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This dissertation aims to investigate the multispectral images in moving objects detection via background subtraction, both with classical and deep learning based methods. As an efficient and representative

classical algorithm for background subtraction, the traditional Codebook has first been extended to multispectral case. In order to make the algorithm reliable and robust, a self-adaptive mechanism to select optimal parameters has then been proposed.

In this frame, new criteria in the matching process 

INTRODUCTION

This chapter presents an introduction of the background subtraction, describes perspectives and challenges to investigate multispectral images in this computer vision task, and also the objectives of this work. Moreover, an outline of the thesis is included at the end of this chapter.

1.1/ BACKGROUND Nowadays, we are flooded by digital images and videos. For example, as smart phones become increasingly popular, taking a photo or video and sharing it have never been easier. Besides, just a click on the internet, millions of images and videos can come to you.

Computer vision, as a scientific discipline to enable computers to see and understand the content of digital images and videos, helps human process this vast number of digital data publicly available. The subject itself has been arisen to mimic human visual system in the 1960s [Aloimonos, 1990], and advances rapidly in recent years along with cheaper and more capable cameras, affordable processing power and increasingly mature vision algorithms.

Nowadays, computer vision is a very active and booming study field with a wide variety of applications based on many specialized tasks techniques.

Some popular and attractive examples of applications are Autonomous Vehicles [Fridman et al., 2019] [Martínez-Díaz et al., 2018] [Litman, 2017], Amazon Go [Polacco et al., ], Google Lens [Achom Nishalakshmi et al., 2018], Face Recognition [Balaban, 2015] [Parkhi et al., 2015]. They rely on the following techniques to understand the digital images and videos, including but not limited to, object classification to group Detection of moving objects in video sequences is one of the prerequisite and fundamental techniques in many computer vision systems. Three typical and widely used approaches in moving object detection [Maddalena et al., 2007] are temporal difference computing the difference between two or three consecutive frames [Shuigen et al., 2009] [ [START_REF] Lipton | Moving target classification and tracking from real-time video[END_REF], background subtraction distinguishing moving objects by comparing the current frame with a constructed background model [START_REF] Liang | A survey of visual analysis of human motion [j][END_REF] [ Haritaoglu et al., 2000], and optical flow analysis providing all motion information [START_REF] Thakoor | Automatic object detection in video sequences with camera in motion[END_REF]] [Zhang et al., 2006] [Aslani et al., 2013] [Agarwal et al., 2016].

Among these three methods, background subtraction is the most efficient and widely adopted approach to discriminate foreground objects captured by a stationary camera and plays an crucial role due to its potential applications in the tasks discussed below [Bouwmans et al., 2019a].

Visual surveillance of human activities:

In several environments, like traffic monitoring, parking lot management, train stations and airports surveillance, background subtraction technique is applied first to identify and track objects of interests.

Visual analysis of human activities:

The detection of moving objects by background subtraction has also been used in sport, like soccer and tennis, to make important decisions and analyze athletic performance.

Visual observation of animals and insects:

The intelligent visual observation of animals and insects needs to be simple and non-invasive. Thus, a video-based system is suitable to detect and track animals and insects in order to analyze their behavior or keep vision on any unusual activities.

Visual observation of natural environments: Background subtraction can be used to detect foreign objects in natural environments such as forest, ocean and river to protect the biodiversity.

Human-machine interaction: Several multimedia applications require humanmachine interaction. For example, the gamer can observe his own image or silhouette composed into a virtual scene, built based on the background subtraction 1.2. PERSPECTIVES

techniques.

Vision-based hand gesture recognition: Hand gesture recognition has been adopted in several applications like robotics, behaviour studies, human-computer interface, sign language interpretation and learning. This technique requires detecting moving hand area first in a video sequence before tracking and recognizing hand gesture.

Content-based video coding:

In video coding for transmission applications, such as teleconferencing, digital movies and video phones, only the key frames with the moving objects are transmitted.

Background substitution: Background substitution, also called background cut or video matting, is to extract the foreground from the input video and then combine it with a new background.

1.2/ PERSPECTIVES

Background subtraction is also called foreground detection [Krungkaew et al., 2016] and foreground-background segmentation [START_REF] Xu | Background modeling methods in video analysis: A review and comparative evaluation[END_REF]. As the name suggests, it aims to detect foreground regions that are in motion from background of a video sequence. The first task of background subtraction is to construct and maintain a solid background model, which contains the static part of the scene or, more generally speaking, every information that can be considered as background given the characteristics of the observed scene.

Then a binary mask, distinguishing pixels as background or foreground pixels, is obtained by performing a subtraction between the current frame and the constructed background model.

According to the Background Subtraction Website [Bouwmans, 2014], which provides exhaustive resources in this research domain, such as references, datasets, codes and also links to demonstration websites, the majority of the current background subtraction algorithms are focused on conventional visible images, mainly Red-Green-Blue (RGB), or transferring it to other color model, like YCbCr [START_REF] Shah | A self-adaptive codebook (sacb) model for real-time background subtraction[END_REF], Lab [Krungkaew et al., 2016] or YUV [Huang et al., 2016]. Commonly, the methods developed for visible light cameras are particularly sensitive to low light conditions and specular CHAPTER 1. INTRODUCTION reflections.

In recent years, with the rise of different sensors, several background subtraction algorithms are proposed to utilize alternative kinds of data or integrates multiple complementary information to overcome these limitations [Zheng et al., 2019a],

such as depth camera [Maddalena et al., 2018] [Camplani et al., 2013], light field sensing [START_REF] Shimada | Object detection based on spatio-temporal light field sensing[END_REF]] [Shimada et al., 2015], infrared camera [Qiu et al., 2019] [ [START_REF] Yan | Cognitive fusion of thermal and visible imagery for effective detection and tracking of pedestrians in videos[END_REF]. Besides, thanks to the technological advances in video capture, now it is possible to capture and visualize a scene at various bands of the electromagnetic spectrum. Thus, as one of these alternatives, multispectral imaging has also been gaining in popularity.

The corresponding multispectral sequence, as the name implies, is a collection of several monochrome sequences of the same scene and each band, or channel, is taken with additional receptors sensitive to other frequencies of the visible light or frequencies beyond the visible light like the infrared region of electromagnetic continuum [Bouchech, 2015]. Multispectral imaging is related to hyperspectral imaging in that both provide increased spectral discrimination compared with traditional imaging methods.

The difference is primarily in the number of bands employed and the degree of spectral resolution [Ferrato et al., 2013]. Whereas multispectral imaging generally refers to a set of 310 spectral bands, hyperspectral imaging often uses significantly larger numbers of bands [R üfenacht et al., 2013[R üfenacht et al., ] [Hagen et al., 2013]].

Multispectral video processing is attracting increased interest in recent years, as it offers better spectral resolution, and different bands of multispectral video streams can enhance video analytics capabilities in different ways [R üfenacht et al., 2013].

One of the early applications of multispectral imaging is to detect or track military targets [Goldberg et al., 2003]. Later, it is also employed in many other vision tasks [START_REF] Viau | Multispectral image analysis for object recognition and classification[END_REF]] [Salerno et al., 2014] [Li et al., 2017], such as remote sensing [START_REF] Shaw | Spectral imaging for remote sensing[END_REF], weather forecasting [START_REF] Usgs | What are the band designations for the landsat satellites? línea[END_REF]] [Grolier et al., 1984], food control [START_REF] Feng | Hyperspectral imaging and multispectral imaging as the novel techniques for detecting defects in raw and processed meat products: Current state-of-the-art research advances[END_REF], face recognition [Bourlai et al., 2012] [Ice et al., 2012], ancient manuscripts analysis [START_REF] Easton | Multispectral imaging of the archimedes palimpsest[END_REF]] [Diem et al., 2007], paintings investigation [Zhao et al., 2008].

Compared with visible images, background subtraction using multispectral images can be more interesting, for the intuitive fact that with more spectral bands, more informa-1.3. OBJECTIVES 7 tion could be obtained, particularly for harsh environmental conditions characterized by unfavorable lighting and shadows, or around-the-clock applications, like surveillance and autonomous driving. Thanks to the recent advances in multispectral video acquisition technology, new products such as the FD-1665 Multispectral cameras from FluxData are commercially available to offer the possibility to record multispectral images of more than three spectral channels in the visible and near infrared part of the spectrum simultaneously. In [Benezeth et al., 2014a], Benezeth et el. have built a mutispectral dataset, which introduces novel opportunities and challenges for background subtraction. Based on the preliminary study conducted by the creators of this dataset, multispectral images have demonstrated good potential to be used for background subtraction.

1.3/ OBJECTIVES

As the opportunities and challenges always coexist, the main objective of this thesis is how to better use multispectral images for background subtraction based on the pioneering works in this field. To efficiently achieve this goal, the following attempts have been conducted as part of this research effort, with respect to both classical and deep learning based approaches.

As an efficient and representative classical method for background subtraction, Codebook algorithm proposed by Kim [Kim et al., 2005] is widely used with visual images. In order to investigate the advantages of multispectral sequences, the original Codebook algorithm is first adapted from traditional RGB to multispectral case.

In the original Codebook, there are four parameters that need to be tuned experimentally carefully to find the appropriate values and achieve satisfying results for a specific scene, which is always a really cumbersome and tricky task. What is more important for our research objective, when using the multispectral sequences, the parameters also have to be adjusted with different numbers of channels. Therefore, the second attempt in this thesis is to design a self-adaptive mechanism to select optimal parameters automatically.

In the framework of the multispectal self-adaptive Codebook algorithm, two perspectives are available to further improve the multispectral model. The first one is to employ a better feature representation with new robust feature descriptors or different features fusion. The other is to introduce other strategies to build the model to represent the background.

CHAPTER 1. INTRODUCTION

In this decade, deep learning has drawn much attention in the computer vision community and deep features obtained from Convolutional Neural Networks have been shown as powerful and effective image representations for various computer vision tasks. Thus, we'd like to make an attempt to follow the trend of deep learning and apply its concepts to background subtraction using multispectral images.

1.4/ THESIS ORGANIZATION

The rest of this thesis is organized as follows.

Chapter 2: In order to cope with challenges for background subtraction, numerous approaches have been proposed over the past years. This chapter conducts a literature review of the state of arts for background subtraction. Some wellknown classical methods and state-of-art deep learning based approaches with RGB images are introduced, together with existing multispectral approaches using the same dataset as the one used in this thesis.

Chapter 3: For better explanation, the original Codebook algorithm is first stated in five important issues, namely background model initialization, matching process, background model updating strategy, background model refining and foreground detection. Then it is adapted to multispectral case to investigate the advantages of multispectral sequences for the task of background subtraction. Besides, a detailed description for the adopted multispectral dataset and evaluation metrics are also presented in this chapter.

Chapter 4: To get rid of the cumbersome and tricky task to select the optimal parameters for various scenes and different numbers of multispectral channels, a selfadaptive mechanism is proposed by calculating iteratively and recording additional statistical information vectors for each codeword. In the multispectal self-adaptive Codebook framework, improvements have been proposed in two aspects. The first one is to introduce a new feature descriptor called spectral information divergence in the matching process, while the latter aspect includes three techniques to build the background model, namely, box-based Codebook, dynamic Codebook and fusion strategy.

THESIS ORGANIZATION

Chapter 5: The fashionable deep learning is explored for background subtraction with mutispectral images. Firstly, three channels are extracted from the multispectral images to match the number of input channels of the pretrained deep model, aiming to investigating the possible improvements against RGB. Secondly, a new convolutional encoder was proposed to utilize all the multispectral channels available to further explore the information of multispectral images. To the best of our knowledge, this work is the first attempt to investigate the potential benefits of using multispectral information via deep features learned with convolutional neural networks for the background subtraction task.

Chapter 6: The work of this thesis is summarised and the future works are discussed in the last chapter.

STATE OF ART 2.1/ INTRODUCTION

Background subtraction is a well studied field in the domain of computer vision and many algorithms have been designed to separate the moving objects (foreground) from the static information (background), as witnessed by several surveys such as [Bouwmans, 2014] [Sobral et al., 2014[START_REF] Bouwmans | Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset[END_REF]] [Kalsotra et al., 2019] [ [START_REF] Bouwmans | Deep neural network concepts for background subtraction: A systematic review and comparative evaluation[END_REF]. A quick search for "background subtraction" on IEEE Xplore returns over 2200 publications in the last ten years (2010-2020). To obtain this foreground mask, the simplest and most straightforward technique is an interframe difference between the current frame and the background reference frame with a global static threshold. However, detecting moving objects is not as easy as it may first appear, due to the complexity and challenges of real-world scenes. For example, finding a good empty background reference frame is always impossible in the case of dynamic background, and illumination changes may also make the global static threshold an inferior choice.
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Foreground Detection Model Maintenance Input Frame background, foreground and camera [Kalsotra et al., 2019] [Bouwmans et al., 2019a].

We will make a brief introduction for twofold reasons. First, video sequences in the available datasets are typically structured based on the challenges of background subtraction summarized here, including the multispectral dataset used in this thesis. Second, it can offer a reference for later construction of larger multispectral datasets for exhaustive evaluation of multispectral information for background subtraction.

Illumination changes:

The illumination changes affect the pixels in the current video frame and interrupt background model. For example, moving clouds in the sky would lead to gradual illumination changes and switching the light in a room can be a sudden illumination change. These illumination changes would induce false positives.

Dynamic background:

The background contains some periodical or irregular movements, such as waving trees, traffic lights, moving escalator, and swaying curtains. As a consequence, parts of the background in the video frame do not overlap with the corresponding parts in the background image. Hence, dynamic background may also cause false positives.

Shadows:

The shadows cast by moving objects or fixed background often bring additional difficulty to background subtraction. Overlapping shadows of foreground regions for example hinder their separation and classification and always result into object merging and object distortion. 

Night videos:

The segmentation of foreground objects and their contours become difficult for lack of sufficient illumination in night scenes. Besides, strong headlights would cause halos and reflections on the street, resulting with false positives.

Bootstrapping:

In some environments, a period absent of moving objects is not available for background initialization and thus makes it difficult to compute a representative background image and generates defective background model with some algorithms.

Moved background objects:

A background object can be moved. This information needs to be noticed by the background model maintenance strategy so that these objects will not be considered as foreground afterwards.

Camouflage: When some moving objects poorly differ from the appearance of background, for example, in cases where foreground objects and background scene have a similar color, the foreground objects are more likely to be falsely labeled as background.

Intermittent object motion: Foreground objects that are embedded into the background scene and start moving after background initialization are the so-called ghosts. In contrast, foreground objects that stop moving for a certain amount of time, fall into the category of intermittent object motion, such as a sequence of cars that arrive, stop at a street light and then move away.

Occlusion:

Occlusion is also a very common challenge, which complicates the Moving camera: Background subtraction can be also used in applications in which cameras are slowly moving, which need more subsequent process to compensate this background motion.

Camera jitter:

In some cases, it is possible that the camera itself is frequently in movement due to physical influence such as wind. Similar to the cases of dynamic background and moving camera, the pixel locations between the video and background frame do not overlap anymore.

In order to cope with these challenges illustrated above, numerous approaches have been proposed over the past years for background subtraction. They differentiate in the way they construct the background model, the way the model is updated over time, and how foreground pixels are detected.

In this chapter, we will first review the algorithms for traditional RGB images with both classical and deep learning based methods. Since the objective of this thesis is to investigate multispectral images for the task of background subtraction, we will go on to introduce the existing multispectral approaches. These algorithms have been tested on the same dataset we have adopted, and will be later used for quantitative comparison with the algorithms proposed in this thesis. What needs to be noted is that the objective of this chapter is not to present a comprehensive survey of background subtraction techniques, like the Background Subtraction Website [Bouwmans, 2014], but to present the most important reference methods and recent state-of-the-art improvements in this domain.

To better present the state of art, the remainder of this chapter is arranged as follows.

The well-known classical methods and state-of-art deep learning based approaches for background subtraction with RGB images are presented in Section 2.2. The algorithms available in literature dealing with multispectral images are reviewed in Section 2.3. In Section 2.4, we conclude this chapter.

2.2/ BACKGROUND SUBTRACTION METHODS WITH RGB IMAGES

The majority of the current background subtraction algorithms are focused on conventional RGB images.

Detailed overviews are available in [Bouwmans, 2014] [Sobral et al., 2014]. This section will offer a brief review of classical and deep learning based background subtraction methods on RGB images.

2.2.1/ CLASSICAL APPROACHES FOR BACKGROUND SUBTRACTION WITH RGB

IMAGES

There are numerous different classical background subtraction techniques for visible RGB images in literature. Representative conventional methods include parametric Gaussian Mixture Models (GMM) [START_REF] Stauffer | Learning patterns of activity using real-time tracking[END_REF], nonparametric Kernel Density Estimation (KDE) [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF], Codebook [Kim et al., 2005] and ViBe [Barnich et al., 2010].

In this subsection, two methods, namely GMM and KDE, which are older but frequently cited, are firstly introduced, respectively. As a major motivation of the contribution of this thesis, the Codebook algorithm is going to be presented in detail in Chapter 3.

Then, some more recent conventional approaches that perform well on CDnet2014 dataset [START_REF] Wang | Cdnet 2014: an expanded change detection benchmark dataset[END_REF], namely, ViBe based estimations [Hofmann et al., 2012] [St-Charles et al., 2014] [St-Charles et al., 2015], In Unity

There Is Strength (IUTIS) [Bianco et al., 2017] and Semantic background subtraction [START_REF] Braham | Semantic background subtraction[END_REF]] [Zeng et al., 2019], are discussed later in this chapter.

2.2.1.1/ GAUSSIAN MIXTURE MODEL

Gaussian mixture models (GMM), proposed by Stauffer and Grimson [Grimson et al., 1998] [Stauffer et al., 1999] [Stauffer et al., 2000], are the most popular parametric models used for background subtraction. The authors model each pixel in the scene by a mixture of K Gaussian distributions, where K is a small number from 3 to 5. Different Gaussians are assumed to represent different intensity in the RGB color space. The weight parameters of the mixture represent the time proportion that a certain intensity stays in the scene.

CHAPTER 2. STATE OF ART

The probability density function p(x t ) of observing the current pixel value is considered given by the following equation in the multidimensional case:

p (x t ) = K i=1 φ i,t N x t |µ i,t , Σ i,t , (2.1) 
where x t is the input at time t; φ i,t (where i = 1, . . . , K) are the combination weights, which add up to 1 ( K i=1 φ i,t = 1); and K is the number of Gaussian components. The i th Gaussian density is

N x t |µ i,t , Σ i,t = 1 (2π) D |Σ i,t | exp - 1 2 x t -µ i,t Σ -1 i,t x t -µ i,t (2.2) 
where µ i,t and Σ i,t are the mean vector and the covariance matrix of this component density, respectively.

Based on the fact that static background pixels trend to cluster tightly while moving objects form wider clusters due to different reflecting surfaces during the movement, the probable background intensities are those which stay longer and more static. Thus, the K distributions are ordered based on the fitness value φ i,t /Σ i,t and the first B distributions are used as the background model of the scene, where B is estimated with a threshold.

Once the background model is established, foreground pixels are detected if they are more than 2.5 standard deviations away from any of the B distributions.

Several improvements and extensions have been proposed by automatic updating of the GMM component number and learning rate [KaewTraKulPong et al., 2002], [Zivkovic, 2004], using adaptive thresholds [McHugh et al., 2009], or by replacing the Gaussian distribution with more flexible ones [START_REF] Elguebaly | Background subtraction using finite mixtures of asymmetric gaussian distributions and shadow detection[END_REF]. These improvements can achieve some automation in adapting the GMM parameters to background dynamics [Boulmerka et al., 2017].

2.2.1.2/ KERNEL DENSITY ESTIMATION

As a representative of nonparametric pixel-level background modeling approaches, Kernel Density Estimation (KDE) [START_REF] Elgammal | Non-parametric model for background subtraction[END_REF]] [Elgammal et al., 2002] is also frequently cited in background subtraction domain. Unlike GMM introduced above, it esti-mates the probability density function from many samples without any prior assumptions.

A simplified review of this algorithm can be summarised as below. Let x t denote the observed intensity at time t. The probability of this observation can be estimated with the most recent samples x 1 , . . . , x i , . . . , x N for this pixel by Equation 2.3.

Pr(x t ) = 1 N N i=1 K ( σ)(x t -x i ) (2.3)
where K ( σ) is a kernel function with bandwidth σ, which needs to be chosen carefully, as small a bandwidth will lead to a ragged density estimate while too wide a bandwidth will lead to an over-smoothed density estimate [START_REF] Duda | Pattern classification[END_REF]. Thus, it is better to assign different bandwidths for different pixels. This estimation can also be easily generalized to color space by kernel products. Accordingly, different kernel bandwidths can be chosen for each color channel. The pixel is considered to be a foreground pixel if

Pr(x t ) ≤ threshold (2.4)
Except that KDE does not require the definition of the model's parameters, this model can deal well with changes in background. However, it is very time consuming and memory demanding. Besides, shadows and illumination changes are not well handled using this approach [Boulmerka et al., 2017]. Some improvements have been proposed to overcome these problems [Mittal et al., 2004] [Sheikh et al., 2005] [Zivkovic et al., 2006]. 

M = {v 1 , v 2 , • • • , v N } (2.5)
taken in previous frames.

For foreground-background segmentation of the current pixel value v(x), we compare it to CHAPTER 2. STATE OF ART the closest values in the model M by defining a sphere S R (v(x)) of radius R centered on v(x). The pixel v(x) is then classified as background if the cardinality of the set intersection

S R (v(x)) ∩ {v 1 , v 2 , • • • , v N } (2.6)
is not smaller than a given threshold. That is to say, if a pixel in the new input frame is similar to a portion of its recently observed samples, it is considered as background and may be selected to update the background model. This sample consensus approach has motivated various more advanced models for background subtraction in the last decade.

Some representatives are listed here.

Hofmann et al. [Hofmann et al., 2012] have proposed the Pixel-Based Adaptive Segmenter (PBAS). The decision threshold for each pixel is not fixed like in ViBe, but can dynamically changes along with dynamic background over time, by recording and updating the minimal decision distance at each observation. Besides, the controller with feedback loop is also designed for the learning parameter in the updating process.

Another improvement of Vibe is the Self-Balanced SENsitivity SEgmenter (SuBSENSE) algorithm [St-Charles et al., 2014] Genetic programming belongs to the category of evolutionary algorithms, which mimic the biological evolution process that individuals in a population evolve and compete with each other toward a defined goal [START_REF] Burke | A genetic programming hyper-heuristic approach for evolving 2-d strip packing heuristics[END_REF]] [Pappa et al., 2014]. The inputs of this algorithm are the set of the binary foreground-background masks obtained by ex-

isting algorithms ζ = {C k } n k=1
, the candidate solution C 0 is evolved using the functional symbol set, corresponding to the operations performed on the input masks, and terminal symbols set. Given a set of n predefined algorithms, the fitness function f (C 0 ) of C 0 is defined by a weighted average of three components with Equation 2.7. The optimization process is based on a set of standard performance measure

M = {m 1 , • • • , m M }.
Specifically, the measures are recall, precision, false positive ratio, false negative ratio, percentages of wrong classification and F-measure, as it is used on CDnet2014 dataset [START_REF] Wang | Cdnet 2014: an expanded change detection benchmark dataset[END_REF].

f (C 0 ) = 1 M M j=1 (ω 0 • rank(C 0 ; m j (C k (ν)) n k=1 ) + ω 1 • M j=1 P j 1 (C 0 ) + ω 2 • P 2 (C 0 )) (2.7)
where rank(C 0 ; •) represents the rank of the candidate solution C 0 according to the measure m j ; P j 1 (C 0 ) is the distance between C 0 and the best algorithm respect to the measure m j in existing algorithm set ζ; the penalty term P 2 (C 0 ) is defined as 2.9

P 2 (C 0 ) = number o f algorithms selected in C 0 number o f algorithms in ζ (2.
D(x) =            BG i f S BG ≤ τ BG FG i f S FG ≥ τ FG (2.9)
with two thresholds τ BG and τ FG . If the two conditions in Equation 2.9 are not met, which means the semantics do not provide enough information to classify the pixel as background or foreground, the final decision will be acquired based on the background subtraction algorithm: [START_REF] Lim | Learning multi-scale features for foreground segmentation[END_REF] 0.9847 Convolutional Neural Network FgSegNet S [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF] 0.9804 Convolutional Neural Network FgSegNet M [Lim et al., ] 0.9770 Convolutional Neural Network BSPVGAN [Zheng et al., 2019b] 0.9501 Generative Adversarial Network BSGAN [Zheng et al., 2018a] 0.9339 Generative Adversarial Network Cascade CNN [START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF] 0.9209 Convolutional Neural Network In this work, we generated scene specific models using only a few frames, i.e. 50 and 200, similar to Wang et al. [14]. Using the same methodology with theirs in the training frame selection, our model outperformed all the reported methods by an overall F-Measure of 0.9770 and ranked as number one in CDnet 2014 Challenge.

D(x) = B(x) ( 

The Method

In this section, we clarify the details of our approach in three separate sections: (1) training examples selection, (2) network architecture and (3) implementation details.

Training Examples Selection

Selection of the frames for training scene specific models can be crucial and may require attention if the background is dynamic and the images in the scene contain important artifacts such as thermal, dynamicBackground, badWeather, or turbulence categories in CDnet2014 dataset. For a static video sequence which has less background motion, such as slightly waving trees, only a number of training examples, i.e. 50 frames, will be sufficient. The frames can be selected randomly by focusing more on the frames that contain some foreground objects. This strategy helps the network to learn and segment foreground pixels more accurately. However, for more complex scenes and dynamic backgrounds or camera panning-tiltingzooming video sequences, it is better to select more training examples, i.e. 200 frames, by including different parts of the scene in the selected examples. The content of the training frames may include foreground or background parts or both. One can select n number of frames, where n ≪ N and N is the total number of frames in a video sequence. In our experiments, we manually and randomly selected 50 and 200 frames for two separate trainings. Next section, we discuss the imbalanced class sample problem in supervised binary classification, which needs attention to generate robust models in this domain. [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF] mances in the state of the art regarding background subtraction, or change detection.

Working with imbalanced data

2.2.2.1/ FGSEGNET M

FgSegNet M, proposed in [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF], is a convolutional neural network with encoder-decoder structure and can be trained end-to-end under a triplet framework, as shown in Fig. 2.3, where FgSegNet is short for foreground segmentation networks and M indicates multiple inputs.

The encoder consists of three CNNs that process in parallel with the same input images in different scales to generate multi-scale deep features. Each feature CNN encoder adopts the first four blocks of the pretrained VGG16 network with minor modification. The corresponding architecture is illustrated in Fig. 2.4, where the input is raw RGB images with a size of W × H × 3.

After the triplet encoder, three feature maps, namely F 1 , F 2 and F 3 , are obtained simultaneously with different sizes. F 2 and F 3 will be firstly upscaled with simple nearest neighbor interpolation to match the size of F 1 , then all the three feature maps are concatenated along the depth dimension to be a combined feature map and fed into the attached decoder.

The decoder is novel transposed convolutional neural network to map the features to a foreground probability map pixel by pixel. It is made up with eleven transposed convolutional layers, as shown in Fig. 2.5. The output is a dense probability mask for each pixel, with a value ranging between 0 and 1, indicating the probability of being a foreground pixel. It has the same size as the original input images.

For the last step, thresholding is applied to the probability mask image to obtain a binary F. Finally, F is fed n the weights for dementation mask that ginal input (I 0 ). The ecoding network conw. 

Configuration

TCNN Configuration

The output of the encoding network, i.e. F, is a concatenated form of the feature maps in three different scales. This map is fed to the TCNN to learn the weights for decoding the feature maps; the output will be a dense probability mask (Fig. 3). In our network, F has a large depth, i.e. 1536, due to concatenation of features across three different scales. For computational efficiency and to increase non-linearity of the decision function in our network, we use 1x1 transposed convolutional layers in each block to project a high dimensional feature map depth into a lower dimension.

If we consider block 5 in TCNN, which is specified in detail in [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF] foreground background segmentation result. In the original paper, a fixed threshold of 0.8 has been chosen based on the classification performance in the experiments with different thresholds [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF].

2.2.2.2/ FGSEGNET S

In the paper [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF], Lim et al. have also proposed another multi-scale architecture called FgSegNet S for foreground background segmentation, where S stands for single input. Instead of downsampling the input pictures to use both higher level and lower level contextual information, the authors have designed a Feature Pooling Module (FPM) to extract multi-scale features from a single-input encoder. In this mechanism, the features obtained from the encoder CNN in Fig. 2.4 first need to be passed through FPM before they are fed to the following decoder network. Fig. 2.6 illustrates the FPM structure, which has been inspired by the promising results of dilated convolutions for semantic segmentation in [START_REF] Yu | Multi-scale context aggregation by dilated convolutions[END_REF]] [Chen et al., 2017] and [Chen et al., 2018]. FPM connects a max-pooling layer and four parallel dilated convolutions with different dilation rates, which operate on same feature maps from encoder layers, followed by a Batch Normalization (BN) layer [Ioffe et al., 2015] and Spatial Dropout (SD) [START_REF] Tompson | Efficient object localization using convolutional networks[END_REF]. [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF] like the manner in the FgSegNet M, the five sets of extracted features are subsequently concatenated along the depth axis to be a combined feature map, which is then used to output a pixel-level foreground probability map with the same decoder network introduced for FgSegNet M. Finally the binary segmentation label for each pixel is obtained via thresholding.

2.2.2.3/ BAYESIAN GENERATIVE ADVERSARIAL NETWORKS

The Generative Adversarial Networks (GANs) were invented by Goodfellow et al.

[ Goodfellow et al., 2014] and were described as "the coolest idea in machine learning in the last twenty years" by Yann LeCun during a seminar in 2016 [LeCun, 2016]. Given a training set, this technique learns to generate new data with the same statistics as the training set. Though originally proposed as a form of generative model for unsupervised learning, GANs have also been proven useful for semi-supervised learning [START_REF] Salimans | Improved techniques for training gans[END_REF], fully supervised learning [Isola et al., 2017], and reinforcement learning [Ho et al., 2016].

Recently, GANs has shown impressive results in computer vision such as generation of examples for image datasets [Radford et al., 2015], super resolution [Ledig et al., 2017], generation of photographs of human faces [Karras et al., 2017] and so on. Zheng et al. ide of 2 to upscale feature maps oreover, we reduce the number or block 6 and 7, respectively. In ed convolution with a stride of ch the original size of the input ature maps of block 8 into 1 feasposed convolution with a stride applied to the last layer to genixel to encode the probability of e that is between 0 and 1. are applied to every transposed pt the last layer where a sigmoid obability mask. Besides dropout, ork, we apply L2 regularization osed convolutional layers, in the re tation architecture, FgSegNet_M , encoders that operates in three ng and a TCNN for decoding, is learns a function f that maps a o a set of probability values, i.e. resent the foreground probabil-To correctly learn this mapping the neighborhood of each pixel pixel from a small fixed winifficult. To understand the conn with its surrounding, the netmation in multiple scales. Hence, nd multiscale images in the netld is operated on these scales. As ample the input image, which is a factor of two using a Gaussian more than 99% of the Gaussian an input image I , it is downis the original size of the image. ltaneously to our triplet CNN in e of the CNNs in the triplet are eights (refer to Section 3.1.1 for ltant embeddings of each input e F 1 , F 2 and F 3 are the embedrespectively. These feature emcompose the combined feature twork. In this context, F 2 and F 3 hbor interpolation, to match the along their depth axis to form Finally, F is fed into the TCNN ( Section 3.1.2 ) to learn the weights for decoding. Final output is a segmentation mask that has the same size as the original input ( I 0 ). Our experiments with different input scales depicted that, setting the input scale to 1 or 2 resulted in slightly poor performance, possibly due to the coverage of less contextual information; yet, more than 3 input scales are computationally expensive.

FgSegNet_S network architecture

In our second multi-scale segmentation architecture, FgSeg-Net_S , we use a feature pooling module (FPM) ( Fig. 2 ), which operates on top of the final encoder (CNN) layer ( Section 3.1.1 ), to extract features at multiple scales. Note that instead of using multiscale inputs, we use a single scale input in this case.

Dilated convolutions have shown promising results in semantic segmentation domain [34][35][36] ; the idea is to increase the field-ofviews in the network without learning extra parameters. By adapting the same idea, we design a feature pyramid pooling module that applies a max-pooling layer and several parallel dilated convolutions with different dilation rates. In Fig. 2 , for the set of input feature maps F ; a 2x2 max-pooling followed by 1x1 convolution, a normal 3x3 convolution and three 3x3-dilated convolutions with dilation rates of 4, 8 and 16, operate on the same features F . The resultant features are concatenated along the dept axis, followed by a BatchNormalization layer [37] and SpatialDropout [38] with a rate of 0.25, and then passed through the TCNN ( Section 3.1.2 ). [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF] have proposed background subtraction algorithms with Bayesian Generative Adversarial Networks in [Zheng et al., 2018a] and [Zheng et al., 2019b], based on the research work of Saatci and Wilson [START_REF] Saatci | Bayesian gan[END_REF].

The background subtraction problem is viewed as a binary classification problem about background and foreground for each image pixel. In their work, parallel vision first constructs virtual foreground-background segmentation images to simulate and represent complex real foreground-background segmentation by using Bayesian GANs, which is trained with the Deep Convolutional Generative Adversarial Networks (BSGAN) [Radford et al., 2015]. Computational experiments are then utilized to train and evaluate a variety of vision algorithms. The pipeline of the algorithm is presented in Fig. 2.7, which includes four steps.

To obtain a gray background image in the first step, the temporal median value is calculated after the RGB frames are converted by Equation 2.11 to gray domain (denoted with Y), which need to be further normalized with respect to the interval between 0 and 1. This simple median filter method works well if each pixel is visible for at least half time during the observing period. Unless, more complex scene background modeling approaches like [Laugraud et al., 2015] will be adopted. The generator discretized function is:

Y = 0.229 × R + 0.587 × G + 0.114 × B (2.11)
L D (θ ) = 1 n × m � i � j l D ( f (i ) D ( x j ) , y j ) - 1 n ′ × m ′ � i l G ( f D ( x ′ j ) , y ′ j ) × f (i ) D ∼ p( f (i ) D | S, θ ) (10) 
The discriminator discretized function is:

L G (ω) = 1 n ′ × m ′ � i l G ( f D ( x ′ j ) , y ′ j ) + λ m ′ △ f (i ) D (S, S ′ ) f (i ) D ∼ p( f (i ) D | S, θ ) , S ′ ∼ p( S ′ | f (i ) G ) , f (i ) G ∼ p( f (i ) G | ω) (11)
where l G is the loss function of the discriminator network, and l G is the loss of the generator network.

When the generator network generates high quality fake samples, the discrepancy between the fake samples and real samples is expected to be small. A suitable discrepancy measure should capture statistical properties of the real and fake data. We choose the maximum mean discrepancy (MMD), which asserts when the dimension of the data is large and the moment matching in the input space is not possible, to measure difference between the empirical means of two distributions using a nonlinear feature map is a measure of closeness for two-sample problems. Our △ function is defined as,

△ f (i ) D (S, S ′ ) = � � � � � � 1 n � i f (i ) D ( x i ) - 1 n ′ � i f (i ) D ( x ′ i ) � � � � � � � � 2 (12)

Training process of proposed algorithm

We mainly use the idea of parallel vision to solve the background subtraction problem. We use Bayesian generative adversarial network to simulate and generate the foreground/background segmentation results under complex scenes. We use computational experiments to train and evaluate our algorithms. Bayesian GANs can be combined with source images and real foreground/background segmentation images to train the vision models. This helps improve the generalization ability of vision models.

To be specific, we use the Bayesian generative adversarial network to achieve foreground/background segmentation, and the flow graph is shown in Fig. 3 . We view the background subtraction problem as a classification problem of image pixels. It means that we are addressing one binary classification problem about background and foreground [50] . We aim to make our result similar to the Groundtruth as far as possible. We randomly selects 100 frames from each dataset as the inputs of the network. We standardize the image and use white Gaussian noise to generate a set of tags, and standardized images and tags set is the inputs of the generator network. The generator network generates the foreground/background segmentation images and the discriminator network determines the foreground/background segmentation images. We use standardized images and the foreground/background segmentation images generated by the generator network as the inputs of the discriminator network. The discriminator network determine 0 or 1 based on the input of Ground-truth and the foreground/background segmentation images, and feedback to the generator network. The generator network and the discriminator network are updated iteratively. In particular, after the network reads 100 image frames, we take an image as an example to state. We input an image to the network, first normalize all pixel values of the image to the interval of [0,1], we call it the normalized image. Then, the normalized image and Gaussian noise are inputted to the generator and the generator network generates an image called the generated image. The generated image acts as input of the discriminator network. Finally, the discriminator network determines whether or not 1 based on the input of Ground-truth and the generated image. If the decision is true, the label that the generated image is 1 which is the result of our work, otherwise 0.

We use the DCGAN [32] to train. The network structure of the generator network combines the downsampling and the upsampling shown in Fig. 5 The corresponding target value is assigned by:

t(x) =            1 i f class(p c ) = f oreground 0 i f class(p c ) = background (2.12)
where p c denotes the central pixel for the patch. T is set as 27 by the authors. background segmentation image is fed to the discriminator network, together with the normalized image, to determine 0 or 1 based on the input of groundtruth, which will be then fed back to the generator network. Thus both the generator and discriminator networks are updated iteratively.

2.2.2.4/ CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS

Bakkay et el. proposed another deep background subtraction method based on Conditional Generative Adversarial Networks (cGAN) in [START_REF] Bakkay | Folw Chart of Conditional GAN[END_REF]. Following the routine of the GAN design, the proposed model consists of a generator network and a discriminator network, where the former one learns the mapping from the observing image and background to the foreground mask, and the latter optimizes the loss function, which is a combination of a conventional binary cross-entropy loss and an adversarial term, to train this mapping.
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.9: Folw Chart of Conditional GAN [START_REF] Bakkay | Folw Chart of Conditional GAN[END_REF] Fig. 2.9. illustrates the flow chart of cGAN. In the training phase, the generater network produces a predicted foreground mask notated as ŷ from the input pair composed of an image and a background. Then the discriminator network compares ground truth and predicted output under condition of the input pair. Backpropagating the two networks CHAPTER 2. STATE OF ART leads to generate better masks, which cannot be distinguished from ground truth by the discriminator. In the testing phase, the trained generater network outputs a foregroundbackground segmentation mask. Fig. 2.10 shows the architecture of the proposed model. The discriminator network on top includes four convolutional and downsampling layers, and the last convolutional layer is followed by one fully connected layer to transform the features map in a 1 dimensional vector. The generator network below follows the encoder-decoder structure of U-net [Ronneberger et al., 2015]. The encoder is made up of eight convolutional layers as proposed in [Isola et al., 2017], where the middle six layers are six ResNet blocks and adopt the weights trained for ResNet-101 [He et al., 2016] while the parameters are randomly initialized. The decoder is built in a similar way with eight transpose convolutional layers with a reverse layers ordering, where all the weights are trainable.

2.2.2.5/ CASCADE CNN

An end-to-end deep model was proposed by [START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF] In order to solve this, a multi-scale CNN model has been implemented and illustrated in Fig. 2.12. The input images are first resized with two different scales before they are fed to the same basic CNN model and upscaled back. The final foreground-background mask is obtained with an average pooling.

In order to model the dependencies among adjacent pixels and thus enforce spatial coherence, a cascaded CNN model has been further implemented by the authors. As shown in Fig. 2.13, the first CNN model is used to compute a foreground probability map which is then concatenated with the original frame and fed to a second CNN model to compute refined probability map. The input of the second CNN is thus an image with four channels, namely red, green, blue, and a foreground likelihood probability. maximizing the peak signal-to-noise ratio (PSNR), MSE is used as a content loss in our model that is defined as:

� M SE (G) = 1 N N � j=1 �y -ŷ� 2 , ( 1 
)
where N is the number of the pixels per input image.

Otherwise, the adversarial loss used in cGAN models) [13] is the binary cross entropy (BCE) defined as:

where, λ = 10.

During training, D tries to maximize our function � GD (D, G), while the task of G is exactly the opposite that tries to minimize the function

� GD (D, G). G * = arg min G max D � GD (D, G), (4) 
The Adam solver [17] is used in optimizing the proposed model, with learning rate 0.0002, and momentum parameters [START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF] Figure 2.12: Architecture of the Multiscale CNN Model [START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF] 

β 1 = 0.

2.3/ BACKGROUND SUBTRACTION METHODS WITH MUTISPECTRAL

IMAGES

In this section, we will introduce several background subtraction approaches based on multispectral images.

They have been tested on the same dataset [Benezeth et al., 2014a] we have adopted in this theis and will be later used for quantitative comparison with the approaches proposed in this paper.

2.3.1/ MAHALANOBIS DISTANCE

The first method we will review here is a straightforward extension of a color-based background subtraction algorithm, which is introduced in the original multispectral dataset paper [Benezeth et al., 2014a]. As it is known, background subtraction can be performed by the Equation 2.13, with the assumption that the observed video sequence I is made of a static background B in front of which moving objects are observed. 

χ t (s) =              1, d(I s,t , B s,t ) > τ 0, otherwise, (2.13)
where τ is a threshold, χ t is the motion label field at time t, and d is the distance between the pixel value I s,t and the background model B s,t at time t and location s. For a multispectral video sequence, I s,t is a vector defined by

I = [I 1 , I 2 , . . . , I n ],
where n stands for the number of spectral channels of multispectral frames.

If the background B can be determined by a single image free of moving objects, pixels corresponding to foreground moving objects can be detected by thresholding a distance function, such as the Euclidian distance:

d =         k i=1 (I i s,t -B i s,t ) 2         .
(2.14) However, it is not the case for real-life scenarios. Modeling the background B with a single image requires a rigorously fixed background void of noise and artefacts. A promising solution is to model each background pixel by a probability density function (PDF)

learned over a series of training frames. In this case, the background subtraction problem becomes a PDF-thresholding issue for which a pixel with low probability is likely to correspond to a foreground moving object.

For instance, in order to account for noise, it is possible to model every background pixel with a Gaussian distribution N(µ, Σ), where µ and Σ stand for the average background multispectral vector and covariance matrix at pixel s and time t, respectively. In this context, the distance metric can be the Mahalanobis distance:

CHAPTER 2. STATE OF ART d M = |I s,t -µ s,t |Σ -1 s,t |I s,t -µ s,t | T .
(2.15)

Since the covariance matrix contains large values in noisy areas and low values in more stable areas, Σ makes the threshold locally dependent on the amount of noise. In other words, the noisier a pixel is, the larger the temporal gradient |I s,t -µ s,t | has to be to get the pixel labeled in motion. This makes the method significantly more flexible and robust.

Besides, In order to adjust the fact that the illumination often changes in time, the mean and covariance of each pixel can also be iteratively updated with:

µ s,t+1 = (1 -α)µ s,t + αI s,t (2.16) Σ s,t+1 = (1 -α)Σ s,t + α(I s,t -µ s,t )(I s,t -µ s,t ) T (2.17) 2.3.2/ POOLING
The second approach introduced by Benezeth et al. in [Benezeth et al., 2014a] is called

Pooling. Instead of using all the channels directly, as the algorithm extending Mahalanobis distance does, Pooling combines the background subtraction masks from some spectral channels. The results suggest not all channels are needed to reach the highest accuracy, which indicates only a few number of channels actually define the moving objects.

The definition to perform pooling is as follows,

χ t (s) =              1, i χ i t (s) > ρ 0, otherwise, (2.18) 
where χ i t (s) is the motion label at time t and location s obtained with the i th channel. ρ ∈ [1, n] defines the Pooling strategy and n is the whole number of multispectral channels.

If ρ is 1, the Pooling is equivalent to logical OR, where the current pixel is detected as foreground as long as the motion mask is foreground for at least one channel. Similarly, the Pooling will become logical AND if ρ is set to n, which means a pixel can be regarded as moving category only when the label is always foreground for all channels. The first one is called spectral angle d θ , which extracts geometric features by calculating the angle between two spectra [Schowengerdt, 2006] and is defined with the following equation:

d θ (I s,t , µ s,t ) = cos -1 < I s,t , µ s,t > |I s,t ||µ s,t | , (2.19) 
where I s,t is the multispectral vector of the current image and µ s,t is that of the background model. As we can see, here spectra are considered as vectors in a k-dimensional space, which indicates this spectral distance measure is suitable for arbitrary number of multispectral channels.

With spectral angle metric, small angles mean similar vectors. Thus, another key advantage of this measure is that it is intensity invariant because the angle between two vectors is independent of the vector length. This property is very interesting for background subtraction problems when there are shadows and illumination variations.

2.3.4/ SPECTRAL INFORMATION DIVERGENCE

Another spectral distance measurement utilized in the dataset paper [Benezeth et al., 2014a] is referred to as Spectral Information Divergence (SID) [Chang, 2000], which is also applied to determine the spectral closeness or distance between two multispectral vectors. This measure is relatively recent and is expected to be more effective than spectral angle d θ in preserving spectral properties.

The spectral information divergence models the spectral channel-to-channel variability as a result of uncertainty caused by randomness, which is based on the Kullback-Leibler divergence to measure the discrepancy of probabilistic behaviours [Chang, 2000]. That is to say, it considers each pixel as a random variable and then defines the desired probability distribution by normalizing its spectral histogram to unity, which is expressed by

CHAPTER 2. STATE OF ART                P x (i) = x t (i) n i=1 x t (i) P v (i) = v m (i) n i=1 v m (i) (2.20)
where n is the number of channels. Then the spectral information divergence d S ID between the current spectral vector x t and the background model v m can be defined with Equation 2.21. As reviewed in [START_REF] Bouwmans | Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset[END_REF][START_REF] Davenport | An overview of lowrank matrix recovery from incomplete observations[END_REF] and [Lin, 2016], lowrank and sparse decomposition methods are based on the assumption that the uncorrupted information lies in a low dimensional subspace, whereas noise is sparse. This assumption holds a particular association to the task of foreground-background segmentation. To be more specific, as it is almost static and highly correlated between frames, the background is assumed to be a low dimensional subspace, where the sparse outliers usually represent the foreground objects.

d S ID (x t , v m ) = n i=1 P x (i)log P x (i) P v (i) + n i=1 P v (i)log P v (i) P x (i) (2.
Based on the pioneering tensor-based decomposition methods [Feng et al., 2013] [ Goes et al., 2014], the framework of Online Stochastic Tensor Decomposition (OSTD) has been proposed in [Sobral et al., 2015]. They have extended the online stochastic principal analysis optimization for multispectral images using tensor analysis, where the stochastic optimization is applied on each mode of the tensor and the individual basis is updated iteratively followed by the processing of the current frame. In background subtraction, the features characterize a region and can be compared against a known background model to classify it as either foreground or background.

As we know, color features, edge features, stereo features, and motion features are commonly used in this field. However, the optimal features for background subtraction may be case by case.

Given In order to not only increase the efficiency in terms of time and memory consumption but also the segmentation performance, an improved version has been also proposed by the same authors in [Silva et al., 2017]. The novel method is named as Superpixel-based

Online Wagging One-Class Ensemble (Superpixel-OWAOC) as it adopts the superpixel idea and is based on wagging for selecting suitable individual features.

2.4/ CONCLUSION

In this chapter, we have conducted a study on background subtraction by investigating the state-of-the-art algorithms for both RGB and multispectral images.

The challenges of background subtraction include but are not limited to the following three categories: background (illumination changes, dynamic background, shadows, challenging weather, bootstrapping, moved background objects and night videos), foreground (shadows, camouflage, intermittent object motion and occlusion) and camera (video noise, moving camera and camera jitter). In order to cope with these challenges, numerous algorithms have been designed over the past years for background subtraction.

The majority of the current background subtraction algorithms are focused on conventional RGB images, which could offer motivation and perspective for multispectral case.

Firstly, representative classical algorithms with RGB images are reviewed in this chapter. Since the objective of this thesis is to investigate multispectral images for the task of background subtraction, we introduced the existing multispectral approaches. In addition to the four algorithms (Mahalanobis distance, Pooling, Spectral angle, and Spectral information divergence) proposed by the creators of the multispectral dataset, Online stochastic tensor decomposition and Online one-class ensemble for feature selection are also presented. These algorithms have been tested on the same dataset we have adopted, and will be later used for quantitative comparison with the algorithms proposed in this thesis. During the last decade, many works have been dedicated to improve the original Codebook model. For example, [START_REF] Xu | Background modeling methods in video analysis: A review and comparative evaluation[END_REF] and [START_REF] Li | A two-layers background modeling method based on codebook and texture[END_REF]] have adopted a twolayer model, to handle dynamic background and illumination variation problems. Other modifications like transferring RGB to other color models like YCbCr and Lab, in order to solve the problem of existence of shadows and highlights for foreground detection, can also be found in [START_REF] Murgia | All-day moving objects detection for security at level crossing[END_REF] and [Aung et al., 2017]. In [START_REF] Zaharescu | Multi-scale multifeature codebook-based background subtraction[END_REF],

a multi-scale multi-feature Codebook model, which integrates intensity, color and texture information across multiple scales, has been presented for challenging environments. A strategy has been proposed in [START_REF] Noh | Background subtraction method using codebook-gmm model[END_REF] [ Goyette et al., 2012] and its extension CDnet2014 [START_REF] Wang | Cdnet 2014: an expanded change detection benchmark dataset[END_REF].

The rest of this chapter is organised as follows. Section 3.2 illustrates the original Code-Table 3.1: The description of the elements in the tuple aux m Ǐ, Î the minimum and maximum brightness range assigned to the codeword respectively f the frequency of access or the number of times that the codeword is matched λ maximum length of time between consecutive accesses p, q the first and the last access times of the codeword respectively book algorithm in detail, which is then adapted to multispectral case in Section 3.3. The multispectral dataset, evaluation metrics and experiments are discussed in Section 3.4, while conclusions and future work are presented in Section 3.5.

3.2/ THE ORIGINAL CODEBOOK

The original Codebook is a pixel-based algorithm, which means that the whole process happens at each pixel independently and ignores information observed at other pixels.

For each pixel, a codebook C ={c 1 , c 2 ,. . . , c L }, consisting of several , is constructed.

The number of codewords is different according to the pixel's variation. The codeword can be regarded as cluster of samples with similar certain spectral features and defined in a form of super cubes capable of describing these samples [START_REF] Yongjia | Fast robust foregroundbackground segmentation based on variable rate codebook method in bayesian framework for detecting objects of interest[END_REF]. More precisely, each codeword c m is composed of an RGB vector v m = (R, G, B) and a six-tuple aux m = ( Ǐm , Îm , f m , λ m , p m , q m ). The tuple aux m stores the auxiliary information such as intensity statistics and temporal variables, which are listed and explained in Table 3.1 [Aung et al., 2017], and assist in training and pruning the Codebook background model.

3.2.1/ CODEBOOK MODEL INITIALIZATION

At the beginning, the codebook is an empty set and the number of the codewords is set to 0. When the first frame comes, the Codebook model is initialized by constructing an associated codeword for each pixel with the corresponding vector v being set to be the RGB values of that pixel as below:

v = x = (R, G, B) (3.1)
And the corresponding six-tuple vector aux = ( Ǐ, Î, f , λ, p, q) is assigned with

42CHAPTER 3. MULTISPECTRAL CODEBOOK FOR BACKGROUND SUBTRACTION aux = (I, I, 1, 0, 1, 1) (3.2)
where I represents the intensity or brightness value, which is calculated by

I = (R 2 + G 2 + B 2 ) (3.3)

3.2.2/ CODEBOOK MATCHING PROCESS

In the training phase, for a newly incoming frame at time instant t, the current value x t of a given pixel is compared to its current codebook to construct the background model.

Comparisons are made by both the color distortion measurement and brightness bounds.

The color distortion is defined as:

colordist(x t , v m ) = δ = x t 2 - < x t , v m > 2 v m 2 = (R 2 + G 2 + B 2 ) - RR + GG + BB R 2 + G 2 + B 2 (3.4)
where (R,G,B) represents the RGB vector of incoming pixels, whereas (R, G, B ) is the average RGB vector of the corresponding codeword. The brightness function is defined as:

brightness(I, < Ǐm , Îm >) =            true i f I low ≤ I ≤ I hi f alse otherwise (3.5)
The lower bound I low and upper bound I hi of the range are defined in Equation 3.6 by Ǐm and Îm , which are the minimum and maximum brightness of all pixels assigned to this codeword, and stored in the 6-tuple aux m illustrated in Table 3.1 for the current codeword

c m .              I low = α Îm I high = min β Îm , Ǐm α (3.6)
where α and β are manually set constant parameters.

If two conditions, namely color distortion and brightness bounds, are both satisfied, that is to say, the colordist value is smaller than a threshold ε 1 and the output of the brightness function is true, as illustrated in Equation 3.7, the current pixel is matched with this codeword c m , which is then used as the sample's encoding approximation.

           colordist(x t , v m ) ≤ ε 1 brightness I, Ǐm , Îm = true (3.7)
Otherwise, a new codeword is to be created. The average RGB vector v is initialized with the current pixel spectral values.

v = x t = (R, G, B) (3.8) 
The corresponding initial six-tuple vector aux = ( Ǐ, Î, f , λ, p, q) is assigned with aux = (I, I, 1, t -1, t, t) (3.9)

3.2.3/ CODEBOOK MODEL UPDATING

Codewords in the background model are designed to be updated in an online way to account for the environmental changes in video streams. When a new frame is arriving, the color distortion in Equation 3.4 and brightness function in Equation 3.5, defined in the last section, together with the brightness bounds Equation in 3.6 are first calculated to see whether a match can be found based on Equation 3.7.

For the matched codeword, its corresponding average RGB vector v m and components in the aux m are updated using the new arrived (R,G,B) vector and the intensity value I of the current pixel. Particularly speaking, vector v m is updated with Equation 3.10.

v m ← ( f m R f m + R , f m G f m + G , f m B f m + B ) (3.10)
The six elements in the vector aux m are updated as what are listed in q m ← t the subscript m indicates the current codeword.

For the codewords that are not matched successfully, the λ component is updated as λ ← λ + 1 and all other components are kept the same.

When there is no new frame in the training process, the longest time interval between two consecutive accesses λ m for each codeword c m is computed by

λ m = max {λ m , N -q m + p m -1} (3.11)
where N is the number of training frames.

3.2.4/ CODEBOOK MODEL REFINING

During the training period, there are not only the background information, but moving foreground objects may also exists in the image sequence. Thus, the codebook model obtained from the previous steps contains all the codewords that represent the scene and can be called fat codebook [Kim et al., 2005]. It is obvious that those redundant codewords that contain moving objects should be eliminated in order to get a refined and true background model.

Thanks to the fact that the values for actual background usually recur, temporal filtering can be adopted to achieve this goal. This is why λ, which is defined as the maximum length of time between consecutive accesses, is recorded in the tuple aux m for each codeword and then used to discriminate the actual background codewords from the moving foreground codewords that are inactive for a long period of time. To be more specific, codewords having small λ are mostly representing the true background while those with larger λ should be filtered out. Let C and M denote the fat and refined background model, respectively. The temporal filtering can be described with:

3.2. THE ORIGINAL CODEBOOK M = c m | c m ∈ C and λ m ≤ T (3.12)
where T is a threshold value. Usually, the threshold is set to the half of the number of training frames [Kim et al., 2005]. That is to say, all the codewords in the final refined background model M should recur at least every N/2 frames.

3.2.5/ CODEBOOK FOREGROUND DETECTION

After constructing the Codebook model, the moving objects can be detected by using background subtraction directly. It simply consists in calculating the difference of the current image from the background model with respect to brightness and color distortion, detailed in Section 3.2.2. Then the pixel is detected as foreground if no acceptable matching codeword exists. Otherwise, it is classified as background and the corresponding matched codeword is updated according to the updating procedure presented in Section 3.2.3. The algorithm is illustrated in Algorithm 1, where ε 2 is color threshold during the detection phase, which can be set with higher value to be more tolerant for noise in the detection phase.

Algorithm 1 Codebook forground detection algorithm output the pixel as foreground 9: end if Note that in the construction phase, when there is no appropriate match found, a new codeword is established, while in the detection phase, the pixel is detected as foreground directly and no more extra measure is taken. 46CHAPTER 3. MULTISPECTRAL CODEBOOK FOR BACKGROUND SUBTRACTION

1: x = (R, G, B), I = (R 2 + G 2 + B 2 ) 2: search the codeword c m in C matching x t if (a)

3.3/ MULTISPECTRAL CODEBOOK

Since the object of this research work is to investigate the benefits of multispectral sequences rather than traditional RGB to improve the performance of background subtraction, we would like to adapt the original RGB-based Codebook algorithm to multispectral sequences. Minor modifications need to be performed. Specifically speaking, the definition of brightness in RGB is extended to multispectral case. Besides, unlike color distortion in the original Codebook, we adopt spectral distortion instead, as the term color is always related to RGB, and even for three bands out of multispectral sequences, they are not strictly color.

In the case of multispectral images, each codeword c m is also defined by two vectors: the first one contains the average spectral value for each channel or band of the pixel,

v m = (V 1 , V 2 , ..., V n ),
where n is the number of multispectral channels. The second one is the six-tuple aux m = ( Ǐm , Îm , f m , λ m , p m , q m ), as listed in Table 3.1.

3.3.1/ MULTISPECTRAL CODEBOOK MODEL INITIALIZATION

At the beginning, the codebook is an empty set and the number of the codewords is set to 0. When the first frame comes, the multispectral Codebook model is initialized by constructing an associated codeword for each pixel with the corresponding vector v being set to be the spectral values of that pixel.

v = x = (X 1 , X 2 , ..., X n ) (3.13)
The auxiliary vector aux is set as below:

aux = (I, I, 1, 0, 1, 1) (3.14)
As we know, for grayscale images, the grayscale value or the brightness is obtained by

I = |x| = √ x 2 .
For RGB images, the brightness is calculated by

I = √ R 2 + G 2 + B 2 .
Accordingly, for multispectral images, given a pixel x = (X 1 , X 2 , ..., X n ), the brightness can be measured by
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where i is the index of spectral channel.

3.3.2/ MULTISPECTRAL CODEBOOK MATCHING PROCESS

The matching process for multispectral Codebook algorithm is evaluated by two conditions: brightness bound and spectral distortion.

Like the original Codebook, two criteria need to be satisfied simultaneously to find a match between the current pixel with a codeword c m . Specifically, the brightness of the pixel must lie in the interval I low , I high , which is calculated from the min and max brightness Ǐm , Îm in Equation 3.6.

brightness(I, < Ǐm , Îm >) = true (3.16) Equation 3.17 gives the calculation of spectral distortion, spectral dist, between a new coming spectral pixel v t = (X 1 , X 2 , ..., X n ) and a codeword aux m with the average spectral

vector v m = (V 1 , V 2 , ..., V n ) spectral dist(x t , v m ) = x t 2 - x t , v m 2 x t 2 2 = x t 2 -x t 2 cos 2 θ (3.17)
The second condition is that the spectral distortion must lie under a given threshold ε 1 .

spectral dist(x t , v m ) ε 1 (3.18)
To make it intuitive, the two criteria are visualized in Fig. 3.2. The pixel of a multispectral image is considered as vector in an n-dimensional space and three bands are used as an example. The cylinder model [START_REF] Zeng | Arbitrary cylinder color model for the codebook based background subtraction[END_REF]] is adopted to cope with illumination changes. In Fig. 3.2, the blue cylinder represents a certain codeword, which is built with the spectral distortion threshold around the mean vector. Thus the bottom radius is the threshold ε 1 . Besides, the red and the blue vectors stand for the average spectral v m in this codeword and the current pixel x t , respectively. With Equation 3.17, the spectral distortion can be calculated and illustrated with the green line. As discussed above, a match is found if the brightness of the pixel vector lies between I low and I hi , and the spectral distortion is under a given threshold ε 1 . Accordingly, the L2-norm of vector x t must be located along the axis in the cylinder and the length of the green line must be smaller than the radius of the cylinder. Obviously, the codeword c m and the current x t are not matched in the Fig. 3.2, as the criteria of spectral distortion is not satisfied.

3.3.3/ MULTISPECTRAL CODEBOOK MODEL UPDATING

To construct the background model, the current value x t of a given pixel is compared to its current codebook. if there is a match with a codeword c m , this codeword is used as the sample's encoding approximation. Otherwise, a new codeword is to be created.

Detailedly speaking, the average multispectral vector v m is updated as follows:

v m ← ( f m X m1 + X 1 f m + 1 , f m X m2 + X 2 f m + 1 , . . . , f m X mn + X n f m + 1 ) (3.19)
As for the six-tuple aux m = ( Ǐm , Îm , f m , λ m , p m , q m ), it is updated exactly the same way as the original Codebook algorithm. At the end of the Codebook construction algorithm, the model also has to clean the codewords that are most probably belonging to foreground objects, based on the λ m recorded in the aux m , as illustrated for the original Codebook.
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The detailed algorithm of codebook construction is given in Algorithm 2.

Algorithm 2 Multispectral Codebook construction

1: L ← 0, C ← φ 2: for t = 1 → N do 3:

x t = (X 1 , X 1 , ..., X n ), I = n i=1 X 2 i 4:
Find the codeword c m in C matching textb f x t by checking (a) and (b)

5:

(a) spectral dist (x t , v m ) ε 1 6:

(b) brightness I, Ǐm , Îm = T rue 7:

if C = φ or there is no match then 8: update the matched codeword c m composed of v m = X1m , X2m , ..., Xnm and

L ← L + 1, create a new codeword c L 9: v L = x t 10: aux L = I, I, 1, t -1, t,
aux m = Ǐm , Îm , f m , λ m , p m , q m 13: v m ← f m X1m +X 1 f m +1 , f m X2m +X 2 f m +1 , ..., f m Xnm +X n f m +1
14:

aux m ← min I, Ǐm , max I, Ǐm , f m + 1, max {λ m , t -q m } , p m , t 15:
end if 16: end for 3.17. Then if the two criteria illustrated in Equations 3.16 and 3.18 are satisfied simultaneously, a match between the current pixel and codeword is found. The codeword will be updated with the information of this pixel. Unless, a new codeword will be created.

3.3.4/ MULTISPECTRAL CODEBOOK FOREGROUND DETECTION

The foreground detection phase that follows conducts the matching process like that in background model construction phase. The brightness and spectral distortion criteria are evaluated with Equations 3.16 and 3.18 between the testing frame and the background model. The pixel is detected as foreground if no acceptable matching codeword exists, as illustrated in Fig. 3.4. Otherwise, it is classified as background and the corresponding codeword is updated accordingly. During the detection phase, the threshold for spectral distortion is set with higher value to be more tolerant for noise.

We need to note that in the background model construction in Fig. 3.3, when there is no appropriate match found, a new codeword will be established, while in the foreground for testing in this thesis. This dataset was created in order to investigate the use of multispectral videos of more than three bands for background subtraction.

To our knowledge, this dataset is the only public real multispectral image background subtraction dataset available. Most public image datasets built for background subtraction, or change detection, such as the well-known Wallflower dataset [START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF], the Stuttgart Artificial Background Subtraction (SABS) dataset [START_REF] Brutzer | Evaluation of background subtraction techniques for video surveillance[END_REF] and CDnet [Goyette et al., 2012] [Wang et al., 2014], are based on visible spectral images. Some other datasets include still recombined images. For example, the Grayscale-Thermal The dataset includes as well the corresponding RGB sequences, which are obtained with a linear integration of the seven-channel original multispectral images weighted by three different spectral envelopes [Jacobson et al., 2005], shown in Equation 3.20.

R = n i=1 r i X i , G = n i=1 G i X i , B = n i=1 b i X i (3.20)
where r i , g i , b i are the weights on the i th spectral channel, defined based on the characteristics of the specific multispectral camera, and n is the number of channels, which is seven here. [Goyette et al., 2012], the groundtruth image is not an ideal binary mask, containing only moving pixels with a grayscale value of 1 and static pixels with a grayscale value of 0.

Since some areas carry a certain level of uncertainty, it is difficult for a person to reliably classify them as background or foreground pixels, such as those pixels close to moving objects boundaries, as illustrated with the partial magnification in the red circle in Fig. 3.7. To avoid evaluation metrics from being corrupted, these pixels that are corrupted by motion blur, are labeled as unknown and assigned grayscale value of 170.

Besides, the Non-ROI (not in the Region Of Interest) label is adopted to prevent the evaluation metrics being influenced by activities unrelated to the task considered. For example, the scene 3 is cluttered with moving tree, as shown in Fig. 3.7. However, what we care is the performance of an algorithm to detect the moving objects on the street.

Thus the top and down parts are labeled as Non-ROI with a grayscale value of 85. The four labels are listed in Table 3.4, where pixels with a grayscale value of 85 and 170 in the ground truth images are ignored in accuracy evaluation. The binary mask obtained from the foreground detection process is compared with the corresponding ground truth image. As the ground truth is provided at pixel resolution, the performance of background subtraction algorithms can be evaluated more precisely, compared with the ground truth form of bounding box. In order to determine how well the algorithm can correctly identify moving region and conduct a quantitative comparison between different approaches, some basic metrics are defined and usually used in background subtraction [START_REF] Viau | Multispectral image analysis for object recognition and classification[END_REF], as listed in Table 3.5.

Table 3. Based on Equations 3.21 and 3.22, F-measure, is defined as a harmonic mean of the precision and recall with Equation 3.23, where the relative contribution of precision and recall to the F-measure are equal. It is also known as balanced F-score or F1 score, which reaches its best value at 1 and worst score at 0. That is to say, the greater the value is, the better the detection quality is. It makes the analysis of results easier and is generally used to assess the performance of background subtraction algorithm or to compare different algorithms against a common dataset. That is why we adopt this measure of accuracy for all the experiments in this thesis. 

F -measure = 2 × Precision × Recall Precision + Recall
α = 0.7, β = 1.5, ε 1 = 0.02, ε 2 = 0.04 (3.24)
The experiments are conducted on the five different multispectral sequences and the Fmeasures are recorded in Table 3.6. The RGB results are also shown in the last row, acting as a reference to illustrate the improvement that can be achieved by using multispectral images. The largest value in each column is in bold. Besides, some visual examples are shown in Fig. 3.8, where the top row is original multispectral sequences.

For all sequences, no morphological operation is applied.

The table 3.6 illustrates the performance comparison between the three-dimensional multispectral sequences and RGB, whose result is not the best for all five videos. The av- erage of F-measure on the five videos is calculated and listed in the rightmost column, from which, the accuracy (0.8399) of the best average three-channel combination on five video presents nearly 3% improvement than the result (0.8113) of RGB. As it is shown, the multispectral sequences can represent an alternative to conventional RGB sequences for the background subtraction task.

3.5/ CONCLUSION AND FUTURE WORKS

In this chapter, the original Codebook algorithm based on conventional RGB sequences is first stated in detail with five important issues, namely background model initialization, matching process, background model updating strategy, background model refining and foreground detection. Since multispectral sequences can provide more information compared with RGB triplets, the original Codebook algorithm is then adapted to multispectral case to investigate the advantages of multispectral sequences for the task of background subtraction.

In order to achieve this goal, two modifications have been performed comparing with the original RGB Codebook technique. Specifically speaking, the definition of brightness in
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RGB is extended to multispectral case, with an arbitrary number of spectral channels.

Besides, we replace the color distortion with spectral distortion, as the term of color is not suitable anymore in multispectral sequences. The implementation of multispectral Codebook has also been explained step by step, except for the background model refining, which is the same with that in the original Codebook algorithm.

We have conducted experiments on the FluxData FD-1665 dataset, which contains five scenes with various challenges for multispectral sequences and the corresponding RGB sequences, together with the groundtruth. For fair comparison, the same parameter set is et al., 2005]. However, this is far from adequate, because manual parameters tuning is still required to achieve satisfying results for a specific scene, which is always a really cumbersome and tricky task for researchers. Besides, if the algorithm needs to be run for long periods of time, the parameters should not be static but could be automatically adapted to the environmental changes. What is more impor-62CHAPTER 4. MULTISPECTRAL SELF-ADAPTIVE CODEBOOK AND ITS VARIANTS FOR BACKGROUND tant for our research objective, when using the multispectral sequences, the parameters also have to be adjusted with different number of channels. Therefore, there is a need for further research with regard to realizing an automatic selection mechanism for optimal parameters.

Motivated by the work of [START_REF] Shah | A self-adaptive codebook (sacb) model for real-time background subtraction[END_REF], which has proposed the statistical parameter estimation method in YCbCr color space, we first propose a multispectral self-adaptive technique in this chapter for automatically optimal parameter selection to get rid of the tiring searching work. That is to say, those parameters listed above do not need to be obtained by burdensome experiments, but to be estimated from the data themselves statistically, which can help save a lot of efforts and time.

In order to further improve the multispectral model, two aspects can be considered 

4.2/ MULTISPECTRAL SELF-ADAPTIVE MECHANISM

A detailed description of the proposed multispectral self-adaptive mechanism is presented in this section. In order of achieve the goal of selecting the optimal parameters automatically, some additional statistical information need to be calculated iteratively and recorded for each codeword during the whole process. In spite of the vector of average spectral values of the codeword v m and the six-tuple aux m , we record another vector
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named S m , which represents the set of the variances of the separate spectrums σ 2 i . Besides, for vectors v m and S m , one more dimension is added to record the average of brightness I m and its variance σ 2 I , respectively. Thus for the multispectral sequences with n channels, the vectors v m and S m are of n + 1 dimension. The extra one channel stands for the numerical information of the brightness.

4.2.1/ MULTISPECTRAL SELF-ADAPTIVE CODEBOOK MODEL INITIALIZATION

The initialization strategy is kept the same for the six-tuple vector aux m with the Codebook algorithm in the previous chapter, while it is modified a little for the average vector v m , with one more element related with brightness. Specifically speaking, for a new codeword of a given pixel, the initial value of v m is:

v = x = (X 1 , X 2 , ..., X n , I) (4.1)
Meanwhile, the S m of the new codeword is also a vector of dimension n + 1, which is initialized with the square values of individual spectrum and brightness.

S = (X 2 1 , X 2 2 , . . . , X 2 n , I 2 ) (4.2)

4.2.2/ MULTISPECTRAL SELF-ADAPTIVE CODEBOOK MATCHING PROCESS

In the multispectral self-adaptive Codebook framework, definitions of brightness and spectral distortion are kept the same with those in the previous chapter, as defined in Equations 3.15 and 3.17. During the matching process, the statistical information calculated and recorded step by step for each codeword is used to estimate both the brightness bounds and spectral distortion threshold. To be specific, the bounds of brightness can be estimated by

           I low = Ǐm -σ I I high = Îm -σ I (4.3)
where σ I is the standard deviation of brightness in the current codeword, whose square is 

ε = max([σ 1 , σ 2 , ..., σ n ]) (4.4)
where σ i , i ∈ [1, n] is the standard deviation of the i th channel value in the current codeword, whose square is the corresponding i th element of vector S m .

With the self-adaptive mechanism, brightness bounds and spectral distortion threshold are obtained automatically and able to adjust themselves with statistical properties of the input sequences. In the phase of background model construction, for each pixel, when a new image arrives, the brightness and spectral distortion are first computed, then the matching process is conducted codeword by codeword. If the brightness of the new pixel lies in the current interval of the brightness bounds, as shown in Equation 4.3, and the spectral distortion is smaller than the current threshold ε of a certain codeword, the new pixel will be modeled as a perturbation on this background codeword. Unless, a new codeword will be seeded.

4.2.3/ MULTISPECTRAL SELF-ADAPTIVE CODEBOOK MODEL UPDATING

If a match is satisfied in the matching process, the corresponding codeword is updated with the information of the current pixel. Specifically speaking, the average multispectral vector v m is updated as follows:

v m ← ( f m X m1 + X 1 f m + 1 , f m X m2 + X 2 f m + 1 , . . . , f m X mn + X n f m + 1 , f m I mn + I n f m + 1 ) (4.5)
As for the six-tuple auxiliary vector aux m = ( Ǐm , Îm , f m , λ m , p m , q m ), it is updated exactly the same way with that for the original Codebook algorithm, as listed in Table 3.2.

The vector S m storing the variance of each separate spectrum and brightness is updated as follows:

4.3. SPECTRAL INFORMATION DIVERGENCE 65 S m ← ( f m σ m1 + (X 1 -X m1 ) 2 f m + 1 , f m σ m2 + (X 2 -X m2 ) 2 f m + 1 , . . . , f m σ mn + (X n -X mn ) 2 f m + 1 , f m σ Im + (I -I m ) 2 f m + 1 ) (4.6)
The modules for the model refining and the foreground detection thoroughly follow the logic of the original Codebook algorithm. That is to say, the codewords representing the moving object regions will be removed with the help of the information stored in the sixtuple vector aux m . After the establishment of background model, the matching process is conducted in the detection phase. The new pixel is classified as background if an acceptable matching codeword exists and the vectors in the current codeword will be also updated as illustrated above at the same time. Otherwise, the pixel is detected as foreground.

In this section, we have proposed multispectral self-adaptive mechanism to improve the Codebook algorithm. With this technique, the brightness bounds and spectral distortion thresholds are calculated automatically from the image data themselves statistically, not chosen empirically like the original Codebook, which is helpful for researchers to get rid of the cumbersome task of parameters tuning.

4.3/ SPECTRAL INFORMATION DIVERGENCE

From this section on, we will investigate techniques to improve the multispectral selfadaptive Codebook algorithm proposed in previous section. The first attempt introduced in this section is the utilization of the spectral information divergence to evaluate the spectral distance between the new pixel vector and that in the tested codeword in the matching process.

Based on the algorithms explained above, we can conclude that the main idea of Codebook background model construction is that, if the pixel of the current image is close enough to the average vector of the current codeword in the background model, it will be regarded as a perturbation on that codeword, unless, it will establish a new codeword to be associated with that pixel. However, how to measure this closeness, or in another way of comprehension, distance? In multispectral Codebook algorithm, two criteria have been adopted to evaluate the distance between two vectors, the brightness and the spectral distortion. Specifically speaking, the brightness is simply the L2-norm of the related channels, defined with Equation 3.15, and the spectral distortion is measured as a function of the brightness-weighted angle between the current and reference spectral vectors, as illustrated in Equation 3.17.

We should be aware that the combination of brightness and spectral distortion defined previously is not the only choice of estimation criteria.

Motivated by the spectral information divergence adopted in [Benezeth et al., 2014a], in this section, it is first employed to replace the spectral distortion in the previous multispectral self-adaptive Codebook model to be the matching criteria together with the brightness condition.

The whole diagram keeps the same with that in the previous section. Fig. 4.1 is the flow chart for background model construction. After the initialization of the Codebook for each pixel, the brightness and spectral information divergence are computed based on Equation 3.15 and Equation 2.21 when a new frame arrives. Besides, the same selfadaptive thresholding procedure is adopted for spectral information divergence as for spectral distortion. If a match is found, the current codeword will be updated with the spectral information of the new pixel, unless, a new codeword is created.

To further utilize the spectral information, the three features mentioned here are then employed together, as shown in Fig. 4.2. This step forward opens a door for other possibilities to seek novel kind of feature representation in the construction of the Codebook background model.

4.4/ MULTISPECTRAL SELF-ADAPTIVE BOX-BASED CODEBOOK

In the Codebook scheme, the background model is a set of pixel-wise codebooks consisting of the codewords. The original codeword has cylindrical structure which is visualized in Fig. 3.2 and devised based on an experiment observing how pixel values change over time. However, in essence, the cylindrical codeword has a disadvantage of complex structure and accordingly, it requires high computational cost for matching process. with another codeword structure, which is motivated by the idea of [START_REF] Tu | Box-based codebook model for real-time objects detection[END_REF] and [START_REF] Noh | A new framework for background subtraction using multiple cues[END_REF]. We improve their work by making the boundary self-adaptive and extending the structure to multispectral case.

4.4.1/ MULTISPECTRAL BOX-BASED CODEBOOK MODEL INITIALIZATION

The codebook for every pixel is an empty set and the number of the codewords is set to 0 at the beginning. When the first multispectral frame comes, the Codebook model is established with the first codeword consisting of v, aux and S , initialized with the spectral values of all the channels.

v = x = (X 1 , X 1 , ..., X n , I) (4.7)
where n is the number of multispectral channels and the brightness I is calculated with Equation 3.15.

The auxiliary information is defined as a four-tuple vector aux = ( f , λ, p, q ), without the information for the minimum and maximum of brightness. 3.1 and they are initialized as:

aux = (1, 0, 1, 1) (4.8)
S only contains the variance of brightness, which is initialized with:

S = I 2 (4.9)

4.4.2/ MULTISPECTRAL BOX-BASED CODEBOOK MATCHING PROCESS

The main difference lies here. The matching process is much more direct compared with that for the cylindrical Codebook model. For an input pixel at time instant t, with the current pixel value

x t = (X 1 , X 2 , . . . , X n ), a matching codeword v m = (V 1 , V 2 , . . . , V n ) is found if |X i -V i | ≤ σ I (4.10)
is satisfied for each channel i, where σ I is the standard deviation of brightness in the 

4.4.3/ MULTISPECTRAL BOX-BASED CODEBOOK MODEL UPDATING

Like all algorithms with the framework of Codebook illustrated above, when a new frame arrives, the matching criteria in Equation 4.10 is first evaluated. If it is satisfied, the corresponding codeword is updated with the information of the current pixel.

specifically speaking, the average multispectral vector v m is updated with:

v m ← ( f m X m1 + X 1 f m + 1 , f m X m2 + X 2 f m + 1 , . . . , f m X mn + X n f m + 1 , f m I mn + I n f m + 1 ) (4.11)
As for the four-tuple aux m = ( f m , λ m , p m , q m ), it is updated exactly the same way with the original Codebook algorithm, as listed in Table 3.2.

S m storing the variance of the brightness is updated with: 

x t = (X 1 , X 1 , ..., X n ) 4:
Find the matching codeword c m to x t in C if the following condition is satisfied for each channel. 

|X i -V i | ≤ σ I 6:
if C = φ or there is no match then 7: 

L ← L + 1, create a new codeword c L 8: v 0 = x t 9: aux 0 = (1, t -1, t, t)
v m ← ( f m X m1 +X 1 f m +1 , f m X m2 +X 2 f m +1 , . . . , f m X mn +X n f m +1 , f m I mn +I n f m +1 ) 14: aux m ← ( f m + 1, maxλ m , t -q m , p m , t) 15: S m ← f m σ Im +(I-I m ) 2 f m +1
16:

end if 17: end for Subsequently, the modules for the background model refining and the foreground detection thoroughly follow the way of the original Codebook algorithm.

4.5/ MULTISPECTRAL SELF-ADAPTIVE DYNAMIC CODEBOOK

In this section, we are going to propose a mutispectral dynamic Codebook algorithm, which is motivated by the work of [Ruidong, 2015] and [Kusakunniran et al., 2016] The Codebook model is initialized when the first multispectral frame comes by constructing an associated codeword for each pixel with the corresponding vector v being set to be the spectral values of all the channels for that pixel as below:

v = x = (X 1 , X 2 , . . . , X n ) (4.13)
where n is the number of channels. The auxiliary information will be defined as a fourtuple aux m = ( f m , λ m , p m , q m ), which follows the strategy of box-based Codebook, and they are initialized as:

aux = (1, 0, 1, 1) (4.14)
In spite of the vector v storing the average spectral values of the codeword and the auxiliary tuple aux, we also record a third vector named S, which represents the set of the variances of the separate spectrums σ 2 i and is initialized as:

S = (X 2 1 , X 2 2 , . . . , X 2 n ) (4.15)
What's more, another two vectors need to be recorded for the minimum and maximum values for each channel and they are initialized with the spectral values of the first multispectral frame:

B min = (X 1 , X 2 , . . . , X n ) (4.16) B max = (X 1 , X 2 , . . . , X n ) (4.17)

4.5.2/ MULTISPECTRAL DYNAMIC CODEBOOK MATCHING PROCESS

The matching condition is different from that in the multispectral Codebook algorithms illustrated above. For an input pixel at time instant t, with the current spectral value x t = 72CHAPTER 4. MULTISPECTRAL SELF-ADAPTIVE CODEBOOK AND ITS VARIANTS FOR BACKGROUND (X 1 , X 2 , . . . , X n ), the matching codeword is found if

B low i ≤ X i ≤ B high i (4.18) is satisfied for each channel i, i ∈ [1, n]
, where B low and B high denote the lower and upper boundaries, respectively. The lower boundary for each channel B low i can be obtained with the corresponding minimum value stored in B min and the standard deviation in the current codeword by

B low i = max(B min i -σ i , 0) (4.19)
The upper boundary is obtained with the corresponding maximum value stored in B max and the standard deviation by

B high i = max(B max i + σ i , 255) (4.20)
where σ i is the standard deviation of the i th channel value in the current codeword, whose square is the corresponding i th element of S m . It is observed that, during this matching process, the boundaries are acquired from the data themselves and no manual parameters tuning is required, which makes the proposed model more practical.

4.5.3/ MULTISPECTRAL DYNAMIC CODEBOOK MODEL UPDATING

Like the original Codebook algorithm, when a new frame arrives, the matching criteria is first evaluated to see whether it is satisfied. If a match is found, the corresponding codeword is updated with the information of the current pixel.

Specifically speaking, the average multispectral vector v m is updated as below.

v m ← ( f m X m1 + X 1 f m + 1 , f m X m2 + X 2 f m + 1 , . . . , f m X mn + X n f m + 1 ) (4.21)
As for the four-tuple vector aux m = ( f m , λ m , p m , q m ), it is updated exactly the same way as the original Codebook algorithm.
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The vector S m storing the variance of each separate spectrum is updated with:

S m ← ( f m σ m1 + (X 1 ) -X m1 2 f m + 1 , f m σ m2 + (X 2 ) -X m2 2 f m + 1 , . . . , f m σ mn + (X n ) -X mn 2 f m + 1 ) (4.22)
The two vectors for the minimum and maximum values for each channel, namely,

B min = (B min 1 , B min 2 , . . . , B min n ) (4.23) B max = (B max 1 , B max 2 , . . . , B max n ) (4.24)
are updated as follows: 

B min i ← min(B min i , X i ) (4.25) B max i ← max(B max i , X i ) ( 4 
x t = (X 1 , X 1 , ..., X n ) 4:
Find the matching codeword to x t in C if the following condition is satisfied for each channel.

5:

B low i ≤ X i ≤ B high i 6:
if C ← φ or there is no match then 7:

L ← L + 1, creat a new codeword c L 8: v 0 = x t 9: aux 0 = (1, t -1, t, t) 10: S 0 = (X 2 1 , X 2 2 , . . . , X 2 n ) 11: B min = (X 1 , X 2 , . . . , X n ) 12: B max = (X 1 , X 2 , . . . , X n ) 13: else 14:
update the matched codeword 15:

v m ← ( f m X m1 +X 1 f m +1 , f m X m2 +X 2 f m +1 , . . . , f m X mn +X n f m +1 ) 16: aux m ← ( f m + 1, maxλ m , t -q m , p m , t) 17: S m ← ( f m σ m1 +(X 1 )-X m1 2 f m +1 , f m σ m2 +(X 2 )-X m2 2 f m +1 , . . . , f m σ mn +(X n )-X mn 2 f m +1 ) 18:
B min i ← min(B min i , X i )

19: As we know, all the algorithms presented before this section belong to the pipeline on the left in Fig. 4.4, where all the channels used will be fed to the model together. Thus each channel has an influence on whether a match could be found in both background model construction phase and foreground detection phase. That is to say, all the channels shape the model jointly. However, in the fusion pipeline illustrated on the right in Fig. All the multispectral Codebook algorithms proposed in this chapter are based on the selfadaptive mechanism. That is to say, we don't need to provide the parameters adjusted empirically. The experiments are conducted on n channels on the five multispectral video sequences in the FluxData FD-1665 dataset, where n ∈ [3,7], not only for three channels as in the previous chapter.

B max i ← max(B max i , X i
In the following, the experiments are firstly conducted with different strategies illustrated above on the thirty-five different three-channel-based combinations, thirty-five different four-channel based combinations, twenty-one different five-channel based combinations, seven different six-channel based combinations, and total seven channels, together with the RGB for five videos. Then, only the largest F-measures among different combinations with same number of channels, or bands, are selected and listed in this section.

4.7.1/ EXPERIMENTS OF MULTISPECTRAL SELF-ADAPTIVE CODEBOOK WITH CYLINDRICAL STRUCTURE

In Table 4.1, brightness (B) and spectral distortion (SD) are used for evaluating the spectral distance between incoming pixel and the average vector in the current codeword. The largest F-measure for each video is in bold and the average F-measures for n bands of As indicated in Table 4.1, multispectral sequences can always outperform the corresponding RGB sequences. The combination with four channels performs best, with 7.2% higher F-measure than the RGB result on average. The combinations with three, five and six channels also have good performance with slight difference. The fact that the sevenband-based combination performs worst and even the six-channel situation has little accuracy decrease shows that, it is not always a wise decision to adopt as many channels as we have. There may exist information cancellation with more channels. Nevertheless, the combination with seven channels still can be nearly 5% more than the RGB result on average over five videos.

In the following experiments, the spectral information divergence explained in Section 4.3 is employed to replace the spectral distortion in the matching process. As stated above, the experiments for different n-band-based multispectral sequences are conducted and the largest F-measures are selected and listed in Table 4.2. Here, the judging criteria are brightness (B) and spectral information divergence (SID).

From Table 4.2, with this new set of criteria, the multispectral sequences still have better performance than the RGB sequences. Same as in Table 4.1, the four-band-based combination achieves the best results, with a 7.8% higher accuracy on average. The combination of three channels and five channels also perform well with a negligible gap while six-channel-based and seven-channel-based situations have much lower F-measure.

In the third experiment, brightness (B), spectral distortion (SD) and spectral information divergence (SID) are adopted together to determine the distance between two spectral vectors in the matching process, during which, the self-adaptive threshold is shared by spectral distortion and spectral information divergence. From the results on the five videos and each combination, the best F-measures for each column are extracted and listed in As we can see from Table 4.3, when all the seven channels are fed to the model, a worse detection result than that of RGB sequence has been produced. However, with the combination of three, four and five channels, we can still have a satisfying 6% higher F-mesaure.

From Table 4.1 to Table 4.3, regardless of different judging criteria used in matching process, multispectral sequences show an attractively better performance than the traditional RGB sequences, only except for the situation of seven channels with all three criteria.

Besides, combinations of three, four and five are promising to obtain a more accurate foreground detection results. The six-channel-based situation is less better while that of seven channels together is the worst.

We'd like to conduct a brief summary for the experiment results obtained until now. the best multispectral results not only from Table 4.1 to Table 4.3 above, but also from Table 3.6 in previous chapter are extracted and listed in Table 4.4, together with the corresponding RGB results.

In Table 4.4, the first category, using brightness and spectral distortion with static parameter mechanism, records the best multispectral and RGB results of each sequence taken from Table 3.6. In the self-adaptive mechanism, the same items for three different sets of criteria are also extracted from Table 4.1 to Table 4.3. The corresponding average F-measures on the five sequences are calculated and listed in the last column.

From Table 4.4, we can see that on the Videos 2 to 5, which are outdoor scenes, it performs best to adopt multispectral self-adaptive technique using the brightness and spectral distortion as matching criteria. What needs to mention is that, in this process researchers do not have to take time and effort to search for the appropriate parameters.

For the indoor Video 1, the utilization of the spectral information divergence does great help. The F-measure shows a great jump when SD is replaced by SID. When the three criteria are used together, the performance drops little from the B+SID combination, but still far better than that of B+SD. If all videos are considered, judging from the mean F-measures, the three-criteria based multispectral self-adaptive Codebook is the most promising choice.

4.7.2/ EXPERIMENTS OF MULTISPECTRAL SELF-ADAPTIVE CODEBOOK WITH OTHER STRUCTURES

In the following experiments, we go on evaluating the performance of the multispectral self-adaptive box-based Codebook, dynamic Codebook and fusion strategy proposed in Section 4.4, Section 4.5 and Section 4.6, respectively. Table 4.5 lists the selected largest F-measures with multispectral self-adaptive box-based

Codebook. The combination with three channels performs best and multispectral images with other numbers of channels all can produce a higher F-measure compared with RGB images.

The second experiment in this section is conducted for multispectral self-adaptive dynamic Codebook. The largest F-measures are selected and listed in which, combinations with three, four, five and six channels have a similar better performance, while that with seven channels performs worse than RGB images.

The last experiment is for multispectral self-adaptive fusion strategy. Here we will only explore on the thirty-five different three-channel-based combinations, thirty-five different four-channel-based combinations, twenty-one different five-channel-based combinations, seven different six-channel-based combinations, and total seven-channel case, but not the RGB. Because we just want to investigate whether Codebook-based models with other codeword structures will do good to background subtraction task with multispectral images. The best F-measures are selected and shown in Table 4.7, where the F-measure obtained with three, four and five are attractively promising, which is consistent with the results of former experiments.

The results of all the proposed methods are further compared in Table 4.8, by selecting the largest F-measure for each video with the methods illustrated above, in which, the brightness (B), spectral distortion (SD) and spectral information divergence (SID) are adopted to build the cylinder background model. The average F-measures for all the five videos and outdoor sequences are also calculated and listed in the last two rows of this table.

The F-measures with Pooling, the algorithm proposed in the original multispectral dataset paper [Benezeth et al., 2014a], are also listed in the 2 th column in Table 4.8 as a refer- ence. As reviewed in the second chapter, Pooling also need to select the combination of some spectral channels with the highest accuracy, as we have done for the algorithms in this chapter.

From Tables 4.1, to 4.3, and Tables 4.5 to 4.7, which show the results of six self-adaptive algorithms we have proposed in this chapter, the largest F-measure never appear when all seven channels are used. The combination with four channels has the largest possibility to achieve the best performance. This agrees with the assertion deduced with the Pooling method by Yannick et al. [Benezeth et al., 2014a] that only few channels actually define the moving objects.

From average F-measures for the whole dataset, the approaches of codeword with other structures can produce comparable results to those methods that utilize all the three criteria with cylindrical structure, listed in 5 th column in Table 4.8, which proves the effectiveness of methods with other structures. As we can see for the method adopting B and SD, the accuracy for outdoor scenes outperforms in average all the other mechanisms, but it achieves less satisfactory result for the indoor video. The last three techniques proposed with non-cylindrical structures, especially the multispectral self-adaptive dynamic Codebook algorithm can be a compromising solution.

Another advantage is the low complexity of the matching equations, as the multispectral channels are processed separately only utilizing the intensity value of each channel and 82CHAPTER 4. MULTISPECTRAL SELF-ADAPTIVE CODEBOOK AND ITS VARIANTS FOR BACKGROUND no correlation between channels need to be considered and calculated in the matching process. Besides, for all the algorithms listed here, it is quite easy to adapt to multispectral images with any number of channels for background subtraction.

4.8/ CONCLUSION AND FUTURE WORKS

In this chapter, we have achieved significant improvements by investigating several enhancements on the Codebook framework for background subtraction, using multispectral sequences. The main contributions can be concluded as follows.

Firstly, a multispectral self-adaptive mechanism has been designed to obtain the parameters automatically based on the statistical information extracted from the data themselves, while the parameters in the original version are selected empirically and experimentally.

The self-adaptive technique makes the algorithm solid, reliable and robust, as the detection results of Codebook are not heavily impacted by the parameters any more, let alone the time and effort to search for the optimal parameters. This technique is particularly important in the research for multispectral case, as the parameters should be varied with different number of channels used.

Then we have explained in detail the improvements in the framework of multispectral selfadaptive Codebook model that show performance increase in two aspects. The first one is to employ another criteria named spectral information divergence in the matching process. The second aspect is to introduce other strategies to build the model to represent the background.

In the multispectral self-adaptive Codebook framework, we have conducted experiments with the matching criteria as the combination of brightness and spectral distortion, the combination of brightness and spectral information divergence, and the combination of these three distance evaluation together in the matching process. The threshold for spectral information divergence is obtained and updated with the same self-adaptive mechanism of that for spectral distortion. The results clearly show that the multispectral selfadaptive Codebook is more capable of detecting moving object regions than the multispectral Codebook extended directly from the original Codebook devoted in the previous chapter. Results demonstrated that we can acquire a comparable accuracy using much simpler matching equations than the aforementioned methods based on cylinder model.

These improvements forward altogether offer new insight for future works for using multispectral sequences for robust detection and motion analysis for moving objects detection.

In next chapter, we investigate the use of deep learning technique for background subtraction with multispectral images, since it acquires impressive accuracy and attracting performance in computer vision community. [ [START_REF] Szegedy | Going deeper with convolutions[END_REF]] [He et al., 2016], object detection [START_REF] Uijlings | Selective search for object recognition[END_REF]] [Girshick et al., 2014] [Girshick, 2015] [Ren et al., 2015] [Redmon et al., 2016] semantic segmentation [Long et al., 2015][Badrinarayanan et al., 2017] [He et al., 2017].

Recently, inspired by the impressive achievement of deep learning, background subtraction based on deep learning shows great success and is now becoming a hot research topic due to its high precision [START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF]] [Lim et al., 2019].

The first attempt to apply ConvNets for background subtraction problem was conducted by Braham and[START_REF] Braham | Deep background subtraction with scene-specific convolutional neural networks[END_REF]. Since then, Numerous supervised-based deep learning papers [Babaee et al., 2018] [Lim et al., 2018] [ [START_REF] Lim | Background subtraction using encoder-decoder structured convolutional neural network[END_REF]] [Lim et al., 2019] [Zheng et al., 2019b] [Zheng et al., 2018b] [ [START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF][START_REF] Bakkay | Folw Chart of Conditional GAN[END_REF] have been published in the field of background subtraction. Currently, the top background subtraction methods in the large-scale dataset

CDnet2012 [Goyette et al., 2012] and its extension CDnet 2014 [START_REF] Wang | Cdnet 2014: an expanded change detection benchmark dataset[END_REF] are based on ConvNets with a large gap of performance in comparison to conventional 86CHAPTER 5. MULTISPECTRAL BACKGROUND SUBTRACTION WITH DEEP LEARNING approaches. Among all these supervised-based deep learning methods, the method called FgSegNet v2 [START_REF] Lim | Learning multi-scale features for foreground segmentation[END_REF] outperforms state-of-the-art approaches.

Moreover, the majority of the current background methods in this research community are focused on visible images or Red-Green-Blue (RGB). With the rise of different sensors, multi-modal foreground detection, which integrates multiple complementary data like visible and thermal infrared sources, has received more and more attention recently [Zheng et al., 2019a]. Compared with visible images, background subtraction using multispectral images can be more interesting because of the better spectral resolution. Thanks to the recent advances in technology, new products such as the FD-1665 Multispectral Cameras from FluxData are commercially available to offer the possibility to record multispectral images of more than three spectral channels in the visible and near infra-red(NIR) part of the spectrum simultaneously [Benezeth et al., 2014a].

To our knowledge, the FluxData FD-1665 dataset is the only public real multispectral image background subtraction dataset. Most public image datasets built for background subtraction, or change detection, such as the well-known Wallflower dataset [START_REF] Toyama | Wallflower: Principles and practice of background maintenance[END_REF], the Stuttgart Artificial Background Subtraction (SABS) dataset [START_REF] Brutzer | Evaluation of background subtraction techniques for video surveillance[END_REF] and CDnet [Goyette et al., 2012] [Wang et al., 2014], are based on visible spectral images or still recombined images. For example, the Grayscale-Thermal Foreground Detection (GTFD) dataset [Li et al., 2016] provides pairs of grayscale and thermal frames to investigate the fusion methods of thermal and grayscale data for effective foreground detection.

According to the above observations and motivated by the impressive accuracy of FgSegNet v2 [START_REF] Lim | Learning multi-scale features for foreground segmentation[END_REF] for foreground segmentation with RGB images, we made an attempt to investigate the potential benefits of using multispectral images via con- approaches using all the channels of the same multispectral dataset. In Section 5.5, we conclude our work and provide some future works.

5.2/ RELATED WORKS

We will discuss some related works regarding deep learning, convolutional neural networks. Specifically, we will focus our task by doing a very brief review of VGG networks and the encoder-decoder architecture, as they are related with the deep model of FgSegNet v2 we are going to use.

5.2.1/ DEEP LEARNING

Recent advances in Artificial Intelligence (AI) and machine learning, especially the emerging field of deep learning, have changed the way we process, analyse and manipulate data. The schematic relationship among these three terminologies are provided with Fig. target detection, visual recognition and robotics, but also in many other practical applications [START_REF] Nogueira | Towards better exploiting convolutional neural networks for remote sensing scene classification[END_REF]] [Wang et al., 2018] and have attracted great interest in both academia and industrial communities [Zhang, 2018].

Deep models can be referred to as neural networks with deep structures. The concept of neural networks is not something new and can date back to 1940s [START_REF] Pitts | How we know universals the perception of auditory and visual forms[END_REF].

The original intention was to simulate the human brain system to solve general learning problems in a principled way. Since then this decades-old scientific discovery started its long journey to innovate the entire academic community.

There are some remarkable technical breakthroughs and significant advances in the design of network structures and training strategies, including but not limited to: [START_REF] Rumelhart | Learning internal representations by error propagation[END_REF] Since AlexNet, even larger and deeper networks have been proposed. These models include the VGG networks [Simonyan et al., 2014], which makes use of a number of repeating blocks of elements; the network in network (NiN) [START_REF] Lin | Network in network[END_REF], which convolves whole neural networks patch-wise over inputs; the GoogLeNet [START_REF] Szegedy | Going deeper with convolutions[END_REF] and its higher versions [Ioffe et al., 2015] [Szegedy et al., 2016] and [START_REF] Szegedy | Inception-v4, inception-resnet and the impact of residual connections on learning[END_REF],

which make use of networks with parallel concatenations; residual networks (ResNet) [He et al., 2016] which are currently the most popular go-to architecture today, and densely connected networks (DenseNet) [Huang et al., 2017], which are expensive to compute but have set some recent benchmarks [START_REF] Zhang | Dive into Deep Learning[END_REF]. These architectures are now the base models upon which an enormous amount of research and projects are built and have been applied with great success in the computer vision community. where the name of this set of models comes from.

There are 6 kinds of ConvNet configurations included in the VGG networks. All configurations follow the generic design in architecture and differ only in the depth. As a typical and popular ConvNet architecture, VGG16 has been fine-tuned for many other tasks, such as object detection [Ren et al., 2015], semantic segmentation [START_REF] Lim | Background subtraction using encoder-decoder structured convolutional neural network[END_REF] [ Dai et al., 2016] and so on. Table 5.2 illustrates the details of the configuration of VGG16, including the type, the kernel size, the number of channels and the output shape for each hidden layer. Specifically speaking, one VGG block consists of a sequence of convolutional layers, performing 3x3 convolutions with stride 1 and pad 1, followed by a maxpooling layer for spatial downsampling, which performs 2x2 maxpooling with stride 2. Thus the resolution is halved after each block.

We can also see in Table 5.2, the first block has 64 output channels and each subsequent block doubles the number of output channels, until that number reaches 512 [START_REF] Zhang | Dive into Deep Learning[END_REF]. The input size of pictures for VGG16 is 224 × 224 × 3 and 3 stands for the three spectral channels of RGB. The output size for each layer is also listed for better understanding the structure of this model. et al., 2016]. In this architecture, the network is partitioned into two parts, the encoder and the decoder.

As Fig. 5.3 shows, the input, such as an image patch, is fed to the encoder which produces features. The decoder module then converts the features into a prediction results for a specific purpose. Meantime, the error is measured. The encoder and decoder are parameterized functions that are trained to minimize the average error [Ranzato et al., 2007].

The encoder can perform data compression especially in dealing input of high dimensionality by mapping input to a hidden layer [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF]. The decoder can reconstruct the approximation of input.

An encoder is a network (FC, CNN, RNN (Recurrent neural network), etc) that takes the input, and outputs a feature map/vector/tensor. This feature vector holds the information, the features, that represents the input. The decoder is again a network (usually the same network structure as encoder but in opposite orientation) that takes the feature vector from the encoder, and gives the best closest match to the actual input or intended output.

5.3/ PROPOSED MULTISPECTRAL BACKGROUND SUBTRACTION WITH DEEP LEARNING

In this section, we will present the deep learning approaches we proposed for background subtraction with multispectral images. The proposed algorithms are based on FgSegNet v2 [START_REF] Lim | Learning multi-scale features for foreground segmentation[END_REF], which will be first introduced as it serves as inspiration for multispectral case. Then, the proposed architectures are introduced. computed by multiplying the filter coefficients in a spatially sparse way; this is done by the enlargement of the region that the filter is applied without introducing new coefficients to the filter. This convolution has been recently applied in semantic segmentation domain [9][10][11]39]; the idea is to enlarge the field of views in the network without increasing the number of learnt parameters. Motivated by the recent success of the previous works, we proposed in [1] an FPM module with parallel dilated convolution layers that is plugged on top of a single-input encoder; it provides comparable foreground segmentation results compared to multi-input encoder.

The method

In this section, we revisit our previous work, FgSegNet [1], in both encoder and FPM module. For more details, one may refer to the original paper.

The encoder network

As authors of reference [30] do, we also use in FgSegNet the low-level features of the pre-trained VGG-16 net. We utilize the first four blocks of VGG-16 net by removing the last, i.e., fifth, block and third max-pooling layers, obtaining therefore higher-resolution feature maps. Dropout [32] layers are inserted after every convolutional layer of the modified net, and then, this block is fine-tuned. In this work, we also use the same encoder architecture as in the FgSegNet implementation. We observe that this modified net improves the performance compared to other pre-trained nets.

The modified FPM

Given feature maps F, which are obtained from the output of our encoder, the original FPM module [1] pools features at multiple scales by operating several convolutional layers with different dilation rates and a max-pooling layer followed by a 1 × 1 convolution on the same feature F, and then, the pooled features are concatenated along the depth dimension. Finally, the concatenated feature is passed through BatchNormalization [16] and SpatialDropout [34] layers. In this work, we improve the original FPM module by proposing some modifications to it in two parts (Fig. 3):

(1) the resultant features f a from a normal 3 × 3-conv are concatenated with the feature F and progressively pooled by a 3 × 3-conv with a dilation rate of 4, resulting in features f b . Then, F and f b are concatenated and fed to a 3 × 3-conv with dilation rate of 8, resulting in features f c . Again, F and f c are concatenated and fed to a 3 × 3-conv with dilation rate of 16. Finally, all features are concatenated to form 5x64 depth features, that we call it as F ′ ; F ′ contains multi-scale features with wider receptive fields than those used in [1].

(2) We replace BatchNormalization with InstanceNormalization [35] since we empirically observe that InstanceNormalization gives slightly better performance with a small batch size. [START_REF] Ulyanov | Instance normalization: The missing ingredient for fast stylization[END_REF] has been adopted to replace Batch Normalization (BN), as it produces slightly high accuracy by observation.

Furthermore, a novel decoder network with Global Average Pooling (GAP) module has been designed to improve the performance with small cost in computation. As illustrated in Fig. 5.4, the low level feature coefficients vectors in the encoder network are extracted and used to guide the high level features in the decoder part.

In our work, the modified FPM and the decoder with GAP are inherited from FgSegNet v2. Since the FPM module can be regarded as preprocessing for decoder network, hereafter, they are merged to the decoder implementation for concise expression.

5.3.2/ MULTISPECTRAL THREE-CHANNEL BASED FGSEGNET V2

The original VGG16 deep model is pretrained using conventional RGB images with three channels. Accordingly, the third dimension of the filter for the first convolutional layer is also three. In order to investigate the possible improvement of multispectral images against RGB based on FgSegNet v2, we first extract three channels out of seven in the multispectral FluxData FD-1665 dataset [Benezeth et al., 2014a], which was introduced in detail earlier in the third chapter. Then, the trials with these extracted three-channel images are conducted using FgSegNet v2 for each scene. The number of combinations composed of three channels among seven is C 3 7 = 35. Thus, for each scene, we have built thirty-five independent background models. After each deep model is trained with the training subset of a certain combination of channels, the testing subset of the same channels is used to evaluate the performance of this background 

5.3.3/ PROPOSED CONVOLUTIONAL ENCODER FOR ALL MULTISPECTRAL CHAN-

NELS

As we mentioned in the last section, the third dimension of first filter of the original VGG16 is three, as it has been pretrained with three-channel based RGB images. If we simultaneously feed the multispectral images with more than three channels to the deep model of FgSegNet v2, which adopts the first four blocks of VGG16 as the encoder, only the first three channels are really processed, while others are ignored. Therefore, we can not utilize the FgSegNet v2 model directly for multispectral images with more than three channels.

In order to further explore the benefits of multispectral images, we have proposed a new convolutional encoder for extracting the relevant deep features from the given multispectral-groundtruth pair with images consisting any arbitrary number of channels. Table 5.4 illustrates the configuration of the proposed encoder for multispectral images, where the number of input is seven, as the FluxData FD-1665 dataset we use contains seven channels. Including the trainable Block 4 from the FgSegNet v2, the proposed encoder consists of two more convolutional layers, both of which are followed by a maxpooling layer in order to match the size of the inputs for the decoder. What is needed to be stated is that, the filter channel of the first convolutional layer is not fixed in the proposed encoder, and will only be assigned when the images for training arrive. That is to say, for multispectral case, the size of the filter will be 3×3×7 (7 stands for the number of available channels), while the size is set to 3×3×3 if RGB images are fed. This property allows us to conduct a fair comparison for performance in background subtraction between multispectral images based model and RGB images based model. The first experiments are conducted for thirty-five three-channel based combinations on the five different videos in the FluxData FD-1665 dataset. Given the groundtruth data, the performance of foreground detection is evaluated at a pixel level by F-measure, which is a harmonic value of precision and recall and is widely used in the domain of background subtraction. What is needed to be noted is that only the pixels with the label of moving or static are taken into consideration in the evaluation process.

Table 5.5 shows the three-channel based F-measures on five videos, together with the RGB results in the last row, acting as a reference. The highest accuracy for each scene is in bold. It is clear that the best three-channel combination on one video is not always the same on the others, which is reasonable, since the spectral property and the ability to represent scenes vary with different channel combinations. This is quite obvious for Video 1, which is the only indoor scene, where the largest F-measure is 0.9703 (with the combination of Channels 4, 5 and 7), while the smallest is 0.9425 (with Channels 2, 4 and 5). As it is known, Channel 7 corresponds to the NIR spectrum and it offers good complementary information in this scene.

In order to be more clear in comparing the performance of RGB and other three-channel combinations extracted from the original seven-channel multispectral images, the largest F-measures for each scene in Table 5.5 are selected, together with the RGB for five videos and listed in Table 5.6. As Table 5.6 indicates, there are always three-channel based combinations that have better spectral discrimination and outperform the RGB images with a certain degree, especially for the Video 5, where there exists objects with shadows. With the combination of Channels 1, 4 and 7, a higher F-measure of 0.9840 is obtained compared to 0.9714 for RGB images. This is quite interesting, because in this part we have followed the same mechanism of FgSegNet v2 for the fine-tuning strategy, that is, only the parameters in the forth block are reinitialized and fine-tuned by the new data, while the first three blocks are frozen and the parameters are adopted directly from VGG16 deep model. As VGG16 is pretrained with conventional RGB images, one can expect better segmentation results with RGB images than the extracted three-channel based multispectral images. We think that the combination of channels (1, 4 and 7) per-100CHAPTER 5. MULTISPECTRAL BACKGROUND SUBTRACTION WITH DEEP LEARNING to make the visual results tidy and easy to read, we assign the same gray value for these pixels in the mask images as they are originally in the groundtruth images. 

103

encoder with the classical approaches in [Benezeth et al., 2014a] [Sobral et al., 2015] [Silva et al., 2016] and [Silva et al., 2017] using the same dataset. They have been explained in the chapter of state of art. The F-measures of these different methods on the five videos of the FluxData FD-1665 dataset are collected and listed in Table 5.8. OWOC-RS = Online Weighted One-Class Random Subspace [Silva et al., 2016] Superpixel-OWAOC = Superpixel-based Online Wagging One-Class Ensemble [Silva et al., 2017] The proposed convolutional approach outperforms the classical methods with a considerable gap on average, with a mean F-measure of 0.9684, which is nearly five percent higher than the ranking first classical algorithm OSTD in the fifth column. This shows the impressive ability of deep features learned with the proposed ConvNet in the task of background subtraction.

However, we need to be aware that the conventional feature selection methods can also obtain great accuracy with a carefully designed mechanism. As we can see, the OWOC-RS proposed by [Silva et al., 2016] CPU (6 cores and 12 threads) with a RAM of 32 GB. The time for prediction with our proposed approach is 0.134s for each multispectral image with a resolution of 492×658.

To be best of our knowledge, our work is the first attempt to utilize multispectral images [Benezeth et al., 2014a] for background subtraction task with deep learning based method. Although the authors of [Sobral et al., 2015] and [Silva et al., 2017] have provided the computational cost of their classical algorithms with Matlab installed in laptop, we can not conduct relevant comparison of prediction time with different platforms and languages adopted.

5.5/ CONCLUSION

In this work, we followed the trend of deep learning and apply its concepts to background subtraction using multispectral images. Based on the ranking first algorithm FgSegNet v2 on the large-scale change detection dataset CDnet, we first extracted three channels out of the seven channels on five videos in the FluxData FD-1665 dataset to match the number of input channels for the pretrained VGG16 deep model with RGB images. The results were interesting, as some combinations of three-channel based multispectral images performed better than the conventional RGB images.

In order to further explore the benefits of multispectral images, we have proposed a new convolutional encoder for extracting the relevant deep features from the given multispectral-groundtruth pair with images consisting of any arbitrary number of channels. The modified VGG16 has been pretrained with large-scale RGB ImageNet dataset, which are not available for multispectral case. Thus, there is no pretrained deep model adopted in the proposed encoder and all the parameters are trainable. The accuracy of the proposed convolutional approach is quite appealing when compared with other approaches using the same multispectral dataset. As the filter channel of the first convolutional layer is not fixed and can also be used for RGB images, the results show that the multispectral images based model outperforms the RGB images based one.

Our work can be seen as an attempt to investigate the potential advantages of using multispectral information via deep features learned with ConvNets for the background subtraction task. Some future research directions using multispectral images in background subtraction are as follows. Larger multispectral datasets including other challenges, like night videos, should be investigated for exhaustive evaluation of multispectral information for background subtraction. Besides, as the filter channel of the first convolutional layer is arbitrary in the proposed encoder, the performance of foreground-background segmentation with other sizes (4,5,6) of multispectral images combination can be further studied.

Another interesting direction lies in the combination of the proposed encoder and the pretrained deep models like VGG16 to take use of their powerful generic feature encoding properties. Last but not least, other data sources like depth, could also be explored and exploited for future research as they can offer important complementary information for background subtraction task.

6

CONCLUSIONS AND FUTURE WORKS 1) Manual tuning for optimal parameters is time consuming and not robust, as the detection results of Codebook are heavily impacted by the parameters.

2) If the algorithm needs to be run for long periods of time, the parameters should not be static but could be automatically adapted to the environmental changes.

3) When using the multispectral sequences, the parameters also have to be adjusted with different number of channels used. This is a big issue for our research objective.

Furthermore, in the framework of multispectral self-adaptive Codebook model, improvements have been proposed in two aspects. The first one is to introduce a new feature descriptor called spectral information divergence in the matching process to evaluate the spectral distance between the new pixel vector and that in the tested codeword. It has been first employed to replace the spectral distortion in the previous multispectral self-adaptive Codebook model to be the matching criteria together with the brightness condition. To further utilize the spectral information, the three features mentioned here have been then adopted together. In both mechanisms, the strategy to acquire the selfadaptive threshold for spectral information divergence is the same with that for spectral distortion. According to the experimental results, the utilization of the spectral information divergence does great help for the indoor scene. The three-criteria based multispectral self-adaptive Codebook is the most promising choice across all the five scenes. This attempt opens a door for other possibilities to seek novel kind of feature representation in the construction of the Codebook background model.

The latter aspect includes three techniques to build the background model, namely, boxbased Codebook, dynamic Codebook and fusion strategy, each of which processes the multispectral channels independently and only the intensity value for each channel is used to calculate the spectral similarity between the new frame pixel and reference one in current codeword. From average F-measures for the whole dataset, the approaches 6.2. FUTURE WORKS 111 of codeword with these new non-cylindrical structures can produce comparable results to those methods that utilize all the three criteria with aforementioned cylindrical structure.

Besides, for all the algorithms listed here, it is quite easy to adapt to multispectral images with any number of channels for background subtraction.

Last but not least, we have followed the trend of deep learning and applied its concepts to background subtraction using multispectral images. Based on the ranking first algorithm FgSegNet v2 for RGB images, we first extracted three channels out of the seven channels to match the number of input channels for the pretrained VGG16 deep model with RGB images. Besides, in order to use more channels of the multispectral images, a new convolutional encoder has been proposed for extracting the relevant deep features from the given multispectral-groundtruth pair with images consisting of any arbitrary number of channels. The proposed convolutional approach outperforms the classical methods with a considerable gap on average, which shows the impressive ability of deep features learned with the proposed ConvNet in the task of background subtraction.

6.2/ FUTURE WORKS

Based on the algorithms proposed and results obtained in this thesis, we believe the following perspectives could help further develop the research conducted in this thesis.

1)

In the framework of multispectral self-adaptive Codebook model, we have investigated spectral information divergence to measure the spectral distance.

There is another feature description named Local Binary Patterns (LBP) 1994 [START_REF] Ojala | Performance evaluation of texture measures with classification based on kullback discrimination of distributions[END_REF]] [Ojala et al., 1996], which can also be a promising choice. As a very powerful feature for texture classification, LBP has been proven to be useful in moving object detection [START_REF] Wang | An hog-lbp human detector with partial occlusion handling[END_REF]] [Heikkila et al., 2006]. The accuracy could improve with a well designed mechanism to integrate LBP with the spectral features adopted in our work.

2)

In order to utilise all the seven multispectral channels in the deep learning framework, we have proposed an new encoder with an arbitrary number of input for first filter. We could also further study the performance of foreground-background segmentation with other sizes (four, five or six) of multispectral images combination.

CHAPTER 6. CONCLUSIONS AND FUTURE WORKS

Another promising direction lies in the combination of the proposed encoder and the pretrained deep models like VGG16 to take use of their powerful generic feature encoding properties.

Some other interesting future research directions are as follows.

1)

We sincerely appreciate the creators of FluxData FD-1665 dataset, which is the only public real multispectral image dataset for background subtraction, to the best of our knowledge. However, it only consists of five videos and all are in daytime with good illumination condition. Thus, larger multispectral datasets including other challenges, as illustrated in Chapter 2, especially night videos, should be investigated for exhaustive evaluation of multispectral based algorithms for background subtraction task.

2) The leading background subtraction algorithms work with RGB images. It would be interesting if we introduce more diverse sources of information for this task.

The multispectral images adopted in this thesis is one choice. Nowadays, some researchers are also working on exploiting and integrating depth data, as they can offer important complementary information, to resolve the challenges of background subtraction like [Camplani et al., 2014] [Camplani et al., 2017] [Moy à-Alcover et al., 2017] [Fernandez-Sanchez et al., 2013] with attractive and promising performance.

3) Most of the background subtraction approaches available are specifically designed for static cameras. As we know, a typical procedure for the traditional background subtraction algorithms first builds a statistical background model and then extracts moving objects by detecting foreground regions, which do not share similar characteristics with the static background. The model would probably be invalid when the camera moves. It would be also very interesting if the background subtraction methods illustrated in the state of arts can be modified and extended to the case of moving cameras, like the efforts done in [Kim et al., 2013] [Viswanath et al., 2015] [Gong et al., 2017].

4)

As we can see on CDnet website [START_REF] Wang | Cdnet 2014: an expanded change detection benchmark dataset[END_REF], the ranking first approaches using the large-scale CDnet dataset for background subtraction, are mainly based 6.2. FUTURE WORKS 113 on supervised learning with convolutional networks. Although they have output really impressive performance, unsupervised and semi-supervised methods [START_REF] Saatci | Bayesian gan[END_REF] are still needed to be investigated and explored to use of as little labeled data as possible, since they are not always available or consuming to obtain [START_REF] Sultana | Unsupervised deep context prediction for background foreground separation[END_REF]. 

  are employed and new techniques to build the background model are designed, including box-based Codebook, dynamic Codebook and fusion strategy. The last attempt is to investigate the potential benefit of using multispectral images via convolutional neural networks. Based on the impressive algorithm FgSegNet v2, the major contributions of this part lie in two aspects: (1) extracting three channels out of seven in the FluxData FD-1665 multispectral dataset to match the number of input channels of the deep model, and (2) proposing a new convolutional encoder to utilize all the multispectral channels available to further explore the information of multispectral images. Titre : Multispectral Images Based Background Subtraction Using Codebook and Deep Learning Approaches Mots-cl és : Soustraction d'arri ère-plan, Images multispectrales, Mod èle de Codebook, Apprentissage profond R ésum é : Cette th èse vise à étudier les images multispectrales pour la d étection d'objets en mouvement par soustraction d'arri ère-plan, à la fois avec des m éthodes classiques et d'apprentissage profond. En tant qu'algorithme classique efficace et repr ésentatif pour la soustraction de fond, l'algorithme Codebook traditionnel a d'abord ét é étendu au cas multispectral. Afin de rendre l'algorithme fiable et robuste, un m écanisme autoadaptatif pour s électionner les param ètres optimaux a ensuite ét é propos é. Dans ce cadre, de nouveaux crit ères dans le processus d'appariement sont employ és et de nouvelles techniques pour construire le mod èle d'arri ère-plan sont conc ¸ues, y compris le Codebook de boîtes, le Codebook dynamique et la strat égie de fusion. La derni ère tentative est d' étudier les avantages potentiels de l'utilisation d'images multispectrales via des r éseaux de neurones convolutifs. Sur la base de l'algorithme impressionnant FgSegNet v2, les principales contributions de ce travail reposent sur deux aspects: (1) extraire trois canaux sur sept de l'ensemble des donn ées multispectrales du FluxData FD-1665 pour correspondre au nombre de canaux d'entr ée du mod èle profond, et (2) proposer un nouvel encodeur convolutionnel pour pouvoir utiliser tous les canaux multispectraux disponibles permettant d'explorer davantage les informations des images multispectrales.
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 41 . INTRODUCTION images into different categories, object detection to identify specific objects in an image, image segmentation to partition an image into separate multiple regions, instance segmentation to create masks for each individual object in the image.

Fig. 2 .

 2 Fig.2.1 shows several processing modules for the majority of background subtraction algorithms, which are background model initialization, background model maintenance, and foreground detection. As the names suggest, background model initialization regards the initializing step to create the background model [Bouwmans et al., 2017a]; background model maintenance concerns the adaptation of the model to the background changes, and foreground detection is to compare each incoming frame with the built background model to acquire a binary mask distinguishing between foreground pixels and background ones.
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 2 Figure 2.1: Background subtraction process

CHAPTER 2 .

 2 STATE OF ART computation of background model. For example, a walking person passing behind a tree is partially occluded in several frames. Video noise: Video signal is generally superimposed by noise. Coping with such degraded signals affected by different types of noise, such as sensor noise or compression artifacts, brings in more difficulties to background subtraction.
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 22 Figure 2.2: Flowchart of semantic background subtraction algorithm[START_REF] Braham | Semantic background subtraction[END_REF] 
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 1 Fig. 1: The FgSegNet Architecture

3 Figure 2 . 3 :

 323 Figure 2.3: FgSegNet M network architecture[START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF] 
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 2 Fig. 2: The architecture of each CNN in the triplet network.
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 24 Figure 2.4: Encoder Architecture of each CNN in Triplet Network[START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF] 
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 3 Fig. 3: The TCNN architecture
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 25 Figure 2.5: Decoder Configuration [Lim et al., 2018] 

Fig. 1 .

 1 Fig. 1. The FgSegNet_M architecture.

Fig. 2 .

 2 Fig. 2. The Feature Pooling Module (FPM). BN (BatchNormalization), SD (Spatial-Dropout). All convolution layers have 64 features.

Figure 2 .

 2 Figure 2.6: Feature Pooling Module[START_REF] Lim | Foreground segmentation using a triplet convolutional neural network for multiscale feature encoding[END_REF] 
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 23 Figure 2.7: BSGAN pipeline

Fig. 4 .

 4 Fig. 4. Bayesian generative adversarial networks based on DCGAN.

  (a). The pathway from the white noise is upsampling, and the size of each layer changes in Please cite this article as: W. Zheng, K. Wang and F.-Y. Wang, A novel background subtraction algorithm based on parallel vision and Bayesian GANs, Neurocomputing, https://doi.org/10.1016/j.neucom.2019.04.088

Figure 2 .

 2 Figure 2.8: Flow Chart of Bayesian GANs[Zheng et al., 2019b] 

Fig. 2 .

 2 Fig. 2.8 illustrates the flow chart of training process in detail. The inputs of the generator network are the normalized image and Gaussian noise. Then the generated foreground-

  , based on a multi-resolution CNN. Several CNN configurations and training strategies have been explored. The architecture of the basic CNN model is illustrated in Fig. 2.11. It consists of four convolutional layers, among which the first two come with a 2 × 2 maxpooling layer, and two fully connected layers.One of the drawbacks for the basic CNN model lies in the wrong classification of the uniform textureless areas for large moving objects, because of its fixed input patch size.

Fig. 2 .

 2 Fig. 2. Architecture of the proposed cGAN model for background subtraction.

  Figure 2.10: Architecture of Conditional GAN model[START_REF] Bakkay | Folw Chart of Conditional GAN[END_REF] 

2. 3 .Figure 2 .

 32 Figure2.13: Architecture of the cascaded CNN Model[START_REF] Wang | Interactive deep learning method for segmenting moving objects[END_REF] 

2. 3 .

 3 BACKGROUND SUBTRACTION METHODS WITH MUTISPECTRAL IMAGES 33 2.3.3/ SPECTRAL ANGLE Instead of using a straightforward extension of the color-based Mahalanobis distance, the multispectral dataset paper[Benezeth et al., 2014a] has also proposed another two dedicated ways to measure the similarity or dissimilarity of spectral vectors.

  21) 2.3.5/ ONLINE STOCHASTIC TENSOR DECOMPOSITION Besides, Sobral et al. [Sobral et al., 2015] have proposed another mechanism based on stochastic decomposition of low-rank and sparse components for background subtraction with multispectral video sequences. In this algorithm, each multispectral image is represented as a three-dimension data cube or tensor, which can be considered as a multidimensional or N-way array.

Figure 3 . 1 :

 31 Figure 3.1: Block diagram of the Codebook process

  which takes advantages of the Codebook and GMM-based techniques to overcome not only non-practical modeling methodologies of the probabilistic approaches, but also inaccurate detection performance of Codebook techniques in moving backgrounds.[Mousse et al., 2014] associates the original Codebook with an edge detection algorithm. In the work of[START_REF] Tu | Box-based codebook model for real-time objects detection[END_REF], the background model is constructed by encoding each pixel into a codebook consisting of codewords based on a box model and it is also appropriate in the Hue-Saturation-Value (HSV) color space. Besides,[Ruidong, 2015] has rewritten the model parameters and then processed the three channels separately to simplify the matching equations. In[Kusakunniran et al., 2016], a dynamic boundary of codebook under the Lab color space has been developed and evaluated using the well-known large-scale dataset CDnet2012

  and (b) occur. 3: (a) colordist(x t , v m ) ≤ ε 2 4: (b) brightness I, Ǐm , Îm = T rue 5: if there is a match, then 6: output the pixel as background and update the current matched codeword 7: else 8:
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 332 Figure 3.2: Visualization of the judging criteria brightness and spectral distortion

Fig. 3 .

 3 Fig. 3.3 offers a working flow for multispectral Codebook model construction with brightness and spectral distortion. When a new frame arrives, the brightness and spectral distortion are first computed based on Equation 3.15 and Equation 3.17. Then if the two

50CHAPTER 3 Figure 3 . 3 :

 333 Figure 3.3: Codebook construction with brightness and spectral distortion
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 3435 Figure 3.4: Multispectral Codebook foreground detection
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 3336 Fig. 3.6 presents examples of RGB frames extracted from the five RGB videos estimated from the five multispectral videos. These sequences are all publicly available. Thus there are three subsets for each scene, namely multispectral image sequence with the size of 658 × 492 × 7, corresponding RGB image sequence of 658 × 492 × 3 and the groundtruth images of 658 × 492 × 1.

5 :

 5 Basic evaluation metricsTrue positive(TP) The number of correctly identified foregroundTrue negative (TN) The number of correctly identified backgroundFalse positive (FP) The number of incorrectly identified foregroundFalse negative (FN) The number of incorrectly identified backgroundIn general, these metrics in Table3.5 are not very individually useful and are typically quoted together when assessing the performance. From these four basic metrics, several other global performance metrics can be computed to assess the performance of the background subtraction algorithm. Among which, precision and recall are defined with Equations 3.21 and 3.22.Precision =Correctly classi f ied f oreground pixels Pixels classi f ied as f oreground =

  codebook algorithm for RGB, is three channels based, we begin with the trials with three bands. The number of combination composed of three bands out of seven is C 3 7 = 35. For fair comparison, parameters for RGB and these three-dimensional multispectral sequences are the same for the experiments. The four parameters, which are empiric values determined experimentally and used for the Codebook algorithms are as the following:

Figure 3 .

 3 Figure 3.8: Background subtraction results on five videos. The top row is original multispectral sequences, the second row is the corresponding ground truth and the last two rows are the results obtained by the respect best combination of three-channel based multispectral and RGB sequences, respectively.

  adopted for RGB and three-dimensional multispectral sequences. Both visual and numerical results on five multispectral and RGB sequences are displayed. Experiments have showed that multispectral images may represent an alternative to conventional images in the background subtraction. These encouraging results open a door for future works for applying multispectral images in background subtraction. However, the four parameters α, β, ε 1 and ε 2 are adjusted experimentally carefully according to the empiric values recommended by the pioneering works of Codebook algorithm, which is very time consuming and not robust. When we want to continue the experiments on non three-dimensional multispectral sequences, we find it too inconvenient to obtain the optimal parameters by cumbersome parameter tuning. It becomes a must for automatic selection to further investigate the benefits of multispectral images in the chapter, we have extended the original three dimensional Codebook algorithm to the multispectral field. As a parametric method, the original Codebook needs parameter tuning to find the appropriate values for every scene and meanwhile the detection performance is heavily impacted by the parameters. As we know, the Codebook model devoted in the previous chapter has four basic following key parameters: α, β, ε 1 and ε 2 . To be specific, α and β are used to obtain the brightness bounds from the min and max values Ǐm and Îm in a certain codeword, with Equation 3.6, and, ε 1 and ε 2 are the spectral distortion thresholds used in the background model construction and foreground detection phases, respectively. The fashionable way to get these parameters is empirical and experimental. The pioneers of this technique have provided the typical range of these parameters, namely, α ∈ [0.4, 0.7] and β ∈ [1.1, 1.5] [Kim

[

  Ma et al., 2012]. The first one is to employ a better feature representation by discovering a new robust feature descriptor or combining different features together. The other is to introduce other strategies to build the model to represent the background. Thus later in this chapter, we will make attempts to develop the multispectral self-adaptive Codebook along these two directions. The rest of this chapter is organised as follows. Section 4.2 presents the multispectral self-adaptive mechanism in detail. Based on this framework, Section 4.3 introduces another feature descriptor named spectral information divergence in the matching process. From Section 4.4 to Section 4.6, other approaches to build the multispectral self-adaptive Codebook are investigated, namely box-based Codebook, dynamic Codebook and fusion strategy, respectively. Finally, the experiments are conducted on the FluxData FD-1665 dataset introduced in previous chapter and discussed in Section 4.7, while conclusions and future work are presented in Section 4.8.
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 4 MULTISPECTRAL SELF-ADAPTIVE CODEBOOK AND ITS VARIANTS FOR BACKGROUND the last element of vector S m . And the thresholds of the spectral distortion for background model construction phase and foreground detection phase are unified with ε, which is calculated by
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Figure 4 . 1 :

 41 Figure 4.1: Codebook construction with brightness and spectral information divergence

Figure 4 . 2 :

 42 Figure 4.2: Codebook construction with three features
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 443 Figure 4.3: Box-based Codebook Model

70CHAPTER 4 .Algorithm 3

 43 MULTISPECTRAL SELF-ADAPTIVE CODEBOOK AND ITS VARIANTS FOR BACKGROUND S m ← f m σ Im + (I -I m ) 2 f m + 1 (4.12) The algorithm of the multispectral box-based Codebook construction is summarized in Algorithm 3, where N is the number of frames. Multispectral box-based Codebook construction 1: L ← 0, C ← φ 2: for t = 1 → N do 3:

  , by extending the three-channel based Codebook algorithm to multispectral images with dynamic boundary mechanism for individual channel. It follows the overall workflow of original Codebook model. We will illustrate the details step by step.
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 5 MULTISPECTRAL SELF-ADAPTIVE DYNAMIC CODEBOOK 71 4.5.1/ MULTISPECTRAL DYNAMIC CODEBOOK MODEL INITIALIZATION

Algorithm 4 2 :

 42 .26) The process of the multispectral self-adaptive dynamic Codebook construction is summarized in Algorithm 4, where N is the number of frames. The modules for the model refining and the foreground detection are the same as those used in the original Codebook algorithm. 74CHAPTER 4. MULTISPECTRAL SELF-ADAPTIVE CODEBOOK AND ITS VARIANTS FOR BACKGROUND Multispectral dynamic Codebook construction 1: L ← 0, C ← φ for t = 1 → N do 3:

Figure 4 . 4 :Figure 4 . 5 :

 4445 Figure 4.4: Two Different Pipelines
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 4 each channel decides one model independently, then the individual detection results 76CHAPTER 4. MULTISPECTRAL SELF-ADAPTIVE CODEBOOK AND ITS VARIANTS FOR BACKGROUND are fused to obtain the final output. The workflow for multispectral self-adaptive fusion strategy is shown in Fig. 4.5, where each channel defines a background model and obtains a foreground background mask with the self-adaptive dynamic technique proposed in Section 4.5. Then these n masks together produce a final mask with fusion. 4.7/ EXPERIMENTAL RESULTS The experiments have also been conducted on the FluxData FD-1665 dataset and will be presented in two categories for clearer statement. The first part illustrates experiments of multispectral self-adaptive Codebook with cylindrical structure, which consists of the algorithms proposed in Section 4.2 and Section 4.3. The second one evaluates the performance with other multispectral self-adaptive structures, including box-based Codebook, dynamic Codebook and fusion strategy proposed in Section 4.4, Section 4.5 and Section 4.6, respectively.
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  have proposed three techniques to build the background model based on Codebook algorithm for multispectral images: box-based Codebook, dynamic Codebook and fusion strategy, each of which processes the multispectral channels independently. Specifically speaking, only the intensity value for each channel is used to calculate the spectral similarity between the new frame pixel and reference one in current codeword. Besides, like the algorithms illustrated above, the thresholds are not set in advance empirically and fixed for the whole procedure, but obtained based on statistical information extracted from the data and can always adjust themselves to the scene changes.

  , deep learning based on the work of YannLeCun et al. in 1989 [LeCun et al., 1989], has revolutionized computer vision, and deep features obtained from Convolutional Neural Networks (ConvNets also called CNNs) have been shown as powerful and effective image representations for various computer vision tasks such as object classification[Krizhevsky et al., 2012] [Simonyan et al., 2014] 

  volutional neural networks for background subtraction in this chapter, based on the FgSegNet v2 model.The major contributions of this work lie in two aspects. Firstly, we extracted three channels out of seven of the FluxData FD-1665 multispectral dataset to match the number of input channels of the FgSegNet v2 deep model, aiming to investigating the possible improvements against RGB. Secondly, a new convolutional encoder was proposed to utilize all the multispectral channels available to further explore the information of multispectral images. To the best of our knowledge, this work is the first attempt to investigate 5.2. RELATED WORKS 87 the potential benefits of using multispectral information via deep features learned with convolutional neural networks for the background subtraction task. The rest parts of this chapter are organized as follows. Section 5.2 briefly discusses the background and related works. The proposed attempts utilising the ConvNets-based multispectral background subtraction methods are explained in Sections 5.3. Sections 5.4 illustrates the experimental evaluation and the obtained results compared with other

Figure 5 . 1 :

 51 Figure 5.1: Artificial intelligence, machine learning and deep learning

Figure 5 . 2 :

 52 Figure 5.2: Architecture of VGG16

Fig. 5 .

 5 Fig. 5.2 shows the VGG16 architecture. Like earlier AlexNet [Krizhevsky et al., 2012], VGG16 can be partitioned into two parts: the first one consisting mostly of convolutional and pooling layers and the second one consisting of fully connected layers. The idea of block is used in the first part. The VGG16 has five convolutional blocks, among which the first two have two convolutional layers each and the latter three contain three convolutional layers each.
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Fig. 2 Fig. 3

 23 Fig. 2 The flow of FgSegNet_v2 architecture

Figure 5 . 4 :

 54 Figure 5.4: FgSegNet v2 network architecture[START_REF] Lim | Learning multi-scale features for foreground segmentation[END_REF] 
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Fig. 3

 3 Fig. 3 The modified FPM module, M-FPM. IN (InstanceNormalization), SD (SpatialDropout). All convolution layers have 64 features

Figure 5 . 5 :

 55 Figure 5.5: Modified FPM structure[START_REF] Lim | Learning multi-scale features for foreground segmentation[END_REF] 

Fig. 5 .

 5 Fig. 5.6 illustrates the working flow of this proposed mechanism. The multispectral images are first processed through the module of three-channel extraction to produce three-channel based images, which are then fed to the encoder adapted from VGG16 and decoder network, following the same manner of FgSegNet v2 explained above.
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 3 Figure 5.6: Multispectral three-channel based FgSegNet v2

Fig. 5 .Figure 5 . 7 :

 557 Fig.5.7 shows the architecture of background subtraction for multispectral images with the proposed convolutional encoder. Following the idea of FgSegNet v2 that feeds different levels of features to the decoder, the low level feature coefficients vectors after each convolutional layer in the encoder network are extracted and used to guide the high level features in the decoder part.
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 9 Fig. 9. Background subtraction results on the five videos
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 58 Figure 5.8: Background subtraction results on the five videos

  MD = Mahalanobis Distance [Benezeth et al., 2014a] SA = Spectral Angle [Benezeth et al., 2014a] SID = Spectral Information Divergence [Benezeth et al., 2014a] OSTD = Online Stochastic Tensor Decomposition [Sobralet al., 2015] 

  has achieved the highest F-measure for theVideo 3, where it exists dynamic backgrounds, shadows and occlusion. Since it is a challenging scene, we think the proposed multispectral images based model needs more training images to better learn and represent the background. This supposal coincides with the 104CHAPTER 5. MULTISPECTRAL BACKGROUND SUBTRACTION WITH DEEP LEARNING fact that deep learning based methods always rely on big amount of data to achieve better performance. That is also part of reason why there are still researchers devoting themselves in classical methods or other new approaches, while deep leaning is changing the domain of computer vision nowadays.5.4.3/ PREDICTION TIMEComputational complexity is also observed during our experiments. The deep learning algorithm was implemented using Keras framework with TensorFlow backend, on a single NVIDIA GeForce GTX1080Ti GPU with a memory of 11GB and an Intel Core i7K-8700K

  6.1/ CONCLUSIONSBackground subtraction is a crucial task in many computer vision applications. In this thesis, we have proposed several background subtraction methods using multispectral image sequences. The following contributions have been established as part of this research effort.First of all, the original RGB based Codebook algorithm has been adapted to multispectral case. In order to achieve this goal, two modifications have been conducted comparing with the original Codebook technique. Specifically speaking, the definition of brightness in RGB color space is extended to multispectral case, with an arbitrary number of spectral channels. Besides, we replace the color distortion with spectral distortion, as the term of color is no longer suitable in multispectral sequences. The experiments have been conducted on all the five scenes in the FluxData FD-1665 dataset, for both RGB images and multispectral three-channel based images, respectively. Same set of parameters is adopted for fair comparison. Experiments have shown that multispectral images may represent an alternative to conventional images in the background subtraction. These encouraging results open a door for future works for applying multispectral images in background subtraction. Followingly, a self-adaptive mechanism is designed to select the optimal parameters based on the statistical information extracted from the data themselves, by calculating iteratively and recording additional statistical information vectors for each codeword. With the self-adaptive mechanism, brightness bounds and spectral distortion threshold are obtained automatically and able to adjust themselves with statistical properties of the input 109 sequences. Comparing with the original Codebook algorithm, where the parameters are carefully selected by manual tuning based on the typical range provided by the pioneers of this technique, this step forward is necessary and significant for three-fold considerations.
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 2 1 summarizes the challenges of background subtraction considering three factors:

  Videos recorded in challenging weather conditions with lowvisibility, such as fog, rain, snow, and air turbulence, would complicate the background model construction and generate false detection.

	2.1. INTRODUCTION		13
	Table 2.1: Background subtraction challenges
	Background	Foreground	Camera
	Illumination Changes	Shadows	Video Noise
	Dynamic Background	Camouflage	Moving Camera
	Shadows	Intermittent Object Motion Camera Jitter
	Challenging Weather	Occlusion	
	Bootstrapping		
	Moved Background Objects		
	Night Videos		
	Challenging weather:		
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	2: Top six deep learning based approaches reported on CDnet2014 dataset
	[Wang et al., 2014]		
	Approaches	Average F-measure	Network architecture
	FgSegNet v2		

  our network to preserve spatial dimensions of the inputs in the outputs. The details of the encoding network configuration are presented in Table1.

	even outperform hu-
	margins, in various
	ns. To gain a deeper
	learn, we can inspect
	ers that are learnt at
	izations show that the
	eric low-level features
	in various directions,
	in many tasks when
	ns. Motivated by this
	perties of the CNNs,
	contains three copies
	arallel with the same
	. The first four blocks
	ed copies of the pre-
	e removed the third
	rs and insert dropouts
	h convolutional block
	full network architec-
	y refer to the original
	is raw RGB images
	that the input image
	the image width, H
	the RGB color chan-
	feature maps of size
	t convolutional block,
	ownsampled by a 2x2
	ide 2 and transformed
	W 2 × H 2 at the end of ese feature maps are
	pooling layer with a
	o 256 feature maps of
	e third block. Finally,
	sformed into 512 fea-

  the ensemble learning mechanism proposed in[Bol ón-Canedo et al., 2014], an algorithm called Online Weighted One-Class Random Subspace (OWOC-RS) has been designed bySilva et al. in [Silva et al., 2016], which is capable to select suitable pixelbased features to separate the foreground regions from the background. Besides, the relative importance of each feature over time is updated with adaptive mechanism.
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	.2, where
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 3 2: The update of the elements in the tuple aux m

	minimum brightness range Ǐ	Ǐm ← min I, Ǐm
	maximum brightness range Î	Îm ← min I, Îm
	frequency of access f	f m ← f m + 1
	maximum length of time λ	λ m ← max {λ m , t -q m }
	first access time p	p m ← p m
	last access time q	

  t

	11:	else
	12:	
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 3 6: Average F-measure on the five videos (three-channel images case)

	3.4. EXPERIMENTS
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		Input Frame		Background Model
	Brightness	Spectral	Spectral Information
		Distortion	Divergence
			Yes
		Match	Update Codeword
		No	
			Create new Codeword
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 4 1: Best F-measures for multispectral Codebook with B+SD on the five videos

	4.7. EXPERIMENTAL RESULTS

Table 4 .

 4 2: Best F-measures for multispectral Codebook with B+SID on the five videos

	Video	3 Bands	4 Bands	5 Bands	6 Bands	7 Bands	RGB
	1	0.9208	0.9219	0.9059	0.8676	0.7883	0.6355
	2	0.9538	0.9526	0.9504	0.9471	0.9451	0.9479
	3	0.8939	0.8914	0.8825	0.8766	0.8351	0.8867
	4	0.8784	0.8807	0.8783	0.8728	0.8558	0.8217
	5	0.8765	0.8801	0.8842	0.8425	0.7855	0.8447
	mean	0.9047	0.9053	0.9003	0.8813	0.8420	0.8273
	Table 4.3: Best F-measures for multispectral Codebook with B+SD+SID on the five videos
	Video	3 Bands	4 Bands	5 Bands	6 Bands	7 Bands	RGB
	1	0.9144	0.9147	0.8971	0.8607	0.7727	0.6555
	2	0.9614	0.9623	0.9635	0.9642	0.9631	0.9535
	3	0.9213	0.9180	0.8938	0.8634	0.8045	0.9054
	4	0.8968	0.8979	0.8972	0.8885	0.8821	0.8867
	5	0.8791	0.8800	0.8948	0.8459	0.7853	0.8543
	mean	0.9146	0.9146	0.9093	0.8845	0.8415	0.8511
	Table 4.3.						

Table 4 .

 4 4: Best F-measures with different mechanisms and sets of criteria

	Mechanism	criteria	Images Video 1 Video 2 Video 3 Video 4 Video 5 Mean
	Static parameters	B+SD	RGB Multi	0.8086 0.8718	0.9431 0.9546	0.7578 0.7921	0.7679 0.8650	0.7789 0.8113 0.8241 0.8615
	Self-adaptive mechanism	B+SD B+SID B+SD+SID	RGB Multi RGB Multi RGB Multi	0.4789 0.8060 0.6355 0.9219 0.6555 0.9147	0.9535 0.9643 0.9479 0.9538 0.9535 0.9642	0.9188 0.9248 0.8867 0.8939 0.9054 0.9213	0.8871 0.9001 0.8217 0.8807 0.8867 0.8979	0.9130 0.8303 0.9198 0.9030 0.8447 0.8273 0.8842 0.9069 0.8543 0.8511 0.8948 0.9186
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 4 5: Best F-measures with multispectral box-based Codebook on the five videos

	Video	3 Bands	4 Bands	5 Bands	6 Bands	7 Bands	RGB
	1	0.8538	0.8272	0.8262	0.8270	0.8312	0.4319
	2	0.9522	0.9523	0.9519	0.9502	0.9462	0.9480
	3	0.8853	0.8849	0.8855	0.8840	0.8763	0.8938
	4	0.8864	0.8874	0.8884	0.8876	0.8859	0.8843
	5	0.8890	0.8801	0.8694	0.8597	0.8482	0.8707
	mean	0.8933	0.8864	0.8843	0.8817	0.8776	0.8057
	Table 4.6: Best F-measures with multispectral dynamic Codebook on the five videos
	Video	3 Bands	4 Bands	5 Bands	6 Bands	7 Bands	RGB
	1	0.8669	0.8750	0.8757	0.8749	0.7759	0.8011
	2	0.9607	0.9609	0.9607	0.9603	0.9307	0.9584
	3	0.9456	0.9464	0.9460	0.9445	0.8321	0.9414
	4	0.8693	0.8731	0.8734	0.8728	0.8661	0.8450
	5	0.9010	0.9024	0.8969	0.8966	0.8719	0.8785
	mean	0.9087	0.9116	0.9105	0.9098	0.8553	0.8849

Table 4 .

 4 7: Best F-measures with fusion strategy on the five videos

	Video	3 Bands	4 Bands	5 Bands	6 Bands	7 Bands
	1	0.8967	0.8836	0.8805	0.8712	0.7796
	2	0.9607	0.9608	0.9607	0.9604	0.9575
	3	0.9372	0.9346	0.9277	0.9020	0.8059
	4	0.8685	0.8732	0.8741	0.8742	0.8709
	5	0.8847	0.8913	0.8820	0.8646	0.8429
	mean	0.9096	0.9087	0.9050	0.8945	0.8514
	Table 4.8: Overall evaluation of proposed mechanisms on the five videos
	Video	Pooling B+SD B+SID B+SD+SID Box-based Dynamic Fusion
	1	0.7984 0.8060 0.9219	0.9147	0.8538	0.8757	0.8967
	2	0.8815 0.9643 0.9538	0.9642	0.9523	0.9609	0.9608
	3	0.6487 0.9248 0.8939	0.9213	0.8855	0.9464	0.9372
	4	0.8392 0.9001 0.8807	0.8979	0.8884	0.8734	0.8742
	5	0.7704 0.9198 0.8842	0.8948	0.8890	0.9024	0.8913
	Outdoor mean 0.7850 0.9273 0.9032	0.9196	0.9038	0.9208	0.9160
	Mean	0.7876 0.9030 0.9069	0.9186	0.8938	0.9118	0.9121

  5.1. Machine learning is a sub-type of AI, which is inspired by human brain and enables computers to learn from large amounts of data. Besides, Table5.1 further illustrates the main differences between traditional machine learning and deep learning. With machine learning, the relevant features of an image are manually extracted. With deep learning,
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	Artificial intelligence -enable computers to
	mimic human intelligence
	Machine learning -enable machines to
	improve performance with experience
	the raw images are directly fed into a deep neural network that learns the features auto-matically. What's more, deep learning often requires hundreds of thousands or millions of images to reach best results. It's also computationally intensive and requires a high-performance computer. As a subset of machine learning, deep learning has taken off since 2012, which provides advanced analytics and offers great potentials in the era of big data. It has achieved huge success in a variety of domains, not only in classical computer vision tasks, such as Table 5.1: Comparison between traditional machine learning and deep learning traditional machine learning deep learning data requirement performs well with small dataset needs large dataset algorithm structure simple mathematical model feature learning identified manually learned automatically hardware requirement no need for a powerful hardware high configurations model training time quick to train a model accuracy accuracy plateaus model training scheme each module trained step-by-step parameters trained jointly computationally intensive excellent performance Deep learning -enable a machine to end-to-end high hierarchical nonlinear multi-layer model train itself based on neural networks
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			2: VGG16 network configuration	
	Block	Layer type	kernel size	Number of channels	Output shape
		input	-	-	224 × 224 × 3
		convolution	3×3	64	224×224×64
	1	convolution	3×3	64	224×224×64
		maxpooling	2×2		112×112×64
		convolution	3×3	128	112×112×128
	2	convolution	3×3	64	112×112×128
		maxpooling	2×2		56×56×128
		convolution	3×3	256	56×56×256
		convolution	3×3	256	56×56×256
	3				
		convolution	3×3	256	56×56×256
		maxpooling	2×2		28×28×256
		convolution	3×3	512	28×28×512
		convolution	3×3	512	28×28×512
	4				
		convolution	3×3	512	28×28×512
		maxpooling	2×2		14×14×512
		convolution	3×3	512	14×14×512
		convolution	3×3	512	14×14×512
	5				
		convolution	3×3	512	14×14×512
		maxpooling	2×2		7×7×512
		FullyConnected		4096	1×1×4096
		FullyConnected		4096	1×1×4096
		FullyConnected		1000	1×1×1000
	5.2.4/ ENCODER-DECODER ARCHITECTURE	
	The encoder-decoder architecture is a neural network design pattern and it is ap-
	plied in many image classification network, such as AlexNet [Krizhevsky et al., 2012],
	VGG network [Simonyan et al., 2014], GoogLeNet [Szegedy et al., 2015] and Resnet
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			3: FgSegNet v2 encoder configuration
	Block Layer type	kernel size	Number of channels	Output shape
		input	-	-	W × H × 3
		convolution	3×3	64	W×H×64
	1	convolution	3×3	64	W×H×64
		maxpooling	2×2		W/2×H/2×64
		convolution	3×3	128	W/2×H/2×128
	2	convolution	3×3	64	W/2×112×H/2
		maxpooling	2×2		W/4×H/4×128
		convolution	3×3	256	W/4×H/4×256
		convolution	3×3	256	W/4×H/4×256
	3				
		convolution	3×3	256	W/4×H/4×256
		convolution	3×3	512	W/4×H/4×512
		dropout			W/4×H/4×512
		convolution	3×3	512	W/4×H/4×512
	4				
		dropout			W/4×H/4×512
		convolution	3×3	512	W/4×H/4×512
		dropout			W/4×H/4×512
	As a higher version, FgSegNet v2 is more robust against camera motion, as the original
	FPM module in FgSegNet S has been improved to capture multi-scale with wider recep-
	tive fields. As shown in Fig. 5.5, it has adopted cascade dilated convolutional layers
	instead of parallel strategy. Besides, Instance Normalization (IN)

Table 5 .
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		4: Proposed multispectral encoder configuration
	Block	Layer type	Kernal size Number of channels	Output shape
		input	-	-	W×H×7
	1	convolution maxpooling	3×3 2×2	64	W×H×64 W/2×H/2×64
	2	convolution maxpooling	3×3 2×2	128	W/2×H/2×128 W/4×H/4×128
		convolution	3×3	512	W/4×H/4×512
	3 (Block 4 from FgSegNet v2)	dropout convolution dropout convolution	3×3 3×3	512 512	W/4×H/4×512 W/4×H/4×512 W/4×H/4×512 W/4×H/4×512
		dropout			W/4×H/4×512

Table 5 .

 5 5: Three-channel F-measures on five videos

	Combination channels	Video 1	Video 2	Video 3	Video 4	Video 5
	1	123	0.9655	0.9983	0.9787	0.9666	0.9833
	2	124	0.9618	0.9984	0.9804	0.9676	0.9799
	3	125	0.9657	0.9983	0.9795	0.9688	0.9817
	4	126	0.9667	0.9983	0.9785	0.9673	0.9830
	5	127	0.9645	0.9983	0.9781	0.9695	0.9832
	6	134	0.9675	0.9983	0.9790	0.9684	0.9828
	7	135	0.9657	0.9983	0.9789	0.9693	0.9815
	8	136	0.9675	0.9983	0.9781	0.9623	0.9832
	9	137	0.9656	0.9983	0.9788	0.9669	0.9829
	10	145	0.9629	0.9984	0.9780	0.9686	0.9828
	11	146	0.9661	0.9982	0.9800	0.9659	0.9828
	12	147	0.9653	0.9983	0.9783	0.9668	0.9840
	13	156	0.9658	0.9983	0.9777	0.9645	0.9838
	14	157	0.9638	0.9984	0.9790	0.9686	0.9818
	15	167	0.9653	0.9984	0.9790	0.9682	0.9829
	16	234	0.9480	0.9980	0.9818	0.9726	0.9765
	17	235	0.9449	0.9981	0.9819	0.9706	0.9772
	18	236	0.9445	0.9980	0.9809	0.9735	0.9795
	19	237	0.9455	0.9982	0.9835	0.9729	0.9803
	20	245	0.9425	0.9981	0.9820	0.9732	0.9800
	21	246	0.9467	0.9982	0.9813	0.9715	0.9802
	22	247	0.9451	0.9982	0.9817	0.9711	0.9818
	23	256	0.9473	0.9979	0.9826	0.9709	0.9798
	24	257	0.9455	0.9982	0.9813	0.9715	0.9753
	25	267	0.9503	0.9982	0.9818	0.9757	0.9798
	26	345	0.9584	0.9986	0.9829	0.9730	0.9759
	27	346	0.9613	0.9986	0.9819	0.9731	0.9758
	28	347	0.9611	0.9986	0.9833	0.9707	0.9787
	29	356	0.9572	0.9985	0.9822	0.9730	0.9780
	30	357	0.9624	0.9986	0.9819	0.9734	0.9758
	31	367	0.9601	0.9986	0.9809	0.9735	0.9762
	32	456	0.9669	0.9985	0.9797	0.9770	0.9786
	33	457	0.9703	0.9984	0.9788	0.9774	0.9801
	34	467	0.9692	0.9986	0.9797	0.9788	0.9785
	35	567	0.9690	0.9986	0.9801	0.9754	0.9762
		RGB	0.9683	0.9982	0.9808	0.9715	0.9714

very impressive. The results show that multispectral images based model could be a promising alternative to conventional RGB images based one in background subtraction. Besides, Fig.5.8 shows some visual results. The top two rows are multispectral and RGB 102CHAPTER 5. MULTISPECTRAL BACKGROUND SUBTRACTION WITH DEEP LEARNING

Table 5 .

 5 7: F-measures with new convolutional encoder on five videos

	Video	MUL	RGB
	1	0.9786	0.9540
	2	0.9982	0.9942
	3	0.9430	0.9109
	4	0.9619	0.9558
	5	0.9603	0.9383
	We further compare the multispectral results obtained by the proposed convolutional

Table 5

 5 

			.8: F-measures of different approaches on five videos	
	Video	MD	SA	SID	OSTD	OWOC	Superpixel	Proposed
						-RS	-OWAOC	
	1	0.8105	0.9042	0.9022	0.9365	0.9008	0.9135	0.9786
	2	0.8900	0.9562	0.9686	0.9517	0.8727	0.9591	0.9982
	3	0.6889	0.8970	0.8958	0.9064	0.9635	0.9376	0.9430
	4	0.8327	0.6733	0.6878	0.8929	0.8997	0.8827	0.9619
	5	0.7724	0.7422	0.7574	0.9266	0.8400	0.8693	0.9603
	mean	0.7989	0.8346	0.7427	0.9228	0.8953	0.9124	0.9684
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