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Introduction

With the advances of technologies, many new applications and markets were
developed. Smartphones are omnipresent in today’s life. Cameras’ resolution and
functionalities are improved every day. One of the promising features is 3D imaging
and ranging. Those implementations could enable big advances such as autonomous
cars, thanks to smart driving.

For 3D imaging applications, not only regular imagers are needed, but also detec-
tors that are able to measure the distance of the surrounding objects. Those systems can
employ Time-Of-Flight (TOF) measurements, which is an advanced technique where
a luminous source emits a signal, that is then reflected by a target. For a direct
approach, the reflected beam impinges then the sensor and the time elapsed between
those two events is measured so the distance can be inferred from half the measured
time (by considering the round trip of photons).

Single Photon Avalanche Diodes (SPAD) have shown to be great devices for
implementing this receiver. Those devices are PN junctions operating at high reverse
voltage bias, and have the great advantage of presenting very high sensitivity and
response time, which are mandatory for this kind of application, where diffused reflected
beams are common and not so certain of reaching the sensor in real situations. Another
benefit of using SPAD is the fact that simple associated electronics easily provide a
digital signal at its output, without the need of integrating fast and complex Analog to
Digital Converters.

The objective of this PhD thesis is to study the implementation of SPAD devices
in an advanced CMOS FDSOI technology. This work was conducted as a part of the
ARCS6 research program 2016 (no 16 - 005689 - 01), funded by the Auvergne Rhone
Alpes region, France, in a partnership between two French laboratories: Institut des
Nanotechnologies de Lyon (INL) and Laboratoire Hubert Curien (LHC), under the
supervision of Prof. Francis Calmon and Prof. Raphaél Clerc. We also had the technical
support of both CEA-LETI and STMicroelectronics. The manuscript is organized as
follows:

In Chapter 1 the physics of SPAD devices is reviewed, along with its main Figures
of Merit (FOM), i.e., Dark Count Rate (DCR)), Afterpulsing, Photon Detection Probability
(PDD), Time Jitter, Fill Factor and Crosstalk. The current State of the Art of those devices
is also presented, along with the main implementations of SPAD in SOI technologies
and some of the main applications.

In Chapter 2, a quick review of CMOS SOI technologies is done, focusing on the
advanced 28 nm FDSOI technology and its great advantages for low-power applications.
Then, the design of different variants of Single Photon Avalanche Diode cells
in such a technology is presented, along with its main constraints and the proposed
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Introduction

solutions for such a challenging implementation. An innovative indirect avalanche
sensing cell is also proposed in FDSOI.

In Chapter 3, the proposed SPAD is simulated by means of TCAD tools, by
analyzing the main models available to describe the physical phenomena involved
in the correct operation of Geiger mode avalanche diodes. Also, post-processing
is implemented for estimating SPAD parameters, such as Dark Count Rate (DCR)
and Photon Detection Probability (PDP). An analytical simplification for calculating
Avalanche Triggering Probability (ATP) is proposed too.

In Chapter 4, the electric characterization of the fabricated devices is presented.
Results such as the I-V curves, Dark Count Rate and Electroluminescense response for
the different designed cells are discussed. Also, the proposed indirect avalanche sensing
circuit is validated experimentally.

Finally, some general conclusions are made about design, simulation, modeling
and electrical characterization of the proposed SPAD architecture. A comparison with
the already existing SPAD devices is made, with the perspectives for future work.
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Chapter 1
SPAD and Applications

In this chapter, the working principle of Single Photon Avalanche Diode (SPAD)
is presented, along with its main Figure Of Merit (FOM), such as Dark Count Rate,
Photon Detection Probability, Time Jitter and Fill Factor. Some discussions about SPAD
applications for future technologies are also outlined. At the end of the chapter, the
State of the Art for SPAD implemented in CMOS is presented, with a special focus on
Silicon On Insulator (SOI) technologies. Finally, the thesis objectives and the content of
the following chapters are detailed.

1.1 Geiger Mode Operation of Silicon Photodetectors

Single Photon Avalanche Diode are PN junctions working in reverse bias,
above breakdown voltage, in the so-called Geiger mode region. Due to the high voltage
bias, the electric field in Space Charge Region (SCR) is also high, which configures
a very unstable state of the junction, because a single free carrier present in [SCR| (or
multiplication region) would be quickly accelerated by the electric field and could easily
cause a series of impact ionization processes, resulting in a self-sustained avalanche,
and a consequent electric current.

This free carrier can be the result of a photogeneration process directly in[SCRlonce
a photon is absorbed in that zone, or even a diffusion process from near layers, when the
carrier is generated there. In this case, the device is said to be a Single Photon Avalanche
Diode (SPAD), because a single impinging photon is able to generate a macroscopic
current signal, easily detectable [1].

ISPADIdevices can be used for detecting not only photons but also charged particles,
because energy is released in their trajectory, possibly causing a succession of Electron
Hole Pair (EHP) generation [2]-[5]. avalanches can also be observed in dark
condition, due to undesired carriers in[SCR| Those are quantified by the so-called Dark
Count Rate (DCR) parameter (as explained in Section

The basic operating mode of is illustrated in Fig.[I.T} The device is initially
biased above breakdown voltage (point 1). Once the avalanche event is triggered (point
2), a high current circulates through the device and may damage it, if not properly
extinguished (quenched) [1], [6], [7]. For avoiding that, quenching circuits (such as
a simple series resistor) are used to reduce the reverse voltage across the diode and,
consequently, the avalanche current (point 3). Once it happens, the voltage across the

11
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CHAPTER 1. SPAD AND APPLICATIONS

diode is increased back to its initial value (point 1), and the SPAD is ready for another
detection.

In order for an avalanche to occur, two conditions are necessary: 1) The electric
field must be high enough to provide a non-null avalanche triggering probability; 2) at
least one free carrier must exist in[SCRl When the junction is biased above breakdown
voltage, but no free carrier is available, the is ready for a detection (Fig. [I.T|(point
1)). When a photon is absorbed in [SCR| an electron-hole pair is generated and the
carriers are accelerated, starting an impact ionization process: avalanche is triggered
and the current rapidly increases. The associated quenching circuit then reacts and
starts decreasing the bias voltage across the diode in (point 2). Once the avalanche
current is extinguished (point 3), the voltage is increased again through recharge circuit,
making the SPAD ready for another detection.

' | 4
T
2
Vep o
o . (2)
= Reverse
=) + VvV - V
& T P
S " s
<
. J
. ’ I
v/
VAREN)
3) 4 x 1)h‘-' Vv
¥ BN .
> >
VBD Va= VBD + Vex

Figure 1.1: Working principle of Geiger mode operating photodiodes (Adapted from: [7]).

It should be noted that, unlike regular silicon photodetectors working at lower
reverse bias, the detector by itself can only detect the occurrence of a physical
event, not being able to quantify the amount of photons that actually impinged the[SCR|
since the amplitude in output signal does not depend on the amount of photogenerated
carriers.

Unlike in linear mode operation, where the magnitude of the electric field is only
enough to provide ionization caused by electrons, the photodiode operating in Geiger
mode has an electric field high enough for both carriers to provoke such a phenomenon,
and can be described as in Eq. known as ionization integral [6].

W W
1< f Q. exp (f (o, — ) dx’)dx (1.1)
0 x
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In Eq. W is the width of the @, and a), are respectively the ionization
coefficients for electrons and holes.

1.2 Figures of Merit

In this section, the main Figures of Merit for are presented, as they serve as
the parameters that characterize the performance of the devices and are later used for
comparisons between implemented in different technologies.

1.2.1 Dark Count Rate

The Dark Count Rate (DCR]) is the intrinsic noise of the device, and can be defined
as the rate of spurious pulses, caused by events other than optical. In other words, the
rate, in Hz or Hz/pum?, that avalanches created by thermal generation, Band To Band
Tunneling (B2B), or even from the release of trapped charges contribute to the DCRI[1]],
[6].

This parameter is of high importance in SPAD performance, because the time
interval between two consecutive dark events should be long enough to provide an
efficient photodetection [8].

Several aspects can influence dark counting. The choice of the technology, for
instance, has a tremendous impact in[DCR| as doping levels and density of defects (in
silicon, but also in silicon-oxide interface close to the [SCR) have a direct influence in
counting.

External operating conditions, such as temperature and excess voltage, can also
modify values of[DCRlconsiderably. Basically, as the temperature increases, the Shockley-
Read-Hall Generation-Recombination generation-recombination rate and the
DCR increase too. In addition, if the excess voltage is enhanced, the triggering proba-
bility increases and consequently, so does the DCR. The delay time between avalanche
detection, quenching and recharge also affects the total DCR, through the afterpulsing
phenomena (described in Section[1.2.2). Lastly, the dimensions and geometry of SPAD
cells should also be taken into account in design phase, in order to reduce as will
be explained in Chapter

The physical generation process of [EHDP is the same for the reverse current in
PN junctions [8] and their corresponding avalanche pulses are randomly distributed
in time, being described by a Poisson process [9]. An example of measured [DCR]is

presented in Fig.

1.2.2 Afterpulsing

Total DCR]includes primary and secondary output pulses. Those latter are also
known as afterpulsing and have their origin from the release of charges trapped in
the deep levels of the junction. Those generation-recombination centers are localized
energy states in the forbidden energy gap and exist due to the defects and impurities in
the semiconductor, facilitating the transitions between valence and conduction bands,

as shown in Fig.[1.3|[7], [9].
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Figure 1.2: (a) Schematic representation of the with its quenching resistor. (b) Measured
output pulses for SPAD operated in dark conditions from [10]. The average of counts for a fixed
time window corresponds to[DCRI

conduction
band (CB)

valence level
band (CV)  (trap)

Figure 1.3: Trapping and releasing mechanisms of charges in the deep levels, responsible for
afterpulsing events. Adapted from [7].

During avalanche events, carriers can be trapped in those deep levels, being subse-
quently released, generating another avalanche, correlated with the previous one. The
shorter the SPAD recharge time, the more likely is the releasing that implies in after-
pulsing. Current intensity, proportional to excess voltage, also increases afterpulsing
probability [11]-[13].

1.2.3 Photon Detection Probability and Efficiency

Photon Detection Probability (PDP) can be defined as the probability of an absorbed
photon to generate an output current pulse, due to a self-sustained avalanche. [PDP|
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represents the sensitivity of the and is directly affected by electric field magnitude
and distribution along the junction, depending, then, on the doping levels of the
structure and on the applied voltage at the diode’s terminals [6]. Physically, is
directly related to the photogeneration rate (quantum efficiency) and the avalanche
triggering probability.

[PDPlis also a function of the impinging photon’s wavelength, through the photon
absorption coefficient of the material. There are implementations in different
semiconductor materials for the near ultraviolet spectrum (300 - 400 nm) [14]-[17], the
visible spectrum (400 - 800 nm) [18]-[30] and the Near Infra Red (NIR) (800 - 1550 nm)
[14], [301-[54].

In silicon technologies (our study), because of its bandgap, photodetection is lim-
ited to wavelengths below 1125 nm. Due to the shallow[SCRlin common Complementary
Metal Oxide Semiconductor (CMOS) they present poor PDPlin Front Side Illumi-
nation (ESI) (below 5%) at suitable[NIRlwavelengths (840 or 930 nm) [6]. For applications
in such range, Back Side Illumination might be preferred [14], [49]-[54], often
combining with 3D assembling at wafer level (see Section[I.4).

[PDP|can be adversely affected by three main factors [1]. The first one is reflectance
of the layers that compose the stack of materials of the technology (often metals), or
even the interface between two layers. This first factor can be attenuated by using
antireflection top coating. The second factor that decreases[PDDlis the absorption of the
photons at a depth other than the one of the junction’s[SCR|(shallower or deeper), or at a
position from which the photogenerated carriers cannot reach the multiplication region.
The third reason is self-quenching, when avalanche is initiated, but is interrupted before
causing a potential difference that could be detected. This effect can be minimized
by guaranteeing that the electric field reaches a high enough value, which is why it is
important to apply considerably high excess voltages to the detector.

Since the Avalanche Triggering Probability (ATP) increases with electric field, PDP]
also depends on that factor. The excess voltage V., is the main parameter that influence
electric field magnitude and [ATDPlis expected to initially increase linearly with V,,, and
then to saturate at high V,,. [PDDl follow, then, the same tendency [7], [55], [56].

For measuring a common procedure is to illuminate the device with
a monochromatic light source in an integration sphere coupled with a reference diode.
By varying the wavelength of the incident beam, curves such as the one presented in
Fig.[I.4]can be obtained [14].

In order to improve at wavelengths, some research papers employ the
so-called Separate Absorption Charge and Multiplication structures [59], [60].
As shown in Fig. those devices make use of absorption layers made of materials
other than silicon, such as InGaAs or Ge, better adapted for detection. Once the
photon is absorbed, the resultant photogenerated carriers, due to electric field, are
accelerated through the charge layer into the multiplication layer, made of silicon. In
that region, [ATPl values are better for detection.

For characterizing the effective sensitivity of SPADs, the Photon Detection Effi-
ciency (PDE) is often used, being defined as the product of the[PDP|by the Fill Factor (EE)

[e].

T. CHAVES DE ALBUQUERQUE - Institut National des Sciences Appliquées de Lyon - 2019 Integration of Single Photon 15
Avalanche Diodes in Fully Depleted Silicon on Insulator Technology

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI091/these.pdf
© [T. Chaves de Albuquerque], [2019], INSA de Lyon, tous droits réservés



CHAPTER 1. SPAD AND APPLICATIONS

35 L} L] ] L} ] 1 L ]
—&— JSTQE'18, 45 nm CIS
30+ —w— EDL'17, 65 nm CIS
—A— |[EDM'16, 65 nm CIS
—8— J55C'15, 130 nm CMOS
25| —&— NSS'14, 130 nm CMOS -
r— —— V=25V
2
o™, 20+ —v— V. =44V -
o —A—V_=30V
o 15 —— V=15V -
o —=—V, =40V
10 -
5 L =

400 500 600 700 800 900 1000 1100
Wavelength [nm]

Figure 1.4: Measured [PDP|as a function of wavelength for several SPADs. (Original figure
from [14]]). References in the figure: [STQE’18 ([52]), EDL’17 ([57), IEDM'16 ([51]), JSSC’15

(35])), NSS'14 ([58])
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Figure 1.5: Separate Absorption Charge and Multiplication (SACM) structure, from ).

1.2.4 Time Jitter

In[SPAD) the time interval between the arrival of the photon and the beginning of
the avalanche effect is not constant, presenting statistical fluctuations. When analyzing
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photon arrival time distribution, one can define time jitter (or timing resolution) as its
Full-Width at Half Maximum (EWHM) [7], [61]], [62]. In the ideal case where jitter is
zero, every pulse in the output signal starts after the same time delay from the photon
absorption. The variations that occur in real devices are due mainly to discrepancies in
avalanche process and associated electronics. This is also a function of impinging
wavelength and the specific place where avalanche is initiated. [63]

In order to measure time jitter, one common procedure is to bias the SPAD at its
operation voltage above breakdown, and then to illuminate it by using a picosecond
laser diode source with known pulse width, repetition rate and emitted wavelength.
Then, the time interval between the source trigger signal and the corresponding leading
edge of the SPAD output signal is measured several times. By making a histogram of
this data, it is possible to estimate the time jitter, taken as the[FWHM] [64]. One example
of such type of histogram can be seen in Fig. from [14].

10° . : .
y __ 140} —Q— FWHM
' &
8
= 130+
") £
= E
§ 10"+ Jn F 120} -
o . ) ) E
o 2.0 _ 2.5 3.0
Excess bias voltage [V]
V=2V
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10-2 . L .
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Figure 1.6: Time jitter example from [14]

The so-called "tail" present in the time response curves for values of time bigger
than the one where maximum counts occur is due to the diffusion of carriers generated
in the neutral regions, when they diffuse into the (multiplication region) [62],
[64]-[66].
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1.2.5 Fill Factor

Another decisive[FOMIfor SPAD detector is the Fill Factor (FE), defined as the ratio
between the photosensitive and total areas of the pixel, including quench and recharge
circuits. The size of both associated electronics and guard rings (low doped zones used
to reduce electric field at edges) represents the main causes for the unwanted reduced
[EH to the order of a few percent [7].

When estimating Photon Detection Efficiency (PDE), a high[FH s desirable, since
the total device efficiency is expressed as the product of by [EEl [6]. Thus, many
recent research papers have focused on improving integration techniques of
devices for increasing such as the use of microlenses [31], [67], [68] and 3D stacking
(53], 571, [69].

Microlens arrays can be used to highly improve [EH[18], [31], [37], [67], [70]-[72],
as illustrated in Fig. They also improve [PDPl characteristics, by focusing the optical
beam into the center of the diode, raising the collection of the optical signal in the
device. Also, the use of metal layers is not compromised with the introduction of such
apparatus, guaranteeing high digital gate density [31]. Nevertheless, their integration
often require several technological constraints and is not always possible in available
commercial technologies [1].

Figure 1.7: 3D FIB-SEM characterization of the microlenses from [31]

In 3D stacking, two dies are superposed and interconnected, one hosting the SPAD
devices and another one for integrating associated electronics. In this approach, two
different dedicated technologies can be used for the optimization of the chips’ individual
performances. Since SPAD and its electronics are vertically assembled, instead of being
placed side-by-side, a better [FH is obtained, but at a cost of an expensive and very
complex technological procedure [53], [57], [69].

18 T.CHAVES DE ALBUQUERQUE - Institut National des Sciences Appliquées de Lyon - 2019 Integration of Single Photon
Avalanche Diodes in Fully Depleted Silicon on Insulator Technology

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI091/these.pdf
© [T. Chaves de Albuquerque], [2019], INSA de Lyon, tous droits réservés



CHAPTER 1. SPAD AND APPLICATIONS

1.2.6 Crosstalk

When implementing SPAD matrices, optical and electrical crosstalks are two fac-
tors that may adversely affect the correct functioning of the system. When a photon is
absorbed in one pixel of the matrix, a lateral diffusion of carriers can be triggered, reach-
ing perhaps an adjacent SPAD (electrical nature). In the case of optical crosstalk, when
an avalanche is generated, it often produces an electroluminescence effect, emitting
photons that can possibly be absorbed in a neighbor cell’s as illustrated in Fig.
For both cases, the result is a false detection, which needs to be avoided. During design
phase, crosstalk effects have to be taken into account when estimating spacing between
neighbor SPAD cells. The final result is generally a reduction of [EF [1], [73].

hv

SPAD A SPAD B

Figure 1.8: Illustration of optical crosstalk effect for two adjacent

1.3 Applications

Thanks to the high sensitivity and picosecond timing resolution of devices,
they can be used for several different purposes, such as Time Correlated Single Photon
Counting (TCSPC) measurements, Fluorescence Lifetime Imaging Microscopy (FLIM)
[74]-[80], Time-Of-Flight (TQE) [36]], [81]-[88], detection of charged particles [2]-[5],

In Time-Of-Flight (TOE) (Fig.[1.9), a luminous source emits a monochromatic or
wide-spectral signal, that is then reflected by a target object and impinges the detector.
In direct time-of-flight, the time elapsed between the start signal (connected to the light
source) and the stop signal, produced by the sensor, is measured. SPAD detectors
are remarkably good candidates for this type of measurement, thanks to their timing
resolution of the order of tens of picoseconds [6]. Time-Of-Flight (TOEF) is a great option
for applications such as 3D imaging [36], [82], [83], [86], [87], Light Imaging Detection
and Ranging (LIDAR) and smart driving [81]], [83]], [85]. The use of such approach has
the big advantage of easy integration in CMOS technology.

Nevertheless, for short distances, a resolution of a few picoseconds is required,
which is not possible to obtain with SPADs operating at room temperature. In order
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to overcome this limitation, electronic instrumentation techniques are needed, such as
performing several measurements and averaging the results. A typical procedure is to
employ Time Correlated Single Photon Counting (TCSPC) [6].

pulsed : JL —
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Figure 1.9: Schematic of a Time-Of-Flight (TOF) measurement for 3D imaging applications,
from [6]].

Fluorescence Lifetime Imaging Microscopy (ELIM) is an imaging method very
used in biological sciences for identifying dyed components in samples. The different
dyes have specific spectral signatures. For this purpose, it is possible to use fluorophores:
fluorescent chemical compounds that can re-emit light after an initial light excitation.
They have an associated lifetime (often in the order of nanoseconds), which represents
the exponential fluorescent decay time after the removal of the excitation source and
depends on the environment conditions [77], [91].

One of the standard techniques used for measuring this fluorescence lifetime is
mainly because of its high accuracy. The approach here is to excite several
points of the sample with a laser source operating with pulsated signal. Then, one can
measure the arrival time of the corresponding photon from the fluorescent response
of the sample. The process is then repeated several times and a histogram of those
arrival times is built. The lifetime is therefore extracted from the exponential fit of the
distribution, as shown in Fig. [77], [79].

Another application of SPAD is the direct detection of charged particles. In this
context, since an intrinsic[DCRJis always present in SPAD and sometimes at a rate much
higher than the signal, one convenient approach is the use of coincidence signals, when
a particle impinges two superposed detectors, as shown in Fig. [2]-[5]. In this figure,
the continuous waveforms represent the SPAD output signals, while the dashed lines
symbolize the ultra-short pulses (whose width represents the coincidence time-window)
that are synchronous to the leading edge of an avalanche event. This concept allows
the efficient detection of charged particles at rates that are much lower than the SPAD
DCR, which is often the case of medical and high energy physics applications [3].
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Figure 1.10: Histogram of photon counts resulting from measurements for different
spots of a DNA sample. The inset shows a median FWHM jitter of 230 ps for the detector.
The excitation source is based on a pulsed laser diode (Advanced Laser Diode System, GmbH,
Germany) with a wavelength of 637 nm and a pulse width of 40 ps (FWHM). From: .
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Figure 1.11: A 3D-SiCAD (Silicon Coincidence Avalanche Detector) pixel: schematic represen-
tation of the detection concept considering a possible implementation in a CMOS process, from:

[3].
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1.4 State of the Art of SPAD in CMOS technologies

1.4.1 SPAD in CMOS Bulk Technologies

Even if different materials can be used for Geiger-mode diodes implementation
(such as Ge-on-5Si [60]], [92], [93] and InP/InGaAs [39], [70], [94], [95]), their integration
with mass production CMOS electronics is not always simple. Hence, since the first
implemented in CMOS [21], [30], that provided monolithic integration with reli-
able and reproducible readout electronics, those devices received much more attention
in the market, due to their low cost and high-performance fully integrated imaging
systems.

The main difficulty when integrating imagers in advanced CMOS is that these
technologies are normally not conceived for this purpose. Instead, their main objective
is reducing transistor size, while improving circuit efficiency. This often imposes
restraining design rules that adversely affect conceiving SPAD devices, such as the
requirement of orthogonal shapes, generally problematic when a uniform electric field
is desired, which is the case for SPAD. For reducing the edge effects caused, lower
doped regions (known as guard-rings) are placed at the lateral borders of the junction.
Besides, the wells in commercial advanced CMOS technologies generally present very
high doping levels, which translates in high and low PDPl Thus, the use of
dedicated CMOS Image Sensor (CIS) technologies is preferable from the point of view
of optimized SPAD performance [54], [96]].

By considering the aforementioned [FOMk, some recent SPAD implemented in
CMOS present the current State of the Art (SOTA). The best results up to this date
are obtained by using 3D stacking techniques at wafer level, because they provide the
combination of the best dedicated technologies (for SPAD, but also for data processing),
resulting in optimized developments, according to application.

When it comes to 3D stacking, its main advantages are the higher fill factor and the
better NIR|response for[BSI|, which is suitable for[LIDARlapplications. For this approach,
the SPAD is implemented in the top-tier chip (normally conceived in a dedicated [CIS),
while the associated electronics for data processing are integrated in the bottom-tier
chip (conventionally realized in advanced CMOS), providing better energy efficiency
solutions, with reduced consumption [35], [51]-[54], [57], [58]], [96], [97].

There are two possible ways of assembling the independent tiers, according to
the kind of illumination desired, as shown in Fig. The top-tier is always the one
that contain the SPAD, but in [ESI the bottom of this die is connected to the top of the
one containing the electronics. In this case, additional Through-Silicon Vias are
required for the necessary interconnections, since the junction is shallower. For the same
reason, this method is more adapted for detection of Near Ultra Violet (NUV)) radiation
or visible light. On the other hand, for face-to-face stacking is implemented and
the junction is naturally much deeper. Backside thinning becomes often necessary for
enhancing and this approach is, then, more adapted for red and sensing [98].

For the 3D stacking with face-to-face interconnection, the top-tier can benefit
from a die thinning process of few micrometers, improving [PDP] at a chosen range
of wavelengths [54]. The main drawback when using 3D stacking lies in the limit of
transistors” operating voltage and consequently, in the limitation of excess bias, when
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Figure 1.12: Types of 3D assembling, according to the desired approach of illumination: (a)
Front Side Illumination (ESL); (b)Back Side Illumination (BSI). Adapted from

using a single transistor as quenching circuit. This inconvenience might be a non-
negligible disadvantage, because increasing excess voltage often produces better time
jitter and [PDPI [57].

Over time, both tiers experienced better performance with the evolution of their
respective dedicated technologies. Concerning the die hosting the diode, in [57],
implemented with 65/40 nm technologies (respectively for top and bottom dies), an
afterpulsing probability of 0.08% was achieved, thanks to a combination of passive
quenching and active recharging, with a recharge time of 8 ns, at excess bias voltage of
4.4V, representing a suitable device for photon counting rates as high as 125 Mcps.

In [52]-[54], using 45/65 nm technologies, it was possible to obtain the best[DCR]
[PDD) jitter and [FE for 3D-stacking so far. A comparison between those
results and the previous is presented in Fig. [1.13} for and in Fig. [1.14} for

Comparing these different technologies at different operating conditions can be
not so evident. A good way to compare and interpret those results is by plotting[PDPlas
a function of [DCR] as shown in Fig.[I.15](a). The highest PDP obtained at lowest DCR
is then the most efficient device for the given operating conditions.

Finally, time jitter analysis is of high importance when comparing SPADs. The
results for this parameter is presented in Fig. (b). Even if those results
represent very low values of jitter in[CMOS| devices, it should be noted that they were
not obtained for the exact same operating conditions (particularly, wavelength). Thus,
they are not necessarily suitable for the same applications.

Another very interesting work was published in [31], where a 40nm tech-
nology was used. The junction being composed of a P-well (PW)) and a Deep
N-well (DNW), as illustrated in Fig. Their implants were especially calibrated
for optimization of SPAD characteristics. A dedicated microlens process was also
developed, for lowering attenuation effect in the several layers placed over the device.

This SPAD presents excellent results at room temperature at 1V excess voltage,
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Figure 1.13: Comparison between DCR wvalues according to excess voltage. (Adapted
from: [54]). References in the figure: Charbon ([58]]), Mata Pavia ([35]]), Abbas ([51]])

such as: DCR around 50 counts per second (cps), afterpulsing probability at 0.1%,
around 5% and time jitter equals 140 ps, at 840 nm. Optical crosstalk was also estimated
to be lower than 2%. Besides those prodigious results, this integration can be directly
used for 3D stacking processes [31].

As seen previously, SPAD characteristics depend on several conditions: internal
(such as doping levels of the wells composing the junction, the density of defects in
silicon and silicon-oxide interface in contact with [SCR) and external (as the applied
voltage, temperature, and impinging wavelength). Those conditions need to be carefully
taken into account when using SPAD for a given application.

1.4.2 SPAD Associated Electronics for Quenching and Recharge

As previously mentioned, in order to avoid damaging the SPAD device, due to
high current values present in its operation, quench and recharge circuits are needed.
Since the objective of this PhD Thesis is not the development of high performance
quench and recharge circuits, the review here presented is not exhaustive [7].

The simplest circuit for achieving this purpose is the ballast resistor (possibly
being implemented by means of a MOS transistor), as presented in Fig. When
avalanche current flows, the voltage across the resistor is enhanced, thus automatically
reducing the voltage across the diode, and eventually its current. Through this same
ballast resistive device, the diode’s voltage is increased back to its original value [7].
Passive circuits are largely used when it comes to selection of devices among different
variants during the first characterizations, because they are compact and have reduced
power consumption [11], [99]-[101].
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from [14]]). References in the figure: [STQE'18 ([52l]), EDL’17 ([57]), IEDM'16 ([51]), ]SSC’15
([35]1), NSS'14 ([58])

(a) 40

w
o
T

Peak PDP [%]
N
o

Lee, 45nm BSI CIS
4

A
Al Abbas, 65nm BSI CIS

Mata Pavia, 130nm BSI CMOS

®
10} u
Charbon, 130nm BSI CMOS
o 1 L
10° 102 10°

Dark count rate [cps/um?]

10*

(b)

500

8
S

FWHM [ps]
w
S

200 } — . .
100 } ——
1 2 3 4

L) L) L)
—&— Mata Pavia, 130nm BSI CMOS
—a— Al Abbas, 65nm BSI CIS
—#- Lee, 45nm BSI CIS

—o—A=750nm |
—&— )\ =773nm
—4—A=637nm

Excess bias voltage [V]

Figure 1.15: Comparison between [SOTAL (a) PDP values according to their corresponding
[DCRlvalues. (b) Time jitter according to V., (Adapted from: [54]). References in the figure: Lee
([54]]), Charbon ([58]]), Mata Pavia ([35]), Abbas ([51]])

However, in order to obtain the best characterization of devices in optimal con-
ditions, active circuits are needed. Several architectures have been proposed [23], [94],
[102], [103]. In every case (see Fig.[1.18), the active circuit first needs to detect the
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Cathode Anode

(a)

Figure 1.16: [SPAD| implemented in CMOS 40 nm technology: (a) Doping; (b) Electric field.
Adapted from [31]].

Figure 1.17: Ballast resistor used as Passive Quenching Circuit (PQQ). Adapted from [7].

avalanche pulse generated by the SPAD (by using a fast comparator, for example). Once
this task is accomplished, it should quickly reduce the reverse bias voltage to a value
below breakdown, keeping this value during the so-called hold-off time (often defined
by the user). Then, the device voltage is increased back to its original value for a new
detection. This approach have the great advantage of being fast, which implies that the
number of charges that go through the junction is decreased and thus afterpulsing prob-
ability is reduced. Also, a quick recharge makes the device ready for a new detection
faster, which increases the chance of correctly sensing a new incoming photon.
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Figure 1.18: Operating principle of active quench and recharge circuits.

Nevertheless, often passive quenchis largely sufficient for the application, recharge
time being the main constraint. For this reason, but also due to simplicity and for
reducing power consumption, a Passive Quench Active Recharge circuit is
sometimes preferred [29], [36], [57], [104].

1.4.3 SPAD Implemented in Silicon On Insulator Technologies

With the evolution of transistors, attempting to pursue Moore’s law, new tech-
nologies have been developed. In particular, Silicon On Insulator (SOI) has shown to
be one of the most promising approaches for highly innovative and energy efficient
circuits, keeping transistors isolated from substrate in a silicon film placed over a Buried
Oxide (more details in Section 2.1). The integration of in also
follow those advances and researchers are often enthusiastic for developing new SPAD
architectures in those modern technologies.

The first implementation of SPAD in CMOS SOI was done in 2013 [105] (and
turther developed and characterized in [49], [50], [99], [100], [106]) to be operational for
both[FSIland [BSIl For those references, the pn junction is integrated in the 1.5 um doped
silicon film placed over[BOX] as shown in Fig. The original substrate is then etched
until reaching the buried oxide. Breakdown voltage was measured to be around 12V,
and [DCRlwas measured for different temperatures (Fig. (a)), having its main cause
due to Band To Band Tunneling (B2B). (Fig. (b)) has its peak at 460 nm (11% in
6% in and jitter is approximately 500 ps at 1.2 V excess bias, being improved
(65 ps (FWHM) at room temperature, 3 V excess bias, and 405 nm wavelength in in
[49]. Afterpulsing is negligible at a dead time longer than 1 ps. Also, in [100], [105]], since
the desired applications were flexible electronics for bio-compatible imaging systems, a
10 pm-thick flexible polyimide was formed under BOX.

An updated version of this work, in which microlenses are also included, is
presented in [72], [107]. An array of 1024 quenched pixels with CMOS readout and
addressing circuitry were implemented. An epitaxy step is performed over the silicon
film. Then, doping and diffusion steps occur. The process is made in a way that the
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Figure 1.20: Characteristics of the first[SPAD|implemented in CMOS SOI: (a)[DCR| (b)PDPl
Adapted from .

electric field in the neutral region is enhanced, facilitating the drift into increasing
(e.g. 13% for both and BS]| at 490 nm), as shown in Fig. Thanks to the
integrated CMOS butffer circuits at pixel-level, higher values of excess voltage could be
applied (e.g. 4 V) and, due to microlenses, [FH could reach values up to 10%.

The same research group pursued the study of this innovative device in [108], by
analyzing the effect of different silicon on insulator thicknesses and their corresponding

28  T.CHAVES DE ALBUQUERQUE - Institut National des Sciences Appliquées de Lyon - 2019 Integration of Single Photon
Avalanche Diodes in Fully Depleted Silicon on Insulator Technology

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI091/these.pdf
© [T. Chaves de Albuquerque], [2019], INSA de Lyon, tous droits réservés



CHAPTER 1. SPAD AND APPLICATIONS

1 4 T T T ¥ T Y T T T

—a— FS

+— BSI .

‘53 \
= Multiplication e “'\1\1—\

6 - i - _
a Diffusion EPISi e

‘ .-- .\
-

4 4 Neutral WV ' -\l .
. o\\l

-

2 3

T | ' | ' T ' | ' |
400 500 600 700 800 900

Wavelength (nm)

Figure 1.21:[SPAD|implemented in CMOS SOIL: [PDPlfrom [72|].

implanted doses. (here, mainly due to [B2B) could be reduced by optimizing
doping in multiplication region. At cryogenic temperatures (80K), a value of
0.15kHz/um? could be obtained. FIWHMIjitter for this proposed device was evaluated
to be 450 ps in [FSI and 480 ps in for 637 nm, which is consistent with the
symmetric performance for the two illumination approaches (13% in FSI and 12.5% in
BSI).

Very recently [14], standard 140 nm SOI CMOS technology was used for developing
BSI SPAD. The junction is formed from P+/N-well layers, while keeping the interfaces
silicon/silicon oxide (BOX| and Shallow Trench Isolation (STI) layers) far from the
multiplication region of the device. Indeed, due to etching-induced crystal lattice defects
and charge trapping associated with STI, DCR may be adversely raised [14]. A circular
geometry was chosen for implementing the SPAD, reducing geometric Premature Edge
Breakdown (PEB).

Due to relative high doping concentration of the N-well, breakdown voltage is
quitelow (11.25 V). Nevertheless, the fabricated devices present remarkable results, such
as a DCR varying from 1.2 Hz/um? to 396.1 Hz/um? at room temperature, according
to excess voltage. In terms of [PDP)] a significant sensitivity in blue, NUV]and violet,
as well as good values for red and were obtained (Fig.[1.22). Like in most of
operating devices, due to the absence of metal layers, [FH is enhanced. A time jitter of
119 ps was also obtained for 637 nm.

A similar process was also implemented in [32], where SPAD devices were inte-
grated in 0.35 um SOI technology (1 pm buried oxide and 3 um silicon film) and were
only partially characterized. The junction is composed by a p+/deep n-well in the silicon
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Figure 1.22:[PDP\for SPAD implemented in 140 nm SOI CMOS technology [14].

film, with a p guard-ring. The substrate is etched until reaching the the die is
then flipped for 3D stacking with a second one with associated electronics fabricated in
bulk 0.35 pm technology. With breakdown voltage around 30V, a[EE of 75% could be
reached without using microlenses.

1.5 Thesis Objectives

It is important to notice that so far, in all of the reviewed papers concerning
integration of in technologies, the junction is placed over the used as
stopping layer during etching process, mainly to improve [PDPlin [BSIland [FE

It was only in [109], [110] that the integration of were proposed in ad-
vanced Fully Depleted Silicon On Insulator (FDSOI) technology (28 nm), by means of
Technology Computer-Aided design (TCAD) simulations. Since a very thin silicon film
(7nm) is placed over an ultra thin buried oxide (25nm), the junction stays underneath
this insulation layer, while transistors are implemented in the thin silicon film, being
electrically isolated from as shown in Fig.[I.23] Those transistors could, then,
be placed over the device, instead of staying side-by-side. This configuration
would allow increasing [FF in [BSI in an monolithic and intrinsic 3D integration of the
pixels and their associated electronics, without the need of complex and expensive 3D
stacking processes.

The main objective of this PhD thesis is to prove the feasibility of this challenging
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Figure 1.23: Proposed implementation of SPAD in FDSOI CMOS technology in :

and certainly interesting approach by means of SPAD design, simulation and
electrical characterization. For this purpose, the advanced 28 nm FDSOI from
STMicroelectronics was addressed. At first, all the design rules were respected without
any process modification or customization.

We aim at the experimental demonstration of SPAD FDSOI architecture, at its
electrical characterization and modeling. With those results, it was possible to propose
process modifications for improving performances so the technology can be used for
hosting those devices.

Conclusions

In this chapter, the operation of Geiger-mode silicon photodetectors was presented.
Such devices are pn junctions biased above breakdown voltage in a quite unstable state.
When a single photon is absorbed, creating a photogenerated Electron Hole Pair (EHP)
inside the Space Charge Region (SCR), or inside a neutral region, but reaches the
multiplication region, it is enough to produce a self-sustained avalanche very easily
detectable, due to the resulting high current. The Single Photon Avalanche Diode (SPAD)
device needs then to be protected from the possible damaging effects induced by this
current, so quenching circuits are added to the structure. Finally, a recharge circuit
brings the junction to its original state, so it can be ready for another detection.

The main Figures of Merit (FOM) of such devices are also presented: Dark Count
Rate (DCR)), afterpulsing, Photon Detection Probability and Efficiency (PDP, PDE), time
jitter, Fill Factor (EE) and crosstalk. representing the intrinsic noise, it is a key
parameter for providing efficient photon detection, which highly depends on the electric
field at the multiplication region and, as a consequence, on the applied voltage bias.
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Afterpulsing characterizes the probability to observe "echo" events, due to carriers’
trapping and releasing processes after primary avalanches. Time jitter refers the statistic
deviation between the moment at which the photon is absorbed and the actual detection
of the avalanche, being an extremely important to some applications such as
Time-Of-Flight (TOF). The fill factor being the ratio between the active area and the
total pixel’s surface, its estimation is needed for device photon detection efficiency
calculation. Crosstalk quantifies the coupling (electrical and optical) between SPAD
pixels in matrix configuration.

Then, the State of the Art (SOTA) for SPAD is briefly reviewed, focusing on
the CMOS implementations, since these technologies provide the most reliable and
reproducible electronic circuits. In this context, the most advanced devices are compared
by means of the aforementioned and their corresponding operation conditions,
such as voltage bias, temperature and mode of illumination (Front Side Illumination
or Back Side Illumination (BSI)). Up to this date, the most efficient technique employed
is 3D stacking, when two dies are assembled, the first one hosting the SPAD devices,
while the second one accommodates the associated pixel electronics. In this case, the
different tiers are individually optimized for their purpose: CMOS Image Sensor (CIS)
technologies being used for the SPAD integration, while transistors are implemented in
advanced 3D SPAD offers the best trade-off between photodetection efficiency
and fill factor, but requires complex and expensive technological processes.

One of the most outstanding technologies nowadays uses Silicon On
Insulator (SOI). Some SPADs have recently being integrated in such a technology, using
the silicon film placed over the Buried Oxide to implement the pn junction. As
evolved, the silicon film became thinner and, in 2016, the first SPAD integrated in
(under the layer) was proposed by means of simulation. Its main
advantage being the monolithic 3D integration of SPAD and its associated electronics,
which is the object of study of the next chapters of this PhD dissertation.

In Chapter 2, the design of SPAD cells in CMOS 28 nm FDSOI is addressed, along
with the main technological constraints, due to design rules.

In Chapter 3, the simulation and modeling of the designed cells is presented.
Discussions are made about doping profiles, carrier generation and avalanche processes,
with some proposed improvements.

In Chapter 4, the electrical characterization of the fabricated devices is discussed.
Comparisons are made between the different variants of SPAD cells, while conclusions
about their performances are presented.
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Chapter 2

SPAD Cells Design in CMOS FDSOI
28 nm Technology

In this chapter, the Fully Depleted Silicon On Insulator (FDSOI) technology
is presented, along with its main advantages, that make it very worthwhile for future
applications, where energy efficiency is priority. The integration of in such an
advanced technology was then addressed in section For this purpose, the native
commercial CMOS 28 nm FDSOI technology from STMicroelectronics was used. At a
tirst step, no design customization was done, i.e., all design rules were respected. The
methodology for developing such cells is reported, design rules constraints are also
presented, forcing adaptations of[SPAD|cells. The designed cells are then described, with
their respective fundamental elements (e.g. photosensitive areas, contacts), necessary
for the correct functioning of the cells. Then, Section is dedicated to present an
indirect avalanche sensing circuit, possible to implement thanks to the body biasing
effect in[FDSOIl The antenna effect in FDSOI is briefly discussed, since it was a source of
problems for some of the implemented devices. Finally, the top layout of the fabricated
circuits is presented, along with a dedicated Printed Circuit Board (PCB), used for
electric characterization.

21 CMOS 28 nm Technology

Although bulk[CMOS|has been widely used in electronics for decades, due mainly
to the good-quality oxide in silicon, it still presents limitations below 40 nm node. Metal
Oxide Semiconductor Field Effect Transistor integrated in bulk technologies
often only occupy the very top region of their silicon wafer, leaving more than 99% of
total volume to be the base substrate, serving almost exclusively as a simple mechanical
support for most applications. This bulk integration is also responsible for inducing
several parasitic effects that can deteriorate transistors’ performance, such as non-
negligible drain/source to substrate capacitance, latch-up (i.e., unintentional activation
of parasitic devices, such as inherent PNPN thyristor) and leakage current. These
undesired effects become even more critical as devices are scaled-down below 40 nm,
when the channel electrostatic control requires new architectures (FinFET, Gate-All-
Around FET, and FDSOI) [1]-[4].

A very clever solution to overcome these limitations was the use of structures.
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In such devices, transistors are dielectrically isolated from the substrate, thanks to a
[BOXllayer, as can be seen in Fig.[2.1] Thanks to the SiO, the maximum capacitance
between junctions is reduced to the buried oxide’s, making this approach suitable for
high-speed operation at the same time that allows low voltage supply and low leakage
current, reducing thus power consumption as well. Since there is no electrical contact
between transistors and substrate, the PNPN junctions no longer exist and latch-up
problems are also solved [1], [3].

As the technologies evolved, the thickness of both the silicon film
and the buried oxide were reduced, becoming today as narrow as 7 nm for the former
and 25nm for the latter (see Fig.[2.2]) in commercial Ultra Thin BOX and Body
CMOS28FDSOI technology from STMicroelectronics (hereby named C28FDSOI) [5]-[7].
FD stands for Fully-Depleted, which means the whole silicon film is depleted, presenting
no neutral zone. This feature provides several advantages, such as a low threshold
voltage, small leakage current and smaller floating-body effects. Also, improvements
are observed in the slope in sub-threshold region, as well as in Drain-Induced Barrier
Lowering (DIBL). These characteristics make most suitable for low-voltage
operation, and thus for low power consumption market [3], [7], [8]].

PMOS

NMOS NMOS PMOS

SO0

L 1 . d | [....
 N-well LR Si0, P

(a) Si - bulk P [(b)SOI Si - substrate

Figure 2.1: Comparison between bulk (a) and SOI (b) structures. (Adapted from [1])

In C28FDSQ], two distinct families of transistors exist, according to the body
doping type underneath the BOX (PW] or N-Well (NW)): Regular V;, (RVT) and Low
Vi (LVT), as can be seen in Fig. (a) and (b). The former keeps the original bulk
configuration, i.e., the bodies have the source-drain opposite doping type. LVI|devices,
also called "flipped-well", have the same well type [7], [8].

[C28FDSOI has another intrinsic and ingenious trait, which is the possibility to use
dynamic body-biasing techniques, consisting essentially of applying a voltage bias to
the well underneath transistors, as illustrated in Fig.[2.2] (b). Even if this technique is
well known for bulk technologies, it has very limited range of voltage bias (see Fig.
and also becomes less efficient for advanced bulk technologies [9], [10]. Nevertheless, it
does not degrade in[FDSQOI|, where it is the key aspect that grants great versatility to this
technology, since it will adjust threshold voltage (V) according to body voltage (Vi,),
either for increasing speed and performance, in case of Forward Body Biasing (EBB), or
for reducing leakage power consumption, in case of Reverse Body Biasing (RBB).

When performing[RBB] the absolute value of the threshold voltage of transistors is
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(b)
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Figure 2.2: Planar transistor integrated in CMOS 28nm [EDSQOIl (a) TEM cross section (b)
Generic cross section. (Adapted from [8]])
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Figure 2.3: Cross section of C28FDSOI transistor families : (a) LVT, Low threshold voltage; (b)
RVT, Regular threshold voltage; (c) Threshold voltage variation according to Body Voltage for
NMOS and PMOS transistors of both families (Adapted from [7]).

increased, which can in turn produce a significant reduction of leakage current. It can be
achieved by decreasing the body bias voltage in NMOS and by enhancing it for PMOS.
Similarly, implies in a reduction of |V};|, which can be conveniently exploited for
boosting performance. In order to produce this type of body biasing, one can reduce the
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Figure 2.4: Variation of threshold voltage according to body biasing voltage for C28FDSOI and
Bulk (From [§])

body bias voltage in PMOS and also increase it for NMOS. [RVT] transistors are the most
suited for RBB] while the fast but leaky [LVT] transistors can be best employed when
using [EBB as can observed in Fig.[2.3](c) [7], [11].

It should be noted that at least two thicknesses for the front gate oxide are available
in C28FDSOI, the default value being 18 A. Thicker gate oxide transistors are also
available (28 A). The transistors featuring this larger value of thickness can be biased up
to Vps = 1.8 V and are referred to as EG transistors, for extended gate. Another attractive
feature of these transistors is their larger body-bias factor (AVy/AVy = 140mV/V),
while normal gate thickness transistors provide 85 mV/V and can only be biased up to
Vps=1V.

After these considerations, it is clear that bulk technologies won't fulfill the re-
quirements of future circuits in both performance or energy efficiency, [C28FDSOIlbeing
one of the most suited alternatives for the aforementioned demands. The choice of
such a technology for integrating devices is certainly appropriate for upcoming
applications, such as Internet of Things, 3D cameras and smart driving.

In addition to the remarkable advantages presented previously, the fact that the
[SPADljunctions can be intrinsically integrated in a 3D structure along with associated
electronics (i.e., quench and recharge circuits), while being electrically insulated from
each other, thanks to the layer, illustrates the many advantages of this combination,
especially an optimization of the [FE

2.2 SPAD implemented in CMOS FDSOI technology be-
low the BOX

In order to design a in native technology, two main layers were
addressed to be used as the PN junction: P-well (PW) and as illustrated in
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Fig. The former is conventionally used for body-biasing effects, and the latter (also
known as triple well, layer T3 in Physical Design Kit (PDK])), being biased through
N-Well (NW)), is normally employed for isolating two different PWI[8]. As can be seen
in Fig. 2.6 (a), the junction is vertically integrated under the layer and is thus
electrically isolated from transistors - implemented in the thin silicon film.

Since [PW] exists by default, and is more doped than PEB can occur
between PWland For avoiding this problem, BEMOAT layer is introduced
between them, preventing P or N implants in this area, as can be observed in the
corresponding doping profiles shown in Fig.[2.¢](b) and (c) [12].

thin silicon film

Vbd + Vex

Quenching
{ and
Recharge

= Scales not respeted

Figure 2.5: Proposed implementation of SPAD in commercial C28FDSOI technology. The
junction is realized under the BOX layer.

Once the PN junction is formed, it is necessary to provide contacts for biasing
cathode and anode. They can be done with BP and NW|PDK layers, as illustrated in
Fig.[2.6land 2.7] The anode is then connected to a quenching circuit (either internal or
external), which is, in turn, also connected to the ground potential. Cathode is biased at
high voltage (Vpp + V.,). The substrate contact can be connected to the ground potential
too, as the DNW}FSUB junction presents a much higher Breakdown voltage Vpp than
as measured in Chapter [4 section This option of bias configuration
was chosen considering the future implementation of a SPAD matrix, where a common
[DNWI can be implemented for but also taking into account the body-biasing effect,
expected to affect transistors placed over the PW], due to the variations in their voltage
when avalanche occurs, as explained in Section [2.4.2]
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Figure 2.6: (a) Cross section of SPAD vertically integrated in C28FDSOI (PW-DNW junction).
Here, only half of the cell is represented, as it has cylindrical symmetry (scales not respected);
(b) Doping profile at constant y, where BEMOAT layer plays the role of guard-ring; (c) Doping
profile at constant x, where the SPAD junction is shown. Arbitrary units were used here for
confidentiality reasons.

2.3 Design Rules Constraints

For every IC design, minimum widths, areas and distances between layers are
imposed by the technology rules, to make sure the proposed design is physically feasible.
One of the major challenges in designing cells in commercial technologies is the
respect of all design rules, sometimes very constraining.

First, a geometry needs to be chosen, which is particularly difficult in C28FDSOI
technology, since only orthogonal shapes are allowed for almost all of the layers
(including T3 and BFMOAT). This feature makes it difficult to avoid [PEB} since edges
normally produce localized high electric field, which in turn produce a higher [ATD]
on edges, not being an optimized feature for SPAD, where a uniform electric field is
required for maximizing the Photon Detection Probability (PDD).

In order to overcome [PEB, a BEMOAT [PDKl layer was introduced to the design
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Figure 2.7: Layout of a circular SPAD cell in C28FDSOI region with its main components. The
purple rectangles correspond to the areas where BOX and thin silicon film are present (RX
layer), as STI is present by default. Since RX can only have rectangular shapes, due to design
rules, the staircase approximation needed to be used here as well.

betweenPWland [DNW] playing the role of guard-ring, since it prevents P or N implants
and creates a low doped region around (in this case, a N-type, retrograde from
implant), automatically reducing local electric field, as can be seen in Fig. [2.6]
[12]. TCAD simulations including the electric field were performed and are presented
in Chapter 3| to confirm the proper functioning of this guard ring in the structure.

In case of [ESI] the photosensitive area needs special attention. In fact, several
layers can attenuate or even block the incident luminous beam, such as metals used
for contacts, dummies and also the passivation layer. In order to address these issues,
contacts’ sizes and shapes must be studied, to provide a uniform anode biasing without
shadowing the photosensitive area, while still respecting design rules.

In C28FDSOI (version DP 1.0a, used here), eight different metal layers exist (two
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of which are thick). For minimizing the light attenuation in [ES]| a limited amount of
metal was used, keeping the minimal widths and surfaces for all eight levels in the
photosensitive area. The first level of metal (M1) was used for biasing the cathode
at high voltage, and for decreasing the chance of breaking the dielectric between two
consecutive metals, the last level (IB) was used to reach the anode contact.

Furthermore, according to[PDKldesign rules, the[NWI|contacts can have any shape,
as long as they only have orthogonal angles. This feature ensures a very uniform biasing
of the cathode. The contacts, on the other hand, can only have either a cross or a
straight line shape, which limits the options of geometry for anode contact.

Advanced technologies such as C28FDSOIl also require a flat wafer surface between
each metal layer, normally done with Chemical Mechanical Polishing (CMP). In order
to fulfill this specification, the so called "dummy tiles" are inserted during design phase
to homogenize the density of each metal layer. They can, however, have a negative
impact on photon detection if they cover the photosensitive surface. A tiling-exclusion
layer must be used to avoid this problem, while respecting minimal and maximum
density values for each[PDKllayer.

Passivation layer can also have an impact on photo-detection. Nevertheless, due
to fabrication process issues, it may not be possible to exclude this layer, which was the
case for C28FDSOI. The imposed attenuation must then be taken into account while
analyzing [PDPl

One last aspect that needs close attention in the case of C28FDSOI is the that
is by default everywhere in the circuit. In order to produce the true RX
layer must be used. It replaces [STI by the BOX physical layer (25 nm), right below
the thin silicon film (7 nm).

2.4 Description of Cells

2.4.1 SPAD Cells

In order to provide an optimized in during the device conceiving
phase, several design parameters were varied and their influence in[SPAD|performance
were analyzed. In particular: geometry, guard distance, cell size and associated quench-
ing circuit, as well as the implementation in different zones (under under [STT or
even in a No SOI (NOSQO)) area - see Fig.[2.8and [2.9).

The region, also known as the HYBRID zone, is obtained by etching the
silicon film and BOX from FDSOI zones (right after well doping) and was introduced
in order to allow the co-integration of bulk and SOI devices on the same die, since the
equivalent 28 nm bulk technology already existed [8]. In order to obtain such a region,
a combination of RX and HYBRID [PDK]layers must be provided.

The integration in different zones is essential for understanding the influence of
each layer in[SPADI performances. For instance, due to design rules constraints, STl is
kept at the edges of the photosensitive surface in integrated under Since
there is a significant difference in their oxide thickness (see Fig. , for a fixed depth,
the implants go through a thicker layer of silicon oxide in[STI region before reaching the
silicon itself. These processes result in different doping profiles, which in turn imply in
distinct SPAD performances, as will be explained in Sections and
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Figure 2.8: Cross section of the three different regions available in C28FDSOI in which the
SPAD can be implemented: (a) FDSOI; (b) STI; (c) NOSO

“HYBRID”
Bulk
side

P
b=

Figure 2.9: Microscopic picture of the three different zones available in C28FDSOI: FDSOI,
STI and NOSO (adapted from [8]).

T. CHAVES DE ALBUQUERQUE - Institut National des Sciences Appliquées de Lyon - 2019 Integration of Single Photon 55
Avalanche Diodes in Fully Depleted Silicon on Insulator Technology

Cette these est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2019LYSEI091/these.pdf
© [T. Chaves de Albuquerque], [2019], INSA de Lyon, tous droits réservés



CHAPTER 2. SPAD CELLS DESIGN IN CMOS FDSOI 28 NM TECHNOLOGY

Transition STI - FDSOI

DNW (T3
\_ (T3)

p-epi

p-sub

Figure 2.10: Transition of a STI zone into a FDSOL. The difference in the material through
which the doping processes are done influence SPAD performance.

Concerning geometry, three main shapes were conceived: squared, octagonal-like
and staircase-approximation circular cell, as can be seen in Fig.[2.1T] Due to design rules
constraints, all cells had staircase approximation geometries, since only orthogonal
shapes are allowed in the commercial technology. The main objective here is to verify
the influence of the geometry in breakdown process, including edge effects.

(a) (b) ()

Figure 2.11: Three different SPAD geometries were implemented: (a) octagonal; (b) squared; (c)
circular. All cells were designed with staircase approximation, due to design rules requirements.

Guard distance is defined here as the width of the BEMOAT [PDKlayer, used to
isolate[PW|from NW, avoiding PEB. Two values were used: 3.5 pm or 5.0 um. By varying
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this distance, one can expect to find the optimized guard distance. TCAD simulation
is often not enough to accurately determine this value, due to high incertitude while
simulating doping profiles.

Cell size was another parameter taken into account. Five different dimensions
were used for the photosensitive area: for octagonal cells, 500 pum? and 1000 pm?. For
squared cells, 785 um?. For circular cells, 615 um? and 2460 um?. This parameter is
quite important when measuring dark current in such devices, since it is quite difficult
to measure currents smaller than 100 fA, which is often the case for smaller cells. For
comparison reasons, some cells were developed under[STIland also in NOSO areas (out
of zone), while keeping constant the other parameters.

were also implemented: either a high precision p+ polysilicon resistor
(200kQ) or a single transistor, placed next to the diode. Passive circuits have the
advantages of not taking much place in the circuit, have reduced power consumption
and no need for much interconnection, being suited for initial characterization and
selection of devices [13]. For both passive components, the adopted configuration was
the diode on top, i.e. the is connected to the anode of the while the cathode
is biased at high voltage, as shown in Fig. This choice is particularly interesting
for because the anode voltage is by default at ground potential, varying only
during avalanche events, which can be properly exploited in sensing circuits placed
over layer, due to body-biasing effects.

2.4.2 Indirect Avalanche Sensing Cells

One of the main features in is the body-biasing effect in transistors.
This intrinsic characteristic can be conveniently explored for cells, i.e., during
avalanche events, transistors placed over cells may have their threshold voltage
varied, allowing to indirectly detect avalanche events. This possibility has been previ-
ously proposed in [14] and was implemented here, with a simple voltage divider circuit,
as shown in Fig. and Fig.

Since both transistors are placed over the same P-well (i.e., the anode), a
RVTINMOS and a LVITIPMOS were used. Two types of transistors were employed (for
two independent sensing cells): regular gate oxide (referred as GO1, 18 A) and thick
front gate oxide (GO2, 28 A, also called Extended Gate (EG) transistors), featuring a
larger body-bias factor (AVy,/AVy, ).

The output node of the voltage divider V,,; varies dynamically with the
state. Each avalanche event gives a positive transient voltage pulse on the anode, i.e., a
[PW]voltage increase. Then, Vy,, of NMOS will decrease (forward body-biasing) while
the absolute value |Vy,,| of PMOS will increase (reverse body-biasing). A transient
negative voltage spike is then expected at the output node (V,,;) of the voltage divider.

Both PMOS and NMOS have W = 10 um and L = 150 nm as size parameters, for
both EG and thin gate oxide families. This very simple sensing circuit for direct measure
with oscilloscope is certainly not optimized, as it presents a high power consumption
(hundreds of uW), but surely can be used as a proof of concept, as shown in Chapter
Section

Another very simple and yet effective circuit for indirect sensing of avalanche is
presented in Fig. where a single transistor is placed over the[SPADland has its source
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Figure 2.12: Schematics of SPAD and its quenching circuits, connected through anode. Cathode
is biased at breakdown + excess voltage. Black dotted lines represent the possible connections with
three distinct and independent quenching circuits. Red dotted lines represent the two possible
nodes to which the oscilloscope probes can be connected. The green dotted line symbolizes the
interface between internal and external circuitry

and drain connected to each other, as an output node. Its working principle is based on
the two intrinsic capacitances presented in the structure (gate - gate oxide - channel and
channel - BOX - PW). This architecture can be translated into an equivalent capacitor-
based voltage divider, where a variation in anode voltage, during avalanche, is enough
to change the voltage at the channel, producing an output voltage pic, synchronized
with avalanche events. The consumption for this configuration is negligible, but in
order to verify this effect, a larger transistor is needed (almost 3 times bigger than the
ones required for the first proposed sensing circuit). Also, since the capacitive divider
cannot drive a load, a buffer circuit is needed, and its power consumption should also
be taken into account. This cell was only tested by means of SPECTRE simulation, in
Cadence Virtuoso software [15].

2.4.3 Antenna Diodes

During IC fabrication for regular bulk CMOS devices, the gate oxide in transistors
connected to a large path of metal layer can be damaged, due to the so-called Antenna
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Figure 2.13: Schematics of sensing circuit, composed by a RVT NMOS and a LVT PMOS, in a
voltage divider configuration, where the output voltage varies with avalanche events, thanks to
body biasing effect.
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Figure 2.14: Layout of SPAD circular cell with sensing circuit over PW, in the middle.
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deep N-well

Figure 2.15: Another proposed architecture of sensing circuit in FDSOI, thanks to body biasing,
based on a capacitive divider (Scales not respected) [15].

Effect or Plasma Induced Damage (PID). This phenomenon consists of collecting
charges in gate layer during plasma etching, for instance. These charges can produce
an unwanted DC current flow through thin gate oxides, making the affected transistors
useless [16]-[18].

In[C28FDSQ]| this problem is even more disturbing, because source and drain are
also isolated from substrate by BOX layer, and thus exposed to plasma damage. For
this reason, additional antenna design rules are added to [FDSOI process, to avoid this
problem [19], [20].

The simplest solution for both bulk and is to place an "antenna diode"
between the first metal layer (M1) and the substrate. Once the charges are collected in
the transistors” terminals, they are sufficient to break these antenna diodes, evacuating
the charges into substrate and thus avoiding damaging both BOX and gate oxide,
preserving then the device for its correct utilization. It should be noted that Design Rule
Checking (DRC) predict the correct diode surface, according to metal path surface, for
evading this problem.

In the specific case of integrated in the correct placement of
these protective diodes is crucial, since they may damage device, as illustrated
in Fig. Most of the time, such antenna diodes are placed close to the connected
transistor, and this does not constitute a problem when is used for the only
purpose of isolating different PW, which is not at all the case for where they
compose the PN junction biased above breakdown. An easy but effective solution is
to move them to another that is not used for purposes, as can be seen in
Fig. In the implemented test chips, the misplacement of such antenna diodes was
the reason for the malfunctioning of some SPAD cells. These errors were corrected in
an updated version of the test chip, currently under fabrication.
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Figure 2.16: Leakage current due to misplacement of protective antenna diode, in the surround-
ings of SPAD integrated in[C28FDSQOI
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Figure 2.17: By placing the protective antenna diode in an isolated PW, no leakage current is
produced in SPAD.

2.5 Circuit Top Layout

The final layout, sent to fabrication by means of Multi-Project Circuit (CMP), is
presented in Fig.[2.18] It is composed of 8 SPAD cells designed for probe station tests (in
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red squares) and 12 other for PCB tests (in purple squares). Those last are connected to a
custom padring composed of cells from C2850OI_IO_EXT_ANAF_EG library provided
in the Adaptations were needed especially in the superior pads, used for high
voltage biasing, where the native overvoltage protection needed to be suppressed. Since
thick oxide transistors were used for some of the sensing cells, the so-called EG pads
were needed, allowing biasing voltages up to 1.8V, contrary to the thin gate oxide,
where maximum voltage is limited to 1.0 V. One pad with this last configuration was
needed for biasing an integrated buffer in the circuit. A photo of the received fabricated
circuit is shown in Fig.

A dedicated PCB|was also implemented for testing the dynamic behavior of the
cells. It is illustrated in Fig. A mechanical switch was placed in order to
select which SPAD cell is connected to the high voltage. Several SMB connectors (with
their respective decoupling capacitors) allow to bias the padring, the sensing cells and
also to provide the input signal to transistor-based quenching circuit. Finally, some pins
allow the signals to be read by an oscilloscope, for a direct waveform analysis.

High Voltage Pads x12 (no ESD protection)

1 mm?
42 pads
Analog
I0_UHF x4
Analog —
I0_UHF x7
VDDCORE_1V8 (buffer)
[ e |5 I VDDCORE_1V8_
VDDE_ESD_1V8 s GNDCORE
GNDE_ESD_1v8 x2
(For biasing

ESDSUB J  sensing cells)

Analog IO_UHF x10

Figure 2.18: Final layout.
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Figure 2.20: Printed Circuit Board used for testing SPAD cells.
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Conclusions

In this chapter, the proposed implementation of cells in C28FDSOI was
presented. Firstly, the technology was discussed with its main advantages, such as
great suitability for low voltage operation, proving to be one of the most well adapted
technologies for future applications, where circuit performance and energy efficiency
are the top priority.

To the best of our knowledge, this is the very first time[SPADIdevices are integrated
in advanced C28FDSO], the main advantage of such an achievementbeing the possibility
of obtaining an intrinsic 3D structure with Fill Factor (FE) optimization, without the
need of expensive and complicated 3D assembly techniques currently used in State of
the Art, where two dies are connected together: one with the sensor and the other one
with the associated electronics.

In the case of the proposed integration, the PN junction operating in Geiger mode
is located under the Buried Oxide layer and is thus electrically isolated from the
transistors, that stay on top. Then, they can be used for composing the associated circuits
for the correct operation of the SPAD, such as quenching, recharging and addressing,
in the case of a matrix implementation.

Concerning the design of the SPAD cells, several parameters were varied in order
to verify the influence of each one in their performance. Many problems were faced
due to design rules constraints, such as mandatory orthogonal shapes, antenna diodes
design and adaptation of padrings. Nevertheless, even if limited circuit surface was
available (1 mm?) for each test chip, a quite fairamount of variants could be implemented
(and most of them could also be tested), as a proof of concept of in
two guard distances, three geometries, three possible quenching circuits, five different
values of photosensitive areas and three different integration zones: FDSOI, STI and
NOSO.

Two indirect avalanche sensing cells were also proposed, based on the capacitive
coupling provided by body-biasing effect feature in C28FDSOI. In the first one, a
transistor-based voltage divider has its output voltage varying when avalanche events
occur. Such indirect sensing supports the use of larger excess voltage, as compared
to direct approaches and paves the way for simpler and innovative SPAD processing
electronics.

The characteristic of the proposed cells are verified by means of TCAD simulation
in Chapter[3} such as electric field distribution and by means of electrical characterization

in Chapter 4
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Chapter 3
TCAD Simulation and Modeling

In this chapter, the work of simulation, post-processing and modeling performed
during this PhD, in order to investigate the expected performances of FDSOI SPAD
devices, is presented. This chapter is organized as follows: first, the simulation software,
its approximations and the used procedures are presented and discussed. Then, the
ionization coefficients models, used for avalanche triggering probability calculation,
are reviewed. Later, the main mechanisms of carrier generation that can effectively
start off avalanche process are discussed. Post-processing analysis is also introduced,
allowing to estimate and [PDPl At last, an approximated analytical version of
MclIntyre’s calculation of Avalanche Triggering Probability is proposed, which can be
used in compact modeling.

3.1 Structure Definition for Electrical Simulation

In this section, the procedure used to represent by simulation the SPAD imple-
mented in FDSOI is presented. This procedure includes two steps: geometry definition
and doping determination.

3.1.1 Geometry

In order to create a simulation structure that fulfills all design rules requirements,
imposed by the technology, Synopsys Sentaurus™ Structure Editor tool was used.
It is essentially a two-dimensional (2D) and three-dimensional (3D) device structure
editor, and a 2D/3D process simulator [1]. The device structure created in is
presented in Fig. It represents half of cross-section of the designed SPAD sent to
fabrication. A cylindrical symmetry is then considered, having the position x = 0 as the
symmetry axis. It means that a 3D device is specified by a 2D mesh and the axis around
which the device is rotated [2]. This feature allows a much faster simulation and a quite
fair approximation of the real designed SPAD.

3.1.2 Doping

1 In order to have more accuracy when simulating doping profiles, an implantation
process was simulated in 1D, using energy and dose data provided by foundry. Those
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Figure 3.1: Half cross section of designed SPAD, simulated in TCAD.

doping profiles were then imported into the SDE structure. Since SPAD intrinsic
characteristics are highly dependent on the doping of the junction, they need to be
precisely simulated in order to have a reliable model.

In Fig. 8.1} the dark blue area corresponds to the P-well (PW), while red areas
represent Deep N-well (DNW)) and N-Well (NW]). Shallow Trench Isolation (STI) is
present between FDSOI areas, on top of PW, due to the previously discussed design
constraints (cf. Section [2.4). Due to confidentiality reasons, doping and depth are
indicated only in arbitrary units. In dark red, SiO, areas are represented, for both [BOX|
and [STT physical layers.

TCAD Application: Impact of the Deep N-well Implants

When characterizing the fabricated devices, some differences between structures
implemented under and layers have been noticed, especially in breakdown
voltage and electroluminescence tests, where STI cells have a slightly lower Vpp and a
much more homogeneous electric field distribution (Sections[4.I|and [4.5). By observing
this behavior, some extra TCAD simulations were conducted in order to investigate the
influence of the aforementioned layers in the structure.

In fact, all the implants for PW], [NWI] and [DNW] are done through either +
Silicon film or[STTlayers. Since the thickness of each is very different (STT layer is more
than ten times thicker than[BOXJ), the layer through which the implants have been done
can significantly change the resulting doping of the junction.

Process simulation was performed in 1D, with the default implantation analytical
model (simple Gaussian function) and default annealing model (constant diffusion
model). No model customization was used. The results of these simulations can be
observed in Fig.[3.2]

These simulation results explain the difference between the two regions, the one
implemented under STI been slightly more abrupt. Although the doping difference
seems small, it is large enough to provide a lower breakdown voltage and a higher
generation rate, as explained later in Chapter
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Figure 3.2: Net doping profiles provided by 1D SPROCESS Simulation, for two different regions:
under FDSOI and under STL

Proposition of a Modified Deep N-well

First, the chips were fabricated with the native commercial technology, where,
for two implants are made. The electrical characterization of these devices is
presented in Chapter 4, where it is possible to verify that the doping levels are too high
and that the native junction is too abrupt (Vzp = 10V). The fabricated device is then
not optimized to be used in Geiger mode, since breakdown voltage is low and and
Trap Assisted Tunneling are not negligible. In agreement with the foundry, a
TCAD study was conducted in order to verify the possibility of improving the junction
(without affecting its original role of isolating different[PW)), by changing its implants
for a special dedicated wafer.

For confidentiality reasons, the data about the implants, as energy and dose, as
well as junction depth cannot be disclosed. In order to obtain the original DNW] two
implants are normally performed. For obtaining a smoother PN junction and thus a
higher breakdown voltage, a parametric optimization was carried out based on a single
implantation step for the without changing the native implants for PWland
This single proposed implantation should be done at 25% higher energy and 30% lower
dose, as compared to the value at second implant used in original process.

Original and optimized net-doping profiles are shown in Fig. For the modified
version, the metallurgical junction is shifted at greater depth, and the optimized deep
N-well is about three times less doped than the original one. It results in a smoother
junction, with a breakdown voltage increase of about 65%, as experimentally verified
in Chapter [ For the following sections of this chapter, the simulation results will be
presented for both original and modified versions of the simulated SPAD.
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Figure 3.3: Net doping concentration according to depth for both versions of|

3.2 Electrical Simulations: Physics and Models

In order to model the SPAD device, several physical effects need to be properly
accounted, and in particular: carrier transport, carrier generation by light, impact
ionization, traps and band to band tunneling. Several models are available in SDEVICE
TCAD tool from Synopsys Sentaurus [1] and needed to be carefully selected for a correct
description of the actual fabricated device.

3.2.1 Carrier Transport

The classical drift-diffusion model was used for estimating carrier transport in all
simulated devices. The drift component is created by the electric field, and the diffusion
component is caused by the carrier-concentration gradient. The current density for
electrons and holes are described by Equations 3.1 and 3.2} respectively [3], [4].

]; = eynnﬁ + eDyﬁn (3.1)
]:, = eyppf - eD,ﬁp (3.2)
where:
e = 1.6 X 107" C is the elementary charge
E is the electric field

Also, respectively for electron and holes:

]71 and ]; are their current densities

iy, and u, are their mobilities

n and p are their densities

D, and D, are their diffusion constants

Vi and V_io are their concentration gradient
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Considering that the semiconductor used here are moderately doped and thus
non-degenerate, diffusion constants can be expressed by the Einstein relation (Eq.[3.3),
the current densities can be re-written as in Eq.[3.4/and

kT

Jn = —new,Vn (3.4)
]; = —pe(u,ﬁ(l)p (3.5)

where :
®, and @, are the electron and hole quasi-Fermi potentials, respectively.

Also, the electrostatic potential in the structure is calculated from Poisson’s equa-
tion (3.6). The electric field is related to the electric potential by a gradient relationship

G-7).
dwﬁzg (3.6)
E=-VV (3.7)
where:

p is the charge density, including ionized dopants and free carriers (electrons and
holes), and
¢ is the material permittivity.

Drift Diffusion simulations (a low field approximation of the more exact Boltzmann
Transport Equation) is known to suffer from several limitations. Indeed, it does not
properly describe the transport of hot electrons and holes. Secondly, it is a local
approximation: for instance, impact ionization coefficients only depend of the local
tield, and not of the carrier trajectory history in a not constant field profile. Thirdly, the
description of trap and band to band tunneling is not only local, but also simplified, using
empirical models. A more accurate physical description of electrons and holes transport
in SPAD device would require the solution of the Boltzmann Transport Equation for both
carriers, including full band description, scattering with phonons, impact ionization
mechanism, etc. (See [5] for details). If this physics has been extensively investigated
in the field of MOS transistors and NOR nonvolatile memory recently, little has been
done in SPAD device so far. Moreover, these models are not completely available in
commercial TCAD tools, and are consequently out of the scope of this thesis.

3.2.2 Ionization Coefficients and Avalanche Generation

The avalanche process is caused by the ionization impact phenomenon, in which,
from a certain threshold value of electric field (and, thus, carrier kinetic energy), one free

carrier can generate several others, as shown in Fig. In @, a free electron-hole pair
is created (here, due to thermal generation).The electron is then accelerated in @ due
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CHAPTER 3. TCAD SIMULATION AND MODELING

to the high electric field to finally have, in @, enough kinetic energy to create another
electron-hole pair, due to impact. Since the original electron loses some energy due to
this impact, it is found at a lower level of the conduction band [4]. If the multiplication
region is longer enough, this process can go on, in a self-sustained avalanche mechanism.
The electron-hole pair generation rate G;; from impact ionization is given by Eq.[3.§|[3]].

N zone P zone

Figure 3.4: Impact Ionization process, caused by electron. In (1), an Electron Hole Pair
is generated. The electron is accelerated in (2) and creates another [EHPlin (3), due to impact
ionization. Adapted from [4]

G = aunv, + aypu, (3.8)

where, respectively for electrons and holes:
@, and a, are the ionization coefficients.
v, and v, are the velocities.

Physically, the ionization coefficients a, and a; represent the number of electron-
hole pairs per unit distance traveled generated by electrons and holes, respectively, and
are usually expressed in cm™. These coefficients are critical parameters for the correct
simulation of avalanche process. For SPAD, they have a direct influence on reverse I-V
curve characteristics, breakdown voltage and avalanche triggering probability.

Several models exist in TCAD simulation softwares. Each can be more or less
adapted to the considered simulated structure, according to material, temperature, and
electric field magnitude. Most of them are based on Chynoweth’s model (Eq. [6]. For
all of the models, the coefficients presented in the equations (2 and b for Chynoweth’s)
were calibrated empirically in order to fit experimental data, obtained with different
devices. The main models studied here are: van Overstraeten-de Man, Okuto-Crowell
and two versions of the University of Bologna model.

a(E) =aexp (—%) (3.9)
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van Overstraeten - de Man Model

The van Overstraeten model, expressed by Eq. is similar to Chynoweth’s, but
introduce the factor y, which takes into account the optical phonon energy, responsible
for representing temperature dependency of the ionization coefficients. The value of the
parameters used in this model make it valid over a range of fields from 1.75 x 10° V/cm
to 6 X 10°V/cm [7].

a(E) = yaexp (—%b) (3.10)

Okuto-Crowell Model

The empirical model developed by Okuto and Crowell [8] follows the dependency
described in Eq. where Ty = 300 K. The values by default for this model’s
coefficients are fixed for silicon. They are tuned for large electric fields varying from
1%x10°to 1% 10°V/cm.

(3.11)

5
a(E) =a(1+c(T - Ty)) E” exp [— (b [1+ dg - To)]) ]

University of Bologna Models

The model developed more recently by researchers in University of Bologna [9],
[10] relies on numerical solutions of the Boltzmann Transport Equation and experiments.
It includes a more accurate description of impact ionization at low electric field as well
as temperature variation of the model parameters. The model is calibrated for a large
range of electric fields: from 5x 10* to 6 X 10° V/cm. Also, the model was tested at
different temperatures (from 300K to 700 K).

E
E) =
B a(T)+b(T)exp[ 4(T)

E+c(T)

(3.12)

Later, the same research group re-calibrated the model’s empirical parameters to
better fit the ionization coefficients at higher temperature (up to 773 K) [11]-[13]. Both
versions are available in Synopsys Sentaurus.

3.2.3 Carrier Generation in Space Charge Region

Several other phenomena can cause an electron-hole pair generation (or recombi-
nation), especially in This processes represent the exchange of carriers between
conduction and valence bands. When working with SPAD, at high electric field, these
generated pairs are very likely to trigger avalanche process, stressing the importance of
modeling accurately each generation mechanism. In this subsection, the main genera-
tion/recombination phenomena used in TCAD simulation are presented.
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Shockley-Read-Hall

Carriers can also be generated through the deep defect levels in the gap, and this
process is described by Shockley-Read-Hall (SRH) statistics [14]-[16]. In Sentaurus
Device, this phenomena is defined by the net value R°X, which represents the total

SRH recombination minus the total SRH generation, as shown in Eq.

2

np —n;,
IS < (3.13)
Tp(n +n1) + T,(p + p1)
with:
Ny = Njeff€X Erry (3.14)
1 = Theff p kT .
and
= Njerf €X ~ Ly (3.15)
P1 = Nieff €Xp kT .
where

Einqp is the difference between the defect level and the intrinsic (midgap) level,
having null value by default (traps in midgap).

n;eff is the effective intrinsic density, which takes bandgap narrowing into account.

7, and 7, are the lifetimes for electrons and holes, respectively.

Note that the SRH is a recombination mechanism when np > n? (R5X > 0) and a
generation mechanism when np < 7 (in dark regime).

The lifetimes were modeled here by considering their dependency on temperature,
electric field, and also on doping (which depends on trap concentration, addressed
here with default value), as shown in Eq. It is important to notice that potential
trap excess due to fabrication process (e.g. implantation, interfaces) are not taken into
account here.

T =Tq —f(T)

Y1+ 8(E)

The doping dependency is here expressed by the Scharfetter relation (Eq. [17],

[18]. For the following simulations, the minimum and maximum values of lifetimes

were taken as ten times the default values provided by Synopsys Sentaurus, in order to
better fit experimental data.

(3.16)

Tmax — Tmin
Tdop = Tmin + ~ (317)

Y
NA+ND
1+ (—Nmf )

The temperature dependency is modelled here with a power law (Eq.[3.18) [19].

f(T) = (ﬁ) (3.18)

As for the last dependency, on the electric field, the Hurkx model [20] was used.
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It predicts a combination between Band To Band Tunneling (B2B) and which is
called Trap Assisted Tunneling (TAT). When exceeding electric fields of 3 x 10° V/cm,
[TATl generation is non-negligible. Eq describes the model.

En
g(E) = j; exp [u - %\/—f[_?’]du (3.19)

3 E
with
Eo— T g (3.20)
V8mgmk3T?3 '
where:

E, is a fixed value of the electric field, calculated according to E,, and E,.
7 is the reduced Planck’s constant.

my is the free electron mass.

m; is the carrier tunneling mass.

k is the Boltzmann'’s constant.

If the Hurkx model is not activated, g(E) = 0 and R3XH does not depend on the
applied bias.

Band To Band Tunneling

One of the main generation phenomena, especially in heavily doped PN junctions,
is the Band To Band Tunneling effect (B2B). It can happen when the junction is submitted
to a certain threshold value of electric field and an electron in the P-region valence band
directly migrates to the conduction band of the N-region, as illustrated in Fig. [31],
[4].

Some empirical models were developed for describing this phenomenon, such
as the Hurkx [20], [21], Schenk [22] and Liou [23]. In our structures, all models were
tested using the default parameters. Not many differences were observed between the
results, so the simplest model (Liou) was kept. It is described by Eq. It should be
noted that this model is only suitable for high field regime (which was always the case
in the simulations here presented), but provides a poor approximation for structures
operating with low electric field.

GP = AE” exp (—g) (3.21)

3.3 TCAD Simulations: Methodology and Results

In order to correctly represent the SPAD behavior, several steps were adopted, as
shown in Fig. First, 1D SPROCESS simulation was used for estimating the doping
profiles in the wells. Those profiles are then exported to a SDE environment, that sets
parameters such as geometry, material and regions to be doped, but also places contacts
for biasing the device. The built structure is, then, electrically simulated in SDEVICE,
providing results that, in post-processing, can be used for estimating some of the SPAD
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N zone

P zone

Figure 3.5: Band To Band Tunneling effect. Adapted from [4]. An electron moves from the

P-side valence band into the N-side conduction band.

Figure Of Merit (FOM)), such as[DCRland[PDPl Two types of TCAD electrical simulation
were performed: Approximate Breakdown Analysis (ABA)), and two variants of Resistor
simulation (with and without avalanche). Their results are complementary and together
help in the construction of a SPAD model.

Sentaurus
SDE
Environment

Sentaurus
SPROCESS
Environment

Structure
Definition:
* Geometry
* Contacts
* Doping

(Imported)

Sentaurus
SDEVICE
Environment

Resistor with |Vap

MATLAB
Environment
(post-processing)

Avalanche | Photogeneration|  ynder _E?i
lllumination
VBD+ Vex . .
—==={ Resistor without GR Dark L
Avalanche Condition | DCR
Vgpt+ V,
3 ABA Qe, Ay Mclintyre
et Implementation

Figure 3.6: Methodology for using TCAD tools and post-processing routines.
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3.3.1 Resistor Simulations with Avalanche

Since SPADs operate above breakdown voltage, the first step is to determine
the breakdown voltage. There are two methods to calculate it. The first one, more
accurate, consists in simulating the full avalanche diode and quenching resistance in a
mixed mode approach. This approach is more computationally expensive. However,
the results obtained have been found in better agreement with experiments [24]. The
second approach is based on a model, named ABA model. This model calculates an
expression of the multiplication factor Mp . The breakdown voltage is defined as the
voltage for which M tends to the infinite. This second approach is more numerically
efficient, but also less accurate (see section [3.3.3).

For both resistor-type simulations, Sentaurus Device takes into account an external
load resistor and connects it to one of the device’s terminals (here, the anode). The
other terminal of the resistor is connected to the ground, while the cathode is biased at
the high voltage. Once the circuit is properly biased, the I-V curve can be plotted and
Sentaurus DEVICE can check its slope. By automatically adjusting the value of the load
resistance, an optimal boundary condition (external voltage) is reached. In this case,
the local tangent of the curve is orthogonal to the load line [2]. This tools facilitates
convergence, and the breakdown voltage can be extracted from its steep slope, as shown
in Fig. for both original and modified versions of the junction, in the same way that
it is done with measurement results.

At room temperature, the original diode presents Vyp = 9.6 V, while the structure
with the new version of the has its breakdown voltage increased in about 6V,
confirming the positive impact of the reduction of doping that makes the junction less
abrupt.

The evolution of the breakdown voltage with temperature is shown in Fig. for
several ionization coefficients models (Section [3.2.2). It is easy to notice the influence
of the models and their ionization coefficients in this characteristics, since, for the
same simulated device, the values of the breakdown voltage, as well as their evolution
(slope dVpp/dT) vary according to the chosen model. This fact can be advantageously
exploited when trying to better adapt the simulation to the real experimental data. All
the models predict an increase in the breakdown voltage when the temperature rises,
which makes sense, since the ionization coefficients tend to decrease when increasing
temperature. When doping is reduced (modified DNW)), Vp increases, which is normal
for less abrupt junctions. For both doping configurations, the highest slope and values
are obtained for vanOverstraeten model, while Okuto-Crowell predicts a smoother
growth. The Okuto-Crowell model was kept for the rest of the simulations, because it
has been found in better agreement with experiments (Section [4.4).

According to [25], for avalanche process, with increasing temperature, the energy
Er that a carrier loses to the lattice during its travel through the space charge region
(scattering with phonons) also increases, reducing in turn the ionization rate. To
compensate this loss, the field strengths and that means the applied voltage must be
increased to get that specific value and thus generate a self-sustained avalanche process.
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