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ÉCOLE DOCTORALE Sciences des Métiers de l’Ingénieur
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Gaëtan Kerschen
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faits maison, pour les fous rires à la cantine, pour les tournées de café. Et
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Résumé

Cette thèse de doctorat s’intéresse au développement de réseaux piézoélectriques analogues pour

l’amortissement vibratoire de structures complexes. L’objectif est d’atténuer les vibrations des modes

de plus grandes longueurs d’ondes de structures qu’on recouvre de patchs piézoélectriques, afin de les

coupler à des réseaux qui présentent des propriétés identiques de propagation d’onde. Pour ce faire,

on détaille une méthode permettant de définir l’analogue électrique de toute structure mécanique.

On applique cette méthode à des cas standards de propagation d’ondes mécaniques pour former

une bibliothèque de cellules électriques analogues. Le cas d’une plaque rectangulaire recouverte de

patchs piézoélectriques est ensuite traité. On assemble un réseau analogue à l’aide d’éléments de la

bibliothèque précédemment obtenue. Un dimensionnement adéquat des composants magnétiques du

réseau assure qu’il soit de nature purement passive. La connexion de la plaque à son réseau analogue

résulte en un amortissement multimodal, ce qui illustre l’efficacité de cette solution d’amortissement.

En parallèle, un modèle éléments finis d’une structure couplée à un réseau électrique par des patchs

piézoélectriques est développé. La comparaison entre résultats expérimentaux et simulés permet de

valider ce modèle. Il est par conséquent utilisé pour finalement aborder l’amortissement large bande de

structures complexes à travers des exemples numériques de plaques complexes et de structures à une

courbure. Les résultats sont prometteurs, puisqu’ils illustrent la possibilité d’appliquer à des structures

complexes l’amortissement multimodal par couplage à des réseaux piézoélectriques analogues purement

passifs.

Mots-clefs: Couplage piézoélectrique, Amortissement vibratoire multimodal, Réseau analogue

passif, Structures complexes, Analogie électromécanique directe, Modélisation éléments finis, Com-

paraisons calculs-essais.

7
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Abstract

This doctoral thesis focuses on the development of analogous piezoelectric networks for broadband

damping of complex structures. The objective is to damp the modes of largest wavelengths of me-

chanical structures, which are covered by piezoelectric patches in order to couple them to fully passive

electrical networks which exhibit similar wave propagating properties. To do so, we first propose a

method to derive the electrical analogue of any mechanical structure. It is applied to create a library

of elementary analogues that represent classical wave propagation cases. Then, the electrical analogue

of a rectangular plate covered by piezoelectric transducers is assembled with elements from the library.

Following design methods of passive inductors and transformers, the produced network is fully passive.

Vibration tests highlight the mitigation efficiency of the concept when the plate is connected to its

analogous network. Meanwhile, we develop a finite element model of a structure covered with thin

piezoelectric transducers connected to a lumped electrical network. Comparisons with experiments

validate this model. Thus it is used to finally investigate the achievable performance of piezoelectric

network damping applied to complex structures, such as complex plates and single curved structures

numerical examples. Results are promising: they highlight it might be possible to develop fully passive

piezoelectric analogous networks to damp vibrations of complex structures.

Keywords: Piezoelectric coupling, Broadband vibration mitigation, Passive analogous network,

Complex structures, Direct electromechanical analogy, Finite element modeling, Experimental com-

parisons.
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Résumé étendu

I Introduction

Les vibrations de structures minces en ingénierie mécanique génèrent de l’endommagement et du

bruit, et donc une réduction de la durée de vie des pièces concernées. De ce fait, de nombreuses solu-

tions d’amortissement des vibrations mécaniques continuent d’être développées. On se concentre dans

cette thèse sur la solution consistant à recouvrir une structure de transducteurs piézoélectriques et à les

interconnecter par des composants électriques. L’avantage des réseaux piézoélectriques ainsi formés

par rapport aux solutions de shunts multi-résonants [31] ou d’ensembles de patchs piézoélectriques

indépendamment shuntés [36] est que tous les patchs participent au couplage électromécanique sur la

plage de fréquence considérée. Cela permet de maximiser les facteurs de couplage électromécanique,

et donc la performance théorique d’atténuation. En outre, on réduit ainsi les valeurs des composants

inductifs nécessaires [51], ce qui rend envisageable une intégration purement passive [85].

Par ailleurs, Vidoli et dell’Isola ont démontré l’intérêt de coupler une structure à un milieu qui

présente des propriétés de propagation d’ondes similaires dans un contexte d’amortissement large

bande des vibrations [63]. Cela revient à coupler une structure à un amortisseur à masse accordée multi-

modal réparti sur la structure. La situation présentée sur la figure 1 est une illustration mécanique

du phénomène étudié: deux plaques identiques P1 et P2 sont couplées par des ressorts longitudinaux.

La formulation éléments finis du système couplé utilisée pour les simulations en régime harmonique à

la pulsation Ω est la suivante:⎡⎣⎛⎝ K1 −Kc

−Kc
T (1 + 2jξ) K2

⎞⎠− Ω2

⎛⎝M1 0
0 M2

⎞⎠⎤⎦⎛⎝U1

U2

⎞⎠ =

⎛⎝F1

F2

⎞⎠ , (1)

avec respectivement M j , Kj , U j et F j représentant la matrice de masse, la matrice de rigidité, le

vecteur des déplacements nodaux et le vecteur des chargements mécaniques externes pour la plaque Pj .
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RÉSUMÉ ÉTENDU

•

x

z
y

•

x

z

P1 P2 P1 P2

Figure 1: Couplage de deux structures analogues par des ressorts longitudinaux. Bien qu’elles ne
soient pas représentées, les conditions aux limites sont similaires pour les deux structures.

�

Figure 2: À gauche: • (x, y) emplacements des ressorts reliant les déplacements suivant z de deux
plaques identiques, et � (x, y) emplacement de l’excitation et de la mesure. À droite: FRF correspon-
dante quand la plaque P1 n’est pas couplée à la plaque P2, est couplée à une plaque P2
avec ξ = 0, et est couplée à une plaque P2 avec ξ = 1 %.

Kc désigne la matrice de couplage, qui dépend des raideurs des ressorts reliant les deux plaques, ξ est

le coefficient d’amortissement mécanique pris en compte dans le modèle de la plaque P2, et j
2 = −1.

Un exemple du couplage simulé pour des ressorts adaptés aux plaques considérées est représenté

sur la figure 2. La fonction de réponse en fréquence (FRF) montre qu’un couplage multimodal se

produit entre les deux plaques conservatives. En effet, pour tout mode de la plaque P1, on constate

deux modes résultants lorsque P1 et P2 sont couplés. C’est un résultat classique pour les systèmes

résonants couplés. Enfin, on parvient à amortir les premiers modes de vibration de la plaque P1 dès

que ξ est non nul.

La possibilité de reproduire les résultats de la figure 2 avec un couplage piézoélectrique est étudiée

dans ce manuscrit. En d’autres termes, le but est de remplacer l’absorbeur P2 par un réseau multi-

résonant, qui est l’analogue électrique de la structure vibrante. Les ressorts sont donc remplacés

12



RÉSUMÉ ÉTENDU

par des transducteurs piézoélectriques, et des résistances ajoutées dans le réseau servent à amortir les

vibrations. Environ quinze ans après l’article de Vidoli et dell’Isola, des démonstrations expérimentales

de l’efficacité d’un couplage à un réseau analogue ont été menées pour les barres [70], les poutres [71]

et les plaques [72]. Il reste maintenant à prouver l’efficacité de la méthode pour des structures plus

complexes. Cela nécessite donc de développer les analogues électriques de structures quelconques,

ainsi qu’un modèle prédictif du couplage d’une structure à un réseau électrique par transducteurs

piézoélectriques. Ce résumé étendu synthétise les méthodes proposées et les avancées liées à ce sujet.

Objectifs

Les objectifs de ce travail sont les suivants:

• Créer une bibliothèque d’analogues électriques élémentaires.

• Proposer une méthode d’obtention d’analogues électriques de structures complexes à basse
fréquence, basée sur l’assemblage d’analogues élémentaires de la bibliothèque.

• Développer un modèle prédictif éléments finis d’une structure couverte par des patchs
piézoélectriques et couplée à un réseau électrique.

• Développer des outils pour valider l’analogie entre une structure et un réseau électrique.

• Étudier l’amortissement multimodal par couplage à un réseau piézoélectrique analogue,
tout en s’assurant qu’une réalisation entièrement passive serait réalisable en pratique.

II Bibliothèque d’analogues électriques de structures mécaniques

Dans ce chapitre, on propose une méthode de développement d’analogues électriques passifs de

structures mécaniques, ainsi que les outils de validation associés. Cette méthode est ensuite appliquée

à des cas de barres en traction/compression ou en torsion, poutres droites et courbes, plaques et tubes.

II.1 Méthode

Puisqu’on se concentre sur le développement d’analogues électriques purement passifs de structures

mécaniques, seuls les composants électriques représentés sur la figure 3 peuvent être utilisés. Ces

composants sont une bobine d’inductance L, un condensateur de capacité C, une résistance de valeurR,

et un transformateur de rapport â. On donne leurs relations caractéristiques:

13



RÉSUMÉ ÉTENDU

L

VL

iL

(a)

C

VCiC

(b)

R

VRiR

(c)

N1 N2

V1 V2

i1 i2⋆ ⋆

(d)

Figure 3: Représentation des quatre composants idéaux purement passifs: (a) une bobine
d’inductance L, (b) un condensateur de capacité C, (c) une résistance de valeur R, et (d) un trans-
formateur à N1 tours au primaire et N2 tours au secondaire.

VL = L
diL
dt
, iC = C

dVC
dt

, VR = R iR, â = N1
N2

= i2
i1

= V1
V2
. (2)

Les vibrations des milieux mécaniques continus peuvent être décrites par des équations différen-

tielles partielles reliant les déplacements aux actions mécaniques extérieures. Ces équations découlent

des théories des vibrations des barres minces, des poutres droites et courbes d’Euler-Bernoulli et des

plaques de Kirchhoff-Love. On écrit ces équations en régime harmonique, ce qui correspond donc à

remplacer la dérivée temporelle de toute quantité g par jΩg, avec Ω la pulsation et j2 = −1. Ces

équations différentielles sont généralement d’ordre supérieur à 1. Au regard des équations carac-

téristiques (2), il est nécessaire d’exprimer la dynamique de la structure par un système équivalent

d’équations différentielles du premier ordre ou d’ordre zéro. On définit donc des quantités mécaniques

intermédiaires, comme par exemple le moment de flexion, l’effort tranchant et l’inclinaison pour une

poutre d’Euler-Bernoulli. On applique ensuite un schéma différences finies au système d’équations

obtenues, ce qui résulte en un modèle mécanique discret de la structure.

Puis, on applique l’analogie électromécanique directe [77] qui est résumée dans le tableau 1. Cette

analogie stipule que la vitesse est analogue au courant électrique, et que les actions mécaniques sont

analogues aux tensions. On obtient ainsi un circuit électrique qui représente la dynamique de la struc-

ture mécanique discrétisée. En assemblant plusieurs de ces cellules élémentaires électriques, on crée

un réseau qui reproduit dans le domaine électrique la dynamique de la structure mécanique complète.

Le réseau ainsi développé est un système multirésonant, dont les propriétés modales peuvent être

modifiées en agissant sur ses conditions aux limites et sur les caractéristiques de ses composants. Par

conséquent, des conditions doivent s’appliquer pour que le réseau présente les propriétés de propagation

d’ondes souhaitées:
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Quantités mécaniques Quantités électriques

Effort −F et moment −M Tension V

Vitesse en translation u̇ et vitesse de rotation θ̇ Courant électrique i

Déplacement u et orientation θ Charge électrique q

Souplesse Capacité C

Masse et inertie en rotation Inductance L

Amortissement visqueux Résistance R

Tableau 1: Analogie électromécanique directe.

La condition de cohérence spatiale: Le réseau électrique doit présenter les mêmes formes

modales que la structure. Pour ce faire, il faut d’une part que le réseau soit composé de cellules

électriques qui représentent correctement le comportement dynamique de la structure. D’autre part,

les conditions limites doivent être reproduites de façon analogue dans le réseau. Enfin, le nombre

d’éléments du réseau doit être suffisant pour que le mode de plus petite longueur d’onde de la plage

de fréquence considérée soit convenablement reproduit. Un critère usuel est d’utiliser au moins dix

éléments par longueur d’onde. La vérification de la condition de cohérence spatiale peut être menée à

l’aide du Modal Assurance Criterion (MAC) [87].

La condition de cohérence fréquentielle: Si la condition de cohérence spatiale est vérifiée, alors

assurer les mêmes propriétés de propagation d’ondes dans les deux milieux est équivalent à imposer

des fréquences propres mécaniques et électriques égales. Par conséquent, les composants électriques du

réseau doivent être réglés dans cette optique. La vérification de la condition de cohérence fréquentielle

est menée par une comparaison directe des fréquences propres.

II.2 Bibliothèque

En appliquant la méthode décrite, on obtient les analogues électriques de structures soumises à

des sollicitations classiques. La bibliothèque de cellules unitaires est présentée à la page suivante. On

suggère donc d’assembler des éléments issus de cette bibliothèque afin de reproduire dans le domaine

électrique le comportement mécanique de structures plus complexes discrétisées.
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Bibliothèque d’analogues électriques élémentaires de structures mécaniques

Barre en
traction/compression

Traction/compression
1D

Barre en torsion Torsion 1D

Poutre Flexion 1D

Plaque carrée Flexion 2D

Poutre courbe
Couplage flexion
/traction 1D

Tube
Flexion 2D et couplage
flexion/traction 1D
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III Modèle éléments finis d’une structure couplée à un réseau élec-
trique

Dans ce manuscrit, nous rappelons d’abord la formulation éléments finis d’une structure recouverte

par des transducteurs piézoélectriques fins [92]. Ce modèle est validé par comparaison à l’expérience.

Nous construisons ensuite une formulation du problème d’une structure couplée à un réseau électrique

assemblé à partir de cellules élémentaires.

III.1 Modèle d’une structure recouverte de patchs piézoélectriques

Nous faisons les hypothèses suivantes:

• La théorie des petites déformations s’applique.

• Le champ électrique E dérive d’un potentiel scalaire V .

• La couche adhésive entre la structure et les transducteurs piézoélectriques est négligée.

• Les épaisseurs des électrodes sont négligées, et les électrodes basses sont mises à la terre.

• Il n’y a pas de charges électriques libres sur les côtés des patchs piézoélectriques.

• Les transducteurs piézoélectriques sont fins et polarisés dans les directions orthogonales aux

électrodes, et le matériau est modélisé comme un milieu transverse isotrope.

• La structure hôte est modélisée comme un milieu élastique linéaire homogène isotrope.

La formulation éléments finis du problème ainsi posé est la suivante:⎡⎣⎛⎝Km + KcKeKc
T KcKe

(KcKe)T Ke

⎞⎠+ jΩ

⎛⎝Dm 0
0 0

⎞⎠− Ω2

⎛⎝Mm 0
0 0

⎞⎠⎤⎦⎛⎝U

Q

⎞⎠ =

⎛⎝F

V

⎞⎠ . (3)

Avec ces notations, F contient les actions mécaniques extérieures appliquées à la structure, tandis que

Q et V contiennent respectivement les charges et potentiels électriques sur les électrodes supérieures

des patchs piézoélectriques. Par ailleurs, Mm, Dm et Km sont respectivement les matrices de masse,

d’amortissement et de rigidité de la structure, Kc est la matrice de couplage, et Ke est une matrice

diagonale dans laquelle le j-ème terme est l’inverse de la capacité piézoélectrique bloquée Cε(j), qui

peut être estimée à partir de constantes matériaux.
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(a) • x
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(b)

Figure 4: (a) Plaque en alliage d’aluminium périodiquement recouverte de 42 patchs piézoélectriques
et en appuis simples sur un cadre en acier. (b) Dimensions de la structure et maillage correspondant,
sur lequel • (x, y) l’emplacement des mesures d’excitation et de vitesse est indiqué.

Figure 5: Comparaison de la FRF simulée à la FRF mesurée lorsque les patchs piézoélec-
triques sont connectés en court-circuit.

Ce modèle est validé par comparaison avec une mesure effectuée sur la structure représentée en

figure 4: il s’agit d’une plaque rectangulaire en alliage d’aluminium, d’épaisseur constante et péri-

odiquement recouverte de patchs piézoélectriques carrés en matériau PIC 153. Un effort ponctuel est

appliqué sur la surface de la plaque recouverte de patchs piézoélectriques à la position (x, y) indiquée

sur la figure 4b. On mesure la vitesse au point de mêmes coordonnées (x, y) situé sur la face nue de la

plaque. La comparaison en figure 5 entre résultats expérimentaux et simulés à l’aide de l’équation (3)

avec des patchs piézoélectriques court-circuités prouve que le modèle développé est capable de prédire

le comportement de la structure.
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⎡⎢⎢⎢⎣
Kelm

Delm

Melm

⎤⎥⎥⎥⎦
Figure 6: Couplage d’une structure à un réseau électrique par un ensemble de patchs piézoélectriques.
Pour des raisons de lisibilité, seuls quelques fils de connexion sont représentés.

III.2 Modèle d’une structure couplée à un réseau électrique

Pour modéliser le comportement d’une structure couplée par des patchs piézoélectriques à un

réseau électrique, comme représenté sur la figure 6, on fait deux hypothèses supplémentaires:

• La dynamique des cellules élémentaires du réseau est décrite par des matrices élémentaires de

“raideur” électrique Kelm, d’amortissement électrique Delm et de “masse” électrique Melm.

Celles-ci dépendent respectivement des composants capacitifs, dissipatifs et inductifs du réseau,

ainsi que des rapports des transformateurs éventuellement inclus. Elles permettent de relier

localement les courants électriques et les tensions aux bords des cellules.

• Les composants du réseau se comportent linéairement, et on reste dans le cadre de la piézoélec-

tricité linéaire. Ainsi, le réseau électrique se comporte linéairement avec les sources d’excitation.

Par conséquent, suite à un assemblage géométrique similaire à celui de la méthode des éléments

finis, on obtient des matrices générales de “masse” électrique MN , d’amortissement électrique DN et

de “raideur” électrique KN à partir des modèles de comportement des cellules élémentaires du réseau.

Ces matrices permettent de relier les vecteurs de tensions VN et de courants QN du réseau lorsque

celui-ci n’est pas couplé à la structure:

VN =
(
KN + jΩDN − Ω2MN

)
QN . (4)
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Le couplage de la structure à un réseau électrique se fait donc en combinant les équations (3) et (4).

Une matrice P doit être définie pour prendre en compte la façon dont la structure est connectée au

réseau. La formulation obtenue est alors⎡⎣⎛⎝Km + KcKeKc
T KcKeP

(KcKeP )T KN

⎞⎠+ jΩ

⎛⎝Dm 0
0 DN

⎞⎠− Ω2

⎛⎝Mm 0
0 MN

⎞⎠⎤⎦⎛⎝ U

QN

⎞⎠ =

⎛⎝ F

VN

⎞⎠ . (5)

Cette expression est similaire à l’équation (1), à ceci près que des matrices d’amortissement électrique

et mécanique ont été rajoutées. L’originalité de ce modèle réside dans le couplage d’un modèle éléments

finis 3D à un réseau décrit par un ensemble d’équations discrètes. En outre, cette formulation présente

l’avantage de pouvoir être appliquée après les assemblages indépendants des systèmes mécaniques et

électriques.

IV Amortissement d’une plaque par couplage à un réseau piézoélec-
trique analogue

Le but de ce chapitre est de concevoir l’analogue électrique de la plaque rectangulaire en appuis

simples visible sur la figure 4a. On détaille pour cela les méthodes de conception des bobines et des

transformateurs pour s’assurer que le réseau assemblé soit peu résistif. L’analogie entre la structure et

le réseau électrique est ensuite validée. Enfin, on vérifie qu’on obtient bien une atténuation multimodale

des vibrations de la plaque, et les résultats expérimentaux sont utilisés pour valider le modèle éléments

finis couplé représenté par l’équation (5).

IV.1 Dimensionnement de bobines et de transformateurs

Tous les circuits électriques définis dans la bibliothèque d’éléments analogues contiennent des

bobines, et certains incluent des transformateurs. Leur conception est donc primordiale. En effet,

le but reste de concevoir des réseaux analogues purement passifs et dont les éléments dissipatifs sont

suffisamment faibles pour éviter le sur-amortissement de la structure à laquelle ils seront couplés. Les

méthodes de dimensionnement qu’on suit [101, 106, 3] permettent d’atteindre ces objectifs.

On propose de réaliser une bobine par l’enroulement deN tours de fil conducteur autour d’un circuit

magnétique de perméabilité µ, fait en matériau ferrite et comprenant un entrefer δ, comme représenté

sur la figure 7a. À basses fréquences et bas niveaux de courants électriques, un modèle réaliste des

20
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Lignes de flux

δ
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(µ0)

VL

iL

(a)

L

RsL

Rp
VL

iL

(b)

Figure 7: (a) Circuit magnétique avec entrefer autour duquel du fil conducteur est enroulé, et (b) mod-
èle électrique du composant inductif ainsi réalisé.

Lignes de flux

N1 N2

(µ)

(µ0)

i1 i2

V1 V2

(a)

RsT Ll

LmRm

Cw

N1 N2
⋆ ⋆

i1 i2

V1 V2

(b)

Figure 8: (a) Circuit magnétique torique sans entrefer et avec deux enroulements de fil conducteur, et
(b) modèle électrique à basse fréquence du transformateur non-idéal ainsi réalisé.

bobines est dessiné sur la figure 7b et comprend une inductance L, une résistance série RsL qui

modélise les pertes cuivre et une résistance parallèle Rp modélisant les pertes magnétiques. Il convient

de choisir le matériau ferrite et les caractéristiques géométriques du circuit magnétique en fonction

de l’application. En effet, le volume et la masse des composants magnétiques dépend principalement

de l’énergie qu’ils doivent pouvoir stocker. Par ailleurs, on montre que des compromis sont à trouver

entre des bobines peu dissipatives et des inductances peu dépendantes des facteurs environnementaux.

Quant aux transformateurs, on propose de les réaliser grâce à deux enroulements de N1 et N2 tours

de fil conducteur autour d’un même circuit magnétique en matériau nanocristallin, comme dessiné sur

la figure 8a. Un modèle de transformateur à basses fréquences et bas niveaux de courants électriques

est présenté sur la figure 8b. Le circuit équivalent fait intervenir une inductance magnétisante Lm et

une inductance de fuite Ll qui modélisent une perméabilité finie du circuit magnétique, une résistance
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Figure 9: Deux bobines et un transformateur réalisés par enroulements de fil conducteur autour de
circuits magnétiques.

série RsT qui représente les pertes cuivre, une résistance parallèle Rm qui modélise les pertes fer, et

une capacité inter-enroulements Cw qui représente l’interaction électrostatique entre les enroulements

du transformateur. Les transformateurs étant usuellement les composants les plus volumineux en

électrotechnique, le choix sur des critères énergétiques du matériau nanocristallin dont est fait le

circuit magnétique revêt une grande importance. De plus, on montre qu’un doit trouver un compromis

entre des transformateurs peu dissipatifs et des transformateurs ayant une influence limitée sur le

comportement fréquentiel du réseau.

Dans la mesure du possible, les problématiques explicitées ci-dessus ont été prises en compte pour

fabriquer les composants requis. La figure 9 montre quelques composants réalisés dans le cadre de

cette thèse. Ces composants ont été caractérisés à basses fréquences et faibles courants électriques afin

d’identifier les valeurs requises pour les modèles présentés en figures 7b et 8b.

IV.2 Validation du réseau assemblé

L’objectif est de développer l’analogue électrique de la plaque rectangulaire recouverte de patchs

piézoélectriques précédemment décrite. Parmi les éléments de la bibliothèque d’analogues électriques,

on sélectionne la plaque carrée comme cellule unitaire du réseau. Ce dernier est composé de 7 éléments

sur la longueur et de 6 éléments sur la largeur. Ainsi, un réseau composé de 42 cellules unitaires

identiques a été assemblé. La structure et son réseau analogue sont photographiés en figures 10a et 10b.

La figure 11b permet d’examiner une cellule unitaire de plus près. Elle peut être comparée au circuit

issu de la bibliothèque d’éléments analogues dessiné en figure 11a. Les bobines et transformateurs du

réseau sont les composants photographiés en figure 9.
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Figure 10: (a) Plaque rectangulaire recouverte de 42 patchs piézoélectriques et (b) son réseau analogue
formé de 42 cellules unitaires.

iL 1:
1

â/2:1

â/2:1

â/2:1

L

C

VL

(a)
(b)

Figure 11: (a) Représentation idéale schématique et (b) photographie de l’analogue électrique d’une
plaque carrée, sur lesquelles sont encadrés le transformateur central en rouge, un transformateur de
bord de cellule en bleu, une bobine en vert, et le point de connexion avec les condensateurs en jaune.

On procède ensuite à la validation du modèle du réseau décrit par l’équation (4). Pour cela, on

impose une tension kVexc entre deux cellules du réseau, ce qui est analogue à imposer un effort ponctuel

sur la structure. On trace ensuite l’évolution avec la fréquence de la tension VL aux bornes d’une bobine

du réseau. Les résultats simulés prennent en compte uniquement les résistances séries RsL et RsT

parmi les imperfections représentées sur les circuits des figures 7b et 8b. En figure 12, la comparaison

aux mesures permet de valider le modèle du réseau électrique.
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RÉSUMÉ ÉTENDU

Figure 12: FRF de VL/kVexc mesurée et simulée. Quelques déformées opérationnelles
mesurées de courant électrique sont représentées aux pics de la FRF mesurée.

Figure 13: MAC entre les 50 premiers modes de vitesse de la plaque recouverte de patchs piézoélec-
triques et les 42 premiers modes de courant électrique du réseau. Les petits marqueurs � indiquent les
couples de modes clairement identifiés, qui sont par conséquent reportés sur la figure 14.

Pente = 1 Pente = 0.85

Figure 14: Comparaison entre les fréquences propres électriques du réseau et mécaniques de la plaque.
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IV.3 Validation de l’analogie

Les composants électriques du réseau sont réglés en appliquant la condition de cohérence fréquen-

tielle. Celle-ci est spécifique à l’analogue électrique de la plaque carrée qu’on a sélectionné dans la

bibliothèque:

1
a2

KE
θ

m
= 1
â2

1
LCst

. (6)

Dans cette expression, a représente le côté de la cellule unitaire, m sa masse, et KE
θ sa raideur en

flexion lorsque les patchs piézoélectriques sont court-circuités. De plus, â intervient dans les rapports

de transformation des transformateurs de bord de cellule, L est l’inductance centrale, et Cst est la

capacité piézoélectrique statique, supposée égale à la capacité à 0 Hz. Ces composants sont indiqués

sur la figure 11a, où C devrait être remplacé par Cst. Les paramètres mécaniques de l’équation (6)

sont estimés à partir de modèles mécaniques simples, et Cst à partir du modèle éléments finis de

l’équation (3). En fixant â, on déduit donc la valeur de L requise.

Une fois les composants du réseau définis, on procède à la validation de l’analogie entre le réseau

et la plaque. Pour cela, on compare les modes simulés à l’aide des modèles prédictifs exprimés par les

équations (3) et (4). La matrice de MAC obtenue est tracée en figure 13. Elle n’est pas diagonale,

puisqu’on compare des résultats issus d’un modèle continu à des résultats simulés à l’aide d’un modèle

différences finies. Cela étant, on visualise que la condition de cohérence spatiale est vérifiée pour un

grand nombre de modes. Puis, les fréquences propres des paires de modes clairement identifiées sont

reportées et comparées en figure 14. En supposant un écart acceptable de 15 % entre elles, la condition

de cohérence fréquentielle est validée pour les onze premiers modes, ce qui représente une bande de

fréquences de près de 900 Hz. On peut donc donc considérer que le réseau assemblé se comporte bel

et bien en analogue de la plaque étudiée jusqu’à environ 900 Hz.

Par ailleurs, on peut montrer que l’augmentation du nombre de cellules du réseau fait converger

ses propriétés modales vers celles de la plaque estimées par le modèle éléments finis. Cela permet ainsi

de faire tendre la matrice de MAC vers une matrice diagonale. Autrement dit, discrétiser davantage

le réseau électrique permet d’élargir la bande de fréquence sur laquelle l’analogie entre la structure et

le réseau est validée.
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Figure 15: Photographie du montage expérimental, comprenant la plaque recouverte de transducteurs
piézoélectriques, un pot vibrant, un vibromètre laser et le réseau électrique analogue.

Figure 16: Comparaison de FRFs en vitesse obtenues par mesure avec les patchs piézoélectriques
en court-circuit, mesure et simulation quand la plaque est connectée à son réseau électrique
analogue.
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IV.4 Amortissement multimodal de la structure

Le cas de la structure couplée à son analogue électrique passif est finalement étudié. Le montage

expérimental est photographié en figure 15. Un pot vibrant applique une charge ponctuelle sur la

surface de la plaque sur laquelle les patchs piézoélectriques sont collés, et un vibromètre laser mesure

le mouvement induit de l’autre côté de la plaque. Comme le montre la figure 16, le comportement

dynamique de la structure est nettement altéré par la connexion au réseau électrique. Après les

montages expérimentaux proposés dans [70, 71, 72], il s’agit ici d’une illustration supplémentaire

qu’il est possible d’atténuer les vibrations sur une large gamme de fréquences au moyen du couplage

piézoélectrique d’une plaque à son analogue électrique.

De plus, le modèle de l’équation (5) est capable de prédire la dynamique de la structure couplée

à un réseau électrique. Ce résultat est d’une importance primordiale pour aller vers des structures

complexes. En effet, il valide le modèle précédemment développé: alors qu’on prédit le comportement

de la structure par un modèle éléments finis, on peut y connecter un réseau électrique indépendamment

assemblé par une approche de type éléments finis. Le cas particulier ici traité est le couplage d’un

modèle mécanique 3D à un réseau électrique 2D. On considère donc qu’il peut être utilisé pour le

couplage de toute structure mécanique 3D modélisée par la méthode des éléments finis à un réseau

électrique 1D ou 2D.

V Amortissement de structures complexes par couplage
à des réseaux piézoélectriques

L’objectif du dernier chapitre de ce manuscrit est d’étendre le concept d’amortissement vibratoire

par couplage via patchs piézoélectriques à un réseau électrique analogue à des structures complexes. Le

principe est d’assembler des cellules de la bibliothèque d’analogues électriques pour former des réseaux

analogues adéquats. Un premier cas non périodique permet de valider le modèle de l’équation (5) dans

un cas complexe par comparaison entre mesures et simulations. Les autres structures traitées sont

des exemples numériques d’une plaque à épaisseur variable, d’une plaque avec diverses conditions

aux limites, d’une arche et d’un anneau. L’amortissement vibratoire de ces structures est atteint par

couplage à des réseaux électriques purement passifs.
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Plusieurs sources de complexités de structure peuvent être combinées en pratique. Nous choisissons

de les considérer séparément afin de distinguer leurs effets sur la performance d’amortissement. Les

complexités qu’on est capable de traiter peuvent se classer en trois catégories:

Structures non périodiques: Une fois la structure discrétisée, la distribution des paramètres

discrets peut être non uniforme. Cela peut être dû à des paramètres géométriques variables, tels que

l’épaisseur ou la courbure, ou à des modifications locales induites par des contacts avec des pièces

extérieures.

Complexités de conditions limites: Les seuls cas étudiés dans la littérature scientifique jusqu’à

présent appliquaient les mêmes conditions limites à toutes les extrémités de la structure. Mixer ces

conditions limites est donc une complexité à étudier.

Recouvrement des fréquences propres: Certaines structures peuvent présenter des modes

très proches les uns des autres. C’est le cas notamment des structures presque axisymétriques. Une

autre complexité apparâıt pour les structures dont des modes de différentes natures se situent dans

l’intervalle fréquentiel d’intérêt.

V.1 Méthode

On applique la même méthode pour étudier l’amortissement vibratoire des structures complexes

recouvertes de patchs piézoélectriques de ce chapitre:

• Le point de départ est la sélection de cellules élémentaires dans la bibliothèque d’éléments ana-

logues. Le choix est basé sur la nature des modes de vibration qu’on souhaite atténuer. Un

assemblage géométrique de ces cellules élémentaires forme le réseau analogue de la structure.

• On estime ensuite les paramètres mécaniques et électriques apparaissant dans la condition de

cohérence fréquentielle correspondante. On en déduit les degrés de liberté restants parmi les

composants électriques du réseau en appliquant cette même condition de cohérence fréquentielle.

• Puis, on valide l’analogie entre la structure et le réseau proposé en comparant leurs caractéris-

tiques modales. Celles-ci sont estimées via les modèles des équations (3) et (4). Si les deux

conditions de cohérence sont vérifiées, alors on parlera de couplage modal lors du couplage

entre les systèmes mécaniques et électriques considérés.
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• Une fois la condition de couplage modal vérifiée, on s’attend à obtenir un amortissement

vibratoire multimodal de la structure. La formulation de l’équation (5) sert alors à estimer la

performance d’amortissement atteinte. On y implémente des composants magnétiques certes

non optimisés, mais conçus de façon réaliste.

V.2 Plaque avec une masse ajoutée

Le premier cas de plaque complexe traité ici est l’ajout d’une masse importante sur le côté de la

plaque qui n’est pas recouvert par des patchs piézoélectriques, comme illustré par la figure 17. Cet

ajout permet de rompre la symétrie de la structure. Son réseau analogue devient donc non périodique.

Quelques unes des déformées opérationnelles du réseau adapté, tracées sur la figure 18, en témoignent.

On adapte localement le réseau à la modification de la structure. L’ajout local de masse se traduit

dans le domaine électrique par une augmentation de l’inductance de la cellule correspondante du

réseau. On vérifie par comparaison entre calculs et essais que les modèles des équations (3) et (4)

prédisent correctement le comportement dynamique de la structure et du réseau non périodique. La

comparaison des réponses en fréquence du réseau est notamment illustrée par la figure 18. Puis, on

utilise ces mêmes modèles pour estimer les caractéristiques modales des deux systèmes non couplés.

On estime que l’analogie entre la structure et le réseau est vérifiée pour les sept premiers modes et

jusqu’à environ 600 Hz.

La plaque non périodique est finalement couplée à son analogue électrique passif. La mesure de

FRF est effectuée dans la même configuration que celle présentée en figure 15. Comme le montre la

figure 19, on obtient un amortissement multimodal dans ce cas aussi. Ces résultats valident l’approche

consistant à coupler une structure non périodique à son analogue électrique entièrement passif à des

fins d’amortissement large bande. Par ailleurs, les simulations correspondent assez bien aux mesures.

En l’état, nous supposons par conséquent que le modèle éléments finis développé dans ce manuscrit et

exprimé par l’équation (5) peut prédire la dynamique d’une structure complexe couplée à un réseau

électrique.
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Figure 17: Vues de face et de côté de la plaque sur laquelle une masse est ajoutée.

Figure 18: FRF de VL/kVexc mesurée et simulée. Quelques déformées opérationnelles
mesurées de courant électrique du réseau non périodique sont représentées aux pics de la FRF mesurée,
et la position de la masse ajoutée est représentée en noir.

Figure 19: Comparaison de FRFs en vitesse obtenues par mesure avec les patchs piézoélectriques
en court-circuit, mesure et simulation quand la plaque avec masse ajoutée est connectée à
son réseau électrique analogue.

30
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Faces en appuis simples

Faces encastrées

Figure 20: Plaque rectangulaire recouverte de patchs piézoélectriques et aux conditions limites variées.

V.3 Exemples numériques de structures complexes

Deux autres cas de plaques complexes sont étudiés dans ce manuscrit. Le premier est une plaque à

épaisseur linéairement variable, recouverte de patchs piézoélectriques d’épaisseurs constantes. Ce cas

permet d’étudier une structure dont le réseau analogue est complètement non périodique. Le second

cas est une plaque à épaisseur constante qui est soumise à des conditions limites variées, comme

schématisée en figure 20.

Enfin, deux autres exemples numériques sont traités et concernent des structures courbes. Le pre-

mier exemple est l’amortissement vibratoire d’une arche, qui est le premier cas abordé de développe-

ment d’un réseau électrique analogue d’une structure courbe. Cet exemple permet notamment de

discuter du problème de recouvrement des domaines fréquentiels de modes de natures différentes. Le

dernier exemple est un anneau, qui se distingue des autres cas par l’absence de conditions limites et

par le fait que le réseau obtenu soit fermé sur lui-même.

Les quatre exemples numériques proposés permettent donc de traiter les différentes sources de com-

plexités précédemment mises en évidence. La méthode décrite en début de chapitre leur est appliquée,

et mène à une conclusion identique à chaque fois: le concept d’amortissement vibratoire par couplage

à un réseau analogue via des éléments piézoélectriques peut s’appliquer aux structures considérées.

De plus, la conception de composants électriques réalistes rend envisageable une intégration purement

passive de la solution proposée.
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Épaisseur variable

Rayon variable

Figure 21: Segment d’arche de rayon et d’épaisseur variables recouvert par des patchs piézoélectriques.

VI Conclusions et perspectives

Principales contributions reportées dans ce manuscrit de thèse

• Description d’une méthode de conception d’analogues électriques passifs.

• Définition d’une bibliothèque d’analogues électriques, qui comprend notamment des élé-
ments courbes 1D et 2D.

• Développement d’un outil numérique pour la modélisation du couplage à un réseau élec-
trique d’une structure 3D recouverte de patchs piézoélectriques.

• Validation de cet outil par comparaison calculs/essais sur des structures périodiques et
non périodiques.

• Preuve numérique de l’efficacité de l’amortissement par couplage à un réseau piézoélec-
trique analogue pour les plaques complexes et les structures courbes 1D.

• Obtention d’un amortissement multimodal en considérant des composants électriques réal-
istes et donc purement passifs.

Au-delà des résultats obtenus durant ce doctorat, il reste des problématiques à aborder pour

assurer le potentiel déploiement des solutions d’amortissement proposées à des cas industriels. Des

cas de structures encore plus complexes, comme dessiné sur la figure 21, peuvent être envisagés. De

plus, l’influence de facteurs environnementaux tels que la température et la nature et l’amplitude de

l’excitation sont des éléments déterminants dans la conception des composants électriques. Un travail

de fond sur l’intégration des réseaux piézoélectriques analogues est à mener dans ce sens.
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Chapter 1

Introduction

This short chapter gives some context about the work recorded in this manuscript. The distinc-
tion between active and passive damping solutions is explained, and we give references to past
and recent works about vibration mitigation by piezoelectric coupling. A numerical example
is treated to highlight the interest in piezoelectric analogous network damping, which helps
explaining the objectives of the present thesis.
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1.1. MOTIVATIONS AND CONTEXT

1.1 Motivations and context

Reducing the power consumption in transports has been an issue for the last decades. The main

motivations for it were economic reasons. Moreover, the topic of limiting the environmental impact,

which has been raised to public knowledge in the last few years, has given incentives to further carry

out research on this domain. One way to decrease the power consumption in transports is to reduce

the embedded mass. This has finally led to using thinner structures in mechanical engineering. The

problem that has consequently appeared is the need for vibration mitigation. Indeed, while thinner

structures meet the requirement of reducing the embedded mass, their deflections might be more

significant in the case of dynamic loads, which in turn induce noise issues, discomfort, mechanical

damage and thus reduced lifespan. Therefore, mechanical vibration damping has been widely studied

and remains a current field of research. The common damping solutions include friction dampers,

hydraulic dampers, dissipative viscoelastic materials being spread on the structure or electromagnetic

systems. There are numerous existing damping solutions, and the present manuscript does not aim at

being exhaustive about these.

We concentrate on solutions which involve piezoelectric coupling. The piezoelectric effect allows

some materials under stress to generate an electric field. Conversely, these materials are strained when

subjected to an electrical field. These are called the direct and inverse piezoelectric effects, respectively.

By inserting piezoelectric material in the structure or by bonding piezoelectric elements to its surface,

an electromechanical coupling is created. Thus, if the piezoelectric elements are connected to an

electrical device, a transfer of energy between the structure and the electrical circuit occurs when

the structure vibrates. The ability of the piezoelectric materials to transform mechanical energy into

electrical energy has garnered a significant interest in the energy harvesting community [1]. In the

present case, however, the goal is not to harvest the vibrating energy, but to damp vibrations. The

dissipative elements of the circuits are thus tuned in order not to optimize the power output in the

electrical device, but to optimize the vibration mitigation performance.
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1.2 Active, passive and in-between solutions

The literature on vibration damping using piezoelectric material is abundant. One way to clas-

sify the developed solutions is to separate them between the active ones and the passive ones. The

active solutions require external power supplies to work, while the passive solutions do not, as there

are composed of passive components or because they use local energy scavengers as power sources.

However, this classification is too simplistic to represent the variety of existing possibilities [2]. Thus,

we suggest classifying the developed solutions into four main categories:

• Active: Active solutions require an external energy source to power the electronic device. Sen-

sors inform about the vibration state of the structure. A command board then adapts the

control of actuators according to the perceived information and to the operator orders. In other

words, a feedback loop is implemented. This kind of solution leans towards automation, as the

design of the actuators command is of prime importance. Sensors or actuators, or both, can be

piezoelectric transducers.

• Semi-active: Semi-active solutions include components which cannot be passively realized for

physical reasons. In this category, we include the use of negative capacitors, inductors or resistors.

In most cases, these negative components are realized by specific electronic circuits made of

passive components and operational amplifiers. Therefore, they require powering. As opposed

to the active solutions previously defined, these solutions do not explicitly include feedback loops

nor actuators, but electromechanical transducers.

• Semi-passive: Semi-passive solutions require external power supplies to simulate electrical

components which are physically realistic. Examples can include synthetic inductors. Note that

we do not classify into this category the studies in which inductors of low values are required and

are realized using synthetic inductors for practical reasons. We rather categorize as semi-passive

solutions the ones involving inductors of very high values, which might be difficult to produce,

or the ones using synthetic inductors to adapt the inductance value over time.

• Fully passive: For quite some time, fully passive realizations of piezoelectric damping solutions

such as the resonant shunt were considered nearly impossible in practice. The reason for this is

that the produced inductors should exhibit high inductance and low resistance values for vibra-
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tion mitigation at low frequencies, and it was believed to result in large and heavy components.

However, the dimensions and the mass of inductors mostly depend on the energy it should store,

and not on its inductance value. Hence it has been shown that designing reasonable inductors

meeting these criteria is possible [3]. As a consequence, fully passive solutions are made with

realizable components that require no external source of power to work.

1.3 Vibration mitigation by piezoelectric coupling

1.3.1 Unimodal damping

Mitigation of mechanical vibrations by piezoelectric coupling has first been proposed by Forward [4],

and Hagood and von Flotow derived the equations for the resistive and resonant shunts [5]. The

resistive shunt can be described as an electromechanical Lanchester damper [6], or viscoelastic damper:

its influence is restricted to a given frequency range, and the resistance is optimized for only one

frequency. The interest in this solution is consequently limited.

Therefore, over the years more focus has been given to the resonant shunt, which is an elec-

tromechanical tuned mass damper [6] whose absorber is an electrical circuit made of a resistor and

an inductor. These electrical components can either be connected in series [7, 8, 9, 10] or in paral-

lel [11, 7, 12, 13]. Meanwhile, the piezoelectric transducer serves as a capacitance in terms of electrical

behavior. The association of a capacitance and an inductance generates an electrical resonance. Cor-

rectly tuning this resonance, and then adequately setting the resistance of the shunt, allows mitigating

the mechanical mode. The efficiency of such a solution is recognized for unimodal damping. However,

while several methods have been suggested to tune the electrical components [13, 14, 9, 15], it is

commonly accepted that the main limitation of the resonant shunt is that it requires a precise tun-

ing [8, 16, 9] to be efficient. Recent contributions show that research is still conducted on the topic of

improving the reliability and the attained performance by resonant shunts and associated circuits [17].

Semi-passive [18, 19] and fully passive non-linear switched shunts [20, 21, 22, 23, 24] have also been

developed. Though the switching techniques are more complicated to design and usually reject energy

at higher frequencies, hence generating noise, they do not require an as fine tuning as a fully passive

resonant shunt. This explains the interest in such solutions.
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1.3.2 Multimodal damping with a single piezoelectric transducer

Solutions of piezoelectric coupling have also been developed in order to achieve broadband damping

while bonding only one patch on the vibrating structure. Attempts appear in [25], where multi-branch

shunts are proposed, whose components are set in order to damp the targeted modes. A few years

later, Wu suggested using branches which are described as current-blocking [26], while Behrens et al.

developed a multi-mode resonant shunt with current-flowing branches [27]. The team of Moheimani

and Fleming then worked on comparing and combining these solutions [28, 29, 27, 30] in semi-passive

damping setups. A generalization of such circuits is developed in [31], where the optimized quantity is

the shunt impedance. This allows not prescribing the number and placement of electrical components,

while still imposing the passivity of the resulting circuit.

Other semi-active proposals notably include negative capacitors [32, 33, 34], for which the interest

stems from the virtual increase of the coupling factor by connecting them in parallel with the piezo-

electric capacitance. Negative capacitance setups are suited for unimodal and multimodal damping.

All these solutions are limited by the fact that using only one piezoelectric transducer does not

allow maximizing the electromechanical coupling for all considered modes [35]. This means that the

overall damping performance is limited. Hence, solutions using several piezoelectric transducers have

been developed.

1.3.3 Multiple patch-based multimodal damping

Electromechanical dampers involving arrays of piezoelectric transducers can lead to significant

and broadband coupling. Moreover, periodically bonding piezoelectric transducers on mechanical

structures generates bandgaps, which has garnered interest from researchers of the metamaterials

community [36]. While bandgaps usually appear at small wavelengths, and hence are out of scope of

the present manuscript, we note that they have been realized for rods [37], beams [38, 39, 40, 41, 42]

shells [43] and plates [44, 45, 46, 47, 48, 49, 50]. Nonetheless, higher electromechanical coupling factors

can be attained by interconnecting the piezoelectric transducers with electrical components. This is

the difference between the solutions based on arrays of independently shunted piezoelectric transducers

and structures connected to electrical networks.
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1.4 Piezoelectric network damping

1.4.1 Bibliography

Covering a structure with piezoelectric transducers, and interconnecting them with electrical com-

ponents allows each transducer to participate in the modal coupling. Moreover, it reduces the require-

ments on the inductance values [51]. The first studied setup proposed by Valis et al. in [52] consists in

interconnecting the piezoelectric elements by inductors to create a flexural waves coupler. Substantial

coupling is achieved this way. Several other networks have been studied to mitigate vibrations, such as

resistive networks [53], networks made of resistors, inductors and capacitors [54, 55, 56, 57], sometimes

enhanced with negative capacitors [58], or networks with switching branches composed of inductors

and resistors [59, 60, 61, 62].

In the meantime, the principle of piezoelectric network damping emerged in the early 2000s. Vidoli

and dell’Isola highlighted the interest in coupling a structure to a medium which exhibits similar wave

propagation properties in a context of broadband vibration damping [63]. As a consequence, the

electrical analogues of mechanical structures have been revived [64], and the piezoelectric network

damping of beams [65, 66, 67] and plates [68, 69] has been investigated. More than ten years later,

experimental demonstrations of the concept effectiveness have been conducted for rods [70], beams [71]

and plates [72].

Note that the scientific literature referring to the electrical analogues of mechanical structures had

not been used to its full potential for nearly fifty years. Before being replaced by the finite element

method during the 1960s, mechanical analogues, then called analog computers, were developed as

simulation tools. Back then, MacNeal et al. derived the electrical analogues of classical mechanical

structures such as beams [73, 74], plates [73, 75] and shells [76] by applying electromechanical analo-

gies [77, 78]. An example of analog computer is given in [79], where the dynamics of an air-frame is

simulated with analogous electrical networks.
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Figure 1.1: Coupling of two analogous plates by longitudinal springs. Though not represented, the
boundary conditions are similar for the two plates.

1.4.2 Numerical illustration of the coupling of two analogous structures

Consider the situation presented in figure 1.1: two simply-supported plates are coupled with exten-

sion springs. We denote P1 and P2 the plates drawn on the left and on the right sides of the illustration,

respectively. In this subsection, the subscript 1 means that the quantity refers to the plate P1, while

the subscript 2 refers to the plate P2. The two structures are analogous to each other. The extension

springs prescribe a relationship between the transverse displacements of the upper surface of P1 and

the lower surface of P2. We propose to study the effect of coupling these two plates on the dynamic

response of P1. A point load is applied to P1 along the z axis on the location indicated by a � marker

in figure 1.2.

A finite element formulation of the coupled system in harmonic motion at angular frequency Ω is

as follows: ⎡⎣⎛⎝ K1 −Kc

−Kc
T K2

⎞⎠− Ω2

⎛⎝M1 0
0 M2

⎞⎠⎤⎦⎛⎝U1

U2

⎞⎠ =

⎛⎝F1

F2

⎞⎠ , (1.1)

with Mj , Kj , Uj and Fj respectively standing for the mass matrix, the stiffness matrix, the vector

of nodal displacements and the vector of external loads for the plate Pj . Meanwhile, Kc denotes the

coupling matrix. If there are n springs linking the plates, then there are n non-zero terms in Kc.

All these terms are equal to Ks, which denotes the common spring stiffness, and relate the degrees of

freedom of P1 and P2 along the z axis at the corresponding nodes. If Ks is too small when compared

to the terms in K1 and K2, then P1 and P2 have no influence on each other. On the contrary, if Ks is

too large, then this means that the springs are nearly rigid, and thus P2 and P1 are bonded together.
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Length lx Width ly Thickness Young’s modulus Poisson’s ratio Density Ks

(mm) (mm) (mm) (GPa) (-)
(
kg/m3) (N/m)

420 360 3 69 0.35 2800 104

Table 1.1: Parameters considered to compute the finite element modeling results in figure 1.2.

Therefore, to avoid these uncoupled situations, Ks should be tuned at an intermediate value.

Therefore, to avoid these uncoupled situations, Ks should be tuned at an intermediate value. This

value has been numerically set in order to enhance the visualization of results in figure 1.2. We do not

give details about the finite element model here developed, as it is the topic of chapter 3. However,

the parameters required to conduct the simulations are recorded in table 1.1.

The results of coupling P1 and P2 for different numbers n of springs are shown in figure 1.2. The

Frequency Response Functions (FRFs) show that a coupling occurs between the two plates. Note that

no damping is taken into account in these simulations. Therefore the peaks in the plotted FRFs in

figure 1.2 are infinite, and their heights depend on the frequency step. Even for n = 1 in figure 1.2a,

multimodal coupling is achieved, as there are antiresonances appearing near the first and fifth modes

of P1. However, no coupling is achieved for the second, third and fourth modes of P1, which are

respectively (2,1), (1,2) and (2,2) plate modes, because the only spring is located on their nodal lines.

This illustrates the principle that even though the secondary system is multi-resonant and perfectly

tuned, the choice of the locations and design of the coupling elements is significant, whether they are

springs or piezoelectric transducers [80].

Therefore, several springs are then considered. Their locations on figures 1.2b, 1.2c and 1.2d ensure

a coupling for all modes in the studied frequency range. Indeed, for any mode of the plate P1, we notice

two resulting modes when P1 and P2 are coupled. This is a typical result for coupled resonant systems.

Meanwhile, the fact that the frequency step between each resulting pair of modes increases with n is

an indication that the coupling increases as well, which was expected. In the end, these results induce

that broadband energy transfer from a structure to its analogue is possible when coupling them by

well-located transducers. For vibration damping purposes, dissipating elements should then be added

in P2 or in the springs.
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�

(a)

�

(b)

�

(c)

�

(d)

Figure 1.2: On the left-hand side: • (x, y) locations of springs connecting out-of-plane displacements
of P1 and P2, and � (x, y) location of both the point load and the measurement. On the right-hand
side: corresponding FRFs when Ks = 0 N/m and when Ks = 104 N/m.
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�

Figure 1.3: On the left-hand side: • (x, y) locations of springs connecting out-of-plane displacements
of P1 and P2, and � (x, y) location of both the point load and the measurement. On the right-hand
side: corresponding FRFs when Ks = 0 N/m, Ks = 104 N/m and ξ = 0, and when

Ks = 104 N/m and ξ = 1 %.

1.4.3 “Mechanical network” damping

Damping is now taken into account in the numerical model of the plate P2. In other words, P2

becomes a vibration absorber for the host structure P1. A simple way to make the coupled system

non-conservative is to implement hysteretic damping in P2. The mechanical damping matrix D2 is

therefore related to the stiffness matrix K2 by a damping coefficient ξ:

K2 + jΩD2 = (1 + 2jξ) K2, which is equivalent to D2 = 2ξ
Ω K2, (1.2)

with j2 = −1. The finite element formulation of the coupled system thus becomes:⎡⎣⎛⎝ K1 −Kc

−Kc
T (1 + 2jξ) K2

⎞⎠− Ω2

⎛⎝M1 0
0 M2

⎞⎠⎤⎦⎛⎝U1

U2

⎞⎠ =

⎛⎝F1

F2

⎞⎠ . (1.3)

An example of resulting FRF is plotted in figure 1.3. It shows that for a non-zero damping

coefficient ξ, broadband damping is achieved. A value of 1 % is the limit value of ξ over which the fifth

plate mode becomes overdamped and the associated damping performance decreases. This numerical

example illustrates that there is a significant interest in coupling a structure to an analogous absorber

for multimodal vibration damping purposes. Several models of damping could then be considered in

the absorber to optimize the damping over the frequency range of interest.
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Spatial and frequency coherence conditions

In this numerical example, the two coupled plates are identical: they are made of the same
material, share the same dimensions, and are subjected to the same boundary conditions. How-
ever, a similar dynamics is attained if P1 is coupled to a structure P2 which behaves as its
analogue. This means that P2 can have different dimensions while keeping the same overall
shape, and can be made in another material, as long as its modal properties are identical to
those of P1. More details are given in chapter 2.

1.4.4 Extension to various kinds of coupling

An observation of significant importance is that any coupling between two analogous structures

would result in the same broadband transfer of energy, and thus in vibration mitigation if the ab-

sorber include dissipative elements. Indeed, any coupled system that can be formulated as in the

equation (1.1) behaves similarly. In other words, for a vibrating structure P1, several situations are

conceivable for the absorber P2 and the coupling between them. To this end, analogies between me-

chanical, electrical, acoustical and hydraulic systems could be considered [77, 78, 81]. Meanwhile, the

coupling matrix Kc can be induced by springs connections, such as in figure 1.1, or by piezoelectric

or electromagnetic transducers in the case of electromechanical systems. Another potential case of

application is the vibroacoustic coupling between a structure and its analogous cavity.

In this manuscript, we investigate replicating the results in figure 1.2 with piezoelectric coupling.

In other words, we want to replace the absorber P2 by a multi-resonant network, which is the electrical

analogue of the vibrating structure. Meanwhile, the springs are replaced by piezoelectric transducers.

Damping would then be added through electrical resistance in the absorber in order to improve the

vibration mitigation performance.

1.5 Assumptions and manuscript outline

1.5.1 Fully passive solutions

Nowadays, there are solutions to integrate complex electrical devices into limited space. Using

active and programmable components, or 3D printing miniaturized components, are examples of such

solutions. However, the present work aims at developing fully passive electrical networks for vibration

mitigation purposes. This choice is mainly motivated by three reasons:
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• Treating physics-related problems:

Developing active solutions requires considering elements which are not directly influential on

the damping performance, such as the power sources of the active components. Besides, ac-

tive solutions might lead to instabilities which can annihilate the damping performance if not

compensated [82]. We choose not to consider these options. Indeed, the study of piezoelectric

network damping requires first answering other questions related to the development of electri-

cal analogues and their coupling with mechanical structures, before thinking about the potential

integration of such electrical dampers.

• Avoiding the difficulties related to certification processes:

Designed vibration damping devices in industrial applications must be submitted to certification

bodies to ensure their compliance with predefined criteria. This certification is more complicated

to obtain for damping solutions which require powering, as more proofs should be given. This is

done to ensure that the powering system cannot amplify the structure vibrations or deteriorate

parts of the electromechanical system. Though the piezoelectric network damping solutions we

develop are not matured enough for industrial integration, this stands as a reason against leaning

towards active control for now.

• Avoiding power supplies connection problems:

In some cases, connecting an active solution to its energy source remains a problem. The situation

of a rotating machine comes to mind. Consider the example of a turbine blade whose vibrations

should be damped by piezoelectric coupling. Powering the electronic device requires connecting

the piezoelectric transducers attached to the blade to the energy source which is attached to

the frame. Therefore a specific connection technology is needed, such as brushes for DC electric

motors, whose lifespan is limited.

Even though we do not close the door on developing semi-passive, semi-active or active solutions

in future works, we thus commit to design fully passive solutions in this manuscript. The long-term

objective is to highlight the limits of such solutions, which might then justify going towards more

integrated electronic devices.
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R = Ropt

R < Ropt R > Ropt
Underdamped response Overdamped response

R/Ropt

H
∞
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Figure 1.4: Principle of resistance value tuning based on the computation of the infinite norm of a
FRF for the coupled system.

1.5.2 Tuning of the resistive components

The objective is to damp the structural modes of largest wavelengths, as they usually are the most

energetic ones. In most cases, for thin structures this corresponds to modes at frequencies between

tens of Hertz and several kHz. However, low frequencies often present challenges in terms of passive

components production. This is mostly due to passive inductors, which exhibit poor quality factors

at low frequencies. Consequently, low resistance values are required to avoid overdamping the coupled

system. Though each situation has its own particularities, in most cases the objective is to design

inductors and transformers so that their internal resistance R is inferior to an optimal value Ropt.

Assume that the frequency range of interest is limited by the minimum fmin and maximum fmax

frequencies, then we suggest using the infinite norm H∞ of a FRF of the coupled system to evaluate

the vibration mitigation performance:

H∞ (FRF)
[fmin:fmax]

= Max (|FRF (2πf)| , fmin ≤ f ≤ fmax) . (1.4)

The notions of underdamped and overdamped responses are illustrated in figure 1.4. For R above

the optimal value Ropt, the infinite norm of the FRF increases, and the vibration mitigation thus

deteriorates. Besides, if R is below Ropt, R can be virtually increased by adding a resistor in series

with it. Thus, in this manuscript we ensure that every developed network can be produced with fully

passive components while avoiding overdamping the coupled system.
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Note that different optimization processes exist. In the case of the resonant shunt, other criteria

have been investigated in the frequency domain [9], though most of them lead to resistors of the same

order of magnitude. In the time domain, an example of vibration damping optimization through pole-

placement technique consists in maximizing the damping ratio [83, 84, 8]. This last kind of tuning leads

to higher values of resistance than obtained with the H∞-norm minimization presented in figure 1.4.

In other words, the criterion we use is more restrictive in terms of produced components than the one

classically used in the time domain.

1.5.3 Outline of the manuscript

In chapter 2, we suggest a method to derive passive electrical analogues of mechanical structures.

This method most notably defines the spatial and frequency coherence conditions, which are the

requirements for ensuring identical wave propagation properties in the electrical and mechanical media.

It is then applied to cases of rods, bars, straight and curved beams, plates and tubes. Deriving their

analogues brings the opportunity to develop tools for the study of piezoelectric network damping for

complex structures.

In chapter 3, we recall the finite element model of a structure covered by thin piezoelectric

transducers. A setup of a simply-supported plate covered by piezoelectric patches is then realized,

and is used to conduct the validation of the developed model. Then, finite element formulations of

a structure coupled by piezoelectric patches to electrical circuits are derived. The treated cases of

electrical circuits are shunts and electrical networks, for which the finite element formulation is similar

to the one in equation (1.1).

In chapter 4, we produce the simply-supported plate electrical analogue. Design methods for

inductors and transformers are detailed and applied to ensure that the network is not too resistive

once vibration damping tests are conducted. The network behavior is validated by comparison with

experiments. Finally, broadband vibration mitigation is achieved, and experimental results are used

to validate the coupled finite element formulation derived in the previous chapter.
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In chapter 5, we finally extend the concept of piezoelectric network damping to complex struc-

tures. The principle is to assemble unit cells of the library created in chapter 2 to make up adequate

electrical analogues. A first non-periodic case allows validating the finite element electromechanical

model by comparison with experiments in a complex case. The other treated structures are numerical

examples of a variable thickness plate, a plate with various boundary conditions, an arch and a ring.

Piezoelectric network damping with fully passive networks is performed for all these structures.

In chapter 6, we evaluate the results and the contributions of the present thesis. After that,

we suggest potential future works. These include investigating piezoelectric network damping of even

more complex structures by assembling networks made of previously derived electrical unit cells.

There is also interest in designing passive electrical components by taking energetic and temperature

considerations into account for the integration of analogous networks in practical applications.

Objectives

The objectives of this work are to:

• Create a library of elementary electrical analogues.

• Propose a method to derive low-frequency electrical analogues of complex structures,
based on assembling elementary analogues from the library.

• Develop a predictive finite element model of a structure covered by thin piezoelectric
transducers and coupled to an electrical network.

• Develop tools for the analogy validation between a structure and an electrical network.

• Investigate the piezoelectric network damping of complex structures, while assuring that
a fully passive realization would be achievable in practice.
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Chapter 2

Electrical analogues
of mechanical structures

The objective of the present chapter is to create a library of electrical analogues of mechanical
structures. Only inductors, capacitors, resistors and transformers can be used so that the result-
ing electrical network is fully passive. The derivation of the electrical analogues of the library is
conducted by applying an electromechanical analogy to a discretized mechanical model. Elec-
trical analogues are finally validated if they exhibit similar wave propagation properties as their
analogous mechanical structures. This is ensured by comparing mechanical and electrical modal
properties. The design method is detailed in this chapter, and is then applied to mechanical
structures such as rods, straight and curved beams, plates and tubes. The analogy validation
is conducted on several numerical examples.
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2.1 Introduction

The use of the finite element method as a modeling tool for static or low-frequency dynamic

problems is widespread nowadays. The first digital computers which were able to run small finite

element simulations date back to the 1950s, but it is only during the 1960s that we witnessed a gain

of popularity for this method. The rise of the finite element method coincides with the extension of

processing power. Before that, simulations or experiments could be made with analog computers. In

particular, the behavior of mechanical systems could be simulated by using electrical networks. These

networks were designed to exhibit similar static or dynamic behavior as their associated mechanical

systems. Researchers and engineers could then access internal variables such as displacements or

shear forces by measuring electrical currents or voltages in the produced physical networks. For these

reasons, developing electrical analogues was a prolific field of interest back then. R. H. MacNeal and

his colleagues did an extensive work about designing electrical analogues of mechanical structures.

More precisely, they proposed electrical analogues of beams [73, 79, 74], plates [73] and shells [76].

Most of these works have been left out once the finite element method became a global standard for

mechanical simulations. However, the concept of designing analogous structures has been revived at

the beginning of the 2000s for vibration damping purposes [64]. Indeed, Vidoli and dell’Isola showed

that coupling the vibrating structure to a network that has the same modal properties ensures that

there is as much electrical energy as mechanical energy involved in the coupled system [63]. As a

consequence, the principle of piezoelectric network damping emerged [51, 54, 55].

One way to define electrical analogues is to use an electromechanical analogy [77, 78]. In the

early 2000s, piezoelectric network damping of beams [65, 66, 67] and plates [68, 69] has been studied.

Most of these works are based on the application of the force-current and velocity-voltage analogy,

also called indirect analogy [77]. In the present work, the force-voltage and velocity-current analogy,

also called direct electromechanical analogy, is applied. Indeed, this analogy allows representing the

electromechanical converter of a coupled system with passive electrical components when this con-

verter uses the action of electrostatic forces [77]. Thus, it is a convenient analogy to use to represent

piezoelectric coupling with passive electrical components. Hence, one can derive a fully passive repre-
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sentation of a mechanical structure coupled to an electrical network via piezoelectric transducers. The

resulting electrical analogues have been implemented recently for the vibration mitigation of rods [70],

beams [71] and plates [72, 85].

The long-term objective is to define analogous electrical networks in order to damp vibrations of

complex structures, which include curvatures, varying geometrical parameters and anisotropic mate-

rials. A solution would be to define an electrical analogue for each considered structure. However,

it might become difficult to do so for any 3D structure. Therefore, rather than defining ever more

complex analogous networks, the idea is to create a library of basic analogous unit cells. Different

unit cells could then be assembled to model the dynamics of the complex structure. An example of

this is available in [79], where the dynamics of an air-frame is replicated by an assembly of beam

elements in bending and torsion. The vibration analysis of the structure is then conducted by making

measurements in the network.

The present chapter aims at creating this library of simple electrical analogues. After exposing

the available electrical components in section 2.2 and describing the method to derive an electrical

analogue in section 2.3, different unit cells are developed. In the end, the library is composed of

electrical analogues of rods, bars, straight and curved beams, plates and tubes.
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i1 i2⋆ ⋆
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Figure 2.1: Schematic representation of the four ideal purely passive electrical components: (a) an
inductor, (b) a capacitor, (c) a resistor and (d) a transformer.

2.2 Available ideal passive electrical components

The focus of this work is to find purely passive electrical analogues of mechanical structures.

For this reason, only passive electrical components should be part of the resulting analogue. The

four classical passive components are sketched in their ideal versions in figure 2.1. An inductor of

inductance L and a capacitor of capacitance C relate the respective electrical currents iL and iC

flowing through them to the voltages VL and VC at their terminals by first order time differential

equations:

VL = L
diL
dt
, iC = C

dVC
dt

. (2.1)

On the other hand, a resistor of resistance R demands a linear relation between the electrical current iR

flowing through it and the voltage drop VR across it:

VR = R iR. (2.2)

Lastly, a transformer is a two-port circuit which has two windings of conductive wire: a primary one

of N1 turns, and a secondary one of N2 turns. Its related terminals, which are indicated by star

symbols ⋆ in figure 2.1d, inform about the winding direction. With the electrical currents i1 and i2

and the voltages V1 and V2 pointing towards the related terminals, a transformer of ratio â = N1/N2

gives the following characteristic:

â = N1
N2

= i2
i1

= V1
V2
. (2.3)

Commonly accepted representations of transformers do not indicate the position of the related termi-

nals. Indeed, most representations implicitly place them on the same side of the transformer, such

as in figure 2.1d. As a consequence, the related terminals not appearing on sketches thereafter follow

this implicit rule.
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As a side note: only the resistor is a dissipative component in its ideal representation. Indeed,

ideal inductors and capacitors store and release electrical energy but do not dissipate it. Meanwhile,

the transformer characteristic of equation (2.3) shows that V1 i1 = V2 i2, which means that there is no

loss in the power transfer from the primary to the secondary. Models of non-ideal components, which

include internal resistances and parasitic elements will be discussed later on.

2.3 Design of electrical analogues of mechanical structures

2.3.1 Mechanical continuous equation in harmonic motion

Vibrations of continuous mechanical media can be described by partial differential equations re-

lating displacements to external loads. These commonly accepted equations derive from the vibration

theories of thin rods, straight and curved Euler-Bernoulli beams and Kirchhoff-Love plates. They

represent the starting points of the analysis.

Moreover, we assume the separation of the space and time variables. If M denotes the position

and t the time, this means that any function u(M, t) can be expressed by a product of independent

functions, so that u(M, t) = U(M) · g(t). By relating u to its time derivatives thanks to the angular

frequency Ω, the dynamics of a structure in harmonic motion is derived from its motion equation in

the time domain by applying dg/dt = jΩg, and thus ∂u/∂t = jΩu, with j2 = −1.

2.3.2 Set of zero or first order mechanical continuous equations

To design a purely passive electrical analogue of a mechanical structure, only the passive electrical

components described in section 2.2 can be used. The characteristics of said-passive components are

written in equations (2.1), (2.2) and (2.3). These equations relating voltages to electrical currents are

either linear or first order differential equations. Hence, it is required to replace the partial differential

equation describing the structure dynamics by a set of zero or first order differential equations as

well. Since the dynamics of mechanical structures is usually described by partial differential equations

whose orders are superior to two, intermediate quantities should be introduced. For example, these

intermediate quantities can be the bending moment, the shear force and the slope for an Euler-

Bernoulli beam. Besides, we will highlight in sections 2.6 and 2.7 that the design of an electrical

analogue depends on the chosen set of intermediate quantities, which is not unique.
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Figure 2.2: (a) 1D and (b) 2D discretization schemes, where I, B, L, R, T refer to the central, bottom,
left, right and top positions, respectively.

2.3.3 Finite difference scheme

The next step is to define a discrete model of the mechanical structure. The choice of the dis-

cretization grid is important since it leads to more or less complex discrete systems [86]. We choose

to use the simplest discretization grid so that the resulting number of components in the discrete unit

cell is as low as possible. This is done by applying a first order finite difference pattern to the set

of continuous mechanical equations previously obtained. The discretization scheme which is used to

derive a 1D discrete model of the structure is represented in figure 2.2a. We consider the following

finite difference expressions for any physical quantity g:(
∂g

∂x

)
I

= gR − gL
a

,

(
∂g

∂x

)
L

= gI − gL
a/2 ,

(
∂g

∂x

)
R

= gR − gI
a/2 . (2.4)

The derivation of a 2D discrete model of a mechanical structure involves the grid in figure 2.2b

and some additional finite difference equations:(
∂g

∂y

)
I

= gT − gB
a

,

(
∂g

∂y

)
B

= gI − gB
a/2 ,

(
∂g

∂y

)
T

= gT − gI
a/2 . (2.5)

Refined finite difference schemes exist, in order to take second order variations into account for

example. These refined schemes are not considered since they would lead to circuits with more electrical

components.
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Mechanical quantities
Electrical quantities

Direct analogy Indirect analogy

Force −F and moment −M Voltage V Electrical current i

Linear velocity u̇ and angular velocity θ̇ Electrical current i Voltage V

Displacement u and orientation θ Electrical charge q Voltage primitive
´
V

Compliance Capacitance C Inductance L

Mass and rotational inertia Inductance L Capacitance C

Viscous damping Resistance R Conductance 1/R

Table 2.1: Direct and indirect electromechanical analogies. When possible, the color coding of rep-
resenting forces, moments and voltages in red and displacements, velocities, electrical charges and
electrical currents in purple will be applied in the drawings and circuits of the present manuscript.

2.3.4 Electromechanical analogy

An electromechanical analogy [77, 78] is then applied to the resulting set of discrete mechanical

equations. The indirect analogy, which states that velocities are analogous to voltages and forces are

analogous to electrical currents, is considered in some works [73, 68]. This analogy is summed up in

table 2.1. It is particularly well suited to the study of electromagnetic systems, as it allows the passive

representation of the electromagnetic coupling [77].

In the present work, we consider the direct electromechanical analogy [77], which states that

voltages and electrical currents are respectively analogous to forces and velocities. It is summed up

in table 2.1. Once the electrical equations are written, the mechanical structure and its electrical

analogue can both be represented by a lumped-element electrical circuit. Note that this analogy is

preferred because it allows the fully passive representation of piezoelectric transducers [77]. Moreover,

in most cases, the electrical analogues of clamped, simply-supported and free edges can be obtained

with fully passive electrical components by applying this analogy.

Finally, several analogous unit cells are assembled to produce a structure analogue. The assembled

network is a multi-resonant system, whose modal properties can be modified by acting on its boundary

conditions and on its components characteristics. Therefore, conditions should be applied to ensure

that the network exhibits the desired dynamics.

77



2.3. DESIGN OF ELECTRICAL ANALOGUES OF MECHANICAL STRUCTURES

• x
z

Figure 2.3: Second and fourth bending mode deflection shapes of a simply-supported beam,
as well as the aliased visualization with 3 elements.

2.3.5 Spatial and frequency coherence conditions

The next objective is that the mechanical structure and its analogous electrical network have the

same modal properties. This means that the electrical analogue should meet:

• The spatial coherence condition: The electrical network should exhibit the same mode

shapes as the mechanical structure. To meet this condition, the electrical unit cell can be derived

from the discrete mechanical model which forecasts the dynamic behavior of the structure well

enough. Furthermore, the mechanical boundary conditions should be adequately reproduced

in the electrical network. Finally, a requirement is to adapt the structure discretization to the

frequency range over which the analogy should be validated. Indeed, having too few elements

leads to a poor discretization of the mode shapes. An example of the spatial aliasing induced by

having too few elements is drawn in figure 2.3. A first criterion to meet the spatial coherence

condition can be to consider at least ten elements per wavelength:

nelm
Nmax

≥ 10, (2.6)

where nelm is the number of elements of the structure, and Nmax is the maximum number of

wavelengths among the modes of the considered frequency range. This criterion can be part of

the design process: once the frequency range is fixed, the natural frequencies and mode shapes

can be predicted. We can forecast the value of Nmax, and so an approximation of nelm. In the

numerical examples later on, this condition is met by increasing the number of elements.
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• The frequency coherence condition: The electrical network and the mechanical structure

should have similar wave propagation properties. If the spatial coherence condition is met, then

ensuring that they share the same natural frequencies is equivalent to ensuring that they exhibit

the same wave propagation properties. Therefore, the electrical components of the network

should be tuned to meet this condition.

Note that applying a strict electromechanical analogy is not mandatory: while setting each in-

ductance of the network to the value of the corresponding discrete mass of the discrete mechanical

model is a possibility, the network can exhibit similar natural frequencies as the structure with

different sets of electrical components. In other words, there are degrees of freedom in the net-

work tuning. This principle can be understood in the case of a tuned mass damper [6], which

can be regarded as a one-degree-of-freedom absorber that is coupled to the structure. Without

considering performance issues, an infinite number of combinations of stiffness and mass can

be used to mitigate the structure vibrations at a targeted frequency. One constraint is that

the square root of the ratio stiffness over mass of the absorber should be tuned to the targeted

frequency to be damped: this is the frequency coherence condition of the tuned mass damper.

The derivation of the frequency coherence condition is based on the 1D unit cells representations

in figure 2.4. The notations are adapted from the table 2.1 and the figure 2.2a: u, F , q and V

respectively denote displacements, mechanical loads, electrical charges and voltages, while the L

and R subscripts signal the left and right positions of the unit cells. Finally, the ⋆ superscript

indicates nondimensionalized quantities. The mechanical and electrical transfer matrices T ⋆
m

and T ⋆
e of the discretized systems relate quantities on the left-hand side to quantities on the

right-hand side of the unit cells:

⎛⎝ u⋆R

−F ⋆R

⎞⎠ = T ⋆
m

⎛⎝ u⋆L

−F ⋆L

⎞⎠ ,
⎛⎝q⋆R
V ⋆
R

⎞⎠ = T ⋆
e

⎛⎝q⋆L
V ⋆
L

⎞⎠ . (2.7)

Consequently, the frequency coherence condition is met when T ⋆
e = T ⋆

m. Both systems would

then have similar wave propagation properties, and thus equal natural frequencies if exhibiting

analogous boundary conditions.
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u⋆L u⋆R

−F ⋆L −F ⋆R
T ⋆

m

(a)

q⋆L q⋆R

V ⋆
L V ⋆

R

T ⋆
e

(b)

Figure 2.4: Schematic representation of (a) a mechanical unit cell and (b) an electrical unit cell of the
corresponding discrete models.

2.3.6 Unit cells assembly

To define an electrical analogue of a continuous mechanical structure, several unit cells should be

assembled. As stated before, the more cells used to discretize the network, the wider the frequency

range over which the analogy will be validated. To model the behavior of the assembled network,

we propose to assemble elementary matrices just like in the finite element method. These matrices

should relate external voltages to electrical charges, such as prescribed by the direct electromechanical

analogy in table 2.1. Using the notations of equation (2.7), the electrical transfer matrix T ⋆
e can be

separated in four square submatrices:

T ⋆
e =

⎛⎝ A B

C D

⎞⎠ , (2.8)

so that

q⋆R = Aq⋆L + BV ⋆
L , V ⋆

R = Cq⋆L + DV ⋆
L . (2.9)

The objective is to derive the elementary dynamic matrix D⋆
e , which is defined by:⎛⎝ V ⋆

L

−V ⋆
R

⎞⎠ = D⋆
e

⎛⎝q⋆L
q⋆R

⎞⎠ . (2.10)

Starting from equations (2.9), D⋆
e can be identified:

D⋆
e =

⎛⎝ −B−1A B−1

DB−1A − C −DB−1

⎞⎠ . (2.11)

Note that the dynamic matrix is defined only if B is invertible. This condition can be interpreted from

equation (2.9), in which setting q⋆L = 0 for comprehension purposes does not restrain the problem: if B

is invertible, then V ⋆
L can be calculated once the electrical charges q⋆R are set. In a more general way,
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this means that imposing the boundary electrical charges of the unit cell allows deriving the boundary

voltages. From a mechanical point of view, this corresponds to being able to determine the boundary

mechanical loads when the displacements are prescribed. If the discrete model is ill-defined, that is

to say if B is singular, then some numerical parameter must be added to enable further simulations.

This is the case for the electrical analogue of beams in section 2.6, plates in section 2.7, curved beams

in section 2.8 and tubes in section 2.9.

We want to point out that the dynamic matrix D⋆
e relating nondimensionalized voltages to nondi-

mensionalized electrical charges is not the required matrix going forward. The needed matrix is

denoted De, and relates dimensionalized quantities:⎛⎝ VL

−VR

⎞⎠ = De

⎛⎝qL
qR

⎞⎠ . (2.12)

If B is invertible, then the dynamic matrix De can be expressed, and so the elementary matrices of

electrical “mass” Melm and of electrical “stiffness” Kelm can be extracted. The suggested method is

to set the angular frequency Ω at zero to derive Kelm, and to calculate Melm afterwards:

Kelm = De|Ω=0 and Melm = Kelm − De

Ω2 . (2.13)

According to the direct electromechanical analogy in table 2.1, Melm should depend on the inductive

quantities of the unit cell, while Kelm should depend on the capacitive quantities.

Then, following a geometric assembly process, the vectors QN and VN which contain the values

of electrical charges and external voltages in the entire network are related to each other by

VN =
(
KN − Ω2MN

)
QN , (2.14)

with MN and KN being respectively the assembled matrices of electrical “mass” and electrical “stiff-

ness”. The equation (2.14) is the matrix formulation from which all further electrical analogues models

will be developed.
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Electrical damping matrix

L

RsL C RsC

Figure 2.5: Inductor and capacitor with series resistors.

In the following chapters, electrical damping is added in order to mitigate mechanical vibrations.
Thus it should be included in the unit cell formulation. The simplest way to do so is to model
the capacitive and inductive components as non-ideal, such as represented in figure 2.5. Let us
assume that Kelm and Melm are respectively proportional to the inverse of a capacitance 1/C
and an inductance L:

Kelm = 1
C

K0 and Melm = LM0. (2.15)

Depending on the network topology, these two relations might get more complicated and involve
different terms corresponding to different parasitic elements. We only explain the case of the
series resistances here, as it is the most basic one. Indeed, in harmonic behavior at angular
frequency Ω, the parasitic series resistances can be included in the model by replacing 1/C
by 1/C + jΩRsC and L by L + RsL/jΩ, with j2 = −1. This means that we can define an
electrical damping matrix Delm:( 1

C
+ jΩRsC

)
K0 − Ω2

(
L+ RsL

jΩ

)
M0 = Kelm + jΩDelm − Ω2Melm,

with Delm = RsCK0 +RsLM0. (2.16)

This expression of Delm is an electrical analogue of the mechanical model of Rayleigh damping.
Therefore, series resistances can directly be included in the following network models, since
assembling elementary matrices Delm would make the equation (2.14) include an assembled
damping matrix DN :

VN =
(
KN + jΩDN − Ω2MN

)
QN . (2.17)

We do not use this equation before chapter 3, since the notion of damping does not appear in the
process of defining electrical analogues of mechanical structures. Indeed, note that the objective
is not to design electrical analogues exhibiting damping properties which are analogous to those
of mechanical structures: structures are supposedly slightly damped, while assembled networks
for vibration damping purposes exhibit non-negligible electrical damping. This is illustrated by
measurements conducted in section 4.4 on an assembled plate electrical analogue.
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2.3.7 Analogy validation

The designed electrical analogue should have the same modal properties as the mechanical struc-

ture. These modal properties can be either extracted from experiments following an experimental

modal analysis, or simulated. Simulations are the chosen path in this chapter. Modal properties of

the electrical network are obtained by solving the eigenvalue problem associated to the equation (2.14)

in harmonic behavior at angular frequency Ω:

(
KN − Ω2MN

)
QN = 0. (2.18)

Meanwhile, in this chapter, a 3D finite element model of a given mechanical structure is taken as

reference. The designed electrical network should approach its modal properties. Few details about

this method are given in the current chapter, as it is more precisely described in chapter 3. Note that

the modes and natural frequencies of the structure are computed by resolving an eigenvalue problem

that is analogous to the one of equation (2.18):

(
Km − Ω2Mm

)
U = 0, (2.19)

where Km is the assembled stiffness matrix, Mm is the assembled mass matrix and U is the vector

of nodal displacements.

Conducting the analogy validation requires checking if the frequency coherence condition is met.

This is done by a direct quantitative comparison of electrical and mechanical natural frequencies. In

the meantime, the analogy between the mechanical structure and the electrical network is validated

if the spatial coherence condition is met. To this end, we propose to involve the Modal Assurance

Criterion (MAC) [87]. For any two eigenvectors Φ1 and Φ2 of same length, its definition is

MAC (Φ1,Φ2) =

⏐⏐⏐Φ1 · Φ̄2
⏐⏐⏐2(

Φ1 · Φ̄1
) (

Φ2 · Φ̄2
) . (2.20)

In this expression, Φ̄ indicates the conjugate vector of the eigenvector Φ. This criterion indicates if

the tested mode shapes look alike. If the MAC matrix contains values close to 1, this means that the

associated mode shapes are similar. On the other hand, low values in the MAC matrix are attained

for two nearly orthogonal mode shapes.
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2.3.8 Capsulized design method

In the following sections, electrical analogues of basic mechanical structures are derived. The sug-

gested electrical analogue design process is recorded in the summary below. Though not represented,

a feedback loop can be implemented starting from the last step, denoted Step 6 , if the analogy

is not validated. Besides, this last step is not conducted for all the analogues of this chapter. The

validation of only the most complex ones is detailed on numerical examples.

Design of a passive electrical analogue

Step 1 Dynamics equation in harmonic motion

Defining intermediate quantities

Step 2 Set of first order differential equations

Applying a finite difference scheme

Step 3 Discrete mechanical model

Applying an electromechanical analogy

Step 4 Analogous electrical unit cell

6
Defining analogous
boundary conditions

6

aAssembling
aunit cells

Deriving the frequency
coherence condition

Step 5 Structure electrical analogue

6
Computing the MAC

6

Comparing natural
frequencies

Step 6 Analogy validation
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Figure 2.6: (a) Continuous rod segment and (b) associated discrete model.

2.4 Rod electrical analogue

Vibrations of a thin rod segment of density ρ and Young’s modulus Y , such as represented in

figure 2.6a, are described by the wave equation:

Y
∂2ux
∂x2 = ρ

∂2ux
∂t2

. (2.21)

Assuming the separation of the space and time variables, the longitudinal displacement ux can be

written ux(x, t) = Ux(x) · g(t), with Ux its amplitude and g its time variations. Then, in harmonic

motion at angular frequency Ω, the equation (2.21) becomes

Step 1 Y
d2Ux
dx2 = −ρΩ2Ux. (2.22)

The equation (2.22) is a second order differential equation. As such, one intermediate quantity

should be introduced in order to form an equivalent set of first order differential equations. This

quantity is the normal force in the rod, denoted N . With S being the structure cross-section, one

shows that the equation (2.22) is equivalent to

dN

dx
= −ρSΩ2Ux,

Step 2

N = Y S
dUx
dx

. (2.23)

Applying the finite difference scheme presented in figure 2.2a and by equations (2.4) to the set of

equations (2.23) leads to a discrete model of the rod:

NI −NL = −m

2 Ω2UxL,

Step 3 NR −NI = −m

2 Ω2UxR, (2.24)

NI = Kx (UxR − UxL) ,
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U̇xL U̇xR

−NL −NR−NI

m/2 m/2

1/Kx

(a)

q̇xL q̇xR

VxL VxRVxI

L/2 L/2

Cx

(b)

Figure 2.7: (a) Electrical representation of the discrete mechanical model of equations (2.24), and
(b) analogous electrical model of equations (2.25).

with m = ρSa the mass of the rod segment, and Kx = Y S/a its longitudinal stiffness. This discrete

mechanical model is represented in electrical fashion in figure 2.7a.

Then, the electrical analogue of the rod segment is derived from equations (2.24) by replacing Kx

by 1/Cx and m by L according to the direct electromechanical analogy summed up in table 2.1. The

resulting electrical model is defined by the following equations, and is sketched in figure 2.7b:

VxL − VxI = −L

2 Ω2qxL,

Step 4 VxI − VxR = −L

2 Ω2qxR, (2.25)

CxVxI = qxL − qxR.

Analogous boundary conditions: In case of a free boundary, the normal effort N vanishes while

the displacement ux can vary. The analogous boundary conditions are to set the Vx voltage to zero

while letting the electrical current q̇x freely flow. This corresponds to a short-circuit electrical condi-

tion.

Besides, if a boundary of the mechanical unit cell in figure 2.6b is blocked, then the longitudinal

displacement ux is forced at zero. Meanwhile, the normal force N has an unassigned value. The

corresponding electrical boundary condition involves preventing the electrical current q̇x to flow while

letting the voltage Vx freely evolve: this is an open-circuit electrical condition.

Therefore, the free and blocked mechanical boundary conditions have direct electrical analogues.

In the case of the right-side of the unit cells being a boundary, the associated discrete equations and

schemes are gathered in table 2.2.
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Boundary condition Mechanical equations Electrical equations Scheme

NR = 0 VxR = 0
Free

UxR free q̇xR free

q̇xR

VxR = 0

NR free VxR free
Blocked

UxR = 0 q̇xR = 0
q̇xR = 0

VxR

Table 2.2: Rod analogous boundary conditions for a boundary on the right-side of the mechanical and
electrical unit cells, respectively represented in figures 2.6b and 2.7b.

Frequency coherence condition: We define nondimensionalized displacements and forces by U⋆x =

Ux/a and N⋆ = N/(aKx), as well as analogous electrical charges and voltages by q⋆x = qx/a and

V ⋆ = CxV/a. To derive the frequency coherence condition, the quantities on the right-hand side of

the mechanical unit cell in figure 2.6b are related to the quantities on the left-hand side:⎛⎝ U⋆xR

−N⋆
R

⎞⎠ =

⎛⎝ 1 − δm − 1
δm (2 − δm) 1 − δm

⎞⎠⎛⎝ U⋆xL

−N⋆
L

⎞⎠ with δm = mΩ2

2Kx
. (2.26)

Moreover, the quantities on the right-hand side of the electrical circuit in figure 2.7b are related to

the quantities on the left-hand side:⎛⎝q⋆xR
V ⋆
R

⎞⎠ =

⎛⎝ 1 − δe − 1
δe (2 − δe) 1 − δe

⎞⎠⎛⎝q⋆xL
V ⋆
L

⎞⎠ with δe = LCxΩ2

2 . (2.27)

In other words, we identify that the mechanical and electrical transfer matrices are

T ⋆
m =

⎛⎝ 1 − δm − 1
δm (2 − δm) 1 − δm

⎞⎠ and T ⋆
e =

⎛⎝ 1 − δe − 1
δe (2 − δe) 1 − δe

⎞⎠ (2.28)

The electrical circuit in figure 2.7b would have identical longitudinal wave propagation properties as

the discrete mechanical model in figure 2.6b if T ⋆
m = T ⋆

e , which is equivalent to command that δm = δe.

This means that the frequency coherence condition is

Kx

m
= 1
LCx

. (2.29)

B B
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Unit cells assembly: Taking equations (2.8) and (2.28) into account, we can identify that B is

invertible, therefore the dynamic matrix De can be derived. Using the notations in figure 2.7b, the

values of the electrical charges and the voltages in one unit cell of the network are denoted qN and vN :

qN =
(
qxL qxR

)T
, vN =

(
VxL −VxR

)T
. (2.30)

Thus we derive the expression of De:

De =

⎛⎝ 1
Cx

− L
2 Ω2 −1

Cx
−1
Cx

1
Cx

− L
2 Ω2

⎞⎠ . (2.31)

We then apply equations (2.13). The resulting electrical elementary matrices are

Kelm =

⎛⎝ 1
Cx

−1
Cx

−1
Cx

1
Cx

⎞⎠ and Melm =

⎛⎝L
2 0
0 L

2

⎞⎠ . (2.32)

The elementary “mass” matrix Melm is a function of the inductance value L, which is the electrical

analogous quantity of the mass. The elementary “stiffness” matrix Kelm is a function of the capac-

itance Cx, which is the analogous quantity of the longitudinal compliance. Then, after defining a

number of cells to form the network and following an assembly process, the vectors QN and VN which

contain the values of electrical charges and external voltages in the entire network are related to each

other by

Step 5 VN =
(
KN − Ω2MN

)
QN , (2.33)

with MN and KN being respectively the assembled matrices of electrical “mass” and electrical “stiff-

ness”. After that, the mode shapes and natural frequencies of the electrical circuit can be estimated

to be compared to those of the mechanical structure.
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Figure 2.8: (a) Continuous bar segment and (b) associated discrete model.

2.5 Bar electrical analogue

Torsional vibrations of a bar segment of density ρ, polar moment of inertia It, torsion constant J ,

and shear modulus G, such as represented in figure 2.8a, are described by a wave equation. Denoting ϕ

the twisting angle amplitude and Ω the angular frequency, this equation in harmonic motion is of the

same form as the equation (2.22) describing rod vibrations:

Step 1 GJ
d2ϕ

dx2 = −ρItΩ2ϕ. (2.34)

Just like in the case of the rod of section 2.4, the harmonic motion of the considered structure

is described by a second order differential equation. As such, one intermediate quantity should be

introduced in order to form an equivalent set of first order differential equations. This quantity is the

twisting moment Mt. One can show that the equation (2.34) is equivalent to

dMt

dx
= −ρItΩ2ϕ,

Step 2

Mt = GJ
dϕ

dx
. (2.35)

Denoting I = ρaIt the rotational inertia of the bar segment and Kt = GJ/a its torsional stiffness,

the discrete model of the bar in figure 2.8b, also represented in electrical fashion in figure 2.9a, is

obtained by applying the finite difference scheme presented in figure 2.2a and by equations (2.4) to

the set of equations (2.35):

MtI −MtL = −I

2 Ω2ϕL,

Step 3 MtR −MtI = −I

2 Ω2ϕR, (2.36)

MtI = Kt (ϕR − ϕL) .
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ϕ̇L ϕ̇R

−MtL −MtR−MtI

I/2 I/2

1/Kt

(a)

q̇ϕL q̇ϕR

VtL VtRVtI

L/2 L/2

Ct

(b)

Figure 2.9: (a) Electrical representation of the discrete mechanical model of equations (2.36), and
(b) analogous electrical model of equations (2.37).

Then, the model of the discretized bar electrical analogue is derived by replacing Kt by 1/Ct and I

by L in equations (2.36) according to the direct electromechanical analogy summed up in table 2.1:

VtL − VtI = −L

2 Ω2qϕL,

Step 4 VtI − VtR = −L

2 Ω2qϕR, (2.37)

CtVtI = qϕL − qϕR.

The resulting electrical circuit is sketched in figure 2.9b. Though the components values have differ-

ent interpretations, the circuit topology is the same as for the rod electrical analogue presented in

figure 2.7b. This is coherent with rod and bar vibrations both being described by a wave equation.

Analogous boundary conditions: Electrical analogues of the free and blocked boundary condi-

tions are similar to the ones recorded in table 2.2. The only differences are that the normal force NR,

the longitudinal displacement UxR, the voltage VxR and the electrical current q̇xR are respectively

replaced by the twisting moment MtR, the twisting angle ϕR, the voltage VtR and the electrical cur-

rent q̇ϕR.

Frequency coherence condition: We define nondimensionalized angles and moments by ϕ⋆ = ϕ

and M⋆
t = Mt/Kt. Just like in the case of the rod electrical analogue, relating quantities on the sides

of the unit cells in figures 2.8b and 2.9b allows defining the frequency coherence condition:

Kt

I
= 1
LCt

. (2.38)

Unit cells assembly: Since the electrical dynamic matrix can be computed, one can derive electrical

elementary matrices which are similar to the ones for the rod electrical analogue previously treated:

Kelm =

⎛⎝ 1
Ct

−1
Ct

−1
Ct

1
Ct

⎞⎠ and Melm =

⎛⎝L
2 0
0 L

2

⎞⎠ . (2.39)

90



2.6. BEAM ELECTRICAL ANALOGUE

UzL

UzR

θL

θR

−QL

QR

−ML

MR

a • x
z

(a)

UzL

UzR
θL

θR

−QL

QR

−ML

MR

a/2
a/2

m

Kθ

• x
z

(b)

Figure 2.10: (a) Continuous beam segment and (b) associated discrete model.

2.6 Beam electrical analogue

The Euler-Bernoulli model of a beam describes the dynamics of a thin beam segment in harmonic

motion at angular frequency Ω by

Step 1 Y I
∂4Uz
∂x4 = ρSΩ2Uz, (2.40)

where Uz is the displacement amplitude, ρ is the density, S is the cross-section, Y is the Young’s

modulus and I is the second moment of area. The equation (2.40) is a fourth order differential

equation. As such, three intermediate quantities should be introduced in order to form an equivalent

set of first order differential equations. These quantities are the shear force Q, the bending momentM ,

and the rotation of the cross-section θ. One can show that the equation (2.40) is equivalent to

dQ

dx
= −ρSΩ2Uz, M = Y I

dθ

dx
,

Step 2

Q = −dM

dx
, θ = dUz

dx
. (2.41)

Applying the finite difference scheme presented in figure 2.2a and in the equations (2.4) to the set

of equations (2.41) leads to a discrete model of the beam:

QR −QL = −mΩ2UzI, MI = Kθ (θR − θL) ,

Step 3
a

2 QL = ML −MI,
a

2 θL = UzI − UzL, (2.42)

a

2 QR = MI −MR,
a

2 θR = UzR − UzI,

with m = ρSa the mass of the beam segment, and Kθ = Y I/a its bending stiffness. The discrete

mechanical model in figure 2.10b is also sketched in electrical fashion in figure 2.11a.

91



2.6. BEAM ELECTRICAL ANALOGUE

U̇zL U̇zI U̇zR

θ̇L θ̇R

−QL −QR

−ML
−MI −MR

m

1/Kθ

1
:
a
/2

1
:
a
/2

(a)

q̇zL q̇zI q̇zR

q̇θL q̇θR
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Figure 2.11: (a) Electrical representation of the discrete mechanical model of equations (2.42) and
(b) analogous electrical model of equations (2.43).

Then, the electrical analogue of the beam segment is derived by replacing a by the electric

“length” â, Kθ by 1/Cθ and m by L according to the direct electromechanical analogy summed up

in table 2.1. The resulting electrical unit cell is characterized by the following equations, and by the

circuit drawn in figure 2.11b:

VzL − VzR = −LΩ2qzI, CθVθI = qθL − qθR,

Step 4
â

2 VzL = VθL − VθI,
â

2 qθL = qzI − qzL, (2.43)

â

2 VzR = VθI − VθR,
â

2 qθR = qzR − qzI.

Analogous boundary conditions: In case of a free boundary, the shear force Q and the bend-

ing moment M vanish at the boundary, while the displacement uz and the slope θ can vary. This

corresponds to short-circuit conditions for both branches of the electrical unit cell in figure 2.11b.

If a boundary of the mechanical unit cell in figure 2.10 is simply-supported, then the transverse

displacement uz is forced at zero while the slope θ is left unassigned. Moreover, at the boundary, the

shear force Q is undefined while the bending moment M is equal to zero. This corresponds to an

open-circuit electrical connection on the transverse displacement grid, and to a short-circuit electrical

connection on the slope grid.
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Boundary condition Mechanical equations Electrical equations Scheme

QR = 0 VzR = 0

MR = 0 VθR = 0

UzR free q̇zR free

Free

θR free q̇θR free

q̇zR

q̇θR

VzR = 0

VθR = 0

QR free VzR free

MR = 0 VθR = 0

UzR = 0 q̇zR = 0
Simply-supported

θR free q̇θR free

q̇zR = 0

q̇θR

VzR

VθR = 0

QR free VzR free

MR free VθR free

UzR = 0 q̇zR = 0
Clamped

θR = 0 q̇θR = 0

q̇zR = 0

q̇θR = 0

VzR

VθR

Table 2.3: Beam analogous boundary conditions for a boundary on the right-side of the mechanical
and electrical unit cells, respectively represented in figures 2.10b and 2.11b.

Finally, we consider the case of a clamped boundary condition. In this case, both the transverse

displacement uz and the slope θ are set at zero, while the boundary mechanical loads Q and M have

unassigned values. These represent open-circuit electrical conditions on both branches of the electrical

unit cell represented in figure 2.11b.

Hence, the free, simply-supported and clamped mechanical boundary conditions have direct elec-

trical analogues. In the case of the right-side of the unit cells being a boundary, the associated discrete

equations and schemes are gathered in table 2.3.
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Frequency coherence condition: We define nondimensionalized displacements by U⋆z = Uz/a,

rotations by θ⋆ = θ, shear forces by Q⋆ = aQ/Kθ and bending moments by M⋆ = M/Kθ. To derive

the frequency coherence condition, the quantities on the right-hand side of the mechanical unit cell in

figure 2.10b are related to the quantities on the left-hand side :

⎛⎜⎜⎜⎜⎜⎝
U⋆zR

θ⋆R

−Q⋆R
−M⋆

R

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1 1 1

4
−1
2

0 1 1
2 −1

δ δ
2 1 0

−δ
2

−δ
4 −1 1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
U⋆zL

θ⋆L

−Q⋆L
−M⋆

L

⎞⎟⎟⎟⎟⎟⎠ with δ = ma2Ω2

Kθ
. (2.44)

B

Hence we deduce that the electrical circuit in figure 2.11b would have identical bending wave propa-

gation properties as the discrete mechanical model in figure 2.10b if they share the same ratio δ. This

means that the frequency coherence condition is

1
a2

Kθ

m
= 1
â2

1
LCθ

. (2.45)

Unit cells assembly: Taking equations (2.8) and (2.44) into account, we identify B as a singular

matrix. As a consequence, we cannot compute the electrical dynamic matrix De from the set of

equations (2.43). This can be understood by analyzing the figure 2.11b: once qzL = 0 and qθL = 0,

qzI = 0 and thus qzR is directly proportional to qθR because of the right-side transformer. In other

words: qzR and qθR cannot be independently set. This can also be understood from a mechanical point

of view. Imagining the sketch in figure 2.10b with UzL = 0 and θL = 0 shows that UzR = a/2 · θR.

Therefore UzR and θR cannot be independently fixed. In both cases, the system is ill-defined since it

is overconstrained.

A way to overcome this problem is to introduce fictive degrees of freedom in the unit cell. One

possibility is to add capacitors of C0 value between unit cells, such as drawn in figure 2.12. This is

analogous to consider additional rotary springs between unit cells of the discretized mechanical struc-

ture. Integrating these components to the beam electrical analogue model defined by equations (2.43)

leads to a more complicated transfer matrix. Though not detailed here, the new B matrix is

B =

⎛⎝ 1
4 −1+ϵ

2
1+ϵ

2 −
(
1 + ϵ+ δ

16ϵ
2
)⎞⎠ with ϵ = C0

Cθ
. (2.46)
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Figure 2.12: Modified unit cell of the beam electrical analogue.

Notice that setting C0 = 0, i.e. ϵ = 0, in this new expression of B leads to the previously identified

singular matrix. One can show that the determinant of this new matrix is

det (B) = ϵ

4

[
1 + ϵ

(
1 − δ

16

)]
≈ ϵ

4 if ϵ ≪ 1. (2.47)

As expected, the C0 capacitance should be different from zero to avoid numerical singularity, but

should be small enough so that it remains a numerical trick. Setting ϵ at around 10−6 is adequate in

most cases. By doing so, B is not singular anymore, and the electrical dynamic matrix De can thus

be derived. Using the notations in figure 2.12, the values of the electrical charges and the voltages in

one unit cell of the network are denoted qN and vN :

qN =
(
qzL qθL qzR qθR

)T
, vN =

(
VzL VθL −VzR −VθR

)T
. (2.48)

After deriving the dynamic matrix De and applying equations (2.13), we derive the elementary “mass”

matrix Melm, which is a function of the inductance value L, and the elementary “stiffness” ma-

trix Kelm, which depends on the capacitance Cθ and the numerical parameter C0:

Kelm = 1
âC0

⎛⎜⎜⎜⎜⎜⎝
4
â 2 −4

â 2
2 â(2C0+Cθ)

C0+Cθ −2 âCθ
C0+Cθ

−4
â −2 4

â −2
2 âCθ

C0+Cθ −2 â(2C0+Cθ)
C0+Cθ

⎞⎟⎟⎟⎟⎟⎠ and Melm = L

16

⎛⎜⎜⎜⎜⎜⎝
4 2â 4 −2â
2â â2 2â −â2

4 2â 4 −2â
−2â −â2 −2â â2

⎞⎟⎟⎟⎟⎟⎠ .
(2.49)
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Influence of C0 capacitors on the network model

The addition of C0 capacitors on the sides of the unit cell of the beam electrical analogue may
alter the behavior of the assembled network. The network dynamics is influenced by the value
of ϵ = C0/Cθ. A numerical example highlighting the effect of said-capacitors on the behavior
of a plate electrical analogue is recorded in the aside of subsection 4.4.3.

Alternative electrical analogues in case of bending motion

Apart from the rod and bar vibrations studied in sections 2.4 and 2.5, the designed electrical
analogues of the present chapter are related to bending wave propagation. The same numerical
problem arises in all these problems: the system of discrete mechanical equations is ill-defined,
so the B matrix is not invertible. Therefore, numerical parameters in the form of capacitors C0
are connected at the unit cell boundaries. Setting C0 at a small value when compared with the
element bending stiffness Cθ leads to adequate formulations in all cases.

A way to avoid these fictive degrees of freedom is to offset the finite different scheme of a/2
along the beam main direction. This means that the equations (2.43) would become:

VzI − VzR = −L

2 Ω2qzR,
Cθ
2 VθL = qθL − qθI,

VzL − VzI = −L

2 Ω2qzL,
Cθ
2 VθR = qθI − qθR, (2.50)

â VzI = VθL − VθR, â qθI = qzR − qzL.

The corresponding unit cell of the beam electrical analogue is sketched below. One can show

that in this case, the identified B matrix is
(

0 −1/2
1/2 1

)
, and thus it is invertible. This unit

cell could be used to avoid implementing the numerical parameters C0. However, we prefer
centering the piezoelectric capacitance on the unit cells going forward. Indeed, the coupling
of mechanical structures to piezoelectric networks is considered in the following chapters. It is
then more practical to center the piezoelectric patches on the corresponding unit cells of the
discretized structure.

q̇zL q̇zR

q̇θL q̇θRq̇θI

VzL VzRVzI

VθL VθR

L
2

L
2

Cθ
2

Cθ
2

1
:
â

Figure 2.13: Alternative unit cell of the beam electrical analogue.
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2.7 Square plate electrical analogue

2.7.1 Design of an electrical analogue

In harmonic motion at angular frequency Ω, the dynamics of a plate of thickness h, mass density ρ

and bending stiffness Kθ is described by the Kirchhoff-Love plate theory, so that

Step 1 Kθ

(
∂4Uz
∂x4 + 2 ∂4Uz

∂x2∂y2 + ∂4Uz
∂y4

)
= ρhΩ2Uz, (2.51)

where Uz stands for the transverse displacement amplitude. This equation is a fourth order equation.

To define an equivalent set of first order equations, it is convenient to describe the plate dynamics by

the combination of membrane equations [88], which are second order differential equations:

Kθ

(
∂2

∂x2 + ∂2

∂y2

)(
∂2Uz
∂x2 + ∂2Uz

∂y2

)
= ρhΩ2Uz. (2.52)

The intermediate quantities we define are:

θx = ∂Uz
∂x

, Qx = −∂M

∂x
,

Step 2 θy = ∂Uz
∂y

, Qy = −∂M

∂y
, (2.53)

M = aKθ

(
∂θx
∂x

+ ∂θy
∂y

)
,

∂Qx
∂x

+ ∂Qy
∂y

= −ρhaΩ2Uz,

The first intermediate quantities are the slopes θx and θy along the principal directions. Then, we

introduce the bending momentM , whose expression is in fact a linear combination of the usual bending

moments about the x and y directions of the plate theory [88]. It is adapted to the study of a square

plate of side a, though it is different from the expression that Timoshenko and Woinowsky-Krieger

proposed: it was chosen to multiply their expression by a to ensure M is actually of the same unit

as a moment. We finally introduce the shear forces Qx and Qy as the partial derivatives of M . As a

consequence, the equation (2.52) is equivalent to the set of equations (2.53).
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Applying the finite difference scheme presented in figure 2.2b and by equations (2.4) and (2.5) to

the set of equations (2.53) leads to a discrete model of the square plate:

a

2 θB = UzI − UzB,
a

2 QB = MB −MI,

a

2 θL = UzI − UzL,
a

2 QL = ML −MI,

Step 3
a

2 θR = UzR − UzI,
a

2 QR = MI −MR, (2.54)

a

2 θT = UzT − UzI,
a

2 QT = MI −MT,

MI = Kθ (θT − θB + θR − θL) , QT −QB +QR −QL = −mΩ2UzI,

with m = ρha2 the mass of the square plate.

Then, the electrical analogue of the plate is derived by replacing mechanical quantities by electrical

quantities according to the direct electromechanical analogy summed up in table 2.1, and by replacing

the cell side a by the electric “length” â. The resulting electrical unit cell is characterized by the

following equations, and is shown in figure 2.14:

â

2 qθB = qzI − qzB,
â

2 VzB = VθB − VθI,

â

2 qθL = qzI − qzL,
â

2 VzL = VθL − VθI,

Step 4
â

2 qθR = qzR − qzI,
â

2 VzR = VθI − VθR, (2.55)

â

2 qθT = qzT − qzI,
â

2 VzT = VθI − VθT,

CθVθI = qθB − qθT + qθL − qθR, VzB − VzT + VzL − VzR = −LΩ2qzI.
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Figure 2.14: Unit cell of the plate electrical analogue, which is defined by the set of equations (2.55).
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Figure 2.15: Unit cell of the plate electrical analogue, which is defined by the set of equations (2.55),
with added capacitors on the sides.
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Boundary condition Mechanical equations Electrical equations Scheme

QR free VzR free

MR = 0 VθR = 0

UzR = 0 q̇zR = 0
Simply-supported

θR free q̇θR free

q̇zR = 0

q̇θR

VzR

VθR = 0

QR free VzR free

MR free VθR free

UzR = 0 q̇zR = 0
Clamped

θR = 0 q̇θR = 0

q̇zR = 0

q̇θR = 0

VzR

VθR

Table 2.4: Plate analogous boundary conditions for a boundary on the right-side of the mechanical
and electrical unit cells, the latest being represented in figure 2.14.

Analogous boundary conditions: Suppose that the boundary is parallel to the y direction. If

it is simply-supported, then the transverse displacement Uz and the bending moment M are equal

to zero [88, 72]. Indeed, the choice of intermediate quantities in equations (2.53) is particularly

well adapted to simply-supported plates, as the defined bending moment M vanishes on any simply-

supported boundary that is parallel to the x or the y direction [88]. Meanwhile, the slope θx and the

shear force Q can freely vary. Finally, the slope θy is not a boundary quantity on the right-side of the

unit cell. These conditions, applied to the electrical unit cell in figure 2.14, lead to an open-circuit

condition on the displacement branch and to a short-circuit on the slope branch.

If the boundary is now fully clamped, then the transverse displacement Uz and the slope θx are

forced at zero, while the shear force Q and the bending moment M are unconstrained. Besides,

the slope θy is not a boundary quantity. Hence, the analogous electrical boundary conditions are

open-circuit connections on both branches of the unit cell in figure 2.14.

Consequently, the simply-supported and clamped mechanical boundary conditions have direct

electrical analogues. In the case of the right-side of the unit cell being a boundary, the associated

discrete equations and sketches are gathered in table 2.4.
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Electrical analogue of a plate free edge

A plate free edge is the boundary condition whose electrical analogue remains undefined with the
method described in section 2.3. This is a limitation of the designed plate electrical analogue.
The problem of the free edge plate analogue, as well as potential solutions, are discussed in
appendix A.

Frequency coherence condition: The discrete model of a square Kirchhoff-Love plate is the 2D

extension of the Euler-Bernoulli beam discrete model previously developed. Indeed, the circuit in

figure 2.14 represents the coupling by a 1:1 central transformer of two orthogonal electrical circuits

sketched in figure 2.11b. Thus, the frequency coherence condition is an extension of the condition

expressed by equation (2.45), as we still have:

1
a2

Kθ

m
= 1
â2

1
LCθ

. (2.56)

Unit cells assembly: To overcome the overconstrained nature of the equations system (2.55), we

propose a solution which is similar than depicted for the Euler-Bernoulli beam electrical analogue:

we suggest adding numerical degrees of freedom by connecting capacitances C0 on the sides of the

unit cell represented in figure 2.14. This is analogous to interconnect mechanical unit cells by rotary

springs. The resulting unit cell is sketched in figure 2.15. These numerical parameters are required

to compute the electrical dynamic matrix De, but should be small when compared to Cθ to mitigate

their influence on the network dynamics. Again, setting ϵ at around 10−6 is adequate in most cases.

Using the notations in figure 2.15, the values of the electrical charges and the voltages in one unit

cell of the network are denoted qN and vN :

qN =
(
qzB qθB qzL qθL qzR qθR qzT qθT

)T
,

vN =
(
VzB VθB VzL VθL −VzR −VθR −VzT −VθT

)T
. (2.57)
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Following the derivation of the dynamic matrix De, we apply equations (2.13). The resulting elec-

trical elementary matrices are recorded in appendix B. Note that the elementary electrical “stiffness”

matrix Kelm is a function of the added capacitance C0 and of Cθ, which is the analogous quantity of

the bending compliance of the square plate. Meanwhile, the elementary electrical “mass”matrix Melm

is a function of the inductance value L, which is the electrical analogous quantity of the mass of the

square plate.

Then, following an assembly process, the vectors QN and VN which contain the values of electrical

charges and external voltages in the entire network are related to each other by

Step 5 VN =
(
KN − Ω2MN

)
QN , (2.58)

with MN and KN being respectively the assembled matrices of electrical “mass” and “stiffness”.

2.7.2 Electrical analogue validation

2.7.2.1 Structure and analogous network development

Now that a plate electrical analogue is proposed, it should be validated by checking if the spatial

and frequency coherence conditions are met. The validation is conducted on a numerical example of a

simply-supported duralumin rectangular plate of dimensions lx = 420 mm, ly = 360 mm, hs = 3 mm,

whose Poisson’s ratio ν, density ρ and Young’s modulus Y are respectively set at 0.35, 2800 kg/m3

and 69 GPa. Its mode shapes and natural frequencies are obtained via a finite element model, which

is supposedly precise enough to serve as the reference. The modeling hypotheses are not detailed here,

as it is the topic of the section 3.2. We just recall that the structure material is assumed to exhibit

isotropic and homogeneous properties and that it stays in linear elasticity. The structure is modeled

with 20-node hexahedral elements and one element in depth. Some of these meshes are illustrated in

figure 2.16.

The electrical analogue of this structure is composed of identical square plate electrical analogues,

whose lumped-element representation is in figure 2.14. According to the plate dimensions, the network

should be made of 7n0 by 6n0 square elements, n0 being integer. To tune the network components, the

parameters appearing in the frequency coherence condition of equation (2.56) should be estimated:
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•• x

y

(a) • x

y

(b) (c)

Figure 2.16: Meshes of the plate corresponding to elements densities of (a) n0 = 1, (b) n0 = 2 and
(c) n0 = 4.

• The cell side a depends on the considered discretization density:

a = lx
7n0

= ly
6n0

. (2.59)

• The discrete mass m is estimated knowing the mass density ρ:

m = ρhsa
2. (2.60)

• The classical expression for the bending stiffness Kθ of a square plate is

Kθ = Y h3
s

12 (1 − ν2) . (2.61)

• The main capacitance is given by

Cθ = 150 · 10-9

n2
0

. (2.62)

This means that Cθ is equal to 150 nF for n0 = 1, and that it is proportional to the unit

cell surface. Even though this numerical example does not involve piezoelectric coupling, this

capacitance evolution is inspired from the piezoelectric capacitance dependence on the surface

of the transducers, which is explained in chapter 3.

• The transformer ratio is arbitrary set at â = 4.

• The inductance is deduced by applying the equation (2.56):

L =
(
a

â

)2 m

KθCθ

= ρhsl
4
x

â2Kθ (150 · 10-9 · 74)
1
n2

0
. (2.63)
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a m Cθ L MAC
n0 Elements Nodes

(mm) (g) (nF) (mH)
Meshing

matrix
Marker

1 7 × 6 139 60 30.2 150 257.2 Fig. 2.16a Fig. 2.19a �

2 14 × 12 530 30 7.6 37.5 64.3 Fig. 2.16b Fig. 2.19b H

3 21 × 18 1173 20 3.4 16.7 28.6 / Fig. 2.19c �

4 28 × 24 2068 15 1.9 9.4 16.1 Fig. 2.16c Fig. 2.19d •

Table 2.5: Electrical modeling parameters for different discretizations of the plate analogue.

The values of these parameters for n0 from 1 to 4 are recorded in table 2.5. Note that the inductance

value in equation (2.63) is proportional to 1/n2
0, which highlights the potential decrease of inductance

requirements when piezoelectric coupling will be considered in next chapters.

2.7.2.2 Spatial coherence condition validation

As far as the spatial coherence validation goes: velocity and electrical current modes should be

compared at the same locations. On one hand, the electrical current modes are estimated with the

equation (2.58) at the unit cell centers and at the boundaries between cells. For n0 = 1, there are

139 available nodes, as depicted by red markers in figure 2.17. On the other hand, the velocity modes

should be estimated at the positions that correspond to the network nodes. To ensure the meshing

compatibility, the velocity modes are simulated with different meshes, as drawn in figure 2.16.

Now that the nodes for comparison have been set, we compute the AutoMAC. This is the particular

case of the comparison of normal modes between themselves using the MAC. Computing it allows

verifying if all normal modes can be distinguished. If all modes are supposedly different from each

other and the AutoMAC matrix is not diagonal, then there is a spatial aliasing problem, such as

illustrated in figure 2.3. For n0 = 1, the figure 2.18b highlights that we can tell the difference between

all electrical modes. Meanwhile, the mechanical AutoMAC in figure 2.18a is obtained with the mesh

in figure 2.16a, which is compatible with a density of n0 = 1. It indicates that the nodes locations

allow to reliably represent the first velocity plate modes as well. As a consequence, all meshes of the

plate and of its analogous network for n0 ≥ 1 allow genuinely representing and distinguishing their

respective first normal modes, since they include more nodes for comparison.
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a

a

•
x

y

Figure 2.17: Nodes locations for the electrical current modes estimation in the network with n0 = 1.

n0 = 1

(a)

n0 = 1

(b)

Figure 2.18: AutoMAC of the first 42 (a) velocity modes of the plate and (b) electrical current modes
of the analogous network.

Then, the MAC matrix between electrical current modes of the network and velocity modes of the

plate is plotted for n0 from 1 to 4 in figure 2.19. This is equivalent to comparing plate modes estimated

by a finite difference model on one hand, and by a finite element model on the other hand. Since we

compare results issued from a continuous model to results issued from a discrete representation of

the structure, it makes sense that the modes might not be similarly arranged. This is the case for

n0 = 1 in figure 2.19a, where the MAC matrix is not diagonal after the seventh mode. However,

when n0 increases, the MAC matrix tends to the identity matrix. This is equivalent to visualizing the

convergence of a finite difference model towards a finite element model. Besides, each electrical mode

in figure 2.19 is clearly identified and uniquely associated with a mechanical mode, even though they

do not appear in the same order. For these reasons, we consider that the spatial coherence condition

is met over the first tens of modes of the systems.
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n0 = 1

(a)

n0 = 2

(b)

n0 = 3

(c)

n0 = 4

(d)

Figure 2.19: MAC between the 42 first velocity modes of the plate and electrical current modes of the
network for (a) n0 = 1, (b) n0 = 2, (c) n0 = 3 and (d) n0 = 4. The tiny �, H, � and • markers indicate
which couple of modes are deemed clearly identified, so that they can be plotted in figure 2.20.

Slope = 1 Slope = 0.85

Figure 2.20: Comparison of mechanical and electrical natural frequencies for (�) n0 = 1, (H) n0 = 2,
(�) n0 = 3 and (•) n0 = 4.
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2.7.2.3 Frequency coherence condition validation

Now that we have verified that the plate and the developed electrical network share similar mode

shapes, we should verify if they exhibit the same natural frequencies. The electrical components of

the network have been tuned with this in mind. The natural frequencies of the electrical network,

estimated thanks to the model of equation (2.58), are then compared to the plate natural frequencies

estimated by a finite element model. Note that the mechanical natural frequencies are calculated with

the finest mesh in figure 2.16c. The comparison is plotted in figure 2.20. It shows here as well that

the finite difference results tend towards the finite element results when n0 increases, as expected. For

n0 = 1, we can consider that the frequency coherence condition is verified for the first eleven modes

and over nearly 1 kHz of frequency range.

As a conclusion, we have illustrated by a numerical example that the spatial and frequency co-

herence conditions are validated upon a given frequency range. This frequency range depends on

the number of elements the electrical network is made of. In other words, increasing the number of

elements in the network will make it tend towards a continuous structure, and therefore will extend

the range over which the analogy is validated. Moreover, this example has given the opportunity to

develop tools for the analogy validation between a mechanical structure and an electrical network,

which will be useful in the following chapters.
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Figure 2.21: Continuous curved beam segment.

2.8 Curved beam electrical analogue

2.8.1 Model A: From the constitutive equations

Literature is abundant on the analytic study of curved structures, such as beams, rings and

arches [89]. In the case of an elongated structure, the simplest model to implement is to apply the

same hypotheses as the Euler-Bernoulli beam theory. Hence we study the motion of a curved beam of

mass density ρ, cross-section S and radius of curvature R. Displacements amplitudes are denoted Uv

in the direction which is parallel to the neutral axis, and Uw in the direction which is orthogonal to the

neutral axis. All quantities depend on the arc length s. One can show that the curved beam dynamics

in harmonic motion at angular frequency Ω is ruled by the following set of differential equations:

−ρSΩ2Uv = dN

ds
+ Q

R
,

Step 1

−ρSΩ2Uw = dQ

ds
− N

R
, (2.64)

where N and Q respectively denote the normal and shear forces in the beam. Thus, constitutive

equations are required to completely define the structure behavior. One of them is the relation

between the bending moment M and the shear force Q when neglecting the rotational inertia, which

is a classical hypothesis of the Euler-Bernoulli beam theory. In this theory, shear deformations are

neglected as well. As a consequence, the slope θ of the beam is related to the displacements. Finally,

assuming a linear elastic material, the constitutive equations of the medium relate the normal force N

and the bending moment M to the displacements. These hypotheses create a set of four equations

which, combined with the dynamic behavior described by equations (2.64), form the set of first-order
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differential equations we look for:

Q = −dM

ds
, θ = dUw

ds
− Uv
R
,

Step 2

M = EI
dθ

ds
, N = ES

(
dUv
ds

+ Uw
R

)
. (2.65)

Applying the finite difference scheme presented in figure 2.2a and by equations (2.4) to the set of

equations (2.65) leads to a discrete model of the curved beam:

−m

2 Ω2UvL = NI −NL + a

2R QL,
a

2 θL = UwI − UwL − a

2R UvL,

−m

2 Ω2UvR = NR −NI + a

2R QR,
a

2 θR = UwR − UwI − a

2R UvR,

Step 3 −mΩ2UwI = QR −QL − a

R
NI,

a

2 QL = ML −MI, (2.66)

NI = Kv

(
UvR − UvL + a

R
UwI

)
,

a

2 QR = MI −MR,

MI = Kθ (θR − θL) ,

with m = ρSa the mass of the beam segment, Kv = ES/a its longitudinal stiffness and Kθ = EI/a

its bending stiffness.

Then, the electrical analogue of the curved beam is derived by replacing mechanical quantities by

electrical quantities according to the direct electromechanical analogy summed up in table 2.1, and by

replacing the curved length a and the radius R by the electric “lengths” â and R̂, respectively. The

resulting electrical unit cell is characterized by the following equations, and is shown in figure 2.22:

−L

2 Ω2qvL = VvL − VvI − â

2R̂
VwL,

â

2 qθL = qwI − qwL − â

2R̂
qvL,

−L

2 Ω2qvR = VvI − VvR − â

2R̂
VwR,

â

2 qθR = qwR − qwI − â

2R̂
qvR,

Step 4 −LΩ2qwI = VwL − VwR + â

R̂
VvI,

â

2 VwL = VθL − VθI, (2.67)

CvVvI = qvL − qvR − â

R̂
qwI,

â

2 VwR = VθI − VθR.

CθVθI = qθL − qθR,
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â
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â

Figure 2.22: Unit cell of the model A of the curved beam electrical analogue, which is defined by the
set of equations (2.67).
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Figure 2.23: Unit cell of the model A of the curved beam electrical analogue, which is defined by the
set of equations (2.67), with added capacitors on the sides.
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Boundary condition Mechanical equations Electrical equations Scheme

NR = 0 VvR = 0

QR = 0 VwR = 0

MR = 0 VθR = 0

UvR free q̇vR free

UwR free q̇wR free

Free

θR free q̇θR free

q̇vR

q̇wR

q̇θR

VvR = 0

VwR = 0

VθR = 0

NR free VvR free

QR free VwR free

MR = 0 VθR = 0

UvR = 0 q̇vR = 0

UwR = 0 q̇wR = 0

Simply-supported

θR free q̇θR free

q̇vR = 0

q̇wR = 0

q̇θR

VvR

VwR

VθR = 0

NR free VvR free

QR free VwR free

MR free VθR free

UvR = 0 q̇vR = 0

UwR = 0 q̇wR = 0

Clamped

θR = 0 q̇θR = 0

q̇vR = 0

q̇wR = 0

q̇θR = 0

VvR

VwR

VθR

Table 2.6: Curved beam analogous boundary conditions for a boundary on the right-side of the
mechanical and electrical unit cells, the latest being represented in figure 2.22.
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Analogous boundary conditions: In the case of a free boundary, the normal force N , the shear

force Q and the bending moment M vanish at the boundary, while the displacements Uv and Uw and

the slope θ can vary. This corresponds to a short-circuit condition on each of the three branches on

the right-side of the electrical unit cell in figure 2.22.

If a boundary of the mechanical unit cell is simply-supported, then the displacements Uv and Uw

are forced at zero while the slope θ is left unassigned. Moreover, at the boundary, the normal and

shear forces N and Q are undefined while the bending moment M is equal to zero. For the unit cell

in figure 2.22, this corresponds to a short-circuit electrical connection on the slope grid, and to an

open-circuit electrical connection on the two remaining displacements grids.

Finally, we consider the case of a clamped boundary condition. In this case, the transverse displace-

ment Uv, the longitudinal displacement Uw and the slope θ are all equal to zero, while all mechanical

loads at the boundary are unconstrained. These represent open-circuit electrical conditions on the

three branches of the unit cell in figure 2.22.

As a consequence, the free, simply-supported and clamped mechanical boundary conditions have

direct electrical analogues. In the case of the right-side of the unit cells being a boundary, the associated

discrete equations and sketches are gathered in table 2.6.

Frequency coherence conditions: Lastly, we give the expressions of nondimensionalized displace-

ments by U⋆v = Uv/a and U⋆w = Uw/a, rotations by θ⋆ = θ, normal forces by N⋆ = N/(aKv), shear

forces by Q⋆ = aQ/Kθ and bending moments by M⋆ = M/Kθ. To derive the frequency coherence

conditions, the quantities on the right-hand side of the mechanical unit cell in figure 2.21 that has

been discretized are related to the quantities on the left-hand side:
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U⋆vR

U⋆wR

θ⋆R

−N⋆
R

−Q⋆R
−M⋆

R

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − δ2+β
2 −δ −δ

2 − 1 δβ
2γ 0

δ
(
1 − δ2+β

4

)
1 − δ2

2 1 − δ2

4
−δ
2

1
4

(
1 + βδ2

γ

)
−1
2

0 0 1 0 1
2 −1

β
(
1 − 3δ2+β

4

)
−δβ −δβ

2 1 − δ2+β
2

βδ
γ

(
δ2+β

4 − 1
)

0
δγ γ γ

2
δγ
β 1 − δ2

2 0
−δγ

2
−γ
2

−γ
4

−δγ
2β

δ2

4 − 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U⋆vL

U⋆wL

θ⋆L

−N⋆
L

−Q⋆L
−M⋆

L

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

with δ = a

R
, β = mΩ2

Kv
and γ = ma2Ω2

Kθ
. (2.68)

B

Thus we deduce that the electrical circuit in figure 2.22 would have identical bending wave propagation

properties as the discrete mechanical model if they share the same ratios δ, β and γ. This means that

the frequency coherence conditions are

a

R
= â

R̂
,

Kv

m
= 1
LCv

,
1
a2

Kθ

m
= 1
â2

1
LCθ

. (2.69)

We find two frequency coherence conditions which are identical to those of the rod and beam electrical

analogues, written in equations (2.29) and (2.45). The last condition concerns the ratio of the unit cell

length a over the curvature R. It represents the coupling between traction and bending in the curved

structure, whose influence is modeled by the three transformers of ratio â : R̂ or â : 2R̂ in figure 2.22.

Unit cells assembly: Taking equations (2.8) and (2.68) into account, we identify that B is a singular

matrix. As a consequence, we cannot compute the electrical dynamic matrix De. The reason for this

is the same as for the Euler-Bernoulli beam and the Kirchhoff-Love plate discrete models previously

derived: the system of equations (2.67) is ill-defined and cannot be solved. Hence we suggest adding

side capacitors of capacitance C0 as a numerical trick to avoid singularity problems. Figure 2.23 shows

the adapted electrical unit cell. Integrating these components to the curved beam electrical analogue

described by equations (2.67) leads to a more complicated transfer matrix. Though not detailed here,

the new B matrix is

B =

⎛⎜⎜⎜⎝
−1 δβ

2γ
δϵ
4

−δ
2

1
4

(
1 + βδ2

γ

)
1
2

(
ϵδ2

4 − ϵ− 1
)

δγϵ
4β

1
2

(
1 + ϵ− ϵδ2

4

)
−
(
1 + ϵ+ γϵ2

16

)
⎞⎟⎟⎟⎠ with ϵ = C0

Cθ
. (2.70)
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Notice that setting C0 = 0, i.e. ϵ = 0, in this new expression of B leads to the previously identified

singular matrix. One can show that the determinant of this new matrix is

det (B) = − ϵ

4

[
1 + ϵ

(
1 + γ

16β
(
δ2 − γβ

))]
≈ − ϵ

4 if ϵ ≪ 1. (2.71)

As expected, the C0 capacitance should be different from zero to avoid numerical singularity, but

should small enough so that it remains a numerical trick. As previously stated, setting ϵ at around

10−6 is adequate in most cases.

Now that B is not singular anymore, the dynamic matrix can be derived. Using the notations in

figure 2.23, the values of the electrical charges and the voltages in one unit cell of the network are

denoted qN and vN :

qN =
(
qvL qwL qθL qvR qwR qθR

)T
,

vN =
(
VvL VwL VθL −VvR −VwR −VθR

)T
. (2.72)

Following the derivation of the dynamic matrix De, we apply equations (2.13). Because of their large

size, the resulting electrical elementary matrices are recorded in appendix B. The elementary “mass”

matrix Melm is a function of the inductance value L, which is the electrical analogous quantity of

the mass. The elementary “stiffness” matrix Kelm is a function of the capacitances Cv and Cθ, which

are the respective analogous quantities of the longitudinal and bending compliances, as well as the

numerical parameter C0.

Then, following an assembly process, the vectors QN and VN which contain the values of electrical

charges and external voltages in the entire network are related to each other by

Step 5 VN =
(
KN − Ω2MN

)
QN , (2.73)

with MN and KN being respectively the assembled matrices of electrical “mass” and electrical “stiff-

ness”. After that, the mode shapes and natural frequencies of the electrical circuit can be estimated

to be compared to those of the mechanical structure.
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Figure 2.24: (a) Continuous curved beam segment and (b) associated discrete model.

2.8.2 Model B: From assembling existing analogous elements

Going towards complex structures, we aim at creating a library of electrical analogues that could

be assembled to replicate the dynamic behavior of a mechanical system. In the previous subsection,

we have defined a curved beam electrical analogue starting from its dynamics equations. We have now

the opportunity to define another analogue by assembling previously derived unit cells. This approach

intends on verifying that it is possible to assemble basic unit cells in order to estimate the mechanical

behavior of a more complex structure. This method is different from what is proposed in section 2.3.

If the structure is discretized enough, then a model of a curved beam can be seen as an assembly of

straight elements with independent responses to traction and bending loads. A mechanical represen-

tation of one element is sketched in figure 2.24b. It combines longitudinal and transverse vibrations,

and hence independently associates the discrete rod model in figure 2.6b and the discrete beam model

in figure 2.10b. Therefore, the electrical analogue of such an element is defined by independently

combining the rod electrical analogue in figure 2.7b and the beam electrical analogue in figure 2.12.

The resulting curved beam electrical analogue is drawn in figure 2.25.

The electrical unit cell represented in figure 2.25 assumes that the structure is straight, and so that

traction and bending vibrations are not correlated. Let us consider the curved beam electrical analogue

designed from its dynamics equations, which is shown in figure 2.23. In the case of a nearly straight

structure, the radius of curvature R is much greater than the unit cell length a. Thus, according to

one of the frequency coherence conditions written in equation (2.69), the ratio R̂/â is much larger
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than 1. Consequently, considering the notations in figure 2.26, we have:

VvI = R̂

â
VT1, VwL = 2R̂

â
VT2, VwR = 2R̂

â
VT3. (2.74)

Since VvI, VwL and VwR have finite values while the ratio R̂/â → ∞, one deduces that VT1, VT2 and VT3

are all equal to zero. Thus the three transformers involving this ratio are short-circuited on one of their

sides. Therefore the bending-traction coupling does not occur anymore. As depicted in figure 2.26,

we can identify the rod and beam electrical analogues as a limit case. This shows that the two unit

cells of the electrical curved beam analogues are mutually consistent.

To take the structure curvature into account, the elementary cells should be angularly offset accord-

ing to the structure geometry. Supposing that deflections are small and linear, we can define a nominal

angle α around which vibrations occur. The clamped condition between the two straight structure

segments allows defining the transmission of efforts and movements in both normal and transverse

directions. The figure 2.27 highlights this concept. To electrically simulate the angularly orientated

junction between two elements, an electrical analogue of a rotation matrix should be designed. If “1”

and “2” respectively designate the left and right side of the junction, then⎛⎜⎜⎜⎝
Uv2

Uw2

Uθ2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
cosα sinα 0

− sinα cosα 0
0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
Uv1

Uw1

Uθ1

⎞⎟⎟⎟⎠ and

⎛⎜⎜⎜⎝
N2

Q2

M2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
cosα sinα 0

− sinα cosα 0
0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
N1

Q1

M1

⎞⎟⎟⎟⎠ . (2.75)

Applying the direct electromechanical analogy summed up in table 2.1, one obtains the analogous

electrical equations of a rotation transformation:⎛⎜⎜⎜⎝
qv2

qw2

qθ2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
cosα sinα 0

− sinα cosα 0
0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
qv1

qw1

qθ1

⎞⎟⎟⎟⎠ and

⎛⎜⎜⎜⎝
Vv2

Vw2

Vθ2

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
cosα sinα 0

− sinα cosα 0
0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
Vv1

Vw1

Vθ1

⎞⎟⎟⎟⎠ . (2.76)

These set of equations can be passively represented in the form of an electrical circuit, in which the

transformers ratios involve the α angle. These cells were first shown in [79], and are sketched in

figure 2.28.
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Figure 2.25: Unit cell of the model B of the curved beam electrical analogue, which is defined by the
set of equations (2.25) and (2.43) with adapted notations and added capacitors on the sides.
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Figure 2.26: Limit case when R̂/â → ∞ of the unit cell of the model A of the curved beam elec-
trical analogue, initially represented in figure 2.23. The identified rod electrical analogue and

beam electrical analogue are framed.
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Figure 2.27: Transmission of efforts and displacements through a tilted clamping.
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Figure 2.28: (a) Electrical representation of the mechanical rotation of equations (2.75) and (b) anal-
ogous electrical model of equations (2.76).

As a conclusion, it is possible to define another curved beam electrical analogue. It is done by

considering previously derived electrical circuits modeling traction and bending wave propagation, and

interconnecting them by electrical analogues of rotation matrices. The comparison between these two

analogues is conducted in the following subsection.
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Number of components and integration
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â
/2

1
:
â
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Figure 2.29: Simplification of the network transformers by interconnection of unit cells repre-
sented in figure 2.22.

It is important to note that the number of components is different for the two derived curved
beam electrical analogues. The unit cell in figure 2.22 contains three inductors, two capacitors
and five transformers. However, the side transformers of ratios â : 2R̂ and 1 : â/2 could be
merged with the similar transformer of the adjacent cell to form transformers of ratios â/R̂
and 1 : â, respectively. This simplification is illustrated by figure 2.29. Therefore, each unit
cell virtually contains three inductors, two capacitors and three transformers (one being in the
center, and four halves of side transformers).

Meanwhile, the unit cell in figure 2.25 contains three inductors, two capacitors and two trans-
formers. Moreover, the figure 2.28b shows that four transformers are required between two unit
cells to make the rotation transformation. Hence, four transformers virtually belong to the unit
cell as well. This gets the unit cell number of components up to three inductors, two capacitors
and six transformers.

This difference between components amount in the unit cells highlight that the method of elec-
trical analogue derivation has a significant impact on the potential integration of such analogues.
More electrical components leads to more parasitic elements, an increased embedded mass and a
greater cost as well. These drawbacks might be unavoidable going towards complex structures,
because the objective is to create a library of electrical circuits whose assembly replicates a 3D
dynamics behavior.
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Figure 2.30: Meshes of the arch corresponding to (a) nelm = 10 elements, (b) nelm = 20 elements and
(c) nelm = 60 elements along the curvature.

2.8.3 Electrical analogue validation

2.8.3.1 Structure and analogous network development

We suggest validating the curved beam electric analogue derived in this section by treating a

numerical example. We study a fully-clamped duralumin semi-circular arch of radius R = 200 mm,

width b = 40 mm and thickness hs = 5 mm, whose Poisson’s ratio ν, density ρ and Young’s modulus Y

are respectively set at 0.35, 2800 kg/m3 and 69 GPa. Its mode shapes and natural frequencies are

estimated via the same finite element model as the one in subsection 2.7.2. The structure material

exhibits isotropic and homogeneous properties and stays in linear elasticity. It is modeled with 20-

node hexahedral elements. We use one element in depth, and two elements in width. Some meshes

are illustrated in figure 2.30.

The electrical analogue of this structure is composed of identical curved beam electrical unit cells,

whose lumped-element representation is either sketched in figure 2.23 for the model A, or in figure 2.25

for the model B. We choose to discretize the structure with a number of elements nelm equal to 10,

20, 30 or 60. To tune the network components, the parameters appearing in the frequency coherence

conditions of equation (2.69) should be estimated:

120



2.8. CURVED BEAM ELECTRICAL ANALOGUE

• The length a depends on the considered discretization:

a = πR

nelm
. (2.77)

• The discrete mass m is estimated knowing the mass density ρ:

m = ρabhs. (2.78)

• The longitudinal stiffness is estimated by its classical expression:

Kv = Y
bhs
a
. (2.79)

• Denoting (v, w, y) the local coordinate system, the bending stiffness Kθ can be computed using

the following expressions:

1
Kθ

= 1
Y

ˆ a

0

1
I(v) dv, with I(v) =

ˆ b

0

ˆ hs/2

−hs/2
w2 dy dw. (2.80)

In the present situation, it leads to the classical expression of the bending stiffness of a beam:

Kθ = Y
bh3
s

12a. (2.81)

• The main capacitance is given by

Cθ = 150 · 10-9

nelm/10 . (2.82)

This means that Cθ is equal to 150 nF for nelm = 10, and that it is proportional to the unit cell

surface, which decreases along the curvature when nelm increases. Even though this numerical

example does not involve piezoelectric coupling, this capacitance evolution is inspired from the

piezoelectric capacitance dependence on the surface of the transducers, which is explained in

chapter 3.

• The transformer ratio is arbitrary set at â = 4.

• The electrical radius, the inductance and the longitudinal capacitance are derived thanks to the

coherence conditions of equation (2.69):

R̂ = âR

a
, L =

(
a

â

)2 m

KθCθ
, Cv = m

LKv
. (2.83)

In this case, one can prove that L is proportional to 1/n3
elm. Thus, there is an interest in

increasing the number of components to reduce the requirements on the inductors to be produced.

The values of these parameters for nelm from 10 to 60 are recorded in table 2.7.
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a m Kv Kθ Cθ R̂ L Cv
nelm Nodes

(mm) (g) (GN/m) (N.m) (nF) (-) (mH) (nF)

10 11 62.8 35.2 0.22 458 150 12.7 126.5 1.3

20 21 31.4 17.6 0.44 915 75 25.5 15.8 2.5

30 31 20.9 11.7 0.66 1373 50 38.2 4.7 3.8

60 61 10.5 5.9 1.3 2745 25 76.4 0.6 7.6

nelm Meshing MAC matrix Marker

10 Fig. 2.30a Fig. 2.32a �

20 Fig. 2.30b Fig. 2.32b H

30 / Fig. 2.32c �

60 Fig. 2.30c Fig. 2.32d •

Table 2.7: Electrical modeling parameters for different discretizations of the curved beam analogue of
model A.

2.8.3.2 Spatial coherence condition validation

Firstly, we plot the AutoMAC matrices of the mechanical and electrical systems to verify if the

meshes are sufficiently fine. The electrical AutoMAC matrices shown in figures 2.31b and 2.31c indicate

that all electrical current modes of both networks can be easily distinguished from each other, even

for nelm = 10. It is thus possible to make the difference between the first 20 electrical modes for a

greater number of elements as well.

The mechanical AutoMAC in figure 2.31a illustrates a problem of spatial aliasing. While it is

possible to distinguish most of the 40 first modes of the arch, some are not clearly and uniquely

identified. It is the case for example of modes number 2, 5 and 8, among others. These modes are

actually either torsional or out-of-plane bending modes. As written before, and as can be seen in

figure 2.30, we use only two elements in width and one element in depth. The discretization along

these two directions is not fine enough to obtain a completely diagonal AutoMAC matrix, and refining

the mesh along the curve would not improve it. Therefore, we assume that all mechanical meshes for

nelm ≥ 10 allow making the difference between mechanical modes we are interested in.

122



2.8. CURVED BEAM ELECTRICAL ANALOGUE

nelm = 10

(a)

nelm = 10

(b)

nelm = 10

(c)

Figure 2.31: (a) AutoMAC of the first 40 velocity modes of the arch, and AutoMAC of the first
20 electrical current modes of the analogous network assembled with unit cells (b) in figure 2.23 or
(c) in figure 2.25.

The MAC matrices between electrical current modes of the two assembled networks and velocity

modes of the curved beam are plotted for different values of nelm in figures 2.32 and 2.33. This is

equivalent to comparing arch modes estimated by a finite difference model on one hand, and by a

finite element model on the other hand. One can notice that the torsional and out-of-plane bending

modes of the arch do not appear in networks A and B. Indeed, these kind of loads cannot be predicted

by the present networks, which only represent in-plane bending. This is why there are some columns

of the MAC matrices which completely remain at zero. In both cases however, the finite difference

models indeed converge towards the finite element model, which is assumed to be precise enough to

serve as the reference. Consequently, the spatial coherence condition is met over the first in-plane

bending modes of the arch.
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nelm = 10

(a)

nelm = 20

(b)

nelm = 30

(c)

nelm = 60

(d)

Figure 2.32: MAC between the 40 first velocity modes of the arch and the 20 first electrical current
modes of the network A for (a) nelm = 10, (b) nelm = 20, (c) nelm = 30 and (d) nelm = 60. The tiny
�, H, � and • markers indicate which couple of modes are deemed clearly identified, so that they can
be plotted in figure 2.34.
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nelm = 10

(a)

nelm = 20

(b)

nelm = 30

(c)

nelm = 60

(d)

Figure 2.33: MAC between the 40 first velocity modes of the arch and the 20 first electrical current
modes of the network B for (a) nelm = 10, (b) nelm = 20, (c) nelm = 30 and (d) nelm = 60. The tiny
�, H, � and • markers indicate which couple of modes are deemed clearly identified, so that they could
be plotted in figure 2.34.
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Slope = 1 Slope = 0.85

Figure 2.34: Comparison of mechanical natural frequencies of the arch and electrical natural frequen-
cies of the network A for (�) nelm = 10, (H) nelm = 20, (�) nelm = 30 and (•) nelm = 60.

2.8.3.3 Frequency coherence condition validation

The natural frequencies of the electrical networks A and B are then compared to the arch natural

frequencies estimated by a finite element model. We use the mesh presented in figure 2.30c to ensure

computing converged mechanical natural frequencies. The comparison is made in figure 2.34 for several

numbers of elements nelm. However, only the natural frequencies of the network A are plotted. Indeed,

the networks A and B exhibit close natural frequencies: all the natural frequencies of the network B

are nearly 3.5 % superior to the ones of the network A for nelm = 10 elements, but this gap decreases

to less than 1 % for nelm ≥ 20 elements. Hence, the figure 2.34 shows three things. Firstly, the two

developed networks are interchangeable in terms of modal properties. It is a promising result, since

the objective for complex structures is to assemble previously developed electrical unit cells rather

than creating new ones. Secondly, the two developed networks converge towards the arch dynamics

when the number of elements increases. This can be regarded as the convergence of finite difference

models towards a finite element model. Finally, we can say that the frequency range upon which the

frequency coherence condition is met depends on the structure discretization. For nelm = 10 elements,

we can consider that the frequency coherence condition is verified for the first six modes.

As a conclusion, we have illustrated by a numerical example that the spatial and frequency co-

herence conditions are validated upon a given frequency range. As expected, increasing the number

of elements in the network makes it tend towards a continuous structure, and therefore extends the

frequency range over which the analogy is validated.
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2.9 Tube electrical analogue

In the present section, we study the case of the tube electrical analogue. One possibility to derive it

is to follow the method that is detailed in section 2.3. It involves applying the direct electromechanical

analogy to a finite difference mechanical model stemming from the constitutive equations of shells in

harmonic motion. We choose to avoid this because of the potential complexity of the resulting finite

difference mechanical model. Besides, the previous section hinted at the possibility to use a different

method to derive an electrical analogue. By adequately assembling known unit cells, one can produce

an electrical analogue that replicates the physical properties of the structure.

One way to do so is to describe the in-plane bending wave propagation with the curved beam

electrical analogue that we have defined in section 2.8. Meanwhile, the bending wave propagation along

the longitudinal direction can be modeled using the straight beam electrical analogue of section 2.6.

Connecting these circuits together leads to a unit cell whose topology is sketched in figure 2.35a.

Another way to model the 2D bending wave propagation in the tube is to use the plate electrical

analogue of section 2.7. The effect of curvature should then be taken into account. We can connect

the coupling between bending and traction as represented in figure 2.22 to each plate element. This

latest proposal is sketched in figure 2.35b.

Both cases lead to the tube electrical analogue that is represented in figure 2.36, whose notations

are the same as for the previously studied analogues. By connecting electrical unit cells according

to the dynamics to be represented, we jumped straight to the Step 4 of the capsulized method of

subsection 2.3.8.

Another aside on the number of components and integration

As highlighted in the aside of subsection 2.8.2, the tube analogue of figure 2.36 might not be
optimized in terms of number of components. Moreover, a tube electrical analogue could be
assembled from interconnecting square plate unit cells represented in figure 2.14 with rotation
elements as sketched in figure 2.28b. This network would include even more transformers, which
probably makes its fully passive integration very complicated in practice. Therefore, deriving
another analogue starting from the constitutive equations of shells might lead to a more compact
network, that would thus be easier to integrate.
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(a) (b)

Figure 2.35: Unit cell of the tube electrical analogue represented as (a) the curved beam analogue of
figure 2.22 in blue, extended along the second axis by the beam analogue of figure 2.11b in green, or
as (b) an interconnection of the plate analogue of figure 2.14 in red and the traction wave propagation
line of figure 2.22 in purple.
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Figure 2.36: Unit cell of the tube electrical analogue. The required added capacitors on the sides are
not sketched.
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Analogous boundary conditions: The tube analogue is an extension of previously derived unit

cells. Therefore, the boundary conditions are deduced from the case of the curved beam or the case

of the square plate, depending on the side of the unit cell in figure 2.36 which is the boundary. If

the boundary is directly connected to the traction wave propagation line, such as the left and right

boundaries of the unit cell in figure 2.36, then the boundary conditions of table 2.6 apply. However,

if the boundary is only connected to the bending wave propagation lines, such as the bottom and top

boundaries of the unit cell in figure 2.36, then the boundary conditions of table 2.4 apply.

Frequency coherence conditions: The tube electrical analogue is an extension of the plate ana-

logue developed in section 2.7 and of the curved beam analogue developed in subsection 2.8.1. Thus,

the frequency coherence conditions of the tube are similar to those of equations (2.56) and (2.69):

a

R
= â

R̂
,

Kv

m
= 1
LCv

,
1
a2

Kθ

m
= 1
â2

1
LCθ

. (2.84)

Unit cells assembly: The system of equations corresponding to the electrical unit cell in figure 2.36

is ill-defined. The suggested solution to avoid singularity problems is to add side capacitors of capac-

itance C0 in this case as well. They are not represented in figure 2.36 for the sake of readability.

Using the notations in figure 2.36, the values of the electrical charges and the voltages in one unit

cell of the network are denoted qN and vN :

qN =
(
qwB qθB qvL qwL qθL qvR qwR qθR qwT qθT

)T
,

vN =
(
VwB VθB VvL VwL VθL −VvR −VwR −VθR −VwT −VθT

)T
. (2.85)

Following the derivation of the dynamic matrix De, we apply equations (2.13). Because of their

lengths, the resulting electrical elementary matrices are recorded in appendix B. The elementary

“mass”matrix Melm is a function of the inductance value L, which is the electrical analogous quantity

of the mass. The elementary “stiffness” matrix Kelm is a function of the capacitances Cv and Cθ,

which are the respective analogous quantities of the longitudinal and bending compliances, as well as

the numerical parameter C0.
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2.10 Conclusions

Library of unit cells of electrical analogues of mechanical structures

Rod 1D Traction

Bar 1D Torsion

Beam 1D Bending

Square
plate

2D Bending

Curved
beam

Coupled in-plane
bending and traction

Tube
Longitudinal bending
and coupled in-plane
bending and traction
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In this chapter, we have detailed a method to derive electrical analogues of mechanical structures.

The main principle is to apply the direct electromechanical analogy to a discrete mechanical model of

the considered structure. The developed electrical network is the analogue of a mechanical structure if

it meets two conditions. The first one is the spatial coherence condition, which states that the network

should represent the structure physical behavior. The network should thus be composed of enough

unit cells so that the smaller wavelength of the frequency range of interest is sufficiently discretized.

This condition is numerically verified by comparing the velocity mode shapes of the structure to

the electrical current mode shapes of the network. The second condition is the frequency coherence

condition, which states that the network should exhibit the same wave propagation properties as the

structure. Once analogous boundary conditions are obtained in the electrical system, it is verified if

the structure and the network have equal natural frequencies. All developed unit cells are composed

of ideal components such as capacitors, inductors and transformers.

The analogues which have been derived are gathered in the aside above. Though not sketched,

the electrical analogue of a rotation matrix has been detailed as well. The most common mechanical

structures that are rods, bars, beams and plates are studied. Furthermore, the classical loads, which

are traction, torsion and bending, are considered at least once. The library of electrical analogues can

therefore be used to quite a wide variety of cases. Finally, some of the most complex derived electrical

analogues have been validated on numerical examples.

Several other unit cells could be derived to expand the library of electrical analogues. Examples of

potential future electrical analogues include a 2D membrane element or a rectangular plate element.

However, we suggest not to derive the analogues of the most complex structures, as the number of

electrical components might significantly increase. Future works might consider assembling different

elements of the developed library in order to approximate the dynamic behavior of complex structures.

131



2.10. CONCLUSIONS

132



Chapter 3

Finite element model of a structure
coupled to an electrical network

This chapter is about the development of a finite element model of a structure coupled via
thin piezoelectric transducers to a lumped electrical network. A finite element formulation of
a structure covered by piezoelectric patches is first derived. A setup of a simply-supported
rectangular plate covered with piezoelectric material is then used to validate the model by
comparison with experiments. Finally, the connection to an electrical network is accounted for.
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3.1 Introduction

The main objective of this thesis is to investigate the broadband vibration mitigation of complex

structures by coupling them to electrical networks. The literature is abundant on finite element

modeling of piezoelectric coupling [90, 91]. Our bibliography on the subject is not exhaustive, as it is

not the aim of this manuscript. The work of Thomas et al. [92] concerning a structure covered by thin

piezoelectric patches is taken as the starting point. The main originality of their work is to consider

only one electrical degree of freedom by piezoelectric patch, as they impose the equipotentiality over

the electrodes. Therefore, the voltage on the upper electrode of each piezoelectric patch is a global

variable appearing in the formulation. Implementing the connection of the structure to lumped-element

models of electronic circuits is then convenient.

The development of a modeling tool for structures whose vibrations are mitigated by piezoelectric

coupling to an electrical network presents several interests:

• To avoid conducting experimental validation for all examples we want to treat.

Since experimental setups will not be developed for all future numerical examples, having a

predictive model of the behavior of a structure being coupled to an electrical network becomes

necessary. It will be especially useful for the numerical examples of chapter 5.

• To optimize electrical components to improve the vibration mitigation performance.

Indeed, numerically optimizing the electrical damping provided by resistances in the network is

possible once a simulating tool is available. Several damping strategies could thus be explored.

• To compute the dynamic piezoelectric capacitance.

In most solutions of vibration damping by piezoelectric coupling, an estimation of the piezo-

electric capacitance is required to tune the electrical components. However, the piezoelectric

capacitance depends on the frequency and on the structure modal properties [33, 84, 34]. Hence

we suggest it is a more accurate approach to use a 3D finite element model for the estimation,

rather than only referring to the manufacturer’s data.
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In section 3.2, the main steps to obtain a finite element model of a structure covered by piezoelectric

patches are detailed. This model is validated by comparison with experiments conducted on a setup

of a simply-supported plate in section 3.3. The coupling of the vibrating structure to an electrical

circuit which is described by discrete equations is then considered in section 3.4. This process results

in a finite element model of a structure being coupled to an electrical network, which will be validated

in the chapter 4.

∂fΩs

fd

fv

∂uΩs

ud

Electrical ground

Q̇1

V1Ω1

h1

n1

Q̇2

V2

∂qΩ2

h2
n2

Ω2

∂ψΩ2

Ωs

Figure 3.1: Mechanical structure covered by piezoelectric transducers, whose electrodes are not rep-
resented. The adhesive layer is not sketched either.

Medium Subscript

Generic (·)0
Structure (·)s

j-th piezoelectric transducer (·)j , j = 1, . . . , p
Structure ⊕ Piezoelectric transducers None

Boundary surface Prescribed quantity Value notation

∂fΩ0 Surface force density fd

∂uΩ0 Displacement ud

∂ψΩ0 Electrostatic potential ψd

∂qΩ0 Electric charges surface density qd

Table 3.1: Medium subscript notations and boundary conditions applied to the surface ∂Ω0 of the
generic medium Ω0.
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3.2 Structure covered by thin piezoelectric transducers

3.2.1 Notations

The mechanical medium is sketched in figure 3.1. Ω0 denotes the volume of a generic medium, either

piezoelectric or not, while ∂Ω0 denotes its boundary surface. Eventually, the subscript 0 denoting a

generic structure will be replaced either to designate the host structure, which exhibits no piezoelectric

properties, or to designate a piezoelectric transducer that is bonded to it. The corresponding notations

are summed up in table 3.1. Besides, the boundary partitions verify that

∂Ω0 = (∂fΩ0) ∪ (∂uΩ0) = (∂ψΩ0) ∪ (∂qΩ0) ,

∅ = (∂fΩ0) ∩ (∂uΩ0) = (∂ψΩ0) ∩ (∂qΩ0) . (3.1)

3.2.2 Local equations

To model the mechanical behavior of the system, the elastodynamic equation is considered. Then,

Gauss’s law involving no free charges is considered to model its electrical behavior. The two equations

describing in Ω0 the mechanical and the electrical dynamics behaviors of the system are then

div σ + b = ρ
∂2u

∂t2
, (3.2)

div D = 0, (3.3)

where σ is the linearized stress tensor, b are the prescribed body forces, ρ is the mass density, u is

the displacement field and D is the electric displacement. Furthermore, the boundary conditions of

the problem are

σ · n = fd on ∂fΩ0, (3.4)

u = ud on ∂uΩ0, (3.5)

ψ = ψd on ∂ψΩ0, (3.6)

D · n = −qd on ∂qΩ0. (3.7)

Meanwhile, the strain tensor is related to the displacement field in the infinitesimal strain theory by

ε = 1
2

(
grad (u) + grad (u)

T
)
. (3.8)
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Stresses Strains

Tensor σxx σyy σzz σyz σxz σxy εxx εyy εzz 2εyz 2εxz 2εxy

Voigt σ1 σ2 σ3 σ4 σ5 σ6 ε1 ε2 ε3 ε4 ε5 ε6

Table 3.2: Equivalence between the tensor notation and the Voigt notation.

Besides, the electrical phenomena are assumed to happen much faster than the mechanical ones in

the piezoelectric medium, which means that an electrostatic potential ψ can be related to the electric

field E by

E = −grad ψ. (3.9)

Finally, we suppose that each piezoelectric transducer is polarized in its transverse direction n(j),

where the index j is associated to the j-th piezoelectric patch. The patches thicknesses, denoted h(j),

are considered small when compared to their longitudinal dimensions. For this reason, the electrical

field E(j) is supposed uniform and orthogonal to the electrodes, and can be expressed as a function of

the potential difference V (j) between electrodes of each patch:

E(j) = −V (j)

h(j) n(j). (3.10)

3.2.3 Constitutive equations

The stresses and strains in a mechanical medium are represented by the stress tensor σ and by

the strain tensor ε. Their expressions in the (x⃗, y⃗, z⃗) basis are

σ =

⎛⎜⎜⎜⎝
σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞⎟⎟⎟⎠
(x⃗,y⃗,z⃗)

and ε =

⎛⎜⎜⎜⎝
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎞⎟⎟⎟⎠
(x⃗,y⃗,z⃗)

with σ = σ
T

and ε = ε
T
.

(3.11)

However, the Voigt notation is used going forward. Indeed, the stress and strain tensors being sym-

metric, σ and ε both include only six independent terms. This means that the same information can

be stored in a six-element vector. The equivalence between the tensor notation and the Voigt notation

is detailed in table 3.2. The linearized stress σ and strain ε vectors are then

σ =
(
σ1 σ2 σ3 σ4 σ5 σ6

)T
, ε =

(
ε1 ε2 ε3 ε4 ε5 ε6

)T
. (3.12)
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On one hand, there are several forms of the electromechanical constitutive equations linking the

mechanical quantities σ and ε to the electrical ones E and D [93]. Choosing to use one constitutive

equation form rather than the others stems from the electrical, mechanical and geometrical specificities

of the study. The most widespread constitutive equations are suitable to the present work:

σ = CEε − eTE, (3.13)

D = eε + ϵεE. (3.14)

With these notations, CE is the matrix of elastic coefficients at constant electric field, e is the matrix

of piezoelectric coefficients, and ϵε is the matrix of dielectric permittivities at constant strain. We

assume that the piezoelectric transducers exhibit transverse isotropic properties and are polarized in

their transverse directions, which is labeled as direction“3”. Under these assumptions, the constitutive

equations (3.13) and (3.14) are simplified and can be written in matrix form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ1

σ2

σ3

σ4

σ5

σ6

D1

D2

D3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cE11 cE12 cE13 0 0 0 0 0 −e31

cE12 cE11 cE13 0 0 0 0 0 −e31

cE13 cE13 cE33 0 0 0 0 0 −e33

0 0 0 cE44 0 0 0 −e15 0
0 0 0 0 cE44 0 −e15 0 0
0 0 0 0 0 cE66 0 0 0
0 0 0 0 e15 0 ϵε11 0 0
0 0 0 e15 0 0 0 ϵε11 0
e31 e31 e33 0 0 0 0 0 ϵε33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1

ε2

ε3

ε4

ε5

ε6

E1

E2

E3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.15)

Note that eleven materials constants are required to model the piezoelectric transducer behavior. Six

of them are elastic coefficients, three of them are piezoelectric coefficients, and the remaining two are

dielectric coefficients.

Moreover, another classical formulation for the constitutive equations of linear piezoelectricity [93]

involves the matrices of compliance coefficients SE , of piezoelectric strain constants d and of dielectric

permittivities at constant stress ϵσ. We recall their expressions, as they will be used in section 3.3:

SE = CE−1
, d = eSE , ϵσ = ϵε − deT. (3.16)

On the other hand, the host structure is a medium which exhibits no piezoelectric properties.

Therefore its constitutive equations are similar to equations (3.13) and (3.14) with e = 0. We choose
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to model the structure as an isotropic homogeneous linear elastic medium. Applying these assumptions

leads to classical constitutive equations in which only the two independent Lamé parameters remain:

σ = 2µε + λTr
(
ε
)

Id, (3.17)

where Tr
(
ε
)
is the trace of the strain tensor, Id is the identity matrix, and λ and µ are the Lamé

parameters, which are related to Young’s modulus E and Poisson’s ratio ν by

λ = νE

(1 + ν) (1 − 2ν) , µ = E

2 (1 + ν) . (3.18)

3.2.4 Variational formulation in terms of displacement and electrostatic potential

Going towards the finite element formulation of the problem, one must derive the variational

formulation. It is first developed with the displacement field u and the electrostatic potential ψ as

variables. Applying the test-function method, we multiply the equations (3.2) and (3.3) by kinematic

admissible test functions δu and δψ, respectively. The resulting mechanical equation is

ˆ
Ω0

δu · ρ ∂
2u

∂t2
dΩ +

ˆ
Ω0

ε (δu) · CEε (u) dΩ

−
ˆ

Ω0

ε (δu) · eTE (ψ) dΩ =
ˆ
∂fΩ0

δu · fd dS +
ˆ

Ω0

δu · b dΩ, (3.19)

while the resulting electrical equation is

ˆ
Ω0

E (δψ) · e ε (u) dΩ +
ˆ

Ω0

E (δψ) · ϵεE (ψ) dΩ =
ˆ
∂qΩ0

δψqd dS +
ˆ
∂ψΩ0

δψqr dS. (3.20)

In this last equation, qr stands for the free electric charge density appearing on ∂ψΩ0.

3.2.5 Variational formulation in terms of displacement and potential difference

The objective is to incorporate global variables in the variational formulation, as it is convenient

to then simulate the structure connection to a lumped-element electrical circuit. Among these global

variables are the voltage drops V (j) across the electrodes of each patch. Assuming all lower electrodes

are connected to the electric ground, such as drawn in figure 3.1, the voltage drops V (j) are equal

to the potentials on the upper electrodes. The electric charges Q(j) on the upper electrodes of the

piezoelectric patches should be implemented in the model as well. Besides, we make the hypothesis

that there are no electric charges on the piezoelectric lateral surfaces, thus qd = 0.
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The whole system denoted Ω includes the structure, as well as the p piezoelectric transducers

covering it. Therefore, the integral of any function g over Ω is obtained from the sum of its integrals

over the subdomains of Ω: ˆ
Ω
g dΩ =

ˆ
Ωs
g dΩ +

p∑
j=1

ˆ
Ωj
g dΩ. (3.21)

Applying the mechanical equation (3.19) of the variational formulation to all subdomains of Ω,

and then adding the p+ 1 derived equations term by term considering the equation (3.21) leads to

ˆ
Ω

δu · ρ ∂
2u

∂t2
dΩ +

ˆ
Ω

ε (δu) · CEε (u) dΩ

+
p∑
j=1

ˆ
Ωj

V (j)

h(j) ε (δu) eTn(j) dΩ =
ˆ
∂fΩ

δu · fd dS +
ˆ

Ω
δu · b dΩ. (3.22)

Meanwhile, applying the electrical equation (3.20) of the variational formulation to all subdomains

of Ω, and then adding the p derived equations term by term considering the equation (3.21) leads to

p∑
j=1

δV (j)Cε(j)V (j) −
p∑
j=1

ˆ
Ωj

δV (j)

h(j) δn · e ε (u) dΩ =
p∑
j=1

δV (j)Q(j). (3.23)

With these notations, Cε(j) and Q(j) represent for the j-th piezoelectric patch its blocked piezoelectric

capacitance and the electric charges on its upper electrode, respectively. Denoting S(j) the mean

surface of the j-th piezoelectric patch, and ϵε33 the transverse permittivity of the piezoelectric medium

with no strain, their expressions are

Cε(j) = ϵε33S
(j)

h(j) , (3.24)

Q(j) =
ˆ
∂ψΩj

qr dS. (3.25)

3.2.6 Finite element formulation

We note U the vector containing the nodal values of the displacement field and V =
(
V (1), . . . , V (p)

)
the vector containing the electric potential values on the upper electrodes of the piezoelectric patches.

Their test functions counterparts are respectively denoted δU and δV . The next step is to discretize

each term of equations (3.22) and (3.23). Following a geometric assembly that is classical in the finite

element theory, the resulting terms are as follows:
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ˆ
Ω

δu · ρ ∂
2u

∂t2
dΩ =⇒ δUTMmÜ , (3.26a)

ˆ
Ω

ε (δu) · CEε (u) dΩ =⇒ δUTKmU , (3.26b)

p∑
j=1

ˆ
Ωj

V (j)

h(j) ε (δu) eTn(j) dΩ =⇒ δUTKcV , (3.26c)

ˆ
∂fΩ

δu · fd dS +
ˆ

Ω
δu · b dΩ =⇒ δUTF , (3.26d)

p∑
j=1

δV (j)C(j)V (j) =⇒ δV TKe
−1V , (3.26e)

p∑
j=1

ˆ
Ωj

δV (j)

h(j) δn · e ε (u) dΩ =⇒ δV TKcU , (3.26f)

p∑
j=1

δV (j)Q(j) =⇒ δV TQ. (3.26g)

These terms lead to the finite element model of a mechanical structure being covered by thin piezo-

electric transducers:

⎛⎝Mm 0
0 0

⎞⎠⎛⎝Ü

V̈

⎞⎠+

⎛⎝ Km Kc

−Kc
T Ke

−1

⎞⎠⎛⎝U

V

⎞⎠ =

⎛⎝F

Q

⎞⎠ . (3.27)

Another equivalent formulation is to write the electrical equation with the electrical charges as state

variables. Hence the equation (3.27) becomes

⎛⎝Mm 0
0 0

⎞⎠⎛⎝Ü

Q̈

⎞⎠+

⎛⎝Km + KcKeKc
T KcKe

(KcKe)T Ke

⎞⎠⎛⎝U

Q

⎞⎠ =

⎛⎝F

V

⎞⎠ . (3.28)

With these notations, F contains the external mechanical forces applied to the structure, while in

Q =
(
Q(1), . . . , Q(p)

)
are the electrical charges on the transducers electrodes. Kc is the coupling

matrix. Mm and Km are the mechanical mass and stiffness matrices, respectively. Ke is a diagonal

matrix in which the j-th term is the inverse of the blocked piezoelectric capacitance Cε(j) defined in

equation (3.24).
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Finite element modeling hypotheses

The main assumptions to derive the finite element formulation of equation (3.28) are:

• The infinitesimal strain theory applies.

• The electric phenomena characteristic time in the piezoelectric domain is much smaller
than the one of the mechanical phenomena, hence the electric field E is described in terms
of a scalar potential V .

• The thicknesses of the adhesive layers between the structure and the piezoelectric trans-
ducers are neglected.

• The electrodes thicknesses are neglected, and the lower ones are connected to the ground.

• There are no free electric charges on the sides of the piezoelectric patches.

• The piezoelectric transducers are thin and polarized in the electrodes orthogonal direc-
tions, and they exhibit transverse isotropic properties.

• The host structure is modeled as an isotropic homogeneous linear elastic medium.

3.2.7 Short-circuit and open-circuit formulations

Two particular cases of electrical connections are regularly used as references to describe the dy-

namics of a structure covered by piezoelectric elements. The first one is the short-circuit connection,

when lower and upper electrodes of the piezoelectric transducers are connected to the electrical ground.

The second one is the open-circuit connection, when lower electrodes on one hand and upper elec-

trodes on the other hand share common voltages. The finite element formulations of equations (3.27)

and (3.28) should be adapted to conveniently describe such connections.

The particular case of all voltages in V being equal to a common voltage VG is interesting. In-

deed, not prescribing any value to VG is the open-circuit connection while setting VG = 0 afterwards

corresponds to the short-circuit connection. We introduce the total electric charge Qt on the upper

electrodes of the piezoelectric transducers, which allows modifying the electrical equation in (3.27):
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Qt =
p∑
j=1

Q(j)

=
p∑
j=1

Cε(j)V (j)−

⎛⎝ p∑
j=1

Kc
(j)

⎞⎠T

U with Kc
(j) being the j-th column of Kc

= VG

p∑
j=1

Cε(j) −

⎛⎝ p∑
j=1

Kc
(j)

⎞⎠T

U in case of a common voltage VG. (3.29)

Therefore, the finite element formulation of a structure being covered by piezoelectric transducers

sharing a common voltage difference VG between their terminals is⎛⎝Mm 0
0 0

⎞⎠⎛⎝ Ü

V̈G

⎞⎠+

⎛⎝ Km
∑p
j=1 Kc

(j)

−
(∑p

j=1 Kc
(j)
)T ∑p

j=1C
ε(j)

⎞⎠⎛⎝U

VG

⎞⎠ =

⎛⎝F

Qt

⎞⎠ . (3.30)

An equivalent finite element formulation using the electrical charge Qt as a state variable rather than

the common voltage VG is given below:

⎛⎝Mm 0
0 0

⎞⎠⎛⎝Ü

Q̈t

⎞⎠+

⎛⎜⎜⎜⎜⎜⎝
Km +

(∑p

j=1 Kc
(j)
)(∑p

j=1 Kc
(j)
)T∑p

j=1 C
ε(j)

∑p

j=1 Kc
(j)∑p

j=1 C
ε(j)(∑p

j=1 Kc
(j)
)T∑p

j=1 C
ε(j)

1∑p

j=1 C
ε(j)

⎞⎟⎟⎟⎟⎟⎠
⎛⎝U

Qt

⎞⎠ =

⎛⎝F

VG

⎞⎠ . (3.31)

At last, commanding VG = 0 is the case of short-circuited piezoelectric transducers, while commanding

Qt = 0 is the case of open-circuited piezoelectric transducers. Using the finite element formulations

of equations (3.30) and (3.31) allows computing the structure natural frequencies in short-circuit and

open-circuit, and then to estimate the modal coupling factors when all the piezoelectric transducers

are connected in parallel. Besides, these formulations are convenient to predict the impact of shunting

all the piezoelectric transducers with one impedance. This is the topic of the subsection 3.4.1.

A third type of electrical connection that garners interest is the case of independent open-circuited

piezoelectric transducers. While all lower electrodes are connected to a common voltage, the upper

electrodes are left in open-circuit independently. In other words, the upper electrodes do not share

a common voltage. This is specific to a situation with multiple piezoelectric transducers covering a

structure. The interest with such a connection stems from the possibility to compute the maximum

achievable coupling factors for all modes. Indeed, connecting all upper electrodes together can lead

to vanishing coupling factors for several modes. To model the independent open-circuit case, it is

sufficient to command that Q = 0 in the equation (3.28).
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3.3 Validation of the finite element model

3.3.1 Structure description

We propose to conduct the validation of the developed finite element model by comparison with ex-

periments on a simply-supported duralumin rectangular plate of lengths lx = 420 mm and ly = 360 mm,

and of thickness hs = 3 mm. The simply-supported plate setup has been described by Robin et al.

in [94]. Their instructions about the assembly process are detailed enough so that it can be replicated.

Besides, they have performed vibration tests of the setup, and have conducted a comparison between

experimental and simulated results. They have shown that the plate dynamics can be predicted by

a finite element model. The largest difference they have computed between simulated and measured

natural frequencies is 4 % on the first value. This stems from the flexibility of the blades linking the

plate to the steel frame built around it, which adds some stiffness to the setup. Furthermore, we made

several threaded blind holes in the frame to create fixations to suspend the plate.

To create the piezoelectric coupling required to perform vibration mitigation, piezoelectric elements

are bonded on one side of the plate. Pictures in figure 3.2 illustrate the bonding process. The principle

is to gently fix patches on the plate using tape. A sealed cavity is then created around the structure

with a thin layer of plastic material. A vacuum pump is connected to the inside of the cavity, and sucks

the air up from it. This way, the layer of plastic material applies a normal load on the upper surfaces

of the piezoelectric patches. We let the pump working for several hours, so that the epoxy adhesive,

which has been chosen for its mechanical properties [80], dries. To soak up the adhesive leaking from

under the patches, an absorbing tissue is placed between the structure and the plastic layer. The

resulting layers of epoxy adhesive are very thin, and thus can be neglected during simulations. Their

eventual non-uniform distributions under the patches allow for a direct contact between the plate and

the lower electrodes of the piezoelectric patches. It is recommended to make a test with only one

piezoelectric patch first, before bonding the rest of them.

The resulting structure periodically covered by 42 square piezoelectric patches is pictured in fig-

ure 3.3. The sides and thicknesses of the piezoelectric transducers are respectively lp = 50 mm and

hp = 3 mm. All measurements are indicated in figure 3.4. Finally, wires have been soldered on the

upper electrodes of the piezoelectric patches.
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(a) (b)
Tape

(c) (d)
Absorbing tissue

Seals

(e) (f)

Vacuum pump

Sealed cavity

Figure 3.2: Bonding of the piezoelectric patches on the plate: (a), (b) Patch fixation using tape;
(c) Absorbing tissue between the plastic layer and the structure; (d) Making up of the sealed cavity;
(e) Preparation for the bonding of several patches; (f) Connection of the vacuum pump to the cavity.
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Figure 3.3: Duralumin rectangular plate periodically covered by 42 square piezoelectric patches and
simply-supported by a steel frame.

3.3.2 Comparison between simulations and experiments

The simply-supported plate periodically covered with piezoelectric patches is suspended. A shaker

applies a point load and a force transducer measures it. A laser vibrometer measures the velocity on

the other side of the plate. The (x, y) location of both the excitation and the velocity measurements

is drawn in figure 3.4. The excitation is a pseudo-random white noise signal below 5 kHz, and a

rectangular window with no overlap is applied to both the excitation and the velocity measurements.

These adjustments are typical in modal testing [95], as they ensure that the perceived information is

correctly treated [96] while keeping the measurement at an acceptable duration [97]. Moreover, the

upper electrodes of the patches are either connected to the ground or independently set in open-circuit.

The structure is modeled with 20-node hexahedral elements. Both the plate and the piezoelectric

patches are meshed with one element in depth. In the other directions, the piezoelectric patches as well

as the plate beneath them are meshed with nx × ny elements. Taking nx = ny = 3 leads to converged

values for natural frequencies of the undamped structure up to 1 kHz. The maximum remaining

difference between natural frequencies estimated with nx = ny = 3 and nx = ny = 5 is 0.4 %.

Accordingly, the figure 3.4 depicts the mesh used to obtain all the following numerical results.
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Figure 3.4: Dimensions and meshing of the mechanical structure, and • (x, y) location of both the
force and the velocity measurements.

The plate is made of duralumin. Its Poisson’s ratio and density are respectively set at 0.35

and 2800 kg/m3. Its Young’s modulus is set at 69 GPa to adjust the eleventh natural frequency

of the plate calculated with short-circuited piezoelectric patches to the corresponding resonance in

measurements. This corresponds to the last peak below 900 Hz as plotted in figure 3.6.

Mechanical damping is taken into account. This means that a mechanical damping matrix Dm is

included in the finite element formulation. Hence, in harmonic motion at angular frequency Ω, the

equation (3.27) becomes⎡⎣⎛⎝ Km Kc

−Kc
T Ke

−1

⎞⎠+ jΩ

⎛⎝Dm 0
0 0

⎞⎠− Ω2

⎛⎝Mm 0
0 0

⎞⎠⎤⎦⎛⎝U

V

⎞⎠ =

⎛⎝F

Q

⎞⎠ . (3.32)

Mechanical damping can be included in the other finite element formulations derived in section 3.2 in

a similar fashion. Depending on the subtlety of the modeling, various damping models are possible.

To avoid infinite resonance peaks, we choose to implement hysteretic damping, which is one of the

simplest models available. The mechanical damping matrix Dm is therefore computed according to

the mechanical stiffness matrix Km:

Km + jΩDm = (1 + 2jξ) Km, which is equivalent to Dm = 2ξ
Ω Km. (3.33)

The damping coefficient ξ is set at 0.3 % so that the amplitude of the first simulated peak is roughly

equal to the measured one in figure 3.6.
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The piezoelectric patches are made of the PIC 153 PZT material [98]. Few material characteristics

are available in the manufacturer’s data. Thus these characteristics are either extrapolated from

datasheets of other PZT materials, or numerically optimized. This is the case of the piezoelectric

coefficients d31 and d33. By extrapolation on the basis of other PZT materials whose characteristics

are available in [98], it is assumed that d33 ≈ −2d31. Their values are then set in order to minimize

the quadratic error on the coupling factors. The modal coupling factor (kc)n for the n-th mode is

(kc)n =

√((fOC)n
(fSC)n

)2

− 1. (3.34)

In this expression, (fSC)n is the n-th natural frequency of the plate when the piezoelectric patches

are short-circuited, while (fOC)n is the n-th natural frequency of the plate when each upper electrode

of the piezoelectric patches is left disconnected. As explained in subsection 3.2.7, not interconnecting

the upper electrodes of patches in the case of open-circuit allows defining a non-zero coupling factor

for all modes, which leads to a more precise estimation for the values of d33 and d31.

These frequencies are estimated by using the finite element formulations of equations (3.27)

and (3.28). Meanwhile, they are measured at the peak positions of the FRF plotted in figure 3.6.

If the structure is slightly damped, then the peak positions are a good approximation of the structure

natural frequencies. A more precise method would be to conduct a full experimental modal analysis of

the system, for example. Computing the mean squared error (MSE) between simulated and measured

values of (kc)n for the first eleven modes of the structure results in figure 3.5a. As a consequence,

the value of d31 is set at -260 pC/N and the value of d33 is estimated at 520 pC/N. This d33 value is

notably smaller than the value of 600 pC/N indicated by the manufacturer’s data. This confirms the

need to experimentally evaluate the materials characteristics when possible.

As a result, the simulated coupling factors are shown in figure 3.5b. The gap between the simulated

and measured coupling factors is less than 5 %. Besides, this maximum overestimation is for the first

coupling factor and could be partly explained by the non-ideal experimental boundary conditions.

The plate experimental setup is linked to a rigid frame via thin supports, while the plate is the only

part of the assembly that is modeled. Therefore the added stiffness owned to the supports is not

modeled. Knowing this maximum error of 5 % could be reduced, the prediction of the coupling factors

is considered sufficiently precise. All numerical values which are needed for the modeling are summed

up in table 3.3.
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-260 pC/N

(a) (b)

Figure 3.5: (a) MSE on the modal coupling factors for different d31 piezoelectric coefficient values
and (b) resulting comparison between measured and simulated coupling factors of the first
eleven plate modes.

Elastic Poisson’s Piezoelectric Relative
Density

coefficients ratios coefficients permittivities(
10-12 N/m2) (-)

(
10-12 C/N

)
(-)

(
kg/m3)

sE11 16.83a sE33 1.15sE11
b

ν12 0.34 d31 -260c ϵσ33/ϵ0 4200 ρp 7600

sE12 -ν12s
E
11 sE44 1.15sE66

b
ν13 1.25ν12

b d33 -2d31
b ϵε33/ϵ0 2575d

sE13 -ν13s
E
11 sE66 2

(
sE11-s

E
12

)
a Supposed equal to the sE11 coefficient of the PIC 151 PZT material [98].
b Relations extrapolated from other PZT material characteristics [98].
c Set to minimize the MSE on the coupling factors (see figure 3.5a).
d Measured on an unbonded depolarized patch at 1 kHz and low level of excitation.

Table 3.3: PIC 153 PZT material [98] characteristics used for the finite element modeling.
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Frame mode at 687 Hz

Figure 3.6: Experimental and simulated FRFs with short-circuited piezoelectric patches.

The case of short-circuited patches is simulated using the formulation of equation (3.32). The

plotted results in figure 3.6 show that the numerical simulation forecasts the dynamics of the structure

up to 900 Hz rather well. Moreover, the remaining differences between numerical and experimental

results could be reduced. Indeed, the peak at 687 Hz cannot be predicted by our model since it is a

frame mode. Furthermore, the gaps between the first simulated and measured peaks can be attributed

to the non-ideal experimental boundary conditions, as explained in subsection 3.3.1 and in [94]. As a

consequence, the finite element model we have developed of a structure covered by thin piezoelectric

transducers is validated at low frequencies.
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Q̇t

VG
L

R

Figure 3.7: Resonant shunt damping of a mechanical structure covered by piezoelectric transducers.

3.4 Piezoelectric coupling to an electrical circuit

3.4.1 Piezoelectric shunting of a structure

Piezoelectric shunt damping has been first described by Hagood and Von Flotow in [5]. The

principle is to create an electromechanical tuned mass damper, where the absorber is an electrical

system that is added on the vibrating structure. To do so, we must first interconnect all upper

electrodes of the piezoelectric transducers covering the structure, and then plug an electrical component

between them and the ground. If we consider a resonant shunt, such as drawn in figure 3.7, which

is made of a resistance R in series with an inductance L, then a relation is commanded between the

common voltage VG and the total electric charge Qt:

VG = −
(
RQ̇t + LQ̈t

)
. (3.35)

Consequently, the finite element formulation of equation (3.31) becomes⎛⎝Mm 0
0 L

⎞⎠⎛⎝Ü

Q̈t

⎞⎠+

⎛⎝0 0
0 R

⎞⎠⎛⎝U̇

Q̇t

⎞⎠

+

⎛⎜⎜⎜⎜⎜⎝
Km +

(∑p

j=1 Kc
(j)
)(∑p

j=1 Kc
(j)
)T∑p

j=1 C
ε(j)

∑p

j=1 Kc
(j)∑p

j=1 C
ε(j)(∑p

j=1 Kc
(j)
)T∑p

j=1 C
ε(j)

1∑p

j=1 C
ε(j)

⎞⎟⎟⎟⎟⎟⎠
⎛⎝U

Qt

⎞⎠ =

⎛⎝F

0

⎞⎠ . (3.36)
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Q̇1 Q̇p

V (1) V (p)

Z

Figure 3.8: Mechanical structure covered by piezoelectric transducers and shunted by a multi-ports
impedance controller. For readability purposes, only a few wires connecting the piezoelectric trans-
ducers to the network are represented.

In harmonic motion, this equation is similar to the equation (1.1), except from the fact that the

resistor induces electrical damping in the coupled system. This means we can expect the mechanical

energy that has been transferred in the electrical circuit to be partially dissipated by heat. One can

also verify that the inductance plays a role that is analogous to the mass, and that the resistor plays a

role that is analogous to viscous damping. This is consistent with the direct electromechanical analogy

presented in table 2.1. The coupling of a mechanical structure to a resonant shunt can be interpreted

as the first step going towards the coupling to an electrical network, granted that the aforementioned

network is in fact a one-degree-of-freedom system, and thus presents only one electrical resonance.

3.4.2 Coupling of a structure to an electrical network

3.4.2.1 Impedance matrix approach

The piezoelectric patches bonded to the structure are now interconnected via an electrical network.

A first possibility is to consider that the electrical network is an extension of the case of the resonant

shunt previously exhibited. The principle is illustrated in figure 3.8. Indeed, the electrical network can

be regarded as a passive electrical controller that commands a relationship between the voltages V

and the electrical charges Q:

V = −ZQ, (3.37)
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where Z is an impedance matrix whose terms have the same dimension as the inverse of a capacitance.

Its terms depend on the inductive and resistive components of the network, which is comparable to the

commanded relation of equation (3.35) for the resonant shunt. As a consequence, from equation (3.28)

we obtain ⎛⎝Mm 0
0 0

⎞⎠⎛⎝Ü

Q̈

⎞⎠+

⎛⎝Km + KcKeKc
T KcKe

(KcKe)T Ke + Z

⎞⎠⎛⎝U

Q

⎞⎠ =

⎛⎝F

0

⎞⎠ . (3.38)

Moreover, by applying equations similar as (2.13) it is possible to derive an electrical “mass”

matrix MZ , an electrical damping matrix DZ and an electrical “stiffness” matrix KZ so that

V = −
(
MZQ̈ + DZQ̇ + KZQ

)
. (3.39)

This leads to another finite element formulation highlighting the dynamics of the electrical network:⎛⎝Mm 0
0 MZ

⎞⎠⎛⎝Ü

Q̈

⎞⎠+

⎛⎝0Z 0
0Z DZ

⎞⎠⎛⎝U̇

Q̇

⎞⎠+

⎛⎝Km + KcKeKc
T KcKe

(KcKe)T Ke + KZ

⎞⎠⎛⎝U

Q

⎞⎠ =

⎛⎝F

0

⎞⎠ . (3.40)
If the network components are fixed, then the expression of the impedance matrix Z can be

theoretically derived. Once Z is known, the equations (3.38) or (3.40) are convenient to simulate the

coupled system dynamics. However, the expression of Z may be difficult to derive in the first place.

It is a p × p matrix, whose terms are all different from zero. Deriving the expression of Z involves

solving a linear system whose size depends on the amount of components in the network. Besides,

another drawback of this approach is that it barely allows modifying the electrical network model. Any

parameter whose influence cannot be directly implemented in the available impedance matrix requires

to compute a new and more complicated symbolic expression of Z, which increases the computing

time consequently.

For these reasons, we chose to stay away from this approach. Though it is a natural extension of

the resonant shunt to derive a symbolic expression relating the voltages V and the electrical charges Q,

it is not adapted to the study of non-periodic complex networks, which eventually include non-ideal

electrical components. Therefore, another approach is suggested in the next paragraph.
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Q̇1
Q̇p

(Kelm,Melm)

Figure 3.9: Piezoelectric network damping of a mechanical structure covered by piezoelectric trans-
ducers. For readability purposes, only a few wires connecting the piezoelectric transducers to the
network are represented.

3.4.2.2 Finite element-like approach

Another approach is to assemble unit cells of the electrical network in a similar manner as when

applying the finite element method. As seen in figure 3.9, the network is discretized in unit cells,

whose elementary matrices of electrical“mass”Melm and electrical“stiffness”Kelm are locally defined.

Assembling them leads to the dynamic model of the network:

VN = MN Q̈N + KN QN . (3.41)

The goal is now to couple this finite element-like formulation of the network behavior to the finite

element formulation of equation (3.28). Hence we have to relate the vectors of voltages V and electric

charges Q of the piezoelectric patches to the vectors of voltages VN and electric charges QN in the

network.

Deriving the relationship between Q and QN is pretty straight-forward once looking at the available

networks. It only implies applying Kirchhoff’s current law to the junction between the piezoelectric

capacitance and the electrical network. Hence, the j-th electrical charge Q(j) can be expressed in terms

of local network charges. The corresponding formulas are summed up in table 3.4. As a consequence,

a matrix P can be assembled so that

Q = P QN . (3.42)
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Electrical analogue Unit cell lumped-element model Q(j) value

Rod Figure 2.7b q
(j)
xL − q

(j)
xR

Bar Figure 2.9b q
(j)
ϕL − q

(j)
ϕR

Straight beam Figure 2.11b q
(j)
θL − q

(j)
θR

Plate Figure 2.14 q
(j)
θL − q

(j)
θR + q

(j)
θB − q

(j)
θT

Curved beam (A) Figure 2.22 q
(j)
θL − q

(j)
θR

Curved beam (B) Figures 2.25 and 2.28b q
(j)
θL − q

(j)
θR

Tube Figure 2.36 q
(j)
θL − q

(j)
θR + q

(j)
θB − q

(j)
θT

Table 3.4: Expression of the j-th electrical charge Q(j) in terms of network electric charges.

However, the relation between V and VN calls for more work. Indeed, the voltage vector VN is

generated by the electrical currents flowing in the network and by the piezoelectric coupling with the

vibrating structure. We thus suggest to apply the superposition theorem involving these two voltage

sources.

We first consider that U ̸= 0 and QN = 0. This second condition is equivalent to having qN = 0

for every unit cell of the network. Moreover, the equation (3.42) induces that Q = 0. Then, the

boundary voltages of each unit cell can be related to the corresponding element of V . These relations

are deduced by applying Kirchhoff’s and Ohm’s laws to the network unit cells defined in chapter 2.

They are summed up in table 3.5. We consequently show that an assembly process leads to an

expression involving the same P matrix as in equation (3.42):

VN = PTV . (3.43)

Therefore, setting Q = 0 in the finite element formulation of equation (3.27) and remembering that Ke

is invertible and symmetric helps relating the voltage vector VN to the displacement field U :

VN = (KcKeP )T U . (3.44)

We then consider that U = 0 while QN ̸= 0. In the case of no piezoelectric coupling with the struc-

ture, it has been shown that the voltages and currents in the network are related by equation (3.41).
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Electrical analogue Unit cell lumped-element model Boundary voltages values

Figure 2.7b
V

(j)
xL = V

(j)
xI

Rod
V

(j)
xR = V

(j)
xI

V
(j)
tL = V

(j)
tI

Bar Figure 2.9b
V

(j)
tR = V

(j)
tI

V
(j)
zL = 0 V

(j)
θL = V

(j)
θI

Straight beam Figure 2.11b
V

(j)
zR = 0 V

(j)
θR = V

(j)
θI

V
(j)
zB = 0 V

(j)
θB = V

(j)
θI

V
(j)
zL = 0 V

(j)
θL = V

(j)
θI

V
(j)
zR = 0 V

(j)
θR = V

(j)
θI

Plate Figure 2.14

V
(j)
zT = 0 V

(j)
θT = V

(j)
θI

V
(j)
vL = 0 V

(j)
wL = 0 V

(j)
θL = V

(j)
θI

Curved beam (A) Figure 2.22
V

(j)
vR = 0 V

(j)
wR = 0 V

(j)
θR = V

(j)
θI

V
(j)
vL = 0 V

(j)
wL = 0 V

(j)
θL = V

(j)
θI

Curved beam (B) Figures 2.25 and 2.28b
V

(j)
vR = 0 V

(j)
wR = 0 V

(j)
θR = V

(j)
θI

V
(j)
wB = 0 V

(j)
θB = V

(j)
θI

V
(j)
vL = 0 V

(j)
wL = 0 V

(j)
θL = V

(j)
θI

V
(j)
vR = 0 V

(j)
wR = 0 V

(j)
θR = V

(j)
θI

Tube Figure 2.36

V
(j)
wT = 0 V

(j)
θT = V

(j)
θI

Table 3.5: Expressions of the boundary voltages of the j-th electrical network unit cell.

Applying the superposition principle with equations (3.41) and (3.44) results in the expression

of VN when U ̸= 0 and QN ̸= 0:

VN = MN Q̈N + KN QN + (KcKeP )T U . (3.45)
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Combining the mechanical part of equation (3.28), as well as equations (3.42) and (3.45) leads to

a finite element formulation of a structure coupled to an electrical network:⎛⎝Mm 0
0 MN

⎞⎠⎛⎝ Ü

Q̈N

⎞⎠+

⎛⎝Km + KcKeKc
T KcKeP

(KcKeP )T KN

⎞⎠⎛⎝ U

QN

⎞⎠ =

⎛⎝ F

VN

⎞⎠ . (3.46)

In harmonic motion, this expression is similar to the equation (1.1), and to a formulation derived

in [99] in the case of a single unit cell being periodically assembled along one direction. The present

finite element formulation is used for an extension to non-periodic 2D networks, which is a contribution

of this thesis. Besides, it allows assembling the network unit cells as in the finite element method.

Hence, local modifications of network components can be implemented. This should ease the way

going towards non-periodic structures, as it is a more flexible modeling tool than the one developed

with the impedance matrix approach in subsection 3.4.2.1. Finally, we point out that that this model

only requires the assembled matrices of stiffness, mass and coupling of the structure as starting points.

As a consequence, it is convenient to study the impact of a network connection to a structure which is

modeled by the finite element method in a commercial software. Note that mechanical damping could

also be implemented in this formulation, as will be made in the following chapters.

Hypotheses for finite element modeling of a structure coupled
by piezoelectric patches to an electrical network

The main assumptions to derive the finite element formulation of equation (3.46) are:

• The same hypotheses as for the finite element model of equation (3.28) apply. We recall
the most important ones:

– The infinitesimal strain theory applies.

– The adhesive layers and the electrodes thicknesses are not modeled.

– The lower electrodes are connected to the ground.

– The piezoelectric transducers are thin and polarized in the electrodes orthogonal
directions, and they exhibit transverse isotropic properties.

• The electrical behavior of network unit cells can be described by elementary matrices of
“stiffness” Kelm and “mass” Melm.

• The electrical network behaves linearly with the excitation sources, so that the superposi-
tion principle can be applied. This is ensured by considering linear electrical components
and the linear piezoelectricity theory.
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3.5 Conclusions

In this chapter, we have developed a finite element model of a structure covered by thin piezoelectric

transducers. This model is convenient as it includes the potentials and electrical charges on the

upper electrodes of the piezoelectric patches as global variables. Therefore, expressing the cases of

setting the piezoelectric transducers in short-circuit and in open-circuit is easy. This finite element

model is validated by comparing simulated results to measurements conducted on a simply-supported

rectangular plate. The plate is periodically covered by 42 piezoelectric patches, whose materials

constants are measured when possible. The good correlation between experimental and numerical

results proves that the modeling process is adequate for our situation.

Finally, we consider the case of connecting the structure to a lumped electrical network. We assume

that the network can be discretized in unit cells, which can be assembled in a similar way as in the

finite element method. A finite element formulation of the structure being coupled to an electrical

network via piezoelectric patches is then derived. Besides, this formulation can be applied even if the

mechanical and electrical matrices are issued from different numerical sources. In other words, the

coupling between the mechanical and electrical systems can be made after their respective assembly

processes. One of the objectives of chapter 4 is to validate this model.

Note that the present manuscript does not bring contribution to the topic of finite element modeling

of electromechanical coupling via piezoelectric transducers. The originality rather lies on the coupling

of a 3D finite element model to a network described by a set of discrete equations.
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Chapter 4

Piezoelectric network damping
of a plate

The objective of the present chapter is to study the vibration mitigation of a plate coupled to an
electrical network via piezoelectric patches. An analogous network of the plate is assembled by
considering square plate electrical analogues as unit cells. To do so, magnetic circuits are used
to produce passive inductors and transformers for the network, so the design process of magnetic
components is recalled. Finally, the network is validated by checking if it meets the frequency
and spatial coherence conditions, and multimodal damping is achieved. Besides, comparison
between simulations and experiments allows validating the electromechanical model previously
developed.
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4.1. INTRODUCTION

4.1 Introduction

Damping of mechanical vibrations using piezoelectric coupling goes back to the 1990s, when the

resonant shunt was described by Hagood and Von Flotow [5]. The efficiency of the resonant shunt to

control a single mode of vibration has been extensively studied [13, 8]. The concept of piezoelectric

shunt damping has then been extended to multimodal damping. Some passive solutions consider

connecting a multi-branch shunt to a single piezoelectric transducer [25, 26, 27, 31]. While adding

only one piezoelectric transducer to the structure is barely intrusive, its position and dimensions

cannot simultaneously maximize the electromechanical coupling for all modes [35]. As a result, the

damping performance might be limited. Moreover, the required inductive components could be difficult

to produce [29], and the number of involved electrical components may greatly increase with the

number of modes to be controlled [31]. Another solution could use several independent piezoelectric

transducers, each one being shunted in order to damp one particular mode of the structure [44, 45].

However, the resulting electromechanical coupling coefficients are inferior to the ones that would be

induced by interconnecting all piezoelectric transducers.

Hence, the principle of piezoelectric network damping emerged in the early 2000s [63, 51, 54,

55]. Broadband damping is achieved by bonding piezoelectric patches on a vibrating structure and

interconnecting them with electrical components [36]. This way, the inductance requirements are

reduced [51]. Besides, the topology of the network to be connected to the plate has a significant impact

on the attainable damping performance. It has been shown that connecting the vibrating structure

to a network that has the same modal characteristics ensures that there is as much electrical energy

as mechanical energy involved in the coupled system [63]. For this reason, the electrical analogues

of mechanical structures have been revived for vibration mitigation purposes [64], and piezoelectric

network damping of beams [65, 66, 67] and plates [68, 69] has been studied. Most of these works are

based on the application of the force-current and velocity-voltage analogy, also called indirect analogy.

Other articles concentrating on using the direct electromechanical analogy have implemented elec-

trical analogues for the vibration mitigation of beams [71] and plates [72, 85]. Based on these recent

articles, a plate electrical analogue is produced in this chapter for further measurements. To do so, the

design processes of passive inductors and transformers are recalled in sections 4.2 and 4.3. The electri-

cal network is designed to exhibit the same modal properties as the mechanical structure to be damped.
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The validation of the network is then made in section 4.4 by comparing measurements to simulations

and by conducting an experimental modal analysis. The assembled experimental setup also brings the

occasion to develop tools for further analysis of complex structures. Finally, the broadband damping

of the plate is addressed in section 4.5. The attained damping performance is promising. Moreover,

the experiments bring the opportunity to validate the finite element model of a structure coupled to

an electrical network via piezoelectric patches, as developed in chapter 3. The ability to predict the

behavior of the coupled system brings hope in forecasting the coupling of complex structures to their

electrical analogues in the next chapter.

4.2 Inductors design

All the electrical analogues of the library in section 2.10 include inductive components. Indeed, they

are essential at replicating the dynamic behavior of a mechanical structure, since they are analogous

to either a mass or a rotational inertia, according to the direct electromechanical analogy in table 2.1.

As the present objective is to develop fully passive analogous networks, passive inductors should

be designed. Several technical solutions exist to produce passive inductors, such as winding turns

of conductive wire around ferrite cylinders, ferrite cores or nanocrystalline toroids. As explained

in [100], the range of inductance values required for piezoelectric network damping fits with ferrite

cores inductors, which also have the advantage of being easier to automatically wind when compared

to toroids. Therefore we only consider this kind of magnetic circuits in this manuscript.

le

Flux lines φ

AeN

(µ)

(µ0)

i

V

Figure 4.1: Toroidal magnetic circuit.
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Electric circuit quantities Magnetic circuit quantities

Voltage V Magnetomotive force F = Ni

Electrical current i Magnetic flux φ

Resistance R Reluctance R

Conductance 1/R Permeance AL

Conductivity 1/ϱ Permeability µ

Ohm’s law: V = Ri Hopkinson’s law: F = R φ

Table 4.1: Analogy between electric and magnetic circuits.

4.2.1 Laws of magnetic circuits

To design the required inductors, we first recall the rules of magnetic circuits. A magnetic circuit

is a medium in which there are one or several loops of magnetic flux. This circuit is mostly made of

ferromagnetic material, whose permeability µ is usually much bigger than the vacuum permeability µ0.

This material constant relates the magnetic flux density B to the applied magnetic field strength H,

which is generated by the total electrical current surrounding the circuit of magnetic patch length le:

B = µH with H = Ni

le
, (4.1)

with N being the number of winding turns. The resulting magnetic flux φ in the circuit is

φ = BAe. (4.2)

The geometry of the magnetic circuit is thus characterized by its effective cross-sectional area Ae and

by its effective magnetic path length le. These quantities are indicated in figure 4.1.

All these equations describing the physical behavior of magnetic circuits are analogous to Ohm’s

law for electric circuits. This analogy, which is summarized in table 4.1, is verified for static and

dynamic variations, as long as the magnetic circuit is not saturated. In other words, the analogy

is only suitable for low levels of excitation. In particular, we note that the resistance R and the

reluctance R of a medium of length l and of cross-section S are expressed by

R = ϱl

S
and R = l

µS
. (4.3)
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leFlux lines

δ

Ae

N

(µ)

(µ0)

VL

iL

(a)

δ/2
Sw

Aw

(b)

Figure 4.2: Fully passive inductor made by winding conductive wire around (a) a gapped magnetic
core or (b) a gapped RM magnetic core.

4.2.2 Inductors production

We now consider the magnetic circuits in figure 4.2 which include air gaps of length δ. The magnetic

flux is related to the applied voltage VL by Faraday’s law of induction:

VL = N
dφ

dt
. (4.4)

We recall that an inductor is characterized by its constitutive equation:

VL = L
diL
dt
. (4.5)

One can deduce that passive inductors can be produced by winding N turns of conductive wire around

magnetic cores. The resulting inductance value verifies

Nφ = LiL. (4.6)

To derive the expression of the inductance, we consider the circuit drawn in figure 4.2a, which

can be regarded as a series circuit of two reluctances Rcore and Rair. Assuming δ ≪ le, so that flux

lines do not spread out of the circuit cross-section too much when crossing the air gap, one obtains by

applying the equation (4.3)

Rcore = le − δ

µAe
and Rair = δ

µ0Ae
. (4.7)

We define the initial relative permeability µr of the ferrite material, so that µ = µ0µr. Applying

Hopkinson’s law, which is recorded in table 4.1, leads to the expression of the inductance:

L = ALN
2, (4.8)
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where AL is the magnetic circuit permeance:

AL = µ0µeAe
le

, (4.9)

with µe being the effective relative permeability of the magnetic circuit. This quantity depends on the

geometric properties of the magnetic circuit and on the ferrite material characteristics [101]:

µe = leµr
le + δ (µr − 1) . (4.10)

The series resistance of the inductor, which is owed to the windings, can be estimated as well:

RsL = ϱ
Nlw
Sw

with Sw = πd2
w

4 , (4.11)

where ϱ is the resistivity, Sw is the wires cross-section, dw is the wires diameter and lw is the average

length per turn. If the component is close to fully filled, then lw is indicated by manufacturer’s data.

4.2.3 Air gap and environmental parameters influences

Some environmental parameters modify the relative permeability µr, which is a material constant.

This is the case of the electrical current [102, 103] and of the temperature [104, 105]. The dependence

of the permeability on electrical current is owed to the magnetic saturation of the ferrite material. A

typical inductance evolution with the current flowing through it is illustrated in figure 4.3. For any

environmental parameter g influencing the relative permeability µr, one can compute

∂L

∂g
= µ0AeN

2

le

∂µe
∂g

≈ µ0AeN
2

le

[
le

le + δµr

]2 ∂µr
∂g

if δ ≪ le and µr ≫ 1. (4.12)

The influence of the air gap on the inductance is interesting to note. Indeed, the equation (4.12)

shows that for a ferrite material whose initial relative permeability µr variations are given, the greater

the air gap δ, the smaller the inductance variations. Consequently, increasing the air gap helps

both extending and flattening the linear evolution of the component, such as sketched in figure 4.3.

However, as equation (4.10) shows, increasing the air gap δ decreases the relative permeability of the

magnetic circuit µe. Thus, more turns will be needed to meet the target inductance value, and the

equation (4.11) shows that increasing N increases the series resistance value as well.

164



4.2. INDUCTORS DESIGN

Linear

evolution

Partially

saturated

component

Fully

saturated

component

Figure 4.3: Standard dependence on the electrical current of a ferrite-based inductance.

As a conclusion, we show that to produce an inductor, there is a compromise to be found between

stability and dissipation: a component with a wider air gap is less sensitive to external parameters

variations, but has a larger internal resistance.

4.2.4 Magnetic core selection

The magnetic core should be selected according to energetic and thermal considerations [106,

107]. The objective is to estimate the maximum energy that can be stored in an inductance without

exceeding the following limits:

• The maximum magnetic flux density: The value of Bmax should be set according to the

operating area in figure 4.3 which is deemed suitable for the considered application.

• The maximum current density: Over Jmax, the electric energy dissipation by heat is too

important, which makes the wire insulation melt and thus ruins the component characteristics.

A convenient way to design the inductor is to make both magnetic flux and current density limits

occur for the same electrical current. In other words, we suppose that

Imax
L = kfSwJ

max and φmax = BmaxAe = ALNI
max
L , (4.13)

where kf is the form factor of the electrical current waveform. Hence kf is equal to the ratio of the signal

amplitude Imax
L over its root mean square value. Besides, the magnetic cores have a predefined volume,

and so have a capped filling space. As can be seen in figure 4.2b for a Rectangular Modular (RM)
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core, the winding surface Aw is filled with cylindrical wires, which generates unoccupied space in the

end. Moreover, some space is occupied by the insulation layer of the windings. The filling factor ku is

a convenient indicator about the difficulty to produce a component:

ku = NSw
Aw

. (4.14)

A value of ku superior to 60 % usually indicates that the component is difficult to wind without very

well organized winding turns, while having ku inferior to 30 % corresponds to a barely filled, and as

a consequence probably oversized component.

We recall that an inductive component can store a certain amount of energy EL:

EL = 1
2 Li

2
L. (4.15)

Thus combining equations (4.13), (4.14) and (4.15) results in the expression of the maximum en-

ergy Emax
L that the produced inductor can store:

Emax
L = 1

2 kukf AeAw J
maxBmax. (4.16)

This expression means that for a given application, once Jmax and Bmax are set, and supposing a

standard filling factor, then the energy Emax
L is proportional the area product AeAw. In other words,

the area product is the first quantity to compute to restrain the choices among the available core

geometries.

As opposed to what has been written in many articles about resonant shunt damping, for which

optimized inductors usually require large inductance and small resistance values, high inductance val-

ues are not synonymous with large components. Indeed, passive inductors meeting these requirements

can be made following the method described in [3]. Furthermore, the equation (4.16) shows that, for a

given application, the size of the component is related to the amount of energy it should store. There-

fore, the estimation of Emax
L is critical to adequately design electrical components. Computing the air

gap δ and the number of turns N of conductive wire to meet the requirements on the inductance L

value and on its series-resistance RsL is made in a second phase.
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Range of stored electrical energy for commercially available ferrite cores

We consider standard values of magnetic flux density, current density for copper, filling factor
and form factor:

• Bmax = 0.3 T

• Jmax = 5 A/mm2

• ku = 60 %

• kf =
√

2

In this case, the energy Emax
L stored in an inductor ranges from a few hundreds of microjoules

to a few tens of millijoules for most of the ferrite cores which are commercially available [107].

4.2.5 Application to the plate electrical analogue

When the plate electrical analogue was first designed, the electrical energy to be stored in the in-

ductors had not been estimated, since the excitation amplitude had not been set. Hence the 42 desired

inductors of the network studied in section 4.4 have been designed so that they:

• Exhibit an inductance L of 246.6 mH: The inductance value of the unit cell in figure 4.13a

should meet the frequency coherence condition that is derived in subsection 2.7.1. Therefore, the

other quantities involved in the equation (2.56) should be estimated beforehand. This process is

detailed in section 4.5, and leads to an inductance value of 246.6 mH.

• Exhibit a series resistance RsL inferior to 30 Ω: The estimation of this value is explained

in the aside at the end of the ongoing subsection.

• Include an air gap in the magnetic circuit: We want to limit the variations with environ-

mental parameters of the produced inductance. This is made to ensure that the measurements

are as independent as possible from the amplitude of the electrical currents flowing in the net-

work. Consequently, we consider magnetic core geometries involving an air gap, as represented

in figure 4.2.

• Permit the use of an adjustable screw: To prevent the uncertainties on both the modeling

process and on the inductors production, we have decided to use adjustable components. The

adjusting screw can be seen from above the realized components, in figure 4.4.

• Exhibit a filling factor ku between 30 % and 60 %: This criterion ensures that the

inductors are realizable and not oversized.
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Core le lw Ae Aw AL N dw ku RsL

geometry (mm) (mm) (mm2) (mm2) (nH) (turns) (µm) (%) (Ω)

P 22×13 31.6 44 63 23.4 630 625 150 47 26

RM 8 35.1 42 52 29.2 630 625 150 38 25

P 26×16 37.2 52 93 32 800 555 200 55 15

RM 10 42 52 83 40.2 630 625 200 49 17

630 625 200 41 20
P 30×19 45 60 136 48

1000 500 200 33 16

630 625 200 31 24
P 36×22 52 73 202 63

1000 500 200 25 20

Table 4.2: Ferrite core specifications and forecast component characteristics made in N48 ferrite
material [108], sorted from the smallest area product AeAw to the largest one.

According to the previous criteria, several cores are selected and are recorded in table 4.2. Several

wire diameters are sometimes suitable. For example, a P 26×16 core geometry component made with

a magnetic circuit of permeance 800 nH could be produced with either a wire diameter dw of 150 µm

or of 200 µm. In this situation, only the best component in terms of low series resistance RsL and

filling factor ku close to 60 % is recorded. Two families of magnetic cores remain among the restrained

list in table 4.2: the Rectangular Modular (RM) and Pot (P) cores. The distinction between these two

families is that most P cores exhibit larger area products AeAw than RM cores. In other words, the P

cores are more suited for power electronics than RM cores. Comparing the potential components shows

that the one made using the P 26×16 core exhibits the lowest RsL value. However, only RM cores

were commercially available when the plate analogue was being designed. The choice was thus made

to use RM 10 cores, since it leads to inductors with lower series resistances and higher filling factors.

Energetic validation of the produced inductors

As said above, energetic criteria were not taken into consideration when designing the network
inductors. However, once a predictive model of the coupled system is available, it is possible to
check if the inductors are well designed for a given excitation. Not to disrupt the flow of the
present chapter, an example of such verification is conducted in appendix C.
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Figure 4.4: Produced fully passive N48-ferrite based inductor with a RM 10 core geometry.

L

RsL

Rp

(a)

Leq (Ω)
Req (Ω)

(b)

Figure 4.5: (a) Electrical model of a resistive inductor including magnetic losses and (b) equivalent
series representation with frequency-dependent lumped elements.

Finally the 42 inductors of the network are made by winding 610 turns of 200 µm thick copper

wire around a RM 10 core of N48 ferrite material, whose nominal permeance is 630 nH. Some turns

are taken out from the forecast value of 625 turns in table 4.2, so that the interval over which the

inductance can be tuned thanks to an adjusting screw is not limited at one end to the prescribed value

of 246.6 mH. In fact, the produced inductance can be set from 240 mH to 270 mH. Besides, while the

series resistance was predicted at 17 Ω in table 4.2, it is measured at 13.7 Ω in the end. Once winded,

the components look like in figure 4.4.

A realistic electrical model for the produced inductor is sketched in figure 4.5a. It involves an

inductance and a series resistance which models copper losses, but also a parallel resistance that

models the magnetic losses. We measure these elements thanks to a LCR-meter, however the device

identifies the model which is sketched in figure 4.5b. The equivalence between the two models is that

Leq (Ω) = L

1 +
(
LΩ
Rp

)2 and Req (Ω) = RsL + Rp

1 +
(
Rp
LΩ

)2 . (4.17)

The characteristics of several inductors among the 42 produced are measured. The measurements

have been made with a nearly fully engaged adjusting screw, which means that the effective relative

permeability µe is maximum. According to the equation (4.12), the variations of the component with
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(a) (b)

Figure 4.6: Evolution with frequency of (a) the equivalent series inductance Leq and (b) the equivalent
series resistance Req of a produced inductor for an electrical current of 10 µA, 100 µA or

1 mA.

external parameters, such as electrical current and frequency, are thus maximized. The measurements

for one inductor are plotted in figure 4.6. The influence of the frequency on the inductor characteristics

is consistent with the models in equations (4.17). While this influence can be noticed, note that the

electrical behavior of the inductor barely depends on the frequency and on the electrical current, which

can be attributed to the air gap and to the relatively low permeance value of the magnetic circuit.

Then, the circuit parameters in figure 4.5a have been fitted with the curves at 10 µA by a least

squares method. The identified parameters are L = 266.6 mH,RsL = 13.7 Ω andRp = 8.12 MΩ. Over

the frequency range of interest, the parallel resistance Rp is so much larger than the impedance 2πfL

that it has no influence on the inductor behavior. Consequently, the magnetic losses in the network

components can be neglected, and the model sketched in figure 4.5b with frequency-independent

lumped elements is deemed adequate going forward.

Series inductor model

The inductor model we have identified is adequate for frequencies under 1 kHz and for electrical
currents under 1 mA. In this case, the model consists in:

• Modeling the copper losses by a constant series resistance RsL of 13.7 Ω.

• Modeling the inductive behavior by a constant inductance L, whose value can be tuned
from 240 mH to 270 mH.
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Presizing of the series resistance of inductors for vibration damping purposes

The series resistance of inductors has the most influence at low frequencies, because the inductor
quality factor LΩ/RsL increases with frequency. Hence the first plate mode has been targeted
in terms of damping optimization. The objective is to estimate the value of RoptsL over which
the system is overdamped and the infinite norm H∞ of the system response increases. This
phenomenon is illustrated in figure 1.4. We assume that the dissipative elements in transformers
are known at this point.

As the coupled electromechanical model developed in section 3.4 had not been validated when
designing the plate electrical analogue, the electromechanical model in [72, 85] has first been
used to estimate RoptsL . This model is not precisely described in this manuscript, but we recall
that it is based on the coupling between a finite difference model of a plate and an electrical
network. It has been validated on a setup of piezoelectric network damping of a fully-clamped
rectangular plate. A numerical optimization has thus shown that the internal series resistance
of the inductors should verify RsL < RoptsL ≈ 30 Ω. Once it is validated in section 4.5, the
coupled model we developed in the previous chapter predicts that RoptsL ≈ 30 Ω as well.

4.3 Transformers design

4.3.1 Laws of magnetic circuits

The electrical analogues of the library in section 2.10 that model bending vibrations include trans-

formers, in the form of lever arm analogues. Transformers usually are the bulkiest components in

electrical engineering, therefore their design are of prime importance, which is the topic of the ongo-

ing section. The process is not as detailed as for inductors. Indeed, even though the objectives are

different, the rules are mostly similar in the two cases.

le

Flux lines φ

Ae

N1 N2

(µ)

(µ0)

i1 i2

V1 V2

Figure 4.7: Toroidal magnetic circuit with two windings.
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RsT Ll

LmRm

Cw

N1 N2⋆ ⋆

Figure 4.8: Electrical model of a non-ideal transformer at low frequencies.

Transformers can be produced by making several windings around a single magnetic circuit. To

demonstrate this, consider the magnetic circuit of figure 4.7 around which two coils of N1 and N2 turns

are winded. Hopkinson’s law, which is recorded in table 4.1, relates the total electrical currents

circulating around the magnetic circuit to the magnetic flux φ:

N1i1 −N2i2 = R φ with R = le
µAe

. (4.18)

Moreover, Faraday’s law of induction allows relating the voltages V1 at the primary side and V2 at the

secondary side to the time-variation of the magnetic flux:

dφ

dt
= V1
N1

= V2
N2

. (4.19)

Assuming the circuit permeability µ is infinite, which is equivalent to set the magnetic reluctance R at

zero, the two previous equations lead to the constitutive equations of an ideal transformer of ratio â:

â = N1
N2

= i2
i1

= V1
V2
. (4.20)

4.3.2 Transformers production

While transformers are represented in their ideal form in the derived electrical analogues, the

implementation of electrical networks requires to take their imperfections into account. Several models

of non-ideal transformers exist, and adequately describe their electrical behaviors depending on the

circumstances [101, 109]. The model we have chosen for low frequency applications is sketched in

figure 4.8. All the imperfections are referred to the primary side, and include:
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• The leakage inductance Ll, which stems from the magnetic circuit permeability µ not being

infinite. Hence there are flux lines leaking outside of the component. In other words, the two

sides of the transformers are imperfectly coupled. This parasitic inductance is mainly affected

by the magnetic circuit geometry and by the quality and relative positions of the windings.

• The magnetizing inductance Lm, which also results from the circuit permeability µ not

being infinite. Indeed, generating a flux in the magnetic circuit requires a non-zero electrical

current, as can be understood from equation (4.18) when R ̸= 0. This expresses that some of

the electrical current flowing to the primary side of the transformer helps creating the magnetic

flux. Thus part of the incoming energy at the primary is not transferred to the secondary.

• The series resistance RsT , which models the copper losses in the windings.

• The core-loss resistance Rm, which represents the iron losses in the magnetic circuit. Theses

losses are due on one hand to variable flux generating eddy currents, which then induce dissi-

pation by heat in the magnetic material. On the other hand, the magnetic losses are due to

hysteretic losses that are induced by the reversal of the magnetic flux in the transformer.

• The winding-to-winding capacitance Cw, which stems from the electrostatic interaction

between the primary and the secondary windings.

These imperfections should be modeled and forecast, to ensure the produced transformers exhibit

the desired behavior. If not, they might alter the dynamic behavior of the circuit in which they

are integrated, which might then deteriorate the damping performance in the case of a piezoelectric

network damping application.

However, several parasitic components in figure 4.8 are quite difficult to foresee. In particular,

estimating the winding-to-winding capacitance Cw requires a fine modeling of the electrostatic inter-

action between windings. Besides, a lumped element does not fully describe the components physics,

since the capacitance is distributed along the windings. Moreover, the core-loss resistance Rm is

greatly dependent on the frequency and on the flux density in the magnetic circuit. Predicting its

value requires advanced electromagnetic modeling tools we have not developed. As a consequence, we

proceed to the transformer design by neglecting Rm. Designing transformers for piezoelectric network

damping by taking these imperfections into account might be a topic for future works. Nonetheless,
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using ungapped toroidal magnetic circuits with high permeability allows minimizing the inductance Ll,

while adding an insulation layer between the primary and secondary windings allows minimizing the

capacitance Cw. Therefore, we mainly concentrate on designing the magnetizing inductance Lm as

well as the windings resistance RsT .

We denote AL the permeance of the magnetic circuit, which is proportional to the circuit perme-

ability µ. In a non-ideal magnetic circuit, µ is not infinite. This causes AL, and hence the magnetizing

inductance Lm to have finite values as well. Indeed, the expression of Lm is

Lm = ALN
2
1 . (4.21)

Lm represents the ability of the magnetic circuit to store part of the incident energy in magnetic form,

rather than completely transferring it from winding to winding. The goal is for the magnetic circuit

to exhibit a large value of µ, which is another reason why we consider ungapped magnetic circuits.

Meanwhile, the series resistance referred to the primary side of the transformer is expressed by

RsT = ϱ

[
N1lw1
Sw1

+ â2 N2lw2
Sw2

]
, (4.22)

with similar notations to those of equation (4.11), and with the subscripts 1 and 2 referring to the

primary and secondary windings, respectively. The design should consequently involve maximizing Lm

while keeping RsT under a predefined value.

4.3.3 Magnetic core selection

As for inductors, the design of magnetic circuits for transformers is based on energetic and thermal

considerations [106, 107]. However, the criteria are different from those for inductors. Indeed, an ideal

transformer does not store energy, but rather transfer it from the primary to the secondary without

loss. Therefore, the magnetic circuit should be selected without exceeding:

• The maximum acceptable magnetic flux density: In this case as well, the maximum value

of flux density should be set to avoid the partial saturation of the ferromagnetic material.

• The maximum current density: Over this value, the electric energy dissipation by heat in

the windings is too important, which makes the windings insulation layers melt. The component

function would thus be ruined.
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Figure 4.9: Produced nanocrystalline toroidal transformer, whose ratio can be set at 1:1, 2:1 or 4:1.

Finally, the magnetic core selection is restrained by a filling factor ku whose definition is similar

to the filling factor of inductors, expressed by the equation (4.14). It depends on the geometry of

the core, the number of turns and the relative positions of windings. Ensuring electrical insulation

between windings often results in filling factors between 20 % and 30 %, which is lower than the

standard attainable values for inductors [107].

4.3.4 Application to the plate electrical analogue

In the case of piezoelectric network damping, a convenient criterion to ensure that the magnetizing

inductance Lm has little to no influence on the network behavior is to tune it according to the local

network parameters. All unit cells of the library in section 2.10 that involve transformers also involve

at least one inductor of inductance L. We thus suggest to set Lm sufficiently large when compared

to L:

Lm ≥ 50 â2L. (4.23)

Since the value of L is fixed to meet the frequency coherence condition, it cannot be modified to fit

this last inequality. Thus, according to the equation (4.21), one solution to increase Lm is to wind

enough turns of conductive wire around the magnetic circuit. However, the same compromise as for

the inductors design in section 4.2 applies: for a transformer of ratio â, increasing N1 to make Lm

bigger also makes the series resistance RsT greater, according to its expression in equation (4.22). This

means that the transformer design process can be regarded as trading off some frequency independence

of the component for less dissipation. We recall that the final objective in case of a vibration damping

application is to avoid overdamping the system, and as a consequence to limit the electrical damping

at first.
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(a)

⋆
⋆

(b)

⋆
⋆

(c)

⋆
⋆

Figure 4.10: Electrical connections of a multi-windings transformer to exhibit (a) a 1:1 ratio, (b) a 2:1
ratio or (c) a 4:1 ratio.

Another solution to meet the requirement of equation (4.23) while limiting the copper losses is to use

magnetic cores with a very high permeability µ. This can be done by considering ungapped toroidal

circuits made of nanocrystalline material. While this solution is more expensive and the winding

requires specific automation, it should lead to the most adequate components in our situation.

For these reasons, we choose to use ungapped nanocrystalline toroidal transformers. The produc-

tion has been delegated to an external company. The resulting component is pictured in figure 4.9.

Without windings, the magnetic circuit has an external radius of 20 mm, an internal radius of 12.5 mm

and a thickness of 8 mm. The nanocrystalline material is VITROPERM 500F from VAC. The nom-

inal core permeance at low amplitudes and at 10 kHz is 57 µH. Note that the components have four

windings at the primary side, and one winding at the secondary side. All windings have equal number

of turns. Therefore, the transformer ratio can be set at 1:1, 2:1 or 4:1 depending on the primary

connections. The possible connections are sketched in figure 4.10. This is convenient, as the same

nominal transformer can be used for all network transformers.

As all specifications were not available, the transformers have been experimentally characterized.

An LCR-meter is used to conduct measurements, as it allows identifying classical electrical component

models over given ranges of frequency or electrical current amplitude. The tests are conducted as

follows:
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(a) (b) (c)

Figure 4.11: Evolution with frequency of (a) Ll (mH) and RsT (Ω) for an electrical current
set at 1 mA, of (b) Lm (H) and Rm (MΩ) for an electrical current set at 10 µA, and of
(c) Cw (nF) and Rpw (GΩ) for a voltage difference set at 500 mV.

• First test: The measurement is made at the primary side, while the secondary side is short-

circuited. The identified model is a series circuit composed of an inductance and a resistance.

By neglecting the capacitance Cw, this allows estimating the values of Ll and RsT .

The resulting estimations are plotted in figure 4.11a. They show that the leakage inductance Ll

is negligible when compared to the other inductances of the network. Meanwhile, the resistance

modeling copper losses is almost independent from frequency, which was expected.

As a side note: The norm of the impedance RsT + jLlΩ is close to 16 Ω even at 1 kHz. To

ensure a fine signal-to-noise ratio measurement with a LCR-meter whose upper voltage limit

is 2 V, an electrical current of 1 mA is used. This current amplitude is not representative to

our application: the amplitude of the network currents during vibration tests is of several µA.

Nonetheless, if the value Ll is negligible at high levels of electrical current, it is also negligible at

low levels because the magnetic core is further from its saturation state in this case. Therefore,

the measurement in figure 4.11a permits neglecting the leakage inductance in any situation.

• Second test: The measurement is made at the primary side, while the secondary side is left

in open circuit. The identified model is a parallel circuit composed of an inductance and a

resistance. By neglecting the capacitance Cw and the series circuit composed of Ll and RsT ,

whose impedance is negligible when compared to the impedance of the parallel circuit composed

of Rm and Lm, this allows estimating the magnetizing inductance and the core-loss resistance.
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The results are plotted in figure 4.11b. In this case, the impedance is large enough so that the

testing electrical current can be set at a representative value of 10 µA. Both Lm and Rm are

frequency-dependent, which was expected [101]. Besides, the impedance LmΩ is fifty times larger

than Rm at low frequencies, and nearly ten times larger at 1 kHz. Because of this impedance

ratio, Rm will be neglected going forward.

• Third test: Both transformer sides are short-circuited. Measuring then the impedance between

the two sides gives a direct information about the winding capacitance Cw. The LCR-meter

allows identifying the parallel circuit composed of the capacitance Cw and a resistance Rpw.

The results are plotted in figure 4.11c. The excitation voltage difference is set at 500 mV, which

allows simulating a representative electrical current of around 1 µA in the component. The value

of Cw is nearly constant over the considered frequency range, and is small when compared to

piezoelectric capacitance measurements conducted on the plate covered by piezoelectric trans-

ducers. In the meantime, Rpw is virtually infinite. This is consistent with the required electrical

insulation between the two transformer sides.

Models of transformer with a 1:1 ratio

Depending on the frequency range of interest and the required accuracy, the transformer model
in figure 4.8 can be simplified. A first approximation of the transformer behavior consists in:

• Modeling the copper losses by a series resistance of 31 Ω for each of the four windings at
the primary side, and by a series resistance of 9 Ω for the secondary side winding.

• Neglecting the leakage inductance Ll, the core-loss resistance Rm, the magnetizing induc-
tance Lm and the winding capacitance Cw.

Besides, a second order model of the transformer consists in:

• Modeling the copper losses by a series resistance of 31 Ω for each of the four windings at
the primary side, and by a series resistance of 9 Ω for the secondary side winding.

• Modeling the magnetizing inductance Lm by a constant value of 16 H.

• Modeling the winding capacitance Cw by a constant value of 0.9 nF.

• Neglecting the leakage inductance Ll and the core-loss resistance Rm.
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(c)

Figure 4.12: (a) Plate covered with 42 piezoelectric patches and (b) its assembled analogous electrical
network made of 42 unit cells. (c) Closeup view, with boundary cells in the foreground.

4.4 Network model and validation

4.4.1 Network description

The objective is to develop the electrical analogue of a simply-supported duralumin plate of di-

mensions lx = 420 mm, ly = 360 mm and hs = 3 mm. Among the available elements of the library in

section 2.10, we select the square plate unit cell to form the electrical network. As a consequence, the

plate should be discretized along the x and y directions by respectively 7n0 and 6n0 elements, n0 being

integer. The choice is to use n0 = 1 because of the significant number of electrical components already
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Figure 4.13: (a) Scheme and (b) picture of the electrical analogue of a square plate, which highlight
the central transformer in red, a side transformer in blue, the inductance in green, and the capacitance
connection in yellow.

required to produce the plate analogue with this minimal discretization scheme. This justifies that 42

piezoelectric patches have been periodically bonded on one side of the plate. The structure and the

bonding process have been described in subsection 3.3.1.

Hence, a network made of 42 identical unit cells has been assembled. It is obtained by assembling

the square plate electrical analogous unit cell along the x and y directions. According to the spatial

coherence condition expressed by equation (2.6), the resulting analogue should correctly replicate

plate modes which exhibit one wavelength or less. The number of unit cells being already higher

than in the previous experimental setup in [72] should lead to a wider frequency band upon which the

analogy is validated. The structure and its analogous network are pictured in figures 4.12a and 4.12b,

respectively. A closer look at a unit cell is shown in figure 4.13b. It can be compared to the unit cell

circuit in figure 4.13a, which has been exhibited in section 2.7 as well.

The inductors and transformers of the network are the ones designed and characterized in sec-

tions 4.2 and 4.3, respectively. The network testing is made with a nominal inductance for all unit

cells of L = 244 mH. The central transformers have a 1:1 ratio. Besides, as explained in the aside

of subsection 2.8.2, the two transformers of ratio â/2:1 linking two adjacent cells can be combined

into one transformer of ratio â:1. Combining transformers this way allows limiting the number of
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components in the network. Finally, the ratio of the transformers located at the network boundaries

is maintained at â/2:1. All corresponding cable connections are sketched in figure 4.10.

Moreover, the network has been rendered adaptable when possible. Three elements have been

added with this in mind and can be seen in figures 4.13b and 4.12c. The first one are toggle switches

with three positions, placed next to the capacitances connections. They allow setting the piezoelectric

transducers covering the plate to the independent open-circuit condition, connecting them to the

network, or connecting them to a common voltage VG. Then, setting VG = 0 or letting VG free to evolve

leads to the short-circuit and open-circuits conditions, respectively. The other adaptable elements are

trimmer resistors, one of which being pictured next to the central transformer in figure 4.13b. The

maximum resistance they add in series with the unit cell inductance is 200 Ω. It is one simple way to

add local damping in the network. Finally, other toggle switches are integrated in the boundary cells.

They allow easily passing from simply-supported to fully clamped analogous boundaries, according to

the conditions summed up in table 2.4.

4.4.2 Network model with electrical damping

We recall that an electrical model for the network has been developed in subsection 2.7.1. The

principle is to derive an elementary dynamic matrix relating currents and voltages from a unit cell.

From there, elementary matrices of “stiffness” Kelm and of “mass” Melm are derived by applying the

equation (2.13). Assembling them in a similar manner as in the finite element method, we obtained

in equation (2.58) the model of the entire network.

However, an accurate model of the network requires to take the components imperfections into

account. It has been shown in sections 4.2 and 4.3 that dissipation occurs in the inductors and

transformers of the network. A first approximation of the non-ideal network behavior is the circuit

represented in figure 4.14. Therefore, it is required to derive an elementary matrix of electrical damp-

ing Delm. It should depend on RsL, R
c
sT and RssT , which respectively denote the series resistance

of the inductor, of the central transformer of ratio 1:1, and of the side transformers of ratio a/2:1.

While the influence of RcsT and RsL on Delm can be deduced from Melm, as explained in the aside

of subsection 2.3.6, modeling the influence of the side transformers resistances RssT on Delm requires

deriving another elementary matrix. Thus we suggest modifying the equation (2.13). If the dynamic

matrix De can be expressed, then the required elementary matrices can be extracted from it:
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Figure 4.14: Lumped-element model of a unit cell of the assembled network.

Kelm = De|Ω=0 , Delm = De − Kelm

jΩ

⏐⏐⏐⏐
Ω=0

, and Melm = Kelm + jΩDelm − De

Ω2 . (4.24)

The resulting expression of Delm is given in appendix B.1. Then, assembling these elementary matrices

would supplement the equation (2.58) with an assembled electrical damping matrix DN :

VN =
(
KN + jΩDN − Ω2MN

)
QN . (4.25)

4.4.3 Network model validation

Before connecting the network to the plate, we suggest verifying if it behaves as intended. As it

should be tested alone, the piezoelectric capacitances cannot be included as the lumped values C in

figure 4.14. Thus they are replaced by ceramic capacitors which have a nominal capacitance of 145 nF.

In this situation, we propose to validate the network in two manners:
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kVexc

Vexc

Cell edge
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1
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â
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Figure 4.15: Setup of the network excitation through an isolation transformer of ratio k placed between
two network unit cells. A marker � is placed on the location on which the measurements of figures 4.16
and 5.5 are performed.

• Dynamics validation: The model should predict the frequency behavior of the network. This

is validated by comparing FRFs resulting from experiments and simulations.

• Modal validation: The model should exhibit the same mode shapes as the assembled network.

This is validated by computing the MAC between measured and simulated current modes.

By analogy with an exciting external force, an external voltage is applied between two unit cells of

the network. The voltage Vexc is applied through an isolation transformer of ratio k. The corresponding

electrical circuit is drawn in figure 4.15. The excitation location, as pointed in the same figure, is chosen

so that the first several network modes are excited. At the same time, the voltage drop VL across

each inductor of the network is measured. The numerical FRFs VL/kVexc obtained using the model of

equation (4.25) can thus be compared to measurements.Note that we assume that the network behaves

linearly. Therefore we choose to set the excitation as a pseudo-random white noise signal below 2 kHz,

which allows estimating the network behavior over the frequency range of interest.

As an example, a comparison is plotted in figure 4.16. The highlighted measured FRF includes

resonance peaks and is heavily damped. As explained in the aside of subsection 4.2.5, the dissipative

elements of the network have been designed so that the coupling of the network with the plate de-

scribed in subsection 3.3.1 leads to a slightly underdamped response near the first plate mode. The

simulated FRFs are in good agreement with the the measured ones. The remaining differences are

gathered at low frequencies. In fact, the antiresonance which is measured at around 25 Hz is owed

to the magnetizing branch of the transformers. Indeed, the simulated FRF in the case of a constant
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(a)

(b)

Figure 4.16: (a) Gain and (b) phase of the VL/kVexc FRF obtained from measurements, sim-
ulations by neglecting the magnetizing branch of transformers, and simulations by considering
a constant magnetizing inductance Lm. VL is measured across the inductor of the unit cell whose
location is indicated by a � marker in figure 4.15. Several operational electrical current shapes at gain
peaks are highlighted.

magnetizing inductance Lm is also plotted in...

magnetizing inductance Lm is also plotted in figure 4.16. Its effects are to generate an antiresonance

at low frequencies and to slightly shift the FRF towards higher frequencies. Though not plotted, we

have noticed that this effect is partially compensated when taking the winding capacitance Cw of

transformers into account, whose effect near 1 kHz is to shift the FRF to lower frequencies.
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(a) Shape
at 102 Hz

(b) Shape
at 223 Hz

(c) Shape
at 268 Hz

(d) Shape
at 389 Hz

(e) Shape
at 543 Hz

Figure 4.17: Measurement of five operational deflection shapes of the plate.

(a) Shape
at 101 Hz

(b) Shape
at 218 Hz

(c) Shape
at 250 Hz

(d) Shape
at 376 Hz

(e) Shape
at 468 Hz

Figure 4.18: Measurement of five operational electrical current shapes of the network.

In the end, slight differences remain between experiments and simulations obtained with the sim-

plest model of non-ideal transformers proposed in section 4.3. These could be reduced by taking other

imperfections into account, such as the magnetizing branch and the winding capacitance. However,

these refined models are not used later on, because the correlation between the present model and

experiments is considered good enough from 50 Hz to 900 Hz.

Besides, we suggest conducting a modal validation of the developed model, by verifying if the model

of equation (4.25) generates mode shapes which are consistent with the measured ones. Visualizing the

operational electrical current shapes is a first step in doing so. Dividing VL by the impedance RsL+jLΩ

leads to the electrical current q̇zI flowing through each inductor. As a consequence, plotting the

shapes of q̇zI/kVexc is equivalent to plotting the operational deflection shapes of a plate excited by

a point load. Several operational deflection shapes of the plate have been measured using a laser

vibrometer, and are represented in figure 4.17 for visual comparison with the operational current

shapes in figure 4.18. Plotted shapes look alike, even though some are slightly different, such as in

figure 4.17c and figure 4.18c. This can be explained by the heavy damping due to resistive components

in the electrical network. Hence, operational electrical current shapes may spill over onto each other.

It is the case in figure 4.18c, where the measured current distribution looks like a combination of

modes (1,2) and (2,1). Anyway, comparing operational shapes offers a first validation of the spatial

coherence condition, and exhibits the heavy electrical damping in the network.
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An experimental modal analysis of the network is then performed, as suggested in subsection 2.3.7.

The experimental mode shapes are extracted using the least-squares rational function estimation

method [110]. The first fourteen experimental modes are identified between 50 Hz and 800 Hz, and

therefore can be compared to simulated modes in figure 4.20. This MAC matrix shows that experi-

mental and numerical modes are mutually consistent. The only problem is that the eleventh identified

mode is a complex mode, whose real part is similar to the eleventh modeled mode, and whose imagi-

nary part is similar to the twelfth modeled mode. This is due to significant and not purely proportional

damping in the network. To conduct a complete experimental modal analysis would require refining

the extraction of modes as well as the estimation of modal parameters.

In the end, the network model of equation (4.25) is deemed precise enough in terms of modal

properties and frequency behavior to be integrated in the coupled model of equation (3.46).

Influence of C0 capacitors on the network model

Figure 4.19: Gain of the VL/kVexc FRF obtained from measurements, and simulations by
neglecting the magnetizing branch of transformers with ϵ = 10−13, ϵ = 10−6 and

ϵ = 10−1.

As explained in chapter 2 during the derivation of electrical analogues involving bending phe-
nomena, we suggest connecting additional C0 capacitors at cells boundaries. The influence of
the numerical parameter ϵ = C0/Cθ is illustrated by figure 4.19. If ϵ is too small, then the
system is ill-defined and the numerical results are noisy. Then, ϵ has a larger influence on the
system dynamics when it becomes closer to 1, since it is equivalent to add electrical compliance
between network cells. As previously stated, setting ϵ = 10−6 is a good compromise.
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Figure 4.20: MAC matrix between experimental and simulated electrical current modes of the network.

4.5 Broadband damping of a periodic plate

4.5.1 Adapted frequency coherence condition

To ensure identical bending wave propagation in the structure and its analogous network, we recall

that the frequency coherence condition derived in subsection 2.7.1 should be met. In the case of the

periodic plate covered by piezoelectric patches, the equation (2.56) becomes

1
a2

KD
θ

m
= 1
â2

1
LCε

. (4.26)

In this last equation, KD
θ is the mechanical stiffness when the piezoelectric patches are left in open-

circuit. The blocked piezoelectric capacitance Cε is the capacitance when no bending displacement is

allowed. According to the lumped-element electrical model of the piezoelectric coupling [78], such as

depicted in figure 4.21, these two quantities can be related to the mechanical stiffness KE
θ when the

piezoelectric patches are short-circuited and to the static piezoelectric capacitance Cst:

KD
θ = KE

θ + e2
θ

Cε
, Cst = Cε + e2

θ

KE
θ

, (4.27)

with eθ being the coupling coefficient. From the two previous equations, one obtains

Cε

Cst
= KE

θ

KD
θ

. (4.28)

On that account, the frequency coherence condition of equation (4.26) can also be written

1
a2

KE
θ

m
= 1
â2

1
LCst

. (4.29)
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Figure 4.21: Electrical representation of the electromechanical coupling.

The objective is now to tune the electrical components of the network so that the frequency

coherence condition is met. The process is the same as in subsection 2.7.2. The side a of the unit cell

is fixed once the plate geometry is defined. Moreover, the transformer ratio is set at â = 4. Thus,

all the other parameters involved in the equation (4.29), namely m, KE
θ and Cst, should be estimated

before deducing the inductance L, which serves as the tuning parameter:

L =
(
a

â

)2 m

KE
θ Cst

. (4.30)

4.5.2 Estimation of the mass

Each unit cell is composed of a square duralumin plate of side a and of thickness hs, on which a

square PIC 153 piezoelectric patch of side lp and of thickness hp is bonded. Their respective densities

are denoted ρ and ρp. Hence, the mass of each unit cell can be computed:

m = ρa2hs + ρpl
2
php. (4.31)

4.5.3 Estimation of the bending stiffness

The calculation of the bending stiffness value KE
θ for a square mechanical plate is based on the

model depicted in figure 4.22. It includes a series and parallel combination of discrete rotational

springs, so that the bending stiffness KE
θy when y is deemed as the normal axis is

1
KE
θy

= 1
KE
θy1

+ 1
KE
θy2 +KE

θy3
+ 1
KE
θy4

, (4.32)

where KE
θy1, K

E
θy2 and KE

θy4 are the stiffnesses of the plate portions indicated in figure 4.22, while KE
θy3

is the stiffness of the piezoelectric patch. Denoting ν and Y the Poisson’s ratio and the Young’s
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• z
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• x
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θy1
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θy2 +KE
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Figure 4.22: Square plate covered by a square piezoelectric patch. The bending stiffness of each
portion of the plate and the piezoelectric patch can be modeled as a rotational spring, such as drawn
on the right hand-side. The represented thicknesses are not to scale.

modulus of the plate, these stiffnesses values can be computed by the following expressions:

1
KE
θy1

= 1 − ν2

Y

ˆ (a−lp)/2

0

1
I(y) dy,

1
KE
θy3

= 1 − ν2
12

1/sE11

ˆ (a+lp)/2

(a−lp)/2

1
Ip(y) dy,

1
KE
θy2

= 1 − ν2

Y

ˆ (a+lp)/2

(a−lp)/2

1
I(y) dy,

1
KE
θy4

= 1 − ν2

Y

ˆ a

(a+lp)/2

1
I(y) dy, (4.33)

with I and Ip respectively being the second moments of area of the structure and of the piezoelectric

patch. Assuming the piezoelectric patch is thin when compared to the structure, the expressions of I

and Ip are computed with respect to the mid-surface of the plate:

I(y) =
ˆ a

0

ˆ hs/2

−hs/2
z2 dx dz, Ip(y) =

ˆ (a+lp)/2

(a−lp)/2

ˆ hs/2+hp

hs/2
z2 dx dz. (4.34)

Similar equations can be written to estimate the bending stiffness KE
θx when x is deemed as the

normal axis. In the present case of a square plate being covered by a square piezoelectric transducer,

computing the bending stiffness along both in-plane directions gives the same result:

KE
θ = KE

θx = KE
θy. (4.35)
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Reference surface for the second moments of area computation

• y

z

hp

hs

(hs + hp) /2

(hs + hp) /2

Figure 4.23: 2D sketch of the mid-surface discontinuity of the constant thickness plate partially
covered by a constant thickness piezoelectric patch. The represented thicknesses are not to
scale.

To compute the expressions of the second moments of area, a reference plane should be fixed.
In the actual case, this creates a problem, since the mid-surface of the mechanical unit cell is
discontinuous, such as sketched in figure 4.23. The calculation of I and Ip in equations (4.34)
is made by using the mid-surface of the plate as the reference, as opposed to what is proposed
in [72]:

I(y) =
ˆ a

0

ˆ (hs−hp)/2

−(hs+hp)/2
z2 dx dz, Ip(y) =

ˆ (a+lp)/2

(a−lp)/2

ˆ (hs+hp)/2

(hs−hp)/2
z2 dx dz. (4.36)

For a plate fully covered by a piezoelectric transducer, the equation (4.36) would be more
accurate, while the equation (4.34) is convenient for a partially covered plate. In the present
situation, the piezoelectric patches cover l2p/a

2 ≈ 69 % of their respective plate portions. Since
they are thin, we choose to use the expression of equation (4.34) anyway.

In the end, applying the equations (4.36) rather than the equations (4.34) is a modeling choice,
and leads to different identified global values for the unit cell. The differences between the
resulting values derived from the two models are recorded in the table 4.3 and are small in this
case. Note that a more precise analytical model of piezoelectric beams [111] could also be used
to estimate the bending stiffness.

Kθ L
Expressions of I and Ip

(N.m) (mH)

Equations (4.34) 242.9 246.6

Equations (4.36) 241.3 248.2

Difference (%) 0.7 0.7

Table 4.3: Comparison of bending stiffness and inductance values obtained via the two suggested
models of second moments of area.
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Figure 4.24: Simulated dynamic capacitance for n0 = 1 of two piezoelectric patches covering the plate,
whose positions are highlighted in corresponding colors in figure 4.26.

• x

y

• x

y

Figure 4.25: Zoom on figure 4.24 around two mechanical resonances. Two short-circuited plate modes
are highlighted, on which the piezoelectric patches limits are drawn.

4.5.4 Estimation of the static piezoelectric capacitance

The free piezoelectric capacitance, usually denoted Cσ, is the capacitance obtained under zero

stress. This value can be estimated by using the relative permittivity ϵσ33 in table 3.3. However, this

quantity is notably different from the static capacitance Cst that appears in equation (4.29). Indeed,

the piezoelectric patches are not entirely free to move since they are bonded to the structure. The

static piezoelectric capacitance Cst is the capacitance at 0 Hz. To estimate it, we suggest computing

the dynamic capacitance C(j)(Ω):

C(j)(Ω) = Q(j)

V (j) . (4.37)
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A simulation of C(j)(Ω) can be obtained by using the finite element formulation of equation (3.28).

When considering the j-th piezoelectric patch, V (j) serves as the excitation. Meanwhile, the other

patches are left in open-circuit, which means all values in Q are set to 0 except Q(j). This is how the

examples of dynamic capacitances are plotted in figures 4.24 and 4.25.

The piezoelectric capacitance is frequency-dependent because of the piezoelectric coupling. This

phenomenon has been explained in [33, 84, 34]. Depending on the piezoelectric transducer position,

it might generate a strong modal electromechanical coupling factor with some mechanical modes, and

none with others [35]. When one crosses a mechanical resonance whose modal coupling factor is non-

zero at a piezoelectric transducer position, the corresponding piezoelectric capacitance variations are

especially important. This is spotted in figure 4.25: while the mechanical resonance at 271.5 Hz has a

significant influence on both considered piezoelectric patches capacitances, only one of them is influ-

enced by the mechanical resonance at 225.5 Hz. This is understandable while comparing the patches

positions in figure 4.26 and the mode shapes that illustrate the figure 4.25. Indeed, the electromechan-

ical coupling factor between the piezoelectric patch located near the plate boundary and the second

mode plate vanishes for symmetry reasons. Moreover, the constant value to which C(j)(Ω) seems to

converge between resonances in figure 4.24 decreases each time encountering a coupled mechanical

resonance. Note that the bigger the modal coupling factor, the bigger the piezoelectric capacitance

decrease [34].

Once computed the dynamic capacitance, we propose to estimate the j-th static capacitance Cst

by the value of C(j)(Ω) at 0 Hz:

Cst = C(j)(Ω)
⏐⏐⏐
Ω=0

. (4.38)

The resulting Cst values distribution for the simply-supported plate produced in subsection 3.3.1 is

exhibited in figure 4.26. One can notice the static capacitance values are smaller in the corners than

at the center. This stems from the boundary conditions, which restrict the plate movements in the

corners more than at its center. However, a reasonable assumption is to set Cst = 149.3 nF for all

piezoelectric patches of the plate in the case of n0 = 1.
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• x

y

Figure 4.26: Simulated distribution of the Cst values (in nF) for the simply-supported plate periodically
covered by piezoelectric patches for n0 = 1. The colored frames highlight the piezoelectric transducers
whose dynamic capacitances are plotted in figure 4.24.

4.5.5 Network validation

Now that the parameters m, KE
θ and Cst have been estimated, the inductance value L can be de-

rived for each unit cell of the network by applying the frequency coherence condition of equation (4.29).

The resulting value is 246.6 mH for the case of n0 = 1. As stated in section 4.2, the produced inductors

have a nominal inductance value of 244 mH, which is close enough to the targeted value to attain a

significant damping performance in the end. In other words, we have attained the Step 5 of the

capsulized method in subsection 2.3.8.

Since their behaviors can be predicted, the analogy between the plate and the network can be

verified by checking if the spatial and frequency coherence conditions are met. This corresponds to

fulfilling the Step 6 of the electrical analogue design method. This validation is quite important

since it is the main verification method that will be available for future numerical examples.

The models in equations (3.30) and (4.25) are used to compute the mode shapes and natural

frequencies of the plate and of the network, respectively. To check if there is a similarity between mode

shapes, the MAC matrix between the plate and the assembled network is represented in figure 4.28a.

It shows that most simulated electrical modes are consistent with mechanical ones. The MAC matrix

is not diagonal because of the comparison between results obtained with the model of the lumped
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electrical network on one hand, and with the converged finite element model of the plate on the other

hand. Indeed, covering the plate with more piezoelectric transducers helps discretizing the structure

and its analogous network. The MAC matrix would then tend to a diagonal matrix. We propose

to highlight this fact with numerical examples. The density of piezoelectric transducers covering the

plate, which is denoted n0, can be increased to do so. The plate remains discretized by 7n0 × 6n0

elements, each one being composed of a square plate on which a square piezoelectric patch is bonded.

The geometries corresponding to n0 = 2 and n0 = 3 are shown in figure 4.27.

Data comparison for the spatial coherence condition validation

Plate Network

Experiments Figure 4.30 Figure 4.15

Simulations Equation (3.30) Equation (4.25)

(a) (b)

(c)

(d)

(e) (f)

Table 4.4: Possibilities of mode shapes comparisons.

Mode shapes of the plate and of the network can be estimated by simulations using equa-
tions (3.30) and (4.25). They can also be extracted from measurements thanks to the setups
pictured in figure 4.30, or schemed in figure 4.15. Using the notations of table 4.4, the possible
comparisons between mode shapes are as follows:

• (a) and (b): Comparing measurements to simulations allows validating the developed
models in terms of modal properties. This is done for the plate electrical analogue in sub-
section 4.4.3. However, we did not conduct an experimental modal analysis on mechanical
measurements to compare the extracted modes to the forecast ones.

• (c) and (d): Comparing measurements or simulations between themselves is the way
to validate the spatial coherence condition that we suggest. For future study cases, in
particular for those of chapter 5, measurements might not be available. Therefore, the
comparison (c) is the preferred one to validate an electrical analogue. This is also done
in the ongoing subsection in the case of the plate electrical analogue.

• (e) and (f): Comparing simulations and measurements of different kinds might lead to
discussions about comparing experimental and numerical data. We consequently suggest
not conducting these comparisons for the validation of the spatial coherence.
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• x

y

(a)
• x

y

(b)

Figure 4.27: Meshes of the plate periodically covered with square piezoelectric patches in the cases of
(a) n0 = 2 and (b) n0 = 3.

a m Cθ L MAC
n0 Elements Nodes

(mm) (g) (nF) (mH)
Meshing

matrix
Marker

1 7 × 6 139 60 39.7 149.3 246.6 Fig. 3.4 Fig. 4.28a �

2 14 × 12 530 30 9.9 37.4 61.5 Fig. 4.27a Fig. 4.28b H

3 21 × 18 795 20 4.4 16.5 27.6 Fig. 4.27b Fig. 4.28c •

Table 4.5: Electrical modeling parameters for different discretizations of the plate analogue.

On one hand, the mechanical structure behavior is predicted by the finite element model previously

developed. Using the same notation as in figure 3.4, the cases of n0 = 1, n0 = 2 and n0 = 3 are treated

with nx = ny = 3, nx = ny = 2 and nx = ny = 1, respectively. We assume the meshes in figure 4.27

lead to converged values for the mechanical simulations. This model is also used to compute the static

piezoelectric capacitance Cst distributions, which are nearly uniform for all piezoelectric patches.

Hence, the mean values of the distributions are recorded in table 4.5.

On the other hand, the global variables m and KE
θ of the discrete mechanical system are estimated

applying the previous equations. We choose to keep â = 4, and the side length a depends on the

geometry. Thus, the networks inductors can be tuned thanks to the frequency coherence condition of

equation (4.29). The resulting modeling parameters are gathered in table 4.5.
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n0 = 1

(a)

n0 = 2

(b)

n0 = 3

(c)

Figure 4.28: MAC between the 50 first velocity modes of the plate covered with piezoelectric patches
and the 42 first electrical current modes of the network for (a) n0 = 1, (b) n0 = 2 and (c) n0 = 3. The
tiny �, H and • markers indicate which couple of modes are deemed clearly identified, so that they can
be plotted in figure 4.29.

Slope = 1 Slope = 0.85

Figure 4.29: Comparison of mechanical and electrical natural frequencies for (�) n0 = 1, (H) n0 = 2
and (•) n0 = 3.
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Finally, mechanical and electrical modes are compared by computing the MAC matrix. Though

they are not represented, the AutoMAC for the mechanical and electrical systems are diagonal up

several tens of modes. Then, the MAC matrices comparing mode shapes resulting from models in

equations (3.30) and (4.25) are plotted in figures 4.28b and 4.28c. They prove that the spatial coherence

condition is met over a large number of modes. This means that the derived plate electrical analogue

conveniently represents the behavior of the vibrating structure. Note that even though the electrical

modes alignment with mechanical modes when the network is further discretized looks similar to

results in figure 2.19, the considered structures are different from one another. Indeed, the analogy

validation in subsection 2.7.2 is conducted on a rectangular duralumin plate, and so illustrates that

a plate electrical analogue can be designed for such structure. Meanwhile, the ongoing validation is

conducted on a duralumin plate with piezoelectric patches bonded on it. In other words, the ongoing

validation ensures that a plate electrical analogue can be designed for a layered structure as well.

Besides, the simulated natural frequencies of both systems are compared in figure 4.29. Supposing

an acceptable gap of 15 % between them, we expect the frequency coherence condition to be validated

for the first eleven modes, which represents a frequency band of nearly 900 Hz. Meanwhile, more

than fourty plate modes are correctly replicated by the network for n0 = 3. Increasing the number of

network cells makes the finite difference model converge to the finite element model, and hence brings

mechanical and electrical natural frequencies closer.

In the end, these results are further arguments in showing that the developed network is an electrical

analogue of the plate from 50 Hz to 900 Hz. Both frequency and spatial coherence conditions have

been validated over this frequency range.

4.5.6 Broadband damping

The case of the structure being coupled to its passive electrical analogue is finally considered. The

setup is pictured in figure 4.30. A shaker applies a point load on the surface of the plate on which the

piezoelectric transducers are bonded, and a laser vibrometer measures the resulting movement on the

other side of the plate. The parameters of the measurements have been discussed in subsection 3.3.2.

As seen in figure 4.31, broadband vibration damping is achieved. In the meantime, the frame mode

at 687 Hz is barely affected by the connection to the network, which was expected. This is a proof

that it is possible to mitigate vibrations on a wide frequency range by means of piezoelectric coupling
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Figure 4.30: Picture of the setup, including the plate covered with piezoelectric transducers, a shaker,
a laser vibrometer and the plate electrical analogue developed in section 4.4.

of a plate to its electrical analogue. Piezoelectric network damping has been achieved for a clamped

plate in [72], but the network contains more unit cells in the present case. Therefore, the vibration

mitigation is visualized upon a wider frequency range.

Besides, the model in equation (3.46) is able to predict the dynamics of the structure coupled to

its electrical analogue. This result is of prime importance to go towards complex structures. Indeed,

it validates the model we have developed in the previous chapter: while the structure behavior is

predicted by a finite element model, an electrical network can be connected to it and be assembled

by a finite element-like approach. While a similar model has been developed in [99], it is only applied

to the coupling of a 1D finite element mechanical model to a 1D electrical network. In the present

work, we have coupled a 3D finite element mechanical model to a 2D electrical network. We can

cautiously expect this model to predict the coupling of any 3D mechanical structure modeled by the

finite element method to a 1D or a 2D electrical network.
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Frame mode at 687 Hz

Figure 4.31: Comparison of velocity FRFs : experimental FRF measured with the piezoelec-
tric patches in short-circuit, experimental and simulated FRF when the periodic plate is
connected to its electrical analogous network.

Frame mode at 687 Hz

Figure 4.32: Comparison of velocity FRFs : experimental FRF measured with the piezoelectric
patches in short-circuit, and simulated FRF when the periodic plate is connected to its electrical anal-
ogous network without additional dissipative components and with additional resistances
of 50 Ω in series with the inductors.
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It is now possible to numerically optimize the network components to enhance the damping per-

formance. While we have not conducted such an optimization process, we have changed the value

of the series resistance of inductors. This could easily be done in experiments, as trimmer resistors

are placed in series with each inductor of the network. This has been explained in subsection 4.4.1,

and said resistors are pictured in figure 4.13b. Adding 50 Ω in series with the inductors virtually

makes their internal resistance go from 13.7 Ω to 63.7 Ω. The resulting FRF is plotted in figure 4.32.

The series resistance of inductors mainly influences the low frequency behavior of the coupled system.

Therefore, it makes sense that the first plate mode, which was slightly underdamped in figure 4.31, is

now clearly overdamped. This phenomenon has been illustrated in figure 1.4. Moreover, the FRF is

flattened at higher frequencies. By combining this effect with dissipative components placed at other

locations of the unit cell, the damping performance might further improve. In the case of piezoelectric

network damping of structures in bending, tuning the series resistance of transformers might improve

the vibration mitigation performance [66, 71, 72].

Quantitative criterion for broadband damping

In the case of unimodal damping, a standard criterion of the vibration mitigation performance
is to compute the infinite norm of the damped FRF around the considered mode. In other
words, the goal is to minimize the quantity

H∞ (FRF)
[fmin:fmax]

= Max (|FRF (2πf)| , fmin ≤ f ≤ fmax) . (4.39)

Applying this criterion results in one value by frequency range over which it is applied. There-
fore, we suggest applying the minimization of the infinite norm to restrained frequency ranges.
This corresponds to an optimization of several parameters using as many criteria.

Another performance criterion, which might be more adapted to wide band excitations, is to
minimize the total amplitude of the FRF over the frequency range. In other words, the goal is
to minimize the quantity

H2 (FRF)
[fmin:fmax]

=
ˆ fmax

fmin

|FRF (2πf)| df. (4.40)

In the end, choosing a broadband damping performance criterion depends on the considered
application, as the different criteria will probably lead to different components values.
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4.6 Conclusions

This chapter investigates the piezoelectric network damping of a constant thickness plate periodi-

cally covered by piezoelectric patches. It consists in coupling a periodic mechanical structure via thin

piezoelectric patches to a periodic electrical network for passive broadband damping purposes. The

electrical network is designed to exhibit the same modal properties as the mechanical structure to be

damped. While its efficiency for plates has been proven before, we use this opportunity to develop

tools for the analysis of piezoelectric network damping. These tools will be used for more complex

structures later on.

The case of a periodic simply-supported plate is here studied. Its analogous electrical network

is implemented by producing passive electrical components, whose design is explained by recalling

the laws of magnetic circuits for inductors and transformers. The analogy between the plate and the

network is validated by verifying that the spatial and frequency coherence conditions are met. Then,

the network is connected to its analogous mechanical structure. Vibration damping of the first eleven

modes of the plate, which are spread over a frequency range of nearly 1 kHz, is achieved.

Meanwhile, a behavioral model of the electrical network has been proposed and validated by

comparison with experimental results. This model has then been included in the coupled model

developed in section 3.4. This larger model has also been validated by comparison with experimental

results. Therefore, one can be confident about using it going towards more complex structures in order

to forecast their electromechanical dynamics. These structures could be plates with various boundary

conditions, arches or tubes. Some of them are treated in the chapter 5. Future works will study

the attainable vibration damping performance when these structures are coupled to their respective

analogous networks. Furthermore, it is now possible to predict the optimal resistive components to

add to the network to optimize the vibration mitigation performance.
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Chapter 5

Piezoelectric network damping
of complex structures

This chapter is about deriving the electrical analogues of complex structures for vibration mit-
igation purposes. Three complex plates and two curved structures are treated. The first case
plate also helps validating the models previously developed on non-periodic structures by com-
parison with experiments. In all cases, an electrical network is developed according to the
estimated discrete mechanical parameters and by applying the adequate frequency coherence
conditions. The analogy between the structure and the network is then validated by comparing
their respective modal properties. Finally, a promising broadband vibration damping perfor-
mance is achieved with realistic electrical components when the modal coupling condition is
met.
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5.1. INTRODUCTION

5.1 Introduction

The efficiency of piezoelectric network damping has been proven on standard mechanical structures,

such as rods [70], beams [65, 66, 67, 71] and plates [68, 69, 72]. However, piezoelectric network damping

of complex structures has barely been covered in the scientific literature.

The first attempt appears in [112], where dell’Isola et al. developed a finite element model that is

adapted to couple two systems respectively governed by a second and fourth order differential equa-

tions. On one hand, the bending motion of plates is described by the Kirchhoff-Love theory, so on the

other hand adjacent piezoelectric transducers are interconnected by inductors. It is possible to adjust

the electrical components values so that one electrical resonance is tuned to a targeted mechanical

resonance. By adding resistors in series with the inductors and in parallel with the piezoelectric ca-

pacitors, damping can thus be achieved. Then, dell’Isola et al. treated the case of a complex plate,

which is not rectangular and include holes. By applying the same method and numerically setting the

dissipative elements, they achieved damping of the first complex plate mode.

One limitation of the work presented in [112] is that the spatial coherence condition is not met in

some situations. This stems from trying to replicate a mechanical behavior which is governed by a

fourth order differential equation by an electrical system that behaves like a second order differential

equation system. In other words, the damping solution which can be numerically computed is the

coupling of a Kirchhoff-Love plate to an Euler-Bernoulli beam electrical analogue. Hence the network

is not analogous to the plate, as explained in section 2.3. Moreover, this network is continuous,

which makes it difficult to consider implementing this solution in a practical application. Finally, the

developed finite element model is only adapted to structures which are governed by said differential

equations, which excludes taking 3D effects into account.

More recently, the plate electrical analogue presented in [72] has been connected to non-periodic

plates [100]: a mass is locally added on the initial plate, or some of its boundary conditions are

modified. Broadband damping is still achieved when accordingly adapting the network components.

As a consequence, the goal of the present chapter is to study the piezoelectric network damping of

complex structures. Since it is inconceivable to produce electrical networks for all study cases before

integration, most of treated examples are going to be numerical. For this reason, in chapter 3 we have

developed a predictive model of a structure being coupled by piezoelectric patches to an electrical
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network. The electrical network to which a complex structure is going to be connected is assembled

from known electrical unit cells. To this end, in chapter 2 we have developed a library of electrical

circuits whose assemblies behave like electrical analogues of mechanical structures. Using these results

allows forecasting the vibration damping performance in complex cases. In other words, the physics

of the complex structure is simplified so that the modes to be damped can be modeled by simple

mechanical models of rods, bars, beams, plates and curved elements. The structure is then connected

to the analogous network of this simplified mechanical model.

Consequently, this chapter is mainly composed of numerical examples, which include complex

plates. The first one, in section 5.3, is a plate with a local mass added on its surface. It is the

only example of this chapter that contains experimental results. Besides, it helps validating the

electromechanical finite element model developed in section 3.4 in a non-periodic case. Then, the

section 5.5 studies the vibration damping of a plate with various boundary conditions, while the

section 5.4 considers a variable thickness plate. Finally, we treat cases of curved structures such as an

arch in section 5.6 and a ring in section 5.7.

What kinds of complexity?

The structure complexities can mostly be classified into the following categories:

• Non-periodic structures: Once the structure is discretized, the distribution of discrete
parameters might be non-uniform. This can be due to various geometrical parameters,
such as the thickness or the curvature. This can also be owed to local modifications
induced by contacts with added parts.

• Boundary conditions complexities: The only cases we have studied thus far con-
sidered the same boundary conditions at all the structure ends. Mixing these boundary
conditions is therefore a complexity to look into.

• Overlapping frequency ranges: Some structures might exhibit modes which are barely
distinct from each others. This is the case of nearly axisymmetric structures, for example.
Another complexity is to apply piezoelectric network damping to a structure whose modes
of different kinds appear in the frequency range of interest. An example is an arch whose
in-plane bending modes and out-of-plane bending modes are included in the frequency
range of study.

These sources of complexity might be combined in practice. We choose to consider them sepa-
rately in order to distinguish their effects on the damping performance.

205



5.2. APPROACH

5.2 Approach

5.2.1 Method

Notations

In this subsection, some of the models which are considered to study the piezoelectric network
damping of complex structures are recalled. However, we do not recall the associated notations,
which are the same as in chapter 3.

In this chapter, piezoelectric network damping of several complex structures is studied. The process

is similar for most of these cases, and consists in the following steps:

• The starting point is a host structure with prescribed boundary conditions, whose first few

natural modes require damping. The number of piezoelectric patches to be bonded to the

structure is set to avoid spatial aliasing. This means that we consider nearly ten piezoelectric

transducers per wavelength of the mode with the smallest wavelength in the frequency range of

interest. This discussion has been made in subsection 2.3.5.

• Unit cells from the library in section 2.10 are then selected according to the kind of waves that

propagate in the mechanical medium. They are assembled to form an electrical network with as

many cells as there are piezoelectric transducers bonded on the host structure.

• The discrete mechanical model resulting from the choice of unit cells is composed of lumped

elements, whose values should be computed. This corresponds to estimating geometrical pa-

rameters, masses and stiffnesses. While the computation of dimensions and masses is straight-

forward, the stiffnesses evaluation requires developing mechanical models for layered structures.

An example is given in subsection 4.5.3.

• The static piezoelectric capacitance distribution is simulated using the finite element model

described in section 3.2. We recall that the finite element formulation allowing this simulation

is as follows: ⎡⎣⎛⎝Km + KcKeKc
T KcKe

(KcKe)T Ke

⎞⎠− Ω2

⎛⎝Mm 0
0 0

⎞⎠⎤⎦⎛⎝U

Q

⎞⎠ =

⎛⎝F

V

⎞⎠ . (5.1)
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• The characteristics of the remaining electrical components are set by applying the adequate

frequency coherence conditions for each unit cell. This allows not modifying the structure,

and not increasing the piezoelectric capacitance, which would decrease the overall damping

performance [29]. The frequency coherence conditions have been expressed in chapter 2.

• A validation phase which is conducted in all cases but not recorded in this manuscript consists

in defining a mesh of the structure that leads to converged results. Then, the mechanical and

electrical AutoMAC are each computed to ensure that their respective discretization schemes

are fine enough to avoid spatial aliasing.

• We then verify if the frequency and spatial coherence conditions are met. This is done by compar-

ing modal properties of the network and of the structure estimated by their respective uncoupled

models. The modal properties of the structure with short-circuited patches are estimated using

the equation (5.1). Meanwhile, the modal properties of the electrical network are simulated by

the model derived in section 4.4, in which each static capacitance Cst replaces the capacitance

of the corresponding unit cell:

VN =
(
KN + jΩDN − Ω2MN

)
QN . (5.2)

The subsection 4.5.5 shows an example of such validation. If both spatial and frequency coherence

conditions are met, we say that the modal coupling condition is met once the structure and

its analogous network are connected. Note that this is a change of vocabulary from [70, 71, 72],

where the modal coupling condition expression used to designate what we now call the frequency

coherence condition.

• Once the modal coupling condition is met, broadband vibration damping is expected if

additional resistances are set in the network to adequately add electrical damping. Using the

notations of section 3.4, we recall the finite element formulation of a structure being coupled to

a lumped electrical network:⎡⎣⎛⎝Km + KcKeKc
T KcKeP

(KcKeP )T KN

⎞⎠+ jΩ

⎛⎝Dm 0
0 DN

⎞⎠− Ω2

⎛⎝Mm 0
0 MN

⎞⎠⎤⎦⎛⎝ U

QN

⎞⎠ =

⎛⎝ F

VN

⎞⎠ .
(5.3)
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Not optimized but realistic magnetic components

A good practice for integration would be to design the network inductors and transformers to
exhibit optimal electrical damping properties. No additional electrical component would thus
be required. While not fully optimized in this chapter, the inductors are developed according
to the method described in [3]. Besides, the transformers are similar to the ones of the plate
electrical analogue characterized in section 4.3. We verify afterwards that the first targeted
mode of the frequency range is slightly underdamped, such as illustrated in figure 1.4. In other
words, simulations are conducted with realistic electrical components. This brings hope that
integrating fully passive analogous networks in practical applications is possible.

5.2.2 Hypotheses

The main assumptions to study the piezoelectric network damping of complex structures with the

previous equations are that:

• The infinitesimal strain theory applies.

• The structure is made of duralumin, and behaves as an isotropic homogeneous linear elas-

tic medium. Its Poisson’s ratio, density and Young’s modulus are respectively set at 0.35,

2800 kg/m3 and 69 GPa.

• The piezoelectric transducers are thin and polarized in the electrodes orthogonal directions, and

they exhibit transverse isotropic properties. They are made with PIC 153 piezoelectric material,

since its characteristics have been adjusted with measurements. The materials properties are

recorded in table 3.3.

• The adhesive layers and the electrodes thicknesses are not modeled.

• The lower electrodes are connected to the ground.

• The electrical network behaves linearly with excitation sources, so that the superposition prin-

ciple can be applied.

• The mechanical damping matrix Dm is computed with a hysteretic damping model. The corre-

sponding damping coefficient ξ is set at 0.3 %. The only exception occurs in section 5.3, where ξ

is set at 0.6 %.
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(a) (b)

Figure 5.1: Plate on which a circular mass has been added: (a) front view and (b) side view.

5.3 Plate with a local additional mass

5.3.1 Structure description

The first case of a complex plate here treated is the addition of a mass which is a 22 mm thick,

40 mm diameter cylindrical steel rod of 207 g. This mass is added on the side of the plate which is not

covered by piezoelectric patches. The mass addition is pictured in figure 5.1. The bonding is made

in two stages: at first, we have glued the mass on the non-adhesive face of a small piece of aluminum

tape. The aluminum tape with the mass on it is then attached to the plate, after cleaning the plate

surface with acetone. This is the best practice we have empirically found in order to modify the plate

behavior without inducing too much damping.

Moreover, this part has been selected for two reasons. The first one is that it covers roughly

the same surface as a piezoelectric patch, so the integration in the finite element model later on is

facilitated. The other reason is that heavier parts could not be bonded on the plate without the

adhesive layer between them and the aluminum tape deteriorating right away. Since the objective is

to break the symmetry of the plate, the heaviest part among the available ones has been selected.

209



5.3. PLATE WITH A LOCAL ADDITIONAL MASS

•
x

•

y

• x

y

nx

ny

5 mm 10 mm 50 mm

420 mm

5
m
m

1
0
m
m

5
0
m
m

3
6
0
m
m

Figure 5.2: Dimensions and meshing of the mechanical structure, • (x, y) location of both the excitation
and the velocity measurements, and � (x, y) position of the added mass.

5.3.2 Finite element model

To take the effect of the added mass into account, elements are added out of the plate plane. The

added part is regarded as a 22 mm thick layer covering the same surface as a piezoelectric patch. Its

position is indicated on the mesh in figure 5.2 that is used to produce the numerical results. The

added mass is discretized in nx × ny × 1 elements. Its Young’s modulus is set at 325 MPa. This way,

the seventh simulated natural frequency of the plate with short-circuited patches is adjusted to the

seventh peak on the measured FRF. Meanwhile, the hysteretic damping coefficient ξ is now set at

0.6 % so that the amplitude of the seventh simulated peak is roughly equal to the measured one.

The correlation between numerical and experimental results in this case is shown in figure 5.3.

Measurements are conducted with the same setup as described in subsection 4.5.6. Results are only

plotted up to 600 Hz in this case, as they become difficult to interpret at higher frequencies because of

the damping induced by the structural modification. When compared to the FRF without the bonded

mass, one can notice that the natural frequencies of the plate have been lowered, that the contact with

the added mass induces more mechanical damping, and that a frame mode at 203 Hz is now observed.

Since the frame is not modeled, its effects cannot be foreseen. In the end, the updated simulated FRF

fits quite well with the measured one nonetheless.
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Frame mode at 203 Hz

Figure 5.3: FRFs with short-circuited piezoelectric patches: Experimental and simulated
results with the bonded mass, and experimental results without the bonded mass.

5.3.3 Analogous network

To define the non-periodic plate electrical analogue, the first idea is to keep using the frequency

coherence condition which has been expressed in subsection 4.5.1:

1
a2

KE
θ

m
= 1
â2

1
LCst

. (5.4)

The mass m of the unit cell in which the added layer has been bonded has locally been changed from

39.7 g to 246.7 g, which is a multiplication by a factor of around 6.2. Therefore the product â2LCst of

the corresponding unit cell should be multiplied by 6.2 as well to adjust the bending wave propagation

properties of the network to those of the modified plate. In practice, transformers ratios are fixed.

Moreover, increasing Cst deteriorates the electromechanical coupling [29]. Hence, the inductance L is

chosen as the tuning parameter. The new inductance value is 6.2 × 0.2466 = 1.53 H. This value is an

overestimation however, as the mechanical stiffness KE
θ is locally increased as well. Yet the stiffness

model drawn in figure 4.22 gives correct results only if the mid-surface of the unit cell is close to the

mid-surface of the plate. This has been discussed in the aside of subsection 4.5.3. The added layer

being nearly seven times thicker than the plate, the proposed model is not convenient in this case.

Modeling the contact of the added mass on the plate would be required to estimate the modifications

of the local stiffness. Besides, it would allow estimating the modification of the static capacitance Cst

distribution as well, even though it is a second order influence. This is out-of-scope of this work, since

the potential improvement in modeling accuracy is limited.
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Core le lw Ae Aw AL N dw ku L RsL

geometry (mm) (mm) (mm2) (mm2) (nH) (turns) (µm) (%) (H) (Ω)

RM 10 42 52 83 40.2 630 1460 150 62 1.34 72

Table 5.1: Ferrite core specifications and forecast component characteristics made in N48 ferrite
material [108] for the complex plate electrical analogue.
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Figure 5.4: Produced fully passive N48-ferrite based inductors with a RM 10 core geometry. On
the left: component of inductance 1.34 H, whose specifications are recorded in table 5.1. On the
right: component of inductance 244 mH, whose specifications are recorded in table 4.2.

Consequently, in this particular case, we propose not to use the frequency coherence condition to

define the electrical analogue. We suggest rather defining the non-periodic plate electrical analogue

by tuning its first natural frequency to the first simulated natural frequency of the non-periodic plate.

The simulated resonance at around 88 Hz in figure 5.3 is used as a reference value for the structure.

Numerical simulations using the equation (5.2) show that the initial inductance of 246.6 mH should

be locally replaced by an inductance of 1.34 H to set the first natural frequency of the network to

around 88 Hz. One can attest this value is slightly lower than the first approximation of 1.53 H, since

the local stiffness modification of the structure is taken into account.

The inductor of 1.34 H is produced by following the same method as described in section 4.2. For

practical reasons related to components availability, a gapped RM 10 core with the ferrite material

N48 from Epcos TDK has been used in this case as well. The produced inductor has its specifications

recorded in table 5.1 and is pictured in figure 5.4. Notice that the newly produced component is more

filled than the rest of the network inductors, and is winded with thinner conductive wire. Finally,

we have verified that a series circuit composed of an inductance of 1.34 H and a resistance of 75 Ω

accurately describes the component behavior at low frequencies and low levels of electrical currents.

212



5.3. PLATE WITH A LOCAL ADDITIONAL MASS

Figure 5.5: FRFs of VL/kVexc obtained from measurements, simulations by neglecting
the magnetizing branch of transformers, and simulations by considering a constant magnetizing
inductance Lm. VL is measured across the inductor of the unit cell whose location is indicated by a
� marker in figure 4.15. Several operational electrical current shapes at gain peaks are highlighted.

5.3.4 Network validation

Like in subsection 4.4.3, we suggest verifying if the network behaves as intended before connecting

it to the plate. This means that the piezoelectric transducers are replaced by ceramic capacitors of

145 nF of nominal capacitance. The network validation consists in two steps:

• Dynamics validation: The model should predict the frequency behavior of the network. This

is validated by comparing FRFs resulting from experiments and simulations.

• Modal validation: The model should exhibit the same mode shapes as the assembled network.

This is validated by computing the MAC between measured and simulated current modes.

Measurements in the network are conducted in a similar fashion as explained in subsection 4.4.3.

We do not detail the entire process again, but we recall that an external voltage Vexc is imposed

between two network unit cells. This is analogous to considering an exciting external force on the

plate. The figure 4.15 presents the excitation circuit and its location. Meanwhile, the voltage drop VL

across each inductor of the network is measured. The numerical FRFs VL/kVexc obtained using the

model of equation (5.2) can thus be compared to measurements.
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(a) Shape
at 102 Hz

(b) Shape
at 223 Hz

(c) Shape
at 268 Hz

(d) Shape
at 389 Hz

(e) Shape
at 543 Hz

Figure 5.6: Measurement of five operational deflection shapes of the plate with the added mass position
indicated in black.

(a) Shape
at 101 Hz

(b) Shape
at 218 Hz

(c) Shape
at 250 Hz

(d) Shape
at 376 Hz

(e) Shape
at 468 Hz

Figure 5.7: Measurement of five operational electrical current shapes of the network with the center
of the modified unit cell highlighted in black.

An example of FRFs comparison is plotted in figure 5.5. The simulated FRFs are in good agreement

with the measured ones. The few differences can be attributed to neglecting the magnetizing branch

and the winding capacitance of transformers. There is also more damping in practice than in the

model, which explains the difference in peak heights. Even though these differences could be reduced

by taking transformers imperfections into account, we consider that the present network model is

accurate enough to predict its frequency behavior from 50 Hz to 600 Hz.

At first, operational current shapes of the network in figure 5.7 can be visually compared to oper-

ational deflection shapes of the complex plate in figure 5.6. Operational shapes are obtained by repre-

senting the electrical current and velocity distributions at measured FRFs peaks. The visual similarity

gives hope that electrical and mechanical modes are consistent. Note that the plate modification is

substantial, as shapes are not symmetrical anymore, as opposed to the ones in figure 4.17. Meanwhile,

heavy damping in the network explains that the (2,1) and (1,2) electrical shapes spill over each other,

and thus are not completely uncorrelated like the corresponding mechanical shapes. This could also

be noticed in figure 4.18. These representations highlight that the added mass is heavy enough to

regard the modified structure as a complex one when compared to a periodic simply-supported plate.
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(a) (b)

Figure 5.8: (a) AutoMAC of the first 20 electrical current modes identified by performing an exper-
imental modal analysis and (b) MAC matrix between experimental and simulated electrical current
modes of the network.

Finally, the modal validation is conducted by comparing the simulated and measured electrical

current modes. An experimental modal analysis is performed to extract the network modes from

experiments by using the least-squares rational function estimation method [110]. Twenty modes

are extracted from experimental data, but only the first seven of them are relevant. Indeed, the

identification method is not suitable for systems with significant and not purely proportional damping,

which is the case of the developed network. This explains that the identified modes cannot be separated

from each other beyond the seventh, as can be seen in figure 5.8a. The identified modes are then

compared to simulated ones in figure 5.8b. The represented MAC matrix shows that the first seven

experimental and numerical modes are mutually consistent. The modes of smaller wavelengths can

hardly be discussed, because of the impossibility to distinguish experimental modes from each others.

Using adequate modal analysis tools would improve the quality of modes extraction, and therefore

might show that the model is validated over a greater number of modes. However, it is out-of-scope of

this work, since the network model of equation (5.2) is deemed precise enough up to 600 Hz in terms

of modal properties and frequency behavior to be integrated in the coupled model of equation (5.3).
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Figure 5.9: MAC between the 20 first simulated velocity modes of the plate covered with piezoelectric
patches and the 20 first simulated electrical current modes of the network. The tiny � markers indicate
which couple of modes are deemed clearly identified, so that they can be plotted in figure 5.10.

Slope = 1 Slope = 0.85

Figure 5.10: Comparison of simulated mechanical natural frequencies of the complex plate, and sim-
ulated electrical natural frequencies of its analogous electrical network.

5.3.5 Modal coupling condition

The modal coupling condition is met when coupling two systems for which the spatial and frequency

coherence conditions are met. The spatial coherence condition is studied by computing modes of the

structure with short-circuited piezoelectric patches, and comparing them to computed electrical modes.

This comparison is made in figure 5.9. The analogy seems to be verified between systems up to the

sixth mode. Modes at higher frequencies are not mutually consistent. Besides, the natural frequencies

of clearly identified couples of modes are plotted against each other in figure 5.10. As a consequence,

the modal coupling condition is met when coupling the complex plate to its analogous network, and

thus broadband damping is expected.
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To obtain a proper analogy at higher frequencies, two solutions are possible. The first one would be

to have more piezoelectric patches on the plate, which is equivalent to refine the mesh of the analogous

network. The second solution would be to find another analogous unit cell for the plate. Indeed, the

significant mass discontinuity induced by the added mass can hardly be predicted by a finite difference

model. Hence, the present case can be deemed as the limit case of validity for the plate electrical

analogue as developed in sections 4.4 and 4.5. In the end, the analogy between the non-periodic plate

and the modified network is still verified up to around 600 Hz.

5.3.6 Broadband damping

The non-periodic plate is now coupled to its passive electrical analogue. The FRF measurement is

made with the same setup as described in subsection 4.5.6. As seen in figure 5.11, broadband damping

is achieved in this case as well. The case of keeping the network unchanged even though the structure

has been modified is plotted as well. In other words, we verify that not adapting the network to

the modified structure leads to a deteriorated damping performance. Even though it is not obvious

from represented results, it can be understood by looking at the dynamics of the structure around the

second bending mode at 197 Hz. If the network is not adapted, then we do not visualize the double

peaks that are typical to underdamped tuned mass dampers. Note that this interpretation would

be easier if the electromechanical coupling was lower, as a network mistuning would induce a more

drastic loss in performance. In the end, these results validate the approach of coupling a non-periodic

structure to its fully passive electrical analogue for multimodal damping purposes.

Besides, the simulated results fit rather well with the measured ones. The remaining differences,

which were already spotted on results with short-circuited piezoelectric patches, could be reduced

by modeling the contact between the added part and the plate, as well as the non-ideal boundary

conditions. As it is, we suppose that the finite element model developed in this work and expressed

by equation (5.3) can predict the dynamics of a complex structure coupled to an electrical network.

A simple example of modifying the damping in the network is finally shown in figure 5.12. A

resistance of 50 Ω is added in series with the network inductors. This brings the series resistance

for inductors at 63.7 Ω, except from the modified unit cell which exhibits a series resistance of the

inductor of 125 Ω. In this case, the gain in damping performance is not that significant, since the first

plate mode becomes overdamped after the resistance addition.
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Figure 5.11: Comparison of velocity FRFs : experimental FRF measured with the piezoelectric
patches in short-circuit, experimental and simulated FRF when the plate is connected to its
electrical analogous network, and experimental FRF when the network uses the same components
as before the mass addition for the plate electrical analogue developed in section 4.4.

Figure 5.12: Comparison of velocity FRFs : experimental FRF measured with the piezoelectric
patches in short-circuit, and simulated FRF when the plate is connected to its electrical analogous
network without additional dissipative component and with additional resistances of 50 Ω
in series with the inductors.
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Position x (mm) Position y (mm) Thickness hs(x, y) (mm)

0 0 5

420 0 3

0 360 4

420 360 2

Table 5.2: Thicknesses values at the corners of the plate. These four values are enough to set the
profile of the plate such as defined in equation (5.5).

5.4 Variable thickness plate

5.4.1 Structure description

The studied case is a simply-supported rectangular plate of sides lx = 420 mm and ly = 360 mm.

Square piezoelectric patches are periodically bonded to the plate, and cover (5/6)2 of its surface. For

now, it is assumed that the thickness hs of the plate varies linearly with the x and y coordinates.

Therefore, with α, β, γ and δ being real values:

hs (x, y) = α+ βx+ γy + δxy. (5.5)

The numerical values of hs at the plate corners are summed up in table 5.2. The thickness of each

piezoelectric patch is constant and is set at 1/6 of the mean thickness of the plate portion it covers.

5.4.2 Analogous network

5.4.2.1 Unit cells selection

The complexity stems from the variable thickness. Indeed, the Kirchhoff-Love equation that we

have considered in section 2.7 leads to a discretized mechanical model that includes the same constant

bending stiffness KE
θ along the two main plate directions. This assumption does not fit with the

case of a variable thickness plate. Yet, we select the square plate electrical analogue in the library

of section 2.10 to make up the structure analogue. We recall the corresponding frequency coherence

condition which has been derived in subsection 4.5.1:

1
a2

KE
θ

m
= 1
â2

1
LCst

. (5.6)
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This condition should still be locally verified to ensure that the structure and its analogous network

have identical bending wave propagation properties. As explained in the method of subsection 5.2.1,

the mechanical parameters as well as the static piezoelectric capacitance Cst are going to be estimated

in the following paragraphs. The transformer ratio â and the inductance L of each unit cell then serve

as tuning parameters.

5.4.2.2 Mechanical parameters evaluation

As explained in chapter 4 for the constant thickness plate, it is possible to discretize the structure

by 7n0 × 6n0 square elements, n0 being integer. An example of the geometry and dimensions for

n0 = 1 is illustrated in figure 5.2, but with a variable thickness and without the added mass. Hence,

the cell side a depends on the considered discretization density:

a = lx
7n0

= ly
6n0

. (5.7)

Denoting ρ and ρp the respective mass densities of the structure and of the piezoelectric patches,

whose sides lp is set at 5/6 of a, one can estimate the mass of each unit cell:

m =
ˆ a

0

ˆ a

0

(ˆ hs(x,y)

0
ρ dz

)
dx dy + ρpl

2
php. (5.8)

Then, the method of calculation of the bending stiffness value KE
θ for a square mechanical plate

is based on the model depicted in figure 5.13. The estimation of the bending stiffness along the two

main plate directions is based on the same equations as written in subsection 4.5.3. We recall them

nonetheless, as they will also be used for the next numerical examples. The model we propose includes

a series and parallel combination of discrete springs, so that the bending stiffnessKE
θy when y is deemed

as the normal axis is
1
KE
θy

= 1
KE
θy1

+ 1
KE
θy2 +KE

θy3
+ 1
KE
θy4

, (5.9)

where KE
θy1, K

E
θy2 and KE

θy4 are the stiffnesses of the plate portions indicated in figure 5.13, while KE
θy3

is the stiffness of the piezoelectric patch. These stiffnesses values can be computed by the following

expressions:

1
KE
θy1

= 1 − ν2

Y

ˆ (a−lp)/2

0

1
I(y) dy,

1
KE
θy3

= 1 − ν2
12

1/sE11

ˆ (a+lp)/2

(a−lp)/2

1
Ip(y) dy,

1
KE
θy2

= 1 − ν2

Y

ˆ (a+lp)/2

(a−lp)/2

1
I(y) dy,

1
KE
θy4

= 1 − ν2

Y

ˆ a

(a+lp)/2

1
I(y) dy, (5.10)
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• z

y

• x

y

hs (x, y)
hp

a

lp

KE
θy1

KE
θy2 +KE

θy3

KE
θy4

Figure 5.13: Square plate of variable thickness hs covered by a square piezoelectric patch of constant
thickness hp. The stiffness of each portion of the plate and the piezoelectric patch can be modeled as
a spring, such as drawn on the right hand-side. The represented thicknesses are not to scale.

where ν and Y are the Poisson’s ratio and the Young’s modulus of the plate, and I and Ip are the

second moments of area of the structure and of the piezoelectric patch, respectively. As discussed in

the aside of subsection 4.5.3, I and Ip can be either computed with respect to the mid-surface of the

plate or to the mid-surface of the entire structure. The thickness of each piezoelectric patch being set

at 1/6 of the mean thickness of the plate portion it covers, we have shown on the constant thickness

plate example that the difference between the two models is negligible. Thus the expressions that we

use, which are only valid assuming the piezoelectric patches are thin, are as follows:

I(y) =
ˆ a

0

ˆ hs(x,y)/2

−hs(x,y)/2
z2 dx dz, Ip(y) =

ˆ (a+lp)/2

(a−lp)/2

ˆ hs(x,y)/2+hp

hs(x,y)/2
z2 dx dz. (5.11)

Similar equations can be written to estimate the bending stiffness KE
θx when x is deemed as the

normal axis. Because of the thickness variations, the bending stiffness KE
θx and KE

θy along the in-plane

directions have two different values. In the end, the stiffness in the frequency coherence condition is

calculated as the mean value of KE
θx and KE

θy:

KE
θ = 1

2
(
KE
θx +KE

θy

)
. (5.12)

The computed distributions of m and KE
θ for n0 = 1 are represented in figures 5.14a and 5.14b.
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(a) (b)

• x

y

(c) (d)

Figure 5.14: Distributions of discrete variables over the unit cells for the variable thickness plate in the
case of n0 = 1: (a) discrete mass m (in g), (b) bending stiffness KE

θ (in N.m), (c) static piezoelectric
capacitance Cst (in nF), and (d) resulting inductance L (in mH).

5.4.2.3 Electrical parameters evaluation

The static capacitances Cst distribution is modeled using the finite element formulation of equa-

tion (5.1). Results for n0 = 1 are shown in figure 5.14c. As opposed to the case of a periodic plate in

figure 4.26, the distribution is clearly non-uniform. This stems from the structure being non-periodic.
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Indeed, the piezoelectric transducers thicknesses are set at 1/6 of the mean thickness of the plate

portion they cover. Therefore, the patches on the bottom left and on the top right of the plate are the

thickest and the thinnest patches, respectively. This explains that these unit cells exhibit the smallest

and largest static capacitances Cst, respectively.

Finally, the transformer ratio is arbitrary set at â = 4. Thus the inductance value L can be derived

for each unit cell of the network by applying the frequency coherence condition of equation (5.6):

L =
(
a

â

)2 m

KE
θ Cst

. (5.13)

The resulting inductance distribution for n0 = 1, which is plotted in figure 5.14d, is a bit counter-

intuitive. Indeed, according to the direct electromechanical analogy that we have applied to derive

the plate electrical analogue, inductance is analogous to mass. Therefore we could have expected the

inductance distribution to look like the mass distribution in figure 5.14a. However, the ratios of the

largest value over the smallest value of the distributions of m and Cst is around two, while it is around

ten for the distribution of KE
θ . As a consequence, the distribution of L is more influenced by the

bending stiffness distribution than the mass distribution.

5.4.2.4 Network validation

The network validation is conducted by comparing its mode shapes and natural frequencies to

those of the structure modeled by the finite element method. These comparisons are represented in

figures 5.15 and 5.16, respectively. The analogy between the two systems is ensured up to the tenth

mode and nearly 1 kHz even for n0 = 1, which is promising for broadband vibration damping.

5.4.3 Broadband damping

The behavior of the plate of variable thickness being coupled to its electrical analogue is finally

studied. We propose a realistic design of the inductive components for n0 = 1 and n0 = 2 in table 5.3.

The components of minimum and maximum inductance values are considered. These characteristics,

as well as remembering that the produced inductors of 246.6 mH in section 4.2 have a series resistance

of 13.7 Ω, show that it is a reasonable expectation for the network inductors to exhibit a series

resistance of 15 Ω for n0 = 1 and of 5 Ω for n0 = 2.
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n0 = 1

(a)

n0 = 2

(b)

Figure 5.15: MAC between the 25 first velocity modes of the variable thickness plate covered with
piezoelectric patches and the 25 first electrical current modes of the network for (a) n0 = 1 and
(b) n0 = 2. The tiny � and H markers indicate which couple of modes are deemed clearly identified,
so that they can be plotted in figure 5.16.

Slope = 1 Slope = 0.85

Figure 5.16: Comparison of mechanical and electrical natural frequencies for (�) n0 = 1 and (H) n0 = 2.

Core le lw Ae Aw AL N dw ku L RsL
n0

geometry (mm) (mm) (mm2) (mm2) (nH) (turns) (µm) (%) (mH) (Ω)

495 250 60 154.5 9
1 RM 10 42 52 83 40.2 630

730 200 57 334.5 20

245 300 43 37.4 3
2 RM 10 42 52 83 40.2 630

375 250 46 87.7 7

Table 5.3: Forecast characteristics of the components of minimum and maximum inductance made in
N48 ferrite material [108] for the variable thickness plate electrical analogue with n0 = 1 or n0 = 2.
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Besides, for n0 = 1, the same non-ideal transformers as described in section 4.3 are considered.

However, simulations show that using them for n0 = 2 leads to the overdamping of the resulting elec-

tromechanical system, and thus to a deteriorated damping performance. Therefore other transformers

should be designed. The objective remains to produce transformers whose magnetizing inductance Lm

is at least fifty times greater than the inductance L when referring to the same transformer side:

Lm ≥ 50â2L. (5.14)

With the notations of section 4.3, we recall the expressions of the magnetizing inductance Lm and of

the series resistance RsT standing for the copper losses, both referred to the primary side:

Lm = ALN
2
1 and RsT = ϱ

[
N1lw1
Sw1

+ â2 N2lw2
Sw2

]
. (5.15)

For n0 = 2, the network inductors range from three to six times smaller than the inductors of 246.6 mH

of the periodic plate analogue. Assuming the inductance is roughly four times smaller in the present

application, then according to the equation (5.14), the magnetizing inductance Lm of transformers

can be four times smaller as well, while still being large enough not to alter the network dynamics.

Hence, the equation (5.15) indicates that the number of turns N1 can be reduced by a factor of two,

which divides RsT by two as well. In addition, dividing N1 by two also divides the filling factor ku

by two. This means that the wire sections Sw1 and Sw2 can be virtually multiply by two to attain a

similar filling factor. According to the equation (5.15), thicker wires decrease RsT by another factor of

two. In the end, one estimate that the series resistance RsT of transformers could be divided by four

if new components had to be produced. This assumption is applied to the model of coupled systems.

The excitation is applied to the plate surface where the piezoelectric patches are bonded, at the

same (x, y) location as the point which is drawn in figure 5.2. The driving-point mobility simulated

using the model of equation (5.3) for n0 = 1 is plotted in figure 5.17. Note that the hysteretic damping

which is applied to the plate induces some damping in the coupled electromechanical system, even

when the network is non-dissipative. Meanwhile, the objective of the designed analogous network is

met, as the first few modes of the variable thickness plate are damped thanks to the piezoelectric

coupling with the network. However, one can notice on figure 5.16 that there is a gap of nearly 15 %

between electrical and mechanical natural frequencies of the last few couples of modes for n0 = 1. This
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explains that the damping performance at higher frequencies is limited, as can be seen in figure 5.17.

The dissipative components of the network still allow mitigating vibrations up to 700 Hz, but the

electrical resonance are not coincident with the mechanical ones. Therefore, the damping effect at

higher frequencies is closer to the effect that would be achieved with a resistive network [113, 53].

This can be understood by looking at figure 5.18, which considers the piezoelectric network damping

of a variable thickness plate with n0 = 2. In this case, the damping performance improves at higher

frequencies, which is coherent with the comparison of natural frequencies in figure 5.16 for n0 = 2.

In any case, these results validate the efficiency of the damping solution here proposed. Besides,

resistors could be modified or included in different positions of the network in order to enhance the

damping performance. Moreover, as written in the aside of section 5.2, the inductors and transformers

of the network are not optimized in terms of stored energy, since there is no proposed context for this

application. However, the components characteristics are realistic, which gives hope to achieve piezo-

electric network damping with fully passive electrical components. This numerical example highlights

the feasibility of integrating such a broadband damping solution with purely passive components to a

complex structure.
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Figure 5.17: Comparison of simulated velocity FRFs for n0 = 1: FRF with short-circuited
piezoelectric patches, and FRF when the variable thickness plate is connected to a non-dissipative
analogous network and a dissipative analogous network.

Figure 5.18: Comparison of simulated velocity FRFs for n0 = 2: FRF with short-circuited
piezoelectric patches, and FRF when the variable thickness plate is connected to a non-dissipative
analogous network and a dissipative analogous network.
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Simply-supported faces

Fully-clamped faces

Figure 5.19: Rectangular plate with mixed boundary conditions and • (x, y) location of both the
excitation and the velocity measurements.

(a) First mode shape
at 133.5 Hz

(b) Second mode shape
at 270.9 Hz

(c) Third mode shape
at 326.8 Hz

(d) Fourth mode shape
at 456.3 Hz

Figure 5.20: Shapes of the first four bending modes of the plate with mixed boundary conditions.

5.5 Plate with mixed boundary conditions

5.5.1 Structure description

We consider a case whose geometry is the same as previously studied in chapters 3 and 4: it is

a rectangular plate of sides lx = 420 mm and ly = 360 mm and of thickness hs = 3 mm. Square

piezoelectric patches are periodically bonded to the plate, and cover (5/6)2 of its surface. A scheme of

the structure is proposed in figure 5.19. The complexity comes from the boundary conditions, which

are mixed: two adjacent side faces of the structure are fully-clamped, while the two other side faces

are simply-supported. It modifies the structure behavior near the edges, as it is illustrated by the

first simulated modes which are drawn in figure 5.20. While piezoelectric network damping has been

achieved for a fully-clamped plate in [72] and for a fully-supported plate in the chapter 4 of the present

manuscript, it has never been applied to a plate with mixed boundary conditions.
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5.5.2 Analogous network

5.5.2.1 Unit cells selection

Among the available elements of the library in section 2.10, the square plate electrical analogue

remains the one that describes the best the structure dynamics. For this element, we have derived the

electrical boundary conditions which are analogous to simply-supported and fully-clamped mechani-

cal boundary conditions. Therefore, the complexity of this numerical example is not induced by an

approximation in the structure dynamics, but rather comes from mixing the boundary conditions of

the structure. This makes the electrical network to be assembled non-periodic. We recall that the

frequency coherence condition expressed by the equation (5.6) should be locally verified so that the

structure and its analogous network exhibit similar properties for bending wave propagation. Like in

the previous section, the discrete mechanical parameters m and KE
θ and the static piezoelectric capac-

itance Cst are going to be estimated. The tuning parameters are the remaining electrical components,

namely the transformer ratio â and the inductance L.

5.5.2.2 Mechanical parameters evaluation

As for the case of the variable thickness plate in section 5.4, the structure can be discretized by

7n0 × 6n0 square elements, n0 being integer. The figure 5.19 represents the plate geometry for n0 = 1.

As a consequence, the computation of the cell side a and of the discrete mass m are still conducted

using equations (5.7) and (5.8), respectively.

Meanwhile, the mechanical model to estimate the value of KE
θ is mostly the same as in subsec-

tion 5.4.2.2. The only differences are that the structure thickness hs is constant, and that we choose

to compute the second moments of area I of the structure and Ip of the piezoelectric transducers with

respect to the mid-surface of the entire structure. The reason for this is that we have noticed that the

resulting first electrical natural frequency is closer to the mechanical one by doing so. The expressions

of said-second moments become

I(y) =
ˆ a

0

ˆ (hs−hp)/2

−(hs+hp)/2
z2 dx dz, Ip(y) =

ˆ (a+lp)/2

(a−lp)/2

ˆ (hs+hp)/2

(hs−hp)/2
z2 dx dz. (5.16)
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(a) (b)

Figure 5.21: Distributions of discrete variables over the unit cells for the plate with mixed boundary
conditions in the case of n0 = 1: (a) static piezoelectric capacitance Cst (in nF), and (b) resulting
inductance L (in mH). Distributions of m and KE

θ are not represented since they are uniform.

5.5.2.3 Electrical parameters evaluation

The static piezoelectric capacitance Cst distribution is modeled using the finite element formulation

of equation (5.1). Results for n0 = 1 are shown in figure 5.21a. The distribution is non-uniform

because of the mechanical boundary conditions. Indeed, the plate movements are more restrained

along its clamped faces than along the supported ones, which influences the static capacitance. One

can also notice that the distribution tends towards the fully-supported plate distribution of figure 4.26

distancing from the clamped edges.

Finally, the transformer ratio is arbitrary set at â = 4. Thus the inductance value L can be derived

for each unit cell of the network by applying the frequency coherence condition of equation (5.6). The

corresponding expression is the equation (5.13). The resulting distribution for n0 = 1 is plotted

in figure 5.21b. The distribution is non-uniform, and we also notice that once we move away from

the clamped edges, the distribution also tends towards the mean value of 246.6 mH which has been

derived in section 4.5 for the fully-supported plate. Besides, since Cst is the only parameter whose

distribution is non-uniform over the system, it is consistent with the equation (5.13) that the L and Cst

distributions are reversed.
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n0 = 1

Figure 5.22: MAC between the 24 first velocity modes of the plate with mixed boundary conditions
covered with piezoelectric patches and the 24 first electrical current modes of the network for n0 = 1.
The tiny � markers indicate which couple of modes are deemed clearly identified, so that they can be
plotted in figure 5.23.

Slope = 1 Slope = 0.85

Figure 5.23: Comparison of mechanical and electrical natural frequencies for (�) n0 = 1.
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5.5.2.4 Network validation

The network validation is conducted by comparing its mode shapes and natural frequencies to

those of the structure modeled by the finite element method. These comparisons are represented in

figures 5.22 and 5.23, respectively. The analogy between the two systems is ensured up to nearly

fifteen modes and 1.5 kHz even for n0 = 1, which is promising for broadband vibration damping.

5.5.3 Broadband damping

For the vibration mitigation of the plate with mixed boundary conditions, we suggest using a

realistic design of its inductors and transformers. It has been shown in the subsection 5.4.3 that

expecting the produced inductors to exhibit a series resistance of 15 Ω for n0 = 1 is reasonable. At the

same time, simulations of the coupling between the structure and its analogous network that integrate

the transformers designed in section 4.3 have proven that they are adequate for n0 = 1.

Both the excitation and the measurement are made on the plate side which is covered by the

piezoelectric transducers, at the position located in figure 5.19. The driving-point mobilities simulated

using the model of equation (5.3) for n0 = 1 are plotted in figure 5.24. The information that can be

extracted from these simulations is quite similar to the case of the variable thickness plate: broadband

vibration damping is achieved, and the damping performance is enhanced at higher frequencies when

the network is composed of more elements.

This example brings the opportunity to discuss about the precision of the proposed mechanical

models to estimate KE
θ . Notice in figure 5.24 that two non-equal peaks appear around the first

mechanical mode at around 133.5 Hz. They would also appear if n0 = 2, that is if the network has two

times more elements along each direction. In the classical theory of tuned mass dampers, this height

difference is caused by the first natural frequency of the network not being equal to the first natural

frequency of the plate. Estimating the bending stiffness KE
θ with a more precise analytical model [111]

or with a 3D finite element model is probably the way to go to improve the electrical network tuning.

Note however that the gap between the first mechanical and electrical natural frequencies is estimated

at around 2 % in this case. This is the same order of magnitude that manufacturers exhibit on magnetic
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Figure 5.24: Comparison of simulated velocity FRFs for n0 = 1: FRF with short-circuited
piezoelectric patches, and FRF when the plate with mixed boundary conditions is connected to a
non-dissipative analogous network and a dissipative analogous network.

and materials constants of the soft ferrites which are used to produced the network inductors. Hence

it is actually not of prime importance to improve the ideal electrical components estimation.

and materials constants of the soft ferrites which are used to produced the network inductors. Hence

it is actually not of prime importance to improve the ideal electrical components estimation.

Nonetheless, these results validate that piezoelectric network damping can be applied in a case of

a plate with mixed boundary conditions as well. Even though we have not conducted a numerical

optimization of the damping performance, considering realistic characteristics for network components

makes the present case another example of how broadband damping could be achieved with a fully

passive electrical network.
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Figure 5.25: Meshing of the semicircular arch periodically covered by n = 20 piezoelectric patches, and
• location of both the excitation and the velocity measurements for the FRFs plotted in figures 5.32
and 5.33.

5.6 Semicircular arch

5.6.1 Structure description

The studied case is a semicircular arch whose extremities are clamped. As represented in figure 5.25,

its dimensions are a radius R = 200 mm, a width b = 40 mm and a thickness hs = 5 mm. Piezoelectric

patches of the same width b and of thickness hp = hs/6 periodically cover 5/6 of the external surface

of the arch. This means that the length lp of the piezoelectric patches neutral axis is

lp = 5
6
π
(
R+ hs

2 + hp
2

)
n

. (5.17)

We predict the assembled electrical analogue to be slightly non-periodic, because of the mechanical

boundary conditions effect on the static piezoelectric capacitance. Therefore, the complexity of the

present case does not come from non-periodicities. It rather stems from the curvature, which has not

been treated in terms of piezoelectric network damping yet, and from the fact that modes of different

kinds appear in the frequency range.
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Bendable piezoelectric patches

PZT materials are brittle, and thus it is challenging to bond piezoelectric patches to a curved
structure. A solution to bend them is to insert a layer of piezoelectric material between layers
of polymer material. The polymer serves as an insulation layer and generates a preload on the
piezoelectric material. It increases the ultimate tensile strength of the piezoelectric part [114],
and hence allows slightly bending it. The commercially available components require a bend-
ing radius of several centimeters at least. We do not model additional polymer layers in the
present manuscript, since the piezoelectric transducers are bonded to a surface whose radius is
R + hs/2 = 202.5 mm. Thus we assume bonding transducers to the considered structure is
possible by following the process described in subsection 3.3.1.

5.6.2 Analogous network

5.6.2.1 Unit cells selection

Among the available elements of the library in section 2.10, the curved beam electrical analogue

is selected to form the network. The notations we use going forward are the same as in section 2.8.

We recall the frequency coherence conditions that should be locally verified so that the structure and

the assembled network exhibit similar modal properties:

a

R
= â

R̂
,

Kv

m
= 1
LCv

,
1
a2

KE
θ

m
= 1
â2

1
LCst

. (5.18)

The objective is now to estimate the mechanical parameters appearing in the previous equations.

The static piezoelectric capacitance can be estimated as well by using an adequate finite element

formulation. The remaining electrical parameters, namely the transformers ratios parameters â and R̂,

the inductance L and the capacitance Cv, will then be estimated by applying the frequency coherence

conditions.

5.6.2.2 Mechanical parameters evaluation

The radius of the arch is R = 200 mm. Since it is discretized by n elements, we have

a = πR

n
. (5.19)

Knowing the dimensions of the structure, as well as the mass densities of the involved materials,

the discrete mass m is

m = ρabhs + ρplpbhp. (5.20)
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Figure 5.26: Curved beam element of constant thickness hs covered by a curved piezoelectric patch
of constant thickness hp. The stiffness of each portion of the beam and the piezoelectric patch can be
modeled as a spring, such as drawn on the right hand-side. The represented thicknesses are not to
scale.

As far as the mechanical stiffnesses go, the discrete mechanical model represented in figure 5.26

is considered. A portion of the arch covered by a piezoelectric patch is sketched in the local frame,

with s standing for the arc length direction and w denoting the orthogonal direction to s and y. Each

portion of the element is modeled by a discrete spring. This means that we suggest computing the

values of the longitudinal stiffness Kv and the bending stiffness KE
θ with the following equations:

1
Kv

= 1
Kv1

+ 1
Kv2 +Kv3

+ 1
Kv4

and
1
KE
θ

= 1
KE
θ1

+ 1
KE
θ2 +KE

θ3
+ 1
KE
θ4
, (5.21)

where the involved discrete stiffnesses, which are indicated in figure 5.26, are expressed by

1
Kv1

= 1
Y

ˆ (a−lp)/2

0

1
bhs

ds,
1
Kv3

= 1
1/sE11

ˆ (a+lp)/2

(a−lp)/2

1
bhp

ds,

1
Kv2

= 1
Y

ˆ (a+lp)/2

(a−lp)/2

1
bhs

ds,
1
Kv4

= 1
Y

ˆ a

(a+lp)/2

1
bhs

ds,

1
KE
θ1

= 1
Y

ˆ (a−lp)/2

0

1
I(s) ds,

1
KE
θ3

= 1
1/sE11

ˆ (a+lp)/2

(a−lp)/2

1
Ip(s)

ds,

1
KE
θ2

= 1
Y

ˆ (a+lp)/2

(a−lp)/2

1
I(s) ds,

1
KE
θ4

= 1
Y

ˆ a

(a+lp)/2

1
I(s) ds, (5.22)
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(a)

(b) (c)

Figure 5.27: Distributions of discrete variables over the unit cells for the clamped semicircular arch
in the case of n = 10: (a) static piezoelectric capacitance Cst (in nF), (b) resulting inductance L (in
mH) and (c) resulting capacitance Cv (in pF).

where Y and 1/sE11 are the Young’s modulus of the structure and of the short-circuited piezoelectric

patches. As opposed to the model of calculation for plates in previous examples, the Poisson’s ratios

are not involved in the beam equations for the bending stiffness. Meanwhile, I and Ip stand for the

second moments of area of the structure and of the piezoelectric patch, respectively. In this case,

the piezoelectric transducer covering 5/6 ≈ 83.3 % justifies computing I and Ip with respect to the

mid-surface of the entire structure:

I(s) =
ˆ b

0

ˆ (hs−hp)/2

−(hs+hp)/2
w2 dy dw, Ip(s) =

ˆ b

0

ˆ (hs+hp)/2

(hs−hp)/2
w2 dy dw. (5.23)

5.6.2.3 Electrical parameters evaluation

The finite element formulation of equation (5.1) can be used to predict the distribution of static

piezoelectric capacitances Cst. The distribution, which is plotted in figure 5.27a for n = 10, is barely

non-periodic because of the mechanical boundary conditions that constrain the structure movements at

its extremities. Besides, the observed distribution symmetry is coherent with the structure symmetry.
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The transformer ratio is arbitrary set at â = 4. The remaining electrical parameters can then be

derived by applying the frequency coherence conditions:

R̂ = â

a
R, L =

(
a

â

)2 m

KE
θ Cst

, Cv = m

KvL
. (5.24)

Since the static piezoelectric capacitance is the only quantity whose distribution over the arch elements

is non-uniform, these equations show that the inductance L distribution is reversed when compared

the Cst distribution, while the capacitance Cv relative distribution is similar as the Cst distribution.

Such distributions are represented as an example for n = 10 in figures 5.27b and 5.27c.

5.6.2.4 Network validation

The semicircular arch covered with piezoelectric transducers and the assembled electrical network

should exhibit the same modal properties, so that the modal coupling condition is met when they

are coupled. Their mode shapes and natural frequencies are simulated using the formulations in

equations (5.1) and (5.2), respectively.

The comparison of mode shapes is first conducted using the MAC in figure 5.28. The coherence

between mechanical and electrical modes is improved when the number of elements n increases. This

is expected, as it corresponds to the convergence of a finite difference model towards a finite element

model. However, this example highlights that there are mechanical modes which are not replicated

by the network. This translates into columns of zeros in the MAC matrix. Looking at several mode

shapes of the arch covered with n = 20 piezoelectric patches in figure 5.29 helps understanding the

physical reasons for this to happen. Indeed, the second and fifth modes of the arch are out-of-plane

bending modes. These modes cannot be reproduced in the electrical network, since the considered

network unit cell only takes in-plane bending modes into account to be derived. In other words,

another more complex network, that takes into account out-of-plane effects and vibrations, would be

required to make up the arch electrical analogue over the considered frequency range. Therefore, if

they are excited, these modes will appear in the FRFs of the structure and will not be affected by the

network coupling.

238



5.6. SEMICIRCULAR ARCH

n = 10

(a)

n = 20

(b)

Figure 5.28: MAC between the 21 first velocity modes of the semicircular arch with clamped extremities
covered with piezoelectric patches and the 12 first electrical current modes of the network for (a) n = 10
and (b) n = 20. The tiny � and H markers indicate which couple of modes are deemed clearly identified,
so that they can be plotted in figure 5.30.

(a) Shape of the first
mode at 125.9 Hz

(b) Shape of the second
mode at 214.9 Hz

(c) Shape of the third
mode at 276.5 Hz

(d) Shape of the fourth
mode at 513.1 Hz

(e) Shape of the fifth
mode at 635.0 Hz

(f) Shape of the sixth
mode at 785.6 Hz

Figure 5.29: Shapes of the first six modes and corresponding natural frequencies of the clamped
semicircular arch covered with n = 20 piezoelectric patches.
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Slope = 1 Slope = 0.85

Figure 5.30: Comparison of mechanical and electrical natural frequencies for (�) n = 10 and (H) n = 20.

Finally, the natural frequencies of the assembled network are compared to the natural frequencies

of the arch in figure 5.30. The discussion is quite similar to the previous numerical examples: the

analogy between the structure and its analogous network is ensured over a given frequency range,

which extends when increasing the number of elements n discretizing the network. In the present

case, one can consider that the analogy is validated under 1 kHz for the first four modes when n = 10,

and up to 3 kHz for the first nine modes when n = 20.

Overlap of the frequency ranges

The complexity of the case here considered is not inherent to arch-like structures. For example,
the plates which have been studied in chapters 4 and 5 exhibit non-bending modes as well, which
are not affected by the coupling of their structures to their respective electrical analogues.
Indeed, the plate analogues previously developed are assembled from square plate electrical
analogues, which only consider the bending of the structure. However, the plate dimensions
make these other modes stand at much higher frequencies than the first few bending modes.
Thus they did not appear in the analysis.

For the arch case, first in-plane and out-of-plane modes appear in the same the frequency range,
as can be seen in figure 5.29. This is one kind of complexity treated in the ongoing numerical
example.
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Figure 5.31: Unit cell of the dissipative arch electrical analogue.

5.6.3 Broadband damping

The vibration mitigation of the clamped arch covered by piezoelectric patches is now achieved by

coupling the structure to its analogous network. As sketched in figure 5.31, dissipative components

are included as series resistances for the inductors and transformers of each unit cell. The subscript T

stands for the resistances which are related to transformers, while the subscript L stands for the series

resistance of inductors. Meanwhile, the superscripts v, w and θ indicate in which transmission line

are located the components they are associated with.

A reasonable assumption for a first design of the network inductors is to assume that the induc-

tance distribution in figure 5.27b is nearly uniform. Therefore, designing the mean components of

inductance L and L/2 shows that RwL = 15 Ω and RvL = 5 Ω for n = 10 elements, and RwL = 3 Ω and

RvL = 1 Ω for n = 20 elements are realistic expectations for the produced components.

As far as transformers go, we do not proceed to their full design, but rather suggest setting all

series resistance RvT , R
w
T and RθT at 10 Ω for n = 10. It is a realistic order of magnitude when compared

to the transformers produced in section 4.3. Then, for n = 20 the value of the inductance L has been

divided by around eight, which means that it is reasonable to expect RvT , R
w
T and RθT to be divided by

eight as well if they are produced in a similar fashion. This comes from the fact that less winding turns
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are required to meet the criterion on the magnetizing inductance, and that consequently thicker wires

can be used to fill the winding area. This discussion has been made in more details in subsection 5.4.3.

Both the excitation and the measurement are made on the location which is highlighted in fig-

ure 5.25. This point has been selected in order to excite all modes of the frequency range. On fig-

ures 5.32 and 5.33 are plotted the driving-point mobilities obtained from the model of equation (5.3).

Multimodal damping is achieved over a frequency range that increases when the discretization scheme

is refined. The main difference with previous examples is that out-of-plane bending modes, which are

the second, fifth and eight modes of the frequency range, are not affected by the network. This was

predictable, based on the analogy validation previously conducted and the fact that these mechanical

modes are not coherent with the electrical ones, as illustrated by figure 5.28. As the mechanical modes

are clearly separated nonetheless, the damping performance is barely influenced by these modes which

have been neglected in the electrical analogue design.

Note that it would be possible to achieve a multimodal damping performance by connecting the arch

to a network resulting from adequately assembling bar and beam electrical analogues. In section 2.8,

we suggested using this alternate network, denoted network B as opposed to the network A resulting

from assembling curved beam analogues. In other words, an electrical analogue of the arch covered with

piezoelectric patches could be described as an assembly of straight bar and beam elements, orientated

by rotation matrix analogues. However, the network B requires six transformers per unit cell, while

the network A requires only three. As can be seen in figures 5.32 and 5.33, realistic but not optimized

components lead to a barely underdamped system. Therefore, even though the transformers design

could be adapted, it is probably more challenging to avoid overdamping the first structure modes

with network B, since there are more dissipative components involved. Hence using an electrical unit

cell that is directly derived from equations describing the structure behavior, such as the unit cell of

the network A, is probably advantageous in terms of cost and integration. Nonetheless, more work

needs to be done to have definitive conclusions about this comparison between the network assembling

possibilities.
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Figure 5.32: Comparison of simulated velocity FRFs for n = 10: with short-circuited piezoelectric
patches, and when the arch is connected to an ideal network and to a dissipative network.

Figure 5.33: Comparison of simulated velocity FRFs for n = 20: with short-circuited piezoelectric
patches, and when the arch is connected to an ideal network and to a dissipative network.

As a conclusion, this numerical example is the first treated case of broadband vibration mitiga-

tion of a curved structure coupled by piezoelectric elements to its electrical analogue. The proposed

electrical components are realistic, which means that we have designed a fully passive broadband

damping solution for the semicircular arch. The fact that there is an overlap of frequency ranges for

modes of different kinds does not affect the damping performance when modes are well-separated, but

these additional modes cannot be controlled with the present network. Another unit cell that involves

in-plane and out-of-plane analogous bending motions would be needed to do so.
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Figure 5.34: Meshing of the circular ring periodically covered by n = 16 piezoelectric patches, and
• location of both the excitation and the velocity measurements for the FRFs plotted in figures 5.40
and 5.41.

5.7 Ring

5.7.1 Structure description

The last numerical example treated in this chapter is a free ring covered by thin piezoelectric

transducers, as illustrated in figure 5.34. Its radius is R = 200 mm, its width is b = 40 mm and its

thickness is hs = 5 mm. There are n piezoelectric patches covering the entire width b of the ring

and 5/6 of its external surface. Their thickness hp is constant and set at 1/6 of hs. Therefore the

length lp of the neutral axis of each piezoelectric element is

lp = 5
6

2π
(
R+ hs

2 + hp
2

)
n

. (5.25)

In the present case, the assembled electrical network should be periodic. Moreover the case of a

curved structure has been studied in the previous section with the piezoelectric network damping of

an arch. As a consequence, the main complexity here stems from the structure being closed on itself.

This signifies that the unit cells of the electrical network should form a closed loop. Besides, because

of the structure symmetry, there are pairs of mechanical modes to be damped. These two sources of

complexity have not been considered before.
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5.7.2 Finite element model

Since the structure presents no boundary conditions, rigid body motion is allowed. In terms of nu-

merical simulation, this means that six natural frequencies at 0 Hz are expected. In the meantime, the

structure exhibits double modes because of its symmetries: for each non-zero natural frequency, there

are two modes with similar mode shapes which are shifted from one another by an angle of π/ (2nl),

with nl being the mode shape lobes number. We prefer avoiding uncertainties related to the numerical

treatment of the lack of boundary conditions and of double modes. Hence, we choose to add a nu-

merical parameter Km
0 to the stiffness of one element of the mesh, so that its elementary mechanical

stiffness matrix Km
elm is replaced by Km

elm + Km
0 ·

Km
elm

 · Id, with Id being the identity matrix.

Increasing some terms of the diagonal of the assembled mechanical stiffness matrix Km is equivalent

to connect springs between a fixed point and the corresponding nodes of the structure mesh. The

value of Km
0 is then manually set between 10-13 and 10-12. This way, the rigid body modes are not

at 0 Hz anymore, but Km
0 is small enough that they are left below 1 Hz, so they have no influence

on the first structure modes. Meanwhile, even though the double modes are not equal anymore, the

gap between couples of modes is maximum for the first couple, and remains inferior to 0.6 %. We

consequently assume that this numerical trick does not alter the structure dynamics.

5.7.3 Analogous network

5.7.3.1 Unit cells selection

The curved beam electrical analogue is chosen among the developed unit cells in the library of

section 2.10. To ensure that the assembled network exhibits the same modal properties as the ring, the

frequency coherence conditions expressed in the equation (5.18) should be used to design the network

components. The goal is thus to estimate the parameters of these frequency coherence conditions

which are set once the structure geometry is defined. The transformers parameters â and R̂, the

inductance L and the capacitance Cv serve then as the tuning parameters.

5.7.3.2 Mechanical parameters evaluation

The radius of the arch is R = 200 mm. Since it is discretized by n elements, we have

a = 2πR
n

. (5.26)
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Figure 5.35: Simulated dynamic capacitance at very low frequencies of one piezoelectric patch covering
the ring for n = 16 elements. Notice the scale of the y-axis.

Meanwhile, the discrete mass m remains expressed by the equation (5.20), and the longitudinal

stiffness Kv and the bending stiffness KE
θ are estimated using the same model of layered materials as

for the arch in the previous section. The model for stiffnesses computation is sketched in figure 5.26

and is expressed from equations (5.21) to (5.23).

5.7.3.3 Electrical parameters evaluation

The finite element formulation of equation (5.1) can be used to predict the distribution of static

piezoelectric capacitances Cst. This brings the opportunity to compute the effect of the numerical

parameter Km
0 at low frequencies. As can be seen in figure 5.35, six peaks corresponding to the quasi-

rigid body modes appear below 1 Hz. Like for the other modes, the dynamic capacitance decreases

after each rigid body mode. Notice however on the y-axis of the graph that this decrease is negligible.

The distribution of the static piezoelectric capacitance, which is plotted in figure 5.36 for n = 16

elements, is barely non-periodic. This is due to digital noise, as the difference between the largest

and the smallest Cst values is less than 0.4 % for n = 16 elements and 0.2 % for n = 32 elements.

Therefore it makes sense to assume that the distribution is uniform and equal to its mean value. Since

distributions of m, Kv, K
E
θ and Cst are uniform over the structure unit cells, the distributions of L

and Cv are uniform as well. They can be derived by applying the frequency coherence conditions in

equation (5.24) after setting the transformer ratio at â = 4.
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Figure 5.36: Distribution of the static piezoelectric capacitance Cst (in nF) over the unit cells for the
ring covered with n = 16 piezoelectric patches.

5.7.3.4 Network validation

To achieve the modal coupling condition when the ring and the network are connected, they should

exhibit the same modal properties. Their mode shapes are compared using the MAC, whose matrix

representations are drawn in figure 5.37. Like in the case of the arch treated in section 5.6, several

mechanical modes are not replicated by the electrical network. Indeed, the assembled network has

been developed by only taking in-plane modes into account, while modes with out-of-plane strains

also appear among the first structure modes. For example, the figure 5.38 illustrates why the third

and fourth columns on one hand, and the ninth and tenth columns on the other hand, of the MAC

matrix remain at zero. Excluding these modes, whose physics cannot be predicted by the assembled

electrical circuit, the network modes are consistent with the structure modes. Besides, increasing the

number of elements n helps extending the frequency range over which the electromechanical analogy is

validated. Finally, the figure 5.39 shows that the natural frequencies of the network tend towards the

mechanical ones. Note that there are two times less points of comparison in this figure than identified

on the MAC matrices representations of figure 5.37. This is explained by the fact that the structure

exhibits pairs of modes, which generates coincident points in figure 5.39.
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n = 16

(a)

n = 32

(b)

Figure 5.37: MAC between the 24 first velocity modes of the free ring covered with piezoelectric
patches and the 16 first electrical current modes of the network for (a) n = 16 and (b) n = 32. The
tiny � and H markers indicate which couple of modes are deemed clearly identified, so that they can
be plotted in figure 5.39.

(a) Shape of the first
modes pair at 76.6 Hz

(b) Shape of the second
modes pair at 186.6 Hz

(c) Shape of the third
modes pair at 216.9 Hz

(d) Shape of the fourth
modes pair at 416.4 Hz

(e) Shape of the fifth
modes pair at 651.2 Hz

(f) Shape of the sixth
modes pair at 674.2 Hz

Figure 5.38: Shapes of the first six modes pairs and corresponding natural frequencies of the ring
covered with n = 16 piezoelectric patches.
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Slope = 1 Slope = 0.85

Figure 5.39: Comparison of mechanical and electrical natural frequencies for (�) n = 16 and (H) n = 32.

Electrical modes at 0 Hz

As for the mechanical structure, there are modes at 0 Hz for the electrical network. Moreover,
the periodically assembled network exhibits double modes. To avoid uncertainties related to
the numerical treatment of these double modes and of the electrical analogues of the rigid body
modes, we add a numerical parameter in the network model as well. Just like the parameter Km

0
for the finite element model of the ring, a negligible parameter, which is of the same unit as the
inverse of a capacitance, is added to some diagonal terms of the assembled electrical “stiffness”
matrix KN of equation (5.2). Its value is set between 10-13 and 10-12 to keep the three quasi-
“rigid” electrical modes under 1 Hz.

5.7.4 Broadband damping

Vibration damping is now considered by coupling the structure to its analogous network. The same

dissipative components as sketched in figure 5.31 bring electrical damping to the coupled system. It is

realistic to consider electrical components that exhibit series resistances of RwL = 15 Ω and RvL = 5 Ω

for n = 16 elements, and RwL = 4 Ω and RvL = 2 Ω for n = 32 elements. Moreover, just like for the

arch electrical analogue of section 5.6, we do not proceed to a detailed transformers design. We rather

suggest setting RvT , R
w
T and RθT at 10 Ω for n = 16 elements, and at a eighth of this value for n = 32

elements. The reasons for dividing the transformers resistances when n increases have been discussed

for previously treated numerical examples. Note that these values of resistances are of the same order

of magnitude than the transformers designed in section 4.3, which is why we deem them as realistic

components.
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A marker in figure 5.34 indicates at which position both the excitation and the measurement are

made for the FRFs below. It has been selected so that ring modes which are not coherent with

network modes are not excited. In other words, the second mode at 186.6 Hz and the fifth mode at

651.2 Hz, which are illustrated in figure 5.38, will not appear on the incoming graphs. Indeed, the

case of having unwanted mechanical modes in the frequency range has been treated in section 5.6

already. The simulated driving-point mobilities are represented in figures 5.40 and 5.41. The achieved

damped results are promising, even though the network components have not been optimized in terms

of damping performance. Besides, the fact that several modes are very close to each other does not

alter the network behavior, as both modes of every couple are damped.

As a conclusion, this numerical example is another example of piezoelectric network damping of a

curved structure. It is also the first example of a structure whose electrical analogue forms a closed-

loop, and which exhibits double modes. We have shown that these complexities can be overcome,

since broadband vibration damping of a ring is possible by connecting it to a fully passive electrical

analogue.
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Figure 5.40: Comparison of simulated velocity FRFs for n = 16: with short-circuited piezoelectric
patches, and when the ring is connected to an ideal network and to a dissipative network.

Figure 5.41: Comparison of simulated velocity FRFs for n = 32: with short-circuited piezoelectric
patches, and when the ring is connected to an ideal network and to a dissipative network.
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5.8 Conclusions

This chapter investigates the piezoelectric network damping of complex structures. The first

treated example involves a local mass addition on the plate surface. The natural frequencies and

the mode shapes of the structure change because of this addition. The electrical analogue produced in

chapter 4 is modified accordingly. Broadband damping is achieved over the first modes of the struc-

ture. Moreover, this example is used to ensure that the models developed in previous chapters can be

extended to non-periodic cases. We thus have validated by comparison with experimental results on

this specific complex case the behavioral model of the electrical network, the finite element model of a

structure covered by thin piezoelectric transducers, and the finite element formulation of the coupled

system. Therefore, we assume these models can be used going towards other complex structures.

The next numerical examples are complex plates as well. A fully-supported plate of variable thick-

ness, and a constant thickness plate with two supported sides and two clamped sides are considered.

Then, numerical examples involve curved structures. The semicircular arch example stands as the first

approach to curved structures and to cases in which uncoupled modes appear in the frequency range of

interest. Meanwhile, the ring example is a first approach to structures with pairs of modes, and with

an electrical analogue that forms a closed-loop and exhibits no boundaries. In all studied cases, the

electrical components of the networks are designed by respecting the frequency coherence conditions

previously derived. Connecting the structures to their respective analogous networks with dissipative

components allows damping the first few targeted modes. Besides, all simulations are conducted with

non-optimized but realistic components. This means that piezoelectric network damping of complex

structures may be implemented with fully passive components. It is a first successful step towards

coupling a complex structure to its electrical analogue for multimodal damping purposes.

Among the complex but periodic structures, the remaining numerical example that could be treated

is the tube. We have proposed a tube electrical unit cell in the library of section 2.10, which should

be first validated. Then the piezoelectric network damping of a tube could be investigated. Other

numerical examples could also include mixed complexities. For example, an arch with a varying

curvature and mixed boundary conditions would be a non-periodic structure with curvature.
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Chapter 6

Conclusions and perspectives

In this last chapter, we gather the most important contributions of this manuscript. We also
give prospects for future works. These include applying piezoelectric network damping to other
complex structures on one hand, and taking integration issues into account on the other hand.
More specifically, we highlight the potential studies on electrical components design, on the
passive tuning in case of temperature variations, and on the comparison with other passive
broadband damping solutions.
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6.1 Conclusions

Piezoelectric network damping of a structure consists in covering a mechanical structure with

piezoelectric transducers and to connect it to an adequate electrical network. To ensure a multimodal

vibration mitigation, the network can be an electrical analogue, which means that it exhibits the same

modal properties as the structure it is intended to damp. The objective of the present work was to

extend the concept of piezoelectric network damping to complex structures. While it had been applied

to cases of rods, beams and flat plates both numerically and experimentally, more complex structures

had not been treated. For this reason, in chapter 2 we have gathered electrical unit cells which

reproduce in the electrical domain the propagation of different kinds of mechanical waves. Electrical

analogues of rods, bars, straight and curved beams, plates and tubes have been described. To derive

them, the direct electromechanical analogy has been applied to discrete mechanical models. We have

then expressed the spatial and frequency coherence conditions that an assembly of electrical unit cells

should verify to exhibit similar modal properties as a given structure. Based on these results, we

have produced a simply-supported rectangular plate electrical analogue in chapter 4. The assembled

network has been validated by comparing its mode shapes and natural frequencies to plate modal

properties. We have then shown that connecting the plate to this electrical network allows mitigating

its first mechanical bending modes. This experimental setup stands as another proof of concept for

the piezoelectric network damping of academic structures.

Meanwhile, in chapter 3 we have developed a numerical tool to predict the dynamics of a structure

being coupled to an electrical network via thin piezoelectric transducers. This model is based on

coupling a finite element model of a mechanical structure to a behavioral model of an electrical

network. The experiments conducted in chapters 3 and 4 have brought the opportunity to validate

this approach by comparing simulations to measurements. Besides, this model has been validated in

chapter 5 on a complex case as well, which confirms that it can be used as a predictive tool going

towards even more complex cases. Finally, note that this model requires the assembled stiffness, mass

and coupling matrices of the structure in order to connect a network to it. This means that this

model is convenient to apply piezoelectric network damping to a structure whose finite element model

is issued from a commercial software.

254



6.1. CONCLUSIONS

In the chapter 5, complex cases of piezoelectric network damping are finally treated. The first

examples are complex plates. The principle was to start from the known case of a periodic plate and

to gradually make it non-periodic, either by locally adding a mass on its surface, by making its thickness

variable, or by mixing its boundary conditions. The other complex cases are curved structures, namely

a clamped semicircular arch and a free ring. This has allowed studying the problems related to the

structure exhibiting double modes in the frequency range of interest, modes which generate no coupling

with the electrical network, or having a closed-loop electrical circuit as an electrical analogue. For

all these five examples, piezoelectric network damping has been proven as a multimodal vibration

damping solution. Moreover, even though the network components have not been optimized in terms

of stored energy or damping performance, we have made sure that the predicted vibration mitigation is

attainable with realistic components. Hence they represent the first successful steps towards coupling

complex structures to their fully passive electrical analogues for multimodal damping purposes.

Main contributions of the present manuscript

Allow us to sum up the main results obtained during this PhD and recorded in this manuscript:

• Description of a method for the design of passive electrical analogues.

• Definition of a library of electrical analogues, which notably includes 1D and 2D curved
elements.

• Development of a numerical tool for modeling the coupling of a 3D structure covered with
thin piezoelectric transducers to an electrical network.

• Validation of this tool by comparison with experimental results on periodic and non-
periodic structures.

• Numerical proof of the efficiency of piezoelectric network damping for complex plates and
1D curved structures.

• Achievement of broadband damping by considering realistic and thus fully passive elec-
trical components.

List of publications

The results presented in this thesis were partially published in journal papers [104, 115] and
conference proceedings [105, 116, 117]. A list of publications is available in appendix D.
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Varying thickness

Varying radius

Figure 6.1: Segmental arch of varying radius and thickness covered by piezoelectric transducers.

6.2 Piezoelectric network damping of more complex structures

On one hand, it is possible to mix the complexities already studied, to make sure that combining

them does not ruin the damping performance. A numerical example that we are interested in is an

arch covered with piezoelectric transducers which is characterized by varying dimensions, a central

angle different from 180 degrees, and different boundary conditions. A sketch of such structure is

proposed in figure 6.1. This study case gathers most of the complexities treated thus far, and as a

consequence represents the most complex structure based on already validated analogues.

As a perspective, note that there are many cases which can be deemed as complex that we have

not treated. One of them is a tube periodically covered by piezoelectric patches, such as depicted in

figure 6.2. In the library of section 2.10, we have proposed an electrical circuit for a tube electrical

analogue. A validation should first be conducted for the electrical network without coupling, such

as for the plate and the curved beam analogues in subsections 2.7.2 and 2.8.3, respectively. Then,

piezoelectric network damping could be investigated. In this case, the structure would exhibit double

modes and its analogous electrical network would be a 2D network that forms a closed-loop along

one direction. Moreover, the tube dimensions can be set so that bending modes along the curvature

and bending modes along the longitudinal direction appear in the same frequency range. This kind

of complexity has been highlighted in the semicircular arch example in section 5.6. We are confident

that the network assembled from tube analogous unit cells would damp the targeted modes.
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Figure 6.2: Meshing of a circular tube periodically covered by 12 piezoelectric transducers along its
curvature and 9 piezoelectric transducers along its length.

Besides, we recall that we suggest using networks which are issued from a degraded version of the

structure dynamics. We have proposed a method to produce an electrical analogue of any complex

structure that results from the assembly of simple elements recorded in the library of section 2.10.

This is what has been done for the variable thickness plate in section 5.4, whose analogous unit cell is

a square plate of constant thickness. In order to go towards more realistic structures, there is interest

in considering even more complex geometries. To this end, the works of MacNeal [73] on electrical

analogues of plates with non-parallel edges sound like a fitting starting point.

Moreover, investigating the connection of a structure to several distinct networks in order to damp

different types of modes might prevent from defining electrical analogues for combined loads. The

principle is that different types of piezoelectric transducers can be bonded to the structure. Connecting

these patches to the adequate electrical networks, such as in figure 6.3, should allow damping different

types of modes by combining the effects of several independent analogues. The interest in such a

solution stems from the possibility to enhance the coupling for all targeted modes, and optimize the

damping performance as a consequence.

Nonetheless, the development of new electrical analogues might be required for the situations where

the structure behavior cannot be reproduced in the electrical domain by the unit cells recorded in the

library of section 2.10. Examples that come to mind include a 2D membrane element or a rectangular

plate bending element. Finally, the development of new electrical analogues might also be required

for some boundary conditions, such as the passive analogue of a free plate edge, which is discussed in

appendix A.
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Bar electrical analogue

Curved beam electrical analogue

Figure 6.3: Ring covered by piezoelectric transducers which are connected to two distinct electrical
networks.

6.3 Electrical components design for piezoelectric network damping

6.3.1 Mass reduction of the analogous network

In fields of transports, especially aeronautics or aerospace, the payload is a criterion of prime

importance. Admittedly, the network developed in chapter 4 is too heavy to be integrated as of today,

since the table 6.1 indicates that it is nearly three times heavier than the structure it damps. While

it is only an example, it highlights that integrating piezoelectric network damping as a fully passive

vibration mitigation solution requires some kind of mass optimization of the electrical components.

Note that the electromechanical models which have been developed in this work can be used to

design the inductors and transformers of the network. Indeed, these components should be designed

according to the electrical current flowing through them. In particular, the mass of an inductor is not

driven by its inductance value, as opposed to what has been written in many articles about piezoelectric

shunt damping, but by the energy it should store. Two design methods are then possible. The first one

is to consider that the distribution of piezoelectric transducers on the structure is given data. Then

the electromechanical coupling is set, the constraints are to meet the frequency coherence condition

and to achieve an optimized vibration mitigation performance, and the objective function to minimize

is the mass. The other method is to consider that either a maximum payload or a maximum added

mass is fixed and the objective function to optimize is then the electromechanical coupling. Developing

a numerical tool that estimates the potential damping performance for a given added mass, or that

estimates the minimum added mass for a given damping performance, would allow investigating the

practical limitations of piezoelectric network damping integration.
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Structure Analogous network

Plate 1270 g Inductors 42 × 35 g = 1470 g

PZT patches 42 × 9.5 g = 399 g Transformers 139 × 25 g = 3475 g

Approximate total 1.7 kg Approximate total 5.0 kg

Table 6.1: Mass comparison of the piezoelectric network damping setup described in chapters 3 and 4.

Distinction between added mass and payload

One of the main drawbacks for the integration of piezoelectric network damping is that it might
represent a significant mass addition. However, note that even though piezoelectric network
damping increases the payload, it might not be synonymous with added mass to the vibrating
structure. Indeed, it is possible to set the network aside from the structure, thus not altering
the mass of its moving parts too much. Depending on the application, increasing the payload
but not the added mass might be acceptable.

6.3.2 Design of inductors for various excitations

We already explained that the design of an inductor depends on the energy it should store, and

hence on the electrical current flowing through it. In the case of vibration damping using piezoelectric

coupling, the electrical current is generated by the mechanical excitation. As a consequence, the

inductors design should take the excitation spectral density into account:

• Harmonic excitation: In this case, the design of the inductor can be conducted at fixed

frequency. This is what has already been described in section 4.2.

• Sweep-sine excitation: Assuming the excitation variations are slow when compared to the

frequency at which the electromechanical system behaves, then the network is virtually in steady

state at each moment. Therefore the method for harmonic excitation applies as well.

• Broadband random excitation: In this case, the excitation and the resulting electrical current

have to be described by their power spectral densities. The energy to be stored by the inductive

component should thus be computed by integrating its continuous power spectrum over the

frequency range of interest.
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6.3.3 Non-linear piezoelectric network damping

Finally, we want to highlight the difference between a complex structure and a complex situation:

a complex situation might occur even for a simple structure. Non-linear vibrations fall in this category.

Indeed, all mechanical structures behave non-linearly if the excitation amplitude is large enough. If

it occurs, then there is a modification of the mechanical natural frequencies. Besides, we have shown

that the characteristics of the electrical components we have developed evolve with the electrical

current flowing through them. Consequently, electrical non-linearities may occur as well, and they

may alter the network dynamics. For these reasons, the electrical damping device that is coupled

to the structure should be adapted according to mechanical and electrical non-linearities to ensure

maintaining the damping performance. Solutions have been proposed for resonant shunts [103] and

1D piezoelectric networks [118]. The principle is to design electrical components, such as inductors

or capacitors, which exhibit electrical non-linear behaviors which are similar to the mechanical non-

linearities. Integrating these considerations to derive a fully passive non-linear 2D network might be

possible using the predictive model we have developed in this work.

6.4 Passive tuning in case of temperature variations

A fully passive integrated solution of vibration mitigation via piezoelectric coupling should be

designed so that the damping performance is robust against environmental parameters variations.

One environmental parameter that has a significant impact on the electromechanical system behavior

is temperature. Indeed, piezoelectric materials properties vary with temperature [119, 120, 19], which

in turn modifies the piezoelectric capacitance.

6.4.1 Resonant shunt damping

In the case of resonant shunt damping, a commonly accepted result to achieve an optimal damping

performance is to tune the electrical resonance frequency at the targeted mechanical resonance fre-

quency in open-circuit [5, 8, 9]. Park and Han [16] have shown that the degradation of resonant shunts

performance when temperature evolves is mainly caused by variations of the piezoelectric materials

constants. Several adaptive solutions [20, 18, 30] have been suggested, but they are not autonomous

passive solutions since they require external power supply. For this reason, we have developed two
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solutions of a piezoelectric resonant shunt that passively adapts to temperature variations. Both so-

lutions assume that the variations with temperature of all involved parameters are given data, which

in practice might require going back-and-forth between measurements and models.

The first one, which is described in [104, 105], involves designing the shunt inductor according to

temperature characteristics of the system. The ferrite material which makes up the inductor magnetic

circuit is characterized by its magnetic permeability. This material constant evolving with tempera-

ture, it can be chosen so that the resulting inductance exhibits the desired variations when temperature

evolves. Tuning variations of a resonant shunt can thus be passively counterbalanced. A drawback of

this solution is that the inductance of a ferrite-based inductor depends on the electrical current [102],

and we explained in subsection 4.2.3 that designing an inductor with large variations of inductance

with temperature may lead to large variations with the electrical current as well. As a consequence,

the produced component might behave in a non-linear fashion.

The second solution, which is studied in [105], keeps the shunt inductance constant. We explained in

subsection 4.2.3 that an inductor can be produced to be barely dependent on environmental parameters

by including a wide enough air gap. The network tuning is instead maintained by adding capacitors in

parallel with the shunt impedance to counterbalance its temperature variations. The drawback of such

a solution is that increasing the shunt capacitance deteriorates the coupling [29], and so the overall

damping performance. Hence a small capacitance with large temperature variations is required. This

can be achieved by adequately selecting ceramic capacitors of class 2 [121].

6.4.2 Piezoelectric network damping

The passive adaptation of electrical components for piezoelectric network damping in case of tem-

perature variations has not been considered yet. However, we suggest that the method proposed

in [105] for resonant shunt damping can be extended to it. To ensure maintaining the vibration damp-

ing performance in case of temperature variations, the main condition is to keep meeting the frequency

coherence condition. As an example, this means that for the plate electrical analogue we have

1
a (T )2

KE
θ (T )
m

= 1
â2

1
L (T )Cst (T ) , (6.1)

with T denoting the temperature. By connecting a capacitance Cp in parallel with the piezoelectric

capacitance, Cst is virtually replaced by Cst + Cp. Therefore, if the added capacitance is the tuning
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parameter, it should verify the following equation:

Cp (T ) =
(
a (T )
â

)2 m

KE
θ (T )L (T )

− Cst (T ) . (6.2)

Assuming that the variations with temperature of all involved quantities are known, the parallel

capacitance can be designed to exhibit the required temperature profile Cp (T ). As explained in

the previous subsection, adding a capacitance in parallel with the piezoelectric capacitance decreases

the electromechanical coupling [28], and so the attainable damping performance. This is the main

drawback of the presented method. Capacitors of class 2 have large temperature variations [121] and

could thus be used in practice to limit the capacitance increase.

Another complexity to consider is that the analogous network might be separated from the vi-

brating structure in practice. This means that the structure and the network might be subjected

to different temperature fields. The assumption for equations (6.1) and (6.2) is that the mechanical

unit cell and its analogous electrical unit cell are both at temperature T , which might not be true

in a practical application. Consequently, integrating this solution becomes a multiphysics engineering

problem.

As a conclusion, note that solutions of fully passive components adapting to temperature variations

have been experimentally validated in the case of piezoelectric shunt damping. As of today, conducting

temperature experiments for piezoelectric network damping is challenging because of the size of the

involved systems. Therefore, methods may first be numerically validated in future works.

6.5 Comparison to other passive broadband damping solutions

Another perspective for future works is to compare piezoelectric network damping to other passive

broadband damping solutions. Comparisons could be made with resistive networks. Another well-

spread solution is viscoelastic damping, which consists in bonding constrained viscoelastic layers on

a structure. Some elements of comparison between solutions have been written in [117]. We have

shown on the simply-supported plate example that piezoelectric network damping might lead to a

better vibration mitigation on the first vibration modes. The comparison of the influence of other

parameters such as temperature and cost on their damping performances has yet to be rigorously

conducted.
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(a) (b)

Figure 6.4: Measurement at fixed frequency of operational electrical current shapes in (a) the fully
developed network of chapter 4 and (b) in a network with a defect appearing in one unit cell. The
tiny black points indicate the measurements locations.

6.6 Defects detection in an electrical network

While assembling the plate electrical analogue in chapter 4, several wiring mistakes were committed

before getting to the final setup. Indeed, nearly two thousands wires were needed to produce the full

network. Even though the important amount of connections is not synonymous with complexity, it

makes the probability to commit a wiring error significant. The tool we have used to track down defects

in the network is a visual one: plotting the distribution of electrical currents at a fixed frequency near

an expected natural frequency of the network should result in a shape looking like a plate mode. On

figure 6.4 is an example of this visual tool applied near the natural frequency of the (1,2) plate mode.

When compared to a defect-free network in figure 6.4a, whose electrical current shape has been shown

in subsection 4.4.3 already, a defect is clearly visible in figure 6.4b. While this tool is convenient to

detect a defect location, it barely informs about the kind of defect producing the visualized shape.

The development of this visual tool gives us the idea to work on the detection of defects in electrical

networks. While there is interest in tracking down the wiring mistakes, it is also important to realize

if some components deteriorate over time. Indeed, ensuring that the network behaves as intended is of

prime importance for the integration of piezoelectric network damping solutions. Detection techniques

exist for mechanical structures [122, 123]. These techniques may be extended to the case of detecting

defects in electrical networks.
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6.7 Final thoughts

In this manuscript, the interest in piezoelectric network damping has been illustrated by forecasting

broadband vibration mitigation of several thin mechanical structures. Even though the achievable

damping performance thanks to piezoelectric networks should be rigorously compared to other fully

passive multimodal damping solutions, the experimental and simulated results are promising.

It now seems crucial to focus on the integration of piezoelectric networks in industrial applications.

Questions arise when the effects on the coupled system dynamics of external parameters such as the

excitation amplitude and temperature have to be taken into account. Furthermore, the design of bulky

passive components such as inductors and transformers requires further investigations. Indeed, these

magnetic components represent a significant mass addition to the vibrating system, which stands

as the main limitation of piezoelectric network damping. While solutions have been suggested, a

proper mass optimization under external parameters constraints has not been conducted yet. We are

hopeful that the numerical tools which have been developed in this work can be used to this end.

Finally, other manufacturing processes for electrical components might be investigated. In particular,

the recent developments in additive printing of layers with prescribed electrical behaviors generate

intriguing potential for the integration of densely discretized electrical networks.
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Appendix A

Electrical analogue of
a plate free boundary condition

A free edge of a plate is the boundary condition whose electrical analogue remains undefined with

the method described in section 2.3. This brief aside explains the problem and highlights what has

been done to try to overcome this limitation.

A.1 Classical plate theory

In the plate theory [88], other intermediate quantities than used in equations (2.53) are considered.

The classical notations for this digression are as follows: the bending moments along the x and y

directions are respectively denoted Mx and My, the twisting moment is denoted Mxy, the shear forces

are denoted Qx and Qy, and ν is the material Poisson’s ratio. Meanwhile, θx and θy are the slopes along

the x and y directions, respectively. The plate dynamics in harmonic motion and these intermediate

quantities are expressed by

Mx = −aKθ

(
∂θx
∂x

+ ν
∂θy
∂y

)
, Qx = ∂Mx

∂x
− ∂Mxy

∂y
, θx = ∂Uz

∂x
,

My = −aKθ

(
∂θy
∂y

+ ν
∂θx
∂x

)
, Qy = ∂My

∂y
− ∂Mxy

∂x
, θy = ∂Uz

∂y
, (A.1)

Mxy = aKθ (1 − ν) ∂2Uz
∂x∂y

, −ρhaΩ2Uz = ∂Qx
∂x

+ ∂Qy
∂y

.
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ELECTRICAL ANALOGUE OF A PLATE FREE BOUNDARY CONDITION

The boundary condition for a free edge parallel to the y direction at the xe abscissa is described by

the following equations [88]:

Mx(xe, y) = 0, (A.2)

Qx(xe, y) − ∂Mxy

∂y
(xe, y) = 0. (A.3)

A.2 Limitation of the present plate electrical analogue

The intermediate quantities we have defined in equations (2.53) are different from the ones defined

in equations (A.1). Admittedly, the shear force Qx has the same expression in both cases, but the set

of differential equations used in section 2.7 does not include the bending moment Mx and the twisting

moment Mxy. Since they appear in the equations that define the free edge behavior, their expressions

should be related to our notations.

From the equation (A.2) and the expression of Mx in the set of equations (A.1), we deduce that

along the free edge we have

∂θx
∂x

(xe, y) + ν
∂θy
∂y

(xe, y) = 0, or also
∂θx
∂x

(xe, y) = −ν ∂θy
∂y

(xe, y). (A.4)

Hence, the bending moment M that is defined in equations (2.53) becomes

M(xe, y) = aKθ

(
∂θx
∂x

(xe, y) + ∂θy
∂y

(xe, y)
)

= (1 − ν) aKθ
∂2Uz
∂y2 (xe, y). (A.5)

Furthermore, the derivative of the twisting moment Mxy is

∂Mxy

∂y
= (1 − ν) aKθ

∂

∂y

(
∂2Uz
∂x∂y

)

= (1 − ν) aKθ
∂2θx
∂y2 . (A.6)

So the equation (A.3) can be rewritten:

Qx(xe, y) = (1 − ν) aKθ
∂2θx
∂y2 (xe, y). (A.7)
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ELECTRICAL ANALOGUE OF A PLATE FREE BOUNDARY CONDITION

The next step is to apply a finite difference scheme to the equations (A.5) and (A.7). Assuming

the right position in figure 2.2b corresponds to the free edge, the centered finite difference scheme at

position R for a second order differential equation is required:(
∂2g

∂y2

)
I

=
gR+ − 2gR + gR−

a2 , (A.8)

where g is the quantity to derive, and gR+ and gR− are the values of g on the right-hand side of the

above and below unit cells, respectively. As a consequence, discretizing equations (A.5) and (A.7)

leads to the free edge discrete conditions expressed with our system of intermediate quantities:

MR = (1 − ν) Kθ

a

(
UzR+ − 2UzR + UzR−

)
, (A.9)

QR = (1 − ν) Kθ

a

(
θR+ − 2θR + θR−

)
. (A.10)

Applying the direct electromechanical analogy summed up in table 2.1 results in the analogous

electrical boundary condition for a free plate edge:

aCθ
1 − ν

VθR = 2qzR − qzR+ − qzR− , (A.11)

aCθ
1 − ν

VzR = 2qθR − qθR+ − qθR− . (A.12)

These equations can be interpreted as capacitors characteristics. However, they cannot be inte-

grated in the network made of the unit cells represented in figure 2.14. Indeed, meeting the equa-

tions (A.11) and (A.12) would require to implement nodes where three electrical currents converge

without prescribing the voltages on the corresponding terminals. A powered active circuit would prob-

ably be needed to meet these conditions. As a conclusion, the actual unit cell drawn in figure 2.14

does not allow for a fully passive electrical representation of a plate free edge.
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B

L R

T

I

BL BR

TL TR

x

y

a

a

Figure A.1: 2D discretization scheme, where I, B, L, R, T, BL, BR, TL and TR refer to the central,
bottom, left, right, top, bottom left, bottom right, top left and top right positions, respectively.

A.3 Potential solutions

The difficulty to passively represent a free edge for the developed square plate electrical analogue

stems from trying to discretize a second order differential equation. Hence applying a discretization

grid that allows representing in discrete fashion differential equations of higher order might be of help

during the analogous network design process. Many other 2D grids are helpful in modeling a plate

dynamics [88]. An example of refined grid is sketched in figure A.1. This way, discretized versions of

equations (A.5) and (A.7) might be passively integrated in the network.

Another solution to model mechanical boundary conditions using the finite difference method is to

create a continuation of the discrete model beyond the boundary [88]. An example of such continuation

is represented in figure A.2. The continuation depth, as well as the command of the added fictive

degrees of freedom, depends on the boundary condition to model. For example, one node beyond the

boundary is enough to model a simply-supported or a clamped plate boundary condition. For a free

edge, two fictive nodes are needed. From an electrical point of view, this continuation method has the

potential to be an easy-to-integrate solution, even though it might significantly increase the number

of electrical components in the network.

Finally, a solution might be to design a new plate electrical analogue, which would retain as

intermediate quantities the bending moment Mx and the effective shear force Vx, whose expression
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Added cells

Edge

Plate cells

a

a
•

x
y

Figure A.2: Continuation of the plate discretization grid beyond the boundary.

with the classical plate dynamics notations of section A.1 is

Vx = Qx − ∂Mxy

∂y
. (A.13)

Short-circuit electrical connections could then be sufficient to represent a free plate edge in the electrical

domain. While such a solution could exist, the number of electrical components would probably

significantly increase when compared to the actual plate electrical analogue. Moreover, connecting

this new unit cell to the present one might be impossible, which would negate all the advantages of

the actual solution in terms of limited number of components.

As a side note: The electrical analogue of a free edge boundary condition for a plate is derived by

MacNeal in [73]. To do so, more intermediate quantities are kept, including the twisting and bending

moments, a more complex discretization grid is used near the boundary, and a continuation method

beyond the boundary is applied. In other words, all three solutions we have mentioned in the ongoing

section are studied. The only differences with the present work is that a model of a variable thickness

plate is required to define the analogous free edge condition, and that the indirect electromechanical

analogy (see table 2.1) is considered. This result gives hope that a fully passive solution might exist

by applying the direct electromechanical analogy, but it highlights that extensive work should be

conducted to obtain it.

283



ELECTRICAL ANALOGUE OF A PLATE FREE BOUNDARY CONDITION

284



Appendix B

Elementary matrices for the plate,
curved beam and tube
electrical analogues

The elementary matrices of several electrical analogues of chapter 2 are quite complex. Their

full expressions are large and do not present a significant interest by themselves. Therefore, we have

chosen to record them in this aside. The elementary matrices for the square plate electrical analogue

(see section 2.7), the curved beam electrical analogue (see section 2.8) and the tube electrical analogue

(see section 2.9) are written below.
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ELEMENTARY MATRICES FOR THE SQUARE PLATE, CURVED BEAM AND
TUBE ELECTRICAL ANALOGUES

B.1 Square plate electrical analogue

The derivation of the square plate electrical analogue elementary matrices is explained in subsec-

tion 2.7.1. The matrix B is invertible as long as C0 ̸= 0, in which case the dynamic matrix De can be

computed. Equations (2.13) are then applied. The resulting electrical elementary matrices of electrical

“mass” Melm and electrical “stiffness” Kelm corresponding to figure 2.15 are

Kelm = 1
âC0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6
â 3 −2

â −1 −2
â 1 −2

â 1
3 â(8C0+3Cθ)

2(2C0+Cθ) −1 −âCθ
2(2C0+Cθ) −1 âCθ

2(2C0+Cθ) −1 âCθ
2(2C0+Cθ)

−2
â −1 6

â 3 −2
â 1 −2

â 1
−1 −âCθ

2(2C0+Cθ) 3 â(8C0+3Cθ)
2(2C0+Cθ) −1 âCθ

2(2C0+Cθ) −1 âCθ
2(2C0+Cθ)

−2
â −1 −2

â −1 6
â −3 −2

â 1
1 âCθ

2(2C0+Cθ) 1 âCθ
2(2C0+Cθ) −3 â(8C0+3Cθ)

2(2C0+Cθ) 1 −âCθ
2(2C0+Cθ)

−2
â −1 −2

â −1 −2
â 1 6

â −3
1 âCθ

2(2C0+Cθ) 1 âCθ
2(2C0+Cθ) 1 −âCθ

2(2C0+Cθ) −3 â(8C0+3Cθ)
2(2C0+Cθ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.1a)

and Melm = L

16

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 â
2 1 â

2 1 −â
2 1 −â

2
â
2

â2

4
â
2

â2

4
â
2

−â2

4
â
2

−â2

4

1 â
2 1 â

2 1 −â
2 1 −â

2
â
2

â2

4
â
2

â2

4
â
2

−â2

4
â
2

−â2

4

1 â
2 1 â

2 1 −â
2 1 −â

2
−â
2

−â2

4
−â
2

−â2

4
−â
2

â2

4
−â
2

â2

4

1 â
2 1 â

2 1 −â
2 1 −â

2
−â
2

−â2

4
−â
2

−â2

4
−â
2

â2

4
−â
2

â2

4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.1b)

From the equation (B.1b), we can define the matrix M0 verifying Melm = LM0. Then, applying

equations (4.24) leads to the expression of the elementary damping matrix Delm:

Delm = (RcsT +RsL) M0 + RssT
â2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 −1 0 −1 0 −1 0
0 â2

4 0 â2

4 0 − â2

4 0 − â2

4

−1 0 3 0 −1 0 −1 0
0 â2

4 0 â2

4 0 − â2

4 0 − â2

4

−1 0 −1 0 3 0 −1 0
0 − â2

4 0 − â2

4 0 â2

4 0 â2

4

−1 0 −1 0 −1 0 3 0
0 − â2

4 0 − â2

4 0 â2

4 0 â2

4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.2)
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B.2 Curved beam electrical analogue

The derivation of the curved beam electrical analogue elementary matrices is explained in subsec-

tion 2.8.1. The matrix B is invertible as long as C0 ̸= 0, in which case the dynamic matrix De can

be computed. Equations (2.13) are then applied. We recall the nondimensionalized parameters which

remain in the following expressions:

δ = â

R̂
, β = LCvΩ2, γ = â2LCθΩ2, ϵ = C0

Cθ
. (B.3)

As a consequence, the elementary matrices corresponding to the unit cell of the curved beam

electrical analogue represented in figure 2.23 are

Melm = L

4

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 + δ2

4
δ
2

âδ
4 − δ2

4
δ
2 − âδ

4
δ
2 1 â

2 − δ
2 1 − â

2
âδ
4

â
2

â2

4 − âδ
4

â
2 − â2

4

− δ2

4 − δ
2 − âδ

4 2 + δ2

4 − δ
2

âδ
4

δ
2 1 â

2 − δ
2 1 − â

2

− âδ
4 − â

2 − â2

4
âδ
4 − â

2
â2

4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (B.4a)

and Kelm = 1
â2C0

1
ϵγδ2 + 16β (ϵ+ 1) K0, (B.4b)

where K0 is a 6×6 symmetric matrix, whose terms above the diagonal are written below:
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K0
(1) =

⎛⎝16 ϵ γ + 16β δ2 + 16 ϵ2 γ − 8 δ2 ϵ2 γ + δ4 ϵ2 γ + 16β δ2 ϵ− 8 δ2 ϵ γ + 2 δ4 ϵ γ

∗

⎞⎠ ,

K0
(2) =

⎛⎜⎜⎜⎝
2 δ

(
16β + 16β ϵ− 4 ϵ γ − 4 ϵ2 γ + δ2 ϵ2 γ + 2 δ2 ϵ γ

)
4 γ δ2 ϵ2 + 8 γ δ2 ϵ+ 64β ϵ+ 64β

∗

⎞⎟⎟⎟⎠ ,

K0
(3) =

⎛⎜⎜⎜⎜⎜⎝
2 â δ

(
ϵ γ δ2 + 8β + 8β ϵ− 2 ϵ γ

)
4 â

(
ϵ γ δ2 + 8β + 8β ϵ

)
2 â2 (ϵ γ δ2 + 8β + 16β ϵ

)
∗

⎞⎟⎟⎟⎟⎟⎠ ,

K0
(4) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

16β δ2 − 16 ϵ γ − 16 ϵ2 γ + 8 δ2 ϵ2 γ − δ4 ϵ2 γ + 16β δ2 ϵ+ 8 δ2 ϵ γ

2 δ
(
16β + 16β ϵ+ 4 ϵ γ + 4 ϵ2 γ − δ2 ϵ2 γ

)
4 â δ (4β + 4β ϵ+ ϵ γ)

16 ϵ γ + 16β δ2 + 16 ϵ2 γ − 8 δ2 ϵ2 γ + δ4 ϵ2 γ + 16β δ2 ϵ− 8 δ2 ϵ γ + 2 δ4 ϵ γ

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K0
(5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 δ
(
16β + 16β ϵ+ 4 ϵ γ + 4 ϵ2 γ − δ2 ϵ2 γ

)
4 γ δ2 ϵ2 − 64β ϵ− 64β

−32 â β (ϵ+ 1)
−2 δ

(
16β + 16β ϵ− 4 ϵ γ − 4 ϵ2 γ + δ2 ϵ2 γ + 2 δ2 ϵ γ

)
4 γ δ2 ϵ2 + 8 γ δ2 ϵ+ 64β ϵ+ 64β

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K0
(6) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 â δ (4β + 4β ϵ+ ϵ γ)
32 â β (ϵ+ 1)

16 â2 β

2 â δ
(
ϵ γ δ2 + 8β + 8β ϵ− 2 ϵ γ

)
−4 â

(
ϵ γ δ2 + 8β + 8β ϵ

)
2 â2 (ϵ γ δ2 + 8β + 16β ϵ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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B.3 Tube electrical analogue

The first steps of the tube electrical analogue elementary matrices derivation are explained in

section 2.9. The matrix B is invertible as long as C0 ̸= 0, in which case the dynamic matrix De can

be computed. Equations (2.13) are then applied. We recall the nondimensionalized parameters which

remain in the following expressions:

δ = â

R̂
, β = LCvΩ2, γ = â2LCθΩ2, ϵ = C0

Cθ
. (B.5)

We consider the unit cell of the tube electrical analogue represented in figure 2.36, to which side

capacitors C0/2 are connected. The corresponding elementary matrices are

Melm =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 â
2

δ
2 1 â

2 − δ
2 1 − â

2 1 − â
2

â
2

â2

4
âδ
4

â
2

â2

4 − âδ
4

â
2 − â2

4
â
2 − â2

4
δ
2

âδ
4 8 + δ2

4
δ
2

âδ
4 − δ2

4
δ
2 − âδ

4
δ
2 − âδ

4

1 â
2

δ
2 1 â

2 − δ
2 1 − â

2 1 − â
2

â
2

â2

4
âδ
4

â
2

â2

4 − âδ
4

â
2 − â2

4
â
2 − â2

4

− δ
2 − âδ

4 − δ2

4 − δ
2 − âδ

4 8 + δ2

4 − δ
2

âδ
4 − δ

2
âδ
4

1 â
2

δ
2 1 â

2 − δ
2 1 − â

2 1 − â
2

− â
2 − â2

4 − âδ
4 − â

2 − â2

4
âδ
4 − â

2
â2

4 − â
2

â2

4

1 â
2

δ
2 1 â

2 − δ
2 1 − â

2 1 − â
2

− â
2 − â2

4 − âδ
4 − â

2 − â2

4
âδ
4 − â

2
â2

4 − â
2

â2

4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.6a)

and Kelm = γϵ2δ2

â4C3
0

1
γϵδ2 + 32β (1 + 2ϵ) K0, (B.6b)

where K0 is a 10×10 symmetric matrix, whose terms above the diagonal are written below:

289



ELEMENTARY MATRICES FOR THE SQUARE PLATE, CURVED BEAM AND
TUBE ELECTRICAL ANALOGUES

K0
(1) =

⎛⎝4 γ δ2 ϵ2 + 8 γ δ2 ϵ+ 384β ϵ+ 192β
∗

⎞⎠ ,

K0
(2) =

⎛⎜⎜⎜⎝
4 â

(
ϵ γ δ2 + 24β + 48β ϵ

)
2 â2 (ϵ γ δ2 + 24β + 64β ϵ

)
∗

⎞⎟⎟⎟⎠ ,

K0
(3) =

⎛⎜⎜⎜⎜⎜⎝
−2 δ

(
16β + 32β ϵ+ 4 ϵ γ + 8 ϵ2 γ − δ2 ϵ2 γ

)
−4 â δ (4β + 8β ϵ+ ϵ γ)

32 ϵ γ + 48β δ2 + 64 ϵ2 γ − 16 δ2 ϵ2 γ + δ4 ϵ2 γ + 96β δ2 ϵ− 8 δ2 ϵ γ + 2 δ4 ϵ γ

∗

⎞⎟⎟⎟⎟⎟⎠ ,

K0
(4) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 γ δ2 ϵ2 − 128β ϵ− 64β
−32 â β (2 ϵ+ 1)

2 δ
(
48β + 96β ϵ− 4 ϵ γ − 8 ϵ2 γ + δ2 ϵ2 γ + 2 δ2 ϵ γ

)
4 γ δ2 ϵ2 + 8 γ δ2 ϵ+ 384β ϵ+ 192β

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K0
(5) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−32 â β (2 ϵ+ 1)
−16 â2 β

2 â δ
(
ϵ γ δ2 + 24β + 48β ϵ− 2 ϵ γ

)
4 â

(
ϵ γ δ2 + 24β + 48β ϵ

)
2 â2 (ϵ γ δ2 + 24β + 64β ϵ

)
∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

K0
(6) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 δ
(
16β + 32β ϵ+ 4 ϵ γ + 8 ϵ2 γ − δ2 ϵ2 γ

)
4 â δ (4β + 8β ϵ+ ϵ γ)

16β δ2 − 32 ϵ γ − 64 ϵ2 γ + 16 δ2 ϵ2 γ − δ4 ϵ2 γ + 32β δ2 ϵ+ 8 δ2 ϵ γ

2 δ
(
16β + 32β ϵ+ 4 ϵ γ + 8 ϵ2 γ − δ2 ϵ2 γ

)
4 â δ (4β + 8β ϵ+ ϵ γ)

32 ϵ γ + 48β δ2 + 64 ϵ2 γ − 16 δ2 ϵ2 γ + δ4 ϵ2 γ + 96β δ2 ϵ− 8 δ2 ϵ γ + 2 δ4 ϵ γ

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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K0
(7) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 γ δ2 ϵ2 − 128β ϵ− 64β
−32 â β (2 ϵ+ 1)

−2 δ
(
16β + 32β ϵ+ 4 ϵ γ + 8 ϵ2 γ − δ2 ϵ2 γ

)
4 γ δ2 ϵ2 − 128β ϵ− 64β

−32 â β (2 ϵ+ 1)
−2 δ

(
48β + 96β ϵ− 4 ϵ γ − 8 ϵ2 γ + δ2 ϵ2 γ + 2 δ2 ϵ γ

)
4 γ δ2 ϵ2 + 8 γ δ2 ϵ+ 384β ϵ+ 192β

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K0
(8) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

32 â β (2 ϵ+ 1)
16 â2 β

4 â δ (4β + 8β ϵ+ ϵ γ)
32 â β (2 ϵ+ 1)

16 â2 β

2 â δ
(
ϵ γ δ2 + 24β + 48β ϵ− 2 ϵ γ

)
−4 â

(
ϵ γ δ2 + 24β + 48β ϵ

)
2 â2 (ϵ γ δ2 + 24β + 64β ϵ

)
∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, K0
(10) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

32 â β (2 ϵ+ 1)
16 â2 β

4 â δ (4β + 8β ϵ+ ϵ γ)
32 â β (2 ϵ+ 1)

16 â2 β

−4 â δ (4β + 8β ϵ+ ϵ γ)
32 â β (2 ϵ+ 1)

−16 â2 β

−4 â
(
ϵ γ δ2 + 24β + 48β ϵ

)
2 â2 (ϵ γ δ2 + 24β + 64β ϵ

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

K0
(9) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 γ δ2 ϵ2 − 128β ϵ− 64β
−32 â β (2 ϵ+ 1)

−2 δ
(
16β + 32β ϵ+ 4 ϵ γ + 8 ϵ2 γ − δ2 ϵ2 γ

)
4 γ δ2 ϵ2 − 128β ϵ− 64β

−32 â β (2 ϵ+ 1)
2 δ

(
16β + 32β ϵ+ 4 ϵ γ + 8 ϵ2 γ − δ2 ϵ2 γ

)
4 γ δ2 ϵ2 − 128β ϵ− 64β

32 â β (2 ϵ+ 1)
4 γ δ2 ϵ2 + 8 γ δ2 ϵ+ 384β ϵ+ 192β

∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Appendix C

Inductors design validation
in terms of stored energy

C.1 Design principle

In subsection 4.2.4, we have explained that estimating the magnetic energy that an inductor should

be able to store is of prime importance in its design. Indeed, the equation (4.16) shows that, for a

given application, the maximum energy Emax
L that an inductor can store is proportional to the area

product AeAw. Thus, any uncertainty on the system behavior or on the excitation leads to not

optimal components from an energetic point of view, and as a consequence in terms of mass and

occupied volume as well. Therefore, a predictive model is required to proceed to a fine inductor

design.

The design of the plate electrical analogue inductors in section 4.2 has been conducted without

energetic considerations. Indeed, specifications in terms of mechanical excitation were not fixed.

Now that the formulation in equation (3.46) has been validated by comparison with experiments in

subsection 4.5.6, it is possible to use it to estimate the mechanical loads to which the plate can be

subjected without saturating the network components. In other words, the present appendix marks a

step towards the potential integration of piezoelectric network damping in industrial applications.
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C.2 Application to the developed plate electrical analogue

C.2.1 Electrical currents and stored energies distributions

The resulting electrical current iL = q̇zI flowing through each inductor can be computed thanks to

the values of the other electrical currents of the unit cell in figure 2.14:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

iL = q̇zB + â
2 q̇θB

iL = q̇zL + â
2 q̇θL

iL = q̇zR − â
2 q̇θR

iL = q̇zT − â
2 q̇θT

=⇒ iL = 1
4

[
q̇zB + q̇zL + q̇zR + q̇zT + â

2 (q̇θB − q̇θT + q̇θL − q̇θR)
]
.

(C.1)

The electrical currents iL FRFs flowing through the network inductors are frequency-dependent

because of the piezoelectric coupling. Then, the maximum electrical current value over the considered

frequency range of interest is

Imax
L = H∞ (iL)

[fmin:fmax]
= Max (|iL (2πf)| , fmin ≤ f ≤ fmax) . (C.2)

Consequently, the value of Imax
L allows estimating the electrical energy Emax

L that the component

should be able to store. We recall that the maximum magnetic energy that an inductive component

can store is

Emax
L = 1

2 L (Imax
L )2 . (C.3)

C.2.2 Application around the first plate mode

The inductors we have produced in section 4.2 are RM 10 core components, whose specifications

are extracted from manufacturer’s data and recorded in table 4.2. Their filling factor is ku = 47 %.

Moreover, the maximum electrical current density Jmax is about 5 A/mm2. Finally, we want to

avoid saturating the component, such as illustrated in figure 4.3, so the maximum admissible density

flux Bmax is set at a tenth of the standard saturation limit of 0.3 T for ferrite materials. For a harmonic

excitation, by applying the following equation which has already been derived in subsection 4.2.4:

Emax
L = 1

2 kukf AeAw J
maxBmax, (C.4)

we estimate that the produced inductors can store an energy of nearly 170 µJ.
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• x

y

(a)
• x

y

(b)

Figure C.1: Simulated distribution of the (a) maximum electrical currents Imax
L (in µA) and of the

(b) maximum energy Emax
L (in pJ) to be stored in the plate electrical analogue for a given excitation.

We propose to compare this value to the energy that should be stored in the inductors for a

harmonic nominal effort between fmin = 90 Hz and fmax = 91 Hz of 1 N of amplitude. It is applied

at the location highlighted in figure 3.4. The coupled model predicts that the corresponding driving-

point deflection is 23 µm. Besides, the same parameters as in section 4.5 are considered. Even

though the inductance values could be numerically optimized to enhance the damping performance,

the corresponding modifications are small enough that they would barely alter the digression to come.

The distribution of Imax
L is represented in figure C.1a. It is similar to the the first plate mode,

which is consistent with the network being a plate electrical analogue. The distribution of Emax
L is

then represented in figure C.1b. The values are much lower than the limit we have fixed of 170 µJ.

Note that the distribution does not reflect the conditions over which the experiments recorded in

this manuscript have been conducted. Indeed, the mechanical excitation which was generated by the

shaker was not a harmonic signal, but a low-level pseudo-random white noise signal.

Moreover, the distribution is not homogeneous over the network though the inductors share the

same characteristics. This example illustrates that, even for periodic structures, the network inductors

could be produced differently from one another for a harmonic excitation. In other words, smaller,

and thus lighter magnetic cores could have been considered to damp the first plate mode, especially

for cells near the network boundaries. Note however that designing small passive components with

high quality factors might be challenging.
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Robin DARLEUX

Development of analogous piezoelectric
networks for the vibration damping of

complex structures

Résumé: Cette thèse de doctorat s’intéresse au développement de réseaux piézoélectriques

analogues pour l’amortissement vibratoire de structures complexes. L’objectif est d’atténuer les

vibrations des modes de plus grandes longueurs d’ondes de structures qu’on recouvre de patchs

piézoélectriques, afin de les coupler à des réseaux qui présentent des propriétés identiques de prop-

agation d’onde. Pour ce faire, on détaille une méthode permettant de définir l’analogue électrique

de toute structure mécanique. On applique cette méthode à des cas standards de propagation

d’ondes mécaniques pour former une bibliothèque de cellules électriques analogues. Le cas d’une

plaque rectangulaire recouverte de patchs piézoélectriques est ensuite traité. On assemble un réseau

analogue à l’aide d’éléments de la bibliothèque précédemment obtenue. Un dimensionnement

adéquat des composants magnétiques du réseau assure qu’il soit de nature purement passive.

La connexion de la plaque à son réseau analogue résulte en un amortissement multimodal, ce

qui illustre l’efficacité de cette solution d’amortissement. En parallèle, un modèle éléments finis

d’une structure couplée à un réseau électrique par des patchs piézoélectriques est développé. La

comparaison entre résultats expérimentaux et simulés permet de valider ce modèle. Il est par

conséquent utilisé pour finalement aborder l’amortissement large bande de structures complexes

à travers des exemples numériques de plaques complexes et de structures à une courbure. Les

résultats sont prometteurs, puisqu’ils illustrent la possibilité d’appliquer à des structures complexes

l’amortissement multimodal par couplage à des réseaux piézoélectriques analogues purement passifs.

Mots-clefs: Couplage piézoélectrique, Amortissement vibratoire multimodal, Réseau analogue passif,
Structures complexes, Analogie électromécanique directe, Modélisation éléments finis, Comparaisons
calculs-essais.

Abstract: This doctoral thesis focuses on the development of analogous piezoelectric networks

for broadband damping of complex structures. The objective is to damp the modes of largest

wavelengths of mechanical structures, which are covered by piezoelectric patches in order to couple

them to fully passive electrical networks which exhibit similar wave propagating properties. To

do so, we first propose a method to derive the electrical analogue of any mechanical structure. It

is applied to create a library of elementary analogues that represent classical wave propagation

cases. Then, the electrical analogue of a rectangular plate covered by piezoelectric transducers

is assembled with elements from the library. Following design methods of passive inductors and

transformers, the produced network is fully passive. Vibration tests highlight the mitigation

efficiency of the concept when the plate is connected to its analogous network. Meanwhile, we

develop a finite element model of a structure covered with thin piezoelectric transducers connected

to a lumped electrical network. Comparisons with experiments validate this model. Thus it is

used to finally investigate the achievable performance of piezoelectric network damping applied

to complex structures, such as complex plates and single curved structures numerical examples.

Results are promising: they highlight it might be possible to develop fully passive piezoelectric

analogous networks to damp vibrations of complex structures.

Keywords: Piezoelectric coupling, Broadband vibration mitigation, Passive analogous network, Complex
structures, Direct electromechanical analogy, Finite element modeling, Experimental comparisons.
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