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University of Sarajevo, Faculty of Civil Engineering, BIH

Sarajevo & Compiègne, September 17, 2019

17/09/2019

Spécialité : Mécanique Numérique





University of Technology

of Compiègne

University of Sarajevo,

Faculty of Civil Engineering

This doctoral thesis is prepared in accordance with doctorate co-supervision

agreement between University of Technology of Compiègne, Sorbonne University

Alliance, France and University of Sarajevo, Faculty of Civil Engineering, Bosnia

and Herzegovina.

The doctoral thesis is defended on September 17, 2019. at the University of

Sarajevo, Faculty of Civil Engineering, before the following committee:

1. Prof. Adnan IBRAHIMBEGOVIC, PhD, University of Technology of

Compiègne, France
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ABSTRACT

Title: Analysis of pore pressure influence on failure mechanisms in structural

systems

This thesis studies the issue of the overall safety of structures built of heterogeneous

and pore-saturated materials under extreme loads in application to fluid-structure

interaction problems, such as the dam-reservoir interaction. We propose a nu-

merical model of interaction capable of predicting main tendencies and overall

behavior of pore-saturated dam structure interacting with the reservoir in failure

analyses of practical interest. The proposed numerical model is first presented in

two-dimensional (2D) framework and later extended to three-dimensional (3D)

framework.

We consider the structure built of porous cohesive material. We assume that the

external fluid in interaction with the structure acts as a source of pore saturation.

We model the response of the pore-saturated structure with the coupled discrete

beam lattice model based on Voronoi cell representation of domain with inelastic

Timoshenko beam finite elements enhanced with additional kinematics in terms

of embedded strong discontinuities acting as cohesive links. The coupling between

the solid phase and the pore fluid is handled with Biot’s porous media theory, and

Darcy’s law governing the pore fluid flow. The numerical consideration of internal

coupling results with an additional pressure-type degree of freedom placed at

each node of the Timoshenko beam finite element, which is later used at the fluid-

structure interface.

The confined conditions met for external fluid placed in the reservoir enable

the modeling of external fluid motion with the acoustic wave theory. For the

numerical representation of the external fluid limited to small (irrotational) motion,

we choose a Lagrangian formulation and the mixed displacement/pressure based

finite element approximation. The end result are the displacement and pressure

degrees of freedom per node of external fluid finite elements, which allows for the

issue of the fluid-structure interface to be solved in an efficient and straightforward



manner by directly connecting the structure and external fluid finite elements at

common nodes. As a result, all computations can be performed in a fully monolithic

manner.

All numerical implementations and computations are performed with the re-

search version of the computer code FEAP (Finite Element Analysis Program).

The proposed numerical models of structure, external fluid and ultimately nu-

merical model of interaction are validated in the linear elastic regime of structure

response by comparing computed results against reference values obtained either

with analytical solutions or continuum models. The numerical simulations in the

nonlinear regime of structure response are performed with the aim to demonstrate

the proposed coupled discrete beam lattice model capabilities to capture complete

macro-scale response and failure mechanisms in pore-saturated structures. Finally,

the proposed numerical model of interaction ability to deal with the progressive

localized failure of a dam structure built of porous cohesive material under dam-

reservoir interaction for a particular loading program was tested. To account for

the temperature effects, the thermal coupling is introduced in the numerical model

of the structure.

Keywords: cohesive discrete beam lattice model, Timoshenko beam, embedded

discontinuity, coupling, pressure, porous medium, Biot’s theory, acoustic wave

theory, mixed displacement/pressure approximation, fluid-structure interaction,

failure analysis, overall safety, temperature
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RÉSUMÉ

Titre: Analyse des mécanismes de rupture des systèmes structurels en poro-

plasticité

Cette thèse porte sur la sécurité globale des structures en matériaux hétérogènes sat-

urés soumis à des charges extrêmes, et est appliquée à des problèmes d’interaction

fluide-structure, tels que l’interaction barrage-réservoir. Un modèle numérique

d’interaction est proposé pour prédire les principales tendances et le comporte-

ment général d’un barrage en matériau saturé en interaction avec le réservoir

dans des analyses de défaillance d’intérêt pratique. Le modèle numérique proposé

est d’abord présenté dans un cadre bidimensionnel (2D), puis étendu à un cadre

tridimensionnel (3D).

La structure est considérée comme un milieu poreux saturé constitué d’un

matériau cohésif. On suppose que le fluide externe en interaction avec la structure

agit comme une source de saturation des pores. La réponse de la structure en

matériau saturé est décrite avec un modèle lattice discrete couplé de type poutre,

basé sur la discrétisation du domaine avec la tessellation de Voronoï, où les liens

cohésifs sont représentés par des poutres de Timoshenko non linéaires avec un

champ de déplacements enrichi en termes de discontinuités fortes. Le couplage

entre la phase solide et le fluide dans les pores est traité avec la théorie de Biot

et la loi de Darcy décrivant l’écoulement d’un fluide à travers d’un milieu poreux.

La prise en compte numérique du couplage interne ajoute un degré de liberté

supplémentaire du type pression à chaque nœud de l’élément fini de Timoshenko,

qui est ensuite utilisé pour résoudre les problèmes d’interface entre la structure et

le fluide.

On considère que le fluide externe dans le réservoir est limité à des petits mou-

vements, ce qui nous permet de le modéliser avec la théorie des ondes acoustiques.

Pour cela, la formulation lagrangienne avec l’approximation mixte déplacement-

pression est choisie. Le traitement de l’interface fluide-structure dans le modèle

numérique d’interaction est résolu d’une manière simple et efficace. Notamment,



les éléments finis de la structure et du fluide externe partagent les mêmes degrés

de liberté dans les nœuds communs, permettant ainsi la résolution du système

d’équations avec une approche de calcul monolithique.

Toutes les implémentations et les simulations numériques sont effectués avec

la version recherche du code informatique FEAP (Finite Element Analysis Program).

Les modèles numériques proposés pour la structure, le fluide externe et le mod-

èle d’interaction sont validés dans le régime élastique linéaire en comparant les

résultats calculés avec les valeurs de référence obtenues soit avec des solutions

analytiques, soit avec des modèles continus. Les simulations numériques dans le

régime non linéaire ont comme but de démontrer les capacités du modèle proposé

de capturer la réponse complète à l’échelle macro et les mécanismes de rupture

des structures en matériaux saturés. Enfin, la capacité du modèle d’interaction

proposé de traiter la défaillance localisée progressive d’un barrage construit en

matériau cohésif poreux sous l’interaction barrage-réservoir a été testé pour un

programme de chargement spécifique. Pour prendre en compte les effets de la

température, le couplage thermique est introduit dans le modèle numérique de la

structure.

Mots clés: modèle lattice discrete cohésif de type poutre, poutre de Timoshenko,

discontinuité intégrée, couplage, pression, milieu poreux, théorie de Biot, théorie

des ondes acoustiques, approximation mixte déplacement-pression, interaction

fluide-structure, analyse de défaillance, sécurité globale, température
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SAŽETAK

Naslov: Analiza uticaja pornog pritiska na mehanizme loma konstruktivnih

sistema

Ova doktorska teza analizira problem globalne sigurnosti konstrukcija od hetero-

genih i zasićenih materijala izloženih djelovanju ekstremnih opterećenja, s prim-

jenom na probleme interakcije fluida i konstrukcije kao što je slučaj interakcije

brana-rezervoar. U tezi je predložen numerički model s kojim je moguće predvidjeti

glavne tendencije i globalno ponašanje konstrukcije brane izgrad̄ene od zasićenog

materijala u interakciji sa rezervoarom u analizama sloma od praktičnog interesa.

Predloženi numerički model je najprije predstavljen kao dvodimenzionalan, a

zatim proširen dodavanjem treće dimenzije.

Konstrukcija se posmatra kao zasićena porozna sredina izgrad̄ena od kohezivnog

materijala. Pretpostavlja se da vanjski fluid u interakciji sa konstrukcijom djeluje

kao izvor poro-zasićenja. Odgovor konstrukcije od zasićenog materijala je modeli-

ran diskretnim rešetkastim modelom koji je baziran na idealizaciji domene Voronoi

ćelijama, sa nelinearnim Timoshenko-vim grednim konačnim elementima s obo-

gaćenim poljem pomjeranja u vidu ugrad̄enih jakih diskontinuiteta kao kohezivnim

vezama. Interakcija izmed̄u čvrste faze i fluida u porama materijala je u modelu

definisana sa Biot-ovom teorijom i Darcy-evim zakonom tečenja fluida. Numerička

implementacija problema unutrašnje interakcije rezultuje sa dodatnim stepenom

slobode kretanja - porni pritisak po svakom čvoru konačnog elementa Timoshenko-

ve grede, koji se kasnije koristi za rješavanje problema sučelja izmed̄u konstrukcije

i fluida.

Malo pomjeranje vanjskog fluida u rezervoaru omogućuje modeliranje vanjskog

fluida sa akustičnom teorijom. Za numeričko modeliranje malih pomjeranja van-

jskog fluida, izabrana je Lagrange-ova formulacija i mješovita pomjeranje/pritisak

aproksimacija. Problem zajedničkog sučelja konstrukcije i fluida u numeričkom

modelu interakcije je jednostavno riješen direktnim povezivnjem konačnih ele-

menata konstrukcije i konačnih elemenata vanjskog fluida koji dijele iste stepene



slobode kretanja u zajedničkim čvorovima, što omogućava monolitan pristup rješa-

vanju rezultujućeg sistema jednačina.

Sva numerička implementacija i numerički proračuni su urad̄eni u istraživačkoj

verziji kompjuterskog koda FEAP (Finite Element Analysis Program). Predloženi

numerički modeli konstrukcije, vanjskog fluida kao i numerički model interakcije

su validirani u linearno elastičnom području odgovora konstrukcije pored̄enjem

izračunatih rezultata sa referentnim vrijednostima dobivenim analitičkim rješen-

jima ili na modelima kontinuuma. Numeričke simulacije u nelinearnom području

odgovora konstrukcije su sprovedene s ciljem demonistriranja mogućnosti pred-

loženog modela konstrukcije da predvidi kompletan odgovor i mehanizme loma u

konstrukciji izgrad̄enoj od zasićenog materijala. Konačno, testirana je mogućnost

predloženog modela interakcije da opiše progresivni lokalizirani lom u konstruk-

ciji brane izgrad̄ene od kohezivnog zasićenog materijala u uslovima interakcije

sa rezervoarom za odred̄eni program opterećenja. S ciljem analiziranja uticaja

temperature, u numerički model konstrukcije je uvedeno temperaturno polje.

Ključne riječi: kohezivni diskretni gredni rešetkasti model, Timoshenko-va greda,

ugrad̄eni diskontinuitet, kuplovanje, pritisak, porozna sredina, Biot-ova teorija,

akustična teorija, mješovita pomjeranje/pritisak aproksimacija, interakcija fluid-

konstrukcija, analiza sloma, globalna sigurnost, temperatura
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Introduction

1.1 Motivation

This research is motivated by the practical considerations of localized failure in

structures built of heterogeneous and pore-saturated materials under extreme

loads. Namely, the presence of the pore fluid can determine the final response

and in many cases increase the risk of the ultimate failure of the pore-saturated

structure. Examples of this happening can be found widely in everyday engineering

practice, whether it is a landslide triggered due to heavy rain in a slope that was

once stable, liquefaction phenomena occurring as a result of the pore fluid presence

in combination with extreme dynamic loading, fracturing and collapse of the dams

resulting from the combined influences of poor monitoring and accidental loads,

or issue of sound design of floating wind turbines (Figure 1.1).

(a) Landslide on Cecil Lake Road
(Source: www.rncan.gc.ca/dangers-naturels/glissements-de-terrain →

Photo by R. Couture (CGC), 2017)

(b) Liquefaction at Niigata
(Source: en.wikipedia.org → Japan National Committee on Earthquake

Engineering, Proceedings of the 3rd World Conference in Earthquake

Engineering, Volume III, pp s.78-s.105.)

(c) Teton dam failure
(Source: en.wikipedia.org →

www.usbr.gov/dataweb/assets/images/Teton2.jpg, 1976)

(d) Floating wind turbine
(Source: IDEOL)

Figure 1.1 Examples of structures with significant influence of pore fluid presence

Some of the mentioned problems are of great importance in Bosnia and Herze-

govina, such as landslides or issue of structural integrity and durability of dams.

The frequent occurrence of landslides or rock avalanches is due to the geology of

the terrain with a lot of clayey soils and climate with a lot of heavy rains in spring
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and autumn. The heavy rains in May 2014 triggered around 3000 landslides (Figure

1.2), resulting in casualties and massive impact on the already weak economy.

(a) Landslide in the village Šerići
(Source: www.youtube.com)

(b) Landslide in the village Željezno polje
(Source: rtvslon.ba)

Figure 1.2 Activated landslides in Bosnia and Herzegovina after heavy rains in 2014

The majority of dams in Bosnia and Herzegovina are built in the pre-war period,

at least 30 years ago with most of them still operating at full capacity. Due to the poor

maintenance and monitoring, the issue of the overall safety and durability of these

structures is raised. Even in the developed countries where the maintenance and

monitoring of dam structures are obligatory, the accidents that can pose a threat to

structural integrity can occur. One recent example is the dam in Oroville, California,

where in the spillway of the dam one large macro-crack formed suddenly due to

severe erosion, raising a fear that a whole structure might ultimately collapse. In

underdeveloped countries, this issue is even more pronounced. The recent failure

of the Patel dam in Kenya, resulting with a death toll of 41 and hundreds of people

forced to leave a completely devastated area, raised the question about the current

state of the infrastructure in the country.

(a) Eroded overflow spillway of Oroville
Dam, California

(Source: en.wikipedia.org → California Department of Water Resources, 2017)

(b) Broken banks of the Patel dam, Kenya
(Source: naplesherald.com → Copyright 2018. The Associated Press)

Figure 1.3 Failure in dam structure
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For inspecting the current state and potential risk of failure of pore-saturated

structures, aside from experimental results and in-situ data measurements, numer-

ical models and numerical simulations can serve as a powerful tool. To achieve the

goal of providing an overall safety assessment of pore-saturated structures under

extreme loads, the numerical model has to provide a realistic description of the

nonlinear response of the structure. Here, one of the most important features of

the model is its ability to predict the true cracking pattern for a particular loading

program, where cracks coalescence results with the ultimate failure mode of the

structure.

1.2 Aims and scopes

The main scientific aim of this doctoral thesis is to provide a numerical model capa-

ble of performing an overall safety assessment of structures built of pore-saturated

materials under extreme loads, in application to fluid-structure interaction prob-

lems such as dam-reservoir interaction. Namely, our goal is to provide a numerical

model for investigating the current state of dam structures, in order to be able to de-

termine the potential risk of failure or severe cracking that can endanger structural

integrity, durability, and functionality.

When modeling fluid-structure interaction problems such as dam-reservoir

interaction, we have to consider three parts where numerical modeling of each part

can be identified as one research aim. The first is the numerical modeling of the

structure. The majority of dam structures are built of porous cohesive materials,

such as soil, rock, or concrete. The external fluid in interaction with structure

acts as a source of external loading and also as a source of pore saturation. The

presence of the pore fluid in heterogeneous and porous materials in many cases

increases the risk of the final failure. The latter suggests that the numerical model

of structure ought to account for the internal fluid-structure interaction. In other

words, the structure in fluid-structure interaction ought to be represented in terms

of a saturated porous medium. In order to perform the safety analysis, the chosen

model of the pore-saturated structure has to be able to capture the true macro-scale

response, along with the fracture process zone, and localized failure. In addition, a

numerical model has to give an efficient performance in terms of fast convergence

rates and efficient computational time.

The second part in numerical modeling of fluid-structure interaction is the

numerical modeling of the external fluid. Numerical representation of the external

fluid motion has to take into account the confined conditions typically met for

the external fluid placed in a reservoir. The third and final part is the issue of the
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fluid-structure interface. In other words, how to connect the structure and the

external fluid finite elements at the common boundary, which affects the manner

(monolithic or partitioned) in which the resulting equations of the fluid-structure

system can be solved.

1.3 Literature review

The fluid-structure interaction problems are frequently encountered in engineering

practice. These problems range from one extreme where the external fluid is in

large overall motion, to another extreme where fluid displacements can be regarded

as very small, and the fluid behavior can be described with the acoustic wave theory.

In the latter group of acoustic fluid-structure interaction problems fall engineering

structures like dams, reservoirs, containers or storage tanks. Concrete, rock or soil

(for earth dams) are typically used for constructing many such structures. Both

concrete, and especially soil are porous materials in which the presence of the pore

fluid influences the final response and in many cases increases the risk of ultimate

failure. For example, heavy rain can trigger a landslide in the slope that was once

stable due to the reduction in the shear strength of the soil. For rocks, fluid flow

can occur through the network of initial discontinuities and thus contribute to the

rocks collapse or rock-falls.

In fluid-structure interaction problems, the external fluid acts as a source of

loading on the structure and also as a source of pore saturation, keeping the mate-

rial of the structure fully saturated in every time step. In already damage structure,

fluid flow can also occur through cracks which have formed in the structure sub-

jected to extreme loading. In this case, to fully describe the structure part in fluid-

structure interaction problems, we ought to have a better numerical formulation of

the structure response in terms of a saturated porous medium. In other words, we

ought to account for the interaction between the solid phase and pore (internal)

fluid and resulting coupling effects.

The pioneering works in the domain of solid phase-pore fluid interaction are

Terzaghi’s theory of one-dimensional consolidation [1], and Biot’s theory of three-

dimensional consolidation [2]. Both theories are limited to the case of linear elastic

behavior of the material. Biot’s porous media theory is further extended to take

into account nonlinearities of the material in the pre-peak part of the response

[3–5]. Biot’s porous media theory has also been extensively used as one of the

main ingredients in numerical modeling of response, fracturing, and localized

failure in saturated and partially saturated porous media. The successful numerical

implementations can be found in works which exploit Extended Finite Element
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Method (XFEM) [6–10], Partition-of-Unity Finite Element Method (PUFEM) [11, 12],

Embedded Discontinuity Finite Element Method (EDFEM) [13–17], Finite element

methods with adaptive remeshing techniques [8, 18–21], Central force lattice model

[8, 22, 23], Phase field model [24–27] or Discrete lattice model [28–32]. The solid

phase-pore fluid interaction is further extended to account for the temperature

effects in the saturated porous media. The pioneering work in the finite element

analysis of thermo-hydro-mechanical coupling problem is the work of Aboustit et

al. [33, 34], followed by the works of [35–40].

The motion of the fluid is, in a general case, described with Navier-Stokes equa-

tions [41]. However, the small motion of the fluid in contained conditions, such

as reservoirs, water containers or storage tanks, allows us to derive the equations

governing the external fluid motion from the acoustic wave theory [42, 43]. In

numerical modeling of acoustic fluids by the finite element method, two common

approaches are Eulerian and Lagrangian.

In the Eulerian approach, the fluid motion is formulated in terms of fluid pres-

sures, displacement potentials, or velocity potentials as state variables. The fluid

finite element formulations falling into this category are the pressure formulation

[44], the displacement potential-pressure formulation [45–47], the velocity poten-

tial formulation [48, 49] and the velocity potential-density formulation [50]. The

Eulerian approach is commonly used in solving fluid-structure systems, in which

the behavior of the structure is assumed to be linear or nonlinear [51–60]. However,

both the equilibrium condition and the compatibility condition have to be enforced

at the fluid-structure interface, because of different state variables in the fluid and

the structure.

In the Lagrangian approach, the fluid motion is formulated in terms of nodal

displacements [44, 61–68]. The advantage of displacement based formulation is

in its finite element implementation because fluid finite elements share the same

degrees of freedom as the standard finite elements commonly used in the numer-

ical modeling of the structure. Hence, equilibrium and compatibility conditions

are automatically satisfied through element assembly procedure. However, it has

been reported that the pure displacement based fluid finite element formulation

suffers from the existence of spurious zero-energy deformation modes [63, 69–72].

Various numerical treatments have been proposed with the aim to improve the

proposed formulation, such as the penalty method [69], the finite element formu-

lation with rotational constraints and a reduced integration technique [73], and

the finite element formulation with a reduced integration technique and element

mass projection [72]. With the aim to solve the issue of the existence of spurious

modes, the mixed displacement/pressure based fluid finite element formulation is
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proposed, with nodal displacements and pressures as unknown variables [74–76].

The Lagrangian approach with displacement variables in both the structure and

the fluid is employed in many numerical models of fluid-structure interaction with

linear or nonlinear response of structure, such as [53, 77–84].

Beside the Eulerian and Lagrangian approach, an added mass or Westergaard

approach is also commonly used for solving fluid-structure systems. The added

mass approach, which follows the work of Westergaard [85], is the first and the

most simple approach for solving fluid-structure interaction. In this approach, the

fluid-structure interaction is solved by adding the fraction of the fluid mass to the

structural model. The added mass is typically evaluated based on the assumption

of the incompressible fluid. The numerical models of fluid-structure interaction,

which exploits an added mass approach can be found in [86–90, 78].

1.4 Thesis overview

In this thesis, we propose a numerical model capable of dealing with nonlinear

fluid-structure interaction problems, such as progressive localized failure of a dam

structure built of porous cohesive material under dam-reservoir interaction. The

numerical model of the structure, the numerical model of external fluid and ulti-

mately the numerical model of interaction are first presented in two-dimensional

(2D) framework and later extended to three-dimensional (3D) framework.

We first start with the numerical model of the structure. Here, we assume that

the structure is built of porous cohesive material and that the external fluid in

interaction with structure acts as a source of pore saturation. For the numerical rep-

resentation of the pore-saturated structure, we propose the use of coupled discrete

beam lattice, which is based on Voronoi cell representation of the domain with

inelastic Timoshenko beam finite elements enhanced with additional kinematics

in terms of embedded strong discontinuities acting as cohesive links. The internal

fluid-structure interaction, i.e., the coupling between the solid phase and pore

fluid is introduced through Biot’s porous media theory and Darcy’s law governing

the pore fluid flow, ultimately resulting with an additional pressure-type degree of

freedom placed at each node of Timoshenko beam finite element.

Next, we focus on numerical modeling of external fluid and finally fluid-structure

interaction. We assume a small motion of the external fluid in confined conditions

typically met for fluid placed in a reservoir. We describe the small motion of the

external fluid with the acoustic wave theory. We model the external fluid motion

with the Lagrangian formulation and mixed displacement/pressure approximation.

The finite element approximation for external fluid in combination with coupled
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discrete beam lattice model for pore-saturated structure allows for external fluid

and structure finite elements to share both the displacement and pressure degrees

of freedom at the fluid-structure interface. Thus, the issue of the fluid-structure in-

terface in the numerical model of interaction is solved in a straightforward manner

through the element assembly procedure.

The thesis is divided into six chapters. In Chapter 1, we outline the aim of the

thesis, together with the motivation for research work and literature review. In

Chapter 2, we describe in detail the plane strain coupled discrete beam lattice

model of the pore-saturated structure, and we discuss the results of several nu-

merical examples. In Chapter 3, we present the numerical model of external fluid

and ultimately numerical model of fluid-structure interaction, and its application

through a set of numerical simulations. In Chapter 4, we extend the proposed

numerical model of the structure, external fluid, and acoustic fluid-structure in-

teraction to the 3D setting. In Chapter 5, we account for the temperature effects

by introducing thermal coupling in the proposed 3D numerical model of the pore-

saturated structure. Finally, in Chapter 6, we summarize all the main findings and

contributions of the thesis together with the suggestions for future works.

All numerical implementations and computations are performed with the re-

search version of the computer code FEAP (Finite Element Analysis Program),

developed by R.L. Taylor [41]. The finite element mesh in numerical examples is

generated in GMSH [91], with cross-sectional dimensions of beam finite elements

computed by using MATLAB [92].
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CHAPTER 2

DISCRETE MODEL OF STRUCTURE

BUILT OF SATURATED PORO-PLASTIC

MEDIUM

ABSTRACT

In this Chapter, we describe the plane strain coupled discrete beam lattice model

of structure built of saturated poro-plastic cohesive material. The coupled discrete

beam lattice model is based on Voronoi cell representation of the domain with cohe-

sive links as inelastic Timoshenko beam finite elements enhanced with additional

kinematics in terms of embedded strong discontinuities. The coupling between

the solid phase and the internal (pore) fluid is governed by Biot’s porous media

theory and Darcy’s law for pore fluid flow. The internal fluid pore pressure field is

approximated with CST (Constant Strain Triangle) finite elements, which coincide

with Delaunay triangles. By exploiting Hammer quadrature rule for numerical

integration on CST finite elements and duality property between Voronoi diagram

and Delaunay triangle representations, the proposed formulation results with an

additional pressure-type degree of freedom placed at each node of Timoshenko

beam finite element. The application of the model is illustrated through several

numerical simulations.
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Discrete model of structure built of saturated poro-plastic medium

2.1 Introduction

In this Chapter, we describe the plane strain coupled discrete beam lattice model

used in this thesis for numerical modeling of response and localized failure in

structures built of saturated porous cohesive materials. The theoretical formu-

lation for the pore-saturated structure is based upon Biot’s porous media theory

extended to localized poro-plasticity. The internal fluid-structure interaction, i.e.,

the interaction between the solid phase and the pore fluid is handled by using a

judicious combination of lattice models for structure cracking and finite element

approximation for internal (pore) fluid flow.

The outline of the Chapter is as follows: In Section 2.2, we briefly describe

Biot’s porous media theory. In Section 2.3, we provide a detailed description of

discrete lattice models and their application in numerical modeling of response

and localized failure in structures. We also explain in detail the manner in which

the internal fluid-structure interaction is numerically treated. In Section 2.4, we

present a finite element formulation of the proposed coupled discrete lattice model,

together with the computational procedure. The finite element formulation is

given in fully dynamics framework, which can be easily adjusted for quasi-static

simplification of structure built of a saturated porous medium, or dry medium. In

Section 2.5, we present results of several numerical simulations with the aim to

validate the proposed coupled discrete beam lattice model and to demonstrate

its capabilities to capture the response and localized failure in pore-saturated

structures, where the cracks coalescence results with the ultimate failure modes. In

Section 2.6, we give concluding remarks.

2.2 Biot’s porous media theory

In Biot’s porous media theory, the equations governing the coupled problem are

derived by combining equilibrium and continuity equations [2]. In a dynamic

setting, we consider the equation of motion instead of the equilibrium equation.

In deriving the strong form of the equations of motion, we use the d’Alembert

principle. The main idea behind the d’Alembert principle is that a motion of a

solid body in each time step can be described by the equilibrium equations, which

includes an additional external load in terms of the inertia force. Thus, the strong

form of equations of motion is written as

∇·σ+b−ρa = 0 (2.1)
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where σ is the total stress tensor, b are the body forces vector, a is the solid phase

acceleration vector and ρ is the mass density of the mixture assumed to be constant,

which is defined as ρ = (1−n)ρs+nρ f , with n as the porosity, ρs as the mass density

of solid phase and ρ f as the mass density of pore fluid.

In the formulation of the coupled problem, Biot’s theory exploits Terzaghi’s

principle of effective stresses, which states that the total normal stress is equal to

the sum of the effective stress carried by the solid phase, and the pore pressure

carried by the fluid in pores. Terzaghi’s principle of effective stresses is written as

σ=σ′− Ibp (2.2)

where σ′ is the effective stress tensor, I is the second order identity tensor, p is the

pore pressure assumed positive in compression, and b is Biot’s constant defined

as b = 1−Kt /Ks , with Kt and Ks as the bulk moduli of the porous skeleton and the

solid phase, respectively. If the material grains are assumed to be incompressible,

then Biot’s constant is equal to b = 1.

The continuity equation for pore fluid flow is written as

ζ̇+∇·q = 0 (2.3)

where ζ is the variation of the fluid content, and q is the fluid flux.

The variation of the fluid content ζ is written as

ζ= 1

M
p +b∇·u (2.4)

where u is the displacement of the solid phase, and M is Biot’s modulus, defined

as 1/M = (b −n)/Ks +n/K f , with K f as the bulk modulus of the pore fluid. If the

material grains and the pore fluid are assumed to be incompressible, then Biot’s

modulus is M →∞ (1/M → 0).

According to Darcy’s law, the fluid flux q is equal to

q =− k

γ f
∇p (2.5)

where k is the coefficient of permeability of the isotropic porous medium, and γ f

is the specific weight of the fluid.

By combining Equations (2.3-2.5), a new form of continuity equation can be

written as
1

M
ṗ +b∇· u̇−∇·

( k

γ f
∇p

)
= 0 (2.6)
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2.3 Discrete model of structure

In everyday engineering practice, the response of the structure built of hetero-

geneous materials is usually computed with homogenized, continuum type of

numerical models with strength and deformability defined at the macro-scale, in

which the domain is meshed with two-dimensional (2D) or three-dimensional (3D)

finite elements. The main advantage of these models is in a relatively simple and

efficient way of predicting the main tendencies and overall behavior of heteroge-

neous materials in failure analyses of interest for engineering practice. However,

the use of 2D or 3D finite elements can be challenging when trying to numerically

represent the inelastic behavior, and especially cracking and localized failure in the

structure built of heterogeneous materials. Successful numerical implementations

of strain localization phenomenon can be found in [93–104].

Contrary to the continuum type of numerical models, in discrete lattice models

the domain is meshed with one-dimensional (1D) finite elements. The use of 1D,

instead of 2D or 3D elements, has its advantages in terms of numerical imple-

mentation of different kind of phenomena commonly observed in heterogeneous

materials, improving rates of convergence, and decreasing computational time.

For the numerical representation of the structure, we use a cohesive discrete

lattice model based on Voronoi cell representation of the domain. Here, the domain

is divided into a set of regions or Voronoi cells, with the property that all points in

one Voronoi cell are closest to the center of that cell than to the center of any other

cell. From the aspect of structural modeling, each Voronoi cell can be identified as

a part of the material held together with the adjacent parts by cohesive links. Thus,

in discrete lattice models, the macro-scale response of the structure is obtained on

the mesh of cohesive links, whose behavior we model with 1D finite elements.

The construction of the discrete lattice model is carried out in a very efficient

manner by exploiting the duality property between Voronoi diagram and Delaunay

triangulation. The end result of the Delaunay triangulation performed on a given

domain is a mesh of triangles. Every edge of triangle connects the centers of two

adjacent Voronoi cells and is perpendicular to the edge shared between these two

cells (Figure 2.1). Thus, we place along each edge of the triangle a cohesive link,

whose behavior we model with the 1D finite element. The cross-sectional height

of each finite element is then equal to the length of the edge shared between two

adjacent Voronoi cells. What needs to be emphasized is that the center of each

finite element is located at the edge shared between two adjacent Voronoi cells.

This is a very convenient property for simulating crack propagation in materials.

Namely, failure in a cohesive link can be interpreted as a formation of a crack in
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the structure. If we identify Voronoi cells as parts of the material held together by

cohesive links, then cracks can occur only at their interconnection.

Voronoi diagram

h
e

integration point

Delaunay triangulation

Figure 2.1 Voronoi diagram and Delaunay triangulation

The first advantage of the discrete lattice model based on Voronoi cell represen-

tation of the domain with irregular lattice geometry is in its ability to reproduce the

linear elastic response of an equivalent continuum model. The confirmed relations

between linear elastic parameters of a single lattice and a continuum model de-

pend whether the discrete model is with regular or irregular lattice geometry and

whether it is based on spring or beam lattice network. More details can be found in

works [105–110].

The successful application of discrete lattice models in numerical modeling

of inelastic response and localized failure in materials rests on the idea of multi-

scale modeling. Namely, by appropriate numerical modeling of the micro-scale

represented by cohesive links, we can obtain the true macro-scale response of the

structure. The discrete lattice models with geometrically exact shear deformable

beams acting as cohesive links have been used for modeling dynamic fracture of

structures built of brittle material [111]. In this discrete model, fracture criterion

is stated in terms of strains with two possible modes of fracture, the separation

between two adjacent cells and the relative bending deformation. The fracture

limits for both modes are assumed to follow Gaussian random distribution. The

discrete lattice models with truss bar elements capable of representing the response

of a two-phase material [112], have been used in numerical modeling of the re-

sponse and fracturing in concrete [113, 114]. The truss bar elements enhanced

with additional kinematics in terms of embedded strong discontinuity were able to

model the crack formation and propagation in mode I, that relates to crack opening.

Beside mode I, the crack can also propagate in mode II that relates to crack sliding.
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To be able to capture both mode I and mode II of failure, Timoshenko beam finite

elements with an embedded strong discontinuity in both axial and transverse direc-

tion have been proposed instead of truss bar elements. The discrete lattice models

with enhanced Timoshenko beam finite elements have been successfully used to

describe the response and fracturing in rocks, both in 2D and 3D setting [115–118].

In the discrete lattice model proposed in [115], a distinction between two phases

has been made. Phase I is an intact rock which is not likely to fail. This phase is

represented with standard linear elastic Timoshenko beam finite element. Phase II

represents a weak phase or initial discontinuities in rocks. Inelastic Timoshenko

beam finite elements with enhanced kinematics are used to model this phase.

Our final goal in this thesis is to tackle the acoustic fluid-structure interaction

problems. In the acoustic fluid-structure interaction problems on hand, the exter-

nal fluid acts both as a source of the loading on the structure, and also as a source of

the pore saturation. For a better numerical description of the underlying phenom-

ena, we ought to model the structure as a saturated porous medium. In this thesis,

for the numerical representation of the pore-saturated structures, we generalize

the development of the coupled discrete beam lattice model presented in [32, 118],

extending its ability to deal with the nonlinear response and localized failure in

pore-saturated structures in acoustic fluid-structure interaction problems of our

interest. The proposed coupled discrete beam lattice model is an extension of the

discrete beam lattice model with enhanced Timoshenko beam finite elements as

cohesive links presented in [115, 118], with Biot’s porous media theory governing

the coupling between the solid phase and pore fluid as a new ingredient.

p
1

Voronoi diagram

Delaunay triangulation

integration points

p
2

p
3

(a) Pore pressure field

u2,v2,̀2

u1,v1,̀1

(b) Displacement fields

Figure 2.2 Discretization of displacement and pore pressure fields

The internal fluid flow in the proposed model of the pore-saturated structure is

spread across the mesh of triangles (CST - Constant Strain Triangle finite elements)
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Discrete model of structure

that coincides with the mesh of triangles obtained by Delaunay triangulation (Fig-

ure 2.2a). Hammer quadrature rule [119] for numerical integration, allows for

simplification of the numerical implementation of the coupling. Namely, Hammer

quadrature rule positions the integration points at the center of each edge of the

triangle. The positions of these integration points coincide with the positions of

the integration points for Timoshenko beam finite elements used for representing

the mechanical response (Figure 2.2b). For the numerical integration, a single

Gauss point placed at the center of the Timoshenko beam finite element is used.

This allows us to simplify the data exchange. The database management is also

kept simple by treating the pressure degree of freedom as an additional degree of

freedom per node of a Timoshenko beam finite element (Figure 2.3).

Timoshenko beam 
finite element: u, v, �

Triangular element: p

integration points

Timoshenko beam 
finite element: u, v, �, p

Figure 2.3 Displacement and pore pressure fields finite element approximations

This point of view is also in agreement with the discretization of continuum

problem by Hrennikoff framework method using beam along element edges [120],

which is the same as our cohesive links, in the elastic regime. It is important to

note that such a point of view (although more sound) does not change anything in

our implementation since we use Hammer integration points at the mid-point of

each element edge for a 3-node CST triangle. The choice of this kind eliminates

the contribution of the third node and leaves the contribution of two nodes that

correspond to the Timoshenko beam finite element.

Different types of failure mechanisms in different materials are, among others,

the result of material heterogeneities, loading, and boundary conditions. Because

of this, in the coupled discrete beam lattice model used in this thesis, we allow for

all Timoshenko beams to fail [121–123].

To the best of author’s knowledge, the literature search did not reveal any con-

firmed relations between elastic properties of the continuum model and Timo-

shenko beam lattice in discrete models based on Voronoi cell discretization. How-

ever, from the condition that no stiffness is gained or lost compared to the contin-

uum, linear elastic parameters of the discrete lattice model (lattice Young’s modulus

and Poisson’s ratio) can be easily identified from standard experimental tests in

combination with numerical tests, shown in Figures 2.4a and 2.4b.
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Discrete model of structure built of saturated poro-plastic medium

(a) Young’s modulus (b) Poisson’s ratio

Figure 2.4 Numerical tests for identification of linear elastic parameters of discrete
lattice model: boundary conditions

Next, we give an overview of the finite element formulation of the plane strain

coupled discrete beam lattice model.

2.4 Finite element formulation

The starting point for our work on coupled discrete beam lattice model of pore-

saturated structure is the Timoshenko beam finite element presented in [115, 32,

118]. The detailed descriptions of various numerical procedures and numerical

solutions used in the finite element formulation of the Timoshenko beam finite

element on hand can be found in [124].

2.4.1 Kinematics

Consider a straight plane Timoshenko beam finite element of length Le and cross-

sectional area Ae . The element has two nodes, and three degrees of freedom per

node: axial displacement, transverse displacement, and rotation of cross-section.

Displacement fields are interpolated with standard linear interpolation functions,

written as

u = Ns
uū (2.7)

where

uT =
{

u, v, θ
}

; ūT =
{

u1, v1, θ1, u2, v2, θ2

}
;

Ns
u =


N1 0 0 N2 0 0

0 N1 0 0 N2 0

0 0 N1 0 0 N2

 ;
{

N1, N2

}
=

{
1− x

Le , x
Le

} (2.8)
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Finite element formulation

For simplicity, we considered the shape functions for a Timoshenko beam placed

along the global coordinate x axis, which can be easily adapted to any arbitrary

element orientation by using a local element frame.

For geometrically linear Timoshenko beam, strain fields are defined as

εxx = du

d x
; γx y = d v

d x
−θ; κz = dθ

d x
(2.9)

where εxx is the axial strain, γx y is the shear strain and κz is the curvature. In what

is to follow, we will denote these strains with the following symbols ε, γ and κ.

Following the standard finite element procedure, strain fields are interpolated

as

ϵ= Bs
uū (2.10)

where

ϵT =
{
ε, γ, κ

}
;

Bs
u =


B1 0 0 B2 0 0

0 B1 −N1 0 B2 −N2

0 0 B1 0 0 B2

 ;
{

B1, B2

}
=

{
d N1
d x , d N2

d x

}
=

{
− 1

Le , 1
Le

} (2.11)

For modeling crack formation in mode I and mode II, i.e., the softening behavior,

localization limiter based on embedded strong discontinuity is employed [124–126].

Namely, strong discontinuities are introduced in displacement fields in the axial

and transverse direction (Figure 2.5), which are now represented as a sum of a

regular part and the discontinuous part. The discontinuous part is represented as

a product of an interpolation function M and parameter α, which represents the

displacement jump located at the center of the element.

The enhanced displacement fields are interpolated as

u = Ns
uū+Mα (2.12)

where

αT =
{
αu , αv , 0

}
;

M =


M 0 0

0 M 0

0 0 0

 ; M = Hx̄ −N2; Hx̄ =
0, x ≤ x̄

1, x > x̄

(2.13)

Here, αu and αv represent displacement jumps in axial and transverse direction.
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δ
x

N1(�)

N2(�)

M(�)

G(x)

Hx(x)

u1

v1

θ11

v2

θ2

u2

2

αv

αu

L
ex

y
x

Figure 2.5 Timoshenko beam finite element: interpolation functions

The finite element implementation procedure for the localization limiter based

on embedded strong discontinuity fits well within the framework of incompatible

mode method [124]. Namely, the parameter α can be interpreted as an incompati-

ble mode parameter, which can be statically condensed on the element level, so

that on the global level only remaining unknowns are nodal displacements.

The enhanced strain fields are interpolated as

ϵ= Bs
uū+Gα (2.14)

where

G =


G 0 0

0 G 0

0 0 0

 ; G = d M

d x
=

Ḡ , x ∈ [0, x̄)∪x ∈ (x̄,Le ]

Ḡ +δx̄ , x = x̄
(2.15)

where Ḡ =− 1
Le , and δx̄ is the Dirac function

δx̄ =
0, x ∈ [0, x̄)∪x ∈ (x̄,Le ]

∞, x = x̄
(2.16)
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Finite element formulation

The pore pressure field is approximated with CST finite elements (Figure 2.6).

The finite element approximation for the pore pressure field is written as

p = Ns
p p̄ (2.17)

where

p̄T =
{

p1, p2, p3

}
;

Ns
p =

{
N p

1 , N p
2 , N p

3

}
; N p

1 = 1

2A

[
(x2 y3 −x3 y2)+ (y2 − y3)x + (x3 −x2)y]

N p
2 = 1

2A

[
(x3 y1 −x1 y3)+ (y3 −x1)x + (x1 −x3)y]

N p
3 = 1

2A

[
(x1 y2 −x2 y1)+ (y1 −x2)x + (x2 − y1)y]

(2.18)

where A is the area of the triangular element, x,y , are global coordinates and xi , yi

are nodal coordinates of CST element.

1 2

p1 p2

3

p3

x

y

Figure 2.6 CST finite element

The time derivatives of displacement and pore pressure fields are written as

u̇ = Ns
u

˙̄u; ṗ = Ns
p

˙̄p

ü = Ns
u

¨̄u; p̈ = Ns
p

¨̄p
(2.19)

2.4.2 Continuity equation and equations of motion

2.4.2.1 Continuity equation

The coupling of the mechanics and the pore fluid flow occurs through the axial

direction of the Timoshenko beam finite element. The continuity equation for fluid

flow through the porous body is written as

1

M
ṗ +bε̇− k

γ f
∇· (∇p) = 0 (2.20)
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The weak from of the continuity equation is obtained through the principle of

virtual works, written as∫
Ωe

C ST

δp
[ 1

M
ṗ − k

γ f
∇· (∇p)

]
dΩ+

∫ Le

0
δp ‵bε̇d x = 0 (2.21)

where δp is the virtual pore pressure field interpolated in the same manner as the

real pore pressure field

δp = Ns
pδp̄; δp̄T =

{
δp1, δp2, δp3

}
;

p ‵ = Ns
up p̄‵; Ns

up =
{

N1, N2

}
; p̄‵T =

{
p1, p2

}
;

δp ‵ = Ns
upδp̄‵; δp̄‵T =

{
δp1, δp2

} (2.22)

2.4.2.2 Equations of motion

In deriving the weak form of the equations of motion, we use the d’Alembert

principle, which is a dynamic analog to the principle of virtual work in the quasi-

static setting [124]. The main idea behind the d’Alembert principle is that a motion

of a solid body in each time step can be described by the equilibrium equation,

which includes an additional external load in terms of the inertia force. Here,

we assume that the coupling of the mechanics and the internal fluid flow occurs

through the axial direction of the Timoshenko beam finite element. Thus, the

strong form of the equations of motion for a Timoshenko beam is written as

−ρAe ∂
2u

∂t 2
+ ∂N

∂x
+n(x, t ) = 0 (2.23)

−ρAe ∂
2v

∂t 2
+ ∂V

∂x
+q(x, t ) = 0 (2.24)

−ρI e ∂
2θ

∂t 2
+ ∂M

∂x
+V +m(x, t ) = 0 (2.25)

where ρ is the mass density, Ae and I e are the cross-sectional properties of Tim-

oshenko beam: area and second moment of inertia of a cross-section, n, q and

m are the distributed external loads, and N = N ′−bp ‵Ae , V =V ′ and M = M ′ are

the total axial force, the shear force and the bending moment, respectively. The

superscript ′ denotes effective force.

The weak form of equations of motion for Timoshenko beam finite element

is derived from the d’Alembert principle, which states that the virtual work of

internal forces is equal to the virtual work of external forces, which include the
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Finite element formulation

inertia force. The virtual displacements are imaginary displacements which are

kinematically admissible and small enough so that virtual strains can be regarded

as infinitesimal. The virtual displacement fields and virtual pore pressure field

refer to a particular deformed configuration and thus are not time-dependent. The

virtual displacement and virtual strain fields are interpolated in the same manner

as the real displacement and real strain fields, written as

δu = Ns
uδū+Mδα (2.26)

δϵ= Bs
uδū+Gδα (2.27)

where

δuT =
{
δu, δv, δθ

}
;

δαT =
{
δαu , δαv , 0

}
;

δūT =
{
δu1, δv1, δθ1, δu2, δv2, δθ2

}
;

δϵT =
{
δε, δγ, δκ

} (2.28)

The virtual work of external forces is computed as

Gext ,e = δūTfext ,e −
∫ Le

0

(
δuρAe ü +δvρAe v̈ +δθρI e θ̈

)
d x

= δūTfext ,e −δūTfacc,e

(2.29)

where

facc,e =
∫ Le

0
Ns,T

u σ̈d x; σ̈T =
{
ρAe ü,ρAe v̈ ,ρI e θ̈

}
(2.30)

The virtual work of internal forces for Timoshenko finite beam finite element is

equal to

G i nt ,e =
∫ Le

0

(
Bs

uδū
)T
σd x +

∫ Le

0

(
Gδα

)T
σud x (2.31)

where

σT =
{

N ,V , M
}
=

{
N ′−bp ‵Ae ,V ′, M ′

}
;

σT =σT
u −σT

p ;

σT
u =

{
N ′,V ′, M ′

}
; σT

p =
{

bp ‵Ae ,0,0
} (2.32)
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The virtual work of internal forces consists of two parts. The first is the virtual

work of internal forces in the bulk part of the element (part of the element outside

the discontinuity), and the second is the virtual work of internal forces acting at the

discontinuity, written as

G i nt ,e = δūTfi nt ,e +δαThe
(2.33)

where fi nt ,e is the internal force vector, and he is the residual vector due to disconti-

nuity, computed as

fi nt ,e =
∫ Le

0
Bs,T

u σd x = fi nt ,e (σu)− fi nt ,e (σp );

he =
∫ Le

0
GTσud x =

∫ Le

0
ḠTσud x + t; Ḡ =


Ḡ 0 0

0 Ḡ 0

0 0 0

 ; tT =
{

t u , t v ,0
}

(2.34)

Here, t is the internal force vector acting at the discontinuity.

By exploiting the principle of virtual work we obtain

0 =G i nt ,e −Gext ,e = δūT(fi nt ,e − fext ,e + facc,e )+δαThe (2.35)

The previous equation is satisfied if

facc,e + fi nt ,e − fext ,e = 0 (2.36)

he = 0 (2.37)

The Equation (2.36) relates to the bulk part of the element, and the Equation (2.37)

relates to the discontinuity.

The internal force vector t acting at the discontinuity is computed from the

following conditions

he = 0∫ Le

0
Ḡd x =

∫ Le

0
− 1

Le
d x =−1

⇒ t =


1 0 0

0 1 0

0 0 0

 ∫ Le

0
σud x (2.38)
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2.4.3 Constitutive model

The pre-peak response of the Timoshenko beam finite element in both axial and

transverse direction is described with the elasto-viscoplastic constitutive model

with implemented linear hardening [124], and Fredrick-Armstrong nonlinear kine-

matic hardening law [127]. The post-peak response of the element is described

with exponential softening. The behavior of the element in bending is purely linear

elastic.

2.4.3.1 Plasticity model

The proposed model of plasticity is described with [124]

1. Additive decomposition of the total strain into elastic and viscoplastic part,

with only the elastic part influencing the value of the stresses

ε= εe +εv p

γ= γe +γv p

κ= κe

(2.39)

2. Strain energy function in terms of strains and internal variables, plastic de-

formations εv p , γv p and strain-like hardening variables ξ̄u , ξ̄v

ψ̄u(
ε,εv p , ξ̄u)= 1

2

(
ε−εv p)

E Ae(ε−εv p)+ 1

2
ξ̄u H u

lh Ae ξ̄u

ψ̄v(
γ,γv p , ξ̄v)= 1

2

(
γ−γv p)

kcG Ae(γ−γv p)+ 1

2
ξ̄v H v

lh Ae ξ̄v
(2.40)

where E is Young’s modulus, G = E
2(1+ν) is the shear modulus with ν as Pois-

son’s ratio, H u
lh , H v

lh are the linear hardening moduli and kc is the shear

correction factor. For rectangular cross-sections shear correction factor is

equal to kc = 5/6.

3. Yield function in terms of stresses (or stress resultants), stress-like hardening

variables q̄u , q̄ v , and back-stress variables χ̄u , χ̄v

φ̄u(
N ′, χ̄u , q̄u)= |N ′− χ̄u Ae | − (

Ny − q̄u Ae)≤ 0

φ̄v(
V ′, χ̄v , q̄ v)= |V ′− χ̄v Ae | − (

Vy − q̄ v Ae)≤ 0
(2.41)

where Ny , Vy are the elastic (yield) limits.

The stress resultant values N ′, V ′ and M ′ are computed from the elastic part
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of total deformation, as

N ′ = E Ae(ε−εv p)
V ′ = kcG Ae(γ−γv p)
M ′ = E I eκ

(2.42)

where the area Ae and second moment of inertia I e for rectangular cross-

sections with cross-sectional width equal to one and cross-sectional height

equal to he are Ae = he , I e = (he )3/12.

Remark: We note that, in a general case, the element local coordinate axis x

does not pass through the center of gravity of the cross-section (Figure 2.7).

In what is to follow, we will neglect the additional coupling between axial and

bending strains as a result of the eccentricity ec .

C

C
ec

Figure 2.7 Eccentricity of the center of the gravity

The stress-like hardening variables q̄u , q̄ v handle the plasticity threshold evo-

lution as a result of accumulated plastic deformations. For linear hardening,

the stress-like hardening variables are given as

q̄u =−H u
l h ξ̄

u

q̄ v =−H v
l h ξ̄

v
(2.43)

In experiments with cyclic loading, it has been observed that in a typical cycle

with a load reversal, the plasticity threshold limit is reduced from the previous

value. This phenomenon is called the Bauschinger effect. To track the change

in the value of the plasticity threshold limit with respect to the previous plastic

state, back-stress variable χ̄ is introduced. We employ Fredrick-Armstrong

nonlinear kinematic hardening law [127], which we can write as

˙̄χu = H u
lk ε̇

v p −H u
nlk

˙̄ξuχ̄u

˙̄χv = H v
lk γ̇

v p −H v
nlk

˙̄ξv χ̄v
(2.44)
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where H u
lk , H v

lk are the kinematic hardening moduli, and H u
nlk , H v

nlk are

the non-dimensional material parameters that characterize the nonlinear

kinematic hardening behavior.

3. The evolution equations for internal variables ϵv p , γv p and ξ̄u , ξ̄v obtained

through the principle of maximum plastic dissipation and Kuhn-Tucker opti-

mality conditions

ε̇v p = ˙̄γu si g n(N ′− χ̄u Ae ); ˙̄ξu = ˙̄γu ; ˙̄γu ≥ 0

γ̇v p = ˙̄γv si g n(V ′− χ̄v Ae ); ˙̄ξv = ˙̄γv ; ˙̄γv ≥ 0
(2.45)

where γ̄u , γ̄v are the plastic multipliers whose values are equal to

˙̄γu = 〈φ̄u(N ′, χ̄u , q̄u)〉
ηu

˙̄γv = 〈φ̄v (V ′, χ̄v , q̄ v )〉
ηv

(2.46)

where ηu , ηv are the viscosity parameters.

2.4.3.2 Exponential softening

Once the element enters the softening phase, the jump in displacement is activated.

All plastic deformation from that point on remains localized at the discontinuity,

whereas the bulk part of the element elastically unloads. The exponential softening

is described with

1. The yield function defined in terms of stresses (or stress resultants), and dual

variables ¯̄qu , ¯̄q v

¯̄φu(
t u , ¯̄qu)= |t u | − (

N f − ¯̄qu Ae)≤ 0

¯̄φv(
t v , ¯̄q v)= |t v | − (

V f − ¯̄q v Ae)≤ 0
(2.47)

where N f , V f are the fracture limits, and ¯̄qu , ¯̄q v are the stress-like softening

variables that for exponential softening take the following form

¯̄qu = N f

Ae

(
1−exp

(
− ¯̄ξu (N f /Ae )

Gu
f

))
¯̄q v = V f

Ae

(
1−exp

(
− ¯̄ξv (V f /Ae )

G v
f

)) (2.48)
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where Gu
f , G v

f are the fracture energies, and ¯̄ξu , ¯̄ξv are the strain-like soft-

ening variables. The stress resultant values in the bulk part of an element

in the softening phase, which determine the value of internal forces at the

discontinuity t u , t v are computed as

N ′ = E Ae(ε−εv p +Ḡαu)
V ′ = kcG Ae(γ−γv p +Ḡαv) (2.49)

2. The evolution equations for internal variables αu , αv and ¯̄ξu , ¯̄ξv with the

loading/unloading conditions obtained through the principle of maximum

plastic dissipation and Kuhn-Tucker optimality conditions [124]

α̇u = ˙̄̄γu si g n(t u);
˙̄̄
ξu = ˙̄̄γu ; ˙̄̄γu ≥ 0; ¯̄φu ≤ 0; ˙̄̄γu ¯̄φu = 0

α̇v = ˙̄̄γv si g n(t v );
˙̄̄
ξv = ˙̄̄γv ; ˙̄̄γv ≥ 0; ¯̄φv ≤ 0; ˙̄̄γv ¯̄φv = 0

(2.50)

where ¯̄γu , ¯̄γv are the plastic multipliers whose values are obtained from the

consistency conditions

˙̄̄γu ˙̄̄
φu = 0

˙̄̄γv ˙̄̄
φv = 0

(2.51)

2.4.4 Computational procedure

The end result of the finite element discretization procedure is two sets of equations.

The first is the first order differential evolution equations for internal variables de-

fined locally (on the element level) at each Gauss quadrature point, and the second

is the second order differential equations in time governing the coupled problem

defined globally. The solution of these equations is computed at discrete pseudo-

time steps t1, t2, ..., tn by using the operator split solution procedure [124]. Here, the

solution procedure is divided into the local phase and the global phase, which are

treated separately. In the local phase, the solution of evolution equations is com-

puted by using implicit backward Euler time integration scheme. The unknown

values of displacement jumps are statically condensed on the element level from

the condition that the residual at the discontinuity is equal to zero. In the global

phase, the solution in terms of the unknown nodal displacements and pore pres-

sures is computed in a fully monolithic manner using Newmark time-integration

scheme and Newton’s iterative method.
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Following the standard finite element discretization procedure, the system

of equations governing the coupled problem for single Timoshenko beam finite

element is written as

Me
uu

¨̄u+ fi nt ,e (σu)−Ke
up p̄‵ = fext ,e (2.52)

Ke,T
up

˙̄u+De
pp

˙̄p‵+Ke
pp p̄‵ = qext ,e (2.53)

where Me
uu is the mass matrix, fi nt ,e (σu) is the internal load vector resulting from

displacements (i.e. effective stresses), Ke
up is the coupling matrix, De

pp is the com-

pressibility matrix, Ke
pp is the permeability matrix, and fe,ext and qe,ext are the load

vectors. The matrices Ke
up , De

pp and Ke
pp are computed as

Ke
up =

∫ Le

0
Bs,T

up bNs
up d x; Bs

up =
[

B1 0 0 B2 0 0
]

De
pp =

∫
Ωe

C ST

Ns,T
p

1

M
Ns

p dΩ; Ke
pp =

∫
Ωe

C ST

(∇Ns
p )T

k

γ f
∇Ns

p dΩ
(2.54)

Here we note that in the global system of equations (Equations 2.52 and 2.53)

we take the parts of the De
pp , and Ke

pp matrices (Equation 2.54) that correspond to

the nodes of Timoshenko beam finite element.

The Timoshenko beam finite element mass matrix Me in Equation (2.52) is

obtained by distributing the total mass of an element to nodes (Figure 2.8), resulting

in a diagonally lumped mass matrix, written as [111]

Me
uu = 1

2
ρ di ag

(
Atot , Atot , I e , Atot , Atot , I e) (2.55)

Atot=A
e
·L
e
·0.5

h
e

L
e

Figure 2.8 Timoshenko beam finite element lumped mass matrix computation

The solution of the coupled problem at the global level in terms of unknown

values of nodal displacements and pore pressures is preceded by the solution for

the unknown values of internal variables at the local (element) level.
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2.4.4.1 Local phase: bulk

Computational procedure for proposed plasticity model is as follows

Start with the best iterative values of nodal displacements, then

• Assume elastic trial step

γ̄u,tr i al
n+1 = 0 ⇒

ε
v p,tr i al
n+1 = εv p

n

ξ̄u,tr i al
n+1 = ξ̄u

n

; γ̄v,tr i al
n+1 = 0 ⇒

γ
v p,tr i al
n+1 = γv p

n

ξ̄v,tr i al
n+1 = ξ̄v

n

• Calculate trial values of resultant forces, stress-like hardening variables and

back-stress variables

⇒


N ′tr i al

n+1 = E Ae
(
ε(i )

n+1 −ε
v p
n

)
q̄u,tr i al

n+1 =−H u
lh ξ̄

u
n

χ̄u,tr i al
n+1 = H u

l kε
v p
n −H u

nlk ξ̄
u
nχ̄

u
n

; ⇒


V ′tr i al

n+1 = kcG Ae
(
γ(i )

n+1 −γ
v p
n

)
q̄ v,tr i al

n+1 =−H v
l h ξ̄

v
n

χ̄v,tr i al
n+1 = H v

lkγ
v p
n −H v

nlk ξ̄
v
nχ̄

v
n

• Calculate trial values of yield functions

φ̄u,tr i al
n+1 =

∣∣∣N ′tr i al
n+1 − χ̄u,tr i al

n+1 Ae
∣∣∣ − (

Ny − q̄u,tr i al
n+1 Ae

)
φ̄v,tr i al

n+1 =
∣∣∣V ′tr i al

n+1 − χ̄v,tr i al
n+1 Ae

∣∣∣ − (
Vy − q̄ v,tr i al

n+1 Ae
)

→ if φ̄u,tr i al
n+1 ≤ 0 the current step in axial direction is indeed elastic, and

the values of internal variables, stress-like hardening variable and back-

stress variable at time step tn+1 are

γ̄u
n+1 = 0 ⇒

ε
v p
n+1 = ε

v p
n ; q̄u

n+1 = q̄u,tr i al
n+1

ξ̄u
n+1 = ξ̄u

n ; χ̄u
n+1 = χ̄u,tr i al

n+1

The value of elasto-plastic tangent modulus C ep,u at time step tn+1 is

C ep,u
n+1 = E

if φ̄u,tr i al
n+1 > 0 the current step in axial direction is plastic, and the val-

ues of internal variables, stress-like hardening variable and back-stress
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variable at time step tn+1 are

γ̄u
n+1 =

φ̄u,tr i al
n+1

Ae
(
E +H u

l h +H u
l k −H u

nlk χ̄
u
n + ηu

∆t

)

⇒



ε
v p
n+1 = ε

v p
n + γ̄u

n+1si g n
(
N ′tr i al

n+1 − χ̄u,tr i al
n+1 Ae)

ξ̄u
n+1 = ξ̄u

n + γ̄u
n+1

q̄u
n+1 = q̄u

n −H u
lhγ̄

u
n+1

χ̄u
n+1 = χ̄u

n +H u
lk γ̄

u
n+1si g n

(
N ′tr i al

n+1 − χ̄u,tr i al
n+1 Ae)−H u

nlk γ̄
u
n+1χ̄

u
n

where ∆t is the time increment.

The value of elasto-plastic tangent modulus C ep,u at time step tn+1 is

C ep,u
n+1 =

E
(
H u

lh +H u
lk −H u

nlk χ̄
u
n+1 + ηu

∆t

)
E +H u

lh +H u
lk −H u

nlk χ̄
u
n+1 +

ηu

∆t

→ if φ̄v,tr i al
n+1 ≤ 0 the current step in transverse direction is indeed elastic,

and the values of internal variables, stress-like hardening variable and

back-stress variable at time step tn+1 are

γ̄v
n+1 = 0 ⇒

γ
v p
n+1 = γ

v p
n ; q̄ v

n+1 = q̄ v,tr i al
n+1

ξ̄v
n+1 = ξ̄v

n ; χ̄v
n+1 = χ̄v,tr i al

n+1

The value of elasto-plastic tangent modulus C ep,v at time step tn+1 is

C ep,v
n+1 = kcG

if φ̄v,tr i al
n+1 > 0 the current step in transverse direction is plastic, and the

values of internal variables, stress-like hardening variable and back-

stress variable at time step tn+1 are

γ̄v
n+1 =

φ̄v,tr i al
n+1

Ae
(
kcG +H v

l h +H v
l k −H v

nlk χ̄
v
n + ηv

∆t

)

⇒



γ
v p
n+1 = ϵ

v p
n + γ̄v

n+1si g n
(
V ′tr i al

n+1 − χ̄v,tr i al
n+1 Ae)

ξ̄v
n+1 = ξ̄v

n + γ̄v
n+1

q̄ v
n+1 = q̄ v

n −H v
lhγ̄

v
n+1

χ̄v
n+1 = χ̄v

n +H v
lk γ̄

v
n+1si g n

(
V ′tr i al

n+1 − χ̄v,tr i al
n+1 Ae)−H v

nlk γ̄
v
n+1χ̄

v
n
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The value of elasto-plastic tangent modulus C ep,v at time step tn+1 is

C ep,v
n+1 =

kcG
(
H v

lh +H v
lk −H v

nlk χ̄
v
n+1 + ηv

∆t

)
kcG +H v

lh +H v
lk −H v

nlk χ̄
v
n+1 +

ηv

∆t

2.4.4.2 Local phase: discontinuity

Computational procedure for exponential softening is as follows

Start with the best iterative values of nodal displacements, then

• Assume elastic trial step

¯̄γu,tr i al
n+1 = 0 ⇒

α
u,tr i al
n+1 =αu

n

¯̄ξu,tr i al
n+1 = ¯̄ξu

n

; ¯̄γv,tr i al
n+1 = 0 ⇒

α
v,tr i al
n+1 =αv

n

¯̄ξv,tr i al
n+1 = ¯̄ξv

n

• Calculate trial value of internal forces acting at discontinuity and stress-like

softening variables

⇒


t u,tr i al

n+1 = E Ae
(
ε(i )

n+1 −εv p +Ḡαu
n

)
¯̄qu,tr i al

n+1 = N f

Ae

(
1−exp

(
− ¯̄ξu

n

(N f /Ae )

Gu
f

))

⇒


t v,tr i al

n+1 = kcG Ae
(
γ(i )

n+1 −γv p +Ḡαv
n

)
¯̄q v,tr i al

n+1 = V f

Ae

(
1−exp

(
− ¯̄ξv

n

(V f /Ae )

G v
f

))

• Calculate trial value of yield functions

¯̄φu,tr i al
n+1 =

∣∣∣t u,tr i al
n+1

∣∣∣ − (
N f − ¯̄qu,tr i al

n+1 Ae
)

¯̄φv,tr i al
n+1 =

∣∣∣t v,tr i al
n+1

∣∣∣ − (
V f − ¯̄q v,tr i al

n+1 Ae
)

→ if ¯̄φu,tr i al
n+1 ≤ 0 the current step in axial direction is indeed elastic, and the

values of internal variables at time step tn+1 remain the same as at time

step tn

¯̄γu
n+1 = 0 ⇒


αu

n+1 =αu
n

¯̄ξu
n+1 = ¯̄ξu

n

¯̄qu
n+1 = ¯̄qu,tr i al

n+1
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Finite element formulation

if ¯̄φu,tr i al
n+1 > 0 the current step is in axial direction is plastic, and the

values of internal variables needs to be updated in order to ensure

the plastic admissibility of stress. The values of internal variables for

exponential softening at time step tn+1 are computed iteratively from

the condition
¯̄φu

n+1 ≤ tol

The values of internal variables at time step tn+1 and iteration ( j ) are

∆ ¯̄γu,( j )
n+1 =

¯̄φ
u,( j )
n+1

Ae
(−ḠE +K u,( j )

α

) ⇒

α

u,( j+1)
n+1 =αu,( j )

n+1 +∆ ¯̄γu,( j )
n+1 si g n

(
t u,tr i al

n+1

)
¯̄ξu,( j+1)

n+1 = ¯̄ξu,( j )
n+1 +∆ ¯̄γu,( j )

n+1

where

K u,( j )
α =− (N f /Ae )2

Gu
f

(
exp

(
− ¯̄ξu,( j ) (N f /Ae )

Gu
f

))
t u,( j )

n+1 = E Ae
(
ϵ(i )

n+1 −ϵv p +Ḡαu,( j )
n

)
¯̄qu,( j )

n+1 = N f

Ae

(
1−exp

(
− ¯̄ξu,( j )

n+1

(N f /Ae )

Gu
f

))

→ if ¯̄φv,tr i al
n+1 ≤ 0 the current step in transverse direction is indeed elastic,

and the values of internal variables at time step tn+1 are

¯̄γv
n+1 = 0 ⇒


αv

n+1 =αv
n

¯̄ξv
n+1 = ¯̄ξv

n

¯̄q v
n+1 = ¯̄q v,tr i al

n+1

if ¯̄φv,tr i al
n+1 > 0 the current step in transverse direction is plastic. The

values of internal variables for exponential softening at time step tn+1

are computed iteratively from the condition

¯̄φv
n+1 ≤ tol

The values of internal variables at time step tn+1 and iteration ( j ) are

∆ ¯̄γv,( j )
n+1 =

¯̄φ
v,( j )
n+1

Ae
(−ḠGkc +K v,( j )

α

) ⇒

α

v,( j+1)
n+1 =αv,( j )

n+1 +∆ ¯̄γv,( j )
n+1 si g n

(
t v,tr i al

n+1

)
¯̄ξv,( j+1)

n+1 = ¯̄ξv,( j )
n+1 +∆ ¯̄γv,( j )

n+1
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where

K v,( j )
α =− (V f /Ae )2

G v
f

(
exp

(
− ¯̄ξv,( j ) (V f /Ae )

G v
f

))
t v,( j )

n+1 = kcG Ae
(
γ(i )

n+1 −γv p +Ḡαv,( j )
n

)
¯̄q v,( j )

n+1 = V f

Ae

(
1−exp

(
− ¯̄ξv,( j )

n+1

(V f /Ae )

Gu
f

))

2.4.4.3 Global phase

The computation of internal variables in the local phase is followed by the global

phase. The global phase of the computation is performed by means of Newton’s

iterative method. Based on the converged values of internal variables, the values of

internal forces are computed and compared with the values of external forces to

check whether the equilibrium is satisfied. The equilibrium condition is written as

nel em
A

e=1

[
fext − fi nt ,(i ) − facc,(i )

]e

n+1
< tol (2.56)

If the previous condition is satisfied, the computation for new time-step is

performed. If not, new iterative values of unknown nodal displacements and pore

pressures are to be computed.

The global phase of the computation is solved using Newmark time-integration

scheme, which solves the second-order transient problem in the following manner

[41]

Rn+1 = Fn+1 −P
(
un+1, u̇n+1, ün+1

)= 0 (2.57)

where

un+1 = un +∆t u̇n +∆t 2[(0.5−β)ün +βün+1
]

u̇n+1 = u̇n +∆t
[
(1−γ)ün +γün+1

] (2.58)

in which β and γ are parameters controlling stability and numerical dissipation,

and ∆t is the time increment.

For a time step tn+1 and iteration i , the global system of equations to be solved

is written as

nel em
A

e=1

{ 1
β∆t 2 Muu + K̄uu −Kup

γ
β∆t KT

up
γ
β∆t Dpp +Kpp

e,(i )

n+1

∆ū

∆p̄‵


e,(i )

n+1

=
ru

rp


e,(i )

n+1

}
(2.59)
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Finite element formulation

where K̄e
uu is the element tangent stiffness matrix, and re,(i )

u,n+1 and re,(i )
p,n+1 are residu-

als pertaining to the solid and the pore fluid part.

After solving the global system of equations, the new iterative values of unknown

fields are updated as

ū(i+1)
n+1 = ū(i )

n+1 +∆ū(i )
n+1

p̄(i+1)
n+1 = p̄(i )

n+1 +∆p̄(i )
n+1

(2.60)

In each iteration, the tangent stiffness matrix for every element is constructed.

The tangent stiffness matrix of an element is obtained by linearization of Equations

(2.36) and (2.37) with respect to nodal displacements and displacement jumps.

If the element is elasto-viscoplastic then only Equation (2.36) with respect

to nodal displacements is linearized since the jump in displacement is not yet

activated. The element tangent stiffness matrix is defined as

K̄e,(i )
uu,n+1 = Ke,(i )

uu,n+1 =
(∂fi nt (σu)

δū

)e,(i )

n+1
=

∫ Le

0
Bs,T

u Cep,(i )
n+1 Bs

ud x (2.61)

Elasto-viscoplastic tangent matrix is written as

Cep,(i )
n+1 =


C ep,u

n+1 Ae 0 0

0 C ep,v
n+1 Ae 0

0 0 E I e

 (2.62)

where C ep,u
n+1 and C ep,v

n+1 are elasto-plastic tangent moduli for axial and transverse

direction.

If the element is in the softening then both Equations (2.36) and (2.37) are

linearized. The element tangent stiffness matrix is obtained by performing static

condensation procedure in which the unknown values of displacement jumps are

eliminated from the condition that the residual at the discontinuity is equal to zero.

The statically condensed element tangent stiffness matrix is written as

K̄e,(i )
uu,n+1 = K̂e,(i )

uu,n+1 =
[

Ke,(i )
uu,n+1 −Fe,(i )

n+1

(
He,(i )

n+1 +Kα

)−1(
Fe,(i ),T

n+1 +Kd

)]
(2.63)

where

Ke,(i )
uu,n+1 =

(∂fi nt (σu)

δū

)e,(i )

n+1
=

∫ Le

0
Bs,T

u Cep,(i )
n+1 Bs

ud x

Fe,(i )
n+1 =

(∂fi nt (σu)

δα

)e,(i )

n+1
=

∫ Le

0
Bs,T

u Cep,(i )
n+1 Ḡd x
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(
FT+Kd

)e,(i )
n+1 =

(∂h

δū

)e,(i )

n+1
=

∫ Le

0
ḠTCep,(i )

n+1 Bs
ud x +Kd

(
H+Kα

)e,(i )
n+1 =

( ∂h

δα

)e,(i )

n+1
=

∫ Le

0
ḠTCep,(i )

n+1 Ḡd x +Kα (2.64)

If the current step in the softening is elastic, then

Kd = C∗Bs
u ; Kα = 0; C∗ =


E Ae 0 0

0 kcG Ae 0

0 0 0

 (2.65)

Else, if the current step in the softening is plastic, then

Kd = 0; Kα =


K u
α Ae 0 0

0 K v
αAe 0

0 0 0

 (2.66)

Remark 1: When computing the element tangent stiffness matrix all different

combinations that can occur, have to be taken into account. For example, in

axial direction softening can occur while in transverse direction element is elasto-

viscoplastic. After the appropriate tangent stiffness matrix for every element is

constructed, an assembly procedure to take into account the contribution of every

element to global equilibrium is performed. We note that in the assembly procedure

denoted by operatorA, the local-global transformation procedure is included.

Remark 2: We note that the equal order of finite element interpolation (linear

interpolation) is used for both the displacement and pore pressure fields. If the

undrained limit state is considered, with permeability and compressibility matrix

equal to zero, then this kind of approximation (unless stabilization techniques are

implemented [128]) can cause stability issues and finite elements which satisfy

Babuska-Brezzi condition [129, 130], or Zienkiewicz-Taylor mixed patch test [131]

should be used (e.g., see [132]). However, if the undrained limit state is not con-

sidered (as is in our case), then equal order of interpolation for unknown fields is

justified [5, 133].

Remark 3: In quasi-static setting, with inertial effects being negligible, the re-

sulting set of equations on the global level are the first order differential equations

in time. The global phase of computation under quasi-static assumptions is solved

using Newton’s iterative method and backward Euler scheme which solves the first

order transient problem in the following manner [41]
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Rn+1 = Fn+1 −P
(
un+1, u̇n+1

)= 0 (2.67)

where

u̇n+1 = 1

∆t

[
un+1 −un

]
(2.68)

For a time step tn+1 and iteration i , the global system of equations to be solved

under the quasi-static assumption is written as

n
A

e=1

{ K̄uu −Kup

1
∆t KT

up
1
∆t Dpp +Kpp

e,(i )

n+1

∆ū

∆p̄‵


e,(i )

n+1

=
ru

rp


e,(i )

n+1

}
(2.69)

Remark 4: In numerical simulations of structures built of dry material in quasi-

static setting, the global system of equations is reduced to the system of algebraic

equilibrium equations. The global phase of computation is solved using Newton’s

iterative method. For a time step tn+1 and iteration i , the global system of equations

to be solved under the quasi-static assumption is written as

n
A

e=1

{
K̄e,(i )

uu,n+1∆ūe,(i )
n+1 = {ru}e,(i )

n+1

}
(2.70)

For solving the global phase, the arc-length method can also be used in which both

the current values of external load and displacements are sought iteratively.

Remark 5: We note that the boundary conditions in the numerical test for

identification of lattice Young’s modulus shown in Figure 2.4a, correspond to the

conditions of constrained lateral deformations. The conditions of constrained

later deformations are typically met in the oedometer test, which is commonly

used in soil mechanics to determine the consolidation characteristics of soils. In

the oedometer test the movement of the sample is allowed only in the vertical

direction, which makes this test very useful for obtaining the value of constrained

(oedometer) elastic modulus.

The relation between the oedometer elastic modulus Eoed and Young’s modulus

E for continuum can be derived by exploiting Hooke’s law. Hooke’s law for isotropic

material in three dimensions with ν as Poisson’s ratio is written as

σ11

σ22

σ33

σ23

σ13

σ12


= E

(1+ν)(1−2ν)



1−ν ν ν 0 0 0

ν 1−ν ν 0 0 0

ν ν 1−ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2





ε11

ε22

ε33

ε23

ε13

ε12


(2.71)
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where σ is the stress vector and ε is the strain vector.

Hence, the oedometer elastic modulus Eoed and Young’s modulus E for contin-

uum are related by

Eoed = E
(1−ν)

(1+ν)(1−2ν)
(2.72)

The ratio between the oedometer modulus Eoed and Young’s modulus E for

different values of Poisson’s ratio are shown in Table 2.1.

Table 2.1 Oedometer vs. Young’s modulus for different values of Poisson’s ratio

Poisson’s ratio Oedometer modulus/Young’s modulus

ν Eoed /E

0 1

0.1 1.02

0.2 1.11

0.3 1.35

0.4 2.14

0.45 3.79

2.5 Numerical results

In this section, we present the results of several numerical simulations, which serve

to illustrate the coupled discrete beam lattice model performance. All numerical

implementations and computations are performed with the research version of

the computer code FEAP, developed by R.L. Taylor [41]. In all numerical simula-

tions, the finite element mesh is generated by using Delaunay triangulation and

GMSH software [91]. The cross-sectional properties of the Timoshenko beam finite

elements are computed from the Voronoi diagram by using MATLAB software [92].

2.5.1 Illustrative examples

In this section, we demonstrate the capabilities of the proposed discrete beam

lattice model on a set of illustrative examples for a structure with very small water

content (i.e., structure built of dry, non-porous material). We describe in details the

phases of the macro-scale response of the structure computed with the proposed

model. Namely, we aim to demonstrate the idea of multi-scale modeling. In other

words, we aim to show that with the appropriate modeling of the micro-scale, we

are able to capture the true response of the structure on the macro-scale level.
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2.5.1.1 Hardening response of discrete beam lattice model

In our first example, we observe a cantilever beam modeled with a single Timo-

shenko beam finite element, shown in Figure 2.9a. The material parameters of the

Timoshenko beam finite element are: Young’s modulus E = 105 kPa, the yield limit

σy = 10 kPa, the linear hardening modulus Hlh = 103 kPa, the linear hardening

modulus Hlk = 103 kPa, the nonlinear hardening parameter Hnlk = 102, and the

viscosity parameter η= 103 kPa s.

We subject the beam to the increasing triangular pulse load program (Figure

2.9b), with the aim to investigate the influence of different types of hardening

phenomena on the final response. From the results shown in Figure 2.10, we can

see that the proposed viscoplastic Timoshenko beam finite element with nonlinear

kinematic hardening is able to capture the Bauschinger effect, ratcheting behavior

of the material, and also the rate-dependency of the response.
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Figure 2.9 Nonlinear cantilever beam
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Figure 2.10 Nonlinear cantilever beam: computed results
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Next, we subject a single column filled-in by Voronoi cells to the hysteresis

loading program. We qualitatively investigate the influence of the chosen ratio

between the yield stress in compression and tension for a Timoshenko beam finite

element on the final shape of the computed hysteresis curve. The geometry of the

column and boundary conditions are shown in Figure 2.11a. The finite element

mesh and Voronoi diagram are shown in Figures 2.11b-2.11c.
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Figure 2.11 Nonlinear column
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Figure 2.12 Hystersis loading program

The computation is performed by imposing horizontal displacements on the

top base of the column, following the loading program shown in Figure 2.12. The

material parameters of the Timoshenko beam finite element are: Young’s modulus
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E = 104 MPa, the yield limit σy = 1 MPa, the linear hardening modulus Hl h =
103 MPa, the linear kinematic hardening modulus Hlk = 103 MPa, the nonlinear

hardening parameter Hnlk = 102, and the viscosity parameter η= 103 MPa s.

The computed force-displacement curve for the case when the ratio between

yield stress values in compression and tension is equal to 1 is shown in Figure 2.13a.

We can see that the computed hysteresis curve is of a similar shape as the one

obtained in the cyclic loading experiments with materials such as steel. In Figure

2.13b, we can see that for the case when the same ratio is equal to 10, the shape of

the computed hysteresis curve corresponds to the one observed in the experiments

with materials such as concrete.
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Figure 2.13 Nonlinear column: computed hysteresis loops

2.5.1.2 Hardening and softening response of discrete beam lattice model

The macro-scale response of structure built of cohesive heterogeneous material,

such as rock or concrete, can be divided into three phases. The first phase is the

linear elastic phase with no cracks occurring in the structure. The second phase

represents the fracture process zone where cracks start to form and propagate,

resulting in a loss of stiffness, but the load carrying capacity of the structure still

increases. In the third phase, cracks coalescence results in an ultimate failure mode.

Namely, after reaching the ultimate load value, one large macro-crack is starting to

form and propagate, leading to a complete failure of the structure.

The constitutive model chosen for the Timoshenko beam finite element in

combination with the enhanced kinematics in terms of embedded strong disconti-

nuities in the axial and transverse direction can indeed capture all three phases of

the macro-scale response. With the aim of illustrating these phases, we perform a

numerical simulation of uniaxial tension test on a rock specimen in the quasi-static
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Discrete model of structure built of saturated poro-plastic medium

framework. We perform uniaxial tension test by imposing uniform vertical displace-

ments on the top base of the specimen while keeping the bottom base fixed in the

horizontal and vertical direction (Figure 2.14a). The global phase of computation

under the quasi-static assumption is solved by using Newton’s iterative method in

combination with the line search algorithm [134] (see Remark 4).
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Figure 2.14 Uniaxial tension test

Table 2.2 Uniaxial tension test: material parameters of the finite element

Young’s
modulus

Poisson’s
ratio

Yield limit Hardening
modulus

Fracture
limit

Fracture
energy

[MPa] [/] [MPa] [MPa] [MPa] [N/mm]

E = 10000 ν= 0.2

σy,t = 18 Hlh,t = 1000
µG ,t = 22

G f ,t = 15
σG ,t = 1

σy,c = 180 Hlh,c = 1000
µG ,c = 220

G f ,c = 300
σG ,c = 10

σy,s = 22 Hlh,s = 1000
µG ,s = 26

G f ,s = 150
σG ,s = 1

The geometry of the specimen and boundary conditions are shown in Figure

2.14a. The finite element mesh and Voronoi diagram are shown in Figures 2.14b

and 2.14c. The material parameters of Timoshenko beam finite elements are shown

in Table 2.2. To take into account material heterogeneities, the ultimate values

of stresses are randomly assigned to every finite element using Gaussian random

distribution defined with mean µG and standard deviation σG (with σ2
G as the

variance). The probability density function (PDF) of Gaussian random distribution

of Gaussian random variable X is written as (Figure 2.15)

f (x |µG , σG ) = 1

σG
p

2π
e
− 1

2
(x−µG )2

σ2
G (2.73)
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Figure 2.15 PDF of Gaussian random distribution of fracture limit in compression

The three phases of response are indicated in the computed force-displacement

diagram, shown in Figure 2.16. With the aim of comparing results with experimen-

tal observations, we note that that the failure in a cohesive link can be interpreted

as a formation of a crack on a macro-scale level. The first phase of the computed

macro-scale response is a linear elastic phase, where none of the cohesive links

have entered the softening phase of the response. In other words, this can be

identified as that no cracks have formed on the macro-scale level (Figure 2.17a). In

the second phase, cohesive links start to enter the softening phase of the response

in mode I and/or mode II. Observed from the macro-scale, this can be interpreted

as the formation of the fracture process zone (Figure 2.17b, broken cohesive links

marked red). In the third phase, the coalescence of broken cohesive links in in-

creasing softening (beam elements with increasing values of displacement jumps)

results with an ultimate failure mode, which leads to the complete failure of the

specimen. The computed ultimate failure mode coincides with the one commonly

observed in experimental uniaxial tension test, where one large macro-crack splits

the specimen into two parts (Figure 2.17c). Note that in Figures 2.17b and 2.17c

results for mode I of cohesive link failure are shown.
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Figure 2.16 Uniaxial tension test: computed results
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(a) Linear elastic phase (b) Fracture process zone (c) Localized failure

Figure 2.17 Uniaxial tension test: three phases of the macro-scale response

The next several figures illustrate the ultimate failure mode in a uniaxial ten-

sion test, captured at the end of the loading program. The computed vertical

displacements and the broken cohesive links in increasing softening at the end of

the loading program are shown in Figures 2.18a-2.18c. The values of displacement

jumps in broken cohesive links are shown in Figures 2.18d and 2.18e.
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Figure 2.18 Failure mode for uniaxial tension test
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2.5.2 Validation examples

In this section, we aim to validate the coupled discrete beam lattice model of struc-

ture built of a saturated porous medium. For the quasi-static case, we compare

our results against those computed with a continuum model using commercial

software PLAXIS [135]. In PLAXIS, the coupling between the solid phase and the

pore fluid is governed by Biot’s porous media theory, and the equal order of in-

terpolation for both the displacement and pressure fields is available. For such

comparison, we choose 15-node triangular elements with fourth-order polynomial

interpolations. For the dynamic case, we compare the computed results against

the reference values provided in [136].

2.5.2.1 Quasi-static case

First, we observe a saturated poro-elastic column, and we perform a numerical

simulation of a one-dimensional plane strain consolidation test. The stress state in

this example can be regarded as homogeneous. Second, we observe a saturated

soil subjected to footing load, which results in a heterogeneous stress state. In both

examples, the corresponding linear elastic parameters of the continuum model are

identified by exploiting the property that the discrete beam lattice model based on

Voronoi cell representation of the domain can reproduce the linear elastic response

of an equivalent continuum model.

→ Saturated poro-elastic column

The geometry and the boundary conditions of the saturated poro-elastic col-

umn are shown in Figure 2.19a. The linear elastic parameters of the Timoshenko

beam finite element are: Young’s modulus E = 40 MPa and Poisson’s ratio ν = 0.

Because we observe a problem of one-dimensional consolidation, Poisson’s ratio

in a continuum model is taken as ν= 0. The identified corresponding oedometer

modulus of a continuum model is Eoed = 33.91 MPa (which is equal to Young’s

modulus E since ν= 0). The coefficient of permeability is k = 10−2 m/s, the specific

weight of the water is γw = 10 kN/m3, Biot’s constant is b = 1 and Biot’s modulus is

M = 1.7 GPa, for both discrete and continuum model.

With the aim of inspecting the possible mesh dependency of the results, we

perform a computation with a discrete model for two different mesh densities:

coarse with 336 Timoshenko beam finite elements (Figure 2.19b), and fine with

1281 Timoshenko beam finite elements (Figure 2.19c). The loading program is

shown in Figure 2.20. The time step is set to ∆t = 0.01 s. The computation in a

continuum model is performed on a mesh of 1190 triangular elements.
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Figure 2.19 Saturated poro-elastic column
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Figure 2.20 Saturated poro-elastic column: loading program

The computed time evolutions of vertical displacement of the column top and

the excess pore pressure at the bottom of the column are shown in Figures 2.21a

and 2.21b. We can conclude that the results obtained with the discrete model

show an excellent agreement with the results obtained with a continuum model.

The computed results are practically mesh independent. What is important to

emphasize is that the coefficient of permeability of a coupled discrete beam lattice

model matches that of an equivalent continuum model. Hence, it can be easily

identified from standard experimental tests.
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Figure 2.21 Saturated poro-elastic column: computed results

The consolidation represents the time change in the volume of the sample due

to the change in effective stresses. After excess pore pressures drop to zero, there is

no more change in effective stresses, and we can state that the consolidation pro-

cess has ended. From Figure 2.21b, we can conclude that as the value of excess pore

pressure approaches zero, the value of vertical displacement approaches constant

value marking the end of the consolidation (Figure 2.21a). The distributions of

vertical displacements and excess pore pressures at the end of the loading program

are shown in Figures 2.22a and 2.22b.
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Figure 2.22 Saturated poro-elastic column: computed results
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We repeat the computation with a discrete model with the ramp loading reach-

ing its maximum value at t = 1 s. The computed results are shown in Figures 2.23a

and 2.23b. We compare computed results against those shown in Figures 2.21a and

2.21b. From Figure 2.23b, we can conclude that the maximum value of excess pore

pressure is, as expected, greater in the case of higher loading rate. This observa-

tion is in accordance with Terzaghi’s principle of effective stresses. In the case of

undrained conditions, where water is not allowed to drain, the total applied force

will be carried by the water in the pores because the water is assumed to be much

stiffer than the porous skeleton. If the water is allowed to drain, then the part of the

force will be carried by the solid phase and part by the water in the pores. In the

case of a higher loading rate, the water has less time to drain; hence, the maximum

value of excess pore pressure is greater than in the case of lower loading rate.
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Figure 2.23 Comparison of loading rates

→ Footing on soil stratum

The geometry and the boundary conditions of the observed problem, and the

loading program are shown in Figures 2.24a and 2.24b. The linear elastic parameters

of the Timoshenko beam finite element are: Young’s modulus E = 40 MPa, and

Poisson’s ratio ν= 0. The identified oedometer modulus of a continuum model is

Eoed = 33.91 MPa, and Poisson’s ratio ν= 0.188. The coefficient of permeability is

k = 10−3 m/day, the specific weight of the water is γw = 10 kN/m3, Biot’s constant

is b = 1 and Biot’s modulus is M = 1.3 GPa, for both discrete and continuum model.

As in the previous example, we perform the computation for two different mesh

densities: coarse with 401 Timoshenko beam finite elements (Figure 2.25a) and

fine with 1570 Timoshenko beam finite elements (Figure 2.25b). The time step is

set to ∆t = 0.1 day. The computation in a continuum model is performed for 1126

triangular elements.
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Figure 2.24 Footing on soil stratum
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Figure 2.25 Finite element mesh densities

The computed time evolution of vertical displacements at point A(0,8) and

B(6,8), and excess pore pressures at points C(0,4) and D(0,6) are shown in Figures

2.26a, 2.27a and 2.28a. We can observe a good match between the results obtained

with the discrete and continuum model, with the results being practically mesh

independent.

Next, we introduce the nonlinearities in the discrete and continuum model

in order to investigate the influence of the nonlinear behavior on the computed

displacement and excess pore pressure fields. We perform the computation in the

continuum model for a Mohr-Coulomb constitutive law, with strength parameters:

cohesion c = 15 kPa, and angle of internal friction φ= 20◦. Contrary to the linear

elastic parameters of discrete lattice model, other lattice parameters such as the

yield and fracture limits have to be identified through more elaborate parameter

identification procedures, such as the probability based ones [137–139]. Here, we

follow a simpler approach. Namely, we identify the nonlinear parameters of the
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Figure 2.26 Computed vertical displacements
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Figure 2.27 Computed excess pore pressure at point C(0,4)
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Figure 2.28 Computed excess pore pressure at point D(0,6)

Timoshenko beam finite elements by simply matching the curves (vertical reaction-

vertical displacement at point A), computed with the discrete and continuum

model for the case of dry material. The identified yield and fracture limits in tension,

compression and shear are: σy,t = 4.7 kPa; σy,c = 47 kPa; σy,s = 40 kPa; σ f ,t = 4.8
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kPa; σ f ,c = 48 kPa; σ f ,s = 42 kPa. The fracture energies in tension, compression and

shear are: G f ,t = 0.1 MN/m; G f ,c = 10 MN/m; G f ,s = 1 MN/m. The identified linear

hardening modulus is Hlh = 1100 kPa.

The computed time evolution of vertical displacements at points A and B, and

excess pore pressures at points C and D are shown in Figures 2.26b, 2.27b and 2.28b.

We observe a good match between the results computed with the discrete and

continuum model, with the results being practically mesh independent. We can

conclude that nonlinear behavior results in an increase in the values of computed

vertical displacements and excess pore pressures, as previously observed in [5, 140].

The excess pore pressure fields at t = 5 days computed with the continuum and

discrete model are shown in Figures 2.29a-2.29c.
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Figure 2.29 Nonlinear behavior, computed excess pore pressure field

2.5.2.2 Dynamic case

In this example, we perform a validation computation of the proposed discrete

model of a saturated porous medium in a dynamic setting, where we compare

the computed results against the reference values provided in [136]. We observe

a saturated poro-elastic column (Figure 2.30a) subjected to step and sinusoidal

loading (Figures 2.31a and 2.31b), defined with following expressions

F = 3 [kN/m2]

F = 3[1−cos(ωt )] [kN/m2]; ω= 75 s−1

The computation in a continuum model is performed for Lame’s parameters

λL = 5.5833 MPa, and µL = 8.3750 MPa, which correspond to Young’s modulus

E = 20.1 MPa, and Poisson’s ratio ν= 0.2. By exploiting the property that discrete

lattice model based on Voronoi cell representation of domain with irregular lattice

geometry can reproduce the linear elastic response of an equivalent continuum
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model, we identify the corresponding Timoshenko beam linear elastic parameters

to be: Young’s modulus E = 23.71 MPa, and Poisson’s ratio ν = 0. The specific

weight of water is γw = 10 kN/m3, the mass density of mixture is ρ = 1670 kg/m3,

the coefficient of permeability is k = 10−2 m/s, Biot’s constant is b = 1 and Biot’s

modulus is 1/M → 0, for both continuum and discrete model. The time step is set

to ∆t = 0.001 s.
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Figure 2.30 Saturated poro-elastic column, dynamic case
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Figure 2.31 Saturated poro-elastic column, dynamic case: loading programs
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With the aim of inspecting the possible mesh dependency of the results, we

perform a computation with a discrete model for two mesh densities: coarse

with 336 Timoshenko beam finite elements (Figure 2.30b), and fine with 1281

Timoshenko beam finite elements (Figure 2.30c).

The computed results in terms of the time evolution of vertical displacement

of the column top, and excess pore pressures are shown in Figures 2.32a-2.32c.

We can conclude that a good match between the computed results and reference

values is obtained, with the results being practically mesh independent.
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Figure 2.32 Saturated poro-elastic column, dynamic case: computed results

2.5.3 Plane strain compression test

With the aim to investigate the influence of coupling effects on the failure mech-

anisms in a saturated porous medium, we simulate a plane strain compression

test on a water-saturated specimen. The geometry of the specimen and bound-

ary conditions are shown in Figure 2.33a. The finite element mesh and Voronoi

discretization are shown in Figures 2.33b and 2.33c.
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Figure 2.33 Plane strain compression test

Table 2.3 Compression test: material parameters of the finite element

Young’s
modulus

Poisson’s
ratio

Yield limit Hardening
modulus

Fracture
limit

Fracture
energy

[kPa] [/] [kPa] [kPa] [kPa] [kN/m]

E = 20000 ν= 0.2

σy,t = 10 Hlh,t = 2000
µG ,t = 12

G f ,t= 20
σG ,t = 1

σy,c = 100 Hlh,c = 2000
µG ,c = 120

G f ,c= 100
σG ,c = 10

σy,s = 12 Hlh,s = 2000
µG ,s = 15

G f ,s= 100
σG ,s = 1

The material parameters of the Timoshenko beam finite element are shown

in Table 2.3. The ultimate values of stresses are randomly assigned to every finite

element using Gaussian random distribution. The ultimate shear stress for each

Timoshenko beam finite element is defined with Mohr-Coulomb law, written as

σ∗
f ,s =

σ f ,s +|σ′| · tanφ, σ′ < 0

σ f ,s , σ′ ≥ 0
(2.74)

where σ f ,s is the ultimate shear stress independent of the normal effective stress

(i.e. cohesion, c), φ is the angle of internal friction of material and σ′ is the effective

normal stress in the element, assumed negative in compression.
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The angle of internal friction is selected as φ= 11◦. The coefficient of perme-

ability is k = 10−7 m/s, the specific weight of the water is γw = 10 kN/m3, Biot’s

constant is b = 1 and Biot’s modulus is 1/M → 0.

Our goal is to capture the post-peak response and the failure mechanisms in

a water-saturated specimen. For this reason, the test is performed with vertical

displacements imposed on the top base of the specimen with a constant rate. We

assume that the inertial effects are negligible. To investigate the coupling effects,

vertical displacements are imposed with two different rates: v = 1 ·10−6 m/s and

v = 8 ·10−6 m/s. The time step is set to ∆t = 1 s.
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Figure 2.34 Computed results, different displacement rates

We monitor the time evolution of the excess pore pressures at point A(53.16,

136.21)[m]. The macro-scale responses of the specimen upon reaching the ulti-

mate load value for different displacement rates do not differ significantly despite

different values of generated excess pore pressures (Figure 2.34a). As in the accor-

dance with Equation 2.20, the higher displacement rate leads to a greater increase

in the values of excess pore pressures than in the case of the lower displacement

rate (Figure 2.34b). After initial contraction, the specimen begins to exhibit dila-

tive behavior. The dilative behavior leads to the decrease in the value of excess

pore pressures and the evolution of the negative excess pore pressures (Figures

2.35a and 2.35b). Significant coupling effects are observed in the post-peak part

of the response, where the higher displacement rate results in a greater value of

total vertical reaction. After the ultimate load level is reached, the stiffness of the

specimen decreases and one large macro-crack is starting to form, leading to the

complete failure of the specimen. The distribution of vertical displacements and

the broken cohesive links in increasing softening at the end of the loading program

for k = 1 ·10−7 m/s, v = 1 ·10−6 m/s are shown in Figures 2.36a-2.36c.
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Figure 2.36 Failure mode for plane strain compression test

We also preform the computation for v = 1 ·10−6 m/s for two different values

of coefficient of permeability: k = 1 ·10−7 m/s and k = 1 ·10−8 m/s. The computed

results are shown in Figures 2.37a and 2.37b. As in accordance with Equation 2.20,
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the lower value of the coefficient of permeability leads to a greater increase in the

values of excess pore pressures.
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Figure 2.37 Computed results, different permeabilities

2.5.4 Coupled soil-foundation system

In this numerical example, we simulate the response of water-saturated soil under

the rigid footing. The geometry and boundary conditions are shown in Figure 2.38a.

The finite element mesh and Voronoi discretization are shown in Figures 2.38b and

2.38c.
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Figure 2.38 Coupled soil-foundation system

The material parameters of the Timoshenko beam finite element are shown in

Table 2.4. The ultimate shear stress for each Timoshenko beam finite element is
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defined with Mohr-Coulomb law (Equation 2.74). The internal angle of friction is

selected as φ = 17◦. The coefficient of permeability is k = 10−6 m/s, the specific

weight of the water is γw = 10 kN/m3, Biot’s constant is b = 1 and Biot’s modulus is

1/M → 0.

Table 2.4 Coupled soil-foundation system: material parameters of the finite element

Young’s
modulus

Poisson’s
ratio

Yield limit Hardening
modulus

Fracture
limit

Fracture
energy

[MPa] [/] [MPa] [MPa] [MPa] [GN/m]

E = 160 ν= 0.3
σy,t = 0.03 Hl h,t = 60 σ f ,t = 0.09 G f ,t = 0.6
σy,c = 0.30 Hlh,c = 60 σ f ,c = 0.90 G f ,c = 60
σy,s = 0.07 Hlh,s = 60 σ f ,s = 0.13 G f ,s = 30

We simulate the response of the rigid footing by imposing uniform vertical

displacements with a constant rate along the length of the footing. We assume that

the inertial effects are negligible. To investigate the coupling effects, we perform the

computation for two different displacements rates: v = 2 ·10−5 m/s and v = 5 ·10−5

m/s. The time step is set to ∆t = 1 s.

The computed results are shown in Figures 2.39a and 2.39b. We can conclude

that the macro-scale response prior to reaching the ultimate load value is signif-

icantly influenced by the coupling effects (Figure 2.39a). The material under the

footing exhibits contractive behavior, as shown in the computed excess pore pres-

sures at point A(8.26,3.15)[m] (Figure 2.39b). Higher displacement rate causes the

generation of higher values of excess pore pressures, which leads to an increase in

the value of total vertical reaction (see Equation 2.2). However, for a higher rate,

the softening part of the response begins at the smaller value of vertical displace-

ment. In the post-peak part of the response, computed responses for different
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displacement rates do not differ significantly from the uncoupled response. The

failure mechanism formed under the footing, shown in Figure 2.40, coincides with

the commonly observed shape of the failure wedge. The distributions of vertical

displacements and excess pore pressures at the end of the loading program for

k = 1 ·10−6 m/s, v = 2 ·10−5 m/s are shown in Figures 2.40c and 2.40d.

(a) Broken cohesive links: mode I (b) Broken cohesive links: mode II
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(d) Excess pore pressures

Figure 2.40 Failure mode for coupled soil-foundation system

We repeat the computation for v = 5 · 10−5 m/s for two different values of

coefficient of permeability: k = 1·10−5 m/s and k = 1·10−6 m/s. A higher coefficient

of permeability means that the soil is more permeable and that water is able to

drain faster. This leads to the generation of lower values of excess pore pressures

(Figure 2.41b) and a decrease in the value of total reaction compared to the less

permeable soil (Figure 2.41a), as in accordance with Equations 2.2 and 2.20.
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2.6 Concluding remarks

In this Chapter, we used coupled discrete beam lattice model based on Voronoi cell

representation of domain with cohesive links as inelastic Timoshenko beam finite

elements with enhanced kinematics to simulate the response and localized failure

in pore-saturated structures. The coupling between the solid phase and internal

pore fluid is handled with Biot’s porous media theory, and Darcy’s law governing

the pore fluid flow. The pore fluid flow is approximated with CST finite elements,

which coincide with Delaunay triangles. The numerical implementation of internal

fluid-structure interaction is simplified by exploiting Hammer quadrature rule for

numerical integration on CST finite elements and duality between the Voronoi

diagram and Delaunay triangle representations, which results in an additional,

pressure-type degree of freedom placed at each node of Timoshenko beam finite

element.

The advantage of discrete models is that the true failure modes are captured

with 1D finite elements, which ensures relatively simple and efficient numerical

implementation of the model. We have shown that by appropriate modeling the

micro-scale, the coupled discrete beam lattice model is able to predict complete

macro-scale response including both the pre-peak and the post-peak behavior

and to capture true failure mechanisms in structures built of dry or pore-saturated

materials subjected to extreme loads. Thus, we can obtain the ultimate load value

in (much) more solvable manner, without any ambiguity between the (potential)

lack of convergence and real peak resistance.

The linear elastic parameters of the model can be identified from standard

experimental tests. The validation computations show that the coefficient of per-

meability of the coupled discrete beam lattice model closely matches that of an

equivalent continuum model, thus can also be obtained directly as a result of

standard experimental tests conducted on concrete, rock or soil specimens. Other

parameters of the Timoshenko beam finite element have to be identified through

more elaborate parameter identification procedures such as the probability based

ones, where material heterogeneities can also play a role.

The proposed coupled discrete beam lattice model shows an efficient perfor-

mance in terms of fast convergence rates and efficient computational time. In

Table 2.5), we give the residual and energy convergence rates for a typical time

step in the post-peak part of the response of the soil subjected to footing load. The

computational time depends on the density of the mesh, the loading program, the

loading rate, and the selected time step. For the case of coupled soil-foundation

system (k = 1 ·10−6 m/s ), the computational time for loading rate v = 5 ·10−5 m/s
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is 236.15s, and for loading rate v = 2 ·10−5 m/s is 556.34s (Processor: Intel Core

i7-3632QM/2.2GHz, RAM 8.00GB, FEAP: single-core).

Table 2.5 Coupled soil foundation-system (k = 1 ·10−6 m/s, v = 5 ·10−5 m/s ),
convergence rates for time step: 4000

Iteration Residual norm Energy norm

1 6.7516 ·10−03 4.9926 ·10−07

2 3.9441 ·10−03 1.6061 ·10−07

3 6.3604 ·10−04 4.0685 ·10−09

4 4.0008 ·10−05 9.1335 ·10−11

5 4.3019 ·10−06 1.0264 ·10−13

6 2.8904 ·10−11 3.5076 ·10−23
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CHAPTER 3

ACOUSTIC FLUID-STRUCTURE

INTERACTION

ABSTRACT

In this Chapter, we propose a novel approach for dealing with acoustic fluid-

structure interaction nonlinear problems, such as progressive localized failure

of a dam structure built of porous cohesive material in interaction with reservoir

under extreme static and/or dynamic loads. The main original aspects of the

proposed approach concern ability to deal with the loss of structural integrity in

fluid-structure interaction problems, as well as a seamless discretization between

structure and external fluid achieved by using a judicious combination of a lattice

model for the pore-saturated structure and finite element approximation for ex-

ternal fluid. Namely, the interaction of structure built of a poro-plastic medium is

here restricted to acoustic fluids, which allows to use Lagrangian formulation for

the small motion of the external fluid and mixed discrete approximation resulting

with the same displacement pressure degrees of freedom and seamless approxi-

mation between structure and fluid. The latter is justified for the small motion of

the external fluid confined in the reservoir and simplification of the acoustic wave

theory for irrotational flows and quasi-incompressible fluids. The application of

the model is illustrated through several numerical simulations.
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Acoustic fluid-structure interaction

3.1 Introduction

In this Chapter, we propose a novel approach for numerical modeling of fluid-

structure interaction nonlinear problems [141–143]. The main original aspects are

the proposed approach capabilities to carry on with computations of the external

fluid interacting with structure undergoing localized failure with cracks and to

represent internal fluid (pore) pressure influence on ultimate failure modes with

fully saturated cracks. Namely, we generalize the development of the coupled

discrete beam lattice model described in Chapter 2, extending its ability to deal with

fluid-structure interaction with the emphasis on the numerical representation of

the structure response in terms of a saturated porous medium. We limit ourselves to

fluid-structure problems under conditions that enable the modeling of the external

fluid with the acoustic wave theory. Namely, the latter is justified for the small

motion of the external fluid in confined conditions typically met for fluid placed

in a reservoir. For the numerical representation of the external fluid motion, we

choose a Lagrangian formulation and mixed displacement/pressure based finite

element approximation. The coupled discrete model for the structure built of a

saturated porous medium in combination with the mixed displacement/pressure

based formulation for the external fluid allows for the structure and fluid finite

elements to share both the displacement and pressure degrees of freedom at the

fluid-structure interface. This permits for the elements to be connected directly at

the common nodes without any special numerical treatment of the fluid-structure

interface. As a result, the exchange of both the motion and the pressure at the

fluid-structure interface is ensured, and all computations can be performed in a

fully monolithic manner.

The main benefit of the proposed model is its ability to provide a better numeri-

cal representation of the structure in interaction with confined fluids. In previous

attempts to model the fluid-structure interaction problems of this kind, the use of

pressure degree of freedom at the fluid-structure interface led to a cumbersome

exchange of information in terms of added mass. Here, the numerical model of

the structure contains pore pressure as an additional degree of freedom per node,

which enables direct exchange of the pressures at the fluid-structure interface. With

such a numerical model of the structure, we are able to simulate the full saturation

of the material of the structure at every time step, with the external fluid acting

as the source of pore saturation. In addition, we are able to take into account the

inelastic behavior, to predict the crack formation and propagation in saturated

materials and quantify overall safety of pore-saturated structures subjected to the

extreme loads.
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The outline of the Chapter is as follows: In Section 3.2, we present equations

governing the external fluid motion derived from acoustic wave theory under

small motion hypothesis. We describe mixed displacement/pressure based finite

element formulation, and we provide two different finite elements, for the quasi-

static case and dynamic case. In Section 3.3, we present the results of several

numerical simulations. We simulate acoustic fluid-structure interaction problems

in a quasi-static and dynamic setting, respectively. First, we perform validation

computations of the proposed external fluid model. Second, we investigate the

proposed numerical model of acoustic fluid-structure interaction capabilities to

predict hydrostatic and hydrodynamic pressure distributions on the upstream face

of the structure, which are in close agreement with analytical solutions. Finally, we

focus on the proposed numerical model ability to deal with the loss of structural

integrity, ultimately providing the overall safety assessment of the dam structure to

potential overload with respect to the fundamental load cases. In Section 3.4, we

give concluding remarks.

3.2 External fluid model in mixed Lagrangian formu-

lation

3.2.1 Assumptions and governing equations

We assume a small motion of inviscid, isentropic, and homogeneous fluid with

constant density. The fluid motion starts from the rest, the fluid velocities remain

small, and the fluid flow is considered to be irrotational as the conditions typically

met for fluid placed in a reservoir. The governing momentum and continuity

equations derived from acoustic wave theory are written as

ρv̇+∇p = 0 (3.1)

∇·v+ ṗ

β
= 0 (3.2)

where v is the velocity vector, p is the pressure, ρ is the mass density, and β is the

bulk modulus of external fluid.

For irrotational flows, the vorticity is constrained to zero

∇×v = 0 (3.3)
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3.2.2 Mixed displacement/pressure based formulation

Mixed displacement/pressure based finite element formulation for acoustic fluids

is based on the analogy with the mixed formulations for nearly incompressible

solids [41, 124, 144]. Here, we assume that the fluid motion starts from the rest with

the fluid displacements remaining small. Moreover, we follow [69, 73] by assuming

that the fluid motion remains irrotational. However, contrary to the penalty-type

approach for enforcing irrotational constraint, here we use the mixed variational

formulation to achieve the same goal. The main advantage of such an approach

is in resulting set of degrees of freedom, featuring both fluid displacements and

pressure, and providing a seamless connection to the poro-plasticity formulation

described in Chapter 2. The resulting variational formulation is equivalent to

[74–76], and can be written as

Πe
f =

∫
Ωe

f

[
− p2

2β
−p

(∇·u
)− Λ ·Λ

2ϑ
+Λ · (∇×u

)−u · fb
]

dΩ (3.4)

where p is the pressure, u is the displacement vector, andΛ is the ’vorticity moment’

or Lagrangian multiplier enforcing zero vorticity in terms of perturbed Lagrangian

with ϑ as the penalty parameter. The parameter β is the bulk modulus of the

external fluid, and fb is the external load vector, that next to the body forces also

includes inertia force −ρü.

The corresponding weak form is obtained from the first variation of Equation

(3.4) and is written as∫
Ωe

f

[
δp

(
− 1

β
p −∇·u

)
+

(
−p

(∇·δu
)+Λ(∇×δu

)−δu · fb
)

+δΛ
(
− 1

ϑ
Λ+∇×u

)]
dΩ= 0

(3.5)

We further ought to introduce the finite element approximations for the dis-

placements, pressure, and ’vorticity moment’. For a typical finite element, we

have

u = N f
uū; p = N f

p p̄; Λ= N f
λ
λ̄

u = N f
u

¨̄u; p = N f
p

¨̄p; Λ= N f
λ

¨̄λ

∇·u = (∇·N f
u) ū = V f ū

∇×u = (∇×N f
u) ū = D f ū

(3.6)
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where N f
u , N f

p , and N f
λ

are interpolation matrices, ū is the vector of unknown nodal

displacements, p̄ is the vector of unknown nodal pressures, and λ̄ is the vector of

unknown nodal ’vorticity moments’.

The end result of the finite element discretization procedure is the following

system of equations governing the discrete problem

nel em
A

e=1




Auu 0 0

0 0 0

0 0 0


e

¨̄u

¨̄p

¨̄λ



e

+


0 Lup Luλ

LT
up Lpp 0

LT
uλ 0 Lλλ


e

ū

p̄

λ̄



e

=


f f

0

0



e  (3.7)

where

Ae
uu =

∫
Ωe

f

ρN f ,T
u N f

udΩ;

Le
up =−

∫
Ωe

f

V f ,T N f
p dΩ; Le

uλ =
∫
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f

D f ,T N f
λ

dΩ
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∫
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f

1

β
N f ,T

p N f
p dΩ; Le

λλ =−
∫
Ωe

f

1

ϑ
N f ,T
λ

N f
λ

dΩ

(3.8)

The ’vorticity moment’ degree of freedom can be statically condensed on the el-

ement level so that the only unknown variables remaining on the global level are

displacements and pressures.

The strong form of the governing equations follows from Equation (3.5)

∇p +∇×Λ− fb = 0 (3.9)

∇·u+ p

β
= 0 (3.10)

∇×u− Λ
ϑ

= 0 (3.11)

Based on previously made assumptions, we note that Equations (3.9-3.10) are

penalized version of the strong form described in (3.1-3.3).

3.2.3 Finite element approximation post-processing

Mixed displacement/pressure based finite element formulation, in combination

with the proper choice of finite elements that satisfy the inf-sup condition, has

shown to be a very efficient tool when dealing with nearly incompressible behavior

of acoustic fluids in the frequency or dynamic analysis. The range of elements

satisfying the inf-sup condition can be found in literature [144–147].
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In our numerical simulations of fluid-structure interaction in the dynamic set-

ting for the external fluid domain we choose linear finite element approximations

for the displacements, with constant approximations for the pressure and the ’vor-

ticity moment’. In other words, for the discretization of the external fluid domain,

we use the Q4-P1-Λ1 finite element depicted in Figure 3.1.

pressure, 

'vorticity moment' 

displacements

unknown fields:

Figure 3.1 Finite element approximation for external fluid, dynamic case:
Q4-P1-Λ1

For the purpose of solving the global system of equations, we can statically

condense (e.g., [124]) the pressure and the ’vorticity moment’ unknowns at the

element level. We can then obtain the values of the pressures and the ’vorticity

moments’ from the computed values of displacements. However, our goal is to

directly connect the external fluid finite elements with structure finite elements at

the common nodes in order to ensure the direct exchange of both the motion and

the pressure at the fluid-structure interface. This is achieved by reconstructing the

pressure field for the external fluid finite elements, by extrapolating the pressure

computed inside an element to the nodes of a Q4 finite element used for the

displacement approximation. In particular, the pressure at each node is evaluated

as an average value of the pressures computed in the finite elements that share that

node, as shown in Figure 3.2.
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Figure 3.2 Extrapolation of the pressures
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For the mesh of regular elements, the error in the value of the pressure com-

puted in this manner is only limited to the finite elements located at the bottom

(and/or top, depending on the boundary conditions) of the mesh. The error in

the computed pressure increases if the size of the finite elements varies along

the y-coordinate. However, by increasing the density of the mesh, the error can

be decreased to better control the accuracy. The proposed approach enables us

to compute the displacements, pressure, and ’vorticity moment’ on a Q4-P1-Λ1

finite element by performing the static condensation process. With such a post-

processing procedure, we obtain the ’Q4-P4’ finite element, which we can then use

for direct transfer at the fluid-structure interface.

pressure, 

'vorticity moment' 

displacements

unknown fields:

Figure 3.3 Finite element approximation for external fluid, quasi-static case:
Q4-P4-Λ4

In our numerical simulations of fluid-structure interaction in the quasi-static

setting (negligible inertial effects) for the external fluid domain, we will use a finite

element with the same order of interpolation for the displacement, pore pressures

and ’vorticity moment’. More precisely, we choose Q4-P4-Λ4 finite element (Fig-

ure 3.3). For our problem of interest, where we consider the external fluid as a

source of the saturation and the loading on the structure, this is the most practical

choice. Namely, by statically condensing ’vorticity moment’ on the element level,

we directly obtain ’Q4-P4’ finite element, without any post-processing procedures

needed. The finite element approximation of this kind is predictive enough for

delivering the solution in terms of proper treatment of the fluid-structure interface,

as it will be shown in the numerical simulations.

Remark 1: We note that practically same results for the quasi-static dam-

reservoir interaction presented in this thesis (section 3.3.1.2) can be obtained

by using Q4-P1-Λ1 instead of Q4-P4-Λ4 finite elements. However, in this case, a

small mass has to be added in the external fluid model.

Remark 2: In general case, the penalty parameter ϑ in mixed u−p −Λ formu-

lation is a numerically large value ranging from 102β ≤ ϑ ≤ 106β. By assigning a

numerically small value to a ϑ, the u−p formulation is obtained [75].
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3.3 Numerical results

In this section, we present the results of several numerical simulations, which

serve to illustrate the capabilities of the proposed numerical approach for dealing

with acoustic fluid-structure interaction problems. All numerical implementations

and computations are performed with the research version of the computer code

FEAP, developed by R.L. Taylor [41]. In all numerical simulations, the finite element

mesh is generated by using Delaunay triangulation and GMSH software [91]. The

cross-sectional properties of the Timoshenko beam finite elements are computed

from the Voronoi diagram by using MATLAB software [92].

3.3.1 Quasi-static case

3.3.1.1 Rigid and flexible water container

The first example presents a simple validation computation of the proposed nu-

merical model of acoustic fluid-structure interaction in the quasi-static setting.

Namely, we study a concrete water container with the geometry shown in Figure

3.4a.

2.20 m

1
.1

0
 m

0.10 m
p=0

(a) Geometry

(b) Numerical model: rigid water container

(c) Numerical model: flexible water container

Figure 3.4 Water container

First, we assume that the walls and the slab of the container are rigid. We obtain

the pressure field on a mesh of adequately constrained fluid finite elements (Figure

3.4b). Next, we assume that the walls and the slab are linear elastic and flexible.

72



Numerical results

We obtain the pressure field on a numerical model in which the structure domain

is meshed with one-dimensional linear elastic Timoshenko beam finite elements

(Figures 3.4c). In all computations, the value of pressure at the free surface is

p = 0. Young’s modulus for the Timoshenko beam finite element is E = 104 MPa.

The coefficient of permeability is k = 10−6 m/s, Biot’s constant is b = 1 and Biot’s

modulus is 1/M → 0. The specific weight of the water is γw = 10 kN/m3. The bulk

modulus of the outside water is β = 103 MPa. The value of penalty parameter is

ϑ= 10−5β.

We compare computed results against the analytical distribution of hydrostatic

pressure. We present the results of numerical computations in the next several

figures. From Figure 3.5, we can conclude that the proposed numerical model

of acoustic fluid-structure interaction predicts correct hydrostatic pressure distri-

bution on the wall of the container. The distributions of hydrostatic pressures in

the case of a rigid and flexible container are shown in Figures 3.6a-3.6c. We can

conclude that the results are mesh independent.
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Figure 3.5 Hydrostatic pressure distribution on the wall of container

Pressure [kPa] 
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(a) Rigid container: 1 element (b) Rigid container (c) Flexible container

Figure 3.6 Water container: computed results
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3.3.1.2 Dam-reservoir system

In this numerical example, we observe a small-sized dam subjected to the self-

weight and the hydrostatic loading. shown in Figure 3.7. The finite element mesh

and Voronoi discretization of the structure domain are shown in Figures 3.8a and

3.8b. The loading program is shown in Figure 3.8c. The specific weight of the dam

material is γs = 20 kN/m3, and the specific weight of the water is γw = 10 kN/m3.

We first apply an increase of the self-weight to simulate the construction of the

dam, followed by the hydrostatic loading of the external reservoir.
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Figure 3.7 Geometry of dam-reservoir system, quasi-static case
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(c) Loading program

Figure 3.8 Dam-reservoir system, quasi-static case

In the final part of this analysis, we would like to illustrate the capability of the

proposed approach to represent the localized failure, where the cracks coalescence

results with the ultimate failure mode. In this manner, we seek to investigate the
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safety factor of the complete dam structure, which (contrary to usual factors for

different materials) ought to be defined for particular load pattern. This is done by

computing the maximum overload that can be applied on top of (already) acting

self-weight and hydrostatic pressure of the external reservoir. The computation

is carried out by imposed displacement, bringing the dam structure each time

to the ultimate state of localized failure. We present both results computed for

either horizontal or vertical overload, quantifying the localized failure brought by

increasing horizontal or vertical load, respectively.

We start by assuming that the behavior of the dam remains linear elastic, and

we apply first the self-weight and then the hydrostatic loading. Here, we analyze

in detail the results of the fluid-structure interaction obtained with the mixed

displacement/pressure based external fluid finite element formulation. Next, we

assume that the behavior of the dam is inelastic. We introduce yield and fracture

limits for Timoshenko beam finite elements to take into account the possibility of

plastic zones and cracks formation as a result of combined body and hydrostatic

loading. Finally, we determine the admissible horizontal and vertical overloads of

the dam by imposing corresponding displacements on the top base of the dam until

ultimate failure. In the first two computation phases, application of the self-weight

and hydrostatic loading, the time step is set to ∆t = 0.1 day. In the final stage of

localized failure, the time step is set to ∆t = 1 s.

→ Linear elastic behavior

Young’s modulus and Poisson’s ratio of the Timoshenko beam finite element

are E = 104 MPa and ν= 0. The coefficient of permeability is k = 10−7 m/s, Biot’s

constant is b = 1 and Biot’s modulus is M = 106 MPa. The bulk modulus of the

outside water is β = 103 MPa. The value of penalty parameter is ϑ = 10−5β. We

compare the results obtained with the mixed displacement/pressure based finite

element formulation of fluid motion against analytical values.

Figure 3.9a show the contours for the computed pressure field in the reservoir

and in a porous medium from which the dam is built, by using a numerical model

of acoustic fluid-structure interaction. The results are practically identical with the

analytical solution for the hydrostatic pressure distribution (Figure 3.9b). From the

computed excess pore pressure distribution inside the dam, we can conclude that

the water in the dam reservoir can keep the porous material from which the dam is

built fully saturated in every time step, which is confirmed by the results in Figure

3.10a showing the time evolution of total excess pore pressure at the bottom of the

dam with respect to applied loading.
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Pressure [kPa] 
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(a) Pressure and pore pressure distribution
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Figure 3.9 Linear elastic behavior: computed results

Next, we inspect other aspects of fluid-structure interaction, such as the values

of total vertical and horizontal reactions, and displacements of the dam.

In Figures 3.10b and 3.10c, the total vertical and horizontal reaction at the

bottom of the dam are shown. In mixed displacement/pressure formulation, where

common nodes share both displacements and pressures, we have the transfer of

both forces and pressures which gives the total value of horizontal reaction equal to

the resultant force of the hydrostatic pressures. The total vertical reaction is equal

to the total weight of the dam. Here, we have an additional vertical reaction from

the hydrostatic loading as a result of common nodes. This additional value changes

and approaches zero as the size of the fluid finite element approaches zero.

The horizontal displacement of the tip of the dam → point A(3, 6)[m] gives

additional insight into the results of fluid-structure interaction. From Figure 3.10d,

we can see that the total horizontal displacement of the tip of the dam, after hy-

drostatic loading has been applied is a sum of displacements due to self-weight,

hydrostatic forces and hydrostatic pressures. We can verify this if we perform the

uncoupled computation of the structure response (Biot’s constant b = 0 → matrix

Ke
up is a null matrix) for the hydrostatic loading case. This way, we can obtain the

displacements of the dam only from hydrostatic forces exerted on the structure. To

validate our results, we perform an uncoupled computation on a model of a dam

alone, where we apply hydrostatic loading in terms of equivalent nodal horizontal

forces. We can conclude that the value of horizontal displacement for the uncou-

pled fluid-structure interaction case and the case of the dam alone are practically

the same (Figure 3.10e). Next, we subtract the value of displacements for the cou-
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pled and uncoupled case (Figure 3.10f). The resulting values of displacements are

due to the coupling between the solid and fluid phase (see Equation 2.20).
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Figure 3.10 Linear elastic behavior: computed results

To summarize, the proposed numerical model of acoustic-fluid structure inter-

action results in a full fluid-structure interaction problem, where both the influence

of the hydrostatic forces and the hydrostatic pressures on the response of the dam

are included.
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→ Inelastic behavior

In this case, we admit that due to the self-weight and the hydrostatic loading,

plastic zones and cracks can form in the dam. Thus, we introduce yield and fracture

limits for the Timoshenko beam finite element in tension, compression and shear:

σy,t = 0.015 MPa; σy,c = 0.20 MPa; σy,s = 0.015 MPa; σ f ,t = 0.02 MPa; σ f ,c = 0.30

MPa; σ f ,s = 0.02 MPa. The fracture energies in tension, compression and shear

are: G f ,t = 0.01 GN/m; G f ,c = 0.1 GN/m; G f ,s = 0.01 GN/m. The linear hardening

modulus is Hl h = 103 MPa.
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Figure 3.11 Inelastic behavior: broken cohesive links and plastic zones
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Figure 3.12 Inelastic behavior: horizontal displacement at point A

Elements in which plasticity has occurred are shown in Figure 3.11a, where

we can see that a large area of the domain has become plastic. In Figures 3.11b

and 3.11c, broken cohesive links in the dam at the end of the loading program are

shown. These broken cohesive links (marked red) represent Timoshenko beam

finite elements that had entered softening phase of the response in mode I, and

mode II. The plastic zones and broken cohesive links result in the less stiff response
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of the dam. This leads to an increase in the value of horizontal displacement of the

tip of the dam, compared to the linear elastic case (Figure 3.12).

→Localized failure analysis of dam structure for either horizontal or vertical

overload

The self-weight and the hydrostatic loading are considered as the fundamental

load cases acting upon the dam, which must be used for the structure design. Dur-

ing the dam life cycle, one can imagine occasional extreme loads that can threaten

structure integrity and lead to localized failure. Here, we want to quantify the

remaining resistance to possible overload (on top of dam dead-load and reservoir

pressure) that can be applied on the dam leading to the complete failure. The

overload of this kind can be interpreted as the structure safety factor, which has

to be properly taken into account in the design process. In particular, we carry on

such a safety factor computation by computing the final failure mode for either

applied horizontal or vertical overloads.

First, we compute the value of the admissible horizontal overload by imposing

horizontal displacements with a constant rate of 1 ·10−3 mm/s on the top base of

the dam, applied after the loading program shown in Figure 3.8c. The computed

value of horizontal overload that dam can withstand until the complete failure

is 8.3810 kN (see Figure 3.13a). It is important to note fairly low safety since the

self-weight and hydrostatic loading resulted in the total horizontal reaction equal to

130.05 kN (Figure 3.10c). Namely, for this particular geometry and the mechanical

properties of the dam, we can state that the factor of safety of the dam against

failure is 1.06. In other words, an increase in the value of the horizontal load in

the amount of 6% will result in the failure of the dam. The excess pore pressure at

point B(1.0175, 0.2776)[m] is shown in Figure 3.13b. The deformed configuration

of the dam and the broken cohesive links in increasing softening at the end of the
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Figure 3.13 Horizontal overload: computed results
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loading program are shown in Figures 3.14a-3.14c. After the horizontal overload

level is reached, one large macro-crack starts to form and propagate resulting in

the decrease in the load carrying capacity of the dam (Figures 3.14d and 3.14e).

(a) Deformed configuration (b) Broken cohesive links:
mode I

(c) Broken cohesive links:
mode II
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Figure 3.14 Failure mode for horizontal overload

We also perform the uncoupled computation of the structure response (Biot’s

constant b = 0 → matrix Ke
up is a null matrix), in order to investigate the influence
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Figure 3.15 Comparison of horizontal overloads
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of pore fluid presence on the computed value of admissible horizontal overload.

The uncoupled computation results in a higher value of the computed horizontal

overload (13.8381 kN) compared to the coupled case, as shown in Figure 3.15.

Namely, the failure mode for horizontal overload brought by imposed horizontal

displacements on the top base of the dam results in a decrease in the value of the

admissible horizontal overload compared to the uncoupled case.

Second, we compute the value of the admissible vertical overload by imposing

vertical displacements with a constant rate of 1 ·10−3 mm/s on the top base of

the dam. The corresponding vertical force evolution and the loading program are

shown in Figure 3.8c. The computed admissible vertical overload force is much

bigger with 140.0553 kN (Figure 3.16a). The total vertical reaction resulting from

the self-weight and hydrostatic loading is 252.7516 kN (Figure 3.10b). Thus, we can

state that the factor of safety of the dam against failure is 1.55, for this particular

geometry and the mechanical properties of the dam. The excess pore pressure at

point B(1.0175, 0.2776)[m] is shown in Figure 3.16b. The deformed configuration of

the dam is shown in Figure 3.17a. The broken cohesive links in increasing softening

at the end of the loading program are shown in Figures 3.17b-3.17c. The values of

displacement jumps in the broken cohesive links are shown in Figures 3.17d and

3.17e.
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(a) Vertical overload
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Figure 3.16 Vertical overload: computed results

We also perform the uncoupled computation of admissible vertical overload

by setting Biot’s constant b = 0. The computed results are shown in Figure 3.18.

The computed vertical overload for the uncoupled case does not differ significantly

compared to the coupled case (141.3855 kN). Namely, the localized failure brought

by imposed vertical displacements on the top base of the dam occurs near the top

base of the dam (Figure 3.17a) and does not affect the computed value of vertical
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overload significantly. Slight difference in computed results is observed in the

post-peak part of the response.
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Figure 3.17 Failure mode for vertical overload
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Figure 3.18 Comparison of vertical overloads
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3.3.2 Dynamic case

3.3.2.1 Analytical solutions for hydrodynamic pressures

When the fluid-structure systems, such as dam-reservoir are subjected to extreme

dynamic loads brought by for example seismic ground movement, next to the

hydrostatic pressures and forces, additional hydrodynamic pressures and forces

are exerted on the upstream face of the structure. Their values and distribution

have to be quantified either with analytical solutions proposed in the literature or

with numerical methods, in order to provide the sound design of the structure.

The problem of evaluating the value and the distribution of the hydrodynamic

pressure was first examined in the work of Westergaard who provided a solution

for the case of a rigid dam with vertical upstream face subjected to horizontal

harmonic ground motion [85], followed by von Kármán who provided the solution

very close to Westergard’s using linear momentum balance principle [148]. Later,

Chwang and Housner, also using the momentum method, derived the analytical

solution for the general case of an inclined upstream face of the dam subjected

to constant horizontal acceleration [149]. In the second part of his work, Chwang

derived the analytical solution using two-dimensional potential flow theory [150].

In addition to the inclined upstream face of the dam, Liu proposed an analytical

solution for the sloped reservoir base [151].

→ Westergaard’s solution

Westergaard [85] is the first who studied the problem of evaluating the value

and distribution of hydrodynamic pressure exerted on the upstream face of the

dam. His work was focused on the simple two-dimensional dam-reservoir system

subjected to the horizontal harmonic ground motion (Figure 3.19). The dam was

assumed to be rigid with vertical upstream face, and the length of the reservoir

was assumed to be infinite. Westergaard derived an analytical solution for the

hydrodynamic pressure distribution in terms of series of sine functions. Maximum

hydrodynamic pressure distribution on the vertical upstream face of the rigid dam,

according to Westergaard, is described with the following expression

p = 8a0ρH

π2

n∑
1,3,5,...

1

n2cn
sin

(nπy

2H

)

cn =
√

1− 16ρH 2

n2g K T 2

(3.12)
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where a0 is the maximum horizontal acceleration of the foundation, ρ is the density

of the retained water, H is the depth of the reservoir, K is the bulk modulus of water,

and T is the period of the horizontal acceleration of the foundation.

x

y
H

ReservoirDam

p

Ȃ

Figure 3.19 Dam-reservoir system studied by Westergaard [85]

Based on the previous solution, Westergaard proposed a simpler expression

which results in a parabolic distribution of the hydrodynamic pressures

p = 0.875ρa0
√

H y (3.13)

This expression, even though represents a conservative approximation, gives

satisfactory results and is widely used in everyday engineering practice.

According to Westergaard, the total horizontal force exerted on the vertical,

upstream face of the dam is equal to

F = Fx = 0.543ρa0H 2 (3.14)

→ Von Kármán’s solution

An analytical solution very close to Westergaard’s was derived by von Kármán.

In his work, von Kármán [148] exploited linear momentum-balance principle and

derived an expression for hydrodynamic pressure distribution which reads as

p = 0.707ρa0
√

H y (3.15)

According to von Kármán, the total horizontal force exerted on the vertical,

upstream face of the dam is equal to

F = Fx = 0.555ρa0H 2 (3.16)

84



Numerical results

→ Chwang’s solution

For a general case of a rigid dam with an inclined upstream face with a constant

slope subjected to uniform horizontal acceleration a0 (Figure 3.20), Chwang and

Housner [149] derived analytical solution using the momentum balance method

proposed by von Kármán. The fluid in the reservoir is assumed to be incompressible

and inviscid.

̀

H

Reservoir Ȃx

y

Dam

Figure 3.20 Dam-reservoir system studied by [149] and [150]

In their analytical solution, as in the Westergaard’s and von Kármán ’s solutions,

the value of hydrodynamic pressures ranges from zero at the top of the reservoir

to maximum at the bottom of the reservoir. Chwang, in the second part of his

work [150], derived an exact solution for hydrodynamic pressure distribution using

two-dimensional potential flow theory. Here, except for the case of the vertical

upstream face, the maximum value of hydrodynamic pressure does not occur at

the bottom of the reservoir but is moved up to a certain distance.

The hydrodynamic pressure distribution on the inclined upstream face is de-

scribed with the following expression

p =Cpρa0H (3.17)

where Cp is the pressure coefficient. The values of the pressure coefficient for

different angles of inclination are shown in Figure 3.21, for both methods. The

expression for computing the values of pressure coefficient can be found in [149]

and [150].

The total horizontal and vertical force exerted on the inclined upstream face of

the dam are equal to

Fx =Cxρa0H 2

Fy =Cyρa0H 2
(3.18)
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where Cx and Cy are force coefficients. The values of force coefficients for different

angles of inclination are shown in Figure 3.22, for both methods. The expressions

for computing the values of force coefficient can be found in [149] and [150].
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Figure 3.21 Pressure coefficient provided by [149] and [150], Adapted from
"Hydrodynamic pressures on sloping dams during earthquakes. Part 2. Exact theory", by

A.T. Chwang, 1978, The Journal of Fluid Mechanics, 87(2), pp. 347. Copyright 1978
Cambridge University Press, Adapted with permission
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Figure 3.22 Force coefficient provided by [149] and [150], Adapted from
"Hydrodynamic pressures on sloping dams during earthquakes. Part 2. Exact theory", by

A.T. Chwang, 1978, The Journal of Fluid Mechanics, 87(2), pp. 347. Copyright 1978
Cambridge University Press, Adapted with permission

For the case of the vertical upstream face, the exact method gives the value of

force coefficient Cx = 0.543 which is the same as Westergaard’s solution, and the

momentum method gives the value Cx = 0.555 which is the same as von Kármán’s

solution. The comparison between the analytical solutions for hydrodynamic

pressure distribution on the vertical upstream face of the dam is shown in Figure

3.23.
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Figure 3.23 Comparison of analytical solutions for vertical upstream face (θ = 90◦)

3.3.2.2 Modal analysis of rigid cavity problem

In this example, we perform the modal analysis of the rigid cavity problem in order

to validate the proposed external fluid model, which is based on Q4-P1-Λ1 finite

element. The geometry and the boundary conditions of the problem are shown

in Figure 3.24. The density of the fluid is ρ = 1000 kg/m3, the bulk modulus is

β= 115.6 MPa, and the penalty parameter is ϑ= 103β.

a=1.0 m

b
=

0
.4

 m

Figure 3.24 Rigid cavity problem: problem statement

We compare the computed values of the first four frequencies against those

provided in [69] and [75], which are computed from analytical solution defined

with following expression

ω= cπ

√(n

a

)2
+

(m

b

)2
(3.19)

where n, m are integers, and c is the acoustic wave speed.

The computed values of first four frequencies are shown in Table 3.1. We can

conclude that by increasing the mesh density, the results obtained with Q4-P1-Λ1

approach the analytical solution.
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Table 3.1 Rigid cavity problem: computed frequencies

Mesh density Frequency [Hz]

4x3 174.4 374.9 444.6 463.0

8x6 171.1 348.8 429.9 459.3

32x24 170.1 340.5 425.3 457.8

64x48 170.0 340.1 425.1 457.8

Analytical solution 170.0 340.0 425.0 457.7

3.3.2.3 Linear elastic separator wall

In this example, we observe a linear elastic separator wall 12 m high, and 1.2 m

thick. The configuration of the problem is shown in Figure 3.25. Young’s modulus

and Poisson’s ratio of the Timoshenko beam finite element are E = 104 MPa and

ν = 0. The mass density is ρs = 2000 kg/m3. The coefficient of permeability is

k = 10−6 m/s, Biot’s constant is b = 1 and Biot’s modulus is 1/M → 0. The mass

density of external fluid (water) is ρ f = 1000 kg/m3, and the bulk modulus is

β= 105 MPa. We note that in this particular simulation of acoustic fluid-structure

interaction, the boundary and loading conditions imposed on the external fluid

allow for the vorticity constraint to be completely omitted without any influence

on the computed results.
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Figure 3.25 Linear elastic separator wall: problem statement

We subject the separator wall and the contained fluid to a horizontal ground

acceleration reaching its maximum value of a0 = 1 m/s2 at t = 1s, after which is

kept constant (Figure 3.26). According to [152], we model the horizontal ground

movement in terms of equivalent horizontal forces. Here, we consider a system
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with a fixed base, and we apply at every node of the finite element mesh an equiv-

alent force with a value equal to the product of the corresponding mass and the

imposed base acceleration. We compare the computed results against those pro-

vided by Chwang [150], with the aim to validate the proposed model for predicting

hydrodynamic pressures and hydrodynamic forces exerted on the upstream face of

the structure.

Time [s] 

a
0
 [
m

/s
2
] 
 

0 1

1

Figure 3.26 Linear elastic separator wall: loading program

We present the results for hydrodynamic pressures distribution in terms of the

pressure coefficient Cp . The pressure p is then equal to p =Cpρa0H , where ρ is

the mass density of the external fluid, a0 is the horizontal acceleration, and H is the

height of the reservoir. The computed values of the pressure coefficient for different

values of L/H ratio are shown in Figure 3.27a. We can conclude that the values of

hydrodynamic pressure depend on the length of the fluid domain, because of the

influence of boundary effects at the infinity. For values of L/H ratio greater than 3,

results do not differ significantly and approach the analytical solution provided by

Chwang [150].
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(b) Horizontal force L/H = 8

Figure 3.27 Linear elastic separator wall: computed results
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We also investigate the influence of the fluid acting as a source of additional

forces on the structure. We compare the reference value of total horizontal force

exerted on the vertical upstream face of the structure provided by Chwang [150]

against the computed value of horizontal force. The value of horizontal force is

computed on a numerical model of acoustic fluid-structure interaction, in which

only the reservoir was subjected to horizontal ground acceleration. The results are

shown in Figure 3.27b. We can conclude that as the oscillations of the separator

wall are being damped, the computed results approach the reference value. This

confirms that with the proposed model we are able to ensure the direct transfer of

both forces and pressures at the fluid-structure interface. It should be noted that

no artificial damping (e.g., Rayleigh damping) is added in the numerical model of

the fluid-structure interaction. The damping in the numerical model results solely

from the equations governing the coupled problem. The hydrodynamic pressure

distribution in the fluid domain, and pore pressure distribution in the separator

wall for L/H = 4 are shown in Figure 3.28.

Pressure [kPa]

7.22 -7.220.00

Figure 3.28 Pressure and pore pressure distribution: L/H = 4

3.3.2.4 Dam-reservoir system

In this example, we observe a small-size gravity dam, shown in Figure 3.29. The

length of the reservoir is chosen as L = 20.40 m in order to eliminate the influence of

the boundary effects. First, we assume that the response of dam remains linear elas-

tic, and we subject the dam-reservoir system to a horizontal ground acceleration

reaching its maximum value of a0 = 1 m/s2 at t = 1s, which is then kept constant

(Figure 3.30a). The time step is set to ∆t = 0.01 s. The horizontal ground movement

is modeled in terms of equivalent horizontal forces acting on the system with fixed

base [152]. We compare computed results against analytical solutions provided by

Chwang [150].
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Figure 3.29 Geometry of dam-reservoir system, dynamic case

Next, we aim to determine the horizontal overload dam can withstand until

ultimate failure. Here, we perform a nonlinear dynamic analysis following the

loading program shown in Figure 3.30b. First, we apply self-weight followed by the

hydrostatic loading of the external reservoir. Finally, we subject the dam-reservoir

system to the linear increasing horizontal ground acceleration with a constant rate

of 2 m/s2 /1s, until the ultimate state of localized failure. The specific weight of

the dam material is γs = 20 kN/m3, and the specific weight of the water is γw = 10

kN/m3.
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(b) Localized failure analysis

Figure 3.30 Dam-reservoir system, dynamic case: loading programs

In the first two computation phases, application of the self-weight and hydro-

static loading, the time step is set to ∆t = 0.1 day. In the final stage of localized

failure, the initial time step is set to ∆t = 0.001 s. Prior to reaching the ultimate

value of horizontal overload, the time step is reduced to ∆t = 0.0001 s. Throughout

this numerical example, the vorticity constraint is completely omitted.
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→ Linear elastic behavior

Young’s modulus and Poisson’s ratio of the Timoshenko beam finite element

are E = 104 MPa and ν= 0. The coefficient of permeability is k = 10−7 m/s, Biot’s

constant is b = 1 and Biot’s modulus is M = 106 MPa. The bulk modulus of the

outside water is β= 103 MPa.

We compare the computed values of hydrodynamic pressure and hydrodynamic

force exerted on the wall against analytical solutions provided by Chwang [150].

The computed results for the vertical upstream face are shown in Figures 3.31a

and 3.31b. We can conclude that a good match between computed hydrodynamic

pressures and hydrodynamic forces, and analytical values is obtained.
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Figure 3.31 Linear elastic behavior: computed results,Θ= 90◦

We also perform the computation for the upstream face of the dam inclined

with a constant slopeΘ= 75◦. The computed hydrodynamic pressure distribution

is shown in Figure 3.32a and the computed horizontal and vertical hydrodynamic

force exerted on the upstream face of the dam are shown in Figure 3.32b. We can

conclude that computed results closely match analytical solutions.
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Figure 3.32 Linear elastic behavior: computed results,Θ= 75◦
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The hydrodynamic pressure distribution in the reservoir, and excess pore pres-

sure distribution in the body of the dam at t = 2 s and at t = 10 s for vertical

upstream face are shown in Figures 3.33a and 3.33b, and in Figures 3.34a and 3.34b

for inclined upstream face.
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Figure 3.33 Pressure and excess pore pressure distribution: Θ= 90◦
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Figure 3.34 Pressure and excess pore pressure distribution: Θ= 75◦
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→ Localized failure analysis of dam structure

In this section, we perform a nonlinear dynamic analysis, following the loading

program shown in Figure 3.30b, with the aim to determine the horizontal overload,

which results with the localized failure of dam structure. We introduce yield and

fracture limits for the Timoshenko beam finite element in tension, compression

and shear: σy,t = 0.015 MPa; σy,c = 0.20 MPa; σy,s = 0.015 MPa; σ f ,t = 0.02 MPa;

σ f ,c = 0.30 MPa; σ f ,s = 0.02 MPa. The fracture energies in tension, compression

and shear are: G f ,t = 0.01 GN/m; G f ,c = 0.1 GN/m; G f ,s = 0.01 GN/m. The linear

hardening modulus is Hlh = 103 MPa, linear kinematic hardening modulus is

Hlk = 103 MPa, nonlinear hardening parameter is Hnlk = 102, and the viscosity

parameter is η= 10 MPa s.

We present computed results with respect to computed horizontal displace-

ment of the tip of the dam → point A(3, 6)[m]. The computed ultimate value of

horizontal overload that results with the ultimate state of localized failure of dam

structure is 92.8187 kN, which corresponds to the horizontal ground acceleration

of 2.466 m/s2 (Figure 3.35a). The self-weight and hydrostatic loading resulted in the

total horizontal reaction equal to 130.05 kN. We can conclude that for this particular

geometry and mechanical properties, the computed factor of safety of the dam

subjected to combined quasi-static and extreme dynamic loads is 1.71. The excess

pore pressure at point B(1.0175, 0.2776)[m] is shown in Figure 3.35b. The deformed

configuration of the dam, and the broken cohesive links in increasing softening

at the end of the loading program are shown in Figures 3.36a-3.36c. The values of

displacement jumps in the broken cohesive links are shown in Figures 3.36d and

3.36e.
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(b) Excess pore pressure at point B

Figure 3.35 Horizontal overload, dynamic case: computed results

We also perform the uncoupled computation of the structure response. The

uncoupled computation results in a much lower value of the computed horizontal
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Figure 3.36 Failure mode for horizontal overload, dynamic case

overload (33.8414 kN) compared to the coupled case, as shown in Figure 3.37.

Namely, the failure mode for horizontal overload brought by imposed horizontal

ground acceleration modeled in terms of equivalent horizontal forces results in

an increase in the value of the admissible horizontal overload compared to the

uncoupled case.
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Figure 3.37 Comparison of horizontal overloads, dynamic case
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3.4 Concluding remarks

In this Chapter, we presented a novel approach to numerical modeling of the acous-

tic fluid-structure interaction nonlinear problems. The structure is represented

in terms of a saturated porous medium. The structure response is modeled with

coupled discrete beam lattice model, which is based on Voronoi cell representa-

tion with inelastic Timoshenko beam finite elements enhanced with additional

kinematics as cohesive links. The internal coupling is handled with Biot’s porous

media theory. The motion of the external fluid in interaction with the structure

is described with the Lagrangian formulation and mixed displacement/pressure

based finite element approximation. The main advantage of the proposed numeri-

cal model for acoustic fluid-structure interaction is in the resulting set of degrees of

freedom per node of structure and external fluid finite elements, which permits

for the elements to be connected directly at the common nodes without any need

for special numerical consideration of the fluid-structure interface. As a result,

the direct exchange of both motion and the pressure at the common boundary is

ensured, and all unknown fields can be computed in a fully monolithic manner.

We have confirmed through numerical simulations that the proposed numerical

model of interaction is capable of predicting both the hydrostatic and hydrody-

namic pressures and forces exerted on the upstream face of the structure in close

agreement with analytical solutions. In addition, we are able to model the forma-

tion of cracks and plastic zones in the structure subjected to fundamental load

cases, such as the self-weight and hydrostatic loading.

Finally, we have illustrated the proposed model ability to represent localized

failure modes, and thus quantify the overall safety of the dam structure to potential

overload with respect to the fundamental load cases. The computation of this

kind in a quasi-static setting is performed by imposing either horizontal or vertical

displacement upon the dam deformed configuration, which is obtained under the

dead-load and reservoir pressure. In a dynamic setting, the localized failure of dam

structure is brought by subjecting the dam-reservoir system to the linear increasing

horizontal ground acceleration, which is modeled in terms of equivalent horizontal

forces. We have shown qualitatively how different types of failure modes affect

the computed value of admissible overload compared to the uncoupled case of

structure response. Namely, for different types of loading programs, the presence of

the pore fluid can increase or decrease the computed value of admissible overload.

Thus, the ability of the proposed formulation to quantify the overall structure

safety for a particular loading program is very important from the standpoint of
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engineering practice dealing with issues of the structure design, both in terms of

the structural integrity and structural durability.

For a more detailed explanation of computed admissible overload for a partic-

ular loading program, we go back to Terzaghi’s principle of effective stresses (see

Chapter 2), which states that the total normal stress is equal to the sum of effective

stress carried by the solid phase, and pore pressure carried by the pore fluid. We

can rewrite this principle in terms of total reaction, which we can interpret as the

ultimate load value structure can withstand until failure. Namely, the total reaction

in the coupled model Rc at each time step is equal to the sum of contributions of

effective reaction carried by the solid phase Re , and the reaction carried by the fluid

in pores Rp , written as

Rc = Re +Rp

For uncoupled model, the total reaction Ruc is equal to

Ruc = Re

In our case, we can state that the reaction Re obtains approximately the same

value regardless of the structure response being coupled or uncoupled. To explain

this, we return to Mohr-Coulomb’s law, which states that the strength of the material

depends on the cohesion and the friction, and that friction is directly proportional

to the effective normal stress. The strength of cohesive materials, such as rocks or

concrete, dominantly depends on the value of cohesion and contribution of the

friction is not as significant. This is the case in our proposed coupled discrete beam

lattice model, which makes this model suitable for cohesive types of materials.

The fracture limits in tension, compression, and shear define the ultimate load

level structure can withstand until ultimate failure for a particular loading program,

and this part is constant regardless of the structure response being coupled or

uncoupled. An increase in the ultimate load value can be obtained if the Mohr-

Coulomb’s law is implemented for defining the fracture limit in shear (see Section

2.5.3). Thus, if the latter is not implemented, we can state that the contribution of

the solid phase to the total value of the total reaction is constant. Hence, the value

of the total reaction changes due to the contribution of the pore fluid. Depending

on the time evolution of the pore pressures in the body of the dam for different

types of failure modes, the contribution of the pore fluid can increase or decrease

the total reaction compared to the uncoupled case.
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The proposed model of interaction, even when pushed to the extreme while

computing the final phase of localized failure, exhibits good performance in terms

of fast convergence rates and efficient computational time. In Tables 3.2 and 3.3,

we give the residual and energy convergence rates for a typical time step per each

computation phase of localized failure analysis of pore-saturated dam structure

under horizontal overload in a quasi-static setting. The computational times for

horizontal and vertical overloads in a quasi-static setting with included first two

computation phases are 720.83 s, and 815.52 s, respectively. The computational

time for horizontal overload in a dynamic setting is 1050.07 s (Processor: Intel Core

i7-3632QM/2.2GHz, RAM 8.00GB, FEAP: single-core).

Table 3.2 Convergence rates: residual norm for selected time steps

Iteration
Self-weight phase Hydrostatic loading phase Localized failure

Time step: 50 Time step: 180 Time step: 1610

1 2.4177 ·10−04 3.4008 ·10−04 1.2834 ·10−02

2 5.4542 ·10−04 4.6168 ·10−04 8.8185 ·10−04

3 2.0887 ·10−05 1.7170 ·10−05 4.4117 ·10−04

4 8.7336 ·10−16 1.6796 ·10−13 1.3242 ·10−04

5 2.5074 ·10−05

6 1.0504 ·10−04

7 3.9459 ·10−07

8 2.0083 ·10−13

Table 3.3 Convergence rates: energy norm for selected time steps

Iteration
Self-weight phase Hydrostatic loading phase Localized failure

Time step: 50 Time step: 180 Time step: 1610

1 9.7579 ·10−10 8.2718 ·10−09 2.6056 ·10−08

2 7.6616 ·10−11 9.7831 ·10−11 5.8175 ·10−10

3 8.2985 ·10−14 2.7183 ·10−14 1.4944 ·10−10

4 3.5316 ·10−35 1.0109 ·10−29 5.8688 ·10−12

5 7.2201 ·10−13

6 6.4927 ·10−13

7 2.3475 ·10−17

8 6.3199 ·10−29
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CHAPTER 4

EXTENSION TO 3D CASE

ABSTRACT

In this Chapter, we extend the proposed two-dimensional (2D) numerical model of

acoustic fluid-structure interaction to the three-dimensional (3D) setting. The 3D

numerical model of interaction inherits all the main features and benefits of the 2D

model, with modifications that arise due to the added dimension of the model. The

structure response is described with coupled discrete beam lattice model of struc-

ture built of saturated poro-plastic cohesive material. The small motion of external

fluid motion in contained conditions is described with acoustic wave theory and

modeled with the Lagrangian formulation and mixed displacement/pressure based

finite element approximation. The finite element representations of the structure

and the external fluid allow for the issue of the fluid-structure interface to be solved

through element assembly procedure. The application of the model is illustrated

through several numerical simulations.
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Extension to 3D case

4.1 Introduction

In this Chapter, we extend the two-dimensional (2D) numerical models of pore-

saturated structure, external fluid and ultimately acoustic fluid-structure interac-

tion previously presented in Chapters 2 and 3 to three-dimensional (3D) setting.

The outline of the Chapter is as follows: In Section 4.2, we describe the main

features of the coupled discrete beam lattice model of the structure in a 3D setting.

In Section 4.3, we present the finite element formulation of the proposed coupled

discrete beam lattice model, together with the computational procedure. The finite

element formulation is given in fully dynamics framework, which can be easily

adjusted for quasi-static simplification. In Section 4.4, we provide finite element

approximation for external fluid. In Section 4.5, we present the results of several

numerical simulations. First, we simulate the response of the structure alone, with

the aim to validate the proposed model of the structure and to demonstrate its

capabilities to deal with nonlinear behavior and progressive localized failure in

structures built of saturated poro-plastic cohesive material. Second, we simulate

the response of dam structure under reservoir interaction. In Section 4.6, we give

concluding remarks.

4.2 Discrete model of structure

For the numerical representation of the structure built of a saturated poro-plastic

medium, we extend the proposed 2D plane strain coupled discrete beam lattice

model to the 3D setting. For the construction of the discrete lattice model in the 3D

framework, we use the same procedure described previously in Chapter 2, Section

2.3. Namely, the construction of the model is performed by exploiting the duality

property between the Voronoi cell representation and Delaunay tetrahedralization

of the domain (Figure 4.1). The end result of Delaunay tetrahedralization is the

mesh of tetrahedra. Every edge of tetrahedra connects the centers of two adjacent

Voronoi cells and is perpendicular to the polygon shared between these two cells.

We place along each edge of tetrahedra a cohesive link, whose behavior we model

with the 1D finite element. The cross-section of each finite element is the polygon

shared between two adjacent cells. In general case, the polygonal cross-section

for every finite element is of a different shape. To simplify the matter, we replace

the polygonal cross-section for every finite element with an equivalent circular

cross-section (Figure 4.1). Namely, we compute the diameter of an equivalent

circular cross-section from the condition that the area of the polygon obtained

from Voronoi cell representation is equal to the area of a circular cross-section.
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Voronoi diagram

integration point

Delaunay tetrahedralization

A
e

A
e

d
e

Figure 4.1 Voronoi diagram and Delaunay tetrahedralization

The behavior of cohesive links is again modeled with inelastic Timoshenko

beam finite elements with enhanced kinematics [117, 118]. For the 3D case of

discrete beam lattice model, Timoshenko beam finite element is enhanced with

additional kinematics in terms of embedded discontinuities in axial and both

transverse directions. Thus, enhanced Timoshenko beam finite element is, in

addition to the mode I and mode II, capable of modeling crack formation in mode

III as well. Mode I relates to crack opening, mode II relates to in-plane crack sliding,

and mode III relates to the out-of-plane shear sliding. It is important to note that

linear elastic parameters of Timoshenko beam finite element, Young’s modulus

and Poisson’s ratio can be identified in the same manner as previously noted in

Chapter 2, Section 2.3.

In a 3D numerical model of structure built of a saturated poro-plastic medium,

we spread the pore fluid flow across the mesh of tetrahedra (Tet4 - linear tetrahedral

finite elements) that coincides with the mesh of tetrahedra obtained by Delaunay

tetrahedralization of the domain. For numerical integration on tetrahedral finite

elements, we choose nodal point rule which positions the integration points at

every node of tetrahedra [153]. The integration rule of this kind eliminates the

contribution of two nodes and leaves the contribution of the two nodes that cor-

respond to the Timoshenko beam finite element. This allows us to treat the pore

pressure as an additional degree of freedom placed at each node of the Timoshenko

beam finite element, which we later use for the fluid-structure interface (Figure

4.2).
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integration points

Timoshenko beam finite 
element: u, v, w, �x, �y, �z

Tetrahedral element: p Timoshenko beam finite 
element: u, v, w, �x, �y, �z, p

Figure 4.2 Displacement and pore pressure fields finite element approximations,
3D case

Next, we give an overview of the finite element formulation of the coupled

discrete beam lattice model of pore-saturated structures in a 3D setting. The

starting point for our work on the proposed model is the Timoshenko beam finite

element presented in [117, 32, 118].

4.3 Finite element formulation

4.3.1 Kinematics

Consider a straight Timoshenko beam finite element of length Le and cross-sectional

area Ae . All equations for Timoshenko beam finite element are expressed in a lo-

cal coordinate frame, which can be easily adapted to the global frame by using

standard local-global transformation (Figure 4.3).

x L

y L

z L
x

z
y

Global frame Local frame

1

2

L
e

Figure 4.3 Local and global coordinate frame

1

v2

�z,2

u2

2L
e

xL

yL

zL

w2
�x,2

�y,2
v1

�z,1

u1

w1
�x,1

�y,1
αv

αu

x
αw

Figure 4.4 Timoshenko beam finite element in 3D framework

The element has two nodes, and six degrees of freedom per node: axial displace-

ment u along local x axis, transverse displacements v and w along local y and z

axes, and rotations of cross-section θx , θy , θz around local x, y , z axes, respectively
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(Figure 4.4). For simplicity, we considered a Timoshenko beam placed along the

global x axis. The displacement fields are enhanced in axial and both transverse

directions with embedded strong discontinuities in order to model all three modes

of crack formation (Figure 4.5). The enhanced displacement fields are interpolated

as

u = Ns
uū+Mα (4.1)

where

uT =
{

u, v, w, θx , θy , θz

}
;

ūT =
{

u1, v1, w1, θx,1, θy,1, θz,1, u2, v2, w2, θy,2, θz,2

}
;

Ns
u =



N1 0 0 0 0 0 N2 0 0 0 0 0

0 N1 0 0 0 0 0 N2 0 0 0 0

0 0 N1 0 0 0 0 0 N2 0 0 0

0 0 0 N1 0 0 0 0 0 N2 0 0

0 0 0 0 N1 0 0 0 0 0 N2 0

0 0 0 0 0 N1 0 0 0 0 0 N2


;

{
N1, N2

}
=

{
1− x

Le , x
Le

}
;

M =



M 0 0 0 0 0

0 M 0 0 0 0

0 0 M 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


; αT =

{
αu , αv , αw , 0, 0, 0

}

(4.2)

Here, αu , αv and αw represent displacement jumps in axial, in-plane transverse

and out-of-plane transverse direction.

Mode I Mode II Mode III

xL

yL

zL

Figure 4.5 Three modes of crack formation
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The enhanced strain fields are interpolated as

ϵ= Bs
uū+Gα (4.3)

where

ϵT =
{
εxx , γx y , γxz , κx , κy , κz

}
⇒



εxx = du

d x
κx = dθx

d x

γx y = d v

d x
−θz κy =

dθy

d x

γxz = d w

d x
+θy κz = dθz

d x

;

Bs
u =



B1 0 0 0 0 0 B2 0 0 0 0 0

0 B1 0 0 0 −N1 0 B2 0 0 0 −N2

0 0 B1 0 N1 0 0 0 B2 0 N2 0

0 0 0 B1 0 0 0 0 0 B2 0 0

0 0 0 0 B1 0 0 0 0 0 B2 0

0 0 0 0 0 B1 0 0 0 0 0 B2


;

{
B1, B2

}
=

{
d N1
d x , d N2

d x

}
=

{
− 1

Le , 1
Le

}
;

G =



G 0 0 0 0 0

0 G 0 0 0 0

0 0 G 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.4)

where εxx is the axial strain, γx y , γxz are the shear strains, and κx , κy , κz are the

curvatures. In what is to follow, we will denote these strains with following symbols

ε, γy , γz , κx , κy and κz .

The pore pressure field is approximated with tetrahedral finite elements with

four nodes (Figure 4.6). The finite element approximation for the pore pressure

field is written as

p = Ns
p p̄ (4.5)
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where

p̄T =
{

p1, p2, p3, p4

}
;

Ns
p =

{
N p

1 , N p
2 , N p

3 , N p
4

}
; N p

i = ai +bi x + ci y +di z

6V
, i = 1,4;

6V = det

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
; a1 = det

∣∣∣∣∣∣∣∣∣∣
x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣∣∣∣∣
; b1 =−det

∣∣∣∣∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣∣∣
;

c1 =−det

∣∣∣∣∣∣∣∣∣∣
x2 1 z2

x3 1 z3

x4 1 z4

∣∣∣∣∣∣∣∣∣∣
; d1 =−det

∣∣∣∣∣∣∣∣∣∣
x2 y2 1

x3 y3 1

x4 y4 1

∣∣∣∣∣∣∣∣∣∣
;

etc.

(4.6)

where V is the volume of the tetrahedral element, x,y ,z are global coordinates, xi ,

yi , zi are nodal coordinates of tetrahedral element, and constants a2−4, b2−4, c2−4,

d2−4 are defined by cyclic interchange of the subscripts in the order 1,2,3,4.

2

4

p2

p4

1

p1
3

p3

x

z
y

Figure 4.6 Linear tetrahedral finite element

The time derivatives of displacement and pore pressure fields are written as

u̇ = Ns
u

˙̄u; ṗ = Ns
p

˙̄p

ü = Ns
u

¨̄u; p̈ = Ns
p

¨̄p
(4.7)

4.3.2 Continuity equation and equations of motion

4.3.2.1 Continuity equation

The coupling of the mechanics and the pore fluid flow occurs through the axial

direction of the Timoshenko beam finite element. The continuity equation for fluid
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flow through the porous body is written as

1

M
ṗ ++bε̇− k

γ f
∇· (∇p) = 0 (4.8)

The weak from of the continuity equation is obtained through the principle of

virtual works, written as∫
Ωe

Tet4

δp
[ 1

M
ṗ − k

γ f
∇· (∇p)

]
dΩ+

∫ Le

0
δp ‵bε̇d x = 0 (4.9)

where δp is the virtual pore pressure field interpolated in the same manner as the

real pore pressure field

δp = Ns
pδp̄; δp̄T =

{
δp1, δp2, δp3, δp4

}
;

p ‵ = Ns
up p̄‵; Ns

up =
{

N1, N2

}
; p̄‵T =

{
p1, p2

}
;

δp ‵ = Ns
upδp̄‵; δp̄‵T =

{
δp1, δp2

} (4.10)

4.3.2.2 Equations of motion

The strong form of the equations of motion for a 3D Timoshenko beam with a

circular cross-section is written as

−ρAe ∂
2u

∂t 2
+ ∂N

∂x
+n(x, t ) = 0 (4.11)

−ρAe ∂
2v

∂t 2
+ ∂Vy

∂x
+qy (x, t ) = 0 (4.12)

−ρAe ∂
2w

∂t 2
+ ∂Vz

∂x
+qz(x, t ) = 0 (4.13)

−ρI e
pol

∂2θx

∂t 2
+ ∂Mx

∂x
+mx(x, t ) = 0 (4.14)

−ρI e
y y

∂2θy

∂t 2
+ ∂My

∂x
−Vz +my (x, t ) = 0 (4.15)

−ρI e
zz
∂2θz

∂t 2
+ ∂Mz

∂x
+Vy +mz(x, t ) = 0 (4.16)

where ρ is the mass density, Ae is the are of a cross-section, I e
y y , I e

zz are the second

moments of inertia of a cross-section, I e
pol is the polar moment of inertia of a

cross-section, n, qy , qz , mx , my and mz are the distributed external loads, and

N = N ′−bp ‵Ae is the total axial force, Vy =V ′
y , Vz =V ′

z are the shear forces, Mx = M ′
x
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is the torsion moment, My = M ′
y , Mz = M ′

z are the bending moments (Figure 4.7).

The superscript ′ denotes effective force. Here, we assume that the coupling of

the mechanics and the internal fluid flow occurs through the axial direction of the

Timoshenko beam finite element.

Mz

N

xL

yL

zL

Mx

My
Vy

Vz

Figure 4.7 Stress resultants

The weak form of equations of motion for Timoshenko beam finite element is

derived from the d’Alembert principle. The virtual displacement and virtual strain

fields are interpolated in the same manner as the real displacement and real strain

fields, written as

δu = Ns
uδū+Mδα (4.17)

δϵ= Bs
uδū+Gδα (4.18)

where

δuT =
{
δu, δv, δw, δθx , θy , δθz

}
;

δūT =
{
δu1, δv1, δw1, δθx,1, δθy,1, δθz,1, δu2, δv2, δw2, δθx,2, δθy,2, δθz,2

}
;

δαT =
{
δαu , δαv , δαw , 0, 0, 0

}
;

δϵT =
{
δε, δγy , δγz , δκx , δκy , δκz

}
(4.19)

The virtual work of external forces is computed as

Gext ,e = δūTfext ,e −δūTfacc,e (4.20)

where

facc,e =
∫ Le

0
Ns,T

u σ̈d x;

σ̈T =
{
ρAe ü,ρAe v̈ ,ρAe ẅ ,ρI e

pol θ̈x ,ρI e
y y θ̈y ,ρI e

zz θ̈z

} (4.21)
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The virtual work of internal forces for Timoshenko finite beam finite element is

equal to

G i nt ,e =
∫ Le

0

(
Bs

uδū
)T
σd x +

∫ Le

0

(
Gδα

)T
σud x (4.22)

where

σT =
{

N ,Vy ,Vz , Mx , My , Mz

}
=

{
N ′−bp ‵Ae ,V ′

y ,V ′
z , M ′

x , M ′
y , M ′

z

}
;

σT =σT
u −σT

p ;

σT
u =

{
N ′,V ′

y ,V ′
z , M ′

x , M ′
y , M ′

z

}
; σT

p =
{

bp ‵Ae ,0,0,0,0,0
} (4.23)

The virtual work of internal forces consists of two parts. The first is the virtual

work of internal forces in the bulk part of the element (part of the element outside

the discontinuity), and the second is the virtual work of internal forces acting at the

discontinuity, written as

G i nt ,e = δūT fi nt ,e +δαT he
(4.24)

where fi nt ,e is the internal force vector, and he is the residual vector due to disconti-

nuity, computed as

fi nt ,e =
∫ Le

0
Bs,T

u σd x = fi nt ,e (σu)− fi nt ,e (σp );

he =
∫ Le

0
GTσud x =

∫ Le

0
ḠTσud x + t; Ḡ =



Ḡ 0 0 0 0 0

0 Ḡ 0 0 0 0

0 0 Ḡ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


;

tT =
{

t u , t v , t w , 0 , 0 , 0
}

(4.25)

Here, t is the internal force vector acting at the discontinuity.

By exploiting the principle of virtual work we obtain

0 =G i nt ,e −Gext ,e = δūT(fi nt ,e − fext ,e + facc,e )+δαThe (4.26)
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Previous equation is satisfied if

facc,e + fi nt ,e − fext ,e = 0 (4.27)

he = 0 (4.28)

The Equation (4.27) relates to the bulk part of the element, and the Equation (4.28)

relates to the discontinuity.

The internal force vector t acting at the discontinuity is computed from the

following conditions

he = 0∫ Le

0
Ḡd x =

∫ Le

0
− 1

Le
d x =−1

⇒ t =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



∫ Le

0
σud x (4.29)

4.3.3 Constitutive model

The pre-peak response of the 3D Timoshenko beam finite element in axial, and

both transverse directions is described with the elasto-viscoplastic constitutive

model with implemented linear hardening [124], and Fredrick-Armstrong non-

linear kinematic hardening law [127]. The post-peak response of the element is

described with exponential softening. The behavior of the element in bending and

torsion is purely linear elastic.

4.3.3.1 Plasticity model

The proposed model of plasticity is described with [124]

1. Additive decomposition of the total strain into elastic and viscoplastic part,

with only the elastic part influencing the value of the stresses

ε= εe +εv p κx = κe
x

γy = γe
y +γv p

y κy = κe
y

γz = γe
z +γv p

z κz = κe
z

(4.30)
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2. Strain energy function in terms of strains and internal variables, plastic de-

formations ϵv p , γv p
y , γv p

z and strain-like hardening variables ξ̄u , ξ̄v , ξ̄w

ψ̄u(
ε,εv p , ξ̄u)= 1

2

(
ε−εv p)

E Ae(ε−εv p)+ 1

2
ξ̄u H u

lh Ae ξ̄u

ψ̄v(
γy ,γv p

y , ξ̄v)= 1

2

(
γy −γv p

y
)
kcG Ae(γy −γv p

y
)+ 1

2
ξ̄v H v

l h Ae ξ̄v

ψ̄w (
γz ,γv p

z , ξ̄w )= 1

2

(
γz −γv p

z
)
kcG Ae(γz −γv p

z
)+ 1

2
ξ̄w H w

lh Ae ξ̄w

(4.31)

where for circular cross-sections shear correction factor is equal to kc = 9/10.

3. Yield function in terms of stresses (or stress resultants), stress-like hardening

variables q̄u , q̄ v , q̄ w and back-stress variables χ̄u , χ̄v , χ̄w

φ̄u(
N ′, χ̄u , q̄u)= |N ′− χ̄u Ae | − (

Ny − q̄u Ae)≤ 0

φ̄v(
V ′

y , χ̄v , q̄ v)= |V ′
y − χ̄v Ae | − (

Vy,y − q̄ v Ae)≤ 0

φ̄w (
V ′

z , χ̄w , q̄ w )= |V ′
z − χ̄w Ae | − (

Vz,y − q̄ w Ae)≤ 0

(4.32)

where Ny , Vy,y , Vz,y are the elastic (yield) limits.

The stress resultant values N ′, V ′
y , V ′

z , M ′
x , M ′

y and M ′
z are computed from the

elastic part of total deformation. For a circular cross-section for which the

element local coordinate axis x coincides with the center of gravity, the stress

resultant values are computed as

N ′ = E Ae(ε−εv p)
M ′

x =G I e
polκx

V ′
y = kcG Ae(γy −γv p

y
)

M ′
y = E I e

y yκy

V ′
z = kcG Ae(γz −γv p

z
)

M ′
z = E I e

zzκy

(4.33)

where the area Ae , the second moments of inertia I e
y y , I e

zz and the polar

moment of inertia I e
pol for circular cross-sections with diameter equal to d e

are Ae = (d e )2π/4, I e
y y = I e

zz = I e = (d e )4π/64, I e
pol = (d e )4π/32.

The stress-like hardening variables q̄u , q̄ v , q̄ w for linear hardening are given

as

q̄u =−H u
l h ξ̄

u

q̄ v =−H v
l h ξ̄

v

q̄ w =−H w
l h ξ̄

w

(4.34)
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For Fredrick-Armstrong nonlinear kinematic hardening law [127], the back-

stress variables χ̄u , χ̄v , χ̄w are computed as

˙̄χu = H u
l k ε̇

v p −H u
nlk

˙̄ξuχ̄u

˙̄χv = H v
l k γ̇

v p
y −H v

nlk
˙̄ξv χ̄v

˙̄χw = H w
l k γ̇

v p
z −H w

nlk
˙̄ξw χ̄w

(4.35)

3. The evolution equations for internal variables ϵv p , γv p
y , γv p

z and ξ̄u , ξ̄v , ξ̄w

ε̇v p = ˙̄γu si g n(N ′− χ̄u Ae ); ˙̄ξu = ˙̄γu ; ˙̄γu ≥ 0

γ̇
v p
y = ˙̄γv si g n(V ′

y − χ̄v Ae ); ˙̄ξv = ˙̄γv ; ˙̄γv ≥ 0

γ̇
v p
z = ˙̄γw si g n(V ′

z − χ̄w Ae ); ˙̄ξw = ˙̄γw ; ˙̄γw ≥ 0

(4.36)

where γ̄u , γ̄v , γ̄w are the plastic multipliers whose values are equal to

˙̄γu = 〈φ̄u(N ′, χ̄u , q̄u)〉
ηu

˙̄γv =
〈φ̄v (V ′

y , χ̄v , q̄ v )〉
ηv

˙̄γw = 〈φ̄w (V ′
z , χ̄w , q̄ w )〉
ηw

(4.37)

where ηu , ηv , ηw are the viscosity parameters.

4.3.3.2 Exponential softening

The exponential softening is described with [124]

1. The yield function defined in terms of stresses (or stress resultants), and dual

variables ¯̄qu , ¯̄q v , ¯̄q w

¯̄φu(
t u , ¯̄qu)= |t u | − (

N f − ¯̄qu Ae)≤ 0

¯̄φv(
t v , ¯̄q v)= |t v | − (

Vy, f − ¯̄q v Ae)≤ 0

¯̄φw (
t v , ¯̄q w )= |t w | − (

Vz, f − ¯̄q w Ae)≤ 0

(4.38)

where N f , Vy, f , Vz, f are the fracture limits, and ¯̄qu , ¯̄q v , ¯̄q w are the stress-like

softening variables.
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The stress-like softening variables for exponential softening take the following

form

¯̄qu = N f

Ae

(
1−exp

(
− ¯̄ξu (N f /Ae )

Gu
f

))
¯̄q v = Vy, f

Ae

(
1−exp

(
− ¯̄ξv (Vy, f /Ae )

G v
f

))
¯̄q w = Vz, f

Ae

(
1−exp

(
− ¯̄ξw (Vz, f /Ae )

G w
f

))
(4.39)

where Gu
f , G v

f , G w
f are the fracture energies, and ¯̄ξu , ¯̄ξv , ¯̄ξw are the strain-like

softening variables. The stress resultant values in the bulk part of an element

in the softening phase, which determine the value of internal forces at the

discontinuity t u , t v , t w are computed as

N ′ = E Ae(ε−εv p +Ḡαu)
V ′

y = kcG Ae(γy −γv p
y +Ḡαv)

V ′
z = kcG Ae(γz −γv p

z +Ḡαw ) (4.40)

2. The evolution equations for internal variables αu , αv , αw and ¯̄ξu , ¯̄ξv , ¯̄ξw with

the loading/unloading conditions

α̇u = ˙̄̄γu si g n(t u);
˙̄̄
ξu = ˙̄̄γu ; ˙̄̄γu ≥ 0; ¯̄φu ≤ 0; ˙̄̄γu ¯̄φu = 0

α̇v = ˙̄̄γv si g n(t v );
˙̄̄
ξv = ˙̄̄γv ; ˙̄̄γv ≥ 0; ¯̄φv ≤ 0; ˙̄̄γv ¯̄φv = 0

α̇w = ˙̄̄γw si g n(t w );
˙̄̄
ξw = ˙̄̄γw ; ˙̄̄γw ≥ 0; ¯̄φw ≤ 0; ˙̄̄γw ¯̄φw = 0

(4.41)

where ¯̄γu , ¯̄γv , ¯̄γw are the plastic multipliers whose values are obtained from

the consistency conditions

˙̄̄γu ˙̄̄
φu = 0

˙̄̄γv ˙̄̄
φv = 0

˙̄̄γw ˙̄̄
φw = 0

(4.42)
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4.3.4 Computational procedure

The finite element discretization procedure reduces the nonlinear coupled problem

to two sets of equations. The first is the first order differential evolution equations of

internal variables defined locally at each Gauss point, and the second is the second

order differential equations governing the coupled problem defined globally. The

solution of these equations is again computed by using the operator split solution

procedure, in the same manner as described in Chapter 2, Section 2.4.4. The

solution procedure is split into local and global phase, which are treated separately.

In the local phase, the solution of evolution equations is computed by using implicit

backward Euler time integration scheme (see Sections 2.4.4.1 and 2.4.4.2). In the

global phase, the solution in terms of the unknown nodal displacements and

pore pressures is computed in a fully monolithic manner using Newmark time-

integration scheme and Newton’s iterative method.

The system of equations governing the coupled problem for single Timoshenko

beam finite element is written as

Me
uu

¨̄u+ fi nt ,e (σu)−Ke
up p̄‵ = fext ,e (4.43)

Ke,T
up

˙̄u+De
pp

˙̄p‵+Ke
pp p̄‵ = qext ,e (4.44)

where Me
uu is the mass matrix, fi nt ,e (σu) is the internal load vector resulting from

displacements (i.e. effective stresses), Ke
up is the coupling matrix, De

pp is the com-

pressibility matrix, Ke
pp is the permeability matrix, and fe,ext and qe,ext are the load

vectors. The matrices Ke
up , De

pp and Ke
pp are computed as

Ke
up =

∫ Le

0
Bs,T

up bNs
up d x; Bs

up =
[

B1 0 0 0 0 0 B2 0 0 0 0 0
]

De
pp =

∫
Ωe

Tet4

Ns,T
p

1

M
Ns

p dΩ; Ke
pp =

∫
Ωe

Tet4

(∇Ns
p )T

k

γ f
∇Ns

p dΩ

(4.45)

Here we note that in the global system of equations (Equation 4.44) we take the

parts of the De
pp , and Ke

pp matrices (Equation 4.45) that correspond to the nodes of

Timoshenko beam finite element.

For numerical integration on tetrahedral finite elements, we choose the nodal

point integration rule. The nodal point integration rule is a linear order rule, which

results with a diagonal form of compressibility matrix De
pp . However, this does

not affect significantly computed results. Namely, the Biot’s modulus M in the

problems of our interest is always a large number or infinity, which results with the

values of entries of a matrix De
pp close to zero or zero.
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Extension to 3D case

The Timoshenko beam finite element mass matrix Me
uu in Equation (4.43) is

obtained by distributing the total mass of an element to nodes (Figure 4.8), resulting

in a diagonally lumped mass matrix, written as

Me
uu = 1

2
ρ di ag

(
Vtot , Vtot , Vtot , I e

pol , I e , I e , Vtot , Vtot , Vtot , I e
pol , I e , I e ) (4.46)

where Vtot is obtained as one-third of the total volume of the cylinder with a base

diameter equal to d e and height equal to Le (Figure 4.8).

3

Vtot=A
e
·L
e
·1

L e

d
e

Figure 4.8 Timoshenko beam finite element lumped mass matrix computation in
3D setting

The solution in terms of unknown nodal displacements and pore pressures is

computed at discrete pseudo-time steps t1, t2, ..., tn using Newmark time-integration

scheme. For a time step tn+1 and iteration i , the global system of equations to be

solved is written as

nel em
A

e=1

{ 1
β∆t 2 Muu + K̄uu −Kup

γ
β∆t KT

up
γ
β∆t Dpp +Kpp


e,(i )

n+1

∆ū

∆p̄‵


e,(i )

n+1

=

ru

rp


e,(i )

n+1

}
(4.47)

where K̄e
uu is the element tangent stiffness matrix, and re,(i )

u,n+1 and re,(i )
p,n+1 are residu-

als pertaining to the solid and the pore fluid part.

After solving the global system of equations, the new iterative values of unknown

fields are updated as

ū(i+1)
n+1 = ū(i )

n+1 +∆ū(i )
n+1

p̄(i+1)
n+1 = p̄(i )

n+1 +∆p̄(i )
n+1

(4.48)

The element tangent stiffness matrix K̄e depends whether the element is in

elasto-viscoplastic or softening part of the response. If the element is elasto-

viscoplastic, the tangent stiffness matrix is defined as

K̄e,(i )
uu,n+1 = Ke,(i )

uu,n+1 =
∫ Le

0
Bs,T

u Cep,(i )
n+1 Bs

ud x (4.49)
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Elasto-plastic tangent matrix is written as

Cep,(i )
n+1 =



C ep,u
n+1 Ae 0 0 0 0 0

0 C ep,v
n+1 Ae 0 0 0 0

0 0 C ep,w
n+1 Ae 0 0 0

0 0 0 G I e
pol 0 0

0 0 0 0 E I e 0

0 0 0 0 0 E I e


(4.50)

where C ep,u
n+1 , C ep,v

n+1 and C ep,w
n+1 are elasto-plastic tangent moduli for axial and trans-

verse directions. The local phase procedure for computing elasto-plastic tangent

moduli is given in Section 2.4.4.1.

If the element is in the softening, the element tangent stiffness matrix is ob-

tained by performing static condensation procedure. The statically condensed

element tangent stiffness matrix is written as

K̄e,(i )
uu,n+1 = K̂e,(i )

uu,n+1 =
[

Ke,(i )
uu,n+1 −Fe,(i )

n+1

(
He,(i )

n+1 +Kα

)−1(
Fe,(i ),T

n+1 +Kd

)]
(4.51)

where

Ke,(i )
uu,n+1 =

∫ Le

0
Bs,T

u Cep,(i )
n+1 Bs

ud x;

Fe,(i )
n+1 =

∫ Le

0
Bs,T

u Cep,(i )
n+1 Ḡd x;

He,(i )
n+1 =

∫ Le

0
ḠTCep,(i )

n+1 Ḡd x

(4.52)

The matrices Kd and Kα depend on the current step in softening being elastic or

plastic. If the current step in the softening is elastic, then

Kd = C∗Bs
u ; Kα = 0; C∗ =



E Ae 0 0 0 0 0

0 kcG Ae 0 0 0 0

0 0 kcG Ae 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.53)
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Else, if the current step in the softening is plastic, then

Kd = 0; Kα =



K u
α Ae 0 0 0 0 0

0 K v
αAe 0 0 0 0

0 0 K w
α Ae 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(4.54)

The local phase procedure for computing matrices K u
α , K v

α and K w
α is given in

Chapter 2, Section 2.4.4.2.

4.4 External fluid model

The external fluid model is extended from 2D to the 3D setting. The strong form of

governing equations and variational formulation is equivalent to that presented

in Chapter 3, Section 3.2.2. The end result of the finite element discretization

procedure is the following system of equations governing the small and irrotational

motion of the external fluid, written as

nel em
A

e=1




Auu 0 0

0 0 0

0 0 0


e

¨̄u

¨̄p

¨̄λ



e

+


0 Lup Luλ

LT
up Lpp 0

LT
uλ 0 Lλλ


e

ū

p̄

λ̄



e

=


f f

0

0



e  (4.55)

where

Ae
uu =

∫
Ωe

f

ρN f ,T
u N f

udΩ;

Le
up =−

∫
Ωe

f

V f ,T N f
p dΩ; Le

uλ =
∫
Ωe

f

D f ,T N f
λ

dΩ

Le
pp =−

∫
Ωe

f

1

β
N f ,T

p N f
p dΩ; Le

λλ =−
∫
Ωe

f

1

ϑ
N f ,T
λ

N f
λ

dΩ

(4.56)

The ’vorticity moment’ degree of freedom can again be statically condensed on the

element level so that the only unknown variables remaining on the global level are

displacements and pressures.
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The finite element approximations for displacements, pressure and ’vorticity

moment’ are given as

u = N f
uū; p = N f

p p̄; Λ= N f
λ
λ̄

u = N f
u

¨̄u; p = N f
p

¨̄p; Λ= N f
λ

¨̄λ

∇·u = (∇·N f
u) ū = V f ū

∇×u = (∇×N f
u) ū = D f ū

(4.57)

In the 3D numerical model of acoustic fluid-structure interaction, for the exter-

nal fluid domain, we choose linear finite element approximations (hexahedral finite

element with eight nodes) for the displacements, with constant approximations for

the pressure and the ’vorticity moment’. In other words, we choose the Hex8-P1-Λ1

finite element depicted in Figure 4.9. In order to solve the issue of fluid-structure in-

terface, we use the same finite element approximation post-processing procedure

previously described in Chapter 3, Section 3.2.3 for the Q4-P1-Λ1 finite element.

pressure, 

'vorticity moment' 

displacements

unknown fields:

Figure 4.9 Finite element approximation for external fluid in 3D numerical model
Hex8-P1-Λ1

4.5 Numerical results

In this section, we present the results of several numerical simulations, which serve

to illustrate the coupled discrete beam lattice model performance and the capa-

bilities of proposed numerical approach for dealing with acoustic fluid-structure

interaction problems in the 3D framework. With the aim of validating and compar-

ing results, the numerical simulations are performed for the numerical examples

presented in Chapters 2 and 3, which are extended by adding the third dimension

to the model. All numerical implementations and computations are performed

with the research version of the computer code FEAP, developed by R.L. Taylor [41].
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In all numerical simulations, the finite element mesh is generated by using Delau-

nay tetrahedralization and GMSH software [91]. The cross-sectional properties of

the Timoshenko beam finite elements are computed from the Voronoi diagram by

using MATLAB software [92], which uses Qhull code [154].

4.5.1 Saturated poro-elastic column

In this section, we aim to validate the coupled discrete beam lattice model of struc-

ture built of a saturated porous medium in the 3D framework. We observe saturated

poro-elastic column shown in Figure 4.10a, and we perform a quasi-static one-

dimensional consolidation test. We compare our results against those computed

with a continuum model using commercial software PLAXIS [135]. In PLAXIS, the

coupling between the solid phase and the pore fluid is governed by Biot’s porous

media theory, and the equal order of interpolation for both the displacement and

pressure fields is available. For such comparison, we choose 10-node tetrahedral

elements with second-order polynomial interpolations.

q=100 kN/m
2

2 m

pervious

ux,uy,uz=0
impervious

ux=0

impervious
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1
0
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x

z

y

(a) Problem statement

Time [s] 

L
o
a
d
 [
k
N

/m
2
] 
 

0 0.1 8

q

(b) Loading program

Figure 4.10 3D Saturated poro-elastic column
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The linear elastic parameters of the Timoshenko beam finite element are:

Young’s modulus E = 40 MPa and Poisson’s ratio ν = 0. Because we observe a

problem of one-dimensional consolidation, Poisson’s ratio in a continuum model

is taken as ν = 0. The identified oedometer modulus of a continuum model is

Eoed = 31.57 MPa (which is equal to Young’s modulus E since ν= 0). The coefficient

of permeability is k = 10−2 m/s, the specific weight of the water is γw = 10 kN/m3,

Biot’s constant is b = 1 and Biot’s modulus is M = 1.6 GPa, for both discrete and

continuum model.

The loading program is shown in Figure 4.10b. The time step is set to ∆t = 0.01

s. With the aim of inspecting the possible mesh dependency of the results, we

perform computation with a discrete model for two different mesh densities: coarse

with 1641 Timoshenko beam finite elements(Figure 4.11a), and fine with 4563

Timoshenko beam finite elements (Figure 4.11b). The computation in a continuum

model is performed on a mesh of 4308 tetrahedral elements.

(a) Coarse mesh (b) Fine mesh

Figure 4.11 Finite element mesh densities

The computed time evolutions of vertical displacement of the column top and

the excess pore pressure at the bottom of the column are shown in Figures 4.12a

and 4.12b. We can conclude that the results obtained with the discrete model show

an excellent agreement with the results obtained with a continuum model, with

the results being practically mesh independent.
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Figure 4.12 3D Saturated poro-elastic column: computed results

We repeat the computation with a discrete model with the ramp loading reach-

ing its maximum value at t = 1 s. The computed results are shown in Figures 4.13a

and 4.13b. We compare computed results against those shown in Figures 4.12a and

4.12b. From Figure 4.13b, we can conclude that a higher loading rate result in an

increase in the value of excess pore pressure. As the value of excess pore pressure

approaches zero, the value of vertical displacement approaches constant value

marking the end of the consolidation.
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Figure 4.13 Comparison of loading rates

We note that the identified value of Young’s modulus of an equivalent contin-

uum model for 3D case (E = 31.57 MPa) is slightly lower than for 2D case (E = 33.91

MPa), suggesting that the three-dimensional coupled discrete beam lattice model

is slightly more deformable than the two-dimensional model. It is important also

to note that for the 3D case as well the coefficient of permeability of a coupled
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discrete beam lattice model matches the one of an equivalent continuum model.

Hence, it can be easily identified from standard experimental tests.

4.5.2 Compression test

In this section, we perform a compression test on a water-saturated specimen

shown in Figure 4.14a, by imposing vertical displacements on the top base of the

specimen. The finite element mesh is shown in Figure 4.14b. We assume that the

inertial effects are negligible. The material parameters of the Timoshenko beam

finite element are shown in Table 4.1. The ultimate values of stresses are randomly

assigned to every finite element using Gaussian random distribution (Equation

2.74). The same values of yield shear stress, ultimate shear stress, and fracture

energy are selected for both transverse directions (marked with subscript s). The

ultimate shear stress is defined with Mohr-Coulomb law. The angle of internal

friction is selected as φ= 11◦. The coefficient of permeability is k = 10−8 m/s, the

specific weight of the water is γw = 10 kN/m3, Biot’s constant is b = 1 and Biot’s

modulus is 1/M → 0.
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Figure 4.14 3D Compression test
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Table 4.1 3D Compression test: material parameters of the finite element

Young’s
modulus

Poisson’s ratio Yield limit Fracture limit Fracture
energy

[kPa] [/] [kPa] [kPa] [kN/m]

E = 20000 ν= 0.2

σy,t = 10
µG ,t = 12

G f ,t= 20
σG ,t = 1

σy,c = 100
µG ,c = 120

G f ,c= 100
σG ,c = 10

σy,s = 12
µG ,s = 15

G f ,s= 100
σG ,s = 1

The linear hardening modulus is Hlh = 2 ·103 kPa, the linear kinematic harden-

ing modulus is Hlk = 2 ·103 kPa, nonlinear hardening parameter is Hnlk = 2 ·102,

and the viscosity parameter is η= 20 kPa s.

We first perform uncoupled computation (Biot’s constant b = 0 → matrix Ke
up is

a null matrix), to simulate the response of dry specimen. We compare the results

computed for a 3D model of specimen against those computed for the 2D model of

the specimen. For both cases, we present results in terms of average stress, which

is obtained as total vertical reaction divided by the area of the specimen (100 mm x

1 mm for 2D case, and 100 mm x 100 mm for 3D case). The comparison of results

is shown in Figure 4.15a. We can conclude that the 3D model results in a higher

ultimate value of average stress, and higher value of fracture energy needed to drive

the specimen to a complete failure.
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Figure 4.15 Comparison of computed results

Next, we simulate the response of saturated specimen, and we perform the

compression test by imposing vertical displacements with a constant rate on the top

base of the specimen. With the aim to investigate the coupling effects, we perform
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compression test with two displacement rates: v = 1 ·10−5 m/s and v = 1 ·10−6

m/s. The computed results are shown in Figure 4.15b. The computed macro-scale

responses prior to reaching the ultimate load value do not differ significantly. In the

post-peak regime, higher displacement rate results in a greater value of total vertical

reaction compared to the uncoupled case. After the ultimate load level is reached,

one large macro-crack is starting to form, leading to the complete failure of the

specimen. The distributions of vertical displacements and excess pore pressures,

and the broken cohesive links in increasing softening at the end of the loading

program for v = 1 ·10−6 m/s are shown in Figures 4.16a and 4.16e.
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Figure 4.16 Failure mode for 3D compression test

125



Extension to 3D case

4.5.3 Dam-reservoir system

In this numerical example, we observe the 3D problem of dam-reservoir inter-

action. The geometry of the dam-reservoir system is shown in Figure 4.17. The

bottom base of the dam is kept fixed, and the movement of the dam in y direction

is restrained. We first start by assuming that the behavior of the dam remains

linear elastic. Here, we perform numerical simulations with the aim to validate

the proposed numerical model ability to predict hydrostatic and hydrodynamic

pressure distributions exerted on the upstream face of the dam structure in close

agreement with analytical solutions.
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Figure 4.17 Geometry of 3D dam-reservoir system

Next, we perform localized failure analysis with the aim to compute admissible

horizontal overload (in x direction) that can be applied on top of (already) acting

self-weight and hydrostatic loading. The computation of admissible overload in

the quasi-static setting is performed by imposing horizontal displacements on the

top base of the dam. The admissible overload in a dynamic setting is computed by

subjecting the dam-reservoir system to the linear increasing horizontal ground ac-

celeration, which is modeled in terms of equivalent horizontal forces. Throughout

this numerical example, the vorticity constraint is completely omitted.

Remark 1: The finite element mesh of the structure domain is obtained by per-

forming Delaunay tetrahedralization of the domain, which results with the irregular
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triangular mesh of Timoshenko beam finite elements on the domain surfaces. With

the goal of connecting the structure finite elements with the external fluid finite

elements, we impose regular triangular mesh on the fluid-structure boundary. By

doing so, we are able to connect structure and external fluid finite elements at the

common nodes (Figure 4.18). It is important to note that since we are connecting

line elements with volume elements at the fluid-structure boundary, we ensure

the exchange of motion and pressure through the common nodes, whereas the

compatibility across the surface is not achieved.

Fluid-structure 
boundary

External fluid 
finite element

Timoshenko beam 
finite element

Figure 4.18 Mesh of Timoshenko beam finite elements at fluid-structure boundary

Remark 2: The mesh of the dam structure for the 3D case is coarser than for

the 2D case. Namely, the length of a Timoshenko beam finite element in 2D was

approximately 0.3 m, whereas in 3D it is approximately 0.5 m, which results in a

reservoir height equal to 5.0 m. The reasons for having to choose coarser mesh

density for the 3D case are the difficulties when generating the Voronoi diagram

and computing the area of each Timoshenko beam finite element, and a significant

increase in computational costs for finer meshes.

4.5.3.1 Linear elastic behavior

Young’s modulus and Poisson’s ratio of the Timoshenko beam finite element are

E = 104 MPa and ν = 0. The coefficient of permeability is k = 10−7 m/s, Biot’s

constant is b = 1 and Biot’s modulus is M = 106 MPa. The specific weight of the
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dam material is γs = 20 kN/m3, and the specific weight of the water is γw = 10

kN/m3. The bulk modulus of the outside water is β= 103 MPa.

→ Hydrostatic pressure distribution

We first apply an increase of the self-weight, followed by the hydrostatic loading

of the external reservoir (Figure 4.19). The time step is set to ∆t = 0.1 day. We

compare computed results against analytical values.
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Figure 4.19 Loading program for validation analysis, quasi-static case

The computed pressure field in the reservoir and in the body of the dam is

shown in Figure 4.20. We can conclude that the computed hydrostatic pressure dis-

tribution on the upstream face of the dam structure closely matches the analytical

solution (Figure 4.21a). The difference can be observed only at the bottom of the

reservoir, due to the finite element approximation and post-processing procedure

for the pressure field in the reservoir (see Chapter 3, Section 3.2.3).
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47.5035.625 23.75 11.875 0.00 0.0127 0.0255 0.03820.000e+00 5.100e-02

Figure 4.20 Hydrostatic pressure and pore pressure distribution

The total vertical and horizontal reaction at the bottom base of the dam are

shown in Figures 4.21b and 4.21c. The total horizontal reaction of 124.93 kN/m’

(749.58 kN) is in close agreement with the analytical value of the resultant force of

the hydrostatic pressures equal to 125.0 kN/m’. The total vertical reaction closely

matches the total weight of the dam. The slight difference in the value of the total
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weight of the dam is due to idealizations while computing the cross-sectional area

and the corresponding volume of each Timoshenko beam finite element. The

additional vertical reaction in the second phase of the loading program is due

to the hydrostatic loading as a result of common nodes. This additional value

changes and approaches zero as the size of fluid finite element approaches zero.

The horizontal displacements (x direction) of the tip of the dam → point A(3, 3,

6)[m] are shown in Figure 4.21d.
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Figure 4.21 Linear elastic behavior, dynamic case: computed results

→ Hydrodynamic pressure distribution

We subject the dam-reservoir system to a horizontal ground acceleration in-

creasing linearly with time and reaching its maximum value of a0 = 1 m/s2 at t = 1s,

after which is kept constant (Figure 4.22). The length of the reservoir is chosen as

L = 20.0 m instead of L = 8.0 m in order to eliminate the influence of the boundary

effects. The time step is set to ∆t = 0.01 s. We compare computed results against

analytical solutions provided by Chwang [150] for the 2D case of dam-reservoir

interaction.
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Figure 4.22 Loading program for validation analysis, dynamic case

The computed results are shown in Figures 4.23a and 4.23b. We can conclude

that a good match between computed hydrodynamic pressures and hydrodynamic

force, and analytical values is obtained. The hydrodynamic pressure distribution in

the reservoir, and excess pore pressure distribution in the body of the dam at t = 2

s is shown in Figures 4.24.
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Figure 4.23 Linear elastic behavior, dynamic case: computed results
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4.5.3.2 Localized failure analysis of dam structure

Next, we allow for plastic zones and cracks to form in dam structure by introducing

yield and fracture limits for each Timoshenko beam finite element. The same

values of yield shear stress, ultimate shear stress, and fracture energy are selected

for both transverse directions (marked with subscript s). The yield and fracture

limits for the Timoshenko beam finite element in tension, compression and shear:

σy,t = 0.015 MPa; σy,c = 0.20 MPa; σy,s = 0.015 MPa; σ f ,t = 0.02 MPa; σ f ,c = 0.30

MPa; σ f ,s = 0.02 MPa. The fracture energies in tension, compression and shear

are: G f ,t = 0.01 GN/m; G f ,c = 0.1 GN/m; G f ,s = 0.01 GN/m. The linear hardening

modulus is Hlh = 103 MPa.
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Figure 4.25 Localized failure analysis, loading programs

We provide an overall safety assessment of pore-saturated dam structure by

performing failure analysis both in a quasi-static and dynamic setting, following

the loading programs shown in Figures 4.25a and 4.25b. We first apply an increase

of the self-weight, followed by the hydrostatic loading. The time step in the first

two computation phases is set to∆t = 0.1 day. In a quasi-static setting, we compute

the admissible horizontal overload by imposing horizontal displacements with a

constant rate of 1 ·10−3 mm/s on the top base of the dam. The time step is set to

∆t = 1 s. In a dynamic setting, we compute the admissible horizontal overload by

subjecting the dam-reservoir system to the linear increasing horizontal ground

acceleration with a constant rate of 2 m/s2 /1s. The initial time step is set to

∆t = 0.001 s. Prior to reaching the ultimate value of horizontal overload, the time

step is reduced to ∆t = 0.0001 s.

→ Quasi-static case

The computed admissible horizontal overload force is 101.2393 kN (16.8732

kN/m’) (Figure 4.26). The total horizontal reaction resulting from the self-weight

and hydrostatic loading is 749.58 kN (124.93 kN/m’). Hence, we can state that for
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this particular geometry and the mechanical properties of the dam, the factor of

safety of the dam against failure is 1.14. The broken cohesive links in increasing

softening at the end of the loading program are shown in Figures 4.27a-4.27c.
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Figure 4.26 Horizontal overload (x direction), quasi-static case
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links: mode III

Figure 4.27 Failure mode for horizontal overload, quasi-static case

The computed factor of safety of the dam against failure in a quasi-static setting

for 3D dam-reservoir system with reservoir height of 5.0 m is equal to 1.14, whereas

for the 2D dam-reservoir system and reservoir height of 5.1 m the computed factor

of safety is 1.06.

→ Dynamic case

The computed admissible value of horizontal overload force is 701.7073 kN

(116.9512 kN/m’), which corresponds to the horizontal ground acceleration of

3.0746 m/s2 (Figure 4.28). The self-weight and hydrostatic loading resulted in the

total horizontal reaction equal to 749.58 kN (124.93 kN/m’). We can conclude that

for this particular geometry and mechanical properties, the computed factor of

safety of the dam subjected to combined quasi-static and extreme dynamic loads

is 1.94. The broken cohesive links in increasing softening at the end of the loading

program are shown in Figures 4.29a-4.29c.
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Figure 4.29 Failure mode for horizontal overload, dynamic case

The computed factor of safety of the dam against failure in a dynamic setting

for 3D dam-reservoir system with reservoir height of 5.0 m is equal to 1.94, whereas

for the 2D dam-reservoir system and reservoir height of 5.1 m the computed factor

of safety is 1.71.

4.6 Concluding remarks

In this Chapter, we presented a 3D numerical model of acoustic fluid-structure

interaction. The proposed model is an extension of the previously presented 2D

numerical model, with modifications that arise due to the added dimension of the

model.

First, we have simulated the response of the pore-saturated structure. The

results of numerical simulations in the linear elastic regime of structure response

confirm that the coefficient of permeability of coupled discrete beam lattice model

of pore-saturated structure closely matches that of an equivalent continuum model.

The results of numerical simulations in the nonlinear regime of structure response
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demonstrate the capabilities of the proposed numerical model to capture inelastic

response and localized failure in the pore-saturated structure.

Second, we have simulated dam-reservoir interaction. We have confirmed that

the proposed numerical model of acoustic fluid-structure interaction is capable of

predicting the hydrostatic and hydrodynamic pressure distributions exerted on the

upstream face of the dam structure in close agreement with analytical solutions.

Furthermore, we have illustrated the proposed numerical model ability to deal

with the progressive localized failure of dam structure by computing the admissible

horizontal overload that dam structure can withstand on top of already acting

self-weight and hydrostatic pressure.

The proposed 3D numerical model of the structure and numerical model of

acoustic fluid-structure interaction exhibit good performance in terms of fast con-

vergence rates. However, the computational time is significantly increased when

compared to the 2D case. For instance, the computational time for horizontal

overload with included first two computation phases for the 2D case is 720.83 s,

and for the 3D case 232566.9 s.
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CHAPTER 5

EXTENSION TO NONISOTHERMAL CASE

ABSTRACT

In this Chapter, we account for the thermal effects in the structure built of a satu-

rated porous medium. Namely, we present a coupled discrete beam lattice model

of structure built of a nonisothermal saturated porous medium, which is an ex-

tension of the coupled discrete beam lattice model proposed in Chapter 4, for the

isothermal case. The modifications pertain to the introduction of thermal coupling

in the model. The temperature field is approximated with linear tetrahedral finite

elements, resulting with an additional temperature degree of freedom placed at

each node of the Timoshenko beam finite element. The heat flow in the model

is governed by Fourier law for heat conduction. The application of the model is

illustrated through several numerical simulations.

135





OUTLINE

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.1.1 Governing equations of nonisothermal saturated porous

medium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.1.1.1 Equations of motion . . . . . . . . . . . . . . . . . . . . 139

5.1.1.2 Continuity equation . . . . . . . . . . . . . . . . . . . . 139

5.1.1.3 Energy equation . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Discrete model of structure . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3 Finite element formulation . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.3.2 Weak form of governing equations . . . . . . . . . . . . . . . . . 141

5.3.2.1 Continuity equation . . . . . . . . . . . . . . . . . . . . 141

5.3.2.2 Energy equation . . . . . . . . . . . . . . . . . . . . . . 142

5.3.2.3 Equations of motion . . . . . . . . . . . . . . . . . . . . 142

5.3.3 Computational procedure . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.4.1 Nonisothermal saturated poro-elastic column . . . . . . . . . . 149

5.4.2 Thermal mechanical compression test . . . . . . . . . . . . . . 153

5.4.3 Dam-reservoir system . . . . . . . . . . . . . . . . . . . . . . . . 156

5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160



Extension to nonisothermal case

5.1 Introduction

In this Chapter, we account for the thermal effects in the structure built of a sat-

urated porous medium. Temperature changes can induce additional stresses in

the structure as a result of restrained movement, which may contribute to cracking.

Furthermore, the thermal actions can affect the stiffness and strength properties of

the material, which has to be properly accounted for in order to provide a sound

design of the structure. To be able to model these phenomena, which influence the

overall safety and durability of the structure, we extend the coupled discrete beam

lattice model presented in Chapter 4, for the isothermal case to nonisothermal case

by introducing the thermal coupling into the model.

The outline of the Chapter is as follows: In Section 5.2, we describe the equations

governing the response of the nonisothermal saturated porous medium. In Section

5.3, we present the finite element formulation of the proposed thermo-hydro-

mechanical coupled discrete beam lattice model, together with the computational

procedure. The finite element formulation is given in fully dynamics framework,

which can be easily adjusted for quasi-static simplification. In Section 5.4, we

present the results of several numerical simulations with the aim to validate the

proposed coupled discrete beam lattice model of structure built of a nonisothermal

saturated porous medium, and to demonstrate its capabilities to predict response

and cracking in the structure subjected to combined thermal and mechanical loads.

In Section 5.5, we give concluding remarks.

5.1.1 Governing equations of nonisothermal saturated porous

medium

The equations governing the response of nonisothermal saturated porous medium

are derived by combining equilibrium equation imposed on a porous medium,

continuity equation imposed on a fluid flow and energy equation imposed on heat

flow through such a porous medium [33, 34, 36, 5]. In a dynamic setting, we refer

to the equation of motion instead of the equilibrium equation. The isothermal

equations of motion and continuity equation are explained in detail in Chapter 2,

Section 2.2.

Next, we present the equations governing the response of the nonisothermal

saturated porous medium. The governing equations are derived under the assump-

tions that no phase change occurs and that the thermal equilibrium between the

solid phase and the pore fluid is achieved.
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5.1.1.1 Equations of motion

The strong form of equations of motion is written as

∇·σ+b−ρa = 0 (5.1)

where σ is the total stress tensor, b are the body forces vector, a is the solid phase

acceleration vector and ρ is the mass density of the mixture assumed to be constant.

Following Terzaghi’s principle of effective stresses, the total stress is decom-

posed into effective stress and pore pressure, written as

σ=σ′− Ibp (5.2)

where σ′ is the effective stress tensor, I is the second order identity tensor, p is the

pore pressure assumed positive in compression, and b is Biot’s constant.

Furthermore, the effective stress tensor can be decomposed into mechanical

part σu resulting from displacements and thermal part σT resulting from changes

in temperature, written as

σ′ =σu −σT (5.3)

with σT computed as

σT =βT (T −T0) (5.4)

where βT is the thermal stress tensor for isotropic case defined as βT =βT I, and T0

is the reference temperature.

5.1.1.2 Continuity equation

The continuity equation for fluid flow through a nonisothermal porous medium is

written as
1

M
ṗ +b∇· u̇− β̄s f Ṫ −∇·

( k

γ f
∇p

)
= 0 (5.5)

where M is Biot’s modulus, k is the coefficient of permeability of the isotropic

porous medium, γ f is the specific weight of the fluid and β̄s f is the thermal ex-

pansion coefficient of the mixture defined as β̄s f = (b −n)β̄s +nβ̄ f , with β̄s as the

thermal expansion coefficient of the solid phase and β̄ f as the thermal expan-

sion coefficient of the pore fluid. In the formulation of continuity equation, the

temperature dependence of the solid density is neglected.
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5.1.1.3 Energy equation

The energy equation for porous medium under the assumption that both the solid

phase and pore fluid have the same temperature at the coincident point and with

convection ignored is written as

ρCT Ṫ +∇·qT − s = 0 (5.6)

where ρCT is the effective heat capacity defined as ρCT = (1−n)ρsC s
T +nρ f C f

T ,

with C s
T as the heat capacity of the solid phase and C f

T as the heat capacity of the

pore fluid, qT is the heat flux and s is the heat source.

The heat flux qT is defined with Fourier law for heat conduction, written as

qT =−kT∇T (5.7)

where kT is the coefficient of thermal conductivity of the isotropic porous medium.

In the formulation of energy equation the convection, the pressure and temper-

ature dependence of the solid and fluid densities, and mechanical contributions to

energy balance are neglected. These simplifications are in many cases justified and

result in an uncoupled form of the energy equation [5, 36, 155].

5.2 Discrete model of structure

The starting point for our work on coupled discrete beam lattice model of the

nonisothermal pore-saturated structure is the model presented in Chapter 4, for

the isothermal case. Next, we present the modifications in the finite element

formulation that arise due to the introduction of thermal coupling in the model.

5.3 Finite element formulation

5.3.1 Kinematics

The kinematics for inelastic Timoshenko beam finite element, and finite element

approximation for pore pressure field are given in Chapter 4, Section 4.3.1. The

temperature field is approximated in the same manner as the pore pressure field,

using tetrahedral finite elements with four nodes (Figure 5.1).

The finite element approximation for temperature field is written as

T = Ns
T T̄ (5.8)
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where

T̄T =
{

T1, T2, T3, T4

}
;

Ns
T =

{
N t

1 , N t
2 , N t

3 , N t
4

}
; N t

i = ai +bi x + ci y +di z

6V
, i = 1,4;

6V = det

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
; a1 = det

∣∣∣∣∣∣∣∣∣∣
x2 y2 z2

x3 y3 z3

x4 y4 z4

∣∣∣∣∣∣∣∣∣∣
; b1 =−det

∣∣∣∣∣∣∣∣∣∣
1 y2 z2

1 y3 z3

1 y4 z4

∣∣∣∣∣∣∣∣∣∣
;

c1 =−det

∣∣∣∣∣∣∣∣∣∣
x2 1 z2

x3 1 z3

x4 1 z4

∣∣∣∣∣∣∣∣∣∣
; d1 =−det

∣∣∣∣∣∣∣∣∣∣
x2 y2 1

x3 y3 1

x4 y4 1

∣∣∣∣∣∣∣∣∣∣
;

etc.

(5.9)

where V is the volume of the tetrahedral element, x,y ,z are global coordinates and

xi , yi , zi are nodal coordinates of tetrahedral element, and constants a2−4, b2−4,

c2−4, d2−4 are defined by cyclic interchange of the subscripts in the order 1,2,3,4.

2

4

T2

T4

1

T1
3

T3

x

z
y

Figure 5.1 Linear tetrahedral finite element

The time derivatives of temperature field are written as

Ṫ = Ns
T

˙̄T;

T̈ = Ns
T

¨̄T
(5.10)

5.3.2 Weak form of governing equations

5.3.2.1 Continuity equation

The coupling of the mechanics and the pore fluid flow occurs through the axial

direction of the Timoshenko beam finite element. The continuity equation is
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written as
1

M
ṗ +bε̇− β̄s f Ṫ −∇·

( k

γ f
∇p

)
= 0 (5.11)

By introducing finite element approximations into the weak form of continuity

equation and performing standard finite element discretization procedure (Chapter

4, Section 4.3), we obtain∫
Ωe

Tet4

[(
Ns,T

p
1

M
Ns

p

)
˙̄p−

(
Ns,T

p β̄s f Ns
T

)
˙̄T+

(
(∇Ns

p )T
k

γ f
∇Ns

p

)
p̄
]

dΩ

+
∫ Le

0

(
Ns,T

up bBs
up

)
˙̄ud x = qext ,e

(5.12)

5.3.2.2 Energy equation

The energy equation is written as

ρCT Ṫ −∇· (kT∇T
)− s = 0 (5.13)

The weak form of energy equation is written as∫
Ωe

Tet4

δT
[
ρCT Ṫ −kT∇· (∇T )− s

]
dΩ= 0 (5.14)

where δT is the virtual temperature field interpolated in the same manner as the

real temperature field

δT = Ns
TδT̄; δT̄T =

{
δT1, δT2, δT3, δT4

}
;

p ‵ = Ns
uT T̄‵; Ns

uT =
{

N1, N2

}
; T̄‵T =

{
T1, T2

}
;

δT ‵ = Ns
uTδT̄‵; δT̄‵T =

{
δT1, δT2

} (5.15)

By introducing finite element approximations into the weak form of continuity

equation and performing standard finite element discretization procedure, we

obtain ∫
Ωe

Tet4

[(
Ns,T

T ρCT Ns
T

)
˙̄T+

(
(∇Ns

T )TkT∇Ns
T

)
T̄
]

dΩ= sext ,e
(5.16)

5.3.2.3 Equations of motion

The derivation of the weak form of equations of motion for the isothermal porous

medium is presented in detail in Chapter 4, Section 4.3.2.2. The resulting weak
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form of equations of motion for the nonisothermal porous medium is written as

facc,e + fi nt ,e − fext ,e = 0 (5.17)

he = 0 (5.18)

where fi nt ,e is the vector of inertial forces, fi nt ,e is the internal force vector, facc,e is

the external load vector, and he is the residual vector due to discontinuity, com-

puted as

facc,e =
∫ Le

0
Ns,T

u σ̈d x;

fi nt ,e =
∫ Le

0
Bs,T

u σd x = fi nt ,e (σuT )− fi nt ,e (σp );

he =
∫ Le

0
GTσuT d x =

∫ Le

0
ḠTσuT d x + t; Ḡ =



Ḡ 0 0 0 0 0

0 Ḡ 0 0 0 0

0 0 Ḡ 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


;

tT =
{

t u , t v , t w , 0 , 0 , 0
}

(5.19)

By taking into account that the coupling between the mechanics with the pore

fluid flow and heat flow occurs through the axial direction of the Timoshenko beam

finite element, the vectors in (5.19) are computed as

σ̈T =
{
ρAe ü,ρAe v̈ ,ρAe ẅ ,ρI e

pol θ̈x ,ρI e
y y θ̈y ,ρI e

zz θ̈z

}
;

σT =
{

N ,Vy ,Vz , Mx , My , Mz

}
;

σT =σT
uT −σT

p ;

σT
uT =

{
N ′

uT ,V ′
uT,y ,V ′

uT,z , M ′
uT,x , M ′

uT,y , M ′
uT,z

}
; σT

p =
{

bp ‵Ae ,0,0,0,0,0
}

;

σT
uT =σT

u −σT
T ;

σT
u =

{
N ′,V ′

y ,V ′
z , M ′

x , M ′
y , M ′

z

}
; σT

T =
{
βuT

T (T ‵−T0)Ae ,0,0,0,0,0
}

(5.20)
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where βuT
T is the thermal stress for thermo-mechanical coupling in the axial direc-

tion. The stress resultant vectorσT
u results from displacements, and is computed in

the same manner as described in Chapter 4, Section 4.3. The internal force vector t

acting at the discontinuity is computed as

t =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



∫ Le

0
σuT d x (5.21)

For linear elasticity, the thermal stress βuT
T is a function of lattice Young’s modu-

lus E and thermal expansion coefficient of the solid phase β̄s , written as

βuT
T = EkβuT

T
β̄s (5.22)

The coefficient kβuT
T

takes into account the difference between 1D thermo-

mechanical coupling and the 3D thermo-mechanical coupling. Namely, in 3D

thermo-mechanical coupling for isotropic case the thermal stress βT can be ex-

pressed in terms of thermal expansion coefficient β̄s and Lame’s parameters for

continuum model λL and µL , written as

βT = (3λL +2µL)β̄s (5.23)

The last expression can be rewritten in terms of oedometer modulus Eoed and

Poisson’s ratio ν for continuum model, as

βT =
(

1+ν
1−ν

)
Eoed β̄s (5.24)

Hence, the coefficient kβuT
T

can then be computed as

kβuT
T

=
(

1+ν
1−ν

)
Eoed /E (5.25)
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5.3.3 Computational procedure

The system of equations governing the thermo-hydro-mechanical coupled problem

for single Timoshenko beam finite element is written as

Me
uu

¨̄u+ fi nt ,e (σuT )−Ke
up p̄‵ = fext ,e (5.26)

Ke,T
up

˙̄u−Ke
pT

˙̄T‵+De
pp

˙̄p‵+Ke
pp p̄‵ = qext ,e (5.27)

De
T T

˙̄T‵+Ke
T T T̄‵ = sext ,e (5.28)

where Me
uu is the mass matrix, fi nt ,e (σuT ) is the internal load vector resulting from

displacements and temperature changes, Ke
up and Ke

pT are the coupling matrices,

De
pp is the compressibility matrix, Ke

pp is the permeability matrix, De
T T is the heat

capacity matrix, Ke
T T is the conductivity matrix, and fe,ext , qe,ext , se,ext are the load

vectors. The matrices Ke
up , Ke

pT , De
pp , Ke

pp , De
T T and Ke

T T are computed as

Ke
up =

∫ Le

0
Bs,T

up bNs
up d x; Ke

pT =
∫
Ωe

Tet4

Ns,T
p β̄s f Ns

T dΩ

De
pp =

∫
Ωe

Tet4

Ns,T
p

1

M
Ns

p dΩ; Ke
pp =

∫
Ωe

Tet4

(∇Ns
p )T

k

γ f
∇Ns

p dΩ

De
T T =

∫
Ωe

Tet4

Ns,T
T ρCt Ns

T dΩ; Ke
T T =

∫
Ωe

Tet4

(∇Ns
T )TkT∇Ns

T dΩ

(5.29)

Here we note that in the global system of equations (Equations 5.27 and 5.28)

we take the parts of the De
pp , Ke

pp , Ke
pT , De

T T and Ke
T T matrices (Equation 5.29) that

correspond to the nodes of Timoshenko beam finite element.

The solution in terms of unknown nodal displacements, pore pressures and

temperatures is computed at discrete pseudo-time steps t1, t2, ..., tn using Newmark

time-integration scheme. For a time step tn+1 and iteration i , the global system of

equations to be solved is written as

nel em
A

e=1

{
1

β∆t 2 Muu + K̄uu −Kup −K̄uT

γ
β∆t KT

up
γ
β∆t Dpp +Kpp

γ
β∆t KpT

0 0 γ
β∆t DT T +KT T


e,(i )

n+1


∆ū

∆p̄‵

∆T̄‵



e,(i )

n+1

=


ru

rp

rT



e,(i )

n+1

}

(5.30)
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where K̄e
uu is the tangent stiffness matrix, K̄e

uT is the tangent coupling matrix , and

re,(i )
u,n+1, re,(i )

p,n+1 and re,(i )
T,n+1 are residuals pertaining to the solid, the pore fluid and the

temperature part.

After solving the global system of equations, the new iterative values of unknown

fields are updated as

ū(i+1)
n+1 = ū(i )

n+1 +∆ū(i )
n+1

p̄(i+1)
n+1 = p̄(i )

n+1 +∆p̄(i )
n+1

T̄(i+1)
n+1 = T̄(i )

n+1 +∆T̄(i )
n+1

(5.31)

The tangent stiffness matrix K̄e
uu and tangent coupling matrix K̄e

uT depend

whether the element is in elasto-viscoplastic or softening part of the response. If

the element is elasto-viscoplastic, the tangent stiffness matrix and tangent coupling

matrix are defined as

K̄e,(i )
uu,n+1 = Ke,(i )

uu,n+1 =
(∂fi nt (σuT )

δū

)e,(i )

n+1
=

∫ Le

0
Bs,T

u Cep,(i )
n+1 Bs

ud x

K̄e,(i )
uT,n+1 = Ke,(i )

uT,n+1 =
(∂fi nt (σuT )

δT̄

)e,(i )

n+1
=

∫ Le

0
Bs,T

uT C ep,u,(i )
n+1 kβuT

T
β̄s Ae Ns

uT d x;

Bs
uT =

[
B1 0 0 0 0 0 B2 0 0 0 0 0

]
(5.32)

Elasto-plastic tangent matrix is written as

Cep,(i )
n+1 =



C ep,u
n+1 Ae 0 0 0 0 0

0 C ep,v
n+1 Ae 0 0 0 0

0 0 C ep,w
n+1 Ae 0 0 0

0 0 0 G I e
pol 0 0

0 0 0 0 E I e 0

0 0 0 0 0 E I e


(5.33)

where C ep,u
n+1 , C ep,v

n+1 and C ep,w
n+1 are elasto-plastic tangent moduli for axial and trans-

verse directions. The local phase procedure for computing elasto-plastic tangent

moduli is given in Section 2.4.4.1.

If the element is in the softening, the tangent stiffness matrix and tangent

coupling matrix are obtained by performing static condensation procedure. The

statically condensed tangent stiffness matrix is written as
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K̄e,(i )
uu,n+1 = K̂e,(i )

uu,n+1 =
[

Ke,(i )
uu,n+1 −Fe,(i )

n+1

(
He,(i )

n+1 +Kα

)−1(
Fe,(i ),T

n+1 +Kd

)]
(5.34)

where

Ke,(i )
uu,n+1 =

(
∂fi nt (σuT )

δū

)e,(i )

n+1
=

∫ Le

0
Bs,T

u Cep,(i )
n+1 Bs

ud x

Fe,(i )
n+1 =

(
∂fi nt (σuT )

δα

)e,(i )

n+1
=

∫ Le

0
Bs,T

u Cep,(i )
n+1 Ḡd x

(
FT+Kd

)e,(i )
n+1 =

(
∂h

δū

)e,(i )

n+1
=

∫ Le

0
ḠT Cep,(i )

n+1 Bs
ud x +Kd

(
H+Kα

)e,(i )
n+1 =

(
∂h

δα

)e,(i )

n+1
=

∫ Le

0
ḠT Cep,(i )

n+1 Ḡd x +Kα

(5.35)

The matrices Kd and Kα depend on the current step in softening being elastic or

plastic. If the current step in the softening is elastic, then

Kd = C∗Bs
u ; Kα = 0; C∗ =



E Ae 0 0 0 0 0

0 kcG Ae 0 0 0 0

0 0 kcG Ae 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(5.36)

Else, if the current step in the softening is plastic, then

Kd = 0; Kα =



K u
α Ae 0 0 0 0 0

0 K v
αAe 0 0 0 0

0 0 K w
α Ae 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(5.37)

The local phase procedure for computing matrices K u
α , K v

α and K w
α is given in

Section 2.4.4.2.
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By taking into account that the coupling of solid phase with fluid flow occurs

through the axial direction of the Timoshenko beam finite element, the statically

condensed tangent coupling matrix is written as

K̄e,(i )
uT,n+1 = K̂e,(i )

uT,n+1 =
[

Ke,(i )
uT,n+1 −Qe,(i )

n+1

(
Ye,(i )

n+1 +KαT

)−1(
We,(i )

n+1 +KT

)]
(5.38)

where

Ke,(i )
uT,n+1 =

(
∂fi nt (σuT )

δT̄

)e,(i )

n+1
=

∫ Le

0
Bs,T

uT C ep,u,(i )
n+1 kβuT

T
β̄s Ae Ns

uT d x

Qe,(i )
n+1 =

(
∂fi nt (σuT )

δα

)e,(i )

n+1
=

∫ Le

0
Bs,T

uT C ep,u,(i )
n+1 kβuT

T
β̄s AeḠd x

(
W+KT

)e,(i )
n+1 =

(
∂h

δT

)e,(i )

n+1
=

∫ Le

0
ḠC ep,u,(i )

n+1 kβuT
T
β̄s Ae Ns

uT d x +KT

(
Y+KαT

)e,(i )
n+1 =

(
∂h

δα

)e,(i )

n+1
=

∫ Le

0
ḠC ep,u,(i )

n+1 AeḠd x +KαT

(5.39)

The matrices KT and KαT depend on the current step in softening being elastic or

plastic. If the current step in the softening is elastic, then

KT =C ep,u,(i )
n+1 Ae Ns

uT ; KαT = 0 (5.40)

Else, if the current step in the softening is plastic, then

KT = 0; KαT = K u
α Ae (5.41)

5.4 Numerical results

In this section, we present the results of several numerical simulations, which

serve to illustrate the proposed approach ability to deal with nonisothermal prob-

lems. All numerical implementations and computations are performed with the

research version of the computer code FEAP, developed by R.L. Taylor [41]. In all

numerical simulations, the finite element mesh is generated by using Delaunay

tetrahedralization and GMSH software [91]. The cross-sectional properties of the

Timoshenko beam finite elements are computed from Voronoi diagram by using

MATLAB software [92], which uses Qhull code [154].
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5.4.1 Nonisothermal saturated poro-elastic column

In this section, we perform a quasi-static thermo-elastic one-dimensional consoli-

dation analysis of saturated column, with the aim to validate the coupled discrete

beam lattice model of structure built of saturated nonisothermal porous medium.

The problem of one-dimensional thermo-elastic consolidation was first solved

by Aboustit et al. [33, 34], and is later used as a benchmark by Lewis et al. [36],

Noorishad and Tsang [38], and Cui et al. [40] to test their finite element formula-

tions in 2D framework. To test our model, we extend the problem analyzed in the

literature for 2D case (Figure 5.2a) to the 3D case (Figure 5.2b) and we compare our

results against reference solutions provided by Lewis et al. [36] and Cui et al. [40].

Because the problem analyzed is the problem of one-dimensional consolidation,

the results computed for the 3D case should match those obtained for the 2D case.

The problem analyzed is unit-less.
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(b) 3D case, numerical model

Figure 5.2 Thermo-elastic consolidation of saturated column, problem statement

With the aim of inspecting the possible mesh dependency of the results, we

perform a computation with a discrete model for two different mesh densities:

coarse with 1437 Timoshenko beam finite elements (Figure 5.3a), and fine with

2875 Timoshenko beam finite elements (Figure 5.3b).
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(a) Coarse mesh (b) Fine mesh

Figure 5.3 Finite element mesh densities

The linear elastic parameters of the continuum model are: Young’s modulus

E = 6000, and Poisson’s ratio ν = 0.4, which results with a value of oedometer

modulus Eoed = 12857. The identified linear elastic parameters of the Timoshenko

beam finite element are: Young’s modulus E = 16463, and Poisson’s ratio ν = 0.

The coefficient of permeability is k/γ f = 4 ·10−6, Biot’s constant is b = 1 and Biot’s

modulus is 1/M → 0. The coefficient of thermal conductivity is kT = 0.2, the

effective heat capacity is ρCT = 40, the thermal expansion coefficient of the solid

phase is β̄s = 0.3 ·10−6 and the reference temperature is T0 = 0, for both continuum

and discrete model. The temperature term in the continuity equation is omitted,

i.e. β̄s f is set to 0. The coefficient kβut
T

is identified as 1.82.

The saturated poro-elastic column (Figure 5.2b) is subjected to unit vertical

surface pressure and a constant surface temperature T = 50. The time step values

used in the numerical simulations are indicated in Table 5.1 [36, 40].

Table 5.1 Time stepping scheme

Time interval Number of time steps

0.01 10

0.1 10

10 10

100 10

1000 20
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We perform three types of computations. The first is the isothermal consolida-

tion with the applied surface pressure only, the second is the thermal consolidation

with the applied surface temperature only, and the third is the thermal consolida-

tion with applied both the surface temperature and the surface pressure.

The computed results in terms of vertical displacements of column top for all

three cases are shown in Figures 5.4a-5.4c. We can conclude that a good match

between the computed results and reference values is obtained. The computed

results are practically mesh independent. We note that the results for the ther-

mal consolidation with the applied surface temperature only are not given for

comparison in [40].
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(b) Thermal case: surface temperature
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(c) Thermal case: surface temperature and pressure

Figure 5.4 Saturated poro-elastic column: vertical displacement of column top

The computed excess pore pressure and temperature at the z = 6 m measured

from the bottom of the column for the third - thermal consolidation case are shown

in Figures 5.5a and 5.5b. We observe a good match between the computed results

and reference solutions, with results being practically mesh independent.
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(a) Excess pore pressure at z = 6 m
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(b) Temperature at z = 6 m

Figure 5.5 Thermal case, applied surface temperature and pressure: computed
results

Next, we perform a thermo-mechanical computation (the pore pressure field is

excluded from the computation) for the case of applied surface temperature only,

and we compare the computed results with those obtained with the 3D numerical

model of a column constructed in FEAP by using FEAP built-in solid elements

[41]. The temperature evolution computed with discrete model is shown in Figures

5.7a-5.7c.
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Figure 5.6 Thermo-mechanical computation, applied surface temperature:
comparison with 3D numerical model in FEAP

The results presented in this Section, suggest that the coefficient of thermal

conductivity, the effective heat capacity and thermal expansion coefficient of the

coupled discrete beam lattice model closely match those of an equivalent con-

tinuum model. Hence, they can be easily identified from standard experimental

tests.
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Figure 5.7 Temperature evolution, applied surface temperature

5.4.2 Thermal mechanical compression test

In this section, we perform a thermal mechanical compression test. We first subject

the specimen to high temperatures, after which we impose vertical displacements

on the top base of the specimen. We assume that the inertial effects are negligible.

The geometry of the specimen and the boundary conditions are shown in Figure

5.8a. The finite element mesh is shown in Figure 5.8b.

The material parameters of the Timoshenko beam finite element are shown in

Table 5.2. The linear hardening modulus is Hlh = 2 ·103 kPa, the linear kinematic

hardening modulus is Hlk = 2 ·103 kPa, nonlinear hardening parameter is Hnlk =
2 ·102, and the viscosity parameter is η= 20 kPa s. The coefficient of permeability

is k = 10−8 m/s, the specific weight of the water is γw = 10 kN/m3, Biot’s constant

is b = 1 and Biot’s modulus is 1/M → 0. The coefficient of thermal conductivity

is kT = 2 W/mK, the effective heat capacity is ρCT = 1850 kJ/Km3, the thermal

expansion coefficient of the solid phase is β̄s = 0.00001 (◦C )−1 and the reference

temperature is T0 = 0◦. The temperature term in the continuity equation is omitted,

i.e. β̄s f is set to 0. The coefficient kβut
T

is selected as 1.0.

To investigate the temperature effects on the stiffness and load carrying capacity

of the specimen, we assume that the material parameters: Young’s modulus, yield

limits, fracture limits and fracture energies of Timoshenko beam finite element are

temperature dependent. We assume linear temperature dependence, written as
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Extension to nonisothermal case

m = m
(
1−ωT (T −T0)

)
, T > T0 (5.42)

where m is the material parameter, T and T0 are the temperature and the reference

temperature in the element and ωT is the parameter controlling the temperature

dependence.
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Figure 5.8 Thermal mechanical compression test

Table 5.2 Thermal mechanical compression test: material parameters of the finite
element

Young’s
modulus

Poisson’s ratio Yield limit Fracture limit Fracture
energy

[kPa] [/] [kPa] [kPa] [kN/m]

E = 20000 ν= 0.2
σy,t = 10 σ f ,t = 12 G f ,t= 20
σy,c = 100 σ f ,c = 120 G f ,c= 100
σy,s = 12 σ f ,s = 15 G f ,s= 10

Next, we perform several numerical simulations of thermal compression test

on dry (Biot’s constant b = 0 → matrix Ke
up is a null matrix) and saturated specimen
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(Biot’s constant b = 1) for three values of parameter ωT =−0.0001; 0; 0.0001. We

select the same value of ωT for all material parameters, for which we assumed are

temperature dependent. First, we subject the specimen to a temperature of 600◦.

After the temperature has reached a steady state throughout the specimen, we

impose vertical displacements on the top base of the specimen with a constant rate

of v = 1 ·10−5 m/s.

The computed results are shown in Figure 5.9. We can conclude that, depending

on the value ofωT , the stiffness and ultimate load level have decreased or increased

when compared to the case of the temperature independent material parameters

(ωT = 0). The broken cohesive links in increasing softening at the end of the loading

program for saturated specimen and ωT =−0.001 are shown in Figures 5.10a-5.10c.
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Figure 5.9 Thermal mechanical compression test: computed results
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links: mode I

(b) Broken cohesive
links: mode II

(c) Broken cohesive
links: mode III

Figure 5.10 Failure mode for thermal mechancal compression test

The value ofωT depends on the type of material and has to be identified through

more elaborate parameter identification procedures. For example, the exposure of
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Extension to nonisothermal case

the rock or concrete specimen to the elevated temperatures results in a decrease

in the compressive strength, whereas for clay specimen the compressive strength

increases.

5.4.3 Dam-reservoir system

In concrete dams, the temperature gradient near the exposed surface can cause

surface cracks, which can affect structural durability. These surface cracks can

also result in the long-term degradation of the load carrying capacity and stiffness

of the dam, especially due to the large seasonal ambient temperature variations.

Hence, the thermal effects in the structure have to be evaluated in order to set the

initial conditions for the further failure analyses and to ensure the durability of the

exposed surfaces and structure in general.
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Figure 5.11 Geometry of dam-reservoir system

In this numerical example, we simulate a dam-reservoir system (Figure 5.11)

subjected to combined mechanical and thermal loads. The mechanical loads are

due to the self-weight and hydrostatic loading of the reservoir, and thermal loads

are due to heating of the dam surfaces, which are exposed to the solar radiation

(Figure 5.12a). We assume that the reference temperature in the dam is T0 = 20◦C ,

and we increase the temperature of the exposed surfaces up to 40◦C , after which is

kept constant (Figure 5.12b). The temperature of the reservoir and dam foundation
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is assumed to be constant and equal to T = 20◦C . In order to be able to connect

the structure and external fluid finite elements at the fluid-structure interface, an

additional temperature degree of freedom has been added to the external fluid

finite element. The temperature of the dam foundation is imposed as a boundary

condition. The bottom base of the dam is kept fixed, and the movement of the dam

in y direction is restrained.
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Figure 5.12 Loading program combining mechanical and thermal loads

Young’s modulus and Poisson’s ratio of the Timoshenko beam finite element

are E = 104 MPa and ν= 0. The same values of yield shear stress, ultimate shear

stress, and fracture energy are selected for both transverse directions (marked with

subscript s). The yield and fracture limits for the Timoshenko beam finite element

in tension, compression and shear: σy,t = 0.015 MPa; σy,c = 0.20 MPa; σy,s = 0.015

MPa; σ f ,t = 0.02 MPa; σ f ,c = 0.30 MPa; σ f ,s = 0.02 MPa. The fracture energies in

tension, compression and shear are: G f ,t = 0.01 GN/m; G f ,c = 0.1 GN/m; G f ,s =
0.01 GN/m. The linear hardening modulus is Hlh = 103 MPa. Young’s modulus,

yield limits, fracture limits and fracture energies are assumed to be temperature

dependent, and the parameter controlling the temperature dependence ωT is

selected as 0.001.

The specific weight of the dam material is γs = 20 kN/m3, and the specific

weight of the water is γw = 10 kN/m3. The coefficient of permeability is k = 10−7

m/s, Biot’s constant is b = 1 and Biot’s modulus is M = 106 MPa. The coefficient

of thermal conductivity is kT = 1 W/mK, the effective heat capacity is ρCT = 1500

kJ/Km3 and the thermal expansion coefficient of the solid phase is β̄s = 0.00001

(◦C )−1. The temperature term in the continuity equation is omitted, i.e. β̄s f is

set to 0. The coefficient kβut
T

is selected as 1.0. The bulk modulus of the outside

water is β= 103 MPa. The vorticity constraint is omitted throughout this numerical

example.
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Extension to nonisothermal case

We note that in this numerical example, we assumed the temperature depen-

dence of the material parameters of dam material. However, this assumption can

be omitted without significant influence on the computed results, because the

temperature in the dam varies in a relatively narrow range.

The computed temperature distribution in the body of the dam is shown in

Figure 5.13. We can conclude that the temperature variation (Figure 5.12b) affect

the temperature less than 0.5 m into a cross-section, which is due to the high heat

capacity and relatively low thermal conductivity of the dam material.
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Figure 5.13 Temperature evolution in the dam

The broken cohesive links in increasing softening at the end of the loading

program are shown in Figures 5.14a-5.14c. The broken cohesive links can be inter-

preted as cracks formed and still propagating in the dam. Thus, we can conclude

that the temperature variation contributes to cracking near the exposed surfaces.

(a) Broken cohesive
links: mode I

(b) Broken cohesive
links: mode II

(c) Broken cohesive
links: mode III

Figure 5.14 Broken cohesive links in increasing softening near exposed surfaces

The computed horizontal displacements (x direction) of the tip of the dam

→ point A(3, 3, 6)[m] for thermal loading phase are shown in Figure 5.15a. The

distribution of horizontal displacements at the end of the loading program is shown

in Figure 5.15b.
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Figure 5.15 Horizontal displacements, x direction

The proposed numerical analysis can be further extended to account for the

loading history throughout the dam operating period, which allows for a more pre-

cise investigation of the current state and remaining resistance of the existing dams.

The safety analysis of this kind involves more complex loading program, which

includes ambient temperature variations over the dam operating period. Namely,

the large seasonal ambient temperature changes contribute to the long-term degra-

dation in dam structure. Hence, aside from the self-weight and hydrostatic loading

of the external reservoir, which are considered as the fundamental load cases, the

effects of the large seasonal ambient temperature changes have to be computed in

order to set the initial conditions for the computation of remaining resistance. The

ambient temperatures over a period of months or years, depending on the dam

operating period, are obtained from in-situ data measurements, and can include

daily temperature variations, the weekly averages or can be approximated by si-

nusoidal function if the data follow sinusoidal pattern (Figure 5.16, for illustrative

purposes not result of real data measurements). To more precisely model the ef-

fects of ambient temperature changes on the response of dam structure, convective

heat transfer as a result of temperature differences between exposed surfaces and

ambient temperature should be added in the numerical model, as well as radiation.

The self-weight, hydrostatic loading, and long-term temperature effects define

initial conditions for further safety analysis, which can also include accidental

loads such as earthquake or fire that can occur during a dam lifespan. From
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the standpoint of engineering practice, it is essential to be able to quantify the

remaining resistance of the structure, which previously experienced considerable

damage from extreme loads of this kind.
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Figure 5.16 Sinusoidal ambient temperature change, illustrative example

To decrease computational cost, this kind of numerical analysis would require,

operator split solution procedure with multi-scale analysis in time can be utilized

[156, 157]. Namely, a large time step can be selected for the thermal part followed

by a number of smaller time steps for the mechanical part, where the time step

during mechanical computation can be controlled with the damage growth.

5.5 Concluding remarks

In this Chapter, we presented a coupled discrete beam lattice model of structure

built of a nonisothermal saturated porous medium, which is an extension of the

coupled discrete beam lattice model previously presented in Chapter 4, for the

isothermal case.

We have confirmed through the results of validation computations in the linear

elastic regime of structure response that the coefficient of thermal conductivity, the

effective heat capacity and the thermal expansion coefficient of coupled discrete

beam lattice model closely match those of an equivalent continuum model. Hence,

they can be easily identified from standard experimental tests.

Next, we have illustrated the temperature effects on the stiffness and load

carrying capacity of the structure by implementing the linear temperature depen-

dence of the material parameters. The parameter controlling the temperature

dependence has to be identified through more elaborate parameter identification

procedures.

Finally, we have simulated the response and cracking of the dam structure

subjected to combined mechanical and thermal loads. This type of numerical

analysis can be further extended to failure analyses, that can also account for
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the long-term effects of the large seasonal ambient temperature changes on the

integrity and durability of the dam structure.
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CHAPTER 6

CONCLUSIONS AND PERSPECTIVES

Conclusions

In this thesis, we studied the issue of the overall safety of structures built of saturated

poro-plastic cohesive material in application to acoustic fluid-structure interaction

problems, such as dam-reservoir interaction. We presented a novel approach

to numerical modeling of dam-reservoir interaction, with the emphasis on the

numerical representations of the structure and the external fluid.

The first feature of the proposed approach is the numerical representation of the

structure in terms of a saturated porous medium. The macro-scale response and

ultimate failure modes in the pore-saturated structure are captured with a coupled

discrete beam lattice model based on Voronoi cell representation of the domain

with cohesive links as inelastic Timoshenko beam finite elements enhanced with

additional kinematics in terms of embedded strong discontinuities. The internal

interaction of solid phase and pore fluid is handled with Biot’s porous media theory

and Darcy’s law for pore fluid flow, resulting with an additional pressure-type

degree of freedom placed at each node of a Timoshenko beam finite element.

The second feature of the proposed approach is the representation of the small

motion of external fluid in confined conditions with the acoustic wave theory,

Lagrangian formulation and mixed displacement/pressure finite element approx-

imation, resulting with the displacement and pressure degrees of freedom. The

finite element representations of the pore-saturated structure and the external

fluid allows for the structure and the external fluid finite elements to share the dis-

placement and pressure degrees of freedom. Thus, the issue of the fluid-structure

interface is solved in an efficient and straightforward manner by directly connecting

the structure and external fluid finite elements at common nodes.
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The proposed numerical models of pore-saturated structure, external fluid

and ultimately numerical model of acoustic fluid-structure interaction are first

presented in 2D framework, and later extended to the 3D framework. The proposed

numerical model of the pore-saturated structure in the 3D framework is further

extended to the nonisothermal case.

We performed several numerical simulations with the aim to test the potential

applications of the proposed approach. The successful application of discrete

lattice models depends on the appropriate modeling of the micro-scale, which is in

this case represented by enhanced Timoshenko beam finite elements. The results

of numerical simulations of pore-saturated structure response demonstrate the

proposed coupled discrete beam lattice capabilities to predict the complete macro-

scale response and to capture true failure modes in the pore-saturated structure

under extreme loads. The numerical simulations performed in linear elastic regime

confirm that the coefficient of permeability, the coefficient of thermal conductivity,

the effective heat capacity and the thermal expansion coefficient of coupled discrete

beam lattice model closely match those of an equivalent continuum model, thus

can be obtained directly as a result of standard experimental tests. The linear

elastic parameters of Timoshenko beam finite element can be easily identified from

standard experimental tests in combination with numerical tests, as shown in the

numerical examples. Other parameters, such as yield and fracture limits, have to

be identified through more elaborate parameter identification procedures such as

the probability based ones.

The numerical simulations of acoustic fluid-structure interaction show that the

proposed numerical model of interaction ensures the direct exchange of both the

motion and the pressure at the fluid-structure interface. Thus, we are able to take

into account the influence of the external fluid acting both as the source of pore

saturation and the source of external loading on the structure. The results of nu-

merical simulations in the linear elastic regime of structure response confirm that

the proposed numerical model is able to predict the hydrostatic and hydrodynamic

pressure distributions in close agreement with analytical solutions. Furthermore,

the numerical simulations in the nonlinear regime of structure response illustrate

the proposed numerical model ability to deal with the progressive localized failure

of pore-saturated dam structure in interaction with the reservoir under extreme

loads. Thus, we are able to quantify the remaining resistance and to provide an

overall safety assessment of dam structure to potential overload with respect to

fundamental load cases.
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The proposed approach for acoustic fluid-structure interaction can have practical

importance and can be used in various situations in engineering practice. The

proposed numerical model of fluid-structure interaction can be used for predicting

the safety and durability of existing dams in Bosnia and Herzegovina while taking

into account existing defects or weak spots in the dam structure. It could also serve

as a tool for numerical computations in the structural analysis and design of new

dams and reservoirs.

Future works on the presented research include

• Testing the application of the 3D model of acoustic fluid-structure interaction

in failure analyses of dam structures with complex geometries.

• Failure analyses of dam structure with complex loading programs involv-

ing large seasonal ambient temperature variations and extreme mechanical

loads.

• Implementation of probability based identification procedures for determin-

ing the material parameters of Timoshenko beam finite element, such as

yield limits, fracture limits and fracture energies, which would enable the

comparison of numerical results with in-situ data measurements of real dam

structures.

• Development of the coupled discrete beam lattice model of the structure

built of a partially saturated porous medium.
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Stochastic dynamic response of dam–reservoir–foundation systems to spa-
tially varying earthquake ground motions. Soil Dynamics and Earthquake
Engineering, 29(3):444–458, 2009.

172



References

[82] L. Pelecanos, S. Kontoe, and L. Zdravković. Numerical modelling of hydrody-
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