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In full awareness of both the good and the harm that science can inflict on humanity,
I will proceed in communion with my conscience. I will never use my skills to degrade
the human body or spirit, nor the world we inhabit. Economic interest or any kind of
recognition will not compromise my judgment.

In the critical spirit of science, I will use established morals only as guidance. I will
not subordinate to them nor to political interests, thereby assuming personal responsi-
bility for my own work and omissions.

Science, as one of the highest expressions of the human spirit, must take place under
equal opportunities, for the benefit of humanity, and in service of world peace. I will
defend these values in my practice and, in doing so, I will bring them to the attention
of others.
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Introduction

In this section we review state-of-the-art techniques in quantum simulation on a few
predominant platforms. Depending on the application, the specific properties of each
platform can be either an asset or a drawback. Different systems are thus complemen-
tary, and their simultaneous development and understanding will allow the identifica-
tion of their final technological utilities.

In particular, we shall introduce our research on the Rydberg atom platform for
quantum simulation. The main result of our work is the laser trapping of long-lived cold
circular Rydberg atoms. For context we revisit some of the developments regarding
the trapping of Rydberg atoms in the literature. This will allow us to compare our
contribution to alternatives. At the end of this section we present an overview of this
manuscript.

1. Foreword

There is not a single experimental observation of our world that is in disagreement
with the view proposed by quantum mechanics. All experiments performed inside its
well-established domain have met solid theoretical ground for almost a hundred years
now. Nonetheless, even at its core, one still finds new (and old) awe-inspiring questions
and the strange world that it opens for us is far from completely explored.

One of the main research efforts at present is intended to exploit the weirdness
of ‘the quantum’ to perform useful calculations. One can motivate the interest in
the following way: The differences between the classical and the quantum ‘worlds’
can be traced back to the validity of the logical statements one can make. The tight
relation between probability theory and logic1 suggests that the fundamental difference
between ‘quantum’ probabilities and the ‘classical’ ones can be exploited to harvest
computations from a completely new logic [3]. This has led to the widespread belief
that, soon, radically different types of computers built using quantum properties will
contribute to society.

1Probability theory can be considered as a formalization of logical inference [1, 2].



2 Introduction

2. Quantum simulation

An intermediate stage before a ‘quantum computer’ has been clearly identified: A ma-
chine able to solve a specific kind of problem that lays beyond the practical capabilities
of classical supercomputers would be of use. We refer to such an intermediate com-
puter as a quantum simulator [4, 5]. In general, an ideal quantum simulator is an
analog (quantum) system which is under full experimental control and evolves under
the equations of motion of a more inaccessible target (quantum) system.

In condensed matter physics or chemistry, when dealing with a large number of
particles, the scope of calculations becomes limited and new approaches need to be
developed. Quantum simulation reveals itself as capable of contributing to this quest.
This was first noticed by Feynman in a seminal work [6] and the main argument can
be reproduced as follows: Consider a microscopic cube of 10× 10× 10 two-level atoms.
The quantum mechanical description requires a Hilbert space of dimension 21000. Any
computational effort to deal with any non-trivial Hamiltonian in this space is abso-
lutely hopeless.2 On the other hand, if one is able to build an artificial version of such
a cube, the evolution will play out naturally. If, in addition, this artificial cube is built
so that one can control it and measure it with sufficient precision, one can experimen-
tally reconstruct the evolution. Physically, ones has run the Hamiltonian evolution
of the original cube in the artificial one in the same way that one runs software in a
programmable electronic circuit to perform a given task. This is the spirit of quantum
simulation.

The quantum advantage can be identified to be the following: The amount of
resources to solve the cube problem classically ‘explodes’ exponentially with its size
when, with a quantum simulator, it only grows linearly. Heuristically, one can consider
the ‘classical amount of resources’ needed to be given by the size of the matrix to be
diagonalized (21000), while the ‘amount of quantum resources’ is simply given by the
number of particles (1000) to be simulated.

Even if the quantum scaling is favorable, its implementation relies on technologies
that we are only beginning to master. In these interesting times, the winning platform
for large-scale quantum computation and simulation (if any) is still far from being
identified with certainty. On the contrary, the particularities of the different propos-
als divide them into many complementary sets, since some are more adequate than
others to address a given problem [7]. It is important to note that even when their
assets overlap, the variety in their specificities provides a way to validate an otherwise
untracktable calculation. The principle is that if two different systems agree in their
results, one can be confident that the simulation is free of hardware artifacts and can,
thus, trust the outcome.

We will now make a brief review of some promising platforms for quantum simula-
tion, including circuits, trapped ions, cold atoms, and Rydberg atoms.

2To put the limitation in perspective, note that the number of protons in the universe is estimated
to only be 2300.
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2.1 Quantum circuits

Superconducting qubits are good candidates to perform computations beyond the reach
of modern supercomputers [8]. Even without error correction they are used to imple-
ment challenging quantum simulations and quantum algorithms [9].

Superconducting circuits [10] are microfabricated using aluminum or niobium. The
substrate used is silicium or sapphire and are built making use of reliable techniques
and materials previously developed for microfabrication [11]. They are normally en-
capsulated in copper or aluminum packages that provide an engineered electromagnetic
environment [12–14]. Operating at frequencies from 5 to 15 GHz, they require an en-
vironment thermalized to about 15 mK. These low temperatures can be achieved with
commercial dilution refrigerators.

The flexibility in the fabrication of superconducting circuits provides diverse per-
spectives. Certain superconducting qubit ‘flavors’ (transmons, charge qubits, flux
qubits, phase qubits, etc.) are more suitable than others for different quantum simu-
lations. The different qubits have built-in couplings types, commutation relationships,
or decoherence channels that share intrinsic characteristics with the simulated system.
Importantly, the qubits are made to have tailored frequencies and coupling strengths
[15, 16]. On the downside, they are all slightly different (resonance frequency, coher-
ence time, etc.) and they are known to age with thermal cycling [17] affecting the
reproducibility of the experiments.

Superconducting devices can be used to tackle problems using directly interacting
qubits or qubits coupled to a common mode in a cavity [16]. In [13], it was shown that
the strong coupling regime of quantum optics experiments could be achieved in solid
state systems, opening a field that has proven to be fruitful. Superconducting circuits
have been used to study strongly correlated many-body systems [18] or thermalization
in small quantum systems [19]. Additionally, experiments of fundamental interest in
new regimes [20] and simulation of Fermionic models [21, 22] with possible technological
applications in material design were made.

Experiments using a few high-quality qubits have been reported. In [23], a two-
transmon system was used to efficiently simulate a Heisenberg interacting spin model
using interactions that are naturally present in these qubits, while applying only re-
sources that grow polynomially in the number of spins. In [24], a three-qubit device
was used to realize synthetic magnetic fields and strong particle interactions, which are
among the essential elements for studying quantum magnetism and fractional quantum
Hall phenomena. Recently, a larger quantum device has been used to solve a problem
that classical computers practically cannot [25]. A 52-qubit chip was used to provide
the solution to a tailor-made problem (of limited practical interest) in less time than
the world’s fastest supercomputers.

Large numbers of qubits are interesting for quantum annealing. They could be used
to provide solutions to those classically hard optimization problems that can be mapped
to the problem of finding the ground state of a quantum many-body system [26, 27].
Experiments with tens to hundreds of strongly damped qubits have been reported [28,
29], but quantum speed up is an open question in dissipative systems [30]. Arrays of
thousands of qubits have been built for annealing, but they have limited connectivity
and it is unclear if they can deal with the level of entanglement needed to tackle the
many-body problems they aim to solve [31].
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2.2 Trapped ions

The first implementation of a universal quantum computer proposed trapped atomic
ions as hardware [32]. This was done shortly after a clear quantum advantage was
identified by the proposal of Shor’s algorithm for factorization [33]. Long before these
landmarks, single ions had been confined using radio frequency (RF) Paul traps [34]
and proven to be of fundamental interest [35]. The observation of the first quantum
jumps [36] and the first experimental studies on quantum noise [37] were done on this
platform.

Trapped ions (Al+, Ca+, Mg+, Sr+, etc.) are controlled with laser or microwave
drives that allow for arbitrary and high-fidelity single-qubit rotations. Arbitrary two-
qubit entangling gates can also be performed with high fidelity by using the shared
motional modes of two or more ions as a transfer bus. Additionally, laser cooling
techniques and efficient measurement makes them a good platform for metrology [38]
and quantum information. They are appealing for analog simulation [39–41], particu-
larly for the interesting spin-boson model, but also have good performance for digital
operations [42].

Qubits states can be encoded in optical or hyperfine levels. The reversible coherence
of the hyperfine qubit was reported to be as long as T ∗2 = 50 s [43]. Using dynamical
decoupling techniques [44], the irreversible coherence time was reported to be T2 = 600 s
(10 minutes!). These coherence times are limited by dephasing due to technical field
stability and are far from being limited by fundamental processes. The combined state
preparation and readout fidelity was shown to be as good as 99.93% [43], making ions
the leading platform in this regard. Digital operation of trapped ions has been used
for the simulation of a quantum electrodynamics process [45] in a four-qubit machine
and to implement Shor’s algorithm [46] in a thirteen qubit machine. Even if it is, in
principle, easy to scale up ion architectures in both one [47] and two dimensions [48],
the historical increase in the ion number has been slow. The main problem encountered
is the degradation of the system’s controlability as the number of ions grows [49]. The
increasing number of motional modes turns the engineering of interaction and the
cooling down of the system harder to implement.

Beyond the digital approach, trapped ions are promising for analog simulations of
spin arrays in the short term. Optical manipulation of common motional modes of a
trapped ion chain is used to simulate a spin-spin interaction, but they are limited to
long range interactions [50, 51]. Experiments demonstrating a wide variety of physics
were performed including the demonstration of a quantum random walk in a spin-1/2
or spin-1 system [39, 52], the spectroscopy of spin-waves [53], many-body localization,
and thermalization of quantum systems [54]. Simulations of spin-squeezing in 2D with
long range interactions were also reported [55].

2.3 Cold atoms

Another platform harvesting good results in the realm of quantum simulation is that of
cold atoms in optical traps [56–58]. The polarizability of the atoms, as a response to an
oscillating electric laser field [59], provides the trapping mechanism. Qubit states can
be cast in the occupation of the lattice sites and the coupling is provided by quantum
tunneling between adjacent sites. Internal degrees of freedom are also made available
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by the hyperfine structure of the participating atoms [60]. Traps forming lattices can
be created by interfering laser beams. The periodic potential created imposes to the
atom array a structure that simulates a magnified solid state crystal. Both Fermions
and Bosons can be used to occupy the lattice sites.

A paradigmatic example of quantum simulation with cold atoms has been the study
of the Hubbard model in regular lattices [61, 62]. As the simplest model for interacting
particles in a lattice, it has not been solved analytically in two nor three dimensions
and it is numerically resource-demanding. Controlled disorder created by a speckle
pattern [63] leads to explorations of many-body localization [64] and to regimes where
numerical methods quickly find their limitations. Recent advances have been made
using the so-called ‘atomic microscopes’ [65, 66]. They consist of a cold atom sample
trapped under a high numerical aperture lens (NA∼0.5) that can resolve the lattice
sites and detect atoms individually [65, 67, 68]. Complemented with Stern-Gerlach
techniques, one can even resolve the inner state of the atoms [69].

The cold atom toolbox provides a good test bed to study electrons in solids where
the charge is simulated by a Fermionic atom (many orders of magnitude bigger and
heavier that the electron, thus providing a dilated timescale!) while the spin is simulated
by an inner atomic two-level subspace. An example is the simulation [70] of dynamical
spin-charge fractionalization [71, 72] in a ‘Cheshire cat’ state where the charge and the
spin of a (quasi-)particle separate from each other, each traveling at different speeds.
The (doped) Fermi-Hubbard model, which is expected to play an important role in the
comprehension of high-temperature superconductivity [73, 74], finds a befitting simula-
tor in atomic microscopes. The flexibility of the approach permits the measurement of
complex entanglement properties [68, 75]. Experiments can now reach domains beyond
the grasp of theoretical methods and classical computations [76]. The platform has also
been used to simulate effective magnetic fields [77] orders of magnitude stronger than
the ones that can be created in laboratories. Lattice dynamical manipulations [58, 78],
or multilevel atoms [79], open the way to the simulation of gauge fields and topological
phases [80–82].

However, strongly relying on tunneling (an intrinsically slow process) makes it hard
for cold atom systems to follow long term dynamics like that of spin glasses. Limited
by the lattice lifetime, proposals [83, 84] to reduce the inter-lattice spacing, enhancing
the tunneling rate, and increasing the effective length of the simulation were made, but
they have not been realized yet. Instead, polar molecules, magnetic atoms [85, 86], and
highly excited atoms have been used to enhance the interaction.

2.4 Rydberg atoms

Among cold atoms, those excited to very energetic states (principal quantum number
n � 1) deserve special attention [87]. The so-called Rydberg atoms [88] have long
natural lifetimes (of at least a few 100’s µs) and strong dipolar interactions (tens of
MHz) even at large interatomic distances (a few µm). These properties make them good
building blocks for a quantum simulator [89, 90]. They provide a natural platform where
a 1000 qubit system capable of overcoming other platforms’ limitations in scalability
and dimensionality is possible [91–93]. Rydberg atoms are flexible tools since their
coupling can be tuned by the inter-atomic distance, a dressing laser field [94], the
relative orientation of their dipoles [95], an external directing electric (or magnetic)
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field, or by varying the principal quantum number n [96]. This tunability allows one
to use them as either sensors (high sensitivity to the environment) [97] or as robust
qubits (low sensitivity to the environment) [98].

The assets of Rydberg atoms have been exploited for quantum simulation of many-
body systems. In [99], the anti-ferromagnetic ordering in a ground-Rydberg qubit array
was explored in one and two dimensions. A delay in the build-up of the correlation was
observed and understood as a consequence of the finite speed of correlation propagation
in a system with short-range interactions. The quantum simulations reported there
used up to thirty-six Rydberg atoms. In [100], a fifty-one Rydberg atom linear system
was used to prove the many-body dynamics of coupled spins. The qubit state was
encoded in a ground-Rydberg two-level system. In the same work, using a thirteen
Rydberg atom chain, the adiabatic preparation of an anti-ferromagnetic ground state
was demonstrated and in an even shorter chain, made of nine qubits, robust many-body
oscillations were observed during 1.2 µs.

A proposal to solve the ‘maximal independent set problem’ using ground-Rydberg
qubits was also put forth [101]. This classically hard problem could, in principle,
be implemented with already available Rydberg technology. The proposal relies in
the tight relation between the quantum phase transition in disordered systems and
combinatorial problems. The close relation to real-world problems like network design
and artificial intelligence makes this proposal technologically interesting.

It is usual in Rydberg quantum information approaches to encode the qubit state
in a ground-Rydberg pair of levels. The Rydberg state provides the inter-site interac-
tion, while the ground state provides the possibility to trap the atom using cold atom
trapping techniques and a direct detection method (fluorescence). In this case, the
model is limited to Ising-like interactions (σ̂z⊗ σ̂z), since the atoms only interact when
both are in the excited qubit state. The model can be extended to a more general
XY Heisenberg model by encoding the qubit in two different Rydberg levels. In [102],
engineered interactions of this type allowed for the first experimental observation of a
symmetry-protected topological phase where interaction played a crucial role.

It is important to notice that, so far, the main advances in Rydberg atoms quantum
simulation have been made in the absence of Rydberg trapping. This limits the useful
time of a spin simulation to a few microseconds: the time it takes for the Rydberg-
Rydberg interaction to break the crystal. Another drawback in state-of-the-art Rydberg
based quantum simulations is the absence of a cryogenic environment. The large dipole
matrix elements between Rydberg states makes them extremely sensitive to microwave
black-body radiation. This is the limiting factor in some promising implementations. In
[103], many-body interference effects were observed with Rydberg-dressed cold atoms.
The Rydberg dressing provides a tunable interaction mechanism for a near-unit-filling
bi-dimensional ground-state optical lattice. Coherence limitations in this experiment
were attributed to black-body population transfer in the Rydberg manifold. Moreover,
the process can induce an avalanche of atom loss. In [104], the related anomalous
broadening in the ground-Rydberg spectral line was observed in a three-dimensional
lattice. A black-body induced population in close lying Rydberg states was reported to
produce a line broadening of nearly two orders of magnitude. Using a cryostat would
be a solution to this problem [96, 105]. The additional benefit of improved vacuum
conditions, directly increasing the lattice lifetime, would also be a positive consequence.
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2.4.1 Circular Rydberg atoms

Among Rydberg atoms, ‘circular’ Rydberg (cRy) atoms are interesting. These are
Rydberg states where the electron is in a narrow toroidal orbital. The particularities
of these states allow applications of Rydberg atoms (to quantum information [105] and
to quantum metrology [106, 107]) to take on a new dimension.

Recently we have proposed to encode the qubit of a Rydberg based quantum sim-
ulator in two cRy states [108]. The long lifetime of these states will allow us to follow
slow quantum evolutions relevant to condensed matter problems. The free space ra-
diative lifetime of circular levels is of a few tens of milliseconds [105] while, inside a
spontaneous-emission inhibition structure and in a cryogenic environment, one expects
to reach lifetimes of up to a minute for individual atoms [108, 109]. The proposal
strongly relies on laser trapped cRy atoms which are expected to have negligible pho-
tionization [110] and are thus ideal for laser trapping. Spin exchange rates of tens of
kHz for atoms spaced by a few micrometers account for about a hundred thousand
exchange times in a 40 atom chain before the first atom is lost. The proposed system is
expected to simulate XXZ Heisenberg models providing dynamic tunability of all the
Hamiltonian parameters. Both circular levels forming the spin can be trapped in the
same potential and in an almost level-independent trap. Importantly, a method for the
deterministic preparation of a linear array of circular atoms is envisioned [111].

2.4.2 Trapping of Rydberg atoms

In general, Rydberg atom trapping for quantum simulation could be a useful tool to
follow long many-body Hamiltonian evolutions, to study the build-up of correlations
and thermalization of quantum systems, or to study localization phenomena.

Beyond the application to quantum simulation, Rydberg atom trapping is a use-
ful tool for metrology. Long-lived trapped Rydberg atoms could be used to measure
the Rydberg constant and the quantum defects of different species [112], or to study
Rydberg molecules [113, 114]. Trapped atoms could be used to increase the inter-
rogation time of a Rydberg based electric [115] and magnetic [107] fields sensors, to
coherently manipulate the Rydberg states in place [116] or to measure local forces close
to surfaces [117]. Rydberg physics effects like collisions [118], super-radiance [119], or
electromagnetically induced transparency [120] could be enhanced by trapping as well.

In the last decade, some proposals and experiments regarding Rydberg atom trap-
ping have been reported [121]. Historically, Rydberg atoms have first been trapped in
high-fields (∼3 T) Ioffe-Pritchard magnetic traps [122] (see also [123]). Stark gradient
Rydberg traps were also used to efficiently confine the excited atoms in a centimeter-
sized region of space. In [124], cold (350 mK) Hydrogen Rydberg atoms have been
trapped in two dimensions using electrostatic potentials. Before trapping, the Rydberg
atoms were decelerated to zero velocity using time-dependent inhomogeneous electric
fields. High densities of Rydberg atoms (∼ 106 atoms/cm3) with a trapping lifetime
of 150 µs were achieved. The lifetime was determined by a competition of black-body
radiation induced processes and collisions with the background Argon gas required for
the preparation of the sample. In [125], a fully electrostatic deceleration and three-
dimensional trapping was demonstrated by trapping state-selected Hydrogen Rydberg
atoms during ∼ 135 µs. In this experiment, the lifetime was essentially limited by the
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radiative decay rate of the chosen state.
Optical-dipole traps at magic wavelengths have also been proposed [126] for ground-

Rydberg qubits expecting differential trap shifts bounded by 200 kHz, but they have
not been realized experimentally yet. Notably, in the context of this thesis, cRy states
have no allowed optical transitions, so standard dipole trapping is not an option.

The most promising technique to trap Rydberg atoms for quantum simulation may
be to use the ponderomotive energy [127] of atoms placed in an inhomogeneous laser
beam. The trapping is conservative and the potential arises from the time-averaged
kinetic energy of the nearly free Rydberg electron oscillating in an AC laser electric
field. The much heavier atomic core is comparatively impervious to the potential and,
thus, the atom as a whole responds as a dark field seeker to avoid the oscillating force
on the electron. This technique would naturally allow one to make tight (tens of kHz)
and almost state-independent (up to tens of Hz) traps in packed arrays (within a few
µm spacing).

Experimentally, the trajectories of low-angular-momentum Rydberg atoms in one-
dimensional ponderomotive optical lattices have been studied using microwave (MW)
spectroscopic techniques almost a decade ago [128, 129]. Experiments were carried out
at room temperature and with trapping times of ∼ 20 µs.

The main result of this thesis work is the extension of ponderomotive laser trapping
to cRy atoms in two dimensions and in a cryogenic environment for at least 10 ms.

Cold circular states have been trapped before. A publication in 2013 [130] reported
that cRy atoms, prepared by the crossed-fields method [131], were trapped in a mag-
netic trap at room temperature. The population was quickly lost (160 µs) from the
circular states due to black-body induced processes. The atoms were confined to about
a centimeter, with a trapping frequency of ω < 2π × 40 Hz. In addition, the mag-
netic potential used was strongly level-dependent, a detrimental characteristic for the
coherence of cRy atom superposition.

During the realization of our experiments, we became aware of another related
experiment that was able to demonstrate the three-dimensional trapping of individual
low-angular-momentum Rydberg states in optical tweezers during ∼ 220 µs [132].

The accelerating advancements in this direction correspond to the identification of
untrapped Rydberg atoms for quantum simulation as a bottleneck, and it reflects the
importance conveyed by the community to the incorporation of this technique in the
Rydberg atom toolbox.

3. This work

In this thesis we develop the theoretical ideas that led to the proposal of a new quantum
simulator that can be built out of circular Rydberg atoms (which was the thesis subject
of Than-Long Nguyen, [108]). Experimentally, we have made the first few steps towards
its realization. We have prepared high purity (> 91%) circular Rydberg atoms by a
carefully designed sequence of pulses out of a cold atom cloud and we have assessed their
long lifetime and coherence properties. We have also demonstrated the ponderomotive
laser confinement of these atoms (to a few micrometers) for as long as ten milliseconds
without signs of photoionization.

The experimental platform we exploit here has been in use by many generations of
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students and continually upgraded [96, 133, 134]. Historically, the Helium-4 cryostat
we use was devised to prepare and trap Rydberg atoms inside a micro structure capable
of inhibiting the spontaneous decay of the excited atoms [135]. The original proposal
relied on the magnetic trapping of the cold ground state atoms and the electric trapping
of an individual cRy atom. The ultimate purpose of the experiment was to provide a
deterministic single atom source for CQED applications [136]. Following these lines,
the superconducting atom chip technology was explored, achieving BEC condensation
in close proximity to superconducting structures [137]. Importantly, a cryo-compatible
solution for detrimental electric field gradients close to surfaces was developed [138]
and used to study the dynamics of a cold Rydberg gas close to the chip surface [139].

During this thesis work, the experimental setup has undergone upgrades with the
goal to prepare and laser trap cold circular atoms. The relevant modifications are to
be introduced as the manuscript develops.

3.1 Organization of the manuscript

Chapter I presents an introduction to Rydberg atoms and their properties. We convey
their interest as research objects and their adequacy for quantum simulation emphasiz-
ing the physical origin of their ‘exaggerated’ properties (large size, long lifetime, strong
interaction, etc.).

Chapter II develops the proposal to build a quantum simulator based on cRy atoms
as hardware [108]. Special attention is given to the phase diagram and to the tunability
of the atomic interactions that our proposal features. We present in detail the atom
lifetime calculations in the many regimes relevant to us and discuss different processes
limiting the usable lifetime of the cRy simulator. Finally, we discuss the trapping
technique required and the deterministic preparation of a cRy atom chain. A method
for single site resolution detection is proposed. The long-term goal of the proposal is
a fully tunable XXZ Heisenberg quantum simulator that could operate during tens of
thousands of characteristic times.

In chapter III we discuss the experimental setup and the preparation of the atomic
sample. We start by discussing the ground state cold atom techniques for trapping,
cooling, and imaging. We proceed to describe the successive steps towards the circular
levels including the laser excitation of the ground state atoms, the electric field control,
the microwave and radio frequency pulses, as well as the Rydberg detection system. We
conclude with the preparation and assessment of the cold cRy states inside a cryostat.

In chapter IV we study the lifetime and the coherence of these circular states.
We discuss the considerations taken into account in order to reduce the black-body
radiation to increase the atomic lifetime. We find a lifetime for the n = 52 circular
state of ∼ 3.7 ms which corresponds to an effective black-body temperature of ∼ 11 K.
We discuss the noise mitigation techniques implemented to improve the coherence of
the state. The reversible and the irreversible decoherence times are found to be ∼ 35 µs
and ∼ 270 µs respectively. We attribute the rather short coherence time to magnetic
field fluctuations in our setup that should be easily overcome with future upgrades.

Finally, in chapter V we demonstrate the trapping of the circular atoms. We intro-
duce the spatial light modulator used to shape the light trap and explain the different
calibrations made. Using low-angular-momentum Rydberg levels to make in situ im-
ages of the laser trap, we were able to assess the light potential at the level of the
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atoms and correct for aberrations. Using a MW time-of-flight technique and relying on
the Stark sensitivity of elliptical Rydberg levels, we were able to measure the thermal
expansion of the cRy atom cloud in a controlled inhomogeneous electric field. We use
this approach to show that our two-dimensional trap can confine the circular atoms for
at least 10 ms. The mechanical frequency of the trap is measured to be ∼1.3 kHz. We
thereby confirm the theoretical predictions that photoionization for circular states is
negligible and that the trap is essentially state-independent [140].
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Atomic physics concepts

We will start by describing the atomic physics of circular Rydberg atoms [141]. For
the purpose of this manuscript, only the essential aspects of atomic physics will be
discussed.

Rydberg atoms, and cRy atoms in particular, are amazing objects [142]. They have
long lifetimes and large coupling both to the electromagnetic field and between them-
selves. This allow their use for a variety of applications, ranging from metrology [107]
to quantum information [143, 144]. Most of the community is focused on low-angular-
momentum Rydberg atoms. These states are directly accessible by laser excitation and
do not require a cryogenic environment. Circular Rydberg atoms require, in addition,
a fine-tuned preparation involving the absorption of tens of radio frequency photons in
the Stark Rydberg manifold [145] and their lifetime is increased more than a 100-fold
in a cryogenic environment. The experimental complications of using cRy atoms [146]
are justified because their peculiar properties allow for technical applications which are
out of reach for their low-angular-momentum counterparts [105, 106].

Beyond the ‘exaggerated properties’ of cRy atoms there is a second characteristic
that deserves to be highlighted: cRy atoms are ‘simple objects’ and correspond to
elements of the old quantum theory. The simple laws ruling their behavior allow us to
build useful intuition that we will discuss in this chapter.

I.1 The Coulomb potential

The backbone of atomic physics is the analytic resolution of the Schrödinger equation
for the Coulomb potential. An approach to solve this two-body problem is to consider
the core-electron reduced particle [147]. This particle (essentially the electron), having
a reduced mass µ = me/(1 +me/mcore) and position r, evolves under the Hamiltonian

Ĥ0 = − h̄
2

2µ
∇2 − q2

e

4πε0

1

r
,

where qe is the charge of the electron and ε0 is the permitivity of free space. The
statement corresponds to a Sturm-Liouville problem with eigenvalues (energies)1

En,l,ml = En =
q2
e

8πε0

−1

a0n2
(I.1)

and eigenvectors (wave functions) ψn,l,ml(r, θ, φ) that have closed-form expressions in
terms of the special functions Y ml

l (θ, φ) and Rnl(r) given by [148]

ψn,l,ml(r, θ, φ) = Rnl(r)Y
ml
l (θ, φ),

Y ml
l (θ, φ) ∝ eimlφPmll (cos θ), and

Rnl(r) =
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)
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1One can also introduce the Rydberg constant Ry as En = −Ry/n2.
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where n, l, and ml are integers defining unambiguously the quantum state and are col-
lectively referred to as the ‘quantum numbers’. Here Pmll and L2l+1

n−l−1 are the Legendre
polynomials and the generalized Laguerre polynomials respectively. The number n > 0

is known as the ‘principal quantum number’, l is the ‘angular-momentum quantum
number’, and ml is the ‘magnetic quantum number’ that geometrically represents the
projection of the angular-momentum on a quantization axis.

We note that un,l(r) = rRn,l(r) describes the radial motion of the reduced particle
and it follows a ‘one dimensional Schrödinger equation’ that has, in addition to the 1/r

potential, a centrifugal term ∝ l(l + 1). The radial differential equation for the time
independent states reads[

− h̄
2

2µ

d2

dr2
+
h̄2l(l + 1)

2µr2
− q2

e

r

]
un,l(r) = Enun,l(r). (I.2)

The presence of the centrifugal term will play a major role in the interpretation of
the solutions that will interest us.

This problem statement is well-suited to address Hydrogen-like atoms: those having
a single valence electron. In this thesis we have chosen to work with Rubidium-87, a
species that falls into this category.

Low-angular-momentum Rydberg atoms

For low-angular-momentum Rubidium Rydberg states (n � 1 and l < 5), one has to
take into account the penetration of the outer (Rydberg) electron into the electronic
cloud of the core [88]. The screening of the nuclear charge by the inner electronic cloud
is inefficient and the Coulomb potential is no longer a valid approximation. These
effects lower the energy of the Rydberg state and are encompassed by the modified
Rydberg formula

En,l,j =
q2
e/8πε0a0

1 +me/mcore

−1

(n− δnlj)2
,

where δnlj > 0 is called the quantum defect and j is the sum of the orbital and spin
angular momentums. The finite electron-core mass ratio (me/mcore) has also been
taken into account. The quantum defect has a phenomenological expression that reads

δnlj = δ
(0)
lj +

δ
(2)
lj(

n− δ(0)
lj

)2 +
δ

(4)
lj(

n− δ(0)
lj

)4 + · · · ≈ δl

and it is only weakly dependent on n and j. One identifies a dominant contribution
δnlj ∼ δ

(0)
lj and higher order corrections that become negligible for n� 1. In Table I.1

we quote the numerical values of δ(2×i)
lj used for Rubidium-87. Using the values from

Table I.1, one can compute that, for n ∼ 50 and l = 0 (S), the energy correction can
be as big as 11%. For large n (∼ 50 in this work), the relative correction in energy
associated with j is never bigger than 10−3, while the correction in energy associated
with n (δ(2)) is never bigger than 2× 10−7.

The weak dependence on n (and on j) in the quantum defect δnlj reflects the fact
that it is caused by the penetration of the electron orbit into the ionic core. This
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Series (nlj) l measured for δ
(0)
lj δ

(2)
lj

nS1/2 0 Rb87 3.131 180 4(10) 0.1787(2)

nP1/2 1 Rb85 2.654 884 9(10) 0.290 0(6)
nP3/2 1 Rb85 2.641 673 7(10) 0.295 0(7)

nD3/2 2 Rb87 1.348 091 71(40) -0.602 86(26)
nD5/2 2 Rb87 1.346 465 73 (30) -0.596 00(18)

nF5/2 3 Rb85 0.016 519 2(9) -0.085(9)
nF7/2 3 Rb85 0.016 543 7(7) -0.086(7)

nG 4 Rb85 0.004 00(9)

> 5 ∼ 4/l5

Table I.1 Quantum defects used for Rubidium-87. When a direct measurement of the quantity
is not available in the literature, we inform the measurement made for Rubidium-85. Values
taken from [149–151].

penetration is prevented by the centrifugal barrier (see eq.(I.2)), explaining the strong
dependence in the orbital angular-momentum l (see Table I.1). It follows that, for
high-angular-momentum Rydberg states (n > l � 1), the quantum defect correction
is negligible, and the Coulomb potential gives us, to a very good approximation, the
correct physics [152].

Circular Rydberg physics

Circular Rydberg states are states of maximal angular-momentum in the sense that
l = |ml| = n−1. No higher angular momentum is allowed by the Schrödinger equation.
The observation that all three quantum numbers are large permits the applications of
Bohr’s correspondence principle allowing the derivation of their properties from semi-
classical arguments. The full quantum calculation confirms the results.

For these states, the wave function takes a particularly simple form [141]:

ψnc(r, θ, φ) =
1√
πa3

0

1

nn!

(
− r

na0
sin θeiφ

)n−1

e−r/na0 . (I.3)

The orbital is a narrow torus for large n. The angular localization of the orbit can be
seen directly from the wave-function in the factor sinn−1 θ which for n > 50 corresponds
to a very narrow distribution around θ = π/2 defining the equatorial plane. The mean
value of the radius and its dispersion are

rn = a0n
2 and (I.4)

∆rn = a0n
2/
√

2n. (I.5)

Note that as n→∞, ∆r/r → 0 (i.e: the wave function tends to be a ‘one dimensional
circle’ with radius r = n2a0). Under these observations we recover the Bohr atom
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picture.2

The phase of the wave function in eq.(I.3) contains important information about
the coupling to the electromagnetic field. The phase winds up n − 1 times as it goes
around the orbit and it contains the essence of the de Broglie interpretation of the Bohr
quantization condition.3 In Figure I.1 we show a pictorial representation of the wave
function based on the phase of eq.(I.3). Note that, for the superposition between n and
n+1 cRy states, there is a permanent dipole. On the other hand, for the superposition
of n and n+ 2 there is only a quadrupole term in the charge distribution. The relative
phase winds up two times around the orbit and the wave function no longer looks like
a ‘planet’ rotating around the core, but now it looks like a ‘dumbbell’ instead. These
properties rule their coupling to the radiation field (section I.2) as well as the atomic
interaction in between these states (section I.3) [142].

Figure I.1 Here we represent the cRy electron as a matter-wave. A cRy has a symmetric
distribution of charge around the nucleus and presents no permanent dipole. A superposition of
|nc〉 and |(n+ 1)c〉 creates an asymmetric electron density, which gives rise to a rotating dipole.
A superposition of |nc〉 and |(n+ 2)c〉 regains reflection symmetry. There is no permanent
dipole.

A comment on the Coulomb approximation for cRy atoms

The simplicity of the cRy states relies partly on the fact that the usual corrections
to the Coulomb potential are largely negligible. This can be understood from semi-
classical considerations arising from the large angular-momentum that characterizes
these states.

Notably, the fine structure arising from relativistic effects is seen to be small (∼kHz
for n = 50). Far from the core (� a0), the circular Rydberg electron orbits at a
low velocity vn ∼ αc/n, where α is the fine structure constant [147]. The following
observations are in order: i) the Darwin term vanishes since the wave function around
the core is vanishignly small, ii) the spin-orbit is small since in the electron frame the
field created by the core is purely electric (i.e. the components of the electromagnetic
four-vector are not appreciably mixed), and iii) the kinetic energy term p̂4/8m3

ec
2 is

simply small with respect to p̂2/2me.

2For n = 50 we have ∆rn/rn ∼ 0.05.
3The quantization of angular momentum is equivalent to the quantization of the number of the

matter-wave periods along the orbit: mevr = nh̄⇔ nλdB = 2πr.
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I.2 Lifetime scaling with n

The lifetime of cRy states |nc〉’s is remarkably long for highly excited atoms. The
quantum mechanical explanation for such a long lifetime lies, again, in the fact that
cRy atoms have maximal angular-momentum and they can only decay by decreasing
ml via a microwave transition from |nc〉 → |(n− 1)c〉. In comparison, low-angular-
momentum Rydberg states have many allowed decay transitions in the optical domain.
The rates of the transitions being proportional to the cube of the transition frequency
explains, if only partially, the comparatively long lifetime of the circular states.

The radiative lifetime of cRy states can be semi-classically estimated [141] by noting
that an atomic state emits an energy hνn during its lifetime τn. The ratio between these
two quantities is the radiated power P which, according to the Larmor formula [153],
is proportional to the square of the electron acceleration a. In the planetary picture
provided by Figure I.1, the motion of a cRy electron, during a photon emission, is
described by a uniform circular motion. Thus, one can write the acceleration of the
trajectory as a = (2πνn)2rn and one has

hνn
τn
∼ (ν2

na0n
2)2. (I.6)

The last statement needed for the estimation is that, for large n, the transition
frequency νn ∼ 1/(n − 1)2 − 1/n2 between |nc〉 and |(n− 1)c〉 can be approximated4

by the derivative ∂nEn ∼ 1/n3. One then gets τn ∼ n5. This is the right scaling for
cRy atoms.5 In Table I.2 we show the radiative lifetime (at 0 K) for some cRy states
of relevance to this work.

nc Lifetime (ms)

53c 38.4
52c 34.9
51c 31.6
50c 28.6
49c 25.8
48c 23.3

Table I.2 Lifetime for a few cRy of interest at 0 K.

I.3 Rydberg atoms in external fields

Due to their huge polarizability, Rydberg atoms are very sensitive to electric fields and,
when promoted to high-angular-momentum levels, they also have a very strong mag-
netic field dependence. Moreover, because of the degeneracy in the Coulomb potential,
high-l Rydberg states are only stable in non-vanishing directing fields. In this sense,

4This is the third Kepler law. The square of the electron period is proportional to the cube of the
orbit radius ν2n ∼ r−3

n .
5Note that the lifetime for low-angular-momentum Rydberg states scales as n3 [88, 142].
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external fields are both a requirement and a tool for the preparation and manipulation
of Rydberg states. We will now consider the modifications of the atomic Hamiltonian
Ĥ0 in the presence of both electric and magnetic external fields.

First, consider an external magnetic field Bz in the z direction. This field gives rise
to a Zeeman term V̂Z that takes the form [147]

V̂Z = gLµBBzL̂z,

where µB is the Bohr magneton, and L̂z is the third component of the angular mo-
mentum operator L̂. The gyromagnetic factor of the electron is gL. The Zeeman term
degrades the symmetry of the problem from spherical to cylindrical and it shifts the
energies by

Eml = gLµBBzml.

In addition, an external electric field Fz in the z direction gives rise to a Stark term
V̂S written [147]

V̂S = qeFz ẑ,

where qe is the charge of the electron and ẑ is the third component of the position
operator r̂.

The choice of making the fields parallel to each other keeps ml as a good quantum
number while the presence of an electric field turns l into a bad quantum number. For
moderate fields, the solutions to the Schödinger equation can be labeled6 to introduce
the n1 and n2 non-negative parabolic quantum numbers. These are related to n and
ml by n = n1 + n2 + |ml| + 1 and, for convenience, they can be replaced by a de-
rived quantum number k = n2 − n1. This derived quantum number permits one to
write a simple expression for the Stark energy terms when developed in orders of F as
En,k,ml = E

(0)
n,k,ml

+E
(1)
n,k,ml

+E
(2)
n,k,ml

+ · · · . The first and second order Stark shifts in
the expansion read

E
(1)
n,k,ml

=
3

2
qea0nk × F, and

E
(2)
n,k,ml

=

(
qea0n

2

8αc

)2

(19 + 17n2 − 9m2
l − 3k2)/me × F 2.

(I.7)

Figure I.2 presents the diamond shaped Stark energy level structure (for Bz = 0 G
and Fz ? 2 V/cm). In blue we show the result for the Coulomb potential and in red we
show the structure for Rubidium-87. For the purpose of this Figure we choose n = 52.
The main features of the Stark diamond can be understood thanks to linear Stark
terms as a function of ml and k. In the case of Rubidium one sees that, for small ml,
the levels get scrambled out of the regular spacing provided by the first order Stark
shifts. This irregularity is caused by the quantum defects (see Table I.1). For |ml| > 4,
the blue and red levels almost completely overlap. On the inset we show the tip of the
diamond where the circular level and the closest elliptical levels (|52e±〉) lie.7

6The principal quantum number n is only approximately a good quantum number. For n ∼ 50, at
high electric fields (10 V/cm), the states are contaminated by the adjacent manifold (∼ 1%).

7Both k = 0 tips of the diamond represent a circular level but with opposite projections of angular-
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Figure I.2 The Stark diamond for Rubidium-87 (red) showing the quantum defects under
the influence of an electric field (for Bz = 0 G and Fz > 2 V/cm) and that for the Coulomb
potential (blue).

An alternative, but complementary, way to picture the relevant levels is to plot their
energy as a function of the external electric field magnitude. In Figure I.3 we show the
Stark map (for Bz = 0) for the n = 52 dipole accessible levels from |52D5/2,mj = 5/2〉.
These are limited to ml = 2, 3. We see that the quantum defect strongly shifts away
the low-angular-momentum levels (D, F , and G). The stronger the shift, the weaker
their electric field dependence around zero field.

I.4 The Rydberg-Rydberg interaction

Besides being very sensitive to external fields, Rydberg atoms strongly interact with
each other. The dominant interaction is due to their electric dipole moment and its
Hamiltonian takes the form [147]

V̂dd(R) =
1

4πε0R3

[
d̂1 · d̂2 − 3

(
d̂1 ·

R

R

)(
d̂2 ·

R

R

)]
. (I.8)

Here d̂ is the dipole operator and R is the position vector describing the coordinates
of one atom with respect to the other. One can develop the effect of this operator as a
perturbative expansion taking 1/R3 as the expansion parameter. To make the notation

momentum ml. The classical picture is that the electrons ‘rotate’ in opposite directions. [107].
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Figure I.3 We show the electric field dependence of the atomic levels corresponding to n = 52
and l ≥ 2 for Rubidium-87. The zero of energy is taken to be the energy of state 52F,mj = 2
at zero electric field. At a field of ∼ 0.3 V/cm the quantum defect separating the F level from
the multiplicity is of the same order as Stark shift and the F level acquires a linear energy
dependence with the field.

self-evident we will write the energies as

E =
∑
n

C3×n
R3×n . (I.9)

The first order term is proportional to the coefficient C3 and it is called the ‘direct
dipole interaction’ term. The second order term is proportional to C6 and it is referred
to as the ‘van der Waals’ (vdW) term. Using perturbation theory, the general expansion
for any matrix elements Vab [147] reads:

V
(1)
ab = 〈a1, a2| V̂dd(R) |b1, b2〉 =

C3,a,b

R3
, (I.10)

V
(2)
ab =

∑
c

〈a1, a2|V̂dd|c1, c2〉〈c1, c2|V̂dd|b1, b2〉
Ea + Eb − Ec − Ed

=
C6,a,b

R6
, · · · (I.11)

where the superindex states the order of the perturbation. Since the dipole-dipole oper-
ator does not commute with the Zeeman-Stark Hamiltonian, the interaction eigenbasis
will contain states that are linear combinations of the two-atom parabolic basis.
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A pair of atoms in the same state

We describe the interaction of a pair of cRy atoms by introducing a notation for the
eigenstates of the full interaction Hamiltonian. We define the interaction eigenstate
|ψ50c,50c〉 as the state that is adiabatically coupled to the product state |50c, 50c〉 as
R→∞.

This state has a well-defined energy dependence with distance that we plot in
Figure I.4. Fitting this data will allow us to extract the C3×n (eq.(I.9)) coefficients
for the 50c – 50c interaction. The plot is made by diagonalizing the full interaction
Hamiltonian (including the Stark and Zeeman terms) for each value of R. For the
calculation we take the atoms to be positioned along the x direction and the fields to
be along the z direction as shown on the inset. The directing fields are taken to be
Fz=1 V/cm and Bz=10 G. The color code represents the proportion of the decoupled
parabolic state |50c, 50c〉 in the actual eigenstates of the full Hamiltonian. The Hilbert
space for the pair is truncated to 1225 states for this calculation. The basis used for the
matrix diagonalization is built by taking products of parabolic states. The truncation
is made by imposing limits to the span of the quantum numbers of the single atom
states, taking only states with ∆ml ≤ 2 and ∆n ≤ 2 from state |50c〉.

For as long as |ψ50c,50c〉 ∼ |50c, 50c〉 we expect no direct dipole interaction since the
atoms have no permanent dipole (see Figure I.1). As expected, the linear dependence in
the loglog scale manifests an interaction in 1/R6. We then fit the energy as a function
of the atomic separation by E(R) = C6/R

6 (dashed black line) in the region between 5
and 20 micrometers. The coefficient associated to the eigenvalue of |ψ50c,50c〉 is found
to be C6,50,50 = h × 4.170 GHz/µm6. At R < 3 µm the interaction is too strong and
perturbation theory to second order fails.

For a pair of atoms in state |ψ48c,48c〉 the van der Waals coefficient is found to be
C6,48,48 = h× 3.032 GHz/µm6. Note that in both cases the interaction is repulsive.

1052

/h

Fz Bz

Figure I.4 We show the energies of pair |ψ50c,50c〉 as a function of distance. The orientation
of the electric and magnetic directing fields is shown by the red and blue arrows respectively.
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Main contributions to the mixing

The most relevant level pairs for describing the previous van der Waals shift are the
ones closest to resonance in absence of the perturbation (see eq.(I.11)). Therefore, with
the help of Figure I.5 one can see that the main correction to the expansion of |ψ50c,50c〉
in the parabolic basis comes from state |ne+, ne−〉 + |ne−, ne+〉 (red level).8 This is
because circular states have no linear Stark shift (k = 0, see eq.(I.7) and Figure I.2) and
because the pair of elliptical states in |ne±〉 have k = ±1 so their linear Stark cancels
exactly. Note that the exact resonance is nonetheless avoided thanks to the quadratic
Stark shift and the linear Zeeman shift. Thus, these external fields control the level
mixing. Many other close laying pairs of levels are either far off-resonant (green levels)
or forbidden by the dipole selection rules (gray levels).

A semi-classical picture helps to understand the atoms’ behavior when they are
close together. One can picture the dipoles tilting towards each other as the inter-
atomic dipolar electric field becomes relevant compared to the external directing field
(see inset in Figure I.4). This explains the mixing of the parabolic basis, and at the
same time suggests that stronger external directing fields will compensate for this effect.
This is confirmed by the quantum mechanical picture where external fields enforcingml

as a good quantum number mitigate level pollution caused by the ml− mixing dipole
interaction.

Figure I.5 Energy diagram of the relevant states for the interaction. The blue level represents
the circular pair state. The red level provides the dominant contribution to the perturbation.
The grey states are not coupled by the dipole Hamiltonian to the circular pair. The red and
blue levels are drawn slightly shifted to describe the Zeeman and quadratic Stark shifts.

A pair of atoms in different states

In the case of a non-interacting pair of circular atoms with different n we have two
degenerate eigenstates that we write as |nc, n′c〉 and |n′c, nc〉. The presence of the
interaction breaks this degeneracy and in the limit R → ∞ the eigenstates are found
to be the symmetric and anti-symmetric combinations. We define then the interaction
eigenstates |ψn,n′,±〉 for all distances R as

8Note that interference effects eliminates the contribution of |ne+, ne−〉 − |ne−, ne+〉
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|ψn,n′,±〉
R→∞−−−−→ 1√

2
(|nc, n′c〉 ± |n′c, nc〉). (I.12)

These two eigenstates have a well-defined energy dependence with distance that
one can fit to extract the C3×n coefficients. In Figure I.6 (a) we show the energies
dependence for |ψ50,49,±〉 (∆n = 1). The color code represents the population of state
|50c, 49c〉 at each distance R. The Hilbert space for the calculation is truncated to 2350
states defined by ∆ml ≤ 2 and ∆n ≤ 2 now from both states |50c〉 and |49c〉.

/h

105105

~

(a)                                                                             (b)

/h

Figure I.6 Absolute value of the interaction energy as a function of position for interacting
circular atoms. We show the energy dependence of the pair |ψ50c,49c,±〉 (a) and |ψ50c,48c,±〉 (b)
with the interatomic distance R. The color bar represents the proportion of the product states
to the eigenstate. For the pair of levels 50c – 49c (∆n = 1) the direct dipole term dominates
the interaction (1/R3). For the pair 50c – 48c (∆n = 2) the van der Waals (1/R6) interaction
dominates. In both plots (a) and (b), the solid black line fits the energy for the anti-symmetric
superposition and the dashed line fits that of the symmetric superposition for R > 5 µm.

In contrast to the previous case study, one now expects the pair of atoms to interact
via the direct dipole coupling 1/R3. This becomes obvious while writing the limiting
state (eq.(I.12)) as

|50c, 49c〉 ± |49c, 50c〉 = (|50c〉+ |49c〉)⊗ (|50c〉 ± |49c〉) +

− (|50c〉 − |49c〉)⊗ (|50c〉 ∓ |49c〉),

as one exposes the permanent dipoles in each atom (see Figure I.1). Note also that
the ‘classical dipoles’ are aligned or anti-aligned depending on the symmetry of the
superposition. The atomic interaction is then attractive or repulsive in accordance
with the classical formula.

We plot the energy dependence in Figure I.6 (a) and we fit its absolute value as a
function of the atomic separation by E(R) = |C±3 |/R3 in the region between 5 and 20
micrometers. The parameters of the fit are found to be C+

3,50,49 = +h×1.4236 GHz/µm3

(dashed line) where the (+) stands for the symmetric superposition. For the anti-
symmetric superposition (−) we get C−3,50,49 = −h × 1.4267 GHz/µm3 (solid black
line).
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In Figure I.6 (b) the pair states we consider is |50c〉 and |48c〉. Again, after the
pictorial representation in Figure I.1, one expects no permanent dipole interaction. We
fit the energy as a function of the atomic separation by E(R) = C±6 /R

6 in the region
between 5 and 20 micrometers.

In this case, the fit parameters are found to be C+
6,50,48 = h × 1.635 GHz/µm6

where the (+) stands for the symmetric superposition (dashed black line). For the
anti-symmetric superposition (−), we get C−6,50,48 = h × 2.435 GHz/µm6 (solid black
line). Both superpositions interact repulsively.

I.5 Conclusion

In this chapter we developed a theoretical framework to study cRy atoms using ele-
mentary atomic physics. A short review of some simple effects that give the cRy atoms
their exaggerated properties was presented. We focused our attention on cRy atoms
with principal quantum number around n ∼ 50, and we introduced some scaling rules
that allow us to calculate, if not exactly [154], the expected behavior for other circular
states. The intuition we tried to transmit will prove useful as one progresses in the
present manuscript.

Circular Rydberg atoms have a millisecond range lifetime at cryogenic temperatures
and interact very strongly with each other (tens of MHz), even at distances of a few
micrometers. These properties make them, themselves, fascinating research objects,
but together with state-of-the-art experimental techniques, their exaggerated properties
are promoted to technological tools. In the following chapter we will turn to defend
the claim that a promising quantum simulator can be built using cRy states.
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II.1 Principle of the proposed simulator

Many-body physics has proven to be very demanding. The field has developed rapidly
and many experimental and theoretical advances have been made in the last years
[155]. Nonetheless, open questions still remain and they have pushed the field in new
directions. Problems related to slow dynamics and disorder are at the center of this
discussion and, even if some very powerful and helpful approximations provide insight,
there is still room beyond them for research.

Atomic physics provides us with a toolbox of highly controllable and versatile quan-
tum objects out of which one can engineer artificial systems [156]. We will discuss a
new paradigm for quantum simulation of a spin-chain using cRy atoms. Our proposal
promises unprecedented flexibility during long timescales and, with it, the possibility
to explore domains which have remained out of reach so far.

The proposed quantum simulator relies on the laser trapping of cRy atoms and it
is sketched in Figure II.1. The deterministic preparation of a cRy atom chain inside a
spontaneous emission inhibiting structure complemented by single site resolution will
provide the hardware [108]. The very challenging steps to achieve such an experimental
landmark are discussed in this chapter.

Figure II.1 Sketch of the proposed simulator. An atom-chip (C) will be used to prepare cold
atoms, a chain of Rydberg atoms will evolve under a capacitive structure in the science (S)
region. The Rydberg atoms are to be detected (D) with single site resolution.

II.1.1 The emulated XXZ model

It is well-known that spin physics is responsible for magnetic phenomena in matter.
Even though the magnetic spin-spin interaction of a pair of electrons at 0.1 nm from
each other is about 1 K, the ferromagnetic properties of, say, magnetite persist beyond
800 K. This is strong evidence suggesting that magnetism is hardly related to the
magnetic dipolar interactions in matter [157]. Actually, the origin of magnetism is to
be tracked back to the interplay between fermionic spin statistics and the Coulomb
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interaction. The Coulomb energy depends only on the relative distance between the
two charged particles in question but, due to the anti-symmetrization postulate, the
position of a pair of indistinguishable electrons is strongly correlated to their spin wave
function. It is this correlation that permits us to cast the relevant interaction in the
language of spin [158].

In this thesis we will be concerned with a Heisenberg Hamiltonian that takes the
form

Ĥ

h
=

∆

2

N−1∑
j=2

σ̂zj +
Ω

2

N∑
j=1

σ̂xj +

+

N−1∑
j=1

[
Jzσ̂

z
j σ̂

z
j+1 + J

(
σ̂xj σ̂

x
j+1 + σ̂yj σ̂

y
j+1

)]
,

(II.1)

where σxij is the xi Pauli operator of the jth spin of an N spin chain.
This Hamiltonian describes anisotropic magnets where two spin components are

coupled with the same strength J , while a third direction labeled z couples spins with
an independent coupling constant Jz.1 The one-particle terms correspond to external
magnetic fields in x and z directions with magnitudes Ω and ∆ respectively. The phase
diagram in Figure II.2, allows us to motivate the flexibility and variety of phases that
can be achieved in a simulation of this Hamiltonian.

II.1.2 Phase diagram

The phase diagram in Figure II.2 shows the magnetic phases for different values of the
Hamiltonian parameters and ∆ = 0. Four main areas are separated by the type of
correlations found in the ground state of the chain. The fact that it is possible to the-
oretically understand the behavior of the system’s ground state is of great importance
and will provide a way to benchmark our simulator.

We start discussing the phase diagram by referring to the biggest area in the plot
(green). It corresponds to the situation in which the magnetic field along the x direction
is dominant over the interaction (Ω � J, Jz). The Hamiltonian can then be seen as
Ĥ/h ∼ Ω

∑N
j=1 σ̂

x
j /2 and the ground state is, naturally, polarized along the x direction.

The ground state is then ⊗N (|↑〉−|↓〉)/
√

2 and the phase is ‘paramagnetic’ (Px).2 This
phase is separated from the rest by critical (algebraic) Ising transitions as shown by
the red lines in Figure II.2.

In the limit of a vanishing transverse magnetic field (Ω = 0) we find three symmetry-
breaking phases that correspond to the purely XXZ model with no external magnetic
field. For Jz < −J the system presents ferromagnetic ordering (F ), a gapless Luttinger
liquid critical phase shows up for −J < Jz < J , and a gapped Néel phase in the z
direction appears for Jz > J . The ferromagnetic and the Néel phases (Ny and Nz)
have doubly degenerate ground states (in contrast with the paramagnetic phase) and
break the Zz2 symmetry. The Néel phase also breaks the translational symmetry.

1In particular this Hamiltonian describes the physics of the Cs2CoCl4 [159, 160] or BaCo2V2O8

[161] quantum magnets.
2The terminology of Ferromagnet is reserved for spins that are aligned due to their interaction.
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Figure II.2 Sketch of the phase diagram of the Hamiltonian eq.(II.1) for ∆ = 0. The recon-
struction is based on the results of Figure II.3 and from [162]

If a transverse magnetic field is applied (Ω > 0), these two gapped phases are stable
until the gap closes at the Ising transition line, at which the system enters the para-
magnetic phase. For the Luttinger liquid phase, a non-zero transverse field immediately
opens a gap. The associated broken symmetry is Zy2 , corresponding to a Néel ordering
in the y direction. This order is eventually destroyed by the transverse field through
an Ising transition towards the paramagnetic phase.

The boundaries between the ferromagnetic phase and the two Néel phases emerge
from the Heisenberg points Jz = ±J , and Ω = 0. The upper line Jz = J corresponds
to the Heisenberg model under an external field [163, 164], for which a Luttinger
liquid phase survives up to the critical field Ω/4J = 2, at which a commensurate-
incommensurate transition occurs [165, 166]. The line Jz = −J is subtle since it does
not correspond to the Heisenberg model as the Hamiltonian cannot be cast as a scalar
product. A pertinent transformation (σ̂z → (−1)j σ̂z) however, permits the treatment
in terms of a Heisenberg model with a staggered external field [166, 167].

This spin-1/2 model presents other remarkable features. The integrability of the
model is an essential feature to discuss relaxation and thermalization (non integrable
models are chaotic). The model is integrable by the Bethe ansatz when Ω = 0 and
on the critical lines emerging from the Heisenberg points. In particular, Ω = Jz =

0 corresponds to the XY model that maps onto free fermions (via a Wigner-Jordan
transformation) [168]. In the J = 0 limit, the model maps onto the anti-ferromagnetic
Ising model in a transverse field, which is also equivalent to free fermions [169], and is
thus integrable. Away from these limits, the model is non-integrable.

The quantitative plot of Figure II.2 is supported by numerical results based on
matrix-product state (MPS) simulations [170–173] that are shown in Figure II.3. We
define the average magnetization along the different axis as
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Mxi =
1

N

N∑
j=1

〈σ̂xij 〉.

For symmetry reasons, My,z must be zero on non-degenerate finite-sized ground
states. Therefore, the ordering of the spins is better captured by order parameters
defined from correlations as

Oxi = sign (Cxi)
√
|Cxi | with Cxi =

〈
σ̂xiN/2σ̂

xi
N/2+r

〉
.

Figure II.3 (a): MPS results for the order parameters (see definitions in main text) for an
open chain with N = 40 spins. (b): Same for a N = 90 open spin chain. The order parameters
are computed with r = 17 for N = 40 and r = 31 for N = 90. Red regions represent
ferromagnetic ordering while blue ones represent anti-ferromagnetic (Néel) ordering. The gray
lines are guides to the eye for the quantum phase transition lines. The horizontal lines can be
computed analytically, or inferred from symmetry arguments.

The magnetization and order parameters along the three spin axes as a function
of Ω/4J and Jz/J for (a) N = 40 and (b) N = 90 spin chains are shown. The first
column shows that, as expected, the magnetizationMx increases steadily with Ω/4J .
The region with a largeMx value corresponds to the paramagnetic phase. Along the
Jz = J line and for N = 40, we observe magnetization plateaus, corresponding to a
succession of ground states with fixed total magnetization along x. These finite-size
effects are gradually smoothed out away from this line [162, 174].

The order parameters Oy and Oz show the strength of Néel and ferromagnetic
ordering across the phase diagram. While most phase transitions are rather steep,
the transition at Jz = J is much smoother due to strong finite-size effects. In this
region, the gaps are indeed the smallest (the Luttinger liquid to Néel transition is of
the Berezinskii-Kosterlitz-Thouless type [175–177]).

The features of the phase diagram and its finite-size effects are also evident when
plotting the von Neumann entropy
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SvN = −Tr [ρ̂ log ρ̂] ,

where ρ̂ is the reduced density-matrix of the first N/2 spins. Along the critical lines,
one expects [178, 179] a logarithmic divergence of the entropy SvN ∼ c/6 log[N ] with
c = 1 for Luttinger liquid phase and c = 1/2 for Ising transitions. In the gaped phases,
the entropy remains finite, and decreases when the gap increases. It displays plateaus
along the Jz = J line reminiscent of the magnetization plateaus.

Figure II.3 shows that this spin chain Hamiltonian exhibits a wide variety of in-
teresting behaviors. It also shows that, in most regions, finite size effects are not too
large, since a good approximation of the thermodynamical limit can be reached with 40
atoms only. The observation of this phase diagram would be an excellent benchmark
for the operation of the simulator where many clear theoretical claims are still await-
ing experimental confirmation. Success in such a preliminary experimental stage will
give one confidence in the simulation. One will then be able to trust the results that
the simulator provides in more demanding regimes. This will pave the way to study
more challenging dynamical experiments or even disordered systems where interesting
questions are still open.

II.1.3 The role of the circular Rydberg atoms

In what follows we derive the emergence of this spin Hamiltonian from the underlying
atomic physics of the actual system used to build the simulator. The spin will be
encoded in a two-level system made of two cRy states. The van der Waals atomic
couplings between the atoms give rise to the spin coupling terms proportional to J
and Jz. A MW dressing of the atom chain will give rise to single atom terms that are
identical to those appearing for a single spin in an external magnetic field.

The van der Waals interaction

A pair of circular Rydberg atoms in the same state |nc〉 and at a distance of R� n2a0

interact via the fluctuations of their electronic wave function (see chapter I). This is
known as the van der Waals (∼ 1/R6) interaction and corresponds to a second order
process mediated by the dipole-dipole interaction. The model Hamiltonian for the
interaction between neutral atoms is given by eq. (I.8) and we rewrite it here in terms
of the spherical tensor operators [148]. Taking the quantization axis orthogonal to the
axis connecting the pair of atoms, we get

V̂dd(R) = − q2
e

3ε0R3
r1r2

[
Ŷ 0

1 Ŷ
0

1 +
1

2
(Ŷ +1

1 Ŷ −1
1 + Ŷ −1

1 Ŷ +1
1 )

−3

2
(Ŷ +1

1 Ŷ +1
1 + Ŷ −1

1 Ŷ −1
1 )

]
.

(II.2)

From this notation, the allowed dipole transitions are explicit since the rank and the
component of the involved operators are exposed. The selection rules arise straightfor-
wardly from the Wigner-Eckart theorem.

Considering now an atomic pair of different states |nc〉 |(n+ 1)c〉 at distances of



II.1. Principle of the proposed simulator 31

R ∼5 µm (much bigger than the atom size) one obtains first-order exchange interactions
that scale as Vdd ∼ 1/R3. This will lead to trivial dynamics since these terms will
dominate the evolution. Having Hamiltonian terms of the same order of magnitude
(all ∼ 1/R6) will allow us to fully exploit the richness of our simulator. This is the case
if we explicitly take as the pair of states |nc〉 and |(n+ 2)c〉.

Using the parabolic basis, we can write the Hamiltonian restricted to the two-atom
two-level subspace {|nc〉 |nc〉 , |nc〉 |(n+ 2)c〉 , |(n+ 2)c〉 |nc〉 , |(n+ 2)c〉 |(n+ 2)c〉} as

V̂vdW =
1

R6


C6,n,n 0 0 0

0 C6,n,n+2 A6,n+2,n 0

0 A6,n+2,n C6,n+2,n 0

0 0 0 C6,n+2,n+2

 . (II.3)

The matrix elements can be written as

V
(2)
ab =

∑
|c〉

〈a |Vdd| c〉 〈c |Vdd| b〉
Ea + Eb − Ec − Ed

=

{
A6,a,b/R

6 if a 6= b

C6,a,b/R
6 if a = b

(II.4)

where both a and b stand for two-atoms states.
The central 2 × 2 matrix can be diagonalized. The eigenvalues are found to be

C ′6,± = C6 ±A6, where we have used the fact that C6,n,n+2 = C6,n+2,n = C6 and done
analogously for A6. The ± subindex corresponds to the symmetric and anti-symmetric
superposition of states.

The Feynman-like diagrams shown in Figure II.4 are useful to understand the terms
in the Hamiltonian (II.3). The C6 coefficients are known as the self-interactions (diag-
onal) and the A6 coefficients are known as the exchange coefficients (off-diagonal) and
represent flip-flops between the basis states.

1 1

' '

Figure II.4 We show a graphical interpretation of the physical processes giving rise to the
van der Waals interaction eq.(II.3) between cRy atoms. The state labeled with question marks
represent anyone of the many states contributing to the process.

A convenient rewriting of this interaction Hamiltonian can be done in terms of the
Pauli matrices. Projecting V̂vdW in the base that one can construct out of σ̂i⊗ σ̂j where
i, j ∈ {0, x, y, z}, σ̂0 is the 2× 2 identity operator and the other three indices designate
the three Pauli matrices, the new expression reads
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V̂vdW = δE0σ̂
0
1σ̂

0
2 +

δζ

2

(
σ̂z1σ̂

0
2 + σ̂0

1σ̂
z
2

)
+ Jzσ̂

z
1σ̂

z
2 + J (σ̂x1 σ̂

x
2 + σ̂y1 σ̂

y
2) , (II.5)

where the subindex labels the atom, and the tensorial product notation has been
dropped. The coefficients introduced are given by the atomic interaction parameters
as

δE0 =
C6,n,n + 2C6,n,n+2 + C6,n+2,n+2

4R6

δζ =
C6,n,n − C6,n+2,n+2

2R6

Jz =
C6,n,n − 2C6,n,n+2 + C6,n+2,n+2

4R6

J =
A6,n,n+2

2R6
.

(II.6)

If the motional degrees of freedom are completely frozen, the δE0 term is constant and
nothing but an energy offset that we will omit from now on.

The expression in eq.(II.6) is to be compared with eq.(II.1). One notices that, in
our derivation, we have an extra term δζ/2(σ̂z1 + σ̂zN ) which keeps track of the finite
size of the chain. It originates from the fact that the first and last atom have only
one neighbor and thus their energies are shifted by half of the interaction. This makes
the atoms in the tips of the chain different from the inner atoms and represents an
imperfection in the simulation of the standard XXZ Heisenberg Hamiltonian. Note,
however, that it is an asset or a drawback depending on the purpose of the quantum
simulator. For instance, the local symmetry breaking field is an asset while entering a
ferromagnetic phase. It creates a perturbation that naturally triggers the build-up of
the order parameter. Also note that, for large enough chains and in gapped phases,
these edge effects are relevant only over the correlation length. The physics of the
model can still be captured in the bulk of the chain. If the end atom asymmetry
shows to be a limiting factor, a spatial light modulator can be used to design periodic
chains [180]. Another solution is to prepare the end atoms in far lying cRy levels. The
exchange interaction would then be negligible for the end atoms, but they will still shift
the energy of their neighbor and compensate for δζ. The flexibility and control that
state-of-the-art techniques provide make these challenging perspectives a possibility.

In comparing eq.(II.6) with eq.(II.1), one also notices that the single spin terms are
missing. These are reproduced by a MW dressing that we introduce next.

The single-atom terms

A single two-level atom defined in the space spanned by {|(n+ 2)c〉 , |nc〉} has a Hamil-
tonian given by

Ĥ0 =
hν0

2
σ̂z,

where the energy difference hν0 is computed from eq.(I.1). The ground state is trivially
found to be |nc〉 but by turning on a MW coupling, the dynamics are very much
enriched. In the interaction picture, under the rotating wave approximation [141], the
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single-atom Hamiltonian now presents two non-commuting terms

Ĥ0 =
h̄∆

2
σ̂z +

h̄Ω

2
σ̂x, (II.7)

and directly maps into the external fields to be simulated (eq.(II.1)). Here ∆ is the
detuning between the MW field and the atomic transition and Ω is the Rabi frequency
of the dressing. We note that this dressing does not change the interaction terms.

By adding up the interaction terms (eq.(II.5)) and the single atom terms (eq.(II.7)),
and by summing over all the N atoms in the chain, the formal analogy between the
simulated system (eq.(II.1)) and the cRy atom simulator is complete.

II.1.4 Tunability

We see from Figure II.2 that the relevant thermodynamic ratio is Jz/J . By being
able to tune it from Jz/J < −1 to Jz/J > 1 one is able to access all the available
phases. Remarkably, we have found that the atomic interaction is tunable at will by
controlling the electric and magnetic field over the atoms. We show this in Figure II.5
(a) and (b). The points in the graphs each correspond to the full diagonalization of a
two-atom Hamiltonian. The basis used is defined, as before, to contain states differing
by ∆n ≤ 2, ∆ml ≤ 2 from each level in the considered pair. Many choices on the spin
encoding into cRy levels are shown.

(a)                                                                 (b)

3

Figure II.5 On the left we show the Jz/J ratio for {|nc〉 , |(n+ 2)c〉} pairs. The plot is done for
B = 10 G and as a function of the electric field F . Atoms are 5 µm apart. Note that for n = 52
the ratio is always negative. On the right we show, as an illustration of the flexibility provided
by the magnetic field, that by reducing the magnetic field, the Jz/J → −1, 1 tunability with
F is regained for n = 52.

The exchange characterized by J is proportional to the van der Waals exchange
term ∼ A6 (see eq.(II.4) and Figure II.4) and it is found to depend only weakly on the
electric field. We understand this using the analytic expression coming from pertur-
bation theory: The only way a pair of atoms can flip in a Föster-like energy transfer
|nc〉 |(n+ 2)c〉 → |(n+ 2)c〉 |nc〉 is via the intermediate pair |(n+ 1)c〉 |(n+ 1)c〉 as
shown in Figure II.4. Effectively, the A6 depends only quadratically on the electric
field because the intermediate pair |(n+ 1)c〉 |(n+ 1)c〉 has a quadratic Stark shift to
leading order.
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The parameter J fixes the typical time constant for the simulation. For a pair of
interaction atoms in |50c, 48c〉 at distance of R = 5 µm from each other, and under
external directing fields of F = 2 V/cm and B = 12 G, we find a numerical value of
J ∼ h× 17 kHz. Note that its strong dependence on distance (1/R6) allows for a large
tunability of this characteristic timescale.

On the other hand, the magnitude of the electric field has a strong effect on the
value of Jz. Once more, this can be understood using the diagrams in Figure II.4. Since
the self-coupling |nc〉 |n′c〉 → |nc〉 |n′c〉 can be achieved in a back and forth manner by
a two-photon process, any pair of levels directly coupled to the circular state will
contribute. A dependence on the electric field is imprinted by intermediate levels with
a linear Stark shift. This differential sensitivity to the electric field between J and Jz
provides the tunability of our simulator.

Since J and Jz have different scaling with n, we can choose a range of n and a set
of external fields so that their ratio spans the region of interest. In Figure II.5 (b), we
show the ratio of Jz/J for different qubit spaces and different magnetic fields B as a
function of the electric field F .

The edge term δζ varies only slightly with the electric field. For R ∼ 5 µm,
B > 10 G, and 2 V/cm< F <12 V/cm, we have δζ/J ∼ 2. We note that since
the diagonal mechanical repulsion, and not only the transition ‘planetary’ dipole, is
involved in the expression of δζ, its dependence with distance presents a contribution
in 1/R3 arising from the ‘permanent’ electric dipole induced by the directing electric
field.

Regarding the tunability of the single atom terms, we will simply state that by
changing the frequency of the MW dressing field and its amplitude one can change them
completely within a few nanoseconds. This is much faster than any other timescale of
the Hamiltonian evolution.

II.2 Atomic lifetime

We now turn to the study of the preservation of the atomic state in our quantum
simulator. We review some standard techniques from cavity QED and tailor them to
our purposes in order to stop the natural decay of cRy states.

Charged particles are coupled to the electromagnetic ‘vacuum’ field in a fundamen-
tal and inescapable way. The decay of excited electronic states is a direct consequence.
Quantum mechanically, the origin of spontaneous emission is partly due to the vacuum
fluctuations in the modes resonant with the transition in question [109, 181].3 This
section focuses on the fact that even if one cannot escape this fundamental coupling,
one can engineer the vacuum where an atoms sits so to interrupt its ‘natural’ evolution.
An inhibiting structure will be reviewed here since it will be used to reduce the density
of modes and, with them, suppress the decay rate in the experiment we envision.4

3We will also remark here that the spontaneous emission rate is proportional to the density of
resonant modes, the density of off-resonant modes provoke a level’s shift of the same kind as those
produced by the Stark shift of off-resonant light on an atom. This vacuum shift is known as the Lamb
shift and was known well before the actual light shifts we just used as an explanation. Also note that,
if this energy shift has a noticeable gradient, an atom will feel a force proportional to it. This force is
known as the Casimir force [141, 182–184]. All these effects share a common origin.

4We will mention that the converse is also true and historically was the first of the two phenomena
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II.2.1 Atoms in free space

The identification of three processes i) (spontaneous) decay, ii) (stimulated) emission,
and iii) absorption, is enough to compute the lifetime of an atomic state [186].

If we consider an atom in an initial state |i〉, the decay rate towards a final state
|f〉 is given by

Γsponti→f =
4αω3

if

3c2
| 〈i| r̂ |f〉 |2 =

2ω3
if

3ε0c3h
|dif |2, (II.8)

where α is the fine structure constant, ωif is the frequency of the transition, c the speed
of light, and r̂ is the position operator, and where we have defined the dipole operator
d̂. It is implicit in the above equation that the initial state is the more energetic of the
two, Ei > Ef .

The presence of black-body photons opens other channels via which the atomic
state can be lost. The rate of loss through these channels is proportional to the mean
number of thermal photons and thus a function of the temperature. The respective
loss rates are

Γstimi→f = nth(ωif , T )
4αω3

if

3c2
| 〈i| r̂ |f〉 |2, (II.9)

Γabsi→f ′ = nth(ωif ′ , T )
4αω3

if ′

3c2
| 〈i| r̂ |f ′〉 |2. (II.10)

Where Ef ′ > Ei and nth(ω, T ) = 1/(eh̄ω/kBT − 1) is the mean number of resonant
thermal photons per mode for a given black-body temperature T . In the case that
more than one final state is allowed, one obtains the total rate of depopulation of state
|i〉 by summing over all final states

Γi =
∑
f<i

(
Γsponti→f + Γstimi→f

)
+
∑
f ′>i

Γabsi→f ′ , (II.11)

where the sum index is just a reminder on the energy condition for each process.5 The
incoherent sum of terms comes from the fact that each loss channel has a different final
state f (f ′) and thus they interfere not.

In Figure II.6 we show the light-atom processes giving rise to Γi. For the sake
of clarity, we choose to describe the physics around the decay of the n = 52 circular
state. Note the difference in order of magnitude for the dipole matrix elements for
transitions towards the upper multiplicity. This is respected in general for any n � 1

where |dσ+ | � |dπ| � |dσ− |. One can estimate that the σ+ transition is ∼ 50 stronger
than the next leading process (π).

The strong dependence on temperature is captured in Figure II.7 for a few cRy
levels. The basis to calculate the lifetime of each of them is built by taking neighboring
states that differ from it by ∆n ≤ 2 and ∆ml ≤ 2 (35 states). The rate is computed by
adding the independent transitions rates towards each state of the basis (eq.(II.11)).

to be identified [185]. If one increases the density around one mode, the spontaneous emission in this
mode gets enhanced. This is known as the Purcell effect.

5We note that these rates are often times cast in terms of the ‘Einstein’s A and B coefficients’
instead.
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The dashed lines are guides to the eye. As we will develop in the following sections, the
dependence in n and T found in this plot can be understood using the simple scaling
rules developed in chapter I.

Figure II.6 Main transitions responsible for the decay of level 52c. Note that
|dσ+ | � |dπ| � |dσ− |. The ordering is in general true for all cRy levels n and it is a
consequence of the scaling laws.

Figure II.7 Lifetime in free space as a function of the principal quantum number for a few
temperatures. The dashed lines are guides to the eye. At low temperatures, spontaneous
emission is dominant and the scaling is n5. At ‘high temperature’ (T ≥ 3 K), stimulated
emission is dominant and the decay rate is suppressed by a factor of nth ∼ n3. The scaling
becomes n2 producing the parallel lines in the plot.
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II.2.2 Atoms inside an ideal capacitor

The decay channel for circular states around n ∼ 50 has a wavelength of λ ∼ 5 mm. If
the circular state is placed between two conducting planes spaced by a distance L ∼ λ,
the density of modes will be heavily modified. The calculation is elementary and can be
performed in many equivalent ways using classical arguments. A quantum treatment
can be found in [183, 184].6 The modes with polarization parallel to the surfaces are
affected differently than those with perpendicular polarization. Since in the proximity
of a conducting surface the electric field is normal to it, it is natural to define the
quantization axis also in that direction. In general, the σ modes (polarization parallel
to the surface) are inhibited as one can guess from elementary electrostatics, and the
π modes (polarization normal to the surface) are enhanced. The modification shows
up as multiplicative factor Cε (ε ∈ {σ, π}) in the free space density of modes and it
modifies the loss rates towards state |i〉 to become Γi = CεΓ

i
0, where Γi0 is the decay

rate in free space. For an atom placed at z in between a pair of infinite and perfectly
conducting plates, the correction factors are computed to be

Cσ =

[2L/λ]∑
n=0

3λ

4L

[
1 +

(
nλ

2L

)2
]

sin2
(nπz
L

)
, (II.12)

Cπ =
3λ

4L
+

[2L/λ]∑
n=1

3λ

2L

[
1−

(
nλ

2L

)2
]

cos2
(nπz
L

)
. (II.13)

The sum is to be understood as running over n for as long as nλ < 2L. In Figure
II.8, we plot the wavelength dependence of the Cε factors at z = L/2. The cut-off at
high wavelength in Cσ is the feature that we will use to enhance the lifetime of our
quantum simulator. These effects have been observed before [109], but never during
the timescale that would be available if one used cold laser-trapped cRy atoms.

The physical interpretation of such an effect is that there is no long-wavelength
fluctuation of the vacuum field parallel to the mirrors, so no atomic decay can take
place. From a classical point of view one can think of this as an impedance divergence
that ‘reflects’ back into the atom any tentative of photon emission. We note that the
peaks in Figure II.8 are Purcell resonances [141].

Note that the relevant limit for us will be L/λ < 1. Here the expressions Cσ = 0

and Cπ = 3λ/4L are exactly valid.
The method of images helps us to understand the nature of the inhibition as an

interference process between the emitter and its successive reflection (separated a dis-
tance equivalent to few ∼ L). In the inset of Figure II.8, we depict the images of
dipoles to help understand both the inhibition of the σ polarization and the enhance-
ment of the π polarization at long wavelengths. For a dipole parallel to the surface,
the image dipole orientation is opposed (conjugated). In the limit where L � λ the
interference is destructive in the far field since dipoles radiate in phase-quadrature with
sub-λ, separation. For a dipole normal to the surfaces, the image dipole is identical

6It must be noticed that all these effects can be understood via classical arguments. The modifi-
cation of the density of modes is a purely classical effect. If one computes the emission of a classical
dipole close to a surface, one finds the quantum mechanical result.
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Figure II.8 Inhibition (or enhancement) of an ideal capacitor. We show the modification
of the spontaneous emission rate by an infinite and perfectly conducting capacitor of gap L.
Below cut-off, π polarization is enhanced (Cπ > 1) and σ polarization is completely inhibited
(Cσ = 0). Above cut-off, both polarizations oscillate in between enhancement and inhibitions.
The inset of the figures shows the electric image picture as responsible for the classical effect.

(parallel) to the dipole. In the regime where L � λ, the interference is constructive
since it corresponds to many copies of the dipole radiating in phase. The emission is
then enhanced.

The cRy states offer an ideal platform to study these effects. They have only one
decay channel, which is inhibited (σ+) and lies in the MW domain [105, 109]. These
states already have a considerably long free space lifetime and the millimeter sized
capacitor needed for inhibition still allows access to the atoms with free-space lasers.

II.2.3 Single cRy atom lifetimes

The individual loss rates of a state can be written as

Γi→f = Cε
4α

3c2
ω3
if |〈f |r · ε|i〉|2(δi→f + nth(ωif , T )). (II.14)

In this expression, ε defines the polarization of the transition σ± or π,
ωif = |Ei − Ef |/h̄ and we have introduced the function δi→f which differentiates
emission processes from absorption (δi→f = 1 if Ei > Ef and δi→f = 0 if Ei < Ef ).

In Figure II.9 we show a numerical calculation of the radiative lifetime of some cRy
states in free space (left) and inside an ideal 2 mm capacitor (right) as a function of
temperature.
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Figure II.9 Left: Lifetimes are ordered by n since the lifetime in free space always follows a
scaling law with a positive power of n. The dominant transition is σ ↓ and the spread in the
lifetimes changes from n5 → n2 due to thermal population of the mode. At high temperature,
the linear dependence with slope one in the loglog scale corresponds to the Rayleigh-Jeans
limit nth ∝ T where the losses are thermally dominated. At low temperatures nth � 1, there
is no temperature dependence. Right: Idealized radiative lifetime in an infinite capacitor. In
the low temperature regime the Wien’s law applies and smaller n have bigger lifetimes. The
quantity of black-body photons decreases with frequency (for νn < 50GHz) so the enhanced
π ↑ transition rules the lifetime. At high temperatures, two different behaviors are observed.
For n < 55 the |nc〉 → |(n+ 2)e〉 transition (named here 2σ ↑)is not inhibited and dominates
the lifetimes. For n > 55 the 2σ ↑ transition is inhibited and the π ↑ transition dominates. In
the latter case the rate is almost independent of n at high temperatures.

An elegant interpretation of the results can be given using the scaling laws for the
physical quantities involved: the loss rates eq.(II.14) present a competition between
the dipole moments d2

n, the black-body photons nth, and the density of modes ∝ Cεν3
n

(Cε = 1 in free space). We proceed to analyze the results.

A single cRy in free space

The dominant transition is the downwards σ+ transition to the lower circular (see
Figure II.6). We introduce the notation σ ↓ for this transition. The general tendency
of the decay rates can be condensed in the expression Γnc ∝ Cε(δnc→f + nth)d2

nν
3
n.

Knowing that [142, 187] the dipole scaling is dnσ ∼ qern ∝ n2 (see eq.(I.5)) and that
dnπ ∝ n3/2, one can use Kepler’s third law νn ∝ 1/n3 to analyze the temperature
dependence using only the n scaling laws.

In the low temperature limit (kBT � hνn) there are almost no black-body
photons. The losses are dominated by spontaneous emission and scale as

Γnc ∝ d2
nν

3
n ∝ n−5

in accordance with the semi-classical argument given in chapter I.
The high temperature limit (kBT � hνn) is valid here for T �1 K, and n > 50

(νn < 50GHz). The Rayleigh-Jeans limit of the Plank law is then applicable (nth ∼
kBT/hνn) and we have
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Γnσ↓ ∝ n−2T and, Γnπ↑ ∝ n−3T.

In free space the π ↑ process is only a correction since |dnπ| � |dnσ+ | and can
be neglected in the qualitative interpretation of Figure II.9 (left). We notice that the
spread of the curves is reduced as the number of photons grows. This is but a reflection
of scaling law for Γn transiting from n−5 → n−2. In both the high- and low-temperature
limit, negative powers of n in the decay rates guarantee a bigger lifetime for higher lying
cRy levels.

Note that these scaling laws are also apparent in Figure II.7. From the slope we see
that, at 0.3 K, lifetime scales as n5. In this plot it is evident that the high-temperature
limit is already attained for T ≥ 3 K, making all lifetimes scale as n2 and the lines in
the plot parallel to each other.

A single cRy atom inside an ideal capacitor

The situation concerning the infinite ideal capacitor is radically different and it is shown
on the right of Figure II.9. The main σ ↓ transition is inhibited (Γnσ↓ = 0) for n > 50

in a 2 mm capacitor completely changing the behaviour of the atoms. Two other com-
peting transitions take the relay and dominate the losses. Both correspond to photon
absorption but at very different frequencies so a strong dependence on temperature is
expected. The involved transitions are shown in Figure II.10. We will split the analysis
in low and high temperature limits.

Figure II.10 Dominant transition involved in the lifetime of single atom in the cavity. The
shaded arrows are inhibited by the capacitor.

We begin with the case of the high temperature limit. In this limit we see that
there is a different behaviour for levels with principal quantum number either above
or below n = 55. This is because the non-linear response of the inhibition rate to
frequency (see Figure II.8) changes the dominant transition as a function of n. The
analysis can still be done in the simple mind frame provided by the scaling rules.

In the Rayleigh-Jeans limit and below cut-off (λ/2 >2 mm), for the π ↑ transition
we find ,

Γnπ↑ ∝ n0T.
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We have that Cnπ ∼ ν−1
n and thus Γnπ = cte; effectively independent of n. This

remarkable cancellation implies that, for as long as these transitions remain below
the cut-off, the lifetime is independent of n at high temperatures. This explains the
behavior for n ≥ 56 states.

In the case of n ≤ 55, at high-temperatures, the transition that dominates the
decay is the 2σ ↑ transition (∆n = 2, Figure II.10). In contrast to the n ≥ 56 case, this
transition is not inhibited and it is actually enhanced by the capacitor (Cσ > 1).7 From
eq.(II.12), the capacitor correction to the density of modes is exactly Cσ ∼ (ν − νL)−1

(for 0.5 < L/λ < 1.5), where ν = c/λ is the frequency of the transition and νL is a
constant that depends on the capacitor gap size L. We get

Γ2nσ↑ ∝
n−2T

νn − νL
∼ nT + · · ·

We take note that, at high temperatures, for n ≤ 55 circular states the lifetime
decreases with n (since CσΓ2σ↑ is dominant), but that for n ≥ 56 the lifetime is in-
dependent of n (since CπΓπ↑ is dominant). These are both in striking contrast with
the free space behaviour where the lifetime increases with n (for all n since Γσ↑ is
dominant).

In the low temperature limit, more microwave photons are present for smaller
frequencies (in the range < 50 GHz). This makes the π ↑ (∆n = 1, now dependent
on n) dominant in front of the 2σ ↑ (∆n = 2) process and lower n are blessed with
higher radiative lifetimes. In this limit, the lifetime of all cRy states decreases with n,
again in stark contrast with the free space behavior. Since the computed values are
unrealistically high, the relevant physical statement is that, at low temperatures, the
single atom radiative lifetime will not be the limiting factor in an efficient inhibition
structure. The single atom lifetime of cRy states will then be limited by other processes
(collisions with the background gas, etc) and will essentially be n independent.

II.2.4 The finite size effects and the conductivity of mirrors

In the case of mirrors with finite conductivity, the reflected waves have an attenuated
(and phase-shifted) amplitude. The modified inhibition rates differ from the ideal ones
in that all the sharp features of Cε as a function of frequency (ν ∼ L/λ) are smoothed
out. The smoothing out of the Purcell resonances reflects the spectral broadening of
a bad cavity. The boundary condition is no longer sharply imposed, bringing along a
low finesse. More importantly, the inhibition no longer goes to zero abruptly. Instead,
Cσ approaches zero as a Lorentzian for L > λ/2. For large wavelengths (L/λ � 1),

the dissipation caused by the finite conductivity of the mirrors diverges for both polar-
izations as they are efficiently damped by the plates. This means that making smaller
capacitors no longer improve the inhibition [183].

To take into account the finite conductivity of the mirrors and their finite size, we
ran CST-studio simulations to evaluate the situation within the relevant experimental
conditions. For this exposition, we chose to discuss the scenario where the quantum
simulator is built out of the |48c〉 and |50c〉 circular states [96]. For this purpose,
we have run the calculations corresponding to a classical dipole source placed normal

7The wavelength for |55c〉 → |57e−〉 is λ/2 = 2.0004 mm and limits of the inhibited transitions.
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(π) and parallel (σ) to the mirrors at the center of a cavity made of gold at 1 K
(4.55 × 109Ω/m for gold at 1 K at 50 GHz). The calculations were done by taking
the ratio of the radiated power by both the dipole in the cavity and in free space. The
CST results are shown in Figure II.11. In the left we plot the CST calculation for
the dipole placed orthogonal (σ) to the plates. The capacitor is taken to have square
plates of size a spaced by a distance L. The dipole emission frequency chosen for this
plot is that of the transition dominating the atomic population losses in free space
(ν48c→47c =61.407 GHz). The vertical dashed line corresponds to L = c/2ν48c→47c.
The white dot at a =13 mm and L =2 mm represents the choice for the experimental
realization. On the right we show the CST calculation (dashed lines) done as a function
of frequency for the chosen capacitor size together with the analytic result (full lines)
for the ideal plates.

Figure II.11 On the left we plot the CST calculation for the inhibition of the real capacitor.
On the right we plot the power ratio as a function of frequency for both dipole orientations for
the chosen capacitor geometry. The full lines correspond to the ideal capacitor and the dashed
lines correspond to the CST calculation. The dominant transition frequencies are marked with
arrows. The black arrow corresponds to the frequency of the n = 48, π ↑ (57.69 GHz) transition
and the red arrow corresponds to the frequency of the n = 50, π ↑ (51.099 GHz) transition.

We find that the now limiting transition (n = 48, π ↑ at 57.69 GHz) has an inhi-
bition factor which is identical to the ideal capacitor case (black arrow). Regarding
level |50c〉, the inhibition for the σ ↓ is even more efficient than for level |48c〉 since
ν48c→47c > ν50c→49c. The next leading transition (n = 50, π ↑ at 51.099 GHz) is
actually less enhanced (red arrow) for the resistive capacitor. This is due to resonances
arising from its finite size. Then, the lifetime estimate turns out to be longer using the
more realistic capacitor. As a pessimistic approximation, we have focused our analysis
on the ideal capacitor. The estimation for the radiation lifetime of a single |48c〉 atom
at 0.4 K is then ∼ 2500 s.

II.2.5 Lifetime for a pair of cRy atoms

We have so far addressed the cRy lifetime in the case of non-interacting atoms. In the
case of the quantum simulator we discuss, the atomic interaction is important. We
now develop the considerations made to assess how the lifetime of the cRy atoms in
the linear chain is modified in the presence of the levels mixing due to their interaction.
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We study the effect in the case of a single pair of interacting atoms. The classical
picture is that the pair of dipoles lose the alignment with the quantization axis imposed
by the external field. By tilting towards each other, they couple their radiation to
allowed modes in the capacitor. The quantum picture is that the mixing induced by
the interaction opens new decay channels.

Here, we work out an estimation of the expected lifetime in the quantum picture.
Let {|b〉} be an eigenbasis of the two-atom Hamiltonian

Ĥtot =
p̂2

2me
+ V̂C + V̂S + V̂Z + V̂vdW ,

with energies Eb. Here the C, S and Z operators stand for the Coulomb, Stark, and
Zeeman terms respectively. The decay rate of any other state |ψ〉 is then computed as

Γψ =
∑
b

|〈b|ψ〉|2Γb (II.15)

where

Γb =
∑
c

Γb→c,

and both sums run over the steady states of Ĥtot.

Since we are considering two atom processes here, the loss rates take the form

Γb→c = (δb→c + nth(ωb→c, T ))
4α

3c2
ω3
b→c|〈c|Cε1r1 · ε1 + Cε2r2 · ε2|b〉|2.

This study will be numerical and, for the sake of clarity, we will discuss the particular
case of n = 50. A pair of atoms that are in state |50c, 50c〉 at infinite distance are
adiabatically coupled to state |b〉 = |ψ5050〉 as they are brought together (see chapter
I). The sum in eq.(II.15) has then only one term.

The lifetime calculated per atom is shown in Figure II.12. The interatomic distance
for the calculation was chosen to be R = 5 µm. The basis used is defined, as before,
to contain states differing by ∆n ≤ 2, ∆ml ≤ 2 from each level in the considered
pair. The electric field F and the magnetic field B are parallel to each other and
orthogonal to the line connecting the center of mass of the atoms (see Figure). One
sees that, for higher fields, the lifetime improves even though, in the chosen range, the
dependence on the magnetic field is weaker. The fact that the lifetime increases with
the magnitude of the directing fields is explained by the fact that the atoms regain
their circular character (mixing in the parabolic basis is reduced) as the external fields
dominate over the dipolar interaction. The classical picture is that the external field
realigns the atomic dipole with the inhibited mode of the capacitor.

State |ψ50c,50c〉, although different, is very similar to the non-interacting product
|50c, 50c〉. For fields such that F >2 V/cm and B >10 G (this is the range of interest
for the tunability of the simulator) the state is approximately (see Figure I.5)
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|ψ50c,50c〉 ∼ α50,50 |50c, 50c〉+ α+,−
|50e+, 50e−〉+ |50e−, 50e+〉√

2
+

+ α51,49
|51c, 49c〉+ |49c, 51c〉√

2
+ ...

(II.16)

with |α50,50|2 > 0.995, |α+,−|2 < 10−3 and |α51,49|2 < 5 × 10−5. This is reflected in
the opacity of the levels in Figure II.12. Note that polluting elliptical states have two
harmful transitions that are not inhibited by the capacitor. A first π transition to the
|(n− 1)c〉 level and a σ+ transition towards the |(n− 2)c〉 level having a wavelength
above cut-off. Using a smaller gold capacitor that would also inhibit this transition is
unrealistic in terms of optical access.

Figure II.12 The lifetime per atom is calculated inside an ideal inhibiting capacitor at 0.4 K.
The plot is done for a pair of |50c〉 atoms at a 5 µm distance as a function of the electric and
magnetic fields. The individual atom populations is schematically represented by the opacity
in the level drawn in the diagram on the right. The colored arrows depict the main transition
limiting the lifetime in the capacitor. The light gray arrows show some relevant σ transitions
that are suppressed by the capacitor. Absorption of photons with ∆n = 2 are negligible at low
temperatures.

We extend the two-atom result to an N -atom chain by considering the time it
takes to lose the first atom as the lifetime of the whole chain. This occurs at a rate
N times larger than for a single atom. Note that microwave superradiance [188] does
not contribute to a lifetime reduction since it is the emission of the first photon that
starts it. The lifetime of a 40 atom chain is then estimated to be >80 s/40∼2 s for
external directing fields of B > 12 G and F > 6 V/cm. The lifetime reduction caused
by the vdW interaction is estimated to be as big as all the other limiting processes put
together [96].
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II.2.6 The asset of our simulator

Let us now summarize the assets of the quantum simulator discussed so far. Two main
assets make our simulator stand out: i) We have complete control over the Hamiltonian
parameters and ii) a comparatively long lifetime. We illustrate this in Figure II.13 where
we show the interplay between the tunability and the lifetime. The yellow regions are
guides to the eye and correspond to the single atom lifetime for each set of fields.

At 12 G (green dots) the Jz/J ratio can be tuned from -1 to 1 in the region where
the lifetime per atom is > 80 s. At R = 5 µm from each other and for a qubit in
{|48c〉 , |50c〉}, we have J ∼ h × 17 kHz. A few tens of hundred thousands character-
istics times will pass before the chain loses the first atom. These long timescales and
controllability are unprecedented assets of our proposal and they open perspectives in
a new regime.
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Figure II.13 The dependence of the ratio Jz/J as a function of the electric field F as we
change the magnetic field B. Dots result from the numerical diagonalization of the complete
atomic Hamiltonian for B = 9, 10, 11, 12, 13, 14, and 15 Gauss (magenta, black, blue, green,
red, cyan, and purple dots, respectively). The colored lines are a guide to the eye.

In order to be able to contribute to the quest of quantum simulation of Heisenberg
chains it is mandatory8 for us to trap the atoms and to build the atom-chain in a
deterministic way. This can be achieved thanks to the state-of-the-art laser-trapping
techniques and thanks to a tailor-made chain preparation process that we will discuss
in the next section.

8It must be noted that, at these timescales, even falling due to the action of gravity is a problem.
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II.3 Trapping and chain preparation

To benefit from the long lifetime of the cRy atoms in the study of spin chains, it is
necessary to trap them. We envision coupling constants of several kilohertz but, for
untrapped atoms, the interaction produces an explosion of the cloud, breaking-down of
the frozen gas approximation, in a few microseconds only [139]. Laser trapping of cRy
atoms will provide a tunable coherence-preserving confinement compatible with the
Hamiltonian evolution which interests us here. We have chosen to study the chain of
atoms in the presence of a Laguerre-Gauss (p = 0, l = 1) laser mode (LG01) providing
the collective harmonic confinement in the transversal direction. An additional standing
wave provides an optical lattice which further traps each atom in the longitudinal
direction.

We will lay down the principle of the laser trapping of cRy atoms. On the one hand,
cRy atoms have no optical transition available and standard dipole trapping techniques
cannot be used. On the other hand, for n� 1 the electron remains far from the nucleus
and reacts to external oscillating fields to some extent as a ‘free electron’ would [189].
The associated kinetic energy of the movement provides a method for trapping [108].
If a single electron is surrounded by a barrier of light and sits in the dark center of a
hollow beam, no energy is available to intrude on the region where strong oscillation
is required. The electron is then confined by a conservative potential. If the electron
is the valence electron of a cold cRy atom, the atom itself will be trapped since the
electron is bounded to the core. The details of the trapping are to be discussed in what
follows.

An electron of mass me and charge qe in a monochromatic (ωL) laser field has a
ponderomotive energy given by [88]

E =
q2
e

2meε0cω2
L

I, (II.17)

where c is the speed of light, ε0 is the permittivity of free space, and I is the beam
intensity. For an LG01 beam the intensity takes the form

I = ILG = P 4ρ2

πw4(x)
exp

{
− 2ρ2

w2(x)

}
. (II.18)

The variables ρ and x are polar coordinates, w(x) is the beam waist, and P is the
laser power. The maximum of intensity is at ρ = w(x)/

√
2 and takes the value

Imax = 2P/eπw2(x).
From eq.(II.17) we see that the ponderomotive potential depends on the inverse

of the mass of the charged particle. The Rubidium ionic core is tens of thousands of
times heavier than the electron and thus the potential effectively acts only on the single
Rydberg electron.

A Taylor expansion of the ponderomotive potential around the center (ρ ∼ 0) gives

E =
2q2
eP

πmeε0cω2
L

(
ρ2

w4(x)
− 2ρ4

w6(x)
+O(ρ6)

)
.

The harmonic frequency associated with small atomic oscillation in the z and y direc-
tions around the equilibrium position is
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ωz,y =
4

ωLw2(z)

√
αh̄P
memRb

, (II.19)

where α is the fine structure constant. This potential describes a bidimensional radial
(ρ) trapping with the atoms being free to move along the axial (x) direction. In Figure
II.14 we show (a) the waist of the 1064 nm LG01 beam. The plot corresponds to a LG01

with a 7 µm waist and a power of 0.5 W. In these conditions the radial trap frequency
is ωz = ωy = 2π × 12.17 kHz, and the height of the light barrier is > 200 µK. The
necessary axial confinement for the chain of cRy atoms is obtained by a pair of almost
collinear Gaussian beams that form a standing light wave as shown in Figure II.14
(b) (green). Changing the small angle between the crossing beams tunes the distance
between longitudinal wells and, with them, the inter-atomic interaction strength. An
inter-well distance of 5 µm can be obtained with angles of ±5.7◦ with respect to the y
axis. The Gaussian beams are taken to have a waist of wz = 7 µm along the z direction
and wx = 200 µm along the x direction. Using a power of 1.45 W per beam, the axial
trap frequency is ωx = 2π × 24 kHz and a trap depth of 200 µK. An angle of ±4.1◦

and a power of 2.8 W per beam make an inter-well distance of 7 µm maintain the same
trap frequency and depth.

Figure II.14 (a) The intensity in a transversal cut of a LG01 laser beam of 7 µm waist. In
(b), the intensity along the axial direction of the LG trap is shown. A standing wave formed by
counterpropagating Gaussian beams (green). The weaker trap wall is > 4 MHz corresponding
to 200 µK.

II.3.1 Some considerations regarding the laser trapping of cRy atoms

Photoionization and elastic scattering

The photoionization of cRy atoms is negligible and we will limit ourselves to mention
the intuitive argument that sustains the claim. We refer the reader to [96, 108] and
references therein where the technical details are given.

The photoionization rate is proportional to the square of the matrix element of Â · p̂
between the free electron state |pe〉 of momentum pe and the cRy state which reads
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| 〈pe| Â · p̂ |nc〉 |2 ∝ p2
e|〈pe|nc〉|2.

It is thus proportional to the overlap of the initial atomic cRy state and that of a final
state corresponding to an energetic free electron. The analysis is most obvious when
done in terms of the wave function in momentum space 〈p|nc〉 = ψ̂nc(p). The cRy
electron wave function only has components at low momentum (p ∼ αmec/n, where α
is the fine structure constant, c is the speed of light, and n� 1) while the free electron
is a narrow peak at a relatively high momentum pe. Thus, the overlap is ψ̂nc(pe) ∼ 0

to a very good approximation.
We remind the reader that it is the high angular momentum that keeps the electron

at low speed. Highly energetic Rydberg states with low-angular-momentum l have
considerable components at high momentum p̂ providing a coupling to the continuum.
Their contribution to the ionization probability is then non-negligible. In the semi-
classical ‘planetary’ picture, the explanation is that, during the ‘perihelion apsis’, the
electron goes extremely fast and may then escape the orbit [110].

Nonetheless, Compton elastic scattering may transfer the electron into another
quantum state (an elliptical level) by imprinting a momentum kick to the electronic
wave function. This is a limiting factor to the coherence and for the useful lifetime of the
atom in the simulator. The diffusion cross-section can be evaluated with the classical
Thompson diffusion model. A worst case estimate gives a lifetime of τCompton ∼ 575 s
to the LG trap alone and of τCompton ∼ 180 s to the three trapping beams together.

Trap perturbation to the wave function

The trap can be considered as only a small perturbation to the electron wave function
if the ponderomotive energy Emax is much smaller than the Coulomb energy VC . The
ratio of these two quantities is evaluated for a laser power of P = 0.5 W and for a
trapping wavelength of 1064 nm focused to w0 = 7 µm focus of the LG01 beam to be
Emax/VC ∼ 3× 10−8. Thus the electronic wave function is unaffected by this potential.

Anharmonicity induced decoherence: a single-atom effect

We choose a LG01 because, around the center (ρ ∼ 0), the intensity grows quadraticaly
with distance, thus providing a harmonic trap for the atoms. The anharmonicities
should be avoided because they induce decoherence in the spin chain as we now explain.

Consider the center of mass of the atom to be at positionR and the relative position
of the electron to be re. For a harmonic trap one can expand the potential as

E ∝ 〈(R + re)
2〉 = 〈R2 + r2

e + 2R · re〉 ∼ R2 + a2
0n

4

where the average is taken over the electron orbit. One notices that the energy regarding
the center of mass of the atom is only shifted by a constant term (independent of R)
so the trapping force (−∇E) is independent of n, i.e. the trap is state independent.

Considering now higher order corrections to the potential (δE ∝ 〈(R + re)
4〉), one

finds non-vanishing terms introducing a dependence in n for the trapping (∼ n4R2).
The center of mass evolution still undergoes a harmonic evolution but conditional to the
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cRy state of the atom, thus producing spin-motion entanglement. The state dependent
LG trap frequency is ωn = ωz + δωn where

δωn =
2n2qea0

ωLw3(z)

√
6P

πmcoremeε0c
.

To estimate the associated decoherence in the cold atom limit, where the atom is
in the fundamental state of the trap, we consider the trap ground state wave function
φ0
n(x) conditional to the electronic state |nc〉. For a power of 0.5 W in the LG01 beam

and for a waist of 7 µm, (ωz ∼ 2π × 12 kHz) the differential frequency is δω50c −
δω48c ∼ 2π × 45 Hz. Assuming a superposition qubit in state

|ψ〉 =
1√
2

(
|48c〉s |φ

0
48〉x + |50c〉s |φ

0
50〉x

)
we compute the overlap of the n = 50 and n = 48 ground states to be

|〈φ0
48|φ0

50〉| =
4
√
ω50ω48√

(ω50 + ω48)/2
∼ 1− (8× 10−7), (II.20)

value which is independent of the laser power and accounts for a small amount of
entanglement between the electronic state (spin, s) and the position (x) of the atom.
We thus neglect the effect.

Coupling to phonons: a multi-atom effect

Even in the state-independent harmonic-trap approximation, the interaction between
the atoms can induce spin-motion entanglement washing away the spin coherence. If the
two-atom recoil due to the spin-flip interaction is strong enough to kick the atoms away
from the trap ground state, the spin system will be open to the phonon environment.
This is another reason to avoid the direct dipole-dipole interaction (∼ 1/R3) and to
use the weaker van der Waals interaction instead [187].

We estimate that for a pair of Rubidium-87 atoms in circular state n = 50 and
n = 48 in a pair of traps of frequency ωx ≥ 2π× 24 kHz, at R ≥ 7 µm from each other,
and with exchange interaction bounded by A6,48,50 ≤ h×0.53 GHz µm6 (exchange rate
J < 2.3 kHz) the systems are with probability > 0.9995 in a product state of spin and
the motional ground state [108]. The intuitive argument is that the magnitude of the
atomic displacement from the center of the trap after a spin-flip is much smaller than
the extension of the ground state wave packet. Thus, the spin and the phonons remain
decoupled in this regime and there is no associated entanglement induced decoherence.

II.3.2 Deterministic preparation of the chain

We have devised a method to prepare a chain of cRy atoms deterministically and close
to the ground state of the trap. The calculations are based on a one dimensional
Newton’s cradle classical model and the investigation of the process in the quantum
regime is being carried out [111]. Here, we discuss the classical model only.

The deterministic preparation of the cRy atom chain is a strong point of our sim-
ulator proposal since building up a many-body system is usually a quite inefficient
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probabilistic process [69]. The method is reminiscent of the common place evaporative
cooling used in cold atomic physics. Although here, instead of the contact interaction
used to evaporate ground state atoms, we will use the van der Waals repulsion as the
cRy atom expulsion mechanism.

The departing point of the preparation is an ultra cold cloud of ground state atoms.
They must be brought to the inside of a parallel plate capacitor that will later inhibit
the spontaneous emission of the cRy states. This can be done using a red trap for the
ground state atoms as it is standard in cold atoms experiments. Once in the capacitor,
an excitation laser excites up to ∼ 100 atoms into the low Rydberg states which are
circularized immediately to |50c〉. The ground state atoms can be pushed away using a
resonant beam if needed. The LG01 beam is turned on and cRy atoms are now trapped
in two dimensions. A sketch of the process starting with the cRy atom trapping is
shown in Figure II.15. Plug beams (dark blue in the Figure) are used to confine the
chain in the axial direction. The separation between these two plug beams is named
L.

Figure II.15 Chain preparation protocol. An LG beam traps a linear chain of atoms while
a pair of plug beams (blue Gaussians in this figure) compresses the chain by reducing their
relative distance L. At some point the interaction energy of the atoms is bigger than the lower
plug and the end atoms jump over taking away energy and cooling down the chain. Once the
desired number of atoms is reached, the compression stops and a standing wave is turned on.
In this pictorial representation we show the end atoms affected by the fact that they have only
one neighbor. Note also that the electron orbit penetrates in the light potential. The different
penetration of different n will be a source of decoherence.

The plug beams are brought together slowly and the atoms begin to interact. The
repulsive van der Waals energy keeps the atoms apart. As the interaction increases,
the end atoms climb the plug barriers and, at some point, the closest one to the weaker
plug is ejected. Tailoring the way in which this ejection is made, one can see from
the simulation that the ejected atom takes away energy, cooling down the chain. The
tailored timing of the process involved in the chain preparation is shown in Figure II.16.
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During stage I in Figure II.16 the LG01 is switched on in combination with two plug
beams to trap the cRy atoms. The 1064 nm Gaussian plug beams have a large waist of
30 µm that will permit smooth evaporation later on. The initial separation of the plug
beams is 1 mm (a) and the initial number of cRy atoms is taken from a Poissonian
distribution of mean value 100. The height of the barriers are 3 and 4 MHz (b). In stage
II the ejection of the atoms can be seen in (d) where the individual atom trajectories
are plotted. A deterministic number of atoms can be prepared in about a second. One
can see that during the evaporation, the kinetic energy of the chain decreases as shown
by the red curve in (e). The blue curve in (e) is the interaction energy. The distance L
is then slightly adjusted in stage III to provide a final interatomic distance of 5 µm. In
stage IV the standing wave produced by the interference of counter propagating beams
is turned on adiabatically forming a light comb. It is critical to match the minima of
the comb with the target atomic position to avoid heating.

In Figure II.17 we show an average of 100 realizations of the evaporation. The
final atom number N is determined by the power in the weak plug beam and by the
final value of L. We see from the numerical simulation that this process can be very
efficient. We see also that, by the time the number of atoms is ∼ 40, the preparation
is deterministic (the number of atoms has null variance).

The residual motion in the trap is an important parameter [129]. We find that for 14
atoms, the residual longitudinal motion is ∼65 nm. This corresponds approximately to
one quantum of oscillation. For 40 atoms, about four quanta are expected. Considering
the final ground state extension, the coherence time is limited to ∼ 160 ms for a 40-
atom chain due to the exploration of the anharmonicities of the trapping potential. We
have checked, with 3D simulations of the dynamics, that the position dispersion in all
directions is of the same order of magnitude.

We note that the process is lengthy and the capacitor inhibition is vital. A high
electric field is to be applied during the evaporation to increase the atomic lifetime and
preserve the chain.

II.3.3 Detection scheme

The ejection of the atoms heavily used for the cool-down of the chain provides, in
itself, a detection method. The ejected atoms are channeled by the LG beam into an
ion counter where we perform standard state-selective field-ionization. The detection
is then a lengthy process and the way to preserve the quantum state of the chain in
the meantime, is to transfer one of the two cRy levels out of the qubit space to freeze
the evolution. For the sake of clarity, consider as a qubit space the {|50c〉 , |48c〉} space
and a flipping of |48c〉 → |46c〉. The exchange between the remaining |50c〉 and |46c〉
atoms is in the millihertz range and the spin evolution is frozen while the repulsive
van der Waals interaction is nearly unchanged. The evaporation can then be resumed
and, if the lower plug beam is placed in the direction of an ion counter, standard field
ionization detection [88] can be performed one atom at a time (see Figure II.1).

The velocity of the ejected atoms in the guiding LG beam is determined by the
height of the weak plug, and it is computed to be 16 cm/s for a 3 MHz lower plug
beam. The atoms thus reach the detection region, about 2 cm away, after a 125 ms
delay which is much shorter than their lifetime.

This scheme reads out the spin states in the new ‘up-down’ ({|50c〉 , |46c〉}) basis.
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Figure II.16 Four phases are apparent. In I, during the installation of the plug beams and
the fast compression, rapid atomic escapes occur from both sides while the plugs are still weak.
This initial evaporation stops after approximately 100 ms. The chain is then compressed slowly
in phase II. Atoms escape the chain during the compression taking away kinetic energy (red
in (e)). In III the plugs are separated to bring the atoms to the target distance. In IV trap is
tightened. In V the chain is prepared. We show a detail of the residual atomic motion.
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Figure II.17 Number of cRy atoms in the chain as a function of the inter-plug distance L.
Stopping L at the right moment, a chain of ∼ 40 atoms can be prepared in a deterministic
way.

Adding a hard microwave pulse before freezing the interaction, we can rotate the spin
at will and, thus, detect any single spin observable. This provides access to all the
correlation functions of the chain shown in Figure II.3.
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II.4 Conclusion

In this chapter we have developed the theoretical ideas that motivate our quantum
simulator proposal. The unprecedented tunability, together with their long lifetime
make cRy atoms a unique platform to study long-lived strongly-interacting Heisenberg
chains.

The tunability of the Hamiltonian will allow us to explore a rich phase space [108].
The remarkable lifetime of cRy atoms can be further enhanced by a spontaneous-
emission inhibiting structure. This is again a particularity of the cRy levels having
only one dominant decay channel that can be inhibited in a millimeter-sized conduct-
ing structure. Using state-of-the-art techniques, single atom lifetimes in the order of
seconds, and even minutes, are available. This would be a remarkable experimental
observation.

Further perspectives can be envisioned. In a chain of only a few atoms living
during many tens of 1/4J periods, one starts to explore the regime in which the next
nearest neighbour interaction can no longer be neglected, enriching the evolution. The
observation of these effects does not require a long atom chain, nor a spontaneous
emission inhibiting structure, and it could be studied in free space optical tweezers
using the ponderomotive potential [132].

Until that stage is achieved, the nearest neighbour model can be studied with our
system. This simpler model is very rich and the deep understanding developed by
the solid state physics community deserves experimental validation. Beyond that, lies
unexplored ground related to dynamics, thermalization, and disorder.

In the following chapter we will develop the experimental setup where we have
prepared cold cRy atoms and performed the first few experimental steps towards these
challenging perspectives.
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In this chapter we will discuss our experimental setup and the preparation of the
cold circular Rydberg states. As developed in chapter II, Rydberg atoms are very sen-
sitive to microwave fields and 300 K black-body radiation is detrimental. A cryogenic
environment greatly suppresses the mean number of thermal photons and is a require-
ment adding complexity to our setup. The first part of this chapter deals with the
details of the cold-atom preparation inside the cryogenic environment.

A second part is devoted to the Rydberg atom preparation. The excitation and
manipulation of the Rydberg atoms take place in an electric field control electrode
structure that is also used for detection by field ionization. Here, we discuss several ex-
perimental protocols including the detection by field ionization, the careful calibration
of the RF field used in the preparation of cRy atoms, and the MW spectroscopy used
to assess the circular state preparation.

III.1 Cold atoms in a cryogenic environment

In this section we discuss the peculiarities of the cold experimental setup permitting
the study of cold long-lived cRy atoms. Our cryogenic environment does not allow for
a stable vapor pressure of Rubidium in order to load a MOT and, thus, the source of
atoms needs to be external. A 2D-MOT setup produces an atomic beam that enters
the cryostat providing the atom flux that feeds the main atomic cloud. The atomic
beam is stopped by a 3D mirror-MOT configuration in the cold core of the experiment.
The atomic cloud is further cooled down with optical molasses before being ready for
the Rydberg excitation and circularization. The tools needed are introduced in what
follows.

III.1.1 The cryostat

In Figure III.1 we show the cryostat providing the environment for our experiments.
A liquid Helium-4 reservoir (orange in Figure III.1 (a)) keeps the environment at 4 K.
It is in turn thermally shielded from 300 K black-body radiation by a 77 K screen
thermalized to liquid Nitrogen (violet). The cryogenic screens are mounted inside an
external 300 K vacuum chamber. In Figure III.1 (b) we show a horizontal cut, at the
level of the heart of the experiment, of the three screens. A layer of lead, which becomes
superconducting below 7 K, is installed around the inner wall of the Helium shield and
helps in screening external magnetic field fluctuations. Additionally, the lead shield
reduces Eddy currents that would otherwise be formed in the outer copper screen due
to the fast variation of magnetic fields needed for our cold atom experiments. The
Helium shield is sufficiently large to accommodate the electrodes needed for electric
field control (red, blue and orange in Figure III.1 (c)), the magnetic bias coils (black),
as well as the Rydberg detection system (green). The coils for magnetic field control
are all superconducting to prevent heating. Several optical ports are opened on the
cryostat screens. The size of these windows limits the solid angle for optical access, but
large windows expose the Rydberg atoms directly to the 300 K black-body radiation.
Therefore, the windows are chosen to be 6 cm in diameter and copper flanges with a
∼2 cm opening cover the windows of the Helium-4 screen.

The cryostat is an important tool to fully exploit the Rydberg properties. On the
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Figure III.1 (a) Side view of the cryostat as a whole. (b) Top view of the heart of the
experiment. (c) A close-up of the heart of the experiment featuring the main electrodes and
the magnetic coils. The channeltron is shown in green and the electrodes are shown in blue,
orange, and red.
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one hand, the use of the cryostat puts some constraints on optical access as well as on
the complexity of experimental operation. On the other hand, it helps to have a high
vacuum without much effort. Residual gases are strongly absorbed on cold surfaces.
A pressure smaller than 10−10 mbar can be obtained without baking [134]. It is this
cryopumping that imposes the need of an external atom source that we now describe.

III.1.2 Atom source

In Figure III.2 a sketch of the 2D-MOT atom source is shown. It is a commercial device
designed and fabricated by the SYRTE laboratory and described in detail in [190]. Its
purpose is to provide the first cooling stage for a hot gas (∼ 50◦C) coming from a
Rubidium cell. Three pairs of 780 nm wavelength laser beams and four rectangular
magnetic coils (with a current I circulating in each) are used to create a jet of thermal
atoms that feeds the main atom cloud. The quarter-wave plates are used to turn the
polarization of the beams so as to have the correct polarization after their reflection
in the mirrors. The laser beams intersect in three regions where the atoms are cooled
down in the horizontal plane. In these regions, three elongated cold atom clouds (cyan
in Figure) are aligned along the vertical direction and feed each other. The final result
is the collimation of the Rubidium gas. The beam goes up (and down) with a mean
velocity of 13 m/s into the cryogenic environment. The dispersion in velocity is 10 m/s
and the maximum atom flux is 1010 atoms/s.

The ultra-high vacuum in the main chamber is necessary for our atomic experiments
while the 2D-MOT needs a considerable Rubidium vapor pressure to maintain a high
flux of atoms. The 2D-MOT atom source and the cryostat are therefore linked by a
1.5 mm hole to allow for a differential Rubidium pressure. The vacuum in the 2D-MOT
chamber is ∼ 10−8 mbar and it is maintained by two ion-pumps.

Figure III.2 Drawing of the 2D-MOT. The (bi-dimensional) cold atoms are shown in cyan.
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III.1.3 3D-MOT and Optical Molasses

The main cold-atom cloud of our experiment is produced by a MOT in between the
magnetic coils. The corresponding MOT cooling beams are featured in Figure III.3
and a side and a top view of these same laser beams can be found in Figure III.1 (a)
and (b). A Rubidium-coated mirror (yellow in Figures III.1 and III.3) is used to reflect
[191] the pair of lasers entering through the front windows.1 The laser frequencies
needed to operate the cold atoms are shown in Figure III.3. The MOT cooling beam
cycles population in the D2 transition |52S1/2, F = 2〉 → |52P3/2, F

′ = 3〉 but a non-
negligible fraction of the atoms decays to state |52S1/2, F = 1〉 instead. To avoid the
accumulation of population in this state, a ‘re-pumper’ beam addresses the transition
|52S1/2, F = 1〉 → |52P3/2, F

′ = 2〉 and recycles the population to |52S1/2, F = 2〉.

Figure III.3 Left: Scheme of the mirror-MOT configuration. The magnetic coils (orange, blue,
green, and purple) are also shown in black in Figures III.1. Right: Level scheme displaying the
hyperfine structure of Rubidium-87. The relevant laser frequencies are indicated with arrows.

The magnetic field gradients are created by the quadrupolar coil Q shown in Fig-
ure III.3 (purple) and the bias fields are created by the coils around. The atom cloud
is close to the lower side of Q, where the lasers cross. The bias coils produce a nearly
homogeneous magnetic field at the scale of the atom cloud in the x (blue), y (green),
and z (orange) directions. These fields permit the displacement of the MOT cloud as
they change the position of the trap minimum. To further reduce the atomic temper-
ature a molasses stage is needed and a careful transition must be put in place not to
lose the trapped atoms.

A typical cold-atom experimental sequence is shown in Figure III.4.2 A few seconds
are needed to fully load the 3D-MOT. The initial amount of atoms is determined by
this waiting time. Next, a gentle ramp-down of the laser detuning cools the atoms
further down. The detuning is measured in units of the natural line-width of the
cooling transition Γ = 2π×6.065 MHz [193]. To go from the MOT to optical molasses,
we abruptly turn off the magnetic fields and ramp-down the detuning to go from high

1The mirror structure inside the cryostat is a superconducting atom-chip [138, 192]. Since the
advantages of the atom-chip are not necessary for our current purposes, the chip will play the role of
a mundane mirror. The atom-chip technology has been explored and reported elsewhere [137].

2The exact values for the parameters in the sequence are subject to daily optimization procedures
to compensate for various experimental drifts.
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capture velocity to low temperature [186]. During this ramp-down the cooling laser
power is gradually reduced and its detuning is increased further from resonance. During
the optical molasses stage the applied magnetic fields are used to cancel the magnetic
field at the position of the atoms. The atom cloud can be held in place for up to a
second, while the number of atoms decreases exponentially with a half-lifetime of a
few hundreds of milliseconds. The atoms undergo a slow diffusion under the strong
viscosity of light until a new sequence needs to be started due to a lack of atoms. A full
Rydberg sequence, from excitation to detection, takes up to a few milliseconds, and
during the molasses stage a few hundreds of them are played. A dense and long-lasting
atom cloud is then an asset permitting a high repetition rate of the experiments.

The assessment of the cold-atom cloud is done using cameras to image the atoms,
measure their temperature, and tune there position. We will next develop the imaging
system in our experiment.

Magnetic fields

Laser detuning

Laser Intensity
mW
cm2

mW
cm2 mW

cm2

mW
cm2

3D-MOT
Optical 
Molasses

Rydberg physics

~2 s ~2 ms ~10 ms <1s~2 ms

Loading
MOT

...

Figure III.4 A typical cold atom sequence. The color code for the current/field trajectories
in the first panel corresponds to the color code of the coils in Figure III.3.

III.1.4 Imaging System

The imaging setup, together with the cooling lasers and the Rydberg excitation system,
is shown in Figure III.5. The ‘front’ and ‘side’ probe beams (violet) are used for imaging
the atom-cloud when the atomic-absorption technique is needed. The probe lasers are
at a 780 nm wavelength (|52S1/2, F = 1〉 → |52P3/2, F

′ = 3〉) as one can see from the
level diagram in Figure III.3. Two cameras, one from the side and one from the front,
take images during the cool down of the atoms. These images allow us to set the
position of the cloud, to measure the number of atoms, and to optimize the loading
time, the size and the lifetime of the atomic cloud [139].

A side view of the molasses is shown on the left of Figure III.6. The image of the
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Figure III.5 A top view of the cryostat and the available lasers. The laser path for absorption
imaging, Rydberg excitation, and atom cooling is shown.

cloud is taken by absorption. The rightmost cloud corresponds to the reflection on the
mirror as one can see from the inset. Using simple geometric arguments, the distance
between these two images gives the distance between the cloud and the mirror surface
[139]. For a separation greater than 2.5 mm, the reflection cannot be seen and the
distance to the mirror cannot be measured in this way. For fast diagnosis, fluorescence
images can be taken live and are used for the coarse tuning of the cold-atom parameters.
The fluorescence of the MOT cloud as seen from the front window is shown on the right
of Figure III.6. Both absorption and fluorescence images can be taken using the side
and front cameras. These two points of view provide complementary information. The
structure visible in the background depicts the superconducting atom-chip wires that
are used to calibrate the magnification of the picture. The white arrows setting the
scale correspond to the xz mirror plane.

Time of flight measurement sequences are done to access the momentum distribution
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Figure III.6 Left: Side absorption image of the cold atom cloud and its reflection in the
mirror. Right: Fluorescence image taken from the front. The insets schematize the imaging
technique used.

of the atom gas. They consist of measuring the size of the cloud as a function of time
during free expansion. In Figure III.7 we show the width of the atom cloud as a function
of time t. The data is taken using the front camera for absorption imaging after the
molasses stage. The temperature of the atoms is computed by fitting the expansion to

σ(t) =

√
σ2

0 +
kBT

mRb
t2, (III.1)

for the x and z directions. Here T is the atomic gas temperature, kB the Boltzmann
constant, σ0 is the initial size of the cloud and mRb the mass of Rubidium-87. The fit
assumes independent distributions in each direction.

The temperature of the MOT is about 200 µK and the number of atoms saturates
for long loading times (∼2 s) to ∼ 108. The molasses are typically at a temperature of
15 µK and they are formed by N ∼ 106 atoms. The typical volume of our molasses is
about (300 µm)3.

III.2 Rydberg atoms

We will now focus on the Rydberg atoms that are to be excited from the cold atom
cloud. In the preparation of cRy atoms, two main stages can be identified: A first
stage where energy is pumped into the atom using optical photons and a second stage
where angular momentum is pumped into them. This second stage is the circulariza-
tion process and it consists of a multi-photon RF adiabatic passage. An intermediate
MW passage is needed to bring the laser-excited atoms to a state that will allow for
the adiabatic circularization to take place. These steps, together with the detection
mechanism, will now be developed.

III.2.1 Laser excitation of low-angular-momentum Rydberg atoms

After the molasses stage, the atoms are found in their ground state |5S1/2〉. A two-
photon transition is used to excite the fraction of atoms in |5S1/2,mF = 2〉 to the
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Figure III.7 Time of flight temperature measurement. The data corresponds to an absorption
picture taken from the front optical port of the cryostat after a molasses stage. The inset
represents an ‘expanding’ atomic cloud.

|52D5/2,mj = 5/2〉 Rydberg level. On the left of Figure III.8 the laser excitation scheme
used is shown. The intermediate level providing the coupling is |5P3/2〉 and it is reached
off-resonantly by a 780 nm wavelength red excitation laser. The second photon is
provided by a 480 nm wavelength blue laser. The |52D5/2,mj = 5/2〉 Rydberg level
is chosen because it allows coupling to both the intermediate level |52P3/2, F = 3〉 and
to the |52F,mj = 2〉 level, which will be the next target involved in the circularization
process.3

The optical setup allowing for the Rydberg experiments can be seen in Figure III.5.
The blue laser is tightly focused (∼10 µm waist) at the level of the atoms. A cage
mount holding optics gives us the freedom to change its diameter and its polarization
before the 250 mm lens that focuses it into the cryostat. An elongated Rydberg atom
cloud is produced where the blue laser crosses the much bigger red excitation laser
(∼100 µm waist). The red laser is σ+ polarized and the polarization of the blue laser is
linear and parallel to the MOT-mirror plane. The Stark separation of the levels allows
us to discriminate them in energy and select the transition by choosing the blue laser
frequency.

The detection of the Rydberg atoms is done by field-ionization. It consists of
stripping the Rydberg electron from the atom using a strong electric field and collecting
the ionic core. The ground state atoms do not react to strong electric fields applied and
only atoms in Rydberg states produce ion counts. The spectrum shown on the right of
Figure III.8 corresponds to the average amount of Rubidium core-ions detected by the
Channeltron (green in Figure III.1 (b) and (c)) as a function of the two photon detuning
δ. The separation of the peaks is due to a Stark shift caused by a 0.36 V/cm electric
field along the y direction during the laser pulse. The higher peak corresponds to
|52D5/2,mj = 5/2〉, which has the biggest Stark shift. The other two peaks correspond
to mj = 3/2 and mj = 1/2.

3Note that for strong enough electric fields, state |52F,ml = 2〉 is adiabatically coupled to the state
|n = 52, k = −47,ml = 2〉. In an abuse of notation we will continue to refer to it as the ‘52F level’
regardless of the field in which the atom finds itself.
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Figure III.8 Laser excitation diagram up to Rydberg levels (left) and laser spectroscopy of the
52D5/2 Rydberg levels (right). The blue laser frequency is scanned changing the two-photon
detuning δ. The three spectral lines (right) correspond to the three dark blue levels in the
diagram (left). The frequency offset is ∼624 THz.

After the laser excitation, the simple ion counting technique no longer suffices for
our studies. For Rydberg states manipulation, a way to discriminate the ions coming
from different Rydberg states is needed.

III.2.2 State selective field-ionization spectroscopy

Our Rydberg discrimination mechanism consists of progressively applying an electric
field ramp on the atoms and recording the field at which each ion count arrives. Keeping
track of the ionization field allows us to discriminate different classes of Rydberg states.

The electrodes

In Figure III.9 we show the experiment’s electrodes (see also Figure III.5 (c)). These
electrodes are used to extract and guide the ions to the detector.

In our setup, a pair of electrodes named ‘Stark electrodes’ (orange in Figure) are
used to determine the quantization electric field orthogonal to the MOT-mirror during
Rydberg manipulation and also to provide the ionization voltage for detection. In
the experiment, we introduced a home-made commutation box acting on the Stark
electrodes voltage in order to isolate the high-voltage electrical line used for ionization
from the low noise electrical line needed for Rydberg control.

The flat electrodes colored in red are the ‘deflection electrodes’ to channel ions
into the (green) Channeltron ion counter (KBL10RS-EDR). The blue colored electrode
shields the high voltage needed to operate the Channeltron and has a hole to let the
ions pass through. The hole is covered by a thin copper mesh (80 lines per inch, filling
factor 20%, wires diameter of 3-5 µm). The Channeltron operates at 40 K and the
mesh acts as mirror for the MW protecting the atoms from the associated black-body
radiation. The voltage in this mesh is also a parameter used to direct the ions. The
dashed line in Figure III.9 represents the ionic trajectory towards the Channeltron.
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The cylindrical rod electrodes (grey in Figure) are arranged in a 2 cm sized square.
They carry individual DC voltages that permit us to control the electric field in the
x and z directions and also give us control over the electric field gradients of the
experiment.

Figure III.9 The electric field control structure is shown. The four ‘cylindrical’ rods (gray)
are the RF circularization electrodes. The Stark electrodes (orange) are also used to control the
electric field normal to the MOT-mirror and the ionization field. The two twin flat electrodes
(red) are the deflection electrodes, the Shield electrode (blue) screens the Channeltron’s (green)
high voltage. The flat mirror (yellow) is the superconducting atom-chip. The dashed line shows
the trajectory of the ions.

The arrival time signal

The ionization voltage, applied to the Stark electrodes, is lifted in ∼200 µs from 0 V to
450 V to ionize all the levels of interest. This ramping up of the electric field, together
with a time resolved detection of the ions, provides what we refer to as the ‘arrival time
signal’ that we use to perform state-selective field-ionization spectroscopy. In Figure
III.10, two ionization signals after a Rydberg excitation laser pulse are shown. The
voltage on the Stark electrode is a known function of time and it is used to map the
arrival times to a corresponding ionization voltage. In Figure III.10 (blue) we show an
arrival time signal for a high number of Rydberg atoms prepared by tuning the blue
laser frequnecy to the |52d5/2,mj = 5/2〉. By collision among Rydberg atoms, higher
angular-momentum states are populated [88, 194]. Even if the many-body processes
involved in the collisional transfer to high-l are very rich in atomic physics [88], we
will, in this thesis, focus mainly on studying one-atom effects. The proliferation of
interactions is avoided by working with a small enough number of atoms. The number
of atoms is controlled by the length and power of the blue laser pulse. The data in red
in Figure III.10 corresponds to a 2 µs long laser excitation using 1 mW at 480 nm, and
65 µW at 780 nm. In these conditions we can identify a single ionization peak that we
identify with the preparation of |52D5/2〉.

Once an ionization line has been found, one can define a time window associated
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to the level of interest and consider the integral of ion counts therein as the number of
atoms detected. But since many Rydberg states share the same ionization threshold,
the method by itself is not sufficient for unequivocal level identification. For example,
all mj sublevels of the |52D5/2〉 states have overlapping ionization spectra and cannot
be distinguished by their ionization threshold alone. The solution is to complement the
technique with laser or MW spectroscopy towards a level ionizing at a different field.

High-l Rydberg levels

52D

Figure III.10 Arrival time signals after laser excitation. A high power laser excitation (blue)
gives rise to collisions populating high-l Rydberg levels. A low power laser excitation and
frequency selection provides a clean ionization spectrum for |52D5/2,mj = 5/2〉. The shaded
area shows the time window associated with |52D5/2〉.

III.2.3 The MW 52D-52F transition

Level |52D5/2,mj = 5/2〉 cannot be used as a starting point for the RF circularization
since it suffers from a large quantum defect (see Figure I.3). To circumvent this, an
intermediate MW pulse to |52F,ml = 2〉 is needed in between the laser excitation and
the RF circularization.

The microwave used for the D-F transfer is generated by an ANAPICO APSYN420.
The signal is amplified by a fourth-harmonic generation amplifier (Millitech AMC 314)
permitting us to attain the desired frequency range and gated by pin diodes controlled
by computer generated TTL signals. The output of the amplified fourth-harmonic
generator is a free space waveguide. It is connected directly to the cryostat by a layer
of glue (Araldite). The Araldite is transparent for the MW and provides a good vacuum
seal. The signal travels through the Helium reservoir in a tube soldered to the base of
the Helium reservoir, where a small hole with a 2 mm radius connects it to the main
vacuum. Next, a bent copper tube with a radius of (2.00±0.05) mm working as a MW
guide brings the field directly 2 cm above the atom cloud. Note that this copper tube
puts a cut-off of (44±1) GHz in the MW transmission of the line.

At zero electric field, one finds the D-F transition at a frequency of ∼64.75 GHz
(see Figure I.3) and the arrival time signal for the field ionization before (red) and after
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a highly optimized MW transfer (blue) is shown in Figure III.11. The shaded areas
represent the time window associated with each of the excited quantum states.

52D52F

Figure III.11 The arrival time signal provides a field ionization spectroscopy for Rydberg
levels. In red we show the ionization spectrum after a laser excitation to level |52D5/2〉. In
blue we show the ionization signal after MW transfer of the D level to the |52F,ml = 2〉 level.

Calling nD and nF the average number of counts in each detection window, we write
the transition probability from state D to state F as nF /(nD+nF ) which quantifies the
efficiency of the level transfer. In Figure III.12, we can see the D-F MW spectroscopy
line at zero field (blue dots) and at 0.67 V/cm (red dots). Three 52F projections of
angular momentum (ml = 1, 2, 3) are resolved.

m =1l

m =2l

m =3l

Figure III.12 MW spectroscopy from |52D5/2〉. In blue, the three 52F lines collapsed into
one at zero electric field. Excitation is done from the laser accessible level |52D5/2,mj = 5/2〉.
At an electric field of ∼0.67 V/cm we see that the three lines are resolved (red).
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The adiabatic passage

To optimize the D-F transfer, a MW adiabatic passage is used. We have devised a
rather peculiar method to perform the D-F transfer which relies in the particularities
of the home-made commutation box controlling the Stark electrodes voltage. The
commutation box introduces a non-linearity in between the input voltage signal VS ,
generated by a wave form generator (Agilent 33250A), and the electric field at the level
of the atoms. In Figure III.13 we show the response of the electrodes in two different
regimes: a steady state and a dynamical evolution of the Stark electrodes voltage.
Using spectroscopic data like the one in Figure III.12, we map the electric field seen by
the atoms to the VS signal. For the measurements in Figure III.13 (a) we waited for
the electrodes to reach a steady state voltage in order to disregard the time constants
of the system. The non-linearity (the plateau) corresponds to the voltage drop in a
diode (ON-GA-1N 4007-1816) inside the home-made box.
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Figure III.13 Non-linear voltage-field relationship through the commutation box. Left: The
static relationship between the input voltage VS and the electric field at the level of the atoms.
Right: The dynamical electrode voltage at the timescale of the experiment as seen in an
oscilloscope plugged to the Stark electrodes directly. The D-F MW pulse is also shown.

Moreover, the dynamical response of the system is what allows us to make an
efficient D-F adiabatic passage. In Figure III.13 (b) we show the time dependent
signals involved in the D-F adiabatic transfer as seen in an oscilloscope. To achieve it,
the input signal VS is ramped linearly (black in Figure) from 2.1 V (providing the field
during laser excitation) to 0.6 V in 2.5 µs. The signal seen by the atoms is filtered by the
commutation box and, as an output, a noiseless decay on the Stark electrode voltage
is obtained (red in Figure). During this smooth and comparatively small electric field
scan, the MW pulse is on (blue in Figure) to produce the adiabatic transfer. The black
arrows show the voltage scan made by the Stark electrodes during the MW pulse. We
note that the magnitude of the scan made (red band) is of the order of the noise in the
Agilent signal (black) justifying the approach: it is this level of precision in the electric
field control that improves the adiabatic passage.

In Figure III.14 we show the response of the atoms to the MW frequency of the
pulse. The middle peak corresponds to the transfer to the |52F 〉 level which is achieved
with an efficiency of > 80%.
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MW frequency (GHz)

Figure III.14 The D-F adiabatic transfer. The broad microwave line provides a robust and
efficient population transfer method.

III.2.4 RF circularization

The circularization process [195] essentially consists of pumping angular momentum
into the already very energetic |52F,ml = 2〉 state. The anguar momentum comes
from a RF field that dresses the atom and couples different parabolic eigenstates of the
bare atomic Hamiltonian. To achieve the circularization, σ+ a polarized RF field must
be produced. One can picture the atom climbing a σ+ ladder of angular momentum
as shown in Figure III.15 to the circular level. Due to degeneracy in the atomic levels,
a non-polarized field couples the ladder states to spurious levels (dashed arrow in Fig-
ure III.15) and useful population is lost. We will discuss in what follows the techniques
used for the circularization of cold Rydberg atoms.

The RF circuit

The RF circuit used to produce the polarized RF field is schematized in Figure III.16.
A 230 MHz RF signal is created by a PCI card (Acquitek Synth-300) with two inde-
pendent outputs. The software allows us to set both frequencies and to fix the relative
phase between the channels. Each channel is split in two by a 3dB RF splitter (PUL-
SAR P2-08-411) and the four signals are sent to the four circularization rod electrodes
(see Figure III.9). After the RF splitters, dephasers (PULSAR ST-H85-444A) are used
to control the relative phase between the two channels. Each RF line has three mixers
(PULSAR X2L-06-411) that allow us to control the RF amplitude, via an analogue
channel. The first mixer is used as a power regulator to compensate for the power
imbalance between the four channels and the subsequent pair is used to make a time
envelope for the signal. The power regulator mixer is controlled by filtered DAC cards
(low-pass 1.4 kHz). The RF envelope is generated by an arbitrary wave-function gen-
erator (Agilent 33521A) and it is a smooth bell curve turning on and off the field
adiabatically. The RF signals are then amplified (Mini-Circuits ZHL-2-12 and ZHL-
1-2W+) and sent to RF circulators (HYTEM 09-02-57) to avoid unwanted reflections
entering back into the amplifiers. Four polarization-T (PULSAR BT-20-411) are used
to mix the RF signals to DC fields used to manage potential offset of the rod electrodes.
During optimization, the rod electrodes DC voltages are controlled by a DAC card. For
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Figure III.15 The circularization process starting in the ground state. Laser photons excite
the Rubiduim-87 atom to the n = 52 Rydberg state. The adiabatic MW passage brings the
population to the F level. The population can then be adiabatically transferred to the circular
state by a RF multi-photon adiabatic passage. The notation for the quantum number used in
this plot was introduced in Chapter I.

applications requiring low noise (Chapter IV), a home-made box containing a set of
batteries is used to provide a noiseless reference.

Polarization adjustment

One can optimize the polarization of the RF by optimizing the circular state purity.
This is performed on a daily basis. But in order to find an initial circularization
signal, the setting of the polarization requires a more refined technique that we will
now develop.

In Figure III.17, we show the level structure around the |52F 〉 level for the cir-
cularization Stark field (a) and for an auxiliary Stark field used to do the initial RF
optimization (b). Since the ladder states (n1 = 0) in n = 52 manifold have a differ-
ential Stark shift of 99.8 MHz/(V/cm), the adiabatic passage must be done around
2.31 V/cm where the 230 MHz RF resonance condition is met. At this circularization
field (a), the level |52F 〉 is coupled to the circular state via the ladder (shown in red
here). At 1.76 V/cm (b) the |52F 〉 state has an energy difference of 230 MHz only to
state |n = 52, n1 = 3,ml = 1〉 and the coupling requires a single σ− photon. The red
levels in Figure III.17 (b) form an isolated two-level system. Under a σ− RF dressing
field the eigenstates are |±〉 = |52F 〉 ± |n = 52, n1 = 3,ml = 1〉. At resonance, the
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Figure III.16 The RF circuit used for circularization. The four RF powers and the three
relative phases of the rod electrodes (see Figure III.9) can be controlled independently. The
dashed arrow represents the σ+ RF field created by the rod electrodes.

energy splitting is exactly the Rabi frequency Ω− of the RF field component at σ−

polarization. This is known as the Autler-Townes (AT) splitting [106] and provides a
tool to measure the power in the σ− field component.

Experimentally, if a σ− RF coupling field is turned on diabatically over atoms
in state |52F 〉, the population is projected equally into the |±〉 states. Microwave
spectroscopy to an auxiliary level |n = 51, n1 = 2,m = 1〉 is used to reveal the AT-
splitting of the lines (green arrow in Figure III.17). The electrode geometry is such
that the RF field is almost completely in the xz plane so that the π polarization
component of the RF field (along the y direction) is small. The maximal AT splitting
is achieved for optimized σ− polarization and it is a measure of the RF power that
can be shone on the atoms. The polarization optimization consists of measuring and
eliminating the splitting while all four electrodes are on by tuning the relative phases
and powers.

The first step in the optimization is to tune the RF power of the electrodes individu-
ally to achieve a comparable AT splitting. Next, two neighboring electrodes are turned
on simultaneously and the relative phase (and power) is tuned so that the two AT lines
collapse to a single one. In Figure III.18 we can see the AT splitting revealed by the
MW spectroscopy (blue dots). In the same graph we show the product of the com-
pensation (red dots). Once this is achieved, one has produced mainly σ+ polarization.
The same is done for the other pair of electrodes.

Finally, all four sinusoidal RF signals are turned on together and the relative phase
between the optimized pairs is used to maximize the power of the σ+ field. Even if
using the four electrodes together improves the spatial homogeneity of the polarization,
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. . .
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(a) (b)

Figure III.17 Diagram of the Autler-Townes procedure for polarization optimization. Panel
(a) shows the level scheme at the circularization field. Panel (b) shows the structure of levels
at an auxiliary electric field used for polarization optimization.

Figure III.18 Autler-Towns splitting and recombination. The σ− RF field splits energies of
the |±〉 states (blue dots). Tuning the electrodes phases to turn the polarization of the field
into σ+ recombines the peaks into one single line (red dots).

for the experiments in this thesis, we prepared the circular states using only two circu-
larization rods alone. The improvement supposed by the four rod approach is marginal
and requires time-consuming calibrations on a daily basis.
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Multi-photon adiabatic passage

The pure RF polarization decouples the bigger part of the multiplicity isolating a
subspace of almost equidistant levels, as shown in Figure III.15 (n1 = 0 ladder in blue).
At ∼2 V/cm the Stark term in the atomic Hamiltonian becomes dominant with respect
to the energy shifts due to the quantum defect and all levels (l > 2) have a linear energy
dependence with the electric field (see Figure I.3). As a consequence, the energy gap
between the first level of the circularization ladder and the next is approximately equal
to that of all the rest (see eq.(I.7)) [106]. Then, by turning on a σ+ 230 MHz field
and scanning the electric field through the ladder resonance, an adiabatic transfer from
level |52F 〉 to the circular states is achieved.

It is illuminating to think of the adiabatic circularization in the dressed atom pic-
ture. In Figure III.19 we draw the associated diagram. In the first panel we see the
Stark energies for the n = 52 Rydberg manifold (see also Figure I.3). In the middle
panel we show the energies of the atomic levels dressed by the RF field. The notation
for the joint quantum states used here is |k,N〉 and refers to the atomic states in the
n1 = 0 ladder by their parabolic quantum number k while N stands for the Fock state
of the RF field. In this diagram we consider the energies to be additive and each line is
displaced by N times the photon energy (h×230 MHz). The level crossing is produced
in ‘resonance’ where neighboring bare states are spaced by the photon energy. If the
RF is applied over the atoms, a multi-photon avoided crossing appears. We show this
in the last panel of Figure III.19. By scanning the electric field under the RF coupling
(as shown in the inset), we adiabatically couple the |52F 〉 state to the |52c〉 state pro-
ducing an effective absorption of 49 RF photons, each providing a quantum of angular
momentum. The green arrow in the picture shows the evolution of the atomic state
during the passage.4
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(a)                                                 (b)                                                  (c)

Figure III.19 Adiabatic circularization in the n = 52 manifold in the dressed atom picture.
In (a) we show the bare energy levels (n1 = 0) that take part in the circularization. In (b)
the energy of the joint atom-photon states in absence of coupling are seen to cross. In (c) the
atom-photon coupling makes an anti-crossing appear.

4Experimentally we use a classical RF field |α〉 (coherent, 〈N〉 = |α|2 � 1) and the photon number
states considered in the dressed atom picture must be understood as its components in the Fock basis.
In full rigor the state evolution is the coherent superposition of all N contained in |α〉 undergoing
|52F,N ∼ |α|2 + 49〉 → |52c,N ∼ |α|2〉 where we use that |α|2 + 49 ∼ |α|2. Note that the coupling
(the gap at the anti-crossing) is actually proportional to

√
N + 1 [141].
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Preparation of circular states

The full Rydberg sequence allowing for the excitation, circularization, and detection of
Rydberg atoms is shown in Figure III.20. This sequence is played repeatedly during
the molasses in the cold atoms sequence (see Figure III.4).
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Figure III.20 Rydberg atom preparation and detection timing. The preparation of the cir-
cular Rydbergs is done in a few tens of microseconds. The shaded rectangles represent the
different pulses (laser, MW and RF) used for the manipulation of the atomic state. The blue
curve depicts the Stark electrodes voltage evolution. The red curve shows the ionization volt-
age applied to the Stark electrodes for detection. The dashed line between the Stark voltage
and the ionization voltage represents a variable waiting time that can vary from 0 to 10 ms.
The ionization ramp-down is done in ∼200 µs.

Right after the laser excitation pulse (blue and red bars in Figure III.20) and the
D-F adiabatic passage (black bar in Figure III.20), the Rydberg atoms are ready for
circularization. The multi-photon RF adiabatic passage is done by scanning the electric
field during a RF pulse (yellow bar in Figure III.20) as illustrated by Figure III.19 (c).
The electric field is linearly scanned from 2.6 V/cm to 2.25 V/cm in 2 µs. The bench-
marking of the circularization is done here by probing the population distribution using
MW spectroscopy (green bar in Figure III.20) towards the n = 51 adjacent manifold
at an electric field of F ∼ 1.55 V/cm.

In Figure III.21 we show the ionization signal after an RF adiabatic passage done
using the phase optimization provided by A-T spectroscopy. We address a MW probe
pulse to different high-l levels to assess the efficiency of the cRy atom preparation. The
population of elliptical states is a signature of low circularization efficiency. The number
k designates the |n = 52, k,ml = n− k − 1〉 → |n = 51, k,ml = n− k − 1〉 transitions
between the high-l levels (see Chapter I). We show the ionization signal for the MW
pulse addressing some of the high-l transitions close to the |n = 52c〉 → |n = 51c〉
transition frequency. Note that we have changed the slope of the ionization voltage
with respect to Figure III.11 to have improved resolution on the high-l section of the
ionization spectrum. The shaded blue area corresponds to the ionization time window
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for high-l n = 52 levels and the red shaded area corresponds to the high-l n = 51

levels. The ionization peaks in the blue shaded area correspond to low-purity circular
levels. The many peaks in the red area correspond to pure levels selected with a MW
transition. The ionization peak for the elliptical levels (|k| ? 0) greatly overlap with
that of the circular level (k = 0) and between themselves. We also note that, for higher
parabolic quantum number k, the ionization peak slightly shifts to higher voltages.

k=0

k=1

k=2

k=3

Arrival times (µs)

n=52 n=51

Figure III.21 Ionization signal corresponding to the different transitions seen on the blue
colored spectrum in Figure III.22. The shaded blue area corresponds to the ionization time
window for high-l n = 52 levels and the red shaded area corresponds to the high-l n = 51
levels.

In Figure III.22 we show the MW spectrum found after the A-T polarization opti-
mization (blue dots). Sub-optimal polarization brings the population out of the n1 = 0

ladder and, with enough power, the population is pushed against the boundary of the
multiplicity along the upper diagonal (k > 0, see Figure III.15 and Figure III.22). Since
the |52, k〉 → |51, k〉 transition is shifted by an amount directly proportional to k from
the circular to circular transition (see eq.(I.7)), we conclude that the blue spectrum in
Figure III.22 is a consequence of too much RF power and slightly elliptical RF polariza-
tion. This explains the elliptical peaks on the right of the circular to circular transition.
A pure polarization with not enough power would populate the n1 = 0 levels close to
the circular, and these spectroscopic peaks would appear to the left of the circular one
(k < 0).

The red spectrum in Figure III.22 corresponds to the fine tuning of the RF phases
and powers over this signal. The transfer rate of the circular to circular line (k = 0) is
an indirect measure of the purity of the preparation.

III.2.5 Circular to circular transitions

Other circular levels in the surroundings of the n = 52 circular state are also available
via MW transitions. In Figure III.23, the available circular levels prepared in this way
are shown. The ionization spectrum starts 330 µs after circularization. The shaded
rectangles delimit the level identification. Note that the ionization spectrum is asym-
metric. Note also that the ionization spectrum for each circular level overlaps with that
right next to it on the lower field side.

We remark that, to access level |54c〉 from |52c〉, a pair of photons at 44.4 GHz
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Figure III.22 High-l Rydberg MW lines. Before the fine RF tuning (blue dots), several
elliptical states are populated. The red dots correspond to the optimized circularization. The
level identification of the elliptical to elliptical transitions close to the circular to circular line
is made possible thanks to the right panel.
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Figure III.23 Ionization signal for MW available circular states from |52c〉. The inset is the
relative detection efficiency per circular level.

(see eq.(I.1)) is required. This transition cannot be accessed in our setup because the
corresponding frequency is below cut-off for our MW waveguide. On the other hand,
the transition |52c〉 → |48c〉 can be obtained only with very bad state purity since such
a four-photon transition requires too much power and the line gets polluted by spurious
transitions that are off-resonantly excited.

The double-peak structure left after the MW transfer pulses (shaded gray in Fig-
ure III.23) corresponds to residual elliptical population after the circular state prepa-
ration. Note also that in Figure III.22 the spectrum colored in red has small peaks
at k = ±1. These two experimental signals share a common origin: an imperfect
circularization. Nonetheless, by applying a MW pulse from n = 52 circular state to
another circular level, we purify the state preparation by selectively only transferring
the circular atoms.
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The inset of Figure III.23 represents the differential level-dependent detection effi-
ciency in these experiments. Since each cRy level ionizes at a different electric field,
the trajectory of the core ions towards the channeltron is also different. The efficiency
thus depends on the deflection voltages and on the position the atoms are ionized.
The voltages of the ion-deflection electrodes are tuned to get a total number of counts
independent (up to 8%) of the level preparation intended.

Purity of the cRy preparation

We assess the purity of the optimized preparation for the |52c〉 state by performing MW
spectroscopy on the |52c〉 to |50c〉 transition. In Figure III.24, we show the circular to
circular MW line at its highest. The spectroscopy is plotted as a function of the MW
detuning δmw. The solid black trace is a squared cardinal sinus fitted to the data. The
MW pulse is 1.4 µs-long. In an applied electric field of 0.8 V/cm, this transition is
separated by 2.7 MHz from the nearest transition starting from the n = 52 populated
elliptical states. The > 91% transfer from |52c〉 to |50c〉 at resonance is a lower-bound
estimation of the purity of |52c〉.

Note that using a two-photon, instead of a one-photon, transition is beneficial in
that no direct thermal transfer affects the final level, providing a cleaner background.
Moreover, the absence of a permanent dipole (see Figure I.1) makes the interaction
negligible by limiting the number of excited Rydberg atoms.

Figure III.24 Microwave spectroscopy of the two-photon |52c〉 to |50c〉 (MWS) transition.
The frequency offset is 99.2786 GHz.

As explained before, one is to avoid the proliferation of interactions since population
losses induced by Rydberg-Rydberg collisions become a limiting factor for the purity
of the state preparation. We have measured the purity of the circular state preparation
as a function of the total number of cRy atoms detected. We measure the maximal
MW transfer from state |52c〉 to |50c〉 as we vary the blue laser excitation power and
we plot the results in Figure III.25. We see that in these detection conditions, and
under an electric field of 0.74 V/cm during the circular state manipulation, up to an
average number of counts of n50+n52 ∼ 0.4, the purity is not affected by density effects.
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This threshold depends strongly on the directing electric field. As a general rule, the
stronger the electric field, the bigger the number of atoms one can excite without seeing
losses in the population (see chapter II and IV).

Figure III.25 Purity of the |52c〉 preparation as a function of the total number of circular
levels prepared. The blue dots represent the maximal transfer from state |52c〉 to |50c〉 after
a MW pulse. The blue excitation laser power is varied to increase the number of Rydberg
excitations. The red dots represent the quantity n50 of |50c〉 states prepared from a MW pulse
from |52c〉.

III.3 Conclusion

In contrast to other cold atom experiments, our atom manipulation happens inside
a Helium-4 cryostat. The optical table containing the cold atom lasers, the imaging
system, and the Rydberg excitation lasers have been introduced. Using these tools,
we are able to prepare and optimize optical molasses (∼ 15 µK) in the cryogenic
environment. The accomplishment of the cold atom cloud marks the starting point for
the Rydberg excitation.

We have achieved a high purity preparation of circular states. The excitation from
ground to cRy is done using an orchestrated combination of electric field, laser, MW,
and RF pulses. Furthermore, we have shown the capability of transferring the circular
states from one manifold to another: a competence that will prove to be a necessary
utility.

The tools introduced in this chapter will be used heavily in the rest of this work.
They all converge in the preparation and manipulation of the cRy atoms, which are the
main object of study in this thesis. In the following chapters we discuss the lifetime
of the cRy states and their coherence in our setup (chapter IV), as well as the laser
trapping techniques we implemented (chapter V).
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As discussed in the previous chapters, intense black-body radiation is a drawback
for Rydberg states physics. Preparing these states in a cryogenic structure therefore
provides an advantage. In this chapter we will study the lifetime and coherence of the
cold cRy states prepared in our cryostat.

In the first part of this chapter we deal with the lifetime of the circular states. The
walls of the cryostat are at ∼4 K, while the black-body radiation entering through
the windows, as well as the presence of the heated Channeltron ion counter, rise the
electromagnetic temperature seen by the atoms. We find that, in our cryostat, the
mean number of photons is compatible with the one predicted by the Plank law for
a temperature T = (11 ± 2) K. The corresponding lifetime of state |52c〉 is then of
(3.7± 0.1) ms.

In the second part of this chapter we deal with the coherence of the superposition
of |50c〉 and |52c〉. We measure the response to MW excitation of the atoms by making
spectroscopy over two different transitions sensitive to either magnetic or electric field
variations. In this way, we identify and correct for possible sources of decoherence.
We find that the frequency spread of the circular to circular transition is dominated
by technical magnetic field noise. Finally, we assess the coherence of these states
by measuring the reversible (∼ 35 µs) and irreversible (∼ 270 µs) decoherence times
directly, and a simple model is introduced to fit the data.

IV.1 Lifetime (T1)

The mean number of thermal photons at 50 GHz goes from about a hundred at 300 K,
to about one at 4 K. This implies a 100-fold increase in the n ∼ 50 cRy lifetime. It is in
our interest to thermalize the radiation temperature to the liquid Helium temperature.
For this purpose we have i) reduced the optical access of our cryostat to shield the atoms
from the 300 K external black-body radiation, ii) installed a mesh to block the 40 K
radiation emitted by the Channeltron ion counter, and iii) installed a MW absorber to
get rid of any residual hot radiation in the cryostat. In this section, we first detail the
upgrade of the experiment performed in order to reduce the MW black-body radiation.
We then present a measurement of the lifetime of the |52c〉 level from which we deduce
the electromagnetic temperature in our cryostat.

IV.1.1 Reducing the effective MW temperature

Experimental upgrades

The windows in our cryostat are effectively transparent to the MW radiation and a first
attempt to reduce the black-body temperature inside the cryostat is to reduce their
aperture. In Figure IV.1 (a) we show a picture of the Helium shield with irises made of
copper installed on its windows. Different windows have different holes corresponding
to the minimal aperture needed for laser access and imaging of the atom cloud.

Secondly, a thin mesh (see Figure III.9) was installed in the hole of the shield
electrode to block the radiation coming from the channeltron, which is heated to 40 K.
The mesh acts as a mirror for the millimeter-wave radiation. The aperture and the
almost invisible copper mesh are shown in Figure IV.1 (b) (also see Figure III.1 and
III.9). The mesh is glued to the electrode shielding the channeltron voltage using
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silver paint (Electrolube SCP03B). It turns the whole plane of the electrode into an
equipotential. The hole in the electrode originally played the role of an ion lens to
focus the ions in the counter. Supressing this effect in the current experimental setup
severely degrades the detection efficiency.

Finally, 355 cm2 of radar absorbing material was installed in the interior of the
cryostat and thermally anchored to the Helium shield using a cryo-compatible glue
(Stycast). Its purpose is to thermalize the MW field to 4 K. In Figure IV.1 (c) we show
a picture of the installation. Due to differential thermal contraction, and in order to
reduce mechanical constrains, the MW absorber is cut in blocks of 1 cm × 1 cm and
glued to a copper foil that is in turn cut in 1 cm × 15 cm strips. The metal strips
also help reduce the eddy currents when we tune the magnetic field during the cooling
sequence. In the picture, one block was removed to show the design. The blue surface
is the Stycast glue.

(a)                                                               (b)                                                                (c)

Figure IV.1 In (a), the Helium screen is shown where the copper irises are installed. In
(b), the hole in the shield electrode covered with the thin mesh is show. In (c),we show a
photograph of the MW absorber installation.

IV.1.2 Measurements

We measure the lifetime of |52c〉 cRy atoms by measuring the population of the dif-
ferent circular states using field ionization after a variable time τ . The timing of the
sequence is shown in Figure IV.2 (a). Time t = 0 is taken at the end of the circulariza-
tion. The ionization signals obtained for different values of τ are shown in Figure IV.2
(b). We see how the population, initially concentrated in |52c〉, distributes into the
neighboring levels as time elapses. Note that the residual population in levels |52D〉
and |52F 〉, significant at t = 0, quickly disappears. This is a striking manifestation of
the improvement that using cRy brings. The lifetime of these levels, even in a cryogenic
environment, is in the range of 100 µs, two orders of magnitude smaller than that of
the circular states at zero temperature.

The dots in Figure IV.2 (c) correspond to the integration of ion counts in each of
the detection windows (corrected by a small offset of ∼ 8× 10−4 counts/µs introduced
by dark-counts) and describes the population diffusion among the circular levels.
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Figure IV.2 Atoms prepared in |52c〉 redistribute into the neighboring circular states. In
(a), we show the timing of the experimental sequence. In (b), we show the measured field
ionization signal for different delay times τ . In (c), the dots represent the measured circular
level population as a function of time. The solid lines are a fit using a rate equation model where
the temperature is the only fit parameter. The temperature is measured to be T = (11± 2) K.

IV.1.3 Data analysis

In free space, and at non-zero temperature, atoms prepared in cRy states have only
a few relevant loss channels. The jumps towards the neighboring cRy states are the
dominant ones (see eq.(I.6), Figure II.6 and II.9). For circular states with n ∼ 50, the
ratio of the dominant absorption rate (σ+ : |nc〉 → |(n+ 1)c〉) and the next leading
one (π ↑: |nc〉 → |(n+ 1)e〉) is Γnσ/Γnπ ∼ 50 and scales like n−1/2 (see Chapter II).
Thus, in a time span which is much smaller than a few tens of lifetimes, the population
evolution is confined to the circular ladder.

We will model the population diffusion seen in Figure IV.2 (c) by an incoherent
rate equation. The rates involved will be the free space decay rates Γi→f = Γ(i, f, T )

defined in Chapter II (see eq.( II.14)) and the only free parameter is the electromagnetic
temperature T entering the equation via Planck’s black-body law nth(ωif , T ). In doing
so, we also make the assumption that all modes are equally thermalized. At τ = 0 the
only populated circular state is n = 52.
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The rate equation that we consider reads

ṗn(τ) = Γ(n+ 1, n, T ) pn+1(τ) + Γ(n− 1, n, T ) pn−1(τ)+

− (Γ(n, n− 1, T ) + Γ(n, n+ 1, T ) pn(τ),
(IV.1)

where pn is the population of state |nc〉. This equation reproduces a one-dimensional
inhomogeneous random walk in the circular state ladder. In Figure IV.3, a sketch of
the jumps of the atoms is shown.

Figure IV.3 Population is lost from state |nc〉 after jumping towards the neighboring circular
states.

Some modifications to this simple model are made to account for known imperfec-
tions in the experiment. Due to the asymmetric shape of the ionization spectrum (see
Figure III.23), we include a 5% leakage of population in the model from state |nc〉 into
the detection window of state |(n+ 1)c〉. Also, we note that the purity of the cRy levels
used for these measurements was ∼ 80% and close neighboring elliptical levels spuri-
ously prepared by the circularization imperfections thus participate in the population
evolution. The population in those elliptical levels (ml > l) does not modify the simple
model since those elliptical levels have similar decay rates to that of the circular level
with the same n. In Table IV.1, we show the dipole elements involved in the population
evolution. We thus treat, in this context, elliptical levels as if they were circular levels
with the same n.

The set of coupled equations defined by 49 ≤ n ≤ 55 is solved numerically. The
cut-off in n is justified by the fact that the population in |49c〉 and in |55c〉 states are
measured to be p49, p55 � 1 at all times. The fit in Figure IV.2 (c) (solid lines) is
done by iterating over the temperature and minimizing the mean square distance to the
data. The fit is in good agreement with the experimental data and yields a black-body
temperature of T = (11±0.4) K. The remarkable observation of (3.7±0.1) ms lifetime
for the circular states is due to the efficient thermalization of the radiation inside the
cryostat. Previous experiments in this setup measured black-body temperatures close
to 40 K in low-l Rydberg experiments [139]. At 40 K, n = 52 cRy atoms barely live
one millisecond. One can estimate the black-body temperature in the new setup as
an average of 4 K and 300 K, while using, as weights, the areas of the cold radar
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Transition Type d2
if/a

2
0

|50c〉 ↔ |49c〉 σ+ 2.91× 106

|50c〉 ↔ |51c〉 σ+ 3.15× 106

|50c〉 ↔ |51e〉 π 63× 103

|50e〉 ↔ |49e〉 σ+ 2.79× 106

|50e〉 ↔ |51e〉 σ+ 3.03× 106

|50e〉 ↔ |51ee〉 π 61× 103

|50e〉 ↔ |49c〉 π 59× 103

Table IV.1 Square of dipole elements between high-l Rydberg levels. Circular and close lying
elliptical levels (ml > l) have similar decay rates.

absorbing material (355 cm2) and of the irises (15 cm2) connecting the experiment to
the room temperature environment. The average is computed to be 17 K, in qualitative
agreement with our measurement.

Our observations are compatible with the rates calculated in free space for the
relevant transition, where frequencies are in the range of 40 to 60 GHz.1 We nonetheless
remark that a modification to the free space density of modes due to the surrounding
electrodes may affect the validity of the free space assumption. The main consequence of
this effect is the modification of the transition rates Γi→f and, thus, a bias is introduced
in our temperature measurement. Taking the modification in the mode density caused
by the closest electrode (the MOT-mirror, z ∼ 3 mm away from the atomic sample)
as representative of the effect of all the electrodes together, we can compute a bound
for the rate modification. We model the surface of the MOT-mirror as an infinite ideal
mirror and analytically compute the associated loss rate modifications for the cRy
population. The analytic expression is simply obtained by taking L → ∞ in equation
eq.(II.12). The resulting multiplicative factors for each polarization are

Cσ =
3

2

{
2

3
− sin 2kz

2kz
− cos 2kz

(2kz)2
+

sin 2kz

(2kz)3

}
,

Cπ = 3

{
1

3
− cos 2kz

(2kz)2
+

sin 2kz

(2kz)3

}
< 2,

(IV.2)

where k = 2πνn/c. We show in Figure IV.4 the analytic decay rate modification (Cσ)
for the involved circular to circular transition frequencies. The dashed line is the free
space value. Note that π transitions, having couplings tens of times weaker than the
σ+ transitions (see Table IV.1), remain negligible even if their loss rates are enhanced,
since we note that Cπ < 2. We see a modification of, at most, ±20% (at z ∼ 3 mm) in
the loss rates. Taking this magnitude (±20%) as an upper bound for the modification
of all transitions, we find a satisfactory fit to the data with T = (11± 2) K.

We note that this measurement approach could allow us to measure in situ the
absolute temperature of the black-body radiation. This could be an important tool for

1Since state |52c〉 is the initial state, we are most sensitive to the mean number of photons inducing
transitions towards |51c〉 and |53c〉.
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Figure IV.4 Inhibition factor affecting the free space MW transition decay rates of Rydberg
atoms. The analytic calculation corresponds to an infinite and perfectly conducting mirror.
The dashed line is the free space value.

metrology, particularly in the field of atomic clocks, in which the black-body radiation-
induced shifts significantly contribute to the uncertainty budget [196, 197].

The long lifetime of the cRy atoms is a technological asset that could provide en-
hanced sensitivity to cRy-based sensors [106, 107] and the grounds to build a quantum
simulator capable of studying ‘slow’ dynamics relevant to many-body physics. More-
over, the fact that the lifetime of the cRy states is related to the black-body temperature
in such a simple manner can be regarded as a direct measurement of the photon number
distribution at the level of the atoms. In our present setup, assuming a mean photon
number distribution given by a single free parameter T suffices.

IV.2 Dephasing (T ∗2 and T2)

In this section we study the coherence of the circular state superposition and the
limitations that need to be surpassed in order improve our experimental conditions. On
the basis of the quantum simulator proposal developed in Chapter II, we take states
|50c〉 and |52c〉 as a qubit basis. We measure the reversible and irreversible single qubit
coherence times to be T ∗2 ∼ 35 µs and T2 ∼ 270 µs after a spin-echo sequence. Here,
we discuss how we dealt with the frequency shifts (either from Stark or Zeeman drifts)
during the data acquisition. They remain the limiting factor for our atomic coherence.

On the one hand, the circular to circular qubit line has a linear sensitivity to the
magnetic field. This implies an associated linewidth of 2µBδB, where µB is the Bohr
magneton and δB is the magnetic field fluctuation. On the other hand, the qubit
line also has a quadratic sensitivity to the electric field. To estimate the electric field
contribution to the coherence of the circular state superposition, we consider the electric
field in the experiment to be expressed as F = F (0) + δF , where the electric field varies
around a mean field F (0), an amount δF due to either a temporal electric field noise
or because of static electric field gradients over the atomic cloud. The contribution to
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the qubit transition linewidth is then estimated as 534.89 kHz/(V/cm)2 × 2|F (0)||δF |,
where the numerical value is the differential quadratic shift between the qubit states.

The transition from the MOT to the molasses involves a rapid switch-off of the mag-
netic fields right before the Rydberg atom preparation. The associated electromotive
force creates eddy currents in the electrodes. The dissipation of these eddy currents
produces a time dependent Zeeman shift of the |52c〉 → |50c〉 two-photon transition
that one must avoid. In this section we first report on the measurement of the charac-
teristic timescale of this magnetic field drift in our experiment. Next, we discuss the
electric field contribution to the qubit coherence and we evaluate it to be small. We
then show the measurements of the coherence time of our qubit superposition and, by
the end of the chapter, a simple model for the dephasing is introduced to analyze the
data.

IV.2.1 Magnetic field drift measurement

The biggest current loops in our experiment are those created in the copper Helium
screen surrounding the core of the experiment. However, a layer of superconducting
Lead covers the inner part of the screen and it is supposed to prevent the MOTmagnetic
field from leaking out. We have found that, due to bad thermalization of the shield, the
screening was not perfect. Holding a magnetic Hall probe close to the external vacuum
chamber, we were able to measure a strong magnetic field variation due to the MOT-
molasses cycle (∆B ∼ 150 mG ). This was solved by pumping on the Helium-4 reservoir
to ensure the superconducting state of the shield. By reducing the temperature of the
Helium bath from 4.2 K to 3.6 K, the screening factor was seen to increase by a factor
of 100.

To measure the magnetic field inside the experimental chamber, we measure the
transition frequency of the |52c〉 → |50c〉 line as a function of the time delay T after the
magnetic field ramp triggered at the end of the MOT stage (see Figure III.4). We show
the timing of the experimental sequence used in Figure IV.5 (a). We perform circular
to circular MW spectroscopy using 200 µs long MW pulses. The Fourier limit for the
frequency determination is 800 Hz. They are applied 65 µs after circularization (see
Figure III.20) and the electric field is F (0) ∼ 1.5 V/cm. For each value of the delay T ,
the transfer rate is calculated by averaging the data corresponding to Rydberg atom
samples detected in a time window width of 50 ms (open blue dots) or 25 ms (solid blue
dots). In this way we are able to get information about the magnetic field variation at
these time scales.

For each time delay T , the frequency of the MW pulse is scanned and a Gaussian fit
of the resonance line determines the line center. Figure IV.5 (b) presents the variation
of the measured transition frequency as a function of T . The data is fitted by an
exponential having a decay time of 54 ms (solid blue line). After a delay of 250 ms we
analyze the data by subdividing it in sets of 25 ms. The inset of the Figure shows the
spectroscopic lines taken for T >250 ms with their respective Gaussian fits. We find
that, for all the lines in Figure IV.5, the ∼ 2 × 49.638985 GHz two-photon transition
frequency has stabilized to < 2×0.5 kHz up to the fit precision. This is negligible with
respect to the linewidth.
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Figure IV.5 In (a), we show the data acquisition timing for the measurement of the magnetic
field drift measurements. In (b), we show the stabilization of the line center. After 250 ms the
line is stable well below its linewidth. The frequency axis corresponds to the MW drive. In
the inset we show the MW two-photon lines.

The Gaussian line width (standard deviation, σE/h = 2 × σcc) of the two-level
energy is (7.0 ± 0.2) kHz, where σ2

cc is the fitted Gaussian variance of the circular
to circular spectroscopy and the factor 2 comes from the fact that it is a two-photon
transition. This is compatible with a current noise of ∼ (0.16 ± 0.2) mA in the MOT
magnetic coils producing a magnetic field noise with standard deviation σB ∼ 2.5 mG.
In Figure IV.6 we show a single |52c〉 → |50c〉 narrow line. The linewidth is fitted to
be σE/h = 2 × σcc = (7.13 ± 0.13) kHz. The data collection starts 250 ms after the
switching MOT-molasses transition and it is integrated during 250 ms. The electric
field is of F (0) ∼ 1.5 V/cm.

IV.2.2 Electric field drift

Short timescale drift

The manipulation of cRy states requires a fast dynamical control of the electric field
(1-100 µs). The bandwidth for the manipulation of the electric fields is limited to
the timescales imposed by the parasitic inductance and capacitance present in the
voltage control lines. Charging of the electrodes due to proximity effects can also
limit the timescale at which one can control the electric fields in the experiment. To
study the electrode charging and discharging times in our experiment, we perform MW
spectroscopy on the |52c〉 → |53e−〉 (see Figure I.2 and Chapter II for level diagram)
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Figure IV.6 Narrow circular to circular line. The one-photon standard deviation is fitted to
be σcc = (3.57± 0.07) kHz. Assuming the broadening is only of magnetic origin, the linewidth
corresponds to ∼2.5 mG spread in the magnetic field.

transition which is extremely sensitive to the electric field (∼ −101.7 MHz/(V/cm))
and has no first order magnetic field dependence (∆ml = 0).

After circularization, the field is switched to a lower value to perform spectroscopy.
We now measure the time needed for electric field stabilization after this change. Being
able to pinpoint the center of the line to a few kHz gives us a way to precisely measure
the electric fields at the level of the atoms. In Figure IV.7 (a), we show the experimental
sequence used for this calibration. In Figure IV.7 (b), we show the circular-elliptical
line for different waiting times after the adiabatic circularization field ramp. The mean
value of the electric field is F (0) ∼ 1.475 V/cm and the circular to elliptical MW pulses
are 10 µs long. In Figure IV.7 (c), we plot the line center (blue dots) and the linewidth
(red dots) as a function of the delay τ ′ after circularization.

The observed mean Stark shift first decays by 300 kHz between 40 and 90 µs,
corresponding to a field variation of 3 mV/cm. The field then stabilizes with a residual
drift of 0.7 mV/cm in 200 µs, which is the duration of MW pulses used to characterize
the magnetic field above. The width of the |52c〉 → |53e−〉 is measured here to be
∼ 130 kHz to the experimental precision and corresponds to electric field fluctuation
of δF ∼1.3 mV/cm on the 10 µs timescale.

In the search for optimal operation conditions during our coherence measurements,
we now turn to study the long term drifts of the electric field. In the following section
we discuss the electric field stability at the timescale of the data averaging (1-100 ms).

Long timescale drift

A few hundred successive Rydberg electric field sequences like the one in Figure IV.7 (a)
are needed to gather statistics. They are played consecutively during the molasses stage
(see Figure III.4 and IV.5 (a)). If the sequence is not repeated in an identical manner
each time, effective decoherence may degrade the measurements. Due to electrodes
charging, the first few sequences are not identical to the rest and they need to be
discarded. This is done by blocking the excitation laser and triggering many Rydberg
sequences before finally unblocking them. We refer to those electric field sequences
as ‘Fake’ sequences. Since 250 ms are needed to stabilize the magnetic field of the
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Figure IV.7 In (a), the time sequence for the electric field stability measurement is shown. In
(b), we show the circular elliptical spectroscopy for different time delays after circularization.
The lines are Gaussian fits. In (c), we show the fit parameters, center (blue dots), and width
(red dots) of the lines as a function of the MW pulse delay with respect to the circularziation
field ramp. After the circularization electric ramp, the electric field drifts due to charge effects.
Without taking into account the first of the blue dots, we fit a linear function to the time
dependence of the line center.

experiment we use this time to trigger Fake electric field sequences before the data
collection. We now check that this duration is long enough so that the electric field is
stable. In Figure IV.8 (a), we show the timing of the sequence where Rydberg electric
sequences (duration 750 µs) are triggered during 250 ms before the laser excitation
starts. The mean electric field was F (0) ∼ 1.47 V/cm, while the MW pulse was 10 µs
long and they were applied 50 µs after the adiabatic circularization electric field ramp
(see Figure IV.7).

Blocking the excitation laser during the first 250 ms, we gather statistics during
the following 230 ms. We subdivide the data into smaller sets to confirm the electric
field stabilization. The procedure consists of averaging over 23 ms of the collected
spectroscopic data and then plotting the results as a function of the central time for
each data set (see shaded areas in Figure IV.8). The spectroscopy and the result of
Gaussian fits are shown in Figure IV.8 (b) and (c) respectively. The Gaussian standard
deviation of the MW |52c〉 → |53e−〉 line is constant to the experimental precision and
it is fitted to be (132±4) kHz. We plot the fitted standard deviation in (c) (red dots).
The center frequency of the MW line is also seen to be constant up to the experimental
precision (±5 kHz). We plot the fitted center (blue dots) as a function of time in (c).

By triggering Fake Rydberg electric sequences during the magnetic field relaxation,
the electric field in the experiment stabilizes. We find that 230 Fake sequences are
enough to stabilize the electric field. We keep this number fixed independently from
the duration of the Rydberg sequence. The duration of the ensemble of the Fake
sequences is also changed accordingly. Note that, since the ground state atoms are
impervious to the electric field, one can start the Fake sequences before the end of the
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Figure IV.8 (a) Timing of the sequence. The short bars represent Rydberg sequences. We
have depicted the electrical sequences (short black bars) and the laser excitation pulses (short
red and blue bars) separately. (b) Circular-elliptical line taken after 250 ms of Fakes. The
frequency offset in (b) is 45.328 GHz. In (b) and (c) we show the stability of the electric field
after 250 ms of Rydberg electric sequences before starting the Rydberg laser excitation. In (e)
the frequency offset is 45.328515 GHz.

MOT if needed.
As a final calibration, we measure the electric field gradients in our setup. Static

(DC) electric field gradients may contribute to the linewidth of the |52c〉 → |53e−〉
transition frequency. Ultimately, they will manifest as effective (reversible) decoherence
in the data averaging. We now turn to discuss how one can measure and optimize the
spatial variation of the electric field in our experiment.

Gradients

We turn to the task of studying the spatial electric field dependence. For this purpose we
move the excitation lasers to displace the excitation volume. This volume is determined
by the overlap of the blue and red excitation beams and it has a cigar-shape with a
typical dimension along the x, y, and z directions of (200 µm×20 µm×20 µm). We
then perform laser spectroscopy on the ground-Rydberg (|52D5/2,mj = 5/2〉) line to
measure the static electric field gradients over the atom cloud. The position of the laser
beams is tracked by measuring their position in a CCD camera.

In Figure IV.9 (a), (b), and (c), we show the laser displacement we perform in order
to displace the excitation volume in the x, y, and z directions respectively. The yellow
pad represents the surface of the MOT-mirror. The red circle represents the front view
of the red excitation laser on the mirror plane and the blue taper represents the focused
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blue excitation laser.
We first cancel the electric field gradients at the field of the Rydberg laser line

(F ∼ 0.3 V/cm). The blue dots in Figure IV.9 (d) represent the mean electric field
seen by the atom cloud at different positions along the y direction, previous to the
gradient optimization. The slope of the linear fit gives the gradient in that direction
and it is measured to be ∂yF = (900± 10) mV/cm2.
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Figure IV.9 Measurement sequence for the electric field as a function of the laser displacement
of the Rydberg cloud. In (a), (b), and (c), we show the laser beam displacements performed to
measure the electric field as a function of position. By changing the electrodes’ voltages, one
can change the gradients in the experiment. In (d), we show the gradients in the y direction,
before and after compensation.

The reduction of electric field gradients is made possible by the presence of the rod
RF electrodes (see Figure III.9). In Figure IV.10, we show a front view of the Stark
electrode and of the four circularization rod electrodes. The four electrodes give us four
degrees of freedom to tune the electric field in the experiment. The degrees of freedom
can be the individual Vi voltages with i ∈ {1, 2, 3, 4} or any other linear combination
of them. We prefer to work with the transformation given by

Vx
Vy
Vz
V+

 =


1 −1 1 −1

1 1 1 1

1 1 −1 −1

−1 1 1 −1



V1

V2

V3

V4

 , (IV.3)

since it defines new voltages with a simple physical interpretation. On this basis we
have access to four parameters that essentially tune the electric field in the three spatial
directions (Vx, Vy, and Vz) and still allow the tuning of a quadrupolar term of the field
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(V+) as depicted in Figure IV.10. In Figure IV.10, we show the configuration, colored
in red, where the rod electrodes are held to a positive voltage and, in blue, where they
are held to the opposite voltage value. The black arrows show the main component of
the electric field created by each configuration.

Figure IV.10 The rod electrodes permit a directional gradient at the level of the atoms. Red
symbolizes a positive voltage and blue symbolizes a negative voltage. The black arrows show
the electric field produced by different configuration of voltages.

Iterating over these values and the Stark electrode (orange in Figure IV.10) voltage
allows us to improve the electric field homogeneity for a fixed average electric field. The
green dots in Figure IV.9 show an intermediate step in the iteration. The optimization
converges to F

(0)
y = (280 ± 6) mV/cm (red dots in Figure IV.9) over a half a mil-

limeter. The gradients in the three directions are measured to be, after optimization,
∂xF ∼ 170 mV/cm2, ∂yF ∼ 80 mV/cm2 and ∂zF ∼ 100 mV/cm2.

We observe a degraded purity of the cRy states at ∼ 0.3 V/cm with respect to
that found in higher directing electric fields. The observation is attributed to Rydberg-
Rydberg interactions occurring at high excitation rates (see Chapter III). Note that
high directing electric fields preserve the purity of the circular states even at moderate
excitation rates, but a too high electric field would limit the coherence of the superpo-
sition. We decide to work in an electric field of ∼ 0.46 V/cm as a compromise (Stark
electrode voltage set to VS=2.00 V, purity > 80%).

We note that MW measurements of transitions frequencies provides more reli-
able information on the gradients than our laser line, which is broaden due to our
laser linewidth. We thus directly optimize, in place (for a fixed position of the ex-
citation lasers), the width of the |52c〉 → |53e−〉 line to minimize the gradients at
F (0) ∼ 0.46 V/cm. The MW pulse duration is 10 µs and was applied 50 µs after
the circularization pulse as above. We present the result in Figure IV.11. The data
coloured in red corresponds to the circular-elliptical line before re-optimization of the
gradients at F (0) ∼ 0.46 V/cm. The blue dots, correspond to the optimization. The
improvements achieved by the control of the rod electrodes voltages have reduced the
standard deviation of the circular-elliptical line to σce = (72± 4) kHz. The associated
electric field variation is δF ∼ 0.7 mV/cm. The observed residual shift of the resonance
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frequency (∼ 700 kHz) is due to a 7 mV/cm shift in the mean field due to the opti-
mization procedure. The final electrode configuration for the rod electrodes is found
to be V1 = 3.271 V, V2 = 2.181 V, V3 = 2.728 V, and V4 = 1.818 V.

MW frequency (kHz)

45.4312 GHz +

Figure IV.11 Optimization of the circular elliptical linewidth (|52c〉 → |53e〉). The solid lines
are Gaussian fits. The standard deviation of the line was reduced from 95 kHz to 72 kHz by
optimizing the electric field gradients. The mean electric field is F (0) ∼ 0.46 V/cm.

The electric field fluctuation causing the finite width of the circular-elliptical line is
δF = σce/101.7 MHz/(V/cm)∼ 0.7 mV/cm. The electric field variation measurement
bounds the reversible coherence to 4.7 ms, which is beyond the lifetime of the qubit
state in our cryostat.

IV.2.3 Ramsey interferometry

In this section, we will discuss the measurement of the qubit decoherence times for the
superposition of the |52c〉 and |50c〉 states. The working electric field was chosen to
be F (0) ∼ 0.46 V/cm. To ensure an optimal working condition, the Helium-4 reservoir
was pumped (temperature of 3.6 K) during the coherence experiments and 230 Fake
Rydberg electric field sequences are played (with a duration of 1050 µs each) before
data collection. Also, a 50 µs delay is introduced after circularization to operate the
MW pulses controlling the qubit in optimal field conditions.

To quantify the coherence time, we measure the damping of a Ramsey signal in a
superposition of the |52c〉 and |50c〉 states: The initial state |52c〉 is rotated by a first
π/2 ‘Ramsey’ pulse (R1) and then measured by ionization after a second π/2 Ramsey
pulse (R2). Both MW pulses are in phase. The R1 pulse prepares the superposition.
After free evolution, the R2 pulse mixes the two-states again and the state is detected,
by field ionization, in the {|52c〉 , |50c〉} basis. By operating the Ramsey pulses detuned
by an amount ∆0 = 2νMW − (E52c −E50c)/h from the atomic transition resonance we
witness oscillations of the transfer from |52c〉 to |50c〉 as a function of the time delay
between the two Ramsey pulses (τ1,2). To efficiently fit the data, we make the detuning
big enough so that many oscillations can be seen before the damping time has elapsed
(∆0 > 1/T ∗2 ), but small enough with respect to the Fourier limited width of the hard
pulses (? 1 µs) used to prepare the state.
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Rabi oscillation

The preparation and detection of the superposition relies on the efficiency of the Ram-
sey pulses one is able to perform. The coherent MW manipulation is performed by
submitting the atoms to a MW field for a given amount of time during which they
perform a Rabi oscillation. Setting the time of the driven evolution, one can rotate the
state in the Bloch sphere by an arbitrary angle.

In Figure IV.12 we show a Rabi oscillation used to prepare the atomic superposition
used for the coherence experiments. The blue dots correspond to a Rabi oscillation
driven at resonance and the red dots correspond to a drive detuned by ∆0 ∼ 2π×60 kHz.
For the detuning ∆0, the π and π/2 pulses correspond to the durations of ∆tπ = 3.2 µs
and ∆tπ/2 = 1.8 µs respectively. The finite transfer efficiency is explained by a finite
purity of the |52c〉 state preparation (∼ 80%).
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Figure IV.12 The first cycle of a Rabi oscillation. In blue, we show a resonant MW drive.
For the red dots, the driving is detuned by ∆0 ∼ 2π × 60 kHz.

Ramsey fringes

To measure the Ramsey coherence time T ∗2 , we scan the time in between the first
Ramsey pulse and the second Ramsey pulse (τ1,2), and measure the transfer probability
from state |52c〉 to |50c〉 as a function of τ1,2. We show the experimental result in
Figure IV.13 and, in the inset of the Figure, we show a scheme of the sequence. The
first Ramsey pulse is performed 50 µs after circularization.

The transfer data from |52c〉 to |50c〉 is fitted by a sine with a Gaussian envelope
as

T52c−50c (τ1,2) = Ae−
1
2

[τ1,2/T ∗2 ]2 sin(∆0τ1,2 + θ) + c (IV.4)

The fit yields an oscillation frequency ∆0 = 2π × (59 ± 0.2) kHz and a T ∗2 time of
(45± 7) µs (A = 0.69± 0.02 and c = 0.41± 0.1).

We remark that the Ramsey damping time and the qubit linewidth transition do
not fulfill the Fourier relation for Gaussians, but instead respect the bound σET ∗2 > h̄.
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Figure IV.13 Ramsey oscillation for the transfer T52c−50c between the |52c〉 state to the |50c〉
state.

This is typical of time-dependent noise to which Rabi and Ramsey sequences have
different sensitivities [198].

IV.2.4 Spin-echo

The response function of the Ramsey sequence is maximal for DC noise [199], but the
spin-echo sequence is actually immune to it. Slowly varying temporal noise, as well
as strictly static frequency gradients over the sample, is completely canceled by this
technique. One thus expects an extended coherence time for the state superposition.

In Figure IV.14, we show an example of a echo experiment. The sequence simply
consists in introducing a MW-π pulse (orange), at time tπ after the first π/2 Ramsey
pulse. In this example, the π pulse is performed at tπ ∼ 100 µs and the time interval
in between the two Ramsey pulses (τ1,2) is scanned. We see that before the π pulse
is applied (τ1,2 < tπ), the evolution is that of the Ramsey oscillations. The Bloch
sphere picture in the inset helps to understand the dephasing process. After the π
pulse (τ1,2 > tπ), the phases of the superposition are transformed in such a way that
a ‘spin-refocusing’ is observed some time after. The oscillation revival product of the
spin refocusing happens at time tE , where the sub-index E stands for ‘echo’. This
data has a good signal to noise ratio because it has been taken with a large number of
Rydberg atom excitations per laser pulse. An improved initial contrast is obtained by
reducing the laser excitation power.

The reduced contrast of the echo with respect to the initial Ramsey is the signature
of the dephasing, which has not been reversed by the spin-echo sequence. By measuring
the maximal contrast of the echo as a function of time, we quantify the ‘irreversible’
decoherence2 processes and measure the T2 decoherence time. In Figure IV.15, we

2We use the word irreversible here in the context of the simple spin-echo technique. More elaborated
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T
ra
ns
fe
r

(µs)

Figure IV.14 A spin-echo sequence. Applying a π pulse before the second Ramsey pulse
produces a revival of the oscillations.

plot a few oscillations close to the center of the echo envelope for different tπ times.
The data is taken at a low counting rate to avoid the initial contrast reduction due
to Rydberg-Rydberg interactions. We measure the echo maximal contrast by fitting a
sine with a Gaussian envelope to the oscillations. The expression used is

T52c−50c (τ1,2) = Ae−
1
2

[(τ1,2−tE)/T ∗2 ]2 sin(∆0(τ1,2 − tθ)) + c. (IV.5)

We fit all the data using this function and sharing the parameters ∆0, c and T ∗2 . For
this data, we find ∆0 = 2π × (57.7± 0.2) kHz and T ∗2 = (36± 2) µs (c = 0.42± 0.01).
The fit is in good agreement with the data.

In Figure IV.16 (a), we show the fitted Gaussian amplitude A as a function of the
experimentally controlled parameter 2×tπ (dots). In Figure IV.16 (b), we plot the fitted
echo (revival) time tE as a function of 2×tπ. The red dashed line in the (b) corresponds
to the identity line. Note that, even if the effect of the spin-echo is to completely
reverse the DC noise at 2× tπ, the maximal contrast of the oscillation is measured at
tE < 2×tπ. The reason is that the contribution of the high frequency noise permanently
accumulates and the optimal phase compensation is achieved before the DC component
gets to be fully reversed. This effect is intrinsic to spin-echo spectroscopy.

The solid lines in Figure IV.16 (a), and (b) correspond to a dephasing model we
develop in the next section.

IV.2.5 A model for dephasing

To gain some insight into the decoherence process involved– beyond the quantitative
measurement provided by the Gaussian fit– we introduce here a simple model.3

dynamic decoupling techniques can reverse different components of the noise spectrum [199].
3After developing the model to explain our experimental data we found similar theoretical work

done by Klauder and Anderson [200].
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Figure IV.15 Spin-echo. Transfer rate from |52c〉 to |50c〉 as a function of time. The envelope
of the fit is given by a sine with a Gaussian envelope.
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Figure IV.16 In (a), we plot the Gaussian amplitude A (dots) as a function of 2 × tπ.
Physically, A represents the contrast of the oscillation at time tE . Note that the measured tE
is smaller than 2× tπ (b).
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We reproduce the dephasing in the |52c〉 + eiϕ(t) |50c〉 superposition seen in the
experiment by working out a stochastic equation for the relative phase ϕ(t) as a function
of time.

Ramsey oscillations

Temporal noise in the external fields can be considered as a time dependent Hamiltonian
evolution. In the rotating frame at two times the MW drive frequency (2νMW ), the
Hamiltonian reads Ĥj(t

′) = h̄ωj(t
′) |52c〉 〈52c|, where ωj(t′) = −∆0 + ∆j(t

′) is the
two-level detuning as a function of time in the jth realization of the noise. To capture
the essence of the dephasing, we model the noise in the experiment by a filtered white
noise. We use an exponential function with a time constant τϕ to obtain the expression

∆j(t
′) =

∫ t′

−∞
Wj(t

′′)
e
t′′−t′
τϕ

τϕ
dt′′.

Here, Wj(t
′′) stands for a Gaussian white noise process with 〈Wj(t

′′)〉j = 0, where
〈·〉j stands for the ensemble average over the noise realizations. The white noise is
determined by 〈Wj(t

′′
1)Wj(t

′′
2)〉j = Dϕδ(t

′′
1 − t′′2) which is the two-point correlation

function of Wj . Here δ(t′′) is the Dirac distribution. By averaging the white noise
using an exponential time window, we have enforced on ∆j(t

′) a Lorentzian noise
spectrum defined by the noise amplitude Dϕ and the correlation time τϕ.

Taking as the initial condition

|ψj(t = 0)〉 = (|52c〉+ |50c〉)
√

2,

the integration of the Schrödinger equation yields a time dependent state in the form

|ψj(t)〉 ∼ |52c〉+ e−iϕj(t)|50c〉,

where the phase as a function of time is given by the frequency integral

ϕj(t) = −∆0t+

∫ t

0
∆j(t

′)dt′.

These expressions correspond to the quantum evolution of the qubit state after a first
(perfect) π/2 Ramsey pulse.

The construction leads to a Gaussian distribution for the phase random variable
ϕj for all times t and, thus, its distribution is completely determined by its two first
central moments. They mean value is computed to be

〈ϕj(t)〉j = −∆0 t.

For the sake of simplicity we will set, for now, explicitly ∆0 = 0 to substract the
deterministic drift of the phase and concentrate in the stochastic process. This simpler
treatment directly yields an expression for the envelope of any ‘carrier’ signal at the
arbitrary frequency ∆0. One can then compute the variance of the random variable to
be
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σ2
ϕ(t) = 〈ϕ2

j (t)〉j = Dϕ

(
t+ τϕ(e

− t
τϕ − 1)

)
.

Intuitively, the oscillation is damped by the time this variance is σ2
ϕ(t) ∼ π2 since

the phase variable is no longer well-defined. Using the Gaussian character of the phase
random variable, one can readily compute the contrast as a function of time to be
C(t) = 〈IRe{e−iϕj(t)}〉j ≡ e−

1
2
σ2
ϕ . This expression provides the envelope for the Ramsey

experiments. Note that the expression justifies the Gaussian fit in Figure IV.13 and
in Figure IV.15 if t � τϕ. Then σ2

ϕ(t) ∼ t2 × Dϕ/2τϕ. As we will discuss next, this
condition corresponds to our experimental situation.

Echo experiments

To extend this result to spin-echo experiments, we consider an infinitely short and
perfect π pulse applied at time tπ. For t > tπ, the phase random variable (denoted now
with a tilde) reads

ϕj(t)→ ϕ̃j(t) = −
∫ tπ

0
∆j(t

′)dt′ + π +

∫ t

tπ

∆j(t
′)dt′.

The second moment of the new Gaussian distribution can be calculated directly and
the new expression for the variance is

σ2
ϕ̃/Dϕ = tπ + τϕ(e

− tπ
τϕ − 1) + (t− tπ) + τϕ(e

− t−tπ
τϕ − 1) + τϕ[e

tπ
τϕ − 1][e

−t
τϕ − e

−tπ
τϕ ].

Everything taken into account, the envelope for the Ramsey and the echo oscillation
is directly given by

C(t) =


e−

1
2
σ2
ϕ(t) if t < tπ (Ramsey)

e−
1
2
σ2
ϕ̃(t) if t > tπ (Spin-echo).

(IV.6)

To include the oscillating character (the ‘carrier’ signal) in a detuned reference
frame, we need to consider a non zero frequency ∆0 in the model. The calculation
can be resumed in a similar manner. The expression for the transfer probabilities as a
function of τ1,2 simply reads

T52c−50c (t) = C(t) cos(∆0(t+ tθ)). (IV.7)

The model now describes the data in Figure IV.13, IV.14, and IV.15. One can use
eq.(IV.7), instead of eq.(IV.5), to fit the damped oscillations in Figure IV.15 if one
allows for an offset c′ and a global amplitude A′ to take experimental imperfections
into account.

The new fit is shown in Figure IV.17 and yields a noise correlation time constant
of τϕ = (2.1 ± 0.3) ms and a noise amplitude of Dϕ = (3.8 ± 0.8) × 106 s−1 (with
A′ = 0.60 ± 0.10 and c′ = 0.420 ± 0.002). Since τ1,2 � τϕ, the analytic expression for
the Ramsey coherence time (defined as a Gaussian standard deviation) reads
T ∗2 =

√
2τϕ/Dϕ = (34± 2) µs.
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Figure IV.17 Spin-echo. Transfer rate from |52c〉 to |50c〉 as a function of time. The data
is the same as was presented in Figure IV.15. The oscillations are now fitted by the model
eq.(IV.7).

The fitted noise parameters can be translated to the width of the Lorentzian noise
spectrum as Γϕ ≡ 1/2πτϕ = (75± 6) Hz.

The noise energy dispersion can also be computed from the fit parameters to be
σE/h = σ∆/2π =

√
Dϕ/2τϕ/2π = (4.8 ± 0.2) kHz and, assuming that the dispersion

has magnetic origin only, it corresponds to a magnetic field dispersion of σB = σ∆/2µB
of < (1.70± 0.4) mG. This is compatible with a current noise of ∼ (0.11± 0.03) mA in
the MOT magnetic coils.

To get the functional form for the data in Figure IV.16 (b), we work out an analytic
expression for the echo (revival) time tE . The condition is ∂tC(t)|tπ = 0 (with t > tπ)
and yields

tE = τϕ ln(2e
tπ
τϕ − 1) < 2× tπ. (IV.8)

We use this expression and apply the fitted value τϕ = 2.1 ms to trace the solid line in
Figure IV.16 (b). Finally, one can write an expression for the maximal echo contrast
as a function of the echo time tE .

The solid line traced in Figure IV.16 (a) is obtained by evaluating eq.(IV.6) at
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t = tE(tπ) to get a model prediction for the contrast C at tE as a function of tπ. We
further introduce a factor of 2 to be able to plot the expression as a function of 2× tπ.
The model parameters are fixed to τϕ = 2.1 ms and Dϕ = 3.8× 106 s−1 in agreement
with the fit of the oscillations. Furthermore, it is easy to simplify the expression to
get rid of the experimentally controlled parameter tπ and to express the contrast as a
function of the measured parameter tE . The expression for the maximal contrast of
the echo oscillation as a function of the echo tE time reads

C(tE) = e
−Dϕ

[
tE/2−τϕ tanh

(
tE
2τϕ

)]
. (IV.9)

In Figure IV.18, we plot the measured Gaussian amplitude A again, now as a
function of the echo time tE . The solid line is directly the model eq.(IV.9) taking
τϕ = 2.1 ms and Dϕ = 3.8× 106 s−1.

The model is in good agreement with the data and the early revival of the oscilla-
tions tE < 2tπ finds a formal explanation. The irreversible decoherence time T2 for the
spin-echo sequence is defined as C(TE = T2) = C(0)/2 and it is graphically found to
be of T2 ∼ 270 µs. Note that since tE � 2τϕ in our experiment, we have from eq.(IV.9)

C(tE) ∼ exp{−t3E ×Dϕ/24τ2
ϕ}.

The irreversible decoherence time is then T2 ∼ 3

√
ln(2)× 24τ2

ϕ/Dϕ, and yields a nu-
merical value of T2 = (268 ± 5) µs when evaluated in the parameters extracted from
the fit in Figure IV.17.

Gaussian fit

Model

Figure IV.18 The maximum contrast of the revival oscillation as a function of the echo
(revival) time tE . The irreversible decoherence at C(0)/2 is found to be T2 ∼ 270 µs.
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IV.3 Conclusion

We used a cold cloud of cRy atoms to measure the spontaneous and black-body radi-
ation losses from circular states. This provides an experimental demonstration of the
simple evolution of the cRy state population damping processes. The cRy states in
our cryostat are found to have a lifetime of T1 = (3.7 ± 0.1) ms, corresponding to an
effective black-body temperature T = (11± 2) K.

We have studied the coherence properties of these atoms and we have measured
the T ∗2 and T2 times to be ∼ 35 µs and ∼ 270 µs respectively. We have identified the
limiting factor to be magnetic field noise of about δB ∼ 2 mG of a purely technical
nature. A simple model based on correlated noise fits the data fairly well. Solutions to
this limitation are on their way; they consist of filtering the lines that bring the signals
down into the cryostat, the implementation of more stable current sources, and the
installation of a mu-metal screen under the 300 K screen to prevent the penetration of
external magnetic field noise.

Having measured the lifetime and coherence of cold circular atoms, we now turn
to discuss their laser trapping. This is the topic of the next and last chapter and the
main result of this thesis.
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In the present chapter, we demonstrate the laser trapping of circular Rydberg atoms.
This is the main result of this thesis. To achieve the trapping, a 1064 nm laser is
introduced to provide a ponderomotive potential. As discussed in Chapter II, it is
to be shaped as a hollow Laguerre-Gauss (LG) mode. This is done in the updated
experimental setup depicted in Figure V.1. The circular Rydberg atoms are repelled
by the laser-induced potential and transversally confined in the light tube for times up
to 10 ms. The trapping frequency is measured to be 1.3 kHz. We check that the lifetime
and the coherence of the trapped atoms are not sensibly affected by the trapping light,
as expected for levels insensitive to photoionization and for a nearly n-independent
trapping potential.

Front

To beam profiler

SLM

Blue excitation

µ

µ
µ

Red 
excitation

µ

λ/2λ/2

AOM

PBS

Dump

LG Trap

x3/2

x5
λ/4
λ/2

λ/4
λ/2

250mm

250mm

5

Figure V.1 The cryostat and the optical table as used for the cRy trapping experiments.
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V.1 Laser control

We shape the 1064 nm laser into a LG01 beam with a dark spot in the center. The
shaping and alignment of the trap is done using a Spatial Light Modulator (SLM) that
we show in Figure V.1. The trap is produced by a fiber laser capable of providing up
to 10 W. The choice of wavelength λL =1064 nm is a good compromise regarding the
different experimental constraints. On the one hand, one knows from eq.(II.17) that
the ponderomotive potential E ∼ λ2

L increases with wavelength for a given power. On
the other hand, a far infrared field (say, 10 µm) would be completely absorbed by our
cryostat windows. Our windows are transparent to the chosen wavelength and reliable
powerful lasers are easily available on the market.

A few mirrors are used to prepare the laser before the beam shaping in the SLM.
A polarizing beam splitter (PBS) is used to filter the polarization and coarsely tune
the power with the help of a half-wave plate. A beam dump is used to absorb the
unwanted laser power. In order to turn the trap on and off at microsecond timescale,
the 1064 nm beam is gated using an AOM. The high power order zero of the AOM
(not shown) is also sent to the beam dump.

The blue laser has been moved with respect to previous experiments (see Figure
III.5) and now enters the cryostat through the same window as the LG beam. Having
their propagation vectors parallel to each other makes it easier to align the two lasers.
The excitation volume must coincide with the trap to capture all of the created Rydberg
atoms. The alignment with the blue excitation beam is critical. Both beam profilers
external to the cryostat and the response of the atoms providing an in-situ imaging
technique are needed to optimize and tune the SLM parameters and, with them, the
shape of the trap.

V.1.1 The SLM for beam shaping

The SLM device consists of a mirror covered with transparent pixels (1272×1024) that
can be programmed independently to add a local phase shift from 0 to 2π (8 bits) to
any reflected wave. This allows us to shape the reflected beam almost arbitrarily. The
SLM is computer controlled by a custom software that acts on each pixel in a manner
analog to the intensity control of a normal Liquid Crystal Display (LCD) screen. The
250 mm focal length lens in the path of the 1064 nm beam (see Figure V.1) performs
the optical Fourier transformation of the incident waveform near its focal plane [201].
The diffraction in the SLM is used to imprint a phase pattern that will be transformed,
by the lens, into the desired trap.

In Figure V.2 (a), we show a phase mask that gives a turn of 2π for any fixed
radius. This phase pattern is known as ‘phase vortex’. The imprinted phase is encoded
in the gray-level of the figure with black corresponding to zero. The phase singularity
(discontinuity) at the center ensures that the reflected beam will have a hole: the only
way the phase condition can be fulfilled is if the amplitude of the field is zeroed in
the center. Imprinting this phase on a Gaussian beam produces the LG01 trap in the
Fourier plane of the lens.

The phase modulation by the SLM is not perfect, and a fraction of the light is
reflected without acquiring the intended phase shift. Thus, for the mask in Figure
V.2 (a), the light diffracted in the first order (the trap) overlaps with the order zero.
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To get rid of this spurious undiffracted beam, a grating is added to the vortex phase
pattern. We show the corrected phase mask in Figure V.2 (b). The diffracted LG
emerges now with a finite angle and it is spatially separated from the zeroth order.
Figure V.2 (c) is the measured intensity in the Fourier plane. The diffracted LG beam
can be identified by its characteristic ‘doughnut’ shape, while the Gaussian spot is the
undiffracted zeroth order. The waist of the Gaussian beam used to produce this image
is 11 µm.

(a) (b) (c)

Figure V.2 (a): A ‘vortex’ phase singularity. (b): A grating is added to the singularity. This
displaces the whole diffracted beam. (c): The intensity profile of a Gaussian beam reflected on
(b). The measurement of intensity is done with a beam profiler in the focal plane of a focusing
lens.

The picture in Figure V.2 (c) was taken with a beam profiler in a simplified calibra-
tion setup. We have found that, in the actual experimental situation depicted in Figure
V.1, detrimental aberrations introduced by the necessary optical elements destroy the
LG profile. Imperfections in an optical system add an unwanted phase pattern to the
wavefront. Thus, one can compensate for them by using the SLM. It suffices to add
the opposite phase pattern to subtract the aberrations.

The phase masks corresponding to the dominating aberrations found in typical
optical systems and their effect over the trap are shown in Figure V.3. The phase
masks added to the ideal displaced vortex of Figure V.2 (xgb) are shown in the upper
panels. In the lower panels, we show the diffracted intensity pattern at the focus of
an imaging lens. The reference panel corresponds to an LG beam of waist 11 µm,
the same as in Figure V.2 (c). In the subsequent panels, aberrations with different
orders of symmetry are shown.1 The aberration known as ‘coma’ has a symmetry of
order one in the sense that a full rotation is needed to recover the same phase pattern.
The astigmatism possesses a symmetry of order two in that a π rotation recovers the
phase pattern. In general, a symmetry of order n corresponds to a phase mask that is
invariant under a 2π/n rotation. The Trefoil and Quadrafoil correspond to symmetries
of order three and four respectively. The characteristic effect of the different orders of
aberrations makes it possible to identify the imperfection affecting the beam and allows
us to correct for them.

1We use the basis of Zernike polynomials [202–204] to correct for our aberrations. In Figure V.3
we represent the ‘primary’ Zernike polynomials of each order.
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Figure V.3 The phase mask added on top of the displaced LG mask (Figure V.2 (b)) is an
example of the typical aberration that will need to be corrected. Their isolated characteristic
effect can be identified.

V.1.2 The aberrations in the experiment

In our experiment, the many lenses, mirrors, and three successive thick glass windows
on the cryostat thermal shields introduce unwanted distortion in the wave front. In
Figure V.4 (a), we show the intensity pattern in the Fourier plane of the 250 mm lens
focusing the 1064 nm beam. The optical path for the imaging is marked by the dashed
line in Figure V.1. A flip-flop mirror (not shown) allows us to switch the LG beam
between the optical imaging configuration and the trapping configuration. Note that
three identical windows to the ones in the cryostat have been placed in the imaging
path to mimic the aberrations suffered by the beam on its way towards the atoms. One
recognizes the main aberrations to be ‘diagonal astigmatism’ (two lobes), and ‘diagonal
coma’ (affected reflection symmetry). Once the main aberrations have been identified,
one can perform a manual correction. The product of the optimization is shown in
Figure V.4 (b) together with the required phase mask. From a fit to this optimized
profile, we find the waist of the LG01 beam to be ∼30 µm.

One experimental consideration deserves to be mentioned. The high power of the
1064 nm beam is able to heat up the SLM screen and distort the beam over a timescale
of minutes. It takes about one hour of operation for it to reach a steady state. Only after
such a time lapse, permanent corrections to the beam profile can be made. Moreover,
calibration experiments like those in Figure V.4 need to be done using the same duty
cycle as the ones to be used during the actual trapping experiments. If necessary,
the 1064 nm beam is turned on during the loading of the MOT (see Figure III.4)
to dissipate, on average, the same amount of power in the SLM during all relevant
sequences. With this consideration taken into account, the image in the beam profiler
is stable in time and can be used to align the LG relative to the blue excitation beam.

V.1.3 Coarse alignment of the trap on the blue beam

The LG trap and the blue laser are mixed with a dichroic mirror as shown in Figure
V.1. The much less demanding blue Gaussian beam is shaped using standard lenses to
have a waist of about 20 µm. The flip-flop mirror allows us to make a beam-profiler
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(a)

(b)

Figure V.4 (a): Displaced vortex mask (left) and intensity distribution (right) in the focal
plane of the 250 mm lens on the 1064 nm path. (b): Manual optimization by subtraction of
aberrations. The phase mask (left) correcting for the optical aberrations produces the intensity
distribution of a proper LG trap (right) in the focal plane.

image of both lasers simultaneously. Taking images in this way allows us to make a
preliminary alignment of the beams relative to each other.

The blue beam focus is displaced by moving its 250 mm lens and its mirrors. Its
position is chosen to optimize the Rydberg signal. The LG beam focus is then brought
to that same position using the SLM alone. The LG beam focus can be displaced in the
longitudinal direction introducing the circular phase pattern of a (Fresnel) lens in the
SLM. By setting the pitch of the phase grating in the SLM, one can also move the beam
in the transversal direction. With this method the resolution of the LG displacement is
better than 1 µm and it is completely reversible. We can move the beam ±1 mm in any
direction without appreciable distortion. The criterion to perform this first alignment
is to overlap the blue and the LG beam in the plane conjugated to the position of
the atoms with respect to the flip-flop mirror where the beam profiler is placed. The
longitudinal alignment consists of making the LG beam the smallest possible at the
level of the camera.

Nonetheless, the profile of the beam at the level of the atoms is found to be sub-
optimal. The techniques described so far are not enough to compensate for the aberra-
tions introduced by the actual cold cryostat windows and only give a qualitative insight
into the intensity distribution at the location of the atomic cloud. An approach relying
directly on the wave front, as seen by the atoms, is mandatory to evaluate and optimize
the trap. We have successfully developed such a technique.
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V.2 Low-l Rydberg atoms as a beam profiler

We probe the trap beam intensity profile by measuring the light-shifts it induces on the
|5S1/2〉 → |52D5/2〉 ground-Rydberg two-photon transition. Getting laser spectra for
several positions of the trapping beam with respect to the blue beam, we reconstruct
the LG intensity distribution as seen by the atoms themselves. We use this information
to optimize the LG beam-shape, with the SLM correcting the aberrations introduced
by the cryostat windows. Finally, we extract quantitative parameters for the trap
using a simple model to fit the data. The LG beam is found to have waists of 35 and
41 µm along the z and y axes, respectively. The peak laser intensity is measured to be
6.6× 104 W/cm2 (total power 4 W) corresponding to a 80 µK trap depth, much larger
than the initial ∼ 15 µK atomic temperature.

V.2.1 Light shifts of the ground state to Rydberg transition

In order to efficiently reconstruct the intensity profile of the LG trapping beam, we
record the laser excitation spectrum of the |5S1/2, F = 2〉 to |52D5/2,mJ = 5/2〉 ground-
Rydberg two-photon transition while shining the trapping light on the atoms. The
trapping laser light shifts both the ground- and the Rydberg-state energy levels pro-
portionally to the local intensity I by hβGI and hβRyI, respectively. Here h is the
Planck constant and βi is a state-dependent constant. From the [h (βRy − βG)I]-light
shift of the transition, we infer I at the position of the Rydberg atoms. The measure-
ment requires the a priori calculation of the pre-factors βi to transform the measured
AC-Stark shift into the corresponding light intensity.

From Chapter II, the ponderomotive energy shift of the Rydberg energy levels reads

E = hβRyI =
q2
e

2meε0cω2
L

I, (V.1)

where qe is the electron charge, me its mass, ε0 the vacuum permittivity, c the speed of
light and ωL the trapping laser angular frequency. Note that this formula now applies
to the laser-accessible |52D5/2〉 Rydberg level, when it was discussed for circular levels
in Chapter II. Neither the interpretation nor the formula requires modifications [88].

The scalar polarizability of the |5S1/2〉 ground state at a 1064 nm-wavelength has
been calculated [205] to be

αG = 4πε0 × 693.5(9) a3
0, (V.2)

where a0 is the Bohr radius. The light shift of the ground state is then given by

EG = hβGI = −αG
I

2ε0c
. (V.3)

Numerically we find

βRy = 2.56× 10−5 MHz

W/cm2
, (V.4)

βG = −3.25× 10−5 MHz

W/cm2
, (V.5)
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and for the total light-shift of the ground-Rydberg transition we get

∆ν = (βRy − βG) I = βtotI ≈ 5.81× 10−5 MHz
I

W/cm2
. (V.6)

Spectroscopy in presence of the 1064 nm beam

The measurement of the light-shift provides the intensity of the LG beam as seen by the
atoms. Laser spectroscopy of the |52D5/2,mj = 5/2〉 line is now done in the presence
of the 1064 nm beam. In Figure V.5, we show the blue laser excitation spectroscopy
in the absence of 1064 nm light (blue dots, F = 0.8 V/cm), together with light-shifted
spectra with the 1064 nm beam on. The expected light-shift is observed. The green
dots correspond to the 1064 nm beam shaped in a Gaussian mode and the red dots
correspond to the light shaped as the LG beam. The Gaussian beam shifts much more
strongly the frequency of the atoms since its intensity is at its maximum in the region
where we prepared the Rydberg atoms. The LG beam has a zero of intensity in that
volume, but the finite size of the blue excites atoms in the twilight around the center.
The blue and the 1064 nm beams are aligned by maximizing the light-shift produced
by the Gaussian 1064 nm light.2

Because ground-state atoms are attracted towards the high-intensity ring of the LG
beam, the light-shift must be produced by a ‘short’ light pulse to keep a homogeneous
atom density during the light-shift probe. We then let the trapping laser on only for
15 µs starting 7 µs before the laser Rydberg excitation (2 µs).

Figure V.5 Rydberg (|52D5/2〉) two-photon laser spectroscopy at 0.8 V/cm in the absence
of 1064 nm light (blue dots), together with light-shifted spectra corresponding to the aligned
1064 nm beam shone as a Gaussian (green dots) and as a LG (red dots). The inset defines the
timing of the laser pulses.

To get a quantitative measurement of the trap profile, a model considering the
finite waists of the two beams and the different atomic frequencies involved in the
spectroscopy is needed. We now turn to discuss the in-situ assessment of the LG trap.

2Applying the vortex phase mask does not shift the center of the beam.
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V.2.2 Trap alignment and optimization

In order to precisely center and optimize the LG beam at the level of the Rydberg
atoms, we use the SLM. We name the position of the focal point of the 1064 nm beam
(xLG, yLG, zLG) and we will experimentally define the origin of coordinates a posteriori
as the position at which it is centered on the Rydberg excitation volume.

First, we will discuss the alignment in the longitudinal direction along the coordinate
x. By measuring the light-shift produced by the Gaussian 1064 nm beam on the atoms,
one can bring the 1064 nm focus into the excitation region. The optimal x position for
the 1064 nm laser focus is mainly set by the red excitation beam (see Figure V.1). By
changing the 1064 nm focal point, we optimize the maximal light shift, defined as the
mid-point of the sharp edge of the ionization spectrum (dashed line in Figure V.5).

As mentioned before, the longitudinal beam displacement is done by introducing the
phase mask of a (Fresnel) lens in the SLM. For different positions of the 1064 nm focus,
two-photon laser spectroscopy is performed and the maximal light-shift is extracted
from the data. The position xLG = 0 is defined as the point at which this maximal
light-shift is at its maximum value. In Figure V.6, we show the data allowing the
determination of the origin of the x coordinate. The fit is a Lorentzian, as one would
expect from a Gaussian beam Imax ∼ 1/w2(x) (where w(x) is the Gaussian waist along
the propagation axis). The Rayleigh length is extracted from the fit to be ∼ 3.3 mm,
in agreement with values expected from the beam shaping procedure.

Figure V.6 Maximum light-shift measurement as a function of the focal point of the 1064 nm
beam (violet in Figure). The red and blue beam represent the Rydberg excitation beams.

With the longitudinal alignment made, the blue and the 1064 nm beams can then
be aligned in the transversal direction defined by coordinates y and z. For this, we
fix the two-photon detuning δ between the free-space atomic transition frequency ν0

and the blue laser drive at νB to δ = 4.5 MHz, addressing atoms close to the maximal
LG light shift (see Figure V.5). In Figure V.7, we plot the number of atoms detected
in the |52D5/2〉 level as a function of the LG transverse beam position. The data
reveals the intensity regions where the atoms are light-shifted by the LG beam into
the spectral range of the blue laser (βtotILG ∼ δ ± γ, where γ is the linewidth). We
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identify here the two maxima defining the LG trap. The red dots correspond to a sub-
optimal trap, resulting from uncompensated astigmatism that comes from the cryostat
windows. Imperfections in the LG beam intensity at the level of the atoms are identified
and corrected for by adding correction phase masks on the SLM as explained in the
previous section. The blue dots provide the picture of the trap after optimization. The
solid lines in Figure V.7 are the sum of ad-hoc Gaussian peaks. The ratio between
the height of the pair of fitted peaks increases from 0.76 to 0.98. The improvement is
evident. The placement of the LG beam focus at the coordinates’ origin is achieved
at the point in which we find the valley between the two peaks in the distribution.
Naturally, scans in both the y and z directions are needed.

Figure V.7 In-situ reconstruction of one transversal cut the trapping beam using light-shift
measurements.

The methods discussed above allow us to align and optimize the shape of the beam.
Having developed the experimental techniques to access the information about the LG
beam as seen by the atoms, we now present the analysis that allows for the extraction
of the trap parameters.

V.2.3 The shape and depth of the trap

In order to make a quantitative analysis of the data taken as a response to the atomic
cloud to the 1064 nm beam, we need to further model the excitation. First we assume
a Gaussian line-shape for the laser spectrum in the absence of 1064 nm light-shift (blue
dots in Figure V.5) given by

ΓB(δ) =

√
2

πγ2
exp

(
−2δ2

γ2

)
, (V.7)

of FWHM γ
√

2 ln(2). To take into account the elliptical shape of the LG profile, a
product of uncompensated residual astigmatism, we model the trap with an intensity
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distribution given by

ILG(y, z) = P 4

π wy wz

(
y2

w2
y

+
z2

w2
z

)
exp

[
−2

(
y2

w2
y

+
z2

w2
z

)]
, (V.8)

where P is the power of the LG beam and wy and wz are the beam waists along the two
directions. In the expression for ILG we assume that the axis of the elliptical Gaussians
are along y and z and that there is no dependence on coordinate x. These assumptions
simplify the data analysis and the interpretation of the model. We note that, in our
experiment, the Rayleigh lengths of the blue (zR = 2.6 mm) and LG beams (zR = 3.3

mm) are large with respect to the Rydberg cloud size (∼100 µm) and, thus, we neglect
the intensity variations along the propagation axis x.

The peak intensity of the LG beam is then

Imax =
2P

πewy wz
. (V.9)

With these formulas at hand, the number n(y, z) of excited atoms at a position
(y, z) after integration in x is

n(y, z) = n0 × ΓB [δ − βtotILG(y − yLG, z − zLG)]× IB(y, z), (V.10)

where n0 is a normalization factor and IB(y, z) is the blue laser intensity. The intensity
profile of the blue beam reads

IB(y, z) = I
(0)
B exp

[
−2(y2 + z2)

w2
B

]
, (V.11)

where wB is the waist of the blue laser and I(0)
B is its peak intensity. Note that the red

excitation laser waist is bigger than that of all the other beams and, thus, it will not
be considered in the model.

The ΓB term in eq.(V.10) represents the response of the atoms to the excitation
frequency. It encodes the probability of exciting an atom, placed in (y, z), which has
resonance frequency ν0 + βtotILG(y, z) while driving its transition at frequency νB ≡
ν0 + δ. The second term (IB) represents the sensitivity to the excitation intensity.
It corresponds to the statement that the probability of exciting a Rydberg atom is
proportional to the local blue beam intensity. Note that we have assumed that we
excite far away from saturation and that the spatial variation of the density in the
cold-atom cloud (n0) can be neglected.

Integrating over the cloud, we can compute, out of these quantities, the number of
excited atoms as a function of the two-photon detuning and of the LG center coordi-
nates. The result reads

N(δ, yLG, zLG) =
x

n(y, z) dy dz +N0, (V.12)

where N0 accounts for a small offset in the experimental data. The free parameters of
the model are n0, wB, wy, wz, Imax, and N0. The blue laser linewidth γ is measured
independently of the LG presence and it is an input parameter of the model.
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By fixing the two-photon detuning and taking data as a function of the LG position
(yLG, zLG), we were able to obtain important information about the shape of the trap
at the level of the atoms (see Figure V.7). This information was used to manually
correct for the aberrations and to optimize the trap geometry.

On the other hand, by fixing the two-photon detuning, the measurement is ‘blind’
to atoms light-shifted several γ away from δ. Complementary information can be
obtained by taking data as a function of the two-photon detuning δ for a given position
of the LG beam. In this way, one gets the local intensity distribution and eventually a
reliable measurement of the trap depth. We discuss next the measurements performed
to quantitatively evaluate the LG trap parameters.

Measurements and analysis

We are now in position to measure the laser intensity seen by the atoms in a space-
and frequency-resolved way. The ground-Rydberg transition for several positions of
the LG trap with respect to the blue laser is recorded. In Figure V.8 (a), we plot the
corresponding laser-excitation spectra with and without trapping light. The spectral
width associated with the blue beam without light-shift (violet, first panel) is fitted to
be γ = (1.41± 0.04) MHz.

Figure V.8 (a) Curves of excitation spectra of the Rydberg transition as a function of the
blue laser detuning δ for several positions of the trapping laser with respect to the blue laser.
In (b), we fix the detuning to 4.5 MHz and scan the position of the blue laser focus. The
direction of the scan for each curve is shown schematically on the insets.

The second panel in Figure V.8 (a) corresponds to the LG beam on and aligned with
the blue beam, while the four remaining panels correspond to the excitation spectrum
when the LG beam is displaced out of the beam x-axis, either along the y- or the
z-axis. Slightly off-centering the LG beam shifts the excitation spectrum to higher
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frequencies until the maximum is reached. In Figure V.8 (b), we plot the number of
atoms detected in |52D5/2〉 as a function of the LG beam position for a fixed two-
photon detuning of δ = 4.5 MHz. As before3, we choose the two-photon detuning to be
close to the maximum measured light-shift of the ground-Rydberg transition. In these
experiments, the LG beam is scanned through the blue laser beam along four different
directions. These are the y- and z-axes as well as the two diagonals tilted by ±45◦.

We fit all the light-shifted data in Figure V.8 simultaneously by eq.(V.12), but
we allow for different values of n0 for Figure V.8 (a) and Figure V.8 (b), taking into
account the different mean number of excited atoms in the two experiments. The other
parameters are shared. We obtain good agreement with the experimental results for a
maximum light-shift of βtotImax = (3.81±0.06) MHz and a diameter of (21.9±0.8) µm
for the blue laser. The waists of the LG beam are found to be wy = (41 ± 3) µm and
wz = (35± 1) µm.

The distribution of light-shifts observed corresponds to Imax = 6.6×104 W/cm2 and
a trap depth of 80 µK. Given the fitted LG beam, we predict an oscillation frequency
(see eq.(II.19)) at the bottom of the trap of (1.12± 0.08) kHz for the movement in the
y direction and of (1.33 ± 0.05) kHz in the z direction. We estimate a total power of
(4.0±0.3) W of trapping light in fair agreement with the measured (4.3±0.3) W power
of the beam that exits the cryostat.

Optimized LG beam shape

The data extracted from the experiment and the analysis we have made allow us to get
a picture of the trap inside the cryostat and of the Rydberg cloud.

A beam profiler picture of the LG beam after the in-situ optimization is shown in
Figure V.9 (a). As expected, the wavefront looks far from ideal. To picture the trap
inside the cryostat, one can gather the data in Figure V.8 (b) in a 2D picture like we
show in Figure V.9 (b). We have used a simple interpolation to fill the plane for the
reconstruction.

Figure V.9 (a) The beam profiler picture of the LG beam after the atomic optimization. In
(b), a 2D atomic picture of the LG trap is done by interpolating the data of Figure V.8.

3Note that the blue dots in Figure V.7 correspond to the data in the first panel of Figure V.8 (b).
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Rydberg distribution in the trap

Our model allows us to predict the spatial distribution of atoms excited by the blue
laser. The expression in eq.(V.10) gives us the density of Rydberg atoms. With the fits
done on the data, the free parameters of the trap model are now known and one can
draw the expected distribution of excited atoms in space. As an example, in Figure
V.10, we show the distribution of cRy atoms when the LG beam is aligned with the
blue laser (yLG = zLG = 0) with δ = 0.5 MHz and when the LG beam is displaced with
respect to the blue laser (yLG = 0 and zLG = 12 µm) and δ = 4.5MHz. By integrating
over the y direction we find that the diameter of the excited Rydberg cloud, in both
cases, measures ∼ 10 µm. These two excitation conditions will prove useful in the
demonstration of the trapping.
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Figure V.10 Calculated atomic distribution for two different positions of the LG and two
different detunings of the blue excitation. (a): The LG beam is aligned with the blue laser
and δ = 0.5MHz. (b): The LG beam is displaced with respect to the blue laser (yLG = 0 and
zLG = 12 µm) and δ = 2.1 MHz.

V.3 Trapping of circular states

Having used the low-angular-momentum Rydberg atoms to prepare and calibrate the
LG beam, we proceed to circularize them for trapping. To exhibit the trapping, we
will show how the presence of the LG beam stops the thermal expansion that the cRy
atoms undergo otherwise. One is able to measure the spatial extension of the Rydberg
cloud using MW spectroscopy if the atoms sit in a spatially varying electric field. Due
to inhomogeneous Stark shifts, the width of the line encodes the size of the cloud. A
circular-elliptical transition, which experiences a large linear Stark shift, will then allow
us to make a MW time of flight image of the cloud while it expands in free space. We
show that the presence of the LG trap forbids this expansion in the radial direction.
We also measure the frequency of the trap and we check that the circular to circular
transition, while trapped, is not sensibly affected.

Since we expect to probe the trapping of the cRy atom cloud during a few mil-
liseconds, the lifetime of the atoms plays a role. The black-body transfer will dis-
tribute the population initially in the |52c〉 state into the neighboring circular states
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and spectroscopy towards these manifolds will thus be degraded by a time dependent
background. We now explain the method developed to get rid of this background.

First, we need to identify the elliptical level to measure the cloud extension using
MW spectroscopy. Because the dipole selection rules forbid any circular-elliptical tran-
sition downwards in n, and because the |52c〉 → |54e〉 transition is already below cut-off
for our MW guide (so are all others transitions towards n > 54, see Chapter III), far
lying elliptical levels whose detection windows remain empty during the experiment
are all out of reach. The only possible solution then is to perform a partial ionization
ramp to clean up the background counts in the accessible detection windows before
performing spectroscopy.

Since levels with higher principal quantum number n ionize at lower voltages (see
Figure III.23), the natural choice would be to ionize the circular levels with n ≥ 53 and
then practice circular-elliptical spectroscopy for the |52c〉 → |53e〉 line. Again, a more
complicated scenario is required since we find that practicing an efficient ionization up
to the level of the |53e〉 (|(n+ 1)e〉) detection window is detrimental for the |52c〉 (|nc〉)
level.

All things considered, in order to deal with the black-body transfer in the presence
of the MW cut-off, we perform a partial ionization ramp after having applied a shelving
two-photon pulse (MWS) from |52c〉 to |50c〉 in order to protect the useful population.
The partial ionization ramp is then able to get rid of the background up to the |52c〉
detection window without adversary effects. Finally, we probe the extension of the cRy
cloud by performing spectroscopy on the |50c〉 → |52e−〉 transition.

V.3.1 The partial ionization ramp

In Figure V.11, we demonstrate the operation of the partial ionization. In (a), we
show an ionization signal that corresponds to the preparation of state |50c〉. The
state is prepared by circularization in the n = 52 manifold and a subsequent MW
transfer (MWS) to |50c〉 is applied 300 µs after circularization. The ionization ramp
(yellow) starts 850 µs after the RF circularization, allowing for some thermal transfer
to take place. The zero of time for this plot is taken where we start counting ions. It
corresponds to 330 µs after circularization. Here, for reference, no partial ionization
ramp is applied. In the zoom-in (b), we show the detection windows of the |52c〉 and
|50c〉 states by the red and blue shaded regions respectively. We emphasize that the
ionization signal has a pedestal corresponding to the presence of thermal population
of neighboring levels. The pedestal is modest here, but it dominates the signal after
a few milliseconds (see Chapter IV). Moreover, in this example we see the remaining
population at the level of the |52c〉 detection window, which is a signature of low
circular purity. In the blue colored signal in (c), we show the effect of applying a
partial ionization ramp (R1) that stops at the ionization voltage of |51c〉. In doing so,
we ionize all the residual lower-ionizing states. We see that after partial ionization,
the time window corresponding to |52c〉 is clear of counts, and it is emphasized in
the zoom-in, in (d). The red signal corresponds to a π-pulse from |50c〉 back to |52c〉
between the partial ramp and the final full ionization (R2). To apply the MW pulse, a
> 200 µs waiting time is needed after R1 to let the electric field relax after the partial
ionization ramp. Note that, in order to leave the population in |50c〉 unaffected, we
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choose not to completely ionize the population in the |51c〉 level. Note also that the
‘shelving pulse’ is a ‘selection pulse’ too, in the sense that it selectively addresses the
circular levels. The partial ionization, then, does not only solve the black-body transfer
problem, but it also acts as a state-purification mechanism ionizing all impurities left
up to the |52c〉 detection window.
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Figure V.11 The partial ionization technique. The ionization voltage is shown by the yellow
shaded area. In the upper panel, we show the ionization-signal corresponding to the preparation
of |50c〉 state (a) and a zoom to the interesting area (b) for a high number of Rydberg atoms.
The lower panel (c) shows the action of the partial ionization with (red) and without the action
of a π pulse from |50c〉 → |52c〉. A zoom to the interesting area is shown in (d).

V.3.2 Timing of the experiment

With the partial ionization tool at hand, we are able to develop the explanation of
the trapping sequence. The timing of the experiment is sketched in Figure V.12. To
prepare the cRy atoms at the bottom of the trap, we perform the Rydberg excitation in
presence of the trapping beam. The trapping beam is switched on for 15 µs around the
2 µs excitation pulse. The electric field during the excitation is set to F = 0.8 V/cm.
Setting δ = 0.5 MHz, the excitation selects only atoms close to the center of the LG
beam. This excitation condition corresponds to the atomic distribution in Figure V.10
(a). We switch off the 1064 nm beam and, in in about 30 µs, perform the transfer to
the |52c〉 circular state, completed at time t = 0.

As explained in the introduction to this section, we measure the spatial extension
of the cRy atom cloud using a |50c〉 → |52e−〉 MW pulse (MWP in Figure V.12).
The spectrocopy is done at a variable time τ after circularization unveils the thermal
expansion of the cRy cloud.
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To get rid of the thermal background, we selectively transfer at time τ − 600 µs all
|52c〉 atoms (irrespective of their position) into |50c〉 by a ‘hard’ 0.8 µs-long π-microwave
selection pulse MWS and ionize all states with n > 51. The partial ionization ramp used
in the trapping sequence is shown as the first yellow rectangle (R1) in the top timeline
found in Figure V.12. It is applied 150 µs after the shelving pulse and it lasts 160 µs.
We then wait for an additional 288 µs delay, letting the field relax to F = 1.46 V/cm
before applying a 1.8 µs MWP probe pulse used to measure the expansion. Finally, a
full ionization (R2) is used to make the measurement.

Figure V.12 Left: Timing of the experiment (not to scale). In the top timeline, from left
to right, we have the laser excitation (blue/red), circular state preparation (grey), selection
pulse MWS (dark green), partial ionization (light yellow), probe pulse MWP (light green),
and field ionization (dark yellow). In the lower timeline, the trapping laser timing is shown.
Right: Partial diagram of the Stark levels in the n = 50 and n = 52 manifolds. The arrows
represent the microwave transitions MWS (level selection) and MWP (probe). The two-photon
transition is done with two MW photons of equal frequency despite the length difference of the
arrows in the drawing.

In order to make the MW measurement most sensitive to the spatial expansion of
the cloud, we use the rod electrodes to apply, at τ − 200 µs (not shown), a strong
electric field gradient along the z-axis while keeping the gradients in the other direc-
tion much smaller. The gradients are measured by moving the excitation volume (see
Chapter IV) along the three spatial directions and performing circular-elliptical spec-
troscopy to measure the mean Stark shift. The dominant gradient is measured to be
∂zF = 0.56 V/cm2. The gradients in the other directions are ∂xF = −0.18 V/cm2 and
∂yF = 0.10 V/cm2. The low gradient configuration in these experiments corresponds
to rod electrode voltages set to (see Chapters III and IV) V1 = 3.27 V, V2 = 2.181 V,
V3 = 2.728 V, and V4 = 1.818 V. The high gradient configuration in these experiments
corresponds instead to V1 = 1.271 V, V2 = 0.181 V, V3 = 4.728 V, and V4 = 3.818 V.
The Stark electrode voltage was set to VS = 1 V in both cases.

Along the z-axis the cloud is confined by the ponderomotive trap and a difference
in the circular-elliptical MW linewidth is expected for the trapped and untrapped
scenarios. The expansion rate of the linewidth depends on the temperature of the
cloud, the electric field gradients, the initial size of the cloud, and the electric field
sensitivity of the chosen probe transition to |52e−〉. These parameters are brought
together in a simple expansion equation that we introduce in the next section.
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V.3.3 Experimental results

Under optimal circularization conditions (purity >91%, see Chapter IV) and making
use of the partial ionization, we take the spectroscopic data that we show in Figure V.13.
We plot the recorded spectra for τ = 2.8 ms with (blue dots) and without (red dots)
trapping light. We see here that the untrapped cloud is clearly wider than the trapped
cloud and that the background remains small. A Gaussian fit to the spectrum of this
probe transition determines its linewidth, defined by the Full With Half Maximum
(FWHM) σp. We find, for the data in Figure V.13, σp, no trap = (0.83± 0.04) MHz and
σp, trap = (0.33± 0.02) MHz. The data and the analysis of the linewidth as a function
of time will be now presented.

Relative frequency (kHz)

Figure V.13 MWP Spectroscopy after partial ionization. The MW pulse is performed at
τ =2.8 ms delay to probe the cloud expansion. The spectroscopy is done with (blue dots) and
without (red dots) the trap.

Cloud expansion

In Figure V.14, we show the data illustrating the expansion and trapping. We present
σp as a function of τ with (blue points) and without (red points) the trapping beam.
To study the role of cRy density effects, we repeat our experiments with two average
atom numbers. The initial sample has an average number of atoms N̄ (full symbols)
and a second test sample contains ≈ N̄/2 (empty symbols).4 The density of Rydberg
atoms is controlled by changing the duration of the two-photon laser excitation.

Without trapping light, the Rydberg cloud expands because of its finite temper-
ature. When turning on the trapping laser, the linewidth remains basically constant
(blue points). We only observe a slow broadening at long times resulting from the
motion of the atoms along the unconfined x-axis.

4The calibration of detection efficiency is unknown and we restrict ourselves to inform the average
number N̄ of detected ions. This quantity represents a measurement, in arbitrary units, of the total
number of Rydberg atoms prepared.
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Figure V.14 Laser trapping. (a) FWHM σp of the probe transition as a function of the
delay time τ for untrapped (red rectangles) and trapped (blue circles) atoms. The lines result
from a classical model of the Rydberg cloud expansion for untrapped (red) and trapped (blue)
atoms. Full symbols correspond to an average atom number N̄ . Open symbols correspond to
measurements with about N̄/2 atoms.

We now analyze the data with a simple thermal expansion model. Assuming an
initial Gaussian spatial distribution for the Rydberg cloud, we can write that, after a
free expansion of duration τ , the spatial extension is

〈x2
j 〉(τ) = 〈x2

j 〉0 +
kBT

mRb
× τ2, (V.13)

where xj ∈ {x, y, z} and T is the temperature of the gas, kB is Boltzmann’s constant,
and mRb is the mass of the Rubidium-87 atom. Having eq.(V.13), we can now compute
the expected linewidth in presence of the gradients. When the Rydberg cloud is freely
expanding, the expected FWHM of the MWP spectrum reads

σP, no trap(τ) =

√
σ2

0 + 8 ln 2(βStark|∇F |)2
kBT

mRb
× τ2, (V.14)

where |∇F |2 = (∂xF )2 + (∂yF )2 + (∂zF )2, σ0 is the FWHM at time τ = 0,
βStark =-99.8 MHz/(V/cm) is the linear Stark shift of |52e−〉, and the 8 ln 2 factor
accounts for the difference between standard deviation and the FWHM of a Gaussian
profile.

When we shine the trapping laser, atoms can only move along the x-axis. In this
case, the FWHM of the MWP spectrum reads

σP, trap(τ) =

√
σ2

0 + 8 ln 2 (βStark∂xF )2 kBT

mRb
× τ2. (V.15)

To fit the data, we allow for different values of T for each data set and we take σ0
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to be a global fit parameter. We find:

• σ0 = (0.32± 0.01) MHz,

• T = (14.6± 2.2) µK for untrapped atoms with N̄ = 0.08 (open red rectangles),

• T = (12.8± 0.9) µK for untrapped atoms with N̄ = 0.18 (solid red rectangles),

• T = (14.4± 3.2) µK for trapped atoms with N̄ = 0.08 (open blue circles),

• T = (3.5± 1.2) µK for trapped atoms, with N̄ = 0.18 (solid blue circles).

The number of detected atoms at t = 0 is N̄ = 0.08±0.01 ≈ N̄0/2 for open symbols
and N̄ = N̄0 = 0.18 ± 0.01 for solid symbols. All but one of the temperatures found
by these spectroscopic measurements are in fair agreement with the one measured by
the absorption imaging time-of-flight. A much smaller temperature is found for the
high number of cRy atoms when trapped. It is likely that this is an indication of the
interactions in the trap. Since the atoms are trapped in a 1D-tube, the probability
that two atoms come close and undergo a decircularizing collision is larger than in free
space.

Lifetime in the trap

In Figure V.15, we plot the total number of detected atoms in |50c〉 (Ntot) before MWP

for trapped (blue dots) and untrapped (red dots) atoms. In both cases, the population
decay reflects the thermal transfers from the initial |52c〉 state, to neighboring circular
states. We observe no significant modification of the atomic lifetime when the trap is on.
This shows that photoionization is quite negligible over this timescale, as expected [108].
The lines correspond to an exponential fit with a single decay time of (4.6± 0.3 ms).5

Note that any kind of trap-induced decircularization towards other manifolds can also
be neglected. Such a process would manifest itself as a modification in the expected
lifetime and Figure V.15 presents no hint of it.

Population preservation in the trap

Furthermore, we check that the purity of the circular states is not appreciably affected
by the trapping. To this end, in Figure V.16 we plot the total number of atoms Ap
which undergo the probe microwave transition as a function of τ , with (blue dots) and
without (red dots) trapping light. Experimentally, Ap is the area under the MW line.
Since high-l elliptical states and the circular state ionize in the same detection window,
the effect of decircularization into the same manifold would manifest itself as a reduced
Ap value. Thus, the number of atoms Ap measures the purity of the circular levels,
independently of their position in the electric field gradient.

5The time constant associated with the exponential fit is longer than the ∼ 3 ms lifetime found in
Chapter III due to the replenishment of |52c〉 from the neighboring levels.
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Figure V.15 Total population of |50c〉 before the MWP probe pulse for trapped (blue circles)
and untrapped (red rectangles) atoms. The line is an exponential fit. Full symbols correspond
to an average atom number N̄ . Open symbols correspond to measurements with about N̄/2
atoms.
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Figure V.16 Integrated area Ap of the MWP probe spectrum for trapped (blue) and un-
trapped (red) atoms. Full symbols correspond to the measurements in Figures V.14 and V.15,
for an average atom number N̄ . Open symbols correspond to measurements with about N̄/2
atoms.



124 Chapter V. Laser Trapping

For the lowest atom number, the integrated area of the MW line Ap is nearly
constant for untrapped (red open squares) and trapped (blue open circles) atoms,
revealing that the trapping light does not affect the circular Rydberg level purity. For
the highest atom number, Ap is also constant in the untrapped case (solid red squares)
but decays rapidly (within 4 ms) to about half of its initial value for trapped atoms
(solid blue circles). Once more, this effect is explained by the fact that, in a 1D-tube,
the probability that two atoms come close enough to collide is larger than in free space.

V.3.4 Trap frequency

An important parameter to be determined is the mechanical oscillation frequency of
the cRy atoms in the trap [91]. To measure it, an oscillating cloud of atoms is created
by excitation in the inner slope of the LG trap. By turning off the trap at variable
times, we expect the fast atoms to be ejected and their spatial location to depend on
the trap frequency producing a measurable signal.

The timing of the experiment is shown in Figure V.17. To start the oscillation,
we place the trapping beam on zLG =12 µm and set the two-photon detuning to
δ = 2.1 MHz to excite atoms in the inner slope of the trap. In this way, the Rydberg
atoms are excited at a position where the light-shift is half of its maximal value. These
excitation conditions correspond to the calculation for the atomic distribution that we
show in Figure V.10 (b). As before, the LG beam is on for 15 µs during Rydberg
excitation. After preparation of the circular states, we switch the trap on at time
t = 0. Under the influence of the LG confining-potential, the atoms start an oscillation
mainly along the z-axis.

Figure V.17 Timing for the oscillation frequency measurement (not to scale).

In order to probe this oscillation, we turn off the LG beam for 300 µs after a variable
waiting time ∆t. Depending upon their velocity at time ∆t, the atoms can either fly
away from the trapping region or not. The ‘slow’ atoms are recaptured until 2.6 ms
have passed, while the fast ones move away from the trap. The 300 µs duration of free
evolution is long enough to allow the fast atoms to escape while they are at maximal
speed, but short enough to recapture the ones moving at the lowest speeds. The
recapture probability is lowest when the atoms are released while they speed through
the bottom of the trap. Thus, the recapture probability oscillates at twice the trapping
frequency.

We finally perform the detection sequence as above, setting MWP at resonance with
the |50c〉 to |52e−〉 transition for the atoms at the center of the trap. The duration
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T −∆t is chosen long enough so that the atoms flying away in the electric field gradient
are impervious to MWP . The maximal speed of the atoms is calculated to be 18.6
cm/s, and considering the ∂zF = 0.56 V/cm2 gradient, the expected Stark shift is
2.8 MHz. Consequently, only atoms that are recaptured are successfully transferred to
state |52e−〉 while atoms flying away at different speeds are gradually detuned. The
MWP pulse thus addresses only the atoms that remained trapped and measures the
recapture probability.

In Figure V.18, we plot the number of atoms N52e detected in state |52e−〉 as
a function of ∆t. The damping in the blue signal is caused by a dephasing of the
atomic oscillations. A perfectly harmonic trap would provide an oscillation period
that is independent of the initial conditions. Thus, this damping is a signature of the
trap anharmonicity and strongly depends on the trap imperfections. The dashed line
is a fit to the data using a damped sinus. The angular frequency of the oscillation
and the (Gaussian) damping time constant are fitted to be 2π × (2.7 ± 0.1) kHz and
(882± 364) µs. The trap frequency is then measured to be 2π × (1.35± 0.05) kHz.
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Figure V.18 Trap frequency measurement. Number of atomsN52e, transferred to state |52e−〉
state, as a function of time ∆t during which the trap is switched off.

A posterior analysis stage provides evidence that the oscillation frequency can also
be measured from the total number of atoms detected in |50c〉. The upper sketch in
Figure V.19 (a) shows the evolution of a cRy in the trap as they oscillate. The vertical
dashed lines mark the time corresponding to the sketched snapshots. In Figure V.19
(b), we reproduce the data in Figure V.18, and in (c), we plot the number of atoms
N50c detected in state |50c〉 (c, red dots) as a function of ∆t. The oscillation is at the
trap frequency and it is not appreciably damped (c). We understand our experimental
result by noting that the atoms leave upwards in z once per period, where they reach
an area of low detection efficiency. When they leave the trap downwards, they reach a
high detection efficiency area. In 2.6 ms, they are estimated to fly a maximal distance of
about ±480 µm. They sense a detection efficiency that produces a ∼25% of modulation
on the oscillating signal.6

6We confirm the spatially varying detection efficiency by preparing, on purpose, the cRy atoms in
the outer slope of the 1064 nm beam and expelling the atoms either downwards or upwards.
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Figure V.19 Trap frequency measurement. (a) The top sketch shows a cRy atom oscillating
in the LG trap. (b) Number of atoms, number of |52e−〉 atoms detected. (c) Number of atoms,
number of |50c〉 atoms detected. The lines are damped sinusoidal fits to the data.

We fit both signals in Figure V.19 by damped sinuses imposing the constraint
that the N52e signal oscillates at exactly two times the frequency of the N50c signal.
The phases of both signals are also constrained to be relatively shifted by π/2 as
prescribed by their physical interpretation. The joint fit (solid lines) gives an angular
trap frequency of 2π×(1.31±0.06) kHz. The damping time of the fits are independent.
We find that the damping for N50c is negligible and that is of (1.1± 0.8) ms for N52e.
The dashed blue line in Figure V.19 (b) is the independent fit of the data also found
in Figure V.18.
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A Monte-Carlo simulation for the oscillation.

We reproduce the behavior of the atoms in the trap through numerical Monte-Carlo
simulations. We model the trap by a 2D LG ponderomotive potential and input, as
simulation parameters, the results of the fit to the data in Figure V.8. We calculate 500
atomic trajectories in the trap, with random initial positions that follow a Gaussian
distribution in position, centered on (yLG = 0, zLG = 12µm) and with a width of 5 µm
(see Figure V.8 (b)). The initial velocities of the atoms are randomly taken according
to a Maxwell-Boltzmann distribution with a temperature of 13 µK. We then perform a
discrete-time integration of the equations of motion. After the total 2.6 ms evolution,
we count the fraction of atoms still within the trapping region ( y

2

w2
y

+ z2

w2
z
≤ 2). The

result of this simulation is plotted in Figure V.20. The data is fitted by a damped sinus
and we find an oscillation frequency of (1.14± 0.01) kHz.
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Figure V.20 Monte-Carlo simulation of the atomic motion in the trap. The solid dark-blue
line is a damped sinusoidal fit to the simulated data (light-blue line).

We understand the difference with respect to the experimentally measured fre-
quency by realizing that our trap profiling techniques where done at high light-shift.
This approach makes our trap reconstruction sensitive to the height of the light barrier
(the trap depth), but not to the structure of the trap around its center (the harmonic
part). This may explain why the estimate from the Monte-Carlo simulation using the
in-situ beam reconstruction is only in fair agreement with the oscillation frequency
measurements.

We note that the damping rate of the Monte-Carlo simulation is (480±10) µs and
it is faster than that of the data. This can be explained by noting that the in-situ
reconstruction method is probably smoothing out fast variations of the trap intensity,
which could account for anharmonicites and modify the damping of the oscillation.
Thus, the numerical trap reconstruction may be biased.

V.3.5 Atomic coherence test

Finally, we check the coherence of the trapped circular atoms. We record, without
applied field gradients, the spectrum of the |50c〉 to |52c〉 transition driven by a 215 µs
microwave pulse. Figure V.21 shows the spectra obtained for untrapped (red squares)
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and trapped (blue circles) atoms. The red dots are shifted upwards numerically for the
purpose of this exposition. Ideally, the line is expected to have the same linewidth with
and without the trap. A broadening in the presence of the trap would imply that the
trap itself provides a decoherence mechanism that is absent in free space. The FWHM
of Gaussian fit to the data (solid lines in Figure V.21) for untrapped and trapped atoms
are respectively (5.8±0.2) kHz and (5.7±0.2) kHz. We thus observe, up to 200 Hz, no
effect of the trapping on the transition coherence, as is expected for the ponderomotive
trapping of cRy atoms. The spectrum linewidth is then determined in both cases by
magnetic field noise.

We observe a ∼730 Hz lineshift between the two situations, compatible with a
1 mV/cm electric field drift over the one-hour data acquisition time, but no broadening.
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Figure V.21 Atomic coherence test. Microwave spectrum of the two-photon |50c〉 to |52c〉
transition for trapped (blue circles) and untrapped (red rectangles) atoms (statistical error
bars) with and off-set of 49.639071 GHz. The red points have been shifted upwards for clarity.
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V.4 Conclusion

We have demonstrated laser trapping of circular Rydberg atoms in two dimensions,
for up to 10 ms. Since all high-angular-momentum states are efficiently trapped, the
selection pulse and the ionization ramp allow us to specifically probe the trapping of
atoms in the |52c〉 state. This timescale is currently limited only by the atomic lifetime
in a finite-temperature environment.

We have characterized the trapping potential by making use of low-angular-momentum
Rydberg atoms. This has proven to be a practical tool for these type of experiments,
giving one the possibility to measure the trap profile inside the vacuum chamber. The
successful implementation of the SLM to manipulate the trapping laser beam opens
short-term perspectives to generalize the experiment to multiple traps.

We have verified that the ponderomotive potential does not affect the trapping
lifetime as was expected from the estimated photoionization rates for circular levels,
thus proving that the ponderomotive trapping is ideal for the exotic cRy states. Also,
the coherence properties of the atoms are preserved in the trap, proving that, up to
200 Hz, the trap is level-independent.
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Conclusion

In this work, we studied the properties of cold circular Rydberg atoms in a cryogenic
environment. We addressed the proposal of a cRy atom based quantum simulator, the
preparation of cold circular Rydberg atoms in a cryostat, and their laser trapping.

We prepared a cold atom cloud of Rubidium inside a Helium-4 cryostat (Chapter
III). Large optical windows allowed for laser access and for the manipulation of the
cold atoms. We implemented a laser excitation scheme to access Rydberg levels and
we circularized them in place. The lifetime of the |52c〉 state was measured to be
(3.7 ± 0.1) ms and it was limited by the black-body radiation that entered through
the windows into the cold core of the experiment (Chapter IV). We mitigated the
effect by reducing the effective aperture of the windows using copper irises thermalized
to 4 K, and by installing MW absorber in the cold walls of the chamber. In future
studies, the room temperature thermal radiation could be further reduced by using a
thin layer of Indium tin oxide (ITO) on the windows. This oxide is transparent in the
optical domain and near infrared, and acts like a metallic mirror at longer wavelengths,
thus efficiently blocking the noxious 300 K thermal MW radiation. We note that the
lifetime measurement of the cRy states can be extended to build an in situ atomic MW
probe. One can directly measure the rates and deduce the MW mode structure from
first principles. This could be of use to map the non-trivial effect of the surrounding
electrodes on the electromagnetic environment. Alternatively, in a well-know mode
structure, the approach can be used to directly measure the absolute MW temperature.
This could be an important tool for metrology, particularly in the field of lattice atomic
MW clocks, in which the black-body radiation induced shifts significantly contribute
to the uncertainty budget.

The experiments done in this work are important steps towards the long-term goal of
a cRy atom quantum simulator (Chapter II). In the mid-term, applications to quantum
simulation and metrology could be pursued. The laser trapping of cRy atoms (Chapter
V) could be extended to CQED applications, where one could use atoms trapped inside
a high-finesse superconducting cavity [206, 207] to explore new regimes. Metrology
could benefit from circular atoms trapped close to surfaces or close to nano structures
to map the electric or magnetic field distribution beyond the standard quantum limit
[106, 107].

The short-term perspectives include the implementation of optical tweezers in our
experiment. An artist view of the future setup including Laguerre-Gauss tweezers is
shown in Figure Conc.1 (a). In Figure Conc.1 (b), we show the experimental setup
that will host the next generation of experiments. A sapphire cube will be used as
a holder for a packed electrode structure and in-vacuum lenses, encapsulating a cold
Rydberg atom cloud. The sapphire provides good electrical insulation, but allows for
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the thermalization of the components thanks to its good thermal conductance. A pair
of ITO coated lenses of a 12.5 mm diameter and 15 mm of focal length will be used to
trap and image the atoms. We show only one of the lenses (blue) in Figure Conc.1 (b).
The ITO metallic character allows us to use a lens close to the Rydberg atoms as an
electrode and it naturally avoids the accumulation of charges along with the associated
electric gradient drifts. Four 45◦ cylindrical apertures in the yz plane permit the access
of a pair of cooling beams. Two larger apertures along the x direction allow for a third
laser cooling beam and the exit of the ions after field-ionization.

Figure Conc.1 (a) An artist view of the future experimental setup. In (b), a technical
representation of the sapphire cube holding the gold coated electrode structure and the large
numerical aperture lenses.

We will now outline some perspectives that one could explore in the years to come
with this platform.

Two-dimensional arrays: expanding the Hilbert space

The perspectives provided by this new setup include the extension of the trapping
potential to a two-dimensional array of traps.

Advances towards these new goals are already on their way in our group. Prelimi-
nary beam shaping experiments were done in an optical setup using a 810 nm laser, an
SLM, a focusing lens with a 1 m focus, and a beam profiler camera (3.45 µm pixels). In
Figure Conc.2, we show a few two-dimensional patterns we are able to produce. The
long focal distance chosen permits a good resolution in the reconstruction of the beam
profile. A feedback loop between the beam profiler camera and the SLM implements
an automatic correction of aberrations and experimental imperfections. A modified
Gerchberg-Saxton algorithm iteration provides the corrected phase mask at each step
until convergence. The intensity profiles in Figure Conc.2 correspond to a 4×4 array of
Gaussian beams (a), a LG01 beam array (b), and an array of three-dimensional Bottle
beam (Bob) traps [132] (c). In Figure Conc.2 (d), we show a 10× 10 Gaussian array of
traps with a remarkable intensity uniformity of 0.6%. The replacement of the 1 m focal
length lens by a high-numerical aperture aspherical lens with a shorter focal distance
is not expected to qualitatively modify the optimization process. In the actual cube
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experiment, using the second high-numerical aperture lens (not shown) will allow the
recovery of the trapping light to implement the corrections.

Figure Conc.2 Two-dimensional 4× 4 arrays of Gaussians (a), LG01 (b), and Bob traps (c).
In (d), we show an array of 10×10 Gaussian beams which are optimized to an intensity spread
of 0.6% intensity.

Generalizing our simulator to a two-dimensional lattice opens the possibility of in-
teresting quantum simulations. In general, in two-dimensional spin-1/2 lattices, finding
the ground state is already challenging. The angular dependence of the van der Waals
potential provides an additional degree of freedom that could be used to study topo-
logical phases of matter [102]. An intermediate step could be the study of two parallel
linear chains of long lived cRy two-level atoms. This configuration can be mapped
to a single linear spin-1 chain where finding the ground state is already numerically
challenging. The relevant observables in these two-dimensional arrays depend on the
problem to be addressed. The single cRy atom expulsion guided by a light tube as
discussed in Chapter II may not be the ideal detection method in two dimensions. In-
stead, level selective de-circularization, combined with site addressed photoionization
of the low-angular-momentum states, could be a promising road for detection. Prelimi-
nary experiments were carried out in the current setup. Two-photon Rabi and Ramsey
oscillations were observed in between the |50c〉 and |52c〉 levels without field ionization.
We selectively decircularized level |52c〉 into |52F 〉 and measured photionization ion
counts produced by the 1064 nm laser. This technique, combined with site resolved
laser focusing, would directly lead to an efficient detection method in the new setup.
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Note that a gold capacitive structure inhibiting the spontaneous emission (see Fig-
ure II.1) is no longer compatible with optical tweezers entering from the side due to
their strong divergence. Instead, spontaneous emission for the cRy atoms trapped in
tweezers could be provided by either a single mirror or a transparent ITO-coated ca-
pacitor. The laser incidence should then be normal to the flat surface. The strong
divergence of the beam would allow one to trap the atoms a few hundred microns away
from the surface of the inhibiting structure without damaging it. For the same reason,
standing wave interference effects can be neglected due to the large intensity difference
between the focus and the reflected wave. Also note that the effect of a spontaneous
emission inhibiting structure varies in a typical lengthscale of a few millimeters for the
MW transitions involved. This would make it possible to trap extended (disordered)
arrays of atoms with a few tens of micrometers spread in their position without losing
their enhanced lifetime.

Another trapping method: threading an atom with light

A variation of the ponderomotive trapping could be used to trap cRy atoms. The large
circular electron orbit could in principle be ‘threaded’ by a Gaussian beam to produce
tight 3D traps. We show the trapping scheme in Figure Conc.3 (a).

(a)                                                                                    (b)

ρ (µm)

 z (µm)

Figure Conc.3 A Rydberg belt for a light waist. (a) The trapping scheme. For large enough
circular orbits, the trap is confining the atom in 3D. Otherwise the beam is a 2D radial trap
and an anti-trap in the axial direction. In (b), we show the ponderomotive energy landscape
for two large n circular atoms.

In general, the ponderomotive potential is computed by explicitly taking an av-
erage over the electron orbital. We compute the 3D trapping potential for the cRy
atom by integrating a Gaussian beam profile over the semi-classical Bohr orbit7 as (see
eq.(II.17))

E(ρ, z) =
1

2π

∫ 2π

0
dθ

q2
e

2meε0c

λ2
L

(2πc)2

2P0

πw2(z)
exp{− 2

w2(z)
[(xn + xρ)

2 + (yn + yρ)
2]}

7We have verified the validity of the approximation using numerical integration over the actual
wave function (see Appendices).
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where λL is the trapping light wavelength, P0 is the laser power, xn = n2a0 cos θ

and yn = n2a0 sin θ are the cRy electron coordinates with respect to the atomic core,
ρ =

√
x2
ρ + y2

ρ is atomic core distance to the beam axis, z is the position of the core

(and of the electron) along the laser propagation axis, and w(z) = w0

√
1 + (z/zR)2 is

the Gaussian waist of the laser beam. We take the beam to be diffraction limited to
(NA= n0 sin θ ∼ 0.5)

d = 2w0 =
λL

2n0 sin θ
∼ λL.

The trapping condition can be derived (∂rnE
∣∣
z=0,ρ=0

> 0) to be8

2rn > λL/
√

2,

and it can be interpreted to mean that the Bohr atom needs to be big enough to fit a
photon (of size ∼ λL) inside its diameter. The trapping frequency in the axial direction
is given by

ω2
z =

q2
e

meε0c

λ2
L

(2πc)2

2P0
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(2r2
n − w2

0)e−2r2n/w
2
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2
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.

In Table Conc.1, we give the wavelength range that allows the trapping of circular
level |nc〉.9 Note that, in contrast with Bob traps [132], if the circular orbit is ‘too
small’ the focus point of the Gaussian is anti-trapping in the z direction (ω2

z < 0). In
Figure Conc.3 (b), we plot the radial and the axial potential for a n = 100 and n = 120

cRy states under the constrain of keeping the 1064 nm wavelength laser as the trapping
beam. 10

|nc〉 λL (n0 sin θ = 0.5)
|50c〉 <374 nm
|60c〉 <538 nm
|70c〉 <733 nm
|80c〉 <957 nm
|90c〉 <1212 nm

Table Conc.1 For a given NA, the trapping wavelength needed to thread different circular
atoms.

On the one hand, the trapping relies in the electron charge de-localization in the
circular Rydberg orbitals.11 On the other hand, the trap is expected to work for

8This limit is not fundamental. The diffraction limit reads: 2rn > λL/2
√

2n0 sin θ.
9Note that the Rubidium core is actually anti-trapped in this configuration. But being 1.6 hundred

thousand times heavier than the electron, we neglect the effect.
10We note that plug-and-play commercial lasers are available from 200 nm to 300 nm with powers

ranging from a few hundred milliwatts to a few Watts. For the most constraining atomic state on
Table Conc.1 (|50c〉), one can get a ∼ 20 µK/mW trap if operating at 250 nm diffraction limited to
NA=0.5. The trap frequency is computed to be ωz/

√
P0 ∼ 2π×2.1 MHz/

√
W for Rubidium. We note

that this wavelength is used to excite Calcium Rydberg ions and that mCa > mRb/2.
11Note that this is a kind of trap that relies on the specific geometry of the electron orbital.
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any superposition of circular Rydberg atoms fulfilling the trapping condition. This
includes the |nc〉 + |(n + 1)c〉 ‘planetary atom’ superposition (see Figure I.1). In the
semi-classical picture, the potential is provided by the time average of the GHz rotation
of the localized electron around the core.

The tight confinement (submicrometer) of the atoms in this trap can be considered
an asset, but it also implies a constraint in the initial position of the atom. It may
be possible to use the same Gaussian beam that provides the circular atom trap as a
conventional dipole trap for the ground state atom. This single beam trapping both the
ground state atom and the circular state, may allow for the experimental realization.
Note that low-angular-momentum Rydberg atoms are anti-trapped and, thus, fast cir-
cularization (∼ 0.5 µs) and cold atoms (∼ 50 µK) would be a requirement to avoid the
laser missing the needle-eye.12 Another problem that one would need to face is the fact
that the longitudinal confinement of the ground state atoms in the dipole trap is of the
order of the cRy trap extension. This uncertainty in the initial longitudinal position
of the atom would probably lead to a reduced efficiency in the preparation of trapped
cRy atoms. This could be mitigated by high-laser intensity during the ground-state
trapping and colder atoms.

One could also consider using the Rubidium Rydberg excitation beam (at 420-
480 nm) to provide the circular atom trapping. Using a blue beam with a shorter
wavelength would relax the constraint on the principal quantum number n and would
enable exciting and trapping the |60c〉 state with the same laser. In Figure Conc.4, we
show the ponderomotive energy landscape for a few circular states for a beam of 420 nm
wavelength focused down to the diffraction limit (NA=0.5). The corresponding axial
trapping frequency for |60c〉 (|80c〉) is computed to be ωz/

√
P0 ∼ 2π×1.2 MHz/

√
W

(2π×0.53 MHz/
√

W).13

We note that, in these conditions, the electron is trapped in a high-intensity area.
This makes the negligible photoionization rate of circular atoms an important asset.
Also note that Compton elastic scattering may limit the coherence of the trapped cRy
atom. We can make a back-of-the-envelope calculation to evaluate the magnitude of
the process. We pessimistically assume that, as soon as an electron-photon scattering
occurs, the cRy state is lost. Using the Thompson diffusion model to compute the non-
relativistic scattering cross section of a free electron and the Gaussian beam intensity
at distance rn from the beam axis, we found the state lifetime associated to this process
to be > 2.6 s/mWatt for state |60c〉 and > 85 s/mWatt for state |80c〉.

As a final comment, we note that, so far, we have discussed a parameter regime
where the circular Rydberg electron acts as a tight belt to the Gaussian hyperboloid,
but another configuration is in principle reachable. In Figure Conc.4, we show that for
420 nm and n = 100, the condition 2rn � λL/

√
2 is fulfilled and that the atom finds

itself in a cylindrical ‘box trap’ (ωz → 0): the atom is essentially free until the electron
ring finds the hard inner light thread. In these conditions the electron is permanently in
the dark. The trap would then be dominated by anharmonicities and Compton elastic
scattering would not be a limiting factor (the estimation yields 1010 s/mWatt for state
|100c〉).

12Note that a few mW will produce a negligible amount of photionization during a few microseconds.
13Considering state |60c〉, a 10 mW beam of 420 nm wavelength provides a trap frequency of ωz =

2π×120 kHz and a trap depth of about 100 µK. The spatial confinement is to a few hundred nanometers.



Conclusion 137

z (µm)

>

 ρ (µm)

Figure Conc.4 The Rydberg excitation laser beam can also be used to provide the trapping.
For large atoms and tight focused lasers, the cRy is ‘canned’ in a cylindrical volume.

Coupling to phonons: a van der Waals spin-boson model

Another interesting way to expand the Hilbert space of quantum simulations with cRy
atoms is to include the motional degrees of freedom of the atoms in the description.
One could decide to allow phonon excitations in the chain and, in this way opening a
big Hilbert space with only a few atoms in a linear array. Using ‘strong’ interactions
and ‘weak traps’ the spin exchange efficiently couples to the motional modes changing
the dynamics of the system. Under these conditions, computing the evolution of a
four or five atom chain is classically hard, but the physical realization could be within
reach in the future. The model could be used to study a transition from Markovian
to non-Markovian entanglement induced decoherence in the nearest neighbour regime.
Simple analytical expressions can be derived for the two-atom case in harmonic traps
(of frequency ωx), where one finds hints of the physical effects that one could explore:
Assuming that one can cool down the atoms to the ground state, the initial state can be
written as |ψ(0)〉 = |48c, 50c〉s|0, 0〉x. Here, the first ket on the right-hand side stands
for the spin degree of freedom and the second ket stands for the motional ground state
of both atoms. For small oscillations with respect to the interatomic distance R [96,
108], one can show that the state will evolve into an entangled state in the form

|ψ(t)〉 =
1√
2

(
|+〉s|Ξ+(t)〉x + |−〉s|Ξ−(t)〉x

)
,

where |Ξ±(t)〉x is the two-oscillator state14 and |±〉s ∼ |48c, 50c〉 ± |50c, 48c〉 are the
14The two-atom system evolves into a two-oscillator Schröndinger-cat state where the pair of atoms



138 Conclusion

spin eigenvalues of the van der Waals interaction. The reduced density matrix for the
spin is obtained by taking the partial trace over the motional degree of freedom. In the
{|+〉s , |−〉s} basis, the partial density matrix reads

ρ̂s = Trx(|ψ(t)〉〈ψ(t)|) =
1

2

(
1 Λei4Jt

Λe−i4Jt 1

)
,

where J = A6/2R
6 is the the spin exchange coupling (see eq.(II.6)) and the coher-

ence Λ(t) = |〈Ξ+(t)|Ξ−(t)〉| is a measure of the entanglement between the spin and
the motion of the atoms. The spin oscillations will then have a contrast given by
Λ2 = e−8(Jη/ωx)2(1+cosωxt), where we have introduced an analog to the Lamb-Dicke
parameter for ion traps η = 6/R

√
h̄/2ωxmRb.15 The phonon modes in a two-atom

system, acting like a non-Markovian environment, induce an entanglement oscillation
that modulates the spin coherence at the trap frequency ωx. In Figure Conc.5 (a),
we show the periodic contrast revivals. In Figure Conc.5 (b), we show the minimal
contrast Λ2

m as a function of the inter-atomic distance R for a few trap frequencies and
A6 = h× 1 GHzµm6. At 5 µm the spin coupling constant is J = h× 32 kHz. Including
more atoms in the chain, which can be considered as an environment in themselves,
would introduce more accessible motional modes and modify the entanglement dynam-
ics. This could lead to studies complementing those already being carried out in other
platforms.

0                                                  1                                                2

Fz Bz

(a)                                                                       (b)
2 2

2

Figure Conc.5 In (a), we show the entanglement oscillation between the phonons and the
spins. In (b), we show the minimal contrast Λ2

m for the spin oscillation as a function of distance.

The diverse behaviours one could access in a cRy based simulator as one tunes the
different experimental parameters (dimensionlaity, principal quantum number n, the
directing fields, the interatomic distance, the trap frequency, the geometry, etc.) make
this platform interesting.

is in a superposition of classical coherent states | ± α,∓α〉x .
15Here, the frequency Jη ∝ 1/R7 is the Rabi frequency for the spin-phonon coupling.
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Appendix A

Stochastic treatment of dephasing

In this appendix, we discuss a model to quantitatively analyse the coherence properties
of single qubits. We focus on the free induction decay (Ramsey) and on the spin-echo
sequence. We treat the phase of a qubit superposition as a random variable and we
integrate the stochastic equations that determine its statistical properties [208]. This
analysis allows us to transform the measurable coherence properties of the quantum
state into the noise parameters directly affecting the qubits [199]. Also, the analysis
provides an efficient way to reconstruct the noise spectrum in the experiment.

In the second part of this appendix we develop the calculations for three examples.

A.1 A general dephasing process

Consider an ensemble of N qubits that we label with the letter j. At time t = 0, all
are prepared in the same state superposition that we label |ψj(0)〉 = 1√

2
(| ↑〉 + | ↓〉).

Consider also that, at t > 0, a noise process starts, resulting in the accumulation of
a relative stochastic phase ϕj(t). The purity (γ(t) =Tr[(

∑N
j |ψj(t)〉〈ψj(t)|/N)2]) of

the ensemble is set to degrade and here we work out a model to describe the state
evolution. This purity is a direct measure of the contrast (C(t) = γ(t)) of the quantum
interference terms that one can measure.

We now write the phase of the superposition for the jth trajectory as

|ψj(t)〉 =
1√
2

(| ↑〉+ e−iϕj(t)| ↓〉).

We write the phase as given by an integral of the energy difference between the two
states E↓(t)− E↑(t) = h̄∆j(t):

ϕj(t) =

∫ t

0
∆j(t)dt.

One can compute the purity to be

γ(t) = Re{〈eiϕj 〉j},

where the angle brackets (〈·〉j) stands for the average over the noise realizations (the
different qubits). The calculation of this mean value can be done straightforwardly. As-
suming that the phase is Normally distributed (Gaussian noise, ϕj(t) ∼ Normal(0, σ2

ϕ(t))),
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one can write

〈eiϕj 〉j =

∞∑
n

1

n!
〈(iϕj)n〉j .

and make use of the identity 〈(iϕj)n〉j = (−1)k (2k)!
2kk!

σ2k
ϕ . Note that the sum only runs

over n = 2k since the odd moments are zero. The expression for the purity then reads

γ(t) = e−
σ2ϕ(t)

2

The contrast drop of the coherences (dephasing) as a function of time depends on
the specificities of the noise model used. One can readily express the noise variance as
a function of the noise autocorrelation, as

σ2
ϕ(t) =

∫ t

0
dt1

∫ t

0
dt2〈∆j(t1)∆j(t2)〉j .

A general way to construct different types of Gaussian noise is to filter a Gaussian
white noise Wj(t)

∆j(t) =

∫ t

−∞
Wj(t

′)gτϕ(t′ − t)dt′

where gτϕ(t′ − t) is the noise filter function. The stochastic process Wj(t) is com-
pletely defined by 〈Wj(t)〉j = 0 and 〈Wj(t1)Wj(t2)〉j = Dϕδ(t1 − t2). The noise filter
function gτϕ is a normalized function (

∫ t
−∞ gτϕ(x)dx = 1) that depends on a single

parameter: the correlation time τϕ. Note that we have imposed causality by including
the integration limit t in the argument of gτϕ(t′− t). Finally, the variance of the phase
random variable reads

σ2
ϕ(t) = Dϕ

∫ t

0
dt1

∫ t

0
dt2βτϕ(t1 − t2), (A.1)

where βτϕ is the autocorrelation function of the filter function gτϕ(x).
The phase evolution can be modified by introducing a π-rotation of the qubits on

the Bloch sphere. This is known as spin-echo technique. By applying the π-pulse at
time tπ, and assuming an infinitely short and perfect pulse, the phase undergoes the
transformation ϕ→ −ϕ+π. The time evolving phase for t > tπ, which we denote now
with a tilde, reads

ϕj(t)→ ϕ̃j(t) = −
∫ tπ

0
∆j(t

′)dt′ + π +

∫ t

tπ

∆j(t
′)dt′.

The variance reads

σ2
ϕ̃ =

(∫ tπ

0

∫ tπ

0
dt1dt2 +

∫ t

tπ

∫ t

tπ

dt1dt2 − 2

∫ tπ

0
dt1

∫ t

tπ

dt2

)
〈∆j(t1)∆j(t2)〉j .
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and simplifies to

σ2
ϕ̃ = Dϕ

(∫ tπ

0

∫ tπ

0
dt1dt2 +

∫ t

tπ

∫ t

tπ

dt1dt2 − 2

∫ tπ

0
dt1

∫ t

tπ

dt2

)
βτϕ(t1 − t2). (A.2)

From eq.(A.1) (Ramsey) and eq.(A.2) (spin-echo) note that Dϕ is only a scaling
factor and plays no role in the functional form of the phase diffusion.

A.2 Three examples

Here, we first develop a minimalist example to show evidence for some general proper-
ties of stochastic phase diffusion. This minimalist model cannot be written as filtered
Gaussian white noise and lays beyond the theory in the first section of this appendix.
Secondly, we discuss the details of the calculation for a more realistic Lorentzian noise
that we use to analyze that data discussed in Chapter IV. The last example is that of a
Gaussian spectrum for the noise. These two last examples are completely encompassed
by the theory from the previous section and they can be taken as an illustration of the
general procedure.

A.2.1 A minimalist model

We now consider a model with the minimal ingredients to explain two decoherence
time constants T ∗2 and T2. With this purpose, we include a fully reversible noise (static
gradients) and a completely irreversible noise (white noise).

A.2.1.1 Slow noise (reversible)

Here we consider the case in which each qubit has its own precession frequency, constant
in time. The decoherence (purity drop as time elapses) arises from the average of the
oscillations at different frequencies. Atom j has frequency ωj . The variance of that
frequency is σ2

ω = 〈ω2
j 〉j (center at zero 〈ωj〉j = 0, corresponding to an interaction

representation).1 The phase variance reads

ϕj(t) =

∫ t

0
ωjdt = ωjt

σ2
ϕ(t) = σ2

ωt
2.

A.2.1.2 Fast (uncorrelated) noise (irreversible)

Now consider a Gaussian white noise contribution to the phase diffusion Wj(t). The
phase accumulation in these conditions reads

ϕj(t) =

∫ t

0
Wj(s)ds

1If instead of purely DC noise one considers a sinusoidal noise with a frequency much smaller than
any other process in the experiment, the general argument still holds. Note that the contribution of a
sinusoidal noise at a very low frequency will have a bi-modal distribution.
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〈ϕ2
j (t)〉j =

∫ t

0
ds

∫ t

0
ds′〈Wj(s)Wj(s

′)〉j

σ2
ϕ(t) = 〈ϕ2

j (t)〉j = Dϕt.

A.2.1.3 The variance during the free induction decay (Ramsey)

Considering a process with a slow and a fast noise contribution, the qubit energy reads
∆j(t) = ωj +Wj(t) and the variance is then computed to be

σ2
ϕ(t) = σ2

ωt
2 +Dϕt.

A.2.1.4 Spin-echo

We turn to compute the phase variance after the π-pulse. The phase random variable
for t < tπ reads

ϕj(t) =

∫ t

0
ωj +Wj(t)dt.

Knowing that an ideal π-pulse transforms the phase as ϕ→ −ϕ+ π, one can write

ϕ̃j(t) = −
∫ tπ

0
(ωj +Wj(t))dt+ π +

∫ t

tπ

(ωj +Wj(t))dt.

The variance is then σ2
ϕ̃(t) = 〈ϕ̃2

j (t)〉j − 〈ϕ̃j(t)〉2j . One has

ϕ̃2
j (t) = π2 + [−

∫ tπ

0
(ωj +Wj(t))dt]

2 + [

∫ t

tπ

(ωj +Wj(t))dt]
2

−2

∫ tπ

0
(ωj +Wj(t))dt×

∫ t

tπ

(ωj +Wj(s))ds+ ...

ϕ̃2
j (t) = π2 + [

∫ tπ

0
ωjdt]

2 + [

∫ tπ

0
Wj(t)dt]

2 + [

∫ t

tπ

ωjdt]
2 + [

∫ t

tπ

Wj(t)dt]
2

−2ω2
j tπ(t− tπ) + ...

where ‘...’ stand for terms that are either linear in Wj or in ωj and will go to zero after
averaging: 〈ωjWj〉j = 〈ωj〉j〈Wj〉j = 0. One then gets

〈ϕ̃2
j (t)〉j = π2 + σ2

ωt
2
π +Dϕtπ + σ2

ω(t− tπ)2 +Dϕ(t− tπ)− 2σ2
ωtπ(t− tπ)

That finally simplifies to

σ2
ϕ(t) = σ2

ω(t− 2tπ)2 +Dϕt.
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Where the DC component of the phase accumulation σ2
ω(t− 2tπ)2 is perfectly can-

celled at time 2tπ and the phase accumulation due to the fast noise Dϕt is unaffected
by the π-pulse.

The maximal contrast for t > tπ can be found analytically to be

tE =

{
tπ tπ <

Dϕ
2σ2
ω

2tπ − Dϕ
2σ2
ω

tπ >
Dϕ
2σ2
ω
.

A.2.1.5 Observations

We make the following observations.

i. If one performs the π-pulse too early (tπ <
Dϕ
2σ2
ω
), then the contrast will continue to

decrease. This is easy to understand: for t < Dϕ
2σ2
ω
the irreversible term (linear in

time, see Figure A.1 (a)) dominates over the reversible phase accumulation term
(quadratic in time) and, thus, the contrast drop cannot be reversed. For longer
times the quadratic term dominates over the linear term and the oscillation has
a revival. The time of the maximum echo contrast after the π-pulse as a function
of tπ is plotted in Figure A.1 (b).

ii. Note that, by taking the derivative with respect to tπ (for tπ >
Dϕ
2σ2
ω
), fixing t = t0,

and equating to zero, one can find the value of tπ that maximizes the contrast at
any given t0. We then have that ∂tπσ2

ϕ̃(t = t0) = 0 implies

tπ = t0/2,

and, thus, to have the optimal contrast at a given t0, one needs to perform the
π-pulse at t0/2.

(a)                                                    (b)

Figure A.1 (a) Reversible (red) and irreversible (blue) contributions to the phase diffusion.
(b) The echo revival time (green) as a function of tπ. The black line corresponds to the line
with slope 2. The revival time shows a sharp slope change that happens at the time where the
dephasing character changes from irreversible to reversible.
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A.2.2 Lorentzian noise spectrum: our experimental situation

We model our data (see Chapter IV) by temporal noise with a Lorentzian spectrum.
No static gradients are required to explain our experimental observations. This kind of
noise model is physically relevant as it arises from the natural band-pass in the standard
experimental setup. Imposing a Lorentzian spectrum on the energy time dependence
h̄∆j(t) by taking Gaussian white noise and filtering it with an exponential function,
one has

∆j(t) =

∫ t

−∞
Wj(τ)

e
τ−t
τϕ

τϕ
dτ. (A.3)

At each time t, the phase is ϕj(t) =
∫ t

0 ∆j(t1)dt1 and its moments are calculated as
follows:

〈ϕj(t)〉j = 0.

〈ϕ2
j (t)〉j = 〈

∫ t

0
dt1

∫ t

0
dt2∆j (t1) ∆j (t2)〉j ,

〈ϕ2
j 〉j =

(
1

τϕ

)2 ∫ t

0
dt1

∫ t

0
dt2

∫ t1

−∞
dτ1

∫ t2

−∞
dτ2e

τ1+τ2−t1−t2
τϕ 〈Wj (τ1)Wj (τ2)〉j . (A.4)

Using explicitly that

〈Wj(τ1)Wj(τ2)〉j = Dϕδ(τ1 − τ2), (A.5)

one can readily compute the variance σ2
ϕ = 〈ϕj(t)〉2j as

σ2
ϕ(t) = Dϕ

(
1

τϕ

)2(∫ t

0
dt2

∫ t2

0
dt1

∫ t1

−∞
dτ1e

2τ1−t1−t2
τϕ +

∫ t

0
dt2

∫ t

t2

dt1

∫ t2

−∞
dτ2e

2τ2−t1−t2
τϕ

)
.

σ2
ϕ(t) =

Dϕ

2τϕ

(∫ t

0
dt2

∫ t2

0
dt1e

t1−t2
τϕ +

∫ t

0
dt2

∫ t

t2

dt1e
t2−t1
τϕ

)

σ2
ϕ(t) =

Dϕ

2

(∫ t

0
dt2

(
1− e

−t2
τϕ

)
−
∫ t

0
dt2

(
e
t2−t
τϕ − 1

))

σ2
ϕ(t) =

Dϕ

2

((
t+ τϕ

(
e
−t
τϕ − 1

))
− τϕ

(
1− e

−t
τϕ

)
+ t

)

σ2
ϕ = Dϕ(t+ τϕ(e

− t
τϕ − 1)).
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A.2.2.1 Observations

We make the following observations.

i. At long times (t� τϕ), the variance time dependence becomes linear and reminds
us of a ‘random walk’

σ2
ϕ(t) ∼ Dϕt.

The energy undergoes a Wiener process, and is ruled by a Brownian diffusion
equation.

ii. Our experimental situation: At short times (t� τϕ), the variance grows quadrat-
ically and reminds us of a ‘free expansion’

σ2
ϕ(t) ∼ Dϕ

t2

2τϕ
.

iii. The term, τϕ(e
− t
τϕ −1), is negative and ‘slows down’ decoherence. This exponen-

tial memory acts like a low-pass filter and reminds us of an electric or magnetic
‘discharge’ affecting the coherence. In the limit of infinite memory, decoherence
is stopped completely as τϕ → ∞, σ2

ϕ → 0, which is the result of a flat average
on white noise.

A.2.2.2 Phase variance during the spin-echo in the case of Lorentzian noise

If a perfect π-pulse is done at t = tπ, the subsequent phase is (the tilde in ϕ̃ denotes
the phase variable after the π pulse t > tπ):

ϕ̃j(t) = −
∫ tπ

0
∆j(t)dt+ π +

∫ t

tπ

∆j(t)dt.

the mean value is 〈ϕ̃j(t)〉j = π and the second moment is calculated in the same
manner as before:

〈ϕ̃2
j (t)〉j = π2 + 〈(

∫ tπ

0
∆j(t)dt)

2〉j + 〈(
∫ t

tπ

∆j(t)dt)
2〉j+

−2〈
∫ t

tπ

∆j(t1)dt1

∫ tπ

0
∆j(t2)dt2〉j + 2π〈

∫ t

tπ

∆j(t)dt〉j − 2π〈
∫ tπ

0
∆j(t)dt〉j .

〈ϕ̃2
j (t)〉j = π2 +

∫ tπ

0

∫ tπ

0
〈∆j(t1)∆j(t2)〉jdt1dt2 +

∫ t

tπ

∫ t

tπ

〈∆j(t1)∆j(t2)〉jdt1dt2+

−2

∫ t

tπ

dt1

∫ tπ

0
dt2〈∆j(t1)∆j(t2)〉j + 2π

∫ t

tπ

〈∆j(t)〉jdt− 2π

∫ tπ

0
〈∆j(t)〉jdt.
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Now using that 〈∆j(t)〉j = 0

〈ϕ̃2
j (t)〉j = π2 +

∫ tπ

0

∫ tπ

0
〈∆j(t1)∆j(t2)〉jdt1dt2 +

∫ t

tπ

∫ t

tπ

〈∆j(t1)∆j(t2)〉jdt1dt2+

−2

∫ t

tπ

dt1

∫ tπ

0
dt2〈∆j(t1)∆j(t2)〉j ,

to finally build σ2
ϕ̃ = 〈ϕ̃2

j (t)〉j − 〈ϕ̃j(t)〉2j

σ2
ϕ̃ =

∫ tπ

0

∫ tπ

0
〈∆j(t1)∆j(t2)〉jdt1dt2+

+

∫ t

tπ

∫ t

tπ

〈∆j(t1)∆j(t2)〉jdt1dt2+

−2

∫ t

tπ

dt1

∫ tπ

0
dt2〈∆j(t1)∆j(t2)〉j .

The first two integrals are almost identical. They are related by the variable substitu-
tion t → (t − tπ). They correspond to the direct phase accumulation before and after
the π-pulse. The third term is a ‘delayed auto-correlation’ and can be considered as a
measure of the time symmetry of the noise with respect to tπ. The direct integration
reads

σ2
ϕ̃/Dϕ = tπ + τϕ(e

− tπ
τϕ − 1) + (t− tπ) + τϕ(e

− t−tπ
τϕ − 1) + τϕ[e

tπ
τϕ − 1][e

−t
τϕ − e

−tπ
τϕ ].

Note that the last term is negative.

A.2.2.3 Observations

We make the following observations.

i. The maximal contrast for the spin-echo sequences is obtained at (∂tσ2
ϕ̃|t=tE = 0,

see Chapter IV)

tE = τϕ ln(2etπ/τϕ − 1).

One can show that, in general, tE < 2tπ. Also note that, in the limit τϕ � tπ, one
gets tE ∼ 2tπ. In Figure A.2 (a), we plot the phase variance (blue) as a function
of time for a π-pulse performed at tπ = 0.2 × τϕ. In green, we schematically
show the quantum oscillation: the contrast is large when the phase variance is
small. In (b), we plot the revival time for the echo oscillation, also as a function
of tπ. In Figure A.2 (c), we see that the difference between the contrast at tE
and at 2tπ can be large. For the purpose of this example, we take Dϕ = 1/τϕ:
the error turns out to be of 40% by the time the revival contrast is 40% of the
initial contrast.

ii. The revival echo oscillations all have the same Ramsey envelope. First, note that,
by fixing tπ = 0 in eq.(A.2.2.2) (Echo), we recover eq.(A.2.2) (Ramsey). To see
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(a)

(c)

(b)

Figure A.2 Spin-focusing. In (a), we plot ±σ2
ϕ(t)/Dϕ (blue) as a function of time. The

oscillation of the population is plotted in green. We see how the phase random variable, which
is initially well defined σ2

ϕ(0) = 0, diffuses. A π-pulse applied at tπ = 0.2×τϕ reverts the phase
diffusion and refocuses the random variable at tE < 2tπ. In (b), we show the echo (revival)
time as a function of tπ. In (c), we show the contrasts (the purity) of the spin systems at tE
(red) and at 2tπ (blue) as a function of tπ. The contrast for a fixed tπ is largest at tE .

that the envelope is the same, we verify that the derivatives to all orders at t = tE
are independent of tπ. We have

∂2
t σ

2
ϕ̃ =

Dϕe
− t
τϕ

τϕ
(2e

tπ
τϕ − 1).
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Evaluating in tE , we get

Dϕe
− ln(2e

tπ
τϕ −1)

τϕ
(2e

tπ
τϕ − 1) =

Dϕ

τϕ
.

For l ≥ 2, we have that ∂ltσ2
ϕ|tE = − Dϕ

(−τϕ)(l−1) (independent of tπ).

iii. The maximum contrast at a given time t0 is obtained by applying the π pulse at
tπ = t0/2. This is derived from the condition ∂tπσ2

ϕ̃(t = t0) = 0.

A.2.2.4 Fluctuation-dissipation relations: noise autocorrelation, noise spec-
trum and noise energy

The noise autocorrelation function reads

βτϕ(t1 − t2) = 〈∆j(t1)∆j(t2)〉j =
Dϕ

2τϕ
e
− |t1−t2|

τϕ .

For sufficiently long times T , one can define the variance for the noise as

σ2
∆ =

∫ T

0
〈∆2

j (t)〉jdt/T.

We then get that σ2
∆ = βτϕ(0) = Dϕ/2τϕ. To compute the noise energy Eξ, we

need to compute the power spectrum

F [βτϕ ](ω) =
Dϕ

(2πτϕ)2

1

ω2 + ( 1
2πτϕ

)2
,

and integrate it over all the frequencies to get

Eξ =

∫ ∞
−∞

F [βτϕ ](ω)dω =
Dϕ

2τϕ
.

Here we find a manifestation of the Wiener–Khintchine theorem.2 Out of direct
computation, we find Fluctuation(Dϕ)-Dissipation(T ∗2 ) relations for the Lorentzian
noise we have modeled. They read

Eξ = σ2
∆ =

Dϕ

2τϕ
= (1/T ∗2 )2.

The noise energy Eξ, the diffusion constant over the correlation time Dϕ/2τϕ, and
the noise variance σ2

∆ are equivalent representations of the fluctuations. The Ramsey
time T ∗2 (see Chapter IV) represents the dissipation here.

2The theorem states that limt→∞
∫ T
0
〈∆j(t)

2〉jdt/T =
∫∞
−∞ F [βτϕ ](ω)dω. Or, more precisely, that∫∞

−∞∆j(t)
2dt =

∫∞
−∞ F [

∫∞
−∞ dt∆j(t)∆j(t+ τ)](ω)dω. The equivalence comes from the time invariance

of the noise, the linearity of 〈·〉j and from the fact that βτϕ(τ) depends only on the time difference τ .
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A.2.2.5 The phase random variable is normally distributed

For completeness, and because our discussion is based on the fact that the phase random
variable ϕj is normally distributed, we present a sketch of the proof here. The proof
starts with the realization that

ϕj(t) =

∫ t

0
∆j(t)dt =

∫ t

0
dt

∫ t

−∞
dτWj(τ)

e
τ−t
τϕ

τϕ

is a ‘sum of Gaussians’ (Wj). The central limit theorem (CLT) then ensures its normal
character, and gives the correct analytical formula for its variance in terms of Wj .

Explicitly, one can write3 the Riemann sum for the noise as

∆j(t) =

N=t/dτ∑
n=−∞

Wj(ndτ)
e
ndτ−t
τϕ

τϕ
dτ.

For the sake of the argument, we will take Wj(ndτ) to have a standard deviation
A0. Then, ∆j(t) is a sum of normal random variables with standard deviation σn =

A0
e
ndτ−t
τϕ

τϕ
dτ , so, after the CLT, its variance can be computed as

σ2
∆ =

∑
n

σ2
n.

In the limit dτ → 0, one needs to take (A0∗dτ)2 = Dϕdτ to again get an expression
linear in dτ .4 One can take the limit on the Riemann sum to get back an integral.

σ2
∆ = Dϕ

∫ t

−∞

e
2 τ−t
τϕ

τ2
ϕ

dτ.

The same argument can be practiced again to deduce the normal character of ϕj(t),
starting from the normal character of ∆j(t). This proves the Normal character of
the phase random variable. One can recover the expression previously derived for σ2

ϕ

following this approach.

A.2.3 Gaussian noise spectrum

The last noise model we will explore is that having Gaussian correlation. A description
involving a Gaussian cut-off in the noise spectrum arises if one takes

gτϕ(τ − t) = e
− (τ−t)2

τ2ϕ /τϕ
√
π

and

∆j(t) =

∫ t

−∞
Wj(τ)gτϕ(τ − t)dτ.

3The proof is analogous to that proving Itō’s Isometry.
4This is the standard limit in Brownian motion. Here, instead of the mean free path l and the

collision time dτ going to zero (l2/dτ = D = cte as both l, dτ → 0), we have a diverging noise
amplitude A0 during an infinitesimal amount of time so that A2

0dτ → cte.
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The calculation can be carried out analytically in terms of the Error function (Erf[x]).
The phase variance after the echo pulse reads

σ2
ϕ̃π/Dϕ = −3τϕ − τϕe−t

2/τ2ϕ + 2τϕe
−(t−tπ)2/τ2ϕ + 2τϕe

−t2π/τ2ϕ+

+
√
π t Erfi[t/τϕ] + 2

√
π (t− tπ) Erfi[(t− tπ)/τϕ] + 2

√
π tπ Erfi[tπ/τϕ],

where Erfi[x] is the imaginary part of the error function defined as Erfi[x] = Erf[ix]/i.
The peak of the revival oscillation will appear at tE satisfying

∂tσ
2
ϕ̃

∣∣∣
tE
∝ 2 Erfi

[
tE − tπ
τϕ

]
− Erfi

[
tE
τϕ

]
= 0.

Taking Erfi[x] ∼ 2x/
√
π, under the condition tE , tπ � τϕ, one gets tE ∼ 2tπ. In

general, one has tE < 2tπ for the non-linear expression.



Appendix B

Correlation of the noise parameters

By very general arguments, the ‘revival time’ tE < 2tπ for a spin-echo sequence is not
only a sensitive observable to the noise correlation time τϕ, but it is also independent
of the noise amplitude Dϕ. The contrast drop (which for our experiment is T ∗2 ∼ 35 µs
and T2 ∼ 270 µs) only depends on a combination of these two parameters, making
their individual determination difficult. Time-domain spin-echo spectroscopy gives one
access to direct information on the correlation time of the noise which is absent in
standard frequency-domain spin-echo spectroscopy.

B.1 Identification of the parameter dependence

The coherence measurements we have performed (Chapter IV) depend on the noise in
our setup and the qubits can be considered as a probe to determine its characteristics.
Nonetheless, the effect of the independent noise parameters Dϕ (noise amplitud) and
τϕ (noise correlation time) on the coherence drop is highly correlated. In Figure B.1,
we present an alternative way to analyze the data. In Figure B.1 (a), we plot the
result of performing different model fits (eq.(IV.9)) on the oscillations data points in
Figure IV.17. The empty blue dot with error bars in both directions corresponds to
the fits shown in Figure IV.17, where both τϕ and Dϕ are free. The other blue dots are
obtained by artificially fixing the parameter τϕ and allowing the fitting algorithm to fit
Dϕ. The red dots in Figure B.1 (a) correspond to the reduced χ2 of the fit. It varies only
slightly over one order of magnitude in the numerical variation of τϕ. In Figure B.1
(b), we plot 1/Dϕ versus 1/τ2

ϕ. The linear fit corresponds to the identification of
the combination Dϕ/τ

2
ϕ as the relevant parameter to explain the data. The shaded

band represents the 95% confidence region for the fit. We then claim that the fitting
procedure gives a reliable value for any function of this quantity, in particular (assuming
T2 � τϕ, see Chapter IV) T2 = 3

√
ln(2)× 24τ2

ϕ/Dϕ.

B.2 Information from time-domain spectroscopy

Assuming a Lorentzian spectrum for the noise, the coherence oscillations studied in
Chapter IV yield noise parameters Dϕ ∼ 3.8× 106 s−1 and τϕ ∼ 2.1 ms. Under these
conditions, the coherent oscillations are measurable during a few hundred microseconds
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(a) (b)

Figure B.1 In (a), we show the strong correlation in between Dϕ and τϕ (blue dots). The red
dots are the error of the fit achieved by fixing τϕ. In (b), we plot the fit result 1/Dϕ against
1/τ2ϕ. The correlation is linear.

(T2 � τϕ), and one can approximate the expressions derived in Chapter IV and in
Appendix A for the Ramsey contrast, the spin-echo contrast and the revival time as,

CRamsey(τ1,2) = e
−Dϕ

(
τ1,2+τϕ(e−τ1,2/τϕ−1)

)
(B.1)

= e−τ
2
1,2Dϕ/4τϕ +ORamsey

(
τ3

1,2Dϕ

12τ2
ϕ

)
, (B.2)

Cspin-echo(tE) = e−Dϕ(tE/2−τϕ tanh(tE/2τϕ)) (B.3)

= e
−t3E

Dϕ

24τ2ϕ +Os-e

(
t5EDϕ

240τ4
ϕ

)
, and (B.4)

tE(tπ) = τϕ ln(2etπ/τϕ − 1) (B.5)

∼ 2tπ +ORevival

(
t2π
τϕ

)
. (B.6)

The errors we accept in doing these approximations in our experimental situation
are

ORamsey (τ1,2 = T ∗2 ) ∼ 0.3%, (B.7)

Os-e (tE = T2) ∼ 0.1%, and (B.8)

ORevival (tπ = 200 µs) /2tπ ∼ 5%. (B.9)

In Figure B.2 (a), we show an echo oscillation. The solid green line is the fit of a
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sinus with an envelope given by the model expression eq.(B.1). The red dashed line
corresponds to a Gaussian envelope for comparison and it corresponds to neglecting
the error in eq.(B.2). Note that, in our experimental situation, one cannot confidently
distinguish between a Gaussian envelope for the Ramsey signal and that of the full
analytic expression. In Figure B.2 (b), we show a fit to the revival oscillation contrast.
The green line is a fit of the full analytical model eq.(B.3), where we have allowed for a
multiplicative constant to account for the reduced initial contrast. The red dashed line
corresponds to a fit with cubic expression eq.(B.4) to the same data points.1 Note that,
once again, one cannot distinguish confidently between the full analytical expression
and the approximation here either.

In Figure B.2 (c), we show a fit (green line) to the experimentally determined tE
using expression eq.(B.5). Note that, remarkably, the determination of the revival time
is very well differentiated from the approximate expression suggested by eq.(B.6), which
is parameter independent.
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Fit by full 
expression
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Gaussian fit

Aproximation
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Figure B.2 Analysis of echo data. The red dashed lines are the first non-trivial terms of the
approximation. The green curves are fits taking into account the full analytic expressions. In
(a), we show a revival oscillation presented in Chapter IV. The red dashed line is a Gaussian
fit (the same as in Figure IV.15). The solid green line corresponds to a global fit of the model,
done simultaneously to all data shown in Figure IV.17. In (b), we show the contrast drop as a
function of time. The solid green line is the fit of eq.(B.3) to the data points. The red dashed
line corresponds to a fit inspired in eq.(B.4). In (c), the dashed line corresponds to the linear
term in eq.(B.6). The green line is a fit of these data points using eq.(B.5).

1The blue line traced on Figure IV.16 (a) lies exactly over the plots in Figure B.2 (b).
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Note that, for the Lorentzian noise model, both coherence times T ∗2 =
√

2τϕ/Dϕ

and T2 = 3

√
ln(2)× 24τ2

ϕ/Dϕ depend on a combination of the noise parameters, making
their individual determination less precise. Also note that the function tE(tπ) is the
only of the discussed observables that depends on a single one of the noise parameters
(τϕ), and that it is also 50 times more sensitive than the others (see eq.(B.8) and
eq.(B.9)).2

From Figure B.2 (b) and (c), we extract the noise parameters to be Dϕ ∼ (810 ±
60) × 103 s−1 and τϕ ∼ (966 ± 135) µs. Again, the irreversible coherence time is
computed out of these two quantities to be T2 = (270 ± 20) µs, as one would expect
from Figure B.1 (b). On the other, hand we find T ∗2 = (48± 5) µs.

B.3 Conclusion

The information on the noise one can get from spin-echo spectroscopy can be accessed
in two non-equivalent ways, either by performing experiments in the time-domain or in
the frequency-domain. We have performed time-domain spin-echo spectroscopy (Chap-
ter IV). The procedure consists in applying a first π/2 Ramsey pulse at time t = 0, a
π-pulse at time tπ and then a second π/2 Ramsey pulse delayed τ1,2 from the first one.
For a fixed MW detuning and a fixed tπ one measures the contrast of the oscillations
as a function of τ1,2. This is repeated for different tπ, to measure the maximal avail-
able contrast as a function of time. In the frequency-domain approach, the spin-echo
spectroscopy is made using a fixed time delay τ1,2 between the two π/2 Ramsey pulses
and scanning the detuning of the MW drive to measure the oscillation contrast. For
this, the intermediate π-pulse is performed at tπ = τ1,2/2 to maximize the contrast at
τ1,2. This is repeated for different τ1,2 to reproduce the contrast drop in time.

On the one hand, to the extent to which one can neglect the error in eq.(B.6),
the two approaches are indeed equivalent. On the other hand, if the error in eq.(B.6)
is measurable, one can get important information over the noise spectrum using the
time-domain spectroscopy if one measures the full envelopes.

2Note that the independence of the revival time tE on Dϕ is a very general property independent of
the Lorentzian model we study here. This independence is to be found in any noise that can be written
as filtered white noise. See equations eq.(1) in Appendix A. The noise amplitude is a multiplicative
constant that drops out of the equation when minimizing the variance to find the revival time.



Appendix C

Exact calculation of the
ponderomotive potential

The integration on the Bohr orbit used (see Conclusion chapter) to estimate the energy
landscape in optical traps for cRy atom remains an approximation. The full potential
corresponds to the average of ponderomotive energy over the electron orbit. Here we
develop the calculation for the Laguerre-Gauss (LG) traps and for the needle traps.

C.1 The LG trap

The full potential corresponds to the average of ponderomotive energy over the electron
orbit and for an LG trap it reads

E(xc, yc, zc) =
y

sin(θe)r
2
edredθedφe |ψnc(re, θe, φe)|2

× q2
e

2meε0c

λ2
L

(2πc)2

4P0

πw4(xc + xe)
[(ze + zc)

2 + (ye + yc)
2]

× exp

{
−2

w2(xc + xe)
[(ze + zc)

2 + (ye + yc)
2]

}
, (C.1)

where ψnc is the circular electron wavefunction (see Chapter I). The choice of axis
is shown in Figure C.1 (a). The ‘electron coordinates’ (xe, ye, ze) are given by the
parametrization in spherical coordinates (re, θe, φe). The position of the core is given
by (xc, yc, zc). The LG beam is taken to propagate along the x-axis and is focused
at x = 0. The plots in Figure C.1 corresponds to a LG01 at 1064 nm and focused to
w0 = 7 µm. The atom is taken to be in state |50c〉. The solid lines correspond to the
wavefunction average of the potential. The dots correspond to the average over the one
dimensional Bohr orbit, and the dashed line corresponds to the approximation of having
a point like atom i.e. neglecting its finite size, see Chapter II. The red dots correspond
to a core displacement in the plane of the orbit (y) and the blue dots correspond to a
core displacement along the quantization axis (z). We see the Bohr orbit remains an
excellent approximation.
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Figure C.1 (a) Choice of axis and of the coordinate system. (b) Labels for both plots. The
blue shade represents the LG profile. (c) and (d) Ponderomotive energy landscape for a cRy in
a LG trap. The energy is computed by the exact formula (solid lines, wavefunction average),
under the approximation induced by the Bohr atom picture (dots, see Conclusion chapter),
and by neglecting the size of the atom (dashed lines). In red, we show displacements along
the y direction. In blue, we show displacements along the z direction. (c) Full landscape. (d)
Zoom-in to the center of the trap. The atomic orbital is drawn to scale in (c), and (d).
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Figure C.2 Strongly focalized LG beam (w0 = 1 µm). (a) Quasi-harmonic potentials along
the y (red) and z (blue) directions for state |50c〉. The solid lines correspond to the full
wavefunction average of the potential. The dots correspond to the Bohr orbit approximation
and the dashed lines correspond to the point-like atom picture. (b) Potential along the z
direction for states |48c〉 and |50c〉. The blue ring represents the LG profile.
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In Figure C.2, we instead take w0 = 1 µm. This condition corresponds to individual
LG tweezers for a cRy atom (see Conclusion chapter). We see that the geometry of the
atom plays a role and causes a small difference in the oscillation frequency depending
on the orientation of the orbit. By fitting the energies in Figure C.2 (a), we get
ωz,50c/

√
P0 = 2π × 815 kHz/

√
W and ωy,50c/

√
P0 = 2π × 790 kHz/

√
W. The tight

confinement also induces a state dependent oscillation frequency. For state |48c〉 (see
Figure C.2 (b)), we fit an oscillation frequency of ωz,48c/

√
P0 = 2π × 822 kHz/

√
W

along the z direction. The trap is almost state-independent (see eq.(II.20)) even for
strongly focused beams.

C.2 The Needle trap

For the circular atom trap discussed in the Conclusion chapter, the Needle trap, we
compare the approximated potential calculated over the Bohr orbit with the full average
over the ‘toroidal’ wavefunction in Figure C.3.

(a)

(c)(b)

Figure C.3 Energy landscape of a cRy atom threaded by a Gaussian beam (NA=0.5). (a)
Choice of coordinate system. (b) Radial potential. (c) Longitudinal potential. The dashed line
corresponds to approximating the electron orbital by the associated Bohr orbit. The solid line
corresponds to the computation using the exact analytic cRy atom wavefunction.

The exact analytically potential reads

E(ρc, zc) =
y

sin(θe)r
2
edredθedφe |ψnc(re, θe, φe)|2

× q2
e

2meε0c

λ2
L

(2πc)2

2P0

πw2(zc + ze)
exp

{
−2

w2(zc + ze)
[(xe + xc)

2 + (ye + yc)
2]

}
, (C.2)
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where the notation is analogous to that in eq.(C.1) and the Gaussian beam is taken to
propagate along the z-axis, focused at z = 0. The variable ρ2

c = x2
c + y2

c is introduced
to make the cylindrical symmetry of the problem explicit. We reproduce the approxi-
mated landscape (dashed lines, integration over the Bohr circular orbit, see Conclusion
chapter) in Figure C.3. The solid lines correspond to the full wavefunction average in
eq.(C.2).

The Bohr orbit remains a good approximation to compute the ponderomotive en-
ergy even in these extreme focalization conditions.
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Piégeage laser d’atomes de Rydberg circulaires pour la simu-
lation quantique

Résumé: Nous proposons un nouveau paradigme pour la simulation quantique de chaines
de spin-1/2, basés sur des atomes de Rydberg circulaires piégés par laser. Leur longue
durée de vie intrinsèque, combinée à l’inhibition de leur émission spontanée micro-onde et
leur photoionisation négligeable rendent réalistes des temps de simulation à l’échelle de la
minute. Cette nouvelle plateforme offre une grande flexibilité et permettra d’explorer de
nouveaux regimes de simulation. Le simulateur proposé modélise un Hamiltonien XXZ à
spin 1/2, les couplages entre plus proches voisins pouvant aller jusqu’à quelques dizaines de
kilohertz. Tous les paramètres du modèle peuvent être réglés dynamiquement à volonté, ce
qui permet d’accéder à un large éventail de systèmes simulés. Ainsi, l’évolution du système
peut être suivie sur des temps suffisamment long pour permettre la préparation adiabatique
depuis l’état fondamental ainsi que l’étude de la thermalisation et du désordre.

Cette thèse est un premier pas vers la mise en œuvre de ce schéma de simulation quantique.
(i) Nous démontrons la préparation d’états de Rydberg circulaires à partir d’atomes refroidis
par laser dans un environnement cryogénique 4.2 K avec accès optiques. Leur durée de vie
révèle une température effective du corps noir micro-ondes de 11± 2 K. (ii) Nous évaluons
le temps de cohérence pour un seul qubit (268 ± 5 µs), et la durée de vie (3.7 ± 0.1 ms).
(iii) Enfin nous démontrons le piégeage par laser d’atomes de Rydberg circulaires prouvant
leur photoionisation négligeable sur de nombreux temps de vie à la échèle de 10 ms.

Mots-clé: atomes de Rydberg, atomes froids, simulation quantique, interaction dipolaire,
atomes circulaires, spectroscopie microonde.

Laser Trapped Circular Rydberg Atoms for Quantum Simula-
tion

Abstract : We propose a new paradigm for quantum simulation of spin-1/2 arrays,
providing unprecedented flexibility and allowing one to explore domains that remain unex-
plored, based on laser-trapped circular Rydberg atoms. The long intrinsic atomic lifetimes,
combined with the inhibition of their microwave spontaneous emission and their negligible
photoionisation, make operation in the minute range realistic. The proposed simulator
realizes an XXZ spin-1/2 Hamiltonian, with nearest-neighbour couplings ranging from a
few to tens of kilohertz. All the model parameters can be dynamically tuned at will, mak-
ing a large range of simulations accessible. Thus, the system evolution can be followed
long enough to be relevant for ground-state adiabatic preparation and for the study of
thermalization and disorder.

In this thesis, as a first step towards the implementation of this quantum simulation scheme,
we (i) demonstrate the preparation of cold circular Rydberg states in a 4.2 K cryogenic
environment with optical access out of a cold atom cloud. Their lifetime reveals an effective
microwave black-body temperature of 11 ± 2 K. We (ii) assess the single qubit coherence
time (268 ± 5 µs) and lifetime (3.7 ± 0.1 ms), and, finally, we (iii) demonstrate the laser
trapping of circular Rydberg atoms to prove their negligible photoionisation at the timescale
of 10 ms.

Keywords : Rydberg atoms, cold atoms, quantum simulation, dipolar interactions, circular
atoms, microwave spectroscopy.
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