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Abstract

Scattered radiation is a major cause of bias, loss of contrast and artifacts in x-ray
computed tomography (CT). Many correction methods have been proposed for
conventional CT (using energy-integrating detectors) but it is still an open research
topic in the field of spectral CT, a novel imaging technique based on the use of energy-
selective photon counting detectors. The main objective of the present thesis was to
investigate scatter correction techniques adapted to spectral CT. The chosen solution
refines a scatter correction method developed for integration-mode CT which uses a
semi-transparent primary modulator mask. The attenuation of the primary modulator
mask is first compensated for with a correction matrix which takes advantage of
the spectral information. The other contributions are a scatter model based on B-
splines allowing an accurate representation of scatter maps with the aid of a very few
parameters and a cost function which takes into account the structures of the mask
and the object. The accuracy of the correction matrix, the scatter model and the whole
proposed scatter correction process were tested on simulated data considering photon
counting detectors with various numbers of energy bins and have shown a significant
bias reduction, contrast enhancement and artifact removal. In addition, physical
experiments were performed using a parallel fan-beam set-up with a commercial
energy- resolved detector. The method was successfully validated in the case of two
phantoms dedicated to medical image quality measurements, with a remarkable
improvement.
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Notation

Throughout this manuscript, vectors and matrices are in bold face unlike scalars.
In general, vectors are in lower case while matrices in upper case, except for vectors
representing intensity images or images in number of photons. In addition, estimated
scalars and vectors are represented with a tilde on top of the letters and vectors
representing modulated images with a hat.
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Symbol Description

NE Number of energy samples (discretization of the energy range)
NB Number of energy bins
NU Number of pixels of the detector in the u direction
NV Number of pixels of the detector in the v direction
NΘ Number of projection angles

e ∈ [1; NE] Energy index
b ∈ [1; NB] Energy bin index
u ∈ [1; NU] Pixel index in the u direction
v ∈ [1; NV ] Pixel index in the v direction
θ ∈ [1; NΘ] Projection angle index

λθ Source position
ζu,v,θ Unit vector from the source onto pixel (u, v)

N0,i Number of incident photons without object
N p,i Number of incident primary photons
Ns,i Number of incident scattered photons
N t,i Total number of incident photons

N0 Number of detected photons without object
N p Number of detected primary photons
Ns Number of detected scattered photons
N t Total number of detected photons

p Primary transmission
s Scatter transmission
t Total transmission

gp Primary attenuation
gt Total attenuation

f p Reconstructed primary
f t Reconstructed total
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1
Introduction

Transmission x-ray computed tomography (CT) is widely used in the context of
medical imaging. Since the invention of the CT scanner by Godfrey Hounsfield in
1971, significant improvements have been made on both the hardware, e.g., x-ray
tubes, collimators, rotation systems and detectors, and the software with the develop-
ment of numerous reconstruction algorithms and artifacts removal techniques.

Recently, the emergence of photon counting detectors (PCD), a new detection
technology based on the use of semi-conductor materials, enables to count photons
and to classify them into discrete bins according to their energy. This new detec-
tion technology (with 2 to 8 energy bins) equips a few medical prototypes of whole
body CT system and is currently evaluated in clinical research facilities. For other
industrial applications, some linear PCDs have up to a hundred bins of around 1 keV
width. In this work, we assume that the technology is going to evolve and that two
dimensional PCDs with a lot of energy bins will be available in the future for medical
CT. While the output of conventional integration mode detectors are single images,
PCDs provide multi energy images and this additional spectral information opens up
new perspectives such as improving the contrast-to-noise ratio (CNR) or reducing
dose and artifacts. Moreover, it enables to quantify each material constituting the
object independently, by decomposing the images into basis functions (e.g. bone and
soft tissues). However, the latter application requires highly accurate images at each
energy bin. In particular, scattered radiation impacts image quality as it induces bias,
loss of contrast and artifacts, and has to be removed.

The objective of this PhD work is to develop a scatter correction method adapted
to spectral CT imaging able to provide accurate images without increasing dose and
acquisition time. This manuscript is organized as follows. In chapter 2, we present
the basics of x-ray CT. First, we introduce some generalities about x-rays and their
generation in a CT scanner. The main interactions between x-rays and matter, and the
behaviors of the resulting primary and scattered radiation are then presented along
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with the conventional and photon counting detectors. Afterwards, we introduce
the principle of CT reconstruction and identify the influence of scattered radiation.
A review of scatter correction methods is then presented in chapter 3. Chapter 4
is dedicated to the presentation of the scatter correction that we developed which
is based on the use of a semi-transparent primary modulator mask and adapted to
spectral CT. First, the basic principle is reminded and we introduce the correction
matrix, which compensates for the mask attenuation. Then, we present a scatter
model based on B-splines and specific weightings according to the mask and the
object structures. Finally, we present our cost function and detail the Newton’s
algorithm we used for its minimization. The method is tested on realistic images
simulated with Gate in chapter 5. Then, using two imaging phantoms (RANDO and
CIRS), we tested the method on experimental datasets in chapter 6. In chapter 7, we
present a study on the correction of ring artifacts, which corrupted our experimental
images. Finally, we conclude and discuss on perspectives in chapter 8.
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2
Basics of computed tomography

2.1 Introduction

This first chapter aims at introducing the basics of computed tomography (CT)
imaging. A tomographic acquisition consists in a set of radiographic acquisitions
performed at several projection angles around the inspected object. After being
generated (section 2.2), x-rays interact with the object while passing through it (section
2.3) and are then detected (section 2.4) to form the radiographs. The CT images are
then generated with a reconstruction algorithm (section 2.5). Finally, the influence of
scattered radiation on projection images and reconstructed CT slices is presented in
section 2.6.

Rotation axis

Object

Detector

θu

v

λθ

ζu,v,θ

Figure 2.1 – Schematic of a tomographic system.
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2.2 X-rays in medical imaging

X-rays were discovered in 1895 by the German physics professor Wilhelm Röntgen.
As γ-rays, ultraviolet, visible light, infrared, microwaves or radiowaves, x-rays are a
form of electromagnetic radiation (see figure 2.2).

E (eV)
10−9 10−6 10−3 100 103 106 109

Radiowaves
Microwaves

Infrared
Visible light

Ultraviolet
x-rays

γ-rays

Figure 2.2 – Electromagnetic spectrum

The energy E of an x-ray photon is proportional to the frequency ν and inversely
proportional to the wavelength λ of its associated radiation and can be described by
the following expression:

E = hν =
hc

λ
, (2.1)

where h = 6.58 × 10−16 eVs is Planck’s constant and c = 3 × 108 ms−1 the speed
of light in vacuum [1]. The unit of eV represents the kinetic energy of a photon
accelerated under 1 V and 1 eV = 1.60 × 10−19 J.
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Figure 2.3 – Spectrum of a tungsten source with an acceleration voltage of 120 kV.

In medical CT, the x-rays are generated through a device called x-ray tube, in which
electrons are accelerated by a high voltage and bombarded onto a target material,
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resulting in the conversion of a part of the electrons kinetic energy into x-ray photons.
Figure 2.3 shows an example of a filtered source spectrum corresponding to an x-ray
tube with a tungsten target supplied with 120 kV. For medical diagnosis applications,
the energy of x-ray photons is generally comprised between a few tenths and 150 keV.

2.3 Primary and scattered radiation

When the x-ray beam passes through the object, it interacts by means of physical
phenomena described in section 2.3.1. The resulting x-ray beam can be divided into
primary and scattered radiations, which have their own characteristics, presented in
section 2.3.2.

2.3.1 X-ray/matter interactions

In the energy-range of diagnostic medical imaging, there are three significant
physical phenomena in which x-rays interact with matter: the photoelectric effect,
Rayleigh scattering and Compton scattering. This section aims at presenting these
three effects.

The photoelectric effect

The photoelectric effect is an interaction between a photon and an inner-shell
electron of an atom, which binding energy is equal to or lower than the energy of
the photon. The electron is ejected from its orbit with a kinetic energy equal to the
difference between the energy of the incident photon and the binding energy of the
electron and is called a photo-electron. The resulting vacancy may then be filled by an
outer-shell electron, which involves the emission of a characteristic x-ray photon with
an energy equal to the difference between the binding energies of the two shells. The
process is described in figure 2.4. For biological tissues, the energy of the characteristic
radiation is very low (less than 10 keV) and the corresponding x-ray photons cannot
travel very far before being reabsorbed (less than the dimensions of a typical human
cell).

The probability of a photoelectric event τP highly depends on the x-ray photon
energy E and the atomic number Z of a given material. In the energy range of
diagnostic medical imaging, this probability is inversely proportional to the cubic of
the x-ray photon energy [1]:

τP ∝ E−3. (2.2)

Furthermore, τP is proportional to the cubic of the atomic number Z [1]:

τP ∝ Z3. (2.3)
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Figure 2.4 – Illustration of a photoelectric interaction (reproduced from [2]).

When a photoelectric event occurs, an electron is ejected from the atom which
becomes an ion. This is called ionization which is a significant cause of cancer. This is
the reason why the radiation dose deposited in a patient in medical imaging has to be
controlled and maximally reduced.

Rayleigh scattering

The Rayleigh scattering is a process in which an x-ray photon changes direction
without loosing energy. It is an interaction between a photon and the whole electron
cloud of an atom. Each electron is set into momentary vibration by the oscillating
electric field of the electromagnetic wave associated with the incident x-ray photon.
As a result, the electrons emit a coherent radiation with the same wavelength as the
incident x-ray photon and the combination of these radiations constitute the scattered
radiation. This is the reason why Rayleigh scattering is also called coherent scattering.
An illustration for Rayleigh scattering is presented in figure 2.5.

The angular Rayleigh scattering probability is described by the differential Rayleigh
cross-section along with the molecular form factor. Figure 2.6 shows the differential
Rayleigh cross-section with the molecular form factor of a water molecule at room-
temperature for three incident photon energies. More information and other datasets
can be found in [3]. One can observe that the scattering angle decreases when the
photon energy increases.

The probability of a coherent scattering event σR is obtained by integrating the
differential Rayleigh cross-section over all possible directions. The Rayleigh scattering
occurs mainly with very low energy x-rays.
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Figure 2.5 – Illustration of a Rayleigh interaction (reproduced from [2]).

As the coherent scattering does not lead to a loss of electron in the atoms, this
phenomenon is non ionizing.

Compton scattering

The most significant interaction between x-rays and biological tissues in the en-
ergy range of medical diagnosis imaging is the Compton scattering effect. This
phenomenon is an interaction between an x-ray photon and an individual electron of
an atom and is therefore called incoherent scattering.

In the Compton scattering interaction, an x-ray photon strikes an electron, which
binding energy is significantly lower than the photon’s, resulting in a loss of energy
and a change of direction of the photon and the ejection of the electron (called recoil
electron). The incoherent scattering phenomenon is therefore ionizing. The phe-
nomenon is illustrated in figure 2.7.

In the same way as Rayleigh scattering, the angular incoherent scattering proba-
bility is given by the differential Compton cross-section. The differential Compton
cross-section of a water molecule at room temperature is shown in figure 2.8 for three
different incident photon energies (dataset from [4]). The probability distribution
appears to be smoother than in the Rayleigh case, and the probability for a photon
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Figure 2.6 – Differential Rayleigh cross-section with molecular form factor of a water
molecule at room temperature for three photon energies [3]

.

to be back-scattered is much higher and increases when the incident photon energy
decreases. The probability of a Compton scattering event σC is then given, as for
the Rayleigh scattering, by integrating the differential cross-section over all possible
directions.

2.3.2 Primary and scattered radiation

Passing through an object, an x-ray beam undergoes the previously described
interactions and is therefore attenuated. Photons which have not suffered any inter-
action with matter are called primary photons while the others are called scattered
photons, as shown in figure 2.9. In addition, the primary map and the scatter map
refer to the images formed by primary and scattered radiations respectively. This
section presents the respective characteristics of primary and scattered radiations in
x-ray imaging.

Primary radiation

The strength of attenuation of a material m at energy E is described by its mass at-
tenuation coefficient denoted τm(E) (cm2/g), which is the sum of the three significant
interactions contributions:

τm(E) = τP
m(E) + σR

m(E) + σC
m(E). (2.4)

The mass attenuation coefficient and its contributions for a water molecule at room
temperature is presented in figure 2.10 for energies up to 150 keV. The mass atten-
uation tables can be found in, e.g., [5]. The photoelectric effect and the Rayleigh
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Figure 2.7 – Illustration of a Compton interaction (reproduced from [2]).
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Figure 2.8 – Differential Compton cross-section with molecular form factor of a water
molecule at room temperature for three photon energies [4]

.
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Figure 2.9 – Illustration of photons passing through an object (blue: primary photons,
orange: scattered photons).

scattering are predominant at low energy, but from 60 keV, most of the attenuation
comes from Compton interactions.
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Figure 2.10 – Mass attenuation coefficient of a water molecule at room temperature
for the three interactions.[5]

In addition, the linear attenuation coefficient µm(E) (cm−1) is computed by multi-
plying τm(E) by the volumetric mass density ρm (g/cm3) of material m:

µm(E) = ρmτm(E). (2.5)

The linear attenuation coefficients at room temperature of three materials (water,
adipose tissue and cortical bone) are shown in figure 2.11. The attenuation of cortical
bone is larger, in particular at low energy, due to its larger mass density and the
presence of high-Z materials (such as calcium).

An object may be represented by the discrete three-dimensional (3D) map of the
volumetric mass densities ρm of its M materials, indexed with m. The corresponding
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Figure 2.11 – Linear attenuation coefficients of three materials at room temperature.[5]

three-dimensional linear attenuation coefficient map is the sum of each material
contribution:

µ(E) =
M

∑
m=1

ρmτm(E). (2.6)

The number of primary photons N
p,i
u,v,θ(E) with energy E incident on the detector

at pixel position (u, v) and at projection angle θ is given by the Beer-Lambert law:

N
p,i
u,v,θ(E) = N0,i

u,v(E) exp

(

−
∫

l∈R

µ(λθ + lζu,v,θ , E)dl

)

, (2.7)

with N0,i
u,v(E) the number of photons of energy E emitted by the source towards pixel

(u, v) as illustrated in figure 2.1. Note that the source spectrum does not vary with
the projection angles.

Scattered radiation

Scattering effects are global phenomena and the scatter images in CT contain
mostly low spatial frequencies in the two dimensions of the flat-panel detector and
the angular dimension of the projections [6]. In addition, the smoothness and trans-
mission factors of scatter maps depends on the energy of photons, the inspected object
and the acquisition geometry.

The probability of scattering interactions presented in 2.3.1 are described by com-
plex probabilistic models, and their expressions are not easily tractable by a simple
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formula as the Beer-Lambert law for primary radiation. In section 2.3.1, we have seen
that the scattering probability for a photon increases with the atomic number, the
density and the object thickness.

The acquisition geometry is also predominant in scatter maps behavior. The air-
gap refers to the distance between the object and the detector and when it increases,
scatter maps become smoother and scatter intensities decrease because the solid angle
defined by the location of the interaction and the detector is smaller. In addition, the
field of view (FOV) determines the quantity of matter in which first order scattering
effects can occur and therefore small FOV (e.g pencil-beam or fan-beam) induce few
scattered photons while greater FOV (e.g cone-beam) induce many more.

Considering the case of a typical medical CT system with around 50 cm between
the isocenter and the detector, reasonable spatial and angular spacing between sam-
ples of the scatter map are 5 cm and 25◦ respectively [6]. We study the optimal
sampling later in this document: in section 5.4 for realistic simulated images and in
section 6.4 for experimental images.

Additionally, the differential cross sections of coherent and incoherent scattering
according to the photons energy (figures 2.6 and 2.8 respectively) show that the
scattering angle decreases when the photons energy increases and, as a consequence,
the scatter maps are smoother for low energy photons than for more energetic ones.
However, for significant air-gaps (from 30 cm), the shape of scattered radiation spectra
are globally preserved along the spatial and angular positions [7].

2.4 Detection of x-rays

Digital x-ray detectors can be classified into two families: energy-integrating and
photon-counting detectors. The technologies and their resulting measured data are
introduced in 2.4.1 and 2.4.2.

2.4.1 Energy-integrating detectors

Energy-integrating detectors are the most common type of detectors used in
medical CT, and correspond to two distinct technologies. First, indirect conversion
detectors are composed of a scintillating material, which converts x-rays into visible
light, and a set of photodiodes (one per pixel) converting light into electric signals.
The second type are direct conversion detectors, in which the x-rays are directly
converted to an electrical signal.

With energy-integrating detectors, the detected signal Iu,v,θ at pixel position (u, v)
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and projection angle θ can be modelled by the following expression:

Iu,v,θ =
∫

E
du,v(E) Ni

u,v,θ(E) dE, (2.8)

where du,v is the detector response function of pixel (u, v) (which does not depend on
the projection angle) and Ni

u,v,θ(E) the number of photons of energy E reaching the
detector at position (u, v).

2.4.2 Photon counting detectors

Photon counting detectors (PCD) based on semi-conductor materials (such as
Si or CdTe) allow to count each incident photon independently. A PCD may have
various energy bins in which the photons are classified according to their deposited
energy depending on pre-defined energy thresholds. In this case, we call them energy-
resolved photon counting detectors and we denote NB the number of energy bins.
The expected number Nb,u,v,θ of photons detected at pixel position (u, v), projection
angle θ and energy bin b is described by:

Nb,u,v,θ =
∫

E
db,u,v(E)Ni

u,v,θ(E) dE, (2.9)

where db,u,v is the detector response function of energy bin b of pixel (u, v).

By discretizing the energy spectrum in NE samples, the number of detected pho-
tons becomes:

Nb,u,v,θ =
NE

∑
e=1

db,e,u,vNi
e,u,v,θ = dT

b,u,vN i
u,v,θ , (2.10)

where db,u,v ∈ R
NE is the discretized response of energy bin b of pixel (u, v), T

the transpose operator and N i
u,v,θ ∈ R

NE the vector representing the number of
incident photons on the detector at each discretized energy. By concatenating the
transposed responses of each energy bin, we obtain the detector response matrix
(DRM) Du,v ∈ R

NB×NE and the detected spectra Nu,v,θ ∈ N
NB in pixel of coordinates

(u, v) and projection θ, which values represent the number of photons detected in
each energy bin, is:

Nu,v,θ = Du,vN i
u,v,θ. (2.11)

Most of the existing PCDs have a few energy bins (between 2 and 8 [8]), but some
achieve an impressive number of a hundred bins of only 1 keV width [9]. However,
the latters are line detectors designed for security applications. At this time, medical
CT scanner with PCDs are only at a research stage and still have a few energy bins
[10]. In this work, we assume that the technology is going to evolve and that two
dimensional PCDs for medical imaging with a lot of energy bins will be available in
the future. An example of a simulated detector response matrix is presented in figure
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2.12 with 0.4 mm pitch pixels. This DRM mimics the one with 1 keV width bins [11],
but is centered on the energy range from 30 to 120 keV, resulting in NB = 90 energy
bins. One can observe, on the right subfigure representing the detector response func-
tion of the 30th energy bin d30 (which corresponds to 70 keV), a large photoelectric
peak at 70 keV and a smaller one near 95 keV. It indicates that most photons detected
in energy bin 30 undergo a photoelectric effect with no fluorescent escape and have
an energy around 70 keV, but a non-negligible part has an higher energy, due mostly
to the x-ray fluorescence escape inside the detector. This is because the material of the
detector is made of CdTe: the Kα1 emission line of cadmium is at 23.2keV and Kα1
emission line of tellurium is at 27.5keV, which is why one observes a line parallel to
the photopeak at about 25 keV above the diagonal (it is quite visible in figure 2.12); we
should also see a horizontal line at about 25keV if the fluorescence is being absorbed
instead of escaping, but this is not visible in the figure due to the choice of energy
range.
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Figure 2.12 – Example of a DRM of a CdTe detector with NB = 90 energy bins of
1 keV width. The first energy bin is centered on 30 keV, resulting in the quasi diagonal
shape of the matrix.

When a detector is bombarded by a high flux x-ray beam, several photons may
reach the detector at the same time and the detector recognizes only one photon which
energy is greater than the detected ones. This problematical effect is known as pile-up
and is a cause of artifacts but the simulated DRM does not model this phenomenon.
In addition, when a photon strikes the detector at a given pixel, a part of the induced
charge may be detected in neighbors pixels. This effect is called charge sharing and is
taken into account in the simulation of the DRM.
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In the rest of this manuscript, except if specified, energy-resolved photon counting
detectors will be used and pile-up effects will be neglected.

2.5 X-ray computed tomography

2.5.1 The x-ray transform

The x-ray transform Rµ associated with the three-dimensional function µ is the
set of integrals along lines going through the 3D source position λθ in direction ζu,v,θ
of pixel with coordinate (u, v) on the detector, as shown in figure 2.1.

Mathematically, the x-ray transform is defined as:

Rµ(u, v, θ) =
∫

l∈R

µ(λθ + lζu,v,θ)dl. (2.12)

This transform performs a projection of the object onto the detector. This is the
reason why the angle θ is called projection angle and the image acquired at a given
projection angle projection image. In addition, the x-ray transform of a point object
follows a sine curve in a v slice if the source follows a circular trajectory and the
function Rµ is also called the sinogram of µ. An example of attenuation projections
and sinograms is shown in figure 2.13.

Some particular geometries can be isolated for CT scanners: parallel-beam for
line-detectors (2D case) and very large source to detector distances (such that the
x-rays are parallel), fan-beam for line-detectors and divergent x-rays, and cone-beam
for planar-detectors (3D case) and divergent x-rays. In addition, parallel fan-beam
refers to a stack of fan-beam acquisitions.

2.5.2 CT reconstruction

The tomographic reconstruction problem consists in estimating the linear attenua-
tion coefficient map µ from the sinogram Rµ. This problem has been well studied
and mainly two classes of reconstruction methods can be isolated: analytical and
discrete methods.

Analytical reconstruction

Analytical reconstruction methods model the images as continuous functions.
They are based on the Fourier slice theorem, which links the 1D Fourier transform
of the lines of sinogram of a parallel beam to the lines of the 2D Fourier transform
of µ represented in polar coordinates. In practice, the analytical reconstruction of a
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Figure 2.13 – Example of projections and sinograms

parallel sinogram, also called Filtered Back Projection (FBP), is performed by a two
step process: filtering and backprojecting. The generalization of FBP to cone-beam
CT is known as the FDK algorithm [12].

Analytical reconstruction methods are the reference algorithms in medical di-
agnosis CT thanks to their simplicity and rapidity. However, these algorithms are
sensitive to the number of acquired projections and the statistical noise. In addition,
an analytical formula does not exist for any system geometry, and if it does, a perfect
knowledge of this geometry is required.

Discrete reconstruction

Unlike analytical methods, discrete reconstruction methods are based on a discrete
representation of the images. These methods aim at inverting a discrete formulation
of the forward acquisition model presented in equation 2.12. The class of discrete
reconstruction methods are historically divided into two groups: algebraic and statis-
tical methods.

The simplest form of algebraic reconstruction is the Algebraic Reconstruction
Technique (ART). It is an iterative method which aims at inverting directly the direct
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problem without any prior information. This algorithm is very slow to converge
because at one iteration, the update of a voxel is performed using a single ray. In con-
trast, the Simultaneous Algebraic Reconstruction Technique (SART) updates voxels
using a complete projection of an angle θ. This leads to a speed up of the convergence.
Other variations exists such as the Simultaneous Iterative Reconstruction Technique
(SIRT), the Multiplicative Algebraic Reconstruction Technique (MART) or methods
using ordered subsets. ART-based methods are known to be slower but more robust
than analytical methods [13].

Statistical reconstruction methods reuse the idea of inverting the direct model,
but taking into account the statistics of the detected photons. Poisson statistics are
often used with PCDs because in photon counting x-ray imaging, the measures follow
a Poisson distribution. The first reconstruction algorithm using a statistical model
is the Maximum Likelihood Expectation-Maximization (ML-EM) in 1984 and many
others have been proposed since. The modelling of the noise distribution gives to
these methods a great advantage for reconstructing noisy sinograms.

Spectral reconstruction

In conventional CT, the reconstruction problem consists in estimating the atten-
uation map of the object. In a spectral reconstruction problem, the objective is to
decompose the inspected object into some basis functions, for example bones and
soft tissues. Various approaches have been proposed. The image-based approach
performs a CT reconstruction at each energy bin, and estimate the decomposed object
from the set of CT slices [14]. On the contrary, the projection-based one consists in
decomposing the projections, and then reconstructing each decomposed sinogram
[15]. Finally, joint approaches aim at reconstructing and decomposing at the same
time [16]. The spectral reconstruction problem is still an active field of investigations.

In this work

The objective of this work is to provide accurate spectral CT images which can be
used, for example, in a spectral reconstruction problem. However, the technique is
not yet available for clinical applications, and no reference algorithm has emerged.
Furthermore, they are generally quite hard to implement in practice. These are the
reasons why we opted for the use of the FDK algorithm [FDK] for comparing CT
slices.

2.5.3 In practice

In practice, we do not measure the exact sinogram Rµ, but a raw spectral total
sinogram N t ∈ R

NB NU NV NΘ (in number of photons detected) which is the sum of the
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primary and scatter contributions (N p and Ns respectively):

N t = N p + Ns. (2.13)

We call total transmission spectral sinogram t ∈ R
NB NU NV NΘ the image which

elements tb,u,v,θ are the ratio between the number of detected photons in the presence
of the object N t and the one without any object N0:

tb,u,v =
Nt

b,u,v

N0
b,u,v

. (2.14)

The primary and scatter transmission sinograms p and s are computed in the same
way and t = p + s.

We also introduce the total and primary attenuation sinograms gt ∈ R
NB NU NV NΘ

and gp ∈ R
NB NU NV NΘ which are the negative logarithm of the transmission sinograms:

gt = − ln(t) (2.15)
gp = − ln(p). (2.16)

These attenuation sinograms are, at each energy bin, approximations of the x-ray
transform defined in equation 2.12 and are the dataset used for the CT reconstruction.

When a polychromatic beam passes through an object, low energy photons are
more attenuated than high energy ones, due to the decrease of the attenuation with
the photons energy (see figure 2.11). As a result, the mean energy of the polychro-
matic spectrum increases. We call this phenomenon beam-hardening. Both total and
primary attenuation sinograms suffer from beam-hardening, but since the latter is not
corrupted by scattered radiation, the approximation of the x-ray transform is better.

The next section shows the influence of scattered radiation on both sinograms and
reconstructed slices.

2.6 Influence of scattered radiation

We have shown in section 2.3 that scatter maps in CT are low frequency images.
Because of the non-linearity of the logarithm function, the corresponding bias in
attenuation sinograms is not smooth anymore and depends on the scatter to primary
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ratio (SPR = s
p ):

gt = − ln(p + s) (2.17)

= − ln(p(
s

p
+ 1)) (2.18)

= gp − ln(
s

p
+ 1) (2.19)

= gp − ln(SPR + 1) (2.20)
≈ gp − SPR (2.21)

.
In the presence of scatter, the values of transmission images are larger than the

ones without scatter and therefore the values of attenuation images and their vari-
ation range are lower. As a result, the scatter-corrupted attenuation images have a
degraded contrast [17], as observed in figure 2.14.
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Figure 2.14 – Attenuation projection image without (left) and with (right) scatter.

Figure 2.15 shows profiles of the attenuation projection images, where the bias
induced by scatter is greater for high attenuation values.

The influence of scattered radiation in reconstructed CT images is similar to the
one in the projection domain: the attenuation values are lower than expected and the
contrast is degraded, as shown in figure 2.16.

In addition, a well-known artifacts can appear: the cupping artifact, which is
characterized by a cup-like profile instead of a constant for a homogeneous object.
An example of such profile is presented in figure 2.17.
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Figure 2.15 – Profiles of the projection presented in figure 2.14
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Figure 2.16 – CT slice without (left) and with (right) scatter
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Figure 2.17 – Profiles of a CT slice without (blue) and with scatter (orange)
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2.7 Conclusion

In this first chapter, we have presented the basics of CT imaging. After some
generalities about x-rays in medical imaging, we presented the main interactions
between x-rays and matter, along with the respective behaviors of primary and
scattered radiation. Then, we presented the main detection technologies and the
specificity of photon counting detectors. Finally, we presented the CT reconstruction
strategies and highlighted the influence of scattered radiation on projection images
and CT slices.
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3
Scattered radiation correction: state of the art

3.1 Introduction

The problem of scattered radiation is known since the early history of x-ray
imaging, and gave rise to numerous methods which we classified into two families:
hardware-based and software-based methods. A review of scatter correction methods
can be found in [18] and [19]. The hereunder chapter gives an up-to-date but non
exhaustive personal review.

3.2 Hardware-based methods

The family of hardware-based scatter reduction methods consist in adapting the
geometry or using additional devices to reduce the amount of scatter detected.

Anti-scatter grids The most common strategy to limit detected scatter consists in
collimating the detector pixels by using anti-scatter grids. These devices absorb
photons which trajectories does not follow the lines going from the source onto the
pixels. Unfortunately, anti-scatter grids also absorb a part of the primary beam, and
let pass a part of the scattered radiation, in particular photons scattered at a very small
angle and photons which have been scattered several times and reach the detector
following a primary photon like trajectory [20].

Air-gap increase Another technique for limiting the amount of scatter detected is
to increase the air-gap between the object and the detector. With a greater air-gap, the
scattered photons have fewer probability to reach the detector such as the solid angle
covered by the detector is smaller, from the point of view of the object to be imaged
[21] [22]. However, increasing the air-gap cannot reject all the scattered photons,
and in most applications (e.g medical imaging), the CT scanner geometry cannot be
adjusted and the air-gap is not sufficient for neglecting the scatter component.
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Field of view collimation The level of scatter is directly related to the quantity of
matter which is penetrated by the x-ray beam. Fan-beam geometries are therefore
much less subject to scatter contamination than cone-beam ones. If a cone-beam
acquisition is required, scatter can still be reduced by limiting the field of view to a
given volume of interest [23]. This solution can lead to truncated data which can’t be
reconstructed with the original filtered back-projection technique [12] but alternatives
already exist [24] [25]. The problem of reconstruction with limited field-of-view is
still an open research topic.

3.3 Software-based methods

Unlike hardware-based, the group of software-based methods aims at removing
totally the scatter component. They can again be divided into several sub-families.
The first one we present in this section is the cupping artifact removal methods, which
seek to correct the major artifact induced by scatter. In a second part, we present the
emerging learning-based methods, based on machine learning strategies. The two
last ones consist in estimating the scatter map and use it to recover the primary in a
second step. While model-based methods use a physical model to recover the scatter
map, measurement-based methods use an additional device with an appropriate
algorithm.

3.3.1 Cupping artifact removal methods

A simple way to correct scattered radiation is to remove the cupping artifact it in-
duces [26] [27] [28]. In [26], the cup-shape artifact is modeled as a circularly symmetric
additive signal in the reconstructed CT slices. The disadvantage of the later is the low
accuracy of the model. It is indeed easier to compensate for scattered radiation in the
sinograms than in the CT slices, as noticed in [27], where the scatter model is defined
in the projection domain as well as in [28]. In each case, the model is iteratively fitted
as the one which gives the flattest object background in the reconstructed CT slices.
The cupping evaluation being complex, in particular for non-smooth objects, these
methods are not generally very accurate.

3.3.2 Learning-based methods

Recently, a class of scatter correction methods based on machine learning has
emerged. [29] [30] [31] [32]. They require a training dataset of couples scatter-
corrupted/scatter-free CT images in the same acquisition conditions and with similar
objects, the scatter-free images being obtained with Monte-Carlo simulations [29]
[32], a reference scatter correction method [30] or fan-beam acquisitions [31]. These
techniques reveal a great potential in term of scatter removal accuracy within negligi-
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ble computation time, but only in particular applications where the imaged object is
known to be similar to the training dataset ones.

3.3.3 Model-based methods

Model-based methods refer to as scatter correction techniques in which scatter
maps are estimated through a physical model of the acquisition. The most common
strategies use scatter-kernels while others use more complex Monte-Carlo simulations.

Scatter kernel superposition

As explained before in section 2.3.2, scatter cannot be depicted by analytical expres-
sions. The concept of scatter kernel superposition is to give a simplified deterministic
relation between primary and scatter maps in the projection domain. Scatter ker-
nels are basis functions which relate the primary signal at a pixel with the scatter
distribution on the detector induced by the pencil-beam running from the source
onto the pixel through convolution. The total scatter image is then computed as the
contributions of all the pixels and the primary image is recovered by deconvolution.

The simplest solution is the use of stationary scatter kernels, where the same basis
function is used for each pixel of the detector [33] [34]. The accuracy of the method
may be improved by modeling the scatter kernel as the product of a shape term (simi-
lar to stationary scatter kernels) and a scatter intensity one based on empirical models
[35] or an estimate of the object thickness [36]. Scatter kernels can be modeled using
double Gaussian functions [36] and are determined through Monte Carlo simulations
[36] or physical experiments [35].

[37] proposed to compute a set of primary CT slices estimates obtained with sev-
eral scatter kernel parameters. The author assumes a linear combination of these
estimates is the desired scatter-free CT slice and the optimal combination is estimated
as the one which minimizes the total variation of the CT slice. It showed good results
for metal-artifact reduction.

Recently, some authors proposed to improve the accuracy of scatter kernel super-
position by using data consistency conditions (DCC). Data consistency conditions
refers to as necessary conditions derived from the x-ray transform which have to
be satisfied. In [38], the scatter kernels parameters are optimized on-line in order to
satisfy the consistency condition. The approach presented in [39] consists in estimat-
ing a set of scatter maps obtained with different scatter kernel parameters, and the
final scatter map is estimated as the linear combination of the different scatter images
which satisfies the best the consistency condition (with the same assumption as [37]).
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The concept of scatter kernel may also be incorporated directly in a discrete recon-
struction method [40].

Scatter kernel superposition methods are known to provide good computation
speeds, in particular for the simplest case of stationary scatter kernels. The depen-
dency of these methods on the object and the acquisition geometry is a major draw-
back which can lead to incorrect scatter correction.

Monte-Carlo simulations

Monte-Carlo simulations are known to provide the most accurate scatter images
because of its ability to simulate complex stochastic processes. Monte-Carlo based
methods consist in modeling the imaged object in a preliminary reconstruction, esti-
mating the scatter sinograms by using Monte-Carlo simulations and subtract it from
the measured sinogram. The modeled object being reconstructed by scatter corrupted
images, the estimated scatter may be biased and the later three steps process has
to be iterated in order to minimize the error [41] [42]. Unfortunately, Monte-Carlo
simulations are extremely time consuming. For example, a CT scan simulation took
430 h on a single core desktop PC in [43]. This computation time can be considerably
lowered by using variance reduction techniques [42][44]: even with several iterations
of the process, [42] achieved a 2 min computation time. Another solution proposed
in [45] consists in simulating a very few number of photons, the scatter map being
fitted from the sparse simulated scatter image. They were able to estimate the scatter
map within 2 min, but with a single iteration of the process and a 16 cores computer
[42]. As for scatter kernel based methods, Monte-Carlo simulations require a good
knowledge of the object and the system geometry.

3.3.4 Measurement-based methods

Some scatter correction methods, measurement-based methods, use a physical
device to modify the x-ray beam in a way which allow to deduce the scatter map from
the measurements. The hereunder section present the beam-stop method along with
its complementary, the beam-hole method. Two strategies using a primary modulator
mask are then presented: Fourier filtering and spatial gradient minimization methods.

Beam-stop/beam-hole

The beam-stop methods use a fully-attenuating mask (typically made with lead)
placed between the source and the object, such that no primary photon can reach
the detector in pixels under the mask penumbra. Thus, the signal measured in those
regions contains only scattered radiation and the whole scatter map can be estimated
by interpolation.
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This technique generally requires a second acquisition, without the beam-stop
mask, in order to obtain a total acquisition from which one can subtract the estimated
scatter map to recover the primary images [46][47][48]. It is worth noting that errors
may be induced by a difference between the scatter maps of the two acquisitions. The
additional acquisition induces an increase of dose and acquisition time which are
undesirable issues in medical imaging. Various strategies have been proposed to limit
the increase of dose and acquisition time in CT. A simple solution is to perform beam-
stopped acquisitions on a limited number of projections and interpolate the scatter
map between those [46][47]. Another way consists in placing the beam-blockers at
the borders of the images and to simply interpolate the scatter map between those
[49][50]. Another possibility is to use a moving beam-blocker array instead of a static
one. The penumbra regions locations thus move from one projection to another and
the pixels in those regions are interpolated in order to obtain the total acquisition [51]
[52] [53][54] [55] [56][57]. A single acquisition can also be sufficient by using a half
beam-blocker, which gives an estimation of the scatter map on only the half of the
image, which is subtracted from the opposite projection image. The reconstruction
is then performed using a modified version of the FDK algorithm [58]. These single
scan beam-stop methods have the advantage to eliminate the problem of scatter map
variations between two acquisitions.

The beam-hole method is very similar. In place of a mask made with discrete
attenuating elements, the beam-hole mask is a slab drilled with discrete holes. The
signal measured in these holes can be considered as scatter-free, and the scatter signal
in these regions can be estimated by subtracting these scatter-free signals from the
total images [59][60]. The advantages of beam-hole compared to beam-stop are a
significant reduction of dose increase when two acquisitions are required and better
performances in some cases [61].

Every method cited previously were developed for energy integrating detectors,
but they can be applied on images acquired with photon counting detectors equally,
each energy bin being treated independently. A dual acquisition method using a
semi-transparent mask uses the spectral information to estimate the scatter map in
a more complex procedure than the original beam-stop [62] and has shown similar
results on experimental data [63]. It benefits from the mask transparency to limit the
difference of scatter maps between the two acquisitions.

Fourier-based primary modulation

Another class of measurement-based methods use a semi-transparent mask with
a uniform high-frequency pattern which is called primary modulator mask. Placed
between the x-ray source and the object, the mask modulates the primary image such
that its frequency spectrum is shifted in the high frequencies while the scatter com-
ponent is not affected and still contains mostly low frequencies. An high-pass filter
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can then be applied on the acquired images, resulting in the scatter-free modulated
primary images. Finally, the primary images are recovered by demodulation [64] [65]
[66].

However, this technique is hard to implement in practice. It is indeed difficult to
manufacture a mask with a perfectly uniform pattern, moreover when the pattern
frequency is high. Furthermore, whatever the mask material, its attenuation varies
according to the energy, inducing artifacts with the shape of the modulator pattern
in the projections and ring artifacts in CT. This issue can be limited by the use of
a material with a K-edge near the mean energy of the source spectrum [67] or by
beam-hardening modeling [68].

Gradient-based primary modulation

This part focuses on a class of scatter correction methods based on primary mod-
ulation in which scatter maps are estimated by solving an optimization problem.
These methods are presented in detail because they are the basis of the proposed
scatter correction method which will be presented in chapter 4. The concept has been
introduced in [69] and reused in [70] and [71] for integration-mode radiography. In
CT, each projection is treated as an independent radiograph and the projection indices
are therefore omitted in this section. We describe the basic principle, then various
formulations of the optimization problem and minimization strategies are presented.

Principle The imaging system is illustrated in figure 3.1

Source

Rotation axis

Object

Detector

Semi-transparent
primary modulator mask

θu

v

λθ

ζu,v,θ

Figure 3.1 – X-ray imaging system with a primary modulator mask

In the presence of a primary modulator mask between the source and the object,
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the measured intensity signal I t̂
u,v can be described by the following expression:

I t̂
u,v = I

p̂
u,v + Is

u,v, (3.1)

where Is
u,v is the scatter signal (lower than the one expected without the presence of a

mask) and I
p̂
u,v the modulated primary intensity depicted by:

I
p̂
u,v,θ =

∫

E
du,v(E)N0,i

u,v(E) exp
(

−
∫

l∈R

µ(λθ + lζu,v,θ , E)dl − µm(E)lm
u,v

)

dE, (3.2)

with µm being the energy-dependent LAC of material m constituting the primary
modulator and lm

u,v the length of material m crossed by the ray going from the source
onto pixel (u, v).

Aiming at an expression of the modulated primary I
p̂
u,v as a function of the un-

modulated one I
p
u,v, beam-hardening is neglected and the following approximation is

done:
I

p̂
u,v ≈ am

u,v I
p
u,v, (3.3)

where am
u,v is the transmission of the inserted modulator computed using the signal

I
p̂0

u,v (assumed to be scatter-free) measured in the presence of the mask but without
any object:

am
u,v =

I
p̂0

u,v

I0
u,v

. (3.4)

Note that some rays do not intersect the mask since it has holes and am
u,v = 1 for those

rays.

Using 3.3, one can derive the expression of the measured intensity image I t̂ ∈
R

NU NV :
I t̂ = diag(am)Ip + Is, (3.5)

and then recover the unmodulated primary intensity from I t̂ and Is with the aid of
the correction matrix C = diag(am)−1 ∈ R

NU NV×NU NV :

Ip = diag(am)−1(I t̂ − Is) (3.6)

= C(I t̂ − Is). (3.7)

The problem of compensating for the effect of the mask was solved in (3.7), assum-
ing we knew the scatter intensity image Is perfectly. We now consider an estimation of
the scatter image Ĩs with an error ε given by ε = Is − Ĩs. By developing equation (3.7),
we obtain the estimated primary intensity image Ĩp:

Ĩp = C(I t̂ − Ĩs) = C(I t̂ − Is + ε) = Ip + Cε. (3.8)
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One can observe that an error ε on the estimated scatter image induces an error
by Cε on the estimated primary image. Assuming that both the scatter map and
its estimate are smooth, the error ε is also smooth and therefore the error Cε on the
estimated primary map contains the same discontinuities as the correction matrix C.
In other words, the modulation pattern of the mask remains visible in the estimated
primary image as long as ε is non-null. Considering a primary modulator with sharp
edges, one can say that the presence of the modulation pattern increases the spatial
gradient of the estimated primary. In addition, if the primary is locally smooth (i.e
the object has weak structures), the scatter map may be estimated by minimizing the
weighted gradient of the estimated primary:

Ĩs ∈ arg min
Is∈R

NU NV

Issmooth

∥

∥

∥
W∇C(I t̂ − Is)

∥

∥

∥
, (3.9)

where ‖ • ‖ is a norm (typically ℓ1 or ℓ2), W ∈ R
2NU NV×2NU NV is a diagonal weighting

matrix and ∇ ∈ R
2NU NV×NU NV is the numerical spatial gradient of the image along

the two dimensions u and v of the detector.

Formulations of the optimization problem and minimization strategies

Scatter model In order to simplify the optimization problem, [69] proposed to
decompose images into NK patches and to consider the scatter map as a piece-wise
constant function with one single value of scatter of each one of the NK patches.
If we denote x ∈ R

NK the vector containing the scatter values of each patch and
B ∈ R

NU NV×NK an upsampling matrix, the scatter intensity image Is can be described
by:

Is = Bx. (3.10)

The idea of modeling scatter images as piece-wise constant functions was also used
in [70] and [71].

Weights As explained previously, scatter can be estimated by minimizing the
primary gradient, under the assumption that the object structures are locally smooth.
If the assumption is correct, all the discontinuities present in the estimated primary
come from the scatter estimation error and each component of the primary gradient
can be treated as equal. This is the choice made in [69], where W is the identity matrix.
However, in practice, the object structures cannot be neglected, in particular in the
neighborhood of the edges of the object. [70] proposed to solve this issue by using
the following weighting matrix:

W = diag
(

exp(−|∇ Ĩp|)
)

, (3.11)

where ∇ Ĩp ∈ R
2NU NV is an estimate of the primary gradient obtained by running the

method a first time with an identity weighting matrix.
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Problem formulation and optimization strategies In [69], the scatter values xk

are estimated independently for each patch by minimizing the ℓ1 norm of the primary
gradient:

x̃k ∈ arg min
xk∈R

∥

∥

∥
∇C(I t̂ − Bx)

∥

∥

∥

1
. (3.12)

This local-based formulation highly simplifies the minimization strategy as it is a
simple mono-variable optimization problem. They chose to solve it by means of a
line-search algorithm (golden cut section search). The scatter values are then assigned
to the center pixels of the patches and the scatter image is filled by linear interpolation.
The final scatter image is generated by applying a low-pass filter to the interpolated
one.

Unlike the latter, [70] proposed a global formulation of the problem, where the
scatter values are estimated all together by solving the following least square problem:

x̃ ∈ arg min
x∈R

NK

∥

∥

∥
W∇C(I t̂ − Bx)

∥

∥

∥

2

2
+ γ‖∇Bx‖2

2. (3.13)

The second term in 3.13 commands a low variation of the scatter values in neighbor
patches. Note that the differential operator in [70] is not exactly the gradient operator.
The use of the ℓ2 norm simplifies the minimization compared to the ℓ1 one because
of its differentiability and allows the use of methods such as conjugate gradient or
Gauss-Seidel. In the study, the latter is used.

3.4 Conclusion and motivation of the thesis

We have shown in this chapter that numerous scatter correction techniques are
available in the literature for x-ray CT. Hardware-based methods does not require
any processing, but no strategy is able to reject totally the scatter component. As the
quantification of the scatter induced cupping artifact is a complex problem, methods
based on this artifact assessment are not very accurate. Strategies based on machine
learning highly depend on the object and the geometry and require learning data sets
based on images very similar to the ones to be processed. Scatter-kernel superposition
methods are generally fast but also suffer from object and geometry dependency,
even though solutions have been proposed to tackle this issue. Scatter correction
through Monte-Carlo simulations have demonstrated a very good accuracy but the
huge computation time is a major drawback. Beam-stop methods provide good
results but with a substantial dose and acquisition time increase (two acquisitions)
or with a truncation of data (single acquisition). Fourier-based primary modulation
is not relevant due to the difficulty to manufacture a perfectly uniform mask and to
beam-hardening. Finally, even if the latter issue remains problematic, gradient-based
primary modulation methods are very promising due to their theoretically low object
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dependency. The global minimization of the cost function is much less time consum-
ing than the local one if it is easy to minimize, like the one based on the ℓ2 norm.
However, the ℓ1 norm cost function is less sensitive to the object structures and gives
better results.

The context of this thesis is spectral CT, using photon counting detectors. Most of
the previously described methods were developed for conventional CT, with energy-
integrating detectors. If the majority of them can be applied separately in each energy
bin of a spectral CT acquisition, the additional spectral information may also improve
the performances of some of them. In particular, it may open possibilities for limit-
ing the beam-hardening induced by the primary modulator mask in gradient-based
methods, which is the major drawback of these strategies. Additionally, we aim at
benefiting from both the low object dependency of the ℓ1 norm and the minimization
easiness of the ℓ2 one. Finally, we would like a smooth three dimensional scatter
model allowing to apply the cost function directly on the final scatter map without
the need of a posterior smoothing step, and able to treat the projection images all
together in order to benefit from the redundancy of the information between adjacent
projections.

In the next chapter, a gradient-based method using a primary modulator mask
and adapted to multi-energy imaging, which is the product of this PhD work, is
presented.
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4
Scatter correction for spectral CT using a primary

modulator mask

4.1 Introduction

We have presented a review of scatter correction methods in chapter 3, and high-
lighted the family of gradient-based primary modulation methods. This chapter
reminds the principle of the latter family of methods while introducing our notations
in section 4.2 and then presents the main methodological contributions of this PhD
thesis: a scatter correction method adapted to spectral CT using a primary modulator
mask. First, we introduce in section 4.3 the correction matrix which compensates
for the mask attenuation by using the spectral information. A three dimensional
scatter model based on B-splines is then introduced in section 4.4, which reduces the
dimensionality of the scatter estimation problem. In section 4.5, specific weighting
matrices are introduced to relax the assumption of locally smooth primary maps
(see section 3.3.4). The complete cost function with a regularization term is then
introduced in section 4.6 along with the optimization strategy we opted for in section
4.8.

4.2 Gradient-based primary modulation with a photon

counting detector

The objective of this section is to remind the basic principle of a gradient-based
primary modulation scatter correction method (presented in section 3.3.4), and to
introduce the notations we used in the rest of this document.

The imaging system is the one presented in figure 3.1. We denote p̂ ∈ R
NB NU NV NΘ

the modulated primary transmission spectral sinogram in the presence of a primary
modulator mask between the source and the object and we assume that there exists
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a matrix C ∈ R
NB NU NV NΘ×NB NU NV NΘ which compensates for the mask attenuation.

The unmodulated primary image p ∈ R
NB NU NV NΘ can then be retrieved with the

following expression:
p = Cp̂. (4.1)

In the presence of scattered radiation, we measure the modulated total image
t̂ ∈ R

NB NU NV NΘ which can be depicted as the sum of the modulated primary and the
scatter component s ∈ R

NB NU NV NΘ :

t̂ = p̂ + s. (4.2)

Note that, in this case, the measured scatter is expected to be lower than the one we
would have measured without any modulator mask, due to its attenuation.

Given an estimate of the scatter map s̃ and by combining equations 4.1 and 4.2, an
estimate of the primary image p̃ can be obtained with the following expression:

p̃ = C(t̂ − s̃). (4.3)

As explained in section 3.3.4, the modulation pattern remains visible into the
estimated primary as long as the estimated scatter s̃ is wrong. If the modulator mask
has sharp edges, and assuming the scatter map is smooth and the primary image is
locally smooth, the scatter image is the one which minimizes the weighted gradient
of the estimated primary:

s̃ ∈ arg min
s∈R

NB NU NV NΘ

s smooth

‖W∇C(t̂ − s)‖, (4.4)

where ‖ • ‖ is a norm (ℓ1 would be optimal), W ∈ R
2NB NU NV NΘ×2NB NU NV NΘ a diagonal

weighting matrix and ∇ ∈ R
2NB NU NV NΘ×NB NU NV NΘ the numerical spatial gradient of

the image along the two dimensions u and v of the detector.

In the next section, we present the correction matrix C, which compensates for the
mask attenuation by taking into account the spectral information provided by the
photon counting detector.
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4.3 Compensation for the mask attenuation

4.3.1 Theory

According to chapter 2, the primary transmission factor at pixel position (u, v)
and energy bin b without the presence of a primary modulator mask is:

pb,u,v =
N

p
b,u,v

N0
b,u,v

(4.5)

=
dT

b,u,vN
p,i
u,v

dT
b,u,vN0,i

u,v
, (4.6)

where N
p
b,u,v and N0

b,u,v are the numbers of detected primary photons with and without
an object respectively, db,u,v ∈ R

NE is the discretized response of the energy bin b of
the detector and N

p,i
u,v the discretized spectrum of primary radiation incident on the

detector at pixel position (u, v) (in number of photons). According to equation 2.7,
the element of this spectrum at discretized energy e can be modeled as:

N
p,i
e,u,v = N0,i

e,u,v exp

(

−
∫

l∈R

µe(λθ + lζu,v,θ)dl

)

. (4.7)

In the presence of a primary modulator mask, the latter becomes:

N
p̂,i
e,u,v = N0,i

e,u,v exp

(

−
∫

l∈R

µe(λθ + lζu,v,θ)dl − µm
e lm

u,v

)

, (4.8)

where µm ∈ R
NE and lm

u,v ∈ R are the linear attenuation of material m constituting the
primary modulator mask and the length of material m crossed by the ray going from
the source onto pixel (u, v), respectively.

The primary transmission factor p ∈ R
NB NU NV can then be expressed in a vectorial

form:

pu,v = diag(N0
u,v)

−1N
p
u,v (4.9)

= diag(N0
u,v)

−1Du,v

(

N0,i
u,v ⊙ exp

(

−
∫

l∈R

µ(λθ + lζu,v,θ)dl
)

)

, (4.10)

⊙ representing the Hadamard product and Du,v the detector response matrix of pixel
(u, v). In the same way, the vectorial expression of the modulated transmission factor
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p̂ ∈ R
NB NU NV is:

p̂u,v = diag(N0
u,v)

−1Du,v

(

N0,i
u,v ⊙ exp

(

−
∫

l∈R

µ(λθ + lζu,v,θ)dl − µmlm
u,v

)

)

(4.11)

= diag(N0
u,v)

−1Du,vdiag
(

exp(−µmlm
u,v)
)

(

N0,i
u,v ⊙ exp

(

−
∫

l∈R

µ(λθ + lζu,v,θ)dl
)

)

.

(4.12)

From equations 4.10 and 4.12, and assuming that the DRM is square (NB = NE)
and invertible, one can retrieve the unmodulated primary pu,v from the modulated
one p̂u,v:

pu,v = diag(N0
u,v)

−1Du,vdiag
(

exp(µmlm
u,v)
)

D−1
u,vdiag(N0

u,v)p̂u,v (4.13)

= Cu,v p̂u,v, (4.14)

Cu,v being the correction matrix associated with pixel (u, v) which is depicted by the
following expression:

Cu,v = diag(N0
u,v)

−1Du,vdiag
(

exp(µmlm
u,v)
)

D−1
u,vdiag(N0

u,v). (4.15)

This matrix can be seen as a change of basis from the physical attenuation of the mask
to the measure domain.

In order to analyse the shape of this correction matrix, we reuse the simulated
detector response matrix presented in section 2.4 and we bin its lines, as shown in
figure 4.1, where the left part represents the original version of a detector response
matrix with NB = 8 energy bins and NE >> NB, and the right one its re-binned
version with NE = BB = 8 which is non singular.

Using the square version of the DRM, it is possible to compute a correction matrix
with its analytical expression 4.15. An analytical correction matrix corresponding to
a pixel attenuated by 5 mm of a graphite primary modulator mask is presented in
figure 4.2 along with the profiles of its three first rows.

Unfortunately, the pixel dependent detector response matrices of a real detector
are not known in practice which prevents the use of this analytical solution. In order
to overcome this difficulty, we propose a model for the lines of the correction matrix.
The next section presents this solution.

4.3.2 Model-based estimation

By observing analytical correction matrices computed according to 4.15, we reuse
the following parametric model (introduced in [72] and inspired by [62]) for the rows
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Figure 4.1 – Detector response matrix with NB = 8 (left) and its rebinned version with
NE = NB (right)
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Figure 4.2 – Analytical correction matrix of a pixel attenuated by the primary modula-
tor mask (left) and some of its horizontal profiles (right)

of the correction matrices:

cb,u,v(b
′) = h(b′ − b)

(

c0
b,u,vδ(b′ − b) + c1

b,u,v exp(−c2
b,u,v(b

′ − b))
)

, (4.16)

with cb,u,v ∈ R
NB the row of Cu,v corresponding to energy bin b, [c0

b,u,v, c1
b,u,v, c2

b,u,v] a
triplet of scalar parameters and h and δ the Heaviside and Dirac functions.

The model parameters for each pixel and energy bin may be estimated through
an off-line calibration procedure using a scatter-free dataset of Ncal pairs of spectral
transmission images with various attenuation levels: with and without primary
modulator mask (p̂k and pk respectively):
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[c̃0
b,u,v, c̃1

b,u,v, c̃2
b,u,v] ∈ arg min

[c0
b,u,v ,c1

b,u,v ,c2
b,u,v]∈R3

Ncal

∑
k=1

(pk,b,u,v − cT
b,u,v p̂k,u,v)

2. (4.17)

In our work, the minimization was performed with the Nelder-Mead’s downhill
simplex algorithm [73].

4.4 Scatter model

We have seen in 2.3.2 that scatter maps in CT are smooth in the two spatial direc-
tions of the flat-panel detector and in the angular direction of the projections. As well
as in [69] and [70], we seek for a scatter model able to provide a representation of
scatter with just a few parameters (in order to lower the dimensionality of the prob-
lem), the difference being that we want a better accuracy than a piece-wise constant
function.

In this work, we opted for a scatter model using three dimensional cubic B-spline
basis functions, which are commonly used for modelling smooth maps [74], and we
recover the scatter map knowing the NK parameters xb,k for each energy bin with the
following expression:

sb,u,v,θ =
NK

∑
k=1

βk(u, v, θ)xb,k, (4.18)

with βk(u, v, θ) the k-th B-spline basis function evaluated at pixel (u, v) and projection
θ.

The definition of the B-spline basis function is

βk(u, v, θ) = β2
(

u − uk

δu

)

β2
(

v − vk

δv

)

β2
(

θ − θk

δθ

)

, (4.19)

where (uk, vk, θk) and (δu, δv, δθ) are the B-splines knots positions and spacings re-
spectively, and β2(x) the cubic B-spline basis function

As one can see on figure 4.3, representing the B-spline bases of order 0 to 4, the
B-spline bases of order higher than one are defined from the 0-th order one:

βn = β0 ∗ βn−1 (4.20)

In particular, the cubic B-spline basis function β2(x) centered on zero is given by
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Figure 4.3 – B-spline basis functions of order 0, 1, 2 and 3

the following expression:

β2(x) = (β0 ∗ β0 ∗ β0)(x) =























1
2(x2 + 3x + 9

4), ∀x ∈ [− 3
2 ,− 1

2 [,
3
4 − x2, ∀x ∈ [− 1

2 , 1
2 [,

1
2(x2 − 3x + 9

4), ∀x ∈ [ 1
2 , 3

2 [,
0, ∀x ∈]− ∞,− 3

2 [∪[ 3
2 ,+∞[.

(4.21)

From order 2, the basis function associated with a given knot is non-null at an
adjacent knot position. This implies the necessity to define B-spline knots outside
the image. This situation is illustrated on figure 4.4, where the red dots represent
the B-spline knots. However, this illustration is not correct in the angular dimension.
Indeed, the continuity of the data between the first and the last projection requires
also a continuity of the estimated scatter map and the angular knots are therefore
placed in a circle.

The number of parameters NK required to represent the scatter map in one energy
bin corresponds to the number of B-spline knots chosen, and depends on the spacing
between two knots in each of the three dimensions. The choice of the optimal spacing
in each direction is discussed in section 5.4. In our study, the number of parameters
NK will be varied between 126 and 600.

We denote B ∈ R
NB NU NV NΘ×NB NK the matrix containing the B-spline basis func-

tions and x the vector of the model parameters xb,k. The scatter map is then obtained
from x with:

s = Bx. (4.22)

One can notice that the particular case of 0-th order B-spline basis functions provide
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Figure 4.4 – Illustration of the B-spline knots distribution in a regular lattice.

piece-wise constant scatter maps and is therefore equivalent to the scatter model used
in [69], [70] and [71].

4.5 Weighting according to mask and object structures

As explained in 3.3.4, the object structures cannot be neglected, in particular in the
neighbourhood of the edges of the object. The use of two specific weighting matrices
in the cost function tackles this issue.

The primary gradient evaluated in pixels out of the modulator mask edges (either
in the holes or in regions with constant thickness) contains only information about
the object structures, and nothing about the persistence of the mask footprint in the
primary map. As a consequence, we only need to evaluate the spatial gradient of the
primary map on the mask edges. This can be done by weighting the spatial gradient
of the primary map by the spatial gradient of the mask image, which can be achieved
using the following weighting matrix:

W1 = diag(∇p̂0), (4.23)
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Figure 4.5 – Illustration of the effects of weighting matrices: left and right columns
represent respectively the gradient in the u and v directions. First row is without
weighting, second with W1, third with W2 and the fourth with both W1 and W2.
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where p̂0 is the image with the mask but without any object. Figure 4.5 illustrates
the effect of W1 on the gradient of the scatter-corrupted measured image after the
application of the correction matrix: left column represents the gradient image in the
u-direction and the right one the gradient in the v-direction, while the first and second
rows represent the gradient without and with the multiplication by W1, respectively.
The weighting matrix isolates the pixels of interest but the object structures, which
should not be accounted for in the cost function, remain predominant in particular at
the edges of the object.

This implies the necessity to introduce an additional weighting matrix which
lowers the impact of the object structures. In this work, we reuse the penalty weighting
introduced in [70]:

W2 = diag
(

exp(−η|∇p̃|)
)

, (4.24)

with η a positive scalar parameter and ∇p̃ ∈ R
2NB NU NV NΘ an estimation of the pri-

mary gradient map from the measured sinogram t̂.

In [70], the unknown object gradient ∇p̃ was estimated as the gradient of a first
estimation of the primary image, obtained by neglecting the object structures (with
W2 = I). Unfortunately, this initial estimation of the primary map will contain the
mask footprint since scatter is imperfectly estimated and it will be considered as object
structure. In this case, the effect of W2 would be counterproductive. In our work, the
primary gradient is directly estimated from the gradient of the measure corrected
for the modulator mask, ∇Ct̂. Indeed, the primary gradient is directly related to the
gradient of the corrected measured image:

∇p = ∇Ct̂ −∇Cs. (4.25)

Neglecting the spatial gradient of the scatter map, the primary gradient is equal to the
gradient of the corrected measured image in pixels where there is no mask structure
(i.e. where ‖∇p̂0

u,v‖ = 0). The primary gradient in pixels containing mask structure
is then linearly interpolated. Third row of figure 4.5 shows the effect of the use of W2:
the weighted gradient in regions where the object is spatially structured is smaller
than in regions where the object is less structured, e.g in the brain.

The full benefit of the weighting matrices is more evident on the last row of figure
4.5, where almost the totality of the weighted gradient comes from the scatter induced
bias.

4.6 Cost function

Following the B-spline model detailed in section 4.4, the scatter estimation comes
down to the estimation of the B-spline coefficients at each energy bin. In order to

54

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI102/these.pdf 
© [O. Pivot], [2019], INSA de Lyon, tous droits réservés



improve the conditioning of this estimation problem, we choose to add a regulariza-
tion term to the cost function which gives the following estimation of the scatter map
parameters:

x̃ ∈ arg min
x∈R

NB NK

F (x) +R(x), (4.26)

with
— F (x) =

∥

∥W1W2∇C(t̂ − Bx)
∥

∥

1,σ,
where W1 and W2 are the weighting matrices described above and ‖ · ‖1,σ is a
smooth approximation of the ℓ1 norm for this data-fidelity term [75] defined as

‖y‖1,σ = ∑
n

√

y2
n + σ2 − σ, (4.27)

with σ a strictly positive smoothing scalar parameter. More information about
this approximation of the ℓ1 norm can be found in appendix A.

— R(x) = ‖Tx‖2
2,

where T is the diagonal matrix which energy-dependent elements τb control
the strength of Tikhonov’s regularization in each energy bin.

From the estimate of the scatter map parameters x̃, the primary map is finally
deduced by incorporating 4.22 into 4.3:

p̃ = C(t̂ − Bx̃). (4.28)

4.7 Scalar parameters to be tuned

We have presented the whole cost function that we designed to solve the problem.
This cost function is based on positive scalar parameters which have to be tuned. We
present hereunder an exhaustive list of these parameters along with their description:

— η: parameter controlling the strength of the weighting according to the object
structures.

— σ: smoothing parameter of the ℓ1 norm approximation.
— τb: energy dependent Tikhonov regularization parameters.
— δu: B-spline spacing in the u direction.
— δv: B-spline spacing in the v direction.
— δθ: B-spline spacing in the θ direction.

4.8 Optimization

We propose to solve 4.26 using Newton’s method, starting with an initial guess
x(0) = 0 and building new estimates with the following update rule:

x(n+1) = x(n) + δx(n), (4.29)
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where δx(n) ∈ R
NB NK denotes Newton’s step at iteration (n). Newton’s step is

obtained solving
(

H[F ](x(n)) + TTT

)

δx(n) = −∇[F ](x(n))− TTTx(n), (4.30)

with ∇[F ](x(n)) and H[F ](x(n)) the gradient and the Hessian of the data-fidelity
term F at iteration (n), respectively. Their expressions are given by:

{

∇[F ](x(n)) = AT M(n)(b − Ax(n))

H[F ](x(n)) = AT(M(n) − N(n))A
(4.31)

where










































b = W1W2∇Cm
A = W1W2∇CB

M(n) = diag

(

(

(b − Ax(n))2 + σ2
)− 1

2

)

N(n) = diag

(

(b − Ax(n))2
(

(b − Ax(n))2 + σ2
)− 3

2

)

.

(4.32)

In practice, a very few iterations of equation 4.29 were sufficient to recover the scatter
map in our experiments which indicates that the cost function is nearly quadratic.

4.9 Conclusion

In this chapter, we presented a scatter correction method using a semi-transparent
primary modulator mask adapted to multi-energy computed tomography imaging.
We have first reminded the principle of a gradient-based primary modulation scatter
correction method according to the literature, but applied to images acquired with
a photon counting detector. We have then presented the correction matrix, which
compensates for the mask attenuation with limited beam-hardening and a three
dimensional scatter model based on B-splines lowering the dimensionality of the
problem. Specific weightings according to the mask and the object structures were
then depicted. They relax the assumption of locally smooths primary images. We
also presented a regularized cost function to minimize, with a data fidelity term
based on a smooth approximation of the ℓ1 norm. Finally, after having listed the
scalar parameters which have to be tuned prior to the application of the method, we
presented the optimization algorithm that we used for minimizing the cost function:
Newton’s method. This method is tested on realistic simulated images in the next
chapter.
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5
Evaluation of the method on simulated data

5.1 Introduction

We presented in chapter 4 a scatter correction method based on the use of a semi-
transparent primary modulator mask and adapted to spectral computed tomography
imaging. The hereunder chapter is dedicated to the evaluation of this method on
realistic simulated data. First, the simulation set-up is presented in section 5.2. The
correction matrix is then evaluated according to various mask materials and number
of energy bins in section 5.3. Section 5.4 aims at evaluating the B-splines based scatter
model according to several spacings and orders. Finally, the results obtained with the
full method are presented in section 5.5 and discussed in section 5.6.

5.2 Simulation set-up

A medical cone-beam CT scanner was simulated with the geometry described
in figure 5.1. The simulated spectrum corresponds to a tungsten x-ray tube with an
anode angle of 30◦ operating at 120 kV and 0.2 mAs.

An energy-resolved photon counting detector (PCD) with 1024 × 1024 pixels with
a pitch of 400 µm and a 3 mm thick CdTe sensor has been simulated using an inter-
nal software, mimicking an existing energy-resolved detector [11]. The pixels were
binned such that one pixel regroups 16 detector pixels (4 × 4) and NU = NV = 256.
The same simulated DRM was used for all pixels, which is also binned in the energy
domain according to table 5.1.

Pile-up effects were not simulated. Poisson noise was simulated from the images
of the expected number of photons, except the images without object which were
assumed to be noise free. Images without object are the white image, the mask image
and the calibration images used for the estimation of the correction matrix. We simu-
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Figure 5.1 – Simulation set-up

lated a CT scan of the head of the ICRP realistic anthropomorphic phantom [76] with
360 deterministic primary projections and 36 scatter projections using fixed-forced
detection with one million particles per projection, both with Gate (version 8.0, Liv-
ermore physics list) [77]. The scatter maps were then interpolated with quadratic
B-splines in order to obtain the 360 projections corresponding to the simulated pri-
mary maps.

The primary modulator mask is a slab made with a given material and with a
thickness from 0.1 mm to 5 mm (the design of the mask is discussed in section 5.3),
drilled by 3 mm wide square holes every 5 mm. The transmission image p̂0 of a 5 mm
graphite mask at energy bin 2 is shown in figure 5.2.

5.3 Correction matrix evaluation

The objective of this section is to evaluate the correction matrix presented in 4.3, ac-
cording to three different low-Z materials for the primary modulator mask : graphite
(carbon, Z = 6), aluminum (Z = 13) and copper (Z = 29), and to several energy bin
numbers NB.
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b Energy range
1 30 keV to 40 keV
2 40 keV to 50 keV
3 50 keV to 60 keV
4 60 keV to 72 keV
5 72 keV to 84 keV
6 84 keV to 96 keV
7 96 keV to 108 keV
8 108 keV to 120 keV

Table 5.1 – Relation between bin index and energy range for NB = 8
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Figure 5.2 – Transmission image of the mask at energy bin 2

Calibration datasets The estimation of the correction matrix requires a calibration
dataset. In this work, we opted for a set of acquisitions with thickness combinations
of polymethyl-methacrylate (PMMA) and aluminum slabs. The thicknesses are pre-
sented in table 5.2, resulting in a dataset of Ncal = 20 calibration couples of images
for each case.

The analysis of the influence of the mask material was made with NB = 8 energy
bins while the influence of the energy bins number was studied using a mask made
with graphite. For the latter, we tested eight cases (NB = 1, 2, 4, 6, 8, 12, 16, 24) and
the relations between the bin indices and the corresponding energy range are given
in appendix B.

Results The quantitative evaluation of the correction matrix performance according
to the mask material was made with the mean relative error per energy bin (MREb)
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lPMMA lAl

0 cm 0 mm
2 cm 1 mm
4 cm
6 cm
8 cm
10 cm
12 cm
14 cm
16 cm
18 cm

Table 5.2 – Thicknesses of PMMA and aluminum for the calibration dataset

on the noise-free and scatter-free calibration database itself:

MREb = 100 × 1
NcalNU NV

Ncal

∑
k=1

NU

∑
u=1

NV

∑
v=1

|pk,b,u,v − cT
b,u,v p̂k,u,v|

pk,b,u,v
, (5.1)

where pk and p̂k are the images of the k-st calibration acquisition, without any mask
and with the mask respectively, and cb,u,v the row of the correction matrix of pixel
(u, v) corresponding to energy bin b.

For the study of the influence of the number of energy bins NB, we used the mean
relative error defined as:

MRE = 100 × 1
NcalNBNU NV

Ncal

∑
k=1

NU

∑
u=1

NB

∑
b=1

NV

∑
v=1

|pk,b,u,v − cT
b,u,v p̂k,u,v|

pk,b,u,v
. (5.2)

Figure 5.3 shows the mean relative errors induced by the correction matrix on the
calibration dataset as a function of the mask material, while figure 5.4 presents the
error as a function of the energy bins number NB.

Discussion The inaccuracy of the compensation for the mask attenuation comes
from the inaccuracy of the model itself (which may be improved) and the beam-
hardening effect induced by the variations of the linear attenuation coefficient of the
mask material along the energy range of the source spectrum. In order to minimize
the latter, materials with slowly-variant attenuation in the diagnostic energy range
(i.e. low-Z materials such that carbon, aluminum or copper) have to be favored and
materials with K-edge have to be avoided.

The thickness of the primary modulator must be chosen according to several
issues. First, the parallax effect increases with the mask thickness, and tends to lower
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Figure 5.3 – Mean relative error per energy bins NB according to the mask material
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Figure 5.4 – Mean relative error according to the number of energy bins NB

the sharpness of the mask edges seen in the images. Then, the intensity of the mask
pattern visible in the estimated primary when the estimation of the scatter map is not
correct increases with the mask thickness (see equation 3.8). It means that the sensitiv-
ity of the scatter estimation is bad when the mask attenuation is too low (i.e. the mask
is too thin). Another issue concerns the variations of the noise level in the images. The
statistical noise in pixels attenuated by the mask is greater than in unattenuated ones
(for equivalent magnitudes of object attenuation). A great spatial variability of statisti-
cal noise may be a problem and the mask thickness has therefore to be limited. Finally,
even using a mask material with a slowly variant LAC, the beam-hardening effect will
degrade the accuracy of the mask attenuation compensation. Considering all these
issues, a trade-off must be found and we proposed to design the mask thickness such
that it stops around 10 − 20 % of photons emitted by the source in each energy bin.
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The thickness chosen for the mask is 5 mm for a graphite primary modulator mask,
3 mm for a aluminum one and 0.2 mm for a copper one. The resulting transmission
factors presented in figure 5.5 show that the transmission factor of graphite is almost
constant over the energy range, unlike the one of aluminum and, a fortiori, copper.
This will lead to great variations of the correction matrix induced error along the
energy for aluminum and copper, as confirmed in figure 5.3, where the error at low
energy is significantly larger for aluminum and copper.
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Figure 5.5 – Transmission factors of the mask made with graphite (blue), aluminum
(orange) and copper (green)

The correction matrix, computed according to the Dirac-negative-exponential
model, gives satisfying results in terms of compensation for the graphite primary
modulator mask attenuation. However, the compensation accuracy highly depends
on the mask material, in particular at low energy. This leads to the conclusion that
the best solution for the mask material is graphite.

To conclude on the design of the primary modulator mask, one can say that the
mask must have as many edges as possible in order to have enough pixels with mask
edges. As a consequence, the mask pattern should be as small as possible, considering
the mechanical properties of the mask material and its thickness. Unfortunately,
graphite has far worse mechanical properties than aluminum and copper and the
pattern cannot be as small as it would be with aluminum or copper.

The inaccuracy of the correction matrix also depends on the number of energy
bins, as one can see on figure 5.4 where the minimal error is between two and twelve
energy bins. The error increase for low number of energy bins is mostly caused by the
beam-hardening effect in the modulator mask while the increase for high numbers
of energy bins is mainly due to the degradation of the model accuracy. In addition,
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it is worth noting that this study was performed using noise-free data. At fixed
noise acquisition conditions, the noise in a given energy bin will be greater in thinner
energy bins resulting in greater errors caused by statistical noise. Considering these
issues, we opted for the case NB = 8 energy bins for the rest of this thesis, which is an
acceptable trade-off between beam-hardening, correction matrix model inaccuracy,
noise levels in each energy bin and the will to demonstrate the ability of the method
to provide accurate spectral images.

5.4 Scatter model evaluation

The objective of the following section is to evaluate the B-spline based scatter
model introduced in 4.4 according to the B-splines order and the spacings between
two knots. In this study, we have used noise-free images.

Estimation of the model parameters In order to compare the simulated scatter
images with their representation using B-spline basis functions, we need an estimation
procedure for the optimal B-spline coefficients at a given energy bin b. We chose to
estimate them as follows:

x̃ ∈ arg min
x∈R

NB NK

‖s − Bx‖2
2. (5.3)

Results The evaluation of the scatter model requires an error function able to quan-
tify its inaccuracy. We opted for a criterion based on the estimated primary: the mean
relative primary error (MRE) which is computed with the following expression:

MRE = 100 × 1
NBNU NV NΘ

NB

∑
b=1

NU

∑
u=1

NV

∑
v=1

NΘ

∑
θ=1

|pb,u,v,θ − p̃b,u,v,θ|
pb,u,v,θ

, (5.4)

where the estimated primary p̃ is given by:

p̃ = t − Bx̃. (5.5)

In addition, we quantify the error dispersion using the mean deviation (MD) com-
puted as:

MD =
1

NBNU NV NΘ

NB

∑
b=1

NU

∑
u=1

NV

∑
v=1

NΘ

∑
θ=1

|MRE − 100 × |pb,u,v,θ − p̃b,u,v,θ|
pb,u,v,θ

|. (5.6)

The mean relative errors along with the mean deviations according to the B-splines
order are given in table 5.3 at fixed detector and angular spacings: δu = δv = 128 pixels
and δθ = 15◦.
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Figure 5.6 – Profiles of two projections at energy bins 2 (center) and 6 (right). Reference
and estimated scatter are in red and purple respectively, total is in blue and reference
and estimated primary are in orange and green respectively.

B-spline order MRE (%) MD (%)
0 0.74 0.93
1 0.69 0.93
2 0.50 0.67
3 0.49 0.66

Table 5.3 – Mean relative errors and mean deviations according to the B-spline order

Table 5.4 presents the relative errors and mean deviations using 2-nd order
B-splines for several angular spacings from 5◦ to 25◦ at fixed detector spacings
(δu = δv = 128 pixels). In addition, table 5.5 shows the relative errors and mean
deviations, still using 2-nd order B-splines, for several detector spacings from 16 to
256 pixels at fixed angular spacing δθ = 15◦.

Figure 5.6 shows profiles of the transmission factors for two projections where the
estimated scatter and primary are computed according to 5.3 and 5.5 with the second
order B-splines, δu = δv = 128 pixels and δθ = 15◦. The central column corresponds
to energy bin 2 and the right one to bin 6.
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δθ MRE (%) MD (%)
5◦ 0.48 0.65

10◦ 0.48 0.65
15◦ 0.50 0.67
20◦ 0.53 0.71
25◦ 1.08 1.56

Table 5.4 – Mean relative errors and mean deviations according to the angular B-spline
spacings δθ at fixed detector spacings δu = δv = 128 pixels.

δu,δv MRE (%) MD (%)
16 pixels 0.42 0.57
32 pixels 0.42 0.57
64 pixels 0.42 0.57

128 pixels 0.50 0.67
256 pixels 0.58 0.78

Table 5.5 – Mean relative errors and mean deviations according to the detector B-spline
spacings δu and δv at fixed angular spacing δθ = 15◦.

Discussion The larger errors and deviations obtained for orders 0 and 1 (table 5.3)
were expected as they do not allow a smooth representation of scatter maps. There is
however almost no improvement with order 3 B-splines compared to order 2 ones.
Since the B-spline matrix B is sparser for lower order, order 2 B-spline basis functions
are the best choice for the scatter model. The relative error according to the angular
spacing (table 5.4) is almost stable up to 20◦ and is significantly larger for δθ = 25◦, as
well as for the mean deviation. In addition, the influence of the detector spacing up
to 64 pixels is negligible and the error obtained for δu = δv = 128 pixels remains low,
as its mean deviation.

The objective of the model being to represent accurate scatter images with as few
parameters as possible, a trade-off must be found according to an acceptable error
magnitude. In this work, we arbitrary consider as satisfactory enough the B-spline
orders and spacings which associated mean error and mean deviation are not greater
than 0.5 % and 0.7 % respectively. According to the latter, we consider order 2 B-
splines with δu = δv = 128 pixels and δθ = 15◦ as a good choice for the scatter model.

Observing the reference and estimated scatter on figure 5.6, it seems that the spac-
ings are too large to fit perfectly with the small variations of scatter. However, the final
objective is not to recover the scatter map but the primary one. In figure 5.6, reference
and estimated primary profiles fit very well even in regions where the reference and
estimated scatter does not fit (e.g near pixels 30 and 200 of the first projection or near
pixels 60 and 230 of the second one). A sensitive (but very small) bias can only be seen
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near pixel 120 of the first projection and at low energy, even if the bias on scatter is low.

Finally, the accuracy of a B-spline based model for representing scatter maps
highly depends on their order and the spacings between two knots. We have also seen
that, even if accurate scatter maps require a lot of knots, the recovery of an accurate
primary map is possible with the use of a very few knots. This was the case on the
simulated head data. However, in case of lower air-gap or greater object attenuation,
the high frequencies of scatter will increase and more B-spline knots may be necessary.
In this work, the B-spline knots are regularly distributed but their position may be
optimized in order to improve the model accuracy without increasing the number of
B-spline knots.

5.5 Results

The proposed scatter correction method has been tested on the simulated dataset
presented in 5.2 using a 5 mm thick primary modulator mask. The scatter model is the
one chosen previously, with δu = δv = 128 pixels and δθ = 15◦. The scalar parameters
η (defined in equation 4.24) and σ (defined in equation 4.27) were tuned with a grid
search and the regularization parameters τb (defined in the diagonal matrix T in
equation 4.26) manually. The tuning of these parameters is discussed later in section
5.6. Their values are given in table 5.6.

Parameter Value
η 2 × 100

σ 3 × 10−3

τ1 5 × 100

τ2 2 × 10−1

τ3 1 × 10−1

τ4 8 × 10−2

τ5 5 × 10−2

τ6 2 × 10−2

τ7 1 × 10−2

τ8 1 × 10−2

δu 128 pixels
δv 128 pixels
δθ 15◦

Table 5.6 – Scalar parameters for the simulation case

We performed fourteen iterations of equation 4.29, starting with a null initial guess
x(0) = 0. Figure 5.7 shows the evolution of the cost function as a function of the
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iterations. The following results are taken at iteration n = 14.
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Figure 5.7 – Evolution of the cost function according to the iterations

Total, reference primary and estimated primary attenuation images at two projec-
tion angles are presented in figure 5.8. The left and right parts of images represent
respectively low and high energy bins (2 and 6). Profiles of these projections are
shown as transmission factors in figure 5.9 at low (center) and high energy (right).
The measured, corrected and total transmission factors are the blue, orange and green
curves, respectively. Reference and estimated primary signals are plotted in red and
purple, while reference and estimated scatter are in brown and pink, respectively.

Three pixels of interest (POI) corresponding to various levels of attenuation have
been isolated. Their associated attenuation spectra are plotted on figure 5.10, where
the blue curves represent total attenuation while the orange and green ones represent
the reference and estimated primary, respectively.

For the quantitative evaluation of the method, we used the mean relative error
(MRE) on the transmission sinograms. For example, the mean relative error associated
with the estimated primary is given by the following expression:

MRE p̃ = 100 × 1
NBNU NV NΘ

NB

∑
b=1

NU

∑
u=1

NV

∑
v=1

NΘ

∑
θ=1

| p̄b,u,v,θ − p̃b,u,v,θ|
p̄b,u,v,θ

, (5.7)

where p̄ is the noise-free primary transmission sinogram. Again, we use the mean
deviation (MD) for quantifying the error dispersion. For the estimation primary, its
expression is:

MD p̃ =
1

NBNU NV NΘ

NB

∑
b=1

NU

∑
u=1

NV

∑
v=1

NΘ

∑
θ=1

|MRE p̃ − 100 × | p̄b,u,v,θ − p̃b,u,v,θ|
p̄b,u,v,θ

|. (5.8)
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Figure 5.8 – Two projections of total (left), primary (center) and estimated primary
(right) attenuation at low energy (LE, bin 2) and high energy (HE, bin 6)
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Figure 5.9 – Profiles of two projections at energy bins 2 (center) and 6 (right).
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Figure 5.10 – Attenuation spectra of three pixels of interest (POI)

MRE for total, reference primary and estimated primary are given in table 5.7
along with the corresponding mean error deviations MD. The evolution of the MRE
as a function of the iterations is presented in figure 5.11 (blue curve). For comparison,
we also plotted the error associated with the reference primary MREp and the one
corresponding to the ℓ2 norm instead of the Charbonnier function in the data-fidelity
term of the cost function.

MRE (%) MD (%)
Total 10.7 13.2

Reference primary 1.96 1.74
Estimated primary 2.88 2.84

Table 5.7 – Mean relative errors and mean error deviations of total, reference primary
and estimated primary transmission sinograms

We also use the mean relative error per energy bin MREb and the mean relative
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Figure 5.11 – Evolution of the mean relative error associated with the estimated
primary according to the iterations (blue) and errors associated with the reference
primary (orange) and with the estimated primary using ℓ2 norm instead of our ℓ1

norm approximation (green).

error per projection angle MREθ given by:

MRE
p̃
b =

1
NU NV NΘ

NU

∑
u=1

NV

∑
v=1

NΘ

∑
θ=1

| p̄b,u,v,θ − p̃b,u,v,θ|
p̄b,u,v,θ

, (5.9)

and

MRE
p̃
θ =

1
NBNU NV

NB

∑
b=1

NU

∑
u=1

NV

∑
v=1

| p̄b,u,v,θ − p̃b,u,v,θ|
p̄b,u,v,θ

, (5.10)

respectively. In addition, we use the mean error deviation per energy bin MDb and
the mean error deviation per projection angle MDθ in order to evaluate the error
dispersion. They are computed according to the following expressions:

MD
p̃
b =

1
NU NV NΘ

NU

∑
u=1

NV

∑
v=1

NΘ

∑
θ=1

|MRE
p̃
b − 100 × | p̄b,u,v,θ − p̃b,u,v,θ|

p̄b,u,v,θ
|, (5.11)

and

MD
p̃
θ =

1
NBNU NV

NB

∑
b=1

NU

∑
u=1

NV

∑
v=1

|MRE
p̃
θ − 100 × | p̄b,u,v,θ − p̃b,u,v,θ|

p̄b,u,v,θ
|. (5.12)

The latter errors and deviations are presented in figure 5.12, where the left subfigures
represent the errors and deviations per energy bin and the right one the errors and
deviations per projection angle, and the top ones represent the errors while the bottom
ones represent the deviations.
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Figure 5.12 – Mean relative error per energy bin (top-left) and per projection angle
(top-right) ; Mean deviation per energy bin (bottom-left) and per projection angle
(bottom-right)

The attenuation sinograms at each energy bin were then reconstructed with the
Reconstruction Toolkit (RTK) [78] using Feldkamp’s filtered backprojection algorithm
[12]. A CT slice of the reconstructed volumes f t, f p and f p̃ (obtained with the total,
reference primary and estimated one, respectively) is shown on figure 5.13. As in
5.8, the left part of images corresponds to a low energy (bin 2) and the right one
to a high energy (bin 6). Profiles of these CT slices are shown in figure 5.14. First
row corresponds to the horizontal central profiles and second one to vertical central
profiles. Left column is at low energy (bin 2) and right one at high energy (bin 6).
In each subfigure, total image is in blue while reference and estimated primary are
respectively in orange and green. Finally, two regions of interest (ROI) with a uniform
attenuation were selected corresponding to particular biological tissues: the brain
(ROI1) and the cranium spongiosa (ROI2) and both their mean values and mean
deviations were evaluated. For example, the mean spectra f

p̃,ROI1
b associated with the
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estimated primary and ROI1 is computed according to the following expression:

f
p̃,ROI1
b =

1
card(Ω1) ∑

i∈Ω1

f
p̃
b,i, (5.13)

where Ω1 represent the set of voxels i corresponding to ROI1. In addition, its corre-
sponding mean deviation MD p̃,ROI1 is computed as:

MD
p̃,ROI1
b =

1
card(Ω1) ∑

i∈Ω1

| f
p̃,ROI1
b − f

p̃
b,i|. (5.14)

Figure 5.15 shows the mean spectra of both ROI (top) and the corresponding devia-
tions (bottom).

5.6 Discussion

The scatter correction method proposed in this work has shown impressive perfor-
mances on the data set simulated with the ICRP realistic anthropomorphic phantom.
When comparing the total attenuation projections to the reference and estimated
primary ones on figure 5.8, the contrast improvement is remarkable and similar to
the one obtained on the reference primary projection images. This is particularly the
case at low energy due to the higher SPR in lower energy-bins. The noise increase in
estimated primary compared to the reference is significant, in particular at low energy.
Regarding the transmission profiles of figure 5.9, one can observe a remarkable fit
between reference and estimated primary, even in highly attenuated regions. The
primary modulator pattern is clearly visible on the measured transmission curve
(blue), unlike the total curve (green). The orange curve, representing the corrected
measured transmission also contains the modulator pattern where the attenuation is
high but it is not the case anymore in the estimated primary. This illustrates well the
basic principle of the method.

The data-fidelity term of our cost function is not based on the scatter map itself,
but on the resulting estimated primary. This is the reason why the scatter bias near
pixel 130 of the first projection at low energy is lower than the one obtained in 5.4,
where the data-fidelity term targeted the reference scatter map. The result is a better
fit of the primary curves in this highly attenuated region. At high energy, the scat-
ter bias is significant but the reference and the estimate fit well and the modulator
pattern is not clearly visible in the latter. This is due to the combination of two
facts. First, at high energy, the mask attenuation is lower that at low energy and the
method sensitivity is reduced. Second, the object attenuation is low and a given bias
on scatter induces a relatively weaker mask pattern footprint in the estimated primary.
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Figure 5.13 – CT slice of total (left), primary (center) and estimated primary (right)
attenuation at low energy (LE, bin 2) and high energy (HE, bin 6)
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Figure 5.14 – Profiles of the CT slice
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Figure 5.15 – Top: mean spectra of brain (ROI1) and cranium spongiosa (ROI2) ;
Bottom: mean deviations of ROI1 and ROI2

Regarding the spectra of pixels of interest of figure 5.10, one can see an impressive
fit between reference and estimated primary, even if a weak bias can be seen in the
lower energy bins. This is confirmed by the plot of the energy dependent mean
relative error (left part of figure 5.12). Indeed, the green curve of estimated primary
error is just above the reference primary one (orange curve) representing the statistical
noise (which is, as expected, greater at low and high energy because of the fewer
detected photons). The right plot, showing the error according to the projection angle,
shows that the error is regularly distributed along the θ direction.

The observation of the CT slices of figure 5.13 give the same conclusions as for
the projections in terms of contrast improvement and noise degradation. In addition,
one can note that the scatter correction method has efficiently removed the cupping
artifact without inducing other visible artifacts. The correction of the cupping artifact
is more visible in the profiles plotted in figure 5.14. However, these profiles indicate a
slight underestimation of the linear attenuation in highly attenuated regions at each
energy bin, but also in less attenuated regions at high energy. This is confirmed by
the plots of the mean spectra of ROI1 and ROI2 (figure 5.15), the brain (moderately
attenuating) having a small bias at high energy and the cranium (more attenuating) a
small bias in the whole energy range.
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A qualitative analysis of the evolution of the estimated primary shows there is no
clearly visible difference between the images from the first iteration. In the same way,
this qualitative analysis does not reveal any improvement by using the Charbonnier
approximation of ℓ1 norm compared to the ℓ2 ones. However, the evolution of the
cost function according to the iterations (figure 5.7) shows that the algorithm does not
reach convergence at iteration one yet. Indeed, the evolution stops to be perceptible
on the cost function only from n = 2 iterations. The quantitative analysis of the algo-
rithm convergence is confirmed by the evolution of the mean relative error associated
with the estimated primary (blue curve of figure 5.11) which is also almost constant
from the second iteration. In addition, the mean relative error associated with the
primary estimated using the ℓ2 norm (green) curve is greater than the one obtained
with the Charbonnier approximation of ℓ1 norm, which highlights the advantage of
the use of such functions. Moreover, the high similarity between the blue curves of
figures 5.7 and 5.11 indicates that the cost function we designed (equation 4.26) is a
good indicator of the presence of scatter in the images.

The method requires to tune some scalar parameters. We already discussed about
the tuning of the B-spline spacings (section 5.4). The strengths of the structure weight-
ing and the ℓ1 norm smoothing are controlled by η and σ respectively. In order to
determine their optimal values, we opted for a grid-search and the optimal values
were the ones which minimized the difference between the estimated primary maps
and the simulated reference ones. As the structure weighting used in this work is
exponential (see equation 4.24), small variations of the parameter η induce great
variations of dynamics in the weighting matrix W2 and its value has therefore to be
tuned quite precisely. On the contrary, the influence of the smoothing parameter σ is
not very sensitive and small variations of its value does not clearly affect the results
provided by the method.

The tuning of the energy-dependent Tikhonov regularization parameters may also
be done with a grid-search. Unfortunately, the non-diagonal behavior of the correction
matrix make them interdependent, and a grid-search for these eight parameters would
be too time consuming. In order to tackle this issue, we opted for a manual tuning,
with again the objective of minimizing the difference between the estimated primary
maps and the simulated reference ones. The sensitivity of the method according to
these parameters depends on the conditioning of the method which is related to the
statistical noise, the mask attenuation, and the ratio between the number of pixels
at mask edges and the number of knots in the B-spline scatter model. Indeed, as
explained in section 3.3.4, an error ε = s − s̃ induces an error of Cε on the estimated
primary. It means that the bias ε can be detected if the bias gradient ∇Cε is larger
than the gradient of the statistical noise and the weight associated with a given B-
spline knot can be estimated precisely if the mask attenuation and the number of edge
pixels in the area of this knot are large enough. In the simulation case presented in
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this chapter, the choice of the Tikhonov parameters had a significant impact on the
results, such as the primary images were biased with wrongly chosen parameters.
This regularization can be seen as a prior information on the imaged object, and it
increases considerably the object dependency of the method.

5.7 Conclusion

In this chapter, we have evaluated the proposed method on realistic simulated
data. The correction matrix was able to correctly compensate for the mask attenuation,
in particular with a number of energy bins comprised between two and twelve and
with a primary modulator mask made of graphite. The mean relative error induced
by a 5 mm thick graphite mask in the case of a photon counting detector with 8 energy
bins was only around 0.03%. We have shown that a scatter model based on B-splines
functions enables an acceptable representation of scatter with a very few parameters
and the corresponding primary maps are very accurate. For the evaluation of the
full chain method, we used second order B-splines and spacings of 128 pixels in the
two directions of the detector and 15◦ in the angular direction of the projections. This
particular model induced a mean relative error of 0.5% on the estimated primary.
Finally, the evaluation of the proposed method has shown very good results both
in the projection and the object domains in terms of scatter correction. The contrast
has been well improved and the scatter induced cupping artifact has been removed,
without inducing new visible artifacts. The spectra of three pixels and two regions of
interest have shown that the results are correct even in the energy domain. From an
initial mean error of 10.7%, we were able to lower it to 2.88%, which is close to the
error caused by statistical noise. However, we pointed out the difficulty to tune the
energy-dependent regularization parameters. The next chapter will be dedicated to
the evaluation of the method on experimental images.
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6
Evaluation of the method on experimental data

6.1 Introduction

The scatter correction method presented in chapter 4 has been successfully vali-
dated on a simulated data set in chapter 5. The objective of the following chapter is to
test the proposed method on experimental images of two distinct phantoms acquired
with a commercial spectral photon counting detector. We present the experimental
setup in section 6.2. The correction matrix is then tested in section 6.3 and the optimal
B-spline spacings are evaluated in section 6.4. Finally, the results obtained with the
method are registered in section 6.5 and discussed in section 6.6.

6.2 Experimental set-up

The physical experiments were performed using a parallel fan-beam set-up, shown
in figure 6.1. The system is made of a tungsten x-ray source, powered with 120 kV.
The imaged object is placed on a vertical translation table (allowing us to acquire
several slices).

The detector is a line-detector composed of 5 commercial detectors ME100 (De-
tection Technology) for a total of 640 pixels with a pitch of 0.8 mm. The ME100
has 64 energy-bins of about 2 keV width, which are binned into NB = 8 energy-
bins. The energy range of each energy bin of the detector is presented in table 6.1.
The five ME100s are arranged side by side with a gap of around 1.6 mm between
each other. We have therefore two missing pixels between two ME100 which are
linearly interpolated resulting in a detector with NU = 640 + 2 × 4 = 648 pixels. In
addition, some pixels failed during the acquisitions, and are also linearly interpolated.

The primary modulator mask is a 5 mm thick graphite slab drilled with 3 mm
diameter holes each 5 mm. The support of the mask is attached to the translation
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Figure 6.1 – Picture of the parallel-beam experimental set-up

Bin index Energy range (keV)
1 30.8 − 41.8
2 41.8 − 52.8
3 52.8 − 63.8
4 63.8 − 74.8
5 74.8 − 85.8
6 85.8 − 96.8
7 96.8 − 107.8
8 107.8 − 121

Table 6.1 – Relation between energy-bin and photon energy in physical experiments

table in order to mimic a cone-beam case. The pattern was designed with the support
of the manufacturer, with the objective of having as many holes as possible, and the
holes being as small as possible. Pictures of the mask can be found in figure 6.2: a
general view on the left and a zoom on the geometry details on the right.

We imaged two phantoms. The first one is the CIRS phantom model 062M, a
33 × 27 cm2 water-equivalent ellipsoid with tissue-equivalent plastic inserts of 3 cm
diameter. A picture of this phantom is presented in figure 6.3.

The second phantom is a realistic human head phantom: the RANDO phantom.
It is made with a real human skull (from a dead body), resin and air. Figure 6.4 shows
a picture of this phantom.

The image without object p0 and the mask image p̂0 were acquired with 20 mAs
while the 180 projections of the tomographic acquisitions of the phantoms (with
NV = 16) were acquired with 2 mAs. For each phantom, three CT-scans were ac-
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Primary modulator mask

3mm

5m
m

Mask geometry details

Figure 6.2 – Pictures of the primary modulator mask: general view (left) and details
(right)

Figure 6.3 – Picture of the CIRS phantom

Figure 6.4 – Picture of the RANDO phantom
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quired: two with only the collimation of the detector (with and without the primary
modulator mask, giving respectively t̂ and t) and a third without mask and with two
additive collimators (one placed at the level of the source and another just before the
object). The latter acquisition is considered as a scatter-free reference acquisition p for
the rest of the study.

Figure 6.5 shows a white image (without object nor mask) before interpolation
between the ME100s (top) and the mean relative difference MRD between two white
images p0,1 and p0,2 acquired in the same conditions but with an interval of about
one minute (bottom). The latter is computed as follows:

MRDu = 100 × 1
NB

NB

∑
b=1

|p0,1
b,u − p0,2

b,u|
p0,1

b,u

. (6.1)

6.3 Correction matrix evaluation

Calibration dataset In addition, calibration images with 20 mAs were acquired
to estimate C, using slabs of polypropylene (PP) and aluminum (Al) with varying
thicknesses. The various combinations of PP and Al in the Ncal = 10 calibration
acquisitions are registered in table 6.2.

Acquisition index lPP (mm) lAl (mm)
1 0 0
2 50 0
3 100 0
4 150 0
5 50 6
6 100 6
7 150 6
8 50 10
9 100 10
10 150 10

Table 6.2 – Combinations of polypropylene (PP) and aluminum (Al) slabs thicknesses
used for the calibration acquisition

Results The correction matrix was estimated using the previously described dataset.
In order to evaluate its ability to compensate for the mask attenuation, we have tested
it on the calibration database. For a quantitative evaluation of the correction matrix
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Figure 6.5 – White image before interpolation (top) and mean relative difference
between two white images acquired one minute apart (bottom).

performance, we opted for the mean relative error per energy bin MREb and mean
relative error per calibration acquisition MREk. Their expressions are given by:

MREb = 100 × 1
NU NV Ncal

NU

∑
u=1

NV

∑
v=1

Ncal

∑
k=1

|pk,b,u,v − cT
b,u,v p̂k,u,v|

pk,b,u,v
, (6.2)

and:

MREk = 100 × 1
NBNU NV

NB

∑
b=1

NU

∑
u=1

NV

∑
v=1

|pk,b,u,v − cT
b,u,v p̂k,u,v|

pk,b,u,v
. (6.3)

Again, we use the mean error deviations to evaluate the error dispersion. They are
computed as follows:

MDb =
1

NU NV Ncal

NU

∑
u=1

NV

∑
v=1

Ncal

∑
k=1

|MREb − 100 ×
|pk,b,u,v − cT

b,u,v p̂k,u,v|
pk,b,u,v

|, (6.4)
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and:

MDk =
1

NBNU NV

NB

∑
b=1

NU

∑
u=1

NV

∑
v=1

|MREk − 100 ×
|pk,b,u,v − cT

b,u,v p̂k,u,v|
pk,b,u,v

|. (6.5)

Table 6.3 presents the errors and deviations associated with the eight energy bins
and table 6.4 presents the ones associated with the ten calibration acquisitions.

Bin index MREb (%) MDb (%)
1 0.84 0.54
2 1.4 0.87
3 0.79 0.48
4 0.63 0.40
5 0.60 0.38
6 0.60 0.38
7 0.68 0.42
8 0.91 0.57

Table 6.3 – Mean relative error of the correction matrix per energy bin and the corre-
sponding mean deviation

Acquisition index MREk (%) MDk (%)
1 0.67 0.40
2 0.48 0.29
3 0.46 0.29
4 0.73 0.47
5 0.93 0.55
6 0.67 0.39
7 0.92 0.59
8 1.01 0.61
9 1.05 0.64

10 1.12 0.75

Table 6.4 – Mean relative error of the correction matrix per calibration acquisition and
the corresponding mean deviation

Discussion The correction matrix accuracy was successfully demonstrated through
its evaluation on the calibration database. The associated mean relative error remains
below 1.5 % at each energy bin (table 6.3), like the simulation case. Regarding the
error associated with the calibration acquisition (table 6.4), one can say that the
compensation for the mask attenuation is effective in the whole attenuation range.
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However, an exposure of 20 mAs was not sufficient for sufficiently reducing the
statistical noise in attenuated acquisitions, in particular in low and high energy bins
in which fewer photons are detected compared to the medium ones. Moreover, even
with collimation, residual scatter may be detected (mostly at low energy). These
issues may explain the larger error observed in the experimental case than in the
simulation one. In particular, the error increase at high energy can be linked with
the statistical noise as well as the error increase at high attenuation, while the error
increase at low energy may be caused by the combination of greater statistical noise,
greater SPR and greater beam-hardening (which was the only cause of error in the
simulation case).

6.4 B-spline spacings selection

Estimation of the model parameters Before running the method, it is necessary
to choose the B-spline spacings. As we made only NV = 16 fan-beam acquisitions,
scatter is almost constant in this direction, which is confirmed by the fact that at
fixed energy bin and projection angle, no variation can be seen on the total images
along the v-direction. We chose therefore to force the estimated scatter to be constant
in this direction. The angular spacings were set to δθ = 10◦ for implementation
convenience which is reasonable according to the simulated results and the literature
about scatter behavior (see 2.3). Unlike the v-direction, the B-spline spacing in the
u-direction impacts the method. In order to select the B-spline spacings δu adapted to
the experimental cases, we performed a first estimation s̃ of the scatter maps by using
the total sinogram t and the reference primary one p, and to compare the resulting
estimated primary p̃ with the measured one p. The scatter map is first estimated as
follows:

x̃ = arg min
x∈R

NB NK

‖p − (t − Bx)‖2
2, (6.6)

and the estimated primary is recovered with p̃ = t − Bx̃.

Results In this study, we present the cases δu = 128 and δu = 256 pixels for the
RANDO and δu = 64 and δu = 128 for the CIRS. Attenuation profiles of a projection
are shown in figure 6.6, where the blue curves represent the total attenuation, the or-
ange ones the reference primary acquisition and the green and red ones the estimated
primary obtained with the two distinct spacings.

Discussion Regarding the attenuation profiles of figure 6.6, it is clear that the B-
spline spacing in the u-direction has an influence on the ability to recover an accept-
able primary map. Indeed, for the RANDO case, a spacing of δu = 256 induces an
overestimation of the primary at the edges of the object, and an underestimation near

83

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI102/these.pdf 
© [O. Pivot], [2019], INSA de Lyon, tous droits réservés



100 200 300 400 500 600
Pixels

0

1

2

3

4

5

6

7

At
te

nu
at

io
n 

(u
ni

tle
ss

)
RANDO

t
p
p ( u = 128)
p ( u = 256)

100 200 300 400 500 600
Pixels

0

1

2

3

4

5

6

At
te

nu
at

io
n 

(u
ni

tle
ss

)

CIRS
t
p
p ( u = 64)
p ( u = 128)

Figure 6.6 – Attenuation profiles of total, reference primary and estimated primary
with various spacings (left: RANDO, right: CIRS)

its center. However, the curve corresponding to δu = 128 pixels fits well with the
reference primary. The CIRS case requires a smaller spacing as the primary curve fits,
on the right part, only with the estimated primary obtained with δu = 64 pixels. The
necessity to set more knots in the CIRS case is consistent with our knowledge about
scatter behavior, which displays more spatial variations with the object attenuation.
It is indeed on the most attenuated part of the CIRS profile that the curve of estimated
primary with δu = 128 does not fit with the reference primary one.

6.5 Results

The method has been tested on the experimental datasets, with the parameters
registered in table 6.5.

After scatter correction, some values of the estimated primary are negative (in the
most attenuated regions), which has no physical meaning. We replace those values
by the median value of the neighbors pixels. In addition, a median filter is applied on
each projection at each energy bin.

An attenuation projection of the RANDO scan is shown in figure 6.7, where the
left part represents energy bin 2 and the right one energy bin 6. The top, center and
bottom images refer to the total attenuation, the reference primary and the estimated
primary, respectively. The corresponding central profiles are plotted in figure 6.8, the
blue curves representing the total attenuation, the orange ones the reference primary
and the green ones the estimated primary. An attenuation sinogram is also shown in
figure 6.9. Total, reference and estimated primary are respectively on the left, in the
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Parameter CIRS RANDO
η 1 × 101 1 × 101

σ 1 × 10−4 1 × 10−4

τ1 1 × 10−6 1 × 10−6

τ2 1 × 10−5 6 × 10−7

τ3 4 × 10−5 4 × 10−7

τ4 7 × 10−5 2 × 10−7

τ5 8 × 10−5 8 × 10−8

τ6 2 × 10−4 6 × 10−8

τ7 5 × 10−4 2 × 10−8

τ8 5 × 10−4 1 × 10−8

δu 64 pixels 128 pixels
δv 64 pixels 128 pixels
δθ 10◦ 10◦

Table 6.5 – Scalar parameters for the CIRS and RANDO test cases

center and on the right. Again, the left parts represent energy bin 2 and the right ones
energy bin 6.

As for the RANDO case, a projection of the CIRS acquisition is shown in figure
6.10 and the corresponding central profiles in figure 6.11. Sinograms are presented in
figure 6.12.

Three pixels of interest (POI) have been isolated in each of the cases and their spec-
tra are shown in figures 6.13 (RANDO) and 6.14 (CIRS). For both cases, the selected
pixels have growing attenuation to cover almost the whole attenuation range of the
datasets. The blue curves represent the total spectra, the orange ones the reference
primary and the green ones the estimated primary.

The attenuation sinograms at each energy bin were then reconstructed with the
Reconstruction Toolkit (RTK) [78] using the fan-beam filtered backprojection algo-
rithm.

A CT slice of the RANDO head is shown in figure 6.15, corresponding to total
(left), reference (center) and estimated primary (right). The corresponding profiles
are presented in figure 6.16, where the blue, orange and green curves represent re-
spectively the total, reference and estimated primary reconstructed volumes. The left
column represents energy bin 2 and he right one energy bin 6. The vertical profiles
(top) correspond to voxel index 163 and the horizontal ones (bottom) to voxel index
127.
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Figure 6.7 – Attenuation projection of the RANDO case: total (top), reference primary
(center) and estimated primary (bottom) at two energy bins (left: bin 2, right: bin 6)
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Figure 6.8 – Attenuation profiles of the RANDO case: total, reference primary and
estimated primary at energy bins 2 (left) and 6 (right)
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Figure 6.9 – Attenuation sinograms of the RANDO case: total (left), reference primary
(center) and estimated primary (right) at two energy bins (left: bin 2, right: bin 6)
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Figure 6.10 – Attenuation projection of the CIRS case: total (top), reference primary
(center) and estimated primary (bottom) at two energy bins (left: bin 3, right: bin 5)
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Figure 6.11 – Attenuation profiles of the CIRS case: total, reference primary and
estimated primary at energy bins 2 (left) and 6 (right)
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Figure 6.12 – Attenuation sinograms of the CIRS case: total (left), reference primary
(center) and estimated primary (right) at two energy bins (left: bin 2, right: bin 6)
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Figure 6.13 – Attenuation spectra of total, reference primary and estimated primary
for different pixels of interest (POI) in the RANDO case.
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Figure 6.14 – Attenuation spectra of total, reference primary and estimated primary
for different pixels of interest (POI) in the CIRS case.
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Figure 6.15 – CT slice of the RANDO head. Left: total, center: reference primary and
right: estimated primary. Left parts of images: energy bin 2, right parts: energy bin 6.
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Figure 6.16 – Profiles of the RANDO CT slice (top: vertical profile (column index 163),
bottom: horizontal profiles (row index 127); left: energy bin 2, right: energy-bin 6)
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In the same way, figures 6.17 and 6.18 show a CT slice of the CIRS phantom and
two profiles: a vertical one corresponding to voxel index 223 (top) and an horizontal
one corresponding to voxel index 148 (bottom). Again, left subfigures represent
energy bin 2 and right ones energy bin 6.
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Figure 6.17 – CT slice of the CIRS phantom. Left: total, center: reference primary and
right: estimated primary. Left parts of images: energy bin 2, right parts: energy bin 6.

The background ellipsoid of the CIRS phantom and the seventeen inserts were
segmented resulting in eighteen regions of interest (ROI), which positions are shown
in figure 6.19. The mean spectra and mean deviations (calculated according to equa-
tions 5.13 and 5.14) of regions of interest 8 and 9 are shown in figure 6.20. The mean
spectra of each ROI are presented in appendix C.

6.6 Discussion

Projection images of figures 6.7 and 6.10, as well as attenuation sinograms of
figures 6.9 and 6.12 show an impressive increase of contrast in the projection domain
due to the proposed method. This is particularly obvious on the sinogram of the
CIRS phantom at low energy (where the SPR is the largest): almost no structure can
be distinguished in the scatter corrupted total image. On the contrary, the internal
structures caused by the inserts are equally visible in the reference and estimated
sinograms. The observation of the attenuation profiles of figures 6.8 and 6.11 confirms
that the estimated primary fits well with the reference primary. In addition, one can
remark a significant increase of statistical noise. This is particularly visible at low
energy and high attenuation. The total sinogram contains the noises associated with
both the primary and the scattered radiations. When we subtract the scatter estimate
from the total sinogram, we obtain the estimated primary which still contains both
noises, unlike the reference primary. As a result, the signal-to-noise ratio (SNR) of
a pure primary image is expected to be greater than the one of a primary estimated
from a scatter corrupted sinogram. Furthermore, the effect is exacerbated by the pres-
ence of the primary modulator mask, which lowers the primary levels and therefore
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Figure 6.18 – Profiles of the CIRS CT slice (top: vertical profile (column index 223),
bottom: horizontal profiles (row index 148); left: energy bin 2, right: energy-bin 6)
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Figure 6.19 – Regions of interest locations in the CIRS phantom
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Figure 6.20 – Top: mean spectra of ROI8 and ROI9 ; Bottom: mean deviations of ROI8
and ROI9
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decreases the SNR of the total sinogram. It is also worth noting that the sinograms
display strong vertical stripes, in particular in total and estimated primary images.
We could not find a satisfying explanation for this behavior.

The spectra of pixels of interest in figures 6.13 and 6.14 show the accuracy of the
method in the energy domain. Indeed, the estimated primary fits very well with the
reference at low and medium attenuation. However, the spectra of highly attenuated
pixels (POI3 of the RANDO dataset and POI2 and POI3 of the CIRS one) reveal a
significant bias which is caused in part by statistical noise.

The contrast enhancement allowed by the method is confirmed by the observa-
tion of the CT slices of figures 6.15 and 6.17. In particular, every insert of the CIRS
phantom can be detected in scatter corrected images, unlike in scatter corrupted ones,
where the inserts which attenuation is close to the ellipsoid background cannot be
distinguished. Strong ring artifacts are present in the total and estimated primary
images corresponding to the vertical stripes observed in the sinograms. Shading
artifacts are also present in the estimated primary slice of the CIRS case, between
highly attenuating inserts. However, they are also visible into the reference primary.
It means that they are induced by the beam-hardening or that there is residual scatter
in the reference primary.

The profiles of figures 6.16 and 6.18 indicate a good quantitative accuracy of the
method, except in the region of the rotation center. In addition, the cupping artifact,
significant in the total images of the CIRS case, was correctly removed.

The mean spectra of the eighteen regions of interest show a good quantitative
accuracy in the energy domain, even in highly attenuated inserts (e.g. regions of
interest 9 and 10) and weakly attenuated ones (e.g. regions of interest 8 and 14).
However, the mean spectra of the estimated primary of the central insert (ROI 18)
does not fit with the reference primary one. This can be linked to the strong ring
artifacts in this region.

As for the simulation case, we tuned the scalar parameters η (defined in equa-
tion 4.24) and σ (defined in equation 4.27) with a grid search (with the objective
of minimizing the norm of the difference between the reference and estimated pri-
mary), and the regularization parameters τb (defined in the diagonal matrix T in
equation 4.26) manually (with the same objective). Again, the impact of the regular-
ization parameters were significant, in particular for the CIRS case. Because of its
great SPR, a small variation on the scatter map induces a great one on the estimate
primary image.
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6.7 Conclusion

We have seen in section 6.2 that some pixels of the ME100 detector suffer from
instability. However, we successfully validated the correction matrix in section 6.3.
We have then evaluated the optimal B-spline spacings for each of the two imaged
phantoms in section 6.4, and concluded that angular spacings of 10◦ were optimal for
both cases, while u-direction spacings of 128 and 64 pixels were the best choice for the
RANDO and the CIRS phantoms respectively. The evaluation of the whole method
on these datasets in section 6.5 have shown very good results in terms of contrast
enhancement and cupping artifact removal. In particular for the CIRS case, where the
scatter to primary ratio was particularly high. In addition, the mean spectra of the
background and the seventeen inserts of the CIRS phantom indicate a good accuracy
in the energy domain. As for the simulated case, we noticed the difficulty to tune the
Tikhonov regularization parameters in section 6.6. However, strong vertical stripes in
the sinograms and ring artifacts in the reconstructed CT slices have been observed.
The next chapter tries to tackle this issue.
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7
Ring artifact correction

7.1 Introduction

Chapter 6 presented the evaluation of the method on experimental data acquired
with two phantoms. The results on both of them were satisfactory but strong vertical
stripes were observed in the sinograms, as well as ring artifacts in the reconstructed
slices. The present chapter shows some ring artifacts correction methods we imple-
mented (section 7.2) and the results we obtained with each of them (section 7.3). Then,
we discuss in section 7.4.

7.2 Methods

At the borders of the 32 pixels crystals of the ME100 detectors, pixels count less
photons than at the center. This phenomenon is clearly visible on the white image on
the top of figure 6.5. Moreover, the bottom subfigure indicates these pixels are not
stable and vary with parameters we were not able to identify. This instability induces
a variation in the measured attenuation, in particular in uncollimated acquisitions
and leads to the vertical stripes in the projections and the ring artifacts noticed in the
later section. Moreover, the interpolation between two ME100 is done using these
defect pixels, resulting in some significantly wide stripes (up to 4 pixels). The fact
that some stripes are several pixels wide is a major difficulty for the ring artifacts
correction. Another strong limitation is the fact that the central insert of the CIRS
phantom is close to the rotation center, resulting in a projection in the sinograms very
similar to stripes.

By using a discrete reconstruction method which takes into account the defect
pixels, it may be possible to remove the ring artifacts [79]. However, in the case of an
analytical reconstruction, a dedicated ring correction method has to be implemented.
Several ring artifact correction methods exist in the literature. They can be divided
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into three groups: hardware-based, projection-based and object-based methods. The
first one consists in moving the detector in order to blur the variations of the detector
response. Projection-based ring correction methods aim at correcting sinograms be-
fore the reconstruction process, by removing the vertical stripes. The third group is
related to post-processing on the reconstructed images, usually rebinned into polar
coordinates in order to convert the rings into stripes.

In our context, an hardware-based correction was not possible, as it requires a
specific device for moving the detector. An object-based correction method has been
tested [80], but gave unsatisfactory results due to two issues. First, the method re-
quires a coordinate transformation between Cartesian to polar, which induce errors,
in particular in regions away from the rotation center. The second issue is linked with
the number of projection angles acquired in the CT scan: only 180 projections were
acquired, resulting in wave-shaped reconstruction artifacts hindering the removal of
stripes. Aiming at correcting the ring artifacts observed in the reconstructed images,
we propose to compare some projection-based correction methods. These methods
take as input the attenuation sinograms and not the transmission ones. This is the
reason why we proposed to correct the ring artifacts after applying the scatter correc-
tion method.

For each of the seven tested methods, we denote g the input ring corrupted attenu-
ation sinogram and gCk the sinogram corrected with the k-st method. In addition, for
the methods using an error model, this error (associated with ring correction method
k) is denoted qCk.

Methods four, five, six and seven are original ones, inspired by [81], [82] and [83].

The first method is based on wavelet filtering and is described in [84].

The second one solves the problem formulated in [81]. It states that the error is
additive and does not depend on the projection angle:

gC2
u,θ = gu,θ + qC2

u . (7.1)

Knowing the pixel dependent error qC2 ∈ R
NU , one can recover the corrected sino-

gram gC2:
gC2 = g + UqC2, (7.2)

with U ∈ R
NU NΘ×NU the matrix which maps the NU correction values onto the com-

plete sinogram and the pixel dependent error to be estimated. The error is estimated
by minimizing the u-direction gradient of the sinogram, under the constraint that the
error is small:

q̃C2 = arg min
qC2∈R

NU

‖∇U(g + UqC2)‖2
2 + λ‖qC2‖2

2, (7.3)
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where ∇U ∈ R
NU NΘ×NU NΘ is the matrix performing the spacial gradient in the u-

direction.

The third method considers a pixel and projection dependent error on the sino-
grams. The model is presented in [82] and states that:

gC3 = g + qC3, (7.4)

with qC3 ∈ R
NU NΘ the pixel and projection dependent error which is again estimated

by minimizing the u-direction gradient of the sinogram:

q̃C3 = arg min
qC3∈R

NU NΘ

‖∇U(g + qC3)‖2
2 + λ‖qC3‖2

2. (7.5)

The fourth method considers a pixel dependent multiplicative error (as in [83]):

gC4
u,θ = gu,θqC4

u . (7.6)

The corrected sinogram is then recovered from the error qC4 ∈ R
NU with:

gC4 = diag(g)UqC4. (7.7)

Again, the error is estimated as the one that minimizes the gradient of the sinogram
in the u-direction, the error being close to one:

q̃C4 = arg min
qC4∈R

NU

‖∇Udiag(g)UqC4‖2
2 + λ‖IqC4 − 1‖2

2, (7.8)

1 ∈ R
NU being a vector of ones.

In the same way as the third method, the fifth one is the generalization of the
pixel dependent multiplicative error model to pixel and projection angle dependent
multiplicative model:

gC5
u,θ = gu,θqC5

u,θ. (7.9)

With the error qC5 ∈ R
NU NΘ , one can recover the corrected sinogram with the follow-

ing:
gC5 = diag(g)qC5. (7.10)

The error is then estimated with:

q̃C5 = arg min
qC5∈R

NU NΘ

‖∇Udiag(g)qC5‖2
2 + λ‖IqC5 − 1‖2

2, (7.11)

1 ∈ R
NU NΘ being another vector of ones.
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The last two methods are the same as the second and fourth, except that the gradi-
ent in the u-direction is not applied on each projection angle but only on the sum of
the sinogram along the projections.

The sixth method seeks for the error as follows:

q̃C6 = arg min
qC6∈R

NU

‖∇US(g + UqC6)‖2
2 + λ‖qC6‖2

2, (7.12)

S ∈ R
NU×NU NΘ being the matrix summing the projections along the θ-direction and

∇U ∈ R
NU×NU modified u-direction gradient matrix.

Finally, the seventh method estimates the error with:

q̃C7 = arg min
qC7∈R

NU

‖∇USdiag(g)UqC7‖2
2 + λ‖IqC7 − 1‖2

21. (7.13)

For each method, the scalar parameter is determined manually as the one which
removes the most stripes without blurring the object structures, in particular the
central insert of the CIRS phantom. The linear systems of methods two and three can
be solved with an analytical formula [81][82], but the conjugate gradient was used
for every method in this work. After the correction with additive error models, the
unattenuated pixels (where there is no object) were set to zero.

7.3 Results

Figures 7.1 and 7.2 show the results on the CIRS images for each method on total
and estimated primary images respectively. First row corresponds to uncorrected
images, while rows two to eight refers to methods one to seven. First and second
columns show the sinograms and the absolute difference between corrected and
uncorrected sinograms respectively, while third and fourth present the slice and the
absolute difference between corrected and uncorrected slices.

We applied method two (Titarenko’s model) on both datasets at low and high
energy. The results are presented in figures 7.3 and 7.4. Left images represent ring
corrected total slices, while center and right ones the ring corrected reference and
estimated primary respectively. Left parts of images represent energy bin 2 and right
ones energy bin 6.

7.4 Discussion

Various methods of the second group (projection-based methods) have been tested.
Münch et al [84] proposed a wavelet-based filtering of the projections. This algorithm
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Figure 7.1 – Comparison of ring correction methods. First column: total sinogram;
second column: absolute difference between corrected and uncorrected total sino-
grams; third column: ring corrected total slice; fourth column: absolute difference
between corrected and uncorrected slices. First row: no correction; rows two to eight:
methods one to seven
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Figure 7.2 – Comparison of ring correction methods. First column: estimated primary
sinogram; second column: absolute difference between corrected and uncorrected
estimated primary sinograms; third column: ring corrected estimated primary slice;
fourth column: absolute difference between corrected and uncorrected slices. First
row: no correction; rows two to eight: methods one to seven
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Figure 7.3 – CIRS slices after ring arifacts correction
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Figure 7.4 – RANDO slices after ring arifacts correction

103

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI102/these.pdf 
© [O. Pivot], [2019], INSA de Lyon, tous droits réservés



is efficient for removing the stripes, but it also eliminated the structure caused by the
central insert of the CIRS phantom. Other filtering strategies have been proposed in
the literature but the similarity between stripes and central insert structures led us to
focus on model-based variational approaches. The second method, with an additive
error with no projection angle dependency, gave rather good results (see third rows of
figures 7.1 and 7.2), most of the rings having been removed while the structures of the
inserts are preserved. However, the wide stripe located around pixel of index u = 385
is still perceptible as well as the corresponding ring in the CT slice. The intensity
of this stripe varies according to the projection angle, which justifies the testing of
an additive error which depends on the projection angle (method three, fourth row
of figures 7.1 and 7.2). However, it lowers the contrast of the object structures (in
particular the ones induced by the highly attenuating insert corresponding to region
of interest 10) more than the undesirable stripes, which is clear in the difference
images. The same tests were performed using a multiplicative error model (methods
four and five) which gave similar results as the additive ones due to the fact that the
attenuation of a given pixel does not vary a lot along the projections. The stripes are
more visible on the sinogram summed over the projections than on a single line of
the sinogram. This is the reason why we tested methods six and seven, where the
additive and multiplicative error are estimated by minimizing the gradient of the sum
of the sinogram along the projections. No significant difference between summing
and not summing over the projections have been observed.

In addition, for each method, a pixel binning has been tested before and after
the correction. We also tested the generalization proposed in [85], where the second
order derivative is used in place of the first derivative and a combined additive and
multiplicative error model but no improvement has been obtained. Finally, we tried
to replace the ℓ2 norm by the ℓ1 (generally preferred in denoising problems) but the
lines of the corrected sinograms (or the sum of the lines in the case of methods six
and seven) were piecewise constant, inducing a cupping artifact in each of the inserts.

Finally, we chose the second method, based on the model of [81]. Its application
on single bin images (figures 7.3 and 7.4) show a significant improvement compared
to uncorrected ones (figures 6.17 and 6.15), although we were not able to remove
totally these ring artifacts.

7.5 Conclusion

Various ring artifact correction methods have been presented (section 7.2) and
tested (section 7.3). Finally, as we have seen in section 7.4, we failed to remove totally
the ring artifacts present in the CT slices, even if we rejected most of them.
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8
Conclusion and perspectives

The objective of this PhD work was to develop a scatter correction method adapted
to spectral computed tomography (CT) with photon counting detectors (PCD). We
presented the basics of x-ray computed tomography in chapter 2, and explained the
main differences between conventional CT using energy-integrating detectors and
PCD along with a description of primary and scattered radiations and the influence
of the latter on image quality.

Chapter 3 gave a state of the art of scatter correction methods. Recently introduced
scatter correction methods using a semi-transparent primary modulator mask and
based on the minimization of the primary gradient have shown promising results
with energy-integrating detectors. Assuming that the scatter images are smooth and
the primary ones are locally smooth, it states that the modulator pattern can be re-
moved from the primary images if the scatter map is known, i.e the scatter map is the
one which minimizes the primary gradient. Originally, the problem was formulated
as a local minimization of the ℓ1 norm of the primary gradient while a second study
proposed a global minimization of its ℓ2 norm with a specific weighting according to
the object structures. The local minimization is generally more time consuming than
the global one. The use of the ℓ1 norm gives better results than the ℓ2 one but its non
differentiability makes it hard to minimize globally. Both of these methods decompose
the acquired projection images into patches and a single value of scatter is associated
with each one, resulting in a piece-wise constant scatter map. This enables to lower
the dimensionality of the problem, but a smoothing step is required to retrieve the
final scatter image. Moreover, the beam-hardening effect induced by the primary
modulator mask affects the estimated primary images.

In chapter 4, we proposed a scatter correction method which fulfills the objec-
tives of the thesis. We have presented a correction matrix which uses the spectral
information to compensate for the mask attenuation with limited beam-hardening
in section 4.3. We also proposed in section 4.4 a scatter model based on three di-
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mensional B-spline functions, which gives directly smooth scatter sinograms. With
this model, we were able to minimize the primary gradient according to the final
scatter estimate, without the need of a smoothing step and using the redundancy
of the images between adjacent projections. In section 4.5, a weighting according
to the mask structures has been introduced and the object structures weighting was
improved compared to the literature. The regularized cost function based on an
approximation of the ℓ1 norm that we designed was introduced in section 4.6. Finally,
we presented in section 4.8 the Newton iteration that we used for the minimization.

The method has been successfully validated in chapter 5 on realistic simulated
images using a 5 mm thick graphite primary modulator mask and a photon count-
ing detector with 8 energy bins. We have shown that visually, a single iteration of
the algorithm was sufficient to retrieve the scatter map, but a quantitative analysis
indicates that a second one improves the results. We also pointed out the difficulty to
tune the regularization parameters.

In chapter 6, we presented the experimental validation of the method on a parallel-
beam x-ray tomographic system. We used the commercial line detector ME100 and
two distinct phantoms. The results were satisfying, but strong ring artifacts degraded
the reconstructed images, some of them being several pixels wide.

The problem of ring artifacts correction was tackled in chapter 7. We have tested
various methods and model-based variational approaches gave the most satisfying
results. Most of the ring artifacts have been correctly rejected, but we were not able to
remove them totally.

Although the method has shown impressive results on both simulated and ex-
perimental images, some points may be improved. Regarding the correction matrix,
we have shown that the empirical model we used is very accurate between two and
twelve equally distributed energy bins. However, by modifying the model or by opti-
mizing the spectral distribution of the energy bins, one may improve its accuracy. The
dimensionality of the problem depends on the number of knots used in the B-spline
based scatter model and we have seen that with a few number of regularly distributed
knots, the model cannot represent accurately the highest frequencies of the scatter
images, in particular near the object borders. Nevertheless, by placing more knots
in the high scatter frequency regions and less in the others, the model accuracy may
be improved without increasing dimensionality of the problem. Additionally, we
explained that the design of the primary modulator mask follows a trade-off between
several issues. According to these issues, we chose a 5 mm thick mask made with
graphite. By using a mask made with aluminum, the error induced by the correction
matrix inaccuracy would be greater, but its higher linear attenuation coefficient lead
to lower parallax effect, for equal attenuation. Moreover, its mechanical properties are
far better than the graphite ones, and a smaller pattern may be designed resulting in
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more mask edges pixels. Considering the full process of the scatter correction method,
our graphite mask may not be the best trade-off. The design of the primary modulator
mask is therefore still an open subject of investigation.

The use of a Tikhonov regularization has shown correct results, but the parameters
controlling its strength are object-dependent and their tuning is a complicated task.
It might be interesting to investigate on automatic procedures for the tuning of the
Tikhonov parameters, as some authors already do in other applications. Another
solution is more radical: changing the regularization function. A good candidate for
such a regularization function could be based on data consistency conditions (DCC).
DCC are necessary conditions that a sinogram must fulfill if it represents the x-ray
transform of a given object [86].
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A
Smooth approximation of ℓ1 norm using the

Charbonnier function

The following appendix is a quick study of the Charbonnier function [75] used as
a smooth approximation of the ℓ1 norm for solving problems of the following form:

x̃ = arg min
x∈RM

‖b − Ax‖1, (A.1)

with b ∈ R
N, A ∈ R

N×M and x ∈ R
M.

The Charbonnier function of the ℓ1 norm is defined as:

F (x) = ‖b − Ax‖1,σ (A.2)

= ∑
n

√

(bn − aT
n x)2 + σ2 − σ, (A.3)

an being the n-th row of A. This study presents the calculus of the first and second
derivatives of F (x) (section A.1) and its minimization with the Newton’s method
(section A.2).

A.1 Derivatives

The first derivative of F (x) can be calculated directly from A.3:

∂F (x)

∂xi
= ∑

n

1
2

−2ai,n(bn − aT
n x)

√

(bn − aT
n x)2 + σ2

(A.4)

= −∑
n

ai,n(bn − aT
n x)

√

(bn − aT
n x)2 + σ2

. (A.5)

In the same manner, its second derivative comes directly from A.5:
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∂2F (x)

∂xi∂xj
= −∑

n

−ai,naj,n
√

(bn − aT
n x)2 + σ2 + ai,n(bn − aT

n x)1
2

−2aj,n(bn−aT
n x)√

(bn−aT
n x)2+σ2

(bn − aT
n x)2 + σ2 (A.6)

= ∑
n

ai,naj,n
√

(bn − aT
n x)2 + σ2

−
ai,naj,n(bn − aT

n x)2

(

(bn − aT
n x)2 + σ2

)
3
2

(A.7)

= ∑
n

ai,naj,n

(

(

(bn − aT
n x)2 + σ2

)− 1
2 − (bn − aT

n x)2
(

(bn − aT
n x)2 + σ2

)− 3
2

)

(A.8)

From A.5, one can retrieve the matrix formulation of the gradient:

∇[F ](x) = −ATdiag

(

(

√

(b − Ax)2 + σ2
)− 1

2

)

(b − Ax), (A.9)

and from A.8 the matrix formulation of the Hessian:

H[F ](x) = ATdiag

(

(

√

(b − Ax)2 + σ2
)− 1

2 − (b − Ax)2
(

(b − Ax)2 + σ2
)− 3

2

)

A.

(A.10)

A.2 Minimization using the Newton’s method

The minimization of F (x) can be done using Newton’s method, starting with an
initial guess x(0) and building new estimates with the following update rule:

x(n+1) = x(n) + δx(n), (A.11)

where δx(n) ∈ R
M denotes Newton’s step at iteration (n).

Newton’s step is obtained solving the following linear system:

H[F ](x(n))δx(n) = −∇[F ](x(n)). (A.12)
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B
Relation between bin indices and energy range for

several energy bin numbers

This appendix regroups the tables giving the relation between the bin indices and
the energy range for various numbers of energy bins NB going from 2 to 24.

b Energy range
1 30 keV to 75 keV
2 75 keV to 120 keV

Table B.1 – Relation between bin index and energy range for NB = 2

b Energy range
1 30 keV to 52 keV
2 52 keV to 74 keV
3 74 keV to 96 keV
4 96 keV to 120 keV

Table B.2 – Relation between bin index and energy range for NB = 4

b Energy range
1 30 keV to 44 keV
2 44 keV to 58 keV
3 58 keV to 72 keV
4 72 keV to 88 keV
5 88 keV to 94 keV
6 104 keV to 120 keV

Table B.3 – Relation between bin index and energy range for NB = 6
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b Energy range
1 30 keV to 40 keV
2 40 keV to 50 keV
3 50 keV to 60 keV
4 60 keV to 72 keV
5 72 keV to 84 keV
6 84 keV to 96 keV
7 96 keV to 108 keV
8 108 keV to 120 keV

Table B.4 – Relation between bin index and energy range for NB = 8

b Energy range
1 30 keV to 36 keV
2 36 keV to 42 keV
3 42 keV to 48 keV
4 48 keV to 56 keV
5 56 keV to 64 keV
6 64 keV to 72 keV
7 72 keV to 80 keV
8 80 keV to 88 keV
9 88 keV to 96 keV

10 96 keV to 104 keV
11 104 keV to 112 keV
12 112 keV to 120 keV

Table B.5 – Relation between bin index and energy range for NB = 12
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b Energy range
1 30 keV to 40 keV
2 40 keV to 50 keV
3 50 keV to 60 keV
4 60 keV to 72 keV
5 72 keV to 84 keV
6 84 keV to 96 keV
7 96 keV to 108 keV
8 108 keV to 120 keV
9 30 keV to 40 keV

10 40 keV to 50 keV
11 50 keV to 60 keV
12 60 keV to 72 keV
13 72 keV to 84 keV
14 84 keV to 96 keV
15 96 keV to 108 keV
16 108 keV to 120 keV

Table B.6 – Relation between bin index and energy range for NB = 16
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b Energy range
1 30 keV to 32 keV
2 32 keV to 34 keV
3 34 keV to 36 keV
4 36 keV to 40 keV
5 40 keV to 44 keV
6 44 keV to 48 keV
7 48 keV to 52 keV
8 52 keV to 56 keV
9 56 keV to 60 keV

10 60 keV to 64 keV
11 64 keV to 68 keV
12 68 keV to 72 keV
13 72 keV to 76 keV
14 76 keV to 80 keV
15 80 keV to 84 keV
16 84 keV to 88 keV
17 88 keV to 92 keV
18 92 keV to 96 keV
19 96 keV to 100 keV
20 100 keV to 104 keV
21 104 keV to 108 keV
22 108 keV to 112 keV
23 112 keV to 116 keV
24 116 keV to 120 keV

Table B.7 – Relation between bin index and energy range for NB = 24
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C
Mean spectra of regions of interest
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Figure C.1 – Mean spectra of regions of interest
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D
Résumé de la thèse en français

D.1 Introduction

La tomographie par rayons x est une des principales modalités utilisées en image-
rie médicale. Depuis l’invention du scanner tomographique par Godfrey Hounsfield
en 1971, des avancées significatives ont été réalisées tant sur le matérial, avec l’amé-
lioration des tubes à rayons x, des collimateurs, des systèmes de rotation et des
détecteurs, que sur le logiciel avec le développement de nombreux algorithmes de
reconstruction et d’élimination d’artéfacts.

Récemment, l’émergence des détecteurs à comptage de photons, une nouvelle
technologie de détection basée sur l’utilisation de matériaux semi-conducteurs, per-
met de compter les photons indépendamment et de les classifier dans des canaux
discrets en fonction de leur énergie. Cette nouvelle technologie (avec un nombre de
canaux allant de 2 à 8) équipe d’ores et déjà quelques prototypes de scanners médi-
caux et est en cours d’évaluation dans des centres de recherche clinique. Pour d’autres
applications industrielles, quelques détecteurs linéaires à comptage de photons ont
jusqu’à une centaine de canaux d’environ 1 keV de large. Alors que les détecteurs à
intégration utilisés dans les scanners conventionnels fournissent de simples images,
les détecteurs à comptage de photons fournissent des images spectrales. L’utilisa-
tion de l’information spectrale ouvre de nouvelles perspectives comme la possibilité
d’améliorer le rapport contraste sur bruit, la réduction de la dose ou l’élimination
d’artéfacts. De plus, cela permet de quantifier chaque matériau constituant l’objet
indépendamment en décomposant les images en fonctions de base, par exemple en
images d’os et de tissus mous. Cependant, ces décompositions requièrent une haute
précision quantitative des images pour chaque canal d’énerige. En particulier, le
rayonnement diffusé induit un biais, une perte de contraste et des artéfacts. C’est la
raison pour laquelle il est nécessaire de corriger ses effets.

L’objectif de ce travail de thèse est de développer une méthode de correction du

117

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI102/these.pdf 
© [O. Pivot], [2019], INSA de Lyon, tous droits réservés



diffusé adaptée à l’imagerie spectrale tomographique capable de fournir des images
précises sans augmenter la dose ni le temps d’acquisition.

D.2 Fondamentaux de l’imagerie tomographique

Cette première section vise à introduire les fondamentaux de l’imagerie tomogra-
phique. Une acquisition tomographique consiste en un jeu d’acquisitions radiogra-
phiques effectuées à différents angles de projection autour de l’objet imagé. Après
leur génération, les rayons x intéragissent avec l’objet en le traversant et sont ensuite
détectés pour former les radiographies. Les images tomographiques sont ensuite
générées avec un algorithme de reconstruction.

D.2.1 Les rayons x en imagerie médicale

Les rayons x ont été découverts en 1895 par Wilhelm Röntgen, et font partie du
spectre électromagnétique. Dans un scanner médical, les rayons x sont générés par un
tube à rayons x, dans lequel les électrons sont accélérés par une haute tension. L’éner-
gie des photons est généralement exprimée en eV (l’énergie d’un photon accéléré
sous la tension de 1 V) plutôt qu’en J.

D.2.2 Rayonnements primaire et diffusé

En traversant un objet, le flux de rayons x intéragit par le biais de différents phé-
nomènes physiques : l’effet photoélectrique, la diffusion Rayleigh et la diffusion
Compton.

Les phénomènes de diffusion Rayleigh et Compton induisent une modification de
la trajectoire du photon et, pour l’effet Compton, une baisse de son énergie. Le flux ré-
sultant peut être divisé en un flux de rayonnement primaire (les photons n’ayant pas
intéragi, et conservant donc leur trajectorie initiale) et un flux de rayonnement diffusé.

Le rayonnement primaire peut être obtenu analytiquement par la formule de
Beer-Lambert.

Bien que le rayonnement diffusé ne soit pas facilement modélisable comme le
primaire, nous avons un a priori fort sur son comportement : les images du diffusé
sont lisses dans les deux directions du détecteur et dans la direction des projections.

D.2.3 Détection des rayons x

En imagerie x conventionnelle, les détecteurs utilisés sont dits "à intégration". Ils
fournissent une valeur scalaire en chaque pixel, qui dépend de l’intégrale sur l’énergie
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du flux incident pondéré par une fonction de détection.

La technologie récente des détecteurs à comptage de photons, basée sur des
matériaux semiconducteurs, permet de compter indépendamment les photons, et
de les classifier dans des canaux discrets en fonction de leur énergie. Chaque canal
comportant sa propre fonction de réponse, il est possible de construire une matrice
de réponse du détecteur en concaténant les fonctions de réponse discrétisées pour
chaque canal. Un exemple de matrice de réponse du détecteur est présenté sur la
figure D.1.
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F I G U R E D.1 – Exemple de matrice de réponse d’un détecteur en CdTe avec NB = 90
canaux d’environ 1 keV de large (gauche). Réponse du canal 30, centré sur 70 keV
(droite).

D.2.4 Reconstruction tomographique

Un algorithme de reconstruction tomographique est un algorithme qui permet de
reconstruire l’image en atténuation de l’objet à partir des données tomographiques
acquises. Deux classes de méthodes de reconstruction se distinguent : les méthodes
de reconstruction analytique et les méthodes discrètes.

D.2.5 Influence du diffusé

Nous avons vu que les images de diffusé contiennent essentiellement des basses-
fréquences. Cependant, son influence sur les images en atténuation dépend du rapport
diffusé/primaire. Le biais qu’il induit dépend donc à la fois du primaire et du diffusé.
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Les effets principaux du diffusé sont une baisse du contraste sur les images (tant sur
les projections que sur les volumes reconstruits), et un artéfact en forme de coupe sur
les images reconstruites.

D.3 Correction du rayonnement diffusé : état de l’art

Le problème du rayonnement diffusé est connu depuis les débuts de l’imagerie
par rayons x, et a donné lieu à une multitude de méthodes que l’on peut classer en
deux familles : les méthodes matérielles et les méthodes logicielles.

D.3.1 Méthodes matérielles

La famille des méthodes de correction du diffusé matérielles consiste à adapter la
géométrie ou à utiliser un dispositif additionnel pour réduire la quantité de rayonne-
ment diffusé détéctée.

La stratégie la plus commune pour limiter le diffusé détecté consiste à collimater
les pixels du détecteur avec une grille anti-diffusé. Une seconde consiste à augmenter
la distance entre l’objet et le détecteur. Finalement, il est également possible de limiter
la diffusion en collimatant le champ de vue.

D.3.2 Méthodes logicielles

Les méthodes logicielles visent à modifier les données acquises afin de corriger
l’effet du diffusé.

Parmis elles, on peut isoler la famille des méthodes basées sur un modèle. Ces
méthodes cherchent à estimer l’image de diffusé afin de la soustraire à l’image acquise.
L’approche la plus classique consiste à modéliser le diffusé comme une fonction de
l’image acquise, à laquelle on applique un filtre passe-bas : le scatter kernel. D’autres
méthodes utilisent des simulations Monte Carlo, capables de fournir une grande
précision mais dans des temps prohibitifs.

Une autre grande famille de méthodes consiste à utiliser un dispositif, générale-
ment placé entre la source et l’objet, qui modifie le flux de rayons x de sorte que l’on
puisse en déduire l’image du diffusé. L’approche la plus répandue, la méthode d’arrêt
du faisceau, permet d’obtenir des images très précises, mais nécessite une seconde
acquisition sans le dispositif modifiant le flux. Cela signifie une augmentation du
temps d’acquisition et de la dose déposée.
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D.3.3 Correction basée sur le gradient du primaire modulé

Cette sous-famille de méthodes, qui est à la base de la méthode développée dans
cette thèse, propose de placer un masque semi-transparent (appelé masque modula-
teur de primaire) entre la source et l’objet, comme sur la figure D.2.

Source

Axe de rotation

Objet

Détecteur

Masque modulateur
semi-transparent

θu

v

λθ

ζu,v,θ

F I G U R E D.2 – Système d’imagerie avec un masque modulateur de primaire

Dans cette situation, la mesure t̂ est la somme de la composante du primaire
modulé par le masque p̂ et du diffusé s :

t̂ = p̂ + s. (D.1)

Si on connait une matrice C capable de compenser l’atténuation du masque (c’est-
à-dire capable de retrouver le primaire que l’on aurait mesuré sans masque à partir du
primaire modulé par le masque), et l’image de diffusé s, on peut retrouver le primaire
directement :

p = Cp̂ = C(t̂ − s). (D.2)

Si on considère une estimation biaisée du diffusé, l’estimation correspondante du
primaire contiendra le motif du masque, et si le masque a des bords francs, la pré-
sence de son motif va engendrer une augmentation du gradient spatial de l’image de
primaire. La méthode consiste donc à chercher l’image (lisse) de diffusé qui minimise
le gradient spatial du primaire estimé.
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Les limitations de cette méthodes sont plurielles. Une limitation importante est la
difficulté de trouver une matrice C qui compense l’attenuation du masque, à cause
du durcissement du faisceau qu’il induit.

D.3.4 Conclusion et motivation de la thèse

Le contexte de cette thèse est l’imagerie tomographique spectrale, basée sur l’uti-
lisation de détecteurs à comptage de photons. La plupart des méthodes décrites
dans la littérature ont été développées pour la tomographie conventionnelle (utilisant
des détecteurs à intégration). Si la majorité d’entre elles peuvent être appliquées
indépendamment sur les données issues de chaque canal d’une acquisition spectrale,
l’information sur l’énergie des photons peut améliorer les performances de certaines
d’entre elles. En particulier, celà peut permettre de limiter le durcissement du faisceau
induit par un masque modulateur de primaire dans les méthodes de correction basées
sur le gradient du primaire modulé, qui est l’inconvénient majeur de ces méthodes.

Dans la section suivante, nous présentons une méthode de correction du diffusé
adaptée à l’imagerie spectrale et basée sur le gradient du primaire modulé.

D.4 Correction du rayonnement diffusé en imagerie to-

mographique spectrale basée sur l’utilisation d’un

masque modulateur de primaire

D.4.1 Matrice de correction

La méthode nécessite la connaissance d’une matrice de correction C capable de
compenser l’atténuation du masque, en étant idéalement indépendant du durcis-
sement du faisceau. Son calcul par une formule analytique, bien que possible en
théorie, se révèle impossible en pratique. Nous avons donc choisis de la calculer par
le biais d’un modèle. Les paramètres optimaux du modèle sont ensuite estimé à l’aide
d’images de calibration acquises avec différents niveaux d’atténuation.

D.4.2 Modèle de diffusé

Afin de représenter des images lisses de diffusé avec un nombre très limité de
paramètres, nous avons choisi de le représenter dans une base de B-splines d’ordre 2.
Concrètement, nous avons défini une grille régulière de noeuds le long des trois di-
mensions spatiales (deux directions du détecteur et une direction angulaire). À chaque
noeud B-spline est associé une fonction de base B-spline et un poids, l’image totale de
diffusé étant la somme des contributions de chaque fonction de base pondérée par le
poids correspondant.
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Les fonctions de base B-spline sont concaténées dans une matrice B, de telle sorte
que l’image de diffusé s soit obtenue à partir du vecteur x contenant les poids associés
à chacun des noeuds B-spline :

s = Bx (D.3)

D.4.3 Pondération en fonction des structures du masque et de l’ob-

jet

Afin de s’affranchir de la dépendance de la méthode aux structures de l’objet, nous
avons proposé de pondérer le gradient du primaire estimé en utilisant deux matrices
(diagonales) de pondération distinctes. La première, W1 permet de selectionner les
pixels aux bords du masque, c’est-à-dire ceux portant l’information de la présence ou
l’absence du motif du masque dans le primaire. La seconde, W2, permet de donner
moins d’importance aux zones de l’image où les structures de l’objet sont fortes, par
exemple aux bords de l’objet.

D.4.4 Fonction de coût

Nous avons ensuite conçu une fonction de coût régularisée permettant de quanti-
fier précisément la présence du motif du masque dans le primaire. Les paramètres du
modèle de diffusé s’estiment donc en résolvant le problème d’optimisation suivant :

x̃ ∈ arg min
x∈R

NB NK

F (x) +R(x), (D.4)

avec
— F (x) =

∥

∥W1W2∇C(t̂ − Bx)
∥

∥

1,σ,
le terme d’attache aux données, correspondant au gradient pondéré du pri-
maire estimé. Nous avons choisi une approximation douce de la norme ℓ1 afin
de limiter la dépendance de la méthode aux données aberrantes : la fonction
de Charbonnier.

— R(x),
une fonction de régularisation de type Tikhonov.

D.5 Résultats

La méthode a été testée sur un jeu de données simulées et deux jeux de données
experimentales. Les données simulées ont été obtenues à partir d’un fantôme an-
thropomorphique numérique, l’acquisition est centrée sur la tête. Le premier jeu de
données expérimentales a été acquis avec un fantôme de tête humaine, et le second
avec un fantôme de la taille d’un thorax, consistant à une ellipsoïde de plastique
imitant l’atténuation de l’eau, avec des inserts cylindriques représentant l’atténuation
de différents tissus biologiques. Le masque que nous avons conçu est une plaque de
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5 mm d’épaisseur, en graphite, percée de trous.

La figure D.3 représente une coupe tomographique des données simulées à deux
énergies (les sous-images de gauche représentent le canal 2, alors que les sous-images
de droite représentent le canal 6). L’image de gauche correspond à l’acquisition avec
diffusé, celle du milieu à une acquisition sans diffusé, et l’image de droite à l’image
obtenue après application de la méthode proposée. Les figures D.4 et D.5 représentent
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F I G U R E D.3 – Coupe tomographique du fantôme simulé. Total (gauche), primaire
(centre) et primaire estimé (droite) à basse énergie (canal 2, sous-figures gauches) et
haute énergie (canal 6, sous-figures droites)

des coupes tomographiques des deux jeux de données experimentales.
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F I G U R E D.4 – Coupe tomographique du fantôme de tête. Total (gauche), primaire
(centre) et primaire estimé (droite) à basse énergie (canal 2, sous-figures gauches) et
haute énergie (canal 6, sous-figures droites).

D.6 Discussion

La méthode proposée a montré, tant sur les données simulées qu’experimentales,
une réduction satisfaisante du diffusé sur les images. On peut voir sur les figures
D.3, D.4 et D.5 que le contraste a été considérablement réhaussé, en particulier sur le
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sous-figures gauches) et haute énergie (canal 6, sous-figures droites)

dernier cas.

La méthode nécessite le réglage de différents paramètres scalaires (non présentés
dans ce document), et est très sensible à certains d’entre eux. La difficulté de régler
certains paramètres est une faiblesse majeure de la méthode proposée, car elle limite
son indépendance vis à vis de l’objet.

Sur les données simulées, la différence de réponse entre les différents pixels a
induit des artéfacts en anneaux, visibles en particulier sur la figure D.5. La correction
de cet artéfact a été l’objet d’une étude, mais aucune méthode testée n’a réussi à le
corriger de manière satisfaisante.

D.7 Conclusion

L’objectif de ce travail de thèse était de développer une méthode de correction
du diffusé adaptée à l’imagerie tomographique spectrale basée sur l’utilisation de
détecteurs à comptage de photons. Nous avons proposé une méthode qui satisfait ces
objectifs. Cependant, différents points restent à améliorer. D’abord, la conception du
masque peut être optimisée (matériau, épaisseur, motif). Ensuite, il conviendrait de
trouver une méthode permettant de régler automatiquement les paramètres optimaux
nécessaires à une correction effective du diffusé. Il parait également possible d’amé-
liorer la méthode en modifiant le terme de régularisation de la fonction de coût. Nous
avons utilisé une régularisation de type Tikhonov, mais une régularisation basée sur
un critère de consistance des données tomographiques pourrait s’avérer pertinent.
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