre les rigidités et les paramètres matériaux (module de Young et coefficient de Poisson) est donnée par l'Eq. (2.12) via une matrice de projection qui dépend de l'angle d'orthotropie.

Dans le cas de plaques multicouches, la théorie CLT définit les rigidités de la structure sous

  1.2. Son nombre d'inconnue cinématique dépend donc du nombre de couche dans le multicouche. Dans le modèle présenté ci-dessous, chaque couche est supposée isotrope et infinie dans les directions x et y, l'axe z étant défini selon l'épaisseur de la structure (voir Figure E.1).Figure E.1 -Schéma du multicouche dans le modèle des ondes de Lamb.Le modèle de Lamb décrit deux types d'ondes pour chaque couche i, une onde longitudinale définie par un potentiel φ i et une onde transversale définie par un potentiel ψ i . Dans le cas isotropes, si l'onde est polarisée dans le plan Oxz, ces potentiels sont solutions des équations L,i et c T,i représentent respectivement la vitesse de propagation des ondes longitudinales et transversales de chaque couche i. Ces vitesses peuvent être exprimées en fonction des caractéristiques des couches par :c L,i = E i (1 -ν i ) ρ i (1 + nu i )(1 -2nu i ) ; c T,i = E i 2ρ i (1 + nu i ) ; (E.2)FOLIO ADMINISTRATIF THESE DE L'UNIVERSITE DE LYON OPEREE AU SEIN DE L'INSA LYON Le présent travail de thèse traite de la modélisation vibratoire et la caractérisation dynamique de matériaux multicouches anisotropes. Dans le premier chapitre, une classification de quelques modèles analytiques de multicouche et techniques de caractérisation expérimentales de structures planes est établie sous la forme d'une synthèse bibliographique. Elle regroupe les récents résultats publiés autour du sujet. Le second chapitre propose une extension d'un modèle équivalent de multicouche au cas des structures anisotropes. Ce modèle décrit les premières courbes de dispersion de la structure et tient compte des phénomènes de cisaillement pouvant agir sur le mode de flexion en hautes fréquences. Le principal avantage du modèle réside dans sa simplicité et sa rapidité grâce à son nombre de variables cinématiques indépendant du nombre de couches. Les caractéristiques du multicouche sont définies par les 5 rigidités de flexion d'une plaque équivalente mince qui est comparée à ce dernier. L'extension de modèle est validée à l'aide d'une étude expérimentale réalisée sur des plaques composites en fibres de carbone. Un intérêt tout particulier est porté sur la modélisation de l'amortissement structurel. Une définition énergétique du facteur de perte, décrite par une formulation spatiale et temporelle de l'atténuation, est comparée à une définition équivalente. Une nouvelle définition de la formulation spatiale est proposée dans le cas de structures très amorties et est comparée aux résultats de la littérature. Dans le troisième chapitre, la technique de caractérisation RIC est étendue au cas des structures anisotropes. Cette méthode inverse s'appuie sur l'analyse du champ de déplacement de la structure et possède, grâce à son aspect local, des atouts non négligeables pour des applications industrielles. La méthodologie est tout d'abord présentée pour l'identification de sources (objectif initial de la méthode) et est ensuite adaptée à la caractérisation. Plusieurs applications numériques et expérimentales sont présentées afin de valider cette extension. Enfin, le quatrième chapitre porte sur la caractérisation expérimentale d'un sandwich en nids d'abeille sur une large bande fréquentielle (1 à 300 kHz). Le comportement dynamique complexe de cette structure épaisse est décrit au travers des résultats prometteurs fournis par les simulations de notre modèle et les estimations de RIC. Ces résultats sont également comparés à ceux d'un modèle de référence et d'autres méthodes de caractérisation. MOTS-CLÉS : multicouches anisotropes, sandwichs épais, modèle équivalent, rigidités de flexion, amortissement structurel, caractérisation dynamique, méthodes inverses.
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plexes. On remarque la présence d'une dérivée partielle d'ordre 2 ainsi que d'un terme inertiel supplémentaire par rapport à la théorie de poutre mince d'Euler-Bernouilli. Les dérivées partielles sont estimées grâce à un schéma aux différences finies composé de 7 points. L'identification de E et G au sens des moindres carrés appliqué à l'Eq. (1.31) est impossible du fait que le module de cisaillement est présent des deux côtés de l'équation. Wassereau et al. proposent une méthode itérative pour éviter ce problème en supprimant les effets d'inertie de rotation à la première itération et en les réintroduisant à la seconde. Quatre itérations suffisent généralement à converger. En présence de bruit, la régularisation classique de RIFF par filtrage est instable dans le cas de la poutre de Timoshenko. Cette instabilité vient du fait que la régularisation modifie fortement les données exactes du problème. En effet, dans l'équation de mouvement de Timoshenko, la relation entre le champ de déplacement et les dérivées n'est pas linéaire mais légèrement courbée, contrairement au cas Euler-Bernouilli. Les multiples paramètres viscoélastiques sont à l'origine de cette courbure. Wassereau et al. montrent que la régularisation supprime la courbure pour tendre vers un profil linéaire. L'estimation des paramètres matériaux est alors erronée. Pour contourner cette difficulté, une analyse multi-fréquentielle est adoptée permettant l'accès à d'avantage de donnés sur une bande de fréquence définie. La courbure de chaque jeu de donné est toujours supprimée mais l'ajout d'informations stabilise l'estimation moindres carrés. Avec cette analyse multi-fréquentielle, les paramètres viscoélastiques identifiés sont considérés constants sur la bande de fréquence choisie. Wassereau et al. ont validé leur méthode expérimentalement sur une poutre sandwich en nid d'abeille avec des peaux en composite en fibres de verre. Les paramètres viscoélastiques ont été déterminés à la fois avec la méthode RIFF classique (modèle d'Euler Bernouilli) et la méthode de Wassereau et al. (modèle de Timoshenko). Les résultats, présentés à la Figure 1.14, confirment la discussion établie au préalable à la section 1.1.3 à propos de l'équivalence plaque mince du modèle de Guyader et Cacciolati. Le module de Young identifié avec la méthode RIFF classique chute fortement du fait que le modèle d'Euler Bernouilli ne prend pas en compte le cisaillement de la structure qui devient influent devant la flexion en haute fréquence. À l'inverse, avec la méthode de Wassereau et al., les modules identifiés restent constants en fréquence.

Dans le cas de champs bruités, RIC possède sa propre technique de régularisation qui consiste à adapter la taille du schéma dans les deux directions pour maintenir un nombre de points par longueur d'onde faible sur toute la plage fréquentielle. Le schéma est alors très grand en basses fréquences et retrouve sa taille d'origine en hautes fréquences. En conséquence, le champ de pression reconstruit est beaucoup plus petit en basses fréquences qu'en hautes fréquences. De plus, le maillage de mesure doit être suffisamment grand pour pouvoir utiliser le schéma en basses fréquences. Cette technique de régularisation n'est cependant pas uniforme en fonction de la fréquence. La taille du schéma et donc l'importance du filtrage peuvent changer brusquement d'une fréquence à une autre. Pour remédier à cela, il est possible de mesurer la structure sur un maillage beaucoup plus fin afin d'obtenir davantage de possibilités d'adaptation du schéma en fonction de la fréquence même si, en contre partie, les temps de mesure et d'analyse des résultats seront beaucoup plus longs. Ce point de vue rend cependant inutile la correction de RIC qui permet à l'inverse d'utiliser la méthode sur un maillage grossier. De plus, la longueur d'onde de la structure étant fonction de la direction, le nombre de points par longueur d'onde et donc l'effet du filtrage n'est pas identique dans toutes les directions. Des erreurs d'estimation peuvent alors apparaitre dans certaines directions où le filtrage est peu ou trop intense. Cet aspect est essentiellement visible pour la caractérisation de matériaux puisque le nombre d'onde reconstruit par la méthode est soit sur-estimé soit sous-estimé dans ces directions. Les résultats en terme d'identification de source restent néanmoins corrects avec cette technique de régularisation. La technique de régularisation de RIFF présente quant à elle un filtrage identique dans toutes les directions qui ne dépend ni de la taille ni de la finesse du maillage. Elle est définie uniquement à partir d'un nombre d'onde de coupure généralement égal à la plus petite valeur du nombre d'onde de flexion de la structure en fonction de la direction. Ce filtrage isotrope permet d'obtenir de bons résultats même si la structure est anisotrope.Finalement, la technique de régularisation de RIFF associée à la correction de RIC forment une méthodologie de caractérisation performante pour les structures anisotropes sur des champs bruités mesurés avec un maillage de mesure grossier et constant en fréquence. La méthodologie d'adaptation en fréquence de la taille du schéma proposée par RIC pourrait également être

Berthaut propose plusieurs solutions pour trouver le noyau de Green de telles structures, comme par exemple un changement de variable dans l'équation différentielle ou une intégration directe de la formulation de Fourrier. Ces solutions restent cependant difficile à trouver ou à calculer.
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l 7 = λ 6 c 2 + λ 32 s 2 + (λ 44 + λ 46 )cs, l 8 = λ 53 c 2 + λ 62 s 2 + (λ 21 + λ 36 )cs, l 9 = λ 52 c 2 + λ 59 s 2 + (λ 20 + λ 34 )cs, l 10 = 2(λ 2 c 2 + λ 23 s 2 + λ 43 cs), l 11 = λ 51 c 2 + λ 61 s 2 + (λ 18 + λ 33 )cs, l 12 = λ 50 c 2 + λ 58 s 2 + (λ 17 + λ 31 )cs, l 13 = 2(λ 26 c 2 + λ 9 s 2 + λ 68 cs), l 14 = λ 35 c 2 + λ 12 s 2 + (λ 66 + λ 67 )cs, l 15 = 2(λ 24 c 2 + λ 8 s 2 + λ 65 cs), l 37 = 2λ 37 , l 38 = 2λ 38 , l 69 = λ 69 , d 1 = 2ω 2 δ 1 c 2 + δ 7 s 2 , d 2 = δ 5 c, d 3 = (δ 4 c + δ 16 s) , d 4 = δ 11 s, d 5 = (δ 15 c + δ 10 s) , d 6 = 2δ 3 , d 7 = δ 6 , d 8 = 2δ 13 , d 9 = δ 18 , d 10 = 2δ 2 , d 11 = δ 17 , d 12 = δ 14 , d 13 = 2δ 9 , d 14 = δ 12 , d 15 = 2δ 8 , avec : c = cos(θ) et s = sin(θ), θ étant l'angle de propagation de l'onde plane choisie en tant que solution particulière de la l'équation de mouvement (2.33).
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où k correspond au nombre d'onde des ondes se propageant dans la structure et les paramètres A i , B i , C i et D i sont les amplitudes inconnues de ces ondes.

Le champ de déplacement de chaque couche est ensuite défini par :

et permettent d'établir leur champ de contraintes :

Enfin, les relations de couplage entre les couches, pouvant se résumer par la continuité des déplacements et des contraintes transverses entre les couches, forment le système d'équation suivant :

et sont accompagnées par les conditions aux limites aux surfaces inférieures et supérieures du multicouche :