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Wajdi Louati
Maı̂tre assistant, ENIS, ReDCAD Invité



Abstract

Network Function Virtualization (NFV) is an innovative emerging concept that decouples
network functions (such as firewalls, DNS, NATs, load balancers, etc.) from dedicated
hardware devices (the traditional expensive middleboxes). This decoupling enables hosting
of network services, known as Virtualized Network Functions (VNFs), on commodity hard-
ware (such as switches or servers) and thus facilitates and accelerates service deployment
and management by providers, improves flexibility, leads to efficient and scalable resource
usage, and reduces costs. This paradigm is a major turning point in the evolution of net-
working, as it introduces high expectations for enhanced economical network services, as
well as major technical challenges.

One of the main technical challenges in this domain is the optimal placement of the VNFs
within the hosting infrastructures. This placement has a critical impact on the performance
of the network, as well as on its reliability and operation cost. The VNF Placement and
Chaining Problem is NP-Hard and there is a need for placement approaches that can scale
with problem size and find good solutions in acceptable times. The overarching goal of
this thesis is to enable dynamic virtual network resources provisioning to deal with demand
fluctuation during the virtual network lifetime, and to enhance the substrate resource usage.
Reserving a fixed amount of resources is inefficient to satisfy the VNF resource require-
ments. To cope with these problems, we propose dynamic resource management strategies.

In this thesis, both exact and heuristic algorithms are designed and evaluated in terms of
optimality, complexity, ability to scale, and compared with the state of the art. Elastic
mechanisms and scaling algorithms are first presented to improve adaptation and deploy-
ment of virtualized network functions in NFV infrastructures to support increasing demand
while increasing provider’s revenue. Since network providers not only need to control,
classify and steer user and application traffic flows in their dedicated slices but also want to
extend their already acquired and operational virtual networks or slices with additional ser-
vice graphs, the thesis proposes extension algorithms of already hosted network functions
graphs without disrupting initially deployed and active service instances. The proposed al-
gorithms extend already deployed network services and functions graphs to respond to new
demands while taking into account the constraint of minimizing the impact on the original
service graphs. The extension algorithms are particularly useful and suitable for situa-
tions where already deployed graphs need to be enhanced with new features and properties
(adding new functions) and modified to react to degradation and attacks such as removing
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a fraction of the graph and replacing with new complex and composed functions into more
capable and uncompromised graphs.

The thesis also addresses the VNF placement and chaining problem in an online and in
a batch mode to improve performance in terms of longer time reward. An enhanced Re-
inforcement Learning-based approach is also proposed to improve the long term reward
beyond what the previous methods can achieve. This is analyzed and realized for a load
balancing objective but can be adjusted for other criteria.

Keywords:
Network Function Virtualization, Resource Allocation, Optimization, Placement, Model-
ing, and Performance.



Résumé

Cette thèse traite du placement optimal et heuristique de fonctions réseau et de chaı̂nes
de fonction réseau dans des infrastructures cloud et réseau virtualisées. L’émergence de
la virtualisation des fonctions réseau, connu sous l’acronyme NFV pour Network Func-
tion Virtualization, permet de découpler les fonctions réseau en mode logiciel du matériel
d’hébergement et de s’appuyer sur des serveurs génériques et d’éviter l’usage de, et la
dépendance à, des matériels dédiés voire propriétaires.

Le placement de fonctions réseau virtualisées (représentées par VNF, Virtualized Network
Functions) est NP-Difficile puisqu’il s’agit de projeter un petit graphe de ressources virtuelles
sur un graphe plus grand (graphe de l’infrastructure d’hébergement). Les solutions op-
timales, en particulier la programmation linéaire en nombre entier (ILP), ne passent pas
à l’échelle. Sachant que la demande est dynamique et peut varier dans le temps et que
le réseau est lui même variable dans le temps, il est important de prévoir des adaptations
des placements. Cela peut s’effectuer par de l’élasticité sur les ressources d’hébergement
réservées à une fonction réseau virtualisée, à un graphe de service réseau, et par une exten-
sion du graphe de service lui même en fonction du contexte et des exigences des utilisateurs
ou tenants.

La thèse propose une famille d’algorithmes pour le placement de chaı̂nes de services (ou
fonctions) réseau avec la possibilité d’étendre les ressources d’hébergement des VNFs
(c’est à dire assurer l’élasticité du service d’hébergement en augmentant les ressources
allouées ou en générant plusieurs instances de VNFs pour écouler le trafic et répondre à la
demande) en plus du placement initial. Une solution en programmation en nombre entier
est élaborée et aussi utilisée comme référence pour une comparaison avec l’état de l’art et
avec les extensions proposées. L’optimisation étant effectuée en instantanée au fur à mesure
de l’arrivée des demandes, une à la fois, une solution qui regroupe plusieurs demandes pour
y répondre simultanément, en élaborant un graphe composite, permet d’améliorer les per-
formances. Cette approche connue sous le nom de “batch” n’améliore que partiellement la
performance, la récompense sur le long terme (en efficacité, minimisation des ressources
consommées, et en équilibrage de charge) est nécessairement limitée.

La thèse s’est penchée aussi sur l’extension de graphes de services réseau, de tenants, déjà
déployés, en adoptant une approche de type arbre de recouvrement, Spanning Tree. Plus
spécifiquement une modélisation du problème en un “Steiner Tree Problem” a conduit à
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des performances proches de l’optimal pour des extensions de graphes au fil des demandes,
en les traitant séparément. Les travaux de thèse sont par la suite revenus sur la rentabilité
sur le long terme des algorithmes, en approchant le placement de chaı̂nes de services et
fonctions réseau comme un objectif long terme via de l’apprentissage par renforcement en
se souciant plus de la rentabilité et de l’efficacité long terme des algorithmes contrairement
aux approches visant exclusivement l’optimalité instantanée à chaque nouvelle demande.

Cette thèse a permis de faire avancer autant que faire se peut l’état de l’art du placement
optimal dans les infrastructures cloud et réseau partagées. Notamment, le problème, et be-
soin, d’extension de graphes, de tenants, déjà déployés, sans perturber l’hébergement initial,
a reçu peu d’attention. Pourtant ce besoin est essentiel pour répondre à des déploiements
additionnels de nouvelles fonctions et services réseau, et pour réagir aux dégradations et
à l’accroissement de la demande, aux attaques et pour assurer l’introduction de nouveaux
services et fonctions de sécurité autour du graphe initial. L’approche peut aussi répondre à
des modifications de graphes et d’isolations d’une partie (défectueuse ou compromise) d’un
graphe et de son remplacement par d’autres services et graphes fiables et non altérés.

Mots-clés:
Virtualisation des Fonctions Réseau, Allocation des Ressources, Optimisation, Placement,
Modélisation, et Performance.
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Chapter 1

Introduction

Nowadays, Information Technology companies and academics are interested more and

more about the Network Function Virtualization (NFV) concept. In fact, Communications

Service Providers (CSPs) and Internet Service Providers (ISPs) are facing competition from

Over-the-top (OTT) media services and web services, experiencing declining average rev-

enue per user (ARPU) and feeling the pressure to innovate rapidly to respond to new trends

such as 5G, IoT (Internet of Things), and edge computing.

Traditional network services are built by chaining together proprietary single-function boxes

(middleboxes). The design of these services is custom, the underlying equipments are ex-

pensive, require lengthy procurement times and cannot be shared with any other service.

Once deployed, the operations and management of these services is largely non-automated,

with each box presenting its own management interface. This technique of creating network

services is very expensive, and offers no practical way of creating dynamic services.

Network Function Virtualization (NFV) is a technology that can greatly assist in solving

these business challenges. Once virtualized, the Virtual Network Functions (VNFs) can

be hosted on an industry-standard server or commodity hardware. Virtualization does not

stop at replacing physical boxes with virtual machines, but can go further by using mi-

croservices, containers, and cloud native architectures. Managing the Lifecycle of these

services (such as initial deployment, configuration changes, upgrades, scale-out, scale-in,

self-healing, etc.), can also be automated. These VNFs can also be chained and managed in

1



Introduction 2

a dynamic and automated fashion. All these advances enable the creation and management

of agile network services.

This thesis addresses the optimal placement of these virtualized network functions and ser-

vices in hosting infrastructures. That is the problem of mapping VNFs and service function

chains (such as chained VNFs) in NFV-Is (Network Function Virtualization - Infrastruc-

tures). This problem received a lot of attention from the community and several contri-

butions attempted answering these challenges. Most of the existing solutions focus never-

theless on static placement of VNFs and overlook the dynamic aspect of the problem that

arises through ever-changing resource availability in the cloud datacenters and the continu-

ous mobility of the users. Recently there have been some attempts taking into account the

encountered dynamic variations. Allocating the VNFs in the dynamic NFV environment

requires flexible and adaptive resource provisioning algorithms to deal with the changing

demands of the VNFs during their lifetime. This thesis focuses on this specific issue of pro-

viding placement algorithms that can cope with some of these variations via elastic VNFs,

service chaining, and VNF forwarding graphs (VNF-FGs).

In this chapter we describe the VNF placement and chaining problem and summarizes the

contributions of the thesis to facilitate the reading of this manuscript and ease understand-

ing.

1.1 Research Problem and Objectives

• VNF-Forwarding Graph (VNF-FG) Embedding Problem

One focus of the thesis is the placement of chains of network services and functions in an

NFV context to support multiple tenants and applications. This problem is often referred

as Service Function Chaining (SFC in the IETF terminology), also known as Virtualized

Network Functions Forwarding Graph (VNF-FG in the ETSI terminology) to emphasize

that there is a sequencing and a specific connectivity requested as a complex service graph

involving multiple interconnected VNFs. A Service Function Chain (SFC) defines an

ordered set of abstract service functions (SFs) (VNFs in the case of ETSI) and ordering
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constraints that must be applied to packets and/or frames and/or flows selected as a result of

classification. The implied order may not be a linear progression as the architecture allows

for SFCs that copy to more than one branch, and also allows for cases where there is flexi-

bility in the order in which service functions need to be applied. SFCs may contain cycles,

that is traffic may need to traverse one or more SFs within an SFC more than once. A Virtu-

alised Network Function Forwarding Graph (VNF-FG) is composed of interconnected

VNFs providing a dedicated end-to-end service. It may also contain one or more Network

Forwarding Path (NFP). A NFP is an ordered list of connection points forming a chain of

Network Functions (NFs), along with policies associated to the list. When the requested

service concerns a dedicated virtual network with embedded virtualized functions and ser-

vices, the dedicated functionality and feature enhanced virtual network is called a slice. A

network slice is composed of a collection of resources that, appropriately combined, meet

the service requirements of the use case that such a slice supports. Each slice provides a

set of network capabilities and performance levels that may be suitable for a set of service

types. The services can be mapped onto different slices, according to operator policies

and business strategies. Each slice has a certain set of attributes, for example, end-to-end

low latency or high bandwidth, which can make it more appropriate for a certain types of

services. The objective of the thesis is to propose placement algorithms for such chaining

while respecting the VNF dependencies and the forwarding paths or flow paths specified

in the request. The proposed algorithms apply also to slices seen as just yet another, more

complex, service graph composed of nodes (corresponding to hosted services) and edges

(corresponding to links or relations between the services).

SFC and VNF-FG embedding are key requirements identified by the IETF-SFC and ETSI-

NFV specifications on resource allocation that consists of finding the best (in some defined

optimization sense) hosts for VNFs in the network infrastructure (NFV-I). That is, the re-

source optimization in question must be accomplished with regard to a specific objective

(e.g. maximization of remaining network resources, minimization of power consumption,

optimization of a specific QoS metric, etc.). The ETSI-NFV and IETF-SFC working groups

propose their own terminologies to express respectively the main concepts of NFV and SFC.

The terminologies as usual are different but there is a certain correspondence between their

components and concepts. In terms of optimization problems, both VNF-FGs and SFCs can
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be addressed by all our approaches, since we use the most general case of VNF-FG (more

precisely, the derived NCT: Network Connectivity Topology) as input for the optimization

(i.e., the SFCs can be considered as a particular case).

The VNF-FG embedding problem can be seen as a generalization of the well-known Vir-

tual Network Embedding (VNE) problem with additional constraints related to the chaining

and dependencies between the VNFs. The VNE is known to be NP-hard [4] and, since a

VNF-FG embedding is a generalization of VNE, it is also NP-hard. Generally speaking, the

problem consists in mapping the virtual resources to candidate substrate resources. All the

VNFs composing a chain must be mapped to consider the mapping successful, the place-

ment concerns thus the entire chain that must be embedded at once meaning that the hosting

resources (the substrate network or the NFV-I resources) are also reserved and consumed

jointly. The two stage mapping process, virtual node and virtual link mappings, of VNE also

apply to VNF-FG embedding. The mapping does not need to follow a two step approach,

however, and the mapping can be done jointly and simultaneously for both nodes and links

(or equivalently services and relationships between these nodes). In VNF-FG embedding,

each VNF is annotated with a type to emphasize the functions hosting requirements their

features and artifacts; so the VNFs can be hosted in the appropriate and capable physical

hosts.

Figure 1.1 shows the deployment of an end-to-end network service between two substrate

nodes in an NFV-I. It illustrates the embedding stage involving: service orchestration, ser-

vice management, the virtualization layer, and the NFVI. The orchestrator is responsible

of the embedding stage; it is in charge of the management and orchestration of software

resources and the virtualized hardware infrastructure to realize networking services. The

service is composed by a set of VNFs that together provide a specific functionality. The

virtualization layer abstracts the physical resources and anchors the VNFs to the virtualized

infrastructure. It ensures that the VNF lifecycle is independent of the underlying hard-

ware platforms by offering standardized interfaces. This type of functionality is typically

provided in the forms of VMs and of their hypervisors that are typically located in data

centers, at edge nodes, network nodes, and in end-user facilities.
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FIGURE 1.1: VNFs forwarding-graph embedding [1]

A High Volume Server (HVS) is considered as a physical network node in an NFV-based

network architecture, which uses a hypervisor to manage virtual machines, according to the

availability of resources (CPU, Disk, RAM). The NFVI is composed of NFV infrastruc-

ture Points-of-Presence (NFVI-PoPs), including resources for computation (such as HVS,

RAM), storage (such as disk storage), and networking (such as switches and routers). VMs

running on top of HVSs can host one or more VNFs of the same type. An example to

illustrate the embedding stage is shown in Figure 1.1. The orchestrator runs a VNF-FG

embedding algorithm which makes embedding decisions, according to the adopted opti-

mization objectives.

This thesis addresses these stated embedding needs while taking into account the unavoid-

able variations in demands in such environments during the lifetime of the VNFs and their

associated chains and the ensuing hosting resources elasticity requirements. To describe the

problem, illustrated in Figure 1.2, we split the VNF-FG placement and chaining problem
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into two sub-problems:

• Initial VNF-FG placement (Initial VNF placement and chaining): The aim of this

stage is to efficiently map the initial VNF-FG request onto the substrate network.

• Elastic VNF-FG placement (Dynamic resource management): This stage deals with

i) the resource demand fluctuation of the embedded VNF-FG (scaling, migration, ex-

tension, etc.) and ii) the re-optimization of the substrate network usage (The resources

have to be re-allocated to adapt to dynamic changes in traffic volumes).

FIGURE 1.2: The VNF-FG placement and chaining sub-problems

• Scope of the thesis

In line with the thesis scope, the work focuses on VNF-FG embedding and related key

challenges:

• VNF placement and chaining:

- Where to embed the clients’ requests ?

- How to select the substrate resources ?

- How to “optimally” manage the NFV-I ?

• Extension of already deployed forwarding graphs in the NFV-I (by adding new for-

warding paths, new service chains, new services, and virtualized network functions).

• Horizontal scaling (Add/remove virtualized resources) and Vertical scaling (Recon-

figure the capacity/size of existing virtualized resources).

• Migration of VNFs instances (where VNFs are moved to more appropriate servers

especially servers with more resources).
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1.2 Research Contributions

We summarize for convenience the contributions of the thesis with respect to the originally

identified challenges and defined research goals.

• Virtual Network Function Scaling (Houidi et al. [5], GLOBECOM 2017)

NFV has been revolutionizing the way networking services are deployed but also requires

the dynamic scaling of resources during the lifecycle management of VNFs with increas-

ing service demand. The first contribution proposes an Integer Linear Programming (ILP)

approach and a Greedy heuristic to address this NP-Hard scaling problem. Both horizontal

(scale out/in) and vertical (scale up/down) scaling are considered and the scalability of the

ILP is addressed by reducing the number of candidate hosts in the search space. Extensive

simulations evaluate the performance of the algorithms in successful scalings and VNF mi-

grations and highlight the importance of using the algorithms to tidy up the infrastructure

to accept more users. The results show that the ILP can outperform the Greedy heuristic if

appropriate actions are selected.

• Dynamic VNF Forwarding Graph Extension Algorithms (Houidi et al. [6], NCA

2018, and Houidi et al. [7], TNSM 2020)

The second contribution proposes a set of algorithms to extend initially deployed Virtualised

Network Functions Forwarding Graphs (VNF-FGs) or Service Function Chains (SFCs) pre-

viously requested and acquired by tenants. The latter are likely to request extension of their

already acquired, deployed and running dedicated slices to embed additional networking

functions to handle for instance new application flows requiring additional classification,

authentication, authorization, processing, traffic steering, etc. The tenants (or end-user ser-

vice providers) are also likely to introduce gradually their services as needs arise and as

their consumer base and profiles evolve. Increasing traffic load often will also require ex-

tension of the service graphs and chaining such as introducing additional load balancers and

servers, new security functions and simply new VNFs related to new tenant services. The

related service graph extension problem is addressed first through an ILP algorithm that
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serves as a reference for performance comparisons with a set of proposed heuristic algo-

rithms. A heuristic directly inspired by and based on the ILP and the proposed alternative

approaches are shown to scale much better than the ILP while providing good solutions.

The solutions include an adaptation of an Eigendecomposition-based approach that pro-

vides very good performance for highly connected graphs. The problem is also cast into the

well know Steiner Tree search problem whose complexity and performance are formally

characterized in the literature. The Steiner based algorithm is shown to provide the best

overall tradeoff (in rejection rate, complexity, quality, cost, and revenue) with performance

closest to optimal.

• Enhanced Reinforcement Learning Approach for VNF-FG Embedding (Houidi

et al. [8], PIMRC 2020)

The third contribution presents a set of approaches to address the VNF-FG embedding

problem to increase provider long-term revenue as a general objective. The placement is

achieved through an Integer Linear Programming (ILP) algorithm that serves as a refer-

ence for performance comparisons with a set of proposed heuristic algorithms. Since ILP

based approaches do not scale well with problem size, the proposed algorithm R ILP (for

reduced exploration) selects a limited number of candidate hosts from the infrastructure to

control complexity. Since the online R ILP treats the requests sequentially, a batch strategy

(BR ILP) that operates on a set of requests is also proposed to improve performance. How-

ever, these methods are efficient only in finding instant solutions (operating in short-term to

make real-time decisions). They usually make decisions only based on network knowledge

for a snapshot or a short time past. This contribution proposes a Reinforcement Learning

(RL) based approach, called EQL (Enhanced Q-Learning), aiming at balancing the load on

hosting infrastructures. EQL employs RL to learn the network and control it based on the

learned experience (learning the usage of the physical resources used in each node). A key

point of EQL algorithm is that the time needed for decision making is reduced. In fact, the

training phase is accelerated by injecting expert knowledge as side and driving knowledge

to the RL algorithm. Results from extensive simulations, based on realistic and large scale

topologies, report the performance in terms of acceptance rate of service requests, quality

of the mapping of each request, scalability and achieved revenues.



Introduction 9

1.3 Thesis Organization

This dissertation is organized into six core chapters. Besides the present chapter introduc-

ing the context, objectives and contributions of the thesis, the manuscript is organized as

follows:

• Chapter 2 provides the background information related to this thesis. It presents an

overview of NFV and SDN. The chapter also gives an overview of the state of the

art of the resource allocation problem in NFV and reviews networking challenges in

cloud environments.

• Chapter 3 addresses the problem of VNF reconfiguration (scaling, migration) with

the main objective of reducing the rejection of VNF scaling requests when faced with

rising demand and traffic load. An ILP model is proposed and a new Greedy recon-

figuration algorithm is also reported for the purpose. Extensive evaluation for the

proposed models shows that the solutions can efficiently scale VNFs and forwarding

graphs with good execution time and scaling requests acceptation performance over

distributed and dynamically varying cloud environments.

• Chapter 4 addresses the problem of VNF-FG extension with the main objective of

maximizing provider revenue by reducing the rejection of extension requests when

faced with dynamic demand. An ILP model is presented as an exact algorithm acting

as a baseline for comparison and as the solution for small problem sizes. To improve

scalability, two heuristic algorithms are also proposed: a new Steiner Tree-based

algorithm and an Eigendecomposition-based approach. A comparative performance

evaluation with the exact model is reported to assess the efficiency and scalability of

the proposed algorithms.

• Chapter 5 proposes approaches for the VNF-FG placement and chaining problem

in an online and a batch mode. The online strategy exploits an ILP derived from a

mathematical model of the VNF-FG embedding problem. The ILP model is derived

and used to find optimal placement solutions to host the requests when problem size

is small. To control complexity and improve scalability for larger graph sizes, the



Introduction 10

ILP explores only a reduced subset of candidate hosts (R ILP). A batch mode algo-

rithm (BR ILP), to enhance further overall performance, uses the R ILP algorithm

to process a group of requests, queued in a batch window, by serving in priority re-

quests that generate higher revenues for the providers while aiming at maximizing the

number of served requests. An Enhanced Q-Learning-Based Approach (EQL) is also

proposed and compared with the ILP solutions. The training phase of this approach

is improved and accelerated by injecting expert knowledge to increase provider rev-

enue. The performance of these algorithms is compared in terms of acceptance rate

of requests, quality of the solutions, scalability and achieved revenues.

• Chapter 6 summarizes the thesis contributions and presents future research direc-

tions and perspectives.



Chapter 2

State of the Art

2.1 Introduction

Software-Defined Networking (SDN) and Network Function Virtualization (NFV) are en-

abling network programmability and the automated provisioning of virtual networking ser-

vices. Combining these new paradigms can overcome the limitations of traditional clouds

and networks by enhancing their dynamic networking capabilities. Since these evolutions

have motivated this thesis and our investigations, this chapter on the state of the art will

provide an overview of NFV architecture, SDN, resource allocation challenges and reflect

the convergence trend between cloud computing, software networks, and the virtualization

of networking functions.

This chapter provides in the first part an overview of the NFV and SDN architectures. The

convergence between cloud computing and both SDN and NFV is discussed in the second

part. Finally, the third part describes the relation between the VNF placement and chaining

problem and the traditional VNE problem and surveys some existing models and algorithms

of resources mapping in network environments.

It is important to clarify that the two sub-problems of VNF-FG embedding: i) Initial VNF-

FG placement, and ii) Elastic VNF-FG placement (Dynamic resource management) are

investigated.

11
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2.2 Network Function Virtualization (NFV)

2.2.1 Network Services Before NFV

Communication Service Providers (CSPs) go beyond simply providing network connectiv-

ity for their enterprise customers. They also offer additional services and network func-

tions like Network address translation (NAT), Firewall, Encryption, Domain Name Service

(DNS), Caching, etc. Traditionally, these network functions were deployed using propri-

etary hardware at the customer premises. This approach provides additional revenue but

deploying multiple proprietary devices is costly and makes upgrades difficult (i.e., every

time a new network function is added to a service, a truck roll is required to install the

dedicated new hardware device). Consequently, service providers began exploring ways to

reduce cost and accelerate deployments through Network Function Virtualization (NFV).

2.2.2 What is NFV?

Network Function Virtualization (NFV) [3], [9], [10] is an innovative emerging way to

design, deploy, and manage networking services by decoupling functions (such as firewalls,

DPIs, load balancers, etc.) from dedicated hardware and moving them to virtual servers.

Several use cases of NFV are discussed in [11]. Note that manageability, reliability, stabil-

ity, and security are considered in [11] as the key performance parameters in both physical

and in software based virtualized networks.

FIGURE 2.1: Network Function Virtualization

NFV provides a number of benefits to network operators, including:
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• Hardware Flexibility: Because NFV uses regular Commercial-Off-The-Shelf (COTS)

hardware, network operators have the freedom to choose and build the hardware in

the most efficient way to suit their needs and requirements.

• Faster Service Life Cycle: New network services can now be deployed more quickly,

in an on-demand and on-need basis, providing benefits for end users as well as the

network providers.

• Scalability and Elasticity: New services and capacity-hungry applications keep net-

work operators (especially cloud providers), on their toes to keep up with the fast-

increasing demands of consumers.

• Increased Revenue: The combination of introducing new services faster and existing

servers in a more dynamic fashion can jointly result in increased revenue.

• Reduced Capital Expenditures (CAPEX): The use of industry-standard services,

increased hardware utilization and adoption of open source software results in re-

duced capital expenditures.

• Reduced Operational Expenditures (OPEX): Automation and hardware standard-

ization can substantially slash operational expenditures.

• Improved Customers’ Satisfaction: The combination of service agility and self-

service can result in greater customer satisfaction.

• Reduced Power Consumption and Complexity: Efficiencies in space, power, and

cooling. Communications Service Providers (CSPs) may have finite physical space,

electrical power, and cooling capacity in a data center, so they will carefully select

equipment to efficiently consume those finite and/or costly resources. NFV provides

a better energy efficiency resulting from the consolidation of resources, as well as

their more dynamic utilization.
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2.2.3 NFV Architecture

FIGURE 2.2: ETSI NFV reference architecture [2]

The main components of the NFV architectural framework are:

1. NFV Infrastructure (NFVI): is a kind of cloud data center containing the totality of

all hardware and software components that build up the NFV environment on which

NFV services are deployed, managed and executed. NFVI includes:

• Physical Hardware: this includes computing hardware (such as servers, RAM),

storage hardware (such as disk storage, Network Attached Storage (NAS)), and

network hardware (such as switches and routers).

• Virtualisation Layer: abstracts the hardware resources and decouples the VNF

software from the underlying hardware, thus ensuring a hardware independent

lifecycle for the VNFs. We can use multiple open source and proprietary options

for the virtualisation layer (such as KVM, QEMU, and VMware).

• Virtual Infrastructure: this includes virtual compute (virtual machines or con-

tainers), virtual storage, and virtual networks (overlay networks).

2. Virtualised Network Functions (VNFs): run on top of the NFVI and represent vir-

tualized instances of different network functions. Each VNF has a corresponding
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Element Management System (EMS) that provides management and control func-

tionality for that VNF.

3. NFV Management and Orchestration (MANO): NFV MANO does not act in iso-

lation. It interacts with the Operational and Business Support Systems (OSS/BSS)

components of the operator to manage the operational and business aspects of the

network. MANO includes:

• Virtualized Infrastructure Manager (VIM): or cloud management software, e.g.

OpenStack or Kubernetes. It is responsible for controlling and managing the

computing, storage, and network resources, as well as their virtualization.

• VNF Manager(s): it is responsible for VNF life cycle management, including

VNF instantiation, update, query, scaling, and termination.

• NFV Orchestrator: it is in charge of the orchestration and management of NFV

infrastructure and software resources, and realizing network services on NFVI.

It utilizes resource allocation and placement algorithms to ensure optimal usage

of both physical and software resources.

2.3 Software-Defined Networking (SDN)

Software-defined networking (SDN) [12], [13], is one of the most important architectures

for the management of complex networks, which may require re-policing or re-configurations

from time to time. SDN separates the control plane of traditional networking devices (e.g.

switches, routers) from the data plane.

Before SDN, switches or routers were configured using routing protocols that did not allow

fine-grained control. The control plane is known as an SDN controller and becomes directly

programmable via an open interface (e.g., OpenFlow [14], [15] is the most popular SDN

protocol/standard and has a set of design specifications). Thus, the underlying infrastructure

(network routers/switches) just simply forwards packets by following the flow table rules

set by the SDN controller.
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SDN has the potential to dramatically simplify network management and to enable innova-

tion and evolution through network programmability [16], [17], and [18].

The Open Networking Foundation (ONF) is taking the lead in SDN standardization, and

has defined an SDN architecture model as depicted in Figure 2.3.

FIGURE 2.3: ONF/SDN architecture

The SDN architecture consists of three distinct layers that are accessible through open APIs:

• Application Layer: consists of the end-user business applications that consume the

SDN communications services. The boundary between the Application Layer and

the Control Layer is traversed by the northbound API.

• Control Layer: provides the logically centralized control functionality that super-

vises the network forwarding behavior through an open interface.

• Infrastructure Layer: consists of the network elements (NE) and devices that pro-

vide packet switching and forwarding.
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2.4 Integration of NFV with other technologies

Over the past years, the integration of NFV with other technologies, such as SDN, Cloud

computing, and 5G [19] has attracted significant attention from both the academic research

community and industry.

NFV integration with SDN and Cloud computing is beneficial due to the complementary

features and distinctive approaches followed by each technology toward providing solutions

to today’s and future networks [20], [21]. For instance, NFV provides function abstraction

(i.e., virtualization of network functions) supported by ETSI [22], SDN provides network

abstraction supported by Open Networking Foundation (ONF) [23], and Cloud computing

provides computation abstraction (i.e., a shared pool of configurable computing resources

(e.g., networks, servers, storage, applications, and services)) supported by the Distributed

Management Task Force (DMTF) [24]. Abstraction is one of the core features of cloud

computing which allows abstraction of the physical implementation to hide the background

(technical) details from users and developers. To summarize the relationships between NFV,

SDN, and Cloud computing, we use Figure 2.4.

FIGURE 2.4: Relationships between NFV, SDN and cloud computing [3]

SDN, NFV, and Cloud computing technologies are complementary to each other but are

independent and can be deployed alone or together. A combination of these technologies
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together in a network architecture is more desirable [25]. In fact, the advantages that accrue

from each of them are similar: agility, cost reduction, dynamism, automation, resource

scaling, etc.

2.5 Resource Allocation in NFV

In NFV, a service is defined as a chain of software functions named Service Function Chain

(SFC) [26], [27]. The process of allocating the resources of servers to the services, called

Service Placement (or Resource Allocation), is one of the most challenging mission in NFV.

The dynamic nature of the service arrivals and departures as well as the meeting Service

Level Agreement (SLA) make the service placement problem even more challenging.

This section presents a survey of relevant research in the literature related to resources

mapping in network environments. These studies are classified into two related topics. The

first topic is the Virtual Network Embedding (VNE) problem [28] and the second one is the

Virtual Network Function (VNF) placement and chaining problem [29].

Before entering into details, we add a note on the relation between the VNF placement

and chaining problem and the traditional VNE problem. In fact, the task of placing func-

tions is closely related to virtual network embedding [30], [31], [32] and may therefore be

formulated as an optimization problem, with a particular objective.

Despite some similarities, VNE and VNF-FG embedding are distinct and have different

characteristics [1].

• First, while in VNE we observe one-level mappings (virtual network requests →

physical network), in NFV environments we have two-level mappings (SFC requests

→ VNF instances→ physical network). VNE requests are modeled by simple undi-

rected graphs while VNF chains are more complex and contain both the VNFs to

place and the traffic flows to steer between the VNF-FG endpoints.
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• Second, in NFV environments, a VNF can be shared by multiple demands, while in

VNE, different virtual networks are typically independent (i.e., a flow of a virtual

network does not traverse through the virtual nodes of another virtual network).

• Third, while the VNE problem considers only one type of physical device (i.e.,

routers), a much wider number of different network functions coexist in NFV en-

vironments.

2.5.1 Virtual Network Embedding (VNE)

2.5.1.1 Initial VNE strategies

The initial VNE problem can be divided into two sub-problems: Virtual Node Mapping

consists in mapping each virtual node of the VN to one physical node that has enough

available resources, and Virtual Links Mapping where virtual links connecting the virtual

nodes have to be mapped to paths connecting the corresponding nodes in the substrate

network under bandwidth resource constraints.

In VNE, the most referenced approach is the one suggested by Chowdhury et al. [33],

which introduced a set of algorithms to correlate between node and edge embedding prob-

lems to solve the VNE. They embedded the virtual nodes onto physical network nodes

based on their residual capacities, but they coordinated the edges embeddings using the

multi-commodity flow algorithm to facilitate the embeddings of virtual edges onto physi-

cal network paths included the physical network hosting the virtual nodes. However, since

nodes were embedded first then edges afterwards, longer paths could be used, causing ad-

ditional costs and less accepted Virtual Networks Requests (VNRs).

Ogino et al. [34] propose a VNE algorithm based on a greedy approach, which prioritized

the virtual edges assignment rather than the virtual nodes. They used the minimum-cost

route algorithm to compute the optimum physical path for each virtual edge. The proposed

approach focuses on selecting the optimum physical path that will minimize the increase in
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the demanded amount of edges’ bandwidth and nodes’ capacity. However, their method-

ology could allow to select longer paths containing more physical network resources than

requested.

Wang et al. [35] propose a framework to address the VNE problem, employing a branch and

bound process to resolve the integrity constraints, which depends on the efficient estimation

of the lower and upper bounds of a branch in a rooted tree that represents a subset of the

solution set. Then they applied the column generation process to effectively obtain the

lower bound for a branch pruning. As the branch and price framework maintains the lower

and upper bound of the optimal solution, the authors claimed that their proposed framework

can obtain near-optimal solutions with reduced computational time.

Soualah et al. [36] propose another VNE method uses Gomory-Hu tree transformation

which provides a compact representation of the network topologies. The initial VNE prob-

lem was transformed using successive cuts of the graphs to map the virtual nodes on the

tree representing the physical network. The authors claim that mapping virtual trees onto

the physical tree fixes the mapping of the nodes and guarantees the mapping of virtual links

in a splittable way, where one virtual link is dispatched to a set of physical paths.

It is important to note that VNE problem can be solved in either a centralized or in a

distributed [37] way. Both approaches are fundamentally different [28], each having its

own advantages and disadvantages. In a centralized approach, there will be one entity

which is responsible for performing the embedding. The advantage of this approach lies in

the fact that the mapping entity is at every step of the mapping aware of the overall situation

of the network (i.e. it has global knowledge). Moreover, there may be scalability problems

in large networks, where a single mapping entity may be overwhelmed by the number

of Virtual Network Requests to handle. Contrary to centralized solutions, a distributed

approach utilizes multiple entities for computing the embedding. The advantage of such an

approach lies in its better scalability. However, one has to pay for this with synchronization

overhead.
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2.5.1.2 Dynamic/Adaptive resource management strategies

During their lifetime, virtual network resource requirements can evolve according to clients’

fluctuating demands. Hence reserving a fixed amount of resources is inefficient to satisfy

them. To cope with these problems, some dynamic resource management strategies where

proposed. Migration has been also used in the VNE context. Several dynamic algorithms

using reconfiguration optimize substrate resources for virtual networks.

Authors of [38] propose a path migration algorithm for reconfiguring and rerouting virtual

links, unfortunately do not consider adaptation of the virtual nodes and thus find suboptimal

solutions.

An iterative algorithm, called Virtual Network Reconfiguration (VNRe), is presented in

[39] to ensure load balancing among substrate nodes and reduce the rejection rate caused

by congested substrate links.

In order to supply dedicated virtual node to an end-user typified with a customized traffic,

Fajjari et al. [40] suggest a resource provisioning algorithm to guarantee an efficient and

flexible share among all the instantiated VNs upon the underlying physical network. For

that, the authors proposed a new adaptive VNE algorithm called (Adaptive-VNE), which

adopts a backtracking algorithm in order to minimize the VNE cost.

In [41], the authors propose an adaptive optimization algorithm which selects only criti-

cal VN requests for reconfigurations. Despite this selection of most critical VN requests,

computational cost and service disruptions remain important at large scale.

In [42], the authors propose an adaptive fault-tolerant VN embedding algorithm, which re-

lies on a multi-agent based framework to cope with failures and severe performance degra-

dation.

Authors of [43] propose a dynamic adaptive virtual network resource allocation strategy to

deal with the complexity and the inefficiency of resource allocation. The main idea behind

the proposal is take advantage of unused bandwidth with respect to the occupancy rate

of embedded virtual links. The unused bandwidth will be reassigned to incoming virtual

network requests.
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Inoue et al. [44] present an adaptive VNE method based on the biological “Yuragi” principle

for software-defined infrastructure (SDI). The proposed method works with little informa-

tion for large and complicated SDI frameworks. The term Yuragi is a Japanese word whose

English translation means a small perturbation to the system. Yuragi is a mechanism of

adaptability of organisms and is often expressed as an attractor selection model.

Shahriar et al. [45] address the connectivity-aware Virtual Network Embedding problem,

which consists in embedding a virtual network (VN) on a substrate network while ensuring

VN connectivity against multiple substrate link failures. The proposed method provides a

weaker form of survivability incurring less resource overhead than traditional VN surviv-

ability models.

The more important body of work on scaling and migrating services in VNE is not directly

applicable to the VNF-FG placement problem.

2.5.2 Virtual Network Function (VNF) placement and chaining

Several surveys are now available on NFV, see, e.g., [3], [10], [25], and [1] where the

various NFV challenges are discussed.

2.5.2.1 Initial VNF-FG placement strategies

VNF-FG placement and chaining is formulated as an Integer Linear Programming (ILP) in

[31], [32], [46], [47], and [48] to find exact solutions for hosting the VNFs of the requested

service graph. These works propose partial and exact mathematical formulations for the

SFC provisioning problem. Researchers consider different objective functions.

Hybrid mathematical formulations: Martini et al. [49] and Riggio et al. [50] solve the

placement and routing for each request independently. Gupta et al. [51] propose a heuristic

based on an ILP. They only consider the k-shortest paths for every request in the network

and a simplified node capacity constraint, for which only one function per node can be

deployed. There has been a recent attempt with a Column Generation model, by [52], and
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[53]. Unfortunately, as the resulting column generation model was not well scaling, its ILP

solution is not exact.

Exact mathematical formulations: Luizelli et al. [48] provide an exact model minimizing

the number of instances of functions in the network. However, they consider only a couple

of tens of requests. Savi et al. [54] propose an exact formulation in which the number of

VNF nodes is minimized. Their model takes into account additional costs inherent to multi-

core environment. However, they only provide results on a small network. Bari et al. [55]

consider the operational expenditure (OpEx) for a daily traffic scenario as their objective

function. Mohammadkhan et al. [56] propose an exact model along with heuristics aiming

at minimizing the maximum usage of CPU and links. The scope of the experiments is

limited to the case in which the number of cores per service is limited to one.

However, ILP is only suitable for the situation that all variables are integers. Thus, for

some specific situations, the Mixed ILP (MILP) is used instead. For example, Addis et al.

[57] proposed a VNF-P model, in which both the NFV goal (minimizing the number of

CPUs used by instantiating VNFs) and the Traffic Engineering (TE) goal (minimizing the

risk of a sudden bottleneck on network links) are considered. However, in order to jointly

achieve the two goals, some non-integer variables have to be introduced. Thus, the VNF-P

model proposed was actually a MILP model which described the relationship between VNF

placement and traditional routing.

As the addressed problem is NP-Hard [55], the exact solutions do not scale with size and

require an excessive amount of time to find the optimal solutions.

Heuristic algorithms: are typically and consequently proposed to scale better with problem

size by solving the problem iteratively and to find good solutions much faster. Unfortu-

nately, this is accomplished at the expense of quality of the solutions (proximity with the

optimal solutions).

A baseline Greedy algorithm [58], using a bipartite graph construction and matching tech-

niques, for VNF-FG placement and chaining, solves the problem in two steps: by first

mapping the VNFs on physical hosts and second by steering the inter-VNF traffic across

the hosts. This leads obviously to suboptimal solutions that are often far from optimal.



State of the Art 24

A heuristic algorithm in [59] uses “Simulated Annealing” (SA) to find solutions faster un-

fortunately by simplifying the overall problem by considering only one type of VNF and

addressing rather small chains.

Authors in [60] focus on the placement of VNFs chains in the NFV context. They pro-

pose a matrix-based optimization and a multi-stage graph method that are cost efficient and

improve scalability by finding solutions in polynomial times.

Note that some work study the SFC provisioning problem using game theory [61] or ap-

proximation algorithms [62], [63], and [64]. Some context-aware placement problems are

also studied. Authors in [65] study VNF placement algorithms in virtual 5G network, with

the goal of minimizing the path length and optimize the sessions’ mobility.

2.5.2.2 Elastic VNF-FG placement strategies

Elastic orchestration of virtual network functions (VNF) is a key factor to achieve NFV

goals. However, most existing VNF orchestration researches are limited to offline policy,

ignoring the dynamic characteristics of the workload. In fact, the resource that a VNF has

may scale due to dynamic traffic (for example, a DPI need less computing resource when

the traffic decreases). The QoS demand of a VNF may change also due to changes of

service requests (for example, when an established service request asks for low latency, the

re-allocation of VNFs is required) [66].

Therefore, in order to overcome those challenges, we should rethink the VNF-FG embed-

ding problem and propose new solutions. Some authors do address virtual network function

scaling and migration to ensure dynamic VNF chain placement for rising demand and traffic

load.

Authors of [67] propose a consolidation algorithm called Simple Lazy Facility Location

(SLFL) that optimizes the placement of the VNF instances in response to on-demand work-

load. SLFL chooses the VNF instances to be migrated on the basis of the instantaneous

reconfiguration but does not assess the impact (induced benefits or penalties) of these deci-

sions on future instants.
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Bandwidth guaranteed VNF placement and scaling in Datacenter is considered in [68].

Leveraging the tree-like topology of Datacenter networks, this work proposes an on-line

heuristic algorithm that achieves a near-optimal allocation. Note that this approach does

not take into account migration cost.

Authors in [69] propose an architecture for the 5G core network using SDN and NFV tech-

nologies. Moreover, based on this architecture, they design a framework for determining

the Network Functions (NFs) placement and optimizing the NFV Infrastructure (NFVI) re-

sources and network response time during emergency situations. This framework is based

on a two-stage method. In the first stage, the placement of the SDN Controllers and VNFs

is determined considering not only latency requirements and load levels but also users’ mo-

bility and network functions type. Meanwhile, in the second stage, the NFVI resources are

dynamically optimized according to variations on network conditions.

Toosi et al. [70] define a unified framework for building elastic service chains. They

propose a dynamic auto-scaling algorithm called ElasticSFC to minimize the cost while

meeting the end-to-end latency of the service chain. The experimental results show that the

proposed algorithm can reduce the cost of SFC deployment and SLA violation significantly.

Gu et al. [71] propose an Elastic Virtual Network Function Orchestration (EVNFO) policy

based on workload prediction. They adapt the online learning algorithm for predicting the

flows rate of service function chains (SFC), which can help to obtain the VNF scaling de-

cision. They further design the online instance provisioning strategy (OIPS) to accomplish

the deployment of VNF instances according to the decision. The simulation proves that

EVNFO can provide good performance with dynamic resource provision.

Luo et al. [72] propose a deep learning-based framework for scaling of the geo-distributed

VNF chains, exploring inherent pattern of traffic variation and good deployment strategies

over time. They novelly combine a recurrent neural network as the traffic model for predict-

ing upcoming flow rates and a deep reinforcement learning (DRL) agent for making chain

placement decisions. They adopt the experience replay technique based on the actor-critic

DRL algorithm to optimize the learning results.
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Pei et al. [73] study the SFC embedding problem (SFC-EP) with dynamic VNF place-

ment in a geo-distributed cloud system. They formulate this problem as a Binary Integer

Programming (BIP) model aiming to embed SFC requests with the minimum embedding

cost.

Rankothge et al. [74] present an Iterated Local Search (ILS) based framework for automa-

tion of resource reallocation that supports the three scaling models. They use this frame-

work to run experiments and compare the different scaling approaches, specifically how the

optimization is affected by the scaling approach and the optimization objectives.

Ma et al. [75] present a load balancing methodology for the management of horizontal

scaling of NF chains that does not require changes to the NF code. They also develop a

prototype reference implementations to illustrate the feasibility of the proposed solution

and conduct extensive simulations to assess the performance.

Gouareb et al. [76] aim to minimize latency, considering horizontal scaling of VMs by

placing VNFs across physical nodes. Routing and placement of VNFs are linked and have

a significant impact on latency especially for delay-critical services. They aim at optimizing

the distribution and utilization of available resources and meet user requirements with the

objective of minimizing the overall accumulated latency on both the edge clouds (where

VNFs are running) and the flow routing paths.

Chen et al. [77] formulate the SFC migration problem as a minimization problem with

the objective of total network operation cost under constraints of users’ quality of service.

They design a deep Q-network based algorithm to solve single SFC migration problem,

which can adjust migration strategy online without knowing future information. A novel

multi-agent cooperative framework is also proposed to address the challenge of considering

multiple SFC migration based on single SFC migration.

Tang et al. [78] propose a real-time VNF migration algorithm based on the deep belief

network to predict future resource requirements. But training the practicable neural network

is extremely eager for large amounts of training data.

In a recent work, Fei et al. [79] study the proactive VNF provisioning problem for NFV

providers, considering the fluctuations of traffic traveling service chains. They formulate
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the problem that minimizes the cost incurred by inaccurate prediction and VNF deploy-

ment. They first employ an online learning method which aims to minimize the prediction

error, to predict the upcoming traffic flows. Then, when launching new instances based

on the prediction outcomes, an adaptive scaling strategy is adopted for saving resources

and decreasing deployment cost. They also propose two algorithms that are called by the

complete online algorithm, for new instance assignment and service chain routing.

2.6 Conclusion

This chapter describes the state of the art that relates directly to the NFV resource allocation

problem and that is directly connected to our contributions. In recent years, the problem

has received some interest from the community and has produced several valuable contribu-

tions. However, the outcome is still incomplete. There are yet important aspects that should

be investigated to efficiently manage and allocate the use of the resources in NFV-based

network architectures. The next chapters describe the thesis contributions in terms of dy-

namic resource management strategies, mathematical models, and both exact and heuristic

optimization algorithms.



Chapter 3

Virtual Network Function Scaling

3.1 Introduction

In NFV based environment, one of the most important challenges for providers is to effi-

ciently allocate hosting resources to dynamic virtualized network services demands while

increasing revenue. Elastic mechanisms and scaling algorithms are essential to improve

adaptation and deployment of Virtualised Network Functions (VNFs) in NFV infrastruc-

tures to support increasing traffic load and customer demands.

As introduced in [80] and [67], Virtual Network Function scaling is triggered by new client

requirements and/or rising traffic load due, for example, to an increase in the user plane

traffic or the need of allocating more resources to a VNF to avoid service interruption.

To enhance initial VNF placement with dynamic adaptation, three scaling mechanisms are

defined in [67] and [81]:

• Horizontal scaling (scale out/in): Add/remove virtualized resources (e.g., VNF Com-

ponents (VNFCs)).

• Vertical scaling (scale up/down): Reconfigure the capacity/size of existing virtualized

resources.

28



Virtual Network Function Scaling 29

• VNF Migration: move VNF components from one hardware platform onto a better

platform while still satisfying the service continuity requirement.

To address this NP-Hard elasticity problem [82], we propose an exact algorithm and a

Greedy heuristic. An Integer Linear Programming (ILP) formulation with a search space

reduction is adopted to improve scalability. A Greedy algorithm searching for a scaling so-

lution in the neighborhood of an initial placement is also presented. Comparisons between

the two approaches show that an adequately tuned and devised ILP can outperform Greedy

solutions in terms of proportion of successful scalings.

In [82], authors propose an Integer Linear Programming (ILP) model to solve the network

function migration problem. In the rest of this chapter, we denote this competitor algorithm

by (ILP C). It proposes a migration cost model and a heuristic algorithm to decrease the

migration cost. Note that these algorithms do not consider scaling and elasticity to optimize

resource utilization.

The system model is described in Section 3.2. The proposals are introduced in Section 3.3.

Section 3.4 reports the performance evaluation results and finally, we summarize the results

with some future research directions in Section 3.5.

3.2 Problem Formulation

This section models the VNF and the VNF-FG scaling problem and derives an ILP model

that ensures placement and scaling for increasing demands with minimal cost and service

interruptions.

3.2.1 Substrate and virtual network models

The physical network (commonly known as substrate or physical infrastructure. The terms

are used interchangeably), as defined by the ETSI NFV Infrastructure (NFV-I) [83], is mod-

eled as an undirected weighted graph, denoted by Gp = (Np, Ep) where Ep is the set of
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physical links and Np is the set of physical nodes. Each substrate node, k ∈ Np, is char-

acterized by its i) available processing power (i.e., CPU) denoted by CPUk, and ii) type

Tk: switch, server or Physical Network Function (PNF) [84], where PNFs are the tradi-

tional physical middleboxes offering network functions. A PNF is a dedicated hardware

that implements a network function. Each physical link (i.e., e ∈ Ep) is characterized by its

available bandwidth BWe.

A client request (i.e., requested service function chain, also called VNF-FG) is modeled as

a directed graphGv = (Nv, Ev) whereNv is the set of virtual nodes and Ev is the set virtual

links in the graph. Each virtual node, i ∈ Nv, is characterized by its i) required processing

power cpui and ii) its type ti: VNF or switch (i.e., ingress or egress). Each virtual link

(ij) ∈ Ev is described by its required bandwidth bwij . Note that the VNFs can be hosted

only in server or PNFs having the same type. The ingress and egress nodes can be hosted

only in switches.

3.2.2 Scaling Problem

FIGURE 3.1: VNF Autoscaling by instantiating new VNFCs

Before the expiration of a tenant (i.e., a group of users who share a common access with

specific privileges) or user VNF-FG lifetime, the resource requirements of the VNFs in the

forwarding graph can increase with rising demand. This will entail the spawning of new

VNF instances, the allocation of additional hosting resources and possible the migration

of the VNFs to other more capable physical hosts. For example, a firewall may need to

install more filtering and control rules or handle more applications and users. Figures 3.1

and 3.2 depict examples some of these scaling actions to respond to rising requirements and

demand. ETSI [80] defines the types of scalings as follows:
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FIGURE 3.2: VNF Autoscaling by allocating additional NFVI resources

1. When a VNF is scaled out, new VNF components (VNFCs) are instantiated and

added to the VNF. Under such circumstances, the VNF may need a mechanism to

distribute the load or traffic among the VNFCs (newly instantiated and existing VN-

FCs). This distribution can be accomplished through the use of load balancers (see

Figure 3.1).

2. When a VNF is scaled in, one or more VNFCs of a VNF are terminated.

3. When a VNF is scaled up, it is assigned additional NFVI resources such as compute

cores, memory, storage, or network resources (see Figure 3.2).

4. When a VNF is scaled down, NFVI resources that have been previously allocated to

the VNF are de-allocated.

From the point of view of physical resource consumption, scaling out and scaling up can be

treated the same way (i.e., increasing VNF scale is accomplished by scaling out or scaling

up [80]) despite technical deployment differences. Both actions require additional resources

and result in increased physical resources consumption. Scaling out and up are taken into

account in our proposed model and optimization algorithms.
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3.3 Proposals

We propose an Integer Linear Programming solution and a Greedy algorithm to address the

VNF scaling problem. We assume that the scaling concerns the ith VNF in the VNF-FG.

Hence, i is fixed (i.e., not variable) for each scaling request. A single VNF scaling request

is triggered for each and every generated request.

3.3.1 ILP Formulation

We formulate the ILP model for virtual network function scaling. Table 3.1 summarizes the

parameters and the used variables. The model includes integrity constraints associated to

the objective function used to achieve optimal scaling.

Node re-mapping constraint: Each scaled VNF i is re-mapped to exactly one physical

candidate node k. A VNF (i.e., its components (VNFCs)) can not be split into (distributed

across) many physical nodes. This is expressed by:

∑
k∈C

xik = 1 (3.3.1)

where:

xik =

1, if the VNF i is re-mapped to physical node k;

0, otherwise.
(3.3.2)

Capacity constraint: This constraint ensures that the residual capacity in a physical node

k satisfies the required capacity by VNF i. This leads to the following inequality:

cpui × xik ≤ CPUk, ∀k ∈ C (3.3.3)

Link re-mapping constraint: Each virtual link (ij) will be re-mapped to exactly one

physical path Pk,m(j) where k is a physical candidate for the ith VNF and m(j) is the initial

mapping location of the jth VNF. Note that i and j are neighbors in the VNF-FG request.

We use the K-shortest path algorithm to calculate P: the set of K-shortest paths candidates
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TABLE 3.1: Main notations

Notation Description

CPUk Residual capacity in a physical node k

m(j) Initial mapping location of VNF j

Pk,m(j) Physical path interconnecting physical nodes k and m(j)

BWPk,m(j)
Residual bandwidth in a physical path Pk,m(j)

C Set of physical nodes candidates

P Set of physical paths candidates

minCPU The minimum capacity in C

BWe Residual bandwidth in one physical link e

δep A boolean coefficient determining whether physical

link e ∈ Ep belongs to path Pk,m(j) ∈ P:

δep = 1⇔ e ∈ Pk,m(j)

EN(i) Set of virtual links (ij) where j is a virtual neighbor of i

cpui Required capacity by virtual node i

bwij Required bandwidth between virtual nodes i and j

xik A binary variable indicating whether VNF i

is re-mapped to physical node k

yij,Pk,m(j)
A binary variable indicating whether virtual link (ij)

is re-mapped to physical path Pk,m(j)

∆tr Remaining time of request before departure

δt Required time to migrate one capacity unit

Revu Revenue unit

Penu Penalty unit

Pk,m(j). We extend the Dijkstra algorithm based on residual bandwidth to find more than

one candidate path Pk,m(j) interconnecting physical nodes k and m(j). Then, we supply the

set P to the ILP.

∑
k∈C

yij,Pk,m(j)
= 1, ∀(ij) ∈ EN(i) (3.3.4)
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where:

yij,Pk,m(j)
=

1, if the virtual link (ij) is re-mapped to physical path Pk,m(j);

0, otherwise.
(3.3.5)

Bandwidth constraint: Obviously the residual bandwidth in a physical path Pk,m(j) has to

satisfy the bandwidth requirement of virtual link (ij). We should not violate the remaining

bandwidth of each physical link e ∈ Ep on the physical path Pk,m(j). This condition can be

formally expressed as:

∑
(ij)∈EN (i)

bwij × yij,Pk,m(j)
× δep ≤ BWe,

∀e ∈ Pk,m(j), ∀Pk,m(j) ∈ P
(3.3.6)

Node and link re-mapping constraint: When a VNF i is re-mapped to a physical candi-

date node k, each virtual link (ij), starting from VNF i, has to be re-mapped to a physical

path Pk,m(j) having k as one of its endpoint or extremity. The other endpoint is m(j)

(i.e., where j is a neighbor of i in VNF-FG). Let us call Pk,m(j) the set of candidate paths

between k and m(j). Then, we define a binary variable for each of the candidate path

Pk,m(j) ∈ Pk,m(j). This constraint can be written as:

xik =
∑

Pk,m(j)∈Pk,m(j)

yij,Pk,m(j)
, ∀(ij) ∈ EN(i),∀k ∈ C (3.3.7)

Objective function: We are interested in minimizing the service interruption time caused

by scaling and favor for this reason new physical hosts with the most available resources.

A way to reduce the complexity of the ILP and to scale much better with network size is

to explore not all the candidate nodes space. That is cutting the exploration to a subset of

the candidates, especially candidate nodes that are less loaded. This should also maximize

the revenue of the providers that can maintain services and tidy up their infrastructures to
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accept more users.

maximize Z

Where:

Z = (∆tr × cpui ×Revu)×
∑

k∈C
CPUk

minCPU
× xik

− (δt × cpui × Penu)×
∑

k∈C\{m(i)} xik

(3.3.8)

The addressed VNF scaling problem is summarized by lumping the objective function and

the constraints:

maximize Z

subject to:
∑

k∈C xik = 1

cpui × xik ≤ CPUk, ∀k ∈ C∑
k∈C yij,Pk,m(j)

= 1, ∀(ij) ∈ EN(i)∑
(ij)∈EN (i) bwij × yij,Pk,m(j)

× δep ≤ BWe,

∀e ∈ Pk,m(j),∀Pk,m(j) ∈ P

xik =
∑

Pk,m(j)∈Pk,m(j)
yij,Pk,m(j)

, ∀(ij) ∈ EN(i),∀k ∈ C

PROBLEM 1: VNF scaling optimization summary

3.3.2 Heuristic Algorithm

We also propose a Greedy algorithm for VNF scaling and re-mapping to compare with our

ILP and gain some insight on achievable performance, benefits and strengths of the exact

modeling approach. The proposed Greedy algorithm operates using the following 5 steps:

1. Check initial mapping m(i) capacity: if the remaining resource in node m(i) can

satisfy the new required capacity by VNF i, scaling occurs in the same physical node

m(i) (i.e., without migration). Else, use migration to scale;
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2. Find a set of neighboring physical candidate nodes C related to m(i). These candidate

nodes are also sorted by available resources;

3. Check candidate node re-mapping: if node k capacity and type constraints are met,

move to links capacities checking;

4. Compute the shortest path between candidate k and all physical nodes m(j) (where

j is a virtual neighbor of i) using Dijkstra’s algorithm based on available bandwidth.

In fact, this corresponds to computing the best paths that maximize the minimum

bandwidth along their route between k and m(j);

5. Check link re-mapping: if links capacities are respected, confirm candidate k as re-

mapping solution.

Algorithm 1: Scaling Greedy pseudo-code
1 Inputs: Gp, VNF i, cpui
2 Output: VNF i scaled
3 m(i)← GetInitialMapping(VNF i)
4 if CPUm(i) ≥ cpui then
5 return Mapping(VNF i, cpui, m(i))

6 else
7 C ← ComputeNeighborCandidate(m(i), cpui)
8 stack ← Sort(C)
9 while stack 6= ∅ and solution = False do

10 k ← Pop(stack)
11 if CPUk ≥ cpui and
12 ComputeLinkMapping(k, m(j)) = True then
13 solution← True

14 return Mapping(VNF i, cpui, k)

Our Greedy algorithm has a complexity ofO(|C|×|Np|2×|EN(i)|). The algorithm requires

in Step 9 (Algorithm 1) |C| iterations in the worst case and a complexity |Np|2 (in the worst

case) in Step 12 (Algorithm 1) since the Dijkstra’s algorithm is used to compute the shortest

path needed to map a virtual link (ij) crossing the scaled VNF i. The Fibonacci heaps can

improve the complexity of the Dijkstra algorithm to be O(|Ep| + |Np| × log |Np|). The

Dijkstra algorithm is called |EN(i)| times and this leads to the O(|C| × |Np|2 × |EN(i)|)

overall complexity in the worst case.
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3.4 Performance Evaluation

The performance of our proposed ILP based is assessed through extensive simulations.

Simulator settings and performance evaluation metrics used for evaluation and compari-

son purposes are presented. The ILP is compared to the Greedy heuristic. The evaluation

focuses on the gains reconfiguration (just to tidy up the network) and scaling (during ris-

ing demands) provide to the stakeholders by analyzing the proportion of rejected (failed)

adaptation attempts.

3.4.1 Simulation Environment

Our simulations are based on a realistic topology as well as extensive simulations for which

it is possible to evaluate in depth the scalability of the algorithms using larger infrastructures

and request sizes. A 2.50 GHz Quad Core server with 6 GBytes of available RAM is used

for the performance evaluation and comparison of the proposed algorithms.

For the realistic topology and the extensive simulations, the VNF-FG requests are generated

using a Poisson process with an average arrival rate of 5 requests per 100 time units. The

lifetime of each request follows an exponential distribution with a mean of 1000 time units.

The Germany50 network topology [85] is used for the first assessment (with 50 nodes).

This topology is defined by the German National Research and Education Network (DFN).

The capacity of physical nodes and links are generated randomly in the [50, 100] interval.

The size of the VNF-FG requests is set to 5 nodes. The GT-ITM [86] tool is used to

generate the requested VNF-FG topologies. The initial VNF-FG computing and bandwidth

requirements are set to 10. Scaling in CPU is fixed to 20 with one scaling request at a time

per VNF-FG.

To assess the scalability of our proposed algorithms, we generate using the GT-ITM tool a

network topology with 100 nodes and a connectivity of 0.2 (or 20%). The physical resource

capacities (i.e., CPU and bandwidth) are also drawn randomly in the [50, 100] interval. The

VNF-FG request sizes vary between 3 and 15 nodes. The required CPU for each VNF

in the VNF-FG is set to 10 units. The required bandwidth between two VNFs, to ensure
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communication between them, is set also to 10 units. The connectivity between nodes in

the VNF-FG is set to 0.3.

The ILP algorithm is evaluated for three values of the migration penalty Penu from 10

to 1000 units in order to tune the penalty according to the needs and provider priority as

well as to measure its effect on performance. The migration penalty (Penu in the second

term of the objective function in Equation 3.3.8) is used to control the re-mapping process

and to especially trade-off “in node scaling” with “migration to other hosts”. The migra-

tion penalties in the performance evaluation correspond to the reported ILP10, ILP100 and

ILP1000 results. The performance of the ILP for these penalty values (10, 100 and 1000)

are also compared to the Greedy algorithm, to assess the effectiveness and usability of this

migration. For the realistic topology and the simulation, 1000 VNF-FG requests are gen-

erated and a single VNF scaling request is triggered for each and every generated request.

Since, we are focussing on scaling and adaptation of already embedded VNF-FGs, we used

the heuristic approach of [58] to generate the initial VNF-FG mapping and initialize the

assessment runs.

3.4.2 Performance Metrics

The metrics used for the performance evaluation are described in this section that reports

also the results obtained using both the realistic topology and the extensive simulations for

the extended performance assessment.

• Successful scalings represents the number of VNF scaling requests that have been

accomplished. Indeed, due to physical resources limitation the algorithm may re-

ject some scaling requests. From the provider point of view, this number should be

maximized in order to improve the global revenue.

• Scaling ratio is the ratio of successful scalings defined by the number of successful

scalings to the accepted VNF-FG requests. The number of accepted VNF-FG re-

quests depends on the initial provisioning and on how the scaling algorithm deals with

scaling requests. Since we use as initial mapping the same basis for all algorithms,

the scaling ratio reflects their relative efficiency and enables their comparison.
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• Number of migrated VNFs is the number of the scaled VNFs through migration.

Migration involves a temporary service interruption until the concerned VNF is acti-

vated in the new physical host.

• The ratio of migrated VNFs is the ratio of the number of migrated VNFs to the

number of successful scalings. This metric measures the proportion of adaptations

accomplished through migration that providers prefer to minimize to avoid or limit

the service interruptions due to migrations. Minimizing this measure reduces disrup-

tions to applications.

• Execution time is a decisive measure in order to assess the scalability of the algo-

rithms. Service providers prefer efficient and rapid algorithms in order to quickly

serve clients.

3.4.3 Simulation Results

3.4.3.1 Evaluation on a realistic topology

(a) Successful scalings (b) Scalings ratio

FIGURE 3.3: Germany50 topology results: Scalings

We use the Germany50 topology as an NFV-I (i.e., physical network) to conduct the first

performance assessment. Figure 3.3(a) shows that the ILP algorithm, using the three mi-

gration penalty values, outperforms the Greedy solution. This is accomplished despite the

fact that the ILP does not consider all possible candidates but just a subset for scalability
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(a) VNF migration (b) Migration ratio

FIGURE 3.4: Germany50 topology results: Migration

reasons. The ILP satisfies in addition more scaling demands as confirmed by figure 3.3(b)

where the scaling ratio exceeds 90% for the ILP variants and ILP C. This proportion is only

about 55% for the Greedy strategy.

Figure 3.4(a) depicts the number of the migrated VNFs. The ILP with a migration penalty

of 10 performs more migrations than ILP1000 for which a higher migration penalty forces

the scaling to occur within the nodes in priority. At the first glance, one could conclude

that the Greedy algorithm and ILP C use less migrations than the ILP1000 but figure 3.4(b)

shows that the migration ratio of the Greedy strategy (about 90%) is higher than ILP1000

(roughly 87%) and ILP C (84, 3%). If we analyze only the three ILP configurations, we

observe as expected that ILP10 migrates almost all VNFs (more than 98%) to find more

hosting resources while ILP100 migrates about 94% of the requests.

3.4.3.2 Large-scale evaluation

To analyze the behavior of the algorithms and their scalability with problem size, we use

larger NFV-Is (with 100 nodes) and initial VNF-FG request sizes with a number of VNFs

in the [3, 15] interval. Figure 3.5(a) reports the number of successful scalings. The ILP

algorithm outperforms the Greedy heuristic by satisfying more scaling demands. Figure

3.5 (b) confirms this with scaling ratios exceeding 97% for the ILP variants and ILP C. The

Greedy strategy achieves ratios only between 84% and 94%.
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(a) Successful scalings (b) Scalings ratio

FIGURE 3.5: Large scale scenarios: Scalings

(a) VNF migration (b) Migration ratio

FIGURE 3.6: Large scale scenarios: Migration

Figure 3.6(a) illustrates the number of the migrated VNFs. ILP10 performs more migra-

tion than the ILP1000. ILP10 and ILP100 perform more migrations than the Greedy and

ILP C. ILP10 roughly migrates the totality (exactly 100% if VNF-FG sizes exceed 10) of

the scaled VNFs compared to ILP100 that migrates 98, 4%. Figure 3.6(b) shows that the mi-

gration ratio of the Greedy strategy (varies between 90% and 95%) is higher than ILP1000

and ILP C (between 80% and 90%). Clearly the ILP can be tuned to outperform other algo-

rithms as well as tradeoff migrations with in node scaling to fulfill the provider preferences

and business interests and policies.
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3.4.3.3 Importance of reconfiguration

In this subsection we focus on the gain that the reconfiguration process may provide. The

provider can perform re-mapping of some VNFs re-mapping to tidy-up their physical net-

works and prevent bottlenecks and degradations in the NFV-I and in addition can host more

client requests. Figure 3.7 depicts the rejection ratio, based on the initial embedding, of

the ILP algorithm, the Greedy heuristic and the baseline solution (i.e., dealing with only

the initial mapping). In this scenario there is no extra CPU demand but only the concerned

VNF will be reconfigured. The baseline algorithm (i.e., without reconfiguration) rejects

more requests (about 14%) compared to the Greedy heuristic and ILP C (9%) and the ILP

model (7%). This result can be explained by the dynamics in the requests arrivals and

departures that are exploited more efficiently and especially when departures occur and re-

sources are released. The reconfiguration opportunistically tidies up the network and make

room for new requests that would be otherwise rejected because of suboptimal use of the

infrastructure.

FIGURE 3.7: Rejection Ratio

3.4.3.4 Average time resolution (Execution time)

Table 3.2 reports the execution time performance of the algorithms to gain insight on their

scalability and complexity with problem size. In order, to evaluate this metric, the substrate
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TABLE 3.2: Execution time (ms)

|C|=5 |C|=10 |C|=15 |C|=20

Greedy 11, 65 12, 07 14, 64 15, 43

ILP 23, 04 38, 21 43, 74 44, 62

ILP C 26, 81 41, 87 45, 62 46, 12

graph size is fixed at 100 nodes. We generate 1000 VNF-FG requests and vary the set of

potential candidates size from 5 to 20. These results indicate that the Greedy algorithm has

significantly better execution time when compared to our ILP algorithm and ILP C execu-

tion times. However, the faster execution times of the Greedy algorithms are accomplished

at the expense of the number of accepted scaling requests. Indeed, the ILP achieves 918

scalings and ILP C 909 while the Greedy accepts only 815. The extra time taken by the

ILP is due to the ability of the ILP to find more solutions and hence accept more scaling

requests.

3.5 Conclusion

This chapter addresses the problem of virtual network function reconfiguration with the

main objective of reducing the rejection of VNF scaling requests when faced with rising

demand and traffic load. We proposed an ILP model and a new Greedy reconfiguration al-

gorithm for the purpose and show that the solutions can efficiently scale virtualized network

functions and forwarding graphs with good execution time and scaling requests acceptation

performance over distributed and dynamically varying cloud environments.



Chapter 4

Dynamic VNF Forwarding Graph

Extension Algorithms

4.1 Introduction

Network Function Virtualization (NFV) coupled with Software-Defined Networking (SDN)

is expected to impact the business to business to consumer relationships, current business

models and value chains by enabling requests from multiple tenants for virtual infrastruc-

tures to deploy and provide their services to other providers and consumers.

Providers that deploy this variety of services and network functions in both physical and

virtual infrastructures on behalf of tenants will have to treat via multiple network functions

traffic originating, transiting and terminating in their infrastructures. The service provider

has dynamic SFC establishment, update, and extension requirements and needs that the

infrastructure providers have to meet. The latter will consequently need not only to remove,

replace, insert, and add VNF instances, but also to extend already instantiated service chains

without disturbing the previously deployed chains.

In this foreseen context, network providers (or physical infrastructure providers and more

generally NFV architecture designers and actors) are actually faced with dynamic and vari-

able demands of virtualized network infrastructures from tenants. These actors are indeed

44
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likely to deploy their services, hosted in virtualized infrastructures, gradually as their busi-

ness grows. These players not only need to control, classify, and steer user and application

traffic flows in their dedicated slices but also want to extend their already acquired and

operational slices with additional service graphs (adding new forwarding paths, new ser-

vice chains, new services and virtualized network functions). These extensions of already

hosted network function graphs have to be achieved without disrupting initially deployed

and active service instances. The extensions must be seamless to applications and services

that do not tolerate interruptions, migration or disruptions in quality of service (QoS) and

experience.

In order to meet these requirements, this chapter proposes algorithms to extend already

deployed network services and function graphs to respond to new demands while taking

into account the constraint of minimizing the effect on the original service graphs.

According to [67] and [80], Virtual Network Function scaling and extension are triggered

by new client requirements and the rising of network load over time. This is especially

true for services with periodic resource demands (e.g., cloud applications such as an online

shopping store during holiday seasons, etc.), and managing VNF workload changes [87]

(e.g., during peak hours for cellular telecom operators).

In this chapter, we address the more generic and general problem of extending already

deployed service function chains (or VNF-FGs) and aim at providing algorithms that can

achieve various types of extensions. The latter may be a request to insert a new VNF in

an existing graph, a new demand to extend a Network Forwarding Path (NFP) by adding

VNFs to an existing chain, and more generally extend an already deployed VNF-FG with a

complex service graph.

We refer to the graph extension as a VNF-FG extension to emphasize that we also ad-

dress networking level extension of already deployed forwarding graphs in addition to the

fact that we inherently answer the needs for service function chaining extensions. The

extensions, as mentioned, can be triggered by new requests or by the VNF-FG life cycle

management that may decide to extend the initial graph to adapt to network and traffic load

changes such as adding load balancers, spawning new VNFs to absorb increasing load, etc.
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We first propose an Integer Linear Programming (ILP) model as an exact formulation of the

VNF-FG extension problem. The ILP can find optimal solutions for reasonable problem

sizes and thus can serve as a reference for the performance evaluation and as a way to as-

sess the quality of the solutions for heuristic algorithms at least for small graph sizes. The

heuristics should be efficient, find good solutions, and scale with problem size much better

than the ILP. To reduce complexity while finding good solutions, we resort to a Steiner Tree

based algorithm and an Eigendecomposition algorithm using network adjacency matrices of

the requested and hosting graphs as a basis for optimal embedding. The ILP and the heuris-

tic algorithms ensure that the specified connecting points between the previously described

graphs and the extensions are respected as specified in the client requests and that there are

no disruptions (or minimal disruption) to the initially deployed VNF-FG. We compare the

performance of these algorithms in terms of rejection rate of new requests, quality of the

solutions and service disruptions as a function of infrastructure size, network connectivity,

and system load.

Section 4.2 of this chapter presents the related work. The problem formulation is described

in Section 4.3. The proposals are introduced in Section 4.4. Section 4.5 reports the perfor-

mance evaluation results. Section 4.6 summarizes the main findings.

4.2 Related Work

Since we are addressing the extension of service function chains already deployed in host-

ing infrastructures, the related work review focusses on the virtual network topology change

problem with emphasis on the dynamic expansion and adaptation of Virtualized Network

Function-Forwarding Graphs (VNF-FGs) whenever relevant. Indeed, previous work ad-

dressed partially or simply did not address extension of already deployed services but rather

initial placement, adaptation to changes of an existing graph and/or the hosting infrastruc-

ture and reaction to faults. We consequently limit the description to work as close as possi-

ble to ours while being aware that extensions of SFCs or VNF-FGs have not been directly

and explicitly and fully addressed in the past.
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In [88], authors present JASPER, a fully automated approach to jointly optimize scaling,

placement, and routing decisions for complex network services. Two algorithms are devel-

oped for adaptation of existing services to changes in the demand, a Mixed Integer Linear

Program (MILP) and a custom constructive heuristic.

Ayoubi et al. [89] introduced RELIEF, an availability-aware embedding and reconfigu-

ration framework for elastic services in the cloud. The framework comprises two main

modules. The JENA sub-system that performs virtual network (VN) embedding to provide

just-enough availability guarantees based on the availability of the physical servers hosting

the virtual one. The second module, ARES, is a reliable reconfiguration bloc that adapts the

embedding of hosted services as they scale (by migrating the VN or adding backup nodes).

This work does not address either, explicitly, graph extension requests from already served

clients or increasing workloads which is our instead our central concern or objective.

Liu et al. [90] consider the readjustment of VNF chaining in dynamic situations and con-

ditions by trying to optimize jointly the deployment of new SFCs and the readjustment of

existing service chains in order to satisfy variable user requirements. This is closer to some

extent to our work and stated goal. However, unlike our approach, they use pre-calculated

paths in the network. We are focussing on the extension of already deployed chains and

service graphs while keeping the initially provided and operating tenant graph unmodified,

except for edges involved in the extension. The authors of [90] use first an ILP formulation

to solve the problem exactly then reduce time complexity using a Column Generation (CG)

heuristic algorithm that approximates the performance of the ILP. The main idea behind

the CG based algorithm is to decompose the original problem into a master problem and a

sub-problem to solve them iteratively in order to obtain a near-optimal solution.

In [91], authors present a comprehensive analysis of a resource allocation algorithm for

VNFs based on genetic algorithms (GA) for the initial placement of VNFs and the scaling

of VNFs to support traffic changes. For the scaling of existing policies proposed in [91],

the algorithm starts with the current state and searches for the re-assignment of resources

for the set of VNFs that need scaling. Therefore, some VNFs change their initial locations

and the algorithm tries to minimize the number of server and link configuration changes (to

minimize disruptions to existing traffic).
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Li et al. [92] implemented a real-time resource provisioning system for NFV called NFV-

RT, which integrates timing analysis with several techniques, such as service chain consol-

idation, and Integer Linear Programming with rounding. Also, the scaling is achieved by

duplicating full instances of VNF chains, and by reshuffling chains and migrating traffic.

The proposals defined in this chapter differs from previous work and that of [91] and [92].

They actually address the problem of Resource and Function Scaling defined in [93] as

the adaptation of the assigned network resources to functions or flows, or adaptation of

the number of deployed instances of a specific VNF (by scale out, scale in, or migration).

We are instead concerned by another type of flexibility, specifically Topology Adaptation,

defined also in [93], by extending the graph structure of already active virtual networks that

require an extension with additional nodes and links. Our addressed graph extension can

contain new network and service functions and is far more complex than simply duplicating

the service chain by a graph replication technique as proposed in [92]).

Note that all our algorithms, in this chapter, maintain the initial mapping location of already

instantiated service chains (original VNF-FG) to avoid disturbing previously deployed and

running services (i.e., without migrations or interruptions), to preserve previous deploy-

ments and ensure network stability.

In summary, our work differs significantly from the existing VNFs scaling and adaptation

proposals since none really addresses the problem of extending an already deployed ten-

ant VNF-FGs following a new request for seamless (non disrupting) evolutions of these

dedicated service chains (i.e., maintaining acceptable service performance).

4.3 Problem Formulation

The problem of extending an already deployed and operating tenant SFC or VNF-FG corre-

sponds to the placement of new requested VNFs and flow paths in the hosting infrastructure.

This has to be accomplished while respecting all previous deployments and the specified

connectivity between the initial graph and its extension. This is a placement problem with

a set of very specific constraints. The placement of virtual functions and path extensions
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must cover a subset of previously deployed graph nodes and links, those involved in in-

terconnection of the old and new graph and the ingress and egress switches (or gateways)

involved in both graphs. Hence, the objective is to embed a new graph in the infrastructure

with a specific node cover requirement with respect to a previous graph deployment. The

problem is intuitively identified as some form of node cover problem and a spanning tree

problem. The solution must span or cover some specific nodes in the original SFCs and

VNF-FGs and find an optimal mapping of the new request nodes and paths. To address this

problem we use an ILP formulation that serves as a reference for performance and quality

comparisons with two heuristic algorithms, a Steiner Tree solution and an Eigendecompo-

sition approach. Both the Steiner and Eigendecomposition can take into account the old and

new graphs inter-connectivity requirements. The eigendecomposition relies on adjacency

matrices that reflect the networking topologies of the graphs and for this reason is a natural

candidate to address VNF-FG extensions in shared infrastructures. The Steiner Tree ap-

proach adopted here corresponds to a generalization of the non-negative shortest path and

the spanning tree problems and in fact to the well known Steiner tree problem in graphs.

4.3.1 Substrate Graph or NFV Infrastructure

In order to derive an ILP for the SFC extension problem, we start from a mathematical

graph representation of the extension request, the previously deployed service graph (SFC

or VNF-FG) and the hosting infrastructure. In addition to this, a description of the intercon-

nection between the previously deployed graph and the extension graph is required, but we

embed instead this in the constraints and conditions that must be respected by all algorithms

when placing the extension in the rest of the hosting infrastructure.

The physical network (known as substrate and physical infrastructure and used interchange-

ably), as defined by the ETSI NFV Infrastructure (NFV-I) in [83], is modeled as an undi-

rected weighted graph Gp = (Np, Ep) where Ep is the set of physical links and Np is the

set of physical nodes.
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Each substrate node, k ∈ Np, is characterized by its i) available processing capacity (i.e.,

CPU) CPUk, and ii) type Tk: switch, server or Physical Network Function (PNF) [84]. The

PNFs are the traditional physical middleboxes implementing network functions.

Each physical link (i.e., e ∈ Ep) is characterized by its available bandwidth BWe.

An example of such an infrastructure, known as the NFV-I, including two PNFs and two

switches (an ingress switch and an egress switch acting as input and output gateways for

the VNF-FG or SFC related Network Forwarding Paths) and some interconnected servers

is presented in Figure 4.1.

4.3.2 VNF Forwarding Graph

Similarly a client request (i.e., a requested Service Function Chain (SFC)) is modeled as

a directed graph Gv = (Nv, Ev) where Nv is the set of virtual nodes and Ev is the set of

virtual links in the requested graph.

Each virtual node, i ∈ Nv, is characterized by its i) required processing power cpui and ii)

its type ti: VNF or switch (i.e., ingress or egress). Each virtual link eij ∈ Ev is described

by its required bandwidth bweij .

As specified by the SFC IETF working groups [94], we associate a VNF-type to each VNF

to represent the network service or function type (e.g., firewall, DPI, NAT, load balancer,

SSL, etc.) and their respective requirements. Note that the VNFs can be hosted only by

servers or PNFs having the same type. The ingress and egress nodes can be hosted only by

switches. Figure 4.1 depicts two Network Forwarding Paths (NFP). Each Forwarding Path

NFP describes the ordered VNF sequence the traffic must pass through.

From the VNF forwarding graph Gv, we derive an intermediate request graph called the

Network Connectivity Topology graph NCTv. The NCTv = (Nv, Ev) is a weighted undi-

rected graph having exactly the same set of nodes and edges than Gv. The key attribute of

an NCT node i ∈ Nv is its requested processing capacity cpui. The weight (or requested

bandwidth bweij ) of an NCT virtual link eij ∈ Ev is the sum of the requested bandwidths

of all the VNF flows passing through it. This representation means that there is no path
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splitting over links connecting two consecutive VNFs and that the same physical link will

be used to host the aggregate demand between any two VNFs for a given VNF-FG.

FIGURE 4.1: The VNF-FG and NFV-I topologies

In the ETSI-MANO document [95], the requested graphs are defined as follows:

• Network connectivity topology (NCT): is a graph that specifies the VNF nodes that

compose the global network service and the connection between these nodes through

virtual links (VL). Each VL is connected to a VNF through a connection point (CP)

that represents the VNF interface. Hence, an NCT defines a logical topology among

VNFs in a network. Note that this logical topology represented by an NCT may

change as a function of user requirements, business policies, and/or network context.

• VNF Forwarding Graph (VNF-FG): is a graph established on top of the NCT. The

VNF-FG is composed of network forwarding paths (NFP) that are ordered lists of

connection points (CPs) forming a chain of VNFs.
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FIGURE 4.2: VNF Forwarding Graph Extension

4.3.3 VNF Forwarding Graph Extension

Figure 4.2 describes the type of VNF-FG extensions considered in our work. Figure 4.2(a)

depicts the previously deployed forwarding graph (or slice) before receiving an extension

request for two new VNFs (VNF 4 and VNF 5). Figure 4.2(b) shows their required connec-

tivity with the already deployed graph. Figure 4.2(c) depicts a placement solution for the

extension with VNF 4 and VNF 5 hosted respectively in Server 3 and Server 4. The newly

requested interconnection links and forwarding paths are also highlighted.
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4.4 Proposals

To solve the problem of VNF-FG extension placement and chaining, we propose an Integer

Linear Programming model, a Steiner Tree based algorithm and an eigendecomposition

approach that uses as a basis the adjacency matrices of the request graph and the hosting

infrastructure graph.

4.4.1 ILP Model

We now formulate the ILP model for VNF-FG extension. Table 4.1 summarizes the pa-

rameters and the used variables. The model includes integrity constraints associated to the

objective function used to achieve optimal extension.

Old node mapping constraint: This constraint maintains the initial mapping location of

old VNF nodes.

ximi
= 1, ∀i ∈ N old

v (4.4.1)

Old link mapping constraint: maintains the initial mapping location of old virtual links.

yeij ,Pmi,mj
= 1, ∀eij ∈ Eold

v (4.4.2)

New node mapping constraint: ensures that new VNFs, VNF i, is mapped to exactly one

physical candidate node k and that the VNF components (VNFCs composing the VNF)

cannot be split into (distributed across) many physical nodes. This is expressed by:

∑
k∈C

xik = 1, ∀i ∈ Nnew
v (4.4.3)

where:

xik =

1, if the VNF i is hosted on the substrate node k;

0, otherwise.
(4.4.4)
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TABLE 4.1: Table of Notations

Notation Description

CPUk Residual capacity in a physical node k

mi,mj Initial mapping location of old VNFs i and j

Pki,kj Physical path interconnecting physical nodes ki

and kj

C Set of physical nodes candidates

P Set of physical paths candidates

minCPU The minimum capacity in C

BWe Residual bandwidth in one physical link e

δep A boolean parameter indicating if the physical

link e ∈ Ep belongs to path Pki,kj ∈ P:

δep = 1⇔ e ∈ Pki,kj

Nnew
v Set of new virtual nodes

Enew
v Set of new virtual links

N old
v Set of old virtual nodes

Eold
v Set of old virtual links

cpui Required capacity by virtual node i

bweij Required bandwidth between virtual nodes i and j

xik A binary variable indicating whether VNF i

is mapped to physical node k

yeij ,Pki,kj
A binary variable indicating whether virtual link

eij is mapped to physical path Pki,kj

Capacity constraint: makes sure that the residual capacity in a physical node k satisfies

the required capacity by VNF i. This leads to the following inequality:

∑
i∈Nnew

v

cpui × xik ≤ CPUk, ∀k ∈ C (4.4.5)

New link mapping constraint: The case where both extremity of virtual link eij are new

nodes: Each new virtual link eij is mapped to exactly one physical path Pki,kj where ki is a

physical candidate for the ith VNF and kj is a physical candidate for the jth VNF. Note that
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i and j are neighbors in the VNF-FG request.

∑
ki∈C

∑
kj∈C

yeij ,Pki,kj
= 1, ∀eij ∈ Enew

v , ∀i, j ∈ Nnew
v (4.4.6)

where:

yeij ,Pki,kj
=

1, if the virtual link eij is mapped to physical path Pki,kj ;

0, otherwise.
(4.4.7)

The case where source extremity i of virtual link eij is an old node and destination extremity

j is a new node: Each new virtual link eij , starting from old VNF i, is mapped to exactly

one physical path Pmi,kj where mi is the initial mapping of old VNF i and kj is a physical

candidate for the new VNF j.

∑
kj∈C

yeij ,Pmi,kj
= 1, ∀eij ∈ Enew

v , ∀i ∈ N old
v , ∀j ∈ Nnew

v (4.4.8)

The case where destination extremity j of virtual link eij is an old node and source extremity

i is a new node: Each new virtual link eij , having an old VNF j as destination endpoint,

is mapped to exactly one physical path Pki,mj
where ki is a physical candidate for the new

VNF i and mj is the initial mapping of the old VNF j.

∑
ki∈C

yeij ,Pki,mj
= 1, ∀eij ∈ Enew

v , ∀i ∈ Nnew
v , ∀j ∈ N old

v (4.4.9)

Bandwidth constraint: Obviously the residual bandwidth in a physical path Pki,kj has to

satisfy the bandwidth requirement of virtual link eij . The allocation (or mapping) must not

violate the remaining bandwidth of each physical link e ∈ Ep on the physical path Pki,kj .

Note that we compute K-shortest paths candidates Pki,kj using Dijkstra’s algorithm based

on residual bandwidth of links. This condition can be formally expressed as:

∑
eij∈Enew

v

bweij × yeij ,Pki,kj
× δep ≤ BWe,

∀e ∈ Pki,kj , ∀Pki,kj ∈ P
(4.4.10)
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Node and link mapping constraint (source type): When a VNF i is mapped to a physical

candidate node ki, each virtual link eij , starting from VNF i, has to be mapped to a physical

path Pki,kj with ki as one of its endpoint or extremity (source). The other endpoint is kj .

∑
kj∈C

yeij ,Pki,kj
= xiki , ∀eij ∈ Enew

v , ∀ki ∈ C (4.4.11)

Node and link mapping constraint (destination type): Similarly to the previous con-

straint (source type), if a VNF j is mapped to a physical candidate node kj , then each virtual

link eij has to be mapped to a physical path having kj as one of its endpoints (destination).

∑
ki∈C

yeij ,Pki,kj
= xjkj , ∀eij ∈ Enew

v , ∀kj ∈ C (4.4.12)

Node separation constraint: This constraint corresponds to situations where VNFs have

to be separated and mapped onto distinct nodes for security reasons for example or simply

due to tenant requirements or application constraints. In this case VNF i and j are mapped

into nodes ki and kj with ki 6= kj .

xik + xjk ≤ 1, ∀i, j ∈ Nnew
v , ∀k ∈ C (4.4.13)

Objective function: The objective function directly depends on the infrastructure providers’

interests while taking into account as much as possible the users’ or tenants’ expectations.

The objective function has to be adapted to the provider policies and criteria such as a

consolidation, an energy consumption minimization or a cost reduction and revenue max-

imization. There are consequently multiple possible objective functions, but as far as this

chapter is concerned, we will arbitrarily, and for the sake of selecting a given case, assume

that the providers aim at naturally balancing the load on their hosting infrastructures. If the

providers aim at reducing energy consumption, we would modify the objective function to

achieve consolidation with a maximum packing of the requests and hence minimize energy

consumption and cost, by for instance selecting the nodes whose residual capacity is suffi-

cient and closest in size to the requests. A simple and efficient way to achieve load balancing

is to favor (select in priority) the infrastructure nodes and links that are least loaded to host
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the requests, resulting in gradual and distributed filling or loading of the infrastructure. The

proposed objective function consists in maximizing Z of Equation 4.4.14.

Z =
∑

i∈Nnew
v

cpui × (
∑

k∈C
CPUk

minCPU
× xik) (4.4.14)

The variable minCPU is the smallest residual compute power available in all the candidate

nodes in set C. This is a normalization factor, used to align all terms in Equation 4.4.14

(dimensionless quantities). This factor is constant at each run of the ILP and it emphasizes

in addition nodes with more free resources. The addressed VNF-FG extension problem is

finally summarized by lumping the objective function and the constraints:

maximize {Z}

subject to:

ximi
= 1, ∀i ∈ N old

v

yeij ,Pmi,mj
= 1, ∀eij ∈ Eold

v∑
k∈C xik = 1, ∀i ∈ Nnew

v∑
i∈Nnew

v
cpui × xik ≤ CPUk, ∀k ∈ C∑

ki∈C
∑

kj∈C yeij ,Pki,kj
= 1, ∀eij ∈ Enew

v ,∀i, j ∈ Nnew
v∑

kj∈C yeij ,Pmi,kj
= 1, ∀eij ∈ Enew

v , ∀i ∈ N old
v ,∀j ∈ Nnew

v∑
ki∈C yeij ,Pki,mj

= 1, ∀eij ∈ Enew
v , ∀i ∈ Nnew

v ,∀j ∈ N old
v∑

eij∈Enew
v

bweij × yeij ,Pki,kj
× δep ≤ BWe, ∀e ∈ Pki,kj ,∀Pki,kj ∈ P∑

kj∈C yeij ,Pki,kj
= xiki , ∀eij ∈ Enew

v , ∀ki ∈ C∑
ki∈C yeij ,Pki,kj

= xjkj , ∀eij ∈ Enew
v ,∀kj ∈ C

xik + xjk ≤ 1, ∀i, j ∈ Nnew
v ,∀k ∈ C

PROBLEM 2: VNF-FG extension optimization summary
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4.4.1.1 ILP with Reduced Number of Candidate hosts (RNC ILP)

The ILP is known not to scale polynomially with problem size, as the problem is NP-

Hard [96], [3]. A way to reduce the complexity and to scale much better with size, is to

explore not all the “candidate nodes and links” space and accept a suboptimal solution.

That is cutting the exploration to a subset of the candidates, especially candidate nodes and

links that are less loaded to favor load balancing. In order to avoid local optima, we use a

random selection process to diversify choices and move out of local optima (traps) in the

problem convex hull. This suboptimal selection process nevertheless takes into account the

criteria and constraints expressed in Equation 4.4.14. The performance of this ILP inspired

heuristic, using a reduced set of candidates, is compared with the ILP to assess the proximity

in achieved solution quality or distance with the optimal solution from the full exploration

ILP.

The pseudo-code of the candidate subset selection is depicted in Algorithm 2 where we

check the initial mapping of the old VNF-FG graph Gold
v and avoid the locations used to

host the old VNFs “UsedNode()” to favor load balancing. We randomly select eligible

hosts “randomNode” from the “queue” to avoid being trapped in a local optimum. The

“queue” is sorted by available resources.

Algorithm 2: Candidate selection module pseudo-code
1 Inputs: Gp, Gnew

v , the initial mapping of Gold
v , maxCand

2 Output: A set of candidate hosts
3 queue← ∅
4 C ← ∅
5 foreach physical node k ∈ Np do
6 if UsedNode(k) = False then
7 queue← queue ∪ k

8 stack ← Sort(queue)
9 repeat

10 C ← C ∪ Pop(stack) ∪ randomNode
11 until size(C) = maxCand;
12 return C
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FIGURE 4.3: Example of the improved STVE algorithm

4.4.2 STVE: Steiner Tree based algorithm For VNF-FG Extension

An alternative to the ILP is to view the extension problem as a form of spanning tree prob-

lem where the solution for the extension has to cover a number of anchored nodes more

precisely those of the previously deployed graph that have to be connected to the new graph

(or extension). An equivalent way to address this optimization problem is to view the previ-

ous nodes as root nodes in a tree and the objective would be to find the branches and leaves

out of these root nodes.

Figure 4.3 depicts a VNF-FG extension request to respond to rising requirements and de-

mands. Server1, hosting VNF1, can be defined as a root tree-node and the objective would

be to find a placement solution for the new VNFs, VNF4 and VNF5 part of the extension

request, in leaf physical nodes. Similarly, PNF1 is seen as a root tree-node, since it already

hosts VNF2 that must be connected to the new VNFs, VNF6 and VNF7. These new VNFs

have to find a mapping solution in the ensuing tree leaves.

We nevertheless prefer to view the problem as a Steiner Tree optimization problem that

is well known and fully characterized in combinatorial optimization. Indeed, determining

a minimum cost connected network that spans a given set of vertices or nodes (known as

terminals) is the well identified and studied spanning tree problem in the literature often

solved using the cost of a minimum spanning tree (MST)[97] or solved by computing a

Steiner Tree of minimal cost [98], [99], [100] and [101].

If a Steiner tree problem in graphs contains exactly two terminals, it reduces to finding the

shortest path. If, on the other hand, all vertices are terminals, the Steiner tree problem in
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graphs is equivalent to the minimum spanning tree. However, while both the shortest path

and the minimum spanning tree problem are solvable in polynomial time, the Steiner tree

problem in graphs is NP-complete [102].

The Steiner tree problem in graphs can be seen as a generalization of the shortest path

problem (when the problem contains exactly two terminals) and the minimum spanning tree

problem (when all vertices are terminals). In the addressed VNF-FG extension problem, the

nodes of the previously deployed graph, that the extension graph nodes are connected to,

correspond to Steiner Terminals. The goal is to find Steiner Vertices acting as intermediate

nodes and hosts of the requested extension graph VNFs. To construct an efficient tree

solution to host the new VNFs and place the extension graph while respecting imposed

connectivity with the old graph, we use the minimum Steiner Tree approach. The tree cost

is defined as the total cost of the links forming the tree.

The problem of computing a minimum cost tree for a given new graph with source s and set

of physical nodes candidates C is modeled as a Steiner tree problem and defined as follows:

Given a substrate graph Gp = (Np, Ep) with a cost associated with each physical link and a

subset of the vertices X ⊆ Np, the goal is to find a minimum cost tree that includes all the

nodes in X . For finding the minimum cost tree, we set X = C ∪ {s} (i.e., source s should

have a path to every node in C).

Since in the context of the VNF-FG extension, the substrate network links are undirected,

the problem corresponds to the undirected Steiner tree problem found in for instance [103]

and [104]. The Steiner tree problem is NP-complete [102] and it is therefore very unlikely

that a polynomial algorithm for the Steiner tree problem exists. Several exponential enu-

meration algorithms have been suggested [101]. Due to the inherent difficulty in solving the

Steiner tree problem, much effort has been devoted to the development of approximation

algorithms which produce good quality solutions.

An integrative overview of the algorithmic characteristics of three well-known polynomial

time heuristics for the undirected Steiner minimum tree problem: shortest path heuristic

(SPH), distance network heuristic (DNH), and average distance heuristic (ADH) is given in
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[105]. The worst-case time complexity of the SPH, DNH, and ADH heuristics is respec-

tively O(pn2), O(m+ nlogn), and O(n3) where p is the number of vertices to be spanned,

n is the total number of vertices, and m is the total number of edges [105].

In this chapter, we make use of the Shortest Path Heuristic (SPH), originally developed in

[106], because of its bounded performance (gap with optimal) and its acceptable complexity

(worst-case time complexity of the SPH isO(pn2)). As shown in [106] the worst-case error

ratio between the solution T obtained by the SPH and the optimal solution To is never

greater than 2. More specifically,

c(T )

c(To)
≤ 2×

(
1− 1

p

)
(4.4.15)

where c is the edge-cost function and p is the number of vertices to be spanned. Further-

more, this bound is tight in the sense that there are problem instances for which the ratio

equals the bound.

4.4.2.1 Links Costs for Steiner Tree

The links costs for this computation are determined using the critical link concept to achieve

the VNF-FG extension. We define a substrate link to be critical with respect to a physical

source s and a set of candidates C if this link has the highest cost (i.e., very loaded link with

few available bandwidth capacity). Once the critical links are identified, we avoid hosting

the new virtual links on critical substrate links as much as possible. The link cost is defined

in term of the residual bandwidth in the substrate link. These weights are used to select

in priority the less critical links (less loaded links) and the nodes with highest available

residual capacity. The residual CPU capacities on the physical nodes are also taken into

account in the selection.
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4.4.2.2 Steiner Tree based algorithm for VNF-FG Extension (STVE)

In the existing literature, many mechanisms can be used to calculate the distances from the

source s to a set of physical candidate nodes C (e.g., Dijkstra’s shortest path algorithm, Min-

hop shortest path tree (MHT), etc). We choose the Min-hop shortest path with respect to the

nodes’ and links’ capacities and costs to build our Steiner Tree based heuristic algorithm for

VNF-FG extension placement and chaining. We run this algorithm starting from a source

node s (i.e., s can be a substrate location of an old virtual node) until we reach a node

candidate k ∈ C. Selecting lower cost links and nodes with highest leftover capacity along

the paths leads to the nodes k that will host the VNFs in the extension graph. These paths

are added to the Steiner tree solution.

The proposed STVE algorithm operates in 5 steps:

1. Check the initial mapping of old VNF-FG graph Gold
v ;

2. Decompose the Gnew
v to find an efficient mapping and construct the tree solution

sequentially;

3. Find a set of physical candidate nodes C related to a fixed source s that promote the

using of lower cost links (Method GetCandidates): if node k available capacity and

type constraints are met, it can be a candidate;

4. Compute the shortest path between source s and candidate k using Min-hop-shortest-

path algorithm;

5. Check link mapping: if links capacities are respected, confirm candidate k as a map-

ping solution for new VNF and add the solution path from s to k to the Steiner tree

built so far;

The pseudo-code of this heuristic is shown in Algorithm 3.

4.4.3 EDVE: Eigendecomposition For VNF-FG Extension

An alternative approach is to address the VNF-FG extension problem by extending and

adapting the eigendecomposition method for VNF Placement and Chaining described in
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Algorithm 3: STVE algorithm pseudo-code
1 Inputs: Gp = (Np, Ep) with edge costs, Gnew

v = (Nnew
v , Enew

v ), the initial mapping of
old VNF-FG graph Gold

v =
(
N old

v , Eold
v

)
2 Output:A low-cost Steiner trees hosting the VNF-FG extension graph Gnew

v

3 foreach new virtual link eij ∈ Enew
v do

4 if (VNF i or VNF j) ∈ N old
v then

5 s← GetInitialMapping(VNF i or VNF j)
6 C ← GetCandidates(s)
7 stack ← Sort(C)
8 while stack 6= ∅ and solution = False do
9 k ← Pop(stack)

10 if Min-hop-shortest-path(s, k) = True then
11 solution← True
12 ST ← ST +GetPathSolution(s, k)

13 else if (VNF i and VNF j) ∈ Nnew
v then

14 s← GetSolutionExtensionMapping(VNF i or VNF j)
15 C ← GetCandidates(s)
16 stack ← Sort(C)
17 while stack 6= ∅ and solution = False do
18 k ← Pop(stack)
19 if Min-hop-shortest-path(s, k) = True then
20 solution← True
21 ST ← ST +GetPathSolution(s, k)

22 return ST

[107]. This algorithm uses the Umeyama’s eigendecomposition approach [108] for optimal

matching between weighted graphs. This state of the art method is based on the eigende-

composition of the adjacency matrices of the virtual graph and the physical graph (graph to

host the request) and on the Hungarian method [109] to extract mapping results.

4.4.3.1 Eigendecomposition for VNF Placement and Chaining

The proposed method in [107] casts the VNF Placement and Chaining problem in net-

worked cloud infrastructures into the weighted graph matching problem (WGMP) that finds

a one to one mapping function φ between Np and Nv that minimizes a distance criterion

betweenGp (the substrate graph) andNCTv (requested virtual graph derived from the VNF-

FG requests Gv).
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This algorithm starts by computing the best paths between any two not directly connected

physical nodes (paths that maximize the minimum bandwidth along their route). The sub-

strate graph adjacency matrix AGp is updated using weights equal to the calculated band-

widths. Information about paths is stored to be used when mapping Forwarding Paths.

Since the eigendecomposition deals with graphs of the same size, the proposed algorithm

in [107] adds dummy isolated vertices to the request graph in order to make the graphs

of equal size. The algorithm, in fact, adds rows and columns with zeros to the adjacency

matrix ANCTv to line the size to that of the substrate graph (hosting infrastructure).

Starting from the extended adjacency matrix ANCTv (padded with zeros) and the adjacency

matrix of the substrate graphAGp , the algorithm derives the eigenvectors of these adjacency

matrices, UGp and UNCTv . The algorithm builds from these eigenvectors a matrix M and

a permutation matrix P that contains a 1 in positions corresponding to the VNFs mapping

results.

4.4.3.2 Eigendecomposition For VNF-FG Extension (EDVE)

To address the VNF-FG extension problem we also make use of our Eigendecomposition

algorithm [107] by extending and adapting it to connect a new request to a previously de-

ployed slice or forwarding graph. The initial deployment is obtained using also the Eigende-

composition so the initial adjacency matrices, traces and permutation matrices are produced

and available for the extension when such a request is expressed by the tenant. The exten-

sion is realized by considering the new VNF-FG graph Gnew
v (formulated as a request graph

NCT new
v ) and the updated substrate graph Gp to find efficient locations for new VNFs. Be-

fore searching a mapping for the VNF-FG extension, our proposed algorithm updates the

adjacency matrix of the substrate graph AGp by:

• anchoring the initial mapping NCT old
v by removing reserved (allocated) resources

(CPU on nodes and bandwidth on links) for these previously deployed VNFs and

fixing (freezing) the location in matrix M and thus in permutation matrix P of the

previously deployed nodes and of course the key nodes (in this set) to which some of

the extension graph nodes have to be connected to;
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• setting deliberately the capacity of some of the used physical nodes to zero, to avoid

co-localization of two VNFs in the same substrate node. This also ensures load bal-

anced Eigendecomposition algorithm solutions.

The adjacency matrix of the new VNF-FG Extension request is the second matrix used by

the Eigendecomposition algorithm to achieve the mapping of the new graph on the host-

ing infrastructure while respecting connectivity of the extension with the old graph. This

matrix contains the new nodes composing the VNF-FG extension request with the nodes

connected to the old graph (previously deployed tenant slice or VNF-FG) especially tagged

to achieve the necessary constrained placement. This constrained placement consists in

finding the links and paths that will interconnect these new nodes to their corresponding

nodes in the previous graph to respect the required inter-graph connections. The other

VNF-FG extension nodes are unconstrained and placed as usual according to the selected

(desired) optimization criterion.

4.5 Performance Evaluation

The algorithms are compared using extensive simulations (conducted on an experimental

cloud and networking platform comprised of physical servers and networking technologies,

similarly to our previous work in [107] and [110]) where both the requests and hosting

infrastructures are drawn using standard graph generation tools (such as the GT-ITM Tool

[86]) and real infrastructure topologies (such as the Germany50 network topology [85]).

The comparison includes the ILP algorithm, the reduced candidate set ILP algoithm, the

Steiner Tree based algorithm (STVE), the modified Eigendecomposition algorithm as pro-

posed in this work (EDVE) as well as the basic Eigendecomposition algorithm applied to

the previous and new graph extension together by combining the two graphs into a com-

mon composite graph to be mapped by the unmodified Eigendecomposition (called “Re-

assignAll”). This unmodified version of the Eigendecomposition is only used to assess how

suboptimal the modified Eigendecomposition is. We obviously, do not advocate the use as

is of the unmodified Eigendecomposition [107] on the composite graph (i.e., old and ex-

tension merged into one composite graph to be mapped at once) since this would require
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migration of the networking services or functions and thus interruption of services associ-

ated to the previously deployed graph. This version provides nevertheless a means to assess

deviation from best achievable performance by the Eigendecomposition.

4.5.1 Simulation Environment

All simulations for all the algorithms run in a dedicated server in the experimental platform

with the following processing capabilities: a 2.50 GHz, Quad Core server with 6 GBytes

of available RAM. The VNF-FG requests are generated using a Poisson process with an

average arrival rate of 2 requests per 100 time units. The lifetime of each request follows an

exponential distribution with a mean of 50 time units. The Germany50 network topology

[85] is used for the first assessment (with 50 nodes). This topology is defined by the German

National Research and Education Network (DFN). The capacity of physical nodes and links

are generated randomly in the [100, 120] interval. The size of the initial VNF-FG requests

is arbitrarily set to 4 nodes and the size of the extension is set to 3 nodes for each VNF-

FG request. The GT-ITM [86] tool is used to generate the requested VNF-FG topologies.

The required capacities of the initial VNF-FG are fixed to 10 CPU units for each virtual

node and 10 bandwidth units for each virtual link. The extended VNF-FG computing and

bandwidth requirements are set to 20 CPU units per node and 20 bandwidth units per link.

The connectivity between nodes in the VNF-FG is set to 0.3 (30%).

The performance assessment at larger scale uses the GT-ITM tool to generate network

topologies with 200 nodes and a connectivity of 0.3 (or 30%). The physical resource ca-

pacities (i.e., CPU and bandwidth) are also drawn randomly in the [40, 50] interval. The

VNF-FG requests are generated using a Poisson process with an average arrival rate of 5

requests per 100 time units. The lifetime of each request follows an exponential distribution

with a mean of 200 time units. The size of the initial VNF-FG requests is also set to 4 nodes

and the size of the extension is set to 3 nodes for each VNF-FG request. The required CPU

for each VNF in the initial VNF-FG is set to 15 units. The required bandwidth between

two VNFs, to ensure communication between them, is set also to 15 units. The extension

VNF-FG computing and bandwidth requirements are set to 20. The connectivity between

nodes in the VNF-FG is set to 0.3 (30%).
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For the realistic topology and the large-scale evaluations, 1000 VNF-FG requests are gener-

ated and an extension request is triggered for each generated request. Since we are focussing

on extension and adaptation of already embedded VNF-FGs, without any loss in generality,

we used the heuristic approach of [107] to generate the initial VNF-FG mapping. The ILP

solver used in our experiments is Cplex [111].

FIGURE 4.4: Processing of VNF-FGs

Arrivals, extensions, and departures occur over time as depicted in the example in Figure

4.4. The time an extension request might take to arrive is a random variable between the

arrival and departure time of the corresponding initial request.

4.5.2 Performance Metrics

The metrics used for the performance evaluation are typical indicators for placement algo-

rithms and as defined below:

• Successful extensions is the number of VNF-FG extension requests that are fulfilled

or successfully placed in the hosting infrastructure while respecting connectivity con-

straints with the previously deployed graph. This quantity should be maximized since

it is equivalent to minimizing rejection rate of requests for the algorithms.

• Extension ratio is the ratio of successful extensions to the number of initial VNF-

FG graph requests that have been accepted. Since the initial VNF-FG placement is

achieved using the Eigendecomposition algorithm to initialize the evaluation with the

initial graph before extension for all the algorithms, this metric reflects the relative

efficiency of the algorithms, starting from the very same previously deployed graph

for all algorithms to compare them on a common and fair basis.
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• Execution time is the time required by each algorithm to find a placement solution

for the extension requests. This metric reflects the algorithms complexity.

• Acceptance revenue is the service provider realized (generated) revenue (benefits)

at time t when extension requests are successfully fulfilled and accepted. The accep-

tance revenue is formally expressed as:

R(t) =
∑

Reqex∈ARt

R (Reqex) (4.5.16)

whereARt is the set of accepted extension requests up to time t and R(Reqex) is the

extension requestReqex gain expressed as in [112] and [113]:

R(Reqex) = α
∑

i∈Nnew
v

(cpui × Ucpu) +
∑

eij∈Enew
v

(
bweij × Ubw

)
(4.5.17)

where Ucpu is the realized revenue from allocating one unit of CPU resources and

Ubw is the earned revenue from the allocation of one bandwidth unit, and α =∑
k∈S

CPUk

minCPU
is a tunable weight that reflects the quality of the solutions. In fact,

the revenue increases by choosing the best locations which correspond to nodes with

more free resources (i.e., S is the set of physical nodes solutions, the other parameters

CPUk and minCPU are described in Section 4.4).

Note that R is the total revenue taking into consideration all the incoming extension

requests.

4.5.3 Evaluation Results

The performance is evaluated on the Germany50 network for all algorithms since the size

of this topology is small and the ILP algorithm produces solutions in acceptable time. For

larger graph sizes, we resort to random graph generations with hundreds of nodes and links

and compare the performance of all other algorithms without the ILP that does not scale

with problem size.
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4.5.3.1 Evaluation on a realistic topology

The topology used for the evaluation is as stated the Germany50 network with a topology

of 50 nodes. The ILP is included in the performance comparison for this topology. Since

we also use a modified ILP, a heuristic called the RNC ILP, that uses a subset of candidates

and hence uses partial exploration, we denote the original and optimal ILP as “Optimal” to

differentiate explicitly these algorithms and avoid any confusion.

(a) Successful extensions (b) Extensions ratio

FIGURE 4.5: Germany50 network topology results: Extensions

Figure 4.5(a) and Figure 4.5(b) depict respectively the results in terms of successful ex-

tensions and extension ratio (two similar metrics with the second normalized metric by a

common reference graph, the initially deployed slice or VNF-FG prior to the extension).

The Optimal ILP, the RNC ILP and the STVE algorithms outperform the eigendecomposi-

tion based solutions (i.e., EDVE, ReassignAll) by accepting 800 extension requests versus

629 for the EDVE. The normalized metric confirms these results passed a transient state

(passed 2000 time units) where the achieved ratios are around 99% for the Optimal ILP,

the STVE and the RNC ILP, 95% for the ReassignAll, and only 78% for the EDVE. The

Eigendecomposition approach is known to provide much better results for highly connected

topology compared with weakly connected graphs as will be shown in the more extensive

simulations with randomly generated topologies.

Figures 4.6 and 4.7 compare the quality realized by the proposed algorithms in terms of

objective function, achieved maximum in Equation 4.4.14, to provide insight on the relative
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FIGURE 4.6: Quality of the mapping

FIGURE 4.7: Objective function gap compared with Optimal ILP

performance of the heuristics to the optimal solutions found by the ILP. Since we aim in this

chapter at maximizing provider revenue, we define the mapping quality based on the value

of the objective function Z that describes the algorithms ability to achieve load balancing

on the hosting infrastructure.

The gap is computed using Equation 4.5.18.

Gap(%) =
Z (Optimal ILP )− Z (ALG)

Z (Optimal ILP )
× 100 (4.5.18)
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where ALG represents the selected algorithm for comparison with the ILP, that is: EDVE,

ReassignAll, RNC ILP or STVE.

Figure 4.6 reports the achieved Z values and indicates clearly that the closest in perfor-

mance to the ILP is the Steiner algorithm (STVE). The other algorithms are outperformed

in terms of quality of the solutions. Figure 4.7 depicts the gap of the algorithms in qual-

ity of the solutions compared with the ILP, and reveals in an enhanced scale their relative

performance. The STVE is shown to be within 10% to 20% of the ILP performance and

in some cases achieves the same maximum for the objective function (points touching the

abscissa at points 2073, 5961, 8515, 9018 time units).

The next closest algorithm in achieved quality is the RNC ILP whose gap lies in the range

10% to 30% of the ILP objective function. The Eigendecomposition approaches, Reassig-

nAll and EDVE, are further away in quality from the ILP and the gap can exceed in some

cases 70% and spans typically a larger range from 10% to 78%. Obviously ReassignAll,

that embeds again all the VNF-FGs (old and new) outperforms the EDVE that embeds only

the extension without affecting the previously deployed VNF-FG or service graph.

FIGURE 4.8: Acceptance revenue

The computed acceptance revenue reported in (Figure 4.8) corresponds to the total revenue

generated when accepting the new extension requests at time t. The Optimal ILP achieved

provider revenue is 16.75% higher than the STVE, and respectively 30.94% and 42.3%

better than ReassignAll and EDVE. This interpretation confirms the results obtained in
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Figure 4.5 on successful extensions. Summarizing all these results, the STVE stands out as

the closest in performance to the ILP and it will be shown that this algorithm scales best

with increasing problem size if larger graphs are generated for the performance evaluation.
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FIGURE 4.9: Successful extensions w.r.t VNF-FG size variation

The results in Figure 4.5 to Figure 4.8 reflect the observed behavior of the algorithms as a

function of simulation time over multiple runs. Figure 4.9 evaluates the average number of

successful extensions of the algorithms as a function of increasing VNF-FG request sizes

while varying the capacity of nodes and links. The results in Figure 4.9, presented with a

95% confidence interval (shown only for the Steiner algorithm for legibility reasons), depict

a high similarity with results in Figure 4.5(a) (more precisely for VNF-FG size of 7 nodes).

4.5.3.2 Large-scale evaluation

To analyze the behavior of the algorithms and their scalability with problem size, larger

hosting infrastructures (NFV-Is with 200 nodes) are randomly generated using the GT-ITM

Tool. This evaluation should confirm the previous results and reveal the ability of the al-

gorithms to scale with increasing problem size. In addition to the previous performance

metrics, we report the execution time of each algorithm to shed light on their scalability.
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(a) Successful extensions (b) Extensions ratio

FIGURE 4.10: Large-scale network topology extension results

FIGURE 4.11: Acceptance revenue

Figures 4.10(a), 4.10(b), and Figure 4.11 report similar results as for the Germany50 topol-

ogy. We notice that the RNC ILP and the STVE algorithms outperform the eigendecompo-

sition based solutions (i.e., EDVE, ReassignAll) by accepting more requests and ensuring

higher revenues.

Figure 4.12 depicts the average number of successful extensions as a function of NFV-I

size (varying from 100 to 500). Note that several network topologies are considered for

each fixed number of physical nodes to ensure that our results are stable and reliable. The

results obtained from multiple simulations are averaged and presented with 95% confidence

interval on the reported results (shown only for the Steiner algorithm for legibility reasons).
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FIGURE 4.12: Successful extensions w.r.t NFV-I size variation
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FIGURE 4.13: Execution Time w.r.t NFV-I size variation

4.5.3.3 Execution time (Convergence time)

The aspect that deserves more attention is the algorithms execution time as reported in Fig-

ure 4.13 that clearly shows that the Steiner and Eigendecomposition methods have the best

performance for this metric since they find solutions for the extension requests placement

in few milliseconds for 100 nodes, few tens of milliseconds for 200 nodes and need no more

than 60 milliseconds for 300 nodes. In addition, results reported in Figure 4.13 indicate that
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the execution times of the Steiner and Eigendecomposition approaches grow linearly like

the RNC ILP. The RNC ILP has a performance in the vicinity of these two algorithms but

requires selection of a reduced set of candidates to realize this gain. Limiting the explo-

ration of the ILP is not necessarily recommended if alternatives, such as the Steiner Tree

based algorithm, can find better solutions in a shorter execution time. The eigendecomposi-

tion, even if faster, is outperformed by the RNC ILP in terms of acceptance ratio, revenue,

and proximity to the Optimal ILP. An aspect that also requires additional investigation is

the performance of the Eigendecomposition methods for highly interconnected topologies.

Eigendecomposition algorithms are known to perform much better when connectivity is

higher.

FIGURE 4.14: Successful extensions for varying NFV-I connectivity

4.5.3.4 Variation of NFV-I connectivity

To see the impact of the substrate graph connectivity on the behavior of our algorithms, the

results are reported for an NFV-I connectivity percentage spanning a 30% to 80% connectiv-

ity in the evaluated hosting infrastructures with a number of nodes fixed at 100 nodes. The

substrate graph size is fixed to 100 nodes. As previously hinted, the Eigendecomposition

algorithms catch up in performance with all other algorithms as the network connectivity in-

creases, especially when connectivity exceeds 60% as depicted in Figure 4.14. Figure 4.15

confirms the stability of the Eigendecomposition approaches with respect to execution time

that remains fairly constant and more importantly rather low compared to the RNC ILP
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FIGURE 4.15: Execution time when varying the NFV-I connectivity

and very close to the Steiner based approach. The Steiner tends to increase slightly with

increasing connectivity but this can be considered marginal with both the Steiner and Eigen-

decomposition requiring around 5 milliseconds to find a placement solution for the exten-

sion requests. The RNC ILP takes longer, in the order of tens of milliseconds (> 15ms) to

find a solution for the evaluated graph sizes (NFV-Is with 100 nodes).

4.6 Conclusion

This chapter, to the best of our knowledge, is probably the first to address the problem of

VNF-FG extension with the main objective of maximizing provider revenue by reducing

the rejection of extension requests when faced with dynamic and rising demand and traffic

load. We propose an ILP model as an exact algorithm acting as a baseline for comparison

and as the solution for small problem sizes. To improve scalability, we also propose two

heuristic algorithms: a new Steiner Tree based algorithm and an eigendecomposition based

approach. We show that the solutions can efficiently extend virtualized network functions

forwarding graphs with good execution time and extension requests acceptation perfor-

mance over distributed and dynamically varying cloud environments. The Steiner Tree is

found to be the best overall performance tradeoff solution for the VNF-FG extension prob-

lem as it performs uniformly well across all scenarios and can scale for large problem sizes.

The Eigendecomposition methods are also quite fast but only recommended if the hosting
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infrastructures are highly connected, the only situation where they achieve similar perfor-

mance to the Steiner and the ILP based solutions.



Chapter 5

Enhanced Reinforcement Learning

Approach for VNF-FG Embedding

5.1 Introduction

This chapter, as the previous ones, addresses also the placement of service function chains

(SFC) and the placement of virtualized network function forwarding graphs (VNF-FG)

in NFV Infrastructures (NFVIs). This NP-Hard placement problem has been extensively

investigated in the past, just like in our previous contribution, by mostly achieving instan-

taneous and sequential placement of the requests. These approaches unfortunately result

in optimal placement without consideration for longer term optimization and reward. The

algorithms have seldom been combined with past knowledge (using learning) or with pre-

diction of future demands to use resources more efficiently and increase the number of

accepted requests. One way to realize this longer term reward is to model and resolve the

problem using a Markov Decision Process (MDP) based characterisation. A practical way

to resolve the longer term reward placement problem is to use Reinforcement Learning

(combined with the MDP modeling or alone) instead of traditional combinatorial and con-

vex optimization leading only to instantaneous optimality and to rather limited long term

benefits (or reward).

78
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To highlight the benefits of using a reinforcement learning approach for the VNF-FG and

SFC placement problem, we compare the performance to the algorithms proposed in the

previous chapters, namely Integer Linear Program (ILP) using an exact formulation for in-

stantaneous optimal placement handling one request at a time. We use a load balancing

criterion throughout the infrastructure for all algorithms involved in the performance com-

parison. Other criteria than load balancing can be selected, such as maximum packing and

consolidation to reduce resource usage and favor minimization of energy consumption and

operational cost. The relative performance of the algorithms is not expected to change or

will not be affected if another criterion is adopted to conduct the comparison. We, hence,

limit the study to load balancing objectives. The ILP, that does not scale with problem size,

is used as a reference for small hosting infrastructures.

A modified ILP, that operates on a reduced set of candidate hosts, called R ILP, is proposed

to improve scalability and speed compared to the ILP and is part of the overall performance

evaluation and assessment. A batch algorithm, called BR ILP, that operates on a group of

requests, handled as a composite graph request, is also included in the comparison since it

is expected to perform better than the ILP in terms of placement efficiency over longer time

scales. The performance of the algorithms is also compared with an Eigendecomposition

algorithm with reasonable complexity (complexity in O(n5), where n is the hosting graph

size) shown to have good placement performance. The Reinforcement Learning solution

uses standard Q-Learning enhanced with expert knowledge to accelerate learning during

training and when unknown conditions and situations emerge.

Section 5.2 presents related work. The problem formulation is described in Section 5.3. The

proposed chain placement algorithms are introduced in Section 5.4. Section 5.5 reports the

performance evaluation results and Section 5.6 summarizes the main findings.

5.2 Related work

The need to dynamically deploy virtualized network services on-demand, through VNF-

FG embedding, is identified as the core technology of 5G networks. Therefore, this issue

has been at the very center of academic and industrial research in recent years. Here, we
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give a summary of the use of Reinforcement Learning in networking and especially in the

VNF-FG embedding domain.

Since the VNF-FG embedding problem can be well described as a Markov decision process

(MDP), then Reinforcement Learning (RL) is a good framework to use to find approximate

optimal solutions. Recently, some works proposed RL-based approaches for VNF-FG em-

bedding. With RL, an agent learns by interacting with its environment. The agent learns

to perform the best action for each state by performing actions and observing the rewards.

Given enough observations, an optimal policy can be learned. Thus, the training data in re-

inforcement learning is a set of state-action-rewards. Authors in [114] map the VNF-FG in

two stages: node mapping stage then link mapping stage. They propose two algorithms for

link mapping, based on a Multi-Commodity Flow approach and a shortest-path approach.

Regarding the node mapping, the authors propose an MDP-based approach. Consequently,

this approach is time consuming and not adapted for real-time embedding. In [115], au-

thors propose a multi-agent-based reinforcement learning approach for virtual network em-

bedding. These agents evaluate the feedback to learn the best policy to adopt in order to

optimally allocate the required resources to the virtual nodes and links. In [116], authors

propose a deep reinforcement learning-based approach for multi-domain VNF-FG embed-

ding. Authors in [117] tackle the SFC allocation problem and present a learning method that

places VNFs on an appropriate node that maximizes the performance of VNFs according

to the load condition of the physical network. However, this method takes a huge amount

of time to converge under an extensive exploration space. In [118], authors propose an

RL-based algorithm to solve the NP-hard VNF scheduling problem.

In some existing studies, the reinforcement learning is also used for VNF migration [78],

[77], [119], and scaling [79], [72] problem under dynamic network load. Furthermore, the

large action space, when selecting which VNF instance to migrate, leads to high complexity

and poor convergence performance.

To the best of our knowledge, we are the first to propose an enhanced RL-based approach

combined with an expert knowledge mechanism to avoid a lengthy training process for

VNF-FG placement and chaining.
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5.3 Problem Description

The VNF-FG embedding optimization problem, extensively addressed in the literature, cor-

responds to the placement of the requested VNFs and flow paths in the hosting infrastruc-

ture.

FIGURE 5.1: An example of VNF-FG and NFV-I topologies

5.3.1 Substrate Graph or NFV Infrastructure

Deriving an ILP formulation of the VNF-FG placement problem requires a mathematical

graph representation of the service graph (SFC or VNF-FG) and the hosting infrastructure.

The physical infrastructure, as defined by the ETSI NFV Infrastructure (NFV-I) in [83], is

modeled as an undirected weighted graph Gp = (Np, Ep) where Ep is the set of physical

links and Np is the set of physical nodes.

Each substrate node, k ∈ Np, is characterized by its i) available processing capacity CPUk

(this can be easily extended to other types of resources: such as storage or memory capac-

ity), and ii) type Tk: switch, server or Physical Network Function (PNF). The PNFs are the

traditional physical middleboxes implementing network functions. Each physical link (i.e.,

e ∈ Ep) is characterized by its available bandwidth BWe.



Enhanced Reinforcement Learning Approach for VNF-FG Embedding 82

An example of such an infrastructure, known as the NFV-I, including two PNFs and two

switches (serving the ingress and egress flows in the VNF-FG topologies) and some inter-

connected servers is presented in Figure 5.1.

FIGURE 5.2: Mapping of the VNF-FG in the NFV-I

5.3.2 VNF Forwarding Graph or SFC Graph

The client request (i.e., a requested SFC) is modeled as a directed graph Gv = (Nv, Ev)

where Nv is the set of virtual nodes and Ev is the set of virtual links in the requested graph.

Each virtual node, i ∈ Nv, is characterized by its i) required processing power cpui and ii)

its type ti: VNF or switch (i.e., ingress or egress). Each virtual link eij ∈ Ev is described by

its required bandwidth bweij . Note that we can also consider instead the end to end latency

if this is the criterion to be taken into account. Our model is generic and can be adjusted

based on the client criteria and requirements.

As specified by the SFC IETF working groups [94], we associate a VNF-type to each VNF

to represent the network service or function type (e.g., firewall, NAT, etc.). The VNFs can

be hosted only by servers or PNFs having the same type. The ingress and egress nodes can

be hosted only by switches. Figure 5.1 depicts two Network Forwarding Paths (NFP). Each

Forwarding Path NFP describes the ordered VNF sequence the traffic must pass through.

From the VNF forwarding graph Gv, we derive an intermediate request graph called the

Network Connectivity Topology graph NCTv. The NCTv = (Nv, Ev) is a weighted undi-

rected graph having exactly the same set of nodes and edges than Gv. The key attribute of
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an NCT node i ∈ Nv is its requested processing capacity cpui. The weight (or requested

bandwidth bweij ) of an NCT virtual link eij ∈ Ev is the sum of the requested bandwidths of

all the VNF flows passing through it.

5.3.3 VNF-FG placement and chaining

Figure 5.2 depicts a placement solution for the VNF forwarding graph (VNF-FG) high-

lighted by the dashed lines, starting from the ingress switch 1, crossing the VNF 1, VNF 2,

and VNF 3 (hosted respectively in Server 1, PNF 1, and Server 2), and ending at the egress

switch 2.

The infrastructure providers can map the VNFs using multiple objectives: such as minimiz-

ing mapping costs [120], maximizing acceptance ratios and improving provider gains, and

improving energy efficiency [121].

5.4 Proposals

To solve the VNF-FG placement and chaining problem, we propose an ILP model and an

enhanced Q-Learning based approach, and evaluate and compare their performance.

5.4.1 ILP Formulation

We now formulate the ILP model of the VNF placement and chaining problem using an

objective function that aims at finding load balanced solutions. The objective function can

be adapted at will depending upon the desired provider optimization objective or policies

(such as load balancing to avoid congestion, consolidation, maximize revenue, etc.). We

limit the scope of this chapter to a load balancing criterion in the optimization. In Table 5.1

we summarize the parameters and the variables used in the ILP formulation.

Objective function: A pragmatic approach to achieve load balancing is to select in pri-

ority candidate hosts that have the highest amount of free resources to gradually load the
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TABLE 5.1: Table of Notations

Notation Description

CPUk Residual capacity in a physical node k

Pki,kj Physical path interconnecting physical nodes ki, kj

C Set of physical nodes candidates

P Set of physical paths candidates

minCPU The minimum capacity in C

BWe Residual bandwidth in one physical link e

δep A boolean parameter indicating if the physical

link e ∈ Ep belongs to path Pki,kj ∈ P:

δep = 1⇔ e ∈ Pki,kj

Nv, Ev Set of virtual nodes, Set of virtual links

cpui Required capacity by virtual node i

bweij Required bandwidth between virtual nodes i and j

xik A binary variable indicating whether VNF i

is mapped to physical node k

yeij ,Pki,kj
A binary variable indicating whether virtual link

eij is mapped to physical path Pki,kj

infrastructure and distribute the load across nodes and links. This is accomplished using an

objective function Z, defined in Equation (5.4.1), and combined with a set of equalities and

inequalities reflecting the tenant constraints and the providers’ obligations and interests.

The variable minCPU , in Equation (5.4.1), the smallest amount of available compute re-

sources in all nodes in set C, constant over each run, serves as a normalization factor for the

objective function. To maximize Z, the ILP selects in priority hosting nodes with the largest

amount of available resources to ensure load balancing across the entire infrastructure.

Z =
∑

i∈Nv
cpui × (

∑
k∈C

CPUk

minCPU
× xik) (5.4.1)

where the used binary variables are defined as follows:

xik =

1, if the VNF i is hosted on the substrate node k;

0, otherwise.
(5.4.2)
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yeij ,Pki,kj
=


1, if the virtual link eij is mapped

to physical path Pki,kj ;

0, otherwise.

(5.4.3)

Furthermore, the following constraints must be satisfied in order to guarantee a feasible

solution:

Node mapping constraint: ensures that each VNF i is mapped to exactly one physical

candidate node k and its constituent components (VNFCs) are co-located in the same node.

∑
k∈C

xik = 1, ∀i ∈ Nv (5.4.4)

CPU capacity constraint: ensures that the available resources in a physical node k are

sufficient to host VNF i.

∑
i∈Nv

cpui × xik ≤ CPUk, ∀k ∈ C (5.4.5)

Link mapping constraint: makes sure that each virtual link eij is mapped to exactly one

physical path Pki,kj where ki is a physical candidate for the ith VNF and kj is a physical

candidate for the jth VNF. Note that i and j are neighbors in the VNF-FG request. We

compute K-shortest paths candidates Pki,kj using Dijkstra’s algorithm based on residual

bandwidth of links (not based on number of hops). It may find a longer but lightly loaded

path better than the heavily loaded shortest path.

∑
ki∈C

∑
kj∈C

yeij ,Pki,kj
= 1, ∀eij ∈ Ev, ∀i, j ∈ Nv (5.4.6)

Bandwidth constraint: The residual bandwidth in a candidate physical path Pki,kj has to

satisfy the bandwidth requirement of virtual link eij to host the said link. We should not
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violate the remaining bandwidth of each physical link e ∈ Ep on the physical path Pki,kj .

∑
eij∈Ev

bweij × yeij ,Pki,kj
× δep ≤ BWe,

∀e ∈ Pki,kj , ∀Pki,kj ∈ P
(5.4.7)

Node and link mapping constraint (source type): When a VNF i is mapped to a physical

candidate node ki, each virtual link eij , starting from VNF i, has to be mapped to a physical

path Pki,kj having ki as one of its endpoint or extremity (source). The other endpoint is kj .

∑
kj∈C

yeij ,Pki,kj
= xiki , ∀eij ∈ Ev, ∀ki ∈ C (5.4.8)

Node and link mapping constraint (destination type): Similarly to the previous con-

straint (source type), if a VNF j is mapped to a physical candidate node kj , then each virtual

link eij has to be mapped to a physical path having kj as one of its endpoints (destination).

∑
ki∈C

yeij ,Pki,kj
= xjkj , ∀eij ∈ Ev, ∀kj ∈ C (5.4.9)

Node separation constraint: This constraint corresponds to situations where VNFs have

to be separated and mapped onto distinct nodes for security reasons for example or simply

due to tenant requirements or application constraints. In this case each VNF i and j are

mapped into nodes ki and kj with ki 6= kj .

xik + xjk ≤ 1, ∀i, j ∈ Nv, ∀k ∈ C (5.4.10)

5.4.2 ILP with Reduced Number of Candidate hosts (R ILP)

In addition to the ILP formulation of Equation (5.4.1), known not to scale since the VNF-

FG embedding problem is NP-Hard, we propose a modified ILP that uses a reduced set of

candidate hosts from the set of identified candidates, hosting nodes that meet the conditions

and constraints in Equation (5.4.1). To accomplish this reduction, we select among the set of
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candidates a subset of much fewer candidates (typically 10 to 20 candidates are sufficient to

obtain good solutions, i.e., sufficiently close from optimal). Among these subsets, we apply

the ILP of Equation (5.4.1) to this subset to make the final mapping of the VNF-FG onto

the subset. As mentioned earlier, the objective is to achieve load balancing to maximize

the acceptance rate of requests and, thus, improve providers gains. The pseudo-code of

the candidate subset selection is illustrated in Algorithm 4, where we select eligible hosts

with more available resources (the queue is sorted by available resources) to favor load

balancing.

Algorithm 4: Candidate selection module pseudo-code
1 Inputs: Gp, Gv, maxCand
2 Output: A set of candidate hosts C
3 queue← ∅
4 C ← ∅
5 foreach physical node k ∈ Np do
6 queue← queue ∪ k
7 stack ← Sort(queue)
8 repeat
9 C ← C ∪ Pop(stack)

10 until size(C) = maxCand;
11 return C

5.4.3 Batch placement and chaining algorithm (BR ILP)

The current state of the art mainly focuses on online VNF-FG request embedding. Our

objective is also to explore batch embedding and to propose a seminal work and analysis

for this alternative approach to the VNF-FG placement and chaining problem. With the

batch mode more client requests are likely to be accepted and served compared to the on-

line mode. The number of accesses to the NFV-I in the batch mode is smaller. Mapping a

batch of n requests requires only one access to the NFV-I while n accesses will be needed

for the online mode. Operating in batch mode, by handling multiple requests over a vi-

able time interval, can potentially provide benefits in terms of quality of the optimization

with a likelihood of coming closer to optimal solutions. When operating online, the solu-

tions can be instantaneously optimal but are typically suboptimal over longer time durations

since there is no look-ahead nor combined look at past, present and future requests. The
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online solutions have the advantage of not incurring additional delays in providing embed-

ding solutions on a sequential basis, processing one request at a time. Operating in batch

mode enables, for instance, the processing of multiple requests as a group or an equiva-

lent composite request. The batch mode will lead to solutions closer to optimal for the

group of requests assuming the size of the batch and the interval over which the group is

composed are adequately selected. Providers can reduce the cost of placing and chaining

the multiple requests and hence improve their revenues as long as service level agreements

with the tenants are met. The batch mode should lead to a better utilization of the provider

physical infrastructure and the provider provisioned VNFs. The providers would logically

have more freedom to improve or increase their profit and at the same time minimize the

rejection rate of tenant requests. This can be beneficial to all stakeholders but we need to

verify the conditions for such improvement compared to the online mode. In addition, the

improvement must be significant to justify the implementation of the batch mode. The goal

of our analysis and study is to set the stage for deeper investigations into the batch mode

and facilitate the development of formal performance assessment models in the future.

At this stage, we conduct an initial study based on the batch embedding mode described

in Figure 5.3 where there is a time window, denoted by Wb, during which the incoming

requests are stored in a dedicated list denoted by A(Wb). Arrivals and departures occur

during such windows as depicted in the second batch window example in Figure 5.3. At

the end of each batch window Wb there is a required processing period during which the

provider executes a management policy to decide for instance i) the embedding order of the

already arrived VNF-FG requests (the stored requests in A(Wb)) and ii) the requests to be

accepted in case there are insufficient physical resources to host all the requests in the batch.

This should always be done to achieve provider benefits and maximizing the satisfaction of

tenants by keeping rejection rates to a strict minimum, i.e., to the smallest possible value

depending on available resources during the batch. Our proposed batch-oriented algorithm

applies the R ILP to the batch and takes into account the scalability of our online R ILP

algorithm by limiting the batch size (retaining only the best candidate hosts) to obtain good

solutions in reasonable times. The algorithm handles the queued VNF-FG requests for

batch processing in a heuristic way. Instead of trying to place optimally the entire batch
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FIGURE 5.3: Processing of VNF-FGs in a batch mode

A(Wb) (i.e., the stored incoming VNF-FGs during the batch window Wb), and end up re-

jecting all queued VNF-FG requests when there are no optimal placement solutions for the

entire batch, the algorithm processes the VNF-FG requests by analyzing the whole batch

to determine the order in which the requests must be treated to meet a selected objective

such as maximizing provider gain, minimizing energy consumption, maximizing resource

utilization, etc. In our performance assessment of the proposed batch-based algorithm, we

sort the VNF-FG requests in the batch queue A(Wb) according to the gains generated (fore-

seen) by their successful placement. The acceptance gain G(Req), of a given requestReq,

is formally expressed as defined in [112] and [113]:

G(Req) =
∑
i∈Nv

(cpui × Ucpu) +
∑

eij∈Ev

(
bweij × Ubw

)
(5.4.11)

where Ucpu is the realized gain from allocating one unit of CPU resources and Ubw is the

earned profit from the allocation of one bandwidth unit.

Requests generating the largest gains are placed (served) first in order to maximize overall

achieved profit and at the same time avoiding the rejection of all the requests at once when

they are treated jointly in one shot. This placement strategy limits rejection rate while

simultaneously aiming at maximizing the provider benefits. As long as the rejection rate is

kept low, below 5% for example, user satisfaction and quality of experience should remain

acceptable.

The batch algorithm, Algorithm 5, operates as follows: upon arrival each incoming request

Reqi is stored in the batch listA(Wb). At the expiration of the batch windowWb, the queued

VNF-FG requests are sorted based on their (expected) gain and stored in a new list S(Wb).
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Algorithm 5: Batch algorithm
1 Inputs: NFV-I, Batch window Wb

2 Output: Mapping of the incoming requests during Wb

3 A(Wb)← ∅
4 while (Wb not expired) do
5 if (arrival of new request Reqi) then
6 A(Wb)← A(Wb) ∪ {Reqi}

7 S(Wb)← sort(A(Wb))
8 M ← ∅
9 while (S(Wb) not empty) do

10 Req ← extractTop(S(Wb))
11 m← R ILP(NFV-I,Req)
12 if (m 6= null) then
13 M ←M ∪ {m}

14 retrun M

The ordered VNF-FG requests in S(Wb) are processed sequentially by the online R ILP

algorithm. Successfully placed VNF-FG requests are stored in a list M along with their

placement solution. Requests that cannot be placed are rejected. The placement process

continues until all requests have been processed irrespective of the placement outcome in

order to place as many requests as possible and, thus, reduce rejection rate. This is the

simplest batch mode algorithm, called Batch R ILP (BR ILP) in our case.

5.4.4 EQL: Enhanced Q-Learning algorithm for VNF-FG Embedding

We propose an enhanced Q-Learning-based approach (EQL) for VNF-FG placement and

chaining to improve long term performance and reward using reinforcement learning com-

bined with an expert knowledge system. The other algorithms provide optimal solutions

only for a given instant or over a rather short horizon and are actually quite suboptimal for

longer term reward.
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5.4.4.1 Preliminaries: Markov Decision Processes (MDP) and Reinforcement Learn-

ing (RL)

Markov Decision Processes (MDP) [122] give us a way to formalize sequential decision-

making. The most important characteristic of an MDP is that the next state of the system

only depends on the current state information and is unrelated to the earlier state. Unlike

the Markov Process or Markov Chains, the MDP considers actions, that is, the next state

of the system is related not only to the current state, but also to the current action taken.

This mathematical formalization is the basis for structuring problems that are solved with

Reinforcement Learning (RL) [123]. In fact, an MDP is used to describe an environment

for RL, where the environment is fully observable.

The purpose of RL is to solve an MDP when the potentially visited states are unknown. One

way to solve such a problem is to first learn the MDP and then solve it using algorithms

such as value-iteration or policy-iteration (both using the Bellman equation [124]). The

MDP can be learned by simulating different actions from each state until you have a high

degree of confidence in the learned transition function and the learned reward function.

Unfortunately, this is frequently not possible because the MDP is too large or it would be

too expensive to learn the MDP.

Reinforcement Learning algorithms try to do both things at the same time: learn the MDP

and solve it to find the optimal policy. To do that the algorithm needs to solve the explo-

ration/exploitation tradeoff. Exploration means trying random actions (this helps discover

the underlying MDP). Exploitation means following the so-far optimal policy (this helps

maximize rewards). So RL is a technique to learn an MDP and solve it for the optimal

policy at the same time. There are many algorithms related to reinforcement learning, such

as Q-learning, State Action Reward State Action (SARSA), Deep Q-Network, Generative

Adversarial Networks, etc. It has also been found that Q-Learning [125] is the most suitable

for the problem studied in this chapter.
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FIGURE 5.4: Operation algorithm of Q-Learning

As shown in Figure 5.4, in an MDP, we have a decision-maker, called an agent, that interacts

with the environment it is placed in. These interactions occur sequentially over time. At

each time step, the agent will get some representation of the environment state. Given this

representation, the agent selects an action to take. The environment is then transitioned into

a new state, and the agent is given a reward as a consequence of the previous action. This

process of selecting an action from a given state, transitioning to a new state, and receiving

a reward happens sequentially over and over again. Throughout this process, the agent’s

goal is to maximize the total amount of rewards that it receives from taking actions in given

states. This means that the agent wants to maximize not just the immediate reward, but the

cumulative rewards it receives over time.

5.4.4.2 Enhanced Q-Learning algorithm (EQL)

We optimize the Q-learning algorithm for the VNF-FG embedding problem. In this way,

we can not only take advantage of the RL, but also avoid its defects, which can provide new

ideas for dynamic SFC deployment. The Q-learning algorithm, shown in Equation (5.4.12),

has a function that calculates the quality of a state-action combination:

(5.4.12)
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In Equation (5.4.12), Q is a matrix that stores the recommended values of the executable

actions in the current state. Depending on these values, the agent can decide which action

to take next. In the Q matrix, t refers to the unit of time prior, t + 1: a unit of time post,

max refers to the maximum value, st refers to the state space, which includes the resource

requirements of VNFs and the remaining resources of the physical nodes, at to the action,

st+1 to the future state, and rt is the reward value, which comes from the reward matrix R

(rt is the reward received when moving from the state st to the state st+1). The Q matrix is

updated with reward rt.

The core of the algorithm is a simple value iteration update, using the weighted average of

the old value and the new information. The agent will repeat the above behavior until the Q

matrix converges. Here, α and γ are the studied ratio between 0 and 1. The learning rate α

determines to what extent newly acquired information overrides old information. A factor

of 0 makes the agent learn nothing (exclusively exploiting prior knowledge), while a factor

of 1 makes the agent consider only the most recent information (ignoring prior knowledge to

explore possibilities). When the problem is stochastic, the algorithm converges under some

technical conditions on the learning rate that require it to decrease to zero. In this chapter, a

constant learning rate α is fixed to 0.1. The discount factor γ determines the importance of

future rewards. A factor of 0 will make the agent short-sighted by only considering current

rewards, while a factor approaching 1 will make it strive for a high long-term reward. In

our implementation, we use a discount factor γ of 0.9.

In the reward matrix R, we set the value of an element equal to the residual capacity in each

physical node (increasing or decreasing the reward rt value according to the conditions,

based on CPU, of each physical node). Through this, the load of nodes (in which each VNF

operates) will be smartly distributed, so that each substrate node could exhibit the optimal

performance through the efficient use of resources.

The proposed EQL algorithm operates in 5 steps:

1. compute the Q matrix using Equation (5.4.12) and learn the rules during the training

process;
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2. find a set of physical candidate nodes C related to a state swhich are constituted by the

method getPolicyFromState: that pick to move to the state that has the maximumQ

value based on all possible actions; and the method getExpertKnowledgeCandidates:

used to select in priority the physical nodes with highest available residual capacity

to favor load balancing. This method accelerates the training process time, and also,

avoids the random solutions at the beginning of the training process. Note that the

node k available capacity and type constraints must be respected to be a candidate;

3. compute the shortest path between s and candidate k using Dijkstra’s algorithm based

on available bandwidth;

4. check link mapping: if links capacities are respected, confirm candidate k as a map-

ping solution for the VNF and add the solution path from s to k to the SolutionMap-

ping SolMap built so far;

5. update capacities on Gp, update R matrix (that will impact and update the Q matrix

based on network conditions);

The pseudo-code of the EQL is shown in Algorithm 6.

5.5 Performance Evaluation

The algorithms are compared using extensive simulations (conducted on an experimental

cloud and networking platform comprised of physical servers and networking technologies,

similarly to our previous work in [107] and [110]) where both the request and hosting

infrastructure are drawn using standard graph generation tools (such as the GT-ITM Tool

[86]) and real infrastructure topologies (such as the Germany50 network topology [85]).

The comparison includes the ILP, R ILP, BR ILP algorithms, and the enhanced Q-Learning

algorithm (EQL). The performance of our proposed algorithms are also compared with the

Eigendecomposition state of the art algorithm reported in [107] and a greedy solution [58]

based on bipartite matching.



Enhanced Reinforcement Learning Approach for VNF-FG Embedding 95

Algorithm 6: EQL algorithm pseudo-code
1 Inputs: Gp, Gv, maxTrainCycles, maxCand
2 Output: SolutionMapping SolMap
3 initialize the Q matrix with all zero elements
4 initialize the R matrix with the residual capacity in each physical node
5 queue← ∅
6 A set of candidate hosts C ← ∅
7 for n = 0 to maxTrainCycles do
8 Compute Q matrix using Equation (5.4.12)
9 if the Q matrix has basically converged then

10 Break; //return the Q matrix that can be used

11 foreach virtual link eij ∈ Ev do
12 s← SelectInitialState(to host vnfi or vnfj)
13 repeat
14 C ← C ∪ getPolicyFromState(s) ∪ getExpertKnowledgeCandidates(s)
15 until size(C) = maxCand;
16 stack ← Sort(C)
17 while stack 6= ∅ and solution = False do
18 k ← Pop(stack)
19 if ComputeLinkMapping(s, k) = True and CheckLinks(s, k) = True then
20 solution← True
21 SolMap← SolMap + GetPathSolution(s, k)
22 Update capacities on Gp

23 Update R matrix

24 return SolMap

5.5.1 Simulation Environment

All simulations for all the algorithms run in a dedicated server in the experimental platform

with the following processing capabilities: a 2.50 GHz, Quad Core server with 6 GBytes of

available RAM. The VNF-FG requests are generated using a Poisson process with an aver-

age arrival rate λ of 5 requests per 100 time units. The lifetime of each request follows an

exponential distribution with a mean of 1000 time units. The Germany50 network topology

[85] is used for the first assessment (with 50 nodes). The capacity of physical nodes and

links are generated randomly in the [100, 150] interval. The size of the VNF-FG requests is

arbitrarily set to 5 nodes. The GT-ITM [86] tool is used to generate the requested VNF-FG

topologies. The VNF-FG computing and bandwidth requirements are set to 10 resource

units. The connectivity between nodes in the VNF-FG is set to 0.3 (30%).
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The performance assessment at larger-scale uses the GT-ITM tool to generate network

topologies with NFV-I sizes in the range [100, 500] nodes and a connectivity of 0.3 (or

30%). The physical resource capacities (i.e., CPU and bandwidth) are also drawn randomly

in the [100, 150] interval. The VNF-FG requests are generated using a Poisson process with

an average arrival rate of 5 requests per 100 time units. The lifetime of each request fol-

lows an exponential distribution with a mean of 1000 time units. The size of the VNF-FG

requests is also set to 5 nodes. The required CPU for each VNF in the VNF-FG is set to

10 units. The required bandwidth between two VNFs, to ensure communication between

them, is set also to 10 units. The connectivity between nodes in the VNF-FG is set to 0.3

(30%).

For the realistic topology and the large-scale evaluations, 1000 VNF-FG requests are gen-

erated. The ILP solver used in our experiments is Cplex [111].

5.5.2 Performance Metrics

The metrics used for the performance evaluation are typical indicators for placement algo-

rithms and as defined below:

• Acceptance ratio is the ratio of incoming service requests that have been success-

fully deployed on the network to all incoming requests. Maximizing this quantity is

equivalent to minimizing rejection rate of the requests.

• Acceptance gain is the service provider realized profit at time twhen accepting client

requests (in our case successful placement of VNF-FG requests). The acceptance gain

is formally expressed as:

G(t) =
∑

Req∈ARt

G (Req) (5.5.13)

whereARt is the set of accepted requests up to time t and G(Req) is the requestReq

gain as defined in Eq. (5.4.11). Note that G is the total profit taking into consideration

all the incoming requests.
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• Execution time is the time needed to find an embedding solution for one VNF-FG

request. This metric reflects the ability of the algorithms to scale with problem size

and this is especially important for the ILP algorithm assessment.

5.5.3 Simulation Results

The performance of the algorithms is reported for the Germany50 network topology for

small scale problems (50 nodes) and for randomly generated network topologies for larger

problems involving hundreds of nodes and links.

FIGURE 5.5: Acceptance ratio

FIGURE 5.6: Acceptance gain
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5.5.3.1 Realistic topology evaluation

For the Germany50 network, since the ILP can provide placement solutions in reasonable

execution times it can be included in the performance comparisons with the R ILP, BR ILP,

EQL, Eigen [107], and Greedy [58]. The results provide insight on these five algorithms

compared to the optimal solutions provided by the ILP for such small problem sizes. The

performance is pushed further for much larger networks for the heuristic algorithms only

since they scale much better with problem size. As mentioned, the larger graphs are ran-

domly generated with the GT-ITM Tool.

Figure 5.5 depicts the results in terms of acceptance ratio. The EQL algorithm outperforms

the ILP based solutions (i.e., ILP, R ILP, BR ILP) by accepting more requests in long-term.

The normalized metric (acceptance ratio) confirms these results passed a transient state

(passed 3000 time units) where the achieved ratios are around 98.4% for the EQL, 90.5%

for the BR ILP, 88.9% for the ILP, 86.9% for the R ILP, 71.7% for the Eigendecomposition-

based algorithm, and only 46.8% for the Greedy algorithm. The Eigendecomposition ap-

proach is known to provide much better results for highly connected topology compared

with weakly connected graphs.

The computed acceptance gain depicted in Figure 5.6, that corresponds to the total gen-

erated profit at time t, confirm the relative performance of the algorithms observed for the

acceptance ratio. The EQL achieved provider gain is 8.02% higher than the BR ILP, and re-

spectively 9.65%, 11.68%, 27.13%, and 52.43% better than ILP, R ILP, Eigen, and Greedy.

Figures 5.7 compares the quality realized by the proposed algorithms in terms of objective

function, achieved maximum in Equation (5.4.1), to provide insight on the relative perfor-

mance of the heuristics to the optimal solutions found by the ILP. Since we aim in this

chapter at maximizing provider profit, we define the mapping quality based on the value of

the objective function Z that describes the algorithms ability to achieve load balancing on

the hosting infrastructure. Figure 5.7 reports the achieved Z values and indicates clearly

that the closest in performance to the ILP is the enhanced Q-Learning algorithm (EQL).

The batch ILP algorithm (BR ILP) is outperformed by the EQL in terms of quality of the

solutions especially for the long-term evaluation.
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FIGURE 5.7: Quality of the mapping

FIGURE 5.8: Percentage of deployed VNF-FGs

Figure 5.8 reports the average acceptance percentage of the enhanced Q-Learning (EQL)

algorithm as a function of increasing the number of episodes (from 10 to 100). We observe

that the average acceptance percentage under a high number of episodes exhibits much

better performance than under a low number of episodes (98.4% for 100 episodes versus

36.5% for 10 episodes).
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FIGURE 5.9: Acceptance percentage w.r.t VNF-FG size variation

5.5.3.2 Large-scale evaluation

To analyze the behavior of the algorithms for larger problem sizes, NFV-Is with 200 nodes

are generated and used in this second performance assessment. Figure 5.9 reports the av-

erage acceptance percentage of the algorithms as a function of increasing VNF-FG request

sizes (from 5 to 20) and confirms the previous findings. The EQL algorithm outperforms

the ILP based solutions (i.e., R ILP, BR ILP) and the Eigen approach by accepting more

requests. The results in Figure 5.9, presented with a 95% confidence interval, depict a high

similarity with results in Figure 5.5 (more precisely for VNF-FG size of 5 nodes).
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5.5.3.3 Execution time (Convergence time)

Figure 5.10 reports the execution time performance of the algorithms with problem size

to gain insight on their scalability and complexity. We generate 1000 VNF-FG requests

and vary the substrate graph sizes from 100 to 500 nodes. The EQL based algorithm has

significantly better execution time compared with the R ILP, BR ILP, and Eigen execution

times.

5.6 Conclusion

In this chapter, we propose approaches for the VNF-FG placement and chaining problem

in an online and a batch mode. The online strategy exploits an Integer Linear Program

derived from a mathematical model of the VNF-FG embedding problem. The ILP model

is derived and used to find optimal placement solutions to host the requests when prob-

lem size is small. To control complexity and improve scalability for larger graph sizes, the

ILP explores only a reduced subset of candidate hosts (R ILP). The introduced batch mode

algorithm, to enhance further overall performance, uses our R ILP algorithm to process a

group of requests, queued in a batch window, by serving in priority requests that gener-

ate higher profit for the providers while aiming at maximizing the number of served (i.e.,

placed, chained, hosted) requests. An Enhanced Q-Learning-Based Approach (EQL) is also

proposed and compared with the ILP solutions. The EQL algorithm improves the efficiency

of addressing this specific type of problem (it not only capitalizes on the decision-making

advantages of RL, but also avoids a lengthy training process by injecting expert knowledge).

The experimental results show that the performance of the proposed EQL algorithm is su-

perior to that of the ILP solutions, the greedy, and the eigendecomposition algorithms when

processing service requests in long-term. In fact, its performance advantages are reflected

by the decision time, quality of mapping, deployment success rate and deployment profit

when deploying SFCs.



Chapter 6

Conclusion and Future Research

Directions

This chapter summarizes the research work and contributions of the thesis on Virtualized

Network Function Forwarding graph embedding. The chapter then outlines some perspec-

tives for future investigations.

6.1 Conclusion and Discussion

In this thesis, we addressed the VNF-FG embedding problem, with a focus on the virtual

and substrate resource management. In fact, we separate the VNF-FG embedding issue into

two sub-problems: the initial VNF-FG placement (that aims at finding an optimal mapping

of virtual resources on physical infrastructures), and the dynamic management of resources

(that deals with resource demand fluctuation of embedded virtual networks, and the re-

optimization of the substrate network usage). The key contributions of the thesis are listed

below:

• An exact algorithm for VNF scaling formulated and solved using linear integer pro-

gramming (ILP) and a new Greedy reconfiguration algorithm is also reported for

the problem of VNF reconfiguration (scaling or migration). These algorithms deal

102
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with virtual nodes demand fluctuations (the rising of network load over time). They

manage the case where an embedded VNF-FG requires more resources, whereas the

hosting substrate node does not have enough available resources. In addition to re-

ducing the rejection rate of VNF scaling requests, our proposals take into account the

service interruption during migration and reduce it.

• The second major contribution of the dissertation addresses the problem of VNF-FG

extension with the main objective of maximizing the provider revenue by reducing the

rejection of extension requests when faced with a dynamic demand. An ILP model is

presented as an exact algorithm acting as a baseline for comparison and as the solution

for small problem sizes. To improve scalability, two heuristic algorithms are also

proposed: a new Steiner Tree-based algorithm (STVE) and an Eigendecomposition-

based approach (EDVE).

• Then, we propose approaches for the VNF-FG placement and chaining problem in an

online and a batch mode. The online strategy exploits an ILP derived from a math-

ematical model of the VNF-FG embedding problem. The ILP model is derived and

used to find optimal placement solutions to host the requests when the problem size

is small. To control complexity and improve scalability for larger graph sizes, the

ILP explores only a reduced subset of candidate hosts (R ILP). A batch mode algo-

rithm (BR ILP), to enhance further overall performance, uses the R ILP algorithm

to process a group of requests, queued in a batch window, by serving in priority re-

quests that generate higher revenues for the providers while aiming at maximizing

the number of served requests. An Enhanced Q-Learning-Based Approach (EQL) is

also proposed and compared with the ILP solutions. The EQL algorithm improves

the efficiency of addressing this specific type of problems. It not only capitalizes on

the decision-making advantages of RL, but also avoids a lengthy training process by

injecting expert knowledge.

6.2 Future Research Directions

Suggested future research work resulting from this thesis can be summarized as follows:
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• Enhance the previous contributions by making more exhaustive simulations on the

proposed algorithms to better evaluate their performance and understand their limits

in different conditions.

• Expand the contribution of Chapter 5 to manage the VNF scaling problem. In fact,

reinforcement learning can be used to control the scaling decisions in the management

and orchestration of network function virtualization.

• Explore other VNF-FG embedding problems, such as the resilient allocation of Ser-

vice Function Chain problem (consider the possibility of failures in the NFV infras-

tructure) [126], [127], and [128].

• Combine placement with traffic predictions to anticipate future demands and to check

how long term reward and stability could be realized.
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Titre : Algorithmes exacts et heuristiques pour le chainage de services réseaux virtualisés

Mots clés : Virtualisation des Fonctions Réseau, Allocation des Ressources, Optimisation, Placement,
Modélisation.

Résumé : Cette thèse traite du placement optimal et
heuristique de fonctions réseau et de chaı̂nes de fonc-
tion réseau dans des infrastructures cloud et réseau
virtualisées. L’émergence de la virtualisation des fonc-
tions réseau (NFV) permet de découpler les fonctions
réseau en mode logiciel du matériel d’hébergement et
de s’appuyer sur des serveurs génériques et d’éviter
l’usage des matériels dédiés voire propriétaires.
Le placement de fonctions réseau virtualisées (VNF)
est NP-Difficile puisqu’il s’agit de projeter un petit
graphe de ressources virtuelles sur un graphe plus
grand (graphe de l’infrastructure d’hébergement). Les
solutions optimales, en particulier la programmation
linéaire en nombre entier (ILP), ne passent pas à
l’échelle. Sachant que la demande est dynamique
et peut varier dans le temps et que le réseau est
lui même variable dans le temps, il est important
de prévoir des adaptations des placements. Cela
peut s’effectuer par de l’élasticité sur les ressources
d’hébergement réservées à une fonction réseau vir-
tualisée, à un graphe de service réseau, et par une

extension du graphe de service lui même en fonction
du contexte et des exigences des utilisateurs.
La thèse propose une famille d’algorithmes pour le
placement de chaı̂nes de services réseau avec la
possibilité d’étendre les ressources d’hébergement
des VNFs en plus du placement initial. La thèse s’est
penchée aussi sur l’extension de graphes de services
réseau, déjà déployés, en adoptant une approche de
type arbre de recouvrement. Plus spécifiquement une
modélisation du problème en un “Steiner Tree Pro-
blem” a conduit à des performances proches de l’op-
timal pour des extensions de graphes au fil des de-
mandes, en les traitant séparément. Les travaux de
thèse sont par la suite revenus sur la rentabilité sur
le long terme des algorithmes, en approchant le pla-
cement de chaı̂nes de services et fonctions réseau
comme un objectif long terme via de l’apprentissage
par renforcement en se souciant plus de la rentabilité
et de l’efficacité long terme des algorithmes contraire-
ment aux approches visant exclusivement l’optimalité
instantanée à chaque nouvelle demande.

Title : Algorithms for Virtual Network Functions chaining

Keywords : Network Function Virtualization, Resource Allocation, Optimization, Placement, Modeling.

Abstract : Network Function Virtualization (NFV)
is an innovative emerging concept that decouples
network functions from dedicated hardware devices.
This decoupling enables hosting of network services,
known as Virtualized Network Functions (VNFs), on
commodity hardware and thus facilitates and accele-
rates service deployment by providers, improves flexi-
bility, leads to efficient and scalable resource usage,
and reduces costs. This paradigm is a major turning
point in the evolution of networking, as it introduces
high expectations for enhanced economical network
services. One of the main technical challenges in this
domain is the optimal placement of the VNFs within
the hosting infrastructures. This placement has a cri-
tical impact on the performance of the network. The
VNF placement and chaining problem is NP-Hard and
there is a need for placement approaches that can
scale with problem size and find good solutions in ac-
ceptable times. The overarching goal of this thesis is
to enable dynamic virtual network resources provisio-
ning to deal with demand fluctuation during the vir-
tual network lifetime, and to enhance the substrate re-
source usage. Reserving a fixed amount of resources

is inefficient to satisfy the VNF resource requirements.
To cope with these problems, we propose dynamic re-
source management strategies.
In this thesis, both exact and heuristic algorithms are
designed and evaluated in terms of optimality, com-
plexity, ability to scale, and compared with the state
of the art. Elastic mechanisms and scaling algorithms
are first presented to improve adaptation and deploy-
ment of VNFs in NFV infrastructures to support in-
creasing demand while increasing provider’s revenue.
Since network providers not only need to control, clas-
sify and steer user traffic flows in their dedicated slices
but also want to extend their already acquired and
operational virtual networks with additional service
graphs, the thesis proposes extension algorithms of
already hosted network functions graphs without dis-
rupting initially deployed service instances. The thesis
also addresses the VNF placement and chaining pro-
blem in an online and in a batch mode to improve per-
formance in terms of longer time reward. An enhan-
ced Reinforcement Learning-based approach is also
proposed to improve the long term reward beyond
what the previous methods can achieve.
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91120 Palaiseau, France
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