
HAL Id: tel-02903493
https://theses.hal.science/tel-02903493v1

Submitted on 21 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Etude et implantation d’algorithmes pour le placement
et l’ordonnancement d’applications Dataflow

Hamza Deroui

To cite this version:
Hamza Deroui. Etude et implantation d’algorithmes pour le placement et l’ordonnancement
d’applications Dataflow. Traitement du signal et de l’image [eess.SP]. INSA de Rennes, 2019. Français.
�NNT : 2019ISAR0022�. �tel-02903493�

https://theses.hal.science/tel-02903493v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’INSTITUT NATIONAL DES SCIENCES
APPLIQUEES RENNES
COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Signal, Image, Vision

Étude et implantation d'algorithmes pour l'ordonnancement
d'applications Dataflow.

Thèse présentée et soutenue à Rennes, le 06/12/2019
Unité de recherche : IETR
Thèse N° : 19ISAR 29 / D19 - 29

Par

Hamza DEROUI

Rapporteurs avant soutenance :

Emmanuel JEANNOT
Directeur de Recherche à l’INRIA Bordeaux Sud-Ouest
Matthieu MOY
Maître de conférences, HDR, à l'Université Claude
Bernard Lyon 1

Composition du Jury :

Jocelyn SEROT
Professeur d’Université à l’Institut Pascal de Clermont Ferrand /
Président du jury
Emmanuel JEANNOT
Directeur de Recherche à l’INRIA Bordeaux / Rapporteur
Matthieu MOY
Maître de conférences, HDR à l'Université Claude Bernard Lyon 1 /
Rapporteur
Jean-François NEZAN
Professeur d’Université à l’INSA Rennes / Directeur de thèse
Karol DESNOS
Maître de conférences à l’INSA Rennes / Examinateur
Alix MUNIER-KORDON
Professeur d’Université à Sorbonne Université, LIP6 / Examinatrice

Intitulé de la thèse :

Étude et implantation d'algorithmes pour l'ordonnancement d'applications Dataflow.

Hamza DEROUI

En partenariat avec :

Document protégé par les droits d’auteur

Contents

Acknowledgements 1

1 Introduction 3

1.1 General Context . 3

1.1.1 Embedded Systems . 3

1.1.2 Designing Embedded Systems . 4

1.2 Contributions . 5

1.3 Outline . 6

2 Dataflow Models of Computation 7

2.1 Introduction . 7

2.2 Dataflow Programming . 8

2.2.1 Semantics . 8

2.2.2 Expression of parallelism . 9

2.3 Static Dataflow Models of Computation . 10

2.3.1 Synchronous Dataflow (SDF) model 10

2.3.2 Homogeneous SDF (HSDF), Single-Rate SDF (srSDF), and Directed
Acyclic Graph (DAG) models . 11

2.3.3 Cyclo-Static DataFlow (CSDF) model 11

2.4 Dynamic Dataflow Models . 12

2.4.1 Scenario Aware Dataflow (SADF) 12

2.4.2 Boolean Dataflow (BDF) . 13

2.5 Hierarchical Static Dataflow Models . 14

2.5.1 Hierarchical SDF . 14

2.5.2 Interface-based SDF (IBSDF) . 15

2.6 Hierarchical Parametric Dataflow Models 16

2.6.1 Parameterized SDF (PSDF) . 16

2.6.2 Parameterized and interfaced SDF (πSDF) 18

2.7 Conclusion . 19

3 Development Process of Dataflow Graphs 21

3.1 Introduction . 21

3.2 Rapid Prototyping . 22

3.2.1 Preesm Rapid Prototyping Framework 23

i

ii CONTENTS

3.2.2 Preesm Typical workflow . 23

3.3 Consistency Evaluation and Repetition Vector (RV) 24

3.3.1 Consistency of a Synchronous Dataflow (SDF) graph 24

3.3.2 Consistency of a Hierarchical SDF (Hierarchical SDF) graph 25

3.3.3 Consistency of an Interface-Based SDF (IBSDF) graph 25

3.4 Dataflow graphs Conversion . 26

3.4.1 SDF graph conversions . 26

3.4.2 Flattening the hierarchy of an IBSDF graph 28

3.5 Liveness Evaluation . 29

3.5.1 Liveness evaluation of Homogeneous SDF (HSDF) graph 29

3.5.2 Liveness evaluation of SDF graph . 30

3.5.3 Liveness evaluation of IBSDF graph 31

3.6 Simulating a Dataflow graph . 31

3.6.1 ASAP Schedule . 32

3.6.2 Periodic Schedule . 32

3.7 Mapping and Scheduling Dataflow Graphs 32

3.7.1 Scheduling Methodologies . 34

3.7.2 Solving the mapping and scheduling problem 35

3.8 SPIDER: a Run-time Manager for dataflow graphs 36

3.8.1 Overview of SPIDER . 36

3.8.2 SPIDER Structure . 36

3.8.3 SPIDER Operations . 37

3.9 Tools . 37

3.9.1 SDF3 tool . 37

3.9.2 Turbine tool . 37

3.10 Conclusion . 38

4 Throughput Evaluation of IBSDF graph 39

4.1 Introduction . 39

4.2 SDF State-Of-The-Art Methods . 40

4.2.1 HSDF based method . 41

4.2.2 Max-plus Algebra-based method . 42

4.2.3 State-Space Exploration method . 42

4.2.4 Periodic schedule based method . 43

4.2.5 K-Iter method . 46

4.3 Execution Modes of IBSDF graph . 46

4.3.1 Hierarchical Execution . 46

4.3.2 Relaxed Execution . 47

4.4 Throughput Evaluation by Flattening the Hierarchy 49

4.4.1 Classical Approach . 49

4.4.2 Modeling the Firing Rules . 49

4.5 Throughput Evaluation without Flattening the Hierarchy 51

4.5.1 The Schedule-Replace (SR) technique 51

4.5.2 The Evaluate-Schedule-Replace (ESR) method 54

4.6 Experimental Results . 60

4.6.1 Experimental Setup . 60

4.6.2 Results . 61

4.7 Conclusion . 63

CONTENTS iii

5 Latency Evaluation of IBSDF graph 65

5.1 Introduction . 65

5.2 Mono-Core Latency Evaluation . 67

5.2.1 For SDF graph . 67

5.2.2 For IBSDF graph . 67

5.2.3 The Mono-Core Latency from the hierarchy perspective 69

5.3 Multi-Core Latency Evaluation by flattening the hierarchy 71

5.3.1 Critical-Path Method (CPM) . 71

5.3.2 Symbolic-Execution (SE) . 73

5.4 Multi-Core Latency Evaluation without Flattening the Hierarchy 75

5.4.1 Hierarchical-Symbolic-Execution (H-SE) 75

5.4.2 Hierarchical-Critical-Path-Method (H-CPM) 77

5.5 Experimental Results . 84

5.5.1 Experimental Setup . 84

5.5.2 Results . 85

5.6 Conclusion . 89

6 Conclusion 91

6.1 Summary . 91

6.2 Future Work . 92

6.2.1 Modular Mapping and scheduling . 93

A French Summary 95

A.1 Introduction . 95

A.2 Modèles de flot de donnèes . 96

A.2.1 Synchronous Dataflow (SDF) . 97

A.2.2 Interface-Based SDF (IBSDF) . 98

A.3 PREESM : un outil de prototypage rapide 98

A.4 Evaluation du Débit maximal . 99

A.4.1 Modes d’exécution d’un graph IBSDF 99

A.4.2 Méthode classique pour l’évaluation du débit 100

A.4.3 Nouvelle Méthode : Schedule-Replace (SR) 101

A.4.4 Nouvelle Méthode : Evaluate-Schedule-Replace (ESR) 102

A.5 Evaluation de la latence minimal . 103

A.5.1 Méthode classique pour l’évaluation de la latence 103

A.5.2 Nouvelle Méthode : Hierarchical-Symbolic-Execution (H-SE) 104

A.5.3 Nouvelle Méthode : Hierarchical-Critical-Path Method (H-CPM) . . 105

A.6 Experimentations numériques . 105

A.6.1 Déroulement des tests . 105

A.6.2 Résultats des tests pour l’évaluation du débit 106

A.6.3 Résultats des tests pour l’évaluation de la latence 107

A.7 Conclusion . 107

List of Figures 109

List of Tables 113

Acronyms 115

iv CONTENTS

Personal Publications 119

Bibliography 121

Bibliography 126

Acknowledgements

I would first, like to thank my thesis advisors Pr. Jean-François Nezan and Pr.Karol
Desnos at the National Institute of Applied Sciences (INSA) of Rennes and Pr. Alix
Munier-Kordon at Sorbonne University whose help cannot be overestimated and whose
the door of their offices was always open whenever I had a question about my research or
writing. Thank you for steering me in the right direction and unwavering support.

I would also like to extend my deepest gratitude to the experts who were involved in
the validation survey for this research project: Dr. Emmanuel Jeannot senior researcher
scientist at INRIA Bordeaux Sud-Ouest, Pr. Matthieu Moy at Claude Bernard Lyon 1
University, and Pr. Jocelyn Serot at Institut Pascal. Without their invaluable insight, the
validation survey could not have been successfully conducted.

To all members of the VAADER team of the IETR, thank you for making me feel
part of the team since the beginning. Special thanks to all my officemates and coworkers
during these three years: Alexandre Sanchez, Pierre-Loup Cabarat, Julien Heulot, Justine
Bonnot, Maxime Pelcat, Jean-Gabriel Cousin, Meriem Outtas, and Naty Sidaty. Thanks
also to Frédéric Garesché for his IT support and many thanks to Corinne Calo, Aurore
Gouin and Jocelyne Trémier for their administrative support.

To my parents and sisters, thank you for surrounding me with love and prayers all
along with my school and professional career I will be forever in your debt.

Finally, many thanks to my wife Kaoutar for providing me with unfailing support
and continuous encouragement throughout my years of study and through the process of
researching and writing this thesis and for accepting nothing less than excellence from me.

Thank you from the bottom of my heart

1

2 Acknowledgements

CHAPTER 1

Introduction

1.1 General Context

1.1.1 Embedded Systems

Today, almost every device we use is an embedded system. Remarkably adaptable and
versatile, embedded systems can be found at homes, at offices, in industries and automation
systems. From the basic ones, like washing machines, home security systems, digital
cameras, vending machines, to the highly complex ones, like self-driving cars, missile
guidance systems, airplanes and satellites. Embedded systems have been one of the most
remarkable technological advances.

Formally, an embedded system is a combination of computer hardware and software,
designed to perform a dedicated function. The hardware part includes all the electronic
elements of the embedded system, like microprocessors, timers, memory, input/output
interfaces, display and sensors. The software part, includes the computer program which
is a sequence of instructions executed by the processing elements of the embedded system.
The computer program can be simple calculation instructions, a firmware, or an embedded
Operating System (OS). Embedded systems can be stand alone devices or integrated as
part of a larger embedded system that serves a more general purpose.

Historically, embedded systems date back to the 1960s. The first embedded system was
developed by Charles Stark Draper at MIT in 1961 for the Apollo mission. The embedded
system was designed to reduce the size and weight of the Apollo guidance computer; the
digital system which helped astronauts collect real-time flight data. The Apollo guidance
computer was the first computer to use the newly developed monolithic integrated circuits.
In fact, it was considered as the riskiest item in the Apollo project. The first mass-produced
embedded system was the D-17B, developed by Autonetics in 1965; a computer used in
the Minuteman I missile guidance system. Besides, space and military industries, the
Volkswagen 1600 was the first vehicle to use an embedded system in 1968. The integrated
microprocessor was used to regulate the air-fuel mixture in the electronic fuel injection
system of the vehicle, boosting its performance and fuel efficiency. By the late 1960s and
early 1970s, embedded systems have come down in price and there has been a dramatic
rise in processing power and functionality. Some of the important milestones are the
release of the first commercial microcontroller in 1974 by Texas Instruments, the release

3

4 Introduction

of the wildly used x86 processor series by Intel in 1978, the release of the first embedded
OS (VxWorks) by Wind River in 1987, followed by Microsoft’s Windows Embedded CE
in 1996. The embedded Linux system, which is used today in almost all the embedded
devices, has appeared in the late 1990s.

Thanks to the continuous technological advancement in semiconductor device fabrica-
tion, both the size and the cost per unit of Systems-on-Chips (SoC) have been decreasing
tremendously. Complementary Metal–Oxide–Semiconductor (CMOS) technology for ex-
ample, has made possible to miniaturize transistors to the level where today mobile pro-
cessors includes billions of transistors. As consequences, embedded systems have become
more sophisticated. The best examples are smart devices, like smartphones, smartwatches,
smart fitness bands, and smart credit cards. Furthermore, with the emerging technologies
such as sensors, robotics, Internet of Things (IoT), Artificial Intelligence (AI), and 5G tech-
nology, the smart device concept has been enlarged to smart buildings, smart cities, smart
grids, and smart factories. Today, cyber-physical systems are capable of cooperating and
communicating with each other, even making decisions on their own. Without any doubt,
embedded systems can be considered as the heart of the fourth industrial revolution.

1.1.2 Designing Embedded Systems

Embedded Systems Development Constraints

Designing an embedded system is a hard task. Indeed, besides the complexity of the
software and the hardware, many constraints must be satisfied which are often contra-
dictory. These constraints are classified in [Des14] following three categories, application
constraints, cost constraints and external constraints.

• Application constraints refer to the requirements that an embedded system must
satisfy to serve its intended purpose. For example, many embedded systems have
performance requirements and must react to external events within a limited amount
of time, or must produce results at a fixed rate. Another example of an application
constraint is the reliability of an embedded system that restricts the probability of a
system failure, primarily for safety reasons. Size limitation and power consumption
are also major requirements for handheld or autonomous embedded systems.

• Cost constraints refer to all factors influencing the total cost of an embedded sys-
tem. These factors cover the engineering development cost, the production cost, the
maintenance cost, and also include the recycling cost of an embedded system.

• External constraints refer to the requirements that an embedded system must sat-
isfy but that are nonessential to its purpose. Regulations and standards are examples
of external constraints that dictate certain characteristics of an embedded system, but
non-compliance would not prevent an embedded system from serving its purpose. The
environment in which an embedded system is used can also have an impact on its de-
sign. Extreme temperatures, high humidity, rapidly changing pressure are examples
of external constraints.

All these constraints are often contradictory, even within a single category. For exam-
ple, reducing the power consumption of an embedded system can be achieved by lowering
its clock frequency, which in turn will decrease the performance of this system. Hence,
the development of an embedded system often consists of satisfying the most important
constraints, and finding an acceptable trade-off between remaining ones.

Contributions 5

Dataflow Programming

Dataflow Model of Computation (MoC) have been introduced as a simple programming
model which enables the developer to naturally express the parallelism of the software.
A dataflow MoC consists on modeling the application with directed graph such that,
each vertex is an independent computational module, and each edge represents an explicit
communication channel between two vertices. Dataflow graphs have gained popularity due
to their simplicity and their compatibility with legacy code. Indeed, dataflow graphs are
used to specify networks of computational modules, but the specification of the internal
behavior of these modules can be written in any programming language, including C code.
Furthermore, the compatibility of dataflow MoC with legacy code enables the developers
to reuse previously developed and optimized programs, which increase their productivity.
Many dataflow MoC have been proposed in the literature since the introduction of the first
one by Kahn in 1974 [Kah74]. Each new dataflow model extends the semantics and the
expressivity of the previous one with a new properties. For example, the dynamic dataflow
models extends the static ones with control task and data which enables the application
to dynamically change its behavior.

1.2 Contributions

In this thesis, we study the development process of applications modeled with the Interface-
Based SDF (IBSDF) model, in the context of rapid prototyping. The IBSDF MoC extends
the well know Synchronous Dataflow (SDF) MoC with a hierarchy mechanism that en-
ables the specification of the internal behavior of actors with a SDF subgraph instead
of host code. The hierarchy mechanism of the IBSDF model is based on interfaces that
insulate each subgraph from its upper graph in term of schedulability. Additionally to the
interfaces, the IBSDF model defines execution rules to ease the analysis of the graph.

The IBSDF graph is often transformed to a non hierarchical graph during the de-
velopment process of the application in order to verify and analyze its behavior. This
transformation is called flattening the hierarchy. The flattening process often results in an
exponential increase of the graph’s size which makes the graph hard and even impossible
to process with a reasonable time and memory. In fact, the flattening process has become
the bottleneck of the development process of complex applications with the IBSDF model.

Our contributions aim to propose new techniques for the evaluation of some important
metrics like the maximum throughput and the minimum latency. These metrics needs
to be evaluated as early as possible by the developer. Indeed, very fast evaluation of
this property is mandatory for real-time feedback to the developer during the application
development, for the mapping and scheduling of the application on Multiprocessor System-
on-Chip (MPSoC), and for the MPSoC Design Space Exploration (DSE) i.e. the research
of the best hardware for a specific application. The main contributions of this thesis are:

1. A new method named Schedule-Replace (SR) for the evaluation of the maximum
throughput of an IBSDF graph when it is executed in the hierarchical execution
mode.

2. A new method named Evaluate-Schedule-Replace (ESR) for the evaluation of the
maximum throughput of an IBSDF graph when it is executed in the relaxed execution
mode.

6 Introduction

3. A new method named Hierarchical-Symbolic-Execution (H-SE) for the evaluation of
the minimum achievable latency of the IBSDF graph in the hierarchical execution
modes.

4. A new method named Hierarchical-Critical-Path Method (H-CPM) for the evalua-
tion of the minimum achievable latency of the IBSDF graph in the relaxed execution
modes.

Until today, the maximum throughput and the minimum latency of an IBSDF graph
were evaluated using a classical approach which consists of first flattening the hierarchy of
the graphs and then evaluating its performance as if it was a large SDF graph. Since the
flattening process results in an exponential growth of actors and edges number, the classical
approach can be used only for small IBSDF graphs. For large IBSDF graphs, the classical
method either fails to return a result or takes hours to evaluate the graphs. In contrast to
the classical approach, the new techniques of this thesis are based on a modular approach
which enables the evaluation of large IBSDF graphs without flattening their hierarchy. As
consequences, the new techniques are capable of evaluating the maximum throughput and
the minimum latency of large IBSDF graphs in few seconds, while the classical approach
fails to return a result.

1.3 Outline

This thesis summarizes all the work done in this perspective plus our contributions, it is
organized in six chapters as follows: The first chapter gives a short presentation of the
scope of the thesis. Chapter 2 formally defines the concept of dataflow programming and
gives an overview of the different categories of dataflow MoC. For each category, we present
the semantics and characteristics of some of its dataflow models. Chapter 3 describes the
development process of dataflow graphs in the context of rapid prototyping. Chapter 4
presents the new techniques for the throughput evaluation of the IBSDF model. Chapter
5 in turn, presents the new techniques for the latency evaluation of the IBSDF model.
Finally, a summary conclusion of the work carried out, followed by a potential future
research perspectives.

CHAPTER 2

Dataflow Models of Computation

2.1 Introduction

The complexity of Multiprocessor System-on-Chip (MPSoC) architectures is increasing
exponentially to meet the rising computation power demand of signal processing applica-
tions. As consequences, programming modern MPSoC with the traditional thread-based
programming languages have became more and more complex, due to the increasing num-
ber of Processing Elements (PEs) and their heterogeneity.

In this context, dataflow Models of Computation (MoC) is gaining popularity as the
most suitable models for designing complex signal processing applications for MPSoC
architectures. Dataflow MoC are diagram-based models, which consist on representing an
application with a directed graph of tasks called actors. The edges of the graph represent
the data exchange between the actors. This decomposition of the application into a set
of interconnected actors offers the developer a natural way to express the parallelism and
the data dependencies between the actors.

Furthermore, dataflow MoC can be used to specify a wide range of signal processing
applications such as video decoding, telecommunication, and computer vision applications.
The expressive power and the diversity of dataflow MoC; e.g. static, dynamic, hierarchical
and parametric models; combined with powerful dataflow compilers gives the developer
the best tools to easily design complex applications and fully exploit the computation
power and the specifications of modern MPSoC architectures.

In this chapter, we give an overview of the different categories of datafllow MoC. We
start by providing formal semantics for dataflow MoC by presenting the Kahn Process
Network (KPN) and the Dataflow Process Network (DPN) models in section 2. In the
same section, we show how the different types of parallelism are expressed in dataflow
models. Then, we discuss the properties of the dataflow MoC which can be used to com-
pare the different models and categories. In section 3, we present the static dataflow
models which are the most studied and used in the industry. This category models ap-
plications in which data values have no impact on the system’s behavior. Static dataflow
models includes Synchronous Dataflow (SDF), Homogeneous SDF (HSDF), Single-Rate
SDF (srSDF) and Cyclo-Static Dataflow (CSDF) models. In contrast, section 4 presents
the dynamic dataflow MoC which are capable of adapting their behavior according to
the data values. This category includes Boolean DataFlow (BDF) and Scenario-Aware

7

8 Dataflow Models of Computation

Dataflow (SADF) models. Next, we introduce the category of hierarchical dataflow MoC
which extends the semantics of basic dataflow models with a hierarchy mechanism. Section
5 focuses on the static hierarchical models, the Hierarchical SDF (Hierarchical SDF) and
the Interface-Based SDF (IBSDF) models. While section 6 focuses on the parametric hier-
archical models, the Parameterized SDF (PSDF) and Parameterized and Interfaced SDF
(πSDF) models. Finally, we give examples of real signal processing applications modeled
with IBSDF graphs in section 7.

In this thesis, we are interested mainly in studying the behavior of the SDF model and
its hierarchical extension, the IBSDF model.

2.2 Dataflow Programming

2.2.1 Semantics

Dataflow Programming is widely used for specifying the functionality of embedded sys-
tems. The first model to be introduced in the the context of parallel computation was the
Computation graphs developed by Karp and Miller in the 60’s [KM66]. In 1974, Kahn
introduced the Kahn Process Network (KPN) [Kah74] as a parallel programming model
that is Turing complete, meaning that the model can perform any computation described
by an algorithm. Formally, the KPN MoC decomposes an application into tasks inter-
connected by directed First-In First-Out (Fifo) queues, forming a network of concurrent
tasks. Each Fifo queue has an infinite memory and connects only one task to another,
creating a data-dependency between the two tasks. Each task consumes (resp. produces)
a number of data-tokens on its input Fifo queues (resp. output Fifo queues) at each
execution. In 1995, Lee and Parks introduce the Dataflow Process Network (DPN) MoC
[LP95] as a specialization of the KPN model. Formally, a DPN is a directed graph denoted
G = 〈A,F 〉, such that:

• A is the set of vertices of G. Each vertex a ∈ A represents an indivisible com-
putational task, also called an actor. Each actor a ∈ A is defined as a tuple
a = 〈Pin

data ,P
out
data ,R, rate〉 where:

– Pin
data and Pout

data respectively refer to the set of data input and output ports of
the actor.

– R = {R1, R2, ..., Rn} is the set of firing rules of the actor. A firing rule Ri ∈ R
is a condition that, when satisfied, can start an execution, called firing, of the
associated actor.

– rate : (R,P in
data ∪ P out

data) → N associates a firing rule to the number of atomic
data objects, called data tokens, consumed or produced on a given data port,
for a firing of the actor resulting from the validation of this firing rule.

• F is the set of edges of G. Each edge e ∈ F represents an unbounded Fifo queue
used to connect and transmit data tokens from an actor to another. Each Fifo
queue f ∈ F is defined as a tuple f = 〈prod, cons, src, snk,delay〉 where:

– prod : F → A and cons : F → A associate producer and consumer actors to a
Fifo.

– src : F → P out
data and snk : F → P in

data associate source and sink ports to a Fifo.

– delay : F → N corresponds to a number of data tokens present in the Fifo
when the described application is initialized.

Dataflow Programming 9

Delay and
number of
tokens

FIFO

ActorA
Data
Ports

x4

(a) Semantics.

B

D

ECA
x3

x2

x1

(b) Graph example.

Figure 2.1 – Dataflow Process Network (DPN) MoC.

Figure 2.1 illustrates the graphical elements associated to the semantics of the DPN
MoC and gives an example of a DPN graph. The example graph presented in Figure 2.1b
contains 5 actors interconnected by a network of 6 Fifos. The Fifos linking actors B to C,
actors B to D, and actor D to itself contain 3, 2, and 1 initial tokens respectively.

2.2.2 Expression of parallelism

Dataflow MoCs support four types of parallelism [ZDP+13], which are illustrated in figure
2.2 and defined as follows:

• Task parallelism: is when data-independent actors are executed in parallel. Two
actors are called data-independent if there is no path in the graph between the two of
them. For instance, figure 2.2a shows a parallel execution of actors C and D which
are two data-independent actors in the DPN graph of figure 2.1b.

• Data parallelism: is when there is enough data tokens to execute the same actor
many times simultaneously. Figure 2.2b shows an example of a case where actor E
has enough data tokens to be executed twice simultaneously.

• Pipeline parallelism: is when several executions of the same dataflow graph over-
lap when it is possible. For example, in figure 2.2c, the next execution of the graph
(actors with dotted borders and +1) starts before the end of the current execution.
Similarly, the current graph execution overlaps the previous one (actors with −1).

• Intra-task parallelism: in the DPN model, the internal behavior of actors is
described by a source code which can be sequential or parallel. For example, if the
source code is written in a thread-based programming language then the actor may
have an inner parallelism which enables its execution on several PE simultaneously.
Figure 2.2d shows an example of Intra-task parallelism where actor A is a parallel
actor executed on two PEs simultaneously.

time
Core2

Core1 BA CB

DD

C EA
+1

+1

+1+1

(a) Task parallelism.

time
Core2

Core1 AB

E

BC EDA
+1+1

(b) Data parallelism.

time
Core2

Core1 BB

CE DED CD

AAA

-1 +1-1 +1

+2+1+1

(c) Pipeline parallelism.

time
Core2

Core1
A

B BC ED
A +1

+1

(d) Intra-task parallelism.

Figure 2.2 – Illustration of the four types of parallelism in dataflow MoC.

10 Dataflow Models of Computation

2.3 Static Dataflow Models of Computation

Static dataflow models are the most studied category of dataflow-based MoC. Their popu-
larity is due to their decidability property which enables the use of compile-time analysis to
verify and evaluate key properties of signal processing applications. Indeed, static dataflow
models are non-reconfigurable and deterministic, meaning that the production and con-
sumption rates of each actor are known at design time and remain static at run-time
[LP95]. However, static dataflow models do not express conditional states, data depen-
dent iterations or recursion. For instance, the if-then-else statement has no equivalent
in static dataflow models. Therefore, static dataflow MoC are not Turing complete models.

In the following, we present the semantics and characteristics of some of the most used
static dataflow models in the industry.

2.3.1 Synchronous Dataflow (SDF) model

The SDF MoC is the simplest and the most commonly used static dataflow model. The
SDF model was introduced in 1987 by Lee and Messerschmitt [LM87b]. Like, the DPN
model, a SDF graph G = 〈A,F 〉 decomposes an application into a set of actors A inter-
connected by a set of Fifo queue F to exchange data tokens. Each actor consumes (resp.
produces) a fixed number of data-tokens from (resp. into) all its input Fifo (resp. output
Fifo) at each execution. Thus, in contrast to the DPN model, each SDF actor has only
one firing rule.

Formally, a Synchronous Dataflow (SDF) graph is a graph G = 〈A,F 〉 respecting the
Dataflow Process Network (DPN) MoC with the following restrictions:

• Each actor a ∈ A, with a = 〈P in
data , P

out
data , R, rate〉, is associated to a unique firing

rule: R = {R1}

• For each data input port p ∈ P in
data of an actor, the consumption rate associated to

the unique firing rule R1 of the actor is a static scalar that also gives the number of
data tokens that must be available in the Fifo to start the execution of the actor.

• For each data output port p ∈ P out
data of an actor, the production rate associated to

the unique firing rule R1 of the actor is a static scalar.

In addition to these restrictions, the following simplified notation is introduced.

• rate : A × F → N is the production or consumption rate of actor a ∈ A on Fifo
f ∈ F . If a is both producer and consumer of f , then rate(a, f) is the difference
between the production and the consumption rates on f .

Figure 2.3 illustrates the graphical elements associated to the semantics of the SDF
MoC and gives an example of SDF graph.

Delay and
number of
tokens

FIFO

ActorA
Port
and rate3

x4

(a) Semantics.

A

C

DB

2 2

2
1

1 4

2
313

x1

x2

(b) Graph example.

Figure 2.3 – Synchronous Dataflow (SDF) MoC.

Static Dataflow Models of Computation 11

A

D

CB 4

5
5

1

422

x5 1

(a) Single-Rate SDF (srSDF)
model.

A

D

CB 1

1
1 1

1

111

x1

(b) Homogeneous SDF (HSDF)
model.

A

D

CB 5

3
4

231

(c) Directed Acyclic Graph
(DAG) model.

Figure 2.4 – Specializations of the Synchronous Dataflow (SDF) model.

2.3.2 Homogeneous SDF (HSDF), Single-Rate SDF (srSDF), and Di-
rected Acyclic Graph (DAG) models

The HSDF, srSDF, and Directed Acyclic Graph (DAG) models are a specialization of the
SDF MoC. Each model respects the semantics of the SDF MoC with some restrictions. In
fact, each of the HSDF and the srSDF models add restrictions on the consumption and
production rates of the SDF actors. The DAG model on the other hand, adds a restriction
on the structure of the SDF graph. These models are illustrated in figure 2.4 and defined
as follows:

• srSDF model: is a SDF graph such that for each Fifo queue, the production rate of
its source actor is equal to the consumption rate of its target actor.

• HSDF model: is a SDF graph such that the consumption and production rates of
the actors are all equal to 1. The HSDF model can also be seen as a specialization
of the srSDF graph.

• DAG model: is a SDF graph which does not contain any cycle. The DAG model
can also be as HSDF graph or a srSDF graph with no cycle.

The restrictions of the HSDF graph makes it is easy to analyze than other static
dataflow graph. In fact, as we will see in the next chapter, several static dataflow models
are converted to the HSDF and DAG models to be able to evaluate and analyze their
performance accurately.

2.3.3 Cyclo-Static DataFlow (CSDF) model

The Cyclo-Static Dataflow (CSDF) model [BELP95] is an extension of the SDF model
with consumption and production of actors decomposed into phases executed cyclically.
Each actor has a fixed number of phases and each phase produces or consumes a specific
number of data tokens.

Formally, a Cyclo-Static Dataflow (CSDF) graph is a graph G = 〈A,F 〉 respecting the
Synchronous Dataflow (SDF) MoC with the following additions:

• Each port p ∈ P in
data ∪ P out

data , is associated to a sequence of static integers of size n
noted seq(p) ∈ Nn.

• Considering an actor a ∈ A and a port p ∈ P in
data ∪ P out

data , the firing rule (i.e. the
number of available tokens) and the production/consumption rates of p for the ith

firing of actor a is given by the (i mod n+ 1)th element of seq(p).

Figure 2.5 illustrates the graphical elements associated to the semantics of the CSDF
MoC and gives an example of CSDF graph.

12 Dataflow Models of Computation

Delay and
number of
tokens

FIFO

ActorA
Port and
rate sequence{3,1}

x4

(a) Semantics.

A

C

DB {2,1,3}

{1,2}

{1,1}

{3,1}

{3}{1,2}{3}

x1

{3,1}

(b) Graph example.

Figure 2.5 – Cyclo-Static Dataflow (CSDF) MoC.

2.4 Dynamic Dataflow Models

Static dataflow models like SDF and CSDF MoC are totally predictable and offer a great
analyzability of their behavior at design time. However, they remain limited in terms of
expressivity and thus cannot be used to model all applications.

In this context, many generalizations of the SDF MoC have been proposed over the
years, which allow modeling dynamic and re-configurable applications. The main purpose
of these new models is to preserve as much predictability and analyzability as possible
while improving the expressivity of static dataflow MoC.

The Scenario-Aware Dataflow (SADF) and the Boolean DataFlow (BDF) models are
two of the dynamic dataflow MoC which extend the semantics of static dataflow models by
adding a control mechanism. By a control-channel or a control-actor, each of SADF and
BDF models are capable of re-configuring and adapting the behavior of actors according
to the data values. In the following, we present the semantics of each one of them.

2.4.1 Scenario Aware Dataflow (SADF)

The Scenario-Aware Dataflow (SADF) MoC [TGB+06] is a reconfigurable generalization
of the SDF MoC, which is designed to enforce the analyzability of applications.

The SADF model extends the semantics of the SDF model with the concept of scenarios
and by introducing a new type of actors and Fifo queues called respectively detectors and
control channels. The detectors are special actors that control the behavior of other actors
with the so-called control tokens. The control channels are used to transmit the control
tokens from a detector to another actor. In the SADF model, each actor has a set of
execution scenarios which define its behavior. Controlling an actor consists of choosing
which execution scenario will be activated.

Formally, a Scenario-Aware Dataflow (SADF) graph G = 〈A,F 〉 is a graph respecting
the semantics of the SDF MoC with the following additions:

• Actors a ∈ A are associated with a non-empty finite set of scenarios Sa. For
each actor, a unique scenario s ∈ Sa is active for each firing. The active scenario
determines the production and consumption rates on the ports of the actor as well
as the execution time t of the actor.

• Actors a ∈ A are associated with a possibly empty set of control input ports.
Before firing an actor, a single control token is consumed from each control input
port. The consumed control tokens are used to determine the scenario of the actor
for the next firing.

• D ⊂ A is the detectors set. Each detector d ∈ D is associated with a Markov chain.
The scenario of a detector changes depending on the current state of the Markov

Dynamic Dataflow Models 13

Delay and
number of
tokens

Control
channel

FIFO

DetectorActor DA

Control
Ports

SDF
ports

x4

(a) Semantics.

B

D

ECA
a

2

2
1d5b

2

c
1

12
x3

(b) Graph example.

Figure 2.6 – Scenario-Aware Dataflow (SADF) MoC.

chain. Detectors are the only actors that can write control tokens on an output port.
The value and the number of control tokens produced by a detector solely depend
on the current state of its Markov chain.

• C ∈ F is the control channels set. A control channel c ∈ C is used to transmit
control tokens from a detector to another actor or detector of the graph.

Figure 2.9 presents the graphical elements associated to the semantics of the SADF
MoC and an example of SADF graph. The SADF graph of Figure 2.6b contains 2 detectors
(A and C), and 3 regular actors (B, D, and E). In this graph, production and consumption
rates written with numbers are statically fixed rates whereas rates written with letters
depend on the scenario of their actor. Based on the definition of the SADF model given
above, the consumption rate of all control ports is statically set to 1.

The stochastic process used in SADF to determine the production and consump-
tion rates and the execution time of actors has been shown to give a great analyzabil-
ity to the MoC. Indeed, beside proving the consistency or the schedulability of a SADF
graph [TGB+06], methods exist to derive useful metrics for real-time applications such
as the worst-case latency, or the long-time average throughput of an application modeled
with a SADF graph [SGTB11].

Although Markov chain of SADF lends a great analyzability to the MoC, this stochas-
tic process is not practical for describing the functional behavior of applications. For
this reason, an executable Finite-State Machine (FSM)-based SADF MoC is introduced
in [SGTB11]. In the FSM-based SADF MoC, the Markov chains associated to the detectors
of the MoC are replaced with deterministic FSM.

2.4.2 Boolean Dataflow (BDF)

The BDF MoC [BL93] extends the semantics of the SDF MoC by introducing a new
type of actors called switch and select. The BDF MoC uses the switch and select actors
respectively as a demultiplexers and multiplexers to model conditional statements like
the if-then-else patterns. Depending on the data values, the switch and select actors will
forward the data tokens to different Fifo. Based on the result of a boolean value, the
switch actor either forwards its input tokens to its first output port or its second output
port, and thus acting like a demultiplexer logic cell. The select actor in turn, behaves as
a multiplexer. The boolean value selects the input port whose tokens are then sent to
the unique output port. Thus, the BDF model adds a control flow to the SDF MoC and
makes the model Turing complete [BL93].

Figure 2.7 shows an example of a BDF graph which contains one switch and one select
actors. In this BDF graph example, the switch actor (resp. select actor) will forward data

14 Dataflow Models of Computation

C

A

s
w
i
t
c
h

s
e
l
e
c
t

B

D

E

2
1

b1 b2

1

1

11

1-p0
p0

1 1

1-p0
p0

Figure 2.7 – A Boolean DataFlow (BDF) graph example.

tokens to one (resp. from one) of the actors B and C depending one the boolean data
value sent by actor E.

2.5 Hierarchical Static Dataflow Models

With the increasing complexity of signal processing applications, the average number of
actors of dataflow graphs has become very large. As consequences, designing and analyzing
complex applications have become a difficult task for the designers, as well as for the
development tools. In this context, new dataflow models with a modularity property have
been proposed to ease the development of complex signal processing applications. The
concept of modularity in dataflow modeling is based on decomposing the application into
modules such that each module is a group of tasks. The module itself can be decomposed
into sub-modules and thus creating a hierarchy of modules.

In this section we present two hierarchical dataflow MoC that extend the semantics of
the SDF MoC with a hierarchy mechanism.

2.5.1 Hierarchical SDF

The Hierarchical SDF model [PL95] is the first hierarchical extension of the SDF MoC,
which consists on associating an SDF graph to an actor as the description of its internal
behavior. The associated actor is called a hierarchical actor which is described by an
SDF subgraph. Similarly, an actor from the SDF subgraph can be associated in turn to
another SDF subgraph. Thus, a Hierarchical SDF graph with multiple levels of hierarchy
can be constructed. Figure 2.8 shows an example of a Hierarchical SDF graph composed
of two hierarchical levels. The topgraph is composed of two regular actors A and B, and
a hierarchical actor h. The hierarchical actor h is described by a SDF subgraph which is
composed of two actors C and D.

The hierarchy mechanism of the Hierarchical SDF model is mainly used to ease the
design phase of complex signal processing applications. In fact, during the actual execution
of the application, each hierarchical actor is replaced by its subgraph which contains the
actual actors to execute.

A Bh 1 111

1 2 11 DC

Figure 2.8 – Hierarchical SDF graph

Hierarchical Static Dataflow Models 15

Therefore, the Hierarchical SDF model is considered not compositional since all the
actors are still data dependent even if they are organized into modules. Indeed, no sub-
graph in the Hierarchical SDF graph can be executed or analyzed independently from the
whole graph.

2.5.2 Interface-based SDF (IBSDF)

Like the Hierarchical SDF model, the Interface-Based SDF (IBSDF) MoC [PBR09] offers
the choice of specifying the internal behavior of actors with a host code, or with a dataflow
subgraph. In contrast to the Hierarchical SDF model, the hierarchy of the IBSDF model
is based on hierarchical interfaces. Practically, for each input Fifo queue of a hierarchical
actor, an associated data input interface is added to the subgraph. Similarly, for each
output Fifo queue of a hierarchical actor, an associated data output interface is added to
the subgraph. Figure 2.9b shows the same Hierarchical SDF graph example of figure 2.8
modeled as an IBSDF graph where data interfaces are added to the subgraph. Figure 2.9a
shows the graphical elements associated to the semantics of the IBSDF model.

Data input
interface

Data output
interface

Delay and
number of
tokens

FIFO

Hierarchical
actor

ActorA
Port
and rate3

x4

ou
t

in

h

(a) Semantics.

A Bh 1 111

1 2 1111 DC

ou
t

in

(b) Graph example.

Figure 2.9 – Interface-Based SDF (IBSDF) MoC.

The main role of the data interfaces in an IBSDF graph is to transfer data tokens from
the hierarchical actor to the subgraph and vice versa. Precisely, when the hierarchical
actor is ready to execute, the data input interfaces transfer the data tokens consumed
by the hierarchical actor from its input Fifo queues to its subgraph. Similarly, when
the subgraph finishes processing all the data tokens received from its hierarchical actor,
the data output interfaces transfer then the data tokens produced by the subgraph to its
hierarchical actor. Once, the hierarchical actor receives data tokens from its subgraph, it
produces them on its output Fifo queues in the topgraph, behaving like a regular actor.

Additionally, each of the data input and the data output interfaces has a special be-
havior which guarantees the compositionality of the IBSDF model:

• The input interfaces behave as circular buffers and reproduce the same data-tokens
received from their hierarchical parent actor, as much as the subgraph needs to finish
its execution

• The output interfaces receiving more data tokens than necessary from the subgraph
will only transmit the number of data tokens defined by the hierarchical parent actor.

Thus, the hierarchical actor can behave exactly as a regular actor from the topgraph
perspective. Indeed, the special behavior of the data interfaces guarantees that once
a subgraph starts to execute, it will finishes and transfer data tokens to its hierarchical
parent actor without requesting new data tokens from the topgraph. Hence, each subgraph
in the IBSDF graph is data independent.

16 Dataflow Models of Computation

Therefore, unlike the naive hierarchy of the Hierarchical SDF model, the interface-
based hierarchy of the IBSDF model introduces a compositionality that enables designing
and analyzing each subgraph independently from the other subgraphs.

2.6 Hierarchical Parametric Dataflow Models

Like the dynamic dataflow models, the hierarchical parametric dataflow models add a
dynamic property for the static hierarchical dataflow MoC. In this section we present two
models, the PSDF MoC and the πSDF MoC which extends the semantics of the IBSDF
MoC with the possibility to parameterize some attributes.

2.6.1 Parameterized SDF (PSDF)

In dataflow modeling, a meta-model is a model of model which consists on extending the se-
mantic of an existing dataflow model with new elements that will enable new capabilities.
The Parameterized dataflow for instance, is a meta-modeling framework introduced by
Bhattacharya and Bhattacharyya in [BB01], which can be applied to many static dataflow
models like the SDF and the CSDF models [BB01, DP18]. The Parameterized dataflow
meta-model extends the semantics of the targeted MoC by adding dynamically reconfig-
urable hierarchical actors. Formally, the Parameterized dataflow meta-model extends the
semantics of a targeted dataflow MoC with the following elements:

• param(a) is a set of parameters associated to an actor a ∈ A. A parameter p ∈
param(a) is an integer value that can be used as a production or consumption rate
for actor a, and that can influence the internal behavior of actor a. The value of
parameters is not defined at compile time but instead is assigned at run time by
another actor. Optionally, a parameter can be restricted to take values only in a
finite domain noted domain(p).

• Hierarchy levels, including subgraphs of hierarchical actors, are specified with
3 subgraphs, namely the init φi, the subinit φs, and the body φb subgraphs.

– the φi subgraph sets parameter values that can influence both the production
and consumption rates on the ports of the hierarchical actor and the topology
of the φs and φb subgraphs. The φi subgraph is executed only once per iteration
of the graph to which its hierarchical actor belongs and can neither produce
nor consume data tokens.

– the φs subgraph sets the remaining parameter values required to completely
configure the topology of the φb subgraph. The φs subgraph is executed at the
beginning of each firing of the hierarchical actor. It can consume data tokens
on input ports of the hierarchical actor but can not produce data tokens.

– the φb subgraph is executed when its configuration is complete, right after the
completion of φs. The body subgraph behaves as any graph implemented with
the MoC to which the parameterized dataflow meta-model was applied.

Figure 2.10 shows an example of the PSDF model which is the resulting MoC when ap-
plying the Parameterized dataflow meta-model to the SDF MoC. The graphical semantics
used in this figure are those proposed in [BB01]. In this example, the top level specification
contains 4 actors. The setX actor, contained in the Top.init subgraph, assigns a value to
parameter x, thus influencing the dataflow behavior of actor h in the Top.body subgraph.

Hierarchical Parametric Dataflow Models 17

x x
x zyx

x
4

x3 3

setX

sets h.x

specification Top

graph Top.subinit graph Top.init

A h
{x}

B

graph Top.body

setZ

setY

sets D.z

sets C.y

propagateX

specification h

graph h.subinit graph h.init

graph h.body

sets D.x
sets C.x

D
{x,z}

C
{x,y}

Figure 2.10 – Example of Parameterized SDF (PSDF) graph

Actor h is a hierarchical actor whose subgraphs contain 5 actors. A parameter set in a
level of hierarchy cannot influence directly parameters in body subgraphs of lower levels
of hierarchy. For example, the value assigned to parameter x in the Top.init subgraph
must be explicitly propagated by actor propagateX in subgraph h.init in order to be used
in the body subgraph of actor h.

The execution of a PSDF graph follows the runtime operational semantics of the Pa-
rameterized dataflow meta-model defined by Bhattacharya and Bhattacharyya in [BB01].
The runtime operational semantics successive steps followed during the execution of a
hierarchical actor whose internal behavior is specified with the three subgraphs, φi, φs,
and φb subgraphs. A detailed description of this runtime operational semantics of the
Parameterized dataflow meta-model can be found in [BB01]. Shortly, the execution of a
PSDF graph starts by propagating the new values of the dynamic parameters through
the hierarchy in order to set the consumption and production rates of the actors. The
propagation of the parameters value is done by executing the init subgraph φi and the
subinit subgraph φs of the hierarchical actors. Once the behavior of a hierarchical actor
is defined, its body subgraph φb is executed.

As an example, the PSDF graph of figure 2.10 starts its execution by initializing and
propagating the value of the parameter x of the hierarchical actor h through the hierarchy.
First the actor setX of the init subgraph Top.init of the topgraph is executed to initialize
the parameter x, then the actor propagateX of the init subgraph h.init of the hierarchical
actor is executed to propagate the value of x. After that, the body subgraph top.body of
the topgraph is executed. At each execution of the hierarchical actor h, the value of the
parameters x and y of its subgraph are first initialized by executing the h.subinit subgraph.
Once the consumption and production rates of the subactors C and D are defined, the
body subgraph h.body of the hierarchical actor h is then executed. If we assume that
the parameters x, y, and z are always set to 1 then we obtain the following execution:
setX, propagateX,A, 3 × (setY, setZ,C,D), B where the notation 3 × () means that the
content of the parenthesis is executed 3 times.

Although the Parameterized dataflow meta-model enables a dynamic hierarchy prop-
erty, it makes the PSDF MoC less predictable than the original SDF MoC. Indeed, contrary

18 Dataflow Models of Computation

to the SDF model, the consumption and production rates of the PSDF actors are unknown
at design time, as they depend on dynamically set parameter values.

2.6.2 Parameterized and interfaced SDF (πSDF)

Similarly to the Parameterized dataflow meta-model, the Parameterized and Interfaced
dataflow Meta-Model (PiMM) [DPN+13] extends the semantics of existing dataflow mod-
els with a parameterized hierarchy feature. However, the PiMM meta-model inherits its
hierarchy semantics from the IBSDF model [PBR09] which is based on hierarchical inter-
faces.

The πSDF MoC for instance, is the semantic extension of the SDF MoC using the
PiMM meta-model. Hence, the πSDF model extends the SDF model with a hierarchy
mechanism which is based on interfaces like the IBSDF model, such that the consumption
and production rates as well as the initial data tokens of the Fifo queues are dynamically
set like the PSDF model.

Based on the definition given in [Heu15], the πSDF model extends the semantics of
the SDF model with the following elements:

• I is a set of hierarchical interfaces. An interface is a vertex of the graph that passes
data tokens or parameter values between levels of hierarchy.

• P is a set of parameters. A parameter is a vertex of the graph and is used to configure
the application and to modify its behavior.

• D is a set of parameter dependencies. A parameter dependency is a directed edge of
the graph that propagates parameter configurations to other elements of the graph.

In [Des14], Desnos compares the semantics of the πSDF model with the semantics of
each of the SDF and the IBSDF models. Figure 2.11, taken from [Des14], summarizes this
comparison and shows the graphical elements associated to the semantics of each model.

Data input
interface

Configuration
input interface

Configuration
output port

Configuration
input port

Configurable
parameter

Locally static
parameter

Parameter
dependency

Data output
interface

Delay and
number of
tokens

FIFO

Configuration
actor

Hierarchical
actor

Actor

PiMM

πSDFIBSDFSDF

A
Port
and rate3

x4

ou
t

in

P

P Ah

Figure 2.11 – PiMM semantics [Des14]

Multiple examples of real applications modeled with πSDF graph can be found in[Des14,
Has18]. Figure 2.12 shows an example of a πSDF graph implementing an image filtering
application. In this application, the Read and Send actor are respectively used for reading
1 pixel and sending a package of 3 pixels in a network. The purpose of the hierarchical
actor Filter is to apply a filter on a 2D image for which the size is fixed by the parameter
size. At each execution of the subgraph, actor SetN triggers a reconfiguration of the con-
sumption and production rates of actor Kernel by assigning a new value to the parameter
N. Reconfigurations enable a dynamic variation of the number of parallel execution of the
Kernel actor.

Conclusion 19

SetN

Filter

Kernel

SendRead 3size size
size size

size/Nsize/N
size/Nsize/N sizesize

1

N

size

x2*size

sizesize

Figure 2.12 – An example of the πSDF model of a image filter application [Des14]

Compared to the Parameterized dataflow meta-model, the PiMM meta-model enables
modeling complex applications with a concise model where parameters value is set via the
configuration actors and propagated automatically using the configuration channels. In
terms of the behavior analysis, the πSDF model is more predictable than the PSDF model
thanks to its interface-based hierarchy inherited from the IBSDF MoC.

2.7 Conclusion

In this chapter we have presented several dataflow models. The static dataflow models
like the SDF model are fully predictable which enables precise analysis. However, static
dataflow models are semantically limited compared to dynamic dataflow models which
extend the expressivity of existing model with dynamic parameters. Dynamic dataflow
models like the SADF and the BDF models enable the application to adapt its behavior
to the data values.

With the increasing complexity of signal processing applications, designing and analyz-
ing large dataflow graphs became a hard tasks for the designer as well for the development
tools. In this context, the hierarchical dataflow models have been introduced to add a
compositionality to the existing dataflow models. Among the two presented hierarchical
dataflow models, the IBSDF model combines the statics behavior of the SDF model and
the compositionality of a hierarchical dataflow model. In fact, the IBSDF model enables
the decomposition of the application into several modules organized in an interface-based
hierarchy such that the behavior of each module can be specified and analyzed separately
from the graph.

The parametric dataflow model extends the hierarchical dataflow models with dynamic
parameters. The πSDF model for example extends the SDF MoC with a parametrized
hierarchy mechanism. Thus the πSDF benefits from the modularity advantages of the
interface-based hierarchy and from the dynamic adaptation of actors behavior through
parameters.

In this thesis we are interested specially on the IBSDF model which we consider to be
the most suitable model for the development of complex signal processing application in
the context of rapid prototyping.

20 Dataflow Models of Computation

CHAPTER 3

Development Process of Dataflow Graphs

3.1 Introduction

In this chapter we present the different phases of the development process of dataflow-
based applications in the context of rapid prototyping. We first start by defining what
is rapid prototyping and what is the motivation behind it. Next, we present Parallel
and Real-time Embedded Executives Scheduling Method (Preesm), a rapid prototyping
framework. Preesm framework offers a simple user interface to easily develop, analyze
and compile dataflow graphs while all the complexity of the process is abstracted in a
simple workflow. In fact all the contributions of this thesis are integrated to Preesm as a
performance analysis module.

After briefly presenting the compilation process of dataflow graphs, we detail some of
the important phases like the verification, the transformation, the analysis, the mapping
and scheduling phases. In section 3, we discuss the consistency property of static dataflow
graphs and how to evaluate it for each of the SDF, the Hierarchical SDF, and the IBSDF
graphs. In section 4, we define how to convert an SDF graph into each of an equivalent
HSDF graph, an equivalent srSDF, and an equivalent DAG. In the same section we present
how to flatten the hierarchy of an IBSDF graph into each of an equivalent flat srSDF graph
and an equivalent flat DAG. These dataflow graph transformations are used during the
compilation process in order to ease the analysis or to expose all the parallelism of the
application. In section 5, we discuss the liveness property of dataflow graphs which is an
important property to check for the validation of the design phase. Section 6 defines the
different type of schedules used for the simulation of dataflow graphs executions. Two type
of schedules are presented in this section, the As Soon As Possible (ASAP) schedule and the
periodic schedule. In section 7, we discuss the mapping and scheduling phase, which is the
most critical phase in the development process of signal processing applications. Section 8
presents Synchronous Parameterized Interfaced Dataflow Embedded Runtime (Spider), a
run-time manager for parametric dataflow graphs like the πSDF graph. Lastly, we present
in section 9 some of the tools used in this thesis for the numerical experiments and the
benchmarks. Section 10 concludes this chapter.

21

22 Development Process of Dataflow Graphs

3.2 Rapid Prototyping

As presented by Cooling and Hughes in [CH89], rapid prototyping in computer science
relies on two pillars: models to describe the behavior and the requirements of systems, and
automatic methods and tools to quickly generate system simulations or system prototypes
from the system models.

Figure 3.1, presents an overview of a typical rapid prototyping design flow. This design
flow can be separated in 3 parts:

• Developer Inputs: Developer inputs consist of high-level models that enable the
specification of all important properties of a system. In the co-design context, where
designed systems have both hardware and software parts, developer inputs often
gather a model of the application, a model of the targeted architecture, and a set of
constraints for the deployment of the application on the architecture. As presented in
the Algorithm-Architecture Adequation (AAA) methodology [GS03], the separation
between the three inputs of the design flow ensures the independence between them,
which eases the deployment of an application on several architectures or the use of
a single architecture to deploy several applications.

• Rapid Prototyping: The rapid prototyping part of the design flow regroups the
tasks that are executed to automatically explore the design space and to generate
a prototype of the system described in the developer inputs. An important char-
acteristic of these tasks is the rapidity with which they can be executed, even for
complex applications and architectures. Contrary to a classic design flow, the pur-
pose of a rapid prototyping design flow is not to generate an optimal solution, but to
rapidly assess the feasibility of a system by generating a functional prototype that
respects the specified constraints. Ideally, the obtained prototype will be refined and
optimized in later stages of development.

• Legacy Development Toolchain: Optionally, the prototype generated by the
design flow may be executed on a real target. In such a case, the generation of the

Architecture
Model

Constraints

Execution

Code
Generation Simulation

Mapping
Scheduling

Application
Model

LegacyIDevelopmentIToolchain

Developer

RapidIPrototyping

DeveloperIInputs

Compiler

Figure 3.1 – Overview of a rapid prototyping design flow. (source [Des14]).

Rapid Prototyping 23

executable is supported by legacy development toolchains associated to the target.
During the execution of the generated prototype, monitoring is generally used to
record and characterize the system behavior in order to provide feedback to the
rapid prototyping design flow and to the developer.

As illustrated in Figure 3.1, the rapid prototyping design flow is an iterative process
that can use feedback from the simulation and the execution of the generated prototype
to improve its quality. More importantly, the simulation or the execution of the generated
prototype gives valuable information to the developer to guide the evolution of the design
flow inputs. For example, this feedback can reveal resource deficiency of the architecture
model or the presence of contradictory constraints.

3.2.1 Preesm Rapid Prototyping Framework

The Parallel and Real-time Embedded Executives Scheduling Method (Preesm) is an
Eclipse-based framework that provides dataflow-based methods to study and program
embedded multicore platforms [PDH+14]. Preesm is an open-source framework developed
by VAADER team of the IETR Lab at INSA Rennes. Many tutorials can be found on
the Preesm website https://preesm.org for the easy initiation of C/C++ programmers to
multi-core programming.

The Preesm framework focuses on providing high level rapid prototyping information
on algorithm parallelism and latency. It also proposes detailed analyses on system memory
requirements. Moreover, a platform adaptable C/C++ code generation is provided to
transform the dataflow representation into a runnable code.

This framework is based on the πSDF MoC. This dataflow model describes the input
algorithm and actor code is not required by the framework for simulation purpose. The
executable program resulting from jointly compiling the generated and the manual code
and constitutes a multicore system prototype that is guaranteed to be deadlock-free and
can be retargeted to a different number of cores within minutes.

However, since this framework is a compile-time analysis tool, all code generation of
this framework is restricted to static πSDF graphs. A static πSDF graph only embeds
parameter values that are fixed and known at compile time.

3.2.2 Preesm Typical workflow

A typical Preesm development workflow for an IBSDF graph consists of 6 main phases:

1. Design phase: The designer models the application with an IBSDF graph using
the user interface of Preesm.

2. Verification phase: Verification of some necessary properties like the consistency
and liveness.

3. Conversion phase: Flattening the hierarchy of the graph.

4. Analysis phase: Evaluate the performance of the graph.

5. Mapping and scheduling phase: Decides which actor to execute on which PE.

6. Code generation: Generates the actual source-code of the application which will
be running on the targeted machine.

24 Development Process of Dataflow Graphs

In the following, we present in detail some the important phases of the development
process of dataflow graphs. We also simplifies the visual elements of the SDF and the
IBSDF models, by ignoring the actor ports, and by representing the regular actors with
circles and the hierarchical actors with squares.

3.3 Consistency Evaluation and Repetition Vector (RV)

Before analyzing the performance of a dataflow graph, a primarily step of the compilation
consists on checking the deadlock freeness of the application; i.e. checking the consistency
and the liveness of the graph. A dataflow graph is said to be consistent when its execution
does not result in an accumulation of unconsumed data tokens. Meaning that a consistent
graph can be executed indefinitely on MPSoC architectures with a sufficient bounded
memory storage.

3.3.1 Consistency of a SDF graph

The consistency of a SDF graph G = 〈A,F 〉 is checked by solving a system of linear
equations defined by the matrix equation Γ(G) ∗ RV = 0. The topology matrix Γ(G)
[LM87b], a |F |-by-|A| matrix, represents the consumption and production rates of the
actors on the Fifo queues. Each column of the topology matrix Γ(G) is associated to an
actor a ∈ A, and each row is associated to a Fifo queue f ∈ F . The matrix coefficients
are defined as follows such that for each a ∈ A and each f ∈ F :

Γa,f =

prod(a, f) if a is the source actor of f

−cons(a, f) if a is the target actor of f

0 otherwise

The minimum solution vector of the system is called the Repetition Vector (RV). Each
entry of the RV corresponds to the number of executions needed for an actor to restore
the initial marking of the graph. If such vector exists, then the data-token production-
consumption system is balanced and the graph is consistent.

Figure 3.2, the graph composed by the three actors A, B, and C represents a consistent
SDF graph for which the repetition vector is RV = [3, 4, 2].

Another method to verify the consistency of an SDF graph is by computing the rank
of the topology matrix. Based on the theorem introduced by Lee in [LM87a], a consistent
SDF graph is consistent if the rank of its topology matrix Γ(G) is equal to the total number
of its actors minus 1: rank(Γ) = |A| − 1.

In practice, the consistency of a SDF graph is checked by computing directly the RV of
the graph using the polynomial algorithm of [BLM96a]. If the algorithm fails to compute
the RV then the graph is not consistent.

B

A C
2 3

1

24

3

x4

(a) SDF graph example.

A B C

(A,B) 4 −3 0
(B,C) 0 1 −2
(C,A) −2 0 3

×
 3

4
2

=

 0
0
0

Γ RV

(b) The Topology matrix.

Figure 3.2 – An SDF graph example and its corresponding topology matrix.

Consistency Evaluation and Repetition Vector (RV) 25

3.3.2 Consistency of a Hierarchical SDF graph

To evaluate the consistency of a Hierarchical SDF graph, the hierarchical actors must be
replaced with their SDF subgraph description first. This process is called flattening the
hierarchy of the graph, which results in an equivalent large non hierarchical SDF graph. For
the Hierarchical SDF graph, this process is mandatory to be able to analyze the behavior
of the graph. In fact, all the actors of a Hierarchical SDF graph are data dependent, even
if each one of them belongs to a different level. Thus, in order to evaluate the consistency
of the graph and to compute its RV, all the data dependencies of the actors must be
revealed. Once the Hierarchical SDF graph is flattened, it is evaluated as an SDF graph
using the classical methods described previously. Figure 3.3 shows a Hierarchical SDF
graph example and its equivalent SDF graph after flattening its hierarchy. The equivalent
SDF graph is consistent for which the RV is RV = [2, 2, 1, 2]. Thus, the whole Hierarchical
SDF graph is consistent.

111 1A h B

C D211 2

(a) Hierarchical SDF graph example.

CA D B
1 1 1 2 2 1

x2 x2 x2x1

(b) Equivalent flat graph.

Figure 3.3 – Flattening the hierarchical of a Hierarchical SDF graph to compute its RV.

3.3.3 Consistency of an IBSDF graph

In contrast to the Hierarchical SDF model, the IBSDF MoC is a compositional model which
enables the analysis of each subgraph independently. Indeed, with their special behavior,
the input and output interfaces insulate each subgraph from the hierarchy in terms of data
dependency. Thus, an IBSDF graph is consistent if each of its subgraphs is consistent,
including the top-graph. Figure 3.4 shows the same hierarchical graph example of figure
3.3a but modeled with an IBSDF graph. Evaluating the consistency of the IBSDF graph
example consists on checking the consistency of both the topgraph and the subgraph,
but separately. Since both the graphs are consistent, the whole IBSDF graph example
is consistent. The RV of the topgraph is RV = [1, 1, 1] (see fig. 3.4b), and the RV of
the subgraph is RV = [2, 2, 1, 2] (see fig. 3.4c). More details on the consistency of the
IBSDF model as well as a proof for the data dependency of the subgraphs can be found
in [PBR09].

111 1
A h B

C D211 2

In
 1

O
u

t
1211 1

(a) IBSDF graph example.

111 1A h B

x1 x1x1

(b) topgraph is consistent.

C D211 2

In
 1

O
u

t
1111 1

x2 x1
x2x2

(c) subgraph is consistent

Figure 3.4 – Evaluating the consistency of an IBSDF graph.

In the IBSDF graph example, the behavior of the topgraph does not change regardless
how many data tokens are required for actor D to execute. Indeed, the input interface
duplicates the data tokens received from the hierarchical actor H as many times as needed

26 Development Process of Dataflow Graphs

for the execution of actor D. Unlike the Hierarchical SDF graph example where actor A
of the topgraph A must be executed twice to produce enough data tokens for actor D.
Actor B in turn is executed twice to consume all the data tokens produced by actor D.

This example demonstrates the compositionality of the IBSDF model and it capability
of insulating the different modules of the hierarchy in terms of data dependency. Further-
more, each module can be reused and integrated to other applications without changing
the behavior of the module itself or the behavior of the new applications.

In this thesis, to simplify the computations and to preserve the semantics of the IBSDF
model during the compilation process, we make the following modifications on the interface
once the repetition factor of the IBSDF graph is computed:

1. For each input interface in, we set its production rate on its output Fifo queue f
equal to Prod(in, f)×RV (in).

2. For each output interface out, we set its consumption rate on its input Fifo queue
f equal to Cons(out, f)×RV (out) .

3. For each input and output interface, we set its repetition factor equal to 1.

Figure 3.5 shows the new production and consumption rates of the interfaces of the
IBSDF graph example after computing its RV.

111 1
A h B

C D211 2

In
 1

O
u

t
1221 1

x2 x2

x2

x2

x1

Figure 3.5 – The IBSDF graph example after computing its RV

3.4 Dataflow graphs Conversion

Dataflow graphs are constantly converted at many stages of the compilation into equivalent
simplified and more expressive graph versions. The HSDF and the DAG conversions are
the most used transformations for static dataflow models. The main purpose of this
two conversions is to expose all the parallelism in a dataflow graph in order to precisely
analyze, map, and schedule the application. In the following we present the different graph
transformations for the SDF and the IBSDF models.

3.4.1 SDF graph conversions

SDF graph to HSDF graph

The HSDF graph conversion, also called the expansion, is one of the most used trans-
formations for SDF graphs. It consists on duplicating each SDF actor according to its
repetition factor. This transformation is also based on token ordering. If an SDF actor
a produces p = Prod(a, f) data token on a Fifo queue f then the same Fifo queue f
will be duplicated p times for each instance of the actor a in the resulting HSDF graph.
Thus, each actor in the equivalent HSDF graph has a repetition factor equals to 1, and a
consumption and production rates equal to 1 on all its input and output Fifo queues.

Converting an SDF graph into an HSDF graph enables to explicitly express the data-
parallelism as task-parallelism. Thus, the equivalent HSDF graph enables a precise analysis

Dataflow graphs Conversion 27

of the SDF graph behavior. As an example, the equivalent HSDF graph is used to evaluate
the exact maximum throughput of the application using a polynomial algorithm, while the
problem complexity is still unknown for the SDF model.

An algorithm for the HSDF graph conversion is described in [BLM96a]. Figure 3.6b
shows the equivalent HSDF graph of the SDF graph example of figure 3.6a. As the figures
shows, each SDF actor was duplicated according to its repetition factor such that its
consumption and production rate on each Fifo queue is 1.

SDF graph to srSDF graph

Similar to the previous transformation, converting an SDF graph to an equivalent srSDF
graph consists on duplicating the actors according to their repetition factor. However, the
srSDF graph conversion uses less Fifo queues to connect the duplicated actors. Indeed,
if two or more Fifo queues are connecting the same two actors in the HSDF graph, then
they are merged in one Fifo queue with a production and a consumption rates equal to
the number of merged Fifo queues.

The equivalent srSDF graph is often used instead of the equivalent HSDF graph, since
it express the same data dependencies between the actors but with less Fifo queues.
Figure 3.6c shows the equivalent srSDF graph of the SDF graph example of figure 3.6a.
As the figure shows, the equivalent srSDF graph exposes all the parallelism of the SDF
graph using less Fifo queues than the equivalent HSDF graph of figure 3.6b.

SDF graph to DAG

The equivalent DAG of an SDF graph is obtained by first converting the SDF graph to an
equivalent srSDF graph. Next, deleting all the Fifo queues of the equivalent srSDF graph
that contain initial data-tokens. If the SDF graph is consistent and live, then the resulting
DAG should not contain any cycle. The equivalent DAG is used essentially for finding
the Critical-Path (CP) to evaluate the latency, and for the mapping/scheduling problem
i.e. the allocation of the necessary memory space and PEs for actors executions in a fixed
order. Figure 3.6d shows the equivalent DAG of the SDF graph example of figure 3.6a.

The space and the time complexity of the conversions HSDF, srSDF, and DAG for an
SDF graph are relative to the RV of the graph. In fact, for a SDF graph G = 〈A,F 〉,
the total number of actors in each of the equivalent HSDF graph, srSDF graph, and

A B
2 3

x2

x3 x2

(a) SDF graph example.

A
B

x1

A

A
B

x1

x1

x1

x1

x1

x1

(b) The equivalent HSDF
graph.

A
B

x1

A

A
B

1
2

1
1

2

2

1

2

x1

x1

x1

x1

x2

(c) The equivalent srSDF
graph.

A
B

x1

A

A
B

1

1
1

2 1

2

x1

x1

x1

x1

(d) The equivalent DAG.

Figure 3.6 – The illustration of some of the conversions of a SDF graph.

28 Development Process of Dataflow Graphs

DAG is
∑

a∈ARV (a). As consequences, if the RV consist of large numbers then the time
complexity of the conversion as well as the number of actors may grow exponentially.

SDF graph to Normalized SDF graph

A normalized SDF graph is a SDF graph such that each actor has the same production
and consumption rates on all its input and output Fifo queues. The normalized rate of an
actor a is noted Za. The normalization process is an essential transformation for the SDF
graph in order to evaluate its liveness (schedulability) using a sufficient condition [MMK09]
and to compute a periodic schedule if its exists. An algorithm for the normalization process
of SDF graph is described in [Les17].

3.4.2 Flattening the hierarchy of an IBSDF graph

The flattening process is the transformation of a hierarchical dataflow graph into a flat non-
hierarchical graph. This process is often used for the IBSDF graph during the development
process in order to analyze its behavior using the classical methods of SDF graphs. The
two most used conversions are the flat srSDF graph and the flat DAG conversion which
guarantee a equivalent non hierarchical graph with the same behavior as the IBSDF graph.

In the following, we present how to flatten the hierarchy of an IBSDF graph into both
an equivalent flat srSDF graph and an equivalent flat DAG.

Into an equivalent flat srSDF graph

The equivalent flat srSDF graph is constructed by repeating the following steps, starting
from the top-graph of the hierarchy until the IBSDF graph is completely flattened:

• Step 1: Convert the top-graph to an equivalent srSDF graph.
• Step 2: Replace each instance of a hierarchical actor in the top-graph by the equiv-

alent srSDF graph of its subgraph.
• Step 3: Go to Step 1 and repeat the process until no hierarchical actor remains in

the resulted flat graph.

Figure 3.7 shows an example of an IBSDF graph composed of two hierarchical levels.
The hierarchical actor B of the topgraph ABC is described by the subgraph DEF . The
equivalent flat srSDF graph of this IBSDF graph example is obtained by first, converting
the topgraph to an equivalent srSDF graph as shown in Figure 3.8a. Next, by replacing
B1, B2, and B3, the three instances of the hierarchical actor B, with the equivalent srSDF
graph of the subgraph shown in figure 3.8b. The resulting flat srSDF graph contains 47
actors (2A+ 3× (1In+ 2D + 6E + 4F + 1out) + 3C) and 170 edges.

BA 1123 23

E

D

F
32

1

2

2

1
3

O
u
t

In

1 3
6 12

x3

1

x2

x4x6

x2 x3 x3

x3

x3

C

Figure 3.7 – An IBSDF graph example composed of two hierarchical levels.

Liveness Evaluation 29

A1

A2

B1

B2

B3

C1

C2

C3

2

2

1

2

1

1

22

1

1

1

2

2

11

1 1

1
1

2

1

1

x2

x1

x1

x2

(a) The equivalent srSDF graph of the topgraph
ABC.

E1

E2

E3

D1

E4

E5

E6

D2

F1

F2

F3

F4

O
u
t

In

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

1

1

22

1

1

2 2

11

2

2

1

2

1

3
3

3
3

1

1
1

1
1

1

11
1

1
11

3

3

3

3

1

1

1

1

2 1

E1

E2

E3

E4

E5

E6

F4

F3

F2

F1

D1

D2

(b) The equivalent srSDF graph of the subgraph
DEF .

Figure 3.8 – The equivalent flat srSDF graph of the IBSDF graph example of figure 3.8 is obtained
by replacing each instance of the hierarchical actor B with the srSDF graph version of its subgraph.

Into an equivalent flat DAG

The equivalent flat DAG of an IBSDF graph is obtained simply by flattening first, the
hierarchy of the IBSDF graph into an equivalent flat srSDF graph. Next, by deleting
all the Fifo queues of the equivalent flat srSDF graph that contains data tokens. If the
IBSDF graph is consistent and live, the resulting flat DAG should not contain a cycle.

The space and time complexity issue of the dataflow conversions is much more pro-
nounced in the IBSDF graph conversions due to the flattening process. Indeed, each actor
a in the IBSDF graph is duplicated RV (a) times multiplied by the product of the repeti-
tion factor of all its hierarchical parent actors. Hence, the total number of actors in both
the equivalent flat srSDF graph and the equivalent flat DAG grows exponentially. In fact,
the flattening process is becoming the bottleneck in the development process of complex
applications using the IBSDF model.

3.5 Liveness Evaluation

The consistency property ensures that a dataflow graph can be executed on an MPSoC
architecture with a bounded memory storage. The liveness property on the other hand,
ensures that the initial marking of a dataflow graph is sufficient to execute the graph
indefinitely without a lack of data-tokens causing a deadlock. The liveness property must
be verified specially when the dataflow graph has cycles in it. In the following we present
the different methods to evaluate the liveness of the HSDF graph, the SDF graph, and the
IBSDF graph.

3.5.1 Liveness evaluation of HSDF graph

An HSDF graph is live if each of its cycles contains ate least one data token. In graph
theory, identifying all the elementary cycles in an graph is a exponential problem. Hence,
the HSDF graph is instead converted to an equivalent DAG by deleting all the Fifo queue
that contains data tokens. If the resulted equivalent DAG still contains a cycle then the

30 Development Process of Dataflow Graphs

HSDF graph is not live. Thus, the HSDF graph is live only if its equivalent DAG does not
contain any cycle.

3.5.2 Liveness evaluation of SDF graph

There are three methods to verify the liveness of an SDF graph. The first two methods
are exact methods, however their time and space complexity depend on the size of the RV
of the SDF graph. Thus, for large SDF graphs with a RV composed of large numbers,
the liveness evaluation may takes an exponential time. The third method is based on a
sufficient condition for the liveness of SDF graphs, which can be verified with a polynomial
time algorithm. However, if the sufficient condition is not satisfied, the method cannot
conclude if the SDF graph is live or not.

In the following we detail the three methods, starting by the exact ones.

HSDF conversion based method

The first method consists of first converting the SDF graph into an equivalent HSDF
graph, then checking its liveness using the approach described previously. This simple
method allows defining exactly whether an SDF graph is live or not. However, the size
of the equivalent HSDF graph may grow exponentially since it depends on the RV of the
SDF graph. Thus, the HSDF conversion-based method is considered as a not efficient due
to its potentially exponential space-complexity.

Symbolic execution based method

The second method is based on a symbolic execution of the SDF graph. A symbolic
execution consists on simulating the execution of the SDF graph without actually executing
the source code of the actors. Indeed, from the dataflow graph perspective, the execution
of an actor is the result of two consecutive actions: consume data token from the input
Fifo queues and then produce data tokens on the output Fifo queues. This technique is
commonly used for the analysis of the SDF graph behavior.

Hence, an SDF graph G = 〈A,F 〉 is live if its symbolic execution returns a sequence
S of actors executions in which each actor a ∈ A is executed RV (a) times. Moreover, an
infinite execution of the graph is obtained simply by repeating infinitely the sequence S.
In case where the SDF graph is deadlock (not live), the symbolic execution will reach a
deadlock state, where no actor has enough data tokens to execute, and stops.

Like the previous method, the symbolic execution defines exactly weather an SDF
graph is live or not. However, simulating the entire execution of the SDF graph may
take an exponential-time. In fact, up today, there is no polynomial-time algorithm for
the liveness evaluation of SDF graphs [MMK09, BLDMK14]. Hence, the next method
consists on verifying if the initial marking of the SDF graph satisfies a sufficient condition
of liveness using a polynomial algorithm. This approach was proved to be faster than a
symbolic execution [BLDMK14].

Sufficient Condition (SC)

The sufficient condition of liveness was introduced in [MMK09] first for the SDF graph,
and then extended for other static dataflow models. The sufficient condition uses the
normalized version of the SDF graph, which is defined as follows:

Simulating a Dataflow graph 31

A SDF graph is live if the initial marking of each cycle µ in its normalized version
satisfies the ∑

f=(a,b)∈µ

M∗0 (f) >
∑

f=(a,b)∈µ

(Cons(b, f)− gcdf)

where gcdf of a Fifo queue f = (a, b) is the greatest common divisor of Prod(a, f) and
Cons(b, f), and M0 ∗ (f) is the number of useful data tokens present on f [MMK09]. The
number of useful data tokens on a Fifo queue f is computed as follows :

M∗0 (f) = bM0(f)

gcdf
c × gcdf

In practice, the sufficient condition of liveness is verified for an SDF graph using the
polynomial algorithm described by the following steps:

• step 1: Normalize the SDF graph.

• step 2: For each Fifo queue f = (a, b), set its values equals to M∗0 (f) + gcdf −
Cons(b, f)

• step 3: Use the algorithm to verify the existence of a negative cycle

• step 4: If no negative cycle exists then the SDF graph is live. Otherwise, the liveness
of the graph cannot be concluded.

3.5.3 Liveness evaluation of IBSDF graph

Like the consistency evaluation, an IBSDF graph is live if all of its subgraph are live,
including the topgraph of the hierarchy. Indeed, as the main advantage of the interface-
based hierarchy is the ability to analyze each subgraph independently from the hierarchy.
Therefore, the liveness of the IBSDF graph is evaluated by checking the liveness of each
subgraph independently, using the previous methods of SDF graph.

In contrast to the Hierarchical SDF model, the hierarchy of the IBSDF graph does
not need to be flattened in order to check the liveness of the graph. Furthermore, the
compositionality of the IBSDF model is said to be deadlock free.

3.6 Simulating a Dataflow graph

Dataflow graphs are often simulated during the development process to analyze their
behavior under certain conditions. For example, simulating the execution of a dataflow
graph on an MPSoC architecture with unlimited resources is a common approach for the
evaluation of certain performance metrics.

Simulating the execution of a dataflow graph consists on defining the start date of each
execution of each actor of the dataflow graph. Depending on the type of the used schedule,
the behavior of the dataflow graph may changes. However, regardless which schedule is
used, the start dates of the actors executions must satisfy all the data dependencies between
the actors as well as the execution duration of the actors themselves. To guarantee an
accurate result, the dataflow community tends to use the Worst-Case Execution Time
(WCET) possible for each actor, which is measured or defined by the designer. In the
following we present two type of schedules, the ASAP schedule and periodic schedule.

32 Development Process of Dataflow Graphs

3.6.1 ASAP Schedule

The ASAP schedule [GGS+06] is the most used schedule. It consists of executing actors
as soon as there is enough data tokens on their input Fifo queues. This type of schedule,
allows the application to be executed as fast as possible. Therefore, the ASAP schedule
is used to compute some performance metrics like the maximum throughput and the
minimum latency, which will be discussed in the next chapters.

One drawback of the ASAP schedule when simulating one iteration of a SDF graph
G = 〈A,F 〉, is that each execution i ∈ [1, RV (a)] of each actor a has an independent start
date S(a, i). Hence, for one iteration of SDF graph where each actor a is executed RV (a)
times, the resulting ASAP schedule is defined by

∑
a∈ARV (a) start dates. For large SDF

graphs, this may become an issue.

3.6.2 Periodic Schedule

The periodic schedule was introduced in [BNHMMK12] for a subclass of Petri Net (PN)
named Weighted Event Graphs (WEG) as an alternative to ASAP schedule. Since the
semantic of both models SDF graph and WEG are equivalent, the periodic schedule was
also used for scheduling SDF graphs.

Formally, a periodic schedule σ of an SDF graphG = 〈A,F 〉 is a cyclic schedule [MK09],
in which each actor a ∈ A has a periodic execution defined by an initial start date Sσ〈a,0〉
and a period wσa . Hence, the execution start date of any instance i of an actor a ∈ A can
be calculated as follow:

∀i ∈ N∗, Sσ〈a,i〉 = Sσ〈a,0〉 + (i− 1) · ωσa

This property of the periodic schedule has a huge impact on the size of the schedule.
In fact, the periodic schedule describes the execution of multiple iterations of a SDF graph
G = 〈A,F 〉 by only two informations per actor. However, the problem of the periodic
schedule is to find a period wσa for each actor a such that all the precedence constraints
(data dependencies) are always satisfied. For some dataflow graphs, a periodic schedule
may not exists. Therefore, it was proved in [MMK09] that a periodic schedule exists for
an SDF graph if it satisfies the sufficient constraint of liveness. Furthermore, one of the
main drawbacks of the periodic schedule is that the data parallelism of the actors is not
exploited, which does not guarantee a fast execution of the graph like with the ASAP
schedule.

3.7 Mapping and Scheduling Dataflow Graphs

The mapping and scheduling phase is the most critical phase in the development process
of signal processing applications in which, many decisions are made based on the end-user
demands alongside with the architecture specifications that will define the end behavior
and performance of the designed application. In fact, the mapping process consists in
choosing the different Processing Elements (PEs) that will execute each actor of the appli-
cation, while the scheduling process consists on choosing the execution order of the actors
on the selected PEs. Hence, the goal of the mapping and scheduling phase is to find a
solution that satisfies budget constraints like number of cores and memory capacity, while
optimizing performance criteria such as throughput and latency, or system efficiency crite-
ria like energy consumption. Despite the fact that the mapping and scheduling problems
are a NP-hard problems, the optimal solution differs from one case to another depending

Mapping and Scheduling Dataflow Graphs 33

Mapping and
Scheduling task

 Time

CPU

 DSP

 Acc

111 2 3 4 5 6 70 8 9 10

G

CB

FE

1cc-1j 2cc-2j

2cc-1j 1cc-0,5j

2cc-3jD 2cc-3jA
1cc-1,5j

Total Costs: 6 cc - 12j

 Time

 CPU

 DSP

 Acc

A

CB

FED

2cc-2j1cc-1j

2cc-1j 4cc-2j 2cc-1j G 2cc-1j1cc-0,5j

Total Costs: 11 cc - 8,5j

111 2 3 4 5 6 70 8 9 10

 Time

 CPU

 DSP

 Acc

CB

FE

2cc-2j1cc-1j

2cc-1j G 2cc-1j1cc-0,5j

Total Costs: 8 cc - 10j

111 2 3 4 5 6 70 8 9 10

D 2cc-3jA
1cc-1,5j

CPU DSP Acc

2cc - 1j 1cc - 1,5jA

1cc - 1jB

2cc - 2jC

4cc - 2j 2cc - 3jD

2cc - 1jE

1cc - 0,5jF

2cc - 1j 2cc - 3jG

Actor
PE

Latency & Energy Costs

CPU DSP Acc

Shared Memory

Architecture DescriptionDataflow Description

End-User

Optimization Criteria

Solution 1: Latency efficient Solution 2: Energy efficient

Solution 3: Latency / Energy Trade-off

(Latency, Energy)

Constraints and Ccosts

Solutions

A

B

D

C

E

F

G
1

1
1 1 1 1

1
1

1
1

11
1

1

x1

x1 x1

x1

x1x1x1

Figure 3.9 – Mapping and scheduling a dataflow application on an MPSoC architecture.

on the most important criteria to optimize. In most cases, the developer must optimize a
trade-off between two or more criteria. Figure 3.9 illustrates an example of mapping and
scheduling a dataflow graph of 7 actors on an MPSoC architecture composed of 3 PEs:
a Central Processing Unit (CPU), a Digital Signal Processor (DSP), and one accelerator.
As the figure shows, the mapping and scheduling process has four inputs: the dataflow
graph description, the architecture description, the mapping costs, and the end-user de-
mands. The dataflow graph description defines some of the application constraints like the
precedence constraints between the actors, which must be satisfied during the scheduling
process. Actors F and G for instance, cannot start to execute before actor C finishes its
execution. The architecture description in turn, defines the budget constraints like the
number of PEs, as well as the Network on Chip (NoC) topology and the communication
cost between the PEs. In this example, the three processors are fully connected via a com-
munication bus. The data transfer between the PEs is done through a shared memory for
which the communication cost is neglected to simplify this example. At the other hand, the
end-user defines the performance criteria which are the most critical to the application and
must be optimized during the mapping and scheduling phase. In this example, the latency

34 Development Process of Dataflow Graphs

and the energy consumption are the performance criteria to optimize. Finally, the costs of
mapping each actor on each PE are used to evaluate the quality of the feasible solutions
in order to choose the best one. The represented table in the figure example shows the
possible mapping choices and their costs in terms of duration and energy consumption for
each actor of the application. For example, executing (mapping) actor A on the DSP will
take a total duration of 2 clock-cycles (cc) for which it will consume 1 joules (j). Another
mapping choice for actor A is the accelerator on which it takes 1cc but consumes 0, 5j
more than on the DSP. Based on the internal behavior of the actors, some of the mapping
choices are not possible which are represented in the table with shaded boxes. In this
example, three solutions wich are represented with a Gantt chart are showned to illustrate
the complexity of the optimization process of the mapping and scheduling phase. The first
solution minimizes the duration of the application down to its minimum achievable multi-
core latency 6cc. However, it consumes a high amount of energy 12j, which is 40% higher
than the minimum energy consumption of the application (8, 5j). In contrast, the second
solution decreases the energy consumption of the application down to its minimum value,
but it results in an increase of the latency by 80% (11cc) compared to the first solution.
The third solution at the other hand, optimizes the trade-off between the latency and the
energy consumption of the application. The proposed solution has a total duration of 8cc
which is 30% higher than the minimal value, and a total energy consumption of 10j which
is 17% higher than the minimal value. From both performance criteria perspective, the
third solution may be considered as the best mapping and scheduling choice. However, in
case of unpredictable changing constraints at run-time like decreasing the power consump-
tion due to a high rise of the system temperature, the second solution may be considered
as a fast alternative solution. Indeed, remapping and rescheduling a dataflow graph at
run-time adds a considerable execution-time overhead which may not be acceptable for
certain applications.

In this context, many taxonomies have been developed over the years [CK88, LH89,
KA99, SSKH13], which classify the mapping and scheduling methodologies into two main
categories: compile-time methodologies and run-time methodologies. In the following, we
present each one of them.

3.7.1 Scheduling Methodologies

Run-time Methodologies

The run-time methodologies consist on mapping and scheduling applications at run-time.
These methodologies are suitable for dynamic and parametric dataflow MoC [DPN+13]
since the relation between the actors and their execution time are unknown at compile-
time. Hence, a run-time management process is required to handle the execution of the
application. Real-Time Operating System (RTOS) like Spider [HPD+14] can performs the
complete mapping and scheduling process at run-time. However, the RTOS execution re-
quires a dedicated PE which induces a run-time overhead in both forms execution-time and
extra hardware. Therefore, typically greedy heuristic algorithms with low time-complexity
and local view of the system are used to avoid excessive run-time overheads. Nevertheless,
run-time methodologies yield a great flexibility to the system, giving it the possibility to
adapt its behavior to dynamically changing constraints. In [LH89] and [SSKH13], run-time
methodologies are respectively called fully-dynamic scheduling strategies and on-the-fly
mappings.

Mapping and Scheduling Dataflow Graphs 35

Compile-time Methodologies

In the other hand, the compile-time methodologies which are called fully-static scheduling
strategies in [LH89], are suitable for static dataflow MoC. In fact, the static behavior of
the actors as well as their Worst-Case Execution Time (WCET) are completely known
at compile-time, which offers a global view of the system. Hence, better mapping and
scheduling decisions are made by compile-time methodologies. Moreover, more complex
constraints can be handled at compile-time and more solutions can be explored to satisfy
the end-user demands. Even if compile-time methodologies are completely intolerant of
random behavior, the performance of the application remains predictable [LH89]. For this
reason, [Des14] and [PAPN13] argue that as much mapping and scheduling decisions as
possible should be shifted to compile-time in the context of rapid prototyping.

Hybrid Methodologies

A third category of emerging methodologies consists on combining the compile-time tech-
niques with the run-time management. For example, the static-assignment and the self-
timed scheduling strategies introduced in [LH89]. The static-assignment consists on map-
ping the actors at compile-time while scheduling their executions at run-time. The self-
timed execution in turn, consists on mapping and scheduling the actors at compile-time
while the actual timing of their firings is managed at run-time. Hence, actors are exe-
cuted successively without any delays, which accelerates the execution of the application.
Therefore, the self-timed execution is considered as the most suitable scheduling strategy
for static dataflow models [SB09a]. A different approach introduced in [SSKH13] as an
hybrid method, consists on exploring mapping alternatives at compile-time for different
predictable fault scenarios and using them at run-time when needed. The mapping and
scheduling process of figure 3.9 illustrates this approach. The second solution for example,
represents a mapping alternative for the case where the accelerator becomes defective due
to aging for instance. As the mapping and scheduling approaches become more diverse,
many taxonomy refinements have been proposed to provide a common and rich terminol-
ogy as well as classification mechanisms. For example, in [CK88], the refinement is based
on both, the category of the algorithms (enumeration, graph-theory, or mathematical pro-
gramming) and their optimality (optimal or sub-optimal). In [KA99], the mapping and
scheduling approaches are organized following the problem’s class: the Bounded Number
of Processors (BNP) class, the Unlimited Number of Clusters (UNC) class, and the Ar-
bitrary Processor Network (APN) class. In [SSKH13], the refinement is rather based on
both the type of the architecture (homogeneous or heterogeneous) and the type of the
run-time management (centralized or distributed).

3.7.2 Solving the mapping and scheduling problem

In the literature the mapping and scheduling problem is proved as a NP-Hard problem.
List-scheduling based algorithm are the common used heuristics for mapping and schedul-
ing dataflow graph. A list-scheduling based algorithm consists of scheduling the list of
actors that are ready to execute based on a calculated priority. The difference between the
multiple variants of the list-scheduling approach lies on the way of constructing the priority
list and whether if the order of the actors in the list remains static or changes dynami-
cally during the mapping and scheduling phase. List-scheduling algorithm are capable of
mapping and scheduling up to 10000 actor [KA97].

36 Development Process of Dataflow Graphs

3.8 SPIDER: a Run-time Manager for dataflow graphs

3.8.1 Overview of SPIDER

Parametric dataflow graphs like the πSDF graphs, are capable of changing their behavior
at run-time by changing dynamically the values of their parameters. Hence, a run-time
manager is necessary for managing their executions on the MPSoC architectures. In fact,
the parametric dataflow graph must be completely (or partially) recompiled each time the
values of its parameters change. Thus, the run-time manager must be able to quickly
recompute both the RV and the mapping and scheduling solution, without causing an
excessive run-time overhead.

In this context, Spider was introduced in [HPD+14] as a run-time manager specially
for the execution of the πSDF graph. It was developed by the VAADER team at the IETR
lab of INSA Rennes, and is available online at https://github.com/preesm/spider. Spider
is designed to be a low-level run-time, enabling an efficient and dynamic reconfiguration of
applications on MPSoC. Moreover, Spider is capable of performing the whole compilation
process at run-time.

The run-time manager Spider takes as an input a πSDF graph developed in Preesm
framework. If all the parameters of the πSDF graph are available then Spider executes
the flattening process. If not, this transformation is performed when the reconfigurable
parameters are set during the processing of the graph. Once the πSDF graph is processed,
Spider performs then the mapping and scheduling and sends executions commands to the
PEs of the MPSoC.

3.8.2 SPIDER Structure

Spider is composed of one Global RunTime (GRT) and multiple Local RunTime (LRT),
organized in a master/slave approach. The GRT is the master of the run-time system which
manages all the processing part of the πSDF graph like recomputing the RV, mapping and
scheduling the πSDF actors. The GRT is usually placed on a general purpose PE. On the
other hand, the LRT represents the slaves which are mapped onto the PEs of the MPSoC.
The LRT are lightweight slaves used to locally manage the execution of actors on the PE
on which they are mapped. Figure 3.10 shows the master/slave structure of the run-time
manager Spider.

The master/slave structure of Spider enables both centralized and distributed man-
agement. Indeed, the GRT manages the scheduling and the memory parts while the LRT
manages the local execution of the actor on the PEs. However, low latency communi-
cations are required to transmit the control commands between the GRT and the LRT.
Therefore, Spider use two kinds of job queues to manage the communications between
the GRT and the LRT, which are described as follows:

• Data channels that are used for the data path of data tokens exchange. Such data
tokens are the memory buffers where the computation of actors is carried out.

• Control queues that are used for the sending of computation commands, reconfigu-
ration parameters (partial or global) and the profiling of the dynamically scheduled
re-configurable dataflow graph.

In the following, we describe the operations of Spider used during the execution of a
parametric dataflow graph.

Tools 37

Master

Slave

Slave

Schedule
Actors

1
Jobs

Queues
Send Order 2

Data Queues
Pool

... Exchange
Dataflow
Tokens

4

Fire Actors3

Parameters
Set Resolved
Parameters

5

Timings

Execution
Traces 6

Figure 3.10 – Spider run-time structure and operations.

3.8.3 SPIDER Operations

The execution steps followed by Spider to run an actor are numbered in Figure 3.10.
First (Step 1), the GRT schedules an actor on a PE of the architecture, and sends the
execution order (Step 2) through the dedicated job queue of the LRT of this PE. A job is
a message that embeds all the required data to execute one instance of an actor: a job ID,
location of actor data and code, and identifiers of preceding actors in a graph execution.
When an LRT starts an actor execution (Step 3), it waits for data tokens to be available
in the input Fifo queues specified in the job message, among a pool of data Fifo. On
actor completion, data tokens are written in output Fifo queues (Step 4), and the LRT
sends new parameter values (Step 5) if any, and execution traces back to the GRT for
reconfiguration, monitoring and debugging purposes (Step 6). Each LRT is associated
with a job counter that stores the integer job ID of the last executed job. As the job IDs
increases monotonically both with scheduling order and data dependencies between jobs,
these job counters can be used for synchronization purposes between the different LRT,
to check whether an LRT already executed a given job.

3.9 Tools

Among the external tools used in this thesis for the numerical experiments and the bench-
marks, there are SDF3 and Turbine tools which are presented in the following.

3.9.1 SDF3 tool

Synchronous Dataflow For Free (SDF3) [SGB06] is an open source popular software written
in C++. It provides a random dataflow generator and handles SDF and CSDF models.
SDF3 also includes extensive libraries to analyze and transform SDF and CSDF graphs.
The library includes, among other things, tools to evaluate consistency, compute repetition
vectors and compute all possible optimal trade-offs between the storage-space allocated to
the Fifo queues of an SDF graph and the maximal throughput. SDF3 handles sdf3 (xml)
files format which is commonly used by the dataflow community.

3.9.2 Turbine tool

Turbine [BLDMK14] is an open source datflow graph generator developed by the LIP6 lab
at Sorbonne University and available online at https://github.com/bbodin/turbine. It isim-
plemented in Python and uses the NetworkX package to handle the graph data structure.

38 Development Process of Dataflow Graphs

It manipulates simple files (non-xml) in order to facilitate self-made instances, however
the xml format of SDF3 is also supported. Turbine generates live SDF, CSDF and Phased
Computation Graph (PCG) graphs up to 10,000 actors in less than 30 seconds. Random
dataflow graphs are generated in three steps. The first step generates a random graph with
actors and Fifo queues. The second step computes consumption and production rates of
the graph actors. The last step computes a live initial marking based on the sufficient
condition of liveness.

3.10 Conclusion

In this chapter, we presented the different phases of the development process of signal
processing applications modeled with SDF and IBSDF graphs. The verification phase for
example, which consists on evaluating the consistency and the liveness of the graph to
determine if the modeled application is deadlock free or not. The mapping and scheduling
phase, a crucial phase in the development process, which try to find a solution that satisfies
both the user demands and the MPSoC architecture constraints. During these phases, both
the SDF and the IBSDF graphs are converted to more expressive dataflow models like the
srSDF graph and the DAG. These transformations are necessary in order to reveal all
the parallelism of the application, which will be used first for the evaluation of some key
performance indicators and then for the mapping and scheduling phase.

However, converting a dataflow graph into an equivalent srSDF graph or an equivalent
DAG results in an exponential increase of the number of actors and edges. This issue is
more pronounced when flattening the hierarchy of the IBSDF graph into equivalent non
hierarchical graphs, like the equivalent flat srSDF graph and the equivalent flat DAG.
Such large graphs are hard to analyze, map and schedule. In fact, the flattening process
has become the bottleneck in the development process of complex applications using the
IBSDF model.

In the next chapters, we present new methods for the evaluation of key performance
metrics for the IBSDF graph. In contrast to the classical methods which rely on the flatten-
ing process, the new methods evaluate rapidly the IBSDF graph without any conversion.
In the context of rapid prototyping, a fast evaluation of the key performance indicators
is mandatory for real-time feedback to the developer during the application development
and for the mapping and scheduling of the application on MPSoC architecture.

CHAPTER 4

Throughput Evaluation of IBSDF graph

4.1 Introduction

For signal processing applications, the maximum throughput is one of the required prop-
erties to be evaluated as early as possible by the developer. The maximum throughput
is the maximum amount of data tokens that the application can produce at each unit of
time. The evaluation of this property is mandatory for the development process, especially
when a real-time constraint must be satisfied. The value of the maximum throughput with
other key properties enables the developer to validate the design phase and continue the
development process of the application. If the evaluated throughput does not reach an
acceptable value, the design phase is not validated. And so, the developer must recon-
figure the graph until the throughput reaches the required value. Without an automatic
process or guiding from the development tool, the developer may iterate many times on
re-configuring the graph until the throughput value is validated. For this purpose, a very
fast evaluation of the maximum throughput is essential for a real-time feedback to the
developer during the application development, and for MPSoC Design Space Exploration
(DSE) i.e. the research of the best hardware for a specific application.

In this chapter we are interested specifically in evaluating the maximum throughput
of IBSDF graphs on MPSoC architectures with unlimited resources, meaning an unlim-
ited number of PEs, unlimited memory capacity, and a high-performance NoC. The only
criteria taken into account is the Worst-Case Execution Time (WCET) of actors, which
is predefined or measured by running each actor on a specific PE. The evaluation of the
maximum throughput in these perfect conditions enables the developer to measure the
maximum potential of the modeled application, regardless of the target architecture. In
general, cases where the target architecture is not defined yet, an early evaluation of
this maximum throughput helps the developer to limit the search space and choose the
adequate architecture available in the market. For critical applications when the high
performance is the first priority, the evaluation of the maximum throughput allows to
pre-define the specifications of a new architecture prototype.

The chapter is organized into seven sections including the introduction. In the following
section, we present the state-of-the-art methods for the throughput evaluation problem of
SDF graphs. In section 3 and 4, we present respectively the two execution modes of
IBSDF graphs and how to evaluate their throughput using a classical approach based on

39

40 Throughput Evaluation of IBSDF graph

SDF methods. In section 5, we discuss the time and space complexity of the classical
approach and how to reduce it by avoiding a flattening process. In the same section, we
introduce two new methods, Schedule-Replace (SR) and Evaluate-Schedule-Replace (ESR)
techniques which are our first major contribution in this thesis. Both introduced methods
evaluate the throughput of IBSDF graphs without completely flattening their hierarchy.
In section 6, we compare the performance of the new methods with the classical approach,
on both real and synthetic set of IBSDF graphs. Section 7 concludes this chapter.

4.2 SDF State-Of-The-Art Methods

The throughput evaluation problem of SDF graphs is one of the basic problems in dataflow
graphs performance analysis. Even though, its complexity is still unknown and is not well
solved for certain graphs. Almost, all of the SDF methods presented in this section are
based on either converting the SDF graph into an expressive equivalent one or simulating
a schedule of the original SDF graph. The conversion-based methods are known as the
simple approach to computing the exact maximum throughput of a SDF graph. However,
their conversion process may result in an equivalent graph with exponential numbers of
actors and edges, which makes the throughput computation a hard task. As an alterna-
tive to conversion-based methods, the simulation of an ASAP schedule of a SDF graph
allows computing its exact maximum throughput without any conversion. Indeed this
alternative approach has a lower space complexity than conversion-based methods but,
simulating many iterations of a SDF graph may take too long to evaluate the throughput.
As consequences, if the Repetition Vector (RV) of a SDF graph is too large, it is not
possible to evaluate the throughput with the previous methods in a reasonable amount of
time or memory. Therefore, computing an approximation of the throughput using another
type of schedules like the periodic one is suitable for a fast evaluation of large SDF graphs.

In theory, the state-of-the-art methods are restricted to strongly-connected graphs. In
practice, this does not represent a restriction, because each consistent SDF graph can
be transformed into a strongly connected graph by modeling the capacity of its Fifo via
backward edges [15]. Furthermore, some methods consider a restricted parallelism in which
actors are not allowed to be executed more than once in parallel. This is specified directly
in the SDF graph by adding a self-loop edge with one data token for each actor.

2

1
2

1

1

1

1

1 1B
1

x1

A

D

C x2
x1

x2 x2

x1

Figure 4.1 – An example of a SDF graph composed of 4 actors: A, B, C, and D.

In the following, we present each of the SDF state-of-the-art methods for the through-
put evaluation under no resource constraint. And to illustrate the methods algorithm, we
take the SDF graph of figure 4.1 as the main graph example for this section. The graph is
composed of 4 actors, A, B, C, and D. One iteration of the graph equals to 1 execution
of actor A and 2 executions of each of the remaining actors. To simplify the illustration
of the different schedules, we define the duration of each actor as 1 unit of time.

SDF State-Of-The-Art Methods 41

4.2.1 HSDF based method

The HSDF based method is the first method in the literature to compute the maximum
throughput of SDF graphs based on a conversion. As defined in [SB09b] the method
consists of the following steps:

• Step 1: convert the SDF graph to its equivalent HSDF graph.

• Step 2: compute the Maximum Cost-to-Time Ratio (MCR) value of the equivalent
HSDF graph obtained in step 1.

• Step 3: calculate the maximum throughput of the original SDF graph as 1 over the
MCR value computed in Step 2.

In this method, the SDF graph is transformed into an equivalent HSDF graph to
show explicitly all the parallelism and all the data dependencies between the graph actors.
Once the equivalent HSDF graph is obtained, the second step consists of finding the cycle
c ∈ C(G) that maximize the ratio: r(c) = L(c)/D(c) where L(c) =

∑
a∈c l(a) the total

execution time of the cycle actors, and D(c) =
∑

e∈c d(e) the total number of data tokens
present on the cycle edges. This problem is called the Maximum Cost-to-Time Ratio
(MCR) [DIG99], also referred to as Maximum Cycle Mean (MCM) problem. The MCR is
a well-known problem in combinatorial optimization which can be solved by a polynomial-
time algorithm [Das04]. The MCR value (maxc∈C(G) r(c)) can be shown ([17],[20, Lemma
7.3] to be equal to the average time between two executions of any of the HSDF actors.
Based on that, the final step consists of calculating the maximum throughput of the
original SDF graph as:

Thmax(G) =
1

MCR(GH)

This equation derives directly from the throughput definition and represents the exact
maximum value that the throughput can not exceed, due to the data dependence between
the actors of the cycle with the MCR value.

A1

B1

B2

D1

D2

x1

x1
1

1

1

1
1

1
1

1

1
1

1 1

1
1

1

1

1 1

1

1
C1

C2

(a) The equivalent HSDF graph of the SDF graph
example of figure 4.1

A1

B1

B2

D1

D2

C1

C2

(1,0)
MCM = 4/1

(1,0)

(1,1)
(1,0) (1,0)

(1,0) (1,0)

(1,0)

(1,1)

(1,0)

(b) The equivalent bi-valued graph for the MCM
computations

Figure 4.2 – Computing the throughput of the SDF graph example with the HSDF based method

Figure 4.12 shows an illustration of computing the throughput of the SDF graph exam-
ple of figure 4.1 using the HSDF-based method. In the first step, the SDF graph example
is converted to a HSDF graph (fig.4.2a) in which each actor is duplicated according to
the RV. Then, the second step computes the MCR value of the HSDF graph as shown in
figure 4.2b. The red cycle composed of actors A1, B1, D1, and C1 represents the cycle

42 Throughput Evaluation of IBSDF graph

with the maximum ratio of a value equals to 4. Hence the maximum throughput of the
SDF graph example is 1/4 data token per time unit.

The time complexity of both HSDF conversion and MCR problem are polynomial.
However, this method is defined by the literature as inefficient. Indeed, converting a SDF
graph to its equivalent HSDF graph may result in an exponential growth of both actors and
edges number. As consequences, the exponential space complexity of the HSDF conversion
makes the MCR problem hard to solve in a reasonable amount of time and memory.

4.2.2 Max-plus Algebra-based method

In [dGKBS12], the author introduced the Max-plus Algebra-based method, a second
method based on a transformation to compute the exact maximum throughput of SDF
graphs. As the first method, the Max-plus Algebra-based method computes the MCR of
an equivalent graph to the original SDF graph. In contrast, the second method uses a
Linear Constraint Graph (LCG) conversion instead of HSDF conversion. The LCG ex-
presses the SDF graph as a linear time-invariant max-plus system with less number of
actors and edges than the HSDF graph. From the numerical experiments of [dGKBS12],
the Max-plus Algebra-based method was concluded to be efficient than the HSDF based
method. However, for large SDF graphs, both conversion based methods may fail due to
the large size of the equivalent graphs.

4.2.3 State-Space Exploration method

In contrast to conversion based methods, the State-Space Exploration (SSE) method
[GGS+06] is able to compute the exact maximum throughput of SDF graphs without
any conversion. The method consists of simulating an ASAP schedule of a SDF graph
to measure its maximum throughput. In [GGS+06], the author demonstrates first how
the ASAP schedule of a SDF graph, also called the self-timed execution, consists of a
transient phase followed by a periodic phase in which a same set of executions is repeated
periodically. Then from a relation between the traditional definition of the throughput
and actors behavior in the ASAP schedule, the author defines the maximum throughput
of a SDF graph by the following equation:

Thmax(G) =
Nb of graph iterations in one period

The duration of one period

In practice, the SSE algorithm simulates symbolically the ASAP schedule of a SDF
graph until it reaches the periodic phase. At each clock cycle of the simulation, the
algorithm stores the state of the graph (the number of data tokens present in each edge)
and compares it to the previously stored states. If the current state is equal to one of
the previously explored states, it means that the graph has reached the periodic phase.
Starting from that state that belongs to the periodic phase, the algorithm simulates one
last iteration to define the maximum throughput value of the graph.

Figure 4.3 shows the ASAP schedule of the SDF graph example of figure 4.1. Form the
schedule we can see that at t3 the graph reaches its periodic phase, in which one period
takes 4 times unit and includes one iteration of the graph. Based on the definition above,
the maximum throughput of the SDF graph example is then 1/4.

In order to reduce the space complexity of the state-space exploration method, the
implementation of its algorithm has been optimized to not store all the explored states.
However, the numerical experiments of [dGKBS12] have shown that the state-space explo-
ration method may fail for SDF graphs that start with a long transient phase. Compared

SDF State-Of-The-Art Methods 43

11 12 13 14 15 16 17 18 191 2 3 4 5 6 70 8 9 10 Time

B1

D1

A1 B2 D2

B1 D1

C1

 Transient Phase Periodic Phase 1 Period

C2

C1

A1 B2 D2

B1 D1

C2

C1

A1 B2 D2

B1 D1

C2

C1

A1 B2 D2

B1 D1

C2

C1

Figure 4.3 – ASAP schedule of the SDF graph example of figure 4.1.

with conversion based methods, the state-space exploration method is faster than the
HSDF based method but slower than the max-plus algebra based method. Nevertheless,
the state-space exploration method does not require any conversion and operates directly
on the original SDF graph.

4.2.4 Periodic schedule based method

Computing the maximum throughput of large SDF graphs with the previous methods
can be time and space consuming. In some cases, the previous methods may fail to
return a result due to the large number of actors and their big repetition factor. Hence,
an approximation of the maximum throughput which can be rapidly computed is often
efficient for a rapid prototyping of signal processing applications. In this context, using
the properties of the periodic schedule is the fast way to compute an approximation of the
maximum throughput of large SDF graphs.

As presented in the previous chapter, a periodic schedule σ of an SDF graph G = 〈A,F 〉
is a cyclic schedule [RV10], in which each actor a ∈ A has a periodic execution defined
by its initial start date Sσ〈a,0〉 and a period ωσa . Based on this property, the throughput
of each actor a ∈ A is defined as 1 over its execution period ωσa . Hence, the throughput
Thσ(G) of a periodic schedule σ of a SDF graph G = 〈A,F 〉 is equal to:

Thσ(G) =
1

maxa∈A{ωσa}

Among all the feasible periodic schedules of a SDF graph, there is one that minimizes
the most the execution period of all the actors and thus maximizes the throughput of
the graph. That schedule is called the optimum periodic schedule σ∗ of the SDF graph.
Therefore, the periodic schedule based method consists of computing the throughput of
the optimum periodic schedule to estimate the maximum throughput of a SDF graph. In
practice, the algorithm consists of the following steps:

• Step 1: Normalize the SDF graph G = 〈A,F 〉 to define the Za of each actor a ∈ A.

• Step 2: Verify the existence of a periodic schedule for G.

• Step 3: Find the optimum periodic schedule σ∗ of G by computing the minimum
average-token-flow-time K∗.

• Step 4: Compute the execution period ωσ
∗
a of each actor a ∈ A as ωσ

∗
a = K∗ × Za.

• Step 5: Compute the throughput of the optimum periodic schedule σ∗ of G as
Thσ

∗
(G) = 1/maxa∈A{ωσ

∗
a }.

The first step is mandatory for the computations, it simplifies the calculations and
enables some useful properties. The goal of this step is to compute a normalized consump-
tion and production rate Za for each actor a ∈ A. In this way, each actor of the graph

44 Throughput Evaluation of IBSDF graph

has the same consumption and production rate value on all of its input and output edges
respectively. Once the SDF graph G is normalized, the second step verifies that G admit
a periodic schedule. As presented in the previous chapter, a periodic schedule exists for G
only if the sufficient condition of liveness is satisfied. In the case of G do not fulfill that
condition, the periodic schedule based method cannot be used and the algorithm will fail
to return a result. Step 3 consists of computing the minimum average-token-flow-time K∗

of G that defines the optimum periodic schedule of the graph. Based on the system of
precedence constraint that describes a periodic schedule, K∗ is obtained by solving the
following minimization problem:

minimize Kσ

∀e(a, b) ∈ E Sσ(b, 0)− Sσ(a, 0) ≥ l(a)−Kσ H(e)
∀a ∈ A Sσ(a, 0) ≥ 0

where the value H(e) of an edge e(a, b) is defined as M0(e)− (Zb− gcde). Notice that,
the dual problem of this minimization problem is nothing more than the formulation of a
MCR problem:

Maximize
∑

e(a,b)∈E
l(a) xe

∀a ∈ A
∑

e∈A+(a)

xe −
∑

e∈A−(a)

xe= 0∑
e∈A

H(e) xe = 1

∀e ∈ E xe ≥ 0

In fact, since G is strongly connected and satisfies the sufficient condition (∀c ∈
C(G), H(c) > 0), a linear transformation can be applied to express explicitly the so-
lution K∗ of the main problem as a MCR problem:{

minimize Kσ

∀c ∈ C(G) Kσ ×
∑
e∈c

H(e) ≥
∑
a∈c

l(a) for which K∗ = maxc∈C(G)
L(c)
H(c)

where L(c) =
∑

a∈c l(a) the total execution time of the cycle, and H(c) =
∑

e∈cH(e)
the sum of the cycle edges value.

Once the value of K∗ is defined, step 4 calculates the minimum execution period ωσ
∗
a

of each actor a ∈ A based on the property ωσ
∗
a = k∗ ×Za. Finally, the last step calculates

the throughput value of the optimum periodic schedule which represents an estimation of
the maximum throughput of G.

Figure 4.4 illustrates the different steps of computing the throughput of the SDF graph
example of figure 4.1 using the periodic schedule based method. The first step computes
a normalized consumption and production rate for each actor which turns out to be the
same configuration as the original SDF graph example (fig 4.4a). Hence, the normalized
rates of actors A, B, C, and D are respectively ZA = 2, ZB = 1, ZC = 1, and ZD = 1.
Figure 4.4b shows the valued graph associated with the normalized SDF graph example,
in which each edge e has an associated value H(e). From the valued graph, the second step
concludes that for any cycle c in the graph, H(c) > 0 and thus a periodic schedule exists
for the SDF graph example. The third step computes K∗, the solution of the following

SDF State-Of-The-Art Methods 45

minimization problem to define the optimum periodic schedule σ∗ of the graph:

minimize Kσ

Sσ(B, 0)− Sσ(A, 0) ≥ 1− 1×Kσ

Sσ(C, 0)− Sσ(B, 0) ≥ 1− 0×Kσ

Sσ(D, 0)− Sσ(B, 0) ≥ 1− 0×Kσ

Sσ(C, 0)− Sσ(D, 0) ≥ 1− 0×Kσ

Sσ(A, 0)− Sσ(C, 0) ≥ 1− 0×Kσ

Sσ(A, 0), Sσ(B, 0), Sσ(C, 0), Sσ(D, 0) ≥ 0

To simplify the computations, figure 4.4c shows the associated bi-valued graph of the
system, in which each edge e(i, j) has a bi-value (l(i), H(e)). From that graph, the MCR
value equals to 4/1 and thus K∗ = 4. Then, step four defines the execution period ωσ

∗
of

the actors using their normalized rate Z and the K∗ value: ωA = 4×2 = 8, ωB = 4, ωC = 4,
and ωD = 4. Finally, since ωA is the maximum execution period, step five concludes that
the maximum throughput of the SDF graph example is 1/ωA = 1/8. Figure 4.5 illustrates
the resulted periodic schedule of the graph. Compared to the ASAP schedule of figure 4.3,
the throughput of the optimum periodic schedule is twice lower than the exact maximum
throughput of the graph.

2

1
2

1

1

1

1

1 1B
1

x1

A

D

C
x1

(a) A normalized version of the
SDF graph example.

0

B

A

D

C

0

0

01

(b) Verifying the existence of a
periodic schedule.

(1,0)
B

A

D

C

(1,0)

(1,0)

(1,0)

(1,1)

MCR = 4/1

(c) Computing the K∗ value of the
optimum periodic schedule.

Figure 4.4 – Computing the throughput of the SDF graph example of figure 4.1 using the periodic
schedule based method.

11 12 13 14 15 16 17 18 191 2 3 4 5 6 70 8 9 10 Time

B

D

A

B

D

C C

A

B

D

C

B

D

C

A

B

D

C

 wB = 4

 wD = 4

 wC = 4

 wA = 8

Figure 4.5 – Optimum periodic schedule of the SDF graph example of figure 4.1.

46 Throughput Evaluation of IBSDF graph

4.2.5 K-Iter method

Recently, [BMKdD16] introduced an iterative algorithm named K-Iter based on a k-
periodic schedule to compute the throughput of both CSDF and SDF graphs. The K-
perioidc schedule consists of defining the execution period of K instances of each actor,
instead of one execution period per actor like the periodic schedule. The experimental
results of [BMKdD16] show that the K-Iter method is more efficient than all the previous
methods in computing throughput of large SDF graphs. However, the algorithm has failed
to return a result for certain synthetic graphs.

4.3 Execution Modes of IBSDF graph

Before diving into the throughput computation of IBSDF graphs, we first present in this
section the two execution modes of the IBSDF model. The first mode is the hierarchical
execution, which maintains the insulation property of the hierarchical levels during the
execution of the IBSDF graph. The second mode is a relaxed execution, which breaks the
insulation property to accelerate the execution of the IBSDF graph and thus increasing
its throughput.

4.3.1 Hierarchical Execution

Additionally to the semantics of the IBSDF graph, there are three firing rules that have
been introduced in [PBR09]. The objective of these rules is to maintain the insulation
property of the interface-based hierarchy during the execution of the IBSDF graph. The
three firing rules are defined as follows:

• Rule 1: A subgraph can start its execution only when enough data tokens are
available on all the input Fifo of its hierarchical parent actor.

• Rule 2: A subgraph can transmit data tokens in the output Fifo of its hierarchical
parent actor only when it finishes its iteration.

• Rule 3: A subgraph executes only one iteration at a time for each firing of its parent
actor.

The first rule guarantees that no actor of a subgraph in the hierarchy starts to execute
before the firing of its hierarchical parent actor. In this way, the execution of an IBSDF
graph always starts from its top graph in a hierarchical way. When a hierarchical actor
of the topgraph is ready to be fired, only at that time, its subgraph starts to execute.
The second and the third rules guarantee an atomic behavior for the hierarchical actors.
Indeed, a hierarchical actor will produce data tokens only when its subgraph have finished
one complete iteration.

With these three firing rules, a hierarchical actor behaves exactly like a regular SDF
actor consuming and producing data tokens. Therefore, the insulation of the subgraphs
is maintained during the execution of the IBSDF graph. Moreover, each subgraph can be
evaluated and scheduled independently from the hierarchy, which eases the analysis of the
IBSDF graph.

Figure 4.6 shows an example of an IBSDF graph for which a hierarchical execution is
shown in figure 4.7. The IBSDF graph example is composed of two hierarchy levels, in
which actor C is a hierarchical actor described by the IBSDF graph EFGH. An iteration
of the topgraph is composed of 1 execution of actor A and 2 executions of each of the

Execution Modes of IBSDF graph 47

2

1
2

1

1

1

1

1 1B
1

x1

A

D

C x2
x1

x2 x2

x1

1

E F22

2

2

2

2 O
u

t
1

2

2

2

2

x2

1

1
x1

x1x1

In 2

2
2

H G
x1

2

2

In
 1

Topgraph

Subgraph

Figure 4.6 – Example of an IBSDF graph composed of two levels of hierarchy, in which actor C
is a hierarchical actor described by the IBSDF subgraph EFGH.

remaining actors B, C, and D. One iteration of the subgraph equals to 1 execution of
each of its actors. Applying the firing rules described above, the ASAP schedule of the
IBSDF graph example results in the hierarchical execution shown in figure 4.7. As the
schedule demonstrates, the subgraph EFGH start to execute at time 2 only when actor
C receives enough data tokens from its precedent actors B and D (Rule 1). Following the
second rule, actor C produces data tokens only when its subgraph finishes its execution at
time 6, which results in firing actor A. Based on the graph configuration, each execution of
actor A results in two executions of actor C. Thus by respecting the third rule, a complete
subgraph iteration is executed for each of the two firings of actor C simultaneously.

11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 70 8 9 10 Time

In
 1B1

D1

G1

H1

E1

F1In
 2

O
u

t
1

A1 In
 1B2

D2

G2

H2

E2

F2In
 2

O
u

t
1

A1

In
 1B1

D1

G1

H1

E1

F1In
 2

O
u

t
1

In
 1B2

D2

G2

H2

E2

F2In
 2

O
u

t
1

A1

In
 1B1

D1

G1

H1

E1

F1In
 2

O
u

t
1

 Transient Phase Periodic Phase
1 Period

Figure 4.7 – ASAP schedule of the equivalent flat srSDF graph of figure ??.

4.3.2 Relaxed Execution

The firing rules were introduced mainly to ease the analysis of the IBSDF graph, especially
the liveness evaluation. Indeed, with the new added atomic property of the hierarchical
actors, each subgraph can be analyzed independently from the hierarchy. Thence, the
IBSDF graph is consistent and live if each of its subgraphs is consistent and live, including
the topgraph. However, the firing rules may slow down the execution of the IBSDF graph
by constraining the firings of the subgraph actors. Hence, the firing rules may stop the
application to reach its maximum throughput.

In this context, the second mode is used to increase the performance of the IBSDF
graph. The relaxed execution consists of relaxing the firing rules once the consistency and
the liveness of the IBSDF graph have been verified. Hence, each actor of the hierarchy is
free to execute as soon as there are enough data tokens on its input Fifo including input
and output interfaces. Therefore, the IBSDF graph can reach its maximum throughput.

48 Throughput Evaluation of IBSDF graph

Figure 4.9 shows the ASAP schedule of the IBSDF graph of figure 4.6 in the relaxed
execution mode. To better understand the behavior of the IBSDF graph in this execution
mode, figure 4.8 shows its equivalent flat-srSDF graph. As these two figures show, subgraph
actors G1 and G2 are free to execute at t0 simultaneously with actor B because the first
rule has been relaxed. Similarly, by relaxing the second rule, both output interfaces Out1
are free to transmit data tokens immediately after the execution of G1 and G2. And so,
actor A1 can be executed right after that at t1 simultaneously with sub-actor H1, even
if the subgraph has not finished yet its iteration. Again, relaxing the first rule allows the
input interface In1 to transmit immediately the data tokens received from actor B2 to the
subgraph actor E2. Hence, the input interface In1 does not wait until the input interface
In2 receives data tokens from actor D2 to execute. Thus, subgraph actor E2 and actor
D2 start to execute simultaneously at t3 once the actor B2 finishes its execution.

1

1

A1

B1

B2

D1

D2

x1

1

1 1

1

1

1

1 1

1 1

1 1

1 1

1

1
E1

F1 G1

H1In
 1

O
u

t
1

In
 2

2 2 2 2

2

2

2 2 2 2

2

2
2 2

x2

F2

E2 H2

G2In
 2

O
u

t
1

In
 1

2 2 2 2

2

2

2 2 2 2

2

2

2 2

x2

x1

1

1

1

1

Figure 4.8 – The equivalent flat srSDF graph of the IBSDF graph of Figure 4.6.

11 12 13 14 15 161 2 3 4 5 6 70 8 9 10 Time

 Transient Phase Periodic Phase
1 Period

In
 1

O
u

t
1

B1

E1 G1

In
 1

E1G1 O
u

t
1

H1

B1 D1 A1 B1 D1

A1 D2

F2

In
 2

H2

D2

G2 O
u

t
2

H2

B2 In
 1 E2 G2 O
u

t
1

B2

E2

In
 1

D1 In
 2

F1 H1 F1

In
 2

In
 2

In
 2

In
 1

O
u

t
1

G1

F2

E1

A1 B1 D1

H2

D2

G2 O
u

t
1

B2

E2

In
 1

H1 F1

In
 2

In
 2

In
 1

O
u

t
1

G1

F2

E1

A1 B1 D1

H2

D2

G2 O
u

t
1

B2

E2

In
 1

H1 F1

In
 2

In
 2

In
 1

O
u

t
1

G1

F2

Figure 4.9 – ASAP schedule of the IBSDF graph of figure 4.6 under the relaxed execution mode.

Compared to the previous execution mode (fig 4.7), the relaxed execution mode reduces
the duration of one period of the ASAP schedule down to 4 times unit, instead of 7. Which
means that the execution of the IBSDF graph of figure 4.6 speeds up by a factor of 1.75
when the firing rules are relaxed. However, a relaxed execution may use more PEs than
in a hierarchical execution in order to fully exploit the parallelism of the application.
Comparing the two schedules of figures 4.7 and 4.9, the relaxed execution of the IBSDF
graph example uses up to 4 PEs in parallel instead of 2 PEs in the hierarchical execution.

Throughput Evaluation by Flattening the Hierarchy 49

4.4 Throughput Evaluation by Flattening the Hierarchy

Now that the two execution modes of the IBSDF graph have been presented along with the
SDF state-of-the-art methods, this section discusses how to compute the exact maximum
throughput of IBSDF graphs. Firstly, we present the classical approach which is based
on SDF methods to evaluate the throughput of IBSDF graphs under a relaxed execution.
Lastly, we show how to model the firing rules of the IBSDF graph in order to evaluate its
throughput under a hierarchical execution.

4.4.1 Classical Approach

The classical approach is based on a simple technique that has been used since the in-
troduction of the IBSDF model to compile it with the existing methods. The technique
consists of first flattening the hierarchy of the IBSDF graph into an equivalent flat-srSDF
graph. Then, computing the throughput of the resulted flat graph with SDF methods as
if it was a large SDF graph. From SDF state-of-the-art methods, we define two classical
methods for the IBSDF graph:

• Flat-SSE: which is based on the State-Space Exploration (SSE) method and consists
of simulating an ASAP schedule of the equivalent flat-srSDF graph to measure its
exact maximum throughput. As an example of application, figure 4.9 shows the
ASAP schedule of the equivalent flat-srSDF of the IBSDF graph example (figure
4.8). One period of the schedule in the periodic phase is composed of 1 iteration of
the graph and takes 4 times unit. Thus, the maximum throughput of the original
IBSDF graph in a relaxed execution is 1/4 data tokens per time unit.

• Flat-Periodic: which consists of computing the optimal periodic schedule of the
equivalent flat-srSDF graph to define its maximum throughput. Notice that a peri-
odic schedule always exists for a consistent and live srSDF graph. Moreover, all of
the actors of a srSDF graph have the same execution period ωa = K when applying
a periodic schedule. Hence, the throughput of a srSDF graph is equal to 1/K, where
K is the MCR value of its normalized version. Taking the fact that normalizing a
srSDF graph results in an HSDF graph, the Flat-periodic method is nothing more
than the HSDF-based method applied to the equivalent flat-srSDF graph. In prac-
tice, the Flat-Periodic method converts an IBSDF graph first to a flat-srSDF graph,
then to an HSDF graph, and finally computes its exact maximum throughput as 1
over its MCR value.

Using the K-Iter algorithm on the flat-srSDF graph results in computing a 1-Periodic
schedule of the graph, which is exactly the same algorithm as the Flat-Periodic schedule.
However, we did not investigate on developing a new flattening process based on the LCG
conversion of the Max-Plus Algebra-based method, since the new flattening process will
nearly have the same space-complexity as the one based on the srSDF conversion.

4.4.2 Modeling the Firing Rules

Unfortunately, the classical flattening process of the IBSDF graph results in an equivalent
flat-srSDF graph that does not express explicitly the firing rules of the hierarchical exe-
cution mode. As consequences, the classical methods cannot evaluate the throughput of
the hierarchical execution of an IBSDF graph, without adapting either their algorithms
of the equivalent flat-srSDF graph. Since the flat graph is used at each phase of the de-
velopment process, we have adapted its structure to support the hierarchical execution

50 Throughput Evaluation of IBSDF graph

mode. This also enables us to use the equivalent flat srSDF graph as the input graph of
any implementation of SDF methods in the existing prototyping tools.

E1

F1 G1

H1In
 1

O
u

t
1

In
 2

2 2 2 2

2

2

2 2 2 2

2

2
2 2

x2

(a) The original IBSDF subgraph

E1

F1 G1

H1In
 1

O
u

t
1

In
 2

2 2 2 2

2

2

2 2 2 2

2

2
2 2

x2

Start

End

x1

(b) The IBSDF subgraph with the firing rules

Figure 4.10 – Modeling the firing rules for the subgraph EFGH of the IBSDF graph of figure 4.6.

The firing rules are modeled in the equivalent flat-srSDF graph by adding two extra
actors Start and End, and extra edges to control the execution of the subgraph. Each
firing rule is modeled as follows:

• Modeling Rule 1: The Start actor enforces Rule 1 by imposing a precedence
relationship between all input interfaces of the subgraph on one side, and all subgraph
actors on the other side.

• Modeling Rule 2: The End actor enforces Rule 2 by imposing a precedence re-
lationship between all subgraph actors on one side, and all output interfaces of the
subgraph on the other side.

• Modeling Rule 3: Rule 3 is enforced by adding precedence relationships between
the Start and the End actor.

Figure 4.10b shows the resulted srSDF subgraph of figure 4.6 after adding the extra actors
and the extra edges to the original subgraph (figure 4.10a). Figure 4.11 shows the resulted
flat-srSDF graph with the modeled firing rules.

E2

F2 G2

H2In
 1

O
u

t
1

In
 2

2 2 2 2

2

2

2 2 2 2

2

2
2 2

x2

Start

End

x1

A1

B1

B2

D1

D2

x1

1

1 1

1

1

1

1 1

1 1

1 1

1 1

1

1

x1

1

1

1

1

E1

F1 G1

H1In
 1

O
u

t
1

In
 2

2 2 2 2

2

2

2 2 2 2

2

2
2 2

x2

Start

End

x1

Figure 4.11 – The equivalent flat srSDF graph of the IBSDF graph of Figure 4.6 with firing rules.

Throughput Evaluation without Flattening the Hierarchy 51

4.5 Throughput Evaluation without Flattening the Hierar-
chy

In the previous section, we have presented the classical approach, which consists of reusing
SDF methods to compute the throughput of IBSDF graphs after flattening their hierarchy
into a flat-srSDF graph. This approach is a simple method that does not require too
much development and can easily be integrated into existing prototyping tools. However
flattening the hierarchy of an IBSDF graph may result in an exponential growth of actors
and edges number in the equivalent flat-srSDF graph, for which SDF methods fail to return
a result in a reasonable amount of time and memory. This issue of the flattening process
has motivated us to deeply study the throughput evaluation problem of IBSDF graphs, and
develop new methods specifically for this hierarchical dataflow model. In the following, we
introduce two new methods for IBSDF graphs, Schedule-Replace (SR) technique for the
hierarchical execution mode and Evaluate-Schedule-Replace (ESR) method for the relaxed
execution mode. Each method takes advantage of both the interface-based hierarchy of the
model and the properties of the targeted execution mode. Hence, both methods compute
the throughput of IBSDF graphs without completely flattening their hierarchy.

4.5.1 The Schedule-Replace (SR) technique

The Schedule-Replace (SR) technique computes the throughput of IBSDF graphs under a
hierarchical execution. The technique is based on constructing an ASAP schedule of the
IBSDF graph in a bottom-up approach and computes its throughput as follows:

• Phase 1 Starting from the bottom level of the hierarchy up to the topgraph, for
each level:

– Step 1: Compute the duration of the hierarchical actors by scheduling their
subgraph using a symbolic execution of an ASAP schedule.

– Step 2: Replace each hierarchical actor with a regular actor that has the same
duration as the subgraph execution, computed in step 1.

– Step 3: Move to the upper level and repeat step 1 and step 2 until the topgraph
is reached.

• Phase 2 Compute the throughput of the resulted topgraph as follows:

– Step 1: Convert the resulting topgraph to a srSDF graph and add a self-loop
edge for each actor which was originally hierarchical.

– Step 2: Compute the throughput of the resulted srSDF graph with SDF State-
Of-The-Art methods [GGS+06, BNHMMK12].

Based on the firing rules of the IBSDF graph that define the hierarchical execution
mode, a hierarchical actor behaves exactly like a regular SDF actor consuming and pro-
ducing data tokens. Indeed, the execution of its subgraph which is defined by a bloc of
sub-actors execution can be seen as the execution of a regular SDF actor that require
multiple resources to execute. As an example, figure 4.12a shows the execution of the
subgraph EFGH of the hierarchical actor C in the hierarchical execution mode. The
execution of the subgraph can be abstracted with the execution of a regular SDF actor
(fig-4.12b) that requires 2 PE to execute and has a duration of 4 times unit.

52 Throughput Evaluation of IBSDF graph

1 Iteration = 4t

1 2 3 4 50

G

H F

 Time
In

 1
In

 2

O
u

t
1

E

(a) The execution of the subgraph EFGH of the
hierarchical actor C.

dur(C) = 4t

1 2 3 4 50 Time

C

(b) The equivalent SDF actor of the hierarchical
actor C.

Figure 4.12 – Abstracting the execution of the subgraph EFGH of the IBSDF graph example.

C1 C2

C1

11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 70 8 9 10 Time

B1

D1

A1 B2

D2

A1

B1

D1

B2

D2

A1

B1

D1

C2

C1

 Transient Phase Periodic Phase

Figure 4.13 – An abstracted hierarchical execution of the IBSDF graph example.

Hence, for each hierarchical actor h described by a subgraph G, we define its equivalent
SDF actor h∗ with a duration l(h∗) and a number of resources R(h∗) such that:

• l(h∗) equals the duration of one iteration of the subgraph G

• R(h∗) equals the maximum number of sub-actors executed in parallel

Figure 4.13 shows the ASAP schedule of the IBSDF graph example under a hierarchical
execution, in which each execution of the hierarchical actor C is represented by one bloc
abstracting the execution of the subgraph.

Therefrom, the SR technique consists of scheduling one iteration of a subgraph to
measure its duration, then replacing its hierarchical parent actor with an equivalent
SDF actor. Thanks to the compositionality feature of the interface-based hierarchy, each
subgraph can be scheduled independently. And so, starting from the bottom level of the
hierarchy up to the topgraph, the complete execution of an IBSDF graph can be abstracted
in its topgraph by repeating the process of schedule/replace for each hierarchical actor.
Hence, the first phase of the SR technique consists of abstracting the complete execution of
an IBSDF graph in its topgraph using the schedule/replace process. Then, the final phase
computes the maximum throughput of the resulted topgraph to determine the throughput
of the original IBSDF graph. To ensure the IBSDF firing rules and to respect the data
dependencies of the subgraphs, a self-loop edge containing 1 data token is added to each
instance of a hierarchical actor in the equivalent srSDF topgraph. Figure 4.14a shows the
resulted topgraph of the IBSDF graph example after applying the first phase of the SR
technique. Figure 4.14b shows the resulting srSDF graph of the second phase in which its
throughput is evaluated using SDF methods and represents the throughput of the original
IBSDF graph example.

Algorithm 1 shows an implementation of the SR technique, in which the abstraction
process of the first phase is done by a recursive function. Even if the SR technique
converts the topgraph into a srSDF graph to evaluate its throughput, the time and space
complexity of this method remains very low compared to the classical approach. Indeed,

Throughput Evaluation without Flattening the Hierarchy 53

2

1
2

1

1

1

1

1 1B
1

x1

A

D

x1
C

L(B) = 1 L(D) = 1

L(A) = 1 L(C) = 4

(a) The resulted topgraph after applying the first
phase of SR technique.

A1

B1

B2

D1

D2

x1

x1
1

1

1

1
1

1
1

1

1
1

1 1

1
1

1

1

1 1

1

1
C1

C2

x1

x1

(b) The equivalent srSDF graph of the resulted
topgraph after adding the self-loop edges.

Figure 4.14 – Evaluating the throughput of the IBSDF graph example with the SR technique.

the schedule/replace process is done one time for each hierarchical actor plus, the size
of the resulted topgraph to evaluate is very small compared to the size of the equivalent
flat-srSDF graph. Moreover, the SR technique is able to compute the throughput of large
IBSDF graphs since it analyzes the hierarchy level by level.

Algorithm 1 Schedule-Replace (SR) technique pseudo-code

function Evaluate(IBSDF graph) . First phase
for all actors a ∈ IBSDF.TopGraph do

if a is hierarchical actor then
Process(a)

end if
end for . Second phase
srSDF = ConvertToSRSDF(IBSDF.TopGraph)
for all actors a ∈ srSDF do

if a is hierarchical actor then
AddSeflLoopEdge(a)

end if
end for
throughput = computeThroughput(srSDF)
return throughput

end function

procedure Process(hierarchical actor H)
for all actors a ∈ H.SubGraph do

if a is hierarchical actor then
Process(a)

end if
end for
schedule = ASAPschedule(H.SubGraph)
regularActor = createNewActor(schedule.duration)
ReplaceHierarchicalActor(H, regularActor)

end procedure

54 Throughput Evaluation of IBSDF graph

4.5.2 The Evaluate-Schedule-Replace (ESR) method

The Evaluate-Schedule-Replace (ESR) method computes the throughput of IBSDF graphs
under a relaxed execution. This method is based on the Schedule-Replace (SR) technique
and consists of the following steps:

• Phase 1 Re-time the IBSDF subgraphs to synchronize their execution and to reveal
the hidden delays in the hierarchy.

• Phase 2 Starting from the bottom level of the hierarchy up to the topgraph, for
each level:

– Step 1 Construct a replacement graph for each hierarchical actor of the current
level by scheduling and evaluating its subgraph.

– Step 2 Convert the graphs of the current level to srSDF graphs and replace
each instance of a hierarchical actor by its replacement graph.

– Step 3 Move to the upper level and repeat step 1 and step 2 until the topgraph
is reached.

• Phase 3 Compute the throughput of the resulted srSDF graph of the topgraph with
SDF State-Of-The-Art methods [GGS+06, BNHMMK12].

Similarly to the SR technique, the ESR method analyzes the IBSDF graph level by
level to compute its throughput. However, the new method replaces a hierarchical actor
by a small graph modeling the behavior of its subgraph in a relaxed execution. Indeed,
relaxing the firing rules enables both input and output interfaces of the subgraph to execute
at a different time as soon as they are ready to be fired. This behavior of the subgraph
interfaces makes the execution of a hierarchical actor different to the one of a regular
SDF actor. As consequences, a hierarchical actor cannot be replaced with a regular SDF
actor in a relaxed execution of the IBSDF graph. As an example, figure 4.15 shows a
comparison between the behavior of the subgraph in each execution mode of the IBSDF
graph example. In the hierarchical execution (figure 4.15a), the subgraph behaves as one
bloc of actors execution in which both input interfaces In1 and In2 start at the same time.
As concerns the output interface Out1, it starts to execute until the end of the subgraph
iteration. In the relaxed execution mode where the firing rules are ignored (figure 4.15b),
the subgraph behaves differently. In fact, the input interfaces start at a different time
and the output interface starts before the end of the subgraph iteration. This behavior
of the subgraph interfaces is what actually makes the relaxed execution faster than the
hierarchical one because it compresses the execution of the entire IBSDF graph. But, it
is not possible anymore to abstract the subgraph execution with a regular actor as we did
in figure 4.13 for the hierarchical execution of the IBSDF graph example.

1 2 3 4 5 6 70

In
 1B1

D1

G1

H1

E1

F1In
 2

O
u

t
1

A1

 Time

(a) The execution of the subgraph under a hierar-
chical execution

1 2 3 4 50

In
 1B1

D1

E1

F1

G1

H1In
 2

O
u

t
1

A1

 Time

(b) The execution of the subgraph under a relaxed
execution

Figure 4.15 – A comparison between the behavior of the subgraph in each execution mode

Throughput Evaluation without Flattening the Hierarchy 55

Therefore, the core algorithm 2 of the ESR method consists of first, representing the
behavior of the subgraph with a small graph that models the time difference between the
execution of the interfaces. Then replacing the hierarchical parent actor of the subgraph
with its replacement graph which we named the equivalent subgraph execution model. In
the following, we explain and illustrate each step of the ESR algorithm taking the IBSDF
graph of figure 4.6 as the graph example.

Algorithm 2 Evaluate-Schedule-Replace (ESR) Pseudocode

ListReplacementGraphs = new list(Actor,Graph)
. Evaluate an IBSDF graph

function Evaluate(IBSDF)
SynchronizeSubgraphs(IBSDF)
for all actors a ∈ IBSDF.TopGraph do

if a is hierarchical actor then
Proceed(a)

end if
end for
srSDF = ConvertToSRSDF(IBSDF.TopGraph)
for all actors a ∈ srSDF do

if a is hierarchical actor then
Replace(a, ListReplacementGraphs)

end if
end for
throughput = computeThroughput(srSDF)
return throughput

end function
. Proceed a hierarchical actor

procedure Proceed(H)
for all actors a ∈ H.SubGraph do

if a is hierarchical actor then
Proceed(a)

end if
end for
srSDF = ConvertToSRSDF(H.SubGraph)
for all actors a ∈ srSDF do

if a is hierarchical actor then
Replace(a, ListReplacementGraphs)

end if
end for
HSDF = ConvertToHSDF(srSDF)
K = ComputeMCR(HSDF)
DAG = ConvertToDAG(HSDF)
schedule = ASAP&ALAPschedule(DAG)
replacementGraph = ConstructGraph(schedule,K)
ListReplacementGraphs.add(H,replacementGraph)

end procedure

56 Throughput Evaluation of IBSDF graph

ESR main algorithm

The first phase of the ESR method is mandatory to analyze independently the subgraphs.
It consists of moving up the data tokens that are ready to be transmitted from the sub-
graphs to their upper graphs. Starting from the bottom level of the hierarchy up to the
topgraph, each subgraph is executed until it stops. Each time an output interface is ex-
ecuted, the data tokens to transmit are moved from the subgraph to its upper graph.
A temporary empty self-loop edge is added to actors without input edges and to input
interfaces for preventing an infinite execution of subgraphs during this phase. At the end
of phase 1, the current state of the subgraphs is saved as the new initial marking. In the
IBSDF graph, each instance of a hierarchical actor is described by an instance of its sub-
graph. Therefore each data token moved from a subgraph to an upper level is multiplied
by the repetition factor of the hierarchical actor parent of the subgraph. Figure 4.17 shows
the synchronization of the IBSDF subgraph of figure 4.6. Figure 4.16b represent the final
state of the IBSDF graph which will be used for the throughput evaluation.

21

2

1 1

1

11

1

1

x1

D

B C
x1x2

x2

x1
A

x2
1

E F22

2

2

2

2 O
u

t
1

2

2

2

2

x2

1

1
x1

x1x1

In 2

2
2

H G
x1

2

2

In
 1

x1

(a) Add empty self-loop edges to input interfaces
and execute the subgraph until it stops.

1

E F22

2

2

2

2 O
u

t
1

2

2

2

2

x2

1

1
x1

x1x1

In 2

2
2

H G
x1

2

2

In
 1

2

1

2

1
1

1

11

1

1

x1

D

B C

x1x2

x2

x1
A

x2

x1*2

(b) Move the data tokens produced by output inter-
faces to the upper level and duplicate them.

Figure 4.16 – Synchronization of the execution of the IBSDF subgraph of the figure. 4.6

The second phase represents the core algorithm of the ESR method. It consists of
evaluating the maximum execution behavior of a subgraph, based on its structure. Mod-
eling it by a relaxed subgraph execution model that abstracts the subgraph structure and
shows only the execution time difference between its input and output interfaces. Finally,
replacing the hierarchical parent actor of the subgraph by its relaxed subgraph execution
model. This process is repeated for each level starting from the bottom level up to the
topgraph. At the end of Phase 2, the topgraph abstracts the complete hierarchy of the
IBSDF graph. Phase 3 computes the throughput of the topgraph to determine the IBSDF
graph throughput.

Constructing the Equivalent Subgraph Execution Model

Despite the precedence relationship of a hierarchical actor, the subgraph cannot exceed
the maximum relaxed execution defined by its own structure. The purpose of the equiva-
lent subgraph execution model is to abstract the subgraph structure by representing only
the maximum throughput of the subgraph and the execution time difference between its
interfaces. Which is all required for the throughput evaluation.

Throughput Evaluation without Flattening the Hierarchy 57

The equivalent subgraph execution model is constructed as follows:

1. Convert the subgraph to a srSDF graph and compute the minimum execution period
of its actors using the periodic schedule [BNHMMK12]

2. Schedule the srSDF subgraph using an ASAP schedule followed by an As Late As
Possible (ALAP) schedule

3. Construct the equivalent subgraph execution model using the schedule and the min-
imum execution period obtained in the previous steps

Step 1 consists of computing the average-token-flow-time K of the srSDF subgraph
using the periodic schedule [BNHMMK12]. The K value represents the minimum wait-
ing time to respect between two successive firings of subgraph actors due to their data
dependencies. And 1/K represents the maximum throughput of the subgraph. Figure
4.17b shows the MCR of the equivalent HSDF subgraph (figure 4.17a), which equals 1/4.
Thence, k = 4 and means that each subgraph actor needs to wait 4 clock-cycles between
two successive firings.

E F11

1

1

1

1 O
u

t
1

1

1

1

1

x1

1

H G
1

1

In
 1

In 2

1

(a) The equivalent HSDF subgraph EFGH

E F11

1

1

1

1 O
u

t
1

1

1

1

1

x1

1

H G
1

1

In
 1

In 2

1
MCR = 4/1

(b) The MCR of the HSDF subgraph

Figure 4.17 – Computing the average-token-folw-time K of the IBSDF subgraph of figure. 4.6

Step 2 consists of scheduling the subgraph by an ASAP schedule followed by an ALAP
schedule to define the minimum time difference between its interfaces execution. The
ASAP schedule allows defining the minimum time that output interfaces take to transmit
data tokens when the subgraph starts an iteration. Scheduling the subgraph with ALAP
schedule allows to define the maximum delay for input interfaces to execute without affect-
ing the execution of output interfaces. To use the existent algorithm of ASAP and ALAP
schedules, the HSDF subgraph of step 1 is converted to a DAG. The DAG version of the
HSDF subgraph is obtained simply by removing all Fifo that contain initial marking.
Figures 4.18a and 4.18b show respectively the ASAP and ALAP schedule of the IBSDF
subgraph of figure 4.6. The final schedule (figure 4.18c) highlights only the execution of
the interfaces, which is all required for step 3.

1 Iteration L = 4

1 2 3 4 50

E

F

G

H

 Time

In
 1

In
 2

O
u

t
1

(a) ASAP schedule

1 2 3 4 50

E

F

G

H

 Time

In
 1

In
 2

O
u

t
1

1 Iteration L = 4

(b) ALAP schedule

1 2 3 4 50

E

F

G

H

 Time

In
 1

In
 2

O
u

t
1

1 Iteration L = 4

(c) Final schedule

Figure 4.18 – Scheduling the IBSDF subgraph of figure. 4.6 with an ASAP schedule followed by
an ALAP schedule to measure the time difference between the execution of the subgraph interfaces.

58 Throughput Evaluation of IBSDF graph

Step 3 constructs the equivalent subgraph execution model by representing the final
schedule with an equivalent srSDF graph. The start time of each interface is represented by
an actor (TimeLineActor) with a null duration. The time difference between two consec-
utive executions of interfaces in the timeline is represented by an actor (TransitionActor)
with a duration equals to that time difference. Each interface is connected to the associ-
ated actor of its execution start time. The execution duration of the subgraph interfaces
is set to 0. A final actor, named PeriodActor, is added to model the minimum waiting
time of the subgraph actors by creating a cycle with the TimelineActors. The duration of
the PeriodActor is computed as numerator(K)−

∑
L(TransitionActor). The maximum

throughput of the subgraph is modeled by adding denominator(K) data tokens to the
cycle created by the PeriodActor. Thus the MCR value of the cycle represents the exact
value of K.

 Equivalent graph

T0 trans T1 trans T3

In
 1

In
 2

1

1

1 1 11

1

1

1 1 1 1

1

1

Timeline

dur= 0

dur= 0

dur= 0

dur= 1 dur= 0 dur= 2

dur= 0

Period

dur = 4-3 = 1
 dur= numer(K) - last t

 denom(K) = 1

1

11

1

O
u

t
1

dur= 0

1 2 3 40

In
 2

O
u

t
1

Timeline

In
 1 E

F

G

H

trans=1t trans=2t

 Final Schedule

Figure 4.19 – Constructing the equivalent subgraph execution model of the IBSDF subgraph of
figure. 4.6.

Figure 4.20 shows the equivalent subgraph execution model of the IBSDF subgraph
of figure 4.6. The three interfaces in1, in2, and out1 are connected respectively to the
timeline actors T0, T1 and T3 with a null duration. The time difference between the firing
of both input interfaces in1 and in2 is represented by the first transition actor Trans with
a duration equal to 1. The second transition actor Trans, with a duration equal to 2,
models the time difference between the firing of the input interface in2 and the output
interface out1. The period actor period is connected to the time actor T0 in one side, and
to T3 on the other side. The duration of the period actor is computed as K = 4 minus the
total duration of the transition actors

∑
L(Trans) = 3, which equals 1. The maximum

throughput of the subgraph which equal to 1/K = 1/4 is modeled by adding 1 data token
on the Fifo between the period actor Period and T0.

Throughput Evaluation without Flattening the Hierarchy 59

A1

C1 Out 1

C2 Out 1

x2

1

1

x1

B1

D1

x1

1

1

1 1

1
1

1

1 C
1

In
 1

C
1

In
 2

1

T0 trans T1 trans T3

Period
x1

1 1 1 1

1

1

1 1 1 1

1

1

1

1 1

1

1 1

dur= 0

dur= 0

dur= 1 dur= 0 dur= 2

dur= 0

dur= 1

dur =1

B2

D2

1

1

1 1

1
1

1

1

C
2

In
 1

C
2

In
 2

1

T0 trans T1 trans T3

Period
x1

1 1 1 1

1

1

1 1 1 1

1

1

1

1 1

1

1 1

dur= 0

dur= 0

dur= 1 dur= 0 dur= 2

dur= 0

dur= 1

dur =1

dur= 1

dur= 1

dur= 1

dur= 1

dur= 1

dur= 0

dur= 0

Figure 4.20 – The resulted srSDF topgraph of the ESR method.

Figure 4.20 shows the resulted srSDF topgraph of the ESR method. The graph is
obtained by first converting the IBSDF topgraph of figure 4.6 to a srSDF graph. Then
replacing each instance of the hierarchical actor C with the equivalent subgraph execution
model of its subgraph (figure 4.19).

A special case of IBSDF graphs

For a particular case of IBSDF graphs, the ESR method is not capable of computing the
exact maximum throughput. Especially when the initial marking of the graph removes
the data dependence between output and input interfaces in a subgraph iteration. For
instance, the initial marking of the IBSDF graph in figure 4.21a allows executing 5 times
the output interface out1 without the need of executing the input interface in1. That
makes the output interface out1 independent from the input interface in1 in terms of data
tokens for 5 subgraph iterations.

Figure 4.21b shows the equivalent relaxed srSDF graph of the IBSDF graph of fig-
ure 4.21a. The MCR of the relaxed srSDF graph is the value of the cycle (A, B, D, in2,
F , G, out1) and so the throughput is 1/MCR = 5/5 = 1. Using ESR method, the through-
put is 1/3 computed as 1 over the MCR value of its resulted srSDF graph (fig. 4.21c) which
is the value of the cycle (A, B, in1, T1, out1). The throughput computed with the ESR
method represents 33.3% of the maximum throughput.

60 Throughput Evaluation of IBSDF graph

1

1
1

1

1

1

1

1 1B
1

x1

A

D

C
x1

x1

x1 x1

x5

E F
11

1

1

1

O
u

t
1

In
 1

1

1

1

1

x5

1

1 x1

x1x1

In 2

1

1

1

G1

x1

(a) A Particular case example of IBSDF graph

O
u

t
1

In
 1

1

1

In 2

1

1

1

1

1

1

1

1

1 1B
1

x1

A

D

x5

11

1
1
1

x5

1

FE

G

x1

1

1 1

dur=1 dur=1

dur=1

dur=1

dur=1

dur=0
dur=0

dur=0dur=1

(b) The equivalent relaxed srSDF graph without
the extra-edges.

O
u

t 1

In 2
11 1

1

1

1

1

1

1 B 1

x1
A

D

x5
1

1

1
T0 Trans T1

Period

In 1

x6

1 1 1 1 1

1

11

1

1

1

dur=1 dur=1

dur=0

dur=0

dur=1

dur=2

dur=0

dur=1

dur=1

dur=0

(c) The resulting srSDF graph of the ESR
method.

Figure 4.21 – An IBSDF graph for which the ESR method fails to return the exact value.

4.6 Experimental Results

4.6.1 Experimental Setup

In this section, we compare the performance of the new techniques Schedule-Replace (SR)
and Evaluate-Schedule-Replace (ESR) with the classical methods Flat-State-Space Explo-
ration (SSE) and Flat-Periodic which are based on flattening the hierarchy. The numer-
ical experiments consist of measuring the running time for each method to compute the
throughput, including the srSDF conversion when relevant. The maximum throughput
value computed by the classical methods is used to compare the quality of SR and ESR
techniques. Experimental results are summarized in Table 4.2,4.3 and 4.4. The difference
in the throughput value between the two techniques ESR and SR shows how much the
execution of IBSDF graphs can speed up by relaxing the firing rules.

To extensively test our methods, we have used a set of IBSDF graphs composed of two
categories. The first category is a set of real signal processing applications modeled by IB-
SDF graphs and available in [Pre]. The second category is a set of synthetic IBSDF graph
generated randomly using the IBSDF graph generator based on Turbine tool [BLDMK14].
Table 4.1 shows the characteristics of the benchmark. The number of hierarchical levels
of the real applications does not exceed 4 levels, which is not big enough to show all the
potential of the new methods. Therefore, the synthetic graphs are generated with a higher
number of levels than the real applications. The last synthetic IBSDF graph Graph 6 has
10 hierarchical levels, which enable us to compare the performance of the new methods on
large IBSDF graphs.

Experimental Results 61

Table 4.1 – Description of the benchmark set

IBSDF Graph
Equivalent Flat-srSDF graph

Hierarchical Exec. mode Relaxed Exec. mode

Name Levels Actors Actors FIFOs Actors FIFOs

Crypto 2 10 34 85 34 49

Large FFT 2 10 267 1300 267 777

LTE 4 18 250 641 272 337

Stereo Matching 2 41 1604 5829 1606 3143

Graph 1 3 15 503 1654 513 816

Graph 2 5 20 17727 80976 17730 56703

Graph 3 6 24 84440 338391 87440 196019

Graph 4 5 150 653289 3253811 654566 2034980

Graph 5 8 240 39 E10 - 39 E10 -

Graph 6 10 100 31 E15 - 31 E15 -

Both methods SR and ESR have been integrated to the open-source Preesm frame-
work [PDH+14] as well as the Periodic schedule based method. For the SSE method
[GGS+06], we have used the open source implementation of SDF 3 [SGB06]. We also used
the mathematical programming solver Gurobi [gur] for the computation of the optimum
periodic schedule [BNHMMK12]. All the methods were tested on one core of an Intel
i5-6300 processor clocked at 2.4 GHz and with 8GB of RAM.

4.6.2 Results

Table 4.1 shows the description of both, the IBSDF graphs and their equivalent Flat-
srSDF graph. From the size of the equivalent Flat-srSDF graphs of each execution mode,
we can clearly see that the flattening process results in an exponential growth of actors and
edges number. In fact, it was not possible to convert the last two synthetic IBSDF graphs
Graph 5 and Graph 6 with the available RAM. As consequences, the classical methods
have failed to compute the throughput of these two graphs in both execution modes.

Table 4.2 compares the total execution time of the SR method with the classical meth-
ods Flat-SSE and Flat-Periodic, to compute the throughput of the benchmark set under
the hierarchical execution mode. As the table shows, the Flat-SSE is faster than Flat-
Periodic and SR techniques for small IBSDF graphs. However, the execution time of
both classical methods increases exponentially as the number of levels and the size of the
equivalent srSDF graph grow. In contrast, the SR technique was able to compute the
throughput of all the IBSDF graphs in a few milliseconds since the technique avoids flat-
tening the hierarchy. For the Stereo-Matching application, the SR technique is 3 times
faster than Flat-Periodic method and 70 times faster than Flat-SSE method.

The results for the synthetic graphs confirm that the periodic schedule based method
is suitable for large SDF graphs than State-Space Exploration (SSE) method. In fact,
even if the Flat-Periodic method took 4 minutes to compute the throughput of Graph 4
compared to 61 milliseconds with SR technique, it remains better than FLat-SSE which
failed to return a result in less than 5 minutes.

62 Throughput Evaluation of IBSDF graph

Table 4.2 – Performance comparison between the Schedule-Replace technique and the srSDF
conversion based methods.

IBSDF Graph Total Execution Time

Name Levels Flat-SSE Flat-Periodic Schedule-Replace (SR) technique

Crypto 2 4 ms 8 ms 38 ms

Large FFT 2 29 ms 48 ms 36 ms

LTE 4 22 ms 32 ms 32 ms

Stereo 2 3676 ms 151 ms 37 ms

Graph 1 3 493 ms 67 ms 34 ms

Graph 2 5 >5 min 3060 ms 34 ms

Graph 3 6 >5 min 14600 ms 34 ms

Graph 4 5 >5 min 234000 ms 61 ms

Graph 5 8 - - 61 ms

Graph 6 10 - - 72 ms

Table 4.3 – Performance comparison between Classical Approaches, Schedule-Replace (SR) tech-
nique, and the Evaluate-Schedule-Replace (ESR) method.

IBSDF graph Flat-SSE Flat-Periodic ESR technique SR

Name Exec.Time Exec.Time % of Opt. Exec.Time % of Opt.

Crypto 1 ms 6 ms 100% 45 ms 100%

Large FFT 44 ms 33 ms 100% 74 ms 100%

LTE 152 ms 20 ms 100% 58 ms 100%

Stereo Matching 4320 ms 80 ms 100% 130 ms 99.18%

Graph 1 11984 ms 30 ms 100% 59 ms 34.48%

Graph 2 >1h 1190 ms 100% 70 ms 55.05%

Graph 3 >1h 2319 ms 100% 90 ms 20.70%

Graph 4 >1h 55407 ms 100% 306 ms 12.49%

Graph 5 - - ?? 560 ms 1%

Graph 6 - - ?? 1930 ms 0.x%

Table 4.3 compares the total execution time of the ESR method with the classical
methods Flat-SSE and Flat-Periodic, to compute the throughput of the benchmark set
under the relaxed execution mode. The optimality of the ESR technique is calculated based
on the exact value of the maximum throughput computed with the classical methods.

Based on the results, the classical methods are faster than ESR technique for small
graphs, but again, their execution time increases exponentially as the number of hierarchi-
cal levels grows. However, this time the Flat-Periodic method took less time to compute
the throughput of the equivalent Flat-srSDF graphs. Which is explained by the fact that
the equivalent flat-srSDF graph has less number of actors and edges in the relaxed execu-
tion mode than the hierarchical one since the extra actors and extra edges are not added
to the flat graph. Surprisingly, this is not the case for the Flat-SSE method. We assume
that the equivalent flat-srSDF graph has more states to explore in a relaxed execution
since the number of actors to execute at each cycle is higher. Thus the Flat-SSE method
takes a longer time to return a result.

Conclusion 63

Table 4.4 – Graphs description

IBSDF graph
Resulted srSDF topgraph

SR technique ESR method

Name Levels Actors Actors FIFOs Actors FIFOs

Crypto 2 10 10 17 30 37

Large FFT 2 10 4 5 8 8

LTE 4 18 3 4 7 7

Stereo Matching 2 41 39 63 56 78

Graph 1 3 15 15 26 23 32

Graph 2 5 20 12 30 24 42

Graph 3 6 24 12 35 22 45

Graph 4 5 150 90 196 95 201

Graph 5 8 240 150 441 174 465

Graph 6 10 100 50 124 68 142

Like the SR technique, the ESR method has shown to be efficient for large IBSDF
graphs compared to the classical methods. Indeed, the throughput of all the benchmark
set has been computed in less than 2 seconds with the ESR method. As an example,
the Flat-Periodic method took almost 1 minute to compute the maximum throughput of
Graph 4, compared to 0.3 seconds with ESR method. Furthermore, the ESR technique has
been able to compute the exact maximum throughput of both real and synthetic IBSDF
graphs.

The last column of table 4.3 shows the difference value between the computed through-
put of SR technique and the one of ESR method. Based on the result, we can see how
much the execution of an IBSDF graph can speed up by relaxing the firing rules. Or in
other words, how much the execution of an IBSDF graph can slow down by constraining
the subgraph execution with the firing rules. Moreover, the results show that the IBSDF
graph throughput in a hierarchical execution decreases as the number of its hierarchical
levels grows. As the worst case example, the throughput of Graph 6 under a hierarchical
execution represents less than 1% of the one under a relaxed execution.

Form a space complexity perspective, even if the new methods SR and ESR convert the
topgraph into a srSDF graph, the size of the resulted graph remains very small compared
to the flat-srSDF graph. Table 4.4 shows the size of the resulted srSDF topgraph of each
of SR and ESR methods. As the table shows, the complete execution of the hierarchy of
each IBSDF graph in the benchmark set is abstracted in a small srSDF topgraph.

4.7 Conclusion

In this chapter, we have presented the two execution modes of the IBSDF graph. The
hierarchical execution mode which maintains the insulation property of the IBSDF model
through three firing rules. And, the relaxed execution mode which breaks the firing rules to
accelerate the execution of IBSDF graphs to reach their maximum throughput. Based on
the SDF state-of-the-art methods we have introduced two classical methods that flatten
the hierarchy of an IBSDF graph into an equivalent flat-srSDF graph and evaluate its
exact maximum throughput as if it was a large SDF graph. Since the classical flattening
process does not support the hierarchical execution mode, we have shown how to model the

64 Throughput Evaluation of IBSDF graph

firing rules explicitly in the equivalent flat-srSDF graph via extra actors and extra edges.
Despite the fact that the classical methods reuse existing implementation of SDF methods
and do not necessitate any development, unfortunately the flattening process result in an
exponential growth of both actors and edges number of the equivalent flat-srSDF graph.
This exponential space-complexity makes the the throughput evaluation a hard task for the
classical methods. In this context, we have introduced two new methods, each one evaluate
the throughput of an IBSDF graph under an execution mode without completely flattening
the hierarchy of the graph. Both methods take advantage of the interface-based hierarchy
of the IBSDF graph and evaluate its throughput level by level. The Schedule-Replace
(SR) technique which is the new method for the hierarchical execution mode, consists
of abstracting the execution of a subgraph with a regular SDF actor that has the same
duration. Scheduling one iteration of the subgraph allows to measure its duration and thus
defining the duration of the replacement actor. The SR technique repeats that process of
scheduling and replacing subgraphs for each hierarchical level of the graph starting from
the bottom level. At the end of that abstraction process, the new technique evaluates only
the throughput of the topgraph to define the maximum throughput of the original IBSDF
graph. For the relaxed execution mode, we have introduced the new method Evaluate-
Schedule-Replace (ESR) which is based on the same process of the SR technique. In
contrast the ESR method replace a subgraph with an Equivalent Subgraph Execution
Model (ESEM) which models the behavior of the subgraph in the relaxed execution mode.
The size of the Equivalent Subgraph Execution Model (ESEM) remains very small since
it depends only on the number of the subgraph interfaces. Thus, like SR technique,
the ESR method abstracts the complete execution of the IBSDF graph in its topgraph
that has an equivalent throughput. To confirm our theoretical studies, we have tested
the introduced method on a real applications modeled with IBSDF graphs, and on a
synthetic IBSDF graph generated randomly with a higher number of hierarchical levels.
The experimental results have shown that the new methods SR and ESR outperform the
classical methods in term of time and space-complexity. Moreover, the new methods are
capable of evaluating the throughput of IBSDF graphs with high number of hierarchical
levels since they analyze the graph level by level. In the next chapter, we discuss how to
efficiently evaluate the minimum latency of IBSDF graphs using the same approach of the
new techniques introduced in this chapter.

CHAPTER 5

Latency Evaluation of IBSDF graph

5.1 Introduction

In this chapter we evaluate a second key performance indicator for signal processing ap-
plications which is the multi-core latency. The latency of an application is defined as the
required time for the application to process all the input data and return a result. From
the dataflow graph perspective, the latency is the duration of one complete iteration of the
graph. The multi-core latency refers to the duration of the application when it is executed
on a multi-core architecture. The multi-core latency of dataflow-based Model of Computa-
tion (MoC) has been the subject of many researches in the past and it is still studied today
with the rising of multi/many-core architectures [Les17]. One part of the researches focuses
on evaluating the minimum possible multi-core latency of a dataflow graph, either con-
sidering the specifications of the multi-core architecture or not [GSB+07, SGC16, CH17].
Another part aims to compute a new initial marking for the dataflow graph to minimize
its latency. This last process is often called re-timing the application [OS01]. In schedul-
ing problems area, the latency is termed the makespan [Das04] and it is used during the
optimization as an objective function to minimize or as a constraint to satisfy in case of
real-time applications [RA01, BHR09, DLC15, BS12, KKB17]. Our work focus on evaluat-
ing the minimum possible multi-core latency of applications modeled with IBSDF graphs
regardless the specifications of the architecture, i.e. the minimum achievable latency of
the IBSDF graph when it is running on an architecture with unlimited number of Process-
ing Element (PE) and memory capacity so that all the parallelism of the application is
enabled. The only criteria taken into account is the Worst-Case Execution Time (WCET)
of actors, which is predefined or measured.

The minimum multi-core latency of basic models like the SDF graph has been wildly
studied and several methods have been introduced to evaluate its latency at low complexity
[GSB+07, Das04]. However, the latency evaluation of the IBSDF graph still relies on a
classical approach which consists on flattening the complete hierarchy of the graph and
then evaluate it with the state-of-the-art methods of SDF graph. This approach has
been proven to be inefficient due to the exponential growth of actors number during the
flattening process [DDNMK17b]. Therefore, we developed two new methods to evaluate
the latency of IBSDF graphs at low complexity. Both methods take advantage of the

65

66 Latency Evaluation of IBSDF graph

1

E F22

2
1

2

2 O
u

t
1

2

1

2

2

x2

1

1

In 2

2
2

H
2

1

In
 1

21

2

1 1

1

11

1

1

x1 B

A C
x1

D

G

I J

O
u

t
2

O
u

t
3

In 3

2
1

1 2 1

1

1

1

1
1

1

(a) An IBSDF graph of three hierarchical levels.
Actors C and G are hierarchical actors described
respectively by the subgraphs EFGH and IJ .

B1

A1

D1

1

1

1

1

1

1
1

1

1

C1

B2

A2
1

1

1

1

1

1

1

C2

(b) The equivalent DAG of the topgraph.

F1

E1

In
 2

In
 1

H1

O
u

t
1

G1

G2

2 2

2

2

2 2

1

1

1
1

1

1
1

1

1

1

1

1

(c) The equivalent DAG of the subgraph EFGH.

In
 3 J1

1

1
11

1

1

1

1

1
1

1
1

I1

I2

O
u

t
2

Out 3

(d) The equivalent DAG of the subgraph IJ .

Figure 5.1 – The IBSDF graph which will serve as the graph example in this chapter.

interface-based hierarchy of the IBSDF model to hierarchically compute the multi-core
latency of the graph without completely flattening its hierarchy.

This chapter is composed of six sections, including the introduction as the first section.
In section 2, we present how to compute the mono-core latency of an IBSDF graph and
to visualize its value from the hierarchy perspective. In section 3, we present the classical
approach for the multi-core latency evaluation of IBSDF graphs based on the state-of-the-
art methods of the SDF model. In section 4, we present our new methods to evaluate the
multi-core latency of IBSDF graphs at low complexity. Each presented method concerns a
specific execution mode of the IBSDF model. In section 5, we prove our theoretical study
with numerical experiments in which we compare the performance of the new methods
with the performance of the classical approach. Section 6 concludes the chapter.

In this chapter, we will take the IBSDF graph of sub-figure 5.1a as the graph example on
which we will illustrate each introduced method. The IBSDF graph example is composed of
three hierarchical levels. Actors C andG are both hierarchical actors described respectively
by the subgraphs EFGH and IJ . The duration of the regular actors is set to 1 clock-cycle
(cc) to simplify the illustrations of the chapter. The duration of the hierarchical actors
on the other hand, depends on the execution of the subgraphs. Each of the actors A, B,
C, G, and I have a repetition factor of 2. The remaining actors have a repetition factor
of 1. The sub-figures 5.1b, 5.1c, and 5.1d show the equivalent DAG of each subgraph of
the IBSDF graph example. Based on these sub-figures, the entire hierarchy of the IBSDF
graph example is flattened into an equivalent flat DAG by replacing each instance of a
hierarchical actor with the equivalent DAG of its subgraph, starting from the topgraph
equivalent DAG. The resulting equivalent flat DAG of the IBSDF graph example has 23
actors, 50 edges and 18 interfaces which will be illustrated further in section 5.3.

Mono-Core Latency Evaluation 67

5.2 Mono-Core Latency Evaluation

5.2.1 For SDF graph

Computing the mono-core latency value is as important as evaluating the multi-core la-
tency. It allows measuring the speedup of the modeled application when it is executed
on a multi-core architecture. The latency value of a mono-core execution of a dataflow
graph is the duration of one complete iteration of the graph when it is executed on one
Processing Element (PE). For SDF graphs, the mono-core latency value is computed as
the sum of actors duration multiplied by there repetition factor [BLM96a]:

MonoCoreLatency(GSDF 〈A,F 〉) =
∑
a∈A

(dur(a)×RV (a))

This equation derives from the fact that a mono-core execution of the graph is an execution
sequence with no empty slots in which, each actor a ∈ A is executed exactly RV (a) times.
A feasible sequence can be obtained by scheduling one iteration of the SDF graph on one
PE. It can also be obtained by ordering the actors of the equivalent DAG of the SDF graph
using a topological order. From the mono-core latency evaluation perspective, scheduling
an iteration of the graph is not mandatory for the evaluation since any feasible sequence
has the same duration, which is the sum of actors duration multiplied by their repetition
factor.

5.2.2 For IBSDF graph

Similarly, the mono-core latency of an IBSDF graph can be computed without scheduling
an iteration of the graph. Indeed executing an IBSDF graph on one PE results in an
execution sequence in which each actor in the hierarchy is executed following its repetition
factor. Regardless of the execution mode used, hierarchical or relaxed, the duration of the
resulted mono-core execution sequence is the same.

11 12 131 2 3 4 5 6 70 8 9 10 Time

B1 D1 A1 D2C1 C2B2

E1 F1 G1

1 subgraph iteration

E2 F2

Latency = 23

14 15

H1 H2

16 17 18 19

I1 I2

20 21 22 23

G2 G3 G4

J1 I3 I4 J2

1 subgraph iteration

Figure 5.2 – A mono-core execution of the IBSDF graph example of figure 5.1a. Each execution
of a hierarchical actor abstracts the execution of its subgraph.

Figure 5.2 shows a mono-core execution of the IBSDF graph example of figure 5.1a. As
the figure shows, it takes 23 clock-cycles (cc) to execute a complete iteration of the entire
hierarchical graph. Thus, the minimum latency of a mono-core execution of the IBSDF
graph example is 23 cc. As the figure shows, each execution of the hierarchical actor C
abstracts the mono-core execution of the subgraph EFGH, which takes 9 cc to execute
a complete iteration. Similarly, each execution of the hierarchical actor G abstracts the
mono-core execution of the subgraph IJ that takes 3 cc.

68 Latency Evaluation of IBSDF graph

Algorithm 3 Mono-core Latency Evaluation of IBSDF graph

function MonoCoreLatency(IBSDF)
Latency = 0
for all actors a ∈ IBSDF do

if actor a is hierarchical then
a.duration = MonoCoreLatency(a.subgraph)

end if
Latency = Latency + (a.duration× a.repetitionFactor)

end for
return Latency

end function

Therefore, the mono-core latency of a consistent and live IBSDF graph can be com-
puted hierarchically based on the same approach as the Schedule-Replace (SR) technique
[DDNMK17a] introduced in the previous chapter as follows :

• Phase 1 Starting from the bottom level of the hierarchy up to the topgraph, for
each level:

– Step 1: Compute the duration of the hierarchical actors by evaluating the
mono-core latency of their subgraph using the SDF method.

– Step 2: Set the duration the hierarchical actors based on the mono-core latency
of their subgraph, computed in step 1.

– Step 3: Move to the upper level and repeat step 1 and step 2 until the topgraph
is reached.

• Phase 2 Compute the mono-core latency of the resulted topgraph using SDF method.

Algorithm 3 shows an implementation of the SR-based technique to compute the mono-
core latency of an IBSDF graph recursively. By executing algorithm 3 on the IBSDF graph
example, the computation starts by evaluating the mono-core latency of the subgraph IJ
to define the duration of the hierarchical actor G. Using the SDF method, the mono-core
latency of the subgraph IJ is computed as dur(I) × RV (I) + dur(J) × RV (J) which is
equal to 3 clock-cycles (cc). Then, the duration of actor G is set, and the same process
is repeated for the subgraph EFGH to define the duration of the hierarchical actor C.
After evaluating the mono-core latency of the subgraph EFGH, the duration of actor C
is defined as 9 cc. A final evaluation of the mono-core latency of the topgraph ABCD
allows defining the mono-core latency of the entire IBSDF graph.

The time complexity of evaluating the mono-core latency of both graphs SDF and
IBSDF is linear O(|A|), where A is the set of all atomic and hierarchical actors in the
graph. This low complexity enables the developer to instantly evaluate the mono-core
latency of the designed graph as soon as the duration of the atomic actors is defined.

Mono-Core Latency Evaluation 69

5.2.3 The Mono-Core Latency from the hierarchy perspective

Usually, when evaluating the mono-core latency of a SDF graph, only the latency value is
(significant) to the developer giving him an approximation of the expected performance
on a mono-core architecture. However, for a hierarchical model like the IBSDF graph, it
might be interesting to give a deep view of the mono-core latency value from the hierarchy
perspective, answering the following questions:

• how the mono-core latency is distributed among the hierarchy?

• what is the contribution percentage of each actor to the mono-core latency?

• which actors are critical to the performance of the application?

In order to answer these questions, we introduce a new parameter for the IBSDF
actors called the total repetition factor. This new parameter represents the total number
of executions of each actor in the hierarchy during a complete iteration of the entire IBSDF
graph. Let us take actor I of the IBSDF graph of figure 5.1a as an example. The actor I
has a repetition factor of 2, meaning that it will be executed 2 times at each firing of its
parent actor G. However, actor G, in turn, has its own repetition factor RV (G) = 2 and
a hierarchical parent actor C for which RV (C) = 2. Thus, in one iteration of the entire
IBSDF graph, the actor I is executed a total number of RV (I) × RV (G) × RV (C) = 8.
Formally, we define the total repetition factor TotalRV (a) of an actor a ∈ A as the product
of its own repetition factor and the repetition factor of all its hierarchical parent actors
P(a), from the level of the actor back to the top-graph:

TotalRV (a) = RV (a)×
∏

p∈P(a)

RV (p)

Using this new parameter in simple statistics like multiplying the duration of an actor
by its total repetition factor, it allows to define its total PE usage which can also be
represented as a percentage of the mono-core latency and thus defining the critical actor
that represents a bigger percentage of the mono-core latency:

totalRV (a)×Dur(a)

MonoCoreLatency(GIBSDF)
× 100

Table 5.1 shows the mono-core latency value of the IBSDF graph of figure 5.1a computed
earlier but, this time from the hierarchy perspective. The first and second columns of the
table respectively represent the name and the type of each actor of the graph. The third
and fourth columns respectively represent the repetition factor and the total repetition
factor of each actor. The fifth and sixth columns show respectively the duration and the
total PE usage of each actor. Based on the mono-core latency value, the last column
shows the total PE usage of each actor as the percentage of the mono-core latency of the
application. As the table shows, actors I and J have the highest total repetition factor
among all the regular actors. In fact, flattening the hierarchy of the graph will result in an
equivalent flat graph where the total duplication number of actors I and J represent more
than 50% of the total number of actors. In terms of PE usage, the actor I and J represent
respectively on their own 34.80% and 17.40% of the total PE usage of the application.
This is higher than the PE usage of all the atomic actors of the top graph combined. Since
the hierarchical actor C abstracts both subgraphs GEFGH and GIJ , it represents itself
78.26% of the mono-core latency.

70 Latency Evaluation of IBSDF graph

Table 5.1 – The mono-core latency value of the IBSDF graph example of figure 5.1a from the
hierarchy perspective.

Actor Type RV TotalRV. Dur. TotalRV. × Dur. %of Latency

Level 1
A regular 1 1 1 1 4.35%
B regular 2 2 1 2 8.70%
C hierarchical 2 2 9 18 78.26%
D regular 2 2 1 2 8.70%

Level 2
E regular 1 2 1 2 8.70%
F regular 1 2 1 2 8.70%
G hierarchical 2 4 3 12 52.17%
H regular 1 2 1 2 8.70%

Level 3
I regular 2 8 1 8 34.80%
J regular 1 4 1 4 17.40%

B

C

E

F

G

I

J

H

D

Level 1, Actor A : 4,35%
Level 1, Actor B : 8,70%
Level 1, Actor D : 8,70%

Level 2, Actor E : 8,70%

Level 2, Actor F : 8,70%
Level 2, Actor H : 8,70%

Level 1, Hier. actor C : 78,26%
Level 2, Hier. actor G : 52,17%

Level 3, Actor I : 34,80%

Level 3, Actor J : 17,40%

The contribution percentage of each actor
to the mono-core latency

Figure 5.3 – A multilevel pie chart showing the contribution percentage of each actor of the IBSDF
graph example (fig.5.1a) to the mono-core latency.

Figure 5.3 resumes the result of table 5.1 in a multilevel pie chart, which allows to
visually identify the critical actors in the hierarchy. Each hierarchical level is represented
by a concentric ring, where the center ring corresponds to the top level of the graph. Each
segment of a concentric ring represents an actor. If the actor is hierarchical, then a set
of child segments is added in the next concentric ring to represent its subactors. The size
of each segment shows how much an actor contributes to its hierarchical parent actor and
thus to the mono-core latency of the application. From the pie chart of figure 5.3, it is
clear that actors I and J constitute the biggest percentage of the mono-core latency of
the graph and thus the highest PE usage of the application.

This new representation of the mono-core latency from a hierarchy perspective is crucial
for a precise analysis of the application performance. It enables the developer to identify
the critical actors of the IBSDF graph who the performance of the application depends
on. Moreover, hierarchically evaluating the latency allows defining the maximum duration
of each hierarchical actor in case of its subgraph is executed on one PE.

Multi-Core Latency Evaluation by flattening the hierarchy 71

5.3 Multi-Core Latency Evaluation by flattening the hier-
archy

As defined in the introduction, the multi-core latency of an application is the minimum
possible duration of one iteration of its equivalent dataflow graph when it is executed
on a multi-core architecture with unlimited resources, such that all the task and data
parallelisms of the application are enabled. Computing the multi-core latency of a dataflow
graph is essential to evaluate the theoretical speedup of the application when it is running
at maximum performance compared to a mono-core execution.

A simple way to evaluate the multi-core latency of an IBSDF graph is by flattening
its hierarchy into a flat graph and evaluate it like if it was a large SDF graph. This clas-
sical approach used previously for the throughput evaluation problem [DDNMK17a] has
shown to be easy to implement and to integrate into existing prototyping tools [PDH+14].
Practically, the classical approach consists of: first, flattening the hierarchy of the IBSDF
graph into an equivalent flat graph, then adding extra actors and extra edges to model the
firing rules in the case of a hierarchical execution. Finally, using one of the state-of-the-art
methods of the SDF model to evaluate the latency of the resulted flat graph as a large SDF
graph. In the literature, the multi-core latency of a SDF graph which is often called the
minimum achievable latency is computed using two methods: the Critical-Path Method
(CPM) [Kel61] and the Symbolic-Execution (SE) method [GSB+07]. In the following, we
introduce, illustrate and compare each of these two methods on the IBSDF graph example
of figure 5.1a.

5.3.1 Critical-Path Method (CPM)

The Critical-Path Method (CPM) [Kel61] is a general technique used in the project man-
agement area, in conjunction with the Project Evaluation and Review Technique (PERT)
for scheduling project activities [Ker]. In the embedded system area, the CPM is used for
finding the CP of signal processing applications that are modeled with a dataflow graph.
The critical path of an application is the longest path of dependent actors in the equivalent
DAG, where the length of the path is computed as the sum of its actors’ duration. From
the execution perspective, the critical path represents the longest execution sequence of
actors who cannot be executed in parallel due to their data dependency. Therefore, the
length of the critical path represents the minimum possible duration of a graph iteration
despite the infinite number of the available PEs, i.e., the minimum achievable multi-core
latency of the application.

For SDF graphs, the CPM consists of first converting the graph into an equivalent
DAG and then finding its critical path as follows:

• Step 1: Add dummy actors S and T with a null duration to the equivalent DAG.
Then, connect actor S to all DAG actors with no input Fifo. Similarly, connect
actor T to all DAG actors with no output Fifo.

• Step 2: Compute a topological order for the DAG actors using [Kah62, Tar76].
• Step 3: For each actor, set the length of its output edges equal to its duration and

its distance from actor S to negative infinity.
• Step 4: Compute the longest path from actor S to actor T by relaxing the distance

of the actors following the topological order and based on the length of the edges.

Similarly for the IBSDF graph, applying the CPM consists of converting the hierarchical
graph into an equivalent flat DAG and computing its critical path following the steps
described previously. However, the equivalent flat DAG is obtained by first flattening the

72 Latency Evaluation of IBSDF graph

D1

S

T

0

1 1

In 1.1

0

1

A11

1

B1
1

0

0

H10

0

O
u

t
1.

1

In
 3

.1 J1

11

1

10

0

I1

I2

O
u

t
2.

1

Out 3.1

0

In
 3

.2 J2

11

1

10

0

I3

I4
O

u
t

2.
2

Out 3.2

E1F1

In 2.1

0

1

1

I5

I6

1
1

In 1.2

0

1

A2 1

1

B21

0

0

H2
0

O
u

t
1.

2

In
 3

.3J3

1 1

1

1 0

0

O
u

t
2.

3

Out 3.3

0 In
 3

.4J4

1 1

1

1
0

0

I7

I8

O
u

t
2.

4

Out 3.4

E2 F2

In 2.2

0

0

1

Figure 5.4 – The longest path of the equivalent flat DAG of the IBSDF graph example of Fig-
ure 5.1a. The longest path is represented with blue colored edges and has a total length of 12
clock-cycles (cc).

hierarchy of the IBSDF graph into an equivalent flat srSDF graph and then removing all
the edges that contain data tokens. Figure 5.4 shows the resulted equivalent flat DAG of
the IBSDF graph of figure 5.1a after adding the dummy actors S and T , and setting the
length of the edges based on the duration of their source actor. The critical path of the
equivalent flat DAG is the longest path from actor S to actor T , which is represented in the
figure by the blue colored edges. The total duration of the critical path is 12 clock-cycles
(cc), and thus the minimum achievable multi-core latency of the IBSDF graph is 12 cc,
considering an architecture with an infinite number of PEs.

In graph theory, the longest path problem is known as an NP-Hard problem for general
graphs [Law01] i.e., a problem for which it is hard to find an optimal solution in a reason-
able amount of time. Luckily it has a linear time solution for DAG [CLRS09] using the
algorithm described previously. Precisely, its overall time-complexity is: O(|A|+|F |) where
GDAG = 〈A,F 〉 is the input DAG. This low time-complexity is vital for a fast evaluation of
the multi-core latency using the CPM. However, the size of the resulting equivalent DAG
of both SDF graph transformation and IBSDF graph flattening process may increase ex-
ponentially according to the repetition factor of the actors. This hidden exponential time
and space complexity can be revealed by expressing the overall complexity of the algorithm
in SDF graph and IBSDF graph terms. For the SDF graph, the overall time-complexity
is O(

∑
a∈ARV (a) +β×|F |) where GSDF = 〈A,F 〉 is the original SDF graph and β is the

average duplication number of the edges in the equivalent DAG. For the IBSDF graph, the
overall time-complexity is O(

∑
Gsub∈GIBSDF

(
∏
p∈P(Gsub)

RV (p)×(
∑

a∈A− RV (a)+β×|F |))
where GIBSDF is the original IBSDF graph, Gsub = 〈A−, F 〉 is an IBSDF subgraph for
which A− and F respectively represent the set of its regular actors and edges. P(Gsub)
represents the set of all the hierarchical parent actors of Gsub up to the topgraph. Lastly,
β represents the average duplication number of the Gsub edges in its equivalent DAG.

Multi-Core Latency Evaluation by flattening the hierarchy 73

5.3.2 Symbolic-Execution (SE)

The Symbolic-Execution (SE)-based method [GSB+07] remains a common technique to
evaluate properties and metrics of signal processing applications based on simulating their
behavior [Gha08]. For the latency evaluation of SDF graphs, the SE-based method consists
of simulating one complete iteration of the graph and measuring its total duration. In the
context of multi-core latency, an infinite number of available PEs is considered during the
simulation so that each actor is executed as soon as it is ready. Therefore, by adopting an
unconstrained ASAP schedule, the method is able to simulate the fastest possible execution
of a dataflow graph. Thus, the resulting duration of the graph represents the minimum
achievable multi-core latency of the application.

In contrast to the Critical-Path Method (CPM), the SE-based method evaluates the
multi-core latency of an SDF graph without converting it to an equivalent DAG. Practi-
cally, the SE algorithm consists of the following steps:

• Phase 1: Initialization phase

– Step 1: Identify all the actors that are ready to execute based on the initial
marking of the graph.

– Step 2: Calculate the maximum number of executions n(a) for each ready
actor a based on the number of data tokens present on its input Fifo queues.
In case of an actor a without input Fifo queues, set n(a) = RV (a).

– Step 3: For each ready actor a, remove n(a)×cons(a, ei) data tokens from each
one of its input Fifo queue ei. Then, set the start date of the actor executions
to 0 and the finish date equals the duration of the actor. Finally, add the actor
to the list of the currently running actors.

• Phase 2: Simulation phase

– Step 1: Select the actor a which has the minimum finish date form the list of
the currently running actors.

– Step 2: Add n(a) × prod(a, eo) data tokens on each one of the output Fifo
queue eo of actor a and verify if the target actor at of the output Fifo queue
is ready to execute. If so, fire the target actor as follows:

1. Compute the maximum number of executions n(at) of the target actor.

2. Remove n(at) × cons(at, ei) data tokens from each one of the input Fifo
queue ei of the target actor.

3. Set the start date of the target actor at equals to the finish date of actor a.
Then, set the finish date of the target actor equals to its start date plus its
duration. Finally, add the target actor to the list of the currently running
actors.

– Step 3: Remove actor a from the list of currently running actors. Return to
the first step and select another actor from the list to repeat the process until all
the actors of the graph have been executed according to their repetition factor.

Like the State-Space Exploration (SSE) method [GGS+06] introduced in the previous
chapter for the throughput evaluation of SDF graphs, the SE algorithm simulates the
execution of the graph symbolically without actually executing the source code of the
actors. From the dataflow graph perspective, the execution of an actor is the result of
respectively removing (consuming) and adding (producing) data tokens from and to all of

74 Latency Evaluation of IBSDF graph

1 2 3 40 Time

A1 E1

F1 I2

5 6 7 8 9 10 11 12 13

J1

B1

I1

I3

I4

J2

D1

H1 H2

A2 E2

F2 I6

J3

B2

I5

I7

I8

J4

 Latency = 12

Figure 5.5 – An unconstrained ASAP schedule of the IBSDF graph example of Figure 5.1a under
the relaxed execution mode. The duration of one complete iteration of the graph is 12 cc.

the input and output Fifo queues of the actor. In contrast to the SSE algorithm which
simulates many iterations of the graph to measure its throughput, the SE algorithm on
the other hand simulates only one iteration of the graph to measure its latency. Moreover,
the simulated time of the graph execution is tracked by the start and the finish date values
of the actors executions instead of simulating all the clock cycles of the graph execution.
Thus, at the end of the simulation the finish date of the last executed actor represents the
total duration of the graph. A quite similar implementation of the SE algorithm can be
found in [BLM96b] which has an overall time-complexity of O(

∑
a∈ARV (a)×fi×fo+|F |),

where Gsdf = 〈A,F 〉 is the SDF graph and fi (fo) is the maximum overall actors of the
number of input (output) Fifo that are incident to any actor.

Applying the SE-based method on the IBSDF graph consists of first flattening the
hierarchy of the graph into either an equivalent flat srSDF graph or a flat DAG. Then,
simulating one iteration of the equivalent flat graph to measure the minimum possible
duration of the original IBSDF graph. In this context, the flattening process is mandatory
to simulate the execution of the hierarchical actors in the relaxed execution mode that
enables applications to run at full potential without any execution rule. Thus, the simula-
tion of an unconstrained ASAP schedule of the equivalent flat graph results in executing
each actor as soon as it receives data tokens from its predecessor actors. As an example,
figure 5.5 shows the resulting ASAP schedule of one simulated iteration of the equivalent
flat DAG of the IBSDF graph of fig. 5.1a. Based on the initial marking of the IBSDF
graph, actor A is the first actor to execute, enabling its successor actors B and E to fire
at the same time after it finishes the execution. Similarly, the simulation continues to fire
each actor as soon as it receives data tokens from its predecessors, and stops when all
the actors of the flat graph are fired once. As the resulting schedule shows, the minimum
duration of one iteration of the equivalent flat DAG is 12 clock-cycles (cc). Thus the
multi-core latency of the IBSDF graph of figure 5.1a is 12 cc.

Compared to the CPM, the SE algorithm dramatically reduces the space complexity
of the evaluation of SDF graphs. However, it remains the same for the IBSDF graph since
the hierarchy is flattened in both methods. In terms of time-complexity, the SE-based
may take slightly more time than CPM because a complete iteration of the graph must be
simulated to measure the total duration of the graph. Therefore, the time-complexity of
both methods remains exponential for the IBSDF graph. From an end-to-end compilation
perspective, the CPM saves time by finding the critical path of the graph at the same
time as evaluating the latency. Which enables the identification of the critical actors of
the application who may need some optimization to increase the application performance.

Multi-Core Latency Evaluation without Flattening the Hierarchy 75

5.4 Multi-Core Latency Evaluation without Flattening the
Hierarchy

Computing the multi-core latency of an IBSDF graph with the classical approach requires
flattening the entire hierarchy into an equivalent flat graph. Such transformation often
results in a large graph with an exponential number of actors and edges. As consequences,
the time and space complexity of SDF state-of-the-art methods increase exponentially
[DDNMK17a]. For some IBSDF graphs it is even impossible to flatten completely their
hierarchy with a reasonable amount of memory, which makes the classical approach useless
in those cases. Furthermore, in the context of rapid prototyping, the developer must be
able to evaluate if possible in real time the multi-core latency of the application as the
design process goes forward. For this purpose, the classical approach is defined again as
unsuitable for fast evaluation of IBSDF graphs performance.

In this section, we introduce two new methods that take advantage of the interface-
based hierarchy and evaluate the multi-core latency of IBSDF graphs without completely
flattening their hierarchy. The first method, named Hierarchical-Symbolic-Execution (H-
SE) computes the exact multi-core latency of an IBSDF graph in the hierarchical execution
mode. The second method, named Hierarchical-Critical-Path Method (H-CPM) computes
in turn the exact multi-core latency of an IBSDF graph in the relaxed execution mode.
By avoiding the flattening process, both methods dramatically reduce the time and space
complexity of the multi-core latency evaluation of IBSDF graphs, making them suitable for
the context of rapid prototyping. In the following, we define each of Hierarchical-Symbolic-
Execution (H-SE) and Hierarchical-Critical-Path Method (H-CPM) method and illustrate
their algorithm on the IBSDF graph example of figure 5.1a.

5.4.1 Hierarchical-Symbolic-Execution (H-SE)

The Hierarchical-Symbolic-Execution (H-SE) method extends the symbolic execution of
SDF graphs by supporting the simulation of the hierarchical execution of IBSDF graphs.
The new method takes advantage of both the interface-based hierarchy of the IBSDF model
and the properties of the hierarchical execution mode to simulate one complete iteration
of the graph without any flattening of the hierarchy. Thus compared to the classical
approach, the H-SE method dramatically reduces both space and time complexity of the
IBSDF graph simulation:

• In terms of space-complexity: According to the execution rules of the IBSDF
model, no subgraph can start to execute until its hierarchical parent actor is ready.
As consequences, the hierarchical execution of an IBSDF graph always starts from
the tograph. Moreover, in this context, the hierarchical actors behave exactly like
the regular actors consuming and producing data tokens. Based on these two prop-
erties, the H-SE method starts by simulating the execution of the topgraph. Each
time a hierarchical actor is ready to execute, the simulation launches a symbolic
execution of the subgraph and waits until it finishes a complete iteration to resume
the execution of the topgprah. The same simulation process is applied for each hi-
erarchical actor in the hierarchy. Hence, a complete iteration of the entire IBSDF
graph is simulated without flattening the hierarchy. Thus the space-complexity is
reduced to O(

∑
Gsub=〈A,F 〉∈GIBSDF

(|A|+ |F |)).
• In terms of time-complexity: The main purpose of the H-SE method is to mea-

sure the minimum duration of the IBSDF graph to define its multi-core latency.
Based on this fact, the H-SE algorithm takes advantage of the Schedule-Replace

76 Latency Evaluation of IBSDF graph

1 2 3 40 Time

A1

5 6 7 8 9 10 11 12 13

B1

D1 A2

B2

 Latency = 15

14 15

C2

dur(C) = 5

E1

F1

H1

G2

dur(G) = 2

I1

I2

J1

Figure 5.6 – The resulting symbolic execution of the IBSDF graph example of Figure 5.1a under
the hierarchical execution mode. The duration of one complete iteration of the graph is 15 cc.

(SR) technique introduced in the previous chapter to reduce the time complexity of
the simulation. In fact, simulating an unconstrained ASAP schedule of a subgraph
allows measuring the minimum duration of its hierarchical parent actor. Therefore,
each hierarchical actor can be considered as a regular actor during the simulation
once its minimum duration was measured. This technique enables the H-SE algori-
thm to avoid the simulation of the same subgraph each time its hierarchical parent
actor is fired. Thus, each subgraph in the hierarchy is simulated only one time
during the symbolic execution of an entire iteration of the IBSDF graph. And so,
the time-complexity of simulating the execution of an IBSDF graph is reduced to:
O(

∑
Gsub=〈A,F 〉∈IBSDF (

∑
a∈ARV (a)× fi × fo + |F |)).

Algorithm 4 represents a recursive implementation of the H-SE method, based on the
Schedule-Replace (SR) technique. By applying the algorithm on the IBSDF graph example
of figure 5.1a, the H-SE method starts by simulating one iteration of the subgraphs IJ and
EFGH to measure the minimum duration of the hierarchical actors G and C respectively.
Finally, one iteration of the topgraph is simulated to measure the duration of the IBSDF
graph. During the simulation, both hierarchical actors G and C are considered as regular
actors to avoid simulating their subgraphs multiple times. Figure 5.6 shows the resulting
symbolic execution of the IBSDF graph example in the hierarchical execution mode. As
the figure shows the minimum duration of the topgraph is 15 clock-cycles (cc). Thus the
multi-core latency of the IBSDF graph example in the hierarchical execution mode is 15
cc, representing a speedup by a factor of 1, 5 compared to its mono-core execution (23 cc).

Algorithm 4 Hierarchical-Symbolic-Execution (H-SE) algorithm

function HierarchicalSymbolicExecution(IBSDF subgraph)
for all actors a ∈ IBSDF subgraph do

if actor a is hierarchical then
a.duration = HierarchicalSymbolicExecution(a.subgraph)

end if
end for
latency = SymbolicExecution(IBSDF subgraph)
return latency

end function

Multi-Core Latency Evaluation without Flattening the Hierarchy 77

D1

S

T

0

1

A11

B1
1

0 1

I5

I6

1
1

In 1.2

0

1

A2 1

1

B21

0

0

H2
0

O
u

t
1.

2

In
 3

.3J3

1 1

1

1 0

0

O
u

t
2.

3

Out 3.3

0 In
 3

.4J4

1 1

1

1
0

0

I7

I8

O
u

t
2.

4

Out 3.4

E2 F2

In 2.2

0

0

1

1 1

In 1.1

0

1

0

0

H10

O
u

t
1.

1

In
 3

.1 J1

11

1

10

0

I1

I2

O
u

t
2.

1

Out 3.1

0

In
 3

.2 J2

11

1

10

0

I3

I4

O
u

t
2.

2

Out 3.2

E1F1

In 2.1

0

1

Figure 5.7 – The equivalent flat DAG of figure 5.4 in which the similar parts are highlighted with
the same color. The red and green highlighted parts correspond respectively to the subgraphs EFGH
and IJ .

Although the Hierarchical-Symbolic-Execution (H-SE) method evaluates the multi-
core latency of IBSDF graphs at very low complexity, the method remains limited to
the hierarchical execution mode. This limitation is due to multiple facts, the first one is
that a hierarchical actor has a different behavior than a regular actor when the execution
rules are ignored. As consequences, a hierarchical actor cannot be considered as a regular
actor during the simulation of a relaxed execution. Therefore, the second fact is that a
relaxed execution of an IBSDF graph cannot be simulated correctly without flattening
the complete hierarchy of the graph. However, the H-SE method can be used as a fast
approximation method for the computation of the minimum multi-core latency of IBSDF
graphs under a relaxed execution mode.

5.4.2 Hierarchical-Critical-Path-Method (H-CPM)

The lack of a method to compute the exact multi-core latency of an IBSDF graph under the
relaxed execution mode at low complexity has motivated us to study the idea of adapting
the state-of-the-art Critical-Path Method (CPM) for the IBSDF model. By analyzing
the weak points of the CPM algorithm alongside with the structure of the equivalent flat
DAG and the properties of the IBSDF model, we have made the two following observations
leading us to develop a new method:

• Redundant computations: The CPM algorithm is based on visiting all the actors
and all the edges of a DAG in order to find the longest path. In the case of a DAG
resulting from the flattening of an IBSDF graph, exploring the entire DAG becomes
a weak point of the CPM algorithm. Indeed, visiting an exponential number of
actors and edges leads to an exponential time complexity algorithm. Hence, the
only way to reduce the time complexity of the CPM algorithm is by minimizing the
number of actors and edges to visit. Luckily, this is possible based on our observation

78 Latency Evaluation of IBSDF graph

1
A1

In
 1

.1

O
u

t
1.

1

D1F1E1

In
 3

.1

O
u

t
2.

1

J1I1
00 1 1 00 1 1

A2B2

In
 2

.2H2 F2

In
 3

.4

O
u

t
2.

4

J4 I8
111011 010

S

T

Hierarchical Actor G1

Hierarchical Actor C1

Hierarchical Actor G4

Hierarchical Actor C2

1

0

Figure 5.8 – The composition of the critical path of the equivalent flat DAG of Figure 5.7.

of the structure of the equivalent flat DAG. Indeed, the main process of flattening
the hierarchy of an IBSDF graph is based on duplicating each subgraph multiple
time according to the total repetition factor of its hierarchical parent actor. As
consequences, multiple parts of the resulting flat DAG are exactly the same, which
end up being explored multiple times by the CPM algorithm. Figure 5.7 shows the
equivalent flat DAG of the IBSDF graph example of figure 5.1a, in which the similar
parts are highlighted with the same color. The red highlighted parts of the flat DAG
correspond to the duplication of the equivalent flat graph of the subgraph EFGH.
Similarly, the green highlighted parts of the flat DAG represent the same equivalent
flat graph of the subgraph IJ . By applying the CPM algorithm, both subgraphs are
explored multiple times during the computation. Therefore, the exploration may be
decomposed following the IBSDF subgraphs to avoid processing similar parts of the
equivalent flat DAG multiple times. Hence, the number of visited actors and edges
is minimized and the time-complexity of the CPM algorithm is reduced.

• Critical-path composition: By identifying the different parts of the equivalent
flat DAG, we have been able to clearly see the composition of its critical-path from
the hierarchy perspective. As figure 5.8 shows, the critical-path is a composition of
multiple sub-paths from all over the hierarchy. The green and red highlighted sub-
paths are respectively paths from the subgraph of the hierarchical actors G and C,
while all the remaining sub-paths belong to the topgraph. Moreover, each sub-path
represents the longest possible path between the input and the output interface of
the hierarchical actor from which the critical-path is passing through. In general,
we distinguish five possible cases for a hierarchical actor as a part of the critical-
path of an IBSDF graph. Each configuration of the subgraph presented in figure 5.9
illustrates one of the five cases. Actors S and T represent the dummy actors used
to compute the critical-path of the IBSDF graph. Actors X and Z of the subgraph
represent actors without output edges who are directly connected to the dummy
actor T . Actor W in turn, represents an actor without input edges who is directly
connected to the dummy actor S. The edges in the other hand, abstract the longest
path between their source and target actors. The five illustrated cases are as follows:

– case 1: the critical path is composed only by regular actors without passing
through a hierarchical actor. Sub-figure 5.9a for example.

– case 2: the hierarchical actor constitutes the end of the critical-path. In this
case, the critical-path passes into the hierarchical actor through one of its input
interfaces and stops at the furthest (deeper) actor that has no output edges
(actor W for example in sub-figure 5.9b).

Multi-Core Latency Evaluation without Flattening the Hierarchy 79

O
u

t
1

O
u

t
1

In
 1

In
 1

W

X

Z

2

2

2

22

2

2

S T

10

2

2

0

0

A Hierarchical Actor

Flat DAG

0

2

2

(a) Case 1

O
u

t
1

O
u

t
1

In
 1

In
 1

W

X

Z

2

2

2

22

5

2

S T

2

2

10

0

0

A Hierarchical Actor

Flat DAG

0

2

2

(b) Case 2

O
u

t
1

O
u

t
1

In
 1

In
 1

W

X

Z

2

10

2

22

2

2

S T

2

10

2

0

0

A Hierarchical Actor

Flat DAG

0

2

2

(c) Case 3

O
u

t
1

O
u

t
1

In
 1

In
 1

W

X

Z

2

2

10

22

2

2

S T

2

2

2

0

0

A Hierarchical Actor

Flat DAG

0

2

2

(d) Case 4

O
u

t
1

O
u

t
1

In
 1

In
 1

W

X

Z

2

2

2

215

2

2

S T

2

2

2

0

0

A Hierarchical Actor

Flat DAG

0

2

2

(e) Case 5

Figure 5.9 – The five possible cases of a hierarchical actor as a part of the global critical-path.

– case 3: the hierarchical actor represents a sub-path in the critical path. In
this case, the critical-path goes into (res. goes out from) the hierarchical actor
through one of its input interfaces (res. one of its output interfaces) as sub-
figure 5.9c shows. The chosen sub-path between the two interfaces is the longest
possible one.

– case 4: the hierarchical actor constitutes the beginning of the critical-path. In
this case, the critical-path starts from the subgraph of the hierarchical actor
with an actor that has no input edges, goes out from one of the output interfaces
of the hierarchical actor and stops elsewhere in the hierarchy. Sub-figure 5.9d
shows an example of case 4 where the critical path starts with actor W that
has no input edges.

– case 5: the entire critical path is a subpath from the subgraph of the hierar-
chical actor. As sub-figure 5.9e shows, the critical-path starts from (resp. ends
with) actor W (resp. actor Z) where the path between the two actors is the
longest one in the hierarchy.

When the critical-path passes through multiple hierarchical actors, the resulting path
may be a multiple combinations of these cases. From figure 5.8, we can see that the
critical-path of the IBSDF graph example is a combination of cases 2 and 3. In fact,
it starts by an actor from the topgraph, passes through the hierarchical actors C
and G, goes back to the topgraph, and finally passes through the hierarchical actors
C and G a second time where it ends with an actor from the subgraph EFGH that
has no output edges.

80 Latency Evaluation of IBSDF graph

Based on these two observations, we successfully adapted the SDF Critical-Path Method
(CPM) for the IBSDF model. The new method is named Hierarchical-Critical-Path
Method (H-CPM) and consists on hierarchically computing the critical path of an en-
tire IBSDF graph, without flattening its hierarchy. Thus, the H-CPM is able to evaluate
at low complexity the exact multi-core latency of an IBSDF graph under a relaxed execu-
tion. In the following, we present in detail the H-CPM algorithm and illustrate it on the
IBSDF graph example of figure 5.1a.

H-CPM Main algorithm

From the graph theory perspective, the H-CPM algorithm can be seen as a decomposition
technique for the longest-path problem of the equivalent flat DAG. The algorithm aims to
decompose the main problem into sub-problems which are much more easy to handle in
terms of space and time complexity. The decomposition technique of the H-CPM algorithm
follows the same schema as the Schedule-Replace (SR) technique. It consists on taking
advantage of the interface-based hierarchy to evaluate the IBSDF graph level by level such
that each evaluated subgraph is abstracted in the upper graph.

The first phase of the H-CPM algorithm consists on abstracting the entire hierarchy
of the IBSDF graph in the topgraph. The abstraction process is based on computing
the Longest-Path Equivalent Graph (LPEG) of each subgraph in the hierarchy starting
from the bottom level up to the topgraph. The LPEG is a weighted graph composed
only by input and output interfaces and by actors with no input or output edges. Each
weighted edge of the LPEG abstracts the longest path between its source and target
actors in the subgraph for which the weight represents the length of the abstracted path.
The main purpose of constructing the equivalent LPEG of a subgraph is to abstract the
structure of the graph in a small weighted graph with few nodes and edges, so that it is no
longer needed to explore multiple times the entire subgraph to compute the longest paths
between the interfaces. As an example, figure 5.10 shows the equivalent Longest-Path
Equivalent Graph (LPEG) of the subgraph IJ of the IBSDF graph example of figure 5.1a.
The longest path from the input interface In1 to each of the output interface Out1 and
Out2 has a length of 2. Therefore, the two equivalent LPEG edges have a weight of 2.
Hence, by replacing each instance of the hierarchical actor G with the equivalent LPEG of
its subgraph IJ , the H-CPM algorithm avoids exploring the same subgraph IJ multiple
times. Figure 5.11a shows the resulting equivalent DAG of the subgraph EFGH after
replacing the hierarchical actor G.

Furthermore, by repeating the same process at each level, all the longest sub-paths of
the entire hierarchy are abstracted in the equivalent LPEG of the hierarchical actors of the
topgraph. Thus, the second phase of the H-CPM algorithm consists on computing only the
critical-path of the topgraph to define the multi-core latency of the entire IBSDF graph. As
figure 5.11b shows, computing the LPEG of the equivalent DAG of the subgraph EFGH

In
 3 J1

11

1

10

0

I1

I2

O
u

t
2

Out 3

(a) The equivalent DAG of the subgraph IJ .

In
 3

2

2

O
u

t
2

Out 3

(b) The LPEG of the subgraph IJ .

Figure 5.10 – Abstracting the longest paths between the input and output interfaces of the subgraph
IJ in the Longest-Path Equivalent Graph (LPEG).

Multi-Core Latency Evaluation without Flattening the Hierarchy 81

F1

E1

In
 2

In
 1

H1

O
u

t
1

0

1

0

0

0

0

0

1

1

In
 3

.2

2

2

O
u

t
2.

2

Out 3.2

In
 3

.1

2

2

O
u

t
2.

1

Out 3.1

(a) The equivalent DAG of the subgraph EFGH
after replacing the two instances of the hierarchical
actor G by the LPEG of its subgraph IJ .

3

3

In
 1

In
 2

O
u

t
1

H1
4

4

(b) The LPEG of the subgraph EFGH which ab-
stracts the longest sub-paths in the entire hierarchy
in 4 weighted edges.

D1

S

T

0
1 A1

1

B1
1

0
1

1

1A2
1

B21

0

1
3 3

In 1.1In 2.1

Out 1.1

H1

4

4

33

In 1.2 In 2.2

Out 1.2

H2

4

4

(c) The equivalent DAG of the topgraph ABCD
after replacing the two instances of the hierarchi-
cal actor C by the LPEG of its subgraph EFGH.

Figure 5.11 – An illustration of the H-CPM algorithm on the IBSDF graph example of Fig. 5.1a.

allows to abstract the entire hierarchy in a small graph of 4 weighted edges, which represent
all the possible sub-paths in the hierarchy including the subpath that ends with actor H
that has no output edges. Then, replacing the hierarchical actor C of the topgraph allows
computing the critical path of the entire IBSDF graph by only exploring the equivalent
DAG of the topgraph ABCD. As figure 5.11c shows, the computed critical path is the
same as the one computed with the classical approach in figure 5.7, except that the sub-
paths are abstracted by weighted edges. At this stage, the multi-core latency of the IBSDF
graph has been evaluated. The final phase of the H-CPM algorithm aims to retrieve the
uncompressed form of the computed critical-path. The uncompressed form is obtained by
repetitively replacing each LPEG edge in the critical-path by the original sub-path until
the complete critical-path is unfolded. The following steps resume the H-CPM algorithm:

• Phase 1: Starting from the bottom level of the hierarchy up to the topgraph:

– Step 1: Construct the equivalent LPEG of the current subgraphs.
– Step 2: Move to the upper graph and Replace the hierarchical parent actors

of the current subgraphs with their equivalent LPEG.
– Step 3: Repeat steps 1 and step 2 until the topgraph is reached.

• Phase 2: Compute the critical-path of the equivalent DAG of the topgraph to define
the multi-core latency of the entire hierarchical graph.

• Phase 3: Unfold the compressed critical-path to retrieve its original form.

Compared to the classical approach, each subgraph of the IBSDF graph example is
explored once during the entire exploration. Moreover, at each iteration of the H-CPM
algorithm, a subgraph is removed from the memory once its equivalent LPEG is con-
structed. Thus, the H-CPM algorithm is able to reduce both time and space complexity
of the multi-core latency evaluation of IBSDF graphs. Precisely, the space-complexity is
reduced from the size of the entire equivalent flat DAG of an IBSDF graph, down to the

82 Latency Evaluation of IBSDF graph

size of the equivalent DAG of only the largest subgraph in the hierarchy plus the size of
the LPEG of its hierarchical actors. The time-complexity in turn, is reduced from the
complexity of exploring the entire equivalent flat DAG where the subgraphs are dupli-
cated many times, down to the complexity of constructing the equivalent LPEG of each
subgraph in the hierarchy. In the following, we present how to construct the equivalent
LPEG and discuss its space and time-complexity.

Constructing the LPEG

The main purpose of the Longest-Path Equivalent Graph (LPEG) is to abstract the struc-
ture of an IBSDF subgraph with a small weighted graph. Thus in the upper graph, the
hierarchical parent actor of the abstracted subgraph can be replaced without increasing
exponentially the total number of actors and edges. For this purpose, the LPEG represents
only the longest sub-paths between the input and the output interfaces of the subgraph,
which are relevant to the critical-path computation. Each longest sub-path between two
interfaces is abstracted in the LPEG via an edge with a weight equal to the total length
of the abstracted sub-path. Thanks to the properties of the interface-based hierarchy of
the IBSDF model, the LPEG of each subgraph can be constructed independently from its
upper levels. Based on that, the LPEG of each IBSDF subgraph is constructed as follows:

• Phase 1: Convert the subgraph into an equivalent DAG and replace its hierarchical
actors by their equivalent LPEG which have been constructed before. Create a new
empty LPEG and add to it all the input and output interfaces of the subgraph.

• Phase 2: For each input interface of the equivalent DAG:

– Step 1: Compute the longest distance from the input interface to all the re-
maining nodes of the equivalent DAG.

– Step 2: Add a new edge between the input interface and each output interface
in the new LPEG, such that the weight of the edges is equal to the longest
distance between the two interfaces.

– Step 3: If the furthest node from the input interface is an actor with no output
edges then, add the actor to the new LPEG and connect it to the input interface
through a weighed edge with the same distance.

• Phase 3: For each output interface of the equivalent DAG:

– Step 1: Compute the longest distance from the output interface back to all
the remaining nodes of the equivalent DAG.

– Step 2: If the furthest node from the output interface is an actor with no
input edges then, add the actor to the new LPEG and connect it to the output
interface through a weighed edge with the same distance.

• Phase 4: Compute the local critical-path of the equivalent DAG. If the local critical-
path is a path from an actor with no input edges to an actor with no output edges
then, save it for the latency evaluation to cover case 5 of sub-section 5.4.2.

The size of the equivalent LPEG remains small compared to the size of the equivalent
DAG of a subgraph. In the worst case scenario, the LPEG is composed of interfaces such
that each interface is connected to a distinct actor with no input or output edges. So, for
an IBSDF graph where fi (resp. fo) is the maximum number of input interfaces (resp.
output interfaces) of a hierarchical actor, the size of the largest LPEG will be 2× (fi + fo)
nodes and fi × fo + (fi + fo) edges. By considering fi = fo = f , the size of the largest
equivalent LPEG of a subgraph in the worst case is 4× f nodes and (f + 1)2 − 1 edges.

Multi-Core Latency Evaluation without Flattening the Hierarchy 83

Constructing the equivalent LPEG of a subgraph requires exploring many times its
equivalent DAG. In fact, for each interface, the algorithm explores the equivalent DAG
to computes the longest distance from the interface to all the remaining nodes, plus one
last exploration of the graph to compute its local critical-path. Computing the longest
distance from a node to all its connected nodes in a DAG is based on the same algorithm
as Critical-Path Method (CPM) which has a linear time-complexity of O(|V |+ |E|), where
V is the set of the nodes and E is the set of the edges of the DAG [CLRS09]. Thus, for
an IBSDF subgraph Gsub = 〈A,F 〉 with fi input interfaces and fo output interfaces, the
time-complexity of the LPEG construction is O((fi + fo + 1)× (

∑
a∈ARV (a) + β × |F |))

where β is the average duplication number of the edges in the equivalent DAG.
Therefore, for an IBSDF graph of ns subgraphs, the overall time-complexity of the

H-CPM algorithm is O(ns × (fi + fo + 1)× (
∑

a∈ARV (a) + β × |F |)), where fi (resp. fo)
is the maximum number of input interfaces (resp. output interfaces) of a subgraph and∑

a∈ARV (a) + β × |F | is the size of the equivalent DAG of the largest IBSDF subgraph.
In terms of space-complexity, at each iteration the H-CPM algorithm process the equiv-

alent DAG of a subgraph in which the hierarchical actors are replaced by the equivalent
LPEG of their subgraph. Hence, for an IBSDF graph where fi (resp. fo) is the maximum
number of input interfaces (resp. output interfaces) of a subgraph and nh is the maximum
number of hierarchical actors in a subgraph, the space complexity in the worst case is
the size of the equivalent DAG of the largest subgraph in the hierarchy plus nh times the
maximum size of an LPEG: O(

∑
a∈ARV (a) + β × |F |) + nh × (fi + fo + 3× (fi + fo)))

Tables 5.2 and 5.3 compare the time and space complexity of the new methods with the
classical approaches. As the tables show, the high complexity of the classical approaches
comes mainly form the product

∏
p∈P(Gsub)

RV (p) which represents the total duplication
number of a subgraph Gsub in the entire flat DAG of the IBSDF graph according to the
repetition factor of all its hierarchical parent actors P(Gsub).

Table 5.2 – The time-complexity of the multi-core latency evaluation methods.

Method Time-complexity

Classical-methods

CPM-based O(
∑

Gsub=〈A,F 〉∈GIBSDF
(
∏
p∈P(Gsub)

RV (p)× (
∑

a∈ARV (a) + β × |F |))
SE-based O(

∑
Gsub=〈A,F 〉∈GIBSDF

(
∏
p∈P(Gsub)

RV (p)× (
∑

a∈ARV (a)× fi × fo + |F |))
New methods

H-SE O(
∑

Gsub=〈A,F 〉∈GIBSDF
(
∑

a∈ARV (a)× fi × fo + |F |))
H-CPM O(

∑
Gsub=〈A,F 〉∈GIBSDF

((fi × fo + 1)× (
∑

a∈ARV (a) + β × |F |)))

Table 5.3 – The space-complexity of the multi-core latency evaluation methods.

Method Space-complexity

Classical-methods

CPM-based O(
∑

Gsub=〈A,F 〉∈GIBSDF
(
∏
p∈P(Gsub)

RV (p)× (
∑

a∈ARV (a) + β × |F |))
SE-based O(

∑
Gsub=〈A,F 〉∈GIBSDF

(
∏
p∈P(Gsub)

RV (p)× (
∑

a∈ARV (a) + β × |F |))
New methods

H-SE O(
∑

Gsub=〈A,F 〉∈GIBSDF
(|A|+ |F |))

H-CPM O(
∑

a∈ARV (a) + β × |F |) + nh × (fi + fo + 3× (fi + fo)))

84 Latency Evaluation of IBSDF graph

Table 5.4 – Description of the benchmark set.

IBSDF graph Subgraphs details (average value)

Name Levels Actors subgraphs Actors fi fo RV TotalRV FIFOs β

Crypto 2 13 2 7 1 1 2 3 8 2

Large FFT 2 13 2 7 1 1 15 15 6 49

LTE 4 28 5 6 1 1 3 11 5 4

Stereo Match. 2 50 4 13 1 1 56 56 14 97

Graph 1 3 22 3 8 1 1 8 38 7 9

Graph 2 5 29 5 6 2 2 5 972 7 8

Graph 3 6 35 6 6 2 2 6 4060 7 10

Graph 4 5 166 5 34 2 2 25 4469 48 38

Graph 5 8 266 8 33 2 2 38 10× 108 47 57

Graph 6 10 131 10 13 2 2 406 7× 1015 16 442

5.5 Experimental Results

5.5.1 Experimental Setup

In this section, we confirm our theoretical study by comparing the performance of the
the classical approaches Critical-Path Method (CPM) and Symbolic-Execution (SE) with
the new developed methods Hierarchical-Symbolic-Execution (H-SE) and Hierarchical-
Critical-Path Method (H-CPM). The numerical experiments consists on measuring the
running time and memory usage for each method to compute the multi-core latency of
each IBSDF graph of the benchmark set. The measured running time includes the time for
the flattening process or DAG conversions when relevant. The benchmark set used in this
numerical experiments is the same one used in the experiments of the previous chapter,
which is composed of two categories of IBSDF graphs. The first category is the set of
real DSP applications modeled as IBSDF graphs for which a source code is available in
[Pre]. The second category is the set of the synthetics IBSDF graphs which are randomly
generated using the IBSDF graph generator that is based on Turbine tool [BLDMK14].
The second category is used mainly to complete the benchmark set of real applications
with large IBSDF graphs in order to provide an extensive performance comparison. In
fact, till today the number of the hierarchical levels in real applications remains small due
to the hardness of compiling large graphs using the classical approaches. Table 5.4 shows
the characteristics of the two categories of the benchmarks set: the real applications
(Crypto, Large FFT, LTE [PAPN13], and Stereo Matching [Heu15]) and the synthetic
graphs (Graph 1 to 6). The first three columns represent respectively the name, the num-
ber of hierarchical levels, the total number of actors, and the total number of subgraphs
for each evaluated IBSDF graph. The rest of the columns represent the characteristics of
the subgraphs. Each column show the average value overall the subgraphs of the hierar-
chy including the topgraph. The displayed characteristics are the number of actors, the
maximum number of input (fi) and output (fo) Fifo queues of the actors, the repetition
factor (RV) and total repetition factor (TotalRV) of the actors. Lastly, the number of
edges and their duplication number in the equivalent DAG of the subgraph. As concerns
the actors duration, it was generated randomly for the synthetic actors and measured for
the real ones. The measurements was done using the automated measurement module of
the open-source Preesm framework [PDH+14], which consists on running the source code
of the actors multiple times to estimate their Worst-Case Execution Time (WCET). The

Experimental Results 85

Table 5.5 – Performance comparison between the classical approaches Flat-CPM and Flat-SE,
and the new methods H-SE and H-CPM.

IBSDF graph
Flat-CPM Flat-SE H-SE H-CPM

Exec.Time Exec.Time Appr./Exact Exec.Time Exec.Time

Crypto 0.65 ms 1.15 ms 1.00 0.50 ms 0.50 ms

Large FFT 4.66 ms 6.11 ms 1.00 0.50 ms 3.73 ms

LTE 2.52 ms 2.85 ms 1.00 0.50 ms 1.49 ms

Stereo Matching 18.20 ms 23.56 ms 1.00 0.87 ms 15.00 ms

Graph 1 2.40 ms 3.32 ms 1.80 0.93 ms 1.83 ms

Graph 2 108.16 ms 134.00 ms 1.76 0.99 ms 3.91 ms

Graph 3 441.40 ms 415.55 ms 3.73 1.00 ms 5.11 ms

Graph 4 6.25 s 6.64 s 7.7 1.20 ms 48.14 ms

Graph 5 - - 5.5 4.74 ms 83.32 ms

Graph 6 - - 8× 106 12.81 ms 308.60 ms

Max. Memory usage 1,4 GB 1,4 GB 11 MB 163 MB

algorithm implementation of the new methods was integrated to Preesm framework as
well as the implementation of the classical approaches. All the methods are written in
Java language and were tested on one core of an Intel i5-6300 processor clocked at 2.40
GHz, with 8GB of RAM. For an accurate experimental results, each method was tested
100 times for each IBSDF graph of the benchmark set.

5.5.2 Results

In the experiments, all the IBSDF graphs were evaluated under the relaxed execution mode
to compute the minimum possible value of their multi-core latency. The exact minimum
value computed by each of the classical approaches and the H-CPM is used to evaluate
the quality of the approximation value computed with the H-SE technique. Table 5.5
summarizes the experimental results. Each column of the table represents the average
execution time of each method for each IBSDF graph of the benchmark set. The Flat-
CPM and Flat-SE refer respectively to the CPM-based and SE-based classical approaches.
For the H-SE method, a second column shows the ratio between the approximation and
the exact value of the multi-core latency. This ratio indicates also the speedup of the
applications when changing the execution mode from hierarchical to relaxed.

From the results, we observe that the two new methods H-CPM and H-SE are faster
than the classical approaches Flat-CPM and Flat-SE. Although H-SE technique is the
fastest one among the four methods, the minimum multi-core latency can be over estimated
up to 8 × 106 times the exact value. In terms of accuracy, the results demonstrate the
efficiency of the H-CPM algorithm in computing the exact multi-core latency of the graphs,
even if its time-complexity is not polynomial. For example, the H-CPM took only 48.2
millisecond to evaluate the exact multi-core latency of Graph 4 and 0.3 seconds for Graph
6, while the two classical approaches took more than 6 seconds to evaluate Graph 4 and
failed for Graph 6. On the other hand, the H-SE method took only 1.2 millisecond to
evaluate Graph 4 and 12.8 milliseconds for Graph 6, but the multi-core latency was over
estimated by 7.7 times the exact value for Graph 4 and 8× 106 times for Graph 6.

Since the classical approaches rely on the flattening process, they have failed to evaluate
the multi-core latency of Graph 5 and Graph 6. Indeed, it was not possible to flatten the
hierarchy of these two last IBSDF graphs with the available RAM memory. Table 5.6

86 Latency Evaluation of IBSDF graph

Table 5.6 – The size of the equivalent DAG of each of the entire IBSDF graph and the largest
subgraph in the hierarchy.

IBSDF graph
The equivalent DAG of the The equivalent DAG of the

entire IBSDF graph largest subgraph

Name Actors FIFOs fi fo Actors FIFOs fi fo

Crypto 34 40 2 4 10 12 2 2

Large FFT 267 776 256 256 264 773 3 1

LTE 272 336 22 22 54 98 2 1

Stereo Matching 1606 3140 380 380 1143 1901 2 2

Graph 1 513 813 5 8 78 120 2 1

Graph 2 17730 48723 15 15 38 122 3 2

Graph 3 87440 193579 15 15 62 147 3 2

Graph 4 654566 2030272 119 45 1535 4783 4 2

Graph 5* 39× 1010 78× 1010 119 561 2552 6653 3 2

Graph 6* 31× 1018 79× 1018 1190 1190 29753 46405 2 2

shows the actual size of the resulting equivalent flat DAG of each IBSDF graph of the
benchmark set. For Graphs 5 and 6, the size of their equivalent flat DAG was only
estimated based on the repetition factor RV and the total repetition factor TotalRV of
their actors. From the estimated number of actors and edges, we assume that it will require
more than 100 petabytes of RAM memory to completely flatten Graphs 5 and 6. We also
observe that the size of the equivalent flat DAG grows exponentially as the number of
hierarchical levels grows. This explains why the execution time of the classical approaches
Flat-CPM and Flat-SE in table 5.5 increases exponentially as the number of hierarchical
levels grows. In contrast, the new methods H-SE and H-CPM have been able to evaluate
all the benchmark set in less than a half second. The time efficiency of both methods goes
back to the decomposition technique that reduces the time and space complexity of the
evaluation. Indeed, each of H-SE and H-CPM evaluates only one subgraph per iteration
instead of evaluating the entire equivalent flat DAG once. The second part of table 5.6
shows the size of the equivalent DAG of the largest subgraph of each IBSDF graph of
the benchmark set. As the table shows, the size of the equivalent DAG of a subgraph to
evaluate at each iteration remains very small compared to the size of the equivalent flat
DAG of the entire IBSDF graph. This also explains the low memory usage of the new
methods during the numerical experiments. The last row of table 5.5 shows the maximum
memory usage of each method during the latency evaluation of the benchmark set. The
maximum memory usage of the classical approaches is about 1, 4 Gigabytes (GB) of RAM
memory. This value corresponds to the amount of RAM memory used to flatten the entire
hierarchy of the large synthetic IBSDF graph 4. In the other hand, the H-SE method has
consumed 11 Megabytes (MB) of RAM memory to evaluate the benchmark set. This low
memory usage is due to the fact that the H-SE method simulates the execution of the
entire IBSDF graph without any DAG conversion at any level. Since the H-CPM converts
one subgraph to an equivalent DAG at each iteration, it consumed 163 Megabytes (MB)
of RAM memory to evaluate the benchmark set, which is more than the H-SE method
but much more less than the classical approaches.

Figure 5.12 shows for each method, the percentage of the total execution time spent
on each of DAG conversion phases and computation phases for each IBSDF graph. From
the first two charts, we observe that the flattening phase takes between 38% and 76%
of the total execution time of the classical approaches. This confirms that flattening the

Experimental Results 87

hierarchy can be a long process that takes more time than the computation phase itself.
For H-CPM the execution time spent on DAG conversions is reduced to 47%, down to
12% of the total execution time. The H-SE in the other hand, spends 100% of the total
execution time in the computation phase since it does not require any DAG conversion.

75% 75%

47%

76%

44% 49%
38%

65%

25% 25%

53%

24%

56% 51%
62%

35%

0% 0%
0%

20%

40%

60%

80%

100%

C R Y P T O L A R G E F F T L T E S T E R E O
M A T C H I N G

G R A P H 1 G R A P H 2 G R A P H 3 G R A P H 4 G R A P H 5 G R A P H 6

%
 T

O
TA

L
EX

EC
.T

IM
E

CLASSICAL APPROACH: FLAT -CPM

Flattening phase Compuation phase

69% 62% 67%
56% 56%

46% 47% 55%

31% 38% 33%
44% 44%

54% 53% 45%

0% 0%
0%

20%

40%

60%

80%

100%

C R Y P T O L A R G E F F T L T E S T E R E O
M A T C H I N G

G R A P H 1 G R A P H 2 G R A P H 3 G R A P H 4 G R A P H 5 G R A P H 6

%
 T

O
TA

L
EX

EC
.T

IM
E

CLASSICAL APPROACH: FLAT -SE

Flattening phase Compuation phase

31% 38%
12%

47%

20% 26%
37% 44% 47%

29%

69% 62%
78%

53%

80% 74%
63% 56% 53%

71%

0%

20%

40%

60%

80%

100%

C R Y P T O L A R G E F F T L T E S T E R E O
M A T C H I N G

G R A P H 1 G R A P H 2 G R A P H 3 G R A P H 4 G R A P H 5 G R A P H 6

%
 T

O
TA

L
EX

EC
.T

IM
E

NEW METHOD: H-CPM

Conversion phase Compuation phase

Figure 5.12 – The percentage of the total execution time spent on each of the conversion phase
and the computation phase of each of Flat-CPM, Flat-SE, H-SE, and H-CPM methods.

88 Latency Evaluation of IBSDF graph

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

C R Y P T O L A R G E F F T S T E R E O
M A T C H I N G

G R A P H 1 L T E G R A P H 2 G R A P H 3 G R A P H 4 G R A P H 5 G R A P H 6

LO
G

(E
X

EC
.T

IM
E)

COMPUTATION PHASE: EXEC.TIME

Flat-CPM Flat-SE SR H-CPM

Figure 5.13 – A comparison between the execution time of the computation phase of each of
Flat-CPM, Flat-SE, H-SE, and H-CPM methods.

Table 5.7 – The computation phase speedup and the overall speedup of the HCPM over the classical
approaches Flat-CPM and Flat-SE.

IBSDF graph

Computation phase speedup Overall speedup

of the H-CPM compared to of the H-CPM compared to

Flat-CPM Flat-SE Flat-CPM Flat-SE

Crypto 0.47 1.03 1.30 2.30

Large FFT 0.50 1.00 1.25 1.64

Stereo Matching 0.55 1.30 1.21 1.57

Graph 1 0.92 1.00 1.31 1.81

LTE 1.15 0.81 1.69 1.91

Graph 2 19.06 25.01 27.66 34.27

Graph 3 85.01 68.41 86.38 81.32

Graph 4 81.14 110.84 129.83 137.93

For a fair comparison, the chart of figure 5.13 compares only the execution time of
the computation phase of each method. Due to the large difference between the original
values of the execution time, we show in this chart the logarithm value to reduce that
large difference. From the displayed chart, we can see that the computation phase of
the classical approach Flat-CPM is faster than the one of H-CPM for the IBSDF graphs
with a small number of hierarchical levels like Crypto, Large FFT, and Stereo Matching
applications. This can be explained by the fact that the equivalent flat DAG of these
graphs is relatively small so that computing the longest path in one iteration is faster
than constructing it in a hierarchical way in which an LPEG must be constructed for each
subgraph. However, as the number of levels grows, the H-CPM becomes significantly faster
than classical approaches. Despite of the fact that the H-SE method is an approximation
technique, it remains the fastest method among the four methods.

Table-5.7 summarizes the computation phase speedup and the overall speedup of the
H-CPM over the two classical approaches Flat-CPM and Flat-SE. As the table shows, the
speedup of the H-CPM increases significantly as the number of levels grows. For Graph 4,
the H-CPM is 130 times faster than the two classical approaches on the overall execution,
and 81 times faster on the computation phase.

Conclusion 89

5.6 Conclusion

In this chapter we have presented how to evaluate the latency of an IBSDF graph despite
the specifications of the targeted architecture. We have first demonstrated how to compute
the mono-core latency of an IBSDF graph, which is mandatory for the speedup calculation.
Based on the properties of the interface-based hierarchy of the IBSDF model, we have
been able to hierarchically compute and analyze the mono-core latency of IBSDF graphs.
Indeed, each subgraph of an IBSDF graph is insulated in terms of data-dependency, which
allows to analyze its structure and behavior independently from its upper levels. As a
result, we defined the maximum duration of each hierarchical actor in the hierarchy by
computing the mono-core latency of its subgraph. Using this technique in a bottom-up
approach, we computed the mono-core latency of the entire IBSDF graph in a hierarchical
way. Moreover, based on this hierarchical evaluation and based on a new parameter named
the total repetition factor, we have been able to compute the contribution percentage of
each actor in the hierarchy to the total mono-core latency of the IBSDF graph. By doing
that, we answered questions like: how the mono-core latency is distributed among the
hierarchy ? which actors are critical to the performance of the application ?

Next, we studied the minimum achievable latency of the IBSDF graph which represents
the minimum multi-core latency of the graph when it is running on an architecture with
unlimited resources. Based on the state-of-the-art methods of the SDF model, we presented
the classical approach that evaluates the IBSDF graph as if it was a large SDF graph. The
method consists on flattening the hierarchy of the IBSDF graph into an equivalent flat
graph and then evaluate its multi-core latency using SDF methods. As simple as it is, the
approach is considered as inefficient in the context of rapid prototyping. Indeed, flattening
the hierarchy of an IBSDF graph results in an exponential growth of both actors and edges
number of the equivalent flat graph. As consequences, the exponential space-complexity
of the flattening process makes the latency evaluation a hard task for the state-of-the-art
methods of the SDF model. Furthermore, some IBSDF graphs cannot be flattened due to
the exponential size of the resulted graph, which simply makes SDF methods fail to return
a result.

In this context where the classical approach fails to evaluate the latency of IBSDF
graphs, we have developed two new methods to compute the multi-core latency of the IB-
SDF graph at low complexity. Both methods take advantage of the interface-based hierar-
chy to evaluate the IBSDF graph without flattening its hierarchy. The first method named
Hierarchical-Symbolic-Execution (H-SE) adapts the state-of-the-art method Symbolic-
Execution (SE) of the SDF model for the IBSDF model. The H-SE method evaluates the
multi-core latency of the IBSDF graph in the hierarchical execution mode. The method
simulates hierarchically the fastest execution of the IBSDF graph to measure the minimum
duration of its entire iteration. So, instead of simulating the entire iteration of the equiv-
alent flat graph as the SE-based classical approach does, the H-SE starts by simulating
the multi-core execution of each subgraph to define the minimum duration of its hierar-
chical parent actor. Thus, in a bottom-up approach, the duration of the entire hierarchy
is abstracted by the minimum duration of the hierarchical actors of the topgraph. As a
result, simulating only one iteration of the topgraph in which the hierarchical actors are
considered as regular actors with a minimum duration, allows to measure the duration of
the entire hierarchical graph. Thus the H-SE method is able to evaluate the multi-core
latency of the IBSDF graph in the hierarchical execution mode without any flattening of
the hierarchy.

90 Latency Evaluation of IBSDF graph

The second method named Hierarchical-Critical-Path Method (H-CPM), adapts the
state-of-the-art Critical-Path Method (CPM) of the SDF model for the IBSDF model.
The H-CPM consists on evaluating the multi-core latency of the IBSDF graph in the
relaxed execution mode, which represents the minimum achievable latency of the applica-
tion regardless the unlimited resources that an architecture can have. Compared to the
CPM-based classical approach that computes the critical-path of the entire equivalent flat
graph, the H-CPM constructs hierarchically the critical-path of the IBSDF graph with-
out flattening completely its hierarchy. To do so, we have first demonstrated that the
critical-path of an IBSDF graph is a composition of multiple sub-paths from the IBSDF
subgraphs. Then, we have introduced a new graph model named Longest-Path Equivalent
Graph (LPEG) that abstracts the longest path between each input and output interface
of an IBSDF subgraph through weighted edges. By using this abstraction model in a
bottom-up approach, the H-CPM abstracts with a set of equivalent LPEG all the possible
subpaths in the hierarchy that may compose the critical path of the IBSDF graph. As a
result, computing only the critical-path of the topgraph in which the hierarchical actors are
replaced with the equivalent LPEG of their subgraph, allows to evaluate the critical-path
of the entire IBSDF graph. Thus the H-CPM is able to evaluate the multi-core latency
of the IBSDF graph in the relaxed execution mode without flattening its hierarchy or
exploring the entire equivalent flat graph.

Finally, to prove the efficiency of our new low-complexity methods, we have compared
their performance with the classical approaches on a benchmark set composed of real and
synthetic IBSDF graphs. The experimental results have shown that the flattening process
of the classical approach may take up to 70% of the total execution time of the evaluation.
Moreover, the classical approach have failed to evaluate the multi-core latency of some
synthetic IBSDF graphs due to the exponential size of their equivalent flat graph. At
the other hand, the new methods H-SE and H-CPM have been able to evaluate all the
benchmark set since they avoid the flattening process. The H-SE method in particular has
demonstrated to be extremely fast in computing the multi-core latency of IBSDF graphs in
the hierarchical execution mode. The H-SE method can also be used as an approximation
method for the relaxed execution mode of the IBSDF graph. However, the experimental
results have shown that the approximation value can be up to 8×106 times more than the
exact value of the multi-core latency of an IBSDF graph in the relaxed execution mode.
The H-CPM in turn, has shown to be also faster than the classical approach in evaluating
the latency of IBSDF graphs under the relaxed execution mode. Indeed, the new method
has computed the exact value of all the benchmark set in less than a half second.

As a conclusion for this chapter, we have developed new efficient methods for the la-
tency evaluation of IBSDF graphs, which are suitable for the context of rapid prototyping.
Indeed, very fast evaluation of this metric enables the developer to validate the design of
the application before reaching the final phases of the development process. Moreover,
evaluating the latency in a hierarchical way has enabled a better analysis of the hierarchy
which was not possible with the classical approach. Furthermore, the new methods can
be included into Design Space Exploration (DSE) methods [KAL11, FS14] to evaluate
πSDF graphs [DPN+13]; a parametric extension of the IBSDF model. A πSDF graph can
have multiple configurations depending on all the possible values of its parameters. Hence,
fast evaluation methods are mandatory in order to explore the latency of each possible
configuration of a πSDF graph.

CHAPTER 6

Conclusion

6.1 Summary

The complexity of Digital Signal Processor (DSP) applications has been increasing expo-
nentially over the last twenty years. In parallel, the complexity of Multiprocessor System-
on-Chip (MPSoC) architectures is increasing exponentially to meet the rising computation
power demand. Modern MPSoC architectures like the many-cores architectures, already
embed hundreds of Processing Element (PE) in one single chip, and plan to integrate up
to thousand PE in the near future. Thus, new programming models and languages must
be found to exploit all the parallel processing power of these new devices.

Dataflow Model of Computation (MoC) are one of the emerging programming models,
designed for the development of complex signal processing applications for MPSoC archi-
tectures. Dataflow programming has gained popularity over the years as a simple model
which naturally expresses the parallelism of an application. In fact, a dataflow model
decomposes the computations of an application into a graph of tasks called actors. Thus,
a simple analysis of the graph allows to determine automatically which tasks could be
executed in parallel. As a promising programming model, more dataflow MoC are being
proposed, each one extends the expressivity of the previous one.

The Interface-Based SDF (IBSDF) MoC is one of the recent extensions of the classical
Synchronous Dataflow (SDF) model. The IBSDF model is a compositional model which
enables the developer to decompose an application into a set of modules organized in a
hierarchy. Each module has its own actors which communicate with other modules via
interfaces. In fact, the interface-based hierarchy of the IBSDF model enables the design
and the analysis of each module (subgraph) independently from the hierarchy.

The development process of signal processing applications modeled with IBSDF graphs
consists of first verifying the ability of the graph to run on an architecture with bounded
memory, which is called the consistency and liveness property. Next, analyzing the max-
imum theoretical performance of the application based on the graph description. Then,
mapping and scheduling the graph on the targeted MPSoC architecture. If the user re-
quirement like the performance of the application is satisfied then a last phase of the
development process consists on generating the source code which will be actually exe-
cuted on the targeted MPSoC architecture. If the user requirement is not satisfied then

91

92 Conclusion

the developer must iterate the whole process to optimize the performance of the applica-
tion.

Therefore, in the context of rapid prototyping, a fast evaluation of the maximum per-
formance of the application is essential for a real-time feedback to the developer during
the application development. The contributions presented in this thesis address the prob-
lem of flattening the hierarchy of the graph during the development process. Flattening
the hierarchy, which is the transformation of a hierarchical graph to a non hierarchical
graph, is mandatory in the classical development process. Such transformation results in
an exponential growth of the graph size, which makes the application hard to process.
Each presented contribution propose a new method for the performance evaluation of the
IBSDF graph without flattening its hierarchy.

In Chapter 4, new techniques for the maximum throughput evaluation of IBSDF graphs
are presented. The first method named Schedule-Replace (SR) computes the maximum
throughput of an IBSDF graph when it is executed in the hierarchical execution mode.
The second method named ESR computes the maximum throughput of the IBSDF graph
when it is executed in the relaxed execution mode; an execution mode where applications
reaches their maximum performance. Both proposed methods evaluate the IBSDF graph
in a modular way without flattening its hierarchy. The numerical experiments have shown
that the new techniques are capable of evaluating large IBSDF graph in less than 2 seconds.
While the classical approaches take much more time or fail to return a result.

In chapter 5, new techniques for the minimum achievable latency evaluation of IBSDF
graphs are presented. The first technique named Hierarchical-Symbolic-Execution (H-
SE) evaluates the exact minimum latency of the IBSDF graph when it is executed in
the hierarchical execution mode. The second technique named Hierarchical-Critical-Path
Method (H-CPM) evaluates the exact minimum latency of the IBSDF graph when it is
executed in the relaxed execution mode. Both techniques evaluate the latency of IBSDF
graphs without flattening their hierarchy. The H-SE method consists on simulating the
execution of the IBSDF graph in a hierarchical way. The H-CPM method in turn, consists
on constructing the critical path of the entire IBSDF graph in a modular way. Compared
to the classical method Critical-Path Method (CPM) which first flatten the IBSDF graph
and then compute its critical path, the new technique is capable of evaluating large IBSDF
graphs in few milliseconds.

These contributions were implemented as part of the Preesm software rapid prototyp-
ing framework. Our new developed techniques will enable the developer to rapidly evaluate
the maximum performance of the modeled application at early stage of the development
process. Thus, the developer can validate the design phase before reaching the mapping
and scheduling phase, which avoids him repeating the entire development process. If the
evaluated performance does not reach an acceptable value, the new techniques enables
the developer to analyze level by level in order to identify which subgraph needs to be
optimized.

6.2 Future Work

The work presented in this thesis opens many opportunities for future research on dataflow
MoC and rapid prototyping.

Future Work 93

1 1
CIn

 1

O
u

t
1

x2

O
u

t
11 1

In
 1 D1

E3

E2

E1

F2

F1

G1

subgraph DAG

Hierarchical
actor

upper
graph

sub-
graph

(a) A hierarchical actor example.

In
 1 D1 F1 O

u
t

1

PE 1

1 2 3 40 Time5 6 7 8 9 10 11 12 13

E1 E2 E3 F2 G1

In
 1 D1 F1 O

u
t

1

PE 1 E1 E3 G1

F2PE 2 E2

1 2 3 40 Time5 6 7 8 9 10 11 12 13

In
 1 D1 F1 O

u
t

1

PE 1 E1 G1

F2PE 2 E2

PE 2 E3

1 2 3 40 Time5 6 7 8 9 10 11 12 13

(b) Scheduling the subgraph multiple time on
different numbers of PEs from 1 to 3.

#PE Dur

12

2

3

1

9

7

Actor C

(c) profile list.

Figure 6.1 – Constructing the equivalent moldable tasks of a hierarchical actor by scheduling its
subgraph multiple times on different numbers of PE

6.2.1 Modular Mapping and scheduling

From our contributions on evaluating the throughput and the latency of IBSDF graphs,
we concluded that the flattening process must be avoided as much as possible, and use
modular approaches instead. Indeed, modular approaches, like the Schedule-Replace (SR)
for the throughput evaluation and the Hierarchical-Critical-Path Method (H-CPM) for the
latency evaluation, have been demonstrated to be highly efficient for large IBSDF graphs.
These modular-based algorithms take advantage of the insulation property of the IBSDF
model to evaluate each subgraph independently from the hierarchy. Thus, the entire
IBSDF graph is explored and evaluated hierarchically without flattening its hierarchy.

Similarly, we describe in the following the idea of a new approach for mapping and
scheduling IBSDF graphs on homogeneous architectures in a modular way without flat-
tening their hierarchy. The new approach is based on the idea of considering a hierarchical
actor as a moldable task. In the literature, a moldable task is defined as a multiprocessor
task which requires a certain number of PEs to execute. The moldable task is free to
run on any number of PEs from 1 to m, according to its maximum parallelism. However,
once the moldable task is executed, the number of chosen PEs cannot change during the
execution. According to each number of PE, the moldable task takes a certain duration
known at compile-time. Based on this description, a hierarchical actor is equivalent to
a moldable task, when the IBSDF graph is executed in the hierarchical execution mode.
Indeed, the execution of a hierarchical actor can be seen as the execution of a regular actor
encapsulating the actual execution of the subgraph, which takes a certain duration and
requires a certain number of PEs. Moreover, a list of profiles can be build by scheduling
multiple times the subgraph of the hierarchical actor on different numbers of PEs. Each
profile of the hierarchical actor corresponds to a pair of number of PEs and the corre-
sponding duration that the subgraph takes to finish its execution. Thus, each hierarchical
actor of the IBSDF graph can be converted to a moldable task.

Figure 6.1, shows an example of a hierarchical actor for which a list of profiles is
build based on scheduling its subgraph on different numbers of PEs. The subgraph of the
hierarchical actor C (fig. 6.1a) has a maximum parallelism of 3, which can be obtained
by simulating an ASAP schedule of the subgraph. Hence, the subgraph is scheduled
multiple times on different numbers of PEs from 1 to 3 (fig. 6.1b). Each obtained schedule
corresponds to the execution of the hierarchical actor C as a large actor that encapsulates
the execution of the subgraph. Thus, the profile list of the hierarchical actor C is obtained,
which defines its equivalent moldable task (fig. 6.1c).

94 Conclusion

The new approach takes advantage of this equivalence between a hierarchical actor
and a moldable task to reduce both the time and the space complexity of the mapping
and scheduling problem of IBSDF graphs. In fact, the profile list of each hierarchical
actor abstracts all the mapping and scheduling choices of the subgraph. Hence, instead
of replacing the hierarchical actor by its subgraph and dealing with all the mapping and
scheduling choices of each sub-actor, the hierarchical actor is considered as a moldable
task and thus the problem is reduced to one question: which profile should be used for the
hierarchical actor? This problem is known as the moldable task-graph scheduling problem.
Thus, scheduling an IBSDF graph becomes a problem of scheduling hierarchical moldable
tasks, which has not been studied yet in the literature.

In the context of rapid prototyping, this new approach will enables the evaluation of
the expected performance of the application on the many-core architecture at compile-
time, before reaching the code generation and the execution phases of the development
process.

ANNEXE A

French Summary

A.1 Introduction

La complexité des applications DSP (Digital Signal Processor) augmente de façon expo-
nentielle pendant les vingt dernières années. Parallèlement, la complexité des architectures
MPSoC (Multiprocessor System-On-Chip) augmente de façon exponentielle pour répondre
à la demande croissante de puissance de calcul. Les architectures MPSoC modernes, comme
les architectures multi-cœurs, intègrent déjà des centaines d’éléments de traitement (PE)
dans une seule puce, et prévoient d’intégrer jusqu’à des milliers de PE dans un avenir
proche. Il faut donc trouver de nouveaux modèles et langages de programmation pour
exploiter toute la puissance de traitement parallèle de ces nouveaux appareils.

Le modèle de calcul de flux de données (MoC) est l’un des modèles de programmation
émergents, conçu pour le développement d’applications complexes de traitement du signal
pour les architectures MPSoC. La programmation par flux de données a gagné en popu-
larité au fil des ans en tant que modèle simple qui exprime naturellement le parallélisme
d’une application. En fait, un modèle de flux de données décompose les calculs d’une ap-
plication en un graphique de tâches appelé acteurs. Ainsi, une simple analyse du graphe
permet de déterminer automatiquement quelles tâches peuvent être exécutées en parallèle.
En tant que modèle de programmation prometteur, d’autres MoC de flux de données sont
proposés, chacun prolongeant l’expressivité du précédent.

Le modèle IBSDF (Interface-Based Synchronous Dataflow) est l’une des récentes exten-
sions du modèle SDF (Synchronous Dataflow) classique. Le modèle IBSDF est un modèle
compositionnel qui permet au développeur de décomposer une application en un ensemble
de modules organisés selon une hiérarchie. Chaque module a ses propres acteurs qui com-
muniquent avec les autres modules via des interfaces. En effet, la hiérarchie basée sur les
interfaces du modèle IBSDF permet la conception et l’analyse de chaque module (sous-
graphe) indépendamment de la hiérarchie.

Le processus de développement d’applications de traitement du signal modélisées avec
des graphes IBSDF consiste d’abord à vérifier la capacité du graphe à s’exécuter sur une
architecture à mémoire limitée, qui est appelée la propriété de consistance et de vivacité.
Puis, l’analyse de la performance théorique maximale de l’application sur la base de la des-
cription graphique. Ensuite, le placement et l’ordonnancement du graphe sur l’architecture
MPSoC ciblée. Si les besoins de l’utilisateur comme les performances de l’application sont

96 French Summary

satisfaits, une dernière phase du processus de développement consiste à générer le code
source qui sera alors exécuté sur l’architecture MPSoC visée. Si les exigences de l’utilisa-
teur ne sont pas satisfaites, le développeur doit alors recommencer l’ensemble du processus
pour optimiser la performance de l’application.

Par conséquent, dans le contexte du prototypage rapide, une évaluation rapide des
performances maximales de l’application est essentielle pour un feed-back en temps réel
au développeur lors du développement de l’application. Les contributions présentées dans
cette thèse abordent le problème de l’aplatissement de la hiérarchie du graphe pendant
le processus de développement. L’aplatissement de la hiérarchie, qui est la transformation
d’un graphe hiérarchique en un graphe non hiérarchique, est obligatoire dans le processus
de développement classique. Une telle transformation entrâıne une croissance exponentielle
de la taille du graphe, ce qui rend l’application difficile à traiter. Nos contributions visent à
proposer de nouvelles techniques pour l’évaluation rapide de deux métriques importantes :
le débit maximal et la latence minimal de l’application. Ces deux métriques doivent être
évalués le plus tôt possible par le développeur afin de valider ou non la phase de conception
de l’application. Précisément, nous avons développé :

1. Une méthode nommée Schedule-Replace (SR) pour l’évaluation du débit maximal
d’un graphe IBSDF lorsqu’il est exécuté en mode d’exécution hiérarchique.

2. Une méthode nommée Evaluate-Schedule-Replace (ESR) pour l’évaluation du débit
maximal d’un graphe IBSDF lorsqu’il est exécuté en mode d’exécution relâché.

3. Une méthode nommée Hierarchical-Critical-Path Method (H-CPM) pour l’évaluation
de la latence minimale du graphe IBSDF dans les deux modes : le mode d’exécution
hiérarchique et le mode d’exécution relâché.

Contrairement à la technique classique qui repose sur le processus d’aplatissement,
les nouvelles techniques évaluent le graphe IBSDF de manière modulaire, sans aplatir sa
hiérarchie. Ainsi, les nouvelles techniques ont permis d’évaluer de grands graphes IBSDF
en moins de 2 secondes, alors que la méthode classique prenait 5 minutes ou échouait pour
certains graphes IBSDF à cause de leur grande taille.

Ce résumé reprend l’organisation des chapitres du corps de la thèse. La Section A.2
présente quelques modèles de flux de données utilisés dans ce résumée. La Section A.3
décrit l’environnement de prototypage rapide au sein duquel les travaux de cette thèse
ont été développés. Ensuite, les Sections A.4 et A.5 présentent les contributions de cette
thèse. La section A.4 présente les nouvelles techniques SR et ESR pour l’évaluation du
débit maximal d’un graph IBSDF. La section A.5 présente la nouvelle technique H-CPM
pour l’évaluation de la latence minimale d’un graphe IBSDF. Par la suite, la section A.6
présente les résultats des expérimentations numériques qui ont pour but de comparer les
performances des nouvelles techniques avec celle de la méthode classique sur un jeu de
donnée de graphes IBSDF généré aléatoirement. Enfin, la section A.7 conclut ce résumé.

A.2 Modèles de flot de donnèes

Les modèles de flux de données sont des modèles basés sur des diagrammes, qui consistent
à représenter une application avec un graphe orienté de tâches appelées acteurs. Les arêtes
du graphe représentent l’échange de données entre les acteurs. Cette décomposition de
l’application en un ensemble d’acteurs interconnectés offre au développeur un moyen na-
turel d’exprimer le parallélisme et les dépendances de données entre les acteurs. Dans ce

Modèles de flot de donnèes 97

qui suit, nous présentons les propriétés des deux modèles de flux de données utilisée dans
cette thèse : le modèle Synchronous Dataflow (SDF) et le modèle Interface-Based SDF
(IBSDF).

A.2.1 Synchronous Dataflow (SDF)

Le modèle de flux de données synchrone (SDF) a été introduit par Lee et Messerschmitt
en 1987 [LM87b]. Ce modèle est défini comme suit :

Definition A.2.1. Un diagramme de flux de données synchrone (SDF) est un graphe
orienté G = 〈A,F 〉 tel que :

• A est l’ensemble des nœuds de G. Chaque nœud a ∈ A représente un acteur : une
entité de code séquentiel. Le comportement interne des acteurs ne fait pas partie
du modèle de flux de données, il peut être décrit avec n’importe quel langage de
programmation.

• F ⊆ A×A est l’ensemble des arcs de G. Chaque arc f ∈ F représente une file d’at-
tente “premier arrivé, premier sorti” (F ifo) permettant la transmission de quanta
de données, appelés jetons de données, entre les acteurs du graphe.

• Chaque acteur est associé à un ensemble de règles de tirs qui spécifie le nombre
constant de jetons de données que cet acteur consomme et produit à chaque exécution
sur chacune des F ifo auxquelles il est connecté. Une nouvelle exécution d’un acteur
peut débuter dès que suffisamment de jetons de données sont présent sur les F ifo
entrantes de cet acteur.

• Les délais (delay : F → N) sont des jetons de données contenus dans les F ifo du
graphe lors de son initialisation.

Les pictogrammes associés à la sémantique du modèle SDF ainsi qu’un exemple de
diagramme SDF sont présentés en Figure A.1.

Délai

FIFO

ActeurA
Port et taux de
production/consommation3

x4

(a) Sémantique.

A

C

DB

2 2

2
1

1 4

2
313

x1

x2

(b) Exemple de graphe.

Figure A.1 – Modèle de calcul SDF.

La popularité du modèle SDF est principalement due à sa capacité à exprimer le pa-
rallélisme des applications. Dans la Figure A.1b par exemple, les acteurs B et C peuvent
être exécutés en parallèle puisqu’ils ne sont liés par aucune dépendance de données. Dans
cette même figure, à chacune de ses exécutions, l’acteur A produit suffisamment de je-
tons de données pour déclencher 3 exécutions de l’acteur B. L’acteur B n’ayant pas de
dépendance avec lui-même, contrairement à l’acteur C, il peut effectuer ces 3 exécutions
en parallèle les unes des autres.

La popularité du modèle SDF est également due à sa grande analysabilité qui permet
de vérifier certaines propriétés des applications modélisées lors d’une phase de compila-
tion. Par exemple, il est possible de garantir qu’une application ne rencontrera jamais
d’interblocage (ou étreinte fatale [LM87b] lors de son exécution.

98 French Summary

A.2.2 Interface-Based SDF (IBSDF)

Le modèle flux de données synchrone basé-interface (IBSDF) est une généralisation hié-
rarchique du modèle SDF proposée par Piat et al. dans [PBR09]. Dans le modèle IBSDF,
le comportement interne d’un acteur a ∈ A peut être décrit soit par du code séquentiel,
soit par un diagramme de flux de données appelé sous-graphe de cet acteur. Les picto-
grammes associés à la sémantique de l’IBSDF ainsi qu’un exemple de diagramme IBSDF
sont présentés en Figure A.2.

Interface
d'entrée

Interface
de sortie

Délai

FIFO

Acteur
hiérarchique

ActeurA
Port et taux de
production/
consommation

3

x4

ou
t

in

h

(a) Sémantique.

A Bh 1 313

1 2 111 1 DC

ou
t

in

(b) Exemple de graphe.

Figure A.2 – Modèle de calcul IBSDF.

Les interfaces hiérarchiques du modèle IBSDF ont pour rôle d’isoler les niveaux de
hiérarchie les uns des autres. En particulier, si le nombre de jetons nécessaires pour
l’exécution d’un sous-graphe est supérieur aux nombres de jetons fournis sur les ports
de l’acteur hiérarchique, alors les interfaces d’entrée dupliqueront les jetons fournis autant
de fois que nécessaire pour permettre l’exécution du sous-graphe. Par exemple, dans le
diagramme IBSDF de la Figure A.2b, deux exécutions de l’acteur C sont nécessaires pour
fournir les jetons consommés par l’acteur D. Le port d’entrée de l’acteur h ne consom-
mant qu’un seul jeton à la fois, ce jeton doit être dédoublé par l’interface d’entrée in pour
permettre le lancement des deux exécutions de l’acteur C.

En pratique, les interfaces hiérarchiques font du modèle IBSDF un modèle com-
positionnel. Un modèle de flux de données est compositionnel si les propriétés d’un
diagramme sont indépendantes des spécifications internes des éléments qui le composent.
Par exemple, dans le diagramme de la Figure A.2b, grâce aux interfaces, quel que soit
le taux de consommation de l’acteur D, l’acteur hiérarchique h consommera toujours un
unique jeton par exécution de son sous-graphe. Le graphe de plus haut niveau contenant
les acteurs A, h, et B est donc bien indépendant de la spécification interne de l’acteur
hiérarchique h.

A.3 PREESM : un outil de prototypage rapide

PRESSM est un framework basé sur Eclipse qui fournit des méthodes basées sur le flux de
données pour étudier et programmer des plates-formes multi-cœurs embarquées [PDH+14].
Ce framework est open-source et de nombreux tutoriels sont disponibles sur le site web de
Preesm pour l’initiation facile des développeurs C/C++ à la programmation multi-cœurs.

Le framework Preesm se concentre sur la fourniture d’informations de prototypage
rapide de haut niveau sur le parallélisme et la latence des algorithmes. Il propose également
des analyses détaillées sur les besoins en mémoire du système. De plus, une génération de
code C/C++ adaptable à la plate-forme est fournie pour transformer la représentation du
flux de données en un code exécutable.

Un workflow de développement Preesm typique pour un graphe IBSDF se compose de
6 phases principales :

Evaluation du Débit maximal 99

1. Phase de conception : Le concepteur modélise l’application à l’aide d’un graphe
IBSDF en utilisant l’interface utilisateur de Preesm

2. Phase de vérification : Vérification de certaines propriétés nécessaires comme la
consistance et la vivacité.

3. Phase de conversion : Aplatissement de la hiérarchie du graphe

4. Phase d’analyse : Évaluer les performances du graphe.

5. Phase de placement et d’ordonnancement : décide quel acteur exécuter sur quel PE.

6. Génération de code : génère le code source réel de l’application qui s’exécutera sur
la machine cible.

A.4 Evaluation du Débit maximal

Dans cette section, nous nous intéressons à l’évaluation du débit maximal des graphes
IBSDF sur des architectures MPSoC avec des ressources illimitées, c’est-à-dire un nombre
illimité de PE, une capacité mémoire illimitée et un réseau sur puce (NoC) à haute per-
formance. Le seul critère pris en compte est le temps d’exécution dans le pire des cas
(WCET) des acteurs, qui est prédéfini ou mesuré en faisant exécuter chaque acteur sur un
PE donné. Formellement, le débit maximal est la quantité maximale de jetons de données
que l’application peut produire à chaque unité de temps. L’évaluation du débit maximal
permet au développeur de mesurer le potentiel maximal de l’application modélisée, quelle
que soit l’architecture cible. La figure A.3 montre un exemple de graphe IBSDF qui servira
d’exemple pour l’évaluation du débit dans cette section. Dans ce qui suit, nous présentons
les deux modes d’exécution du graphe IBSDF, puis la méthode classique pour l’évaluation
du débit, et enfin les nouvelles techniques d’évaluation du débit que nous avons développé.

2

1
2

1

1

1

1

1 1B
1

x1

A

D

C x2
x1

x2 x2

x1

1

E F22

2

2

2

2 O
u

t
1

2

2

2

2

x2

1

1
x1

x1x1

In 2

2
2

H G
x1

2

2

In
 1

Topgraph

Subgraph

Figure A.3 – Exemple d’un graphe IBSDF.

A.4.1 Modes d’exécution d’un graph IBSDF

Le graphe IBSDF a deux modes d’exécution. Le premier mode est l’exécution hiérarchique,
qui maintient la propriété d’isolation des niveaux hiérarchiques pendant l’exécution du
graphe IBSDF. Le second mode est une exécution relâchée, qui casse l’isolation pour
accélérer l’exécution du graphe IBSDF et ainsi augmenter son débit. La figure montre
une exécution hiérarchique du graphe IBSDF exemple de la figure A.3. Tandis que la
figure montre une exécution relâchée du même graphe. Comme le montrent les figures,
l’exécution du graphe IBSDF est accélérée lorsque l’exécution du graphe est relâchée.
Cependant, l’exécution relâchée peut consommer plus de PE que l’exécution hiérarchique.

100 French Summary

11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 70 8 9 10 Time

In
 1B1

D1

G1

H1

E1

F1In
 2

O
u

t
1

A1 In
 1B2

D2

G2

H2

E2

F2In
 2

O
u

t
1

A1

In
 1B1

D1

G1

H1

E1

F1In
 2

O
u

t
1

In
 1B2

D2

G2

H2

E2

F2In
 2

O
u

t
1

A1

In
 1B1

D1

G1

H1

E1

F1In
 2

O
u

t
1

 Transient Phase Periodic Phase
1 Period

(a) Exécution hiérarchique du graphe IBSDF de la figure A.3.

11 12 13 14 15 161 2 3 4 5 6 70 8 9 10 Time

 Transient Phase Periodic Phase
1 Period

In
 1

O
u

t
1

B1

E1 G1

In
 1

E1G1 O
u

t
1

H1

B1 D1 A1 B1 D1

A1 D2

F2

In
 2

H2

D2

G2 O
u

t
2

H2

B2 In
 1 E2 G2 O
u

t
1

B2

E2

In
 1

D1 In
 2

F1 H1 F1

In
 2

In
 2

In
 2

In
 1

O
u

t
1

G1

F2

E1

A1 B1 D1

H2

D2

G2 O
u

t
1

B2

E2

In
 1

H1 F1

In
 2

In
 2

In
 1

O
u

t
1

G1

F2

E1

A1 B1 D1

H2

D2

G2 O
u

t
1

B2

E2

In
 1

H1 F1

In
 2

In
 2

In
 1

O
u

t
1

G1

F2

(b) Exécution relâchée du graphe IBSDF de la figure A.3.

Figure A.4 – Modes d’exécution d’un graphe IBSDF.

A.4.2 Méthode classique pour l’évaluation du débit

La méthode classique consiste d’abord à aplatir la hiérarchie du graphe IBSDF en un
graphe non hiérarchique aplati équivalent. Ensuite, calculer le débit du graphe plat obtenu
avec les méthodes du graphe SDF comme s’il s’agissait d’un large graphe SDF. A partir de
l’état de l’art sur les méthodes du graphe SDF, nous définissons deux méthodes classiques
pour le graphe IBSDF :

1. Flat-SSE : La méthode simule un ordonnancement au plus tôt ASAP du graphe
aplati équivalent qui se présente sous la forme d’une phase transitoire suivie d’une
phase périodique. Le débit est ensuite calculé comme 1 sur la durée d’une itération
dans la phase périodique. Cette méthode est efficace lorsque l’exécution ne com-
mence pas par une longue phase transitoire. Comme les deux figures A.4a et A.4b
le montrent, le débit du graphe IBSDF de la figure A.3 est de 1/7 sous le mode
d’exécution hiérarchique et 1/4 sous le mode d’exécution relâchée, puisque la durée
d’une itération dans les deux modes est 7 et 4 respectivement.

2. Flat-Periodic : Pour les grands graphes IBSDF, le calcul du débit maximum avec
la méthode précédente peut échouer en raison de la grande taille. Par conséquent,
la methode Flat-Periodic consiste à calculer un ordonnancement périodique optimal
du graphe plat équivalent pour définir une approximation de son débit maximal.

Cependant, le processus d’aplatissement d’un IBSDF consiste à convertir le topgraphe
en un graphe plat équivalent, puis à remplacer chaque instance d’un acteur hiérarchique
par le graphe plat équivalent de son sous-graphe. Ce processus se traduit souvent par une
croissance exponentielle du nombre d’acteurs. Ainsi, les méthodes classiques ne parviennent
pas à évaluer les graphes IBSDF.

Evaluation du Débit maximal 101

A.4.3 Nouvelle Méthode : Schedule-Replace (SR)

La technique Schedule-Replace (SR) calcule le débit des graphes IBSDF sous une exécution
hiérarchique. La technique est basée sur la construction d’un ordonnancement ASAP du
graphe IBSDF selon une approche ascendante et calcule son débit de la manière suivante :

• Phase 1 : En partant du niveau inférieur de la hiérarchie jusqu’au niveau supérieur,
pour chaque niveau :

– Etape 1 : Calculez la durée des acteurs hiérarchiques en ordonnançant leur
sous-graphe en utilisant une exécution symbolique d’un ordonnancement ASAP.

– Etape 2 : Remplacer chaque acteur hiérarchique par un acteur régulier ayant
la même durée que l’exécution du sous-graphe, calculée à l’étape 1.

– Etape 3 : Passer au niveau supérieur et répéter les étapes 1 et 2 jusqu’à ce que
le top-graphe soit atteint.

• Phase 2 : Calculez le débit du topographe obtenu comme s’il s’agissait d’un graphe
SDF.

La méthode SR consiste à faire abstraction de la hiérarchie en remplaçant les acteurs
hiérarchiques par des acteur régulier. En effet, grâce à la propriété d’isolation du modèle
IBSDF l’exécution du sous-graph d’un acteur hiérarchique est équivalente à l’exécution
d’un acteur régulier qui consomme un certain nombre de PE et prend une certaine durée
d’exécution. La figure A.5 montre l’acteur équivalent à l’exécution du sous-graphe EFGH
de l’acteur hiérarchique C du graphe IBSDF de la figure A.3.

La figure A.6 montre l’ordonnancement ASAP du graphe IBSDF sous une exécution
hiérarchique, dans laquelle chaque exécution de l’acteur hiérarchique C est représentée par
un bloc qui fait abstraction de l’exécution du sous-graph EFGH.

1 Iteration = 4t

1 2 3 4 50

G

H F

 Time

In
 1

In
 2

O
u

t
1

E

(a) Exécution du sous-graphe EFGH du graphe
IBSDF de la figure A.3.

dur(C) = 4t

1 2 3 4 50 Time

C

(b) l’acteur régulier équivalent à l’exécution du
sous-graph EFGH.

Figure A.5 – Remplacement d’un acteur hiérarchique par un acteur régulier.

C1 C2

C1

11 12 13 14 15 16 17 18 19 20 211 2 3 4 5 6 70 8 9 10 Time

B1

D1

A1 B2

D2

A1

B1

D1

B2

D2

A1

B1

D1

C2

C1

 Transient Phase Periodic Phase

Figure A.6 – Exécution hiérarchique du graphe IBSDF de la figure A.3.

102 French Summary

A.4.4 Nouvelle Méthode : Evaluate-Schedule-Replace (ESR)

La méthode Evaluate-Schedule-Replace (ESR) calcule le débit des graphes IBSDF sous
une exécution relâchée. Cette méthode est basée sur la technique SR et comprend les
étapes suivantes :

• Phase 1 : Reprogrammer les sous-graphies IBSDF pour synchroniser leur exécution
et révéler les retards cachés dans la hiérarchie.

• Phase 2 : En partant du niveau inférieur de la hiérarchie jusqu’au niveau supérieur,
pour chaque niveau :

– Étape 1 : Construire un graphe de remplacement pour chaque acteur hiérarchique
du niveau actuel en ordonnançant et en évaluant son sous-graphe.

– Étape 2 : Convertir les sous-graphes du niveau courant en graphes aplatis et
remplacer chaque instance d’un acteur hiérarchique par son graphe de rempla-
cement.

– Étape 3 : Passer au niveau supérieur et répéter les étapes 1 et 2 jusqu’à ce que
le top-graphe soit atteint.

• Phase 3 : Calculez le débit du topographe obtenu comme s’il s’agissait d’un graphe
SDF.

Tout comme la technique SR, la méthode ESR analyse le graphe IBSDF niveau par
niveau pour en calculer le débit. Cependant, la nouvelle méthode remplace un acteur
hiérarchique par un petit graphe qui modélise le comportement de son sous-graphe dans
une exécution détendue. En effet, le mode d’exécution relâchée permet aux interfaces
d’entrée et de sortie du sous-graphe de s’exécuter à un moment différent dès qu’elles sont
prêtes à être exécutées. Ce comportement des interfaces du sous-graphe rend l’exécution
d’un acteur hiérarchique différente de celle d’un acteur SDF classique. En conséquence,
un acteur hiérarchique ne peut pas être remplacé par un acteur SDF régulier dans une
exécution relâchée du graphe IBSDF. A titre d’exemple, la figure A.7 montre une com-
paraison entre le comportement du sous-graphe dans chaque mode d’exécution du graphe
IBSDF de la figure . Dans l’exécution hiérarchique (figure A.7a), le sous-graphe se com-
porte comme un bloc d’exécution d’acteurs dans lequel les deux interfaces d’entrée In1 et
In2 démarrent en même temps. En ce qui concerne l’interface de sortie Out1, elle com-
mence à s’exécuter jusqu’à la fin de l’exécution du sous-graphe. Dans le mode d’exécution
relâchée (figure A.7b), le sous-graphe se comporte différemment. En fait, les interfaces
d’entrée commencent à un moment différent et l’interface de sortie commence avant la fin
de l’exécution du sous-graphe. Ce comportement des interfaces du sous-graphe est ce qui
rend en fait l’exécution plus rapide que l’exécution hiérarchique, car il comprime l’exécution
de l’ensemble du graphe IBSDF. Mais, il n’est plus possible d’abstraire l’exécution du sous-
graphe avec un acteur régulier comme nous l’avons fait dans la figure A.5 pour l’exécution
hiérarchique du graphe IBSDF de la figure A.3.

1 2 3 4 5 6 70

In
 1B1

D1

G1

H1

E1

F1In
 2

O
u

t
1

A1

 Time

(a) Exécution hiérarchique du sous-graphe.

1 2 3 4 50

In
 1B1

D1

E1

F1

G1

H1In
 2

O
u

t
1

A1

 Time

(b) Exécution relâchée du sous-graphe.

Figure A.7 – Comparaison entre le comportement du sous-graphe dans chaque mode d’exécution
du graphe IBSDF de la figure A.3.

Evaluation de la latence minimal 103

 Equivalent graph

T0 trans T1 trans T3

In
 1

In
 2

1

1

1 1 11

1

1

1 1 1 1

1

1

Timeline

dur= 0

dur= 0

dur= 0

dur= 1 dur= 0 dur= 2

dur= 0

Period

dur = 4-3 = 1
 dur= numer(K) - last t

 denom(K) = 1

1

11

1

O
u

t
1

dur= 0

1 2 3 40

In
 2

O
u

t
1

Timeline

In
 1 E

F

G

H

trans=1t trans=2t

 Final Schedule

Figure A.8 – Le sous-graphe équivalent à l’exécution relâchée du sous-graphe EFGH du graphe
IBSDF de la figure A.3.

Figure A.8 montre le sous-graphe équivalent à l’exécution relâchée du sous-graphe
EFGH du graphe IBSDF de la figure A.3. Ce nouveau sous-graph qui a été construit en
utilisant l’algorithm decrit dans [], sera utilisé pour remplacer l’acteur hiérarchique C.

A.5 Evaluation de la latence minimal

la latence multi-cœur d’une application est la durée minimale possible d’une itération
de son graphe de flux de données équivalent lorsqu’elle est exécutée sur une architecture
multi-cœur aux ressources illimitées, de sorte que tous le parallélisme de l’application est
actif. Le calcul de la latence multi-cœur d’un graphe de flux de données est essentiel pour
évaluer l’accélération théorique de l’application lorsqu’elle est exécutée à sa performance
maximale comparée à une exécution mono-cœur.

Dans cette section nous présentons les différentes méthodes pour évaluer la latence
multi-cœur d’un graph IBSDF. En premier, la méthode classique qui repose sur l’aplatis-
sement de la hiérarchie du graph. Ensuite, les nouvelles techniques qui permettent d’évaluer
de très grand graphes IBSDF d’une manière modulaire sans aplatir leur hiérarchie.

A.5.1 Méthode classique pour l’évaluation de la latence

Une façon simple d’évaluer la latence multi-cœur d’un graphe IBSDF est d’aplatir sa
hiérarchie en un graphe plat et de l’évaluer comme si c’était un grand graphe SDF. Cette
approche classique utilisée précédemment pour le problème d’évaluation du débit s’est
avérée facile à mettre en œuvre et à intégrer dans les outils de prototypage existants.
Dans la pratique, l’approche classique consiste à aplatir d’abord la hiérarchie du graphe

104 French Summary

IBSDF en un graphe plat équivalent puis évaluer sa latence en utilisant l’une des méthodes
d’évaluation de modèle SDF. Dans la littérature, la latence multi-core d’un graphique SDF,
souvent appelée latence minimale réalisable, est calculée à l’aide de deux méthodes :

• méthode du chemin critique (flat-CPM) : la méthode du chemin critique est utilisée
pour trouver le chemin critique des applications de traitement du signal qui sont
modélisées à l’aide d’un graphe de flux de données. Le chemin critique d’une appli-
cation est le chemin le plus long des acteurs dépendants dans le graphe acyclique
orienté équivalent, où la longueur du chemin est calculée comme la somme de la
durée de ses acteurs. Du point de vue de l’exécution, le chemin critique représente
la séquence d’exécution la plus longue des acteurs qui ne peuvent pas être exécutés
en parallèle en raison de leur dépendance de données. Par conséquent, la longueur
du chemin critique représente la durée minimale possible d’une itération graphique
malgré le nombre infini de PE disponibles, c’est-à-dire la latence multicœur minimale
possible de l’application.

• méthode de l’exécution symbolique (flat-SE) : La méthode basée sur l’exécution sym-
bolique (SE) reste une technique courante pour évaluer les propriétés et les métriques
des applications de traitement du signal basée sur la simulation de leur comporte-
ment. Pour l’évaluation de la latence des graphes SDF, la méthode consiste à simuler
une itération complète du graphe et à mesurer sa durée totale. Dans le contexte de la
latence multicœur, un nombre infini de PE disponibles est pris en compte lors de la
simulation afin que chaque acteur soit exécuté dès qu’il est prêt. Par conséquent, en
adoptant un ordonnancement ASAP, la méthode est capable de simuler l’exécution
la plus rapide possible d’un graphe de flux de données. Ainsi, la durée résultante du
graphe représente la latence multi-cœur minimale réalisable de l’application.

Le calcul de la latence multi-core d’un graphe IBSDF avec l’approche classique nécessite
d’aplatir l’ensemble de la hiérarchie en un graphe plat équivalent. Une telle transformation
se traduit souvent par un grand graphe avec un nombre exponentiel d’acteurs et d’arêtes.
En conséquence, la complexité temporelle et spatiale des méthodes d’évaluation du modèle
SDF augmente de façon exponentielle. Pour certains graphes IBSDF, il est même impos-
sible d’aplatir complètement leur hiérarchie avec une quantité raisonnable de mémoire, ce
qui rend l’approche classique inutile dans ces cas. De plus, dans le contexte du prototypage
rapide, le développeur doit être en mesure d’évaluer si possible en temps réel la latence
multicœur de l’application au fur et à mesure que le processus de conception avance. A
cette fin, l’approche classique est à nouveau définie comme inadaptée à l’évaluation rapide
des performances des graphes IBSDF.

A.5.2 Nouvelle Méthode : Hierarchical-Symbolic-Execution (H-SE)

La méthode H-SE (Hierarchical-Symbolic-Execution) adapte la method d’exécution sym-
bolique (SE) du modèle SDF pour le modèle IBSDF. La méthode H-SE évalue la latence
multi-core du graphe IBSDF dans le mode d’exécution hiérarchique. Elle consiste à simuler
hiérarchiquement l’exécution la plus rapide du graphe IBSDF pour mesurer la durée mi-
nimale de son itération complète. Ainsi, au lieu de simuler l’itération complète du graphe
plat equivalent comme le fait l’approche classique flat-SE, la méthode H-SE commence
par simuler l’exécution multi-coeurs de chaque sous-graphe pour définir la durée minimale
de son acteur hiérachique père. Ainsi, dans une approche ascendante, la durée de l’en-
semble de la hiérarchie est abstraite par la durée minimale des acteurs hiérarchiques du

Experimentations numériques 105

topgraphe. Par conséquent, simuler une seule itération du topgraphe dans lequel les ac-
teurs hiérarchiques sont considérés comme des acteurs réguliers avec une durée minimale,
permet de mesurer la durée de l’ensemble du graph hiérarchique. Ainsi, la méthode H-SE
est capable d’évaluer la latence multi-cœur du graphe IBSDF dans le mode d’exécution
hiérarchique sans aplatir sa hiérarchie.

A.5.3 Nouvelle Méthode : Hierarchical-Critical-Path Method (H-CPM)

La méthode H-CPM (Hierarchical-Critical-Path Method) adapte la méthode CPM (Critical-
Path Method) du modèle SDF pour le modèle IBSDF. La méthode H-CPM consiste
à évaluer la latence multi-cœur du graphe IBSDF en mode d’exécution relâchée, qui
représente la latence minimale réalisable de l’application quelque soit les ressources illi-
mitées dont l’architecture peut disposer. Comparé à l’approche classique flat-CPM qui
calcule le chemin critique de l’ensemble du graphe plat équivalent, la méthode H-CPM
construit hiérarchiquement le chemin critique du graphe IBSDF sans aplatir complètement
sa hiérarchie. Pour ce faire, nous avons d’abord démontré que le chemin critique d’un
graphe IBSDF est une composition de plusieurs sous-chemins critiques qui proviennent
des sous-graphes de l’IBSDF. Ensuite, nous avons introduit un nouveau modèle de graphe
appelé LPEG (Longest-Path Equivalent Graph) qui extrait le chemin le plus long entre
chaque interface d’entrée et de sortie d’un sous-graphe IBSDF par des arêtes pondérées.
En utilisant ce modèle d’abstraction dans une approche ascendante, la H-CPM fait abs-
traction, avec un ensemble de LPEG équivalents, de tous les sous-chemins possibles dans
la hiérarchie qui peuvent composer le chemin critique du graphe IBSDF. Par conséquent,
calculer uniquement le chemin critique du topgraphe dans lequel les acteurs hiérarchiques
sont remplacés par le LPEG équivalent de leur sous-graphe, permet d’évaluer le chemin cri-
tique de l’ensemble du graphique IBSDF. Ainsi, la méthode H-CPM est capable d’évaluer
la latence multi-cœur du graphe IBSDF en mode d’exécution relâchée sans aplatir sa
hiérarchie ni explorer l’intégralité du graphe plat équivalent.

A.6 Experimentations numériques

A.6.1 Déroulement des tests

Dans cette section, nous confirmons notre étude théorique en comparant la performance
des approches classiques avec celle des nouvelles approches développées durant cette thèse.
L’expérimentation numérique consiste à mesurer le temps d’exécution de chaque méthode
pour calculer les métriques de performance de chaque graphe IBSDF du jeu de données. Le
temps d’exécution mesuré inclut le temps pour le processus d’aplatissement des graphes.
Le jeu de données utilisé dans ces expériences numériques est composé de deux catégories
de graphes IBSDF. La première catégorie est l’ensemble des applications DSP réelles
modélisées sous forme de graphes IBSDF pour lesquels un code source est disponible
dans [Pre]. La deuxième catégorie est l’ensemble des graphes IBSDF synthétiques qui sont
générés de manière aléatoire à l’aide d’un générateur de graphes IBSDF basé sur l’outil
Turbine [BLDMK14]. La deuxième catégorie est principalement utilisée pour compléter le
jeu d’applications réelles par de grands graphes IBSDF afin de fournir une comparaison
étendue des performances. En fait, jusqu’à aujourd’hui, le nombre de niveaux hiérarchiques
dans les applications réelles reste faible en raison de la difficulté de compiler de grands
graphes en utilisant les approches classiques. Le tableau A.1 présente les caractéristiques
des deux catégories du jeu de données : les applications réelles (Crypto, Large FFT, LTE
[PAPN13], et Stereo Matching [Heu15]) et les graphes synthétiques (Graphe 1 à 6). A

106 French Summary

partir de la taille des graphes plats équivalents, nous pouvons clairement voir que le pro-
cessus d’aplatissement se traduit par une croissance exponentielle du nombre d’acteurs
et d’arêtes. En fait, il n’a pas été possible de convertir les deux derniers graphes IBSDF
synthétiques Graph 5 et Graph 6 avec la RAM disponible de 8Go. En conséquence, les
méthodes classiques n’ont pas réussi à calculer ni le débit ni la latence de ces deux graphes.

Table A.1 – Description du jeu de données utilisé pour la comparaison de perfomrances entre les
méthodes classiques et les nouvelles méthodes.

Graphes IBSDF Graphes plat equivalents

Nom Niv. Hierar. Acteurs Acteurs Hier. Acteurs Arêtes

Crypto 2 10 1 34 85

Large FFT 2 10 1 267 1300

LTE 4 18 4 250 641

Stereo Matching 2 41 3 1604 5829

Graphe 1 3 15 2 503 1654

Graphe 2 5 20 4 17727 80976

Graphe 3 6 24 5 84440 338391

Graphe 4 5 150 4 653289 3253811

Graphe 5 8 240 7 39 E10 -

Graphe 6 10 100 9 31 E15 -

A.6.2 Résultats des tests pour l’évaluation du débit

Comme le montre le tableau des résultats A.2, les méthodes classiques n’ont pas réussi à
calculer le débit des deux derniers graphes, puisqu’elles reposent sur le processus d’aplatis-
sement. Cependant, les deux nouvelles méthodes SR et ESR ont été capables de calculer
avec succès le débit de tous les graphes IBSDF en moins de 2 secondes. Pour les petits
graphes IBSDF, l’approche classique est plus rapide que les nouvelles techniques. Mais,
le temps d’exécution des deux méthodes classiques Flat-SSE et Flat-Periodic augmente

Table A.2 – Comparaison des performances entre les nouvelles techniques SR et ESR, et les
méthodes classiques Flat-SSE et Flat-Periodic.

Graphes IBSDF Temps d’exécution total

Name Levels Flat-SEE Flat-Periodic SR ESR

Crypto 2 4 ms 8 ms 38 ms 45 ms

Large FFT 2 44 ms 48 ms 36 ms 74 ms

LTE 4 152 ms 32 ms 32 ms 58 ms

Stereo 2 4320 ms 151 ms 37 ms 130 ms

Graphe 1 3 11984 ms 67 ms 34 ms 59 ms

Graphe 2 5 >5 min 3060 ms 34 ms 70 ms

Graphe 3 6 >5 min 14600 ms 34 ms 90 ms

Graphe 4 5 >5 min 234000 ms 61 ms 306 ms

Graphe 5 8 - - 61 ms 560 ms

Graphe 6 10 - - 72 ms 1930 ms

Conclusion 107

exponentiellement à chaque fois que le nombre de niveaux et que la taille du graphe plat
équivalent augmentent. Les résultats confirment que les nouvelles techniques SR et ESR
conviennent mieux aux graphes IBSDF plus larges que les méthodes basées sur l’aplatis-
sement.

A.6.3 Résultats des tests pour l’évaluation de la latence

De même que pour l’évaluation du débit, les approches classiques n’ont pas été en mesure de
calculer la latence multi-core de tous les graphes A.3. Cependant, les nouvelles techniques
H-SE et H-CPM ont permis d’évaluer la latence multi-core de tous les graphiques IBSDF
grâce à leur approche modulaire qui évite d’aplatir la hiérarchie du graphe IBSDF. Par
exemple, les nouvelles techniques H-SE et H-CPM ont évalué la latence multi-core du
graphique 4 en quelques millisecondes, alors que les approches classiques ont pris 6 secondes
pour obtenir un résultat.

Table A.3 – Comparaison des performances entre les nouvelles techniques H-SE et H-CPM, et
les méthodes classiques Flat-CPM et Flat-SE.

IBSDF graph
Temps d’exécution total

Flat-CPM Flat-SE H-SE H-CPM

Crypto 0.65 ms 1.15 ms 0.50 ms 0.50 ms

Large FFT 4.66 ms 6.11 ms 0.50 ms 3.73 ms

LTE 2.52 ms 2.85 ms 0.50 ms 1.49 ms

Stereo Matching 18.20 ms 23.56 ms 0.87 ms 15.00 ms

Graphe 1 2.40 ms 3.32 ms 0.93 ms 1.83 ms

Graphe 2 108.16 ms 134.00 ms 0.99 ms 3.91 ms

Graphe 3 441.40 ms 415.55 ms 1.00 ms 5.11 ms

Graphe 4 6.25 s 6.64 s 1.20 ms 48.14 ms

Graphe 5 - - 4.74 ms 83.32 ms

Graphe 6 - - 12.81 ms 308.60 ms

A.7 Conclusion

Dans cette thèse, nous avons étudié le processus de développement d’applications de trai-
tement du signal modélisées avec des graphes IBSDF dans le contexte du prototypage
rapide. Précisément, nous avons développé de nouvelles méthodes pour l’évaluation du
débit maximum et de la latence minimum qui représentent deux paramètres importants à
évaluer le plus tôt possible durant le processus de développement . En fait, les méthodes
actuelles, que nous appelons dans cette thèse les méthodes classiques, consistent à apla-
tir le graphe IBSDF en un graphe plat équivalent avec un nombre exponentiel d’acteurs
et d’arêtes. En conséquence, les méthodes classiques ne sont pas en mesure d’évaluer les
métriques de performance des larges graphes IBSDF. Nous avons donc développé les nou-
velles techniques sur la base d’une approche modulaire qui consiste à évaluer chaque sous-
graphe indépendamment sans aplatir l’ensemble de la hiérarchie du graphe IBSDF. Ainsi,
les nouvelles techniques permettent d’évaluer en quelques millisecondes la performance de
larges graphes IBSDF, ce qui a été confirmé par une série d’expériences numériques. Un
travail futur consiste à développer de nouvelles méthodes modulaires pour le placement et
l’ordonnancement de grands graphes IBSDF sur des architectures multi-cœurs.

108 French Summary

List of Figures

2.1 Dataflow Process Network (DPN) MoC. 9

2.2 Illustration of the four types of parallelism in dataflow MoC. 9

2.3 Synchronous Dataflow (SDF) MoC. 10

2.4 Specializations of the Synchronous Dataflow (SDF) model. 11

2.5 Cyclo-Static Dataflow (CSDF) MoC. 12

2.6 Scenario-Aware Dataflow (SADF) MoC. 13

2.7 A Boolean DataFlow (BDF) graph example. 14

2.8 Hierarchical SDF graph . 14

2.9 Interface-Based SDF (IBSDF) MoC. 15

2.10 Example of Parameterized SDF (PSDF) graph 17

2.11 PiMM semantics [Des14] . 18

2.12 An example of the πSDF model of a image filter application [Des14] 19

3.1 Overview of a rapid prototyping design flow. (source [Des14]). 22

3.2 An SDF graph example and its corresponding topology matrix. 24

3.3 Flattening the hierarchical of a Hierarchical SDF graph to compute its RV. 25

3.4 Evaluating the consistency of an IBSDF graph. 25

3.5 The IBSDF graph example after computing its RV 26

3.6 The illustration of some of the conversions of a SDF graph. 27

3.7 An IBSDF graph example composed of two hierarchical levels. 28

3.8 The equivalent flat srSDF graph of the IBSDF graph example of figure 3.8
is obtained by replacing each instance of the hierarchical actor B with the
srSDF graph version of its subgraph. 29

3.9 Mapping and scheduling a dataflow application on an MPSoC architecture. 33

3.10 Spider run-time structure and operations. 37

4.1 An example of a SDF graph composed of 4 actors: A, B, C, and D. 40

4.2 Computing the throughput of the SDF graph example with the HSDF based
method . 41

4.3 ASAP schedule of the SDF graph example of figure 4.1. 43

4.4 Computing the throughput of the SDF graph example of figure 4.1 using
the periodic schedule based method. 45

4.5 Optimum periodic schedule of the SDF graph example of figure 4.1. 45

109

110 List of Figures

4.6 Example of an IBSDF graph composed of two levels of hierarchy, in which
actor C is a hierarchical actor described by the IBSDF subgraph EFGH. . 47

4.7 ASAP schedule of the equivalent flat srSDF graph of figure ??. 47

4.8 The equivalent flat srSDF graph of the IBSDF graph of Figure 4.6. 48

4.9 ASAP schedule of the IBSDF graph of figure 4.6 under the relaxed execution
mode. 48

4.10 Modeling the firing rules for the subgraph EFGH of the IBSDF graph of
figure 4.6. 50

4.11 The equivalent flat srSDF graph of the IBSDF graph of Figure 4.6 with
firing rules. 50

4.12 Abstracting the execution of the subgraph EFGH of the IBSDF graph
example. 52

4.13 An abstracted hierarchical execution of the IBSDF graph example. 52

4.14 Evaluating the throughput of the IBSDF graph example with the SR tech-
nique. 53

4.15 A comparison between the behavior of the subgraph in each execution mode 54

4.16 Synchronization of the execution of the IBSDF subgraph of the figure. 4.6 . 56

4.17 Computing the average-token-folw-time K of the IBSDF subgraph of fig-
ure. 4.6 . 57

4.18 Scheduling the IBSDF subgraph of figure. 4.6 with an ASAP schedule fol-
lowed by an ALAP schedule to measure the time difference between the
execution of the subgraph interfaces. 57

4.19 Constructing the equivalent subgraph execution model of the IBSDF sub-
graph of figure. 4.6. 58

4.20 The resulted srSDF topgraph of the ESR method. 59

4.21 An IBSDF graph for which the ESR method fails to return the exact value. 60

5.1 The IBSDF graph which will serve as the graph example in this chapter. . 66

5.2 A mono-core execution of the IBSDF graph example of figure 5.1a. Each
execution of a hierarchical actor abstracts the execution of its subgraph. . . 67

5.3 A multilevel pie chart showing the contribution percentage of each actor of
the IBSDF graph example (fig.5.1a) to the mono-core latency. 70

5.4 The longest path of the equivalent flat DAG of the IBSDF graph example
of Figure 5.1a. The longest path is represented with blue colored edges and
has a total length of 12 clock-cycles (cc). 72

5.5 An unconstrained ASAP schedule of the IBSDF graph example of Fig-
ure 5.1a under the relaxed execution mode. The duration of one complete
iteration of the graph is 12 cc. 74

5.6 The resulting symbolic execution of the IBSDF graph example of Figure 5.1a
under the hierarchical execution mode. The duration of one complete iter-
ation of the graph is 15 cc. 76

5.7 The equivalent flat DAG of figure 5.4 in which the similar parts are high-
lighted with the same color. The red and green highlighted parts correspond
respectively to the subgraphs EFGH and IJ 77

5.8 The composition of the critical path of the equivalent flat DAG of Figure 5.7. 78

5.9 The five possible cases of a hierarchical actor as a part of the global critical-
path. 79

5.10 Abstracting the longest paths between the input and output interfaces of
the subgraph IJ in the Longest-Path Equivalent Graph (LPEG). 80

List of Figures 111

5.11 An illustration of the H-CPM algorithm on the IBSDF graph example of
Fig. 5.1a. 81

5.12 The percentage of the total execution time spent on each of the conversion
phase and the computation phase of each of Flat-CPM, Flat-SE, H-SE, and
H-CPM methods. 87

5.13 A comparison between the execution time of the computation phase of each
of Flat-CPM, Flat-SE, H-SE, and H-CPM methods. 88

6.1 Constructing the equivalent moldable tasks of a hierarchical actor by schedul-
ing its subgraph multiple times on different numbers of PE 93

A.1 Modèle de calcul SDF. 97
A.2 Modèle de calcul IBSDF. 98
A.3 Exemple d’un graphe IBSDF. 99
A.4 Modes d’exécution d’un graphe IBSDF. 100
A.5 Remplacement d’un acteur hiérarchique par un acteur régulier. 101
A.6 Exécution hiérarchique du graphe IBSDF de la figure A.3. 101
A.7 Comparaison entre le comportement du sous-graphe dans chaque mode

d’exécution du graphe IBSDF de la figure A.3. 102
A.8 Le sous-graphe équivalent à l’exécution relâchée du sous-graphe EFGH du

graphe IBSDF de la figure A.3. 103

112 List of Figures

List of Tables

4.1 Description of the benchmark set . 61
4.2 Performance comparison between the Schedule-Replace technique and the

srSDF conversion based methods. 62
4.3 Performance comparison between Classical Approaches, Schedule-Replace

(SR) technique, and the Evaluate-Schedule-Replace (ESR) method. 62
4.4 Graphs description . 63

5.1 The mono-core latency value of the IBSDF graph example of figure 5.1a
from the hierarchy perspective. 70

5.2 The time-complexity of the multi-core latency evaluation methods. 83
5.3 The space-complexity of the multi-core latency evaluation methods. 83
5.4 Description of the benchmark set. 84
5.5 Performance comparison between the classical approaches Flat-CPM and

Flat-SE, and the new methods H-SE and H-CPM. 85
5.6 The size of the equivalent DAG of each of the entire IBSDF graph and the

largest subgraph in the hierarchy. 86
5.7 The computation phase speedup and the overall speedup of the HCPM over

the classical approaches Flat-CPM and Flat-SE. 88

A.1 Description du jeu de données utilisé pour la comparaison de perfomrances
entre les méthodes classiques et les nouvelles méthodes. 106

A.2 Comparaison des performances entre les nouvelles techniques SR et ESR,
et les méthodes classiques Flat-SSE et Flat-Periodic. 106

A.3 Comparaison des performances entre les nouvelles techniques H-SE et H-
CPM, et les méthodes classiques Flat-CPM et Flat-SE. 107

113

114 List of Tables

Acronyms

πSDF Parameterized and Interfaced SDF. 8, 16, 18, 19, 21, 23, 36, 90, 109

AAA Algorithm-Architecture Adequation. 22

AI Artificial Intelligence. 4

ALAP As Late As Possible. 57, 110

ASAP As Soon As Possible. 21, 31, 32, 40, 42, 43, 45, 47–49, 51, 52, 57, 73, 74, 76, 93,
100, 101, 109, 110

BDF Boolean DataFlow. 7, 12–14, 19, 109

CMOS Complementary Metal–Oxide–Semiconductor. 4

CP Critical-Path. 27, 71

CPM Critical-Path Method. 71–74, 77, 78, 80, 83–85, 87, 88, 90, 92, 111, 113

CPU Central Processing Unit. 33

CSDF Cyclo-Static Dataflow. 7, 11, 12, 16, 37, 38, 46, 109

DAG Directed Acyclic Graph. 11, 21, 26–30, 38, 57, 66, 67, 71–74, 77, 78, 80–84, 86–88,
110, 113

DPN Dataflow Process Network. 7–10, 109

DSE Design Space Exploration. 5, 39, 90

DSP Digital Signal Processor. 33, 34, 84, 91, 105

ESEM Equivalent Subgraph Execution Model. 64

ESR Evaluate-Schedule-Replace. iii, 5, 40, 51, 54–56, 59–64, 92, 96, 102, 110, 113

Fifo First-In First-Out. 8, 10–13, 15, 18, 24, 26–32, 37, 38, 40, 46, 47, 57, 58, 71, 73, 74,
84, 97

115

116 Acronyms

FSM Finite-State Machine. 13

GRT Global RunTime. 36, 37

H-CPM Hierarchical-Critical-Path Method. iii, 6, 75, 80, 81, 83–88, 90, 92, 93, 96, 105,
111, 113

H-SE Hierarchical-Symbolic-Execution. iii, 6, 75–77, 83–90, 92, 104, 105, 111, 113

Hierarchical SDF Hierarchical SDF. ii, 8, 14–16, 21, 25, 26, 31, 109

HSDF Homogeneous SDF. ii, 7, 11, 21, 26, 27, 29, 30, 41–43, 49, 55, 57, 109

IBSDF Interface-Based SDF. ii, iii, 5, 6, 8, 15, 16, 18, 19, 21, 23–26, 28, 29, 31, 38–40,
46–72, 74–86, 88–94, 96–107, 109–111, 113

IoT Internet of Things. 4

KPN Kahn Process Network. 7, 8

LCG Linear Constraint Graph. 42, 49

LPEG Longest-Path Equivalent Graph. 80–83, 88, 90, 110

LRT Local RunTime. 36, 37

MCM Maximum Cycle Mean. 41

MCR Maximum Cost-to-Time Ratio. 41, 42, 44, 45, 49, 57–59

MoC Model of Computation. 5–19, 23, 25, 34, 35, 65, 91, 92, 109

MPSoC Multiprocessor System-on-Chip. 5, 7, 24, 29, 31, 33, 36, 38, 39, 91, 109

NoC Network on Chip. 33, 39

OS Operating System. 3, 4

Preesm Parallel and Real-time Embedded Executives Scheduling Method. 21, 23, 36, 92

PCG Phased Computation Graph. 38

PE Processing Element. 7, 9, 23, 27, 32–34, 36, 37, 39, 48, 51, 65, 67, 69–73, 91, 93, 99,
101, 111

PERT Project Evaluation and Review Technique. 71

PiMM Parameterized and Interfaced dataflow Meta-Model. 18, 19, 109

PN Petri Net. 32

PSDF Parameterized SDF. 8, 16–19, 109

RTOS Real-Time Operating System. 34

Acronyms 117

RV Repetition Vector. 24–28, 30, 36, 40, 41, 109

Spider Synchronous Parameterized Interfaced Dataflow Embedded Runtime. 21, 36, 37,
109

SADF Scenario-Aware Dataflow. 7, 12, 13, 19, 109

SDF Synchronous Dataflow. ii, iii, 5–8, 10–19, 21, 24–32, 37–46, 49–52, 54, 61, 63–69,
71–75, 80, 89–91, 97, 98, 100–104, 109, 111, 115, 116

SDF3 Synchronous Dataflow For Free. 37, 38

SE Symbolic-Execution. 71, 73, 74, 83–85, 87–89, 111, 113

SoC System-on-Chip. 4

SR Schedule-Replace. iii, 5, 40, 51–54, 60–64, 68, 75, 76, 80, 92, 93, 96, 101, 102, 110,
113

srSDF Single-Rate SDF. 7, 11, 21, 27–29, 38, 47–55, 57–64, 72, 74, 109, 110, 113

SSE State-Space Exploration. 42, 49, 60–62, 73, 74

WCET Worst-Case Execution Time. 31, 35, 39, 65, 84

WEG Weighted Event Graph. 32

118 Acronyms

Personal Publications

[DDNKM+17a] H. Deroui, K. Desnos, J.-F. Nezan, and A. Munier-Kordon Through-
put evaluation of DSP applications based on hierarchical dataflow models. In
Proceedings of the 50th International Symposium on Circuits and Systems.
ISCAS, 2017.

[DDNKM+17b] H. Deroui, K. Desnos, J.-F. Nezan, and A. Munier-Kordon. Relaxed
subgraph execution model for the throughput evaluation of IBSDF graphs.
In Proceedings of the 17th International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation. SAMOS, 2017.

119

120 Personal Publications

Bibliography

[BB01] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow
modeling for DSP systems. IEEE Transactions on Signal Processing,
49(10):2408–2421, October 2001. 16, 17

[BELP95] G. Bilsen, M. Engels, R. Lauwereins, and J.A. Peperstraete. Cyclo-static
data flow. In , 1995 International Conference on Acoustics, Speech, and
Signal Processing, 1995. ICASSP-95, volume 5, pages 3255–3258 vol.5,
May 1995. 11

[BHR09] A. Benoit, M. Hakem, and Y. Robert. Optimizing the Latency of Stream-
ing Applications under Throughput and Reliability Constraints. In 2009
International Conference on Parallel Processing, pages 325–332, Septem-
ber 2009. 65

[BL93] J.T. Buck and E.A. Lee. Scheduling dynamic dataflow graphs with
bounded memory using the token flow model. In IEEE International Con-
ference on Acoustics Speech and Signal Processing, pages 429–432 vol.1,
Minneapolis, MN, USA, 1993. IEEE. 13

[BLDMK14] Bruno Bodin, Youen Lesparre, Jean-Marc Delosme, and Alix Munier-
Kordon. Fast and efficient dataflow graph generation. pages 40–49. ACM
Press, 2014. 30, 37, 60, 84

[BLM96a] Shuvra S. Battacharyya, Edward A. Lee, and Praveen K. Murthy. Software
Synthesis from Dataflow Graphs. Kluwer Academic Publishers, Norwell,
MA, USA, 1996. 24, 27, 67

[BLM96b] Shuvra S. Battacharyya, Edward A. Lee, and Praveen K. Murthy. Software
Synthesis from Dataflow Graphs. Kluwer Academic Publishers, Norwell,
MA, USA, 1996. 74

[BMKdD16] Bruno Bodin, Alix Munier-Kordon, and Benôıt Dupont de Dinechin. Op-
timal and fast throughput evaluation of CSDF. pages 1–6. ACM Press,
2016. 46

[BNHMMK12] A. Benabid-Najjar, C. Hanen, O. Marchetti, and A. Munier-Kordon. Peri-
odic Schedules for Bounded Timed Weighted Event Graphs. IEEE Trans-

121

122 Bibliography

actions on Automatic Control, 57(5):1222–1232, May 2012. 32, 51, 54, 57,
61

[BS12] Mohamed A. Bamakhrama and Todor Stefanov. Managing Latency in
Embedded Streaming Applications Under Hard-real-time Scheduling. In
Proceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, CODES+ISSS ’12,
pages 83–92, New York, NY, USA, 2012. ACM. 65

[CH89] J. E. Cooling and T. S. Hughes. The emergence of rapid prototyping as
a real-time software development tool. In Second International Confer-
ence on Software Engineering for Real Time Systems, 1989., pages 60–64,
September 1989. 22

[CH17] Junchul Choi and Soonhoi Ha. Worst-Case Response Time Analysis of
a Synchronous Dataflow Graph in a Multiprocessor System with Real-
Time Tasks. ACM Trans. Des. Autom. Electron. Syst., 22(2):36:1–36:26,
January 2017. 65

[CK88] Thomas L. Casavant and Jon G. Kuhl. A taxonomy of scheduling in
general-purpose distributed computing systems. IEEE Transactions on
software engineering, 14(2):141–154, 1988. 34, 35

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein, editors. Introduction to algorithms. MIT Press, Cambridge, Mass.,
3. ed edition, 2009. OCLC: 698955316. 72, 83

[Das04] Ali Dasdan. Experimental Analysis of the Fastest Optimum Cycle Ratio
and Mean Algorithms. ACM Trans. Des. Autom. Electron. Syst., 9(4):385–
418, October 2004. 41, 65

[DDNMK17a] H. Deroui, K. Desnos, J. F. Nezan, and A. Munier-Kordon. Throughput
evaluation of DSP applications based on hierarchical dataflow models. In
2017 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–4, May 2017. 68, 71, 75

[DDNMK17b] Hamza Deroui, Karol Desnos, Jean-François Nezan, and Alix Munier-
Kordon. Relaxed Subgraph Execution Model for the Throughput Eval-
uation of IBSDF Graphs. In International Conference on Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS),
SAMOS, Greece, July 2017. 65

[Des14] Karol Desnos. Memory Study and Dataflow Representations for Rapid Pro-
totyping of Signal Processing Applications on MPSoCs. phdthesis, INSA
de Rennes, September 2014. 4, 18, 19, 22, 35, 109

[dGKBS12] Robert de Groote, Jan Kuper, Hajo Broersma, and Gerard J.M.
Smit. Max-Plus Algebraic Throughput Analysis of Synchronous Dataflow
Graphs. pages 29–38. IEEE, September 2012. 42

[DIG99] A. Dasdan, S.S. Irani, and R.K. Gupta. Efficient algorithms for optimum
cycle mean and optimum cost to time ratio problems. In Design Automa-
tion Conference, 1999. Proceedings. 36th, pages 37–42, 1999. 41

Bibliography 123

[DLC15] X. K. Do, S. Louise, and A. Cohen. Managing the Latency of Data-
Dependent Tasks in Embedded Streaming Applications. In 2015 IEEE
9th International Symposium on Embedded Multicore/Many-core Systems-
on-Chip, pages 9–16, September 2015. 65

[DP18] Karol Desnos and Francesca Palumbo. Dataflow Modeling for Reconfig-
urable Signal Processing Systems. In Handbook of Signal Processing Sys-
tems, 3rd Edition. October 2018. 16

[DPN+13] K. Desnos, M. Pelcat, J.-F. Nezan, S.S. Bhattacharyya, and S. Aridhi.
PiMM: Parameterized and Interfaced dataflow Meta-Model for MPSoCs
runtime reconfiguration. In 2013 International Conference on Embed-
ded Computer Systems: Architectures, Modeling, and Simulation (SAMOS
XIII), pages 41–48, July 2013. 18, 34, 90

[FS14] Nikolina Frid and Vlado Sruk. Design space exploration in Multi- Processor
System-on-Chip platforms. 2014. 90

[GGS+06] A.H. Ghamarian, M.C.W. Geilen, S. Stuijk, T. Basten, A.J.M. Moonen,
M.J.G. Bekooij, B.D. Theelen, and M.R. Mousavi. Throughput Analysis
of Synchronous Data Flow Graphs. In Sixth International Conference on
Application of Concurrency to System Design, 2006. ACSD 2006, pages
25–36, June 2006. 32, 42, 51, 54, 61, 73

[Gha08] Amir Hossein Ghamarian. Timing analysis of synchronous data flow
graphs. PhD Thesis, PhD thesis, Eindhoven University of Technology,
2008. 73

[GS03] T. Grandpierre and Y. Sorel. From algorithm and architecture specifica-
tions to automatic generation of distributed real-time executives: a seam-
less flow of graphs transformations. In First ACM and IEEE International
Conference on Formal Methods and Models for Co-Design, 2003. MEM-
OCODE ’03. Proceedings., pages 123–132, June 2003. 22

[GSB+07] A.H. Ghamarian, S. Stuijk, T. Basten, M.C.W. Geilen, and B.D. Theelen.
Latency Minimization for Synchronous Data Flow Graphs. In 10th Eu-
romicro Conference on Digital System Design Architectures, Methods and
Tools, 2007. DSD 2007, pages 189–196, August 2007. 65, 71, 73

[gur] Gurobi Optimization. 61

[Has18] Julien Hascoët. Contributions to Software Runtime for Clustered Many-
cores Applied to Embedded and High-Performance Applications. Decem-
ber 2018. 18

[Heu15] Julien Heulot. Runtime multicore scheduling techniques for dispatching pa-
rameterized signal and vision dataflow applications on heterogeneous MP-
SoCs. PhD thesis, INSA de Rennes, 2015. 18, 84

[HPD+14] J. Heulot, M. Pelcat, K. Desnos, J. Nezan, and S. Aridhi. Spider: A
Synchronous Parameterized and Interfaced Dataflow-based RTOS for mul-
ticore DSPS. In 2014 6th European Embedded Design in Education and
Research Conference (EDERC), pages 167–171, September 2014. 34, 36

124 Bibliography

[KA97] Yu-Kwong Kwok and I. Ahmad. A parallel algorithm for compile-time
scheduling of parallel programs on multiprocessors. In Proceedings 1997
International Conference on Parallel Architectures and Compilation Tech-
niques, pages 90–101, November 1997. 35

[KA99] Yu-Kwong Kwok and Ishfaq Ahmad. Static Scheduling Algorithms for
Allocating Directed Task Graphs to Multiprocessors. ACM Comput. Surv.,
31(4):406–471, December 1999. 34, 35

[Kah62] A. B. Kahn. Topological Sorting of Large Networks. Commun. ACM,
5(11):558–562, November 1962. 71

[Kah74] Gilles Kahn. The Semantics of a Simple Language for Parallel Program-
ming. page 6, 1974. 5, 8

[KAL11] Torsten Kempf, Gerd Ascheid, and Rainer Leupers. Multiprocessor Sys-
tems on Chip: Design Space Exploration. Springer-Verlag, New York, 2011.
90

[Kel61] James E. Kelley. Critical-Path Planning and Scheduling: Mathematical
Basis. Oper. Res., 9(3):296–320, June 1961. 71

[Ker] Harold Kerzner. Project Management: A Systems Approach to Planning,
Scheduling, and Controlling, 12th Edition. 71

[KKB17] Guus Kuiper, Philip S. Kurtin, and Marco J.G. Bekooij. Hybrid Latency
Minimization Approach using Model Checking and Dataflow Analysis.
pages 41–50. ACM Press, 2017. 65

[KM66] Richard M. Karp and Rayamond E. Miller. Properties of a model for par-
allel computations: Determinacy, termination, queueing. SIAM Journal
on Applied Mathematics, 14(6):1390–1411, 1966. 8

[Law01] Eugene L. Lawler. Combinatorial Optimization: Networks and Matroids.
Courier Corporation, January 2001. Google-Books-ID: m4MvtFenVjEC.
72

[Les17] Youen Lesparre. Efficient evaluation of mappings of dataflow applications
onto distributed memory architectures. page 149, 2017. 28, 65

[LH89] Edward A. Lee and Soonhoi Ha. Scheduling strategies for mul-
tiprocessor real-time DSP. In Global Telecommunications Confer-
ence and Exhibition’Communications Technology for the 1990s and Be-
yond’(GLOBECOM), 1989. IEEE, pages 1279–1283. IEEE, 1989. 34, 35

[LM87a] E. Lee and D.G. Messerschmitt. Static Scheduling of Synchronous Data
Flow Programs for Digital Signal Processing. IEEE Transactions on Com-
puters, C-36(1):24–35, January 1987. 24

[LM87b] E.A. Lee and D.G. Messerschmitt. Synchronous data flow. Proceedings of
the IEEE, 75(9):1235–1245, September 1987. 10, 24, 97

[LP95] E.A. Lee and T.M. Parks. Dataflow process networks. Proceedings of the
IEEE, 83(5):773–801, May 1995. 8, 10

Bibliography 125

[MK09] Olivier Marchetti and A. Munier Kordon. Cyclic Scheduling for the Syn-
thesis of Embedded Systems. Introduction to scheduling, pages 135–164,
2009. 32

[MMK09] Olivier Marchetti and Alix Munier-Kordon. A sufficient condition for the
liveness of weighted event graphs. European Journal of Operational Re-
search, 197(2):532–540, September 2009. 28, 30, 31, 32

[OS01] Timothy W. O’Neil and Edwin Hsing-Mean Sha. Retiming synchronous
data-flow graphs to reduce execution time. IEEE Trans. Signal Processing,
49:2397–2407, 2001. 65

[PAPN13] Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, and Jean-François
Nezan. Physical Layer Multi-Core Prototyping, volume 171 of Lecture
Notes in Electrical Engineering. Springer London, London, 2013. 35, 84

[PBR09] J. Piat, S.S. Bhattacharyya, and M. Raulet. Interface-based hierarchy for
synchronous data-flow graphs. In IEEE Workshop on Signal Processing
Systems, 2009. SiPS 2009, pages 145–150, October 2009. 15, 18, 25, 46,
98

[PDH+14] Maxime Pelcat, Karol Desnos, Julien Heulot, Clément Guy, Jean François
Nezan, and Slaheddine Aridhi. PREESM: A Dataflow-Based Rapid Pro-
totyping Framework for Simplifying Multicore DSP Programming. In ED-
ERC, page 36, Italy, September 2014. 23, 61, 71, 84, 98

[PL95] José Luis Pino and Edward A. Lee. Hierarchical static scheduling of
dataflow graphs onto multiple processors. In Acoustics, Speech, and Sig-
nal Processing, 1995. ICASSP-95., 1995 International Conference on, vol-
ume 4, pages 2643–2646. IEEE, 1995. 14

[Pre] Preesm. 60, 84

[RA01] S. Ranaweera and D. P. Agrawal. Scheduling of periodic time critical appli-
cations for pipelined execution on heterogeneous systems. In International
Conference on Parallel Processing, 2001, pages 131–138, September 2001.
65

[RV10] Yves Robert and Frédéric Vivien, editors. Introduction to scheduling.
Chapman & Hall/CRC computational science series. CRC Press, Boca
Raton, Fla., 2010. 43

[SB09a] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded multipro-
cessors: scheduling and synchronization. Signal processing and communi-
cations. Taylor & Francis, Boca Raton, 2nd ed edition, 2009. 35

[SB09b] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded multipro-
cessors: Scheduling and synchronization. CRC press, 2009. 41

[SGB06] S. Stuijk, M. Geilen, and T. Basten. SDFˆ3: SDF For Free. In Sixth
International Conference on Application of Concurrency to System Design,
2006. ACSD 2006, pages 276–278, June 2006. 37, 61

126 Bibliography

[SGC16] F. Siyoum, M. Geilen, and H. Corporaal. End-to-End Latency Analy-
sis of Dataflow Scenarios Mapped Onto Shared Heterogeneous Resources.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 35(4):535–548, April 2016. 65

[SGTB11] S. Stuijk, M. Geilen, B. Theelen, and T. Basten. Scenario-aware dataflow:
Modeling, analysis and implementation of dynamic applications. In Model-
ing and Simulation 2011 International Conference on Embedded Computer
Systems: Architectures, pages 404–411, July 2011. 13

[SSKH13] Amit Kumar Singh, Muhammad Shafique, Akash Kumar, and Jörg Henkel.
Mapping on multi/many-core systems: survey of current and emerging
trends. In Proceedings of the 50th Annual Design Automation Conference,
page 1. ACM, 2013. 34, 35

[Tar76] Robert Endre Tarjan. Edge-disjoint spanning trees and depth-first search.
Acta Informatica, 6(2):171–185, June 1976. 71

[TGB+06] B.D. Theelen, M.C.W. Geilen, T. Basten, J.P.M. Voeten, S.V. Gheorghita,
and S. Stuijk. A scenario-aware data flow model for combined long-run
average and worst-case performance analysis. In Fourth ACM and IEEE
International Conference on Formal Methods and Models for Co-Design,
2006. MEMOCODE ’06. Proceedings., pages 185–194, Napa, CA, USA,
2006. IEEE. 12, 13

[ZDP+13] Z. Zhou, K. Desnos, M. Pelcat, J. F. Nezan, W. Plishker, and S. S. Bhat-
tacharyya. Scheduling of parallelized synchronous dataflow actors. In 2013
International Symposium on System on Chip (SoC), pages 1–10, October
2013. 9

Titre : Étude et implantation d'algorithmes pour l'ordonnancement d'applications Dataflow

Mots clés : Architectures multi-cœur, Modèle de flot de données, Évaluation de performances

Résumé : La complexité des architectures
MPSoC (Multiprocessor System-on-Chip)
augmente de manière exponentielle pour
répondre à la demande croissante en puissance
de calcul des applications DSP (Digital Signal
Processor). Les architectures MPSoC
modernes, telles que les architectures à cœurs
multiple, incorporent déjà des centaines
d’éléments de traitement (PE) dans une seule
puce et prévoient d’intégrer jusqu’à un millier de
PE dans un avenir proche. Conséquemment, la
programmation des architectures MPSoC
modernes avec les langages de programmation
traditionnels basés sur des threads est devenue
de plus en plus complexe. Dans ce contexte, les
modèles de calcul de flux de données (MoC)
sont devenus des paradigmes de
programmation populaires offrant à la fois une
grande analysabilité et une expression intuitive
du parallélisme d’une application DSP basée sur
le modèle de graphe de tâches.

Dans cette thèse, nous proposons de nouvelles
techniques pour l'évaluation du débit maximal
et de la latence minimale du modèle IBSDF
(Interface-Based Synchronous Dataflow),
ciblant les architectures MPSoC avec des
ressources illimitées. Le modèle IBSDF est un
modèle hiérarchique à comportement statique
qui permet d’évaluer certaines métriques de
performance au moment de la conception.
Cependant, les méthodes d'évaluation
classiques consistent à aplatir la hiérarchie du
modèle IBSDF en un graphe de flux de
données non hiérarchique comportant un
nombre exponentiel de tâches rendant son
évaluation difficile, voire impossible. Les
nouvelles techniques que nous proposons
évaluent les performances des graphes IBSDF
de manière modulaire sans aplatir leur
hiérarchie. Ainsi, nous avons pu évaluer de très
grand graphes IBSDF en quelques secondes,
contrairement à l'approche classique qui ne
permet pas d'obtenir un résultat.

Title: Study and implementation of algorithms for scheduling Dataflow applications

Keywords: MPSoC architectures, Dataflow models, Performance analysis, Throughput, Latency

Abstract: The complexity of Multiprocessor
System-on-Chip (MPSoC) architectures is
increasing exponentially to meet the rising
computation power demand of Digital Signal
Processor (DSP) applications. Modern MPSoC
architectures like the many-cores architectures,
already embed hundreds of Processing
Elements (PEs) in one single chip, and plan to
integrate up to thousand PEs in the near future.
As consequences, programming modern
MPSoC architectures with the traditional thread-
based programming languages have become
more and more complex. In this context,
Dataflow Models of Computation (MoCs) have
emerged as popular programming paradigms
which offer both, a great analyzability and an
intuitive expression of the parallelism of a DSP
application based on a task graph pattern.

In this thesis, we propose new techniques for
the evaluation of the maximum throughput and
the minimum latency of the Interface-Based
Synchronous Dataflow (IBSDF) MoC, targeting
MPSoC architectures with unlimited resources.
The IBSDF MoC is a hierarchical model with a
static behavior which enables the evaluation of
some performance metrics at design-time.
However, classical evaluation methods consist
on flattening the hierarchy of the IBSDF model
into a flat dataflow graph with an exponential
number of tasks that makes it hard even
impossible to evaluate. Our new techniques
evaluate the performance of IBSDF graphs in a
modular way without flattening their hierarchy.
Thus, we have been able to evaluate very large
IBSDF graph in few seconds, compared to the
classical approach which fails to return a result.

	Acknowledgements
	1 Introduction
	1.1 General Context
	1.1.1 Embedded Systems
	1.1.2 Designing Embedded Systems

	1.2 Contributions
	1.3 Outline

	2 Dataflow Models of Computation
	2.1 Introduction
	2.2 Dataflow Programming
	2.2.1 Semantics
	2.2.2 Expression of parallelism

	2.3 Static Dataflow Models of Computation
	2.3.1 Synchronous Dataflow (SDF) model
	2.3.2 Homogeneous SDF (HSDF), Single-Rate SDF (srSDF), and Directed Acyclic Graph (DAG) models
	2.3.3 Cyclo-Static DataFlow (CSDF) model

	2.4 Dynamic Dataflow Models
	2.4.1 Scenario Aware Dataflow (SADF)
	2.4.2 Boolean Dataflow (BDF)

	2.5 Hierarchical Static Dataflow Models
	2.5.1 Hierarchical SDF
	2.5.2 Interface-based SDF (IBSDF)

	2.6 Hierarchical Parametric Dataflow Models
	2.6.1 Parameterized SDF (PSDF)
	2.6.2 Parameterized and interfaced SDF (SDF)

	2.7 Conclusion

	3 Development Process of Dataflow Graphs
	3.1 Introduction
	3.2 Rapid Prototyping
	3.2.1 Preesm Rapid Prototyping Framework
	3.2.2 Preesm Typical workflow

	3.3 Consistency Evaluation and Repetition Vector (RV)
	3.3.1 Consistency of a sdf graph
	3.3.2 Consistency of a hdf graph
	3.3.3 Consistency of an ibsdf graph

	3.4 Dataflow graphs Conversion
	3.4.1 sdf graph conversions
	3.4.2 Flattening the hierarchy of an ibsdf graph

	3.5 Liveness Evaluation
	3.5.1 Liveness evaluation of hsdf graph
	3.5.2 Liveness evaluation of sdf graph
	3.5.3 Liveness evaluation of ibsdf graph

	3.6 Simulating a Dataflow graph
	3.6.1 ASAP Schedule
	3.6.2 Periodic Schedule

	3.7 Mapping and Scheduling Dataflow Graphs
	3.7.1 Scheduling Methodologies
	3.7.2 Solving the mapping and scheduling problem

	3.8 SPIDER: a Run-time Manager for dataflow graphs
	3.8.1 Overview of SPIDER
	3.8.2 SPIDER Structure
	3.8.3 SPIDER Operations

	3.9 Tools
	3.9.1 SDF3 tool
	3.9.2 Turbine tool

	3.10 Conclusion

	4 Throughput Evaluation of IBSDF graph
	4.1 Introduction
	4.2 SDF State-Of-The-Art Methods
	4.2.1 HSDF based method
	4.2.2 Max-plus Algebra-based method
	4.2.3 State-Space Exploration method
	4.2.4 Periodic schedule based method
	4.2.5 K-Iter method

	4.3 Execution Modes of ibsdf graph
	4.3.1 Hierarchical Execution
	4.3.2 Relaxed Execution

	4.4 Throughput Evaluation by Flattening the Hierarchy
	4.4.1 Classical Approach
	4.4.2 Modeling the Firing Rules

	4.5 Throughput Evaluation without Flattening the Hierarchy
	4.5.1 The Schedule-Replace (SR) technique
	4.5.2 The Evaluate-Schedule-Replace (ESR) method

	4.6 Experimental Results
	4.6.1 Experimental Setup
	4.6.2 Results

	4.7 Conclusion

	5 Latency Evaluation of IBSDF graph
	5.1 Introduction
	5.2 Mono-Core Latency Evaluation
	5.2.1 For sdf graph
	5.2.2 For ibsdf graph
	5.2.3 The Mono-Core Latency from the hierarchy perspective

	5.3 Multi-Core Latency Evaluation by flattening the hierarchy
	5.3.1 Critical-Path Method (CPM)
	5.3.2 Symbolic-Execution (SE)

	5.4 Multi-Core Latency Evaluation without Flattening the Hierarchy
	5.4.1 Hierarchical-Symbolic-Execution (H-SE)
	5.4.2 Hierarchical-Critical-Path-Method (H-CPM)

	5.5 Experimental Results
	5.5.1 Experimental Setup
	5.5.2 Results

	5.6 Conclusion

	6 Conclusion
	6.1 Summary
	6.2 Future Work
	6.2.1 Modular Mapping and scheduling

	A French Summary
	A.1 Introduction
	A.2 Modèles de flot de donnèes
	A.2.1 sdf
	A.2.2 ibsdf

	A.3 PREESM : un outil de prototypage rapide
	A.4 Evaluation du Débit maximal
	A.4.1 Modes d'exécution d'un graph ibsdf
	A.4.2 Méthode classique pour l'évaluation du débit
	A.4.3 Nouvelle Méthode: sr
	A.4.4 Nouvelle Méthode: esr

	A.5 Evaluation de la latence minimal
	A.5.1 Méthode classique pour l'évaluation de la latence
	A.5.2 Nouvelle Méthode: hse
	A.5.3 Nouvelle Méthode: hcpm

	A.6 Experimentations numériques
	A.6.1 Déroulement des tests
	A.6.2 Résultats des tests pour l'évaluation du débit
	A.6.3 Résultats des tests pour l'évaluation de la latence

	A.7 Conclusion

	List of Figures
	List of Tables
	Acronyms
	Personal Publications
	Bibliography
	Bibliography

