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ISEL, Université Le Havre Normandie

Lhassane IDOUMGHAR Examinateur, Professeur des universités,

IRIMAS, Univ. Haute Alsace

Yassine RUICHEK Examinateur, Professeur des universités,

CIAD, Univ. Bourgogne Franche-Comté
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Abstract

Automatically finding correspondences between object features in images is of main

interest for several applications, as object detection and tracking, flow velocity estima-

tion, identification, registration, and many derived tasks. In this thesis, we address

feature correspondence within the general framework of graph matching optimization

and with the principal aim to contribute, at a final step, to the design of new and par-

allel algorithms and their implementation on GPU (Graphics Processing Unit) systems.

Graph matching problems can have many declinations, depending on the assumptions

of the application at hand. We observed a gap between applications based on local

cost objective functions, and those applications with higher-order cost functions, that

evaluate similarity between edges of the graphs, or hyperedges when considering hyper-

graphs. The former class provides convolution-based algorithms already having parallel

GPU implementations. Whereas, the latter class puts the emphasis on geometric inter-

feature relationships, transforming the correspondence problem to a purely geometric

problem stated in a high dimensional space, generally modeled as an integer quadratic

programming, for which we did not find GPU implementations available yet.

Two complementary approaches were adopted in order to contribute to addressing

higher-order geometric graph matching on GPU. Firstly, we study different declina-

tions of feature correspondence problems by the use of the Matlab platform, in order to

reuse and provide state-of-the-art solution methods, as well as experimental protocols

and input data necessary for a GPU platform with evaluation and comparison tools

against existing sequential algorithms, most of the time developed in Matlab frame-

work. Then, the first part of this work concerns three contributions, respectively, to

background and frame difference application, to feature extraction problem from images

for local correspondences, and to the general graph matching problem, all based on the

combination of methods derived from Matlab environment. Secondly, and based on the

results of Matlab developments, we propose a new GPU framework written in CUDA

C++ specifically dedicated to geometric graph matching but providing new parallel al-

gorithms, with lower computational complexity, as the self-organizing map in the plane,

derived parallel clustering algorithms, and distributed local search method. These paral-

lel algorithms are then evaluated and compared to the state-of-the-art methods available

for graph matching and following the same experimental protocol. This GPU platform

constitutes our final and main proposal to contribute to bridging the gap between GPU

development and higher-order graph matching.





Résumé

Déterminer des mises en correspondance d’objet, ou de caractéristiques d’objet, dans des

images présente un grand intérêt pour beaucoup d’applications telles que la détection et

le suivi de cible, l’estimation du flot optique, l’identification, et d’autres tâches dérivées.

Dans cette thèse, nous abordons le problème de mise en correspondance dans le cadre

général de l’optimisation de l’appariement de graphe, dans le but de contribuer, comme

résultat final, au développement de nouveaux algorithmes parallèles implémentés sur

plateforme GPU (Graphics Processing Unit). Le problème d’appariement de graphe peut

être décliné de diverses manières suivant l’application considérée. Nous observons un

fossé entre les applications basées sur des fonctions de coût locales et les applications avec

des fonctions de coût d’ordre supérieur, évaluant la similarité entre les arêtes du graphe,

ou les hyperliens lorsqu’il s’agit d’un hypergraphe. La première classe d’applications

comporte des algorithmes de résolution basés sur des calculs de convolution et possède

déjà des implémentations parallèles sur GPU. La deuxième classe d’applications met

l’accent sur les relations géométriques entre caractéristiques extraites de l’image, trans-

formant le problème de mise en correspondance en un programme quadratique en nombre

entiers avec contraintes, pour lequel nous n’avons pas trouvé de solution GPU accessible

actuellement.

Deux types d’approche ont été adoptées pour contribuer à la problématique d’appariement

de graphe sur GPU. Premièrement, nous étudions différentes déclinaisons de cette problé-

matique via l’utilisation de la plateforme Matlab afin de pouvoir réutiliser et fournir des

solutions représentatives de l’état de l’art, ainsi que des protocoles d’expérimentation

et des données d’entrée nécessaires pour une plateforme GPU dédiée à l’évaluation et

la comparaison avec les algorithmes séquentiels sur Matlab. Ainsi, une première partie

du travail concerne trois contributions respectivement, aux techniques de soustraction

d’arrière-plan et de différence d’image pour la détection, au problème d’extraction de

caractéristiques pour la mise en correspondance, et au problème général d’appariement

de graphe, toutes basées sur la combinaison de méthodes issues de l’environnement

Matlab. Deuxièmement, nous proposons une infrastructure logicielle GPU nouvelle,

écrite en CUDA C++, spécifiquement adaptée au problème d’appariement de graphe

géométrique, proposant de nouveaux algorithmes parallèles de complexité calculatoire

plus réduite, tels que les cartes auto-organisatrices dans le plan, des algorithmes de clus-

ter qui en sont dérivés, et des recherches locales distribuées. Ces algorithmes parallèles

sont évalués et comparés aux approches de l’état de l’art pour le problème d’appariement

de graphe, en suivant un protocole d’expérimentation identique. Cette plateforme

GPU constitue notre principale proposition pour contribuer à combler le fossé entre

développement GPU et son application au problème général d’appariement de graphe.
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Chapter 1

Introduction

1.1 Context

Graph optimization techniques can be applied in almost all areas of image processing

and computer vision. They can be applied to an extensive range of problems, from

simple object detection and tracking based on graph differences to more complex and

challenging problems such as graph matching (GM) with higher-order potential func-

tions. Graph matching is an essential problem in computer science. It can be applied to

a variety of issues such as pattern recognition, machine learning, and computer vision.

Establishing the correspondence between two feature sets is a fundamental issue of im-

age matching. Two sets of feature points are respectively extracted from two images

that are to be matched. Then, the main task is to find the corresponding feature point

pairs between the reference image and query image, while maintaining some invariant

relationships between features. This classic problem is challenging to handle in obtain-

ing accurate solutions. The recent revival of the combinatorial optimization methods

for feature matching changed this situation. Graph matching is mostly expressed as an

integer quadratic programming (IQP) problem, for which obtaining an exact solution is

computationally tricky to handle. Therefore the graph matching problem is confirmed

to be a Non-deterministic Polynomial (NP-hard) problem, which needs to find an ap-

proximate solution to the problem. Here, this thesis aims to cover set core problems and

solutions that arise in the context of graph matching optimization in general, study their

complexity and their implementation on sequential and parallels devices, and provide

some new state-of-the-art solutions.

1
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1.2 Problematic

We are interested in real-time algorithms for detection and tracking tasks by using

graph optimization techniques. The frame difference method (FD) and background

subtraction method (BS) methods are ones of the most basic and simple techniques for

object detection. They can realize real-time detection with O(N) complexity, with N the

problem size, both on memory and time, since they are based on a strong assumption of

background stability and brightness hypothesis. Basic processing operations tools with

O (N) time complexity have straightforward, fast implementations and are generally

compatible with the real-time context of the application in tracking. In addition, their

parallel implementation in GPU systems is now a matter of current reality. We propose

a new combination of these tools for object detection.

The assumption of background stability and brightness hypothesis can sometimes be

relaxed, and a matching method should instead take care of the geometric relation-

ships between feature descriptors to discover correspondences between images. Graph

matching algorithm is aimed to find the corresponding map between two sets of features

to preserve the geometric relationships of two graphs as much as possible. Existing

graph matching methods are generally divided into exact and inexact graph matching

[LNZ+19]. The graph isomorphism, or subgraph isomorphism, are cases of exact graph

matching. Inexact (approximate) graph matching has a broader range of applications.

It refers to matching problems where it is impossible to match exactly, and where a

strict decision is replaced by a score function to maximize. Besides, it is not robust to

variation or interference, so we focus on the problem of forming graph matching in an

inexact way.

The main goal of graph matching is to find the geometric relationship between pairs (two-

order GM) or k-tuple (k-order) of features. Due to the higher-order potentials and the

quadratic nature of the function cost, most approaches employ tensor-based or matrix-

based representation on high dimensional space. For example, an O(N2) assignation

matrix represents the solution, whereas the affinity matrix will have dimension O
(
N4
)
,

where N is the number of features. The problem increases in complexity when the

objective score function contains higher-order potentials, from first-order, second-order,

and high-order terms. Solving graph matching presupposes solving the different versions

of matching problems. Here, we choose to contribute to the development of CPU and

GPU tools for two-order graph matching and its related sub-problems, such as feature

point extraction problematic. We provide proposals considering IQP formulation with

the aim to provide state-of-the-art methods that could serve as a basis for further parallel

GPU development of GM techniques, as a final step of this thesis. We propose to model
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GM in the Euclidean plane, avoiding the requirement of a large affinity matrix like in

IQP models.

1.3 Objectives and Contribution

The general goal is to develop state-of-the-art real-time algorithms in the context of

graph matching applications, by either the use of a general environment such as Matlab

platform, and with the goal to elaborate strategies for parallel execution et resolution

on GPU systems, whenever this requirement should appear promising and effective.

Since development on GPU are more fastidious, and specialized, we applied the effort

on GPU development only on the main problem of two-order graph matching, which is

representative of the gap between local correspondence methods, which have many GPU

versions, and higher-order correspondence IQP problem, which are poorly implemented

on GPU. Other developments were done in Matlab environment, since it allows fast

development and allows to provide many original codes and data benchmarks that are

necessary tools for evaluation and comparison with GPU systems. An objective of this

thesis is also to customize a soon GPU platform with shared benchmark data to support

comparison to the state-of-the-art methods most often available in the Matlab platform.

Main objectives and effective contribution of this thesis can be dividing into the following

contributions:

• A systematic algorithm for moving object detection with application in real-time

surveillance.

• Using entropy and Marr wavelets to automatic feature detection for first-order

image matching.

• Affinity-preserving integer projected fixed point under spectral technique for second-

order graph matching.

• GPU framework for second-order graph matching in the plane and related parallel

algorithms.

Firstly, we propose a systematic tracking algorithm based on the combination of Laplace

filter, frame difference method, background subtraction method and Canny edge detec-

tor. Laplace filter was used to strengthen image information and improve the detection

effect. Canny detector is highly correlated with the edge contour, and as usual, it is more

helpful for dividing the pixels into foreground and background. The morphological post-

processing operation is expressed as a combination of erosion and dilation. Here, the
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closing operation will be employed to fill the small apertures and connect the small gaps.

Three frame difference and background difference operations are performed separately,

while threshold binarization and Canny edge detection are performed to identify and

extract edge information. Then, the combination of these two main methods undergoes

a logical OR operation followed by a morphological operation for obtaining the final

moving objects. This systematic tracking algorithm was tested on standard datasets

with the evaluation criteria of accuracy, recall, precision, and F-measure. All of their

programmatic be assembled representative through the Graphical User Interface to make

the whole complicated process intuitive and straightforward. Another main contribution

of the proposed application is the achievement of a systematic detection algorithm for

multi-target tracking in real-time surveillance.

Secondly, a first-order graph matching algorithm using entropy and response based on

Marr wavelets within the scale-interaction method is proposed. First, feature detection

is performed through Marr wavelets within the scale-interaction method to obtain a

feature vector set of the reference image. Second, feature extraction is executed un-

der the mesh division strategy and entropy algorithm, accompanied by the assessment

of the distribution criterion. The image is meshed by n × n to obtain n2 sub-regions,

then the detected feature points are mapped into the respective sub-areas and sorted

according to their deviation value Dev in each sub-area to which they belong. Mean-

while, every local information entropy Hi of each sub-region and the average information

entropy H̄ of the all are calculated. The entropy-based selection method dramatically

reduces computation time. Finally, feature points matching and error elimination are

performed. Image matching is achieved by the nearest neighbor search with normalized

cross-correlation similarity measurement to perform coarse matching on feature points

set. As to the matching points filtering part, the RANSAC procedure removes outlier

correspondences.

Thirdly, we propose a combination of state-of-the-art power iteration based methods

for graph matching, and also a customized environment in Matlab for sharing data

with a GPU platform on this problem. A combination variant of second-order graph

matching method using the candidate assignment affinity-preserving algorithm and in-

teger projected fixed-point algorithm improved by spectral technique is presented to

realize one to one correspondence. It can reflect the geometric similarity relationship

between the pairwise matching features and retaining as many attributes as possible.

Affinity-preserving can realize normalization by constructing the same maximum degree

for preserving the relative affinity relations between reference and query graph. The

spectral matching algorithm splits the set of candidate assignments into correct assign-

ments and rejected assignments during the discriminating loop. Then, the improved

integer projected fixed-point algorithm realizes the main matching iteration loop. It is
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a series of linearly assigned problem where the next solution xk+1 is found by using the

previous solution xk, which means the quadratic score S∗ is getting closer and closer to

the optimal discrete solution since the binary solution returned will never be worse than

the initial solution. This whole algorithm effectively achieves a stable optimal solution

x∗. The greedy algorithm will be typically used as the final post discretization.

Fourthly, we propose a GPU platform for graph matching. A version of graph matching

in the plane is defined, and parallel algorithms in the plane are customized, applied

and studied. These algorithms are new versions of a parallel self-organizing map and

a parallel local search method. They are compared to state-of-the-art IQP methods.

We choose to reuse and customized parallel techniques and heuristics that were already

applied to graph minimization problems [Zha13, Wan15, Qia18]. Based on a cellular

decomposition of the plane for fast closest-point search, they were applied to mesh gen-

eration [WZC+15], fast stereo correspondence problems [WZC+16], traveling salesman

problem [WZC17], and super-pixel segmentation [WMC17]. We adapt few of them to

graph matching in the plane.

1.4 Plan of the thesis

In chapter 2, we briefly introduce background on object detection and graph matching

algorithms, including definitions and related work about basic notions of graph theory,

taxonomy of graph matching in first, second and high order, power iteration, CNN for

graph matching, and GPU for graph matching.

In chapter 3, we present our proposed solution for moving object detection. It includes

two main approaches, namely the frame difference algorithm and background subtraction

algorithm. The proposed systematic multi-object detection algorithm is based on the

Laplace filter and Canny detector, which can enhance detection since they are less

independent of external noise. We applied the method to standard benchmark image

sequences and developed a graphical user interface for evaluation and visualization.

In chapter 4, we present a first-order graph matching application that uses our proposed

local entropy based method on Marr wavelets within scale-interaction to improve the

accuracy of automatic feature detection in the context of image matching. We test the

proposed technique for a cross-correlation first-order graph matching problem.

In chapter 5, we present a methodology for two-order graph matching. We present our

improved IQP algorithm based on the combination of standard algorithms, and provide

experiments of the different approaches. Various data sets are tested for comparison of
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matching accuracy, objective score, and time computation in the presence of deformation

noise and outliers.

In chapter 6, we provide a two-order graph matching problem stated in the euclidean

plane, and a set of GPU tools customized for graph matching evaluation and comparison.

Experiments are conducted to evaluate our proposed customized parallel algorithms.

In chapter 7, we conclude this thesis and discuss some future works.



Chapter 2

Background

2.1 Introduction

The goal of this chapter is to present an overview of detection and matching problems

in general, to review on which conditions fast and local graph-optimization methods can

be applied. Moving object detection and tracking from video sequences is a relevant

research field since it can be used in many applications. Currently, ones of the main

detection algorithms include frame difference method (FD), background subtraction

method (BS), and optical flow method. We first studied this most standard methods

in the domain of image matching, generally based on (local) first order cost functions.

Also, they require strong assumption on background or/and brightness constancy.

Graph matching allows to alleviate dependence on brightness constancy assumption,

by focalizing on feature points and their pairwise geometric relationships, instead of

only local information. Establishing the pairwise geometric correspondence relationship

between two feature point sets from a reference and a query graph is of main inter-

est in image processing for identifying and matching a target. The general problem

of feature correspondence problem involving pairwise constraints can be modeled into

integer quadratic programming problems (IQP). The IQP is NP-hard. Usually an exact

optimal solution can only be obtained for very small graphs, not real-case application.

Therefore, the focus of IQP research is to design more accurate and faster algorithms

to approximate it. Most of the approaches are heuristics, since they do not guaranty

optimality. So the parallel implementation on GPU CUDA platform is a good choice

for resolving these challenges.

Since we are interested in the three types of image processing problems associated with

moving object detection and tracking, one or two order graph matching, and parallel Eu-

clidean matching approach on GPU CUDA platform, we will present detail background

7
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information about the algorithms that address these issues in the following sections. In

this thesis, we provide an implementation of object detection and tracking by a new

combination of background subtraction and frame difference algorithm. We propose an

efficient solution to extract more effective feature points by using Marr-wavelets scale

interaction algorithm and local entropy. We propose a combination of state-of-the-art

power iteration based methods for graph matching, and also a customized environment

in Matlab for sharing data with a GPU algorithm. Finally, we propose a GPU plat-

form for graph matching in geometric plane, that allows testing new proposed parallel

algorithms.

Section 2.2 presents existing research methods about detection and target tracking.

Mainly used algorithm are background subtraction, frame difference, and optical flow.

Section 2.3 presents some basic definitions and classical algorithms about feature points

extraction from the literature, such as Harris, SUSAN, SURF, SIFT. Section 2.4 presents

general definition of the standard GM problem and the definition of high-order graph

matching problem. Section 2.5 introduces the different kinds of applications on power

iteration for explaining the current state-of-the-art kernel algorithms in graph matching.

Section 2.6 presents the research of convolutional neural network for graph matching.

Section 2.7 introduces the usage of the GPU CUDA platform in this field. It reviews

the knowledge of some related topics to parallelism processing. It presents some GPU

parallel implementations for graph matching from the literature. Section 2.8 concludes

this chapter.

2.2 Dense correspondences methods for detection and track-

ing

We are mainly interested in dense correspondence problem since they represent the most

basic expression of graph matching problematic, the image themselves being graph data

structures. Moving object detection and tracking [LXM+14, HCC+15, YB18] is an im-

age processing process used to extract moving objects in a sequence of images, usually

based on image features such as edges, colors, and textures. Figure 2.1 shows different

visual representations of a detection method: rectangle box, shape, and silhouette. For

real-time intelligent surveillance [BDYR18, LM18], automated vehicle tracking, person-

nel tracking, and many other applications, it is undoubtedly an indispensable area of

research, not only in 2D motion observed but also in 3D scenes [HCW+19]. Globally,

the objective of multi-target tracking is to jointly estimate, at each observation time,
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Figure 2.1: Different visual representations of the detection: (a) Rectangle box rep-
resentation approach, (b) Shape representation approach, (c) Silhouette representation

approach.

the number of targets and their trajectories from noisy sensor measurements. Accord-

ing to the recent review [LXM+14], multiple object tracking methods could be classi-

fied roughly within two classes of Detection-Based Tracking (DBT) and Detection-Free

Tracking (DFT). The former includes a detection step of the objects before estimate their

trajectories. The latter focuses on the tracking process exclusively, given a predefined

initialization.

It is worth noting that DBT allows objects to appear and disappear and has more gen-

eral applications, whereas its behavior mainly depends on the quality of the detection

procedure, which provides observations for the tracking operations as trajectory com-

putation. In this thesis, we are interested in the detection phase only. Globally, some of

the most popular methods for shape detection are optical flow method [TXZ+19], back-

ground subtraction (BS) method [ZL10, ZZL+17], and frame differential (FD) method

[ZWQ12]. They can be considered as the most simple and straightforward methods

generally used for real-time detection. Among them, the shape representation method

can most accurately reflect the shape of the object, delimit the outline and completely

fill the interior of the object.

Optical flow method [TXZ+19] estimates the displacement field between two images, so

it not only needs to locate the position of each pixel accurately but also needs to find

the corresponding points between two input images [DFI+15]. That is to say, optical

flow method has a relatively high computational complexity. Therefore it spends more

time than other methods, so it is more complicated since it computes a dense optical

flow field. As a widely used target extraction technique, the background subtraction

method can extract objects with a relatively simple algorithm. Although it is relatively

easy to implement, it is sensitive to the changes of the light [NJ08]. The frame difference

method is still one of the fundamental techniques in computer vision. Frame difference

method has the advantage of a small amount of calculation, but it is sensitive to the

noise [ZDX+07] and sometimes it seems to appear the empty phenomenon, that consists

of some small apertures and gaps, so its results are not accurate enough. Although

there are numerous difficulties with frame difference and background subtraction, these
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problems are under addressing by some improved methods in recent pieces of literature

on the field.

A new inter-frame difference algorithm combined with background subtraction for object

tracking is put forward by Muyun Weng [WHD10], this algorithm not only has a low cost-

time but also has stronger validity and more extensive flexibility. In 2013, Liu Gang et al.

[GSY+13] proposes an algorithm based on the traditional three-frame differential method

combined with the Canny edge detection algorithm. In 2014, Lavanya [Lav14] comes up

with a method to detect motion. A video monitoring and a more robust detection system

was thus developed with the adjustment of camera movements. Similar to this, Hongkun

Liu [LDW+16] demonstrates an approach combining background subtraction and three-

frame difference to applied to underwater robots to execute underwater missions and

detect a moving object by using underwater video, but without affected by the change

of lighting condition and the sensitive scenes.

In this thesis, we propose a new combination of background subtraction and frame dif-

ference methods. We evaluate its complexity and show that the methods are suitable

for real-time applications. Computation is based on local filtering and generally, these

methods already have GPU parallel implementations available. However, one key as-

sumption is constancy of the background (fixed camera) and also brightness constancy

hypothesis for optical flow algorithm. Here, we are also looking to more general graph

correspondence problem, relaxing these assumptions with cluttered context, luminosity

change, and large deformations, but rather searching for sparse correspondences.

2.3 Problematic of feature point extraction

Image matching is used to determine the geometric alignment of two or more images

of the same scene taken by the same or different sensors from different viewpoints at

the same or different times. We can distinguish dense correspondence, that determines

correspondences at the pixel level, and sparse correspondence, that determines corre-

spondences between a sparse set of higher level features being first extracting from

images. Most of the time such features represent invariant information at some location

in the image, as corners, edges, gradients. Since we are interested on sparse correspon-

dence, we study the standard methods for automatic extraction of the feature point sets

from images. This becomes a critical step since it should avoid the presence of outliers

and should allow to easily discriminate objects. In this thesis, we propose a method for

feature extraction step suitable to first-order matching.
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Local feature descriptors, that is, providing detail feature detection and feature de-

scription information, play a fundamental and vital role in the process of feature cor-

respondence, directly affecting the accuracy and objective score of graph matching.

High-quality local feature descriptors describe key points with uniqueness, repeatability,

accuracy, compactness, and effective representation. These key points can keep robust

and constant in terms of scaling, rotation, affine transformation, illumination, and oc-

clusion [LZL+18]. This section focuses on the theoretical and mathematical descriptions

of various local feature descriptors.

Over the years, many researchers have made outstanding contributions to local feature

descriptors in areas such as image matching and recognition. Below we display some of

the critical extraction algorithms for feature descriptors:

• Harris: Harris and Stephens [HS88] propose a combined corner and edge detec-

tor based on the local auto-correlation function. Although Harris detector is the

simplest and commonly used method for feature point detection, it cannot meet

the requirements for extracting more qualified vital points in terms of eligibility

and repeatability for images with scale changes and large rotations. This is due

to the lack of sufficient consideration of discriminative information for key points

detected by the Harris detector.

• Harris-Laplace: Mikolajczyk [MS04] presented a scale-invariant Harris-Laplace de-

tector that combines the Harris detector with the Laplacian-based scale selection.

It uses the scale-adapted Harris function to localize points in scale-space and se-

lects the points to attain a maximum over scale by using the Laplacian-of-Gaussian

function. This algorithm can automatically adjust the position, scale, and shape

of point neighborhood to acquire affine invariant points with better repeatability

and accuracy.

• SUSAN : Smith and Brady presented the Smallest Univalue Segment Assimilating

Nucleus (SUSAN) detector [SB97] for low-level image processing. This method can

quickly and accurately find the edges, lines, corners, and junctions of the image,

what more, SUSAN has an excellent noise suppression ability than other methods.

• SIFT : One of the most widely used descriptors Scale Invariant Feature Transform

(SIFT) was developed by Lowe [Low99]. This method converts the image into

a large number of local feature vectors. Each local feature vector is invariant to

image translation, scaling, and rotation, and is invariant to illumination changes

and affine or 3D projection parts. SIFT algorithm mainly includes four steps: (a)
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Table 2.1: Summary table of feature detectors.

Feature Invariance Qualities
detector Rotation Scale Affine Repeatability Localization Robustness Efficiency

Harris Yes +++ +++ +++ ++
Harris-Laplace Yes Yes +++ +++ ++ +
SUSAN Yes ++ ++ ++ +++
SIFT Yes Yes ++ +++ +++ ++
SURF Yes Yes ++ +++ ++ +++

Use the Difference of Gaussian (DoG) to determine the extreme value of the scale-

space; (b) Keypoints localization; (c) Direction distribution of key points based on

local image gradient; (d) The keypoint descriptor is a local feature descriptor.

• SURF : A fast and performant scale and rotation invariant interest point detector

Speeded-Up Robust Features (SURF) was developed by Herbert Bay [BETVG08].

Based on sums of Haar wavelet components, SURF outperforms some state-of-

the-art algorithms, especially in terms of speed, it can almost realize real-time

computation without loss in performance. SURF is an effective implementation

of SIFT, which calculates image derivatives and quantifies gradient directions in a

small number of histogram tiles by applying integral images.

A summary of these feature detectors described above is given in Table 2.1. It in-

cludes two assessment aspects: invariance and qualities. Globally, all these methods

have efficient implementations, we assume that they already have efficient GPU parallel

implementations. Then, once the feature point sets available, we are now interested in

the matching process itself to find the true correspondences between the two images.

This process is modeled as the graph matching problem.

2.4 General formulation of graph matching problem

This section introduces the general representation of traditional graph matching and the

definition of the high-order graph matching problem. The main purpose is on finding the

correspondence one-to-one mapping between two feature sets from two image sources.

The goal is to maximize a function score among the set of correspondence pairs. In first

order matching, only local attribute descriptors are considered and evaluated, whereas in

the general case of graph matching, two order potentials between pairs (edges) of features

must also be maximized, to established the similarity between edges of features. On the

other hand, the high-order GM method considers the invariant geometric information

by considering relationship between tuples of feature points. The input feature graph

becomes a hyper-graph, where edges are replaced by hyper-edges, that is subsets of k

points, with the order k ≥ 2, rather than only considering couples of points.
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Figure 2.2: Feature point correspondence mapping.

Figure 2.3: Euclidean distance as two order similarity measure.

2.4.1 Definition of standard graph matching problem

Supposed it is given a pair of graphs GP = (P,EP ) with NP feature points for the

reference graph GP , and GQ = (Q,EQ) with NQ feature points for the query graph GQ.

P and Q are the two sets of feature points, and EP and EQ denote edge sets. We note

i, j ∈ P and a, b ∈ Q as representing feature points. Therefore, the main problem is

to find a suitable one-to-one mapping from one feature set to the other feature set as

illustrated in the Figure 2.2. The pictures in Figure 2.2 are from PF-WILLOW dataset1.

Finding a mapping form P to Q can be equivalent to find an NP × NQ assignment

matrix X, such that Xia = 1 when point i is assigned to point a, and Xia = 0 otherwise.

Therefore, a one-to-one admissible solution must verify the following constraints in 2.1,

that requires a binary solution, and 2.2 and 2.3, that express the two-ways constraints

of a one-to-one mapping.

X ∈ {0, 1}NP×NQ (2.1)

∀i
NP∑
a=1

Xia ≤ 1 (2.2)

∀a
NQ∑
i=1

Xia ≤ 1 (2.3)

1https://www.di.ens.fr/willow/research/proposalflow/
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Then, the problem of graph matching can be formulated as the maximization of the

following general objective score function 2.4:

score(X) =
∑
ia,jb

Hia,jbXiaXjb, (2.4)

where Hia,jb means the similarity or affinity measurement corresponding to the tuple of

feature points i, j and a, b. The higher is the score Hia,jb, the higher are the similarities

between the two corresponding edges (i, j) and (a, b). The product XiaXjb is equal to 1

if and only if points i, j are respectively mapped to points a, b.

Then, we need to know how to compute such a positive and symmetric similarity matrix

H. Many cost functions may be used to compute affinity matrices for first-order and

second-order GM. Note that Hia,ia represents first-order similarity term, between local

attributes of points i ∈ P and a ∈ Q. For example, the authors in [Yan10, SS13] use

the normalized cross-correlation (NCC) cost function, as we have used to validate our

feature point extraction method in this thesis. But any point-to-point distance function

can be used, as euclidean distance between SIFT descriptors, or sum of squared error

data terms.

Duchenne et al. in [DBKP11] propose a general formula to compute the second-order

affinity term Hia,jb as shown in 2.5, where f is a feature vector associated to each edge.

∀ia, jb Hia,jb = exp(−γ‖fi,j − fa,b‖2) (2.5)

Leordeanu et al. in [LH05], and as most often encountered, computes the Euclidean

distance between the corresponding candidate point pairs i, j and a, b, to build the

affinity term Hia,jb, as shown in equation 2.6. Here, σd is the sensitive controller of the

deformation.

H(ia, jb) =

 4.5− (dij − dab)2

2σ2d
if |dij − dab|< 3σd

0 otherwise

(2.6)

2.4.2 Definition of high-order graph matching problem

We generalize the previous notations. The purpose of high order graph matching problem

[LCL11] is to establish a mapping between the nodes of two hyper-graphs GP = (P, EP)

and GQ = (Q, EQ), where E represents k order hyper-edges, which are k-tuples of feature

points, as for example (i1, i2, ..., ik) ∈ P k and (j1, j2, ..., jk) ∈ Qk are two hyper-edges
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Figure 2.4: Similarity measure between triangles in high-order GM.

of EP and EQ respectively. As previously NP and NQ stand for feature point sizes.

Figure 2.4 shows an illustration of third-order (k = 3) graph matching.

The goal of hyper-graph matching is to find a binary assignment matrixX ∈ {0, 1}NP×NQ

that maximizes the following k-order score function:

score(X) =
∑

i1j1,...,ikjk

Hi1j1,...,ikjkXi1j1 ...Xikjk , (2.7)

s.t. X ∈ {0, 1}NP×NQ , (2.8)

∀i
NP∑
j=1

Xi,j ≤ 1, ∀j
NQ∑
i=1

Xi,j ≤ 1. (2.9)

The binary constraint and the two-way constraint formulas are expressed in 2.8 and 2.9

for one-to-one mapping from GP to GQ.

In practice third-order graph matching is addressed where k = 3. Then, for the con-

struction of three-order affinity term Hia,jb,kc, we can refer to Duchenne [DBKP11] in

which a generic truncated Gaussian kernel is constructed as follows:

∀ia, jb, kc Hia,jb,kc = exp(−γ‖fi,j,k − fa,b,c‖2) (2.10)

where fi,j,k is the feature vector describing the tuple (i, j, k).

The third order term Hia,jb,kc is often based on angles among triplets as demonstrated

in [LCL11]. Figure 2.5 shows a sample of two triangles which are compared by their

respective angles as in the equation 2.11 :

Hω1,ω2,ω3 = exp{− 1

σ s
Σ3
k=1|sin(θGPωk )− sin(θ

GQ
ωk )|}, (2.11)

where θGPωk and θ
GQ
ωk represent the angles of the respective triangles with index ωk between

the query graph GP and the reference graph GQ, respectively.
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Figure 2.5: Two triangles compared by their angles.

2.5 State-of-the-art methods to graph matching

2.5.1 Power iteration and spectral matching

Since the graph matching based on IQP is an NP-hard problem, various approximate

solutions are used to attempt to solve the pairwise similarity corresponding mapping

problem. Leordeanu and Hebert provided a spectral matching (SM) algorithm [LH05]

based on the main strength cluster of the adjacency matrix by finding its principal

eigenvector. Cour et al. [CSS07] present a new spectral relaxation technique named

spectral matching with affine constraint (SMAC). It includes a normalization procedure

which matches the scoring capabilities of existing graphics to improve matching accu-

racy significantly. Zass and Shashua [ZS08] interpreted hyper-graph matching (HGM)

algorithm, where a hypergraph represents the complex relationship. Leordeanu et al.

[LHS09] solved the matching problem by using integer projected fixed point (IPFP)

algorithm, which found a discrete solution with climbing and convergence properties.

Reweighted random walks for graph matching (RRWM) algorithm was introduced by

Cho et al. [CLL10], and it combined mapping constraints with re-weighted jumping

schemes.

Al of these methods more or less implement an iteration loop to compute a principal

eigenvector. The basic technique being power iteration method. Although this method

cannot guarantee to achieve the final global optimal solution during the operation, it can

converge to the fixed point of the tensor [RK00]. The power iteration idea has already

been used in different graph matching algorithm, such as SM [LH05], RRWM [CLL10],

Tensor based high-order GM [DBKP11], and be extented by Max-pooling strategy for

GM [CSDP14]. The pseudo-code is given in in Algorithm 2.1.

In [LH05], Leordeanu presented spectral matching (SM) for correspondence problems,

which is one of the most basic methods for GM. The SM approach first compute the prin-

cipal eigenvector by power iteration. Then, it applies a greedy procedure to transform
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Algorithm 2.1 Power iteration for eigenvalue problem

Input: matrix H
Output: V main eigenvector of H

1: initialize V randomly;
2: repeat
3: V ← HV ;
4: V ← 1

‖V ‖2V ;
5: until convergence

the real value vector solution to a binary vector that satisfies the one-to-one constraint

mapping. The detail steps of this procedure are shown in Algorithm 2.2.

Algorithm 2.2 Spectral technique for correspondence problem (SM)

1: Build the affinity matrix M ;
2: Set x∗ be the principal eigenvector of M ; Initialize the solution vector x with the
n× 1 zero vector, and set all candidate assignments in L;

3: Find e∗ = argmaxe⊂L(x∗(e)), if x∗(e∗) = 0, stop and return the solution x. Other-
wise set x(e∗) = 1 and remove e∗ from L;

4: Based on one-to-one corresponding constraints, remove from L all potential assign-
ments in conflict with e∗ = (i, a);

5: If L is empty return the solution x. Otherwise go back to step 3.

2.5.2 Reweighted random walk matching

In [CLL10], Cho et al. proposed a reweighted random walk graph matching algorithm

(RRWM), which can efficiently calculate quasi-stationary distribution using an adapta-

tion of the power iteration method as outlined in Algorithm 2.3, where M is the affinity

matrix, α is a reweighting factor, and β is the inflation factor. This algorithm proposed

an affinity-preserving transformation of M (steps 1 to 3), an inflation step (step 8), and

a bistochastic normalization (steps 9 to 12). The main operation is xT = αx̄T +(1−α)yT

at step 15. Note that final step 18 greedily generates the final binary vector satisfying

the one-to-one mapping constraints. The algorithm mainly operates in continuous space,

whereas discretization appears as a final step only.

2.5.3 Max-pooling matching

In [CSDP14], Cho et al. proposed a max-pooling graph matching strategy, that has been

improved very recently by the work of [Ref on the recent 2018 paper]. Max pooling con-

sists in updating the affinity of a correspondence pair by only considering the neighboring

correspondence pairs with maximum affinity, instead of considering a summation, or av-

erage, of the neighboring correspondence pairs as in power iteration method. By only
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Algorithm 2.3 Reweighted Random Walk Graph Matching (RRWM)

Input: weight matrix M , the reweight factor α, and the inflation factor β
Output: solution x

1: Prevent conflicting walks by setting Mia;jb = 0 for all conflicting match pairs
2: Set the maximum degree dmax = maxiaΣjbMia;jb

3: Initialize the transition matrix P = M/dmax
4: repeat
5: (Affinity-preserving random walking by edges)
6: x̄T = xTP ;
7: (Reweighting with two-way constraints)
8: yT = exp(βx̄/maxx̄)
9: repeat

10: normalize across rows by yai/Σ
I
i=1yai

11: normalize across columns by yai/Σ
A
a=1yai

12: until y converges
13: y = y/Σyai;
14: (Affinity-preserving random walking with reweighted jumps)
15: xT = αx̄T + (1− α)yT ;
16: x = x/Σxai;
17: until x converges
18: Discretize x by the matching constraints

considering maximum affinity neighbor pairs, this allows to limit the influence of outlier

pairs. The algorithm is given by its pseudo-code in Algorithm 2.4. The algorithm com-

putes the max-pooling product M~x = xiaMia;ia+Σj∈Nimaxb∈NaxjbMia;jb(as shown in

step 4) instead of the sum-pooling product Mx, since it is conjectured that sum-pooling

will often results in bad local minimum. The main loop is similar to power iteration,

but max-pooling implies specific implementation for computing the max-pooling prod-

uct. The entire power iteration continues until the solution x converges.

Algorithm 2.4 Max-pooling matching (MPM)

Input: affinity matrix M
Output: soft-assignment x

1: Initialize the starting assignment x as uniform;
2: repeat
3: for each candidate match (i, a) do
4: xia ← xiaMia;ia + Σj∈Nimaxb∈NaxjbMia;jb;
5: x← 1

‖x‖2x;
6: end for
7: until x convergence;
8: Discretize the solution x if needed.
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Algorithm 2.5 Integer projected fixed point method for GM (IPFP)

Input: the number of iterations t, any initial solution x0
1: k = 0;
2: x∗ = x0;
3: S∗ = (x∗)TMx∗, where xi > 0 and x 6= 0;
4: for k ≤ t do
5: xk ← x∗;
6: bk+1 = Pd(Mxk); // The projection step
7: C = xTkM(bk+1 − xk);
8: D = (bk+1 − xk)TM(bk+1 − xk);
9: r = min{−C/D, 1}; // The discriminant condition

10: xk+1 = xk + r(bk+1 − xk); // Maximize the original quadratic score
11: if bTk+1Mbk+1 ≥ S∗ then

12: S∗ = bTk+1Mybk+1;
13: x∗ = bk+1; // Update the optimal solution
14: end if
15: if xk+1 = xk then
16: return x∗;
17: end if
18: k = k + 1;
19: end for
20: return x∗

2.5.4 Integer projected fixed point method

Leordeanu [LHS09] proposed an integer projected fixed point (IPFP) algorithm for GM.

Most of the algorithms seek a good approximate solution by relaxing the integer one-to-

one constraint, in order to be able to find an optimal global value of the new problem

effectively. However, IPFP is mainly based on searching for discrete solutions and max-

imize the quadratic score in the discrete domain.

The iterative algorithm can take any continuous or discrete solution given by any other

method as input, thereby continuously improving it. Each iteration includes two phases

related to the Frank-Wolfe (FW) algorithm [JCC Ref]. The first phase in the discrete

domain maximizes the linear approximation of the quadratic function around the current

solution, which is equivalent to giving a direction. The second phase maximizes the

original quadratic score in the continuous domain along this direction. Even if a non-

discrete solution is found in the second phase, due to the influence of the first phase, the

optimization direction is finally towards the integer solution. The core of the algorithm

is always improving the quadratic score in the continuous domain to converge to the

maximum value eventually. In the case of convex quadratic functions, the solution for

each iteration is always discrete, and the algorithm converges within a limited number

of steps. For non-convex quadratic functions, this method tends to approximate the

discrete solution and returns the best discrete solution encountered along the path.
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The detail of the IPFP can be found in Algorithm 2.5. First, it takes any initial solution

x0 (continuous or discrete) as input x∗, and set the initial quadratic score as S∗ =

xT0Mx0. Then the projection Pd is used to find a discrete solution bk+1 around the

current solution xk. This discrete solution bk+1 can not only maximize the dot product

of Mxk in the continuous domain but also provide the largest possible increase direction

in a first order approximation. The effect of step 3 is to ensure that the quadratic score

will increase with each iteration. Step 4 ensures that the returned binary solution bk+1

is not worse than the initial solution x∗ under the condition bTk+1Mbk+1 > S∗.

2.6 Convolutional neural network for graph matching

Convolutional neural network was mainly used for digital and document recognition

[LBB+98] and small-scale target recognition in previous research [KH+09]. Recently,

some of the authors come up with GM algorithms by using CNN. Lin Ma proposed se-

mantic matching for images and sentences based on multimodal CNN [MLSL15], which

took the image and sentence as input. The algorithm relies on a convolutional structure

to combine different semantic segments of a sentence, and learns the different degrees

of interaction between images and constituent segments so that the matching relation-

ship between modalities can be fully utilized. In 2017, Ufer et al. [UO17] presented

another semantic feature matching algorithm with pre-trained CNN features. CNN is

mainly used as an activation guided feature selection based on convolution feature pyra-

mids. The same year, a geometric matching based on CNN architecture was proposed

by Rocco et al. [RAS17]. They use a standard CNN architecture in the first step of

feature extraction. For the matching phase, a similar process is also applied to the

matching layer, where the correlation layer is used, and the normalization step followed.

The final matching network is passed through a regression network, which outputs the

parameters of the geometric transformation. The output matching network map went

through a regression network for exporting geometric transformation parameters. The

whole architecture mimics the standard matching process by basing on the traditional

approach. Convolutional Neural Networks (CNN) and Fully Convolutional Networks

(FCN) become more and more competitive [WGY17], with a large scope of applications,

but they necessitate supervised learning using a huge amount of ground-truth informa-

tion to learn the network. In this thesis, we address graph matching by optimization

techniques only.
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2.7 GPU CUDA platform and graph matching

2.7.1 Generality on parallel processing

From the perspective of multiple processors, parallel processing is an operation where

each processor executes a single task on it data in parallel. Parallel operation includes

task-based and data-based parallel processing.

• Task-based parallel processing This parallel mode divides the computing task into

several small but different tasks. Some computing units are responsible for fetch-

ing, and some computing units are responsible for computing. Such a humongous

task can form a pipeline.

• Data-based parallel processing This parallel mode decomposes the data into mul-

tiple parts, and allows multiple arithmetic units to calculate these small pieces of

data, and then aggregate them.

Generally speaking, multi-threaded programming of the CPU favors the first parallel

mode, and parallel programming model of the GPU favors the second. Many parallel

approaches have been introduced, such as [Nak12], [SPS12], [GHOI14], and [JDJ19].

The advantages of parallel operations are: Threads have less overhead than processes;

Resources can be shared between threads; Make full use of server hardware resources;

Improve service throughput and reduce response time; Contention and scalability of

resources. Multi-threaded concurrent memory consumption is relatively small.

2.7.2 GPU CUDA platform

In this thesis, parallel image matching operation will be implemented based on a GPU

platform. Nowadays, GPU provides excellent parallelism. A parallel process means that

multiple processors perform the same function across the elements of a data set at the

same time. NVIDIA offers a family of sustainable GPU products that transparently

extend the parallelism of applications to take advantage of increasing processor cores.

This automatic scalability is achieved through the Compute Unified Device Architec-

ture (CUDA) scalable programming model. CUDA is defined as a universal parallel

computing platform and programming model that utilizes the parallel computing en-

gine in NVIDIA GPUs. NVIDIA GPUs provide a highly parallel, multi-threaded, and

multi-core environment for parallel computing architecture called SIMT (single instruc-

tion, multi-threaded), similar to SIMD (single instruction, multi-data). When a CUDA
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program on the host CPU calls a kernel function with an appropriate kernel configura-

tion according to the GPU hardware, each multiprocessor on the GPU will get one or

more thread blocks to execute.

CUDA is a development environment for GPU computing. It is a new software and

hardware architecture. It can treat the GPU as a parallel data computing device and

allocate and manage the calculations performed. In the CUDA architecture, these cal-

culations no longer have to map calculations to graphics APIs (OpenGL and Direct 3D)

like the so-called GPGPU architecture in the past, so for developers, the threshold for

CUDA development has been dramatically reduced. CUDA’s GPU programming lan-

guage is based on the standard C language, so any user with a C language foundation can

develop CUDA applications. In addition to a parallel computing architecture, CUDA is

a universal language for the coordinated work of CPU and GPU. CUDA can be divided

into a host and a device. The host is the CPU or a computer with a GPU, it reads

and writes files to configure memory, or calls GPU resources. The device is the GPU

and has independent computing resources. The following Figure 2.6 is the architecture

of the CUDA program. The host needs to transfer data to the memory on the device

before it can be processed in the device, and the program executed on the device is the

kernel function, then the same kernel is executed via the thread, as shown in the orange

part below. In the figure, the thread is the smallest unit. Multiple threads can form a

block, and multiple blocks can form a grid. Each 32 threads form a group of warps, and

all threads in a group of warps execute the same instructions.

Figure 2.6: The architecture of the CUDA program.
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Compared with CPU, GPU has relatively less on-chip memory. In terms of parallel

computing, GPU and CPU have the following differences:

• Number of tasks The CPU is suitable for a relatively small number of tasks,

while the GPU is suitable for a large number of tasks.

• Task complexity The CPU is suitable for logically complex tasks, while the GPU

is suitable for logically relatively simple tasks (which can be described with fewer

statements).

• Thread support Because the register set of threads in the CPU is standard,

when the CPU switches threads, the contents of the thread’s registers are saved

in RAM, and when the thread starts again, data is restored from RAM to the

registers. Each thread in the GPU has its own register set, so its switching speed

will be much faster. Of course, the CPU is more powerful for a single thread.

• Processor allocation principle The CPU is generally based on the time slice

rotation scheduling principle, and each thread executes a single time slice fixedly;

the GPU’s strategy is to swap in and out quickly when the thread is blocked.

• Data throughput Each stream processor in the GPU is equivalent to a CPU

core. A GPU generally has often 16 stream processors, and each stream processor

can calculate 32 numbers at a time.

2.7.3 Graph matching and related approaches on GPU

The Graphics Processing Units (GPUs) are a dedicated processing unit designed to

address bottlenecks caused by graphics applications. Due to the higher transistor density

and parallel hardware structure, current GPUs have been extensively studied in the

graphics field and the field used as general-purpose processing equipment [KPC+09].

This technology is commonly referred to as GP-GPU (General Purpose Computing on

GPU) and is used to ensure real-time performance of processing large amounts of data

in applications related to video encoding or computer vision [OLG+07]. In this section,

we would like to describe and analyse some implementations of the graph matching

algorithms that run on GPU through some recent research literature.

Sinha [SFPG06] introduced a feature tracking and SIFT feature extraction algorithm

for video analysis in real-time vision systems based on GPU. The computation was di-

vided between CPU and GPU, the result shown that GPU implementation, with the

advantage of raw processing power, is much faster than the optimized CPU version.

A bipartite graph matching computation on GPUs had been proposed by Vasconcelos
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[VR09]. Garcia [GDNB10] proposed fast GPU-based implementations for feature match-

ing by using the naive brute-force k nearest neighbor (kNN) search algorithm based on

API CUDA and CUBLAS. This kNN search algorithm is applied to high-dimensional

SIFT matching. Each of the feature points extracted by SIFT in query image should

found its corresponding k closest features in the reference image. Then a voting algo-

rithm is used for decision on the GPU platform. This algorithm mainly focuses on SIFT

feature extraction in GPU-based implementations but without a clear description of the

matching parallelization. Auer [AB12] presented a fine-grained shared-memory parallel

algorithm for greedy graph matching with an implementation on the GPU. Due to the

GPU’s excellent memory bandwidth, the proposed greedy algorithm’s performance on

GPU is better than in multi-core CPU. However, this approach has no implementation

available.

Therefore, to sum up, we did not found GPU parallel algorithms addressing two-order

graph matching problem specifically, based on geometric relationships between edges

or tupples of feature points. Many GPU programs exist for point to point correspon-

dence based on first order local cost function, whereas high order potentials look not be

addressed yet in GPU.

2.8 Conclusion

In this chapter, we have reviewed definitions and literature background related to our

proposed solutions to the object detection and tracking and graph matching problems.

We have presented some state-of-the-art algorithms for the graph matching problem.

Note that overall computation complexity depends of the affinity matrix size or its

representation. In the general case, this matrix has O
(

(NP ×NQ)2
)

size, that is very

large. Hence, strategy must be adopting to reduce the dimensionality. Most of the

time, a restricted list of candidate correspondence pairs is pre-computed that allows to

reduce the affinity matrix size to O
(

(NP ×K)2
)

, where K is a constant. Using specific

data-structures should also becomes necessary to implement sparse graph structures. In

this thesis, as a final application, we will address graph matching problematic by GPU

implementation based on very low cost data structures with O (N) complexity, N beeing

the instance size, without computing a large size affinity matrix.
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Background subtraction and

frame difference for multi-object

detection

3.1 Introduction

This chapter presents our first application within Matlab environment. Nowadays, target

detection and tracking have been extensively studied, and various motion detections can

be performed on different objects. In this chapter, we mainly focus on frame difference

(FD) and background subtraction (BS) algorithms for object detection based on video

sequences. Each frame is a picture, and each video is a sequence of images. The detected

objects, called foreground objects, can be moving or stationary objects such as people,

birds, vehicles. On the other hand, the background objects are usually static fixed

objects. The purpose of this chapter is to represent objects in a video sequence to

explicitly perform object detection as a first step of real-time tracking.

Although there are many works on detection and tracking, there seems to be no sys-

tematic way to appear today. The overall problem remains an open field with methods

having their qualities and limits. With all of this in mind, we restrict our attention

to the detection phase, rather than tracking. We propose an improved algorithm that

combines many of the standard tools encountered in this setting. The approach mainly

integrates frame difference, background subtraction, Laplace filter, and Canny edge de-

tector (called 3FDBS-LC). The method introduces a fusion of information from BS and

FD processes and executes the FD based on three frames instead of two as usual. As

presented in experiments, this new combination outperforms BS or DF separate imple-

mentations while preserving the potential for real-time execution.

25
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The rest of this chapter is organized as follows: Section 3.2 gives detailed explanations

of pre-processing and post-processing treatments. In section 3.3, the methodology and

procedures for the main approach that we proposed are described. The experimental

results are given in section 3.4. In section 3.5, the proposed method is applied to actual

scenes with video rate processing. Finally, conclusions are presented and suggestions are

made for further research.

3.2 Basic filters and definitions

Image pre-processing and post-processing play an essential role in this research. As

we consider the detection phase of objects only, given a sequence of input images, the

output of detection is represented as a binary image from which individual connected

components directly represent detected objects. This information is the basis for further

tracking operations and its quality should impact the rest of the tracking operations.

As a result, this binary output must reflect the object shapes with the most fidelity,

delimiting contours and adequately filling object interiors. The binary image serves as a

result for ground truth evaluation and comparison of different methods, in a qualitative

and quantitative ways, to compare the quality of the obtained shape.

Basic processing operations such as color conversion, image binarization, filtering pro-

cessing, and edge detection are current basic operations in object tracking. Most of these

basic tools have straightforward fast implementations and are generally compatible with

a real-time context of application. Most of these filters have O (N) time complexity,

with N the number of pixels. Also, their parallel implementation in GPU (Graphic Pro-

cessing Unit) system is now a matter of current fact. We detail the standard processing

methods to be combined in the proposed object detection algorithm.

3.2.1 Color to gray scale conversion

RGB comes from the abbreviation of three primary colors red, green, and blue. It is

a model in which these three colors are added together in various ways to reproduce a

broad array of colors under different weights. On the other hand, the grayscale image is

one in which the value of each pixel is a sample representing a kind of light, that is to

say, it carries only intensity information, varying from black to white. Since color scale

images typically carry much information, when dealing with image, computer needs to

read all of it is data information, which will consume more computing time, so it is not

conducive to image processing and calculation. Under this situation, it is necessary to

convert the color scale image to a grayscale image to increase computational efficiency.
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Figure 3.1: From the left to the right: (a) original image, (b) gray scale image and
(c) binary image.

3.2.2 Binarization of image

Binary images are typically quantized to consist of two possible intensity values, usually

0 and 1, respectively, representing black and white. It is derived from the threshold

division of the grayscale image: these pixels with a gray level above the specific threshold

are set to 1, and the remaining pixels are set to 0. It means that it will produce an image

with a white object on a black background (or vice versa, depending on the specific

threshold values), usually used to separate a foreground image from the background

image. The grayscale images have a grayscale value ranging from 0 to 255, where 0 is

black and 255 is white, while the black and white image has only 0 and 1 values where

0 represents black, 1 represents white. The purpose of image binarization is to speed up

the logical decision process when merging information. So binary images can improve

recognition efficiency when performing computer recognition. Figure 3.1 displays the

original image and its corresponding grayscale image and binary image.

3.2.3 Filtering process

Filter processing is the design and realization of a rejector that satisfies the requirements

of image processing. Among different kinds of filters, the most commonly used are Mean

filter, Median filter, Gaussian filter, and Laplace filter.

Mean filter is a common linear smoothing algorithm in image processing and noise

reduction. The principle of mean filtering is simply like a spatial window sliding filter,

which replaces the center value with the average value of all the neighbors’ pixel values

in the window. The window is usually squared to diminish the point where the pixel

value varies significantly between pixels and pixels due to noise. Instead of using the

mean value to replace all of the surrounding pixels, the Median filter replaces them with

median values. Median filters can reduce not only noise but also protect the edge and

other detail information of images. Since the median filter obtains a median value, but

without considering the unrepresentative of the surrounding pixels, the median filter is

more robust for preserving sharp edges. The calculation formula of the mean filter and
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Figure 3.2: The first row presents a grayscale image disturbed by Gaussian noise, Salt
and Peppers noise, and Speckle noise respectively; the second row presents the Salt and
Peppers noise image through different filters: Gaussian filter, Median filter and Mean

filter.

median filter are defined as below:

Mean(x, y) =
∑

M(x, y)/n, (3.1)

Median(x, y) = med(M1,M2, · · · ,Mn), (3.2)

where n is the number of pixels, M is the value of each pixel. Gaussian filter is considered

as an ideal time-domain filter whose impulse response is a Gaussian function. The

effect of Gaussian smoothing is to blur the image like the mean filter. The Gaussian

standard deviation determines the degree of smoothness. The higher standard deviation

is, the larger convolution kernels will be. Gaussian outputs a weighted average of the

neighborhood of each pixel, with the average weighting being more toward the value of

the center pixel. This is in contrast to the uniform weighted average of the mean filter.

Because of this, Gaussian provides milder smoothness and retains edges better than the

mean filter of the same size. Gaussian operator is defined as

Gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (3.3)

where x is the distance from the origin in the horizontal axis, y is the distance from the

origin in the vertical axis, and σ is the standard deviation of the Gaussian distribution.

Figure 3.2 shows a grayscale image disturbed by Gaussian noise, Salt and Peppers noise,

and Speckle noise, respectively. Among them, we focus on the middle one to show how

to remove salt and pepper noise from an image using the mean filter, median filter,

and Gaussian filter. With mean filtering, even though the noise interference can be

eliminated, it is not as good as a median filter in preserving edge information. Compared

with these two filters, however, the Gaussian filter is better able to remove noise without

improving the sharpness of the image.
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Laplacian is the second-order derivative of the Gaussian equation. Compared with

the first-order differential, the second-order differential has stronger edge localization

capability and a better sharpening effect. Unlike a Gaussian filter that can blur an

image, the effect of image sharpening is to enhance the gray contrast and make the

blurred image clearer. Because Laplacian is a differential operator, its application can

enhance the region of grayscale mutation in the image and weaken the slowly changing

region of the grayscale. Therefore, the sharpening process may choose Laplacian to

process the original image to generate an image that describes the abrupt grayscale

change. Finally, the Laplacian image is superimposed with the original image to produce

a sharpened image. The primary method of Laplacian sharpening can be expressed as:

∂

∂x
Gσ(x, y) =

∂

∂x
e−

x2+y2

2σ2 (3.4)

∂2

∂x2
Gσ(x, y) =

x2

σ4
e−

x2+y2

2σ2 − 1

σ2
e−

x2+y2

2σ2 (3.5)

∇2Gσ(x, y) =
∂2Gσ(x, y)

∂x2
+
∂2Gσ(x, y)

∂y2
, (3.6)

where x, y are the pixel coordinates, and σ is the standard deviation of the Gaussian

distribution. One proposal in this application is to integrate the Laplacian filter into

the combined BS/FD tracking method. Laplacian filter will be adopted, which not only

produces sharpening effects but also preserves background information. The gray value

in the image can be preserved, and more details are highlighted.

3.2.4 Edge detection

Edge detection is an image processing technique used to find the boundaries of objects

within an image. There are many different types of edge detection operations. Com-

monly used edge detection algorithms include the Sobel, Prewitt, Roberts, and Canny

methods.

Sobel operator formed by a pair of 3×3 convolution kernels, one of the kernels is gen-

erated from 90◦ rotation of another. It is used on 2-D spatial gradient measurement

to calculate the approximation of the gradient function for image intensity equation,

acquiring the high spatial frequency domain of the corresponding edge. Prewitt opera-

tor has a very similar derivate mask as a Sobel operator, and it is formed by a pair of

3×3 convolution kernels. Prewitt operator can also be called as derivative operators or

derivative masks. It is based on the convolution of the image with a small separable and



Chapter 3. BS and FD for multi-object detection and tracking 30

Figure 3.3: The horizontal and vertical convolution kernels of (a) Sobel operator, (b)
Prewitt operator and (c) Roberts operator.

Figure 3.4: (a) Original image and its corresponding processed image: (b) Canny
operator, (c) Prewitt operator and (d) Roberts operator.

integer-valued filter in the horizontal and vertical directions. These two operators can

be used in vertical direction and horizontal direction. Nevertheless, the coefficient of

the derivate mask of the Sobel operator can be adjusted flexibly according to algorithm

requirements. Roberts’s operator is fast and easy to implement. The operator formed

by a pair of 2×2 convolution kernels. The principle of Roberts operator is achieved

by computing the sum of the squares of the neighbor pixels to approximate the gradi-

ent value of an image. Figure 3.3 shows these three kinds of operators’ horizontal and

vertical convolution kernels.

Robert operator can locate the target accurately, but it is less sensitive to noise because

it is not smooth. The Prewitt operator and the Sobel operator belong to the first-order

differential operator, the former is the averaging filter, and the latter is the weighted

averaging filter. They are good at detecting grayscale in low noise images, but they

do not perform well with images under complex noise. Canny edge operator is more

accurate than Sobel, Prewitt, and Roberts operators. From Figure 3.4, we can see that

the Canny edge detector can more completely discover the edge information of the image,

so it performs better than other operators. In this work, the Canny edge detector is

adopted.

3.2.5 Morphological transform

Morphology processing is an operation which displays a specific structural element in

an input image and generates the desired output image. The function of morphological

processing is to eliminate interferences, fill small apertures, and smooth boundary. The

most fundamental morphological operators are erosion and dilation. Erosion operation

can eliminate holes or noise, but also reduce the size of the affected area. Dilation
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operation can fill some of the gaps in the moving target area; it also can inflate the edge

pixels of a moving object.

Opening operation is defined as carrying out the erosion operation first, then performing

dilation operation by using the same structural element. It can be expressed by the

following formula:

Dst1 = open (src, elem) = dilate (erode (src, elem)) , (3.7)

where Dst1 represents the result of the final operation, scr stands for the object X

and elem denotes the structural element S. Opening operations can eliminate tiny

objects, separate the objects at subtle joints, smooth the boundaries of large objects,

but without significantly altering the area of the object. On the contrary, the following

closing operation

Dst2 = close (src, elem) = erode (dilate (src, elem)) (3.8)

is defined as the dilation operation followed by the erosion operation. The closing opera-

tion can fill some of the small gaps in the moving target area, connect the objects closer

to each other, smooth the boundary of the target, and keep the size of target unchanged.

In this algorithm, the closing operation will be employed. Therefore, after performing

such closing morphological processing on the binary image, the small apertures are filled,

and the small gaps are connected.

3.3 Proposed object detection algorithm

After image conversion and Laplace filter processing, the most critical parts we propose

now are the frame difference method, the background subtraction method, and a combi-

nation with edge detection. Standard approaches and our proposed new combination are

presented in this section. Considering the disadvantages of frame difference and back-

ground subtraction, which are easy to disturb by the sensitivity of noise and brightness,

adding edge detection occupies a significant role, because of its independence with the

external influence. To get better precision on edge width, we use the Canny detector,

which is one of the most accurate edge detection methods. Then, we respectively present

the edge detector, the BF and BS methods separately, and our new combination method

called 3FDBS-LC, in the following sections.
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3.3.1 Canny edge detector

Canny edge detector is came up with John F. Canny in 1986. The Canny algorithm

is designed to meet three main criteria: low error rate, good localization, and mark

uniqueness. Owing to its optimality to meet with the three criteria, the canny operator

experienced a multi-stage process:

a) Use a Gaussian filter to smooth the image and filter out the noise. In order to

minimize the impact of noise on edge detection, noise must be filtered out to prevent

false detection. The Gaussian convolution kernel H of size (2k + 1) × (2k + 1) is given

below:

Hij =
1

2πσ2
exp{−(i− (k + 1))2 + ((j − (k + 1))2

2σ2
}. (3.1)

The size of the Gaussian convolution kernel can affect the performance of the Canny

detector. The larger the size is, the lower the sensitivity of the detector to noise will be.

General 5×5 is a relatively good trade-off.

b) Calculate the gradient intensity and direction of each pixel in the image. The edges

in the image can point at all directions, so the Canny algorithm uses multiple operators

to detect the image. The gradient intensity value G and direction θ are defined in

Gx = Sx ∗WS (3.2)

Gy = Sy ∗WS (3.3)

G =
√
G2
x +G2

y (3.4)

θ = arctan(Gy/Gx), (3.5)

where WS is the size of window, Sx denotes the operator in the x direction for detecting

the edge in the y direction, Sy denotes the operator in the y direction for detecting

the edge in the x direction. Gx and Gy represent the gradient values in the x and y

directions, respectively.

c) Apply non-maximum suppression to eliminate spurious response from edge detection.

Non-maximum suppression is an edge-sparse technique that helps to suppress all gradient

values outside the local maximum to zero. As shown below, the gradient is divided into

eight directions, namely E, NE, N, NW, W, SW, S, SE. The gradient direction of the
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pixel P is θ, then the gradient linear interpolation GP1 and GP2 of the pixels P1 and

P2 are defined as follows:

tanθ = Gy/Gx (3.6)

GP1 = (1− tanθ)× E + tanθ ×NE (3.7)

GP2 = (1− tanθ)×W + tanθ × SW. (3.8)

d) Use double-threshold detection to determine the true and potential edges.

e) Finish the edge detection by suppressing the isolated weak edges.

The detail pseudo-code description for the following three steps is presented in Algo-

rithm 3.1.

Algorithm 3.1 Canny edge detection algorithm.

Input: The gradient linear interpolation GP , GP1, GP2

1: function Non-Maximum Suppression(GP , GP1, GP2)
2: if GP ≥ GP1, GP ≥ GP2 then
3: GP → edge
4: else
5: GP → Suppressed
6: end if
7: end function
8: function Double-Threshold(GP )
9: if GP ≥ HighThreshold then

10: GP → StrongEdge
11: end if
12: if LowThreshold ≤ GP ≤ HighThreshold then
13: GP →WeakEdge
14: end if
15: if GP ≤ LowThreshold then
16: GP → Suppressed
17: end if
18: end function
19: function Suppress isolated low threshold points(GP )
20: if GP == LowThreshold then
21: GP → StrongEdge
22: else
23: GP → Suppressed
24: end if
25: end function

3.3.2 Frame differencing method

The frame difference method can be implemented on a series of consecutive images.

Gray values and gradient vectors are used to determine information for moving objects.
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The method calculates the difference between two consecutive images by comparing the

point-by-point gray values to obtain a frame difference image. The formula for the

difference between two frames can be written as

Dk (x, y) = |fk (x, y)− fk−1 (x, y) |, (3.9)

where the current frame image gray value is fk, the adjacent frame image gray values is

fk−1, and Dk is image after difference between fk and fk−1. We define Rk as the binary

conversion of the difference image. If Dk (x, y) > T , Rk (x, y) belongs to foreground and

set to 1, on the contrary, it belongs to the background and it will be set to 0, where T

is a fixed empirical threshold.

The disadvantages of the difference between the two frames are the generation of fore-

ground aperture and ghosting problems. In contrast, the three-frame difference method

can better weaken this problem. This is achieved by subtracting the current frame image

with the previous frame and the subsequent frame, respectively. After that, a logical OR

operation is performed based on these results, as done by Yanzhu Zhang [ZWQ12]. Here,

we will analyze it in detail and name it the traditional frame difference method (FD).

Besides, when dealing with a complex scene, the edge information of the moving target

is easily affected by the background scene. This edge information cannot be extracted

entirely. Conversely, Canny edge detection is good at getting the edge information of an

object. Therefore, three frame differences can be combined with Canny edge detection.

3.3.3 Background subtraction method

The principle of background subtraction is to subtract the background image from the

current frame using difference computation. The process can be divided into the follow-

ing two steps. First, the current frame image Kth and the background image are obtained

from the video sequence. Second, a difference calculation is performed between the cur-

rent frame image and the latest background image to obtain a frame difference image.

Lijing Zhang [ZL10] uses this background subtraction (BS) method with morphologi-

cal filtering and contour projection analysis as post-processing. However, due to noise,

shadows, and light interference, the results of the difference may be irrelevant. The chal-

lenge is to propose a background optimization method that can filter these unavoidable

disturbances while correctly detecting moving objects. Therefore, an improved back-

ground subtraction method has been proposed in which an accurate Canny detector is

inserted.
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3.3.4 Proposed 3FDBS-LC detection method

An outline of the entire processing flowchart of this 3FDBS-LC method is summarized in

Figure 3.5, and in Figure 3.6. The pseudo-code description for the method is presented

in Algorithm 3.2. First, after converting a color image into a gray scale image, the

Laplace filter occupying the dominant character will sharpen the outline and detail of

the gray scale target. Secondly, three-frame difference and background difference opera-

tions are performed separately. Then, threshold binarization and Canny edge detection

are performed to identify and extract edge information. Finally, the combination of

these two main methods undergoes a logical OR operation followed by a morphological

operation for obtaining the final moving object shapes. Once all operations performed,

the process enters the next cycle for real-time monitoring. Note that treatments are

straightforward operations roughly executed within a O (N) time complexity, with N

the number of pixels, that make the global method a good candidate for real-time exe-

cution. Also, their intrinsic parallelism should allow efficient parallel implementation in

GPU systems.

Figure 3.5: The framework of our improved algorithm.

3.4 Experiment and evaluation

3.4.1 Dataset

Here, three benchmarks, the SABS dataset, the Wallflower dataset, and the Multivision

dataset are applied to experiments. They are used for visual demonstration, comparative

experimentations, and numerical evaluation under different standard criteria.
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Figure 3.6: Flow chart of the proposed algorithm: (a) Frame difference component,
(b) Main algorithm, (c) Background subtraction component.

The SABS (Stuttgart Artificial Background Subtraction) dataset1 is an artificial bench-

mark for pixel evaluation of background models [BHH11]. SABS consists of video se-

quences with nine different background external changes for video surveillance. It has

been added global illumination and Gaussian noise. Compared to other manually ground

truth datasets, the SABS dataset does not so much suffer from imperfect labels. SABS

contains ground-truth annotation and additional shadow annotation for tracking evalu-

ation.

Wallflower dataset2 consists of 7 test scenarios [TKBM99]. Each scenario represents a

different, potentially problematic situation for background maintenance. When dealing

with these image sequences, the output of the algorithm is divided into background

image and foreground image, accompanying with their corresponding hand-segmented

evaluation image. In order to deal with various problems that arise at the spatial scale,

the evaluation image is segmented at pixels, regions, and frames levels. These train-

ing images, test images, and hand-segmented evaluation images are useful for training,

evaluation, and comparison work.

Multivision dataset3 is a database for evaluation of hardware/software real-time vision

1http://www.vis.uni-stuttgart.de/en/research/information-visualisation-and-visual-analytics/visual-
analytics-of-video-data/sabs.html

2https://www.microsoft.com/en-us/download/details.aspx?id=54965
3http://atcproyectos.ugr.es/mvision/
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Algorithm 3.2 Proposed 3FDBS-LC detection algorithm.

Input: Three adjacent frames mk−1,mk,mk+1 and background frame bk
1: function IFDM(mk−1,mk,mk+1) // Subfunction: frame difference algorithm
2: Tk ← T // To acquire adaptive threshold value (← means to become)
3: for Input : mk−1,mk,mk+1 do
4: fk−1 ← nk−1 ← mk−1, fk ← nk ← mk, fk ← nk ← mk

5: // Image preprocessing for adjacent three frames: fLaplace ← nGrayScale ← mColorScale

6: Dk ← |fk − fk−1| // Frame difference operation
7: Dk+1 ← |fk+1 − fk| // Frame difference operation
8: if DkorDk+1 < Tk then
9: Rk, Rk+1 ← 0(background) // Binary operation to get background

10: else
11: Rk, Rk+1 ← 1(foreground) // Binary operation to get foreground
12: end if
13: Rk ∩Rk+1 → FD // Logic OR computing (→ means to get)
14: FD + Canny → FDc // Canny edge detection processing
15: FDc → FDm // Morphology processing
16: end for
17: return FDm
18: end function
19: function IBSM(mk, bk) // Subfunction: background subtraction algorithm
20: Tk ← T // To acquire adaptive threshold value
21: for Input : mk, bk do
22: fk ← nk ← mk // Image preprocessing bLaplace ← bGrayScale ← bk
23: D′k ← |fk − bLaplace| // Difference operation
24: if D′k < Tk then
25: R′k ← 0(background) // Binary operation to get background
26: else
27: R′k ← 1(foreground) // Binary operation to get foreground
28: end if
29: R′k + Canny → BSc // Canny edge detection processing
30: BSc → BSm // Morphology processing
31: end for
32: return BSm
33: end function
34: function 3FDBS-LC(FDm, BSm) // Main function
35: FDm ∩BSm → result // Logic OR operation to get the result
36: return result
37: end function

systems based on multiple cameras [FSRDR14]. In a vision system, the goal is to trans-

late the image into detailed information and to provide a visual solution that efficiently

processes images taken from multiple cameras and complements the estimation reliably

and robustly. The benchmark provides a dataset with ground truth segmentation, which

enable to carry out objective evaluation of frame difference algorithms and background

subtraction algorithms, as required in our study.

3.4.2 Evaluation criteria

Based on ground truth assessment, some evaluation criteria are defined to assess and

compare the data results between different tracking methods. In pattern recognition and

information retrieval, precision is an indicator for the relevance of the results, and recall
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is a measure of the return of real relevant results. The experimental output quality is

evaluated in this experiment by using accuracy, recall, precision, and F-measure.

Accuracy is defined as the number of true positives (TP) plus the number of true nega-

tives (TN) over all of the samples. Formally,

Accuracy = (TP + TN)÷ (TP + FP + TN + FN) , (3.1)

where TP is the number of foreground pixels that are correctly defined as foreground,

TN is the number of background pixels that are correctly defined as background, FP is

the number of background pixels that are mistakenly defined as foreground, and FN is

the number of foreground pixels that are mistakenly defined as background.

Recall is defined as the number of true positives (TP) over the number of true positives

plus the number of false negatives (FN). Then,

Recall = TP ÷ (TP + FN) (3.2)

Precision is defined as the number of true positives (TP) over the number of true positives

plus the number of false positives (FP).

Precision = TP ÷ (TP + FP ) (3.3)

F-measure is defined as the harmonic mean of Precision and Recall.

F −measure =
2Recall ∗ Precision
(Recall + Precision)

(3.4)

High scores for F-measure show that the classifier is returning accurate results (high

precision), as well as returning a majority of all positive results (high recall).

3.4.3 Qualitative evaluation of the sequence of treatments

Experiments presented in chis chapter were conducted on a CPU Intel(R) Core(TM)

i5-4590 3.3 GHz. The SABS-Bootstrap sequences with 352×288 images are used to

demonstrate the results after different treatments, as shown in Figure 3.7. On these

images, we can find the results about the standard BS method, the FD method, their

combination with or without the Laplace filter (as shown in (d) - (h)) and the proposed

method (i). We can visually check that the proposed method (i) can more clearly point
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Figure 3.7: From the left to the right: (a) original color scale image, (b) grayscale
image, (c) image processed by the Canny edge detector, (d) image extracted by standard
three-frame difference, (e) image extracted by standard background difference, (f) the
logic OR operation between (d) and (e), (g) the improved three-frame difference method
after Laplace filter, (h) the improved background subtraction method after Laplace filter

and (i) the improved 3FDBS-LC method.

out moving objects: running cars, walking pedestrians, and swinging trees that are

blown by the wind.

3.4.4 Comparative evaluation

In the following comparative evaluation, all of the algorithm parameters were set as

detailed in the previous sections and remained fixed for all the experiments. Based

on Wallflower and Multivision datasets, ten image sequences are used: Camouflage,

Foreground Aperture, Ground Truth Sequences, Chair Box, Hallway, Lab Door, LCD

Screen, Wall, Crossing, and Suitcase. A visual presentation of the results obtained by

two standard algorithms and by the proposed 3FDBS-LC method is given in Figure 3.8.

The first column presents background images, the second column demonstrates every

sample frame per sequences, ground truth images are shown in the third column, the

fourth and fifth columns display the detected foreground under standard background

subtraction and frame difference method respectively, moreover, the last column is the

result of proposed 3FDBS-LC method. The improvement in shape detection should

qualitatively be appreciated in the figure.

The quantitative numerical evaluations based on ground truth are reported in Table 3.1.

A comparative evaluation of accuracy, precision, recall, and F-measure for three different

tracking methods are included under the ten different image sequences. Figure 3.9 shows
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Figure 3.8: From the left to the right: (a) Background image, (b) Frame image, (c)
Ground truth image, (d) Background subtraction method, (e) Frame difference method,

and (f) The proposed 3FDBS-LC method.
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Figure 3.9: The comparison histograms of three different kinds of methods in
(a)Accuracy, (b)Precision, (c)Recall, and (d)F-measure.

their corresponding histograms. From these results, it can be found that this proposed

3FDBS-LC algorithm can obtain good detection results superior to standard BS and

FD methods.

3.5 Application to real-time video processing

In this section, we present implementation for real-time video monitoring. Our sys-

tematic tracking algorithm is realized as a set of MATLAB functions, embedded in a

real-time video-rate driven loop, managed on a GUI (Graphical User Interface) platform

for a convenient visualization and analysis, in a way similar to Andreatos [AZ09]. As

can be seen from Figure 3.10, this GUI interface [CC18] mainly contains necessary im-

age processing and experimental evaluation modules. Rectangle box and shape based

representation methods mainly realize the actual scene view implementation.

We test the proposed method by using moving sequence for moving target tracking with

application in real-time surveillance video. Our proposed method aims to detect all of

the targets which are moving over an entire video sequence. This detection process is pri-

marily shooting different consecutive images or frames at different time intervals. In our

experiment, we use a CCTV (Closed-Circuit TeleVision) video sequence of automobile

traffic presenting moving cars.
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Table 3.1: Evaluation criteria results under different databases.

Algorithm 3FDBS-LC BS FD 3FDBS-LC BS FD
Dataset Accuracy Precision

Camouflage 0.9153 0.8648 0.4522 0.9090 0.9480 0.5882
F-A 0.9319 0.9260 0.7525 0.8230 0.9095 0.5746
GT-S 0.8889 0.9420 0.9144 0.5207 0.9467 0.8702
Chair Box 0.9244 0.9301 0.8534 0.8980 0.9902 0.6264
Hallway 0.9119 0.8920 0.8022 0.8552 0.9921 0.6764
Lab Door 0.9547 0.9529 0.8996 0.8369 0.8651 0.5137
LCD Screen 0.9601 0.9571 0.9146 0.8484 0.9403 0.6844
Wall 0.9625 0.9639 0.9405 0.6904 0.8137 0.4795
Crossing 0.9579 0.8417 0.8311 0.8399 0.5977 0.4760
Suitcase 0.9822 0.8997 0.9318 0.9438 0.2978 0.6573

Dataset Recall F-measure

Camouflage 0.9380 0.9480 0.0115 0.9232 0.8673 0.0226
F-A 0.9405 0.8021 0.1871 0.8778 0.8524 0.2823
GT-S 0.6922 0.5372 0.3195 0.5943 0.6854 0.4674
Chair Box 0.6363 0.6128 0.3736 0.7449 0.7571 0.4680
Hallway 0.6842 0.4866 0.0767 0.7602 0.6529 0.1379
Lab Door 0.6858 0.6320 0.1307 0.7539 0.7304 0.2084
LCD Screen 0.6864 0.5822 0.1417 0.7589 0.7191 0.2348
Wall 0.6313 0.4957 0.0908 0.6595 0.6161 0.1527
Crossing 0.9104 0.1773 0.0251 0.8737 0.2735 0.0477
Suitcase 0.7897 0.3194 0.0657 0.8599 0.3082 0.1195

Figure 3.10: The display for object detection system.
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Figure 3.11: Applied to actual scene in real-time surveillance: (a) Original single
frame, (b) BS, (c) FD, (d) IFDBS-LC (e) Realized by rectangle box.

The multiple Object Tracking Benchmark 4, and Active Vision Laboratory Benchmark

5 are used for qualitative visual evaluation and comparison. As depicted in the following

Figure 3.11, we have demonstrated through qualitative evaluation that the system can

provide accurate position estimation for a large number of vehicles or pedestrians in real-

time. According to real-time validation, the actual implementation allows to deal with

standard video-rate of 24 frames by second. Also, because of the parallel nature of most

of the treatments, fastest video-rate processing is envisaged by GPU implementation.

4https://motchallenge.net/vis/PETS09-S2L1
5http://www.robots.ox.ac.uk/ActiveVision/index.html
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This combined algorithm could then be used to track an unknown number of mobile

topics with higher accuracy of the observed target shapes, and in real-time.

3.6 Conclusion

In this chapter, an improved object detection algorithm is proposed by systematically

combining important features of background subtraction and frame difference meth-

ods usually employed in real-time surveillance tracking. The method mainly contains

Laplace filter, frame difference method, background subtraction method, and Canny

edge detector, which have real-time implementation available. The proposed algorithm

was tested on standard datasets with the evaluation criteria of accuracy, recall, precision,

and F-measure, and was compared, based on groundtruth evaluation, to the standard BS

and FD methods. Results demonstrated an improvement in accuracy over the standard

methods and computation time of the overall method remains compatible with standard

video rate on a personal computer. Also, since these procedures are parallel by nature,

the design of software in relation to GPU system is a matter of current investigation to

further accelerate treatments.



Chapter 4

Using Marr-wavelets and

entropy/response to automatic

feature detection

4.1 Introduction

This chapter presents our second application within Matlab environment. Image match-

ing, also refereed as feature point matching, is a fundamental issue in computer vision.

In this chapter, we propose to use local entropy based on Marr wavelets within scale-

interaction to improve the accuracy of automatic feature detection in the context of

image matching. The goal is to improve the accuracy of the feature matching step while

exhibiting a highly representative set of features of the objects within both images. To

improve reliability, we propose to exploit local entropy under a mesh division strategy

in combination with a sensitive feature selection stage.

Given a pair of images, how to detect and extract feature points is the first step of image

matching. Automatic feature extraction is a central key-point to allow further pertinent

image matching based on a feature to feature correspondence mapping. Given some

standard nearest neighbor matching strategy, how to improve the reliability of feature

sets is a question addressed here. To respond, we try to combine or enhance standard

and easy to implement feature detection methods such that the resulting overall method,

including both feature detection and matching, will be competitive both in computation

time and quality of matching. Experimental results show that this algorithm can out-

perform some of the conventional feature extraction algorithms with higher subsequent

matching recall rate of image matching.

45
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A necessary graph matching procedure based on normalized cross-correlation similarity

measure is applied to gauge the effectiveness of the approach in image matching. The

quality evaluation is delegated to a RANSAC procedure that allows to eliminate wrong

matching pairs and compute a recall rate of true matches. Experiments are conducting

on standard image processing benchmarks. They illustrate how increasing feature set

size and matching accuracy can be both achieved while preserving computation time.

This chapter is organized as follows. In section 4.2, the different steps of the proposed

feature extraction and graph matching procedures are respectively presented. The eval-

uation of the proposed algorithm and its comparison with some conventional methods

are exposed in section 4.3. Section 4.4 presents the conclusion.

4.2 Methodology

In this chapter, we present the implementation of the systematic image matching process

includes feature points detection and extraction, feature points matching, and matching

points filtering. This necessary process is shown in Figure 4.1. As to the input images,

they are pretreated by Laplace filter firstly, because of its efficacy of sharpening and

enhancement for the details of images. Then feature points are detected under Marr

wavelets algorithm. Entropy and response are used to extract some of the points sat-

isfying distribution criterion. The combination of normalization cross-correlation and

nearest neighbor ratio realizes the implementation of the matching method. The last

part is removing outliers by RANSAC.

4.2.1 Image pre-processing

Laplacian is a second-order derivative operator that detects the zero-crossing of the

image intensity and usually produces more accurate edge detection results [TGY+10].

Laplace filter means a discrete approximation to the mathematical Laplace operator.

Its second-order partial derivative in the orthogonal direction of continuous space and

the approximation of its mathematical equivalent are defined below [vVYB89]:

∇2f(x, y) =
∂2f(x, y)

∂x2
+
∂2f(x, y)

∂y2
(4.1)

∇2f(x, y) ∼= {f(x+ 1, y) + f(x− 1, y)

+f(x, y + 1) + f(x, y − 1)} − 4f(x, y)
(4.2)

I(X) = I(x, y) = f(x, y)− c · ∇2f(x, y) (4.3)
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Figure 4.1: The basic flowchart of graph matching.

where f(x, y) is the original image, I(x, y) is the processed image, c is a constant.

From formula 4.2, the digital mask filter w can be viewed as the following 3×3 set of filter

coefficients as shown in Figure 4.2 (a). The process of the Laplacian filter sharpening is

essentially a convolution process. Suppose the origin pixel of f is located in the upper

left corner of the image f , and set the middle value of mask w as the center of kernel.

Let w move at all possible positions so that the center kernel of w can coincide with

each of pixels of f . The convolution operation is essentially the sum of the products of

the corresponding positions of the two functions. The convolution between f and its

corresponding mask filter w is shown in Figure 4.2 (b). The definition of two-dimensional

convolution is as:

I(x, y) = f ∗ w =
∑
k,l

f(x+ k, y + l)w(k, l) (4.4)
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Figure 4.2: The mask filter of Laplace.

4.2.2 Marr wavelets within scale-interaction

Receptive field [Ste99] is used to describe the stimulation pattern of the retina. The

receptive field of high-level neuronal cells in the visual pathway is synthesized from the

low-level neuronal cell receptive field. Therefore, with the level increases, the range of re-

ceptive field becomes more considerable. Ultra-complex neuron cell models [DZC89] are

capable of responding to sophisticated object features with powerful nonlinear process-

ing capabilities, and most ultra-complex neuronal cells have end-stopping characteristics

that are sensitive at the end of the line segments, corner points and line segments with

high curvature.

In other words, the response of ultra-complex neuronal cells to light can be modeled

by the response of the difference in spatial filters of different bandwidths to light. The

response of the receptive field to light can be represented by a spatial filter function,

such as a Gaussian difference function or a Gabor wavelet function.

The scale-interaction model for feature detection originate based on filtering using a

class of self-similar Gabor functions or Gabor wavelets [MCvdM92, MSC+96], which

can achieve the minimum possible joint resolution in space and frequency domain. It

was came up with since its unique in attaining the minimum possible value of joint

uncertainty [Dau85]. The function of the feature detection is defined as the following

formula:

Qij(x, y, θ) = f(Wi(x, y, θ)− γWj(x, y, θ)) (4.5)

where γ is a normalizing factor, Wi(x, y, θ) and Wj(x, y, θ) are spatial filters. They go

through the transformation of a nonlinear function f at location (x, y) with preferred

orientation θ in two scales i and j respectively. If feature detection function Qij obtains

a local maximum at the location (x, y), this location is considered to be a potential

feature point position.

For further optimization, the Marr wavelets [BK98] was used instead of Gabor wavelets

within the scale-interaction model, because of its isotropic [AM96, DLJZ10]. Two-

dimensional Marr wavelets and its corresponding feature detection function are defined
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as:

Mi(X) = λi(2− λ2iX2)exp(−λ
2
iX

2

2
) (4.6)

Qij(X) = |Mi(X)− γMj(X)| (4.7)

Rij(X) = I(X) ∗Qij(X) (4.8)

where X = (x, y), and X2 = (x2 + y2). λi = 2−i and i represents the scaling value

of Marr wavelets. Convolve Qij(X) with an grayscale image I(X). If its response

value Rij(X) obtains a maximum local value, then X is considered to be a potential

feature point. Algorithm 4.1 is pseudo-code of Marr wavelets within scale-interaction.

Figure 4.3 illustrates the process of extracting response value using Marr wavelets within

scale-interaction. (b) and (c) are convolution results between the original picture and

the mask filter. Then local maximum points are extracted on this basis.

Algorithm 4.1 Marr wavelets within scale-interaction algorithm

Input: I(X), i, j

Output: points

1: Ii = MarrFilter(I(X), i)

2: Ij = MarrFilter(I(X), j)

3: Isub ← |Ii − Ij |
4: localthr ← max(max(Isub)) ∗ r
5: if Isub(i, j) < localthr then

6: Ilocalthr(i, j)← Isub(i, j)← 0

7: end if

8: points← cornerpeaks ← Ilocalthr

9: function MarrFilter(I(X), scale)

10: δ = 2scale

11: x = −(2 ∗ fix(δ)) : 1 : (2 ∗ fix(δ))

12: y = −(2 ∗ fix(2 ∗ δ)) : 1 : (2 ∗ fix(2 ∗ δ))
13: Mi(X)← X ← meshgrid(x, y)

14: Ifil ← I(X) ∗Mi(X)

15: end function

4.2.3 Entropy and response

For the problem of uneven distribution or excessive number of feature points, accompa-

nying with a long calculation time of matching, we propose a feature point extraction

method based on image local entropy and feature point response, called entropy and

response (ER) algorithm. In this section, three main parts are elaborated.
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Figure 4.3: From the left to the right: (a) Original image, (b) Filtered result when
i = 1, (c) Filtered result when i = 2 and (d) Response image.

4.2.3.1 Entropy algorithm

In actual images, feature points often appear as sharp changes of gray values or inho-

mogeneity in grayscale distribution; that is, the local region of a feature point has a

large amount of information. Entropy is a measure of information in an image, and

local entropy is a measure of local area information of an image. Local entropy value

under feature-rich region is much higher than the local entropy value under feature-poor

region. Therefore, it is possible to determine which regions have more features by cal-

culating the local information entropy of image, and then extract the feature points in

these regions.

Information entropy [KSW85, LTRC11] is the amount that represents the overall charac-

teristics of the source in a common sense. It is considered from the statistical properties

of the entire source to measure the expected value of a random variable. An image is

essentially a source of information that can be described by information entropy. Let

the gray image G have m gray levels, mesh division is performed to obtain n × n sub-

regions. The whole information entropy Hi and the average entropy H̄ of the image are

calculated as follows:

Hi =
m∑
i=1

pilog2pi (4.9)

H̄ =
1

n2

n2∑
j=1

Hj (4.10)

where pi is the probability that the ith gray level appears, that is, the ratio of the number

of pixels whose gray value is i to the total number of pixels of the image. So the local

entropy is counted for the probability of occurrence of gray level in the sub-image. Since
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the value of the information entropy is only related to the whole of the local gray-scale

pixels, but independent with a single pixel, so it is not sensitive to the influence of noise

and can improve the accuracy of the image authenticity description. Here, we use the

local information entropy of the image to extract feature points. Under the meshing

strategy, the image is divided into n×n sub-regions. Therefore, the sub-average entropy

value of each sub-grid can be calculated. Figure 4.4 is a schematic diagram of mesh

division, n is set to 40.

Figure 4.4: Schematic diagram of meshing: (a) Image divided by 4 × 4 sub-regions,
(b) Image divided by 8× 8 sub-regions.

4.2.3.2 Response algorithm

After mesh division and the computation of each local entropy, we will get n × n sub-

regions for the whole image, then detected feature points are mapped into the respective

sub-areas. In this case, if we compute and sort the entropy values of all of these feature

points extracted, then the first N feature points with larger entropy values can be

selected to describe the whole image. However, this method only utilizes the entropy

values of feature points, without considering its distribution in the image. Finally,

feature points with high entropy values may mostly appear in the same local area,

which will cause aggregation. So a block division and response algorithm are proposed

to deal with this problem.

Figure 4.5: Bresenham discrete circle centered on pixel pi.

As mentioned before, if a pixel presents a sharp change in its neighborhood, this pixel

will have a stronger deviation value from the mean value. Based on the Bresenham
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discrete circle [RPD10] with the pixel point pi as the center and 3 pixels as the radius,

16-pixel points on the discrete circumference are considered in correspondence with the

central pixel point pi. This is shown in Figure 4.5. These 16 pixels are assigned to dark

and bright area. The dividing criteria and deviation [KSK08] are respectively defined

as the following:

Sbright = {x|Ipi,x>Ipi + t} (4.11)

Sdark = {x|Ipi,x ≤ Ipi − t} (4.12)

Dev = max(
∑

x∈Sbright

|Ipi,x − Ipi | − t,
∑

x∈Sdark

|Ipi − Ipi,x| − t) (4.13)

where Sbright indicates bright area, Sdark indicates dark area. Ipi is the gray value

of center point pi, Ipi,x represents the gray value of a pixel labeled x on a discrete

circumference centered at pixel pi, t is the set threshold. Dev is the sum of the deviation

value among the gray values of the pixel pi and its corresponding neighboring pixels

located in the bright or dark area.

4.2.3.3 Distribution criterion

After the calculation of the entropy and response, a distribution criterion is proposed to

extract the corresponding points that meet the requirements. In the region where the

local entropy is bigger than the average of entropy H̄, the feature points are extracted

with the ratio r. The only one strongest response point is extracted in each remaining

region where the local entropy is smaller than H̄. Here, we choose the unified ratio

method for the selection of r. Assuming that there are m regions whose local entropy

is greater than H̄, then ri(1, 2, ...,m) is the ratio of extracting feature points in the

ith region. For example, when r = 10%, that is, in the mth region with large local

entropy, the feature points with the top 10% responses given by Dev are extracted. The

appropriate value of r is set empirically.

The detail of the entire ER method is outlined in Algorithm 4.2. Based on the mesh

division strategy, we first compute each of the local average entropy value of all these

sub-regions. Then the feature points are sorted according to the computation of their

deviation values in each of their sub-region. Finally, the distribution criterion can not

only effectively reduce some of the useless feature points, but also ensure the uniformity

of feature point distribution. As we can see, the step entropy and response can both

develop a custom algorithm to identify feature points. Entropy strategy is only to

calculate the reflection degree of an individual pixel, but the response is based on the

deviation value of a set pixels between the center point, and it is adjacent points based

on the Bresenham discrete circle principle, so that the mutation of response is more
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reflected for finding point with reliable contrast. Therefore, deviation is more capable

of extracting more qualified feature points than entropy.

Algorithm 4.2 Entropy and response algorithms

Input: I(X), points,m, n, t, r

Output: pointsselect

1: for j = 1→ n2 do

2: pointsj ← points

3: Hj , H̄ ← Entropy(I(X),m, n)

4: psub(j) ← Response(pointsj , t)

5: if Hj > H̄ then

6: pointsselect ← p(psub(j)∗r)

7: else

8: pointsselect ← pmax

9: end if

10: j = j + 1

11: end for

12: return pointsselect

13: function Entropy(I(X),m, n)

14: pi(m∗1) ← Isub(i)(n∗n) ← I(X)

15: H =
∑m

i=1 pilog2pi

16: H̄ = 1
n2

∑n2

j=1Hj

17: end function

18: function Response(points, t)

19: Ip,x ← circlep ← points

20: Dev = max(
∑

x∈Sbright |Ip,x − Ip| − t,
∑

x∈Sdark |Ip − Ip,x| − t)
21: psub ← p(Devp)

22: end function

4.2.4 Graph matching problem

The purpose of graph matching [LCL10] is to determine the correct attribute correspon-

dences P = (V P , EP ) and Q = (V Q, EQ) between two graphs P and Q, where V means

vertex, E represents egde. We customize corresponding mapping edges e1 = ij ∈ EP ,

e2 = ab ∈ EQ.

The objective of graph matching is to find the correct corresponding point pairs between

two graphs P and Q among the feature points extracted. A unidirectional ’one-to-one’

constraint is assumed, which requires one node in P to match at most one node in Q.
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Cross-correlation is a standard method for estimating the degree of similarity between

two sets of data [Bou96]. An essential application is the normalization cross-correlation

(NCC), which has been used widely for many signal processing applications since its

efficient and straightforward frequency domain expression, and it is less sensitive to

linear variations in the amplitude of two comparison signals [YH09]. We use the NCC

algorithm to measure the similarity between two feature point p in graph P and q in

graph Q. These ratios Ra(p, q) of the calculated correlation values represent the degree

of matching between the two sets of corresponding images. The NCC algorithm used

for finding similarity match between a window around feature point p and a window

around feature point q is defined as:

Ra(p, q) =

∑
i[(Wpi −Wp)(Wqi −Wq)]√∑

i(Wpi −Wp)2
√∑

i(Wqi −Wq)2
(4.14)

where the summations are over all window coordinates, Wpi and Wqi are pixel intensity

in windows for p and q respectively, each of the windows is sized as 5 × 5. Also, Wp

and Wq are the corresponding mean of the window pixels. The coordinate of maximum

values in this normalization cross-correlation are the positions of the best matches for

reference images.

Based on NCC similarity measure, we use nearest neighbor ratio (NNR) method to

perform coarse matching on feature points set. The screening and matching process of

the NNR algorithm with unidirectional ”one-to-one” constraint is described as below:

Based on the sample feature point pairs in two images, first extract all of the maximum

corresponding pairs by using NCC algorithm; Then compare these ratios with a fixed

threshold set in advance, the case where NCC ratio is bigger than this fixed threshold

value, it’s corresponding point pairs are considered to be a match, otherwise this couple

of points will be abandoned. This fixed threshold value is usually a constant of not

more than 0.9. Since the correct matches have a stronger similarity than those wrong

matches, it is a functional judging characterization for graph matching by the idea of the

NNR. Figure 4.6 shows the flow chart of data processing. The detected feature points

of two images are placed into two corresponding buffer, respectively. Each of the points

p in graph P are used to calculate the ratio of NCC with all of the points q in graph Q,

then sort all the ratios in descending order. Under the principle of NNR, some will be

extracted as the best matching points, otherwise, others will be deserted.

4.2.5 Outlier elimination

In this application, we use a convolution with a Laplacian (unsharp masking) as a pre-

processing step before the convolution with a Marr filter. Due to the linearity of these
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Figure 4.6: The basic flowchart of data processing.

two operations, this corresponds to a single convolution, which is a smoothed fourth-

derivative filter. It is, therefore, that the number of feature points increases, as noise is

amplified with each derivative. On the other hand, although the NNR method is easy

to implement and sometimes well match, some points in these extracted feature points

set are not matchable, so mismatched cleaning operation is necessary. Therefore, it is

especially important to find a way to reduce the mismatch caused by interference.

RANSAC algorithm [RCP+13, Der10] which called the random sample consensus algo-

rithm can eliminate the existence of mismatches very well. This algorithm has strong

robustness and errata ability to the sample data set. The basic idea of the RANSAC

algorithm is to extract the sample set from the model by using the iterative method.

Look for an optimized parameter model that can contain more interior points in a data

set, then use the residual set to test the extracted samples. The point in the algorithm

that fits the data set model is called the inlier point; otherwise, it is called the outlier

point or the wild point. So RANSAC algorithm can be used to find the optimal param-

eter model in a set of datasets containing outlier points by using an iterative algorithm.

The detail implementation process of RANSAC is shown as follows:

• (a) Randomly extract a pairs of feature points that are not collinear from the data

set (a = 4 in experiment), then calculate their transformation homography matrix

H, and record it as model M .

• (b) Calculate projection error of each point in the dataset with model Mk. If the

error is less than a predefined threshold τ , add it into the inner point set Ik.
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• (c) If the current number of elements in inner point set Ik is greater than the

number in optimal inner point set Ibest, then update Ibest and re-estimate the

model Mbest.

• (d) If the number of iteration is more than k, the operation will be exited; other-

wise, the number of iterations is increased by 1, and the above steps are repeated.

The threshold τ is selected in accordance with n-dimensional chi-square distribution. χ

is the cumulative chi-square distribution. It is assumed that the out-of-class point is

Gaussian white noise with a mean of 0 and a variance of η. The number of iterations k

is constantly updated rather than fixed until it is greater than the maximum number of

iterations.

τ2 = χ−1n (µ)η2 (4.15)

k =
log(1− pc)
log(1− µa)

(4.16)

where pc is the confidence level, generally taking 0.95 to 0.99; µ is the ratio of inlier point;

a is the minimum number of samples required to calculate for model. The pseudo-code

of RANSAC is outlined in Algorithm 4.3.

Algorithm 4.3 RANSAC algorithm

Input: pc, kmax, τ, a,m
Output: Mbest, Ibest
1: k = 0, Imax = 0
2: for k < kmax do
3: τ2 = X−1

n (µ)η2

4: Use randomly sampled subset a to estimate Mk and Ik.
5: if |Ik| > Imax then
6: Mbest = Mk, Ibest = Ik
7: µ = |Ibest|/m, kmax = log(1− pc)/log(1− µa)
8: end if
9: k = k + 1

10: end for

4.2.6 Proposed algorithm

This section details the specific parameters used in the experiments. In feature points

detection part, feature points are defined as local maxima inside the scale-interaction

image (with γ = 1) by using Marr wavelets algorithm. The two scales we choose are

i = 1 and j = 2. Then the mesh division and feature points extraction are processed,

the image is meshed by n × n to obtain n2 sub-regions. Here, n = 40 is selected. The

detected feature points are mapped into the respective sub-areas and sorted according

to their deviation value Dev in each sub-area to which they belong. Meanwhile, every

local information entropy Hi of each sub-region and the average information entropy
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H̄ of the all are calculated. Assuming that there are k sub-regions with local infor-

mation entropy greater than the average information entropy, then feature points with

the top 30% responses are extracted in these k regions in our algorithm. In feature

points matching part, NCC similarity measure algorithm and NNR method are used to

perform coarse matching on feature points set. As to matching points filtering part,

RANSAC can better achieve the deletion of mismatched points, finally realize a more

accurate matching result. Its computational complexity is O (max(NP , NQ)), with NP

the number of features in reference image, and NQ the number of features query image.

This algorithm is suitable for performing real-time global methods. In addition, it can

also achieve efficient parallel implementation in GPU systems.

4.3 Experimental evaluation

Experiments were conducted on a CPU Intel(R) Core(TM) i5-4590 3.3 GHz. In this

section, we evaluate the proposed method for feature points matching by using Visual

Geometry Group dataset 1. The following will be divided into two parts for experimental

explanation: feature points extraction and feature matching respectively. As to quanti-

tative evaluation, a set of experiments are conducted. The proposed algorithm based on

Laplace filter and Marr wavelets under entropy method (L Marr E) was compared with

other classic conventional methods, corner detector[Der04], Gilles[Gil98], Harris[HS88],

LoG[Lin98] and SIFT [Low99] algorithms.

4.3.1 Feature points extraction

Based on the above experimental theory, the following experimental verification is per-

formed. First of all, to verify the importance of the Laplacian filter algorithm in the

feature point extraction phase. Figure 4.7 (b) and (c) show the comparison graph of

before and after adding the Laplace filter. We can clearly see that the use of the Lapla-

cian filter can greatly increase the number of feature points detected. Figure 4.8 shows

feature points detection results among different kinds of algorithms: CD, Gilles, Harris,

LoG, SIFT, and L Marr E. Correspondingly, Table 4.1 details the specific number of

feature points extracted of Figure 4.8. The method proposed can extract more feature

points than commonly used methods.

1https://www.robots.ox.ac.uk/ vgg/data/
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Figure 4.7: Quantitative experimental analysis of feature point extraction: (a) Orig-
inal image, (b) Feature point extraction without Laplace filter, (c) Feature point ex-

traction with Laplace filter.

Figure 4.8: Feature points extraction under different algorithms: (a) CD (b) Gilles
(c) Harris (d) LoG (e) SIFT (f) L Marr E.
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Table 4.1: Feature point extraction results under different kinds of algorithms.

Method CD Gilles Harris LOG SIFT L Marr E

img.1 72 73 104 174 226 264
img.2 70 246 457 165 980 654
img.3 144 274 341 110 763 1576
img.4 203 844 1133 153 3533 8402
img.5 320 627 696 140 3366 7806

4.3.2 Feature points matching

The following experimental validation performs the entropy-based sparsification with

application to feature matching. In combination with the susceptible feature selection

stage, the ablation analysis provides some valuable intuition about the pipeline in feature

matching phase. Then Figure 4.9 shows comparison results, we can find that RANSAC

algorithm can implement very well on mismatched point clearing. Furthermore, this

proposed method based on Laplace filter and Marr wavelets by using NCC algorithm

(L Marr) not only has high matching accuracy but also can significantly improve the

correct feature matching number than the method without Laplace filter (Marr). Here,

Recall, Time, and the number of image matching pairs are summarized in Table 4.2.

The graph matching Recall [MM12] can be defined as follows:

Recall = Nrm/Ntm (4.1)

where Nrm is defined as the number of detected true matches after RANSAC removes

the mismatched points, and Ntm means the total number of correspondences. Although

the recall of graph matching is increased, the matching time is significantly increased,

as shown in the first two rows in Table 4.2. Fortunately, after L Marr is processed by

entropy (L Marr E), it has run time is significantly reduced as we expected.

Table 4.2: Experimental comparison results for quantitative analysis of feature point
matching.

Methods Nrm Ntm Recall(%) Time(s)

Marr 163 224 72.77 5.17
L Marr 528 553 95.48 17.86
Marr E 46 72 60.53 3.67

L Marr E 169 182 92.86 6.43

The longitudinal experiment assessment is carried out by taking from the test data of

University of OXFORD’s Object Categories Datasets, which consist of 13 different col-

lections of images. Among them, seven sets of dataset were selected for comparative

analysis in this section. Table 4.3 shows the mean values for all image pairs selected of

the dataset. The best recall results are obtained by L Marr E, which produces the most
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Figure 4.9: (a) and (b) show graph matching without Laplace filter before and after
RANSAC optimization; (c) and (d) show graph matching under Laplace filter before
and after RANSAC optimization; (e) and (f) show graph matching using entropy algo-
rithm without Laplace filter before and after RANSAC optimization; (g) and (h) show
graph matching using entropy algorithm under Laplace filter before and after RANSAC

optimization.

significant number of feature points in two query images. Figure 4.10 demonstrates cor-

respondence links between images under different algorithms: CD, Gilles, Harris, LoG,

SIFT, and L Marr E. So the algorithm proposed can achieve a better matching effect.

We also test our proposed algorithm on CMU house dataset as shown in Figure 4.11.

However the recall in this case is only 0.1582, it’s not satisfactory.

Table 4.3: Feature point matching results under different kinds of algorithms.

Detector 1stImage 2ndImage T ime(s) Recall(%)

1 CD 51 53 1.76 0.36
2 Gilles 124 134 2.24 0.16
3 Harris 208 226 2.8 0.35
4 LoG 300 300 4.27 0.27
5 SIFT 1275 1258 5.49 0.48
6 L Marr E 1998 1929 7.22 0.52

4.4 Conclusion

While feature extraction methods are numerous, it is not straightforward that each could

represent the objects to match from a query to a reference image adequately. In order

to vary the feature set size while preserving a reasonable recall rate in graph matching,

we have proposed a new combination of filters with an entropy-response based selection
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Figure 4.10: Feature points matching under different algorithms: (a) CD (b) Gilles
(c) Harris (d) LoG (e) SIFT and (f) L Marr E.

Figure 4.11: Feature points matching under CMU house dataset: (a) Before RANSAC
(b) After RANSAC.

method. Laplace filter enhances the image’s edge and details. Second, Marr wavelets em-

bedded in scale-interaction is used to detect feature points. Then, entropy and brightness

response are used to extract typical feature points. Most importantly, the entropy-based

selection method dramatically reduces computation time. Image matching is achieved

by nearest neighbor search with normalized cross-correlation similarity measure. Finally,

RANSAC procedure removes outlier correspondences to achieve matching optimization.

The comparison results show that our algorithm has a higher matching rate for rea-

sonable computation time, despite the augmentation of the number of feature points

under Laplace algorithm. In future work, we will improve implementation by exploiting

natural parallelism of the method on the GPU platform.





Chapter 5

Affinity-preserving fixed point

APRIP in Matlab framework for

graph matching

5.1 Introduction

This chapter presents our third application within Matlab environment. We introduce

in this chapter a new contribution of this thesis with an application to second-order

graph matching in Matlab framework. The framework is based on the original Matlab

application provided by Cho et al. [CLL10] and related to the reweighted random walks

(RRWM) algorithm. It also provides other implemented algorithms such as the spectral

matching (SM) algorithm [LH05] and integer projected fixed point (IPFP) algorithm

[LHS09].

According to these starting approaches, we elaborate and propose a new combination

to provide an improved algorithm using affinity preserving and reconstructed integer

projected fixed point improved by spectral technique, called APRIP algorithm. More

precisely the method combines the affinity matrix reweighting of RRWM into an updated

IPFP loop, and starting with a solution provided by SM. All these approaches are based

on IQP formulation. By considering the second-order term, these algorithms determine

the mapping between two graphs that should reflect the geometric similarity relationship

between the pairwise matching features.

All the algorithms are executed and compared based on a same experimental framework

with common data from standard benchmarks in the domain. Then, this overall platform

constitutes a second contribution of this chapter by providing all the data and interfaces

63
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Figure 5.1: Graph matching assignment.

that will be adopted in the C++ GPU platform presented in the next chapter in order

to evaluate new GPU proposals.

The chapter is organized as follows. In section 5.2, the problem formulation of the graph

matching is given in detail. The proposed APRIP algorithm is demonstrated in section

5.3. The performance of the proposed algorithm is evaluated in section 5.4. Section 5.5

presents the conclusion.

5.2 Problem formulation

We set P and Q the two sets of features of query graph GP = (P,EP ) and reference

graph GQ = (Q,EQ) respectively. We note i, j ∈ P and a, b ∈ Q as feature points,

ij ∈ EP and ab ∈ EQ as edges. Also, e1 = (i, a) and e2 = (j, b) represent, when needed,

candidate assignments. The main task it to find a suitable one-to-one mapping between

P and Q. A graph matching is shown in the Figure 5.1. The yellow lines are correct

matches.

Affinity matrice M , also known as affinity tensor, is a basic statistical technique used

to organize the mutual similarities between sets of feature points. The measurement of

affinity can be interpreted as a product of a solution vector x, that represents the set

of candidate correspondences, by the matrice. The solution variable x ∈ {0, 1}NPNQ is

an indicator vector such that xia = 1 means feature i ∈ P matches with feature a ∈ Q,

xia = 0 means no correspondence, and where NP and NQ are the respective set sizes of

P and Q.

A graph matching score S between edges can be defined by the following equation:

S =
∑
ij∼ab

f(ij, ab) =
∑
ia,jb

M(ia, jb)xiaxjb = xTMx, (5.1)

where ij ∼ ab means (i, a) and (j, b) are correspondence pairs, and x is the indicator

vector. Then, the purpose of the graph matching IQP problem is computing solution x∗
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that maximizes the matching score as follows:

x∗ = argmax(xTMx), (5.2)

s.t. x ∈ {0, 1}NPNQ , (5.3)

∀i
NQ∑
a=1

xia ≤ 1, (5.4)

∀a
NP∑
i=1

xia ≤ 1. (5.5)

The binary constraint is expressed by equation 5.3, while 5.4 and 5.5 express the two-way

constraints, that specify the solution to be a one-to-one mapping from P to Q. Note

that by removing constraint 5.5, we obtain a many-to-one mapping, that is, a (partial)

function from P to Q. In this chapter both constraints must be verified.

Affinity matrix M which consists of the relational similarity values between edges and

nodes must is considered as an input of the problem. It can be noted that its size

is defined by the total number of candidate assignment pairs considered. Then, the

affinity matrix size may vary from O
(
(NPNQ)2

)
, in the case of full possible pairs, to

O
(
(K ×NP )2

)
where K is some constant, in case of a restricted list of candidate pairs.

Note that this list of candidate pairs must be added as part of the input to relate the

entries of the affinity matrix to the feature points. The indicator variable x size varies

also accordingly to the symmetric affinity matrix size. Its length corresponds to the

column, of line, size of the matrix, and may vary from NP ×NQ to K ×NP depending

on the application.

Here, the matching score is completely retained as pairwise geometric only. The indi-

vidual affinity M(e1, e1) that represents first order affinity, is set to zero since there is

no information about individual affinity. That is to say, all the diagonal values of the

affinity matrix are zeros. The pairwise affinity M(e1, e2) = M(ia, jb) between edges is

given by:

M(ia, jb) = max(50− dia;jb, 0), (5.6)

where dia;jb is the mutual projection error function used in [CLL09] between two candi-

date assignments (i, a) and (j, b), that includes euclidean distance evaluation dij between

locations of features i, j. The table 5.1 summarizes notations and definitions used in this

chapter.
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Table 5.1: Summarization of notations.

Notation Purpose

GP Reference graph

GQ Query graph

P Set of features in GP

Q Set of features in GQ

NP Total number of data featrues of GP

NQ Total number of data featrues of GQ

C Mapping constrains

L A set of candidate assignments

i, j Feature points in GP

a, b Feature points in GQ

e1 = (i, a), e2 = (j, b) Candidate assignments

M Affinity matrix

M(e1, e2) Pairwise affinity

M(e1, e1) Individual affinity

S Graph matching score

x Indicator vector

x∗ Optimal solution

dij Euclidean distances between the point i and j

5.3 Algorithm

The proposed iterative APRIP algorithm is an improved version of the IPFP algorithm

[LHS09] that appears to be more efficient than the original algorithm, providing higher

accuracy and faster computation time. The algorithm mainly contains three elements

that make it different from IPFP: affinity-preserving process applied to affinity matrix,

use of an initial solution produced by spectral matching method, and a slight mod-

ification of integer projected fixed-point loop. The overall algorithm is presented in

Algorithm 5.1. We describe the key elements below.

• Affinity preserving transformation. Drawing on the idea in PageRank [TFP06,

SMPU13], and following the RRWM approach in [CLL10], we propose to transform

the affinity matrix into a row stochastic matrix, preserving the relative strength of

edge affinity, and transforming the power iteration loop to a random walk simula-

tion where the indicator vector x, relaxed in continuous domain, should converge

to a fixed point distribution of candidate assignment values. The affinity matrix
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M is converted to a row stochastic matrix M ′ as follows:

M ′ = M/maxia
∑
jb

(Mia;jb −minMia;jb
). (5.1)

The new matrice can not only maintain the original affinity but also convert the

affinity matrix to a random transition matrix yielding to better performance. Next,

let M ′ denotes this new stochastic matrix. This transformation corresponds to step

1 in Algorithm 5.1.

• First step construction by spectral matching. Given the new affinity matrix M ′, a

first step consists of constructing the initial solution vector that will be the input

of the improved IPFP loop. We choose to use the spectral matching algorithm SM

[LH05] that computes the principal eigenvector x′ of M ′ by power iteration as a

first step, and then generates a valid (admissible) binary solution as final step, by

a greedy procedure. The details of this method are shown in Algorithm 5.1 from

step 2 to step 13.

• Improved integer projected fixed point loop. The goal of this step is to improve the

current solution using an improved version of IPFP. The IPFP can be seen as an

adaptation of the Frank-Wolfe [Jag13] procedure for quadratic convex optimization

applied in the context of graph matching IQP. Instead of generating the binary

admissible solution as a final step as in SM and RRWM, IPFP integrates this dis-

cretization step following the power iteration step itself, by Hungarian algorithm.

The pseudo-code of the algorithm is shown in Algorithm 5.1 from step 14 to step

32, with t the number of iterations, and k the current iteration. The projective

operation Pd, by using Hungarian method, realizes the one-to-one constraint in the

discrete domain and computes a discrete solution yk+1. Then, the next operation

addresses a linear sub-problem where the next solution xk+1 is found by displace-

ment of the previous solution xk along a suitable direction. The role of yk+1 is to

provide a direction along which it is expected to maximize the original quadratic

score further, as presented in steps 20 to 23. A modification we have introduced,

concerns the moving step factor r = min{1, |C/D|}, used in our APRIP algorithm

in step 22. The factor is different to the original factor r = min{1,−C/D} pro-

vided by [LHS09]. We empirically verified that this new factor saves substantial

running time and can yield more accurate solutions. The explanation of the im-

provement should come from the positivity of the factor, accelerating convergence.

Finally, the whole algorithm returns a stable solution x∗.
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The proposed APRIP combination algorithm appears to be more efficient than

the original IPFP, and to be competitive with RRWM. The following experiments

analyze the related performances.

Algorithm 5.1 APRIP algorithm

Input: affinity matrix M , set of candidate assignments L, kth candidate assignment ek, and the number
of iterations t

1: Affinity preserving M ′ = M/maxia
∑
jb(Mia;jb −minMia;jb);

2: Set x′ be the principal eigenvector of M ′;
3: Initialize the solution vector x and the set of all candidate assignments L;
4: ek is one of correct assignment among L;
5: for L 6= ∅ do
6: e′k = argmaxek⊂L(x′(ek));
7: if x′(e′k) = 0 then
8: return x;
9: else

10: set x(e′k) = 1 and remove e′k from L;
11: remove assignments in confilict with e′k from L;
12: end if
13: end for
14: k = 0;
15: x∗ = x; // Give the output of SM to the following loop for input
16: S∗ = (x∗)TM ′x∗;
17: for k ≤ t do
18: xk ← x∗;
19: yk+1 = Pd(M

′xk); // The projection step
20: C = xTkM

′(yk+1 − xk);
21: D = (yk+1 − xk)TM ′(yk+1 − xk);
22: r = min{1, |C/D|}; // Translation factor
23: xk+1 = xk + r(yk+1 − xk); // Expect maximize the original quadratic score
24: if yTk+1M

′yk+1 ≥ S∗ then
25: S∗ = yTk+1M

′yk+1;
26: x∗ = yk+1; // Update the optimal solution
27: end if
28: if xk+1 = xk then
29: return x∗;
30: end if
31: k = k + 1;
32: end for
33: return x∗

5.4 Experiment

5.4.1 Presentation

Performance evaluation can be done by computing the affinity score, but more impor-

tantly by evaluating accuracy according to a groundtruth set of true assignment pairs,

that reflect the application requirement of graph matching. We also evaluate the com-

putation time. Based on the above IQP, objective score can be obtained by formula 5.1.

Accuracy can be got by dividing the actual correct number of matches detected by the

maximum number of groundtruth pairs that can be returned, and the formula is as
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follows:

Accuracy = x∗ ∗ VGTbool/maxGT, (5.1)

where x∗ is the binary vector solution returned by the algorithm, VGTbool ∈ {0, 1}NPNQ is

a binary vector representing the groundtruth pairs, and maxGT is the maximum number

of true assignments that could be returned when considering a many-to-one mapping,

relaxing constraint formula 5.5. However, solutions returned by the algorithms must

necessarily verify a one-to-one mapping in this chapter. They verify both constraints

formula 5.4 and 5.5.

In this section, we perform experiment on synthetic data set, CMU house image data

set, and real images data set. A last section presents computation times and discuss time

complexity specifically. The proposed APRIP algorithm is compared with some state-

of-the-art methods such as RRWM [CLL10], SM [LH05], IPFP [LHS09], HGM [ZS08],

and HADGA [YZZ+15]. All of these different algorithms share the same images, feature

points, and affinity matrices as input data. Each test set has a groundtruth solution for

accuracy evaluation. Experiments were conducted on a CPU Intel(R) Core(TM) i5-4590

3.3 GHz.

5.4.2 Synthetic image matching

In this experiment, we artificially constructed two set of feature points in some area in

the plane which are related through some transformation in the plane, having nin inlier

points and nout outlier points. This quantitative experiment is mainly divided into three

types of experiments depending and their parameter setting: degree of deformation noise,

number of outliers, and edge density.

In the first type of experiment, the deformation noise is generated by using Gaussian

noise distribution function N(0, σ2), and the deformation noise σ vary from 0 to 0.2

with the interval 0.02, while number of inliers nin is set 20, 30, and 40 respectively, as

shown in Figure 5.2. In the second experiment, the number of outliers varies from 0 to

20 while deformation noise σ is set to 0, 0.1, and 0.2, as shown in Figure 5.3. In the

third experiment, the edge density of the reference image ρ varies from 0.1 to 1 with the

interval 0.1, as shown in Figure 5.4. As we can see in these experiment results, APRIP

algorithm and RRWM algorithm have almost identical objective score and accuracy

matching results, but APRIP uses less computation time. Overall, the proposed method

(red line) performs well with the change of inlier points and deformation noise, and it

responds better in terms of time assessment relatively.
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Figure 5.2: From top to bottom are the deformation noise tests according to the inlier
points change under the evaluation of (a) Accuracy, (b) Objective score, and (c) Time.

5.4.3 CMU house image matching

The experiment using CMU house sequence dataset1 allows to evaluate matching on a

sequence of increasing deformations of a same object. A total of 110 pictures in this

dataset are divided into different sequence gaps (from 10 to 100 with an interval of

10). So finally we get ten sets of data pairs. Each set of image pairs consists of an

initial fixed position picture (sequence 1) and of its varying transformation. To evaluate

the matching accuracy, 30 iconic feature extraction points were manually tracked and

marked on all frames as ground truth. In this typical and classical test, RRWM performs

better than the other approaches. The experiment results are visualized in Figure 5.5,

and the quantitative evaluation is reported in details in Table 5.2. For their detail results

information of these 10 tests, we can refer to Table 5.3.

1http://vasc.ri.cmu.edu/idb/html/motion/
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Figure 5.3: From top to bottom are the outliers tests according to the deformation
noise change under the evaluation of (a) Accuracy, (b) Objective score, and (c) Time.

Figure 5.4: From left to right are the edge density tests under the evaluation of (a)
Accuracy, (b) Objective score and, (c) Time.
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Figure 5.5: CMU house dataset matching result.

Table 5.2: Comparative evaluation on CMU database for RRWM, SM, IPFP, and
APRIP.

Methods Accuracy Score Time(s)

1 RRWM 21.6/23.2 100.00 0.544
2 SM 20.9/23.2 94.51 0.194
3 IPFP 22/23.2 80.93 3.493
4 APRIP 21.4/23.2 79.52 0.490

5.4.4 Real image matching

In the experiment of real image matching, we use the CALTECH database 2 as cus-

tomized in the Matlab environment by Cho et al. [CLL10], which consists of 30 different

kinds of image pairs. All of the ground truths of these corresponding candidates are

manually pre-labeled. Accuracy and objective score are the main judging criteria for

matching. Table 5.4 shows the final average results for 30 pairs of pictures through

RRWM, SM, IPFP, and APRIP algorithms. From this table, we can find that the al-

gorithm APRIP performs much better than SM. Even if APRIP has similar accuracy

and score as RRWM, it costs less computing time than RRWM when dealing with real

images. APRIP was configured with less iterations IPFP, and it is much faster for an

improved accuracy. Figure 5.6 shows the visual map of the feature point connections.

We can see that APRIP can outperform RRWM and IPFP in some of datasets. In most

cases, the matching results achieved by methods RRWM, SM, IPFP, and APRIP are

comparable. The correct matches and wrong matches are marked in yellow lines and

black lines, respectively. A detailed table of the results for these 30 test is given in

Table A.1 of Appendix A.

2https://cv.snu.ac.kr/research/ RRWM/
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Figure 5.6: From the left to the right: (a) RRWM algorithm, (b) SM algorithm,
(c) IPFP algorithm and (d) APRIP algorithm for graph matching. (The yellow lines
represent the correct matching pairs, and the black lines represent the wrong matches.)



Chapter 5. Affinity-preserving fixed point APRIP in Matlab framework for
second-order graph matching 74

Table 5.3: Detail experiment results for RRWM, SM, IPFP, and APRIP on 10 tests
of CMU database.

RRWM SM
accuracy score time(s) accuracy score time(s)

seq10 23/23 100.00 0.40 23/23 100.00 0.18
seq20 27/27 100.00 0.49 27/27 99.58 0.19
seq30 25/25 100.00 0.43 25/25 97.97 0.18
seq40 26/26 100.00 0.64 26/26 98.18 0.18
seq50 21/23 100.00 0.44 21/23 98.23 0.20
seq60 24/24 100.00 0.45 24/24 95.17 0.20
seq70 21/21 100.00 0.61 21/21 94.73 0.20
seq80 18/20 100.00 0.77 15/20 85.10 0.20
seq90 18/21 100.00 0.63 14/21 83.50 0.21
seq100 13/22 100.00 0.58 13/22 92.71 0.20

average 21.6/23.2 100.00 0.544 20.9/23.2 94.514 0.194

IPFP APRIP
accuracy score time(s) accuracy score time(s)

seq10 21/23 82.38 1.90 21/23 82.37 0.07
seq20 27/27 79.06 1.56 27/27 79.00 0.19
seq30 25/25 83.45 2.43 25/25 83.22 0.25
seq40 26/26 78.94 1.67 26/26 78.66 0.27
seq50 23/23 81.89 4.25 22/23 81.25 0.76
seq60 24/24 86.30 2.08 24/24 85.24 0.30
seq70 21/21 73.32 5.18 21/21 72.57 0.98
seq80 19/20 78.16 5.21 18/20 76.54 0.21
seq90 17/21 81.11 5.36 15/21 77.30 0.95
seq100 17/22 84.69 5.29 15/22 79.00 0.92

average 22/23.2 80.93 3.493 21.4/23.2 79.515 0.49

Table 5.4: Comparative evaluation on CALTECH database for RRWM, SM, IPFP,
and APRIP.

Methods Accuracy Score Time(s)

1 RRWM 12.5/21.5 96.36 0.15
2 SM 10.2/21.5 77.24 0.02
3 IPFP 11.9/21.5 97.81 0.64
4 APRIP 12.0/21.5 95.78 0.07

5.4.5 Discussion on time complexity

In the general case, when the total number of possible assignment pairs modeled in the

affinity matrix is NP ×NQ, the time and memory complexity of the presented algorithms

of this chapter is O
(
(NPNQ)2

)
which is huge and limits the application to only very

small instances.

We verify this point by the experiment reported in Figure 5.7 with changing the number

of input feature points (inliers) of synthetic data. To compare the time consumptions,

the inliers varies from 0 to 100 with the interval 10, i.e. nin = 10, 20, ..., 100. Meanwhile,

we set some fixed values: the number of outliers nout = 10, deformation noise σ = 0,

and the edge density ρ = 1. This experiment compares computation times of RRWM,

IPFP, SM, and of our proposed APRIP algorithm.
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In our Matlab environment, as shown in Figure 5.7, both computation time of RRWM

and IPFP rise rapidly with instance size increasing when dealing with larger graph, but

APRIP times rises relatively slowly. However, the simulation could not address larger

size instances. We found that the platform could not execute instances with more than

100 feature points because of the memory complexity factor since the matrix size should

be of 108 units, that is very large in a standard computer.

Figure 5.7: Time consumption for synthetic data with full affinity matrix size.

In order to address real image cases with hundred of feature points, it is necessary to pre-

select a subset of candidate assignment pairs, in order to reduce the affinity matrix size.

By choosing a small constant K for the maximum number of candidates corresponding

points to a given point, the matrix size becomes O
(
(K ×NP )2

)
. This is the case for

the real images database in this experiment, for which a matching list is given as an

input that defines the list of candidate assignment pairs and the matrix column size. The

matching list allows to build the affinity matrix and relate its entries to the feature point

indexes. As shown in Figure 5.8, computation time looks less correlated to size instance.

It can be seen large variations in computation time, that looks to make behavior difficult

to predict. Reducing the matrix size clearly allows faster computation time, but also

requires a preliminary selection round of potential candidate pairs. This is generally

done by a first-order matching round, such as K-nearest neighbor search, matching

SIFT features to build a matching list, and furthermore build an affinity matrix. The

memory remains in O
(
(K ×NP )2

)
and devising new algorithms with smaller memory

occupations could be of interest when dealing with very large instances.
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Figure 5.8: Time consumption for real data with customized affinity matrix.

5.5 Conclusion

We have presented how the Matlab platform allows to simulate and experiment graph

matching algorithms based on standard IQP formulation, where the solution variable

operates in the space of assignment pairs, of dimension NP×NQ. Most of the approaches

generally relax the binary constraints, and after following some power iteration proce-

dure, generate the admissible solution as a final step, as in SM and RRWM. It can be

the case that discretization is included in the main loop of the algorithm, as in IPFP

and APRIP.
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We presented a combination of the methods, called APRIP, that improves the origi-

nal IPFP, and looks competitive inaccuracy, with using less computation time in most

cases. All experiments were conducted on standard benchmarks and realized under a

customized Matlab framework allowing comparative evaluation between the different al-

gorithms. We observed that without restricting the matching list of candidate pairs, the

algorithms require huge memory, in O
(
(NPNQ)2

)
, and could not address more than 100

input inliers. In practice, the affinity matrix must be sparse, and specific data structures

must be introduced, as a matching list with the candidate pairs, to adapt the matrix

computation operations to sparse graphs.

In real image cases, IQP methods are efficient sequential methods that should be care-

fully analyzed. In this study, we have customized a generic environment for test and

evaluation of algorithms for graph matching. Based on this framework, it is now possible

to extend the study to other type of development to address graph matching, as the use

of GPU development, with the aim to reducing memory complexity to O(N) in GPU,

and avoiding the use of a large size affinity matrix by directly operating in the plane.





Chapter 6

Planar graph matching in GPU

6.1 Introduction

We have seen that the Matlab environment constitutes a useful framework for graph

matching as an IQP problem. It offers useful mathematical abstractions, and it allows to

develop and compare many algorithms based on a common evaluation platform, sharing

input data, but also customizing affinity matrices and matching list of candidate solution

pairs as input data. This allows to reuse these common data and context to start

elaborate parallel GPU algorithms for graph matching applications. Since the actual

development of GPU to graph matching is very sparse, we choose to reuse specific tools

already developed in the context of optimization problems stated in the plane and that

could present adequate properties in this context.

We reduce the dimensionality of data structures, we do not reuse the large affinity matrix.

Only a matching list is considered. Feature points are points in the plane, and have

coordinates in the plane, as usual, since we are interested in the geometric relationships

between pairs. The indicator variable of IQP becomes a O(N) mapping buffer defined

by closest point search in the plane, N being feature point size, and the variable of the

problem becomes now a moving graph in the plane. Euclidean distance is computing

in real-time when needed to evaluate costs, to avoid a pre-computation of an affinity

matrix. These standard parallel algorithms, that we adapt to GM, are respectively the

Self-Organizing Map algorithm in the plane, called SOM, and a parallel local search

algorithm, called Distributed Local Search (DLS). These tools can be classified as move

making operations, since they consist in moving a graph, a copy of the first graph, in

juxtaposition to the second graph by similarity, and evaluate the obtained assignment,

through rigid or non-rigid transformations.

79



Chapter 6. Planar graph matching in GPU 80

The DLS simply performs independent local search in parallel based on a partition of

the feature set, by translation/rotation of independent rigid clusters. Each node of a

cluster performs a search of a best displacement in the plane. The SOM is well known

for its properties of density and topology preservation. It can be seen as an extension

of the standard k-means algorithm, adding interaction between neighbor nodes of a

graph. This property allows addressing elasticity constraints. The SOM will be used

for clustering feature points and smoothly matching a graph of clusters to the second

graph.

We present a first experiment of SOM and DLS into the context of graph matching.

We first present a version of graph matching problem when stated in the plane, called

here planar graph matching, in section 6.2. The SOM and DLS algorithms for graph

matching are presented in 6.3. Finally, experiments onto the GM problem is presented

in section 6.4. Comparative evaluations are performed. The last section concludes the

chapter.

6.2 Definition of graph matching in Euclidean plane

6.2.1 Data instance and notations

We translate graph matching into a planar setting by considering the variable of the

problem as a moving graph in the plane, that represents a copy of a first graph, that

should move and match onto the feature point locations in the plane of a second graph.

Notations are given such that to easily identify feature points to processors, on a one-

to-one basis, such that N processors are required given a set of N points.

Main notations remain the same as previously for IQP model, except that now, variables

are points in the plane of a moving graph. As previously, a pair of graphs GP = (P,EP )

and GQ = (Q,EQ) is given, where P and Q are two sets of features with NP and NQ

points, respectively. Without loss of generality, let [N ] = {0, ..., N − 1}, for any integer

N , and identify feature point sets P and Q with their index set, that is, P = [NP ]

and Q = [NQ]. This allows to identify a set of points, or a grid of points, to a grid of

processors such that each point and its related processor share the same identifier index.

Since we do not compute an affinity matrix, we directly use feature point coordinates

in the image plane as an input of the problem. We also reuse, as in IQP, the matching

list of corresponding candidate pairs as input, instead of an affinity matrix. We note

ml ⊂ P × Q, the matching list. Recall that matching list has N × K size, for some

constant K, whereas affinity matrix (N ×K)2 size. Each feature point from either P
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Figure 6.1: Feature point sets from three instances: (a) CMU, (b) Cube, and (c)
Building. Bottom line present the merge points in image plane.

and Q has a location in the image plane. Let pi ∈ R2 and qa ∈ R2 be the points

in the plane of features i ∈ P and a ∈ Q, respectively. We shall note p and q the

related vectors of point coordinates of respective sizes NP , NQ. The metric is the usual

Euclidean distance in the plane d(p1, p2) with p1, p2 ∈ R2. Three examples of feature

point instances are presented in Figure 6.1. The bottom line in the figure shows the two

sets of feature points merged into the image plane.

The variable becomes a vector p of feature point locations corresponding to the nodes in

P . Here, we will note p0 =
(
p01, ..., p

0
NP

)
to represent the initial feature point locations,

as given as input, and p = (p1, ..., pNP ), pi ∈ R2, i ∈ P , to represent the variable. The

variable has size NP , instead of NP ×K or NP ×NQ in IQP model.

Since the approach consists of finding a moving transformation of the first graph vertexes

onto the second graph, we need to precisely define the one-to-one mapping obtained as a

final solution to the problem. We give definitions for both one-to-one and many-to-one

mapping, respectively, since both implementations can be customized using the same

data structures. We define a one-to-one mapping as a partial function m : P → Q∪{−1}
by a double-checked closest point finding between the two graphs, defined as follows:

m(i) =

{
arg mina∈Li(d(pi, qa)) if Li 6= ∅
−1 otherwise,

(6.1)
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with Li being the Voronöı cluster of i conditioned by the matching list as defined in:

Li = {a ∈ Q| (i, a) ∈ ml,∀j ∈ P, (j, a) ∈ ml, (j, a) 6= (i, a) , d(pi, qa) < d(pj , qa)} , (6.2)

where ml ⊂ P × Q is the matching list of candidate corresponding pairs. The Voronöı

cluster Li contains the second graph features in Q that are closest to i ∈ P than any

other j ∈ P . Then, a second step computes the closest point from each cluster.

The above mapping function clearly verifies a one-to-one constraint mapping, since a

choice is executed according to a Voronöı partition of the second graph points. We also

define a direct mapping md : P → Q by direct closest point finding from P to Q as

follows:

md(i) = arg min
a∈Q,(i,a)∈ml

(d(pi, qa)). (6.3)

Since we have defined the mapping, data instance and variables, we can turn to a

definition of planar graph matching.

6.2.2 Problem statement

Given the definition and notation of the previous section, we can define a planar graph

matching problem by translating current score functions of IQP model into a minimiza-

tion function. Here, we use the preservation of distance to model rigid transformation,

as usual. Then, the goal of graph matching between GP and GQ, given planar locations

of features in the plane and a matching list of candidate correspondence pairs, consists in

finding new vertex positions pi of graph GP in order to minimize the following objective

function:

f(p) =
∑

i,j∈EP

[∣∣d(p0i , p
0
j )− d

(
qm(i), qm(j)

)∣∣] , (6.4)

where p0i , p
0
j , are the initial locations of feature points i, j respectively, as given by the

input, and m : P → Q ∪ {−1} is the double-checked closest point one-to-one mapping

defined by equation 6.1. It is the locations of points pi that determine the mapping

result. Note, that we could change the one-to-one mapping by a many-to-one mapping

as defined in equation 6.3, relaxing one of the two mapping constraints.
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6.3 Solution method for GPU planar graph matching

6.3.1 Outline of proposed solution method

The solution method indirectly addresses the main objective by customizing and com-

bining, two types of tools from previous work from [WZC+15, WZC17, WMC17, QC19].

They were applied to clustering, traveling salesman problem and stereo-matching. Here,

we customize these tools to the context of graph matching. We present a GPU imple-

mentation of the well known self-organizing map [Koh12], called SOM, and SOMGM

here, and a customized version of the idea of distributed neighborhood local search,

called DLS, as presented initially by [VAS95]. Both algorithms are fully executed on

GPU, by a succession of kernel calls (i.e. parallel GPU function calls), with only global

control tasks, such as termination tests, being executed on CPU. An illustration of the

solution process to planar graph matching is given in Figure 6.2.

Figure 6.2: Flowchart of proposed DLS-SOM combination.

Many combinations of the tools are possible, whereas we only report the current best

configuration. As a first step, the two instances are merged into the plane, then a

round of parallel local search is performed. DLS works on a cluster map. It consists of

finding a best transformation of the first point set through translations and rotations

of clusters. In parallel, each feature point computes a best neighbor position through

a transformation for the cluster to which it is assigned to. Then, the root of a cluster
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select a best move among its cluster points, and execute the move. Here, DLS is applied

to a single cluster representing the single object in the image.

Then, a self organizing map process can start. Its main property is to both preserve

density and topology. A SOM process in the plane first creates an adapted mesh on the

first point set. It generates clusters as well. Then, a second self-organizing map process,

specifically customized to using the matching list data, and further called SOMGM,

projects the first mesh onto the second point set. It is expected that the smooth trans-

formation of the mesh, from a data set to the other, should preserve the topology of the

network and its clustering. This should favor preservation of geometric structures. Fi-

nally, a double projection is performed to generate the final assignment one-to-one map.

Here, a ground truth evaluation will allow to evaluate and compare the GPU process to

IQP methods. Next, we present the DLS algorithm and its objective function. Then,

we present the SOM and its adaptation to graph matching SOMGM.

6.3.2 Distributed local search for graph matching

We present the parallel local search method. We first present the objective function,

then present a pseudo-code of the algorithm.

6.3.2.1 Objective function

The role of DLS is to match a partition of the first data point set, between clusters, to the

second point set through rigid independent transformations of the individual clusters.

Here, transformations are combined translation and rotation in the plane. Given a set

of clusters Ck that constitute a partition of the first point set P , with K the number of

clusters, the purpose is to find a set of rotation/translation transformations trk, one for

each cluster, in order to minimize the following objective function:

g(tr) =
∑
k∈[K]

∑
i∈Ck

d(trk(p
0
i ), pcmli

), (6.1)

where cmli is the closest point in Q obtained by matching list ml to point pi, pcmli
its

coordinates in the plane, and p0i is the initial location of feature point i as given by the

input. Once translated and rotated, the objective function evaluates a point-to-point

distance to the second point cloud, which is to minimize. It is the rigidity of the cluster

that should allow alignment to the second point set and may be good matching.
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6.3.2.2 Algorithm

The algorithm behaves just like a standard local search, except that the process is

executed in parallel by all the feature points of first graph GP at the same time. Decision

is taken based on a cluster partition. Each node computes the best move for its whole

cluster, and once completed, the cluster root selects and applies the best move to the

cluster. We report in Algorithm 6.1 the pseudo-code of the parallel kernel executed by

the point set to get a best transformation related to the cluster of that point. To each

node i ∈ P corresponds a processor with the same identifier. A root map indicates

for each node i, the identifier rooti of its cluster root. A node can then access its root

distributed list data structures to visit the cluster nodes and evaluate the cost.

Algorithm 6.1 Distributed local search for graph matching (DLSGM)

Input: P,Q, root, tri, i ∈ P, tri = Id//transform set to identity
Output: best transformations bestTri, i ∈ P//best transformation found by each node

1: for each node i ∈ P in parallel do do
2: bestTri ← tri;
3: improvement← true;
4: while improvement do
5: count← 0;
6: improvement← false;
7: while count < neighborSize and ¬ improvement do
8: count← count+ 1;
9: tr′i ← generateTranform(tri);//generate small random move

10: if isBest(tr′i, bestTri, rooti) then//evaluate cluster transformation
11: bestTri ← tr′i;
12: improvement← true
13: end if
14: end while
15: tri ← bestTri
16: end while
17: end for
18: return bestTri, i ∈ P

In practical experiments, the intensity of a small random move was of 1 pixel translation,

0.1 degree of angle rotation. We found that a single cluster implementation behaves well

because of the presence of a single object in image, as seen in Figure 6.3. In the case of a

single cluster, time complexity becomes to O(NP ) by processor for each evaluation. Once

the parallel local search has resumed, a final one-to-one matching by double-checked

projection can be performed.
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Figure 6.3: First line is the merge points of two images, the second line are results
dealed by DLS for (a) CMU, (b) Cube, and (c) Building, respectively.

6.3.3 Self-organizing map

6.3.3.1 Self-organizing map in plane for clustering and meshing

A tool for implementing a smooth deformation from one graph to another is the self-

organizing mapping (SOM) algorithm [Koh12], a neural network method that adopts a

graph to some underlying data distribution, through density and topology preservation.

Therefore, SOM naturally handles incomplete or noisy data as well as random require-

ments. We also use SOM as a center-based clustering algorithm to generate a partition

of clusters by Voronöı assignation.

Here, the SOM algorithm runs on a moving graph G = (N,E), with regular hexagonal

topology, each vertex having 6 neighbors into the grid. Each vertex n has planar location

wn ∈ R2. The variables are the vertex locations. A distance in the graph is defined by

the canonical expression dG(n, n′) = 1 if and only if (n, n′) ∈ E, whereas the usual

Euclidean distance d(n, n′) operates on coordinates in the plane.

The algorithm consists of triggering a moving graph G to a given data point set P in the

plane. It applies a given number of parallel iterations to the moving graph as summarized

in Algorithm 6.2. At given parallel iteration niter, points are randomly extracted from

P according to probability π, with π = 0.1 in practice. Given an extracted point pi(t),

a spiral search is performed in the plane to find its closest vertex n∗i based on Euclidean

distance.

Then, using learning rate α(t) and function profile ht, a third triggering step is applied

to all neurons in a finite neighborhood Nn∗i of n∗i . The neighborhood is defined by radius

σt according to the distance in graph dG. For each node n ∈ Nn∗i a moving operation
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Algorithm 6.2 Parallel self-organizing map algorithm (SOM)

Input: Moving graph G, initialized as regular grid, and data point set P
Output: Vertex locations of G and Voronoi cluster map root

1: t← 1;
2: for t 6 niter do
3: for each node i ∈ P in parallel with some probability π do// π = 0.1 in practice
4: Find closest point n∗i according to pi;//Voronoi assignation
5: Move neighborhood of n∗i according to learning law;//atomic operation
6: end for
7: Slightly decrease intensity rate α and radius σ of neighborhood;
8: t← t+ 1;//next parallel iteration
9: end for

10: return G and cluster map root

defined by the following Equation 6.2, called learning law, is applied:

wn(t+ 1) = wn(t) + α(t)ht(n
∗
i , n)(pi(t)− wn(t)), (6.2)

where function profile ht is given by a Gaussian in following equation:

ht(n
∗, n) = exp(−dG(n∗i , n)2/σ2t ). (6.3)

Figure 6.4: A single SOM iteration with learning rate α and radius σ. (a)(c) Initial
configuration. (b) α =0.9, σ =4. (d) α =0.75, σ =4.

Finally, intensity α(t) and radius σt slightly decrease as geometric function of time af-

ter each parallel execution. A single SOM iteration, applied to a single point, with

learning rate α and radius σ is shown in the Figure 6.4. In the GPU implemen-

tation, each parallel iteration involves O(|N |) concurrent moves. Closest point find-

ings are implemented by spiral search into a grid decomposition of the plane between

cells for the fastest search. In experiments, parameters are fixed in a standard way as

(niter, αinit, αfinal, σinit, σfinal) = (100, 0.5, 0.05, 12, 0.9).

Examples of results for cluster generation and graph generation are presented in Figure

6.5. The figures represent different sizes for graph G. We can see that the mesh shapes

globally follow the point density with smooth deformations. Another way to generate

clustering is the use of spanning tree, spanning forest, algorithm as shown in the last

image, that we employ to get a root map with a single cluster. Here, SOM in the plane
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Figure 6.5: SOM meshing results with different cluster map sizes: (a) 2×5, (b) 7×13,
(c) 9× 18, (d) 21× 42, and (e) single cluster by spanning tree.

will be used to initialize a minimum graph, as a first step, before applying a specific

SOMGM that we describe now.

6.3.3.2 Self-organizing map for graph matching

In order to apply SOM to graph matching, we consider the two input graphs GP and GQ

and we introduce an intermediate moving graph G. As presented in the general view, we

first optimize G among the first graph GP by Euclidean SOM to model its underlying

distribution by an adapted mesh, then we apply a second round of SOM process to adapt

G and its attached underlying distribution P to the second graph point set Q. The

process is presented in Figure 6.6. To address good potential correspondence points, the

SOM is modified as follows. After initialization by SOM in Euclidean space, the second

SOM process, called SOMGM, only applies relative to the matching list of candidate

correspondence pairml, for closest point findings. As well, the triggering step also trigger

point set P together with graph G point set, since P have been attached to the data

distribution by the first round of SOM clustering. Finally, a double projection generates

a one-to-one mapping that can be evaluated according to ground truth as the examples

of sample results in Figure 6.7. The figure also presents IQP results. Note that SOM

results are random and may have variations of few units. In experiments, parameters are

fixed for smoothing as follows (niter, αinit, αfinal, σinit, σfinal) = (500, 0.1, 0.01, 6, 0.9).

6.3.3.3 Objective function

There is no definitive objective function for the SOM process, but we present a function

here, that should be closed to the behavior of the SOM, as we expected. We use it for

its property of clustering and topology preservation. It is known that it is an extension

of the very standard k-means algorithms by adding neighborhood relationships. Hence,

it allows also to address problems, such as the traveling salesman problem in parallel.

Given the notation as above, we should use the SOM as a heuristic for the following

combination of a data cost and a smoothing cost by length minimization. Given a data
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Figure 6.6: SOM meshing process under different steps: (a) Initialization phase of
SOM, (b) Intermediate phase of SOMGM, (c) Final phase of SOMGM, and (d) Final

double projection.

Figure 6.7: Matching results of (a) RRWM, (b) APRIP, and (c) DLS-SOM algorithms.

point set P and a moving graph G = (N,E) with the hexagonal neighborhood, the

objective function can be given by :

h(w) =
∑
a∈P

d(a, cNa ) +
∑

(i,j)∈E

d(i, j), (6.4)

where w represents coordinates of moving graph, cNa denotes the closest point to a in the

moving graph G, and d(., .) is the Euclidean distance. The proposed objective function

combines proximity to data points, as well as smoothing, as often encountered for image

processing problems. The first term represents the k-means algorithm, whereas the
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second term represents the minimization of the graph length.

6.4 Experimental evaluation

The main SOM and DLS experiments were conducted on a GPU card GeForce RTX

2070, with C++ CUDA program, Toolkit v9.0. The host computer is a CPU Intel

Core(TM) i7-7700K 4.5 GHz. The experimental explanation will be divided into two

parts: on CMU house sequence dataset1 and on CALTECH database2, as we did in

chapter 5. Experiments are executed on the basis of 10 runs by instance. We report the

mean value accuracy over 10 runs, and also the standard error serr = std.deviation/
√

10.

Multiplying serr by factor 2.262 of Student’s distribution would provide a 95% confidence

interval on the mean value reported. The size of the SOM moving graph was set to four

times the number of features.

6.4.1 Tests on CMU database

In this section, we do experiment on CMU data set. We first provide 10 experimental

results with CMU house test set, between sequence 0 and sequence gaps from 10 to

90 with an interval of 10, as shown in Figure 6.8. Correct and incorrect matches are

marked with yellow and black lines, respectively. As to quantitative evaluation, a set of

experiments are conducted. Comparative experiments are divided into Projection only,

SOM only, DLS one cluster, and DLS+SOM, as shown in Table 6.1. In this section, we

focus on accuracy, stander error, and time as the main judging criteria. The detail data

information are shown in Table B.1 of Appendix B. We also made an overall comparison

chart among RRWM, SM, IPFP, APRIP, DLS one cluster, and DLS+SOM algorithms

following the same experimental protocol, as shown in Table 6.2. Its detail comparison

data information can be founded in Table B.2 of Appendix B.

Table 6.1: The summary table of comparative evaluation on CMU database for Pro-
jection only, SOM only, DLS one cluster, and DLS+SOM.

Methods Accuracy Std error Time(s)

1 Projection only 14.4/23.2 0.00 0.09
2 SOM only 19.6/23.2 0.38 0.19
3 DLS one cluster 22.08/23.2 0.20 0.43
4 DLS+SOM 21.22/23.2 0.33 0.43

In this typical and classical test, the algorithms DLS one cluster, and DLS+SOM that we

proposed perform competitively to the IQP approaches. Experiment results show that

1http://vasc.ri.cmu.edu/idb/html/motion/
2https://cv.snu.ac.kr/research/ RRWM/
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Figure 6.8: Matching results of DLS algorithm to CMU dataset.

Table 6.2: The summary table of comparative evaluation on CMU database for
RRWM, SM, IPFP, APRIP, DLS one cluster, and DLS+SOM.

Methods Accuracy Std error Time(s)

1 RRWM 21.6/23.2 0.544
2 SM 20.9/23.2 0.194
3 IPFP 22/23.2 3.493
4 APRIP 21.4/23.2 0.49
5 DLS one cluster 22.08/23.2 0.20 0.43
6 DLS+SOM 21.22/23.2 0.33 0.43

the proposed algorithm has competitive accuracy on average for similar computation

time. On such CMU instances, it is shown that finding a simple rotation/translation

transformation, by parallel local search with a single cluster, is sufficient to achieve

competitive performance, with the proposed GPU tools, against IQP methods.

6.4.2 Tests on real images

In the experiment of real image matching, we still use the CALTECH database as used

in chapter 5. Accuracy, standard error and time are the main judging criteria. In this

subsection, the proposed DLS-SOM algorithm is tested in two correspondence matching

methods: one to one and many to one. Table 6.3 shows the final average results for 30

pairs of pictures through RRWM, SM, IPFP, APRIP, DLS-SOM (one to one), and DLS-

SOM (many to one) algorithms. We give some corresponding visual maps, as shown in

Figure B.1 and Figure B.2 in Appendix B for DLS-SOM (one to one) and DLS-SOM

(many to one) algorithms, respectively. See the Table B.3 in Appendix B for specific data

information for overall comparison chart among RRWM, SM, IPFP, APRIP, DLS-SOM

(one to one), and DLS-SOM (many to one) algorithms.

From these results, we can find that the proposed DLS-SOM combination do not satis-

factory addresses the real image test cases of CALTECH database in comparison to IQP
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Table 6.3: The summary table of comparative evaluation on CALTECH database for
RRWM, SM, IPFP, APRIP, DLS-SOM (one to one), and DLS-SOM (many to one).

Methods Accuracy Std error Time(s)

1 RRWM 12.5/21.5 0.15
2 SM 10.2/21.5 0.02
3 IPFP 11.9/21.5 0.64
4 APRIP 12.0/21.5 0.07
5 DLS-SOM (one to one) 7.54/21.5 0.51 0.42
6 DLS-SOM (many to one) 11.28/21.5 0.57 0.40

methods. This is not surprising, since the GPU tools provided, only indirectly adress the

problem, by referring to their own objective functions, rather than to the global objec-

tive function of the planar graph matching that is not yet implemented. Moreover, this

primary GPU framework is now available for further developments and improvements

on basis of soon comparisons with IQP methods.

6.5 Conclusion

The main result of this chapter is that we have provided a C++ GPU framework avail-

able, that allows to address graph matching or derived sub-problems with a closed

relationship with experiments on IQP models in the Matlab platform. We can adopt

the same matching list data as input, and compare results based on the same context.

Within this framework, we propose a combination and adaptation of the SOM algorithm

and the DLS algorithm, to gauge their potential in the domain of GPU graph marching.

We found that the DLS-SOM approach performs competitively to IQP models on CMU

images on accuracy. The performance looks less satisfactory for real case images of the

CALTECH database. Remember that the proposed GPU algorithms do not reuse the

high dimensional affinity matrix, but only use lower memory complex data structures

in the plane. However, relaxing the one-to-one mapping constraint to a many-to-one

mapping constraint should lead to a significant improvement of accuracy. A next step

should be to study many-to-one implementation in comparison to IQP. Some results

on particularly complex cases, such as the Cube test case, look encouraging since they

reflect the principle of a smooth deformation from one graph to the other, as expected.

Further work will consist of embedding the proposed DLS-SOM tools as operators into

a metaheuristic framework driven by the main objective function of the problem.



Chapter 7

Conclusion and future work

7.1 Conclusions

The main contribution of this thesis was to try to present some insightful analysis on the

latest findings on local feature extraction methods, object detection for tracking, general

problematic of feature correspondence, graph matching by integer quadratic program,

and finally on planar graph matching by parallel GPU programs. In general, we tried to

provide an overall view of the graph-based approaches to detection and matching. New

combinations of methods based on a powerful framework (Matlab) were presented and

a state-of-the-art experimental framework for algorithm comparisons was provided. We

studied different core problems of the chain tool of graph-based detection and matching

with the aim to determine which could be good candidates for parallel implementation

on GPU. More precisely, about the goals to achieve, we can mention the followings

elements.

We proposed new combinations of methods based on the powerful Matlab framework.

The proposed system for object detection is implemented by embedding a set of MAT-

LAB functions into a real-time video rate-driven loop. Combining the frame difference

method and the background subtraction method with Laplace filters and edge detectors

provides fast sparse detection. A simple and intuitive graphical user interface for target

silhouette extraction in real-time monitoring has been realized.

We proposed a Marr-wavelets automatic feature detection algorithm applied to first-

order correspondence based on cross-correlation that matches local feature descriptors

to local feature descriptors. This graph matching framework can realize real-time execu-

tion. The proposed feature extractor tool allows improving the accuracy of the feature

matching step, providing a set of highly representative object features in two images. In

93
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terms of improving reliability, we propose to use local entropy in the meshing strategy

in conjunction with the sensitive feature selection stage.

When assumption of background stability and brightness hypothesis are relaxed, with

cluttered scenes, high-order potentials become necessary. The geometric relationship be-

tween pairs or k-tuple of features are the key elements for finding correspondences. We

proposed APRIP algorithm for two-order graph matching. The algorithm is a combina-

tion version of elements from different IQP algorithms. It combines affinity-preserving

process within a customized integer projected fixed-point algorithm improved by spectral

technique. The algorithm competes in accuracy with existing state-of-the-art algorithms

with the presence of clutters, deformations, and outliers, with often being faster.

Then, avoiding the requirement of a large affinity matrix, as required in the IQP model,

we implemented a GPU platform based on parallel algorithms stated in the Euclidean

plane. We provided a parallel algorithm for GM problem in GPU, which exploits geome-

try in the plane in order to save time and space complexity, running with O(N) memory

complexity. We combine the self-organizing map and parallel local search as the main

operators for experimentation on graph matching. The proposed operators appear to

be competitive on artificial (CMU) cases, even with large gap transformations, but not

on real image cases actually, for similar computation times. Note that the affinity ma-

trix has not to be computed, which is usually a time-consuming task applied before

the matching process takes place in IQP. The problem was only indirectly addressed

on GPU and implementing a more elaborated metaheuristic framework by embedding

parallel operators should be a further task.

7.2 Future works

Because GPU parallel processors become more and more available and cheaper, we

think that it should be of interest to improve our proposed parallel approach. Our main

extensions of the GPU framework will focus on the following directions:

• Improve basic GPU operations of SOM and DLS in parameter setting and mov-

ing operations. Experiment different graph connection between features, such as

triangulation and spanning-tree, rather than only the actual SOM meshing.

• Implement an adequate main objective function and embed the basic parallel op-

erations into a metaheuristic framework. An implementation we envisage is a

population-based memetic algorithm by using a multi-core and GPU system in

conjunction.
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• Extend to multiple objects matching with a map of multiple clusters instead of a

single cluster. Recall that GM generally operates with a single moving object in

the image.

• Implement more elaborated data structures, in order to advance one step more into

the direction of GPU simulation of IQP models. For example, a good candidate

for GPU implementation should be the max-pooling approach, which uses the

adjacency list of neighbor nodes for graph representation with selection of only

the maximum affinity links. This could be done by slight modifications of our

GPU implemented data-structures.

• Another direction should be the simulation of a random walk in the adjacency

graph in a distributed way rather than by using matrix product as power-iteration.

A distributed version of the famous Pagerank was recently proposed by [SMPU13].

Perhaps, it could serve as a basis for adaptation to graph matching.

• Use other feature extraction methods, as our proposal, for application to graph

matching in order to generate the matching list of candidate correspondence pairs

by the first round of closest feature search.

• Generate large size artificial or real data instances for a better evaluation of compu-

tation time and limits of algorithms, since instances for testing GM were actually

of very small sizes.
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Table A.1: Detail experiment results for RRWM, SM, IPFP, and APRIP on 30 tests of CALTECH database.

RRWM SM IPFP APRIP
Dataset accuracy score time(s) accuracy score time(s) accuracy score time(s) accuracy score time(s)

1 Cube 24/24 100.00 0.24 15/24 87.27 0.01 10/24 91.55 0.98 13/24 89.78 0.20
2 Motorcycle 9/37 100.00 0.28 9/37 91.44 0.02 13/37 99.77 9.06 14/37 94.95 0.64
3 Car 23/31 98.47 0.22 13/31 45.24 0.02 23/31 100.00 0.75 17/31 64.45 0.05
4 Butterfly 28/35 100.00 0.09 12/35 43.21 0.02 23/35 88.26 0.29 23/35 88.24 0.06
5 Dragonfly 14/29 95.98 0.08 12/29 81.05 0.02 17/29 100.00 0.10 20/29 99.06 0.02
6 Building 27/35 95.31 0.22 26/35 87.91 0.02 27/35 100.00 4.29 28/35 98.78 0.45
7 TaiChi1 4/8 100.00 0.04 4/8 95.61 0.01 4/8 95.61 0.02 4/8 99.05 0.01
8 TaiChi2 3/6 92.53 0.04 1/6 61.90 0.02 2/6 90.63 0.04 4/6 100.00 0.02
9 Face 1 8/9 92.09 0.10 8/9 83.18 0.02 7/9 100.00 0.08 7/9 95.06 0.02
10 Face 2 15/27 100.00 0.14 11/27 52.19 0.02 14/27 97.99 0.36 14/27 98.39 0.07
11 Ant 19/29 94.80 0.08 9/29 56.29 0.02 18/29 100.00 0.06 18/29 100.00 0.03
12 Cat 1 26/49 100.00 0.23 28/49 94.59 0.02 24/49 90.26 0.34 24/49 90.24 0.10
13 Cat 2 17/29 97.72 0.13 18/29 85.08 0.02 15/29 100.00 0.10 15/29 100.00 0.04
14 Crab 12/26 98.26 0.12 12/26 91.84 0.01 12/26 99.93 0.38 12/26 100.00 0.07
15 Ostrich 15/28 95.00 0.18 11/28 89.61 0.02 14/28 100.00 0.27 14/28 100.00 0.05
16 Fish 1 17/42 93.21 0.23 15/42 75.19 0.02 17/42 100.00 0.17 14/42 99.33 0.04
17 Fish 2 14/18 89.77 0.34 15/18 79.04 0.02 14/18 100.00 0.13 11/18 92.82 0.03
18 Dinosaur 5/22 92.54 0.11 10/22 67.58 0.02 7/22 100.00 0.08 14/22 89.70 0.03
19 Wrench 12/29 89.91 0.30 10/29 91.60 0.02 11/29 100.00 0.16 10/29 99.64 0.03
20 Football 3/3 92.16 0.07 3/3 68.56 0.01 3/3 100.00 0.03 3/3 99.82 0.02
21 Bicycle 5/13 95.79 0.02 3/13 80.04 0.02 5/13 99.92 0.22 5/13 100.00 0.04
22 Cattle 6/8 98.54 0.04 3/8 71.98 0.01 6/8 100.00 0.03 6/8 98.65 0.01
23 Car(side) 6/9 93.96 0.22 7/9 87.56 0.02 7/9 100.00 0.36 7/9 98.96 0.06
24 Car(back) 13/16 100.00 0.07 7/16 67.78 0.02 14/16 92.10 0.11 14/16 92.84 0.03
25 Car(front) 5/19 93.62 0.36 5/19 60.95 0.02 6/19 100.00 0.35 6/19 97.31 0.06
26 Boat 13/15 100.00 0.06 13/15 90.68 0.02 14/15 96.94 0.08 14/15 96.75 0.03
27 Face 3 8/11 97.97 0.06 8/11 86.78 0.01 7/11 100.00 0.03 7/11 99.08 0.01
28 Sheep 11/17 100.00 0.05 11/17 93.84 0.02 11/17 93.63 0.05 11/17 93.60 0.02
29 Cat 3 6/11 100.00 0.06 6/11 90.20 0.01 6/11 97.60 0.03 6/11 98.32 0.01
30 Shepherd 6/10 93.05 0.16 1/10 58.98 0.02 6/10 100.00 0.11 6/10 98.63 0.02

average 12.5/21.5 96.36 0.15 10.2/21.5 77.24 0.02 11.9/21.5 97.81 0.64 12.0/21.5 95.78 0.07
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Figure B.1: Matching results of proposed DLS-SOM (one to one) algorithm in CAL-
TECH dataset.

Figure B.2: Matching results of proposed DLS-SOM (many to one) algorithm in
CALTECH dataset.
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Table B.1: Detail experiment results for Projection only, SOM only, DLS one cluster, and DLS+SOM on 10 tests of CMU database.

Projection only SOM only DLS one cluster DLS+SOM
Dataset accuracy std error time(s) accuracy std error time(s) accuracy std error time(s) accuracy std error time(s)

seq10 23/23 0.00 0.09 22.7/23 0.15 0.28 23/23 0.00 0.40 22.5/23 0.17 0.40
seq20 25/27 0.00 0.09 26.7/27 0.21 0.29 27/27 0.00 0.43 26.7/27 0.15 0.42
seq30 20/25 0.00 0.10 24.9/25 0.10 0.27 25/25 0.00 0.48 23.9/25 0.31 0.46
seq40 22/26 0.00 0.10 25.5/26 0.17 0.28 25.1/26 0.10 0.52 24.5/26 0.31 0.51
seq50 17/23 0.00 0.09 21.7/23 0.37 0.18 22.2/23 0.29 0.41 20.3/23 0.33 0.43
seq60 11/24 0.00 0.08 21.9/24 0.62 0.11 23/24 0.33 0.37 22.3/24 0.37 0.38
seq70 11/21 0.00 0.08 17.4/21 0.81 0.12 19.5/21 0.40 0.39 20.1/21 0.48 0.41
seq80 7/20 0.00 0.08 11.1/20 0.46 0.11 17.9/20 0.38 0.41 16.7/20 0.21 0.41
seq90 3/21 0.00 0.08 13.1/21 0.50 0.11 17.3/21 0.33 0.43 16.8/21 0.57 0.41
seq100 5/22 0.00 0.08 11/22 0.42 0.11 20.8/22 0.20 0.44 18.4/22 0.40 0.44

average 14.4/23.2 0.00 0.09 19.6/23.2 0.38 0.19 22.08/23.2 0.20 0.43 21.22/23.2 0.33 0.43
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Table B.2: Comparative experimental results for RRWM, SM, IPFP, APRIP, DLS, and DLS+SOM on 10 tests of CMU database.

RRWM SM IPFP APRIP DLS one cluster DLS+SOM
Dataset accuracy time(s) accuracy time(s) accuracy time(s) accuracy time(s) accuracy std error time(s) accuracy std error time(s)

seq10 23/23 0.40 23/23 0.18 21/23 1.90 21/23 0.07 23/23 0.00 0.40 22.5/23 0.17 0.40
seq20 27/27 0.49 27/27 0.19 27/27 1.56 27/27 0.19 27/27 0.00 0.43 26.7/27 0.15 0.42
seq30 25/25 0.43 25/25 0.18 25/25 2.43 25/25 0.25 25/25 0.00 0.48 23.9/25 0.31 0.46
seq40 26/26 0.64 26/26 0.18 26/26 1.67 26/26 0.27 25.1/26 0.10 0.52 24.5/26 0.31 0.51
seq50 21/23 0.44 21/23 0.20 23/23 4.25 22/23 0.76 22.2/23 0.29 0.41 20.3/23 0.33 0.43
seq60 24/24 0.45 24/24 0.20 24/24 2.08 24/24 0.30 23/24 0.33 0.37 22.3/24 0.37 0.38
seq70 21/21 0.61 21/21 0.20 21/21 5.18 21/21 0.98 19.5/21 0.40 0.39 20.1/21 0.48 0.41
seq80 18/20 0.77 15/20 0.20 19/20 5.21 18/20 0.21 17.9/20 0.38 0.41 16.7/20 0.21 0.41
seq90 18/21 0.63 14/21 0.21 17/21 5.36 15/21 0.95 17.3/21 0.33 0.43 16.8/21 0.57 0.41
seq100 13/22 0.58 13/22 0.20 17/22 5.29 15/22 0.92 20.8/22 0.20 0.44 18.4/22 0.40 0.44

average 21.6/23.2 0.544 20.9/23.2 0.194 22/23.2 3.493 21.4/23.2 0.49 22.08/23.2 0.20 0.43 21.22/23.2 0.33 0.43
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Table B.3: Comparative experimental results for RRWM, SM, IPFP, APRIP, DLS-SOM (one to one), and DLS-SOM (many to one) on 30 tests
of CALTECH database.

RRWM SM IPFP APRIP DLS-SOM (one to one) DLS-SOM (many to one)
Dataset accuracy time(s) accuracy time(s) accuracy time(s) accuracy time(s) accuracy std error time(s) accuracy std error time(s)

1 Cube 24/24 0.24 15/24 0.01 10/24 0.98 13/24 0.20 12.5/24 1.04 0.77 14.3/24 0.54 0.67
2 Motorcycle 9/37 0.28 9/37 0.02 13/37 9.06 14/37 0.64 10.8/37 0.51 0.85 18.2/37 0.44 0.74
3 Car 23/31 0.22 13/31 0.02 23/31 0.75 17/31 0.05 12.7/31 0.54 0.57 14.3/31 0.52 0.48
4 Butterfly 28/35 0.09 12/35 0.02 23/35 0.29 23/35 0.06 18.9/35 0.81 0.42 24.5/35 0.67 0.37
5 Dragonfly 14/29 0.08 12/29 0.02 17/29 0.10 20/29 0.02 13.6/29 0.73 0.30 20.4/29 0.65 0.28
6 Building 27/35 0.22 26/35 0.02 27/35 4.29 28/35 0.45 10/35 0.87 0.75 19.6/35 1.09 0.75
7 TaiChi1 4/8 0.04 4/8 0.01 4/8 0.02 4/8 0.01 1.7/8 0.15 0.22 3.3/8 0.26 0.21
8 TaiChi2 3/6 0.04 1/6 0.02 2/6 0.04 4/6 0.02 1.6/6 0.22 0.23 1.8/6 0.33 0.22
9 Face 1 8/9 0.10 8/9 0.02 7/9 0.08 7/9 0.02 3.5/9 0.79 0.32 3.1/9 0.74 0.31
10 Face 2 15/27 0.14 11/27 0.02 14/27 0.36 14/27 0.07 4.8/27 0.53 0.34 12.5/27 0.91 0.33
11 Ant 19/29 0.08 9/29 0.02 18/29 0.06 18/29 0.03 15.8/29 0.29 0.38 21.8/29 0.79 0.40
12 Cat 1 26/49 0.23 28/49 0.02 24/49 0.34 24/49 0.10 10.8/49 0.66 0.66 20.7/49 0.83 0.64
13 Cat 2 17/29 0.13 18/29 0.02 15/29 0.10 15/29 0.04 14/29 0.68 0.45 16.7/29 0.98 0.42
14 Crab 12/26 0.12 12/26 0.01 12/26 0.38 12/26 0.07 6.4/26 0.65 0.48 12.9/26 1.08 0.46
15 Ostrich 15/28 0.18 11/28 0.02 14/28 0.27 14/28 0.05 11.5/28 0.99 0.46 10.6/28 0.91 0.44
16 Fish 1 17/42 0.23 15/42 0.02 17/42 0.17 14/42 0.04 12.6/42 0.60 0.40 20.3/42 0.97 0.39
17 Fish 2 14/18 0.34 15/18 0.02 14/18 0.13 11/18 0.03 4.6/18 0.48 0.40 7.6/18 0.48 0.38
18 Dinosaur 5/22 0.11 10/22 0.02 7/22 0.08 14/22 0.03 7.2/22 0.29 0.35 14.6/22 0.37 0.33
19 Wrench 12/29 0.30 10/29 0.02 11/29 0.16 10/29 0.03 5.1/29 0.57 0.34 8.7/29 0.47 0.33
20 Football 3/3 0.07 3/3 0.01 3/3 0.03 3/3 0.02 0.9/3 0.18 0.25 1.4/3 0.27 0.53
21 Bicycle 5/13 0.02 3/13 0.02 5/13 0.22 5/13 0.04 4.2/13 0.36 0.52 8.8/13 0.25 0.53
22 Cattle 6/8 0.04 3/8 0.01 6/8 0.03 6/8 0.01 4/8 0.33 0.27 6.1/8 0.18 0.26
23 Car(side) 6/9 0.22 7/9 0.02 7/9 0.36 7/9 0.06 3.4/9 0.31 0.38 3.5/9 0.37 0.37
24 Car(back) 13/16 0.07 7/16 0.02 14/16 0.11 14/16 0.03 4.6/16 0.31 0.47 6.6/16 0.31 0.44
25 Car(front) 5/19 0.36 5/19 0.02 6/19 0.35 6/19 0.06 5.2/19 1.15 0.37 9.4/19 0.56 0.37
26 Boat 13/15 0.06 13/15 0.02 14/15 0.08 14/15 0.03 11.5/15 0.34 0.32 13.1/15 0.38 0.31
27 Face 3 8/11 0.06 8/11 0.01 7/11 0.03 7/11 0.01 0.8/11 0.29 0.28 1.7/11 0.50 0.28
28 Sheep 11/17 0.05 11/17 0.02 11/17 0.05 11/17 0.02 7.5/17 0.31 0.31 12.2/17 0.57 0.30
29 Cat 3 6/11 0.06 6/11 0.01 6/11 0.03 6/11 0.01 4.7/11 0.21 0.27 6.8/11 0.25 0.26
30 Shepherd 6/10 0.16 1/10 0.02 6/10 0.11 6/10 0.02 1.4/10 0.16 0.39 2.8/10 0.47 0.41

average 12.5/21.5 0.15 10.2/21.5 0.02 11.9/21.5 0.64 12.0/21.5 0.07 7.54/21.5 0.51 0.42 11.28/21.5 0.57 0.40
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[Gil98] Sébastian Gilles. Robust description and matching of images. Ph. D. thesis,

Dept. Eng. Sci., Univ. Oxford, 1998.

[GSY+13] Liu Gang, Ning Shangkun, You Yugan, Wen Guanglei, and Zheng Siguo.

An improved moving objects detection algorithm. In Wavelet Analysis and

Pattern Recognition (ICWAPR), 2013 International Conference on, pages

96–102. IEEE, 2013.

[HCC+15] Wu-Chih Hu, Chao-Ho Chen, Tsong-Yi Chen, Deng-Yuan Huang, and

Zong-Che Wu. Moving object detection and tracking from video captured

by moving camera. Journal of Visual Communication and Image Repre-

sentation, 30:164–180, 2015.

[HCW+19] Hou-Ning Hu, Qi-Zhi Cai, Dequan Wang, Ji Lin, Min Sun, Philipp Krahen-

buhl, Trevor Darrell, and Fisher Yu. Joint monocular 3d vehicle detection

and tracking. In Proceedings of the IEEE International Conference on

Computer Vision, pages 5390–5399, 2019.

[HS88] Chris Harris and Mike Stephens. A combined corner and edge detector. In

Alvey vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[Jag13] Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex opti-

mization. In Proceedings of the 30th international conference on machine

learning, number CONF, pages 427–435, 2013.

[JDJ19] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity
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