Université Préparée À L'

Technologie De

De Belfort-Montbéliard

Abdelkhalek Mansouri

Abderrafiaa Koukam

Mourad Bouneffa

Adnan Yassine Rapporteur

Yassine Ruichek

Jean-Charles Créput

THÈSE DE DOCTORAT DE L'ÉTABLISSEMENT UNIVERSITÉ BOURGOGNE FRANCHE-COMTÉ

Keywords: configuration, 5, 6 Conclusion

Generic heuristics on GPU to superpixel segmentation and application to optical flow estimation

Abdelkhalek Mansouri

Résumé

Déterminer des clusters dans des nuages de points et apparier des graphes sont des tâches primordiales en informatique, analyse de donnée, traitement d'image, généralement modélisées par des problèmes d'optimisation de classe NP-difficile. Avec l'avènement des multiprocesseurs à bas coût, l'accélération des procédures heuristiques pour ces tâches devient possible et nécessaire. Nous proposons des implantations parallèles sur système GPU (graphics processing unit) pour des algorithmes génériques appliqués ici à la segmentation d'image en superpixels et au problème du flot optique. Le but est de fournir des algorithmes génériques basés sur des structures de données décentralisées et aisément adaptables à différents problèmes d'optimisation sur des graphes et plateformes parallèles.

Les algorithmes parallèles proposés sur GPU incluent le classique k-means et le calcul de forêt couvrante minimum pour la segmentation en superpixels. Ils incluent également un algorithme de recherche locale parallèle et un algorithme mémétique à base de population de solutions appliqués à l'estimation du flot optique via des appariements de superpixels.

Tandis que les opérations sur les données exploitent le GPU, l'algorithme mémétique opère en tant que coalition de processus exécutés en parallèle sur le CPU multi-coeur et requérant des ressources GPU. Les images sont des nuages de points de l'espace euclidien 3D (domaine espace-intensité), et aussi des graphes auxquels sont associés des grilles de processeurs. Les kernels GPU exécutent des transformations en parallèle sous contrôle du CPU qui a un rôle réduit de détection des conditions d'arrêt et de séquencement des transformations.

La contribution présentée est composée de deux grandes parties. Dans une première partie, nous présentons des outils pour la segmentation en superpixels. Une implémentation parallèle de l'algorithme des k-means est présentée et appliquée aux données 3D.

Elle est basée sur une subdivision cellulaire de l'espace 3D qui permet des recherches de plus proche voisin en parallèle en temps optimal constant pour des distributions bornées.

Nous présentons également une application de l'algorithme parallèle de calcul de forêt couvrante de Boruvka à la segmentation superpixel de type ligne de partage-des-eaux (watershed). Dans une deuxième partie, en se basant sur les superpixels générés, des procédures parallèles de mise en correspondance sont dérivées pour l'estimation du flot optique avec prise en compte des discontinuités. Ces méthodes incluent des heuristiques de construction et d'amélioration, telles que le winner-take-all et la recherche locale parallèle, et leur intégration dans une métaheuristique à base de population. Diverses combinaisons d'exécution sont présentées et évaluées en comparaison avec des algorithmes de l'état de l'art performants.

Chapter 1

Introduction

Context

The need of accelerated computation through scalable parallel platform has become a general tendency in recent years. The evolution of computer architectures has made parallel computation more accessible and more cheaper, and help to increase the amount of processed data in the different area of life. In medicine, science, or industry, massive parallel and distributed applications become a main requirement.

Graphics Processing Unit (GPU) has become an important component in modern computer systems. GPUs have evolved from a single-purpose graphic hardware to a powerful processor capable of handling many different computing tasks and non-graphics applications. The hundreds of processors with high computing power provides a platform which takes benefit of the introduction of NVIDIA Compute Unified Device Architecture (CUDA) and its programming languages. It follows that GPUs have become ones of the important forces in High-Performance Computing.

Computer vision and parallel computing are strongly related research fields. Vision is a powerful sensor for environmental perception as is evident from many examples. In the field of automotive vehicles or robot systems simulating perception is essential, tasks like navigation, object detection, identification and manipulation can be build upon visual information provided by 2D or 3D cameras. Most computer vision tasks are well-suited for parallel computing, since an image consists of million of pixels in average, which make it good case to benefit from the GPU computing evolution.

Optical flow and image segmentation are two of the main computer vision tasks which researchers and developers worked on for decades and proposed hundreds of solutions for both problems. The objective of image segmentation is to find the outlines of the objects in an image, meanwhile the goal of optical flow consists in computing a motion of objects from a scene to another. While those are simple tasks for humans (at least for everyday images), it is surprisingly hard for artificial vision systems. A main reason is that the outlines of the objects should be found without information of what are the objects. Algorithms used to calculate the optical flow for a sequence of images are useful in a variety of applications, including motion detection and obstacle avoidance.

Despite significant progress over the past decades, most optical flow estimation techniques have substantial difficulties dealing with flow discontinuities, and many other challenges, such as occlusions, large displacements and varying lighting conditions. Methods which simultaneously detect flow boundaries and use the detected boundaries to aid in flow estimation can produce significantly improved results. Typical optical flow algorithms are computationally intense and run slowly when implemented in CPU. This is problematic since many potential applications of the algorithm require real-time calculation in order to be useful. To increase performance of the calculation, optical flow has recently been implemented on parallel platforms [START_REF] Adarve | A filter formulation for computing real time optical flow[END_REF][START_REF] Bako | Embedded implementation of a real-time motion estimation method in video sequences[END_REF][START_REF] Chai | Using c to implement high-efficient computation of dense optical flow on fpga-accelerated heterogeneous platforms[END_REF][START_REF] Plyer | Massively parallel lucas kanade optical flow for real-time video processing applications[END_REF]. These implementations are able to process fast optical flow estimation, but are generally far less accurate than CPU implemented solutions.

In this thesis, we propose parallel solutions working on GPU CUDA platform [START_REF] Nvidia | Programming guide[END_REF] for some generic algorithms applied here to image superpixel segmentation and optical flow estimation. Figure 1.1 shows an example of optical flow estimation on benchmark from Middlebury dataset [START_REF] Middlebury | Middlebury Optical Flow Datasets[END_REF]. Results in the Figure 1.1 are from our proposed parallel metaheuristic, called Memetic-PLS, that embeds GPU parallel local search, and from the well known Horn and schunck (GPU) variational approach, respectively.

Objectives and contribution

The main goal of our work can be summarized as two objectives. The first objective resides in the design of massively parallel generic algorithms implemented in GPU CUDA. Such algorithms can be batch k-means algorithm, an application of minimum spanning tree (MST) computation to segmentation, a parallel local search (PLS), based on the concept of distributed neighborhood structure presented in [START_REF] Verhoeven | A parallel 2-opt algorithm for the traveling salesman problem[END_REF], and a genetic algorithm that embeds parallel local search, called Memetic-PLS.

It exploits multi-core execution to manage a coalition of CPU threads, each embedding a solution and executing GPU parallel local search. The second objective is related to applying the designed algorithms to solve computer vision problems that can be stated as optimization problems on graph data structures, such as image segmentation and optical flow estimation. The presented contribution contains two main parts.

Firstly, we present a parallel implementation of the k-means algorithm based on the cellular grid model that allows for closest point findings in constant optimal time for bounded distributions, with a dimension of the euclidean space relatively small, here D = 3. The resulting superpixel segmentation will serve for parallel local search in optical flow, to match clusters through individual rigid transformation. We also present application of the parallel Boruvka minimum spanning tree algorithm to superpixel segmentation.

The proposed method computes a watershed by computing a minimum spanning forest (MSF) over gradient minima. The resulting segmentation will serve for optical flow bilateral filtering at a final post-processing step.

Secondly, based on the generated superpixels and MSF segmentation, we derive the parallel heuristic procedures to address optical flow estimation with edge aware filtering.

Various combinations of executions are presented and evaluated in comparison to stateof-the-art algorithms. We present a winner-take-all approach based on superpixels. It has advantage to sample the area for large displacements, and to construct a first flow estimate. It is executed by each cluster root node in parallel. We present a parallel local search procedure, called PLS, to improve the quality of the flow. It is based on superpixel rotation and translation transformations that have to be found, to match correctly to second image. It is massively executed by each pixel to the benefit of its own cluster in parallel. A root node selects a best transform for each cluster. Finally, we introduce local search in a population-based metaheuristic. Local search is combined with crossover and selection operations and executed in parallel by a set of processes in CPU multi-core, that request the GPU for data computation. The method exploits two levels of parallel computation: high granularity parallel execution by solution/data duplication in multi-core threads (memetic level) and low granularity parallel execution by solution/data subdivision in GPU threads (PLS level).

Plan of the thesis

In chapter 2, we provide background knowledge. We firstly introduce the optical flow problem, then we review related works on optical flow estimation, including definition of variational approaches, patch-match methods, learning based approaches, as well as parallel optical flow existing methods. In the second part of the chapter, we briefly introduce the image segmentation and overview some of the existing approaches that we are interested in.

In chapter 3, we introduce the common grid data structure, and graph representation.

Then, we detail the cellular matrix model and a set of basic concepts and tools needed for further developments of parallel computation in our proposed algorithms.

The chapter 4 is devoted to superpixel segmentation application. In the first part of the chapter, we start by the k -means based algorithm. We provide k -means basics and general energy function, then we present the clustering algorithm and its parallel implementation. We discuss on experimental results. The second part of the chapter concerns the minimum spanning forest based segmentation. After giving the general presentation and the different definitions, we provide the GPU parallel implementation of the approach. An experimental section presents parameter settings and the effect on the output result.

In chapter 5, we present our proposed solutions for the optical flow estimation problem by using superpixel segmentation. We present the three main solutions: winner-takeall (WTA-SP), parallel local search (PLS-SP), and Memetic-PLS. For each method, we focus on the principles of the algorithm, present its pseudo-code and discuss its parameter settings. Afterwards, we present the post-processing steps. The final part of the chapter focuses on comparative experiments. We test the proposed optical flow applications on two benchmark dataset, Middlebury optical flow dataset and MPI-Sintel dataset, we report our results and carry out comparative studies between our proposed solution and other state-of-the-art representative solutions.

Chapter 6 concludes this thesis and provides some insights on future work.

Chapter 2

Bibliography

Introduction

Optical flow or optic flow is the pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by the relative motion between an observer and a scene.

Optical flow can also be defined as the distribution of apparent velocities of movement of brightness pattern in an image.

In the first part of this chapter, we present related work on optical flow estimation.

We start by introducing optical flow in section 2.2. Most existing optical flow methods are based on a variational formulation. We give more details on variational methods in section 2.2.1. Recently, more and more Patch-match and superpixel based methods are coming out, we review them in section 2.2.2. Then we briefly present Convolutional neural network methods in section 2.2.3 and GPU based approaches in section 2.2.4.

The second part of this chapter is dedicated to image segmentation. A brief introduction to superpixel segmentations is given in section 2.3. Section 2.3.1 mainly focuses on kmeans based approach which are widely used in the field. We review two approaches, the well known SLIC approach by [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF] in CPU and the SPASM segmentation approach by [START_REF] Wang | Cellular matrix model for parallel combinatorial optimization algorithms in euclidean plane[END_REF] in GPU. Minimum spanning forest segmentation based approaches are discussed in section 2.3.2. We finish this chapter by a conclusion in section 5.6.

Optical flow

Motion analysis is one of the main tasks of computer vision. When watching a video, actually we are watching a sequence of ordered images, the human see the objects while moving in the scene. While in fact, objects are simply represented at different locations in each still image. Motion perception is actually inferred by illumination changes of a point at the retina with connection to the neighboring points. Optical flow denotes these changes of the brightness pattern over time in image sequence. It represents the 2D vectors that link points of two consecutive images together, i.e., it is the 2D projection of the real-world 3D motion. We review the basic methods of computing optical flow.

Variational methods

According to one of the most recent surveys [START_REF] Sun | A quantitative analysis of current practices in optical flow estimation and the principles behind them[END_REF], variational method is currently predominant to estimate dense optical flow, and all top-performing flow algorithms are based on variational framework. Proposed the first time by Horn and

Schunck [START_REF] Horn | Determining optical flow[END_REF], variational methods are based on the minimization of a global energy, which combines a brightness constancy assumption based data term with a global smoothness term. The data term measures the consistency of the optical flow with respect to the input images, it assumes that the brightness of corresponding pixels does not change during motion. Within the years more works have added other constancy assumptions instead of relying on brightness constancy i.e. [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF].

The second term should express object rigidity and flow discontinuity.

Nevertheless, brightness constancy assumption is often violated and insufficient to determine two unknown components of the optical flow. This problem is called aperture problem. To handle it a regularization term encodes some priors which add constraints to the under-constrained data term, thus making the problem solvable. A common choice is a smoothness term which is based on the assumption that the flow vector varies smoothly over the flow field. Various penalizers have been proposed as, for example, smoothness term, such L2 penalty on the flow gradient [START_REF] Horn | Determining optical flow[END_REF], Lorentzian penalty [START_REF] Black | The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields[END_REF], or the L1 norm [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF].

In practice, to provide a robust result, other steps such us pre-processing on the input data, post-processing of the flow field, or even modification of the variational formulation are needed. When brightness constancy and smoothness constraint are mostly violated, the basic variational formulation can not robustly treat image noise, handle illumination changes and large displacements, and preserve flow discontinuities. Pre-processing treatments are often applied on input image to delete the artifacts, i.e. noise filtering and debluring [START_REF] Baker | A database and evaluation methodology for optical flow[END_REF][START_REF] Tu | Estimating accurate optical flow in the presence of motion blur[END_REF]. Modifications in the energy minimization formulation aims to improve the data term to deal with large displacements, and make the algorithm more robust under illumination changes and more resistant to noise.

Refinement of the smoothness term to preserve motion discontinuity are proposed in [START_REF] Chen | Large displacement optical flow from nearest neighbor fields[END_REF][START_REF] Mohamed | Illumination-robust optical flow using a local directional pattern[END_REF][START_REF] Zimmer | Optic flow in harmony[END_REF].

Horn and Schunck approach

In a seminal work, [START_REF] Horn | Determining optical flow[END_REF] proposed to compute the displacement vector of every pixel by minimizing a global energy function that is a combination of data term and a smoothness term. A smoothness parameter λ has to balance the two terms. Many extensions and modifications of this variational optical flow technique have been proposed [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF][START_REF] Sun | A quantitative analysis of current practices in optical flow estimation and the principles behind them[END_REF].

Horn and Schunck optical flow method is based on two assumptions. First assumption is brightness constancy assumption. It states that the apparent brightness of objects in scene remains constant. Second assumption is smoothness of the flow. Which states that neighbouring pixels move similarly.

We express the assumptions. Let I 1 and I 2 be two consecutive images at times t = 1 and t = 2 respectively. The task consists in estimating the optical flow w : Ω → R 2 between these two images. For each pixel i = (x, y) ∈ Ω, the flow w(i) can be decomposed in its

x and y component w(i) = (u(i), v(i)). The most basic assumption for optical flow is the constancy of the brightness along the displacement, for instance used by [START_REF] Horn | Determining optical flow[END_REF] and [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF]:

I 1 (i) = I 2 (i + w(i)). (2.1)
Second assumption states that flow field is smooth. Ones of the ways to describe degree of smoothness at a particular point is to compute the square of the magnitude of the velocity gradient. The authors propose to minimize the following global energy function

E: E(w) = Ω E data (w) + αE smooth (w)dx, (2.2)
where the data term that expresses brightness constancy assumption is given by

E data (u, v) = Ω (I(x + u, y + v, t + 1) -I(x, y, t)) 2 dxdy, (2.3)
and the smoothness term that penalizes a strong optical flow gradient by .4) Assuming that the images are smooth and the displacements are small, first order Taylor expansion can be applied and we obtain:

E smooth (u, v) = Ω u 2 + v 2 dxdy. (2
E data (u, v) = Ω (I x u + I y v + I t) 2 dxdy, (2.5)
where I x , I y , I t are first order derivatives of intensity field. Form these formulation can be applied calculus of variation methods, such as Jacobi method for partial differential equations, as in the Horn and Schunck algorithm on GPU used in this thesis for comparison with our proposals.

As detailed by [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF], Wedel et al., 2009], to gain robustness when dealing with large displacements, most of implementations follow incremental multi-resolution technique to estimate flow fields. A pyramid of images is first constructed by interpolation at different resolution levels. The optical flow estimated at a coarse level is used to warp the second image toward the first, at the next finer level, and a flow increment is calculated between the first image and the warped second image.

Variational approaches with edge filtering

There is a large amount of work on optical flow following the variational model of [START_REF] Horn | Determining optical flow[END_REF]]. An important part of this work addresses simultaneously solving the optical flow and filtering the image. In traditional optical flow algorithms, images are typically pre-filtered to remove noise, to reduce effect of shadows or to handle illumination changes. Some methods concentrate on filtering techniques to smooth the intermediate flow field, by removing outliers or correcting flow errors.

In [Wedel et al., 2009], the authors introduced a median filter to remove noise from the flow field, one problem with the median filter, is that it over-smoothes the flow field edges.

For example, [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF] proposed a modified weighted median filter which depends on the spatial and color distance between pixels to prevent this kind of over-smoothing.

Starting from classical optical flow methods, objective function in its discrete formulation can be given as:

E(u, v) = i,j {ρ D (I 1 (i, j) -I 2 (i + u i,j , j + v i,j)) + λ[ρ S (u i,j -u i+1,j) + ρ S (u i,j -u i,j+1) + ρ S (v i,j -v i+1,j) + ρ S (v i,j -v i,j+1)]}, (2.6)
where I 1 and I 2 represent the input images, (i, j) is a particular image pixel location, u i,j and v i,j are the two components of the flow field vector to be estimated, λ is a regularization parameter, and ρ D and ρ S are the data and spatial penalty functions respectively. While their analysis reveals the importance of median filtering during the optimization process to denoise the flow field, the authors in [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF] propose a new energy function with a specific median filtering term given as follows:

E(u, v) = i,j {ρ D (I 1 (i, j) -I 2 (i + u i,j , j + v i,j)) + λ[ρ S (u i,j -u i+1,j) + ρ S (u i,j -u i,j+1) + ρ S (v i,j -v i+1,j) + ρ S (v i,j -v i,j+1)]} + λ 2 (u -u 2 + v -v 2) + λ 3 i,j (i ,j)∈N i,j (| u i,j -u i ,j | + | v i,j -v i ,j |), (2.7)
where u and v denote an auxiliary flow field, N i,j is the set of neighbors of pixel (i, j)

in a possibly large area, and λ 2 and λ 3 are scalar weights. The term in braces is the same as from Equation 2.6, while the last term is new. This non-local term imposes a particular smoothness assumption within a specified region to the auxiliary flow field u, v.

By formalizing the median filtering heuristic as an explicit objective function, authors in [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF] improve the formulation in accordance to Markov random field analysis by introducing a weight for edge aware filtering into the non-local term, as well as occlusion detection, resulting in ones of the most elaborated energy functions given as follows:

E(u, v) = i,j {ρ D (I 1 (i, j) -I 2 (i + u i,j , j + v i,j)) + λ[ρ S (u i,j -u i+1,j) + ρ S (u i,j -u i,j+1) + ρ S (v i,j -v i+1,j) + ρ S (v i,j -v i,j+1)]} + λ N i,j (i ,j)∈N i,j ω i ,j i,j (| u i,j -u i ,j | + | v i,j -v i ,j |), (2.8)
where variable ω i ,j i,j represents how probably a pixel (i , j) is in the same surface as (i, j). The weights is defined according to two distances: color-value distance and spatial distance. It operates as a bilateral filtering in space and intensity domains, as presented by the following equation:

ω i ,j i,j α exp - |i -i | 2 + |j -j | 2 2σ 2 1 - |I(i, j) -I(i , j)| 2 2σ 2 2 n c θ(j , j) θ(i, j) , (2.9)
where I(i, j) is color vector and n c the number of color channels. The occlusion variable θ(i, j) is computed as in the work of [START_REF] Sand | Particle video: Long-range motion estimation using point trajectories[END_REF]] by equation:

θ(i, j) = exp - d 2 (i, j) 2σ 2 d - (I(i, j) -I(i + u i,j , j + v i,j) 2σ 2 e , (2.10)
where d(i, j) is a one sided divergence function defined by equation: 2.11) and the flow divergence div(i, j) by:

d(i, j) = div(i, j), if div(i, j) < 0 0, otherwise (
div(i, j) = ∂ ∂x u(i, j) + ∂ ∂y v(i, j), (2.12)
with ∂ ∂x and ∂ ∂y the horizontal and vertical flow derivatives respectively. Note that the weight variable ω i ,j i,j is close to 1 for non occluded pixel, and close to 0 for the occluded ones. This energy formulation represents ones of the most elaborated formulations for optical. We will partially adopt such type of function with a non local term and edge filtering into our metaheuristic framework. According to [START_REF] Sun | Secrets of optical flow estimation and their principles[END_REF], parameter setting was defined with the following values: σ 1 = 7, σ 2 = 7, σ d = 0.3, and σ e = 20.

PatchMatch methods

Optical flow algorithm running time can be crucial for many applications. In spite of the high-quality result generated by some of the coarse-to-fine variational optical flow algorithms, they still can not satisfy the speed needs of many practical applications.

Add to that coarse-to-fine variational approaches had issues with large displacement and motion blur in real world video.

Motivated by the late accomplishments of local methods in visual correspondence

searching, as well as approximate nearest neighbor field algorithms, PatchMatch approaches introduce optical flow estimation algorithms, that can deal with large motion, in a short time.

Experimental test on existing optical flow benchmarks, show that PatchMatch methods is significantly faster than variational methods without settling on quality, particularly when scenes contain large motions. In this section, we talk about the main PatchMatch approaches.

Edge-Aware Filtering for Visual Correspondence (PatchMatch filter)

PatchMatch proposed by [START_REF] Barnes | Patchmatch: A randomized correspondence algorithm for structural image editing[END_REF] is a generic and fast computational framework for general multi-labelling problems. The PatchMatch Filter (PMF) applied to optical flow proposed by [START_REF] Lu | Patchmatch filter: Edge-aware filtering meets randomized search for visual correspondence[END_REF] takes benefit from the complementary advantages of superpixel based PatchMatch search and efficient edge aware cost filtering [START_REF] Rhemann | Fast costvolume filtering for visual correspondence and beyond[END_REF]. After the construction of an adjacency graph for the input image decomposed into K superpixels using SLIC algorithm [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF], the PMF algorithm iterates two search strategies in an interleaved manner. They are neighborhood propagation and random search. PMF framework showed its effectiveness in estimating smoothly varying discontinuity in optical flow map.

Edge-Preserving Interpolation of Correspondences for Optical Flow (Epicflow)

Epicflow [START_REF] Revaud | Epicflow: Edge-preserving interpolation of correspondences for optical flow[END_REF] is an approach that interpolates a sparse set of matches in a dense manner to initiate the optical flow estimation. Then, this estimate is processed as an energy minimization problem with some variational approach to generate a final optical flow estimation. More precisely, Epicflow consists of three steps, as illustrated in First, a sparse set of matches between the two images is computed by using a state of the art matching algorithm, such as DeepMatching by [START_REF] Weinzaepfel | Deepflow: Large displacement optical flow with deep matching[END_REF] that is used by [START_REF] Revaud | Epicflow: Edge-preserving interpolation of correspondences for optical flow[END_REF]. The algorithm extracts a sparse set of features from both images and matches those feature of first image to second image features.

Second, Epicflow performs a densification of this set of matches, by computing a sparseto-dense interpolation from the sparse set of matches, which yields an initial estimate of the optical flow. To perform edge filtering, the authors performed interpolation using neighbors selected by their geodesic distance in a edge map, that is precomputed. They use the state-of-the-art edge detector, namely the "structured edge detector" (SED) [START_REF] Dollár | Structured forests for fast edge detection[END_REF], to extract an edge map, and use geodesic distance in this edge map to select closest points for interpolation. Since each pixel is interpolated based on its neighbors in homogeneous region, the interpolation will respect the motion boundaries. The assumption is that image edges are a superset of motion boundaries.

Third, the authors compute a final optical flow estimation by performing one step of variational energy minimization using the dense interpolation as initialization, and by using a version of [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF] algorithm without the coarse-to-fine scheme. They use the same data term as [START_REF] Zimmer | Optic flow in harmony[END_REF], based on a classical color-constancy and Given two images as input, matches are computed using DeepMatching, and the edges of the first image using SED, then, Epiflow computes a dense correspondence field by interpolation, the result is used as initialization of energy minimization framework.

gradient-constancy assumption with a normalization factor. For the smoothness term, they penalize the flow gradient norm, with a local smoothness weight as in [Wedel et al., 2009[START_REF] Xu | Motion detail preserving optical flow estimation[END_REF].

Epicflow is mainly a flow interpolation technique combined with three other state-of-theart methods. They are a sparse matching procedure at first step, an edge detector for edge aware interpolation, and an efficient variational algorithm at last step. In our work, we will use Epicflow, combined with DeepMatching and SED, for comparison with our proposals, without applying the [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF]] variational algorithm at final step, since this last step should hide the real quality of Epicflow interpolation. The variational method will be considered and evaluated separately and comparatively as a standalone method.

Coarse-to-Fine PatchMatch for Large Displacement Optical Flow

A key observation is that matching correspondences with larger patch size are often more discriminative. In [START_REF] Hu | Efficient coarse-to-fine patch match for large displacement optical flow[END_REF], it is proposed a matching method combining a random search strategy with a coarse-to-fine scheme for optical flow with large displacements.

The approach is built upon a hierarchical image pyramid. We give an overview of the method.

The basic matching process is similair to PatchMatch [START_REF] Barnes | Patchmatch: A randomized correspondence algorithm for structural image editing[END_REF]. The goal of matching is to find the best correspondence of some seeds rather than every pixel of the image for efficiency. The seeds are the cross points of the regular image grid with a spacing of d pixels. Then, there's only one seed in every d × d non-overlapping block. In the same spirit of PatchMatch, neighborhood propagation and random search is performed iteratively in an interleaved manner after flow initialization of each seed.

Seeds are examined and flow values are propagated from neighbor seeds to current seed if they have already been examined in current iteration. In an attempt to improve the current flow, after the preceding propagation step, a random search is performed for the current seed. The matching process stop after n iterations.

The output of the basic matching process is very noisy without global regularization, and many outliers result from the ambiguity of small patches. To handle this problem, [START_REF] Hu | Efficient coarse-to-fine patch match for large displacement optical flow[END_REF] introduce a coarse to fine architecture with propagation from top to bottom, by constructing a multi level pyramid for both I 1 and I 2 with a downsampling factor n. The goal is to find the matches of every seeds in I 1 against I 2 on the bottom level. After the construction of the pyramid and the generation of the seeds in each level, a propagation with random search is performed iteratively on each level to obtain the flow of the seeds, and propagate the flow of each seed from top to bottom on the pyramid. For the patch-based matching cost, authors chose euclidean distance between SIFT descriptors with 128 dimensions. As in [START_REF] Bao | Fast edge-preserving patchmatch for large displacement optical flow[END_REF] a forward-backward consistency check is performed on the levels of the pyramid to detect occlusions and remove outliers.

Convolutional neural network methods

With the impressive success achieved by learning techniques in computer vision tasks, learning techniques have been used in optical flow estimation to design probabilistic models, and apply learned features to build solution for the optical flow problem [START_REF] Sun | Learning optical flow[END_REF]. For flow estimation, convolutional neural network (CNN) based approaches learns deep features extracted from input data, then integrate these learned features into optimisation algorithms to estimate the flow from the new data [START_REF] Güney | Deep discrete flow[END_REF]Geiger, 2016, Zweig and[START_REF] Zweig | Interponet, a brain inspired neural network for optical flow dense interpolation[END_REF]. Because they are very fast in online mode, once learning has been achieved, CNN based algorithms offer a good alternative to the variational approaches.

Several effective supervised, and unsupervised CNN optical flow based methods are proposed in the literature. For example, [START_REF] Dosovitskiy | Flownet: Learning optical flow with convolutional networks[END_REF] presents CNN architecture FlowNet to estimate the flow value. FlowNet use annotated data for training the network. Other approaches were proposed, as [START_REF] Teney | Learning to extract motion from videos in convolutional neural networks[END_REF]] that trained a network to learn flow vector classification and pixel mapping to optical flow, and that can be used as building block for more complex architecture. [START_REF] Wulff | Efficient sparse-to-dense optical flow estimation using a learned basis and layers[END_REF] introduces an approach that uses training data to estimate dense flow from a sparse set of pixels.

For more understanding of CNN based methods, [START_REF] Tu | A survey of variational and cnn-based optical flow techniques[END_REF] provide a survey that review the recent techniques, discuss their capacity and remaining difficulties. More importantly, CNN should require a huge amount of learning data for training with supervised learning, with groundtruth available. In our case, we only deal with optical flow as an optimization problem and do not require huge amount of learning data.

GPU optical flow approaches

Several parallel implementation have been proposed for optical flow estimation problem.

They can be classified into two categories, dense optical flow, and sparse optical flow approaches. Dense optical flow treat all the pixels of the frame to produce the flow fields, while the sparse optical flow track only some selected features from the frame.

In the first category [START_REF] Marzat | Real-time Dense and Accurate Parallel Optical Flow using CUDA[END_REF] present a parallel implementation for the wellknown lukas-kanade optical flow aproach [START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF] using CUDA platform to compute dense velocity flow field. Another implementation derived from the Lucas-Kanade method and called eFOLKI was introduced by [START_REF] Plyer | Massively parallel lucas kanade optical flow for real-time video processing applications[END_REF]. [START_REF] Gwosdek | A highly efficient gpu implementation for variational optic flow based on the euler-lagrange framework[END_REF] propose a parallel implementation for variational optical flow based on the Euler-Lagrange framework.

In the second category, we find the work of [START_REF] Mahmoudi | Real-time motion tracking using optical flow on multiple gpus[END_REF], who propose realtime tracking tool using optical flow on GPU platform. The approach regroups both feature detection and motion tracking. [START_REF] Sundaram | Dense point trajectories by gpuaccelerated large displacement optical flow[END_REF] designed a tracking trajectories approach based on a GPU optical flow algorithm that tolerates fast motion.

Other optimized implementations of optical flow algorithms were the subject of numerous works on Field-Programmable Gate Array FPGA boards, where dedicated architecture are designed. We can cite here the works of [START_REF] Barranco | Parallel architecture for hierarchical optical flow estimation based on fpga[END_REF][START_REF] Chai | Using c to implement high-efficient computation of dense optical flow on fpga-accelerated heterogeneous platforms[END_REF][START_REF] Diaz | Fpga-based realtime optical-flow system[END_REF]. Such developments are often very time consuming [START_REF] Pauwels | A comparison of fpga and gpu for real-time phase-based optical flow, stereo, and local image features[END_REF].

Some approaches are freely available on public library. OpenCV provide an implementation for [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF], and [START_REF] Zach | A duality based approach for realtime tv-l1 optical flow[END_REF]. A parallel implementation of [START_REF] Horn | Determining optical flow[END_REF] approach is offered by NVIDIA [START_REF] Smirnov | Optical Flow Estimation with CUDA[END_REF] on the CUDA toolkit sample, which we will use for evaluation and comparison.

In spite the proposed approaches in literature, optical flow parallel implementations remain few, specially when we know that a lot of applications are not directly destined to optical flow, but for tracking applications that use optical flow information. Again, fewer the GPU implementations that deal with dense optical flow. Most of the applications are for basic variational approaches such [START_REF] Horn | Determining optical flow[END_REF]Schunck, 1981, Lucas and[START_REF] Lucas | An iterative image registration technique with an application to stereo vision[END_REF], which practically are limited to small displacements. In addition to that the existing approaches provide a bad quality/cost compromise, the fast ones are generally badly ranked.

Superpixel segmentation

The term superpixel is used to describe a group of pixels similar in color or other lowlevel features. The concept of superpixel is motivated by two important aspects, which have been adapted widely. Firstly, low level pixels do not represent natural entities but are merely a result of discretization. And secondly, the number of pixels prevents many algorithms from being feasible [START_REF] Ren | Learning a classification model for segmentation[END_REF]. The task of segmenting an image into superpixels is widely referred to as oversegmentation or superpixel segmentation.

While recent algorithms are explicitly designed to generate superpixel segmentations, others were initially intended for classical image segmentation or clustering. Overall, superpixels may have different properties which first of all impose a visual difference.

Since their introduction, numerous superpixel algorithms have been proposed in the literature and they could be roughly classified into graph-based methods, and gradient ascent methods. Algorithms in the first category usually treat each pixel as a node in a graph, where edge weights between two nodes are proportional to the similarity between neighboring pixels. Superpixels are then created by minimizing a cost function defined over the graph [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF][START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Moore | Superpixel lattices[END_REF][START_REF] Veksler | Superpixels and supervoxels in an energy optimization framework[END_REF]. Gradient ascent approaches, on the other hand, usually start from a rough initial clustering of pixels and then iteratively refine the clusters until some convergence criterion is met to form superpixels.

Superpixels have actively been used for a wide range of applications: for example as pre-processing step for classical segmentation [START_REF] Ren | Learning a classification model for segmentation[END_REF]Malik, 2003, Rohkohl and[START_REF] Rohkohl | Efficient image segmentation using pairwise pixel similarities[END_REF], as mid-level cues used for tracking [START_REF] Yang | Robust superpixel tracking[END_REF], as pre-processing step for graph-based stereo matching [START_REF] Zhang | Superpixels, occlusion and stereo[END_REF], or for semantic segmentation.

Although it may depend on the application which of these algorithms is preferable, most authors agree on the following basic requirements for superpixels [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF][START_REF] Levinshtein | Turbopixels: Fast superpixels using geometric flows[END_REF][START_REF] Liu | Entropy rate superpixel segmentation[END_REF]:

• Superpixels must respect and have a good adherence with object boundaries.

• Superpixels generation should be in the most possible efficiente way.

• Superpixels must not degrade the performance of the following processing steps.

Additional requirements may include compactness, especially in regions where no object boundaries are present, as well as connectivity [START_REF] Levinshtein | Turbopixels: Fast superpixels using geometric flows[END_REF][START_REF] Schick | Measuring and evaluating the compactness of superpixels[END_REF]. Research related to superpixel algorithms has seen a substantial growth during the last few years. Consequently, the literature on this topic is quite extensive. Here we are interested in the k -means based approaches and minimum spanning forest for watershed segmentation.

Superpixel k -means based approach

Grouping pixels to image segments can also be approached using techniques for unsupervised data clustering. There are several oversegmentation algorithms in this category including mean shift [START_REF] Comaniciu | Mean shift: a robust approach toward feature space analysis[END_REF], quick shift [START_REF] Vedaldi | Quick shift and kernel methods for mode seeking[END_REF], watershed approach [START_REF] Vincent | Watersheds in digital spaces: an efficient algorithm based on immersion simulations[END_REF], SPASM approach [START_REF] Wang | Cellular matrix model for parallel combinatorial optimization algorithms in euclidean plane[END_REF], and Turbopixel method [START_REF] Levinshtein | Turbopixels: Fast superpixels using geometric flows[END_REF]. Also, there exist some methods [START_REF] Hasnat | Unsupervised RGB-D image segmentation using joint clustering and region merging[END_REF][START_REF] Weikersdorfer | Depth-adaptive superpixels[END_REF]] that use disparity map as an additional feature to perform segmentation on RGB-D images. A well known algorithm for this task is k -means.

A comprehensive survey and comparison study of superpixel algorithms can be found in [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF], where a fast algorithm called simple linear iterative clustering (SLIC) is proposed to adapt k-means clustering to generate superpixels with good adherence to image boundaries. GPU-based acceleration works of the SLIC algorithm are reported in [Birkus, 2015, Ren and[START_REF] Ren | gslic: a real-time implementation of slic superpixel segmentation[END_REF], where the gSLIC in [START_REF] Ren | gslic: a real-time implementation of slic superpixel segmentation[END_REF] is a sophisticated GPU implementation with specific optimization techniques under CUDA framework such as efficient thread scheduling and shared memory usage.

The work of [START_REF] Birkus | Accelerated gslic for superpixel generation used in object segmentation[END_REF] further accelerates gSLIC under the same principle of GPU implementation but with a different strategy of cluster centers updating. In this section we will present two of those approaches: SLIC and SPASM superpixel segmentation [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF][START_REF] Wang | Cellular matrix model for parallel combinatorial optimization algorithms in euclidean plane[END_REF].

SLIC superpixel application

Simple Linear Iterative Clustering (SLIC) [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF] is a gradient ascent method growing superpixels from initial superpixel centers using color similarity and spatial proximity. SLIC performs local k -means clustering. Cluster centers are initialized on a uniform grid in the image plane, the search space for each cluster is restricted to a local spatial neighborhood around its center. The metric during clustering is a weighted combination of LAB colour distance and spatial distance in the image plane. The weight of the spatial component (the "compactness" parameter) influences the regularity of the resulting segments shape and size.

The only parameter of the algorithm is k, the number of superpixel segments in the output. The segmentation begins with the initialization of k cluster centers by sampling them on a regular grid spaced, in order to produce roughly equally sized superpixels.

Next, each pixel is assigned to the nearest cluster center whose search region overlaps its location. A 5D euclidean distance which includes pixel coordinates and color is defined to determine the nearest cluster center for each pixel [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF]. Once pixels are assigned with their cluster center, the value of cluster centers are adjusted to be the mean of all the pixels belonging to the cluster. The algorithm repeats the previous steps until the error converges. Finally, a post processing step is needed to enforces connectivity by reassigning disjoint pixels to nearest superpixels.

There are few implementations available for SLIC, as the original implementation by [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF], an implementation as part of the VLFeat Library [START_REF] Vedaldi | VLFeat: An open and portable library of computer vision algorithms[END_REF], and a parallel GPU implementation by [START_REF] Ren | gslic: a real-time implementation of slic superpixel segmentation[END_REF]. A comparative study of gSLIC against SLIC and SPASM is provided in the work of [START_REF] Wang | Cellular matrix model for parallel combinatorial optimization algorithms in euclidean plane[END_REF], the study shows that the computational time of gSLIC is outperformed by both SPASM and SLIC. Figure 2.2 shows running examples with the original implementation of SLIC.

SPASM segmentation

The superpixel adaptive segmentation map (SPASM) [START_REF] Wang | Cellular matrix model for parallel combinatorial optimization algorithms in euclidean plane[END_REF] algorithm is a GPU superpixel segmentation algorithm that is at origin of the 3D k-means presented in this thesis. The word "adaptive" means that the distribution (density) of superpixels adjusts itself to some data attributes as edges. SPASM algorithm starts by initializing a regular (uniformly distributed) 2-dimensional grid of nodes on the Euclidean plane defined by input image. Each node is the cluster center of a superpixel.

First, an application of the online version of the Kohonen's Self-Organizing Map [START_REF] Kohonen | Self-organizing maps[END_REF] (SOM) algorithm is applied in order to deploy the uniformly distributed nodes according to some desired attribute of input image, such as edges, textures, and depths. After that, a batch version of SOM algorithm using a new designed distance in color-space domain is applied for the final segmentation map. All operations are massively performed in parallel on GPU. with a very standard k-means algorithm. It is a true k-means in that it guaranties exact closest point findings in 3D space. Only two parameters are necessary, that are, size of cluster map and intensity of gray value dimension. Note that SLIC or SPASM operates on 2D plane and need specific implementation tricks to deal with space and color together.

Superpixel based on minimum spanning forest

Minimum Spanning Tree (MST), and spanning forest were used in clustering and image segmentation for years. [START_REF] Felzenszwalb | Efficient graph-based image segmentation[END_REF] presented a segmentation approach based on Kruskal's MST algorithm. The approach starts by ordering edges according to their weight in the graph, extremities pixels of each edge merge into a superpixel or segment, when it is similar to the other pixels of the segment, and it does not form a cycle. A threshold per-segment is defined to decide if a pixel belong to the segment or not. The algorithm is almost linear and it result a minimum spanning forest (MSF), where each subtree is a segment. In order to empower parallel processing without separating object on the border, [START_REF] Wassenberg | An efficient parallel algorithm for graph-based image segmentation[END_REF] proposed a performing algorithm that join together many generated MSF. To surpass the over-segmentation problems, [START_REF] Wassenberg | An efficient parallel algorithm for graph-based image segmentation[END_REF] used a labelling objective function to compute a distance to the threshold.

Watershed based methods for image segmentation have been also widely used in the literature. It has been shown by [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF] that it coincides with a MSF built on the minima of the cost function. For example, [START_REF] Roerdink | The watershed transform: Definitions, algorithms and parallelization strategies[END_REF] propose an overview for various algorithmic implementations and adaptations based of The choice of the markers has a large influence on the resulting segmentation. For example, [START_REF] Meyer | Color image segmentation[END_REF] uses local gradient minima. The seeds grow iteratively pixel by pixel until they reach a border to the segment around another seed. These borders form the watersheds.

Globally, GPU solutions exist to compute MSF in general graphs, but we did not found yet GPU implementations for MSF in 3D euclidean space. Also GPU watershed implementations exist, but we did not found GPU implementations that use standard MSF for segmentation based on seeds. In this thesis, we propose a full GPU approach for MSF segmentation, by customizing a GPU Boruvka algorithm provided by [START_REF] Qiao | GPU component-based neighborhood search for Euclidean graph minimization problems[END_REF][START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF], that operates in 3D space, as well as in image graph.

Conclusion

In this chapter, we have reviewed definitions and literature background related to optical flow problem and image superpixel segmentation. We have presented optical flow formulation in details with the presentation of its energy minimization function.

PatchMatch techniques allow to quickly address large displacement moves as a first step, whereas variational methods look to be the most efficient methods actually.

Convolutional Neural Networks also become more and more competitive, but require huge amount of data with ground-truth available.

In the field of GPU optimization to optical flow, few GPU implementaions look available as competitive methods. To successfully design the algorithms, data structures have to be defined carefully. Data and processors are organized on grids. More precisely, processors are identified to data points (pixel, cluster center, cells) on a one-to-one basis. One processor corresponds to one element of a data grid, sharing the same index value. We present data structures.

Also these data can be accessed concurrently, and this allows possible interactions and conflict of access. We will present basic mechanism of lock free programming.

In this chapter, we introduce notations and main definitions used in the next chapters.

The following sections are organized as follows. The section 3.2 introduces the concept of grid data structure in relation to GPU parallel computing. The section 3.3 presents how to model a graph and various cluster based data structures. The section 3.4 presents subdivision of euclidean 2D/3D space to create a cluster map, or cell subdivision. In section 3.5 we summarizes the notations, and acronyms used in this thesis. Last section concludes the chapter.

Data grid and image graph in 3D euclidean space

We define a data grid as a function g : Ω → V, where Ω ⊂ N D is a finite domain with D as dimension, and V ⊂ R K is a domain of values or attributes with K dimensions.

In a general way, Ω can be identified to objects as pixels, clusters, nodes, and V to their attributes as colors, buffers, locations, neighbours. In this work, we consider D = 2, D = 3 since input data are two dimensional images, GPU processors are two or three dimensional grids, and 3D space partition is used for image representation. We now detail processor grid, image definition and representation.

Data grid and processor grid

A main point is that parallelism operates in a one-to-one basis. Given a data grid g, a processor grid can be dimensioned such that each element i ∈ Ω systematically has a processor assigned to it with same index i in the processor grid. The data grid is divided between blocks of threads, as represented in Figure 3.1, blocks being scheduled to the streaming multiprocessors. For a given GPU card GeForce RTX 2070 as we used in this document, and considering a grid of N elements, GPU CUDA configuration is set in a standard way to N/256 + 1 blocks, for 256 threads by block. Each element index coincides with one thread index. To model and apply our generic algorithms presented in this work, we joint 2D space and gray value domain into three dimensional euclidean space domain. We consider an euclidean 3D image as the set of points (i,

Image graph

I(i)) ∈ R 3 , i ∈ [W] × [H].
In that way, we apply generic k-means for bilateral segmentation, closest point search in optimal time in 3D grid space decomposition, and we apply massively parallel execution on GPU. Next in the document we note Y i = (i, c × I(i)), the 3D image/graph point cloud, where c is an intensity factor to modulate the relative importance of gray value dimension, as in bilateral filtering. The intensity factor will be set as c = 0.1 in most of our experiments in super-pixel segmentation.

It can be noted that a given two-dimensional index i = (x, y), (x, y) ∈ [W] × [H], can be stored and retrieve as a linear index i

= y × W + x, i ∈ [W × H]. Next in the document,
we consider that an index can be represented interchangeably by its linear offset index as necessary. A linear atomic representation can be required in certain cases for atomic exchanges. We will mention that cases.

Grids of clusters, graphs and buffers

Disjoint set tree

Disjoint set tree (dst) [START_REF] Galler | An improved equivalence algorithm[END_REF] allows to represent any tree on some finite domain, here the pixel domain, with a single link parent relation. Applied to image, it is a grid parent : Ω → Ω such that parent(i) indicate its immediate single parent in the tree, as illustrated in Figure 3.

Distributed linked list

At a required moment, a distributed linked list (dll) grid representation of components can be constructed from a disjoint set tree grid representing a partition. A dll map allows each node to memorize locally the next element of the list. A ddl is a grid next : Ω → Ω , such that next(i) is the next element of a list, and -1 if i is the last node, for each node

i ∈ Ω. Here Ω = [W × H] is the linearized domain of indexes Ω = [W] × [H].
Assume a flattened disjoint set tree, called root map, represents a partition of pixel set.

For each pixel i, root(i) represents its root node and identifies cluster membership. We can concurrently construct a dll as follows. At each iteration a node inserts itself at the head into the distributed linked list, given by its root node. The dll is initially empty.

These insertions are done concurrently using a lock-free algorithm as stated in the CUDA documentation [START_REF] Nyland | Understanding and using atomic memory operations[END_REF] and exposed in Algorithm 1.

Similarly, once the linked list is available, it is possible to visit cluster nodes one by one in sequence. For example, each node can visit the cluster in which it is inside, as presented in standard loop of Algorithm 2. This generic loop allows to implement a parallel super-pixel local search for optical flow. We found that this type of generic GPU implementation of data structures performs competitively with CPU as shown in [START_REF] Qiao | GPU component-based neighborhood search for Euclidean graph minimization problems[END_REF]. Procedures computeOffset and backOffset allow to translate an index to its linear offset as required, principally to allow atomic exchanges of indexes when building a list. end while 8:

end if 9: end for

Adjacency list and buffer data structure

Graphs are represented in a classical distributed way, by adjacency list representations embedded in nodes. Each node has a local buffer with the list of its neighbour indexes in the graph. Since we consider only sparse graph with small degree, as spanning trees, we implement adjacency list by buffers of indexes. On the contrary of dll, indexes are contiguous in buffers, instead of distributed overall the map.

A grid of buffers, or cells, is a data grid h : Ω → N × Ω K 2 that associates to each node, a size and a set of consecutive K locations in index domain. Note that indexes can be memorized from any index domain Ω 2 . This generic data structure is used for adjacency list graph representation, as well as for cellular subdivision of 2D/3D space, to memorize point cloud distributions, for fast closest point findings in parallel, and many other index relations. Parallel insertions in buffers are executed by concurrent access to buffer location, using atomic location increment. Buffers allow fast local access to local data. The constant size K depends on the context and on the type of distribution.

Cellular matrix model

Cellular subdivision of plane

Given an image, we need to create a cluster map among pixels and dimension its size. Also, we want to create a cell subdivision of the D dimensional space, with application to D = 3 in this work, to embed point clouds and perform k-means and minimum spanning tree computation in euclidean space. We start by the plane subdivision and generalize to three dimensions and higher. Three possible tessellations [START_REF] Stojmenovic | Honeycomb networks: Topological properties and communication algorithms[END_REF] of the plane are represented. The three tessellations correspond to dividing the image plane into regular squares, triangles, and hexagons, respectively. Here, we use three types of cell subdivision by using three type of neighbourhoods, respectively quad topology and rhombus topology, derived from the square tessellation, and hexagonal topology. The three topologies are respectively with 8 neighbours (quad), 4 neighbours (rhombus), and 6 neighbours as presented in Figure 3.3.

On the top row of Figure 3.3 is shown the cellular level derived from a given regular image topology. The two other rows illustrate cell subdivision on a given image. In the picture, internal pixels of each cell, except the cell frontier, are projected to the location of the center of the cell. The three columns present the three type of neighbourhoods, respectively quad topology, rhombus topology, and hexagonal topology.

Customizing cell subdivision

To dimension a cluster map or a cell space subdivision, we define a three-level grid hierarchy called cellular matrix model following [START_REF] Wang | Cellular matrix model for parallel combinatorial optimization algorithms in euclidean plane[END_REF] preliminary approach.

The process of cell creation is illustrated by Figure 3 The low level image plane is a discretization of the plane according to a given regular grid. We can state that a cellular matrix is given by a regular grid of dimension W × H,

Cellular subdivision of 3D space

In case of 3D space cell subdivision, we generalize the cellular subdivision with square topology to D dimensions as realized in [START_REF] Qiao | GPU component-based neighborhood search for Euclidean graph minimization problems[END_REF][START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] for minimum spanning trees computation in 3D space. A 3D cellular subdivision is modelled as a buffer grid associated to a grid of center locations. The domain consists of the 2D image plane, to which is added a third dimension representing gray value. The grid of cells is a function

h : [W D] × [H D] × [Z D] → N × Ω K
, with Z D the depth dimension defined by maximum gray value, and Ω some index domain. It associates a size and buffer of indexes to each

center c = (x, y, z) ∈ [W D] × [H D] × [Z D] of a cell.
The cellular matrix framework is aimed to provide the coordinate transfer functions that allow direct accesses to data coordinates at the different grid levels, meanwhile parallel processors can be organized into regular 2D/3D grids to process data at any level. In 3D space representation, units are pixel units and gray value unit. It is worth noting that 3D indexes in a low level 3D grid exactly represent their 3D coordinates in euclidean space, as it is the case for pixel coordinates in the plane, since a pixel of index i = (x, y) has location (x, y) in image plane.

Spiral search

Cells are the units of data memorization that must be searched by processors. To perform efficient search, we implement a spiral search algorithm as stated in [START_REF] Bentley | Optimal expected-time algorithms for closest point problems[END_REF]. This core algorithm is the basis for the many closest-point findings in parallel.

It has been proven by [START_REF] Bentley | Optimal expected-time algorithms for closest point problems[END_REF] that the expected running time of spiral search is in O(1), if points are chosen independently from a uniform or bounded distribution over the cells. When the data are highly irregular, larger-size buffers are necessary for cell memorization. Since based on D dimensional grid cellular subdivision, the approach can be applied to only low dimensional data in practice. Here, we apply spiral search in 3D space for parallel k-means algorithm.

Notations and acronyms

The Table 3.1 summarizes the notations and definitions used in this thesis.

[N] Index domain [N] = 0, ..., N -1 index [W D] × [H D] × [Z D] 3D space domain of size W D × H D × Z D symbol I Image symbol [W] × [H]
Image planar domain of size W × H symbol i A node in data grid, a pixel symbol Chapter 4

I(i) gray value of pixel i symbol i(x, y) 2D index of a pixel i index i(u, v) 2D flow

Superpixel segmentation

Introduction

In this chapter, we propose two superpixel segmentation map parallel algorithms. The first approach is based on k -means clustering algorithm, meanwhile the second is based on minimum spanning forest computation. The goal of the two approaches is to generate a superpixel segmentation map which will be used in optical flow estimation algorithms.

The work focuses on the parallel implementation of the algorithms. The result of the two methods is a disjoint-set-tree that represents a set of clusters. In this map, each pixel has a pointer index to its root pixel, representing a superpixel cluster. We also provide a comparative study between methods in term of computation time at the end of this chapter.

One of most used clustering algorithm is k -means clustering. It is simple and computationally faster than the hierarchical clustering. And it can also work for large number of variables. So it is required to initialize the proper number of cluster K. And since the standard algorithm only guaranties a local minima of the energy to minimize, quality mainly depends on initialization. Here, we implement a standard k -means in 3D space into GPU platform to generate regular, but smoothly deformed, clusters that follow object contours and, in that way, are useful for further optical flow matching. A regular initialization of cluster centers is adopted because adequate here. Mainly, we reuse, customized, and extend the GPU source code that we developed for the SPASM algorithm [START_REF] Wang | Cellular matrix model for parallel combinatorial optimization algorithms in euclidean plane[END_REF] in 2D plane, in combination to a D dimensional GPU spiral search technique from [START_REF] Qiao | GPU component-based neighborhood search for Euclidean graph minimization problems[END_REF][START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] that we adapt to k-means in 3D space.

A second type of clustering algorithm that we present is based on minimum spanning forest computation according to minima of the image gradient function. Minima are seeds obtained at a given depth through geodesic reconstruction. The segmentation is generated by three spanning tree computations, based on the seed pixels first, then on all the pixels to generate a forest. Here, we customize the parallel Boruvka algorithm implemented in GPU by [START_REF] Qiao | GPU component-based neighborhood search for Euclidean graph minimization problems[END_REF][START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] to behave in three steps on the required image data structures. The algorithm can operate in 3D space as well as in image graph. The 3D space is used for seed grouping, while the image graph for final spanning tree on gradient map. The watershed like obtained segmentation will be used for bilateral filtering at a final step of optical flow.

Firstly, in section 4.

Superpixel based on k -means in 3D space

Presented by J.MACQUEEN in [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], k -means is an unsupervised and iterative algorithm for center based clustering. k -means algorithm remains one of the most popular clustering approach [START_REF] Berkhin | A survey of clustering data mining techniques[END_REF][START_REF] Cuomo | A gpuaccelerated parallel k-means algorithm[END_REF][START_REF] Lücke | k-means as a variational em approximation of gaussian mixture models[END_REF] used in scientific application, due to its extremely fast execution time. It makes it possibles to divide the data set into K different clusters represented by their center, called codebook, or prototype. It can be viewed as a local search algorithm for the related energy function that states cluster homogeneity. It has been shown that the problem is NP-complete even in two dimensions [START_REF] Mahajan | The planar k-means problem is np-hard[END_REF][START_REF] Vattani | The hardness of k-means clustering in the plane[END_REF].

Given N data points in the Euclidean space, and a set of K centers, the algorithm works in two steps. First, a Voronoi partition among centers is created. Second, each center updates is location to the mean of the points of its Voronoi cell. The process stops when center locations have stabilized. Voronoi clusters are the result, returned as a root map in our implementation.

Objective function and standard k-means algorithm

Let Y = (Y 0 , ..., Y N -1), a set, or sequence, or grid of N data points such that

Y i ∈ R D , i ∈ [N].
Recall that [N] = {0, ..., N -1} is an index set, and that any index set can be identified with a processor set. Let X = (X 0 , ..., X K-1) be a set of K cluster centers with

X k ∈ R D , k ∈ [K].
As stated as energy minimization problem, the goal of k -means is to find cluster center locations in D dimensional space such that to minimize the energy function given by :

F(X) = N -1 n=0 Y n -X cn 2 , (4.1)
where c n is the index in [K] of the closest center to Y n , and . is euclidean metric in D-dimensional space. Starting with some initialization of the K cluster centers, two steps are repeatedly executed:

• Assignment: Assign each data point to the nearest cluster center.

• Update: Compute the new cluster centers from the assigned observations. Algorithm 3: Standard sequential k-means algorithm.

Input: grid of N data points, number of cluster centers K.

Output: a set of cluster centers X.

1: while X k , k ∈ [K] have not converged do 2:
for k ← 0 to K -1 and n ← 0 to N -1 do 3:

S n k = 1 if ∀k = k : ||Y n -X k || < ||Y n -X k || 0 otherwise; 4:
end for 5:

for k ← 0 to K -1 do 6:

X k = N n=1 S n k Y n / N n=1 S n k 7:
end for 8: end while 9: return X;

A pseudo-code of standard k-means is formulated in the Algorithm 3. A main drawback of k -means is the necessity to choose the number of clusters K. Moreover the results strongly depend on the choice of the initial clusters. For practical applications, often multiple runs with different initializations and possibly different numbers of clusters are performed. The solution with the best value of the above objective function is taken.

Parallel implementation of k-means algorithm

We apply k-means in 3D space. The data points is the euclidean image graph as presented in previous chapter. Given a gray value image I :

[W] × [H] → R + , the data points are the pixel-gray value 3D points Y n = (n, c × I(n)) ∈ R 3 , n ∈ [W] × [H],
where c is a factor that fixes the relative importance of intensity value. A factor of c = 0.1 will be adequate in our experiments to enforce superpixel regularity.

The set of K centers is a two dimensional grid obtained from the image grid by zooming with factor R, and extracting center of cells, such that each cluster center corresponds to a neighbourhood of radius R in original image. Parameter R allows to implicitly fix the cluster center grid W K , H K dimensions. Cluster centers are 3D points for each n in parallel do for each k in parallel do 13: Next, in the assignment step, each pixel n is associated with its nearest cluster center c n .

X k ∈ R 3 , k ∈ [W K]×[H K]. Hence, we have K = W K ×H K .
X k ← j∈P k Y j /|P k | ;
From this correspondence map, a distributed link list (dll) is constructed to further visit cluster nodes. Once the cluster list created, an update step adjusts the cluster centers to be the mean vector of all the pixels belonging to the cluster. The assignment and update steps can be repeated for a given number of iterations.

Note that in the algorithm, P k , k ∈ [W K] × [H K] represents a given Voronoi cluster defined by:

P k = {j ∈ [W] × [H] /∀p ∈ [W K] × [H K] , p = k, d(Y j , X k) < d(Y j , X p)} . (4.2)
To encode the partition P k in order to visit cluster, two dll grids are necessary: one

[W K] × [H K]
dll grid returns the first index of the list in a second dll grid. This second

[W] × [H]
dll grid encodes the complete list as a next map as explained in previous chapter. Construction is based on lock-free concurrent insertions.

From dll representation, a final disjoint-set-tree root map is constructed that returns to each pixel, its root pixel. The root pixel is defined as the closest (in 3D space) pixel to a given center k within cluster list.

Examples of visual results

In

Superpixel based on minimum spanning forest

Min cuts, minimum spanning forest, and watersheds are popular tools for image segmentation, which can both be expressed in the framework of graphs, and are well suited to computer implementations. Informally, a cut in a graph is a set of edges which, when removed from the graph, separates it into different connected components. Given a set of vertices or subgraphs called markers, the goal of these operators is to find a cut for which each induced component contains exactly one marker, and which best matches a criterion based on the image contents. Minimum spanning forest are special types of graph cuts. It has been shown also that a watershed is equivalent to minimum spanning forest relative to the minima of the cost function [START_REF] Allène | Some links between extremum spanning forests, watersheds and min-cuts[END_REF][START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF].

The intuitive idea behind watershed segmentation originates from topography [START_REF] Digabel | Quantitative analysis of microstructures in materials sciences, biology and medicine[END_REF]. When a landscape is flooded by falling waterdrops, dependent on the amount of water there are basins filled with water and dividing ridges between them. These ridges are the watersheds. Watershed has been widely developed in image processing in CPU, various algorithms and approaches have been proposed. Some specifically dedicated GPU applications have recently appeared [Kalaiselvi et al., 2017, Yeghiazaryan and[START_REF] Yeghiazaryan | Path reducing watershed for the gpu[END_REF] implementing watershed. In our GPU approach, to be more generic, we chose to employ the parallel Boruvka minimum spanning forest approach to generate a watershed like segmentation, based on minima, and groups of minima, of the image gradient. We did not found yet such type of approach in GPU.

As many segmentation tools, watershed transform has advantages and disadvantages, one of the main advantages is that watershed transform generates segmentation map with well defined regions, even when the contrast is poor. The major disadvantage is that watershed transform leads to over-segmented regions. This problem is overcome mostly by preprocessing step, by applying filters to improve image contrast, or processing a markers [START_REF] Meyer | Morphological segmentation[END_REF]. In our parallel approach, two parameters will help control over-segmentation: the depth of minima to reduce their number, and a cut distance for grouping minima that are more or less closed together. The segmentation result is the spanning forest relative to minima components, clusters forming a partition of the image. This partition is returned as a root grid disjoint-set-tree.

Background on minimum spanning forests and watershed

In this section, we present some well-known results from [START_REF] Allène | Some links between extremum spanning forests, watersheds and min-cuts[END_REF][START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF] among which is founded our proposal. We follow formalization as given by the authors. First we define basic concepts, second we define minimum spanning forest relative to seeds. We recall the main theorem that relates miminmum spanning forest to watershed cut.

Graph extension and cut

An undirected graph is a pair G = (V, E), where V is a finite node set and E is the edge set, precisely, E is a subset of {{x, y} ⊆ V |x = y}. A component X of a graph G is a subgraph that can be connected by a path in the subgraph and which is maximal for this property, i.e. for any connected graph X , X ⊆ X ⊆ G implies X = X. Let X be a subgraph of G, we denote respectively by V (X) and E(X) the node set and the edge set of X respectively.

To define watershed cut, as well as minimum spanning forest segmentation, we need the notion of graph extension. In that way, we define segmentation algorithms by iteratively extending seed components. Segmentation terminates once an extension covers all the vertices of the graph. The separation of components is called a graph cut. We define a graph extension of a subgraph by: Definition 4.1. Let X and Y be two non-empty sub-graphs of G. We say that Y is an

extension of X in G if X ⊆ Y and if any component of Y contains exactly one component of X.
We say that Y is a spanning extension of X, over G, if Y is an extension of X and

V (Y) = V . If S is a subset of E, we denote by S the complementary set of S in E,
that is, S = E S. Since watershed is a cut, we now define a cut of a graph by following definition:

Definition 4.2. Let X ⊆ G and S ⊆ E. We say that S is a cut for X if S is an extension of X and if S is minimal for this property, i.e. if T ⊆ S and T is an extension of X, then we have T = S.

Minimum Spanning Forest and watershed

Here, we recall the main theorem relating watershed and MSF. We first recall the definition of forest and spanning forests relative to a subgraph of G. A forest relative to a subgraph is defined by: Definition 4.3. Let X and F be two non-empty subgraphs of G. We say that F is a forest relative to X if F is an extension of X, and for any extension Z ⊆ F of X, we have Z = F whenever V (Z) = V (F), i.e. the extension property does not hold when eliminating an edge of F .

We say that F is a spanning forest relative to X, for G, if F is a forest relative to X and V (F) = V . Let X ⊆ G, X is a tree (resp. a spanning tree) if X is a forest (resp.

spanning forest) relative to the subgraph (x, φ), x being any vertex of X. We say that X is a forest (resp. a spanning forest) if X is a forest (resp. a spanning forest) relative to (S, φ), S being a subset of V (X).

We can now define Minimum Spanning Forest (MSF). Let P : E → R + be a cost, or weight, function over the edges. We define the weight of a subgraph X of G as the sum P (X) of its edge weights, that is: P (X) = e∈E(X)

P (e). Minimum Spanning Forest relative to a subgraph is defined as follows:

Definition 4.4 (Minimum Spanning Forest). Let X and F be two subgraphs of G, F is a minimum spanning forest (MSF) relative to X for P if F is a spanning forest relative to X and if P (F) is minimum, i.e. P (F) is less than or equal to the weight of any other spanning forest relative to X.

Note that a minimum spanning forest F relative to X defines a unique cut S for F , that is also a cut for X. We call S an MSF-cut for X. Given cost function P , we denote by M in(P) the graph whose vertex set and edge set are the union of the vertex sets and edge sets of all regional minima of P, respectively. We now recall the theorem linking MSF and watershed as given by [START_REF] Cousty | Watershed cuts: Minimum spanning forests and the drop of water principle[END_REF]:

Theorem 4.1.
Let S be a subset of E, the set S is a MSF-cut for M in(P) if and only if S is a watershed for P .

We did not report a separate definition of watershed, since we only address watershed indirectly by MSF computation on regional minima. In our case, the theorem can be seen as a characterization of watershed cut. The problem of finding minimum spanning forest relative to seed components is equivalent to the problem of finding a minimum spanning tree (MST). In fact, this provides a mean to derive, from any minimum spanning tree algorithm, an algorithm for minimum spanning forests, and also, for watersheds. The best of MST algorithms are quasi-linear time [START_REF] Chazelle | A minimum spanning tree algorithm with inverse-ackermann type complexity[END_REF] in the number of edges, but algorithms specific to watersheds may run in linear time in the number of edges.

In our case, massively parallel execution is addressed by using a very generic Boruvka algorithm.

GPU Boruvka's algorithm to minimum spanning tree

Once a map of minima computed, to compute a MSF from seeds, we need to compute a minimum spanning tree (MST) as the main tool. The computation will be divided in three steps of respectively grouping minima, connecting minima groups, and compute final spanning tree on pixels. Here, we present the adaptation of Boruvka algorithm that we have customized for image segmentation. We reuse the GPU implementation of [START_REF] Qiao | GPU component-based neighborhood search for Euclidean graph minimization problems[END_REF][START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] for minimum spanning tree computation in 3D space. We modify the algorithm in order to deal with image indexes, to both perform in image graph gradient as well as in 3D space, and to allow the grows of a supplementary cluster map representing superpixels.

Given a general weighted graph G = (V, E), the classical Boruvka's algorithm [START_REF] Boruvka | O jistém problému minimálním[END_REF] Our proposed GPU parallel extension of [START_REF] Qiao | GPU component-based neighborhood search for Euclidean graph minimization problems[END_REF][START_REF] Qiao | Gpu implementation of borůvka's algorithm to euclidean minimum spanning tree based on elias method[END_REF] algorithm executes six steps at each Boruvka iteration. Each step is executed as Kernels in GPU platform. In this new version, two root maps are given as input that can evolve together and make clusters grow. One root map represents the global spanning tree, whereas the second root map represents a sub-partition that should evolve at the same rate, but which represents the forest unconnected components and hence, the final superpixels.

Given a root map disjoint set tree as input, and a second embedded root map, the six steps are as follows:

• Find Minimum 1 : in parallel for each vertex, search a component's closest outgoing node. Search can be done in image graph, as well as in 3D space as in original version.

• Find Minimum 2 : in parallel construct a distributed link list of the current cluster and select the best outgoing edge. In parallel, each root vertex sequentially visits its cluster nodes to select the best outgoing edge.

• Connect Graph: create an edge connection in tree in parallel for each best outgoing edge.

• Merge component 1 : merge clusters of root map 1 by parallel union operation.

• Merge component 2 : merge clusters of root map 2 by parallel union operation.

• Flattening root map: each vertex in parallel directly points to its root pixel in each root map.

We now turn to the explanation of the application to minimum spanning forest superpixel segmentation.

Proposed method to MSF segmentation (MSF-watershed)

The method consists of building a minima map of the image gradient at a given depth, as first step, then constructing a minimum spanning forest over the minima (seeds) in three steps of MST computation. Two main parameters will be useful to help control oversegmentation: the minima depth, and a cut distance for minima grouping

respectively. An illustration of the minima extraction process is given in Figure 4.3 for grove3 image of Middlebury data set [START_REF] Middlebury | Middlebury Optical Flow Datasets[END_REF]. And an illustration of the three-step MST computation is illustrated in Figure 4.4. We detail the main operations.

Minima detection. To compute a map of the minima of the image gradient, we follow the usual techniques of morphological mathematics as exposed in [START_REF] Meyer | Color image segmentation[END_REF]Beucher, 1990, Soille, 2003]. We use first a morphological gradient of the gray value image. Then, by image differencing and geodesic reconstruction based on 4-neighbour connectivity, we select the minima at a given depth depth, i.e. such that they falls in basins of depth depth. All these operations are naturally parallel in that each pixel only operates locally, according to its neighbourhood structure. Our laboratory technical support implemented those convolution based procedures in GPU for minima extraction.

MST computation. Once, the minima are computed at given depth, and since the result is a pixelwise indicator grid, we need to group minima within plateaus by using a root map to model clusters. A cut distance expressed in pixel units, cut, is used to only select nodes within a neighbourhood distance below that cut value. This grouping is achieved by a first round of MST computation, where components grow as long as their exist a link with required distance. This MST is executed in euclidean space.

Once the minima grouped into a first root map, a second root map extends the previous one, by a second round of MST computation in euclidean space, with no threshold cut distance, in order to connect all the minima groups into a single large cluster. This large cluster allows to compute the final MSF by a third round of MST computation on the whole image graph. While the second root map grows until a final single cluster (spanning tree) is achieved over image pixels, the first root map of minima components grows at the same rate until termination. This extended first root map is the final superpixel segmentation. A pseudo-code of the main operations is given in Algorithm 5.

Discussion on parameter setting

To deal with over and under segmentation problems, we customize two parameters for the MSF-watershed segmentation application. The first parameter is the depth of the minima basins where to extract minima, depth, expressed in gray value units. The second parameter is a cut distance to allow minima grouping by proximity. By executing a first MST round, each minima connect to its neighbours at distance at most cut, until convergence.

Comparative study

In this section, we present comparison results with the different superpixel applications.

During our experimental study, the tests are conducted on the following platforms:

• On the CPU side: An Intel (R) Core (T M) i7 -6700HQ processor, provided with quad-core running at 2.60GHz and a 32 GBytes of RAM.

• On the GPU side: A Nvidia GeForce GTX 1070 graphic card with Pascal architecture, provided with 2048 CUDA cores(32 active blocks with 64 CUDA cores for each) and 8192 Mo GDDR5. The compute capability is 6.1.

First, we provide the performance obtained by our approaches compare to others. In order to compare the running time, we test four superpixel algorithms: the SLIC CPU implementation (cSLIC) from the raw public source code by [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF],

the SPASM GPU implementation reported in [START_REF] Wang | Massively parallel cellular matrix model for superpixel adaptive segmentation map[END_REF], and our parallel kmeans 3D superpixel GPU implementation and MSF-watershed GPU implementation.

Parameters are fixed such that k-means based approaches share roughly a same number of clusters, whereas for MSF approach we took depth = 25 and cut = 4 that looks a good compromise for this algorithm and data.

We test the four approaches on the standard benchmarks from Middlebury data set [START_REF] Baker | A database and evaluation methodology for optical flow[END_REF]. The experiment average running time on the data set is given in the As we can see in Figure 4.6,results show that despite running in 3D space, the k -means 3D can achieve fast competitive running times, In fact, here we note that a near realtime performance is achieved with an average running time of 0.06s on the data set, meanwhile the other approaches are between 0.12s and 0.42s. The reported result show that the k -means 3D approach is 5 times faster then the state-of-the-art SLIC and 2 times faster then the SPASM approach. MSF is slower. This can be explained mainly because of superpixel heterogeneity, since large superpixel must be sequentially examined in some steps of the MSF algorithm. Moreover, the algorithms are generic, they guaranty some optimality criteria, and are implemented with standard distributed data-structures useful in parallel computing. The execution time results are reported in Figure 4.7 according to the input image size.

The results show that the execution time of the k -means 3D approach increases in a quasilinear way with a very weak increasing factor when the input size augments comparing to the three other approaches, which encourages to use this k -means implementation to deal with big large data. Table A.2 in the appendix A recalls the results and presents the runtime of each approach in respect to image size in pixel. In Figure 4.9. We present some visual results obtained by our two proposals k-means 3D and MSF superpixel on Middleburry and MPI Sintel data sets [START_REF] Baker | A database and evaluation methodology for optical flow[END_REF][START_REF] Butler | A naturalistic open source movie for optical flow evaluation[END_REF].We can see the complementarity of the two approaches. Regularity of k-means 3D superpixels, that share a similar size, allows for fast GPU treatments and should impact favourably superpixel matching in optical flow. On the contrary, large size superpixels in MSF approach should favor regularization and smoothing in large, constant intensity, regions by averaging the flow field according to superpixel membership.

Conclusion

In this chapter, we have presented two superpixel segmentation applications based on standard and generic parallel algorithms on GPU.

First, we propose k-means segmentation application in 3D space, that can generate regular superpixels that deform their shapes at the boundaries of objects. This segmentation will be the basis for our optical flow matching procedure. Two main parameters allow two control the segmentation: the cluster map size defined by cell radius R, and the intensity c factor that controls the relative importance of pixel intensity value.

Second, a minimum spanning forest algorithm allows to generate superpixel segmentation in a watershed like manner. This segmentation generates superpixels with different shapes and sizes possibly covering large zones of the image. Two parameters help control over segmentation: the depth of regional minima, depth, and a cut distance for grouping minima together, cut. This segmentation will be used at final step in optical flow, to average the flow field similarly as in bilateral filtering.

Chapter 5

Optical flow application

Introduction

Many challenges face the optical flow algorithms, such as large displacement, motion discontinuities, and occlusions. A lot of the existing approaches struggle with those challenges, variational approaches run poorly on datasets with large displacements. Many approaches that handle large displacements rely on the coarse-to-fine scheme, which can propagate error between levels. Recently, a lot of approaches marry matching methods with the variational or coarse-to-fine approach as a last step. For example, PatchMatch approaches are developed as a first step of solution construction, while some variational method improves the final flow to sub-pixel accuracy. Some PatchMatch approaches look actually very efficient in quality result, on standard benchmarks [START_REF] Lu | Patchmatch filter: Edge-aware filtering meets randomized search for visual correspondence[END_REF], but their parallel implementation remains an open work to achieve real-time execution. It is worth noting that they are often presented as a construction step followed by a stateof-the-art variational algorithm at final step. Also, as Epicflow, they combined different methods to edge detection, or sparse feature matching, that lead to heterogeneous stateof-the-art methods. Here, we will evaluate the variational method separately, and other methods as standalone methods.

In this chapter, we turn to a massively parallel algorithms. Then, the aim is to extend and adapt generic parallel procedures to optical flow by following PatchMatch like style [START_REF] Lu | Patchmatch filter: Edge-aware filtering meets randomized search for visual correspondence[END_REF], and employing our GPU superpixel algorithms as a basis for superpixel matching. The goal is to move superpixel through rotation and translation in order to match the second image as well as possible. We propose three applications of increasing complexity. Firstly, we present a parallel winner-take-all superpixel method that generates a fast flow estimation. The second approach we propose is a parallel local search heuristic, called PLS algorithm, that allows subpixel accuracy when moving superpixel by rotation/translation. The final optimization tool we propose is a metaheuristic population-based approach that embeds GPU parallel local search, as in a memetic algorithm [Créput andKoukam, 2008, Fachbereich and[START_REF] Fachbereich | Memetic Algorithms for Combinatorial Optimization Problems: Fitness Landscapes and Effective Search Strategies[END_REF], called Memetic-PLS, and uses WTA as a construction step. The memetic algorithm executes PLS processes in parallel at multi-core level, selection and crossover operations. The flow computation terminates with a denoising operation and a type of bilateral filtering based on a second segmentation map provided by MSF-watershed computation.

In section 5. Then, we provide a general presentation of the proposed approaches for the optical flow estimation, and the different steps needed to obtain the flow estimation in section 5.3. Section 5.4 presents the optimization algorithms. We experiment our optical flow application on both Middlebury and MPI Sintel datasets. A comparative study is performed against some three state-of-the-art methods: GPU Horn and Schunck [START_REF] Smirnov | Optical Flow Estimation with CUDA[END_REF], CPU Brox et al. variational algorithm [Brox et al., 2004], and CPU Epicflow [START_REF] Revaud | Epicflow: Edge-preserving interpolation of correspondences for optical flow[END_REF]. Visual results and ground-truth evaluations are reported in Section 5.5 and in the appendixs B, and C.

Energy Formulation

It is a well-known fact that standard Horn and Schunck energy function does not necessarily correlate to the ground-truth flow field. We had studied this point in [START_REF] Mansouri | Massively parallel optical flow using distributed local search[END_REF]. More elaborated energy functions, as the one reported in chapter 2, and proposed by [START_REF] Sun | A quantitative analysis of current practices in optical flow estimation and the principles behind them[END_REF], are necessary to improve quality according to edge boundaries, discontinuities, and occlusions. Inspired by this work, we propose a more simple edge aware energy function in Equation 5.1, that will be used in our metaheuric framework with memetic algorithm to select solutions. We formulate our energy function as follow.

Let I 1 and I 2 two images:

[W]×[H] → R + . Let Ω = [W]×[H]
be their index domain that defines the image plane, with regular 4-neighbour (tetra) topology, and d G the distance in the image graph. We formulate the objective function that defines the optical flow problem, and which has to be minimized over flow variable u :

[W] × [H] → R 2 , as
follows: (5.1) where the given neighbourhood N r i in image graph is defined by

E(u) = i∈Ω |I 1 (i) -I 2 (i + u i)| + λ i∈Ω j∈N r i |u i -u j | × G S (i -j) × G I (I 1 (i) -I 1 (j)) × noc j ,
N r i = {j, d G (i, j) ≤ r}, with r = 3 in our implementation. (5.2)
Function G s is a Gaussian function in the spatial domain defined by

G S (x) = exp(x 2 /2σ 2 1
), with σ 1 = 3 in our implementation, (5.3) and function G I is also a Gaussian function in the intensity domain with σ 2 = 32 in our implementation. Term noc j is a test for non occlusion defined by .4) Based on this formulation, we progressively construct a metaheuristic framework by designing construction method, local search for solution improvement, population based search with crossover and selection, and post treatment operations.

noc j = 1 if |I 1 (j) -I 2 (j + u j)| ≤ ε , with ε = 32 0 otherwise. (5

Evaluation measures

To evaluate the performance of optical flow approaches according to ground-truth flow, we use two measures: the average endpoint error (AEE), and the average angular error (AAE).

The average endpoint error (AEE)

The endpoint error (EE) is the absolute euclidean distance between the estimated and the ground-truth flow vector for each pixel defined as in Equation 5.5

EE = (u -u GT) 2 + (v -v GT) 2 .
(5.5)

Then, the average EE for all pixels provides the AEE criterion that we use in evaluations and comparative study.

The average angular error (AAE)

The angular error (AE) by [START_REF] Fleet | Computation of component image velocity from local phase information[END_REF]] is considered as the most common used metrics to evaluate accuracy of optical flow approaches. The angular error is described as the angle difference in 3D space between the estimated flow vector (u, v)

and the ground-truth flow vector (u GT , v GT). A vector (u, v) is represented as vector (u, v, 1.0) in 3D space. The angular error is expressed in degrees. It can be obtained by the following equation:

AE = 180 π • cos -1 1.0 + u × u GT + v × v GT √ 1.0 + u 2 + v 2 1.0 + u 2 GT + v 2 GT .
(5.6)

Then, the average AE for all pixels of first image provides the AAE criterion used in evaluations and comparative study.

General presentation of the approach

The proposed general procedure to address optical flow in GPU is shown in A construction step winner-take-all (WTA) procedure generates a first flow solution.

Then, a parallel GPU local search (PLS), embedded into a memetic algorithm (Memetic-PLS), is applied to improve the flow quality. Memetic algorithm can be seen as a coalition of CPU multi-core threads executing PLS in parallel, in combination with selection and crossover operations. Two final GPU post-treatments are a denoising procedure, that acts as an erosion operation, followed by a type of bilateral filtering over MSF-watershed segmentation to smooth the resulting flow.

Proposed optical flow algorithms

In the section 5.2 we have introduced our objective function formulation that defines the optical flow estimation problem, and the different measures to evaluate the optical flow performance according to ground-truth. Now we present optimization algorithm and the parallel implementation technique used to to minimize the energy function. [START_REF] Keysers | Elastic image matching is np-complete[END_REF] has shown that image matching is an NP-hard problem, which makes it impossible to find the global minimum of the energy function in a short time, unless we prove that P = N P . For that reason, we choose to use heuristic and meta-heuristic algorithms to handle the minimization process.

In our work, we propose parallel implementation for three methods to estimate the optical flow: firstly, a fast parallel superpixel winner-take-all method (WTA-SP) constructs a first flow solution, secondly, a parallel local search superpixel algorithm (PLS-SP) allows to improve the solution, and thirdly, a memetic algorithm embeds parallel local search (Memetic-PLS) in a coalition (population) of (CPU) processes with selection and crossover. All the approaches works based on a superpixel map, given as a root map in the image index domain. Thus GPU parallelism occurs at pixel level, with one thread for one pixel.

Superpixel winner-take-all (WTA-SP)

The popular winner-take-all (WTA) approach is a general computational model that has been widely applied in image matching [START_REF] Scharstein | A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[END_REF]. The particularity of our proposal is that we apply it on superpixels obtained by k-means 3D segmentation.

Algorithm

With notations as above, given two images I 1 and I 2 and a root map root : Ω → Ω, with

Ω = [W] × [H],
winner-take-all consists in examining a set of superpixel translations into a given region around each superpixel root node according to data cost. The superpixel root map is a k-means clustering on first image I 1 .

We define a neighbourhood search region around pixel k with radius r W by Next, we note P i = P root i ⊂ Ω the superpixel related to any pixel i. Recall that superpixels form a partition of image index domain. Given superpixel P k , k ∈ root(Ω),

N r W k = {j ∈ Ω, d G (k, j) ≤ r W },
the data cost of a superpixel matching according to a vector translation in the plane

T k ∈ R 2 is defined by Cost W T A (P k , T k) = i∈P k |I 1 (i) -I 2 (i + T k)|. (5.7)
Implementation of data cost evaluation is straightforward by visiting cluster nodes, using root map and constructing distributed link list (dll) as explained in chapter 3. The WTA-SP parallel algorithm is summarized in Algorithm 6. Once a best translation is found for each superpixel, a final (parallel) procedure generates the dense flow accordingly, to provide a flow result.

Algorithm 6: Parallel superpixel winner-take-all (WTA-SP).

Input: images I 1 , I 2 , root grid root, dll grid dll

Output: best translation bestT k , k ∈ [W] × [H] , root k = k 1: for each pixel k ∈ [W] × [H] in parallel do 2: if k = root k then 3:
bestT k ← (0, 0); // identity transform 4:

for each pixel p ∈ N r k do 5:

T k ← p -k; // translation to p // Visit and evaluate superpixel data cost with dll, root

6: if Cost W T A (P k , T k) < Cost W T A (P k , bestT k) then 7: bestT k ← T k ; 8: end if 9:
end for 10: We can see that augmenting radius r W , can augment the number of corrupted superpixel movements, as in grove3 (colored outliers superpixel), while on the contrary, it can globally augment accuracy to large displacement, as in cave2.

end if 11: end for 12: return bestT k , k ∈ [W] × [H] , root k = k;
The advantage of the winner-take-all approach is that it is simple and relatively fast, with a near real-time performance. The main disadvantage of the winner-take-all is the rough quality of generated solutions in a lot of cases. Next approaches will have to improve quality results, by adding superpixel rotation and subpixel moves.

Parallel local search on superpixel (PLS-SP)

The goal is to improve previous WTA results. Following original idea of Verhoven et al. [START_REF] Verhoeven | A parallel 2-opt algorithm for the traveling salesman problem[END_REF] for the 2-opt local search in TSP, we adopt the method for image processing. Parallel local search consists in applying a standard local search in parallel to a subdivision of the data and solution, such that each individual local search should have a positive impact on the global cost minimization. The solution results from the many independent local search operations simultaneously performed in the plane.

Algorithm

Given two image I 1 and I 2 as above, and a superpixel root map of image I 1 . We now consider random rotation (around root node) and translation moves with subpixel accuracy around each superpixel. Here, the assumption is that rigid pixels should implicitly address smoothing constraint, whereas superpixel rotations and translations moves should favourably address data cost minimization.

Given a superpixel P k , k ∈ root(Ω), the purpose is to find a set of rotation/translation transformations T R k , one for each cluster, in order to minimize following data cost function:

Cost P LS (P k , T R k) = i∈P k |I 1 (i) -I 2 (T R k (i))|. (5.8)
Rotation is centered at the cluster root pixel. The local search process is very standard and executed by each pixel of the map, according to its superpixel membership.

Algorithm 7 presents pseudo-code of parallel local search (PLS-SP) executed in a massively parallel way. Each pixel i ∈ [W] × [H] is identified to a processor and performs local search. In concrete implementation, a probability p1 allows to authorize pixel/thread execution, to reduce processor activity. As well, a probability p2 allows to select pixels for cluster content. In practice, p1 = 0.1 and p2 = 0.5 is a good compromise to save computation time. Once the algorithm finished, a (parallel) procedure visits cluster nodes in order to select the best transformation of each cluster and generate the final flow result. In practical experiments, small random move is in interval of [0, 2] pixels for translation in each direction, and rotation angle within ±2 • degrees according to current position.

Result and discussion

In concrete implementation, the maximum number of improvements carried out by each pixel for each PLS-SP kernel call was limited to 100, and the kernel is executed 30 times. This leads to 3000 possible improvement moves checked by each pixel. The neighbourhoodSize is set to 10 trials. Input: images I 1 , I 2 , root grid root, dll grid dll

Output: best transform bestT R i , i ∈ [W] × [H] 1: for each pixel i ∈ [W] × [H] in parallel do 2:
T R i ← Id; // identity transform

3: bestT R i ← T R i ; 4:
improvement ← true;

5:

while improvement do 6:

count ← 0;

7:

improvement ← f alse;

8:

while count < neighbourhoodSize and ¬ improvement do 9:

count ← count + 1;

10:

T R i ← randomneighbourT ransf orm(T R i); // small random move // Visit and evaluate superpixel data cost with dll, root 11:

if Cost P LS (P root i , T R i) < Cost P LS (P root i , bestT R i) then 12:
bestT R i ← T R i ;

13:

improvement ← true;

14:

end if 15:

end while 16:

T R i ← bestT R i 17:
end while 18: end for

19: return bestT R i , i ∈ [W] × [H];
since displacements are relatively small, whereas it is applied to cave2 after a first round of WTA-SP, with large search radius, since cave2 involves large displacements. We can see that PLS-SP results are less scattered than with WTA-SP, and that AEE and AAE ground-truth criteria are improved in average. In our settings, and because of random moves, results are averaged over 10 runs of the algorithm. Accuracy according to groundtruth looks improved with an augmentation of computation time. We now encapsulate PLS-SP executions into a memetic algorithm.

Memetic parallel local search (Memetic-PLS)

We propose another way of exploring the space of solutions following the paradigm of evolutionary memetic algorithms [START_REF] Créput | A memetic neural network for the euclidean traveling salesman problem[END_REF][START_REF] Garg | A comparison between memetic algorithm and genetic algorithm for the cryptanalysis of simplified data encryption standard algorithm[END_REF][START_REF] Mitchell | An Introduction to Genetic Algorithms[END_REF]]. The solution space is the set of all possible optical flow maps. Memetic algorithm are extension of genetic algorithms by employing local search in place of a standard mutation. The research now proceeds by a applications of construction and neighbourhood operations to a set (a population) of solutions. Following the terminology of evolutionary algorithms, solutions are "individuals" who must meet the requirements of the problem. To assess the quality of a solution, a function called fitness associates a scalar value with each individual in the population. Since we represent the problem by energy minimization, and not maximization, fitness is the opposite value of the energy.

It is defined so that the "best" individuals have greater fitness, while "bad" individuals have smaller fitness. Selection operators allow the replacement of "bad" solutions of the population by "best" solutions of population, or also allow crossover between them.

Mainly, in memetic algorithm, the goal is to take benefits of local search while providing diversification mechanisms as crossover or mutation to avoid being trapped in local minima.

Algorithm

Given population of solutions P, the construction step consists in applying a WTA-SP to each solutions immediately follows by a slight perturbation to diversify solutons.

Then, the main genetic improvement loop begins. The memetic algorithm is given in pseudo-code in Algorithm 8. Usually, one individual represents one solution. And to each individual is associated a process in CPU multi-core that executes PLS followed by evaluation in each iteration called a generation. The algorithm combines parallel executions at CPU multi-core level, with parallel data computation at GPU level.

Then, according to GPU system, CPU threads compete to access GPU resources in asynchronous manner on different streams. Evaluation computes the main energy function given in Equation 5. Gen ← Gen + 1;

8:

for each S ∈ P in parallel in multi-core CPU do Given two flows u, v, and notations as above, the GPU crossover operation merges superpixels into a new flow w as follows: (5.9) where

∀k ∈ root(Ω), ∀i ∈ P k , w i = 0.75 × u i + 0.25 × v i if Cost P (P k , u) < Cost P (P k , v) v i otherwise,
Cost P (P k , x) = i∈P k |I 1 (i) -I 2 (i + x i)|
is the data cost restricted to a given superpixel P k .

A weighted average combination of the two flows appears to be a good compromise in practice, meanwhile retaining best matches form the worst flow. The improvement in AEE and AAE ground-truth criteria corresponds to an increase of the running time for Memetic-PLS approach, which is explainable since the population is of 10 PLS-SP multi-core processes that run simultaneously. In spite of that, for 30 generations the Memetic-PLS computing time is 2 times less than the running time of 10×PLS-SP for grove3 and 3 times less for cave2. Those values become 4 and 8 times less respectively for 10 generations for the memetic loop, without losing the improvement in accuracy according to ground-truth. Then, number of generations of memetic algorithm will be set to 10 generations for all tests. By using parallel computation at both levels of multi-core (solution level) and GPU (data level), we allow further acceleration with the increase of processors available.

Result and discussion

Noise reduction and bilateral filtering

As most of the existing optical flow approaches, once a brute flow result available, two final treatments are applied to improve quality results.

Noise reduction

We apply a noise reduction operation on superpixels. This operation can be seen as an erosion operation applied on the map of superpixel centers used in k-means. As a difference with other operations (WTA, PSL, filtering) that work at pixel level using a pixel root map, this operation works on the higher level map of cluster centers. Recall that this map is obtained by zooming the image map to some level radius R, such that we have one cluster center for a cell region of radius R in the low level image graph.

Let [W K] × [H K] be the cluster center index domain. Recall that a root pixel in image domain was created as the closest pixel in 3D space to a given center k. Here, we index a superpixel by its center index, such that

P k ⊂ [W] × [H] in pixel domain is related to index k ∈ [W K] × [H K]
in center map domain. Thus, we define an erosion operation as a voting mecanism applied on a neighbourhood of each superpixel k ∈

[W K] × [H K].
Recall that cluster center map is with (6-neighbour) hexagonal topology. The erosion consists in replacing a superpixel flow (considering root flow), if it appears to have higher module, and in conflicting direction, with its immediate 6 superpixel neighbours a given number of times. The flow value of the superpixel with the least average superpixel cost in the neighbourhood, becomes the new flow, that is injected into the central superpixel.

Bilateral filtering

We apply a kind of bilateral filtering to the optical flow map. Its consists of averaging the flow over a neighbourhood around each pixel conditioned by same superpixel membership on MSF-watershed segmentation map (via root map). The goal is to smooth the flow according to a different type of piecewise segmentation than k-means, and erase residual outliers at edge boundaries. Formally, the obtained filtered flow v is defined by: (5.10) where N r F i is a region in 8-neighbour (quad topology) image graph of radius r F centered at i, C root i is MSF cluster of i, and noc j is a test for non occlusion defined by .11) In our experiments, we fix radius r F = 8 pixels for Middlebury benchmark, and r F = 32 pixels for MPI Sintel benchmark, and ε F = 16 gray value units for all tests. been smoothed in such a way to preserve discontinuities at edge boundaries.

∀i ∈ Ω, v i =    j∈N r F i ∩Croot i u j × noc j    / |N r F i ∩ C root i | ,
noc j = 1 if |I 1 (j) -I 2 (j + u j)| ≤ ε F 0 otherwise. (5

Experimental results and comparative evaluation

In this section, we present comparison results against different optical flow approaches from the literature. We implement all the algorithms with C + + and CUDA Tollkit v10.0. The experiments were conducted on the following platforms:

• The GPU tests are conducted on windows system with GPU card: Nvidia GeForce RTX 2070, featuring 2304 CUDA cores, and 8192 Mo GDDR5. The CPU is

Intel (R) Core (T M) i7 -7700k, 4.5GHz
• The CPU tests are conducted on Linux system with Intel (R) Core (T M) i7 -3770 processor, 3.40GHz.

In order to evaluate the performances, we test three other state-of-the-art approaches.

First, we use the NVIDIA implementation of Horn and Schunck optical flow [START_REF] Smirnov | Optical Flow Estimation with CUDA[END_REF], which is a very fast and optimized implementation that incorporates coarse-to-fine scheme with warping. Second, we use Brox et al. optical flow algorithm, a high accuracy variational method that uses a robust global objective function. For experimentation, we use the raw public source code by [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF]. Third, we use Epicflow [START_REF] Revaud | Epicflow: Edge-preserving interpolation of correspondences for optical flow[END_REF], a modern method that interpolates sparse matching correspondences to a dense flow field while respecting image boundaries. The approaches is described in section 2.2.2.2 of chapter 2. For experiments we use the code source provided by [START_REF] Revaud | Epicflow: Edge-preserving interpolation of correspondences for optical flow[END_REF].

During our experimental study, we test the optical flow approaches on two public benchmark datasets: Middlebury dataset [START_REF] Baker | A database and evaluation methodology for optical flow[END_REF] and MPI Sintel dataset [START_REF] Butler | A naturalistic open source movie for optical flow evaluation[END_REF]. The used datasets are very different in terms of object types and displacement sizes they include. We run experiments on Middlebury dataset with two different configurations, a customized one, on which every benchmark has a customized set of parameters in order to have the best possible performance, and a generic configuration with a same set of fixed parameters for all the experiments on both the average value obtained over 10 runs by instance. We also report average standard deviation. The standard deviation over 10 runs was found very small, which means that the approaches are stable and the values very little dispersed around the mean. For the memetic algorithm, the number of generations is set to 10 generations for all tests. The population size is set to 10 solutions.

Results on Middlebury dataset with customized configuration

Middlebury dataset [START_REF] Baker | A database and evaluation methodology for optical flow[END_REF] is a classical optical flow benchmark. It contains complex motions for accurate optical flow estimation. The evaluation on Middlebury benchmark is performed on the training dataset with 8 pairs of frames provided with a dense ground-truth, most of which contain only small displacement motions.

In this section we report the results of the experiments on Middlebury dataset with customized configuration on each dataset benchmark. The results are shown in Table 5.1.

The detailed results on Middlebury datasets are reported in Table B.1 in the appendix B. All reported results are the average value obtained over 10 runs by instance.

We report in the Table 5.1 the average endpoint error, average angular error, and average computing time in seconds for all tested methods, with average standard deviation in parenthesis. Note that we provide the true running time for Epicflow that combines the computing time of SED edge detector [START_REF] Dollár | Structured forests for fast edge detection[END_REF] which runs on Windows system, and the computing time of DeepMatching approach [START_REF] Weinzaepfel | Deepflow: Large displacement optical flow with deep matching[END_REF] that runs on Linux system, added to the computing time of flow estimation using Epicflow that run on Linux system. The SED edge detector and DeepMatching approaches are necessary for flow estimation using Epicflow. The schemas in Figure 5.6 show that our approaches provide a competitive quality/cost compromise compared to the tested methods. The Horn and Schunck approach is clearly faster than the other approaches, this can be explained because it is a highly optimized approach developed by NVIDIA, mainly to provide a best possible computational performance with the GPU architecture. Such a high performance comes with a sacrifice in the result quality, Horn and Schunck approach provides the worst result in term of AEE and AAE among all the tested approaches.

The results of this experiment indicate that our approaches outperform Epicflow in both AEE and AAE evaluation, with significantly faster running time. Whereas Epicflow result is AEE= 0.86 and AAE= 11.10 in a time of t = 7.56s, our WTA-SP approach attend a quality of AEE= 0.79 and AAE= 9.17 in a computation time of t = 0.83s, which is slightly better in performance and 9 times faster than Epicflow. It looks to be a competitive result that encourages for more optimization to the approach in order to deliver real-time performance. Further acceleration should be delivered by more optimization of the GPU source code, and the suppression of non-essential excessive treatments.

The same remarks hold for the proposed PLS-SP approach, that scores a better performance quality than Horn and Schunck and Epicflow approaches with AEE= 0.64 and AAE= 7.14, in a computation time of t = 1.41s which is 5 times faster than Epicflow.

Memetic-PLS, which is our most complex approach, delivers better result quality AEE= 0.62 and AAE= 6.71, and perform 3 times faster than Epicflow method which is considered a complex approach to deliver high accuracy flow estimation.

Results on Middlebury dataset with generic configuration

In this experiment, we provide a single set of parameters fixed for our three applications and for all datasets on both Middlebury dataset and MPI Sintel dataset. We fix the radius size of the superpixel map to R = 8. As in all experiments for optical application, the intensity domain factor is set to c = 0.1 in the k -means 3D segmentation, while the MSF-watershed segmentation always uses depth depth = 25 and cut distance cut = 4.

The filtering radius for noise reduction is fixed to r F = 32. For the winner-take-all application, the radius size for neighbourhood search interval is adjusted to r W = 32.

The Memetic-PLS has a population size of 10 individuals (solutions) and the number of generations is set to 10. The difference between the customized parameter configuration and the generic configuration results for WTA-SP, PLS-SP and Memetic-PLS approaches is summarized in Figure 5.8. The results show that the generic configuration leads to a slight lose in the quality with a slight augmentation in the running time compared to the custom configuration tests. This is mainly because of the difference between small displacement and large displacement benchmarks which impose conflicting parameter choices. The radius of superpixel map and the search interval for winner-take-all algorithm play an important role in the quality between small and large displacement.

Even with that lose, Figure 5.7 show that our approaches still deliver a significant better quality then both Horn and Schunck approach and Epicflow application in term of both On the contrary, Epicflow was found to perform poorly on Middlebury. With customized parameter configurations, our approaches can provide better performance, since the generic configuration runs poorly on some of the benchmarks, which affects the average of the evaluation results.

Conclusion

In this work, we introduced a new approach for GPU optical flow estimation. By using combinatorial optimization techniques, we have proposed a parallel local search procedures and memetic algorithm combining GPU nd multi-core CPU. We have applied the algorithm to the well-known Middlebury and MPI Sintel optical flow benchmarks.

The results of the GPU implementation look competitive with state-of-the-art CPU and GPU approaches by generating new solution compromises between quality and computation time.

Most proposed GPU implementations are be based on a set of generic data structures for representing clusters and neighbourhoods in a distributed way. Since the algorithm fully GPU parallel, as well as CPU muti-core parallel, we can further expect improved accelerations factors with the availability of new multi-processor platforms with more and more independent cores in the future. Improvement should be carried out by adaptive parameter tuning, which is a matter of further investigations.

Chapter 6

Conclusions and Future Work

Conclusions

In recent years, the design of parallel algorithms has taken a significant development among the modeling disciplines. Parallel algorithms are more and more used to ameliorate the efficiency of optimization techniques, particularly the computation time in many fields. However, advantage of parallel models must not be taken for granted since many technical problems can appear. Choice of data structures and their customization to parallel implementation in GPU architecture is not a trivial task, since memory management should be carefully addressed as well as concurrent coherent accesses to data should be guarantied. In this thesis, we choose to put the emphasize on the development of generic data structures and algorithms useful for a wide class of problems operating on graphs, clusters, trees, by the use of optimization techniques. By using standard distributed data structures among graph nodes, as adjacency list, disjoint-settree, distributed-link-list, local buffers and local neighborhoods, we expect such proposed GPU programs to be sufficiently simple (easy to understand and implement) and generic (easy to adapt to other problems or parallel platforms). We systematically study and report computation time to evaluate GPU performance. A particular point of our development, is the choice for low cost memory data, with input size, to be able to address large size, and very large size, input data sets.

We provide massively parallel algorithms implemented in GPU CUDA and apply those algorithms on two important computer vision tasks: image segmentation and optical flow estimation. We have presented two novel superpixel GPU segmentation applications.

First, we presented the k-means superpixel segmentation in 3D space, which can generate regular superpixels and deform their shapes at the boundaries of objects. Second, we presented an application of minimum spanning forest to superpixel segmentation in a watershed like a manner. This segmentation generates superpixels with different shapes and sizes possibly covering large zones of the image. Both applications are the basis to develop parallel optical flow algorithm. The k-means 3D superpixel segmentation is the basis for superpixel matching through rigid transformation, while the MSF-Watershed segmentation is used as post-processing step, to average the final flow field.

We apply a metaheuristic optimization methodology by developing optimization tools in an incremental way. We first provide a construction method by winner-take-all search strategy. At second step, we propose an improvement operation by parallel local search procedure, with subpixel accuracy, including superpixel rotation/translation. Finally, we embed local search to a population-based memetic algorithm with crossover and selection. All data operations are parallel GPU operations, while CPU only controls kernel executions and evaluate termination criteria.

We have tested our k-means superpixel segmentation algorithm against two other approaches, the state-of-the-art SLIC CPU implementation (cSLIC) from raw public source code, and the SPASM GPU. Despite running in 3D space, our implementation of k-means performs relatively fast as the instance size grows. It is worth noting that spiral search in 3D space guaranties constant time closest point search for bounded distribution.

The MSF approach is slightly slower compared to the other approaches. This larger computation time can be explained by the superpixel heterogeneity size, since MSF can generate very large superpixels that can constitute a handicap when sequentially visiting such superpixel, by a single root node processor. However, minimum spanning forest is with guaranty of optimality. The euclidean parallel Boruvka, that we reused and customized in this thesis to both working on space and image graph, and to generate clusters, is very generic and parallel, and already fast with regards to CPU minimum spanning tree algorithms, specifically in euclidean 2D/3D space.

We have introduced several contributions to estimate optical flow for both small and large displacement. We have proposed a superpixel winner-take-all approach, a simple and very fast approach with good quality results compared with the well-known fastest GPU Horn and Schunck approach. To improve quality result, we have also proposed a parallel local search algorithm. Finally, we proposed Memetic-PLS which is an evolutionary algorithm that encapsulates PLS as an operator. Based on a population of solution, we exploit parallelism at the population level by executing the many local search processes, one for each individual of population, on CPU multi-core. In that way, CPU threads concurrently and asynchronously access GPU resources to execute low level data operations. By doing so, the goal is to better exploit GPU card, or multiple GPU cards if available. When executed with a population of 10 individuals, as in our experiments, memetic algorithm appears fastest than 10 separate local search runs on a single individual.

To evaluate the optical flow approaches, we have carried out experiments on both Middlebury and MPI Sintel data sets. We compared our proposals with other approaches from the literature. We run tests against a NVIDIA GPU version of Horn and Schunck approach, a CPU version of Brox et al. optical flow and a state-of-the-art Epicflow approach. The results vary depending on the approach and the benchmark data set. For example, on the Middlebury data set, our Memetic-PLS approach outperforms Epiflow.

Also WTA-SP and PLS-SP approaches allow to generate new solution compromises in quality and time. On Sintel benchmark, Epicflow performed remarkably well according to average end-point-error criterion, and for large displacement, but with large computation time. Recall that Epiflow is a combination of three state-of-the-art independent methods, respectively for edge segmentation, sparse feature matching, and flow interpolation. For Sintel dataset, PLS-SP has very closed performance to Brox at al. variational method both in quality and time.

Future Works

Several works can be considered to extend and complete the work of this thesis. First, optimization of GPU source code could be addressed more in details, by removing unnecessary redundant treatments that are repeated in our generic approach, as cluster map evaluations, build of cluster lists, before application of optimization operations as PLS, crossover, erosion operations. Specific implementations could be addressed to reduce access to global memory.

Since the method exploit two levels of parallelism, with CPU multi-core to solution population management, and GPU for data treatments, we could envisage the use of multiple GPU cards, that will be concurrently accessed by the CPU asynchronous processes, each embedding local search process and evaluation. Because the algorithms configured in a generic way, we expect such algorithm improvement to multiple GPU easy to develop. The potential of the proposed methods could be evaluated on different

Figure 1 . 1 :

 11 Figure 1.1: Example of optical flow on the Middlebury dataset. (a) Left image; (b) right images; (c) ground-truth flow using color coding in (f); (d) example of Memetic-PLS optical flow result; (e) Horn and Schunck optical flow result.

Figure 2

 2 Figure 2.1.

Figure 2 . 1 :

 21 Figure 2.1: Overview of Epicflow application.Given two images as input, matches are computed using DeepMatching, and the edges of the first image using SED, then, Epiflow computes a dense correspondence field by interpolation, the result is used as initialization of energy minimization framework.

 SLIC, k = 1015 (d) SLIC, k = 260

Figure 2 . 2 :

 22 Figure 2.2: Examples of SLIC superpixel application on benchmarks from Middlebury data set. (a) Input image dimetrodon; (b) input images hydrangea; (c) SLIC segmentation map k = 1015; (d) SLIC segmentation map k = 260.

Figure 2 .Figure 2 . 3 :

 223 Figure 2.3 shows running examples of superpixel segmentation using SPASM parallel implementation on GPU. Globally, the main difference with our new proposed GPU algorithm in this thesis, is that we directly operate in 3D space (space-gray value domain)

 watershed and MSF. Other open source implementation is available as part of OpenCV library [OpenCV, 2019]. OpenCV implements a seeded watershed segmentation also called marker controlled watershed. The seeds are externally provided to the algorithm.

 In this thesis, we focus on the design of massively parallel algorithms based on GPU CUDA. Those algorithms are data parallel since they decompose the data between processors. The aim is to provide generic parallel algorithms with decentralized control, since all processors share the same code during kernel execution, and indirectly simulate distributed procedures on distributed data. Those parallel algorithms integrate standard k-means, minimum spanning forest clustering, parallel local search on clusters, and memetic algorithm.

Figure 3 . 1 :

 31 Figure 3.1: GPU thread grid[START_REF] Nvidia | Programming guide[END_REF].

 Images are commonly represented with 2D matrices as a finite set of digital values called picture elements or pixels. Let [N] = {0, ..., N -1}, for any integer N . We define an image I as a function I : [W] × [H] → R, where W, H ∈ N are respectively the width and height of the image, and I(i) is the gray value of a pixel i ∈ [W] × [H]. Since pixels constitute a discrete representation of the euclidean plane, we have that [W] × [H] ⊂ R 2 represents a point cloud in 2D plane organized into a regular lattice. The lattice is a graph with a four connected neighbourhood.

 2. It represents a hierarchy of sets and subsets and can represent any partition of pixels. Two important operations can be realized in parallel: f indroot to return the root of cluster, and union to merge two or more subsets. It is by using dst grid that we mainly represent superpixel clusters in this document for k-means clusters, as well as for minimum spanning forest clusters, and to implement super-pixel optical flow.

Figure 3 . 2 :

 32 Figure 3.2: Disjoint set tree. Each node has index of its parent in the tree.

 .4. Here, we use hexagonal topology for illustration where each node has 6 neighbours. First, we consider a topological distance d G in the image graph associated to the neighbourhood topology, defined by canonical relation d G (i, j) = 1 if-and-only-if (i, j) are neighbours in the topology. Then, we create cells of a given radius size in the sense of the topological distance d G . Each cell is centered on a given pixel.

Figure 3 . 3 :

 33 Figure 3.3: Different cell subdivision topologies. (a) Cellular level derived from quad topology; (b) cellular level derived from rhombus topology; (c) cellular level derived from honeycomb topology; (d) cellular grid of image, quad topology; (e) cellular grid of image, rhombus topology (f) cellular grid of image, honeycomb topology; (g) zoom in of quad topology; (h) zoom in of rhombus topology; (i) zoom in of honeycomb topology. The radius of a cell is set to R = 10 for each topology.

Figure 3 . 4 :

 34 Figure 3.4: Image plane subdivision with hexagonal topology.

 insert pixel in dll list 9: for each n in parallel do 10: P cn ← insertHead(c n , n); 11: end for // Move center to cluster mean 12:

 until a sufficient number of iterations 16: groot ← createRootM ap(X, Y);// Create final superpixel map 17: return groot; All treatments in Algorithm 4 are implemented by GPU kernels. No transfer to CPU is necessary. The clustering procedure begins with initialization of the centers as a regular hexagonal grid covering the image plane. The third coordinate (intensity value domain) of a center is fixed to the gray value of the related pixel at same 2D location.

Figure 4 . 1 ,

 41 are shown two examples of superpixel segmentation applied on images cones and teddy with size [1800 × 1500] from Middlebury data set[START_REF] Middlebury | Middlebury Optical Flow Datasets[END_REF].Intensity domain factor is c = 1. Radius of clutering map were set to R = 24 pixels for both images. We can visually appreciate how superpixels delimit boundaries of objects in the image. This setting of superpixels allows to impact optical flow matching favourably.

 k -means 3D, R = 24, c = 1 (d) k -means 3D, R = 24, c = 1

Figure 4 . 1 :

 41 Figure 4.1: Examples of k -means 3D superpixel segmentation. (a) Input image cones [1800 × 1500]; (b) input image teddy [1800 × 1500]; (c) segmentation map of cones with R = 24, and intensity factor c = 1; (d) segmentation map of teddy with R = 24, and intensity factor c = 1.

 (a) original input image (b) k -means 3D, R = 4 (c) k -means 3D, R = 8 (d) k -means 3D, R = 12

Figure 4 . 2 :

 42 Figure 4.2: Examples of k -means 3D superpixel application. (a) Input image hydrangea from Middlebury data set. Segmentation maps with radius respectively set set to (b) R = 4, c = 0.5, K = 5050; (c) R = 8, c = 0.8, K = 1378; (d) R = 12, c = 1, K = 666.

Algorithm 5 :Figure 4 . 3 :

 543 Figure 4.3: Illustration of minima detection operations on grove3 benchmark from Middlebury data set. (a) Input image; (b) morphological gradient; (c) minima of image gradient at given depth; (d) minima juxtapose to a final MSFwatershed segmentation.

Figure 4 . 4 :

 44 Figure 4.4: Minimum spanning forest computation in three steps. (a) Min map over image (3D view); (b) Group minima into component with MST; (c)Global MST on minima; (d) MST over the minima component; (e) MST over Min linked to image(3D view); (f) final superpixel with tetra topology (3D view).

Figure 4 .

 4 Figure 4.5 shows results with different parameter settings. Figures (a) and (b) show the effect of cut parameter which is respectively set to cut = 2 and cut = 4. We can see how the grouping of the minima affects the up-left region of the image. Depth parameter is set to depth = 25. Figure (c) shows the effect of depth, by reducing it to depth = 15, for a same cut = 4. We can see in (c) that some important regions are less discriminated, as in the image front, whereas minima grouping can propagate in other regions due to augmentation of minima number. A good compromise used in our next applications

Figure 4 . 5 :

 45 Figure 4.5: Effect of main parameters on the MSF-watershed segmentation map with benchmark grove3. (a) MSF-watershed with cut = 2, depth = 25; (b) MSF-watershed with cut = 4, depth = 25; (c) MSF-watershed with cut = 4, depth = 15; (d) MSF-watershed with cut = 4, depth = 25.

Figure 4 . 6 :

 46 Figure 4.6: Performance evaluation of the superpixel segmentation approaches on Middlebury data set.

Figure 4 . 7 :

 47 Figure 4.7: Performance comparison between k -means 3D GPU, MSFwatershed GPU, SPASM GPU, and SLIC CPU on cones benchmark with different sizes.

 k -means 3D, K = 1656 (e) SLIC, K = 1656 (f) SPASM, K = 1656 (g) k -means 3D, K = 475 (h) SLIC, K = 475 (i) SPASM, K = 475 (j) k -means 3D, K = 234 (k) SLIC, K = 234 (l) SPASM, K = 234

Figure 4 . 8 :

 48 Figure 4.8: Segmentation result comparison between k -means 3D, SLIC, and SPASM. From the second row to the last row, for all approaches, the number of initial cluster centers is set to 1656, 475, and 234, respectively. Temple3 benchmark from MPI Sintel data set is used, the image size is 1024 × 436.

 k -means 3D, R = 10, c = 0.5 (f) MSF-watershed, cut = 4, temple3 (q) k -means 3D, R = 15, c = 0.5 (r) MSF-watershed, cut = 4, depth = 25

Figure 4 . 9 :

 49 Figure 4.9: Superpixel segmentation visual results on benchmarks from both Middleburry and MPI Sintel data sets.

Figure 5 . 1 .

 51 figure shows two segmentation maps, and present optical flow results with color coding as presented in introduction of this thesis in Figure1.1. Next in the chapter, all test problems drawn for illustrations are taken from Middleburry and MPI Sintel data sets[START_REF] Baker | A database and evaluation methodology for optical flow[END_REF][START_REF] Butler | A naturalistic open source movie for optical flow evaluation[END_REF], for which inputs frames and groundtruth images are respectively reported in Figure C.1 and Figure C.2 in the appendix C. Groundtruth images are presented according to color code.

Figure 5 . 1 :

 51 Figure 5.1: An overview of optical flow application. Benchmark alley1 from MPI Sintel dataset.

 where d G is the distance in image graph for quad topology, i.e. 8-neighbour topology. In optical flow experiments, we respectively use r W = 32 for Middlebury and MPI Sintel datasets that allow to detect sufficiently large displacements, as a first step of flow solution construction.

Figure 5 . 2 :

 52 Figure 5.2: Examples of WTA-SP approach with different search intervals. (a) Input image grove3 benchmark from Middlebury dataset; (b) radius search r W = 8; (c) radius search r = 32; (d) input image cave2 from MPI Sintel dataset; (e) radius search r = 8; (f) radius search r = 32.

Figure 5 .

 5 Figure 5.2 shows examples of WTA-SP approach on grove3 and cave2 benchmarks and the effect of search radius parameter setting. The search radius is set to respectively r W = 8 and r W = 32. We can see that augmenting radius r W , can augment the number

Figure 5 . 7 :

 57 3 shows examples of PLS-SP applied to grove3 and cave2 benchmarks. PLS-SP is applied to grove3 as standalone application Algorithm Parallel superpixel local search (PLS-SP).

Figure 5 . 3 :

 53 Figure 5.3: Examples of PLS-SP results. (a) WTA-SP on grove3; (b) PLS-SP on grove3; (c) WTA-SP on cave2; (d) PLS-SP on cave2.

 1 and returns it as a fitness (opposite) value. A central selection operator selects best and worst individuals of population. Then, a crossover operation merges best individual into worst individual by comparing each homologous superpixel and retaining a combination that should favour best match. Algorithm 8: Memetic-PLS algorithm Input: images I 1 , I 2 , root map root, solution set P Output: best solution flow bestF low // Construction step 1: for each S ∈ P in parallel in multi-core CPU do 2: S ← W T A(); 3:S ← perturbation(S); 4: end for // Improvement loop 5: Gen ← 0 6: while Gen < M axGen do 7:

 low ← crossover(bestF low, worstF low); 15: end while 16: return bestF low;

Figure 5 .Figure 5 . 4 :

 554 Figure 5.4 shows result examples with Memetic-PLS on grove3 and cave2 benchmark.The tests are conducted with population size of 10 solutions, and 30 generations.Memetic-PLS uses WTA-SP as construction step to generate a first solution, which is immediately perturbed. The main loop embeds PLS-SP algorithm for solution neighbourhood generation and crossover. The benefits in performance is shown in Figure5.4, the number of outlier superpixels is reduced significantly comparing to the PLS-SP result.

5. 4 . 4 . 3

 443 Figure 5.5 shows the effect of the erosion and final bilateral filtering operations respectively. Flow result is shown before and after each of the two post-treatments. After erosion, in second column in the figure, we can see that outlier superpixels are less prominent, in that flow becomes more homogeneous in some region closed to edge boundaries. Also, the quality is far better with erosion than without erosion. After the application of the erosion, we apply bilateral filter to generate the final result. Third column of the figure shows examples of final optical flows after filtering. The flow has

 Middlebury and MPI Sintel datasets. All inputs frames and ground-truth are reported in Figure C.1 and Figure C.2 in the appendix C. In all experiments for optical application, the intensity domain factor is set to c = 0.1 in the k -means 3D segmentation, while the MSF-watershed segmentation always uses minima depth depth = 25 and cut distance cut = 4. All reported results are

 figure shows the result in term of average angular error (AAE). Our approaches ran with a custom configuration for each dataset benchmark. Benchmarks are divided into two groups. Some benchmarks contain small displacements, which are generally detected with superpixel size R = 4 and a search interval for WTA approach of r w = 8. And some benchmarks contain large displacements, which are better detected with cell subdivision of size R = 8 and search WTA interval of size r w = 32.

 (a) relation between the AEE evaluation and the running time (b) relation between the AAE evaluation and the running time

Figure 5 . 6 :

 56 Figure 5.6: Results of optical flow approaches on Middlebury dataset. (a) The x -axis shows the execution time and the y-axis shows the AAE value; (b) the x -axis shows the execution time and the y-axis shows the AEE value.

 depicted the relationships between execution time and result quality of the different methods on the complete Middelburry optical flow training dataset. The top figure represents the result in term of average endpoint error (AEE), the second shows the result in term of average angular error (AAE).

 (a) relation between the AEE evaluation and the running time (b) relation between the AAE evaluation and the running time

Figure 5 . 7 :

 57 Figure 5.7: Results of optical flow approaches on Middlebury dataset. (a) The x -axis shows the execution time and the y-axis shows the AAE value; (b) the x -axis shows the execution time and the y-axis shows the AEE value.

Figure 5 . 8 :Figure 5 . 9 :

 5859 Figure 5.8: Comparison between custom and generic configuration results for WTA-SP, PLS-SP and Memetic-PLS approaches.

 (a) relation between the AEE evaluation and the running time (b) relation between the AAE evaluation and the running time

Figure 5 .

 5 Figure 5.10: Results of optical flow approaches on MPI Sintel dataset. (a) The x -axis shows the execution time, and the y-axis shows the AEE value; (b) the x -axis shows the execution time, and the y-axis shows the AAE value.

Figure 5 .

 5 Figure 5.11: Visual comparison of our results with the state-of-the-art approaches on alley1 benchmark from MPI Sintel dataset. (a) Left input image; (b) right input image; (c) optical flow ground-truth; (d) Horn and Schunck approach; (e) Brox et al. optical flow; (f) Epicflow approach; (g) WTA-SP approach; (h) PLS-SP optical flow; (i) Memetic-SP approach.

Figure A. 1 :

 1 Figure A.1: Superpixel segmentation results on Middlebury dataset. From the left column to the right (a) input image; (b) SLIC ; (c) SPASM; (d) k -means 3D; (e) MSF-watershed.

Figure A. 2 :

 2 Figure A.2: Superpixel segmentation results for the all the tested approaches on "cones" benchmarkwith different sizes; From the top row to the bottom the input size is 450 × 375, 900 × 750, and 1800 × 1500 which correspond K = 3783, K = 14630, and k = 57078 respectively.

Figure C. 1 :

 1 Figure C.1: Middlebury dataset input frames and ground-truth images. (a) Left input image; (b) right input image; (c) ground-truth image.

 By considering superpixel segmentation, approximations of k-means algorithm are used for different segmentation applications as seen with SLIC and SPASM algorithms. Our difference in this thesis is to provide a very standard k-means parallel implementation operating directly in 3D space rather than only in projection in 2D space as for SLIC and SPASM. As well, minimum spanning forest (MSF) is a very standard tool for clustering and segmentation. It can be used for watershed segmentation. Dedicated applications exist in GPU to watershed or MSF separately, that only operate on graph structures as the 4-neighbor image graph, not directly in euclidean space. In this thesis, we present an adaptation of the generic and parallel Boruvka algorithm for MSF construction based on seeds, fully executed on GPU using standard data structures, and also able to operate in 3D euclidean space as well as in image graph.

Most of state-of-the-art high performance methods both on accuracy and computation time remain CPU approaches.

Algorithm 1 :

 1 Concurrent lock-free construction of distributed linked list. Parallel cluster visit by distributed linked list.

	3:	if groot.valideIndex(i) then
	4:	mine ← gnext.computeOf f set (i); // get linear index
	5:	prev ← groot (i);
	6:	if mine = prev then
	7:	link ← gdll (prev);
	8:	while link = old do
	9:	old ← link;
	10:	gnext (mine) ← old;
	11:	link ← atomicCAS (&gnext (prev) , link, mine);
	12:	end while
	13:	end if
	14:	end if
	15: end for
	Algorithm 2:

Input: groot : Ω → Ω // disjoint set tree grid Output: gnext : Ω → Ω // distributed linked list grid 1: gnext(i) ← -1, ∀i ∈ Ω 2: for each processor/node i ∈ Ω in parallel do Input: groot, gnext : Ω → Ω // disjoint set tree and distributed linked list Output: any output grid 1: for each processor/node i ∈ Ω in parallel do 2: if groot.valideIndex(i) then 3: p ← root(i); // get cluster root linear index 4: while p = -1 do 5: p 2 = gnext.backOf f set(p); // transfer to multiple coordinates index // Do any treatment with cluster node p 6: p ← gnext(p); // next element of the list 7:

Table 3 . 1 :

 31 Summarization of notations.

	Notation	Purpose	Type
	D	Dimension of euclidean space (D=3)	symbol
	Ω	A finite domain of node, pixel, or cluster	symbol
	V	A finite domain of attribute, color, location, or neighbours	symbol
	g	Data grid	data grid
	G	Graph	symbol
	V	Vertex set of a graph	symbol
	E	Edges set of a graph	symbol
	N	Total number of element in a data grid	index

 Grid data structures have straightforward GPU implementation. Most of typical graph representations, like adjacency list, disjoint set tree, distributed linked list and buffers can be represented in a data parallel way, simulating generic distributed data structures. This type of graph implementation is generic, it is distributed over the nodes, and naturally coincides with CUDA parallel computing since GPU organizes data in 2D/3D arrays of processors. Once all these data structure implemented and defined, we can turn to the description of our applications to super-pixel segmentation and optical flow.

	3.6 Conclusion	
		vector of pixel i	index
	K	Total number of cluster	index
	d G	Topological distance	symbol
	R	Cell radius	symbol
	dst	Disjoint set tree	acronym
	dll	Distributed linked list	acronym
	SP	Superpixel	acronym
	M ST	Minimum spanning tree	acronym
	M SF	Minimum spanning forest	acronym
	k-means 3D	k-means superpixel in 3D space	acronym
	MSF-watershed	Minimum spanning forest segmentation application	acronym
	W T A -SP	Winner-take-all superpixel	acronym
	P LS	Parallel local search	acronym
	P LS -SP	P LS superpixel	acronym
	M emetic -P LS	Memetic algorithm that embeds P LS	acronym

 2, we provide a general energy function for k -means algorithm and present the parallel implementation of k -means based superpixel algorithm in 3D space. Secondly, in the same spirit, in section 4.3, we present a minimum spanning forest based superpixel segmentation. Examples of visual results are given for each case and the parameter setting presented. A comparative study of computation time with different approaches is presented in section 4.4. A last section concludes the chapter.

 Here, we choose hexagonal neighbourhood, thus an hexagonal grid of centers. Once available a D dimensional spiral search algorithm for closest point findings, and data-structures to model, construct and visit clusters, all in parallel, we can state the proposed k -means 3D algorithm as summarized in Algorithm 4 in pseudo-code. Algorithm 4: k -means 3D parallel algorithm in GPU. Input: Y n , X k . Output: X k , groot // center locations and root map representing clusters // Initialize centers in a regular grid 1: X k ← initializeRegular(k), ∀k;

	2: repeat
	3:	for each k in parallel do // concurrently insert center into 3D cellular
		matrix
	4:	cm ← X k ;
	5:	end for
		// Spiral search closest point in cm in 3D space
	6:	

 begins with each vertex of the graph G being a component. A Boruvka iteration

	consists of following two steps: First, find minimum weighted outgoing edge for each
	cluster. Second, merge these subtrees into a new larger component of a new spanning
	forest. Repeat until a single component remains. Original Boruvka's algorithm takes
	O(N 2 log N) time complexity in general graph. In 3D space, acceleration should mainly
	comes from spiral search executed in parallel in cellular space subdivision. Whereas in
	images, the image graph has a 4-neighbour connectivity which makes the parallel search
	also fast.

Table 4 .

 4 1. A full detailed result table of the experiments on the Middlebury data set is reported in the Table A.1 in the appendix A.

Table 4 . 1 :

 41 Comparative evaluation of running time for superpixel segmentation approaches on the Middlebury data set.

		Average SP number SLIC CPU	SPASM GPU (R = 4)	k -means 3D GPU (R = 4, c = 0.1)	MSF-Watershed GPU (cut = 4, depth = 25)
			t(s)	t(s)	t(s)	t(s)
	Average running time (s)	5702	0.345	0.118	0.065	0.412

 2, we formulate the main energy function employed in the metaheuristic memetic algorithm. The energy function includes a non-local smoothness term with edge filtering inspired by main objective function reported in chapter 2 section 2.2.1.2.

Table 5

 5

	.1:

 The results are shown in table 5.2. The detailed results on Middlebury datasets are reported in Table B.2 in the appendix B. Globally, quality result slightly decreases in average according to customized parameter configurations. In comparison to other approaches the same global conclusions holds.

			Table 5.2:		
	Optical flow experimental results with generic configuration on
		Middlebury benchmarks.	
	Horn and Schunck	GPU	0.88	11.38	0.0002
	Epicflow	CPU	0.86	11.10	7.56
	Brox et al.	CPU	0.46	6.16	4.97
	WTA-SP	GPU	0.81(0.02)	9.58 (0.2)	1.36 (0.03)
	PLS-SP	GPU	0.70(0.02)	7.82 (0.2)	2.61 (0.03)
	Memetic-PLS	GPU	0.68(0.02)	7.48 (0.17	

Optical flow approaches Platform AEE (stddev) AAE (stddev) t(s) (stddev)

Table 5

 5 Due to the different nature of datasets, the quality results are different of those from Middlebury dataset experiments. First, our approaches were designed with faster computation time than both Epicflow and Brox et al. algorithm. Second, for AAE our PLS-SP and Memetic-PLS provide a quite similar quality to bothBrox et al. and Epicflow approaches, with a AAE difference around 1 • between the four approaches.

	.3:

Optical flow approaches Platform AEE (stddev) AAE (stddev) t(s) (stddev)

Table A .

 A 1:Comparative evaluation of running time for superpixel segmentation approaches on the Middlebury data set.

		Average SP number SLIC CPU	SPASM GPU (R = 4)	k -means 3D GPU (R = 4, c = 0.1)	MSF-Watershed GPU (cut = 4, depth = 25)
			t(s)	t(s)	t(s)	t(s)
	Dimetrodon	5050.00	0.29	0.09	0.06	0.30
	Grove2	6710.00	0.42	0.18	0.08	0.64
	Grove3	6710.00	0.43	0.17	0.08	0.56
	Hydrangea	5050.00	0.30	0.08	0.06	0.31
	Rubberwhale	5050.00	0.30	0.09	0.06	0.31
	Urban2	6710.00	0.40	0.12	0.08	0.42
	Urban3	6710.00	0.40	0.11	0.08	0.51
	Venus	3626.00	0.21	0.10	0.04	0.26
	Average	5702.00	0.34	0.12	0.06	0.41

Table A .

 A 2:Comparative evaluation of running time for superpixel segmentation approaches on cones benchmark according to input sizes. Table B.1: Optical flow experimental results with customized configuration on Middlebury benchmarks. Table B.2: Optical flow experimental results with generic configuration on Middlebury benchmarks. Table B.3: Optical flow experimental results with generic configuration on MPI Sintel benchmarks

	Middlebury Middlebury	Horn and Schunck Horn and Schunck		Epicflow Epicflow	Brox et al. Brox et al			WTA-SP WTA-SP			PLS-SP PLS		Memetic-PLS Memetic PLS
	Benchmark Benchmark Dimetrodon Alley1	SPASM GPU CPU CPU AEE AAE t(s) AEE AAE t(s) Image size SP number SLIC CPU GPU CPU GPU CPU AEE AAE t(s) AEE AAE t(s) AEE AAE t(s) AEE AAE t(s) (R = 4) 0.45 10.41 0.0002 0.57 13.17 5.86 0.26 6.15 4.34 0.64 6.85 0.0002 0.65 10.37 20.54 0.24 2.42 8.61	k -means 3D GPU GPU GPU AEE AAE t(s) AEE AAE t(s) (R = 4, c = 0.1) 0.47 10.90 0.46 0.47 8.73 1.79	GPU GPU MSF-Watershed GPU AEE AAE t(s) AEE AEE AAE t(s) AEE (cut = 4, depth = 25) 0.34 7.78 0.81 0.31 0.24 2.75 3.59 0.24	GPU GPU AAE AAE 7.10 2.75	t(s) t(s) 1.57 4.83
	Grove2 Alley2 Grove3 Ambush2	0.33 0.24 1.15 24.18 16.01 0.0002 4.58 0.0002 6.08 0.0002 8.99 0.0002	0.66 0.57 1.14 3.26	t(s) 9.94 19.95 20.71 9.20 12.94 9.89 2.70 19.57	0.18 0.10 0.72 19.22	t(s) 2.78 2.10 6.38 9.32	5.93 8.61 5.92 8.63	t(s) 6.62 11.72 10.25 50.88 41.64 2.60 0.48 1.01 0.39 1.69 0.97 0.82	0.29 0.18 0.78 47.94	4.01 4.13 t(s) 1.50 3.69 7.86 1.35 38.12 6.78	0.26 0.18 0.76 47.58 37.01 3.72 4.06 7.39	2.45 5.18 2.33 8.60
	Hydrangea Ambush4	225 × 187 0.61 7.93 7.13 34.92 0.0002 0.0002 1000 0.58 5.98	0.04 5.98 26.49 19.28 8.88	0.42 7.11	0.04 6.77 34.81 8.60 4.33	0.57 7.09	0.04 8.36 29.19	0.51 4.03	0.49 7.14	0.17 7.50 0.85 29.33 8.17	0.49 6.98	7.41 28.67	1.70 9.69
	Rubberwhale Ambush5 Urban2 Ambush6 Urban3 Ambush7	450 × 375 0.47 15.40 4.49 29.29 0.0002 0.0002 3783 0.64 1.55 675 × 562 8410 1.15 8.89 0.0002 0.84 6.76 6.18 0.0002 2.02 1.82 19.02 0.0005 1.94 0.25 13.52 0.0002 0.21	0.12 5.67 16.32 19.67 17.86 0.27 10.84 9.96 1.88 19.74 9.86 9.86 11.64 19.83	0.16 3.46 0.42 4.41 1.04 0.10	0.05 5.42 24.12 8.61 4.34 0.15 3.31 5.92 3.32 8.62 12.82 15.02 2.64 0.05 0.32 9.72 0.52 1.79 13.87 2.62 0.09 1.32 10.70 1.72 10.63 5.96 1.66 9.85 1.17 5.45 8.54 0.21 11.61 3.99	0.20 1.76 1.09 11.79 1.44 0.21	6.79 12.74 6.10 0.83 0.28 6.91 2.88 14.24 6.65 0.51 8.65 1.71 11.73 7.32	0.19 1.72 1.12 11.61 13.78 6.51 11.82 6.88 1.36 7.52 0.22 12.31	1.76 7.82 4.42 8.81 2.75 8.75
	Venus Bamboo1 Average Bamboo2 Bandage1	900 × 750 1.03 15.82 0.62 10.45 0.0002 0.0001 14630 0.49 0.72 1125 × 937 22610 0.88 11.38 0.0002 0.86 0.87 11.38 0.0002 0.48 1.30 16.60 0.0002 0.66	0.45 3.30 20.01 19.81 6.07 0.71 11.10 7.56 18.14 20.03 7.09 20.10	0.48 0.25 0.46 0.20 0.59	0.24 7.83 4.89 0.38 6.16 3.93 5.06	3.02 8.63 4.97 8.61 8.59	0.54 0.55 0.79 0.49 0.77	0.16 6.96 12.53 0.25 9.17 16.54 6.36	0.45 2.50 0.83 2.43 2.47	0.52 0.39 0.64 0.39 0.74	7.59 7.32 0.80 1.33 5.78 7.14 1.41 9.51 5.70 1.28 6.09 5.91	0.49 0.39 0.62 0.36 0.75	7.11 7.24 6.71 8.26 6.32	2.12 7.36 2.39 7.23 7.85
	Bandage2 Cave2 Cave4	1350 × 1125 0.83 10.24 0.0002 1575 × 1312 3.84 12.37 0.0002 5.14 22.34 0.0002	32490 0.38 42900 1.74 2.71	8.17 5.99 8.87	0.97 20.08 1.35 19.74 20.29	0.61 2.85 3.84	0.69 3.93 0.89 8.99 14.91 8.59 8.56 8.63	0.41 2.35 3.36	0.36 5.87 0.48 7.05 9.89	2.51 2.38 2.49	0.37 2.19 3.23	4.98 6.67 9.63	5.86 1.70 5.77 2.33 6.13	0.39 2.24 3.27	5.96 7.01 9.85	7.77 7.88 8.17
	Market2	1800 × 1500 1.82 20.11 0.0002	57078 0.93	1.75 21.33 19.83	0.76	1.13 6.25	8.60	0.96	0.63 14.55	2.77	0.84	9.81	3.07 6.08	0.86	9.80	8.04
	Market5 Middlebury Benchmark Market6 Mountain1 Shaman2 Dimetrodon Shaman3 Grove2 Sleeping1 Grove3 Sleeping2 Hydrangea Temple2 Rubberwhale Temple3	Average 21.48 26.31 0.0002 Horn and Schunck GPU 15.24 23.88 0.0002 1.86 11.92 0.0002 AEE AAE t(s) 0.39 9.46 0.0002 0.45 10.41 0.0002 22863 3.22 3.90 0.51 AEE 0.43 0.57 0.45 7.74 0.0002 0.56 0.33 4.58 0.0002 0.66 0.43 4.95 0.0002 0.42 1.15 8.99 0.0002 1.14 0.15 3.31 0.0002 0.53 0.61 7.93 0.0002 0.58 2.14 13.91 0.0002 1.11 0.47 15.40 0.0002 0.64 11.72 77.66 0.0002 1.48	0,71 20.92 Epicflow 6.87 CPU 10.82 20.97 10.89 21.54 AAE t(s) 6.93 20.55 13.17 5.86 11.48 19.69 9.20 9.94 5.57 20.54 12.94 9.89 13.39 20.26 8.88 5.98 6.17 19.77 17.86 5.67 5.03 19.75	0,45 32.76 26.94 8.68 Brox et al. CPU 18.39 24.27 8.70 2.16 8.74 8.65 AEE AAE t(s) 0.19 3.33 8.61 0.26 6.15 4.34 0.11 1.81 8.60 0.18 2.78 5.93 0.09 0.96 8.69 0.72 6.38 5.92 0.05 1.26 8.68 0.42 6.77 4.33 1.33 7.65 8.62 0.16 5.42 4.34 5.37 27.11 8.64	0,26 28.14 36.53 2.57 WTA-SP GPU 13.95 21.22 2.54 0.62 8.04 3.97 AEE AAE t(s) 0.30 4.87 2.66 0.42 9.77 1.01 0.39 8.82 2.86 0.51 6.77 1.77 0.32 3.83 3.15 1.02 10.49 1.58 0.36 8.56 2.66 0.65 9.55 1.09 1.42 6.59 3.37 0.41 12.84 1.11 2.38 8.55 4.31	27.60 13.77 0.54 AEE 0.19 0.31 0.22 0.32 0.22 0.93 0.19 0.58 1.25 0.31 2.14	35.21 6.73 1,27 PLS-SP GPU 20.44 6.33 5.68 7.41 AAE t(s) 3.33 5.74 7.03 1.84 5.60 5.96 4.61 2.90 2.56 6.42 8.86 2.86 4.24 5.75 8.76 2.18 6.19 6.55 10.32 2.27 7.61 7.67	27.44 33.95 13.63 20.21 Memetic-PLS 9.08 8.39 0.49 5.34 9.44 GPU AEE AAE 0.19 3.51 7.67 t(s) 0.31 6.98 0.22 5.71 7.94 2.44 0.31 4.48 0.22 2.49 8.31 3.73 0.90 8.54 0.15 3.60 7.66 3.82 0.59 8.75 1.24 6.03 8.81 3.00 0.30 10.05 3.05 2.25 8.05 10.42
	Urban2 Average	1.15 4.87	8.89 17.19 0.0002 0.0002	0.84 1.48	10.84 11.13 20.14 9.96	0.42 4.53	3.31 10.07 8.62 5.92	1.31 5.67	10.72 13.55	1.56 2.83	1.11 5.37	7.07 11.21 6.18 3.30	1.13 5.33	6.90 11.03	4.37 8.07
	Urban3	1.82	19.02	0.0005	1.94	9.86	9.86	1.04	10.63	5.96	1.55	9.41	1.78	1.34	7.93	3.62	1.34	7.17	4.64
	Venus	1.03	15.82	0.0001	0.49	6.07	3.30	0.48	7.83	3.02	0.61	7.07	0.98	0.66	8.01	1.93	0.53	6.97	2.56
	Average	0.88	11.38	0.0002	0.86	11.10	7.56	0.46	6.16	4.97	0.81	9.58	1.36	0.70	7.82	2.61	0.68	7.48	3.45

(a) left input image (b) right input image (c) groundtruth

Acknowledgements

Result and discussion

abstract language concepts and data structures to better interface CPU and GPU code specification in specific domains.

The proposed optimization methodology, with construction operation, followed by improvement local search, and population-based memetic algorithm is standard, and we expect that the source code could be easily customized to address similar or related optimization problems in image processing or in other domains. Since the approach integrates both treatments in 2D/3D Euclidean space and in graphs, we claim that many other problems stated with point clouds and data grids could be modeled advantageously within our parallel generic framework.

Appendix A

Superpixel segmentation experimental results

In this appendix, we present the experimental results of the superpixel segmentation approaches on Middlebury dataset [START_REF] Middlebury | Middlebury Optical Flow Datasets[END_REF]. The tested approaches are: SLIC [START_REF] Achanta | Slic superpixels compared to state-of-the-art superpixel methods[END_REF], SPASM [START_REF] Wang | Massively parallel cellular matrix model for superpixel adaptive segmentation map[END_REF], k-means 3D, and the MSF-Watershed.

Detailed results of running time evaluation for each approach is reported in Table A.

Optical flow experimental results

In this appendix, we present the detailed experimental results of optical flow approaches on Middlebury and MPI Sintel datasets [START_REF] Butler | A naturalistic open source movie for optical flow evaluation[END_REF][START_REF] Middlebury | Middlebury Optical Flow Datasets[END_REF]. The tested approaches are: NVIDIA implementation for Horn and Schunck approach [START_REF] Smirnov | Optical Flow Estimation with CUDA[END_REF], Epicflow [START_REF] Revaud | Epicflow: Edge-preserving interpolation of correspondences for optical flow[END_REF], Brox et al. optical flow [START_REF] Brox | High accuracy optical flow estimation based on a theory for warping[END_REF], WTA-SP, PLS-SP, and Memetic-PLS optical flow.

Detailed results of optical flow evaluation for each approach on Middlebury dataset is reported in the Table B.

Evaluation datasets

In this appendix, we present the benchmark datasets, showing the ground-truth image for each pair of frames. The benchmarks correspond to results in appendix B and to applications and illustrations in this document.

Parallelisation of Optical Flow

Abdelkhalek MANSOURI, Beibei CUI, Jean-charles CREPUT and Fabrice LAURI.