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Foreword and structure of the manuscript

This manuscript is organized as follows: in the Introduction, we give the mathematical setting of
this thesis, lay down the modelling assumption used throughout the text, present the main problems
under consideration before listing our contributions. The rest of the manuscript consists of the articles
written (either published or submitted) during my time as a PhD student. Each chapter corresponds
to a paper. For most of them, a synthetic presentation has been added in order to underline the main
difficulties of the problem and the principal novelties of the methods developed.

• Chapter 2 corresponds to [MNP19b]. It is devoted to maximization of the total population size
in logistic-diffusive equations. The main focus is on the bang-bang property for optimizers, and
leads to the introduction of new asymptotic methods. We also establish a stationarity property
in the one dimensional case.

• Chapter 3 corresponds to [MNP19a]. It is devoted to the study of a spectral optimization
problem with respect to the drift and the potential of a linear operator. The emphasis is on
(non)-existence, as well as the introduction of a method which is shorter and more elegant than
the one usually used to investigate stability of optimal shapes. We introduce new tools to derive
stationarity results (i.e for small drifts minimizers are the same as in the case without a drift
when the domain is a ball).

• Chapter 4 corresponds to [Maz19a]. It is devoted to the study of a quantitative spectral in-
equality for a Schrödinger operator in the ball. We introduce new transformations and combine
it with new tools developed to handle possible topological changes for competitors.

• Chapter 5 corresponds to [MRBZ19]. It is devoted to the study of a control problem for bistable
reaction-diffusion equations. The focus is on existence of control strategy, and the main innov-
ation is the use of perturbative methods to encompass the case of slowly-varying environments.

• Chapter 6 corresponds to [HMP19]. It is devoted to a non-energetic shape optimization problem
with a non-linear partial differential equation constraint. It focuses on existence of optimal
shapes, as well as the stability of the optimizers for small non-linear perturbations of a shape
optimization problem under linear PDE constraint. We introduce a new way to construct
perturbations for which optimizers for the unperturbed problem no longer satisfy optimality
conditions. This relies on a fine analysis of shape derivatives.
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Although the notations used in this manuscript will be properly introduced in due time, we gather
here, for the sake of readability, the most common ones used throughout the chapters.

Notational conventions
• Sets and subsets:

(a) N is the set of non-negative integers, N∗ is defined as N∗ := N\{0}, N∗+ (resp. N∗−) is the set
of positive (resp. negative) integers.

(b) R is the set of real numbers, R∗ is defined as R∗ := R\{0}, R+ (resp. R−) is the set of
non-negative (resp. non-positive) real numbers, R∗+ (resp. R∗−) is the set of positive (resp.
negative) real numbers.

(c) The underlying norm on Rn (n ∈ N∗) is the euclidean norm. The topology used on Rn is,
unless otherwise specified, the euclidean topology. The topology on any subset Ω ⊂ Rn is the
induced topology.

(d) For any n ∈ N∗, for any x ∈ Rn and any r ≥ 0, B(x; r) is the euclidean ball of center x and of
radius r. S(x; r) is the euclidean sphere of center x and of radius r.

(e) For any two subsets A and B of a set E, the notation A∆B stands for the symmetric difference
of A and B.

• Measure theory:

(a) The underlying measure is the Lebesgue measure. For any n ∈ N∗ and any Borel set A ⊂ Rn,
|A| is the n-th dimensional Lebesgue measure.

(b) For any n ∈ N∗ and any d ∈ {0, . . . , n−1}, Hd stands for the d-dimensional Hausdorff measure.
When no confusion is possible, for instance when considering the (n−1)-dimensional Hausdorff
measure of the unit sphere Sn−1 ⊂ Rn, this quantity is written in the same way as the Lebesgue
measure: |Sn−1| := Hn−1

(
Sn−1

)
.

• Integration, derivation and function spaces:
Throughout this list, Ω ⊂ Rn (n ∈ N∗) is a Borel set.

(a) Whenever p ∈ [1; +∞], Lp(Ω) is the Lebesgue space of order p associated with Ω. The Lp
norm of a function u ∈ Lp(Ω) is

||u||Lp(Ω) :=

(ˆ
Ω

|u|p
) 1
p

.

(b) Whenever u ∈ L1(Ω), the mean value of u is defined as
 

Ω

u :=
1

|Ω|

ˆ
Ω

u.

(c) The weak derivative of a function u : Ω→ R is defined in the sense of distributions.
(d) Whenever k ∈ N and p ∈ [1; +∞], W k,p(Ω) is the Sobolev space of order (k, p). It consists of

functions whose weak derivatives up to order k lie in Lp(Ω). It is endowed with the norm

||u||Wk,p(Ω) :=

k∑
`=0

||∇`u||Lp(Ω).

When Ω has a C 1,1 boundary and k > 0, the set W k,p
0 (Ω) is the set of functions u ∈W k,p(Ω)

whose trace on ∂Ω is 0.
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(e) Assuming that Ω is a smooth open set, then, for any k ∈ N and any α ∈ [0; 1], the set C k,α(Ω)
is the Hölder space of order (k, α) and is endowed with the norm

||u||Ck,α(Ω) :=

k∑
`=0

||∇`u||L∞(Ω) + sup
x,y∈Ω ,x 6=y

∣∣∇ku(x)−∇ku(y)
∣∣

|x− y|α
.

• Variational problems:

When considering variational problems of the form

inf
x∈X

F (x),

we call "solution of the problem" an element x∗ ∈ X such that F (x∗) = inf
x∈X

F.
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CHAPTER 1

GENERAL INTRODUCTION

La région des mathématiciens est un
monde intellectuel, où ce que l’on prend
pour des vérités rigoureuses perd
absolument cet avantage quand on
l’apporte sur notre terre. On en a conclu
que c’était à la philosophie expérimentale à
rectifier les calculs de la géométrie, et cette
conséquence a été avouée, même par les
géomètres.

Diderot,
Pensées sur l’interprétation de la Nature

Contents
1.1 Presentation of the model and of the main problems . . . . . . 3

1.1.1 Main objective of this thesis . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Structure of the introduction . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Single-species models and properties under investigation . . . . . 4

1.1.3.1 Population dynamics model: the case of a single species . . . . . 4
1.1.3.2 Admissible class . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3.3 Properties under investigation . . . . . . . . . . . . . . . . . . . 10

1.2 Main contributions of the Thesis . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 Qualitative results for questions 1, 2 and 3 . . . . . . . . . . . . 14

1.2.1.1 The influence of resources distributions on the total population
size (Chapter 2, Question 1) . . . . . . . . . . . . . . . . . . . . 14

1.2.1.2 Optimal survival of a population (Chapter 3, Question 3) . . . . 17
1.2.1.3 A quantitative inequality for the sensitivity of a Schrödinger ei-

genvalue (Chapter 4, Question 2) . . . . . . . . . . . . . . . . . 20
1.2.2 Controllability of spatially heterogeneous bistable equations . 21

1.2.2.1 Presentation of the model . . . . . . . . . . . . . . . . . . . . . 21
1.2.2.2 Contributions of the Thesis for the controllability of bistable

equations (Chapter 5, Question 5) . . . . . . . . . . . . . . . . . 24

1



CHAPTER 1. GENERAL INTRODUCTION

1.2.3 A prototypical non-linear, non-energetic shape optimisation prob-
lem in the asymptotic regime . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Shape optimisation: methods developed in the thesis . . . . . . 27
1.3.1 Typical problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.2 Methods developed for the existence of optimal shape (Chapters

2 and 6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3.3 Methods developed to study the (in)stability of the ball (Chapters

6 and 3): Shape derivatives . . . . . . . . . . . . . . . . . . . . . . . . 33
1.3.4 Another way to investigate the stationarity of the ball (Chapters

3 and 4): parametric framework . . . . . . . . . . . . . . . . . . . . 35
1.3.5 Methods developed for the quantitative stability of the ball

(Chapter 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.3.6 Methods developed for the controllability of reaction-diffusion

equations (Chapter 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.4 Open problems & Research projects . . . . . . . . . . . . . . . . . . . 44

1.4.1 Understanding oscillations in the small diffusivity setting . . . 44
1.4.2 An optimal control problem for monostable equations . . . . . . 44
1.4.3 A rearrangement à la Alvino-Trombetti for eigenvalues with

drifts and potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
1.4.4 Open questions in spectral optimisation . . . . . . . . . . . . . . . . 45
1.4.5 Extension of the quantitative inequality to other domains . . . 46
1.4.6 Shape optimisation & optimal control . . . . . . . . . . . . . . . . . 47

2



CHAPTER 1. GENERAL INTRODUCTION

1.1 Presentation of the model and of the main
problems

1.1.1 Main objective of this thesis
A simple way to phrase the main question under scrutiny throughout the works presented here is the
following:

What is the optimal way to spread resources in a domain?

On a mathematical level, this formulation requires some formalization; however, one can already
picture the two main topics of this manuscript: spatial ecology, which will be understood through the
lens of reaction-diffusion equations, the qualitative behaviour of which is, by now, well understood,
and shape optimisation, a domain where many interesting questions remain, to this day, completely
open. We do believe that our works contribute to both these domains, whether it be by shining a
new light on the influence of spatial heterogeneity on reaction-diffusion equations or by providing new
tools to tackle shape optimisation problems.

Regarding spatial ecology, a strong emphasis was put on concentration (and, conversely, frag-
mentation) of resources: is it better to scatter resources across the domain or, on the contrary, to
place them all in one spot? We give more details in Section 1.1.3.3.

As for shape optimisation, as will be explained further in Section 1.3, we give new tools to address
two ubiquitous problems: one is that of existence of optimal shapes, the other is that of the stability
of these optimisers, in a sense made precise later. The methods we develop in specific cases to tackle
these questions might however be applied in a more general setting.

1.1.2 Structure of the introduction
This Introduction is structured as follows:

We first present the main model for a single-species (which will be the most commonly used
throughout the manuscript, and corresponds to Chapters 2, 3, 4), before tackling a controllability
problem for bistable reaction-diffusion equations (which corresponds to Chapter 5). We gathered the
presentation of all the methods developed in that second part to make the reading easier; furthermore,
as some of them are used in different chapters, or seemed worth discussing in a more general setting,
an independent presentation looked natural.

Thus, each Section of the first part of the introduction corresponds to one or multiple paragraphs
of the second part, according to the correspondance table below:

Problem Chapter Model and results Tools and methods

Total population size Chapter 2 Paragraph 1.2.1.1 Paragraph 1.3.2

Optimal survival-
Spectral optimisation

Chapter 3 Paragraph 1.2.1.2 Paragraphs 1.3.3 and
1.3.4

Quantitative spectral
inequality

Chapter 4 Paragraph 1.2.1.3 Paragraphs 1.3.4 and
1.3.4

Controllability for
bistable equations

Chapter 5 Paragraph 1.2.2 Paragraph 1.3.6

A non-linear optimisa-
tion problem

Chapter 6 Paragraph 1.2.3 Paragraphs 1.3.2 and
1.3.3
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1.1.3 Single-species models and properties under investigation
We start by introducing the main modelling assumptions underlying most of our work. We emphasize
the fact that we will mainly be studying stationary equations; in other words, we generally assume
that the population has already reached its equilibrium. We also highlight the fact that we work at a
macroscopic scale: the unknown in our equations is a population density, in contrast to some models
where individual behaviours are the relevant unknowns. It is possible to make a link between these
two modelling scales, and we give [43, 143] as general references for modelling of biological phenomena.
For a historical overview of the development of mathematical biology and ecology, we refer to [11].

The equations governing population dynamics are often called reaction-diffusion equations and are
ubiquitous since their use in [75, 113]. In the study of these equations, three important phenomena
are to be noted:

1. Inherent non-linearities:
This can already be found in Malthus’ seminal work, [132]: should too many individuals be
present at the same spot, competition between these individuals would have a detrimental effect,
and the total population is limited by this effect. We refer to such interactions as intra-specific
interactions.

2. The interaction of the population with its environment:
Some zones of the environment are favourable to the population (for instance, zones where
resources can be found), while others are lethal or detrimental.

3. Spatial dispersal:
Dispersal phenomena will be interpreted in terms of flux and are linked to conservation law;
these concepts are at the heart of reaction-diffusion equations.

If we sum it up, we will model the environment with a bounded, smooth domain Ω ⊂ Rn, in which a
population represented by its density u depending on the spatial variable x and on the time variable
t evolves, disperses, interacts with itself and the environment. The prototypical reaction-diffusion
equation writes

Time evolution=Spatial dispersion+Inter-specific interactions+ Interactions with the environment.

The goal of this thesis is to understand the influence of spatial heterogenity, which we take into account
through the "interactions with the environment" term in the above equation.

1.1.3.1 Population dynamics model: the case of a single species

We lay down the main hypothesis in a more precise way.

1. Macroscopic scale, sex and age structure:
As was explained in the previous paragraph, we consider a population density u = u(t, x). We
work without age-structures (or, equivalently, we assume that individuals reach adulthood as of
their birth) or sex-structure.

2. The domain:
The domain is accounted for via a smooth, bounded subset Ω ⊂ Rn (the smoothness assumption
will sometimes be dropped, for instance when considering orthotopes and neumann boundary
conditions).

3. Inter-specific interactions:
We use a quadratic non-linearity; in other words, we work with the non-linearity

f(u) = −u2.
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4. Interactions with the environment:

In our works, the interactions with the environment (and, consequently, the influence of spatial
heterogeneity) are modeled through resources distributions1. For a domain Ω, a resources distri-
bution is a function m : Ω→ R+. We assume that the growth of the population takes the form
m × u: if m > 0, this corresponds to a local growth of the population whereas, if m < 0, this
corresponds to the death of the population. The subset {m ≤ 0} will be called lethal zone, while
the zone {m > 0} will be called favourable zone. For obvious modelling reasons, we assume that

m ∈ L∞(Ω).

5. (Un)biased dispersal:

The diffusion term in the equation accounts for the movement of individuals in the domain. We
will either choose unbiased diffusion (i.e the individuals explore each direction with the same
probability) or biased diffusion (i.e the individuals have some knowledge of their environment,
and move accordingly).

The unbiased flux is defined as follows: for a real parameter µ > 0, we define

J (u) := −µ∇u.

The constant µ is called diffusivity and determines the speed of dispersal. This unbiased model
will be used in Chapters 2 and 4.

The biased flux is defined as follows: we want to take into account the fact that individuals
know where to look for food. Let α > 0 be a parameter quantifying the sensitivity of individuals
to resources, and m ∈ L∞(Ω) be a resources distribution. The biased flux is

J0(u) = ∇u− αu∇m,

and we refer for instance to [43]. However, the emphasis will be put on a spectral optimization
problem (see Chapter 3) for which it is equivalent to work with the following flux, henceforth
called biased flux:

J (u) := −(1 + αm)∇u.

For modelling considerations on biased flux, we refer to [16, 17, 143]. For the equivalence (from
the point of view of the spectral optimization problem under consideration) of the two fluxes we
refer to Chapter 3, Section 3.1.3 of this manuscript.

6. Boundary conditions: finally, we need to impose boundary conditions; this is a crucial step,
both for modelling reasons and for the mathematical analyzis of the model. We will choose
either Dirichlet boundary conditions (accounting for a lethal boundary) or Neumann boundary
conditions (modelling a domain the individuals can not get out of).

In a more mathematical way, these assumptions read as follows: we consider

1. A smooth, bounded domain Ω ⊂ Rn,

2. A resources distribution m ∈ L∞(Ω) modelling spatial heterogeneity,

3. A diffusivity µ > 0 or a parameter α > 0 quantifying sensitivity to resources,

4. A boundary operator B : L2(∂Ω) 3 u 7→ Bu. The case

Bu = u

1Other interpretations, such as intrinsic birth rates, exist, but we will not focus on them.

5



CHAPTER 1. GENERAL INTRODUCTION

corresponds to Dirichlet boundary conditions and will hence be written D, the case

Bu =
∂u

∂ν

corresponds to Neumann boundary conditions and will hence be written N ,

5. An initial datum u0 ≥ 0, u0 6= 0, u0 ∈ L∞(Ω).

The equations then write as follows:

• Unbiased model: 
µ∆u+ u (m− u) = ∂u

∂t in Ω× R+,
u(t = 0, ·) = u0 in Ω,
Bu = 0 on ∂Ω,
u ≥ 0 in Ω.

(1.1)

This is an evolution equation; our main focus will be on two stationary equations related to it and
which, for the quadratic non-linearity under consideration, govern its long-time behaviour: the first
one, mostly studied in Chapter 2, is the logistic-diffusive equation: µ∆θB + θB (m− θB) = 0 in Ω,

BθB = 0 on ∂Ω,
θB ≥ 0 in Ω , θB 6= 0.

(1.2)

Assuming that this equation has a unique solution, this solution is an equilibrium of (1.1) and one
might expect that under some assumptions onm, any solution of (1.1), for any initial datum u0 ≥ 0,
u0 6= 0, should satisfy

u(t, x) →
t→∞

θ.

To study such existence and uniqueness properties, we introduce the principal eigenvalue associated
with a resource distribution m ∈ L∞(Ω): for any m ∈ L∞(Ω), the operator

Lµm := µ∆ +m

along with some boundary conditions B has a smallest eigenvalue λB1 (m,µ), associated with the
eigenequation 

µ∆ϕm,µ +mϕm,µ = λB1 (m,µ)ϕm,µ in Ω,
Bϕm,µ = 0 on ∂Ω.´

Ω
ϕ2
m,µ = 1.

(1.3)

This eigenvalue might also be defined through Rayleigh quotients:

λB1 (m,µ) := inf
u∈XB(Ω),u6=0

µ
´

Ω
|∇u|2 −

´
Ω
mu2´

Ω
u2

, (1.4)

where the functional space XB is either

XD = W 1,2
0 (Ω)

for Dirichlet boundary conditions, or
XN = W 1,2(Ω)

for Neumann boundary conditions.
The linear equation (1.3) can be thought of as the linearization of (1.1) around z ≡ 0. A first,
implicit link between existence and uniqueness for (1.2) and λB1 (m,µ) was observed by Skellam,
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[168, Section 3.3, case iii)]: for constant resources distributions m, in the one dimensional case,
no non-trivial solutions to (1.2) with Dirichlet boundary conditions can exist when the domain is
too small. This observation is turned into a principle by Shigesada and Kawasaki, [166]: roughly
speaking, existence of non-trivial solutions to (1.2) amounts to survival of the population, which
itself boils down to: the population should increase when the initial datum u0 is small. This was
extended to the multi-dimensional case in [17, 42, 97] for bounded domains and was completely
formalized by Berestycki, Hamel and Roques [19]: survival holds for any non-negative initial datum
u0 6= 0 if and only if existence and uniqueness holds for (1.2) if and only if λB1 (m) < 0. Their results
are obtained for periodic domains but can easily be adapted here. We sum up the results of [19, 42]:
Let m ∈ L∞(Ω) and µ > 0.

(a) If λB1 (m,µ) < 0,there exists a unique solution θB 6= 0 of (1.2). Furthermore, any solution u of
(1.1) associated with an initial datum u0 ≥ 0, u0 6= 0 satisfies

u(t, x)
C 0(Ω)−→
t→∞

θB.

(b) If λB1 (m,µ) ≥ 0, equation (1.2) has no non-zero solution. Furthermore, any solution u of (1.1)
associated with an initial datum u0 ≥ 0, u0 ≥ 0 satisfies

u(t, x)
C 0(Ω)−→
t→∞

0.

Remark 1.1. For Neumann boundary conditions, the Rayleigh quotient formulation (1.4) gives a very
simple criterion for survival: using u ≡ 1 as a test function gives

λN1 (m,µ) ≤ −
 

Ω

m,λNα (m) ≤ −
 

Ω

m,

so that requiring m ≥ 0 ,m 6= 0 gives existence and uniqueness for (1.2).

Remark 1.2 : The influence of diffusivity for Dirichlet boundary conditions. For Dirichlet
boundary conditions however, the situation is quite different. As mentioned earlier, it was noted in [168]
that, if Ω = (0;L), µ = 1 and m ≡ 1, there exists L > 0 such that, for any L ≤ L,

λD1 (m, 1) > 0.

In other words, too small an environment is detrimental to the survival of the population. Using the change
of variables y = x√

µ
, this amounts to saying that, in Ω = (0; 1), with m ≡ 1, there exists µ > 0 such that,

for any µ ≥ µ,
λ1(m,µ) > 0.

In fact, this is valid in any dimension and any resources distribution m: for any Ω, any m ∈ L∞(Ω), there
exists a diffusivity threshold for survival. This is in sharp contrast with Neumann boundary conditions.

The question under scrutiny for these two equations are the following:

The first one deals with the total population size, a mathematically challenging problem which
we tackle in Chapter 2, corresponding to [MNP19b]. In this Introduction, we present the results
obtained for this question in Section 1.2.1.1 and the new method developed in that context in
Section 1.3.2.

Question 1. Which resources distribution m yields the largest total population size for
(1.2) with Neumann boundary conditions? Can we say something about the geometry of
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optimal resources distributions?

This question was first raised by Lou in [125]; we recall the results he obtained in Section 1.2.1.1 of
this Introduction.

The second one deals with spectral optimisation: given the results of [19, 42] recalled above, it is clear
that principal eigenvalues account for the survival capacity associated with a resources distribution.
Let us consider the case of Dirichlet boundary conditions, and let us define λ1(m,µ) := λD1 (m,µ).
Many informations about the minimisation of this eigenvalue in some relevant class are known; we
recall some of them in Subsection 1.2.1.2, and refer, for the time being, to [19, 128, 116]. The
question of sensitivity of this first eigenvalue is relevant in this context: in other words, knowing a
minimiser m∗, in some admissible class, can we obtain some quantitative information in the form
of a quantitative inequality?

Question 2. Can we obtain a quantitative inequality for the first eigenvalue λ1(·, µ)?

We address this question in Chapter 4, which corresponds to [Maz19a], where we obtain a quant-
itative inequality in the case of the ball. In this introduction, our results are presented in Section
1.2.1.3 and the methods developed in Paragraphs 1.3.4 and 1.3.4.

• Biased models: for biased models, we will only work with Dirichlet boundary conditions and focus
on the question of survival of the population. We consider, for any initial datum u0 ≥ 0, u0 6= 0,
the solution u of 

∇ ·
(

(1 + αm)∇u
)

+ u (m− u) = ∂u
∂t in Ω× R+,

u(t = 0, ·) = u0 in Ω,
u = 0 on ∂Ω,
u ≥ 0 in Ω.

(1.5)

along with the associated stationary state
∇ ·
(

(1 + αm)∇ψα,m
)

+ ψα,m (m− ψα,m) = 0 in Ω,

ψα,m = 0 on ∂Ω,
ψα,m ≥ 0 in Ω, ψα,m 6= 0

(1.6)

and the first eigenequation associated with the principal eigenvalue λα(m) (as explained, since we
only work with Dirichlet boundary conditions, we drop the superscript D for this eigenvalue):

∇ · ((1 + αm)∇ξα,m) +mξα,m = λα(m)ξα,m in Ω,
ξα,m = 0 on ∂Ω,´

Ω
ξ2
α,m = 1.

(1.7)

The proofs of [19, 42] are easily adapted to obtain the following result: let m ∈ L∞(Ω) and α > 0.

(a) If λα(m) < 0, there exists a unique non-trivial solution ψα,m of (1.6). Furthermore, any
solution u of (1.5) associated with a non-zero initial datum u0 ≥ 0 satisfies

u(t, x)
C 1(Ω)−→
t→∞

ψα,m.
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(b) If λα(m) ≥ 0, equation (1.6)has no non-trivial solution. Furthermore, any solution u of (1.5)
associated with a non-zero initial datum u0 ≥ 0 satisfies

u(t, x)
C 1(Ω)−→
t→∞

0.

These results have the same interpretations as in the case of the biased model: the principal eigenvalue
λα(m) quantifies the chances of survival of a population, which leads to the following question (see
for instance [43, 40, 42] and the references therein):

Question 3. Which resources distribution yields the best chances of survival for biased
movement of species?

In contrast to Question 2, even basic results (e.g existence) were not known when this PhD started.
We give an almost complete picture (existence and qualitative properties) of this problem in Chapter
3, which corresponds to [MNP19a]. In this Introduction, our results are presented in Section 1.2.1.2,
while the methods are developed in Paragraphs 1.3.3 and 1.3.4.

Bibliographical remark. We refer to [43, 143] for more details regarding modelling assumptions in
reaction-diffusion equations. A vast literature has been devoted to the study of these equations in unbounded
domains, via the analysis of travelling waves. We will not tackle this subject and refer to the Thesis’ or
Habilitations’ Introductions [26, 82, 145] for an overview of these works.

1.1.3.2 Admissible class

So far, we have not defined the admissible class for resources distributions. For Questions 3,1 and 2,
the admissible class will be the same, and we now present it.

We impose L∞ and L1 bounds on resources distributions. This is consistent, from a modelling
point of view: L∞ bounds model the pointwise environmental limits (i.e it is not possible to store more
than a fixed amount of resources in one location), while L1 bounds stand for the global environmental
capacity (i.e it is not possible for a domain to have more than a certain amount of resources).

Let us thus introduce two parameters m0 > 0 and κ > 0, henceforth fixed for the rest of this
Introduction, and define

M(Ω) :=

{
m ∈ L∞(Ω) , 0 ≤ m ≤ κ , 1

|Ω|

ˆ
Ω

m = m0

}
. (1.8)

Obviously, we require that m0 < κ, so that this class is non trivial.
Bang-bang functions are essential for our upcoming analyzis: we recall that a bang-bang func-

tion is the characteristic function of a set. In other words, a bang-bang function is of the form

m = κ1E

with E ⊂ Ω a measurable subset such that |E| = m0|Ω|
κ . In many situations, the goal is to prove that

minimisers of some functionals are bang-bang functions.

Remark 1.3. We could, as is done in [50], consider sign-changing m and replace 0 ≤ m ≤ κ with −1 ≤
m ≤ κ, but this would not change anything to our results. Regarding Question 1, our results rely on functional
arguments which are unaffected by the sign of m, while, for eigenvalue problems, the linearity of the problem
would enable us to replace m with m+ 1 without changing the results. Furthermore, as was noted in Remark
1.1, working with non-negative m guarantees the existence of non-trivial solutions to (1.2).

The three problems under consideration are then
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• maximise the total population size:

sup
m∈M(Ω)

ˆ
Ω

θm,µ , with

{
µ∆θm,µ + θm,µ(m− θm,µ) = 0 in Ω ,
∂θm,µ
∂ν = 0 on ∂Ω.

(Pµ)

• Derive a quantitative inequality for the unbiased movement:

Establish a quantitative inequality for the first Dirichlet eigenvalue λ1(m,µ) of Lm := −µ∆−m.
(Q)

• Investigate the spectral optimisation problem for the biased movement: derive (non)-existence
results and qualitative properties for

inf
m∈M(Ω)

λα(m), where λα(m) is the first Dirichlet eigenvalue of Lα,m := −∇ · ((1 + αm)∇)−m.

(Pα)

1.1.3.3 Properties under investigation

Having defined the admissible class, let us present the type of properties we will be investigating for
these variational problems, that is, the total population size (Pµ) and the biased spectral optimisation
problem (Pα). These problems, being notoriously difficult to solve completely (by which we mean
exhibiting the exact minimiser), we will focus on other informations.

Pointwise and geometric properties From a qualitative point of view, building on the works of
[19, 128, 116], two type of properties are particularly relevant:

1. Pointwise properties:

This amounts to investigating whether or not optimal distributions m∗ for (Pα) or (Pµ) are
bang-bang functions: do we have

m∗ = κ1E ,

where E is a measurable subset of Ω? In other words, is it possible to split the domain into
two zones, a favourable one and a lethal one? From a biological point of view, such resources
distributions correspond to patch-models, the relevance of which is discussed in [19, 42]. In
Section 1.3 of this Introduction, we explain the different methods we introduced, throughout
this PhD, to give this question an answer in several cases. Let us just keep in mind that this
property is usually proved independently of the geometry of the domain and it is often the case
that its proof relies on concavity properties of the functional to optimise. For instance, for the
spectral optimisation problem (Pα), the fact that the functional to optimise is energetic makes
it easy to prove that, should a minimiser exist, it is bang-bang. For the total population size
problem (Pµ) however, the functional is no longer energetic, and proving the bang-bang property
is therefore very challenging. For the quantitative inequality problem (Q), we will investigate
an auxiliary optimisation problem, the solutions of which will be bang-bang functions, and that
property will be crucial for the subsequent analisis.

2. Geometric properties: concentration and fragmentation:

Assume now that we already know the solutionm∗ to an optimisation problem to be a bang-bang
function, for instance

m∗ = κ1E .

What kind of informations can we have on the set E? We must often satisfy ourselves with
very broad concentration/fragmentation properties: is the set E connected? Is it convex? Or
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is it, on the other hand, fragmented? This question lies naturally in the field of mathematical
biology, since the works [19, 42, 85, 162, 166] where the influence of fragmentation on survival
ability is investigated, mainly in the spatially periodic case. We give a rough representation of
fragmentation and concentration in Figure 1.1 below:

Figure 1.1 – Ω = (0, 1)2.The resources distribution on the left is "more concentrated" than the one
on the right.

These informations are hard to obtain, but let us note that they are often derived in "simple"
geometries (e.g the ball for Dirichlet boundary conditions, the orthotope for Neumann boundary
conditons) using appropriate rearrangements (see Chapters 2, 3 and 4).

Let us give an example: consider, in the one-dimensional case, the first eigenvalue λN1 (m,µ) of
−µ d2

dx2 −m in Ω = (0, 1) with Neumann boundary conditions. Then it is proved in [19] that, by
defining m# := κ1(0;r∗) ∈M(0, 1) for a suitable r∗ we have

∀m ∈M(0, 1) , λN1 (m,µ) ≥ λN1 (m#, µ). (1.9)

Thus, concentration is always favourable to survival of species. We represent these two optimisers
below:

Figure 1.2 – Ω = (0, 1). Two optimal configurations for species survival in the one dimensional case.

11



CHAPTER 1. GENERAL INTRODUCTION

Figure 1.3 – Ω = (0, 1)2. The type of geometry of optimal resources distributions for species survival
in an orthotope.

We also highlight the fact that, for the optimisation of the total population size, one of our most
striking results of Chapter 2 is that fragmentation is sometimes better for the total population
size.

Minimality of some configurations Given the difficulty of fully describing the optimisers of
variational problems, taking into account the fact that the bang-bang property "should" hold and
that variational problems may respect the symmetry of the domain, it is also customary to try and
verify the optimality of some configurations.

Although this will mainly be used in Chapters 6, 3 and 4 to check whether or not the ball satisfies
optimality conditions, we present the tool used to study these questions in a more general setting.
Let us first consider a functional

F :M(Ω) 3 m 7→ F (m).

Let, for any subset E ⊂ Ω satisfying

|E| = m0|Ω|
κ

define the shape functional F as
F : E 7→ F(E) =: F (κ1E).

If we want to try the optimality of a particular function m∗ = κ1E , it is logical to start by considering
shape deformations and shape derivatives of the set E. We only draft the methods used to do so and
refer to [4, 83, 93] as well as to Chapters 6, 3 and 4 of this manuscript for a more rigorous presentation.
Although these shape deformations (i.e deformations through a vector field on the boundary ∂E) do
not allow for changes in topology, they are usually instrumental in optimisation problems. For more
on the distinction between these shape derivatives and other type of derivatives, we refer to Chapter
4 of this manuscript.

We come back to shape deformations and derivatives: consider a vector field

φ : ∂E → Rn

smooth enough so that it can be extended to a compactly supported smooth vector field φ : Ω→ Rn
so that, for t small enough,

Φt := (Id+ tφ)

12
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leaves Ω invariant. It is then possible to define

F̃φ : t 7→ F (κ1Φt(E)) = F(Φt(E)).

Under some regularity assumptions, the map F̃φ is C 2 at t = 0, and we may define is derivatives as

F̃ ′φ(0) =: F ′(E)[φ] , F̃ ′′φ (0) =: F ′′(E)[φ, φ].

These derivatives are called shape derivatives of F of first and second order.
This enables us to write down the optimality conditions for such volume constrained optimisation

problems. This volume constraint can be enforced through the use of a Lagrange multiplier.

Definition 1.1.1 Let Λ be the Lagrange multiplier associated with the volume constraint

|E| = m0

κ
.

Let
Vol : E 7→ |E|,

The first and second order optimality condition associated with the problem

inf
E⊂Ω ,|E|=m0|Ω|

κ

F(E)

are
(F − Λ Vol)

′
(E)[φ] = 0 , (F − Λ Vol)

′′
(E)[φ, φ] > 0 (1.10)

for every vector field φ such that

φ|∂E 6= 0 ,

ˆ
∂E

〈φ, ν〉 = 0.

Bibliographical remark. This approach dates back to Hadamard, [83] We refer to [4, 93] for a rigorous
introduction to shape derivatives.

13
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1.2 Main contributions of the Thesis

1.2.1 Qualitative results for questions 1, 2 and 3

1.2.1.1 The influence of resources distributions on the total population
size (Chapter 2, Question 1)

Let us first tackle Question 1, that is, optimising the total population size for logistic diffusive models.
This corresponds to Chapter 2 of this manuscript and to [MNP19b].

Our methods are developed for Neumann boundary conditions. Indeed, part of our results are
carried out in the asymptotic regime µ → ∞. As explained in Remark 1.2, for Dirichlet boundary
conditions, there exists a threshold diffusivity µ > 0 above which the population goes extinct; this
does not happen for Neumann boundary conditions.

Let us recall that we are working with unbiased movement, and we are studying the equation
µ∆θm,µ + θm,µ(m− θm,µ) = 0 in Ω,
∂θm,µ
∂ν = 0 on ∂Ω ,

θm,µ ≥ 0 in Ω , θm,µ 6= 0 in Ω.

(1.11)

We introduce the total population size functional

F(·, µ) :M(Ω) 3 m 7→
 

Ω

θm,µ, (1.12)

and the variational problem
sup

m∈M(Ω)

F(m,µ). (Pµ)

For this problem, we will investigate the bang-bang property alongside geometric properties of max-
imisers.

Known results Let us first review the results available in the literature.
The variational problem (Pµ) was introduced and first studied by Lou in [126, 125]. He shows that

the problem has a solution inM(Ω) (and that L1 and L∞ are minimal constraints to have existence;
if one of them is absent, existence no longer holds). He also establishes the following results:

Let m ≡ m0 ∈M(Ω). Then, for any µ > 0, m is a global minimiser of F(·, µ) inM(Ω):

∀µ > 0 ,∀m ∈M(Ω) ,F(m,µ) ≥ F(m,µ).

In other words, a homogeneous environment is the worst possible configuration for the total population
size. Furthermore, for any fixed m ∈M(Ω), the mapping

µ ∈ (0; +∞) 7→ F(m,µ)

is continuous, can be continuously extended into a function on [0; +∞] by setting F(m, 0) = F(m,+∞) :=
m0, and is minimal at µ = 0 and µ = +∞.

Remark 1.1 Let us stress that the L∞ bound is necessary to obtain existence result.
Indeed, in [12], the one-dimensional case is studied and some partial informations are obtained: if

Ω = (0; 1), if µ = 1, then
sup

m∈L∞(Ω),
´
Ω
m=m0

F(m, 1) = 3m0,

14
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and this upper bound is never reached.

In [69], a more general functional is considered and several numerical simulations back the natural
conjecture that solutions of (Pµ) are bang-bang functions.

The bang-bang character of maximisers remained, however, completely open, until a result by
Nagahara and Yanagida, [148] and our own article [MNP19b].

In [148], a weak bang-bang property is established, namely: if the set {0 < m < κ} has an interior
point, then m is not a solution of (Pµ). The strength of their result lies in the fact that it is valid for
any diffusivity, its weakness on the regularity assumption they make which, as exemplified for several
functionals, is quite difficult to prove.

No result, however, addressed the problem of the geometry of maximisers of F(·, µ); while, as
recalled in Subsection 1.1.3.3, concentration is favourable for species survival, it is not clear whether
or not it is the case here and, so far, our article [MNP19b] seems to give the most advanced results
for the following question:

Question 4. Is fragmentation or concentration of resources favourable for the total popula-
tion size?

Contributions of the thesis for the total population size (Chapter 2, Question 1) In
[MNP19b] (Chapter 2) we prove the following results:

Theorem of the Thesis 1 [MNP19b] For the variational problem (Pµ), there holds:

1. Bang-bang property for large diffusivities (Theorem 2.1.1):

For any dimension n, for any smooth enough bounded domain Ω ⊂ Rn, there exists
µ = µ(m0, κ,Ω) such that, for any µ ≥ µ, any solution of (Pµ) is a bang-bang function.

2. Full stationarity for large enough diffusivities in dimension 1 (Theorem 2.1.3):

Let md
∗ := κ1(1−r∗;r∗) and mg

∗ := κ1(0;r∗) be the unique minimisers of λN1 (·, µ) when
Ω = (0; 1). Here, the parameter r∗ is chosen so that κr∗ = m0. For Ω = (0; 1), there
exists µ > 0 such that, for any µ > µ, md

∗ and mg
∗ are the unique solutions of the

variational problem (Pµ).

3. Concentration in dimension 2 for large diffusivities (Theorem 2.1.2):

In Ω = [0; 1]2, define, for any µ > 0, mµ as a maximiser of F(·, µ). Up to a sub-
sequence, {mµ}µ>0 converges, in L1(Ω) and as µ→∞ to a resources distribution m∗
which is decreasing in every direction. Since this property of being decreasing in every
directions holds in particular for optimisers of the species survival we can say that for
large diffusivities, the maximisers for the total population size behave as the optimisers
for the species survival.

4. Fragmentation for small diffusivities in dimension 1 (Theorem 2.1.4):

Let m̃ : x 7→ mg
∗(2x) be the double crenel:

15
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Then there exists µ̃ > 0 such that

F(m̃, µ̃) > F(mg
∗, µ̃).

In particular, concentration of resources can not hold for any diffusivity, and the op-
timisers for the total population size have a qualitative behaviour different from that of
optimisers for species survival.

The proof of the bang-bang property for large diffusivities is the core of [MNP19b], and we refer to
Section 1.3.2 for a brief presentation, but highlight the following points:

• The bang-bang property relies on asymptotic expansions of the solutions θm,µ with respect to
the diffusivity µ as µ → ∞. It enables us to bypass regularity assumptions of the type made
by Nagahara and Yanagida but, obviously, also has its own limitations in that it requires the
diffusivity to be large.

• The stationarity result is proved using fine methods on the switch function, which in this case
gives an example of stationarity for a non-energetic functional that does not use rearrangements.

For the time being, we do not know how to give even a formal analisis of the small diffusivity case
µ→ 0. However, several numerical simulations seem to indicate that fragmentation is really a relevant
term for describing what goes on as µ → 0. For instance, in [MNP19b], we obtain the following
numerical simulations for the optimal resources distributions

Figure 1.4 – m0 = 0.4, κ = 1. From left to right: µ = 0.01, 1, 5. Optimal resources distributions for
(Pµ).

We end this Section by commenting on the fact that this is one of the rare case where such a non-
energetic, non-linear problem is given an answer, event if it is in an asymptotic regime. The study
we carry out in [HMP19] (Chapter 6, Section 1.2.3 of this Introduction) for a prototypical non-linear,
non-energetic shape optimisation problem can also be viewed as pertaining to this category of results.
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1.2.1.2 Optimal survival of a population (Chapter 3, Question 3)

In this Section, devoted to the presentation of our main results regarding spectral optimisation, we
will consider two problems. The first one is devoted to spectral optimisation for biased movement of
species, while the second one deals with a quantitative inequality for a Schrödinger eigenvalue. Let
us start with

inf
m∈M(Ω)

λα(m) (Pα)

where λα(m) is the first Dirichlet eigenvalue of

−∇ · ((1 + αm)∇)−m.

Before presenting our own results, we give some background material on spectral optimisation for
the unbiased movement. This corresponds to α = 0 in (Pα).

Background material for (Pα)

Unbiased movement of species Many authors have studied the problem

inf
m∈M(Ω)

λ0(m) , where λ0(m) is the first eigenvalue of −∆−m. (1.13)

In this case, with Dirichlet boundary conditions, the most striking results obtained in [128, 51] are
the following:

1. [128]: for any domain Ω, the variational problem (1.13) has a solution. Any solution m∗ of
(1.13) is a bang-bang function: there exists E ⊂ Ω such that m∗ = κ1E . (see [128, Theorem
1.1] for Neumann boundary conditions, but adapting the proof immediately gives the result for
Dirichlet boundary conditions)

2. When Ω = B(0;R), there exists a unique solution of (1.13): let r∗ > 0 be such that

m∗ := κ1B(0;r∗) ∈M(Ω).

The unique solution of (1.13) is m∗. Thus, when the domain is ball, we have full concentration.

3. [51]: if Ω is a convex domain with an axis of symmetry, if m∗ = 1E is a solution of (1.13), then
E has the same axis of symmetry. When κ is small enough and Ω is simply connected, Ω\E is
connected. If κ is large enough and if Ω is convex, then E is convex. Concentration thus holds
under geometric assumptions on the domain.

4. [51]: there exists M∗ = M∗(M0) > 0 such that, if M ≥ M∗, if Ω = {M ≤ |x| ≤ M + 1}, if
m∗ = κ1E is a solution of (1.13), E is not invariant under the action of rotations. Thus, optimal
configurations might not have the same symmetries as the domain.

Remark 1.4. We have written the results of [51] under the form “if κ is large enough” because we defined
λ0 as the first eigenvalue of −∆ −m. Had it been defined as the first eigenvalue of −µ∆ −m, these results
could be rephrased as “if µ is small enough”, once again emphasising the role of diffusivity in the geometry of
optimal domains.

Two-phase eigenvalue optimisation The previous paragraph dealt with optimising an eigen-
value with respect to the potential. Another optimisation problem, which is by now classical, consists
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in optimising the first eigenvalue of a differential operator with respect to the drift. Namely, let, for
any m ∈M(Ω) and ε > 0, λ̃ε(m) be the first eigenvalue of

−∇ · ((1 + εm)∇)

with Dirichlet boundary conditions and consider the optimisation problem

inf
m∈M(Ω)

λ̃ε(m). (1.14)

Then, following the seminal work by Murat and Tartar [142], which gave the correct way to look at
optimality conditions, the following results, some of which are very recent, were established:

1. In [142] it is proved that, if a solution m∗ to (1.14) exists, then it is a bang-bang function and,
if m∗ = κ1E and E is regular, then Ω is a ball Ω = B(0;R) and the set E is radially symmetric.
Their proof relies on the use of Serrin’s theorem.

2. In [57], a rearrangement introduced in [7] is used to show that, when Ω is a ball, it is sufficient
to work with radially symmetric resources distributions, and a proof of existence of a solution
is given in that case.

3. In [117], the case of the ball is completely settled for ε small enough: Laurain proves that there
are two radially symmetric functions m1 and m2, a parameter m0 and ε such that: if m0 < m0

and ε ≤ ε, m1 is the only solution of (1.14) while, if m0 > m0 and ε ≤ ε, m2 is the unique
solution of (1.14).

4. In [46, 47, 48], the problem of existence is definitely settled: there, it is proved that (1.14) has
a solution if and only if Ω is a ball.

In other words, the presence of a drift drastically changes the picture of spectral optimisation problems.
As will be explained later, some of our proofs simplify and give a more systematic understanding of
the proofs of Laurain [117] for stationarity of optimal configurations when α (or ε) is small, and shed
a new light on the way to build path of admissible resources distributions.

Biased movement of species For the biased movement problem (Pα), we recall that it was
introduced in [17, 59]. The goal of these authors was mainly to understand the effect of adding a drift
(i.e going from α = 0 to some small α > 0) when the resources distribution m is fixed; they derive
monotonicity results for the map

α 7→ λBα(m),

and insist of the influence of boundary conditions. Let us keep in mind that, for Dirichlet boundary
conditions, no monotonicity holds in general: adding a drift when there are resources near the lethal
boundary might be detrimental to the population while adding a drift when these resources are far
enough from the boundary can be favourable. This is coherent with the intuition one might have of
the problem.

A complete study of (Pα) in the one-dimensional case , for any boundary conditions (whether it be
Neumann, Robin or Dirichlet) can be found in [50], where most of the relevant qualitative informations
are gathered. For instance, regardless of α > 0, the solution of the biased problem in Ω = (−1; 1)
is the same as for the unbiased movement optimisation problem (1.13). Their proof relies on the
Sturm-Liouville change of variables which is, unfortunately, unavailable in higher dimensions.

For multi-dimensional domains, the question remained completely open until [MNP19a] (Chapter
3 of this manuscript).

Bibliographical remark. We also mention [10], where the same type of problem is considered for
Neumann boundary conditions in the context of reaction-diffusion systems.
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We finally mention [84], where a general result for spectral optimisation of eigenvalues with respect
to both the drift term and the potential is established; more precisely, let us briefly state a consequence
of [84, Theorem 2.1]: let, for any m1,m2 ∈M(Ω), Am1,m2

be the operator

−∇ · ((1 + αm1)∇)−m2

and Λ(m1,m2) its first Dirichlet eigenvalue. Let Ω∗ be a ball with the same volume as Ω. Then, for
any m1,m2 ∈M(Ω), there exists two radially symmetric functions m∗1,m∗2 ∈M(Ω∗) such that

Λ(m∗1,m
∗
2) ≤ Λ(m1,m2).

This does not, however, enable us to reach a conclusion, as m∗1 and m∗2 might be different.

Contributions of the thesis for species’ survival (Chapter 3, Question 3) We give an almost
complete study of the variational problem (Pα) in [MNP19a] (Chapter 3 of this manuscript); we sum
up the main contributions in the following theorem:

Theorem of the Thesis 2 [MNP19a] Regarding problem (Pα)

1. Non-existence result (Theorem 3.1.1):

In any dimension, if Ω is not a ball, then (Pα) does not have a solution.

2. Stationarity for small α among radial distributions (Theorem 3.1.2):

If Ω = B(0;R) if n = 2, 3, if r∗ > 0 is chosen so that

m∗ := κ1B(0;r∗) ∈M(Ω),

if α > 0 is small enough, then m∗ is a global minimiser among radially symmetric
resources distributions. In other words, the solutions (for radially symmetric distribu-
tions) is the same for α = 0 and α > 0 small enough.

Figure 1.5 – Solution of the problem among radially symmetric distributions.

3. Full stationarity for small m0 and small α (Theorem 3.1):

Let Ω = B(0;R). There exists m0 > 0, α0 > 0 such that, if m0 ≤ m0 and α ≤ α0, then
m∗ is the unique minimiser of λα inM(Ω).

4. Shape minimality (Theorem 3.1.3):
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The resources distribution m∗ := κ1B(0;r∗) satisfies first and second order optimality
conditions in terms of shape derivatives in dimension n = 2 (see Definition 1.1.1).

For a presentation of the proofs, we refer to Sections 1.3.3 and 1.3.4 of this Introduction. We highlight,
for the time being, that the main novelties in our approach are:

• The use of a new method to prove stationarity for small α; it relies on a very precise study of the
level sets, on a new asymptotic expansion method (across the boundary of the optimal set) and
on a fine use of the switch function provided by classical homogenization theory. This requires
a careful adaptation of one of the methods introduced in [Maz19a] (Chapter 4).

• The use of a comparison principle method introduced in [Maz19a] (Chapter 4) in a perturbative
setting to avoid lengthy computations when discussing optimality conditions in the sense of
shape derivatives.

1.2.1.3 A quantitative inequality for the sensitivity of a Schrödinger
eigenvalue (Chapter 4, Question 2)

We now explain our final contribution to spectral optimisation in this thesis, that is, obtaining a
quantitative inequality for a Schrödinger eigenvalue when the underlying domain is a ball. This
result has interest in and of itself, but we also believe that [Maz19a] clarifies some points on the
main difference between shape derivatives and parametric derivatives, which are two objects used
throughout all of this thesis, and which we use in fine combination in this work.

We first briefly recall the main bibliographical references for quantitative inequalities. The general
context is the following: consider a shape functional F : Ω 7→ F(Ω), which is minimised under a
volume constraint or a perimeter constraint, and assume that the unique minimiser of F is a ball
B(0, R). This is the case in the classical isoperimetric inequality or for the Faber-Krahn inequality.
Introduce the Fraenkel asymmetry of a domain

A(Ω) = inf
x∈Rn

|Ω∆B(x;R)|
|B(x;R)|

.

This quantity appears naturally in many quantitative inequalities; the typical quantitative inequality
reads

F(Ω)−F(B) ≥ CA(Ω)2,

and the exponent 2 is usually sharp. This type of inequality was first established in [78] for the
classical isoperimetric inequality: there, F(E) = Per(E) is the perimeter, and they consider a volume
constraint. In [31], such inequalities are derived for F(E) = λD(E), where λD(E) is the first Dirichlet
eigenvalue of the Laplace operator. These were extended to more general eigenvalue problems with
Robin boundary conditions in [37]. We give [31] as a general introduction to sharp quantitative
inequalities, and refer to the Introduction of Chapter 4 for a more complete list of bibliographical
references. We note that a strategy of proof commonly used is first to establish such inequalities for a
particular set of domains, namely, normal deformations of the ball B∗, (for this step, we refer to the
synthetic [64] where a systemic approach is undertaken), and then, through generally very involved
steps to prove that every other situation can be handled through this lens.

In [29]2, a first result related to quantitative inequalities for interior domains is established; they
consider a quantitative inequality for a general Dirichlet energy, where minimisation is carried out
with respect to the potential under Lp constraints and the source term is fixed.

Our approach in [Maz19a] is somehow different, both for the goal and the methods. In it, we work
in the case of a ball Ω = B(0;R) and consider the problem we have already encountered of minimising

2We thank L. Brasco for pointing out this reference.
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the first eigenvalue of a Schrödinger operator:

inf
m∈M(Ω)

λ(m) (Q)

where λ(m) is the first Dirichlet eigenvalue of the operator

−∆−m.

We then established a qualitative inequality for this problem; this is the main result of Chapter
4.

Theorem of the Thesis 3 [Maz19b] Let Ω = B(0, R) in dimension n = 2, 3 and let
m∗ := κ1B(0;r∗) ∈ M(Ω) be the unique solution of (Q). There exists C > 0 such that the
following quantitative inequality holds:

∀m ∈M(Ω) , λ(m)− λ(m∗) ≥ C||m−m∗||2L1(Ω).

For a mathematical presentation of the proof, we refer to Paragraphs 1.3.4 and 1.3.4 of this Introduc-
tion. We underline the two features of this proof which seem relevant to us:

• A comparison principle is used to encompass the case of normal deformations of the optimiser,
which greatly simplifies computations and is used when possible competitors can be compared
to normal deformations of the ball.

• A technique of expansion of the switch function across the border of the optimiser is used in
its full force to handle the case of competitors whose topology might change. This is related to
parametric derivatives, that is, derivatives with respects to the coefficients of the equation. This
is the technique that would need adapting to extend this inequality to other domains.

These two approaches then need to be combined in order to get access to the full quantitative inequal-
ity.

1.2.2 Controllability of spatially heterogeneous bistable
equations

This Section deals with Chapter 5, which corresponds to [MRBZ19].

Remark 1.5. Throughout this section, the notation θ represents a real parameter, in contrast to the previous
sections, where it stood for a solution of an equation. The reason we do this is to have a presentation that is
coherent with the classical literature devoted to bistable equations.

1.2.2.1 Presentation of the model

Bistable reaction-diffusion equations One of the equations we have not yet mentioned but which
is of great importance for applications is the bistable reaction-diffusion equation. We begin with a
review of basic background material on bistable equations and their boundary control.

Bistable equations, which model the evolution of the proportion p = n1

n1+n2
of a subpopulation n1 in

a total population N = n1 +n2, have a wide range of possible interpretations. Each of the population
subgroup n1, n2 is defined by a trait: n1 might account for a population of infected mosquitoes while
n2 represents sane mosquitoes, n1 might be a group of bilingual individuals (speaking both a minority
and a majority language), in which case n2 would for instance be a group of monolingual individuals
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(i.e individuals who can only speak the majority language). This equation is characterized by the
Allee effect : assuming that there is no spatial dependence, there exists a threshold θ ∈ [0; 1] such
that, if the initial proportion p0 is below θ, then n1 will go extinct while, if p0 is above θ, n2 will go
extinct.

We will first state the equation, before sketching how it might be derived; for further references,
we refer to the Introduction of Chapter 5. The usual model goes as follows: consider a bistable
non-linearity that is, a function f : [0; 1]→ R such that

1. f is C∞ on [0, 1],

2. There exists θ ∈ (0; 1) such that 0 , θ and 1 are the only roots of f in [0, 1],

3. f ′(0) , f ′(1) < 0 and f ′(θ) > 0,

We work under the assumption that ˆ 1

0

f > 0

An example is given by
f(ξ) = ξ(ξ − θ)(1− ξ),

and, in this case,
´ 1

0
f > 0 is equivalent to requiring that

θ <
1

2
.

The typical graph of a bistable non-linearity looks like Figure 1.6 below :

Figure 1.6 – Typical bistable non-linearity.

Such a function accounts for the Allee effect.
The main equation then reads

∂p
∂t − µ∆p = f(p) in R+ × Ω ,

p(t = 0) = p0 , 0 ≤ p0(x) ≤ 1 ,
(1.15)

along with some boundary conditions that we do not yet specify.

Bibliographical remark. Since this equation is only studied in Chapter 5, we refer to [143, 43] for
more details on the modelling.

This equation is however not completely satisfactory for several modelling reasons, one of which
being that (1.15) is implicitly set in a spatially homogeneous domain Ω. Although, in [MRBZ19],
we also tackle so-called gene-flow models (see Chapter 5), we focus, in this Introduction, on spatially
heterogeneous models since this is the setting of our main contributions. These models correspond
to the case of spatially heterogeneous environments, the spatial heterogeneity being modelled by a
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resources distribution m : Ω → R. In this case, under certain scaling assumptions detailed in in the
Introduction of Chapter 5, one can show that the equation on p becomes{

∂p
∂t − µ∆p+ 2

〈∇m
m ,∇p

〉
= p(1− p)(p− θ) =: f(p) in R+ × Ω ,

p(t = 0, ·) = p0(x) , 0 ≤ p0 ≤ 1.
(1.16)

We now explain what kind of controllability questions we want to tackle.

Controllability for bistable equations: background material For many of the proposed in-
terpretations, for instance for sane and infected mosquitoes (a derivation of the model given in [146]
is presented in the Introduction of Chapter 5), control problems naturally arise: is it possible to
control the population of infected mosquitoes inside a domain? Such questions are drawing more and
more attention from mathematicians working in control theory, and the answers to these questions
depend on what we mean by control ; we might consider distributed control, as is the case in [5] for
a non-diffusive model (and the authors obtain a full characterization of optimal controls) or, as will
be the case here, boundary controls. This makes sense regarding the biological interpretation of the
equation, whether it be in terms of mosquitoes (we might want to act on the boundary of the jungle
where the mosquitoes live rather than using an interior control; we refer to [163] and to the references
therein) or for bilingualism (where we want to check whether or not an influx of bilingual people
will guarantee the survival of the minority language; we refer to [157, 163, 175]). Obviously, given
the interpretation of p as a proportion, natural constraints will be imposed on the control, and this
significantly complexifies things.

Let us give more precise definition in the case of spatially homogeneous equations with boundary
control, which were first tackled in [157] in the one-dimensional case, and then in [163] in the multi-
dimensional case.

A control is a function a : R+ × ∂Ω → [0; 1] and, for any such control, we consider the spatially
homogeneous control system 

∂p
∂t − µ∆p = f(p) in R+ × Ω ,

p(t = 0) = p0 , 0 ≤ p0(x) ≤ 1 ,

p(t, ·) = a(t, ·) ∈ [0; 1] on R+ × ∂Ω.

(1.17)

We highlight the constraint
a ∈ [0; 1]. (1.18)

We now introduce the targets of the control. Here, the only targets we consider are z0 ≡ 0, z1 ≡ 1
and zθ ≡ θ, i.e we want to drive the proportion p so a spatially homogeneous proportion.

We want to see whether or not it is possible to control any intial datum p0 to one of these three
states in the following sense:

Definition 1.2.1 Controllability is defined as follows:

• Controllability in finite time: we say that p0 is controllable to α ∈ {0, θ, 1} in finite time if there
exists a finite time T <∞ such that there exists a control a satisfying the constraints (1.18) and
such that the solution p = p(t, x) of (1.17) satisfies

p(T, ·) = zα in Ω.

• Controllability in infinite time: we say that p0 is controllable to α ∈ {0, θ, 1} in infinite time
if there exists a control a satisfying the constraints (1.18) such that the solution p = p(t, x) of
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(1.17) satisfies

p(t, ·) C 0(Ω)−→
t→∞

zα.

The following results are obtained in [157, 163]:

1. In [157] they reach the following conclusions in the one-dimensional case (for Ω = (0;L)):
Equation (1.17) is always controllable to 1 in infinite time. Furthermore, there exists a limit
diffusivity µ∗ = µ∗(L) > 0 such that:

(a) whenever µ > µ∗(L), Equation (1.17) is controllable to 0 and 1 in infinite time, and to θ
in finite (but positive) time.

(b) For any µ < µ∗(L), Equation (1.17) is not controllable to either θ or 0.

2. In [163], these results are extended to the multi-dimensional case; the existence of a limit diffus-
ivity for controllability is established and spectral conditions on the domain are given to ensure
controllability to z0 and zθ.

In both these works, the method used is the staircase method of [58], see Chapter 5 for a more
detailed presentation, but let us keep in mind that the lack of controllability is due to the existence
of non-trivial steady-states of the equation.

In a spatially heterogeneous context the natural question is then the following one:

Question 5. Does spatial heterogeneity have an influence on controllability properties? In
other words, can the results of [157, 163] be extended in this context, or do spatial variations
lead to lack of controllability?

1.2.2.2 Contributions of the Thesis for the controllability of bistable
equations (Chapter 5, Question 5)

We summarize the results obtain in [MRBZ19] (Chapter 5 of this manuscript). Let m : Ω→ R∗+ be a
resources distribution. We consider a control a defined as any function satisfying

a : R+ × ∂Ω→ [0; 1].

For an initial datum
p0 ∈ [0; 1] p.p

the spatially heterogeneous control system associated is
∂p
∂t − µ∆p+ 2〈∇ ln(m),∇p〉 = f(p) in R+ × Ω ,

p(t = 0) = p0 , 0 ≤ p0(x) ≤ 1 ,

p(t, ·) = a(t, ·) ∈ [0; 1] on R+ × ∂Ω.

(1.19)

Using the notion of controllability similar to that of Definition 1.2.1, we obtain in [MRBZ19] the
following result3:

3which is stated in the n-dimensional case with a limit diffusivity while, in the one dimensional case, we focus on
the length of the interval, which is more suited to the phase plane analisis of Chapter 5. Note that, while in Chapter
5 we mainly states the results insisting on some spectral and geometric parameters here, to be in agreement with the
viewpoint of earlier works presented in the introduction, we adopt the standpoint of diffusivity.
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Theorem of the Thesis 4 : [MRBZ19] For the control system (1.17), there holds:

1. For any type of spatial heterogeneity:

There exists a limit diffusivity µ∗(Ω) > 0 below which controllability to 0 does not hold.

2. For slowly varying environments:

Assume that the spatial heterogeneity is slowly varying, i.e, assume that m writes as

m = 1 + εm̃.

Then there exists ε∗ > 0 such that, if ε < ε∗(Ω, m̃), Equation (1.19) is controllable to 1 in
infinite time. If in addition µ > µ∗(Ω), then (1.19) is controllable to 0 in infinite time and
to θ in finite time. This corresponds to Theorem 5.1.2.

3. A prototypical rapidly varying environment:

We consider the one-dimensional case. Fix µ = 1 and define, for any σ > 0 the gaussian

mσ(x) := e−
x2

2σ .

Then, for any σ > 0 and α ∈ {0; 1}, there existsL∗∗σ such that Equation (1.19) is not
controllable to 0,θ or 1 on (−L∗∗σ , L∗∗σ ).
Furthermore, let, for any α ∈ {0; 1}, L∗σ(α) be the minimal L such that controllability to α
fails on (−L,L). There holds

L∗σ(1) →
σ→0

0 , L∗σ(1) →
σ→∞

+∞,

and
L∗σ(0) →

σ→0
0.

This corresponds to Theorem 5.1.4.

In other words, for rapidly varying environments, blocking phenomena appear, which seems to corrob-
orate an observation of [146], where a similar blocking phenomenon was derived for the propagation
of travelling waves in a rapidly shifting environment. We underline two points in the proofs of these
results:

• The main innovation is the proof for slowly varying environments, which is sketched in Paragraph
1.3.6 of this Introduction, and whose main innovation is the use of perturbative arguments in
combination with the staircase method of Coron and Trélat, [58].

• The lack of controllability to 1 is related to the existence of non-trivial solutions p 6= z1 to{
−p′′ + 2 ln(m))′p′ = f(p) in (−L,L),

p(±L) = 1.

This result seems interesting in and of itself.

1.2.3 A prototypical non-linear, non-energetic shape
optimisation problem in the asymptotic regime

This Section deals with Chapter 6, which corresponds to [HMP19].
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Let us mention a non-linear perturbation of a classical shape optimisation problem that we tackle
in the asymptotic regime. We sketch the problem and the type of properties investigated; since the
main contributions are a new technical outlook on a shape optimisation problem, we postpone a full
presentation to Paragagraphs 1.3.2 and 1.3.3.
In our articles [MNP19a, MNP19b], the study of optimisation problem heavily relies on perturbative
arguments, whether it be when the diffusivity is large or when the drift is small. Here, the point of
view is quite different, since it is the domain itself we seek to optimise.
Let us consider, for a small enough parameter ρ, the unique solution uρ,Ω of{

−∆uρ,Ω + ρf(uρ,Ω) = g in Ω

uρ,Ω ∈W 1,2
0 (Ω).

(1.20)

We consider, for some parameter V0 and some box D, the optimisation problem

inf
Ω⊂D ,|Ω|≤V0

Jρ(Ω) where Jρ(Ω) =
1

2

ˆ
Ω

|∇uρ,Ω|2 −
ˆ

Ω

guρ,Ω. (Pρ)

The non-linearity of the equation, the fact that the criterion to optimise is highly non-linear, make it
a difficult problem.
More precisely, we were interested in existence properties and in stability issues. Namely, we know
that, when ρ = 0, when g is a non-increasing, radially symmetric function, the unique solution to
(Pρ) is a centered ball B∗, and we wanted to investigate whether or not B∗ still satisfies optimality
conditions when ρ > 0 is small enough. A brief summary of the results obtained in [HMP19] reads

Theorem of the Thesis 5 : [HMP19] 1. If infD g > 0 and f is smooth enough, then
there exists ρ > 0 such that, for any ρ ≤ ρ, the variational problem (Pρ) has a solution Ω.
This result can be extended to non-negative g by adding monotonicity assumptions on f .

2. If g ≡ 1 (in which case, for ρ = 0, the unique solution of (Pρ) is a ball B∗ of volume V0),
there exists a smooth non-linearity f such that, for any ρ > 0 small enough, the centered
ball B∗ does not satisfy second order optimality conditions.

As explained, we postpone the presentation of the methods to Paragraphs 1.3.2 and 1.3.3, but
highlight the two main arguments:

• To obtain existence under different monotonicity and sign assumptions on the non-linearity f and
the source term g, we introduce a relaxed version of the problem which makes it so that we can
work in a fixed domain, study the switch function associated with the problem in this domain and
pass to the limit to obtain monotonicity of Jρ; it then remains to apply the Buttazzo-DalMaso
theorem. This method seems promising to tackle other non-linear, non-energetic problems, at
least in some regimes.

• To establish that, if g ≡ 1, there exists a non-linearity f such that B∗ no longer satisfies
optimality conditions for ρ > 0 small enough we carry out an asymptotic analysis of the second
order shape derivative of the associated lagrangian; to the best of our knowledge, this method
is new and looks like it might be adapted to other contexts. For this result, we also adapt some
of the methods (e.g comparison principle) introduced in [Maz19a].
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1.3 Shape optimisation: methods developed in the
thesis

As explained when we laid out the structure of this Introduction, we are now going to present, in this
second part, what we think are the main tools and innovations developed throughout the works we
carried out. Without dwelling on too many details, we try to give a clear presentation of what we
think are the most salient features of the methods we introduced.

1.3.1 Typical problems

In the same way we presented, in the first part of this Introduction, the typical questions we were
led to study, let us introduce the prototypical problems we were faced with and that we managed to
overcome in certain situations.

The existence of optimal shapes The problem of existence of optimal shapes is ubiquitous and
notoriously difficult to solve when the functionals we seek to minimise are not energetic functionals.
This question is interesting, both from a mathematical perspective and from an applied perspective; as
underlined in Section 1.1.3.3, the existence of optimal shapes may also be a validation of the relevance
of patch models and are a natural framework to study mathematical biology.

The typical problem for patch models Many of the questions we consider in Chapters 2, 3 and
4, whether it be the total population size, the optimal survival of species..., can be recast as a problem
under the general form

min
m∈M(Ω)

F (m) (1.21)

where we recall that the admissible class is

M(Ω) :=

{
m ∈ L∞(Ω) , 0 ≤ m ≤ κ ,

 
Ω

m = m0

}
,

and can be linked with a shape optimisation problem: let m ∈ M(Ω) be a bang-bang function, that
is, m rewrites as

m = mE := κ1E ,

where E ⊂ Ω is a measurable subset with

|E| = m0

κ
=: E0.

Define the class of admissible sets

O(Ω) := {E ⊂ Ω , |E| = E0} , (1.22)

and consider the problem
min

E∈O(Ω)
F(E). (1.23)

Problem (1.21) is called a relaxed version of (1.23). Then, checking whether or not the solutions of
(1.21) are bang-bang functions amounts to answering the following question:

Question 6. Can we prove that (1.21) and (1.23) have the same solutions or, in other words, can
we prove that any solution of (1.21) is a bang-bang function?
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Not only is this question relevant for interpretational purposes, but also for the analisis of optimality
conditions.

A more theoretical shape optimisation problem Another contribution of this thesis (Chapter
6) is the understanding of a non-linear, non-energetic shape optimisation problem presented in Section
1.2.3 of this Introduction. In this article, we consider the following problem: let D ⊂ Rn, V0 ∈ (0, |D|),
f ∈W 1,∞(R), g ∈ L2(D), ρ ≥ 0. For Ω ⊂ D such that |Ω| = V0, consider the solution uΩ,ρ of{

−∆uΩ,ρ + ρf(uΩ,ρ) = g in Ω ,
uΩ,ρ = 0 on ∂Ω,

(1.24)

and the functional
Jρ(Ω) :=

1

2

ˆ
Ω

|∇uΩ,ρ|2 −
ˆ

Ω

gu.

We consider the variational problem

inf
Ω⊂D ,Ω quasi-open ,|Ω|=V0

Jρ(Ω). (Pρ)

The question is then

Question 7. How can we prove that (Pρ) has a solution?

Stability of the ball under perturbation Another interesting question is that of investigating
whether or not certain specific configurations satisfy the optimality conditions for the problem under
consideration.

For instance, when dealing with problems of the form (1.21), if the domain Ω = B(0;R), then,
when dealing with Dirichlet boundary conditions, a natural candidate to be a minimiser is

m∗ := κ1B∗

where B∗ is a centered ball satisfying the required volume constraint. Now, in Chapter 3 (see Section
1.2.1.2 of this Introduction), we consider the following problem: let λα(m) be the first Dirichlet
eigenvalue of

−∇ · ((1 + αm)∇)−m

and consider the problem
inf

m∈M(Ω)
λα(m). (Pα)

Let Ω = B(0, R) be a ball. It is known that, for α = 0, m∗ = κ1B∗ is the unique solution of (P0).
The following question raises the problem of stability of m∗ under perturbation as α increases from 0:

Question 8. Can we prove that B∗ remains a minimiser when α > 0 is small enough?

We also tackled the problem of the stability of the ball as a minimiser under perturbations in the
classical shape optimisation problem: namely, for the variational problem (Pρ) of Paragraph 1.3.1
(and recalled in the previous paragraph), if the box D is a ball, if g is radially symmetric and non-
increasing, then it is known that Ω = B∗ with |B∗| = V0 is the unique solution of (Pρ). It is then
natural to investigate the following question:

Question 9. Is it true that, for any non-linearity f and ρ > 0 small enough, B∗ satisfies the optimality
conditions of Problem (Pρ)? On the contrary, can we build a non-linearity f such that B∗ does not
satisfy these optimality conditions for ρ > 0 small enough?
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Despite the fact that these problems have different natures ((Pα) is a parametric optimisation
problem, while (Pρ) is a shape optimisation one), we gather these two questions in the same paragraph
for the reason that we developed the use of the same kind of comparison principle in these two cases.
Namely, building on the traditional approach of Lord Rayleigh, we use separation of variables for
shape derivatives and derive the desired conclusions in somewhat similar manners in both cases. For
Problem (Pρ), we boost this method to build non-linearities for which B∗ no longer satisfies optimality
conditions when ρ > 0.

Quantitative stability of the ball Another natural question when dealing with shape optimisation
is that of the stability of minimisers in a quantitative sense. The usual context, as explained in Section
1.2.1.3 (which corresponds to [Maz19a], Chapter 4 of this manuscript), is that of shape optimisation:
for an optimisation problem of the form

inf
E ,|E|=V0

F(E)

is known (for the isoperimetric inequality, for the first eigenvalue of the Laplace operator with a variety
of boundary conditions) that, if E∗ is the unique minimiser (usually the ball), then there holds, for
some constant C > 0, the following quantitative inequality:

∀E ⊂ Rn , |E| = V0 ,F(E)−F(E∗) ≥ C inf
x∈Rn

|E∆(E∗ + x)|2,

where we obviously do not specify the type of regularity required. We refer to [30, 64].
A question that arose in the context of Problem (Q), that is, the Problem

inf
m∈M(Ω)

λ(m) , where λ(m) is the first Dirichlet eigenvalue of −∆−m

was that of establishing such inequalities in this case- we note that quantitative inequalities in this
parametric context have not been studied much. In [29], this question is addressed in the case of
the natural energy of a differential operator with Lp constraints on the potential of this operator,
and a range of these inequalities is proved in this context. In the case of eigenvalues, however, our
contribution is, as far as we know, new.

The question is thus:

Question 10. Can we have a quantitative inequality for (Q)?

We are able to give a positive answer when the domain Ω is a ball.

1.3.2 Methods developed for the existence of optimal shape
(Chapters 2 and 6)

We first address Questions 6 and 7.

An asymptotic expansion method to prove the bang-bang property (Chapter 2) In
Chapter 2, we consider the problem of optimising the total population size in a logistic diffusive
model. The problem writes as

sup
m∈M(Ω)

 
Ω

θm,µ,
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where θm,µ solves (1.11): 
µ∆θm,µ + θm,µ(m− θm,µ) = 0 in Ω ,
∂θm,µ
∂ν = 0 on ∂Ω ,

θm,µ ≥ 0 ,

θm,µ 6= 0 in Ω

.

Defining

F(µ,m) :=

 
Ω

θm,µ,

this rewrites
sup

m∈M(Ω)

F(µ,m).

The existence of a maximiser m∗ is a consequence of the direct method in the calculus of variations.
As explained in Section 1.2.1.1, an interesting question is that of knowing whether or not any solution
m∗ is of bang-bang type.

To give a positive answer to this question when µ is large enough, we use the fact that bang-bang
functions are extreme points of the convex setM(Ω). Thus, if F(·, µ) is strictly convex, any maximiser
is a bang-bang function. This approach is frequently used for energetic problems (see for instance
[116, 128]). Here, the fact that F(·, µ) can not be linked to the energy of the underlying equation
complexifies things, and obtaining such convexity properties proves to be challenging.

Thus, our strategy is to prove:

For µ large enough, F(·, µ) is convex. (1.25)

To prove (1.25), we define the admissible perturbations: let m ∈ M(Ω). We say that h ∈ L∞(Ω)
is an admissible perturbation at m if, for every t > 0, t small enough, m + th ∈ M(Ω). Let, for any
admissible perturbation h at m, Ḟ(·, µ) (resp F̈(·, µ)[h, h]) be the first (resp. second) order derivative
at t = 0 of

t 7→ F(m+ th, µ).

Proving (1.25) is equivalent to proving that, for every µ large enough, for every m ∈M(Ω), for every
admissible perturbation h 6= 0 at m, there holds

F̈(m,µ)[h, h] > 0.

We first refine a result of [125] that states that

θm,µ −→
µ→∞

m0

and prove that there holds, uniformly in m ∈M(Ω),

θm,µ = m0 +
η1,m

µ
+ O

(
1

µ2

)
,

where η1,m solves 
∆η1,m +m0(m−m0) = 0,
∂η1,m

∂ν = 0,ffl
Ω
η1,m = 1

m2
0

ffl
Ω
|∇η1,m|2.
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We may thus write

F(m,µ) = m0 +
1

m2
0

 
Ω

|∇η1,m|2 + O

(
1

µ2

)
and, defining

F1(m) :=
1

m2
0

 
Ω

|∇η1,m|2

it is clear that

F1is strictly convex in m:
for any m ∈M(Ω), for any admissible perturbation h 6= 0 at m, there holds

F̈1(m)[h, h] > 0.

As is usual in infinite dimensional optimisation, this second derivative is not coercive enough to
guarantee on its own that F(·, µ) is strictly convex for µ large enough. To overcome this phenomenon,
we fully develop θm,µ and F(·, µ) with respect to 1

µ . This is done by introducing a sequence of functions
{ηk,m}k∈N and a sequence of coefficients {βk,m}k∈N such that

• θm,µ expands as

θm,µ =

∞∑
k=0

ηk,m
µk

,

• The sequence {ηk,m}k∈N satisfies a hierarchy of equations
η0 = m0,

∀k ≥ 0 ,∆ηk+1,m +Hk+1(η0,m, . . . , ηk,m) = 0,

∀k ∈ N , ∂ηk,m∂ν = 0,ffl
Ω
ηk+1,m = βk+1,m =: Fk(m).

We then carefully analyse the behaviour of the sequence {βk,m = FK(m)}k∈N and show that, for
every k, there exists a constant Ak such that, for any m ∈ M(Ω) and any admissible perturbation h
at m there holds ∣∣∣F̈k(m)[h, h]

∣∣∣ ≤ AkF̈1(m)[h, h],

and that the power series
∑
k∈NAkx

k has a positive radius of convergence; hence, for µ large enough,
there holds

F̈(m,µ)[h, h] =
∑
k∈N

F̈k(m)[h, h]

µk
≥


1

µ
−
∑
k≥2

Ak
µk︸ ︷︷ ︸

=O
(

1
µ2

)

 F̈1(m)[h, h] > 0.

This proves (1.25); hence, all maximisers are bang-bang for µ large enough. This method has a
considerable advantage: since it does not rely on the construction of explicit perturbations to prove
the bang-bang property, it is not necessary to make any regularity assumptions on the maximisers.
However, its main drawback is that it is only available for large diffusivities.

A relaxed formulation for a shape optimisation problem (Chapter 6) We now present
the method developed to tackle the shape optimisation problem Pρ (see [HMP19], Chapter 6 of this
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manuscript). We briefly recall that it is set as follows: let D ⊂ Rn be a box and define, for a parameter
V0, the admissible class

O(D) = {Ω ⊂ D ,Ω quasi-open , |Ω| ≤ V0},

a function g ∈ L2(D), a function f ∈ W 2,∞(R) and a parameter ρ > 0. For any Ω ∈ O(D), if ρ is
small enough (uniformly in Ω ∈ O(D)), we can define the solution uρ,Ω of{

−∆uρ,Ω + ρf(uρ,Ω) = g in Ω ,
uρ,Ω = 0 on ∂Ω,

(1.26)

and
Jρ(Ω) =

1

2

ˆ
Ω

|∇uρ,Ω|2 −
ˆ

Ω

guρ,Ω

The problem is
inf

Ω∈O(D)
Jρ(Ω). (Pρ)

Using a result of Buttazzo-Dalmaso, existence for (Pρ) is guaranteed if Jρ is regular enough (in the
sense of γ-convergence, see Chapter 6) and monotonous with respect to domain inclusion:

∀Ω ,Ω′ ∈ O(D) ,Ω ⊂ Ω′ ⇒ Jρ(Ω) ≥ Jρ(Ω′).

We now focus on proving this monotonicity property.

We introduce the following relaxation of (Pρ): identifying a domain Ω with its characteristic
function 1Ω we define a relaxation class as

ÔV0
=

{
a ∈ L∞(D, [0, 1]) et

ˆ
D

a ≤ V0

}
For any M > 0 , ρ > 0, we define the relaxed functional ĴM,ρ on ÔV0

as

ĴM,ρ(a) =
1

2

ˆ
D

|∇uρ,M,a|2 +
M

2

ˆ
Ω

(1− a)u2
ρ,M,a − 〈g, uρ,M,a〉H−1(D),H1

0 (D),

où uρ,M,a ∈ H1
0 (D) is the unique solution of{

−∆uρ,M,a +M(1− a)uρ,M,a + ρf(uρ,M,a) = g in D,
uρ,M,a = 0 on ∂D. (1.27)

In this parametric context, an asymptotic study as ρ → 0 of the switch function of this relaxed
problem enables us to prove that, under certain assumptions on f and g, we have

∀a1 , a2 ∈ ÔV0 , a1 ≤ a2 ⇒ ĴM,ρ(a1) ≥ ĴM,ρ(a2).

It is furthermore standard to see that, for any Ω ∈ O(D), there holds

ĴM,ρ(1Ω) →
M→∞

Jρ(Ω).

The desired monotonicity thus holds under certain assumptions on f and g, which guarantees existence
for (Pρ).
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1.3.3 Methods developed to study the (in)stability of the ball
(Chapters 6 and 3): Shape derivatives

We present here the methods used to study the stability of the ball through the lens of shape derivat-
ives, see Section 1.1.3.3 for definitions; stability is to be understood as "under some perturbation, the
ball still satisfies optimality conditions". We consider two problems. The first one is (Pα) and writes
as

inf
m∈M(Ω)

λα(m)

where λα(m) is the first eigenvalue of

−∇ · ((1 + αm)∇)−m.

This problem is studied in Chapter 3 of this manuscript and presented in Section 1.2.1.2 of this
Introduction. We consider the case

Ω = B(0;R).

Let B∗ = B(0, r∗) be such that m∗ = κ1B∗ is the unique solution of (Pα) when α = 0. We want to
check whether or not m∗ still satisfies optimality conditions when α > 0, α small enough. The first
step is then to compute the shape derivatives of

Fα : E 7→ λα(κ1E)

and to study the Lagrangian associated with the volume constraint. First of all, we note that it is
always a critical point in the sense of a shape: m∗ satisfies first order optimality conditions. Since
m∗ is a critical point for any α ≥ 0, which can be established in a straightforward manner, let us
introduce the Lagrange multiplier Λα, and the Lagrangian

Lα := Fα − ΛαVol.

The second problem we consider is set in a more classical context; it is Problem (Pρ) presented in
the previous Section 1.3.2 and in Section 1.2.3 of the Introduction. We briefly recall that we want to
solve

inf
Ω⊂D ,|Ω|≤V0

Jρ(Ω) , Jρ(Ω) =
1

2

ˆ
Ω

|∇uρ,Ω|2 −
ˆ

Ω

gu ,

{
−∆uρ,Ω + ρf(uρ,Ω) = g in Ω ,
uρ,Ω = 0 on ∂Ω.

Since, if g is radially symmetric and non-increasing, the centered ball B∗ such that |B∗| = V0 is the
unique solution for ρ = 0, we want to see if for ρ > 0 small enough, B∗ satisfies optimality conditions.
It is once again easy to check that B∗ is a critical point (in the sense of shape derivatives). Let Λ̃ρ be
the Lagrange multiplier associated with the volume constraint and consider the Lagrangian

Tρ := Jρ − Λ̃ρ Vol .

The second order optimality conditions in the sense of shape derivatives writes as follows in both
cases: let

Ξ :=

{
φ ∈ C 1 ,

ˆ
∂B∗
〈φ, ν〉 = 0

}
.

In the case of Lα, we need to require φ to have a compact support in the underlying domain Ω, while
in the case of Tρ we only need to require that it has a compact support.

The second order optimality conditions for Problem (Pα) (resp. Problem (Pρ)) reads as follows

∀φ ∈ Ξ , 〈φ, ν〉|∂B∗ 6= 0 , L′′α(B∗)[φ, φ] > 0 (resp. T ′′ρ (B∗)[φ, φ] > 0).
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We are going to prove that, in the two-dimensional case, this positivity holds for L′′α (Theorem 3.1.3
of Chapter 3) whenever α > 0 is small enough, while, depending on f , when g ≡ 1, positivity might
fail for T ′′ρ , even if ρ is small.

In both cases, the fact that we are working with the ball B∗ in two dimensions allows us to
decompose 〈φ, ν〉|∂B∗ as its Fourier series

〈φ, ν〉|∂B∗ =
∑
k≥1

ak,φe
2ikπθ.

We then prove that there exist two sequences {ωk,α}k∈N et {εk,ρ}k∈Nsuch that

L′′α(B∗)[φ, φ] =
∑
k≥1

ωk,α|ak,φ|2

and
T ′′ρ (B∗)[φ, φ] =

∑
k≥1

εk,ρ|ak,φ|2.

These two problems then have different qualitative behaviours:

1. For L′′α:

We begin with a study of the unperturbed problem, i.e, with the study of the sequence {ωk,0}k∈N∗ .
We prove that, for every k ≥ 1, ωk,0 = yk(r∗) for a solution yk to an equation of the form

L0yk = −k
2

r2
yk on (0;R) , [y′k(r∗)] = C independent of k , y′k(0) = yk(R) = 0.

We prove that the differential operator L0 has a maximum principle, which gives us monotonicity
for the sequence {ωk,0}k∈N:

∀k ≥ 1 , ωk+1,0 > ωk,0.

Finally, studying the case ω1,0 we prove that ω1,0 > 0 so that

ωk,0 > ω1,0 (k ≥ 2).

We then show that, for α > 0, the coefficient ωk,α is defined, in the same way, through a
hierarchy of equations that admits a maximum principle. This allows us to prove that, for every
k ≥ 2, there holds

ωk,α − ω1,α ≥ −Mα

for some uniform (in k) constantM > 0. The proof that L′′α is positive then follows immediately.

2. For T ′′ρ : regardless of g and f , we can prove, using the same comparison methods to get that,
for the unperturbed problem (ρ = 0) there holds

∀k ∈ N , εk+1,0 > εk,0 ≥ ε1,0 ≥ 0,

and that there exists M > 0 such that, for ρ > 0 small enough, there holds

∀k ∈ N , εk,ρ − ε1,ρ ≥ −Mρ.

We then need to distinguish two cases:
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(a) When g satisfies the stability condition

1

πR2

ˆ
B∗
g > g(R),

then there holds ε1,0 > 0 and hence, for any f there exists ρ∗ = ρ∗(f) > 0 such that, for
any ρ < ρ∗, T ′′ρ is positive on Ξ.

(b) When g ≡ 1, there holds ε1,0 = 0. We then look for a Taylor expansion of ε1,ρ of the form

ε1,ρ = ρε(f) + O
ρ→0

(ρ2).

Computing ε(f), we prove that there exists f such that ε(f) < 0, which means that, for
any ρ > 0 small enough, ε1,ρ < 0. Hence, B∗ does not satisfy the second order optimality
conditions.

Both these methods have the advantage to overcome the usually lengthy computations, which involve
Bessel functions, and we do believe that this method can be used in many situations; indeed, it only
relies on separation of variables and on a maximum principle for the underlying elliptic operator. Such
assumptions are verified in many cases. We do note, however, that this method, however useful, can
not be used in a straightforward manner to derive local quantitative inequalities- it only gives a L2

coercivity, while, in classical shape optimisation, a H
1
2 - coercivity is usually to be expected (see [64]).

1.3.4 Another way to investigate the stationarity of the ball
(Chapters 3 and 4): parametric framework

We now present a method developed in [Maz19a] and [MNP19a] to investigate, once again, the stability
of the ball m∗ = κ1B∗ in a parametric setting, i.e when we are trying to optimise an interior domain.
While the previous paragraph was devoted to the study of shape derivatives, this paragraphe focuses
on the optimality among radial distributions, which allows for changes in the topology.

We work with Problem (Pα), that is

inf
m∈M(Ω)

λα(m), (Pα)

where λα(m) is the first Dirichlet eigenvalue of

−∇ · ((1 + αm)∇)−m

and with Problem (Q), that is

inf
m∈M(Ω)

λ(m), (Q)

where λ(m) is the first Dirichlet eigenvalue of

−∆−m.

In both cases,
Ω = B(0, R) , m∗ = κ1B∗ ∈M(Ω),

and we are going to prove two different results for these problems, using the same method which can,
in a crude form, be linked to a quantitative version of the bathtub principle.

A quantitative bathtub principle This method can be described as follows in a simpler context:
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Assume you are given a C 1 function f : E → R (for some domain E), whose level sets you assume
to be regular (n−1)-dimensional submanifolds. Consider the following optimisation problem, for some
parameter δ > 0:

inf
H∈Hδ

−
ˆ
E

fH,

where
Hδ =

{
0 ≤ H ≤ 1 ,

ˆ
E

H = δ

}
.

The bathtub principle states that, given the regularity of f , the unique minimiser for this problem is

H∗ := 1E∗

with
E∗ = {f ≥ µ}

a level set of f . One might then consider a quantitative inequality for this problem. Since we expect
an inequality of the form ˆ

E

fH −
ˆ
E

fH∗ ≥ C||H −H∗||2L1(E)

we introduce the auxiliary class

Hε := {H ∈ Hδ , ||H −H∗||L1(E) = ε}.

We rewrite, for any H ∈ Hε, h := H −H∗. Then

h ∈ Gε = {−1 ≤ h ≤ 1 , h1E∗ ≤ 0 , h1E\E∗ ≥ 0 ,

ˆ
E

h = 0 ,

ˆ
E

|h| = ε.}.

It is then easy to see that, to prove the desired quantitative inequality, it suffices to prove that

lim
ε→0

inf
h∈Gε

´
E
−fh
ε2

= C > 0.

Finally, using once again the bathtub principle, one sees that solution h∗ε of

inf
h∈Hε

−
ˆ
E

fh

is
h∗ε = 1E1

ε
− 1E2

ε
,

with
E1
ε = {µ1

ε ≥ f ≥ µ} , E2
ε = {µ ≥ f ≥ µ2

ε} , |Eiε| = ε , i = 1, 2.

Once again, the regularity asumptions on f ensure that these solutions are uniquely characterized as
these intermediate level sets.

Let us represent the situation in the figure below
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h∗ε = −1

E∗

(E∗)c

h∗ε = 0

∂E∗ = {f = µ} h∗ε = +1

h∗ε = 0

and the dashed boundaries are level set of f .

If we zoom around a point x0 on the boundary ∂E∗, we get the following situation:

•
x0

tε,−(x0)

tε,+(x0)

hε = +1

hε = −1

f = µ1
ε

f = µ2
ε

f = µ

We approximately have
tε,+ ≈ tε,− ≈ C(x)||h||L1(Ω),

and, if ∂f∂ν 6= 0 on ∂E∗, we have
C(x) ≥ C0 > 0 on ∂E∗.

If we compute the quantity −
´
E
hεf and use the Fubini theorem, we have

−
ˆ

Ω

hεf ≈
ˆ
∂E

(ˆ tε,+(x)

0

f(x− tνE∗(x))dt

)
dHn−1(x)

−
ˆ
∂E

(ˆ tε,−(x)

0

f(x+ tνE∗(x))dt

)
dHn−1(x).

We then write

f(x− tνE∗x)) ≈ µ− t ∂
∂ν

(f) (x), f(x+ tνE∗(x)) ≈ µ+ t
∂

∂ν
(f) (x),
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so that

−
ˆ
E

hεf ≈
ˆ
∂E∗

(ˆ tε,+(x)

0

f(x− tνE∗(x))dt

)
dHn−1(x)

−
ˆ
∂E∗

(ˆ tε,−(x)

0

f(x+ tνE∗(x))dt

)
dHn−1(x)

≈
ˆ
∂E∗

f(x)tε,+(x)dHn−1(x)−
ˆ
∂E

f(x)tε,−(x)dHn−1(x)

−
ˆ
∂E∗

∂

∂ν
(f) (x)

(
tε,+(x)2 + tε,−(x)2

)
dHn−1(x)

≈ −
ˆ
∂E∗

∂

∂ν
(f) (x)

(
2C(x)||hε||2L1(E)

)
dHn−1(x)

≥ 2C0 inf

∣∣∣∣∂f∂ν
∣∣∣∣
∂E∗

Per(E∗)||hε||2L1(E).

This is the desired inequality. Note that the key here is the Taylor expansion of the function f across
the boundary of one of its level sets and its regularity. We are going to apply this idea to our two
problems.

Stationarity of the ball among radial distribution (Chapter 3) We first sketch the proof of
the following result:

∀α > 0 small enough, ∀m ∈M(Ω) , m radially symmetric , λα(m) ≥ λα(m∗). (1.28)

In order to prove (1.28), the naive approach would be the following: argue by contradiction and assume
that, for every α > 0, there exists a radially symmetric mα ∈ M(Ω) such that λα(mα) < λα(m∗).
We can prove that, if this is the case, then mα writes as mα = κ1Eα and, working a bit more, we can
prove that the Hausdorff distance dα := dH(Eα,B∗) satisfies

dα →
α→0

0.

One might then consider the application

f : t 7→ λα(mα + t(mα −m∗)),

compute its derivative and write that there exists t0 ∈ [0, 1] such that

λα(mα)− λα(m∗) = f ′(t0) =

ˆ
Ω

(mα −m∗)
(
ακ|∇ut0 |2 − u2

t0

)
,

where, for every τ ∈ [0; 1], we define uτ as the eigenfunction associated with mτ := mα+ τ(mα−m∗).
At this step, the strategy developed above (i.e expending

(
ακ|∇ut0 |2 − u2

t0

)
across ∂B∗) would work to

prove that this last quantity is bounded from below by C0||hα||2L1(Ω), but this is not a licit computation;
indeed,

(
ακ|∇ut0 |2 − u2

t0

)
is not regular enough (it is not even continuous) to apply the method.

To overcome this difficulty, we introduce the following path in [MNP19a]: following [142], introduce,
for any τ ∈ [0, 1],

Λ−(mτ ) :=
1 + ακ

1 + α(κ−mτ )
,
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define f̃(τ) to be the first eigenvalue of −∇ · (Λ−(mτ )∇)−mτ , associated with the eigenfunction zτ .
Then we can write, computing once again the derivative of f̃ ,

λα(mα)− λα(m∗) = f̃(1)− f̃(0) = f̃ ′(t0) =

ˆ
Ω

hα
(
ακΛ−(mτ )|∇zτ |2 − z2

τ

)
=:

ˆ
Ω

hαΨτ
α.

Now, the switch function Ψτ
α is regular and, from the radiality assumption, it is constant on the

boundary ∂B∗. This is where the radiality hypothesis is used. Some work (which is carried out in
Chapter 3 of this manuscript) still needs to be done, but the method of expanding Ψτ

α across ∂B∗
works in this context and we can conclude to a contradiction. We also note that this method leads to
a quicker proof of the stationarity result of [117].

Quantitative stability of the ball (Chapter 4) In [Maz19a], we apply this method as a step in
the proof of a quantitative inequality for Problem (Q) which, we recall, is defined as

inf
m∈M(Ω)

λ(m).

Indeed, the first step is to prove the quantitative inequality for radial distributions m: we want to
show that there exists C > 0 such that, for any radially symmetric m ∈M(Ω),

λ(m)− λ(m∗) ≥ C||m−m∗||2L1(Ω).

Let us introduce, for a parameter δ > 0, the auxiliary class

Mδ = {m ∈M(Ω) ,m radially symmetric, ||m−m∗||L1(Ω) = δ}.

Let m∗δ be the solution of
inf

m∈Mδ(Ω)
λ(m).

Obviously it suffices to prove that

lim
δ→0

λ(m∗δ)− λ(m∗)

δ

2

= C0 > 0.

After some careful work, we can prove that the graph of hδ = mδ −m∗ looks as follows (∂B∗ is the
black circle):

{hδ = +1}{hδ = −1}

We introduce, for t ∈ [0, 1], mt := m∗ + thδ and define f(t) := λ(mt), as well as ut, which is the
associated eigenfunction. We compute the derivative of f and, combined with the fact that there
exists t0 ∈ [0, 1] such that

λ(mδ)− λ(m∗) = f ′(t0)
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we get

λ(mδ)− λ(m∗) = −
ˆ

Ω

hδu
2
t0 .

We first notice that ut0 is constant on ∂B∗ since it is radial. This is where the radiality hypothesis is
needed.

Now, using the fact that, for δ > 0 small enough, ut0 is close in the C 1 topology to u0, we can
apply the very same method to obtain

λ(mδ)− λ(m∗) ≥ C||hδ||2L1(Ω) = Cδ2.

This is the core argument for this step of the proof of the quantitative inequality, and we write down
the remaining steps in Chapter 4 of this manuscript.

1.3.5 Methods developed for the quantitative stability of the
ball (Chapter 4)

Combining the methods of Paragraph 1.3.4, the comparison methods for shape derivatives of Para-
graph 1.3.3 and a new type of surgery, we were able to prove in [Maz19a], a quantitative inequality
for the optimization problem

min
m∈M(B)

λ(m),

where λ(m) is the first Dirichlet eigenvalue of −∆−m and Ω = B(0, R) is a centered ball. We recall
that, if B∗ = B(0; r∗) with κ|B∗| = m0, then m∗ = κ1B∗ is the unique solution of this problem.

Our proof may be split in three main steps:

1. Proving it for radially symmetric distributions:

Using the methods of Paragraph 1.3.4, we can prove that there exists C > 0 such that, for any
radially symmetric m,

λ(m)− λ(m∗) ≥ C||m−m∗||2L1(Ω).

2. Proving it for normal deformations of B∗:

Let L : E 7→ λ(κ1E) − ΛVol(E) be the Lagrangian associated with the volume constraint of
the optimisation problem. using the comparison method presented in Paragraph 1.3.3 to study
the sign of the second order shape derivative at B∗, we can establish that, for any compactly
supported vector field φ such that

´
∂B∗〈φ, ν〉 = 0, there holds

L′′(B(0; r∗))[φ, φ] ≥ C||〈φ, ν〉||2L2(∂B∗).

Here, this L2 coercivity is optimal. Adapting the systematic approach of [64], we derive a local
quantitative inequality for normal perturbations of B∗.

3. Conclusion

To derive the general inequality, we consider the solution m̃δ of

inf
m∈M(Ω) ,||m−m∗||L1(Ω)=δ

λ(m).

We show that there exists Vδ such that m̃δ = 1Vδ , and that, by defining uδ as the associated
eigenfunction, we get the following situation: there exist µδ and ηδ such that we have the
following picture
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{uδ = ζδ}

{uδ = µδ}

{uδ = ηδ}

{mδ = 1}

We then study the measure of the striped zone below:

Let us call this volume Aδ. We prove that, if Aδ ∼δ→0 Cδ, then mδ can be compared to a
radially symmetric competitor and that, if Aδ = o

δ→0
(δ), then mδ can be compared to a small

normal perturbation of the ball, which, in both cases, was studied in the two previous steps.
This concludes the proof.

1.3.6 Methods developed for the controllability of
reaction-diffusion equations (Chapter 5)

We conclude this Section with a quick presentation of the method developed in [MRBZ19] to obtain
positive controllability results for bistable equations set in a slowly varying environment. The negative
results (i.e blocking phenomena leading to lack of controllability) are obtained through involved energy
arguments.

We recall that we work in a smooth bounded domain Ω, with a bistable non-linearity (see Section
1.2.2.2) f that has only three roots 0 < θ < 1. We want, for any initial datum p0, to establish that
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there exists a control a : ∂Ω→ [0; 1] and a time T > 0 such that the solution p of

∂p

∂t
− µ∆p− ε〈∇N,∇p〉 = f(p) in (0, T )× Ω ,

p = a(t, x) in (0, T )× ∂Ω,

0 ≤ p ≤ 1,

p(t = 0, ·) = 0 ≤ p0 ≤ 1,

(1.29)

satisfies p(T, ·) ≡ θ, 0 or 1. We assume that this is possible for any initial datum 0 ≤ p0 ≤ 1 when
ε = 0.

The method used in [163, 157] to prove this result for ε = 0 is the staircase method of [58]. Without
getting in too much details, we simply state the following result: if there exists a continuous (in the C 0

topology) path of steady states linking 0 to θ, if z0 ≡ 0 is the unique steady state with homogeneous
(zero) Dirichlet boundary conditions, then the this controllability property holds. We first note that
if, for ε = 0, z0 ≡ 0 is the unique steady-state with boundary conditions 0, this uniqueness property
still holds for ε > 0 small enough. In [157], such a path is built in the one-dimensional case; in [163],
they prove the existence of such a path in the multi-dimensional case.

In [MRBZ19], we proved the following property, which, however weaker, still guarantees the ap-
plicability of the staircase method: for any ε > 0 small enough, for any δ > 0 small enough, there
exists a sequence of steady-states p0,δ,ε, p1,δ,ε, . . . , pN,δ,ε of the equation

−µ∆pi,δ,ε − ε〈∇N,∇pi,δ,ε〉 = f(pi,δ,ε) , 0 ≤ pi,δ,ε ≤ 1

and such that

p1,δ,ε = 0 , pN,δ,ε ≡ θ , ||pi+1,δ,ε − pi,δ,ε||L∞ ≤ δ.

To build such a sequence, we first considered a sequence obtained in [163] of steadys-states
p0,δ,0, p1,δ,0, . . . , pN,δ,0 such that

||pi,δ,0 − pi+1,δ,0||C 0 ≤ δ

4
.

We then tried to perturb each of these pi,δ,0 to obtain a branch ε 7→ pi,δ,ε of steady-states for the
equation with drift. The implicit function theorem would enable us to do so, provided the operator

Li : −∆− f ′(pi,δ,0)

with Dirichlet boundary conditions is invertible. This is, in general, not the case. To overcome this
difficulty, rather than applying this theorem on Ω, we applied it on Ωη := Ω +B(0; η) after extending
pi,δ,0 to Ωη. We then choose η > 0 small enough, so that the monotonicity of the eigenvalues ensures
the invertibility of the operator on LI on Ωη. We then apply the implicit function theorem on this
domain. We represent the situation below:
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••
R+ η

•
R

x

y

Figure 1.7 – The solution pi,δ,0 on B(0;R) is extended to a solution on B(0;R+ η), and we apply the
implicit function theorem to obtain the blue curve.
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1.4 Open problems & Research projects

We finally present possible research projects.

1.4.1 Understanding oscillations in the small diffusivity
setting

Regarding the optimisation of the total population size addressed in [MNP19b], Chapter 2 and presen-
ted in Section 1.2.1.1 of this Introduction, we can say that the situation is rather well understood in
the case of large diffusivities. However, even in the one-dimensional case, the case of small diffusiv-
ities is rather open: apart from knowing that fragmentation may be better than concentration, no
qualitative information is known. This leads us to formulating the following question:

Open question 1 Can we give qualitative information about the solutions of (Pµ) as µ→ 0?

An analisis of the same type than the one carried out for large diffusivities, that is, the derivation
of a limit problem, seems delicate to obtain. The idea would be to obtain an asymptotic expansion of
the solution θm,µ of (1.11) under the form

θm,µ(x) ≈ m(x) + θ1

(
x,

x
√
µ

)
but, even on a formal level, the equation on θ1 is difficult to study. So far, even a purely formal
approach to this problem remains open.

1.4.2 An optimal control problem for monostable equations
Another related issue is that of optimal strategy for parabolic monostable equations. Following
[MNP19b], one may consider the control system

µ
(
∂θ
∂t −∆θm,µ

)
− θm,µ (m(t, ·)− θm,µ) = 0 in R+ × Ω ,

∂θm,µ
∂ν = 0 on R+ × ∂Ω ,

θm,µ(t = 0 , ·) = θ0 ,

(1.30)

where the resources distribution m depends on time and space. Let T be a time horizon; we assume
that

m ∈M1(T ; Ω) :=

{
m, 0 ≤ m(t, x) ≤ κ , et ∀t ∈ [0;T ] ,

 
Ω

m(t, x)dx = m0

}
,

or that

m ∈M2(T ; Ω) :=

{
m, 0 ≤ m(t, x) ≤ κ , et

 T

0

 
Ω

m(t, x)dx = m0

}
,

and we consider the two optimisation problems

sup
m∈M1(T ;Ω)

 
Ω

θm,µ(T, x)dx, (1.31)

and
sup

m∈M2(T ;Ω)(Ω)

 
Ω

θm,µ(T, x)dx. (1.32)
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Then we wish to investigate whether or not we can prove the bang-bang property for these problems
(in the sense that optimisers are bang-bang functions). Namely:

Open question 2 Are the solutions of (1.31), (1.32) bang-bang functions? What can be said, in
terms of concentration and fragmentation, about these maximisers?

We believe that our methods enable us to provide partial answers to these questions.
We are currently working with E. Zuazua and D. Ruiz-Balet on a turnpike property for (1.31). For

an introduction to the turnpike property in optimal control, we refer to [173, 156] and the references
therein, but sum it up here as follows: roughly speaking, what we want to prove is that there exists
two times T1 < T2 that do not depend on T such that, for T large enough and ||θ0||L∞ small enough:

1. Between 0 and T1, the optimiser m∗ is close to an optimiser for the first eigenvalue λ1(m,µ),

2. between T1 and T2, m∗ is close to the maximiser for the elliptic optimiser for the total population
size,

3. between T1 and T , m∗ goes away from the elliptic maximiser.

We have several promising leads, which lead to investigating the following question:

Open question 3 Can we prove this rough turnpike property for (1.31)?

1.4.3 A rearrangement à la Alvino-Trombetti for eigenvalues
with drifts and potentials

In [MNP19a], Chapter 3, we give a fairly complete study of the variational problem (Pα) which consists
in optimising the first eigenvalue of

Lm = −∇ · ((1 + αm)∇)−m;

we refer to Sections 1.2.1.2 and 1.3.4 of this Introduction. When Ω = B(0;R), we were able to show
that, for α > 0, m∗ = κ1B∗ is minimal among radial distributions and among all distributions if m0

is small enough.
To prove that m∗ is, in general, a global minimiser if α > 0 is small enough, without any smallness

assumption on m0, the most promising approach seems to be an approach mixing properties of the
Schwarz rearrangement and of the Alvino-Trombetti rearrangement.

Open question 4 Can we obtain a rearrangement mapping any m ∈ M(B(0, R)) to a radially
symmetric function m#∈M(B(0, R)) such that

λα(m#) ≤ λα(m)?

Should such a rearrangement exist, our result on the minimality of m∗ among radial distributions
would lead to the conclusion.

Finding such a rearrangement seems complicated: the Schwarz rearrangement has a “global”action,
while the rearrangement of Alvino and Trombetti has a “local”definition. We do not know yet whether
or not it is possible to concile these two approaches.

1.4.4 Open questions in spectral optimisation

We mention two other problems we could study, which are linked to Chapters 3, 4.
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1. Disproving a conjecture (Neumann boundary conditions):
This is the following question raised in[116]: consider the spectral optimisation problem

min
m∈M(Ω)

λN (m),

where

(a) Ω = B(0; 1),
(b) λN1 (m) is the first Neumann eigenvalue of

Lm := −∆−m.

It has been conjectured that the solution of this optimisation problem was a piece of a disk,
but we think we might be able to prove that this is not the case. This would be a first step
in understanding qualitative properties of optimisers for spectral problem, in a geometry that
would not be a square.

2. A stationarity property (Robin boundary conditions):
We might consider another related problem, that of spectral optimisation with Robin boundary
conditions, that is, try to study the following variational problem:

min
m∈M(Ω)

λβ(m) (1.33)

where

(a) Ω = B(0; 1),
(b) λβ(m) is the first eigenvalue of the operator

Lm := −∆−m

with the Robin boundary conditions

∂u

∂ν
+ βu = 0.

It is known (see [116]) that, as β →∞, the solutions mβ of this problem converge to m∗ = κ1B∗ .
A natural conjecture backed by the numerical simulations of [116] is the following

∃β∗ > 0 , ∀β ≥ β∗ ,mβ = m∗.

In the one dimensional case, this is proved in [50].
Adapting some of the tools and methods introduced in [Maz19a], Chapter 4, we think we might
be able to give this conjecture a positive answer in the two-dimensional case.

We might sum up these conjectures as follows:

Open question 5 Can our methods enable us to derive more qualitative properties on spectral
optimisation problems?

1.4.5 Extension of the quantitative inequality to other
domains

A natural extension of [Maz19a], Chapter 4, presented in Sections 1.2.1.3 and 1.3.4 of this Introduction,
is the following question:
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Open question 6 Can we prove that, for any domain Ω, ift M∗ is the set of maximisers of the
first Dirichlet eigenvalue λ(m) of

L −m := −∆−m

we have
λ(m)− λ(m∗) ≥ CdistL1(m,M∗)2?

Here, the main difficulty is the fact that the Schwarz rearrangement, which is a crucial tool to
handle topological changes in [Maz19a], is no longer available.

1.4.6 Shape optimisation & optimal control
After the work we carried out in [MRBZ19], Chapter 5, presented in Sections 1.2.2 and 1.3.6 of this
Introduction, it seems interesting to understand the influence of spatial heterogeneity on controllability
properties of equations- one approach may be to understand the following toy problem: let the class
of admissible drifts be defined as

N (Ω) :=

{
N ∈ L∞(Ω) , 1 ≤ N ≤ κ̃ ,

 
Ω

N = N0

}
and consider the heat equation with boundary control a:

∂u
∂t −∇ · (N∇u) = 0 in R+ × Ω,

u(t = 0) = 0 ,

u(t, ·) = a(t, ·) ∈ [0; 1] on R+ × ∂Ω

(1.34)

Let, for any N ∈ N (Ω), T (N) be the minimal control time from 0 to θ. Then:

Open question 7 What can be said about the optimisers N∗ of

min
N∈N (Ω)

T (N)?
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CHAPTER 2. OPTIMIZATION OF THE TOTAL POPULATION SIZE

General presentation of the chapter: main difficulties
and methods

This Chapter is devoted to the study of the influence of spatial heterogeneity on the total population
size. Namely, considering the logistic reaction-diffusion equation{

µ∆θm,µ(x) + (m(x)− θm,µ(x))θm,µ(x) = 0 x ∈ Ω,
∂θm,µ
∂ν = 0 x ∈ ∂Ω,

(2.1)

where
m ∈Mm0,κ(Ω) :=

{
0 ≤ m ≤ κ ,

 
Ω

m = m0

}
,

can we characterize or give some properties of the solutions of the variational problem

max
m∈Mm0,κ(Ω)

F (m,µ) :=

 
Ω

θm,µ? (2.2)

As explained in the Introduction to this thesis, two qualitative features are important: pointwise
properties (the so-called bang-bang property) and geometric properties, referred to as fragmentation
and concentration of resources.
Our four main results, and the methods developed here to obtain them, can be summed up as follows:

• The bang-bang property for large diffusivities:

This is Theorem 2.1.1, which asserts that, for large diffusivities µ, any solution m∗ is of bang-
bang type, i.e writes m∗ = κ1E for some subset E ⊂ Ω. The main difficulty in establishing this
Theorem is that the convexity of m 7→ F (m,µ) is not clear at all, since the criterion we wish
to optimize is non-energetic. To overcome this difficulty, we decompose the solution θm,µ and
F (·, µ) in a power series

θm,µ =

∞∑
k=0

ηk,m
µk

, F (m,µ) =

∞∑
k=0

Fk(m)

µk
,

we establish that F1 is a strictly convex functional and that the possible loss of convexity due
to higher order terms Fk is controlled by the convexity of F1:

|F̈k| . F̈1,

thus establishing the convexity of the functional for large diffusivities. To the best of our
knowledge, this method is entirely new.

• A full stationarity result in dimension 1: This is the content of Theorem 2.1.3. Using the op-
timality conditions we prove that, in dimension 1, in Ω = [0, 1], there exists µ1 > 0 such that,
for any µ ≥ µ1, the unique solutions of Problem (2.2) are the two following crenels:

Figure 2.1 – Ω = (0, 1). Plot of the only two maximizers of Fµ overMm0,κ(Ω).
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We also derive concentration properties for large diffusivities in 2 dimensional orthotopes, see
Theorem 2.1.2, and provide the full proof of the decreasingness of minimizers of an ergetic
variational problem, which we could not locate in the existing literature.

• A more surprising fragmentation result in dimension 1:

This is Theorem 2.1.4, which asserts that, for small enough diffusivities, fragmentation is better
(with regards to Problem (2.2)) than concentration (which is known to always be better for
optimal survival):

Figure 2.2 – Ω = (0, 1). The left distribution is better than the right for small diffusivities.

This observation is quite striking in the context of optimization in mathematical ecology and
provides a strong example of a natural criterion for which fragmenting resources is better than
concentrating them. Numerical simulations back this result up, but a full understanding of the
phenomenon at play here is not yet available. We plan on coming back to this problem in future
works.
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2.1 Introduction

2.1.1 Motivations and state of the art

In this article, we investigate an optimal control problem arising in population dynamics. Let us
consider the population density θm,µ of a given species evolving in a bounded and connected domain
Ω in Rn with n ∈ N∗, having a C 2 boundary. In what follows, we will assume that θm,µ is the positive
solution of the steady logistic-diffusive equation (denoted (LDE) in the sequel) which writes{

µ∆θm,µ(x) + (m(x)− θm,µ(x))θm,µ(x) = 0 x ∈ Ω,
∂θm,µ
∂ν = 0 x ∈ ∂Ω,

(LDE)

where m ∈ L∞(Ω) stands for the resources distribution and µ > 0 stands for the dispersal ability of
the species, also called diffusion rate. From a biological point of view, the real number m(x) is the
local intrinsic growth rate of species at location x of the habitat Ω and can be seen as a measure of
the resources available at x.

As will be explained below, we will only consider non-negative resource distributions m, i.e such
that m ∈ L∞+ (Ω) = {m ∈ L∞(Ω) ,m ≥ 0 a.e}. In view of investigating the influence of spatial hetero-
geneity on the model, we consider the optimal control problem of maximizing the functional

Fµ : L∞+ (Ω) 3 m 7→
 

Ω

θm,µ,

where the notation
ffl
denotes the average operator, in other words

ffl
Ω
f = 1

|Ω|
´

Ω
f . The functional F

stands for the total population size, in order to further our understanding of spatial heterogeneity on
population dynamics.
In the framework of population dynamics, the density θm,µ solving Equation (LDE) can be interpreted
as a steady state associated to the following evolution equation

∂u
∂t (t, x) = µ∆u(t, x) + u(t, x)(m(x)− u(t, x)) t > 0, x ∈ Ω
∂u
∂ν (t, x) = 0 t > 0, x ∈ ∂Ω
u(0, x) = u0(x) ≥ 0 , u0 6= 0 x ∈ Ω

(LDEE)

modeling the spatiotemporal behavior of a population density u in a domain Ω with the spatially
heterogeneous resource term m.

The pioneering works by Fisher [75], Kolmogorov-Petrovski-Piskounov [113] and Skellam [168] on
the logistic diffusive equation were mainly concerned with the spatially homogeneous case. Thereafter,
many authors investigated the influence of spatial heterogeneity on population dynamics and species
survival. In [107], propagation properties in a patch model environment are studied. In [166], a
spectral condition for species survival in heterogeneous environments has been derived, while [112]
deals with the influence of fragmentation and concentration of resources on population dynamics.
These works were followed by [19] dedicated to an optimal design problem, that will be commented
in the sequel.

Investigating existence and uniqueness properties of solutions for the two previous equations as
well as their regularity properties boils down to the study of spectral properties for the linearized
operator

L : D(L) 3 f 7→ µ∆f +mf,

where the domain of L is D(L) = {f ∈ L2(Ω) | ∆f ∈ L2(Ω)} and of its first eigenvalue λ1(m,µ),
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characterized by the Courant-Fischer formula

λ1(m,µ) := sup
f∈W 1,2(Ω),

´
Ω
f2=1

{
−µ

ˆ
Ω

|∇f |2 +

ˆ
Ω

mf2

}
. (2.3)

Indeed, the positiveness of λ(m,µ) is a sufficient condition ensuring the well-posedness of equations
(LDEE) and (LDE) ([19]). Then, Equation (LDE) has a unique positive solution θm,µ ∈ W 1,2(Ω).
Furthermore, for any p ≥ 1, θm,µ belongs to W 2,p(Ω), and there holds

0 < inf
Ω
θm,µ ≤ θm,µ ≤ ‖m‖L∞(Ω). (2.4)

Moreover, the steady state θm,µ is globally asymptotically stable: for any u0 ∈ W 1,2(Ω) such that
u0 ≥ 0 a.e. in Ω and u0 6= 0 , one has

‖u(t, ·)− θm,µ‖L∞(Ω) −→
t→+∞

0.

where u denotes the unique solution of (LDEE) with initial state u0 (belonging to L2(0, T ;W 1,2(Ω))
for every T > 0).

The importance of λ1(m,µ) for stability issues related to population dynamics models was first
noted in simple cases by Ludwig, Aronson and Weinberger [130]. Let us mention [70] where the case
of diffusive Lotka-Volterra equations is investigated.

To guarantee that λ1(m,µ) > 0, it is enough to work with distributions of resources m satisfying
the assumption

m ∈ L∞+ (Ω) where L∞+ (Ω) =

{
m ∈ L∞(Ω),

ˆ
Ω

m > 0

}
. (H1)

Note that the issue of maximizing this principal eigenvalue was addressed for instance in [103, 104,
116, 129, 85].

In the survey article [127], Lou suggests the following problem: the parameter µ > 0 being fixed,
which weightm maximizes the total population size among all uniformly bounded elements of L∞(Ω)?

In this article, we aim at providing partial answers to this issue, and more generally new results
about the influence of the spatial heterogeneity m(·) on the total population size.

For that purpose, let us introduce the total population size functional, defined for a given µ > 0
by

Fµ : L∞+ (Ω) 3 m 7−→
 

Ω

θm,µ, (2.5)

where θm,µ denotes the solution of equation (LDE).

Let us mention several previous works dealing with the maximization of the total population
size functional. It is shown in [125] that, among all weights m such that

ffl
Ω
m = m0, there holds

Fµ(m) ≥ Fµ(m0) = m0; this inequality is strict whenever m is nonconstant. Moreover, it is also
shown that the problem of maximizing Fµ over L∞+ (Ω) has no solution.

Remark 2.1 The fact that m ≡ m0 is a minimum for Fµ among the resources distributions m
satisfying

ffl
Ω
m = m0 relies on the following observation: multiplying (LDE) by 1

θm,µ
and integrating

by parts yields

µ

 
Ω

|∇θm,µ|2

θm,µ
2 +

 
Ω

(m− θm,µ) = 0. (2.6)

and therefore, Fµ(m) = m0 +µ
´

Ω
|∇θm,µ|2
θm,µ2 ≥ m0 = Fµ(m0) for all m ∈ L∞+ (Ω) such that

ffl
Ω
m = m0.

It follows that the constant function equal to m0 is a global minimizer of Fµ over {m ∈ L∞+ (Ω) ,
ffl

Ω
m =
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m0}.

In the recent article [12], it is shown that, when Ω = (0, `), one has

∀µ > 0, ∀m ∈ L∞+ (Ω) | m ≥ 0 a.e.,
 

Ω

θm,µ ≤ 3

 
Ω

m.

This inequality is sharp, although the right-hand side is never reached, and the authors exhibit a
sequence (mk, µk)k∈N such that

ffl
Ω
θmk,µk/

ffl
Ω
mk → 3 as k → +∞, but for such a sequence there

holds ‖mk‖L∞(Ω) → +∞ and µk → 0 as k → +∞.
In [127], it is proved that, without L1 or L∞ bounds on the weight function m, the maximization
problem is ill-posed. It is thus natural to introduce two parameters κ,m0 > 0, and to restrict our
investigation to the class

Mm0,κ(Ω) :=

{
m ∈ L∞(Ω) , 0 ≤ m ≤ κ a.e ,

 
Ω

m = m0

}
. (2.7)

It is notable that in [69], the more general functional JB defined by

JB(m) =

ˆ
Ω

(θm,µ −Bm2) for B ≥ 0

is introduced. In the case B = 0, the authors apply the so-called Pontryagin principle, show the
Gâteaux-differentiability of JB and carry out numerical simulations backing up the conjecture that
maximizers of J0 overMm0,κ(Ω) are of bang-bang type.

However, proving this bang-bang property is a challenge. The analysis of optimal conditions is
quite complex, because the sensitivity of the functional "total population size" with respect to m(·)
is directly related to the solution of an adjoint state, solving a linearized version of (LDE). Deriving
and exploiting the properties of optimal configurations therefore requires a thorough understanding
of the θm,µ behavior as well as the associated state. To do this, we are introducing a new asymptotic
method to exploit optimal conditions.

We will investigate two properties of the maximizers of the total population size function Fµ.

1. Pointwise constraints. The main issue that will be addressed in what follows is the bang-
bang character of optimal weights m∗(·), in other words, whether m∗ is equal to 0 or κ almost
everywhere. Noting thatMm0,κ(Ω) is a convex set and that bang-bang functions are the extreme
points of this convex set, this question rewrites:

Are the maximizers m∗ extreme points of the setMm0,κ(Ω)?

In our main result (Theorem 2.1.1) we provide a positive answer for large diffusivities. It
is notable that our proof rests upon a well-adapted expansion of the solution θm,µ of (LDE)
with respect to the diffusivity µ.
This approach could be considered unusual, since such results are usually obtained by an analysis
of the properties of the adjoint state (or switching function). However, since the switching
function very implicitly depends on the design variable m(·), we did not obtain this result in
this way.

2. Concentration-fragmentation. It is well known that resource concentration (which means
that the distribution of resources m decreases in all directions, see Definition 2.1.2 for a specific
statement) promotes the survival of species [19]. On the contrary, we will say that a resource
distributionm = κχE , where E is a subset of Ω, is fragmented when the E set is disconnected. In
the figure 2.3, Ω is a square, and the intuitive notion of concentration-fragmentation of resource
distribution is illustrated.
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Figure 2.3 – Ω = (0, 1)2. The left distribution is "concentrated" (connected) whereas the right one is
fragmented (disconnected).

A natural issue related to qualitative properties of maximizers is thus

Are maximizers m∗ concentrated? Fragmentated?

In Theorem 2.1.2, we consider the case of a orthotope shape habitat, and we show that con-
centration occurs for large diffusivities: if mµ maximizes Fµ overMm0,κ(Ω), the sequence
{mµ}µ>0 strongly converges in L1(Ω) to a concentrated distribution as µ→∞,.
In the one-dimensional case, we also prove that if the diffusivity is large enough, there are only
two maximizers, that are plotted on Fig. 2.4 (see Theorem 2.1.3).

Figure 2.4 – Ω = (0, 1). Plot of the only two maximizers of Fµ overMm0,κ(Ω).

Finally, in the one-dimensional case, we obtain a surprising result: fragmentation may be
better than concentration for small diffusivities (see Theorem 2.1.4 and Fig. 2.5 below).
This is surprising because in many problems of optimizing the logistic-diffusive equation, it is
expected that the best disposition of resources will be concentrated.

2.1.2 Main results
In the whole article, the notation χI will be used to denote the characteristic function of a measurable
subset I of Rn, in other words, the function equal to 1 in I and 0 elsewhere.
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Figure 2.5 – Ω = (0, 1). A double crenel (on the left) is better than a single one (on the right).

For the reasons mentioned in Section 2.1.1, it is biologically relevant to consider the class of ad-
missible weightsMm0,κ(Ω) defined by (2.7), where κ > 0 and m0 > 0 denote two positive parameters
such that m0 < κ (so that this set is nontrivial).

We will henceforth consider the following optimal design problem.

Optimal design problem. Fix n ∈ N∗, µ > 0, κ > 0, m0 ∈ (0, κ) and let Ω be a
bounded connected domain of Rn having a C 2 boundary. We consider the optimization
problem

sup
m∈Mκ,m0 (Ω)

Fµ(m). (Pnµ )

As will be highlighted in the sequel, the existence of a maximizer follows from a direct argument.
We will thus investigate the qualitative properties of maximizers described in the previous section
(bang-bang character, concentration/fragmentation phenomena).

For the sake of readability, almost all the proofs are postponed to Section 2.2.

Let us stress that the bang-bang character of maximizer is of practical interest in view of spreading
resources in an optimal way. Indeed, in the case where a maximizer m∗ writes m∗ = κχE , the total
size of population is maximized by locating all the resources on E.

2.1.2.1 First property

We start with a preliminary result related to the saturation of pointwise constraints for Problem
(Pnµ ), valid for all diffusivities µ. It is obtained by exploiting the first order optimality conditions for
Problem (Pnµ ), written in terms of an adjoint state.

Proposition 2.1 Let n ∈ N∗, µ > 0, κ > 0, m0 ∈ (0, κ). Let m∗ be a solution of Problem (Pnµ ).
Then, the set {m = κ} ∪ {m = 0} has a positive measure

2.1.2.2 The bang-bang property holds for large diffusivities

For large values of µ, we will prove that the variational problem can be recast in terms of a shape
optimization problem, as underlined in the next results.

Theorem 2.1.1 Let n ∈ N∗, κ > 0, m0 ∈ (0, κ). There exists a positive number µ∗ = µ∗(Ω, κ,m0)
such that, for every µ ≥ µ∗, the functional Fµ is strictly convex. As a consequence, for µ ≥ µ∗, any
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maximizer of Fµ overMm0,κ(Ω) (or similarly any solution of Problem (Pnµ )) is moreover of bang-bang
type1.

We emphasize that the proof of Theorem 2.1.1 is quite original, since it does not rest upon the
exploitation of adjoint state properties, but upon the use of a power series expansions in the diffusivity
µ of the solution θm,µ of (LDE), as well as their derivative with respect to the design variable m. In
particular, this expansion is used to prove that, if µ is large enough, then the function Fµ is strictly
convex. Since the extreme points of Mm0,κ(Ω) are bang-bang resources functions, the conclusion
readily follows.
This theorem justifies that Problem (Pnµ ) can be recast as a shape optimization problem. Indeed, every
maximizer m∗ is of the form m∗ = κχE where E is a measurable subset such that |E| = m0|Ω|/κ.

Remark 2.2 We can rewrite this result in terms of shape optimization, by considering as main un-
known the subset E of Ω where resources are located: indeed, under the assumptions of Theorem 2.1.1,
there exists a positive number µ∗ = µ∗(Ω, κ,m0) such that, for every µ ≥ µ∗, the shape optimization
problem

sup
E⊂Ω, |E|=m0|Ω|/κ

Fµ(κχE), (2.8)

where the supremum is taken over all measurable subset E ⊂ Ω such that |E| = m0|Ω|/κ, has a
solution. We underline the fact that, for such a shape functional, which is “non-energetic” in the
sense that the solution of the PDE involved cannot be seen as a minimizer of the same functional,
proving the existence of maximizers is usually intricate.

2.1.2.3 Concentration occurs for large diffusivities

In this section, we state two results suggesting concentration properties for the solutions of Problem
(Pnµ ) may hold for large diffusivities.
For that purpose, let us introduce the function space

X := W 1,2(Ω) ∩
{
u ∈W 1,2(Ω) ,

 
Ω

u = 0

}
(2.9)

and the energy functional

Em : X 3 u 7→ 1

2

 
Ω

|∇u|2 −m0

 
Ω

mu. (2.10)

Theorem 2.1.2 [Γ-convergence property]

1. Let Ω be a domain with a C 2 boundary. For any µ > 0, let mµ be a solution of Problem (Pnµ ).
Any L1 closure point of {mµ}µ>0 as µ→∞ is a solution of the optimal design problem

min
m∈Mm0,κ

(Ω)
min
u∈X
Em(u). (2.11)

2. In the case of a two 2d orthotope Ω = (0; a1)×(0; a2), any solution of the asymptotic optimization
problem (2.11) decreases in every direction.

As will be clear in the proof, this theorem is a Γ-convergence property.
In the one-dimensional case, one can refine this result by showing that, for µ large enough, the

maximizer is a step function.

Theorem 2.1.3 Let us assume that n = 1 and Ω = (0, 1). Let κ > 0, m0 ∈ (0, κ). There exists
µ̂ > 0 such that, for any µ ≥ µ̂, any solution m of Problem (Pnµ ) is equal a.e. to either m̃ or m̃(1−·),
where m̃ = κχ(1−`,1) and ` = m0/κ.

1In other words, it is an element ofMm0,κ(Ω) equal a.e. to 0 or κ in Ω.
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2.1.2.4 Fragmentation may occur for small diffusivities

Let us conclude by underlining that the statement of Theorem 2.1.3 cannot be true for all µ > 0.
Indeed, we provide an example in Section 2.3.1 where a double-crenel growth rate gives a larger total
population size than the simple crenel m̃ of Theorem 2.1.3.

Theorem 2.1.4 The function m̃ = κχ(1−`,1) (and m̃(1− ·) = κχ(0,`)) does not solve Problem (Pnµ )
for small values of µ. More precisely, if we extend m̃ outside of (0, 1) by periodicity, there exists µ > 0
such that

Fµ
(
m̃(2 ·)

)
> Fµ(m̃).

This result is quite unusual. For the optimization of the first eigenvalue λ1(m,µ) defined by (2.3)
with respect to m on the interval (0; 1)

sup
m∈M((0;1))

λ1(m,µ)

we know (see [19]) that the only solutions are m̃ and m̃(1− ·), for any µ.
It is notable that the following result is a byproduct of Theorem 2.1.4 above.

Corollary 2.1 There exists µ > 0 such that the problems

sup
m∈M((0;1))

λ1(m,µ)

and
sup

m∈M((0;1))

Fµ(m)

do not have the same maximizers.

For further comments on the relationship between the main eigenvalue and the total size of the
population, we refer to [Maz19b], where an asymptotic analysis of the main eigenvalue (relative to µ
as µ→ +∞) is performed, and the references therein.

We conclude this section by mentioning the recent work [148], that was reported to us when we
wrote this article. They show that, if we assume the optimal distribution of regular resources (more
precisely, Riemann integrable), then it is necessarily of bang-bang type. Their proof is based on a
perturbation argument valid for all µ >0. However, proving such regularity is generally quite difficult.
Our proof, although it is not valid for all µ, is not based on such a regularity assumption, but these
two combined results seem to suggest that all maximizers of this problem are of bang-bang type.

2.1.3 Tools and notations
In this section, we gather some useful tools we will use to prove the main results.

Rearrangements of functions and principal eigenvalue. Let us first recall several monotonicity
and regularity related to the principal eigenvalue of the operator L.

Proposition 2.2 [70] Let m ∈ L∞+ (Ω) and µ > 0.

(i) The mapping R∗+ 3 µ 7→ λ1(m,µ) is continuous and non-increasing.

(ii) If m ≤ m1, then λ1(m,µ) ≤ λ1(m1, µ), and the equality is true if, and only if m = m1 a.e. in
Ω.

In the proof of Theorem 2.1.3, we will use rearrangement inequalities at length. Let us briefly
recall the notion of decreasing rearrangement.
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Definition 2.1.1 For a given function b ∈ L2(0, 1), one defines its monotone decreasing (resp.
monotone increasing) rearrangement bdr (resp. bbr) on (0, 1) by bdr(x) = sup{c ∈ R | x ∈ Ω∗c}, where
Ω∗c = (1− |Ωc|, 1) with Ωc = {b > c} (resp. bbr(·) = bdr(1− ·)).

The functions bdr and bbr enjoy nice properties. In particular, the Polyà-Szego and Hardy-
Littlewood inequalities allow to compare integral quantities depending on b, bdr, bbr and their de-
rivative.

Theorem : [108, 118] Let u be a non-negative and measurable function.

(i) If ψ is any measurable function from R+ to R, then
ˆ 1

0

ψ(u) =

ˆ 1

0

ψ(udr) =

ˆ 1

0

ψ(ubr) (equimeasurability);

(ii) If u belongs to W 1,p(0, 1) with 1 ≤ p, then
ˆ 1

0

(u′)p ≥
ˆ 1

0

(u′br)
p =

ˆ 1

0

(u′dr)
p (Pólya inequality);

(iii) If u, v belong to L2(0, 1), then
ˆ 1

0

uv ≤
ˆ 1

0

ubrvbr =

ˆ 1

0

udrvdr (Hardy-Littlewood inequality);

The equality case in the Polyà-Szego inequality is the object of the Brothers-Ziemer theorem (see
e.g. [74]).

Symmetric decreasing functions In higher dimensions, in order to highlight concentration phe-
nomena, we will use another notion of symmetry, namely monotone symmetric rearrangements that
are extensions of monotone rearrangements in one dimension. Here, Ω denotes the n-dimensional
orthotope

∏n
i=1(ai, bi).

Definition 2.1.2 For a given function b ∈ L1(Ω), one defines its symmetric decreasing rearrange-
ment bsd on Ω as follows: first fix the n − 1 variables x2, . . . , xn. Define b1,sd as the monotone
decreasing rearrangement of x 7→ b(x, x2, . . . , xn). Then fix x1, x3, . . . , xn and define b2,sd as the
monotone decreasing rearrangement of x 7→ b1,sd(x1, x, . . . , xn). Perform such monotone decreasing
rearrangements successively. The resulting function is the symmetric decreasing rearrangement of b.
We define the symmetric increasing rearrangement in a direction i a similar fashion and write it bi,id.
Note that, in higher dimensions, the definition of decreasing rearrangement strongly depends on the
order in which the variables are taken.

Similarly to the one-dimensional case, the Pólya-Szego and Hardy-Littlewood inequalities allow us
to compare integral quantities.

Theorem : [19, 20] Let u be a non-negative and measurable function defined on a box Ω =∏n
i=1(0; ai).

(i) If ψ is any measurable function from R+ to R, then
ˆ

Ω

ψ(u) =

ˆ
Ω

ψ(usd) =

ˆ
Ω

ψ(usd) (equimeasurability);
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(ii) If u belongs to W 1,p(Ω) with 1 ≤ p, then, for every i ∈ NN , [ai; bi] = ω1,i ∪ ω2,i ∪ ω3,i, where
the map (x1, . . . , xi−1, xi+1, . . . , xN ) 7→ u(x1, . . . , xn) is decreasing if xi ∈ ω1,i, increasing if
xi ∈ ω2,i and constant if xi ∈ ω3,i.

ˆ
Ω

|∇u|p ≥
ˆ

Ω

|∇usd|p (Pólya inequality);

Furthermore, if, for any i ∈ Nn,
´

Ω
|∇u|p =

´
Ω
|∇ui,sd|p then there exist three measurable subets

ωi,1 , ωi,2 and ωi,3 of (0; ai) such that

1. (0; ai) = ωi,1 ∪ ωi,2ωi,3,
2. u = ui,bd on

∏i−1
k=1(0; ak)× ωi,1 ×

∏n
k=i+1(0; ak),

3. u = ui,id on
∏i−1
k=1(0; ak)× ωi,2 ×

∏n
k=i+1(0; ak),

4. u = ui,bd = ui,id on
∏i−1
k=1(0; ak)× ωi,3 ×

∏n
k=i+1(0; ak).

(iii) If u, v belong to L2(Ω), then
ˆ

Ω

uv ≤
ˆ

Ω

usdvsd (Hardy-Littlewood inequality);

Poincaré constants and elliptic regularity results. We will denote by c(p)` the optimal positive
constant such that for every p ∈ [1,+∞), f ∈ Lp(Ω) and u ∈W 1,p(Ω) satisfying

∆u = f in D′(Ω),

there holds
‖u‖W 2,p(Ω) ≤ c

(p)
`

(
‖f‖Lp(Ω) + ‖u‖Lp(Ω)

)
.

The optimal constant in the Poincaré-Wirtinger inequality will be denoted by C(p)
PW (Ω). This inequality

reads: for every u ∈W 1,p(Ω), ∥∥∥∥u−  
Ω

u

∥∥∥∥
Lp(Ω)

≤ C(p)
PW (Ω)‖∇u‖Lp(Ω). (2.12)

We will also use the following regularity results:

Theorem ([169, Theorem 9.1]) Let Ω be a C 2 domain. There exists a constant CΩ > 0 such that,
if f ∈ L∞(Ω) and u ∈W 1,2(Ω) solve {

−∆u = f in Ω,
∂u
∂ν = 0 on ∂Ω,

(2.13)

then
‖∇u‖L1(Ω) ≤ CΩ‖f‖L1(Ω). (2.14)

Theorem ([53, Theorem 1.1]) Let Ω be a C 2 domain. There exists a constant CΩ > 0 such that, if
f ∈ L∞(Ω) and u ∈W 1,2(Ω) solve {

−∆u = f in Ω,
∂u
∂ν = 0 on ∂Ω,

(2.15)

then
‖∇u‖L∞(Ω) ≤ CΩ‖f‖L∞(Ω). (2.16)
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Remark 2.3 This result is in fact a corollary [53, Theorem 1.1]. In this article it is proved that the
L∞ norm of the gradient of f is bounded by the Lorentz norm Ln,1(Ω) of f , which is automatically
controlled by the L∞(Ω) norm of f .

Note that Stampacchia’s orginal result deals with Dirichlet boundary conditions. However, the same
duality arguments provide the result for Neumann boundary conditions.

Theorem ([121]) Let r ∈ (1; +∞). There exists Cr > 0 such that, if f ∈ Lr(Ω) and if u ∈W 1,r(Ω)
be a solution of {

−∆u = div(f) in Ω,
∂u
∂ν = 0 on ∂Ω,

(2.17)

then there holds
‖∇u‖Lr(Ω) ≤ Cr‖f‖Lr(Ω). (2.18)

2.2 Proofs of the main results

2.2.1 First order optimality conditions for Problem (Pnµ )
To prove the main results, we first need to state the first order optimality conditions for Problem
(Pnµ ). For that purpose, let us introduce the tangent cone toMm0,κ(Ω) at any point of this set.

Definition 2.2.1 ([93, chapter 7]) For every m ∈Mm0,κ(Ω), the tangent cone to the setMm0,κ(Ω)
at m, denoted by Tm,Mm0,κ

(Ω) is the set of functions h ∈ L∞(Ω) such that, for any sequence of positive
real numbers εn decreasing to 0, there exists a sequence of functions hn ∈ L∞(Ω) converging to h as
n→ +∞, and m+ εnhn ∈Mm0,κ(Ω) for every n ∈ N.

We will show that, for any m ∈Mm0,κ(Ω) and any admissible perturbation h ∈ Tm,Mm0,κ(Ω), the
functional Fµ is twice Gâteaux-differentiable at m in direction h. To do that, we will show that the
solution mapping

S : m ∈Mm0,κ(Ω) 7→ θm,µ ∈ L2(Ω),

where θm,µ denotes the solution of (LDE), is twice Gâteaux-differentiable. In this view, we provide
several L2(Ω) estimates of the solution θm,µ.

Lemma 2.1 ([69]) The mappping S is twice Gâteaux-differentiable.

For the sake of simplicity, we will denote by θ̇m,µ = dS(m)[h] the Gâteaux-differential of θm,µ at
m in direction h and by θ̈m,µ = d2S(m)[h, h] its second order derivative at m in direction h.

Elementary computations show that θ̇m,µ solves the PDE{
µ∆θ̇m,µ + (m− 2θm,µ)θ̇m,µ = −hθm,µ in Ω,
∂θ̇m,µ
∂ν = 0 on ∂Ω,

(2.19)

whereas θ̈m,µ solves the PDE{
µ∆θ̈m,µ + θ̈m,µ(m− 2θm,µ) = −2

(
hθ̇m,µ − θ̇2

m,µ

)
in Ω,

∂θ̈m,µ
∂ν = 0 on ∂Ω,

(2.20)

It follows that, for all µ > 0, the application Fµ is Gâteaux-differentiable with respect to m in
direction h and its Gâteaux derivative writes

dFµ(m)[h] =

ˆ
Ω

θ̇m,µ.
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Since the expression of dFµ(m)[h] above is not workable, we need to introduce the adjoint state pm,µ
to the equation satisfied by θ̇m,µ, i.e the solution of the equation{

µ∆pm,µ + pm,µ(m− 2θm,µ) = 1 in Ω,
∂pm,µ
∂ν = 0 on ∂Ω.

(2.21)

Note that pm,µ belongs to W 1,2(Ω) and is unique, according to the Fredholm alternative. In fact, we
can prove the following regularity results on pm,µ: pm,µ ∈ L∞(Ω), ‖pm,µ‖L∞(Ω) ≤ M , where M is
uniform in m ∈ Mm0,κ(Ω) and, for any p ∈ [1; +∞), pm,µ ∈ W 2,p(Ω), so that Sobolev embeddings
guarantee that pm,µ ∈ C 1,α(Ω).

Now, multiplying the main equation of (2.21) by θ̇m,µ and integrating two times by parts leads to
the expression

dFµ(m)[h] = −
ˆ

Ω

hθm,µpm,µ.

Now consider a maximizer m. For every perturbation h in the cone Tm,Mm0,κ(Ω), there holds
dFµ(m)[h] ≥ 0. The analysis of such optimality condition is standard in optimal control theory
(see for example [179]) and leads to the following result.

Proposition 2.3 Let us define ϕm,µ = θm,µpm,µ, where θm,µ and pm,µ solve respectively equations
(LDE) and (2.21). There exists c ∈ R such that

{ϕm,µ < c} = {m = κ}, {ϕm,µ = c} = {0 < m < κ}, {ϕm,µ > c} = {m = 0}.

2.2.2 Proof of Proposition 2.1
An easy but tedious computation shows that the function ϕm,µ introduced in Proposition 2.3 is
C 1,α(Ω)∩W 1,2(Ω) function, as a product of two C 1,α functions and satisfies (in a W 1,2 weak sense){

µ∆ϕm,µ − 2µ
〈
∇ϕm,µ, ∇θm,µθm,µ

〉
+ ϕm,µ

(
2µ
|∇θm,µ|2
θm,µ2 + 2m− 3θm,µ

)
= θm,µ in Ω,

∂ϕm,µ
∂ν = 0 on ∂Ω,

(2.22)

where 〈·, ·〉 stands for the usual Euclidean inner product. To prove that |{m = 0}| + |{m = κ}| > 0,
we argue by contradiction, by assuming that |{m = κ}| = |{m = 0}| = 0. Therefore, ϕm,µ = c a.e. in
Ω and, according to (2.22), there holds

c

(
2µ
|∇θm,µ|2

θm,µ
2 + 2m− 3θm,µ

)
= θm,µ

Integrating this identity and using that θm,µ > 0 in Ω and c 6= 0, we get

2c

(
µ

ˆ
Ω

|∇θm,µ|2

θm,µ
2 +

ˆ
Ω

(m− θm,µ)

)
= (c+ 1)

ˆ
Ω

θm,µ.

Equation (2.6) yields that the left-hand side equals 0, so that one has c = −1. Coming back to the
equation satisfied by ϕm,µ leads to

m = θm,µ − µ
|∇θm,µ|2

θm,µ
2 .

The logistic diffusive equation (LDE) is then transformed into

µθm,µ∆θm,µ − µ|∇θm,µ|2 = 0.
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Integrating this equation by parts yields
´

Ω
|∇θm,µ|2 = 0. Thus, θm,µ is constant, and so is m. In

other words, m = m0, which, according to (2.6) (see Remark 2.1) is impossible. The expected result
follows.

2.2.3 Proof of Theorem 2.1.1

The proof of Theorem 2.1.1 is based on a careful asymptotic analysis with respect to the diffusivity
variable µ.

Let us first explain the outlines of the proof.
Let us fix m ∈ Mm0,κ(Ω) and h ∈ L∞(Ω). In the sequel, the dot or double dot notation ḟ or f̈

will respectively denote first and second order Gâteaux-differential of f at m in direction h.
According to Lemma 2.1, Fµ is twice Gâteaux-differentiable and its second order Gâteaux-derivative

is given by

d2Fµ(m)[h, h] =

ˆ
Ω

θ̈m,µ,

where θ̈m,µ is the second Gâteaux derivative of S, defined as the unique solution of (2.20).
Let m1 and m2 be two elements ofMm0,κ(Ω) and define

φµ : [0; 1] 3 t 7→ Fµ
(
tm2 + (1− t)m1

)
− tFµ(m2)− (1− t)Fµ(m1).

One has
d2φµ
dt2

(t) =

ˆ
Ω

θ̈(1−t)m1+tm2,µ, and φµ(0) = φµ(1) = 0,

where θ̈(1−t)m1+tm2,µ must be interpreted as a bilinear form from L∞(Ω) to W 1,2(Ω), evaluated two
times at the same direction m2−m1. Hence, to get the strict convexity of Fµ, it suffices to show that,
whenever µ is large enough, ˆ

Ω

θ̈tm2+(1−t)m1,µ > 0

as soon as m1 6= m2 (in L∞(Ω)) and t ∈ (0, 1), or equivalently that d2Fµ(m)[h, h] > 0 as soon as
m ∈ Mm0,κ(Ω) and h ∈ L∞(Ω). Note that since h = m2 −m1, it is possible to assume without loss
of generality that ‖h‖L∞(Ω) ≤ 2κ.
The proof is based on an asymptotic expansion of θm,µ into a main term and a reminder one, with
respect to the diffusivity µ. It is well-known (see e.g. [125, Lemma 2.2]) that one has

θm,µ
W 1,2(Ω)−−−−−→
µ→∞

m0. (2.23)

However, since we are working with resources distributions living in Mm0,κ(Ω), such a convergence
property does not allow us to exploit it for deriving optimality properties for Problem (Pnµ ).

For this reason, in what follows, we find a first order term in this asymptotic expansion. To get
an insight into the proof’s main idea, let us first proceed in a formal way, by looking for a function
η1,m such that

θm,µ ≈ m0 +
η1,m

µ

as µ → ∞. Plugging this formal expansion in (LDE) and identifying at order 1
µ yields that η1,m

satisfies {
∆η1,m +m0(m−m0) = 0 in Ω ,
∂η1,m

∂ν = 0 on ∂Ω.

To make this equation well-posed, it is convenient to introduce the function η̂1,m defined as the unqiue
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solution to the system 
∆η̂1,m +m0(m−m0) = 0 in Ω ,
∂η̂1,m

∂ν = 0 on ∂Ω,ffl
Ω
η̂1,m = 0,

and to determine a constant β1,m such that

η1,m = η̂1,m + β1,m.

In view of identifying the constant β1,m, we integrate equation (LDE) to get
ˆ

Ω

θm,µ(m− θm,µ) = 0.

which yields, at the order 1
µ ,

β1,m =
1

m0

 
Ω

η̂1,m(m−m0) =
1

m2
0

 
Ω

|∇η̂1,m|2.

Therefore, one has formally  
Ω

θm,µ ≈ m0 +
1

µ

 
Ω

|∇η̂1,m|2.

As will be proved in Step 1 (paragraph 2.2.3), the mappingMm0,κ(Ω) 3 m 7→ β1,m is convex so that,
at the order 1

µ , the mappingMm0,κ(Ω) 3 m 7→
ffl

Ω
θm,µ is convex. We will prove the validity of all the

claims above, by taking into account remainder terms in the asymptotic expansion above, to prove
that the mapping Fµ : m 7→

ffl
Ω
θm,µ is itself convex whenever µ is large enough.

Remark 2.4 One could also notice that the quantity β1,m arose in the recent paper [89], where the
authors determine the large time behavior of a diffusive Lotka-Volterra competitive system between
two populations with growth rates m1 and m2. If β1,m1

> β1,m2
, then when µ is large enough, the

solution converges as t → +∞ to the steady state solution of a scalar equation associated with the
growth rate m1. In other words, the species with growth rate m1 chases the other one. In the present
article, as a byproduct of our results, we maximize the function m 7→ β1,m. This remark implies that
this intermediate result might find other applications of its own.

Let us now formalize rigorously the reasoning outlined above, by considering an expansion of the
form

θm,µ = m0 +
η1,m

µ
+
Rm,µ
µ2

.

Hence, one has for all m ∈Mm0,κ(Ω),

d2Fµ(m)[h, h] =
1

µ

ˆ
Ω

η̈1,m +
1

µ2

ˆ
Ω

R̈m,µ

We will show that there holds

d2Fµ(m)[h, h] ≥ C(h)

µ

(
1− Λ

µ

)
(2.24)

for all µ > 0, where C(h) and Λ denote some positive constants.
The strict convexity of Fµ will then follow. Concerning the bang-bang character of maximizers,

notice that the admissible setMm0,κ(Ω) is convex, and that its extreme points are exactly the bang-
bang functions of Mm0,κ(Ω). Once the strict convexity of Fµ showed, we then easily infer that Fµ
reaches its maxima at extreme points, in other words that any maximizer is bang-bang. Indeed,
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assuming by contradiction the existence of a maximizer writing tm1 + (1 − t)m2 with t ∈ (0, 1), m1

and m2, two elements ofMm0,κ(Ω) such that m1 6= m2 on a positive Lebesgue measure set, one has

Fµ(tm1 + (1− t)m2) < tFµ(m1) + (1− t)Fµ(m2) < max{Fµ(m1),Fµ(m2)},

by convexity of Fµ, whence the contradiction.
The rest of the proof is devoted to the proof of the inequality (2.24). It is divided into the following

steps:

Step 1. Uniform estimate of
´

Ω
η̈1,m with respect to µ.

Step 2. Definition and expansion of the reminder term Rm,µ.

Step 3. Uniform estimate of Rm,µ with respect to µ.

Step 1: minoration of
´

Ω
η̈1,m. One computes successively

β̇1,m =
1

m0

 
Ω

(
˙̂η1,mm+ η̂1,mh

)
, β̈1,m =

1

m0

 
Ω

(
2 ˙̂η1,mh+ ¨̂η1,mh

)
(2.25)

where ˙̂η1,m solves the equation{
∆ ˙̂η1,m +m0h = 0 in Ω
∂ ˙̂η1,m

∂ν = 0, on ∂Ω
with

ˆ
Ω

˙̂η1,m = 0. (2.26)

Notice moreover that ¨̂η1,m = 0, since ˙̂η1,m is linear with respect to h. Moreover, multiplying the
equation above by ˙̂η1,m and integrating by parts yields

β̈1,m =
2

m2
0

 
Ω

|∇ ˙̂η1,m|2 > 0 (2.27)

whenever h 6= 0, according to (2.25). Finally, we obtain
ˆ

Ω

η̈1,m = |Ω|β̈1,m +

ˆ
Ω

¨̂η1,m = |Ω|β̈1,m =
2

m2
0

ˆ
Ω

|∇ ˙̂η1,m|2.

It is then notable that
´

Ω
η̈1,m ≥ 0.

Step 2: expansion of the reminder term Rm,µ. Instead of studying directly the equation (2.20),
our strategy consists in providing a well-chosen expansion of θ̈m,µ of the form

θ̈m,µ =

+∞∑
k=0

ζk
µk
,where the ζk are such that

+∞∑
k=2

ffl
Ω
ζk

µk−1
≤M

 
Ω

η̈1,m.

For that purpose, we will expand formally θm,µ as

θm,µ =

+∞∑
k=0

ηk,m
µk

. (2.28)

Note that, as underlined previously, since θm,µ −→
µ→+∞

m0 in L∞(Ω), we already know that η0,m = m0.
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Provided that this expansion makes sense and is (two times) differentiable term by term (what
will be checked in the sequel) in the sense of Gâteaux, we will get the following expansions

θ̇m,µ =

+∞∑
k=0

η̇k,m
µk

and θ̈m,µ =

+∞∑
k=0

η̈k,m
µk

.

Plugging the expression (2.28) of θm,µ into the logistic diffusive equation (LDE), a formal computation
first yields

∆η1,m +m0(m−m0) = 0,
∂η1,m

∂ν
= 0 on ∂Ω

∆η2,m + η1,m(m− 2m0) = 0 in Ω ,
∂η2,m

∂ν
= 0 on ∂Ω

and, for any k ∈ N , k ≥ 2, ηk,m satisfies the induction relation

∆ηk+1,m + (m− 2m0)ηk,m −
k−1∑
`=1

η`,mηk−`,m = 0 in Ω, (2.29)

as well as homogeneous Neumann boundary conditions. These relations do not allow to define ηk,m in
a unique way (it is determined up to a constant). We introduce the following equations to overcome
this difficulty: first, we define η̂1,m and η̂2,m as the solutions to

∆η̂1,m +m0(m−m0) = 0,
∂η̂1,m

∂ν
= 0 on ∂Ω ,

 
Ω

η̂1,m = 0,

∆η̂2,m + η1,m(m− 2m0) = 0 in Ω ,
∂η̂2,m

∂ν
= 0 on ∂Ω ,

 
Ω

η̂2,m = 0

and, for any k ∈ N , k ≥ 2, we define η̂k+1,m as the solution of the PDE{
∆η̂k+1,m + (m− 2m0)ηk,m −

∑k−1
`=1 η`,mηk−`,m = 0 in Ω

∂η̂k+1,m

∂ν = 0 on ∂Ω
with

ˆ
Ω

η̂k+1,m = 0, (2.30)

and to define the real number βk,m in such a way that

ηk,m = η̂k,m + βk,m. (2.31)

for every k ∈ N∗. Integrating the main equation of (LDE) yields
ˆ

Ω

θm,µ(m− θm,µ) = 0.

Plugging the expansion (2.28) and identifying the terms of order k indicates that we must define βk,m
by the induction relation

β1,m = 1
m2

0

ffl
Ω
|∇η̂1,m|2,

β2,m = 1
m0

ffl
Ω
mη̂2,m − 1

m0

ffl
Ω
η2

1,m,

βk+1,m = 1
m0

ffl
Ω
mη̂k+1,m − 1

m0

∑k
`=1

ffl
Ω
η`,mηk+1−`,m. (k ≥ 2)
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This leads to the following cascade system for {η̂k,m, βk,m , ηk,m}k∈N:



η̂0,m = 0,
∆η̂1,m +m0(m−m0) = 0 in Ω,
∆η̂2,m + η1,m(m− 2m0) = 0 in Ω,

∆η̂k+1,m + (m− 2m0)ηk,m −
∑k−1
`=1 η`,mηk−`,m = 0 in Ω, (k ≥ 2)ffl

Ω
η̂k,m = 0 , (k ≥ 0)

∂η̂k,m
∂ν = 0 over ∂Ω, (k ≥ 0)

β0,m = m0 ,
β1,m = 1

m2
0

ffl
Ω
|∇η̂1,m|2 ,

β2,m = 1
m0

ffl
Ω
mη̂2,m − 1

m0

ffl
Ω
η2

1,m,

βk+1,m = 1
m0

ffl
Ω
mη̂k+1,m − 1

m0

∑k
`=1

ffl
Ω
η`,mηk+1−`,m , (k ≥ 2)

ηk,m = η̂k,m + βk,m. (k ≥ 0)

(2.32)

This implies  
Ω

ηk,m = βk,m ,
∂ηk,m
∂ν

= 0 over ∂Ω. (k ≥ 0).

Now, the Gâteaux-differentiability of both η̂k,m and βk,m with respect to m follows from similar
arguments as those used to prove Proposition 2.1. Similarly to System (2.32), the system satisfied
by the derivatives needs the introduction of two auxiliary sequences { ˙̂ηk,m}k∈N and {¨̂ηk,m}k∈N. More
precisely, we expand θ̇m,µ as

θ̇m,µ =

∞∑
k=0

η̇k,m
µk

with
η̇k,m = ˙̂ηk,m + ˙βk,m,

and the sequence { ˙̂ηk,m , β̇k,m , η̇k,m}k∈N satisfies

η̇0,m = 0,

∆ ˙̂η1,m +m0h = 0 in Ω,

∆ ˙̂η2,m + η̇1,m(m− 2m0) = −hη̇1,m in Ω,

∆ ˙̂ηk+1,m + (m− 2m0)η̇k,m − 2
∑k−1
`=1 η̇`,mηk−`,m = −hηk,m in Ω, (k ≥ 2)ffl

Ω
˙̂ηk,m = 0, (k ≥ 0)

∂ ˙̂ηk,m
∂ν = 0 over ∂Ω , (k ≥ 0)

β̇0,m = 0 ,

β̇1,m = 1
m0

ffl
Ω

(
hη̂1,m +m ˙̂η1,m

)
= 2

m2
0

ffl
Ω
〈∇η̇1,m,∇η1,m〉,

β̇2,m = 1
m0

ffl
Ω

(hη̂2,m +m ˙̂η2,m)− 2
m0

ffl
Ω
η̇1,mη1,m,

β̇k+1,m = 1
m0

ffl
Ω

(hη̂k+1,m +m ˙̂ηk+1,m)− 2
m0

∑k
`=1

ffl
Ω
η̇`,mηk+1−`,m, (k ≥ 2)

η̇k,m = ˙̂ηk,m + β̇k,m. (k ≥ 0)

(2.33)

We note that this implies, for any k ∈ N,
 

Ω

η̇k,m = β̇k,m ,
∂η̇k,m
∂ν

= 0 on ∂Ω. (k ≥ 0)

Let us also write the system satisfied by the second order differentials. One gets the following hierarchy
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for {¨̂ηk,m , β̈k,m , η̈k,m}k∈N:

¨̂η0,m = 0,

∆¨̂η1,m = 0 in Ω,

∆¨̂η2,m + (m− 2m0)η̈1,m = −2hη̇1,m in Ω ,

∆¨̂ηk+1,m + (m− 2m0)η̈k,m − 2
∑k−1
`=1 η̈`,mηk−`,m = 2

(∑k−1
`=1 η̇`,mη̇k−`,m − hη̇k,m

)
in Ω, (k ≥ 2)ffl

Ω
¨̂ηk,m = 0, (k ≥ 0)

∂ ¨̂ηk,m
∂ν = 0 on ∂Ω, (k ≥ 0)

β̈0,m = 0 ,

β̈1,m = 2
m2

0

ffl
Ω
|∇ ˙̂η1,m|2 ,

β̈2,m = 1
m0

ffl
Ω

(2h ˙̂η2,m +m¨̂η2,m)− 2
m0

ffl
Ω

(
(η̇1,m)2 + η̈1,mη1,m

)
,

β̈k+1,m = 1
m0

ffl
Ω

(2h ˙̂ηk+1,m +m¨̂ηk+1,m)− 2
m0

∑k
`=1

ffl
Ω

(η̇`,mη̇k+1−`,m + η̈`,mηk+1−`,m), (k ≥ 2)

η̈k,m = ¨̂ηk,m + β̈k,m. (k ≥ 0)
(2.34)

This gives  
Ω

η̈k,m = β̈k,m ,
∂η̈k,m
∂ν

= 0 over ∂Ω. (k ≥ 0).

Step 3: uniform estimates of Rm,µ. This section is devoted to proving an estimate on β̈k,m,
namely {

∀k ∈ N∗ ,
∣∣∣β̈k,m∣∣∣ ≤ Λ(k)β̈1,m,

The power series
∑+∞
k=1 Λ(k)xk has a positive convergence radius.

(2.35)

This estimate is a key point in our reasoning. Indeed, recall that our goal is to prove that Fµ is
convex. Assuming that Estimates (2.35) hold true, we expand Fµ as follows:

Fµ(m) =

∞∑
k=0

ffl
Ω
ηk,m

µk
=

∞∑
k=0

βk,m
µk

.

Differentiating this expression twice with respect to m in direction h yields

F̈µ(m)[h, h] =

∞∑
k=1

β̈k,m
µk

.

Note that the sum starts at k = 1 since β0,m = m0 does not depend on m.
We can then write

µF̈µ(m)[h, h] = β̈1,m +

∞∑
k=2

β̈k,m
µk−1

≥ β̈1,m

(
1−

∞∑
k=2

Λ(k)

µk−1

)

= β̈1,m

(
1− 1

µ

∞∑
k=0

Λ(k + 2)

µk

)

Recall that β̈1,m is positive as soon as h is not identically equal on 0, according to (2.27). The power
series associated with {Λ(k + 2)}k∈N also has a positive convergence radius. Then, the right hand
side term is positive provided that µ be large enough. For the sake of notational clarity, we define δ
as follows: by the Rellich-Kondrachov embedding theorem, see [34, Theorem 9.16], there exists δ > 0
such that the continuous embedding W 1,2(Ω) ↪→ L2+δ(Ω) holds. We fix such a δ > 0.
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Recall that we know from Equation (2.27) that β̈1,m is proportional to ||∇η̇1,m||2L2(Ω). From the
explicit expression of β̈k,m in (2.34), one claims that (2.35) follows both from the positivity of β̈1,m

and from the following estimates:

‖ηk,m‖L∞(Ω) , ‖∇ηk,m‖L∞(Ω) ≤ α(k),

‖∇η̇k,m‖L2(Ω) ≤ σ(k)‖∇η̇1,m‖L2(Ω),

‖η̇k,m‖L2(Ω) ≤ γ(k)‖∇η̇1,m‖L2(Ω),

‖η̇k,m‖L2+δ(Ω) ≤ γ̃(k)‖∇η̇1,m‖L2(Ω),

‖∇η̈k,m‖L1(Ω) ≤ δ(k)‖∇η̇1,m‖2L2(Ω),

‖η̈k,m‖L1(Ω) ≤ ε(k)‖∇η̇1,m‖2L2(Ω).

(Ikα)

(Ikσ)

(Ikγ )

(Ikγ̃ )

(Ikδ )

(Ikε )

where for all k ∈ N, the numbers α(k), σ(k), γ(k), γ(k), δ(k) and ε(k) are positive.

In what follows, we will write f . g when there exists a constant C (independent of k) such that
f ≤ Cg.

The end of the proof is devoted to proving the aforementioned estimates. In what follows, we
will mainly deal with the indices k ≥ 3. Indeed, the case k = 2 is much simpler since, according to
the cascade systems (2.29)-(2.31)-(2.32)-(2.33)-(2.34), the equations on ηk,m, η̇k,m and η̈k,m for k ≥ 3
involve more terms than the ones on η2,m, η̇2,m and η̈2,m.

Estimate (Ikα) This estimate follows from an iterative procedure.

Let us fix α(0) = m0 and assume that, for some k ∈ N∗, the estimate (Ikα) holds true.

By W 2,p(Ω) elliptic regularity theorem, there holds

‖ηk+1,m‖W 2,p(Ω).‖ηk+1,m‖Lp(Ω) +

∥∥∥∥(m− 2m0)ηk,m −
k−1∑
`=1

η`,mηk−`,m

∥∥∥∥
Lp(Ω)

.

One thus gets from the induction hypothesis∥∥∥∥(m− 2m0)ηk,m −
k−1∑
`=1

η`,mηk−`,m

∥∥∥∥
Lp(Ω)

.κα(k) +

k−1∑
`=0

α(`)α(k − `).

Moreover, using that ‖ηk+1,m‖Lp(Ω) ≤ ‖η̂k+1,m‖Lp(Ω) + |βk+1,m| and the Lp-Poincaré-Wirtinger in-
equality (see Section 2.1.3), we get

‖η̂k+1,m‖Lp(Ω).‖∇η̂k+1,m‖Lp(Ω).

We now use the result from [53, Theorem 1.1] recalled in the introduction: it readily yields

‖∇ηk+1,m‖L∞(Ω). ||ηk,m||L∞(Ω) +

∥∥∥∥ k∑
`=0

η`,mηk−`,m

∥∥∥∥
L∞(Ω)

.
k∑
`=0

α(`)α(k − `).

The term βk+1,m is controlled similarly, so that

|βk+1,m|.
k∑
`=0

α(`)α(k − `) +

k∑
`=1

α(`)α(k + 1− `).
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Since it is clear that the sequence {α(k)}k∈N can be assumed to be increasing, we write

k∑
`=0

α(`)α(k − `) +

k∑
`=1

α(`)α(k + 1− `) =

k−1∑
`=0

α(k − `)
(
α(`) + α(`+ 1)

)
+ α(0)α(k)

.
k−1∑
`=0

α(`+ 1)α(k − `).

Under this assumption, one has

‖ηk+1,m‖L∞(Ω) ≤ |βk+1,m|+ ‖η̂k+1,m‖L∞(Ω).
k∑
`=0

α(`+ 1)α(k − `).

This reasoning guarantees the existence of a constant C1, depending only on Ω, κ and m0, such
that the sequence defined recursively by α(0) = m0 and

α(k + 1) = C1

k−1∑
`=0

α(`+ 1)α(k − `)

satisfies the estimate (Ikα).
Setting ak = α(k)/Ck1 for all k ∈ N, we know that {ak}k∈N is a shifted Catalan sequence (see

[161]), and therefore, the power series
∑
α(k)xk has a positive convergence radius.

Estimates (Ikσ) and (Ikγ ). Obviously, one can assume that σ(0) = γ(0) = 0. One again, we work
by induction, by assuming these two estimates known at a given k ∈ N. Since (Ikσ) is an estimate on
the L2(Ω)-norm of the gradient of η̇k+1,m, it suffices to deal with ˙̂ηk+1,m. According to the Poincaré-
Wirtinger inequality, one has

ffl
Ω
| ˙̂ηk+1,m|2.

ffl
Ω
|∇ ˙̂ηk+1,m|2. Now, using the weak formulation of the

equations on η̂k+1,m and η̇1,m, as well as the uniform boundedness of ‖h‖L∞(Ω), we get

 
Ω

|∇ ˙̂ηk+1,m|2 =

 
Ω

(m− 2m0)η̇k,m ˙̂ηk+1,m − 2

k−1∑
`=1

 
Ω

ηk−`,mη̇`,m ˙̂ηk+1,m +

 
Ω

hηk,m ˙̂ηk+1,m

. ‖η̇k,m‖L2(Ω)‖ ˙̂ηk+1,m‖L2(Ω) +

k∑
`=1

α(k − `)‖ ˙̂ηk+1,m‖L2(Ω)‖η̇`,m‖L2(Ω) +

 
Ω

ηk,m〈∇η̇1,m,∇ ˙̂ηk+1,m〉+

 
Ω

η̇k+1,m〈∇η̇1,m,∇ηk,m〉

. ‖∇ ˙̂ηk+1,m‖L2(Ω)‖∇η̇1,m‖L2(Ω)

(
γ(k) +

k∑
`=1

α(k − `)γ(`) + α(k) + α(k)
)

. ‖∇ ˙̂ηk+1,m‖L2(Ω)‖∇η̇1,m‖L2(Ω)

(
γ(k) +

k∑
`=0

α(k − `)α(`)

)
,

where the constants appearing in these inequalities only depend on Ω, κ and m0. It follows that there
exists a constant C2 such that, by setting for all k ∈ N,

σ(k + 1) = C2

(
γ(k) +

k∑
`=0

α(k − `)α(`)

)
,
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the inequality (Ikσ) is satisfied at rank k + 1.
Let us now state the estimate (Ikγ ). By using the Poincaré-Wirtinger inequality, one gets

∣∣∣β̇k+1,m

∣∣∣ =

∣∣∣∣∣ 1

m0

 
Ω

(hη̂k+1,m +m ˙̂ηk+1,m)− 2

m0

k∑
`=1

 
Ω

η̇`,mηk+1−`,m

∣∣∣∣∣
.

 
Ω

〈∇η̇1,m,∇η̂k+1,m〉+ ‖∇ ˙̂ηk+1,m‖L2(Ω) + ‖∇η̇1,m‖L2(Ω)

k∑
`=1

γ(`)α(k + 1− `)

. α(k + 1)‖∇η1,m‖L2(Ω) + σ(k + 1)‖∇η1,m‖L2(Ω) + ‖∇η̇1,m‖L2(Ω)

k∑
`=1

γ(`)α(k + 1− `).

Once again, since all the constants appearing in the inequalities depend only on Ω, κ and m0, we infer
that one can choose C3 such that, by setting

γ(k + 1) = C3

(
σ(k + 1) + α(k + 1) +

k∑
`=1

γ(`)α(k + 1− `)

)
,

the estimate (Ikγ ) is satisfied. Notice that, by bounding each term α(`), ` ≤ k by α(k) and by using
the explicit formula for σ(k+ 1), there exists a constant C4 depending only on Ω, κ and m0 such that

γ(k + 1) ≤ C4

k∑
`=0

α(k + 1− `)
(
γ(`) + α(`)

)
.

Under this form, the same arguments as previously guarantee that the associated power series has a
positive convergence radius.

Estimate (Ikγ̃ ) This is a simple consequence of the Sobolev embedding W 1,2(Ω) ↪→ L2+δ(Ω). Let
Cδ > 0 be such that, for any u ∈W 1,2(Ω),

‖u‖L2+δ(Ω) ≤ Cδ‖u‖W 1,2(Ω). (2.36)

Then, Estimates (Ikσ) and (Ikγ ) rewrite

‖η̇k,m‖W 1,2(Ω) ≤ (σ(k) + γ(k)) ‖∇η̇1,m‖L2(Ω).

and setting
γ̃(k) = Cδ (σ(k) + γ(k))

concludes the proof of Estimate (Ikγ̃ ).

Estimates (Ikδ ) and (Ikε ). For the sake of clarity, let us recall that k ∈ N being fixed, according to
Systems (2.33) and (2.34), the functions η̇kw,m and η̈k,m satisfy respectively

∆η̇k+1,m + (m− 2m0)η̇k,m − 2

k−1∑
`=1

η̇`,mηk−`,m = −hηk,m in Ω

and

∆η̈k+1,m + (m− 2m0)η̈k,m − 2

k−1∑
`=1

η̈`,mηk−`,m = 2
( k−1∑
`=1

η̇`,mη̇k−`,m − hη̇k,m
)
in Ω
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As previously, we first set δ(0) = ε(0) = 0 and argue by induction.

To prove these estimates, let us first control ‖∇¨̂ηk+1,m‖L1(Ω). To this aim, let us use Estimates
(Ikγ̃ ), the Stampacchia regularity Estimate (2.14) and the Lions-Magenes regularity Estimate (2.18).
We first use the equation

∆η̇1,m +m0h = 0

to split the equation on ¨̂ηk+1,m in System (2.34) as follows:

hη̇k,m = − 1

m0
η̇k,m∆η̇1,m = − 1

m0

(
div (η̇k,m∇η̇1,m)− 〈∇̇ηk,m, ∇̇η1,m〉

)
.

Introduce the function

Hk = (m− 2m0)η̈k,m − 2

k−1∑
`=1

η̈`,mηk−`,m − 2

k−1∑
`=1

η̇`,mη̇k−`,m +
2

m0
〈∇̇ηk,m, ∇̇η1,m〉

then ¨̂ηk+1,m solves

∆¨̂ηk+1,m +Hk =
2

m0
div (η̇k,m∇η̇1,m) ,

along with Neumann boundary conditions, according to (2.35).

By using the induction assumption and the Cauchy-Schwarz inequality, one gets

‖Hk‖L1(Ω).

(
ε(k) +

k−1∑
`=1

ε(`)α(k − `) +

k−1∑
`=1

γ(`)γ(k − `) + γ(1)γ(k)

)
‖∇η̇1,m‖2L2(Ω).

Furthermore, let us consider the same number δ > 0 as the one introduced and used in Estimate (Ikγ̃ ),
and define r > 1 such that 1

r = 1
2 + 1

2+δ , where δ > 0 is fixed so that (2.36) holds true. By combining
Estimate (Ikγ̃ ) with the Hölder’s inequality, we have

‖η̇k,m∇η̇1,m‖Lr ≤ ‖η̇k,m‖L2+δ(Ω)‖∇η̇1,m‖L2(Ω) ≤ γ̃(k)‖∇η̇1,m‖2L2(Ω). (2.37)

Let us introduce (ψk+1, ξk+1) as the respective solutions of
∆ψk+1 +Hk = 0 in Ω,
∂ψk+1

∂ν = 0 on ∂Ω,ffl
Ω
ψk+1 = 0,

(2.38)

and 
∆ξk+1 = −2div(η̇k,m∇η̇1,m) in Ω,
∂ξk+1

∂ν = 0 on ∂Ω,ffl
Ω
ξk+1 = 0,

(2.39)

so that ¨̂ηk+1,m = ψk+1 + ξk+1. Stampacchia’s Estimate (2.14) leads to

‖∇ψk+1‖L1(Ω).‖Hk‖L1(Ω).

(
ε(k) +

k−1∑
`=1

ε(`)α(k − `) +

k−1∑
`=1

γ(`)γ(k − `) + γ(1)γ(k)

)
‖∇η̇1,m‖2L2(Ω),
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and moreover,

‖∇ξk+1‖L1(Ω).‖∇ξk+1‖Lr(Ω) by Hölder’s inequality
.‖η̇k,m∇η̇1,m‖Lr(Ω) by Lions and Magenes Estimate (2.18)

.γ̃(k)‖∇η̇1,m‖2L2(Ω) by Estimate (2.37).

We then have

‖∇¨̂ηk+1,m‖L1(Ω) = ‖∇ψk+1 +∇ξk+1‖L1(Ω)

.

(
ε(k) +

k−1∑
`=1

ε(`)α(k − `) +

k−1∑
`=1

γ(`)γ(k − `) + γ(1)γ(k) + γ̃(k)

)
‖∇η̇1,m‖2L2(Ω).

and we conclude by setting δ(k+1) = ε(k)+
∑k−1
`=1 ε(`)α(k−`)+

∑k−1
`=1 γ(`)γ(k−`)+γ(1)γ(k)+ γ̃(k).

Let us now derive ε(k+1). We proceed similarly to the proof of Estimate (Ikγ ): from the Poincaré-
Wirtinger Inequality, there holds∣∣∣∣∣∣∣∣η̈k+1,m −

 
Ω

η̈k+1,m

∣∣∣∣∣∣∣∣
L2(Ω)

.||∇η̈k+1,m||L2(Ω)

so that, from Estimate (Ikδ ) it suffices to control
ffl

Ω
η̈k+1,m.

Starting from the expression

 
Ω

η̈k+1,m =
1

m0

 
Ω

(2h ˙̂ηk+1,m +m¨̂ηk+1,m)− 2

m0

k∑
`=1

 
Ω

(η̇`,mη̇k+1−`,m + η̈`,mηk+1−`,m)

stated in (2.34) and using the Cauchy-Schwarz inequality, one gets∣∣∣∣ 
Ω

η̈k+1,m

∣∣∣∣ =

∣∣∣∣∣ 1

m0

 
Ω

(2h ˙̂ηk+1,m +m¨̂ηk+1,m)− 2

m0

k∑
`=1

 
Ω

(η̇`,mη̇k+1−`,m + η̈`,mηk+1−`,m)

∣∣∣∣∣
.

∣∣∣∣ 
Ω

h ˙̂ηk+1,m

∣∣∣∣+ ‖¨̂ηk+1,m‖L2(Ω) +

k∑
`=1

‖η̇`,m‖l2(Ω)‖η̇k+1−`,m‖L2(Ω)

+

k∑
`=1

‖η̈`,m‖L2(Ω)‖ηk+1−`,m‖L2(Ω)

We then use Equation (2.26) to get
 

Ω

h ˙̂ηk+1,m =
1

m0

 
Ω

〈∇η̇1,m,∇ ˙̂ηk+1,m〉 ≤
1

m0
σ(1)σ(k + 1)‖∇η̇1,m‖2L2(Ω).

Since β̈1,m is proportional to ||∇η̇1,m||2L2(Ω), this gives∣∣∣∣ 
Ω

η̈k+1,m

∣∣∣∣.
(
σ(1)σ(k + 1) + δ(k + 1) +

k∑
`=1

(γ(`)γ(k + 1− `) + α(k + 1− `)ε(`))

)
β̈1,m.

Setting ε(k+ 1) = σ(1)σ(k+ 1) + δ(k+ 1) +
∑k
`=1 (γ(`)γ(k + 1− `) + α(k + 1− `)ε(`)) concludes the

proof.
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Summary. We have proved here that the functional Fµ has an asymptotic expansion of the form

Fµ(m) = m0 +
β1,m

µ
+Rµ(m),

where m 7→ β1,m = 1
m2

0

´
Ω
|∇η1,m|2 is a strictly convex functional, and where Rµ satisfies the two

following conditions:

1. Rµ = O
µ→∞

(
1
µ2

)
uniformly inMm0,κ(Ω),

2. Rµ can be expanded in a power series of 1
µ as follows:

Rµ(m) =
1

µ

∞∑
k=2

βk,m
µk−1

,

3. Rµ is twice Gâteaux-differentiable, and, for any m ∈ Mm0,κ(Ω), for any admissible variation
h ∈ Tm,Mm0,κ

(Ω),

µ
∣∣∣R̈µ[h, h]

∣∣∣. β̈1,m.

It immediately follows that the functional Fµ satisfies the following lower bound on its second deriv-
ative: for any m ∈Mm0,κ(Ω), for any admissible variation h ∈ Tm,Mm0,κ(Ω),(

1− 1

µ

)
β̈1,m. µF̈µ(m)[h, h], (2.40)

so that it has a positive second derivative, according to (2.27). Hence, Fµ is strictly convex for µ large
enough.
Since the maximizers of a strictly convex functional defined on a convex set are extreme points, and
that the extreme points ofMm0,κ(Ω) are bang-bang functions, this ensures that all maximizers of Fµ
are bang-bang functions.

2.2.4 Proof of Theorem 2.1.2

In what follows, it will be convenient to introduce the functional

F1 : m 7→ β1,m =
1

m2
0

 
Ω

|∇η1,m|2 =

 
Ω

η1,m

where η1,m is defined as a solution to System (2.32). The index in the notation F1 underlines the fact
that F1 involves the solution η1,m.

According to the proof of Theorem 2.1.1 (Step 1), we already know that F1 is a convex functional
onMm0,κ(Ω).

2.2.4.1 Proof of Γ-convergence property for general domains

To prove this theorem, we proceed into three steps: we first prove weak convergence, then show that
maximizers of the functional F1 are necessarily extreme points ofMm0,κ(Ω) and finally recast F1 using
the energy functional Em. Since weak convergence to an extreme point entails strong convergence,
this will conclude the proof of the Γ-convergence property.
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Convergence of maximizers. For µ > 0, let mµ be a solution to (Pnµ ). According to Theorem
2.1.1, there exists µ∗ > 0 such thatmµ = κχEµ for all µ ≥ µ∗, where Eµ ⊂ Ω is such that |Eµ| = m0

|Ω|
µ .

Since the family {mµ}µ>0 is uniformly bounded in L∞(Ω), it converges up to a subsequence to some
element m∞ ∈Mm0,κ(Ω), weakly star in L∞(Ω). Observe that the maximizers of Fµ overMm0,κ(Ω)
are the same as the maximizers of µ(Fµ − m0). Recall that, given m in Mm0,κ(Ω), there holds
µ(Fµ(m) − m0) =

ffl
Ω
η1,m + O

µ→∞
( 1
µ ) according to the proof of Theorem 2.1.1, where the notation

O
(

1
µ

)
stands for a function uniformly bounded in L∞(Ω). In other words, we have

µ (Fµ −m0) = F1 + O
µ→∞

(
1

µ

)
with the same notation for O

(
1
µ

)
.

For an arbitrary m ∈Mm0,κ(Ω), by passing to the limit in the inequality

µ(Fµ(mµ)−m0) ≥ µ(Fµ(m)−m0)

one gets that m∞ is necessarily a maximizer of the functional F1 overMm0,κ(Ω).
Wa have shown in the proof of Theorem 2.1.1 that F1 is convex on Mm0,κ(Ω) (Step 1). Its

maximizers are thus extreme points. It follows that any weak limit of {mµ}µ>0 is an extreme point
to this set. Thus, the convergence is in fact strong in L1 ([93, Proposition 2.2.1]).

“Energetic” expression of F1(m). Recall that F1 is given by

F1(m) =
1

m2
0

 
Ω

|∇η1,m|2,

where η1,m solves 
∆η1,m +m0(m−m0) = 0 in Ω,
∂η1,m

∂ν = 0 on ∂Ω,ffl
Ω
η1,m = 1

m2
0

ffl
Ω
|∇η1,m|2.

The last constraint, which is derived from the integration of Equation (LDE), by passing to the limit
as µ → +∞, is not so easy to handle. This is why we prefer to deal with η̂1,m, solving the same
equation as η1,m completed with the integral condition

 
Ω

η̂1,m = 0.

Since η1,m and η̂1,m only differ up to an additive constant, we have ∇η1,m = ∇η̂1,m, so that

F1(m) =
1

m2
0

 
Ω

|∇η̂1,m|2 and η̂1,m ∈ X. (2.41)

Regarding then the variational problem

sup
m∈M(Ω)

F1(m), (PV1)

and standard reasoning on the PDE solved by η̂1,m yields that

F1(m) = −2 min
u∈X
Em(u),
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leading to the desired result.

2.2.4.2 Properties of maximizers of F1 in a two-dimensional orthotope

We investigate here the case of the two-dimensional orthotope Ω = (0; a1) × (0; a2). In the last
section, we proved that every maximizer m of F1 overMm0,κ(Ω) is of the form m = κχE where E is
a measurable subset of Ω such that κ|E| = m0|Ω|.

Let E∗ be such a set. We will prove that E∗ is, up to a rotation of Ω, decreasing in every direc-
tion. It relies on the combination of symmetric decreasing rearrangements properties and optimality
conditions for Problem (PV1).

Introduce the notation η̂1,E∗ := η̂1,κχE∗ . A similar reasoning to the one used in Proposition 2.3
(see e.g. [179]) yields the existence of a Lagrange multiplier c such that

{η̂1,E∗ > c} = E∗, {η̂1,E∗ < c} = (E∗)c, {η̂1,E∗ = c} = ∂E∗. (2.42)

We already know, thanks to the equality case in the decreasing rearrangement inequality, that any
maximizer E∗ is decreasing or increasing in every direction.

To conclude, it remains to prove that E∗ is connected. Let us argue by contradiction, by assuming
that E∗ has at least two connected components.

In what follows, if E denotes a measurable subset of Ω, we will use the notation η̂1,E := η̂1,κχE .
The steps of the proof are illustrated on Figure 2.6 below.

Step 1: E∗ has at most two components. It is clear from the equality case in the Pòlya-Szegö
inequality that η̂1,E∗ is decreasing in every direction (i.e, it is either nondecreasing or nonincreasing
on every horizontal or vertical line).

Let e1 = (0, 0) , e2 = (a1, 0) , e3 = (a1, a2) , e4 = (0, a2) be the four vertices of the orthotope
Ω = (0; a1) × (0; a2). Let E1 be a connected component of E∗. Since E1 is monotonic in both
directions x and y, thus it necessarily contains at least one vertex. Up to a rotation, one can assume
that e1 ∈ E1. Since E1 is decreasing in the direction y, there exists x ∈ [0; a1] and a non-increasing
function f : [0;x]→ [0; a1] such that

E1 = {(x, t) , x ∈ (0;x1) , t ∈ [0; f(x)]}

Since f is decreasing, one has E1 ⊆ [0;x]× [0; f(0)].
Let E2 be another connected component of E∗. Since E∗ is monotonic in every direction, the only

possibility is that E2 meet the upper corner [x; a1] × [f(0); a2], meaning that e3 ∈ E2 and therefore,
there exist x ∈ [x; a1] and a non-decreasing function g : [x; a2]→ [0; a2] such that

E2 = {(x, t) , x ∈ [x; a1] , t ∈ [a2 − g(x); a2]}

Step 2: geometrical properties of E1 and E2. We are going to prove that g or f is constant
and that x = x. Let b2 be the decreasing rearrangement in the direction y. Let E∗ := b2(E∗).

We claim that, by optimality of E∗, we have

F1(b2(E∗)) = F1(E∗) and b2(η̂1,E∗) = η̂1,b2(E∗). (2.43)

For the sake of clarity, the proof of (2.43) is postponed to the end of this step.
Since b2(E∗) is necessarily a solution of Problem (PV1), it follows, by monotonicity of maximizers,

that the mapping f̃ : x ∈ [0; a1] 7→ H1
(

({x} × [0; a2]) ∩ b2(E∗)
)
is also monotonic. However, it is

straightforward that f̃ = fχ[0;x] + gχ[x;a1]. If f is nonconstant, it follows that f̃ is non-increasing.
Since g is non-decreasing and has the same monotonicity as f̃ , it follows that g is necessarily constant.
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Hence, we get that x = x and that inf
[0;x]

f is positive. Else, f̃ would be non-increasing and vanish in

(x;x). Finally, we also conclude that inf
[0;x]

f ≥ g. Thus, we can consider the following situation: x = x,

f ≥ α and f is non-increasing and g is constant, i.e g = α.

Proof of (2.43). Recall that for everym ∈M(Ω), η̂1,m is the unique minimizer of the energy functional
Em over X where Em and X are defined by (2.9)-(2.10). For a measurable subset E of Ω, introduce
the notations F1(E) := F1(κχE) and EE := EκχE . Since F1(m) = − 2

m2
0
Em(η̂1,m) and since E∗ is a

maximizer of F1, we have
F1(E∗) ≥ F1(b2(E∗)).

Furthermore, one has

F1(E∗) = − 2

m2
0

EE∗(η̂1,E∗) ≤ −
2

m2
0

Eb2(E∗)(b2(η̂1,E∗))

≤ − 2

m2
0

Eb2(E∗)(η̂1,b2(E∗)) = F1(b2(E∗)).

by using successively the Hardy-Littlewood and Pòlya-Szegö inequalities.
Thus, all these inequalities are in fact equality, which implies that b2(E∗) is also a maximizer of F1

overM(Ω). Furthermore, by the equimeasurability property, one has b2(η̂1,E∗) ∈ X, so that b2(η̂1,E∗)
is a minimizer of Eb2(E∗) over X. The conclusion follows.

Step 3: E∗ has at most one component. To get a contradiction, let us use the optimality
conditions (2.42). This step is illustrated on the bottom of Figure 2.6.

By using the aforementioned properties of maximizers, we get that η1,b2(E∗) is constant and equal
to c on {x} × [0;α] ⊂ b2(E∗):

η̂1,b2(E∗) = c on {x} × [0;α]. (2.44)

Furthermore, since b2(E∗) is a maximizer of F1, it follows that η̂1,b2(E∗) is constant on ∂b2(E∗). But
one has b2(η̂1,E∗) = η̂1,E∗ on [0;x] × [0; a2] since η̂1,E∗ is decreasing in the vertical direction on this
subset. We get that η̂1,b2(E∗) is equal to c on ∂b2(E∗)

However, by the strict maximum principle, η̂1,b2(E∗) cannot reach its minimum in b2(E∗), which
is a contradiction with (2.44). This concludes the proof.

2.2.5 Proof of Theorem 2.1.3

As a preliminary remark, we claim that the function θm̃,µ solving (LDE) with m = m̃ is positive
increasing. Indeed, recall that θm̃,µ is the unique minimizer of the energy functional

E : W 1,2(Ω,R+) 3 u 7→ µ

2

ˆ 1

0

u′2 − 1

2

ˆ 1

0

m∗u2 +
1

3

ˆ 1

0

u3. (2.45)

By using the rearrangement inequalities recalled in Section 2.1.3 and the relation (m̃)br = m̃, one
easily shows that

E(θm̃,µ) ≥ E((θm̃,µ)br),

and therefore, one has necessarily θm̃,µ = (θm̃,µ)br by uniqueness of the steady-state (see Section
2.1.1). Hence, θm̃,µ is non-decreasing. Moreover, according to (LDE), θm̃,µ is convex on (0, 1− `) and
concave on (1− `, 1) which, combined with the boundary conditions on θm̃,µ, justifies the positiveness
of its derivative. The expected result follows.
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Figure 2.6 – Illustration of the proof and the notations used.

Step 1: convergence of sequences of maximizers. As a consequence of Theorem 2.1.2, we
get that the functions m̃ = κχ(0,`) or m̃(1 − ·) = κχ(1−`,1) are the only closure points of the family
(mµ)µ>0 for the L1(0, 1) topology.

Step 2: asymptotic behaviour of pm,µ and of ϕm,µ We claim that, as done for the solution
θm,µ of (LDE), the following asymptotic behaviour for the adjoint state pm,µ

pm,µ = − 1

m0
+ O
µ→∞

(
1

µ
), in W 2,2(0, 1),

by using Sobolev embeddings. In particular, this expansion holds in C 1([0, 1]).
Introduce the function zµ = µ(ϕmµ,µ + 1). Using the convergence results established in the previous
steps, in particular that (mµ)µ>0 converges to m̃ in L1(0, 1) and that ϕmµ,µ = −1+ O

µ→∞
( 1
µ ) uniformly

in C 1,α([0, 1])2 as µ→ +∞, one infers that (zµ)µ>0 is uniformly bounded in C 1,α([0, 1]) and converges,
up to a subsequence to z∞ in C 1([0, 1]), where z∞ satisfies in particular

z′′∞ + 2(m0 − m̃) = 0,

with Neumann Boundary conditions in the W 1,2 sense.

2This is obtained similarly to the proof’s technique of theorem 2.1.1, using elliptic estimates and Sobolev embedding
for the functions θm,µ and pm,µ.
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Conclusion: mµ = m̃ or m̃(1 − ·) whenever µ is large enough. According to Theorem 2.1.1
and Proposition 2.3, we know at this step that for µ large enough, there exists cµ ∈ R such that

{ϕmµ,µ > cµ} = {mµ = 0}, {ϕmµ,µ < cµ} = {mµ = κ}.

We will show that, provided that µ be large enough, one has necessarily mµ = m̃ or mµ = m̃(1−·).
Since m̃ = κ in (0, `), it follows that z∞ is strictly convex on this interval and since z′∞(0) = 0, one has
necessarily z′∞ > 0 in (0, `). Similarly, by concavity of z∞ in (`, 1), one has z′∞ > 0 in this interval.

Furthermore, let us introduce dµ = µ(cµ + 1). Since (zµ)µ>0 is bounded in C0((0, 1)), (dµ)µ>0

converges up to a subsequence to some d∞. By monotonicity of z∞ and a compactness argument,
there exists a unique x∞ ∈ [0, `] such that z∞(x∞) = d∞. The dominated convergence theorem hence
yields

|{z∞ ≤ d∞}| = κ`, |{z∞ ≥ d∞}| = κ(1− `),

and the the aforementioned local convergence results yield

{z∞ > d∞} ⊂ {m̃ = 0} , {z∞ < d∞} ⊂ {m̃ = κ}.

Hence, the inclusions are equalities (the equality of sets must be understood up to a zero Lebesgue
measure set) by using that z∞ is increasing.

Moreover, since z∞ is increasing, one has z∞(0) < d∞ and z∞(1) > d∞. Since the family (zµ)µ>0

is uniformly Lipschitz-continuous, there exists ε > 0 such that for µ large enough, there holds

zµ < dµ in (0, ε), zµ > dµ in (1− ε, 1), z′µ > 0 in (ε, 1− ε).

This implies the existence of xµ ∈ (0, 1) such that

{zµ < dµ} = [0, xµ) and {zµ > dµ} = (xµ, 1],

whence the result.

2.2.6 Proof of Theorem 2.1.4

Let κ > 0,m0 > 0, and m̃ := κχ[1−`,1) with ` = m0

κ , i.e the single crenel distribution.
In order to prove this result, as the function µ > 0 7→ Fµ (m̃(2 ·)) has a first local maximizer ([125,
Theorem 1.2, Remark 1.4]), we define µ1 as its first local maximizer. One gets from a simple change
of variables that θm̃,µ1(2x) = θm̃(2·),µ1/4(x) for all x ∈ Ω and thus one has

Fµ1
(m̃) = Fµ1

4
(m̃(2·))

But our choice of µ1 yields that µ 7→ Fµ (m̃(2·)) is increasing on (0, µ1) and thus:

Fµ1(m̃) = Fµ1
4

(m̃(2·)) < Fµ1 (m̃(2·)) . (2.46)

2.3 Conclusion and further comments

2.3.1 About the 1D case

Let us assume in this section that n = 1 and Ω = (0, 1). We provide hereafter several numerical
simulations based on the primal formulation of the optimal design problem (Pnµ ): on Fig. 2.7, we
investigate the general problem (Pnµ ) and we plot the optimal m determined numerically for several
values of µ.

80



CHAPTER 2. OPTIMIZATION OF THE TOTAL POPULATION SIZE

These simulations were obtained with an interior point method applied to the optimal control
problem (Pnµ ). We used a Runge-Kutta method of order 4 to discretize the underlying differential
equations. The control m has been also discretized, which has allowed to reduce the optimal control
problem to some finite dimensional minimization problem with constraints. We used the code IPOPT
(see [176]) combined with AMPL (see [77]) on a standard desktop machine. We considered a regular
subdivision of (0, 1) with N points, where the order of magnitude of N is 1000/µ. The resulting code
works out the solution quickly (around 5 to 10 seconds depending on the choice of the parameter µ).

Figure 2.7 – m0 = 0.4, κ = 1. From left to right: µ = 0.01, 1, 5. Top: plot of the optimal solution of
Problem (Pnµ ) computed with the help of an interior point method. Bottom: plot of the corresponding
eigenfunction.

In the cases mentioned above, the algorithm is initialized with several choices of function m,
among which the optimal simple crenel as µ is large enough. If µ is equal to 1 or 5, the simple crenel
is obtained at convergence. Nevertheless, in the case µ = 0.01, we obtain a “symmetric” double crenel
(in accordance with Theorem 2.1.4) at convergence.

Although we have no guarantee to obtain optimal solutions by using this numerical approach, we
checked that a simple crenel is better than a double one in the cases µ = 1, 5 whereas we observe the
contrary in the case µ = 0.01.

Notice that we encountered a problem when dealing with too small values of µ (for instance
µ = 0.001). Indeed, in that case, the stiffness of the discretized system seems to become huge as µ
takes small positive values and makes the numerical computations hard to converge. Improvements
of the numerical method should be found for further numerical investigations.

2.3.2 Comments and open issues

It is also interesting, from a biological point of view, to investigate a more general version of Problem
(Pnµ ) for changing-sign weights. In that case, the admissible class of weights is then transformed (for
instance) into

M̃m0,κ(Ω) =

{
m ∈ L∞(Ω) ,m ∈ [−1;κ] a.e and

 
Ω

m = m0

}
,

with m0 ∈ (0, 1) (so that λ1(m,µ) > 0 and Equation (LDE) is well-posed). We claim that the main
results of this article can be extended without effort to this new framework and that we will still
obtain the bang-bang character of maximizers provided that µ be large enough. Such a class has also
been considered in the context of principal eigenvalue minimization (see [99, 116]).

Finally, we end this section by providing some open problems for which we did not manage to
bring complete answer and that deserve and remain, to our opinion, to be investigated. They are in
order:

• (for general domains Ω) we conjecture that maximizers are bang-bang functions for any µ > 0.
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As outlined in the introduction, this conjecture is supported by Theorem 2.1.1 and the main
result of [148].

• (for general domains Ω) use the main results of the present article to determine numerically the
maximizer m∗ with the help of an adapted shape optimization algorithm;

• (for Ω = (0; 1)) given that, for µ small enough, the optimal configurations for λ1(·, µ) and Fµ are
not equal, it would be natural and biologically relevant to try to maximize a convex combination
of Fµ and λ1(·, µ).

• (for general domains Ω) investigate the asymptotic behavior of maximizer as the parameter µ
tends to 0? Such a issue appears intricate since it requires a refine study of singular limits for
Problem (LDE).
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APPENDIX

2.A Convergence of the series

Let 1
µ∗1

be the minimum of the convergence radii associated to the power series
∑
α(k)xk,

∑
σ(k)xk,∑

γ(k)xk,
∑
δ(k)xk and

∑
ε(k)xk introduced in the proof of Theorem 2.1.1.

We will show that, whenever µ ≥ µ∗1, the following expansions

+∞∑
`=0

ηk,m
µk

= θm,µ,

+∞∑
k=1

η̇k,m
µk

= θ̇m,µ,

+∞∑
k=1

η̈k,m
µk

= θ̈m,µ

make sense in L2(Ω). Since the proofs for the series defining θ̇m,µ and θ̈m,µ are exactly similar to the one
for θm,µ, we only concentrate on the expansion of θm,µ. By construction, the series g∞,µ :=

∑+∞
`=0

ηk,m
µk

converges in W 1,2(Ω) to a function g∞,µ. We need to show that g∞,µ = θm,µ.
To this aim, let us set

gN,µ :=

N∑
k=0

ηk,m
µk

for any N ∈ N∗, Notice that gN,µ solves the equation

µ∆gN,µ + gN−1,µm−
N∑
k=0

ηk,m
µk

gN−k,µ = 0, in Ω (2.47)

with Neumann boundary conditions.
In order to pass to the limit N →∞, one has to determine the limit of g̃N,µ :=

∑N
k=0

ηk,m
µk

gN−k,µ.
First note that the Cauchy-Schwarz inequality proves the absolute convergence of the sequence
{g̃N,µ}N∈N in W 1,2(Ω) as N →∞. Let H denote its limit. Now, let us show that

g̃N,µ →
N→∞

g2
∞,µ in L2(Ω),

whenever µ is large enough. Let R1 be the convergence radius of the power series associated with
the sequence {α(k)}k∈N. This convergence radius is known to be positive. As a consequence, the
convergence radius R2 of the power series associated with the sequence {α(k)2}k∈N is also positive
and R2 = R2

1.
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Let ε > 0. Since we are only working with large diffusivities, let us assume that µ ≥ 1 and that
µ > ( 1

R2
)1/ε. Noting that, for any N ∈ N, we have

g̃N,µ − g2
N,µ =

N∑
k=0

1

µk
ηk,m

(
N∑

`=N−k+1

η`,m
µ`

)
.

and using the fact that the sequence {α(k)}k∈N was built increasing, we get the existence of M > 0
such that

1

|Ω|
‖g̃N,µ − g2

N,µ‖L2(Ω) =
1

|Ω|

∥∥∥∥∥
N∑
k=0

1

µk
ηk,m

(
N∑

`=N−k+1

η`,m
µ`

)∥∥∥∥∥
L2(Ω)

≤
N∑
k=0

α(k)

µk

(
N∑

`=N−k+1

α(`)

µ`

)

≤ α(N)2
N∑
k=0

1

µk

(
1

µN−k+1

1− 1
µk−1

1− 1
µ

)
by using that α(k)α(`) ≤ α(N)2

≤M (N + 1)α(N)2

µN+1

= M
N + 1

(µ1−ε)N+1

α(N)2

(µε)N+1
.

This last quantity converges to zero as N →∞. Besides, since µε ≥ 1
R2

, it follows that the sequence{
α(N)2

(µε)N+1

}
N→∞

is bounded. Assuming moreover that µ1−ε > 1, we get

N + 1

(µ1−ε)N+1
−−−−→
N→∞

0.

We conclude that H = g2
∞,µ. Passing to the limit in Equation (2.47), it follows that

µ∆g2
∞,µ + g∞,µ(m− g∞,µ) = 0 in Ω

with Neumann boundary conditions.

Finally, we know that g∞,µ →
µ→+∞

m0 uniformly inMm0,κ(Ω) and moreover, one has m0 > 0. It

follows that, for µ large enough, g∞,µ is positive. The uniqueness of positive solutions of equation
(LDE) entails that, for µ large enough, g∞,µ = θm,µ. This concludes the proof of the series expansion
convergences and thus, the proof of Theorem 2.1.1.
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CHAPTER 3

THE OPTIMAL LOCATION OF
RESOURCES PROBLEM FOR BIASED

MOVEMENT

With G. Nadin and Y. Privat.

On peut affirmer qu’une traduction s’écarte
d’autant plus qu’elle aspire péniblement à
la généralité. Car elle cherche alors à imiter
jusqu’aux plus fines particularités, évite ce
qui est simplement général, et ne peut
qu’opposer à chaque propriété une
propriété différente. Cela ne doit pourtant
pas nous dissuader de traduire.

W. Von Humboldt,
Introduction à l’Agamemnon(1816)
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General presentation of the chapter: main difficulties
and methods

In this chapter, we study a spectral optimization problem: for any α ≥ 0 and any

m ∈M(Ω) :=

{
0 ≤ m ≤ κ ,

 
Ω

m = m0

}
,

define λα(m) as the first eigenvalue of the operator

Lα := −∇ ·
(

(1 + αm)∇
)
−m,

and consider the optimization problem

min
m∈M(Ω)

λα(m).

The main results of this chapter and the methods developed to obtain them can be summarized as
follows:

• Non-existence of minimizers:

Whenever Ω is not a ball, the optimization problem does not have a solution. This is Theorem
3.1.1, and it is proved using classical methods of H-convergence.

• Stability of the minimizer m∗ in the ball:

When Ω is a ball, we know that the minimizer m∗ for α = 0 is uniquely defined as

m∗ = κ1B(0;r∗).

We prove that, when α > 0 is small enough, m∗ remains the unique minimizer among radial
resources distributions, using a new technique. This is Theorem 3.1.2. Using this technique and
a rearrangement of Alvino-Trombetti, we also prove that, when m0 is small enough, m∗ remains
the unique minimizer in all ofM(Ω). This is Theorem 3.1. Both these results are proved using
a new technique of Taylor expansion of a suitably chosen switch function across the boundary
of the optimal set.

• Shape stability: We use a comparison method to establish the local shape minimality of m∗, in
the sense that the second order shape derivative is positive. We use a comparison principle to
prove that controlling the problem for α = 0 leads to optimality conditions for α > 0 small
enough. This is Theorem 3.1.3.
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3.1 Introduction and main results

In recent decades, much attention has been paid to extremal problems involving eigenvalues, and in
particular to shape optimization problems in which the unknown is the domain where the eigenvalue
problem is solved. The study of these last problems is motivated by stability issues of vibrating bodies,
wave propagation in composite environments, or also on conductor thermal insulation.

In this article, we are interested in studying a particular extremal eigenvalues problem, involving
a drift term. The influence of drift terms on optimal design problems is not so well understood. Such
problems naturally arise for instance when looking for optimal shape design for two-phase composite
materials. In that case, a possible formulation reads: given Ω, a bounded connected open subset of
Rn and a set of admissible non-negative densitiesM in Ω, solve the optimal design problem

inf
m∈M

λ̂α(m) (P̂α)

where λ̂α(m) denotes the first eigenvalue of the elliptic operator

L̂mα : W 1,2
0 (Ω) 3 u 7→ −∇ · ((1 + αm)∇u) .

Restricting the set of admissible densities to bang-bang ones (in other words to functions taking only
two different values) is known to be relevant for the research of structures optimizing the compliance.
We refer to Section 3.3 for detailed bibliographical comments.

Mathematically, the main issues regarding Problem (P̂α) concern the existence of optimal densities
inM, possibly the existence of optimal bang-bang densities (i.e characteristic functions). In this case,
it is interesting to try to describe minimizers in a qualitative way.

In what follows, we will consider a refined version of Problem (P̂α), where the operator L̂mα is
replaced by

Lαm : W 1,2
0 (Ω) 3 u 7→ −∇ · ((1 + αm)∇u)−mu. (3.1)

In spite of its intrinsic mathematical interest, the issue of minimizing the first eigenvalue of Lαm with
respect to densities m is motivated by a model of population dynamics.

Before providing a precise mathematical frame of the questions we raise in what follows, let us
roughly describe the main results and contributions of this article:

• by adapting the methods developed by Murat and Tartar, [142], and Cox and Lipton, [60], we
show that the first eigenvalue of Lαm has no regular minimizer inM unless Ω is a ball;

• if Ω is a ball, denoting by m∗ a minimizer (known to be bang-bang and radial) of L0
m over

M, we show the following stationarity result: m∗ stil minimizes Lαm over radial distributions
of M whenever α is small enough and in small dimension (n = 1, 2, 3). Such a result appears
unexpectedly difficult to prove. Our approach is based on the use of a well chosen path of
quasi-minimizers and on a new type of local argument.

• if Ω is a ball, we investigate the local optimality of ball centered distributions among all distri-
butions and prove a quantitative estimate on the second order shape derivative by using a new
approach relying on a kind of comparison principle for second order shape derivatives.

Precise statements of these results are given in Section 3.1.2.
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3.1.1 Mathematical Set Up
Throughout this article, m0, κ are fixed positive parameters. Since in our work we want to extend
the results of [116], let us define the set of admissible functions

Mm0,κ(Ω) =

{
m ∈ L∞(Ω) , 0 ≤ m ≤ κ ,

 
Ω

m = m0

}
,

where
ffl

Ω
m denotes the average value of m (see Section 3.1.4) and assume that m0 < κ so that

Mm0,κ(Ω) is non-empty. Given α ≥ 0 and m ∈ Mm0,κ(Ω), the operator Lαm is symmetric and
compact. According to the spectral theorem, it is diagonalizable in L2(Ω). In what follows, let λα(m)
be the first positive eigenvalue for this problem. According to the Krein-Rutman theorem, λα(m) is
simple and its associated L2(Ω)-normalized eigenfunction uα,m has a constant sign, say uα,m ≥ 0. Let
Rα,m be the associated Rayleigh quotient given by

Rα,m : W 1,2
0 (Ω) 3 u 7→

1
2

ffl
Ω

(1 + αm)|∇u|2 −
ffl

Ω
mu2ffl

Ω
u2

. (3.2)

We recall that λα(m) can also be defined through the variational formulation

λα(m) := inf
u∈W 1,2

0 (Ω) ,u 6=0
Rα,m(u) = Rα,m(uα,m). (3.3)

and that uα,m solves{
−∇ ·

(
(1 + αm)∇uα,m

)
−muα,m = λα(m)uα,m in Ω,

uα,m = 0 on Ω.
(3.4)

in a weak W 1,2
0 (Ω) sense. In this article, we address the optimization problem

inf
m∈Mm0,κ

(Ω)
λα(m). (Pα)

This problem is a modified version of the standard two-phase problem. It is notable that it is relevant
in the framework of population dynamics, when looking for optimal resources configurations in a
heterogeneous environment for species survival, see Section 3.1.3.

3.1.2 Main results
Before providing the main results of this article, we state a first fundamental property of the in-
vestigated model, reducing in some sense the research of general minimizers to the one of bang-bang
densities. It is notable that, although the set of bang-bang densities is known to be dense in the set
of all densities for the weak-star topology, such a result is not obvious since it rests upon continuity
properties of λα for this topology. We overcome this difficulty by exploiting a convexity-like property
of λα.

Proposition 3.1 : weak bang-bang property Let Ω be a bounded connected subset of Rn with
a Lipschitz boundary and let α > 0 be given. For every m ∈ Mm0,κ(Ω), there exists a bang-bang
function m̃ ∈Mm0,κ(Ω) such that

λα(m) ≥ λα(m̃).

Moreover, if m is not bang-bang, then we can choose m̃ so that the previous inequality is strict.

In other words, given any resources distribution m, it is always possible to construct a bang-bang
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function m̃ that improves the criterion.

Non-existence for general domains. In a series of paper, [46, 47, 48], Casado-Diaz proved that
the problem of minimizing the first eigenvalue of the operator u 7→ −∇ · (1 + αm)∇u with respect to
m does not have a solution when ∂Ω is connected. His proof relies on a study of the regularity for this
minimization problem, on homogenization and on a Serrin type argument. The following result is in
the same vein, with two differences: it is weaker than his in the sense that it needs to assume higher
regularity of the optimal set, but stronger in the sense that we do not make any strong assumption
on ∂Ω. For further details regarding this literature, we refer to Section 3.3.1.

Theorem 3.1.1 Let Ω be a bounded connected subset of Rn with a Lipschitz boundary, let α > 0
and n ≥ 2. If the optimization problem (Pα) has a solution m̂ ∈Mm0,κ(Ω), then this solution writes
m̂ = κχÊ, where Ê is a measurable subset of Ω. Moreover, if ∂Ê is a C 2 hypersurface and if Ω is
connected, then Ω is a ball.

The proof of this Theorem relies on methods developed by Murat and Tartar, [142], Cox and
Lipton, [60], and on a Theorem of Serrin [165].

Analysis of optimal configurations in a ball. According to Theorem 3.1.1, existence of regular
solutions fail when Ω is not a ball. This suggest to investigate the case Ω = B(0, R), which is the main
goal of what follows.

Let us stress that proving the existence of a minimizer in this setting and characterizing it is a hard
thing. Indeed, to underline the difficulty, notice in particular that none of the usual rearrangement
techniques (the Schwarz rearrangement or the Alvino-Trombetti one, see Section 3.3.1), that enable
to only consider radial densities m, and thus to get compactness properties, can be applied here.

The case of radially symmetric distributions

Here, we assume that Ω denotes the ball B(0, R) with R > 0. Let

m∗0 = κ1B(0,r∗0 ) = κ1E∗0

be the centered distribution known to be the unique minimizer of λ0 inMm0,κ(Ω) (see e.g. [116]).
In what follows, we restrict ourselves to the case of radial resources distributions.

Theorem 3.1.2 Let Mrad be the subset of radially symmetric distributions of Mm0,κ(Ω). The
optimization problem

inf
m∈Mrad

λα(m)

has a solution. Furthermore, when n = 1, 2, 3, there exists α∗ > 0 such that, for any α < α∗, there
holds

min
m∈Mrad

λα(m) = λα(m∗0). (3.5)

The proof of the existence part of the theorem relies on rearrangement techniques that were first
introduced by Alvino and Trombetti in [7] and then refined in [57]. The stationarity result, i.e the fact
thatm∗ is a minimizer among radially symmetric distributions, was proved in the one-dimensional case
in [50]. To extend this result to higher dimensions, we developed an approach involving a homogenized
version of the problem under consideration. The small dimensions hypothesis is due to a technical
reason, which arises when dealing with elliptic regularity for this equation.

Restricting ourselves to radially symmetric distributions might appear surprising since one could
expect this result to be true without restriction, in Mm0,κ(Ω). For instance, a similar result has
been shown in the framework of two-phase eigenvalues [57], as a consequence of the Alvino-Trombetti
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rearrangement. Unfortunately, regarding Problem (Pα), no standard rearrangement technique leads to
the expected conclusion, because of the specific form of the involved Rayleigh quotient. A first attempt
in the investigation of the ball case is then to consider the case of radially symmetric distributions. It
is notable that, even in this case, the proof appears unexpectedly difficult.

Finally, we note that, as a consequence of the methods developed to prove Theorem 3.1.2, when a
small amount of resources is available, the centered distribution m∗0 is optimal.

Corollary 3.1 Under the same assumptions as in Theorem 3.1.2, there exists m > 0, α > 0 such
that, if m0 ≤ m and α < α, then the unique solution of (Pα) is m∗0 = κ1E∗0 .

Local minimality of the centered distribution among all resources distributions

In what follows, we tackle the issue of the local minimality of m∗0 in Mm0,κ(Ω) with the help of a
shape derivative approach. We obtain partial results in dimension n = 2.

Let Ω be a bounded connected domain with a Lipschitz boundary, and consider a bang-bang
function m ∈ Mm0,κ(Ω) writing m = κ1E , for a measurable subset E of Ω such that κ|E| = m0|Ω|.
Let us introduce λα(E) := λα (1E), with a slight abuse of notation. Let us assume that E has a C 2

boundary. Let V : Ω → Rn be a W 3,∞ vector field with compact support, and define for every t
small enough, Et := (Id +tV )E. For t small enough, φt := Id +tV is a smooth diffeomorphism from
E to Et, and Et is an open connected set with a C 2 boundary. If F : E 7→ F(E) denotes a shape
functional, the first (resp. second) order shape derivative of F at E in the direction V is

F ′(E)[V ] :=
d

dt

∣∣∣∣
t=0

F(Et)

(
resp.

d2

dt2

∣∣∣∣
t=0

F(Et)

)
whenever these quantities exist.

For further details regarding the notion of shape derivative, we refer to [93, Chapter 5].
Since one wants to ensure that |Et| = V0, we impose the condition

´
E
∇·V = 0 on the vector field

V . We call admissible at E such vector fields and introduce

X (E) :=

{
V ∈W∞(Rn;Rn) ,

ˆ
E

∇ · V = 0 , ‖V ‖W 3,∞ ≤ 1

}
. (3.6)

A shape E ⊂ Ω with a C 2 boundary such that κ|E| = m0|Ω| is said to be critical if

∀V ∈ X (E), λ′α(E)[V ] = 0. (3.7)

or, similarly, if there exist a Lagrange multiplier Λα such that (λα − Λα Vol)
′
(E)[V ] = 0 for all

V ∈ X (E), where Vol : Ω 7→ |Ω| denotes the volume functional. Furthermore, if E is a local minimizer
for Problem (Pα), then one has

∀V ∈ X (E), (λα − Λα Vol)
′′

(E)[V, V ] ≥ 0. (3.8)

Theorem 3.1.3 Let us assume that n = 2. The ball E = B(0, r∗0) = B∗ satisfies the shape optim-
ality conditions (3.7)-(3.8). Furthermore, if Λα is the Lagrange multiplier associated with the volume
constraint, there exists two constants α > 0 and C > 0 such that, for any α ∈ [0, α) and any vector
field V ∈ X (B∗) normal to ∂B∗ = S∗ there holds

(λα − Λα Vol)
′′

(B∗)[V, V ] ≥ C‖V · ν‖2L2(S∗).

Remark 3.1 The proof requires explicit computation of the shape derivative of the eigenfunction.
We note that in [63] such computations are carried out for the two-phase problem and that in [104]
such an approach is undertaken to investigate the stability of certain configurations for a weighted
Neumann eigenvalue problem.
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The main contribution of this result is to shed light on a monotonicity principle that enables one
to lead a careful asymptotic analysis of the second order shape derivative of the functional as α→ 0.
It is important to note that, although this allows us to deeply analyze the second order optimality
conditions, it is expected that the optimal coercivity norm in the right-hand side above is expected to
be H

1
2 whenever α > 0, which we do not recover with our method. When α = 0, we know that the

optimal coercivity norm is L2 (see [Maz19a]).

The rest of this article is dedicated to proofs of the results we have just outlined.

3.1.3 A biological application of the problem

Equation (4.2) arises naturally when dealing with simple population dynamics in heterogeneous spaces.
For ε ≥ 0, a parameter of the model , we consider a population density whose flux is given by

Jε = −∇u+ εu∇m.

Since ∇m might not make sense if m is assumed to be only measurable, we temporarily omit this
difficulty by assuming it smooth enough so that the expression above makes sense. The term u∇m
stands for a bias in the population movement, modeling a tendency of the population to disperse
along the gradient of resources and hence move to favorable regions. The parameter ε quantifies
the influence of the resources distribution on the movement of the species. The complete associated
reaction diffusion equation, called “logistic diffusive equation”, reads

∂u

∂t
= ∇ ·

(
∇u− εu∇m

)
+mu− u2 in Ω,

completed with suitable boundary conditions. In what follows, we will focus on Dirichlet boundary
conditions meaning that the boundary of Ω is lethal for the population living inside. Plugging the
change of variable v = e−εmu in this equation leads to

∂v

∂t
= ∆v + ε〈∇m,∇v〉+mv − eεmv2 in Ω.

It is known (see e.g. [17, 16, 143]) that the asymptotic behavior of this equation is driven by the
principal eigenvalue of the operator L̃ : u 7→ −∆u − ε〈∇m,∇u〉 − mu. The associated principal
eigenfunction ψ satisfies

−∇ · (eεm∇ψ)−meεmψ = λ̃εψe
εm in Ω.

Following the approach developed in [116], optimal configurations of resources correspond to the ones
ensuring the fastest convergence to the steady-states of the PDE above, which comes to minimizing
λ̃ε(m) with respect to m.

By using Proposition 3.1, which enables us to only deal with bang-bang densities m, one shows
easily that minimizing λ̃ε(m) over Mm0,κ(Ω) is equivalent to minimizing λε(m) over Mm0,κ(Ω), in
other words to Problem (Pα) with α = ε. Theorem 3.1.1 can thus be interpreted as follows in this
framework: assuming that the population density moves along the gradient of the resources, it is not
possible to lay the resources in an optimal way. Note that the conclusion is completely different in
the case α = 0 (see [116]) or in the one-dimensional case (i.e. Ω = (0; 1)) with α > 0 (see [50]),
where minimizers exist. In the last case, optimal configurations for three kinds boundary conditions
(Dirichlet, Neumann, Robin) have been obtained, by using a new rearrangement technique. Finally,
let us mention the related result [84, Theorem 2.1], dealing with Faber-Krahn type inequalities for
general operators of the form

K : u 7→ −∇ · (A∇u)− 〈V,∇u〉 −mu
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where A is a positive symmetric matrix. Let us denote the first eigenvalue of K by E(A, V,m). It is
shown, by using new rearrangements, that there exist radially symmetric elements A∗, V ∗,m∗ such
that

0 < inf A ≤ A∗ ≤ ‖A‖∞, ‖A−1‖L1 = ‖(A∗)−1‖L1 , ‖V ∗‖L∞ ≤ ‖V ‖L∞

and E(A, V,m) ≥ E(A∗, V ∗,m∗). We note that applying this result directly to our problem would not
allow us to conclude. Indeed, we would get that for every Ω of volume V1 and every m ∈ Mm0,κ(Ω),
if Ω∗ is the ball of volume V1, there exists two radially symmetric functions m1 and m2 satisfying
m1, m2 in Mm0,κ(Ω) such that λα(m) ≥ µα(m1,m2), where µα(m1,m2) is the first eigenvalue of
the operator −∇ · ((1 + αm1)∇)−m2. We note that this result could also be obtained by using the
symmetrization techniques of [7].

Finally, let us mention that an optimal control problem involving a similar model but a different
cost functional, related to optimal harvesting of a marine resource, has been investigated in the series
of articles [32, 33, 54].

3.1.4 Notations and notational conventions, technical
properties of the eigenfunctions

Let us sum-up the notations used throughout this article.

• R+ is the set of non-negative real numbers. R∗+ is the set of positive real numbers.

• n is a fixed positive integer and Ω is a bounded connected domain in Rn.

• if E denotes a subset of Ω, the notation χE stands for the characteristic function of E, equal to
1 in E and 0 elsewhere.

• the notation ‖ · ‖ used without subscript refers to the standard Euclidean norm in Rn. When
referring to the norm of a Banach space X , we write it ‖ · ‖X .

• The average of every f ∈ L1(Ω) is denoted by
ffl

Ω
f := 1

|Ω|
´

Ω
f .

• ν stands for the outward unit normal vector on ∂Ω.

3.2 Preliminaries

3.2.1 Switching function

In view of deriving optimality conditions for Problem (Pα), we introduce the tangent cone toMm0,κ(Ω)
at any point of this set.

Definition 3.2.1 ([93, chapter 7]) For every m ∈Mm0,κ(Ω), the tangent cone to the setMm0,κ(Ω)
at m, also called the admissible cone to the setMm0,κ(Ω) at m, denoted by Tm is the set of functions
h ∈ L∞(Ω) such that, for any sequence of positive real numbers εn decreasing to 0, there exists a
sequence of functions hn ∈ L∞(Ω) converging to h as n→ +∞, and m+ εnhn ∈Mm0,κ(Ω) for every
n ∈ N.

Notice that, as a consequence of this definition, any h ∈ Tm satisfies
ffl

Ω
h = 0.

Lemma 3.1 Let m ∈ Mm0,κ(Ω) and h ∈ Tm. The mapping Mm0,κ(Ω) 3 m 7→ uα,m is twice
differentiable at m in direction h in a strong L2(Ω) sense and in a weak W 1,2

0 (Ω) sense, and the
mappingMm0,κ(Ω) 3 m 7→ λα is twice differentiable in a strong L2(Ω) sense.
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The proof of this lemma is technical and is postponed to Appendix 4.B.3.
For t small enough, let us introduce the mapping gh : t 7→ λα ([m+ th]). Hence, gh is twice

differentiable. The first and second order derivatives of λα at m in direction h, denoted by λ̇α(m)[h]
and λ̈α(m)[h], are defined by

λ̇α(m)[h] := g′h(0) and λ̈α(m)[h] := g′′h(0).

Lemma 3.2 Let m ∈ Mm0,κ(Ω) and h ∈ Tm. The mapping m 7→ λα(m) is differentiable at m in
direction h in L2 and its differential reads

λ̇α(m)[h] =

ˆ
Ω

hψα,m, with ψα,m := α|∇uα,m|2 − u2
α,m. (3.9)

The function ψα,m is called switching function.

Proof. According to Lemma 3.1, we can differentiate the variational formulation associated to (4.2)
and get that the differential u̇α,m[h] of m 7→ uα,m at m in direction h satisfies

−∇ ·
(
σα∇u̇α,m[h]

)
− α∇ ·

(
h∇uα,m

)
= λ̇α(m)[h]uα,m + λα(m)u̇α,m[h]

+mu̇α,m[h] + huα,m in Ω,
u̇α,m[h] = 0 on ∂Ω,´

Ω
uα,mu̇α,m[h] = 0.

(3.10)

Multiplying this equation by uα,m, integrating by parts and using that uα,m is normalized in L2(Ω)
leads to

λ̇α(m)[h] =

ˆ
Ω

σα〈∇u̇α,m[h],∇uα,m〉 − λα(m)

ˆ
Ω

uα,mu̇α,m[h]−
ˆ

Ω

muα,mu̇α,m[h]︸ ︷︷ ︸
=0 according to (4.2)

+

ˆ
Ω

αh|∇uα,m|2 −
ˆ

Ω

huα,m
2.

3.2.2 Proof of Proposition 3.1

The proof relies on concavity properties of the functional λα. More precisely, let m1,m2 ∈Mm0,κ(Ω).
We will show that the map f : [0; 1] 3 t 7→ λα ((1− t)m1 + tm2) is strictly concave, i.e that f ′′ < 0
on [0, 1].

Note that the characterization of the concavity in terms of second order derivatives makes sense,
according to Lemma 3.1, since λα is twice differentiable. Before showing this concavity property,
let us first explain why it implies the conclusion of Proposition 3.1 (the weak bang-bang property).
Let m ∈ Mm0,κ(Ω) assumed to be not bang-bang. The set I = {0 < m < κ} is then of positive
Lebesgue measure and m is therefore not extremal inMm0,κ(Ω), according to [93, Prop. 7.2.14]. We
then infer the existence of t ∈ (0, 1) as well as two distinct elements m1 and m2 of Mm0,κ(Ω) such
that m = (1 − t)m1 + tm2. Because of the strict concavity of λα, the solution of the optimization
problem min{λα((1− t)m1 + tm2)} is either m1 or m2, and moreover, m cannot solve this problem.
Assume that m1 solves this problem without loss of generality. One thus has λα(m1) < λα(m). Since
the subset of bang-bang functions of Mm0,κ(Ω) is dense in Mm0,κ(Ω) for the weak-star topology of
L∞(Ω), there exists a sequence of bang-bang functions (mk)k∈N ofMm0,κ(Ω) converging weakly-star
to m1 in L∞(Ω). Furthermore, λα is upper semicontinuous for the for the weak-star topology of
L∞(Ω), since it reads as the infimum of continuous linear functionals for this topology. Let ε > 0. We
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infer the existence of kε ∈ N such that λα(mkε) ≤ λα(m1) + ε. By choosing ε small enough, we infer
that λα(mkε) < λα(m), whence the result.

It now remains to prove that f is strictly concave. Let m ∈ Mm0,κ(Ω), and set m1 = m,
h = m2 − m1, we observe that f ′′(t) = λ̈α((1 − t)m1 + tm2)[h] for all t ∈ [0, 1]. The differential
u̇α,m[h] of m 7→ uα,m at m in direction h, denoted u̇α,m[h], satisfies (3.10) and the second order
Gâteaux-derivatives üα,m[h] and λ̈α(m)[h] solve
−∇ ·

(
σα∇üα,m[h]

)
− 2α∇ ·

(
h∇u̇α,m[h]

)
= λ̈α(m)[h]uα,m + 2λ̇α(m)[h]u̇α,m[h]

+λα(m)üα,m[h] +müα,m[h] + 2hu̇α,m[h] in Ω,
üα,m[h] = 0 on ∂Ω.

(3.11)
Multiplying this Equation by uα,m, using that uα,m is normalized in L2(Ω) and integrating by parts
yields

λ̈α(m)[h] =

ˆ
Ω

σα〈∇üα,m[h],∇uα,m〉 − λα(m)

ˆ
Ω

uα,müα,m[h]−
ˆ

Ω

muα,müα,m[h]︸ ︷︷ ︸
=0 according to (4.2)

+ 2α

ˆ
Ω

h〈∇u̇α,m[h],∇uα,m〉 − 2

ˆ
Ω

huα,mu̇α,m[h]

= 2

(
−
ˆ

Ω

σα|∇u̇α,m[h]|2 +

ˆ
Ω

mu̇α,m[h]
2

+ λα(m)

ˆ
Ω

u̇α,m[h]
2

)
+ 2 λ̇α(m)[h]

ˆ
Ω

uα,mu̇α,m[h]︸ ︷︷ ︸
=0 since

´
Ω
uα,mu̇α,m[h] = 0

= 2

ˆ
Ω

u̇α,m[h]
2

(−Rα,m[u̇α,m[h]] + λα(m)) < 0,

where the last inequality comes from the observation that, whenever h 6= 0, one has u̇α,m[h] 6= 0 and
u̇α,m[h] is in the orthogonal space to the first eigenfunction uα,m in L2(Ω). Since the first eigenvalue
is simple, the Rayleigh quotient of u̇α,m[h] is greater than λα(m).

3.3 Proof of Theorem 3.1.1

This proof is based on a homogenization argument, inspired from the notions and techniques intro-
duced in [142]. In the next section, we gather the preliminary tools and material involved in what
follows.

3.3.1 Background material on homogenization and
bibliographical comments

Let us recall several usual definitions and results in homogenization theory we will need hereafter.

Definition 3.3.1 : H-convergence Let (mk)k∈N ∈ Mm0,κ(Ω)N and for every k ∈ N, define
respectively σk and uk(f) by σk = 1 + αmk and as the unique solution of{

−∇ · (σk∇uk(f)) = f in Ω
uk(f) = 0 on Ω

where f ∈ L2(Ω) is given. We say that the sequence (σk)k∈N H-converges to A : Ω → Mn(R) if,
for every f ∈ L2(Ω), the sequence (uk(f))k∈N converges weakly to u∞ in W 1,∞(Ω) and the sequence
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(σk∇uk)k∈N converges weakly to A∇u∞ in L2(Ω), where u∞ solves{
−∇ · (A∇u∞) = f in Ω ,
u∞ = 0 on Ω

In that case, we will write σk
H−→

k→∞
A.

Definition 3.3.2 : arithmetic and geometric means Let m ∈ Mm0,κ(Ω) and σ = 1 + αm.
We define the arithmetic mean of σ by Λ+(m) = σ, and its harmonic mean by Λ−(m) = 1+ακ

1+α(κ−m) .
One has Λ−(m) ≤ Λ+(m), according to the arithmetic-harmonic inequality, with equality if and only
if m is a bang-bang function.

Proposition [142, Proposition 10] Let (mk)k∈N ∈Mm0,κ(Ω)N and (σk)k∈N given by σk = 1+αmk.
Up to a subsequence, there exists m ∈Mm0,κ(Ω) such that (mk)k∈N ∈Mm0,κ(Ω)N converges to m for
the weak-star topology of L∞.

Assume moreover that the sequence (σk)k∈N H-converges to a matrix A. Then, A is a symmetric
matrix, its spectrum Σ(A) is real, and

Λ−(m) ≤ min Σ(A) ≤ max Σ(A) ≤ Λ+(m). (J1)

n∑
j=1

1

λj − 1
≤ 1

Λ−(m)− 1
+

n− 1

Λ+(m)− 1
, (J2)

n∑
j=1

1

1 + ακ− λj
≤ 1

1 + ακ− Λ−(m)
+

n− 1

1 + ακ− Λ+(m)
. (J3)

For a given m ∈Mm0,κ(Ω), we introduce

Mα
m = {A : Ω→ Sn(R) , A satisfies (J1)-(J2)-(J3)}.

For a matrix-valued application A ∈Mα
m for some m ∈Mm0,κ(Ω), it is possible to define the principal

eigenvalue of A via Rayleigh quotients as

ζα(m,A) := inf
u∈W 1,∞(Ω) ,

´
Ω
u2=1

ˆ
Ω

〈A∇u,∇u〉 −
ˆ

Ω

mu2. (3.12)

Note that the dependence of ζα on the parameter α is implicitly contained in the condition A ∈Mα
m.

We henceforth focus on the following relaxed version of the optimization problem:

inf
m∈Mm0,κ(Ω) ,A∈Mα

m

ζα(m,A). (3.13)

for which we have the following result.

Theorem [142, Proposition 10]

1. For every m ∈Mm0,κ(Ω) and A ∈Mα
m, there exists a sequence (mk)k∈N ∈Mm0,κ(Ω) such that

(mk)k∈N converges to m for the weak-star topology of L∞, and the sequence (σk)k∈N defined by
σk = 1 + αmk H-converges to A, as k → +∞.

2. The mapping (m,A) 7→ λα(m,A) is continuous with respect to the H-convergence (see in par-
ticular [149]).
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3. The variational problem (3.13) has a solution (m,A); by definition, A ∈ Mα
m. Furthermore, if

u is the associated eigenfunction, then A∇u = Λ−(m)∇u.

This theorem allows us to solve Problem (3.13).

Corollary 3.2 [142] If Problem (Pα) has a solution m, then the couple (m, 1 + αm) solves Prob-
lem (3.13).

Proof of Corollary 3.2. Assume that the solution of (3.13) is (m,A) and that A 6= 1+αm. Then there
exists a sequence (mk)k∈N converging weak-star in L∞ to m and such that the sequence (1+αmk)k∈N
H-converges to A. This means that

λα(m) = ζα(m, 1 + αm) > ζα(m,A) = lim
k→∞

λα(mk)

which immediately yields a contradiction.

Let us end this section with several bibliographical comments on such problems.

Bibliographical comments on the two-phase conductors problem. Problem (P̂α) has drawn
a lot of attention in the last decades, since the seminal works by Murat and Tartar, [141, 142] Roughly
speaking, this optimal design problem is, in general, ill-posed and one needs to introduce a relaxed
formulation to get existence. We refer to [3, 60, 142, 149].

Let us provide the main lines strategy to investigate existence issues for Problem (P̂α), according
to [141, 142]. If the solution (m, 1 + αm) to the relaxed problem (3.13) is a solution to the original
problem (P̂α), then there exists a measurable subset E of Ω such that m = κ1E . If furthermore
E is assumed to be smooth enough, then, denoting by u the principal eigenfunction associated with
(m,λα(m)) = (m, ζα(m, 1 + αm)), we get that u and (1 + αm)∂u∂ν must be constant on ∂E. The
function 1 +αm being discontinuous across ∂E, the optimality condition above has to be understood
in the following sense: the function (1+αm)∂u∂ν , a priori discontinuous, is in fact continuous across ∂E
and even constant on it. Note that these arguments have been generalized in [60]. These optimality
conditions, combined with Serrin’s Theorem [165], suggest that Problem (P̂α) could have a solution
if, and only if Ω is a ball. The best results known to date are the following ones.

Theorem (i) Let Ω be an open set such that ∂Ω is C 2 and connected. Problem (P̂α) has a solution
if and only if Ω is a ball [48].

(ii) If Ω is a ball, then Problem (P̂α) has a solution which is moreover radially symmetric [57].

Regarding the second part of the theorem, the authors used a particular rearrangement coming to
replace 1 + αm by its harmonic mean on each level-set of the eigenfunction. Such a rearrangement
has been first introduced by Alvino and Trombetti [7]. This drives the author to reduce the class of
admissible functions to radially symmetric ones, which allow them to conclude thanks to a compactness
argument [6]. These arguments are mimicked to derive the existence part of Theorem 3.1.2.

Finally, let us mention [56, 117], where the optimality of annular configurations in the ball is
investigated. A complete picture of the situation is then depicted in teh case where α is small, which
is often referred to as the "low contrast regime". We also mention [63] , where a shape derivative
approach is undertaken to characterize minimizers when Ω is a ball.

3.3.2 Proof of Theorem 3.1.1
Let us assume the existence of a solution to Problem (Pα), denoted m. According to Proposition 3.1,
there exists a measurable subset E of Ω such that m = κχE . Let us introduce σ := 1 + αm and u,
the L2-normalized eigenfunction associated to m.

Let us now assume that ∂E is C 2.
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Step 1: derivation of optimality conditions. What follows is an adaptation of [60]. For this
reason, we only recall the main lines. Let us write the optimality condition for the problem

min
m∈Mm0,κ(Ω)

min
A∈Mα

m

ζα(m,A) = λα(m),

where ζα is given by (3.12). Let h be an admissible perturbation at m. In [142] it is is proved that
for every ε > 0 small enough, there exists a matrix-valued application Aε ∈Mm+εh such that

Aε∇u = Λ−(m+ εh)∇u in Ω,

where Λ− has been introduced in Definition 3.3.2. Fix ε as above. Since (m, 1 + αm) is a solution of
the Problem (3.13), one has

ˆ
Ω

〈Aε∇u,∇u〉 −
ˆ

Ω

(m+ εh)u2 ≥ ζα(m+ εh,Aε)

≥ ζα(m, 1 + αm) =

ˆ
Ω

σ|∇u|2 −
ˆ

Ω

mu2.

where one used the Rayleigh quotient definition of ζα as well as the minimality of (m, 1+αm). Dividing
the last inequality by ε and passing to the limit yields

ˆ
Ω

h
dΛ−(m)

dm

∣∣∣∣
m=m

|∇u|2 − hu2 ≥ 0.

Using that dΛ−/dm = αΛ−(m)2/(1 +ακ), and that m is a bang-bang function (so that Λ−(m) = σ),
we infer that he first order optimality conditions read: there exists µ ∈ R such that

E = {Ψα ≤ µ} where Ψα :=
α

1 + ακ
σ2|∇u|2 − u2. (3.14)

Since the flux σ ∂u∂ν is continuous across ∂E, one has necessarily Ψα = µ on ∂E.
Now, let us follow the approach used in [142] and [48] to simplify the writing of the optimality

conditions. Notice first that u and σ2
∣∣∣ ∂u∂νE ∣∣∣2 are continuous across ∂E. Let ∇τu denote the tangential

gradient of u on ∂E. For the sake of clarity, the quantities computed on ∂E seen as the boundary
of E will be denoted with the subscript int, whereas the ones computed on ∂E seen as part of the
boundary of E

c
will be denoted with the subscript ext. According to the optimality conditions (3.14),

one has

α

1 + ακ
σ2 |∇τu|2 +

α

1 + ακ
σ2

(
∂u

∂ν

)2

− u2

∣∣∣∣∣
int

≤ α

1 + ακ
σ2 |∇τu|2 +

α

1 + ακ
σ2

(
∂u

∂ν

)2

− u2

∣∣∣∣∣
ext

on ∂E. By continuity of the flux σ ∂u∂ν , we infer that ασ2 |∇τu|2
∣∣∣
int
≤ ασ2 |∇τu|2

∣∣∣
ext

which comes to

(1 + ακ) |∇τu|2
∣∣∣
int
≤ |∇τu|2

∣∣∣
ext

. Since |∇τu|2
∣∣∣
int

= |∇τu|2
∣∣∣
ext

, we have ∇τu|Σ = 0. Therefore, u is

constant on ∂E and since Ψα is constant on ∂E, it follows that
∣∣∂u
∂ν

∣∣2
int

is constant as well on ∂E.
To sum-up, the first order necessary conditions drive to the following condition:

The functions u and |∇u| are constant on ∂E. (3.15)

Step 2: proof that Ω is necessarily a ball. To prove that Ω is a ball, we will use Serrin’s
Theorem, that we recall hereafter.
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Theorem [165, Theorem 2] Let E be a connected domain with a C 2 boundary, h a C 1(R;R) function
and let f ∈ C 2

(
E
)
be a function satisfying

−∆f = h(f) , f > 0 in E , f = 0 on ∂E ,
∂f

∂ν
is constant on ∂E .

Then E is a ball and f is radially symmetric.

According to (3.15), let us introduce µ = u|∂E . One has µ > 0 by using the maximum principle.
Let us set f = u − µ, h(z) = (λα(m) + κ) z and call E a given connected component of E. By
assumption, E is a C 2 set, and, according to (3.15), the function ∂ (u− µ) /∂ν is constant on ∂E.

The next result allows us to verify the last assumption of Serrin’s theorem.

Lemma 3.3 There holds u > µ in E.

For the sake of clarity, the proof of this lemma is postponed to the end of this section.
Let us now pick a connected component of E and write it E1. Applying Serrin’s Theorem yields

that E1 is a ball centered at some point x0 and that u is radially symmetric in E1. Let us introduce
O = ∪r1>0 ,u radially symmetric in B(x0,r1)B(x0, r1) so that O is the maximal set in which u is radially
symmetric. Let us now show that one has necessarily O = Ω. Since u is radially symmetric in E1, O
is non-empty and there exists µ̃ ≥ µ such that Ψα = µ̃ on ∂O. We argue by contradiction, assuming
that O 6= Ω. It follows that the set Uδ = {∂O + B(0; δ)} is contained in Ω for δ > 0 small enough.
Let us fix such a δ. To get a contradiction we will show that m is in fact radially symmetric in Uδ.

If µ̃ = µ, then ∂O ⊂ ∂E and there exists δ > 0 such that Uδ\E ⊂ {m = 0} and Uδ∩E ⊂ {m = κ}.
In any case, m is radially symmetric in Uδ which contradicts the maximality of O.
If µ̃ < µ then, by continuity of Ψα it follows that, for δ > 0 small enough, Uδ ⊂ {m = κ}, so that m
is radially symmetric in Uδ and we conclude as before. The conclusion follows. Hence, O = Ω, and Ω
is a ball.

Proof of Lemma 3.3. Let us set v = u− µ, hence v solves{
−∆v = (λα(m) + κ) v + (λα(m) + κ)µ in E,
v = 0 on ∂E.

(3.16)

and we are led to show that v > 0 in E. Let λD(Ω) be the first Dirichlet eigenvalue1 of the Laplace
operator in E. By using the Rayleigh quotient (4.3) we have

λα(m) = min
u∈W 1,2

0 (Ω) ,u 6=0
Rα,m(u) > min

u∈W 1,2
0 (Ω) ,u6=0

1
2

´
Ω
|∇u|2 − κ

´
Ω
u2´

Ω
u2

= λD(Ω)− κ,

so that λα(m) + κ > λD(Ω) > 0. Now, since v = 0 on ∂E and that E is a C 2 open subset of Ω, the
extension ṽ of v by zero outside E belongs to W 1,2

0 (Ω). Since (λα(m) +κ) and µ are non-negative, we
get

−∆ṽ ≥ (λα(m) + κ)ṽ in E and −∆ṽ = 0 = (λα(m) +m)ṽ in (E)c.

We thus have 
−∆ṽ ≥ (λα(m) + κ)ṽ in Ω
ṽ = 0 on ∂E
ṽ ∈W 1,2

0 (Ω).

(3.18)

1In other words
λD(Ω) = inf

u∈W1,2
0 (Ω) ,

´
Ω u

2=1

ˆ
Ω
|∇u|2 > 0. (3.17)
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Splitting ṽ into its positive and negative parts as ṽ = ṽ+ − ṽ− and multiply (3.18) by ṽ− we get after
an integration by parts

−
ˆ

Ω

|∇ṽ−|2 ≥ −(λα(m) + κ)

ˆ
Ω

ṽ2
−.

Using that λα(m) + κ > λD(Ω) > 0, we get
ˆ

Ω

|∇ṽ−|2 ≤ (λα(m) + κ)

ˆ
Ω

ṽ2
− < λD(Ω)

ˆ
Ω

ṽ2
−,

which, combined with the Rayleigh quotient formulation of λD(Ω) yields ṽ− = 0. Hence v is nonneg-
ative in E. Using moreover that (λα(m) + κ) ≥ 0 and µ ≥ 0 yields that −∆v ≥ 0 in E Notice that
v does not vanish identically in E. Indeed, u would otherwise be constant in E which cannot arise
because of (4.2). According to the strong maximum principle, we infer that v > 0 in E.

Remark 3.2 Following the arguments by Casado-Diaz in [48], it would be possible to weaken the reg-
ularity assumption on E provided that we assume the stronger hypothesis that ∂Ω is simply connected.
Indeed, in that case, assuming that E is only of class C 1 leads to the same conclusion.

3.4 Proof of Theorem 3.1.2

Throughout this section, Ω will denote the ball B(0, R), which will also be denoted B for the sake of
simplicity. Let r∗0 ∈ (0, R) be chosen in such a way that m∗0 = κ1B(0,r∗0 ) belongs toMm0,κ(Ω). Let us
introduce the notation E∗0 = B(0, r∗0).

The existence part of the Theorem follows from a straightforward adaptation of [57]. In what
follows, we focus on the second part of this theorem, that is, the stationarity of minimizers provided
α is small enough.

3.4.1 Steps of the proof for the stationarity

We argue by contradiction, assuming that, for any α > 0, there exists a radially symmetric distribution
m̃α such that λα(m̃α) < λα(m∗0). Consider the resulting sequence {m̃α}α>0.

• Step 1: we prove that {m̃α}α→0 converges strongly to m∗0 in L1, as α → 0. Regarding the
associated eigenfunction, we prove that {uα,mα}α>0 converges strongly to u0,m∗0

in C 0 and that
α∇uα,mα converges to 0 in L∞(B), as α→ 0.

• Step 2: by adapting [117, Theorem 3.7], we prove that we can reduce ourselves to considering
bang-bang radially symmetric distributions of resources m̃α = κ1Ẽ such that the Hausdorff
distance dH(Ẽ, E∗0 ) is arbitrarily small.

• Step 3: this is the main innovation of the proof. Introduce hα = m̃α −m∗0, and consider the
path {mt}t∈[0,1] from mα to m∗0 defined by mt = m∗0 + thα. We then consider the mapping

fα : t 7→ ζα(mt,Λ−(mt))

where ζα and Λ−(mt) are respectively given in Def. 3.3.2 and Eq. (3.12). Notice that, since m∗0
and m̃α are bang-bang, fα(0) = λα(m∗) and fα(1) = λα(mα) according to Def. 3.3.2. Let ut be
a L2 normalized eigenfunction associated with (mt,Λ−(mt)), in other words a solution to the
equation  −∇ · (Λ−(mt)∇ut) = ζα(mt,Λ−(mt))ut +mtut in B

ut = 0 on ∂B´
B u

2
t = 1.

(3.19)
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According to the proof of the optimality conditions (3.14), one has

f ′α(t) =

ˆ
B
hα

(
α

1 + ακ
Λ−(mt)

2|∇ut|2 − u2
t

)
.

Applying the mean value Theorem yields the existence of t1 ∈ (0, 1) such that λα(m̃α) −
λα(m∗0) = f ′(t1). This enables us to show that, for t ∈ [0, 1] and α small enough, one has

f ′α(t) ≥ C
ˆ
B
|hα|dist(·,S(0, r∗0))

for some C > 0, giving in turn λα(mα)− λα(m∗) ≥ C
´
B |hα|dist(·,S(0, r∗0)). (we note that the

same quantity is obtained in [117]. Nevertheless, we obtain it in a more straightforward manner
which bypasses the exact decomposition of eigenfunctions and eigenvalues used there.).

Let us now provide the details of each step.

3.4.2 Step 1: convergence of quasi-minimizers and of sequences
of eigenfunctions

We first investigate the convergence of quasi-minimizers.

Lemma 3.4 Let {mα}α>0 be a sequence inMm0,κ(Ω) such that,

∀α > 0, λα(mα) ≤ λα(m∗0). (3.20)

Then, {mα}α>0 converges strongly to m∗0 in L1(Ω).

Proof of Lemma 3.4. The sequence (λα(mα))α>0 is bounded from above. Indeed, choosing any test
function ψ ∈W 1,2

0 (Ω) such that
´

Ω
ψ2 = 1, it follows from (4.3) that λα(mα) ≤ (1+ακ)‖∇ψ‖22+κ‖ψ‖22.

Similarly, using once again (4.3), we get that if ξα is the first eigenvalue associated to the operator
−(1 + ακ)∆ − κ, then λα(mα) ≥ ξα. Since (ξα)α>0 converges to the first eigenvalue of −∆ − κ as
α→ 0, (ξα)α>0 is bounded from below whenever α is small enough. Combining these facts yields that
the sequence (λα(mα))α>0 is bounded by some positive constant M and converges, up to a subfamily,
to λ̃. For any α > 0, let us denote by uα the associated L2-normalized eigenfunction associated to
λα(mα). From the weak formulation of equation (4.2) and the normalization condition

´
Ω
u2
α = 1, we

infer that

‖∇uα‖22 =

ˆ
Ω

|∇uα|2 ≤
ˆ

Ω

(1 + αm)|∇uα|2 =

ˆ
Ω

mαu
2
α + λα(mα)

ˆ
Ω

u2
α ≤ (M + κ).

According to the Poincaré inequality and the Rellich-Kondrachov Theorem, the sequence (uα)α>0 is
uniformly bounded in W 1,2

0 (Ω) and converges, up to subfamily, to ũ ∈ W 1,2
0 (Ω) weakly in W 1,2

0 (Ω)
and strongly in L2(Ω), and moreover ũ is also normalized in L2(Ω).

Furthermore, since L2 convergence implies pointwise convergence (up to a subfamily), ũ is ne-
cessarily nonnegative in Ω. Let m̃ be a closure point of (mα)α>0 for the weak-star topology of L∞.
Passing to the weak limit in the weak formulation of the equation solved by uα, namely Eq. (4.2), one
gets

−∆ũ− m̃ũ = λ̃ũ in Ω.

Since ũ ≥ 0 and
´
B(0,R)

ũ2 = 1, it follows that ũ is the principal eigenfunction of −∆ − m̃, so that
λ̃ = λ0(m∗).

Mimicking this reasoning enables us to show in a similar way that, up to a subfamily, (λα(m∗0))α>0

converges to λ0(m∗0) and (uα,m∗0 )α>0 converges to u0,m∗0
as α→ 0. Passing to the limit in the inequality
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(3.20) and since m∗0 is the only minimizer of λ0 inMm0,κ(Ω) according to the Faber-Krahn inequality,
we infer that necessarily, m̃ = m∗0. Moreover, m∗0 being an extreme point ofMm0,κ(Ω), the subfamily
(mα)α>0 converges to m̃ = m∗ (see [93, Proposition 2.2.1]), strongly in L1(Ω).

A straightforward adaptation of Lemma 3.4’s proof yields that both sets {λα(m)}m∈Mm0,κ
(Ω) and

{‖uα,m‖W 1,2(Ω)}m∈Mm0,κ(Ω) are uniformly bounded whenever α ≤ 1. Let us hence introduce M0 > 0
such that

∀α ∈ [0, 1], max{|λα(m)|, ‖uα,m‖W 1,2
0 (Ω)} ≤M0. (3.21)

The next result is the only ingredient of the proof of Theorem 3.1.2 where the low dimension
assumption on n is needed.

Lemma 3.5 Let us assume that n = 1, 2, 3. There exists M1 > 0 such that, for every radially
symmetric distribution m ∈Mm0,κ(Ω) and every α ∈ [0, 1], there holds

‖uα,m‖W 1,∞(B) ≤M1.

Furthermore, define σ̃α,m, m̃ and ϕα,m : (0, R)→ R by

∀x ∈ B, uα,m(x) = ϕα,m (|x|) , σα,m(x) = σ̃α,m(|x|), m(x) = m̃(|x|),

then σ̃α,m(ϕα,m)′ belongs to W 1,∞(0, R).

Proof of Lemma 3.5. This proof is inspired by [117, Proof of Theorem 3.3]. It is standard that for
every α ∈ [0, 1] and every radially symmetric distribution m ∈ Mm0,κ(Ω), the eigenfunction uα,m is
itself radially symmetric. By rewriting the equation (4.2) on uα,m in polar coordinates, on sees that
ϕα,m solves {

− d
dr

(
rn−1σ̃α,m

d
drϕα,m

)
= (λα(m)ϕα,m + m̃ϕα,m) rn−1 in (0, R)

ϕα,m(R) = 0.
(3.22)

By applying the Hardy Inequality2 on f = ϕα,m, we get

ˆ R

0

ϕα,m
2(r) dr ≤ 4

ˆ R

0

x2ϕα,m
′(x)2 dx

≤ 4R2

ˆ R

0

( x

R2

)n−1

ϕα,m
′(x)2dx = 4R4−2n‖∇uα,m‖2L2(B) ≤M,

since n ∈ {1, 2, 3}. Hence, there exists C > 0 such that

‖ϕα,m‖2L2(0,R) ≤ C. (3.23)

We will successively prove that ϕα,m is uniformly bounded inW 1,2
0 (0, R), then in L∞(0, R) to infer

that ϕα,m′ is bounded in L∞(0, R). This proves in particular that σα,mϕ′α,m ∈ L∞(0, R). We will
then conclude that σα,mϕ′α,m ∈W 1,∞(0, R) by using that it is a continuous function whose derivative
is uniformly bounded in L∞ by the equation on ϕα,m.

According to (3.21), ‖r n−1
2 ϕα,m

′‖L2(0,R) = ‖∇uα,m‖L2(B) is bounded and therefore, rn−1ϕα,m
′(r)

2This inequality reads (see e.g. [150, Lemma 1.3] or [87]): for any non-negative f ,
ˆ ∞

0
f(x)2dx ≤ 4

ˆ ∞
0

x2f ′(x)2dx.
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converges to 0 as r → 0. Hence, integrating Eq. (3.22) between 0 and r > 0 yields

σ̃α,m(r)ϕα,m
′(r) = − 1

rn−1

ˆ r

0

tn−1 (λα(m)ϕα,m(t) + m̃(t)ϕα,m(t)) dt.

By using the Cauchy-Schwarz inequality and (3.23), we get the existence of M̃ > 0 such that

‖ϕα,m′‖2L2(0,R) ≤
ˆ 1

0

(σ̃α,mϕα,m
′)

2
(r) dr

=

ˆ 1

0

1

r2(n−1)

(ˆ r

0

tn−1 (λα(m)ϕα,m(t) + m̃(t)ϕα,m(t)) dt

)2

dr

≤
ˆ 1

0

1

r2(n−1)
(λα(m) + κ)2‖ϕα,m‖2L2(0,R)‖t

n−1‖2L2(0;r) dr

≤ M̃

4n− 2
‖ϕα,m‖2L2(0,R) ≤ M̃‖ϕα,m‖

2
L2(0,R) ≤ M̃C,

Hence, ϕα,m is uniformly bounded in W 1,2
0 (0, R).

It follows from standard Sobolev embedding’s theorems that there exists a constant M2 > 0, such
that ‖ϕα,m‖L∞(0,R) ≤M2.

Finally, plugging this estimate in the equality

σ̃α,m(r)ϕα,m
′(r) = − 1

rn−1

ˆ r

0

tn−1 (λα(m)ϕα,m(t) + m̃(t)ϕα,m(t)) dt

and since tn−1 ≤ rn−1 on (0, r), we get that ϕα,m′ is uniformly bounded in L∞(0, R).

The next lemma is a direct corollary of Lemma 3.4, Lemma 3.5 and the Arzela-Ascoli Theorem.

Lemma 3.6 Let (mα)α>0 be a sequence of radially symmetric functions ofMm0,κ(Ω) such that, for
every α ∈ [0, 1], λα(mα) ≤ λα(m∗0). Then, up to a subfamily, uα,m∗ converges to u0,m∗0

for the strong
topology of C 0(Ω) as α→ 0.

3.4.3 Step 2: reduction to particular resource distributions
close to m∗0

Let us consider a sequence of radially symmetric distributions (mα)α>0 such that, for every α ∈ [0, 1],
λα(mα) ≤ λα(m∗0). According to Proposition 3.1, we can assume that each mα is a bang-bang, in
other words that mα = κχEα where Eα is a measurable subset of B(0, R). For every α ∈ [0, 1], one
introduces dα = dH(Eα, E

∗
0 ), the Hausdorff distance of Eα to E∗0 .

Lemma 3.7 For every ε > 0 small enough, there exists α > 0 such that, for every α ∈ [0, α], there
exists a measurable subset Ẽα of Ω such that

λα(κχEα) ≥ λα(κχẼα), |Eα| = |Ẽα| and dH(Ẽα, E
∗
0 ) ≤ ε.

Proof of Lemma 3.7. Let α ∈ [0, 1]. Observe first that λα(m) =
´
B |∇uα,m|

2 + α
´
Bm|∇uα,m|

2 −´
Bmuα,m

2 =
´
B |∇uα,m|

2 +
´
Bmψα,m, where ψα,m has been introduced in Lemma 3.2. We will first

construct m̃α in such a way that

λα(mα) ≥
ˆ
B
|∇uα,mα |2 +

ˆ
Ω

ψα,mαm̃α ≥ λα(m̃α),
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and, to this aim, we will define m̃α as a suitable level set of ψα,mα . Thus, we will evaluate the
Hausdorff distance of these level sets to E∗0 . The main difficulty here rests upon the lack of regularity
of the switching function ψα,mα , which is even not continuous.

According to Lemmas 3.5 and 3.6, ψα,mα converges to −u2
0,m∗0

for the strong topology of L∞(B).
Recall that m∗0 = κχB(0,r∗0 ) and let V0 be defined by V0 = |B(0, r∗0)|. Let us define µ∗α by dichotomy,
as the only real number such that

|ωα| ≤ V0 ≤ |ωα|,

where ωα = {ψα,mα < µ∗α} and ωα = {ψα,mα ≤ µ∗α}.
Since

∣∣∣{ψ0,m∗0
< −ϕ2

0,m∗0
(r∗0)}

∣∣∣ = V0, we deduce that (µ∗α) converges to −ϕ2
0,m∗0

(r∗0) as α→ 0. Since
ϕ0,m∗0

is decreasing, we infer that for any ε > 0 small enough, there exists α > 0 such that: for every
α ∈ [0, α], B(0; r∗0 − ε) ⊂ ωα ⊂ ωα ⊂ B(0; r∗0 + ε). Therefore, there exists a radially symmetric set Bαε
such that

ωα ⊂ Bαε ⊂ ωα, |Bαε | = V0, dH(Bαε , E
∗
0 ) ≤ ε.

Since Eα andBαε have the same measure, one has |(Eα)c∩Bαε | = |Eα∩(Bαε )c|, we introduce m̃α = κχBαε
so that m̃α belongs toMm0,κ(Ω).

Figure 3.1 – Possible graph of the discontinuous function ψα,mα . The bold intervals on the x axis
correspond to {mα = 0}.

By construction, one has

λα(mα) =

ˆ
B
(1 + αmα)|∇uα,mα |2 −

ˆ
B
mαu

2
α,m =

ˆ
B
|∇uα,mα |2 +

ˆ
B
ψα,mαmα

=

ˆ
B
|∇uα,mα |2 + κ

ˆ
Eα

ψα,mα =

ˆ
B
|∇uα,mα |2 + κ

ˆ
Eα∩(Bαε )c

ψα,mα + κ

ˆ
Eα∩Bαε

ψα,mα

≥
ˆ
B
|∇uα,mα |2 + κµ∗α|Eα ∩ (Bαε )c|+ κ

ˆ
Eα∩Bαε

ψα,mα

=

ˆ
B
|∇uα,mα |2 + κµ∗α|(Eα)c ∩Bαε |+ κ

ˆ
Eα∩Bαε

ψα,mα

≥
ˆ
B
|∇uα,mα |2 + κ

ˆ
(Eα)c∩Bαε

ψα,mα + κ

ˆ
Eα∩Bαε

ψα,mα =

ˆ
B
|∇uα,mα |2 +

ˆ
B
m̃αψα,mα

=

ˆ
B
σα,m̃α |∇uα,mα |2 −

ˆ
B
m̃αu

2
α,m ≥ λα(m̃α),

the last inequality coming from the variational formulation (4.3). The expected conclusion thus
follows.
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From now on we will replace mα by κχẼα and still denote this function by mα with a slight abuse
of notation.

3.4.4 Step 3: conclusion, by the mean value theorem

Recall that, according to Section 3.4.1, for every α ∈ [0, 1], the mapping fα is defined by fα(t) :=
ζα(mt,Λ−(mt)) for all t ∈ [0, 1] We claim that fα belongs to C 1. This follows from similar arguments
to those of the L2 differentiability of m 7→ λα(m) in Appendix 4.B.3. Following the proof of (3.14), it
is also straightforward that for every t ∈ [0, 1], one has

f ′α(t) =

ˆ
B

(
α

1 + ακ
Λ−(mt)

2|∇ut|2 − u2
t

)
hα. (3.24)

Finally, since m∗0 and mα are bang-bang, it follows from Definition 3.3.2 that fα(0) = λα(m∗) and
fα(1) = λα(mα).

Since mα is assumed to be radially symmetric, so is mt for every t ∈ [0, 1] thanks to a standard
reasoning, and, therefore, so is ut. With a slight abuse of notation, we identify mt, ut and Λ−(mt)
with their radial part m̃t, ũt, Λ̃−(mt) defined on [0, R] by

ut(x) = ũt(|x|), mt(x) = m̃t(|x|), Λ−(mt)(x) = Λ̃−(m̃t)(|x|).

Then the function ut (defined on [0, R]) solves the equation
− d
dr

(
rn−1Λ−(mt)

dut
dr

)
= (ζα(mt,Λ−(mt))ut +mtut) r

n−1 r ∈ [0;R]
ut(R) = 0´ R

0
rn−1ut(r)

2dr = 1
cn
,

(3.25)

where cn = |S(0, 1)|. As a consequence, an immediate adaptation of the proof of Lemma 3.5 yields:

Lemma 3.8 There exists M > 0 such that

max
{
‖ut‖W 1,∞ ,

∥∥∥Λ−(mt)u
′
t

∥∥∥
W 1,∞

}
≤M.

Furthermore, Λ−(mt)u
′
t converges to u′0,m∗ in L∞(0, R) and uniformly with respect to t ∈ [0, 1], as

α→ 0.

According to the mean value Theorem, there exists t1 = t1(α) ∈ [0, 1] such that

λα(mα)− λα(m∗) = fα(1)− fα(0) = f ′α(t1)

and by using Eq. (3.24), one has

f ′α(t1) =

ˆ
B

(
α

1 + ακ
Λ−(mt1)2|∇ut1 |2 − u2

t1

)
hα,

where hα = mα−m∗0. Let us introduce I±α as the two subsets of [0, R] given by I±α = {hα = ±1}. Let
ε > 0. According to Lemma 3.7, we have, for α small enough, I+

α ⊂ [r∗0 , r
∗
0 + ε] and I−α ⊂ [r∗0 − ε, r∗0 ].

Finally, let us introduce
F1 :=

α

1 + ακ
Λ−(mt1)2|∇ut1 |2 − u2

t1 .

According to Lemma 3.8, F1 belongs to W 1,∞ and F1 +u2
α,m∗0

converges to 0 as α→ 0, for the strong
topology of W 1,∞(0, R). Moreover, there exists M > 0 independent of α such that for ε > 0 small
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enough,

−M ≤ 2uα,m∗0
duα,m∗0
dr

≤ −M in [r∗0 − ε, r∗0 + ε]

and it follows that
M

2
≤ dF1

dr
≤ 2M in [r∗0 − ε, r∗0 + ε]

for α small enough. Hence, since F1 is Lipschitz continuous and thus absolutely continuous, one has
for every y ∈ [0, ε],

F1(r∗0 + y) = F1(r∗0) +

ˆ r∗0+y

r∗0

F′1(s) ds ≥ F1(r∗0) +
M

2
y

and F1(r∗0 − y) = F1(r∗0) +

ˆ r∗0

r∗0−y
(−F′1(s)) ds ≤ F1(r∗0)− M

2
y.

Since hα ≤ 0 in [r∗0 − ε, r∗0 ] and hα ≥ 0 in [r∗0 , r
∗
0 + ε], we have

hα(r∗0 + y)F1(r∗0 + y) ≥ hα(r∗0 + y)F1(r∗) +
|hα|(r∗0 + y)M

2
y

and hα(r∗0 − y)F1(r∗0 − y) ≥ hα(r∗0 − y)F1(r∗) +
|hα|(r∗0 − y)M

2
y.

for every y ∈ [0, ε]. Hence, using that
´
B hα = 0, we infer that

f ′α(t1) =

ˆ
B

(
α

1 + ακ
Λ−(mt1)2|∇ut1 |2 − u2

t1

)
hα = cn

ˆ R

0

hα(s)F1(s)sn−1 ds

= cn

(ˆ r∗0

r∗0−ε
hαF1(s)sn−1ds+

ˆ r∗0+ε

r∗0

hαF1(s)sn−1 ds

)

≥ cn

(ˆ r∗0

r∗0−ε
hα(s)F1(r∗)sn−1ds+

ˆ r∗0+ε

r∗0

hα(s)F1(r∗)sn−1 ds

)

+
cnM

2

(ˆ r∗0

r∗0−ε
|hα|(s)|r∗0 − s|sn−1ds+

ˆ r∗0+ε

r∗0

|hα|(s)|r∗0 − s|sn−1 ds

)

=
cnM

2

ˆ
B
|hα|dist(·,S(0, r∗0)),

which concludes Step 3. Theorem 3.1.2 is thus proved.

Remark 3.3 Regarding the proof of Theorem 3.1.2, it would have been more natural to consider the
path t 7→ (λα(mt),mt) rather than t 7→ (ζα(mt,Λ−(mt)),mt). However, we would have been led to
consider Gt = ακ|∇uα,mt |2 − u2

α,mt instead of Ft. Unfortunately, this would have been more intricate
because of the regularity of Gt, which is discontinuous and thus, no longer a W 1,∞ function, so that
a Lemma analogous to Lemma 3.8 would not be true. Adapting step by step the arguments of [117]
would nevertheless be possible although much more technical.

3.5 Sketch of the proof of Corollary 3.1

We do not give all details since the proof is then very similar to the ones written previously. We only
underline the slight differences in every step.
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To prove this result, we consider the following relaxation of our problem, which is reminiscent of the
problems considered in [84]. Let us consider, for any pair (m1,m2) ∈Mm0,κ(Ω)2, the first eigenvalue
of the operator N : u 7→ −∇ · ((1 + αm1)∇u) −m2u, and write it ηα(m1,m2). Let m∗ := κ1B(0,R).
By using the results of [84] or alternatively, applying the rearrangement of Alvino and Trombetti, [7]
as it has been done in [57], one proves the existence of a radially symmetric function m̃1 such that

ηα(m1,m2) ≥ ηα(m̃1,m
∗),

so that we are done if we can prove that, for any m ∈M(Ω) there holds

ηα(m,m∗) ≥ ηα(m∗,m∗). (3.26)

We claim that (3.26) holds for any m ∈ Mm0,κ, provided that m0 and α be small enough. Let us
describe the main steps of the proof:

• Step 1: mimicking the compactness argument used in [57], one shows that there exists a solution
mα to the problem

inf
m∈Mm0,κ(Ω)

ηα(m,m∗),

which is radially symmetric and bang-bang. We write it mα = κ1Eα .

• Step 2: let µ0 and r∗0 be the unique real numbers such that∣∣{|∇u0,m∗ |2 ≤ µ0

}∣∣ = V0 = |B(0, r∗0)|.

Introducing E0 =
{
|∇u0,m∗ |2 ≤ µ0

}
, we prove that mα converges in L1(Ω) to κ1E0

as α→ 0.

• Step 3: we establish that if m0 is small enough, then E0 = B(0, r∗0). This is done by proving
that u0,m∗ converges in C 1 to the first Dirichlet eigenfunction of the ball as r∗0 → 0 and by
determining the level-sets of this first eigenfunction, as done in [56, Section 2.2].

• Step 4: once this limit identified, we mimick the steps of the proof of Theorem 3.1.2 (reduction
to a small Hausdorff distance and mean value Theorem for a well-chosen auxiliary function) to
conclude that one necessarily has mα = m∗ for α small enough.

3.6 Proof of Theorem 3.1.3

Throughout this section, we will denote by B∗ the ball B(0, r∗0), where r∗0 is chosen so that m∗0 = κχB∗

belongs toMm0,κ(Ω).
When it makes sense, we will write f |int(y) = limx∈B∗,x→y f(x), f |ext(y) := limx∈(B∗)c,x→y f(y),

so that [f ] = f |ext − f |int denotes the jump of f at the boundary S(0, r∗0).

3.6.1 Preliminaries

For ε > 0, let us introduce B∗ε := (Id +εV )B∗ and define uε as the L2-normalized first eigenfunction
associated with mε = κχB∗ε .

It is well known (see e.g. [92, 93]) that uε expands as

uε = u0,α + εu1,α + ε2u2,α

2
+ o
ε→0

(ε2), (3.27)

where, in particular, u0,α = uα,m∗0 , whereas λα(B∗ε) expands as

λα(B∗ε) = λ0,α + ελ′α(B∗)[V ] + ε2λ′′α(B∗)[V ] + o
ε→0

(ε2)
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= λ0,α + ελ1,α + ε2λ2,α + o
ε→0

(ε2). (3.28)

By mimicking the proof of Lemma 3.5, one shows the following symmetry result.

Lemma 3.9 uα,m∗0 is a radially symmetric function. Let ϕα,m∗0 and m̃ be such that uα,m∗0 = ϕα,m∗0 (|·|)
and m∗0 = m̃(| · |), then ϕα,m∗0 satisfies the ODE{

− d
dr

(
rn−1σ̃α,m∗0ϕ

′
α,m∗0

)
= (λα(m∗0) + m̃)ϕα,m∗0r

n−1 in (0, R)

ϕα,m∗0 (R) = 0
(3.29)

and one has the following jump conditions

[ϕα,m∗0 ](r∗0) = [σα,m∗0ϕ
′
α,m∗0

](r∗0) = 0, [σαϕ
′′
α,m∗0

](r∗0) = κϕα,m∗0 (r∗0). (3.30)

Furthermore, ϕα,m∗0 converges to ϕ0,m∗0
for the strong topology of C 1 as α→ 0.

3.6.2 Computation of the first and second order shape
derivatives

Hadamard’s structure theorem enables us to work with only normal vector fields V to compute the
second order derivative. Since we are working in dimension 2, this means that one can deal with
vector fields V given in polar coordinates by

V (r∗0 , θ) = g(θ)(cos θ, sin θ).

The proof of the shape differentiability at the first and second order of λα, based on the method of
[139], is exactly similar to [63, Proof of Theorem 2.2], and are thus omitted in [MNP19a]. Never-
theless, for the sake of completeness, we present the proofs and computations related to these shape
differentiability properties in Appendix 3.A.1.1 of this Chapter.

Computation and analysis of the first order shape derivative. Let us prove that B∗ is a
critical shape in the sense of (3.7).

Lemma 3.10 The first order shape derivative of λα at B∗ in direction V reads

λ1,α = λ′α(B∗)[V ] =

ˆ
S(0,r∗0 )

V · ν. (3.31)

For all V ∈ X (B∗) (defined by (3.6)), one has λ1,α = 0 meaning that B∗ satisfies (3.7).

Proof of Lemma 3.10. First, elementary computations show that u1,α solves
−∇ ·

(
σα∇u1,α

)
= λ1,αu0,α + λ0,αu1,α +m∗u1,α in B(0, R),[

σα
∂u1,α

∂ν

]
(r∗0 cos θ, r∗0 sin θ) = −κg(θ)u0,α,

[u1,α] (r∗0 cos θ, r∗0 sin θ) = −g(θ)
[
∂u0,α

∂r

]
(r∗0 cos θ, r∗0 sin θ),

(3.32)

where the jumps denote the jumps of the functions at S(0, r∗0). The derivation of the main equation
of (3.32) is provided in Appendix 4.B.2. To derive the jump on u1,α, we follow [63] and differentiate
the continuity equation [uε]∂B∗ε = 0. Formally plugging (3.27) in this equation yields

u1,α|int(r∗, θ) + g(θ)
∂u0,α

∂r

∣∣∣∣
int

= u1,α|ext(r∗, θ) + g(θ)
∂u0,α

∂r

∣∣∣∣
ext

,
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and hence
[u1,α] = u1,α|ext − u1,α|int = −g(θ)

[
∂u0,α

∂r

]
.

Note that the same goes for the normal derivative: we differentiate the continuity equation[
(1 + αmε)

∂uε,α
∂ν

]
∂B∗ε

= 0,

yielding [
σα
∂u1,α

∂r

]
= −g(θ)

[
σα
∂2u0,α

∂r2

]
.

According to the equation −σα∆u0,α = λα(m∗)u0,α +m∗u0,α in B∗, this rewrites[
σα
∂u1,α

∂r

]
= −κg(θ)u0,α. (3.33)

Now, using u0,α as a test function in (3.32), we get

λ1,α = −
ˆ
B(0,R)

σαu0,α∆u1,α −
ˆ
B(0,R)

m∗0u1,αu0,α = −
ˆ
B(0,R)

σαu0,α∆u1,α +

ˆ
B(0,R)

σαu1,α∆u0,α

=

ˆ
S(0,r∗0 )

u0,α

[
σα
∂u1,α

∂ν

]
−
ˆ
S(0,r∗0 )

[
σα
∂u0,α

∂r
u1,α

]
= −r∗0

ˆ 2π

0

κg(θ)u0,α(r∗0)2 dθ + r∗0

ˆ 2π

0

g(θ)

(
σα
∂u0,α

∂r

)[
∂u0,α

∂r

]
dθ

= r∗0

ˆ 2π

0

g(θ)

(
−κu0,α(r∗0)2 +

[
σα

(
∂u0,α

∂r

)2
])

dθ.

by using that
´
B(0,R)

u2
ε = 1, so that

´
B(0,R)

u0,αu1,α = 0 by differentiation.

Since u0,α is radially symmetric according to Lemma 3.9, we introduce the two real numbers

ηα = −κu0,α(r∗0)2 +

[
σα

(
∂u0,α

∂r

)2
]

and λ1,α = r∗0ηα

ˆ 2π

0

g(θ) dθ. (3.34)

It is easy to see that V belongs to X (B∗) if, and only if
´ 2π

0
g = 0 so that we finally have λ1,α = 0.

Computation of the Lagrange multiplier. The existence of a Lagrange multiplier Λα ∈ R
related to the volume constraint is standard, and one has

∀V ∈ X (B∗), (λα − Λα Vol)
′
(B∗)[V ] = 0,

Since

Vol′(B∗)[V ] =

ˆ
S(0,r∗0 )

V · ν = r∗0

ˆ 2π

0

g(θ)dθ.

(see e.g. [93, chapitre 5]) and since

λ′α(B∗)[V ] = r∗0ηα

ˆ 2π

0

g(θ)dθ,
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where ηα is defined by (3.34), the Lagrange multiplier reads

Λα = ηα = −κu0,α(r∗0)2 +

[
σα

(
∂u0,α

∂r

)2
]
.

Computation of the second order derivative and second order optimality conditions.

Lemma 3.11 For every V ∈ X (B∗), one has for the coefficient λ2,α = λ′′α(B∗)[V, V ] introduced in
(3.28) the expression

λ2,α = 2

ˆ
S(0,r∗0 )

σα∂ru1,α|int
[
∂u0,α

∂r

]
V · ν − 2κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν

+

ˆ
S(0,r∗0 )

(
− 1

r∗0

[
σα|∇u0,α|2

]
− κ

r∗0
u2

0,α

)
(V · ν)2 − 2

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2.

Proof of Lemma 4.6. In the computations below, we do not need to make the equation satisfied by
u2,α explicit, but we nevertheless will need several times the knowledge of [u2,α] at S(0, r∗0). In the
same fashion that we obtained the jump conditions on u1,α Let us differentiate two times the continuity
equation [uε]∂B∗ε = 0. We obtain

[u2,α]∂B∗ε = −2g(θ)

[
∂u1,α

∂r

]
− g(θ)2

[
∂2u0,α

∂r2

]
. (3.35)

Now, according to Hadamard second variation formula (see [93, Chapitre 5, page 227] for a proof), if
Ω is a C 2 domain and f is two times differentiable at 0 and taking values in W 2,2(Ω), then one has

d2

dt2

∣∣∣∣
t=0

ˆ
(Id +tV )Ω

f(t) =

ˆ
Ω

f ′′(0) + 2

ˆ
∂Ω

f ′(0)V · ν +

ˆ
∂Ω

(
Hf(0) +

∂f(0)

∂ν

)
(V · ν)2, (3.36)

where H denotes the mean curvature. We apply it to f(ε) = σα,ε|∇uε|2 − mεu
2
ε on B(0, R), since

λα(mε) =
´
B(0,R)

fε. Let us distinguish between the two subdomains B∗ε and (B∗ε)c. We introduce

D1 =
d2

dε2

∣∣∣∣
ε=0

ˆ
B∗ε

(
σα,ε|∇uε|2 − κu2

ε

)
and D2 =

d2

dε2

∣∣∣∣
ε=0

ˆ
(B∗ε)c

(
σα,ε|∇uε|2

)
so that λ′′α(B∗)[V, V ] = D1 +D2.

One has

D1 =

ˆ
B∗

2(1 + ακ)∇u2,α · ∇u1,α + 2

ˆ
B∗ε

(1 + ακ)|∇u1,α|2

−2κ

ˆ
B∗
u2,αu0,α − 2κ

ˆ
B∗
u1,αu0,α

+4

ˆ
S(0,r∗0 )

(1 + ακ)(∇u1,α|int · ∇u0,α|int)V · ν − 4κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν

+

ˆ
S(0,r∗0 )

(
1

r∗0
(1 + ακ)|∇u0,α|2int −

κ

r∗
u2

0,α + 2(1 + ακ)
∂u0,α

∂r

∣∣∣∣
int

∂2u0,α

∂r2

∣∣∣∣
int

−2κu0,α
∂u0,α

∂r

∣∣∣∣
int

)
(V · ν)2,
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and taking into account that the mean curvature has a sign on (B∗ε)c, one has

D2 =

ˆ
(B∗)c

2∇u2,α · ∇u1,α + 2

ˆ
(B∗)c

|∇u1,α|2

−4

ˆ
S(0,r∗0 )

(∇u1,α|ext · ∇u0,α|ext)V · ν

+

ˆ
S(0,r∗0 )

(
− 1

r∗0
|∇u0,α|2ext − 2

∂u0,α

∂r

∣∣∣∣
ext

∂2u0,α

∂r2

∣∣∣∣
ext

)
(V · ν)2.

Summing these two quantities, we get

λ′′α(B∗)[V, V ] = 2

ˆ
B(0,R)

σα∇u0,α · ∇u2,α − 2

ˆ
B(0,R)

m∗0u0,αu2,α

+2

ˆ
B(0,R)

σα|∇u1,α|2 − 2

ˆ
B(0,R)

m∗0u
2
1,α

−4

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

[
∂u1,α

∂r

]
V · ν − 4κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν

+

ˆ
S(0,r∗0 )

(
− 1

r∗0

[
σα|∇u0,α|2

]
− κ

r∗0
u2

0,α

)
(V · ν)2

−2

ˆ
S(0,r∗0 )

[
σα
∂u0,α

∂r

∂2u0,α

∂r2

]
(V · ν)2 − 2κu0,α

∂u0,α

∂r

∣∣∣∣
int

(V · ν)2.

To simplify this expression, let us use Eq. (3.30). Introducing

D3 =

ˆ
B(0,R)

σα∇u0,α · ∇u2,α −
ˆ
B(0,R)

u0,αu2,α − λα(B∗)
ˆ
B(0,R)

u0,αu2,α,

one has
D3 =

ˆ
S(0,r∗0 )

[u2,α]σα
∂u0,α

∂r

and hence, by using Equation (3.35), one has

D3 = −2

ˆ
S(0,r∗0 )

[u2,α]σα
∂u0,α

∂r

= 4

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

[
∂u1,α

∂r

]
V · ν + 2

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

[
∂2u0,α

∂r2

]
(V · ν)2.

Similarly, let

D4 =

ˆ
B(0,R)

σα|∇u1,α|2 −
ˆ
B(0,R)

m∗0u
2
1,α.

By using Eq. (3.32) and the fact that λ1,α = 0, one has

D4 = λα(B∗)
ˆ
B(0,R)

u2
1,α −

ˆ
S(0,r∗0 )

[
u1,ασα

∂u1,α

∂r

]
= λα(B∗)

ˆ
B(0,R)

u2
1,α −

ˆ
S(0,r∗0 )

[u1,α]

(
σα
∂u1,α

∂r

)∣∣∣∣
ext

−
ˆ
S(0,r∗0 )

u1,α|int
[
σα
∂u1,α

∂r

]
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= λα(B∗)
ˆ
B(0,R)

u2
1,α +

ˆ
S(0,r∗0 )

(
σα∂ru1,α|ext

[
∂u0,α

∂r

]
+ κu1,α|intu0,α

)
V · ν.

Finally, by differentiating the normalization condition
´
B(0,R)

u2
ε = 1, we get

ˆ
B(0,R)

u0,αu2,α +

ˆ
B(0,R)

u2
1,α = 0. (3.37)

Combining the equalities above, one gets

λ2,α = 2λα(B∗)

(ˆ
B(0,R)

u0,αu2,α +

ˆ
B(0,R)

u2
1,α

)
+ 4

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

[
∂u1,α

∂r

]
V · ν

+2

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

[
∂2u0,α

∂r2

]
(V · ν)2 + 2

ˆ
S(0,r∗0 )

σα∂ru1,α|ext
[
∂u0,α

∂r

]
V · ν

+2κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν − 4

ˆ
S(0,r∗0 )

σα
∂u0,α

∂r

[
∂u1,α

∂r

]
V · ν

−4κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν −
ˆ
S(0,r∗0 )

(
1

r∗0

[
σα|∇u0,α|2

]
+
κ

r∗0
u2

0,α

)
(V · ν)2

−2

ˆ
S(0,r∗0 )

[
σα
∂u0,α

∂r

∂2u0,α

∂r2

]
(V · ν)2 − 2

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2

= 2

ˆ
S(0,r∗0 )

σα∂ru1,α|ext
[
∂u0,α

∂r

]
V · ν − 2κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν

−
ˆ
S(0,r∗0 )

(
1

r∗0

[
σα|∇u0,α|2

]
+
κ

r∗0
u2

0,α

)
(V · ν)2 − 2

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2

We have then obtained the desired expression.

Strong stability The second derivative of the volume is known to be

Vol′′(B∗)[V, V ] =

ˆ
S(0,r∗0 )

H(V · ν)2. (3.38)

Hence, introducing D5 = (λα − ηα Vol)′′(B∗)[V, V ] and taking into account Lemma 4.6, (3.34) and
(3.38), we have

D5 = 2

ˆ
S(0,r∗0 )

σα∂ru1,α|ext
[
∂u0,α

∂r

]
V · ν − 2

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2

−2κ

ˆ
S(0,r∗0 )

u1,α|extu0,αV · ν +

ˆ
S(0,r∗0 )

(
− 1

r∗0

[
σα|∇u0,α|2

]
− κ

r∗0
u2

0,α

)
(V · ν)2

+κ

ˆ
S(0,r∗0 )

1

r∗0
u2

0,α(V · ν)2 −
ˆ
S(0,r∗0 )

1

r∗0

[
σα|∇u0,α|2

]
(V · ν)2

= 2

ˆ
S(0,r∗0 )

σα∂ru1,α|ext
[
∂u0,α

∂r

]
V · ν − 2

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2

−2κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν −
ˆ
S(0,r∗0 )

2

r∗0

[
σα|∇u0,α|2

]
(V · ν)2

112



CHAPTER 3. OPTIMIZATION OF A DRIFTED EIGENVALUE

We are then led to determine the signature of the quadratic form

Fα[V, V ] =
1

2
(λα(B∗)− ηα Vol)′′[V, V ] (3.39)

=

ˆ
S(0,r∗0 )

σα∂ru1,α|ext
[
∂u0,α

∂r

]
V · ν − κ

ˆ
S(0,r∗0 )

u1,α|intu0,αV · ν

+

ˆ
S(0,r∗0 )

(
− 2

r∗
[
σα|∇u0,α|2

])
(V · ν)2 −

ˆ
S(0,r∗0 )

κu0,α
∂u0,α

∂r

∣∣∣∣
int

(V · ν)2.

3.6.3 Analysis of the quadratic form Fα

Separation of variables and first simplification. Each perturbation g ∈ L2(0, 2π) such that´
g = 0 expands as

g =

∞∑
k=1

(γk cos(k·) + βk sin(k·)) , with γ0 = 0.

For every k ∈ N∗, let us introduce gk := cos(k·) and g̃k := sin(k·). For any k ∈ N∗, let u(k)
1,α be the

solution of Eq. (3.32) associated with the perturbation gk. It is readily checked that there exists a
function ψk,α : [0;R]→ R such that

∀(r, θ) ∈ [0;R]× [0; 2π], u
(k)
1,α(r, θ) = gk(θ)ψk,α(r).

Furthermore, ψk,α solves the ODE
−σαψ′′k,α −

σα
r ψ
′
α(r) =

(
λ0,α − k2

r2

)
ψk,α +m∗ψk,α in (−R;R),[

σαψ
′
k,α

]
(r∗0) = −κu0,α(r∗0)

[ψk,α] (r∗0) = −
[
∂u0,α

∂r

]
(r∗0),

ψk,α(−R) = ψk,α(R) = 0.

(3.40)

Regarding g̃k, if we define ũ(k)
1,α in a similar fashion, it is readily checked that

∀(r, θ) ∈ [0;R]× [0; 2π] , ũ
(k)
1,α(r, θ) = g̃k(θ)ψk,α(r).

Therefore, any admissible perturbation g writes

g =

∞∑
k=1

{γkgk + βkg̃k} with γ0 = 0

and the solution u1,α associated with g writes

u1,α =

∞∑
k=1

{
γku

(k)
1,α + βkũ

(k)
1,α

}
.

Using (3.39) and the orthogonality properties of the family {gk}k∈N∗ ∪ {g̃k}k∈N, one gets

Fα[V, V ] =
r∗0
2

∞∑
k=1

(
σαψ

′
k,α(r∗0)|ext

[
∂u0,α

∂r

]
− κψk,α|intu0,α(r∗0)

)(
γ2
k + β2

k

)
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−r
∗
0

2

∞∑
k=0

κu0,α(r∗0)
∂u0,α

∂r
(r∗0)

(
γ2
k + β2

k

)
−
∞∑
k=1

2
[
σα|∇u0,α|2

] (
γ2
k + β2

k

)
=

r∗0κu0,α(r∗0)

2

∞∑
k=1

(
− ∂u0,α

∂r
(r∗0)

∣∣∣∣
int

− ψk,α|int
)(

γ2
k + β2

k

)
+

∞∑
k=1

(
−2
[
σα|∇u0,α|2

]
+ σαψ

′
k,α(r∗0)|ext

[
∂u0,α

∂r

]) (
γ2
k + β2

k

)
(3.41)

Define, for any k ∈ N,

ωk,α := −∂u0,α

∂r
(r∗0)

∣∣∣∣
int

− ψk,α|int and ζk,α := −2
[
σα|∇u0,α|2

]
+ σαψ

′
k,α(r∗0)|ext

[
∂u0,α

∂r

]
.

Thus,

Fα[V, V ] =

∞∑
k=1

(ωk,α + ζk,α)
(
γ2
k + β2

k

)
.

The end of the proof is devoted to proving the local shape minimality of the centered ball, which relies
on an asymptotic analysis of the sequences {ωk,α}k∈N and {ζk,α}k∈N as α converges to 0.

Proposition 3.2 There exists C > 0 and α > 0, there exists M ∈ R such that for any α ≤ α and
any k ∈ N, one has

ωk,α ≥ C > 0, and ζk,α ≥ −Mα. (3.42)

The last claim of Theorem 3.1.3 is then an easy consequence of this proposition. The rest of the
proof is devoted to the proof of Proposition 3.2, which follows from the combination of the following
series of lemmas.

Lemma 3.12 There exists α > 0 such that, for everyy α ∈ [0, α], ψ1,α is nonnegative on (0, R).

Proof of Lemma 3.12. For the sake of notational simplicity, we temporarily drop the dependence on
α and denote ψ1,α by ψα. The function ψα solves the ODE

−σαψ′′α − σα
r ψ
′
α(r) =

(
λ0,α − 1

r2

)
ψα +m∗ψα in (0;R),

[σαψ
′
α] (r∗0) = −κu0,α(r∗0)

[ψα] (r∗0) = −
[
∂u0,α

∂r

]
(r∗0),

ψα(R) = 0.

Let us introduce pα = ψα/u0,α. One checks easily that pα solves the ODE

−σαp′′α −
σα
r
p′α =

1

r2
pα + 2p′α

u′0,α
u0,α

in (0, R).

Furthermore, pα satisfies the jump conditions

[pα](r∗0) = − [∂ru0,α] (r∗0)

u0,α(r∗0)
=
−ακ∂ru0,α|int

u0,α(r∗0)
> 0 and [σαp

′
α](r∗0) = −κ+

σα∂ru0,α

u0,α(r∗0)2

[
∂u0,α

∂r

]
.

To show that ψα is nonnegative, we argue by contradiction and consider first the case where a negative
minimum is reached at an interior point r− 6= r∗0 . Then, pα is C 2 in a neighborhood of r− and we
have

0 ≥ −p′′α(r−) = −pα(r−)

(r−)2
> 0,
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whence the contradiction.
To exclude the case r− = R, let us notice that, according to l’Hospital’s rule, one has pα(R) =

ψ′α(R)/u′0,α(R). According to the Hopf lemma applied to u0,α, this quotient is well-defined. If pα(R) <
0 then it follows that ψ′α(R) > 0. However, one has p′α(r) ∼ ψ′α(r)/(2u0,α(r)) > 0 as r → R, which
contradicts the fact that a minimum is reached at R.

Let us finally exclude the case where r− = r∗0 . Mimicking the elliptic regularity arguments used in
the proofs ofLemmas 3.5 and 3.6, we get that pα converges to p0 as α → 0 for the strong topologies
of C 0([0, r∗0 ]) and C 0([r∗0 , R]).

To conclude, it suffices hence to prove that p0 is positive in a neighborhood of r∗0 . We once again
argue by contradiction and assume that p0 reaches a negative minimum at r− ∈ [0, R]. Notice that
r− 6= r∗0 since [p0](r∗0) = 0 and [p′0](r∗0) = −κ < 0.

If r− ∈ (0, R), since r− 6= r∗0 , we claim that p0 is C 2 in a neighborhood of r− and, if p0(r−) < 0,
the contradiction follows from

0 ≥ −p′′0(r−) = −p0(r−)

(r−)2
> 0.

For the same reason, a negative minimum cannot be reached at r = 0.
If r− = R, we observe that p0(R) = ψ′0(R)/u′0,0(R). According to the Hopf lemma applied

to u0,0, this quantity is well-defined. If p0(R) < 0, then it follows that ψ′0(R) > 0. However,
p′0(r) ∼ ψ′0(r)/(2u(r)) > 0 as r → R, which contradicts the fact that R is a minimizer.

Therefore p0 is positive in a neighborhood of r∗0 and we infer that pα is non-negative, so that, in
turn, ψα ≥ 0 in [0, R].

Lemma 3.13 Let α be defined as in Lemma 3.12. Then, for every α ∈ [0, α] and every k ∈ N,

ψk,α ≤ ψ1,α. (3.43)

As a consequence, for any α ≤ α and any k ∈ N, there holds ωk,α ≥ ω1,α.

Proof of Lemma 3.13. Since ωk,α − ω1,α = −ψk,α|int(r∗0) +ψ1,α|int(r∗0), the fact that ωk,α ≥ ω1,α will
follow from (3.43), on which we now focus on. Let us set Ψk = ψ1,α−ψk,α. From the jump conditions
on ψ1,α and ψk,α, one has [Ψk](r0) = [σαΨ′k](r0) = 0. The function Ψk satisfies

−σαΨ′′k − σα
Ψ′k
r

= −
(
λ0,α −

k2

r2

)
ψk,α −m∗0ψk,α +

(
λ0,α −

1

r2

)
ψ1,α +m∗0ψ1,α

>

(
λ0,α −

k2

r2

)
ψk,α −m∗0ψk,α +

(
λ0,α −

k2

r2

)
ψ1,α +m∗0ψ1,α

>

(
λ0,α −

k2

r2

)
Ψk +m∗0Ψk.

since ψ1,α ≥ 0, according to Lemma 3.12. Since Ψk satisfies Dirichlet boundary conditions, Ψk ≥ 0 in
(0, R).

Lemma 3.14 There exists C > 0 such that, for every α ∈ [0, α], where α is introduced on Lemma (3.12),
one has ω1,α ≥ C.

Proof of Lemma 5.5.3. Let us introduce Ψ = −∂u0,α/∂r − ψk,α. According to (3.29), we have
[Ψ](r∗0) = [Ψ′](r∗0) = 0. Furthermore, Ψ(R) = −∂u0,α

∂r (R) > 0 according to the Hopf Lemma and
Ψ(0) = 0. Finally, since Ψ solves the ODE, one has

−1

r
(σαΨ′)′ =

(
λ0,α −

1

r2

)
Ψ +m∗Ψ in (0, R),
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it follows that Ψ is positive in (0, R]. Furthermore, Ψ converges to Ψ0 for the strong topology of
C 0([0, R]) and Ψ0 solves the ODE{

− 1
r (Ψ′0)′ =

(
λ0,0 − 1

r2

)
Ψ0 +m∗0Ψ0 in (0, R)

Ψ0(R) = −∂u0,0

∂r (R) > 0.

Hence there exists C > 0 such that, for every α ∈ [0, α], one has Ψ(r∗0) ≥ C > 0.

It remains to prove the second inequality of(4.56). As a consequence of the convergence result
stated in Lemma 3.9, one has

[
σα|∇u0,α|2

]
= O(α),

[
∂u0,α

∂r

]
= ακ

∂u0,α

∂r

∣∣∣∣
int

< 0. (3.44)

It follows that we only need to prove that there exists a constant M > 0 such that, for any α ∈ [0, α],
and any k ∈ N∗,

M ≥ σαψ′k,α|ext(r∗0) (3.45)

so that
ζk,α = O(α) + σαψ

′
k,α|ext(r∗0) ακ

∂u0,α

∂r
(r∗0)

∣∣∣∣
int

≥ O(α)−Mακ

∣∣∣∣ ∂u0,α

∂r
(r∗0)

∣∣∣∣
int

∣∣∣∣
To show the estimate (3.45), let us distinguish between small and large values of k. To this aim,

we introduce N ∈ N as he smallest integer such that

λ0,α +m∗0 −
k2

r2
< 0 in (0, R) (3.46)

for every k ≥ N and α ∈ [0, α]. The existence of such an integer follows immediately from the
convergence of (λ0,α)α>0 to λ0(m∗0) as α→ 0.

First, we will prove that, for every k ≥ N ,

ψ′k,α(r∗0)|ext < 0 (3.47)

and that there exists M > 0 such that, for every k ≤ N ,

|ψ′k,α(r∗0)|ext| ≤M (3.48)

which will lead to (3.45) and thus yield the desired conclusion.
To show (3.47), let us argue by contradiction, assuming that ψ′k,α(r∗0)|ext > 0. Since the jump

[σαψ
′
k,α] = −κu0,α(r∗0) is negative, it follows that

(1 + ακ)ψ′k,α(r∗0)|int = ψ′k,α(r∗0)|ext − [σαψ
′
k,α] > 0.

By mimicking the reasonings in the proof of Lemma 3.12, ψk,α cannot reach a negative minimum on
(0, r∗0) since (3.46) holds true. Therefore, since ψk,α(0) = 0 and ψ′k,α(r∗0)|int > 0, one has necessarily
ψk,α(r∗0)|int > 0, which in turn gives ψk,α(r∗0)|ext > 0 since [ψk,α] = −ακ∂u0,α

∂r > 0.
Furthermore, ψk,α(R) = 0. Since ψk,α(r∗0)|ext > 0 and ψ′k,α(r∗0)|ext > 0, it follows that ψk,α reaches

a positive maximum at some interior point r1, satisfying hence

0 ≤ −ψ′′k,α(r−) =

(
λ0,α +m∗ − k2

r2

)
ψk,α(r−) < 0,

leading to a contradiction.
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Let us now deal with small values of k, by assuming k ≤ N . We will prove that (3.48) holds true.
To this aim, we will compute ψk,α. Let Jk (resp. Yk) be the k-th Bessel function of the first (resp.
the second) kind. One has

ψk,α(r) =

{
Ak,αJk(

√
λ0,α+κ
1+ακ

r
R ) if r ≤ r∗0 ,

Bk,αJk(
√
λ0,α

r
R ) + Ck,αYk(

√
λ0,α

r
R ) if r∗0 ≤ r ≤ R,

where Xk,α = (Bk,α, Ck,α, Ak,α) solves the linear system

Ak,αXk,α = bα

where

bα =

 0
−κu0,α(r∗0)
− [∂Ru0,α]


and

Ak,α =


Jk
(√
λ0

)
Yk
(√
λ0

)
0√

λ0,αJ
′
k(
√
λ0,α + κ

r∗0
R )

√
λ0,αY

′
k(
√
λ0,α + κ

r∗0
R ) −

√
λ0,α+κ
1+ακ J

′
k(
√

λ0,α+κ
1+ακ

r∗0
R )

Jk(
√
λ0,α

r∗0
R ) Yk(

√
λ0,α

r∗0
R ) −Jk(

√
λ0,α+κ
1+ακ

r∗0
R )

 .

It is easy to check that
‖Ak,α −Ak,0‖ ≤Mα

where M only depends3 on N . Hence it is enough to prove that |ψ′k,0(r∗0)| ≤ M for some M > 0
depending only onN , which is straightforward since the set of indices is finite. The expected conclusion
follows.

3.6.4 Conclusion
From Eq. (4.56) and Lemma 5.5.3, there exists C > 0 and M > 0 such that ωk,α ≥ C > 0 and
ζk,α ≥ −Mα for every α ∈ [0, α] and k ∈ N, from which we infer that

Fα[V, V ] ≥ (C −Mα)

∞∑
k=1

(
γ2
k + β2

k

)
≥ C

2
‖V · ν‖2L2 .

according to Eq. (5.35).

3Indeed, {Jk, Yk}k≤N are uniformly bounded in C 2([r∗0/R− ε,R]) for every ε > 0 small enough. Since we consider
a finite number of indices k, there exists δ > 0 (depending only on N) such that

∀k ∈ {0, . . . , N}, det(Ak,α) ≥ δ > 0.

Then, since ‖Xα − X0‖ ≤ Mα, it follows from the Cramer formula that there exists M (depending only on N) such
that ‖Xk,α −Xk,0‖L∞ ≤Mα.
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APPENDIX

3.A Proof of Lemma 3.1

We prove hereafter that the mapping m 7→ (uα,m, λα(m)) is twice differentiable (and even C∞)
in the L2 sense, the proof of the differentiability in the weak W 1,2(Ω) sense being similar. Let
m∗ ∈Mm0,κ(Ω), σα := 1 + αm∗, and (u0, λ0) be the eigenpair associated with m∗. Let h ∈ Tm∗ (see
Def. 3.2.1). Let m∗h := m∗ + h and σm∗+h := 1 + α(m∗ + h). Let (uh, λh) be the eigenpair associated
with m∗h. Let us introduce the mapping G defined by

G :

{
Tm∗ ×W 1,2

0 (Ω)× R→W−1,2(Ω)× R,
(h, v, λ) 7→

(
−∇ · (σm∗+h∇v))− λv −m∗hv,

´
Ω
v2 − 1

)
.

From the definition of the eigenvalue, one has G(0, u0, λ0) = 0. Moreover, G is C∞ in Tm∗ ∩ B ×
W 1,2

0 (Ω)× R, where B is an open ball centered at 0. The differential of G at (0, u0, λ0) reads

Dv,λG(0, u0, λ0)[w, µ] =

(
−∇ · (σα∇w)− µu0 − λ0w −m∗w,

ˆ
Ω

2u0w

)
.

Let us show that this differential is invertible. We will show that, if (z, k) ∈ W−1,2(Ω) × R, then
there exists a unique pair (w, µ) such that Dv,λG(0, u0, λ0)[w, µ] = (z, k). According to the Fredholm
alternative, one has necessarily µ = −〈z, u0〉 and for this choice of µ, there exists a solution w1 to the
equation

−∇ · (σα∇w)− µu0 − λ0w −m∗w = z in Ω.

Moreover, since λ0 is simple, any other solution is of the form w = w1 + tu0 with t ∈ R. From the
equation 2

´
Ω
u0w = k, we get t = k/2 −

´
Ω
w1u0. Hence, the pair (w, µ) is uniquely determined.

According to the implicit function theorem, the mapping h 7→ (uh, λh) is C∞ in a neighbourhood of
~0.

3.A.1 Shape differentiability and computation of the shape
derivatives

3.A.1.1 Proof of the shape differentiability

Proof of the shape differentiability. Let B∗ be the centered ball of radius r0, m∗ := κχB∗ , σα :=
1 + αm∗, (u0, λ0) be the eigenpair associated with m∗, and let V be an admissible vector field at B∗.
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In particular, V is a W 1,∞ vector field. Let TV := (Id + V ) and E∗V := TV (E∗B). Let uV be the
eigenvalue associated with κχB∗V and λV be the associated eigenvalue. If we introduce

J(V ) := det(DV ) , A(V ) := J(V )DT−1
V

(
DT−1

V

)t
then the weak formulation of the equation on uV is: for any v ∈W 1,2

0 (Ω),
ˆ

Ω

σα〈A(V )∇uV ,∇v〉 = λV

ˆ
Ω

uV vJ(V ) +

ˆ
Ω

m∗uV vJ(V ).

We define the map F in the following way:

F :

{
W 1,∞(Rn,Rn)×W 1,2

0 (Ω)× R→W−1,2(Ω)× R,
(V, v, λ) 7→

(
−∇ · (σαA(V )∇v)− λvJ(V )−m∗vJ(V ),

´
Ω
v2J(V )− 1

)
.

It is clear from the definition of the eigenvalue that

F (0, u0, λ0) = 0.

Furthermore, the same arguments as in [63, Lemma 2.3] show that F is C∞ in B ×W 1,2
0 (Ω) × R,

where B is an open ball centered at ~0.
The differential of F at (0, u0, λ0) is given by

Dv,λF (0, u0, λ0)[w, µ] =

(
−∇ · (σα∇w)− µu0 − λ0w −m∗w,

ˆ
Ω

2u0w

)
.

To prove that this differential is invertible, it suffices to show that, if (z, k) ∈ W−1,2(Ω) × R, then
there exists a unique couple (w, µ) such that

Dv,λF (0, u0, λ0)[w, µ] = (z, k).

By the Fredholm alternative, we know that

µ = −〈z, u0〉.

There exists a solution w1 to the equation

−∇ · (σα∇w)− µu0 − λ0w −m∗w = z.

We fix such a solution. Any other solution is of the form w = w1 + tu0 for a real parameter t. We
look for such a t. From the equation

2

ˆ
Ω

u0w = k

there comes
t =

k

2
−
ˆ

Ω

w1u0.

hence the couple (w, µ) is uniquely determined. From the implicit function theorem, the map V 7→
(uV , λV ) is C∞ in a neighbourhood of ~0.

3.A.1.2 Computation of the first order shape derivative

Computation of the first order shape derivative. Let V be a smooth vector field defined on S∗ =
S(0, r∗0)(0; r∗) and normal to S(0, r∗0)

∗. Let, for any t > 0 small enough, Bt = Tt(B∗) where
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Tt := Id+ tV .
Let (λt, ut) be the eigencouple associated with mt := κχB∗t . We first define

vt := ut ◦ Tt : B→ R.

The derivative of vt with respect to t will be denoted u̇. This is the material derivative, while we aim
at computting the shape derivative u′ := u1,α defined as

u′ = u̇+ 〈V,∇u0〉.

For more on these notions, we refer to [93].
Obivously vt ∈W 1,2

0 (Ω).The weak formulation on ut writes: for any ϕ ∈W 1,2
0 (Ω),

ˆ
B(0;R)

σt〈∇ut,∇ϕ〉 = λt

ˆ
B(0;R)

utϕ+ κ

ˆ
B∗t
utϕ.

We do the change of variables
x = Tt(y),

so that
dx = det (∇Tt) (y).

Furthermore,
∇vt(x) = ∇Tt(x)∇ut(Tt(x)).

and, for any test function ϕ:
ˆ
B(0;R)

σ0〈det(∇Tt)∇T−1
t

(
∇T−1

t

)T ∇vt,∇ϕ〉 = λt

ˆ
B(0;R)

vtϕdet(∇Tt) + κ

ˆ
B∗
vtϕdet(∇Tt).

We follow the notations of [63] and define

J(t, x) := det(∇Tt)(x).

It is known that
J (x) :=

∂J

∂t

∣∣∣∣
t=0

(t, x) = ∇ · V.

We also introduce
A(t, x) := det(∇Tt)∇T−1

t

(
∇T−1

t

)T
,

and
A(x) :=

∂A

∂t

∣∣∣∣
t=0

(t, x) = (∇ · V )In −
(
∇V + (∇V )T

)
.

We recall that A has the following property: if V1 and V2 sare two vector fields, there holds

〈AV1, V2〉 = ∇ · (〈V1, V2〉V )− 〈∇(V · V1), V2〉 − 〈∇(V · V2), V1〉. (3.49)

The weak formulation on vt is thusˆ
B(0;R)

A(t, x)〈σ0∇vt,∇ϕ〉 = λt

ˆ
B(0;R)

J(t, x)vtϕ+ κ

ˆ
B∗
J(t, x)vtϕ.
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We differentiate this equation with respect to t to get the following equation on u̇:
ˆ
B(0;R)

〈∇ϕ, σ0∇u̇+σ0A∇u0〉 = λ̇

ˆ
B(0;R)

u0ϕ+λ0

ˆ
B(0;R)

J u0ϕ+λ0

ˆ
B(0;R)

u̇ϕ+κ

ˆ
B∗
u̇ϕ+κ

ˆ
B∗
J (x)u0ϕ.

(3.50)
Through Property (4.69)A, we get

σ0〈A∇u0,∇ϕ〉 = σ0∇ · (〈∇u0,∇ϕ〉V )− σ0〈∇(〈V,∇u0〉),∇ϕ〉 − σ0〈∇(〈V,∇ϕ〉),∇u0〉.

We deal with these three terms separately: from the divergence Formula
ˆ
B(0;R)

σ0∇ · (〈∇u0,∇ϕ〉V ) = −
ˆ
S(0,r∗0 )∗

[〈σ0∇u0,∇ϕ〉] 〈V, ν〉.

We do not touch the second term.
The third term id dealt with using the weak equation on u0:

ˆ
B(0;R)

〈∇(〈V,∇ϕ〉), σ0∇u0〉 = λ0

ˆ
B(0;R)

〈V,∇ϕ〉u0 + κ

ˆ
B∗
u0〈V,∇ϕ〉 −

ˆ
S∗

[〈σ0∇u0,∇ϕ〉] 〈V, ν〉

On a finalementˆ
B(0;R)

〈σ0A∇u0,∇ϕ〉 =

ˆ
B(0;R)

σ0∇ · (〈∇u0,∇ϕ〉V )− σ0〈∇(〈V,∇u0〉),∇ϕ〉 − σ0〈∇(〈V,∇ϕ〉),∇u0〉

= −
ˆ
B(0;R)

〈σ0∇(〈V,∇u0〉),∇ϕ〉

− λ0

ˆ
B(0;R)

〈V,∇ϕ〉u0 − κ
ˆ
B∗
u0〈V,∇ϕ〉.

The left hand term of 4.70 becomesˆ
B(0;R)

〈σ0∇u̇+ σ0A∇u0,∇ϕ〉 =

ˆ
B(0;R)

〈
σ0∇

(
u̇− V · ∇u0

)
,∇ϕ

〉
− λ0

ˆ
B(0;R)

〈V,∇ϕ〉u0 − κ
ˆ
B∗
u0〈V, ϕ〉.

Thus ˆ
B(0;R)

〈
σ0∇

(
u̇− V · ∇u0

)
,∇ϕ

〉
− λ0

ˆ
B(0;R)

〈V,∇ϕ〉u0 − κ
ˆ
B∗
u0〈V,∇ϕ〉

= λ̇

ˆ
B(0;R)

u0ϕ+ λ0

ˆ
B(0;R)

J (x)u0ϕ+ λ0

ˆ
B(0;R)

u̇ϕ+ κ

ˆ
B∗
u̇ϕ+ κ

ˆ
B∗
J (x)u0ϕ.

By rearranging the terms, we get
ˆ
B(0;R)

〈
σ0∇

(
u̇− V · ∇u0

)
,∇ϕ

〉
= +λ̇

ˆ
B(0;R)

u0ϕ+ λ0

(ˆ
B(0;R)

J (x)u0ϕ+

ˆ
B(0;R)

〈V,∇ϕ〉u0

)
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+λ0

ˆ
B(0;R)

u̇ϕ+ κ

ˆ
B∗
u̇ϕ+ κ

ˆ
B∗
J (x)u0ϕ+ κ

ˆ
B∗
u0〈V,∇ϕ〉.

However, since J (x) = ∇ · V (x), we have

J (x)ϕ+ 〈V,∇ϕ(x)〉 = ∇ · (ϕV ) .

Hence ˆ
B(0;R)

J (x)u0ϕ+

ˆ
B(0;R)

〈V,∇ϕ〉u0 =

ˆ
B(0;R)

∇ · (V ϕ)u0

= −
ˆ
B(0;R)

ϕ〈V,∇u0〉,

because u0 satisfies homogeneous Dirichlet boundary conditions. In the same way

κ

ˆ
B∗
J (x)u0ϕ+ κ

ˆ
B∗
〈V,∇ϕ〉u0 =

ˆ
B(0;R)

∇ · (V ϕ)u0

= −κ
ˆ
B∗
ϕ〈V,∇u0〉+

ˆ
∂B∗
〈V, ν〉u0ϕ.

We turn back to the shape derivative; recall that it is defined as

u′ := u̇− 〈V,∇u〉.

The previous equation rewrites
ˆ
B(0;R)

〈σ0∇u′,∇ϕ〉 =λ̇0

ˆ
B(0;R)

u0ϕ+ λ0

ˆ
B(0;R)

u′ϕ+ κ

ˆ
B∗
u′ϕ

+

ˆ
∂B∗
〈V, ν〉u0ϕ

Thus there appears that u′ = u1,α solves

−σ0∆u1,α = λ1,αu0,α + λ0,αu1,α +m∗u1,α

along with Dirichlet boundary conditions and[
σ0
∂u1,α

∂r

]
= −κ〈V, ν〉u0,α.

Obtaining the jump conditions on u1,α , u2,α is done by differentiating the continuity condition

d[ut]

dt
= 0

exactly as in [63].
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CHAPTER 4

A QUANTITATIVE INEQUALITY FOR
THE FIRST EIGENVALUE OF A

SCHRÖDINGER OPERATOR IN THE
BALL

Il m’arrive encore de sortir de ma maison,
sur ma colline, au-dessus de la baie de San
Francisco, et là, en pleine vue, en pleine
lumière, je jongle avec trois oranges, tout
ce que je peux faire aujourd’hui.

Gary, La promesse de l’aube
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General presentation of the chapter: main difficulties
and methods

This Chapter, which corresponds to [Maz19a], is devoted to the following quantitative inequality: let

M(Ω) :=

{
V , 0 ≤ V ≤ 1 ,

 
Ω

V = V0

}
and let

Ω = B(0;R).

It is known that there exists r∗ > 0 such that V ∗ = 1B(0;r∗) is the only solution of the minimization
problem

min
V ∈M(Ω)

λ(V )

where λ(V ) is the first eigenvalue of
LV := −∆− V.

We establish that there exists a constant C > 0 such that

λ(V )− λ(V ∗) ≥ C||V − V ∗||2L1 .

In order to prove it, we introduce an auxilliary problem, but the key parts are Steps 3 and 5 of the
Proof of Theorem 4.1.1, which deal with possible topological changes of competitors.

Roughly speaking, we first prove the inequality for normal deformations of B(0; r∗), using classical
techniques of shape derivatives. This involves the use of a comparison principle, which alleviates the
computations. We then proceed to study an auxilliary problem for radially symmetric functions. This
part is, to the best of our knowledge, quite new, and uses an original method of Taylor expansion
across the boundary. Finally, in Step 5 of the proof, we introduce a new transformation to show that
handling radial perturbations and normal perturbations of the optimizer are enough to handle every
possible competitors. This last step is, once again to the best of our knowledge, new.
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4.1 Introduction

4.1.1 Structure of the paper

In the first part (Section 4.1.2) of the introduction, we lay out the mathematical setting of this
article, the main results and give the relevant definitions. In the second part of the Introduction,
we give bibliographical references concerning quantitative inequalities and the biological motivations
this study stems from. We then explain, in Subsection 4.2.1, how the proof differs from that of other
quantitative inequalities.
The core of this paper is devoted to the proof of Theorem 4.1.1. In the conclusion, we give a conjecture
and a final comment on a possible way to obtain an optimal exponent using parametric derivatives.

4.1.2 Mathematical setting

The optimization of eigenvalues of elliptic operators defined on domains with a zero-order term (i.e
with a potential) with respect to either the domain (with a fixed potential defined on a bigger domain)
or the potential (with a fixed domain) is a classical question in optimization under partial differential
equations constraints. The example under scrutiny here is the operator

LV : u ∈W 2,2(Ω) ∩W 1,2
0 (Ω) 7→ −∆u− V u, (4.1)

where Ω is a smooth domain. Under the assumption that V ∈ L∞(Ω), this operator is known to have
a first, simple eigenvalue, denoted by λ(V ), and associated with an eigenfunction uV , which solves −∆uV − V uV = λ(V )uV in Ω,

uV = 0 on ∂Ω.´
Ω
u2
V = 1.

(4.2)

Alternatively, this eigenvalue admits the following variational formulation in terms of Rayleigh quo-
tients:

λ(V ) = inf
u∈W 1,2

0 (Ω) ,
´
Ω
u2=1

{ˆ
Ω

|∇u|2 −
ˆ

Ω

V u2

}
. (4.3)

We make stronger assumptions on the potential V and require that it lies in

M(Ω) :=

{
V ∈ L∞(Ω) , 0 ≤ V ≤ 1 ,

1

|Ω|

ˆ
Ω

V = V0

}
, (4.4)

where V0 > 0 is a real parameter such that

V0 < 1

so thatM(Ω) is non-empty. The optimization problem we focus on in this paper is

inf
V ∈M(Ω)

λ(V ). (4.5)

This problem has drawn a lot of attention from the mathematical community over the last decades,
and is quite a general one. It is particularly relevant in the context of mathematical biology, see
Section 4.1.4.2.
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4.1.3 Main results

4.1.3.1 Notations

Here and throughout, the underlying domain is Ω = B(0;R).
The parameter r∗ is chosen so that

V ∗ := χB(0;r∗) = χE∗ ∈M(Ω).

The constant cn > 0 is the (n− 1)-dimensional volume of the unit sphere in dimension n.
For any E ⊂ B, we define λ(E) := λ(χE).

4.1.3.2 Quantitative inequality

A classical application of Schwarz’ rearrangement shows that V ∗ is the unique minimizer of λ in
M(Ω):

∀V ∈M(Ω) , λ(V ) ≥ λ(V ∗).

We refer to [108] for an introduction to the Schwarz rearrangement and to [116] for its use in this
context. For the sake of completeness, we also prove this result in Annex 4.A.
The goalf of this paper is to establish the following quantitative spectral inequality:

Theorem 4.1.1 Let n = 2. There exists a constant C > 0 such that, for any V ∈ M(Ω), there
holds

λ(V )− λ(V ∗) ≥ C||V − V ∗||2L1 . (4.6)

This result has a Corollary which fits in the natural context of estimates using the Fraenkel
asymmetry: as we will explain in Subsection 4.1.4.1, this is the natural property to expect in the
context of quantitative inequalities. Indeed, if V = χE ∈M(Ω), then

||V − V ∗||L1 = |E∗∆E|

where ∆ stands for the symmetric difference, and, if we define the Fraenkel asymmetry of E as

A(E) := inf
B(x;r) ,χB(x;r)∈M(Ω)

|E∆B(x; r)|

then it follows from Theorem 4.1.1 that

λ(χE)− λ(χE∗) ≥ CA(E)2.

We thus have a parametric version of a quantitative inequality with what is in fact a sharp exponent.

4.1.3.3 A comment on parametric and shape derivatives

The proof of Theorem 4.1.1 relies on parametric and shape derivatives, and the aim of this Section is
to give possible links between the two notions and, most notably, to give a situation where this link
is no longer possible. This is obviously in sharp contrast with classical shape optimization, since here
we are only optimizing with respect to the potential, while it is customary to derive Faber-Krahn type
inequalities, i.e to optimize with respect to the domain Ω itself, see Subsection 4.1.4.1.
Roughly speaking, there are two ways to tackle spectral optimizatoin problems such as (4.5): the
parametric approach and the shape derivative approach. By parametric approach we mean the fol-
lowing:

Definition 4.1.1 We define, for any V ∈M(Ω), the tangent cone toM(Ω) at V as

TV := {h : Ω→ [−1; 1] ,∀ε ≤ 1 , V + εh ∈M(Ω)}
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and define, provided it exists, the parametric derivative of λ at V in the direction h ∈ TV as

λ̇(V )[h] := lim
t→0

λ(V + th)− λ(V )

t
.

In this case, the optimality condition reads

∀h ∈ TV , λ̇(V )[h] ≥ 0.

In the conclusion of this article, we will explain why there holds

∀h ∈ TV ∗ , λ̇(V ∗)[h] ≥ C||h||2L1 .

Since, for any V ∈M(Ω), h := V − V ∗ ∈ TV ∗ , what we get is

λ̇(V ∗)[V − V ∗] ≥ C||V − V ∗||2L1

that is, an infinitesimal version of Estimate (4.6), and one might wonder whether such infinitesimal
estimates might lead to global qualitative inequality of the type (4.6). This is customary, in the
context of shape derivatives. We need to define the notion of shape derivative before going further:

Definition 4.1.2 Let F : E 7→ F(E) ∈ R be a shape functional. We define

X1(V ∗) :=
{

Φ : B(0;R)→ R2 , ||Φ||W 1,∞ ≤ 1 ,∀t ∈ (−1; 1) , χ(Id+tΦ)(B∗) ∈M(Ω).
}

as the set of admissible perturbations at E∗. The shape derivative of first (resp. second) order of a
shape function F at V ∗ in the direction Φ is

F ′(E∗)[Φ] = lim
t→0

F
(

(Id+ tΦ)E∗
)
−F(E∗)

t

(resp.F ′′(E∗)[Φ,Φ] := lim
t2→0

F
(

(Id+ tΦ)E∗
)
−F(E∗)−F ′(E∗)(Φ)

t2
.) (4.7)

A customary way to derive quantitative inequality is to show that, at a given shape E, there holds

F ′(E)[Φ] = 0 ,F ′′(E)[Φ,Φ] > 0

and to lift the last inequality to a quantitative inequality of the form

F ′(E)[Φ,Φ] ≥ C||Φ||2s

where || · ||s is a suitable norm; we refer to [64] for more details but for instance one might have
|| Φ|∂E ||2L1 which often turns out to be the suitable exponent for a quantitative inequality. This
quantitative inequality for shape deformations is usually not enough, and we refer to Section 4.1.4.1
for more details and bibliographical references.

4.1.3.4 A remark on the proof

The main innovation of this paper is the proof of Theorem 4.1.1 which, although it uses shape deriv-
atives as is customary while proving quantitative inequalities, see Subsection 4.1.4.1, relies heavily on
parametric derivatives. This is allowed by the fact that we are working with a potential defined on
the interior of the domain.
Furthermore, we also prove that, unlike classical shape optimization, our coercivity norm for the
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second order shape derivative is the L2 norm.

4.1.4 Bibliographical references

4.1.4.1 Quantitative spectral inequalities

Spectral deficit for Faber-Krahn type inequalities: Quantitative spectral inequalities have
received a lot of attention for a few decades, and are usually set in a context which is more general
than the one introduced here. The main goal of such inequalities were to derive quantitative versions
of the Faber-Krahn inequality: for a given parameter β ∈ (0; +∞] and a bounded domain Ω ⊂ Rn,
consider the first eigenvalue ηβ(Ω) of the Laplacian with Robin boundary conditions:{

−∆uβ,Ω = ηβ(Ω)uβ,Ω in Ω,
∂uβ,Ω
∂ν + βuβ,Ω = 0 on ∂Ω,

(4.8)

with the convention that η∞(Ω) is the first Dirichlet eigenvalue of the Laplace operator. Although it
has been known since the independent works of Faber [73] and Krahn [114] that, whenever Ω∗ is a
ball with the same volume as Ω, there holds

η∞(Ω) ≥ η∞(Ω∗),

the question of providing a sharp lower bound for the so-called spectral deficit

R∞(Ω) = η∞(Ω)− η∞(Ω∗)

remained largely open until Nadriashvili and Hansen [86] and Melas, [136], using Bonnesen type
inequalities, obtained a lower bound on the spectral deficit involving quantities related to the geometry
of domain Ω through the inradius. In a later work, Brasco, De Philippis and Velichkov, [31], the sharp
version of the quantitative inequality, namely:

R∞(Ω) ≥ CA(Ω)2. (4.9)

Their proof relies uses as a first step a second order shape derivative argument, a series of reduction
to small asymmetry regime and, finally, a quite delicate selection principle. We comment in the next
paragraph on the role of second order shape derivative for generic quantitative inequalities and the
part it plays in our proof.
For a survey of the history and proofs of quantitative Faber-Krahn inequalities, we refer to the survey
[30] and the references therein.
For quantitative forms of spectral inequalities with general Robin boundary conditions, the Bossel-
Daners inequality, first derived by Bossel in dimension 2 in [25] and later extended by Daners in all
dimensions in [66] reads:

Rβ(Ω) := ηβ(Ω)− ηβ(B) ≥ 0 , β > 0,

and a quantitative version of the Inequality was proved by Bucur, Ferone, Nitsch and Trombetti in
[37]:

Rβ(Ω) ≥ CA(Ω)2.

Their method for β <∞ is different from the case of Dirichlet eigenvalue and relies on a free boundary
approach.

The role of second order shape derivatives: We only want to mention here the results we draw
our inspiration from in Step 4 of the proof, and do not aim at giving out the rigorous mathematical
setting of the results mentioned below. We refer to [64] for a thorough presentation of the link between
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second order shape derivatives, local shape stability and local quantitative inequalities.
As we said in the previous paragraph, most proofs of quantitative inequalities start with a local
quantitative inequality for shape perturbation of the optimum E1: namely, if F is a regular enough
shape functional and E1 is an admissible set such that

F(E1)[Φ] = 0 ,F ′′(E1)[Φ,Φ] > 0 (4.10)

for any Φ ∈ X1(E1) then it is proved in [62], [65] that E1 is a strict local minimizer in a C 2,α

neighbourhood of E (actually, in these two articles, the authors assume a coercivity of the second order
derivative in in H

1
2 norm on Φ). In [64], Dambrine and Lamboley proved that the same conditions

imply a local quantitative inequality under certain technical assumptions. Roughly speaking, their
result implies the following result: Condition (4.10) implies that if, for any function h ∈ C 0(∂Ω) ∩
W 2,∞(∂Ω) we define Eh1 as the domain bounded by

∂Eh1 := {x+ h(x)νE1(x) , x ∈ ∂E1}

then there exists ` > 0 such that, for any ||h||W 2,∞(∂Ω) ≤ ` there holds

F(E1) + C||h||2L1 ≤ F(Eh1 )

for some C > 0.
Their result actually holds in stronger norm, but this is the version we wanted to mention here since
it is the one we will adapt in our parametric setting. We note however, that the authors, in their
problems, prove their inequalities for shape using a H

1
2 coercivity norm for the second derivative:

they usually have
F(E1)′′[h, h] ≥ C||h||2

H
1
2
.

In this expression, we have defined F ′′(E1)[h, h] := F(E1)′′[x + hνE1
(x), x+ hνE1

(x)]. Here, in Step
4, we will show, using comparison principles, that the optimal coercivity norm is the L2 norm.

Difference with our proofs and contribution: To the best of our knowledge, quantitative in-
equalities in a parametric setting have not been studied yet, and this article aims at providing a first
step in that direction. As we will see while proving Theorem 4.1.1, a shape derivative approach can
not be sufficient in of its own for our purposes, as is usually the case, but is needed. To tackle the
second order shape derivative, we use a comparison principle. The parametric setting also enables
us more freedom while dealing with other competitors and enables us to introduce a new method for
dealing with such problems.

4.1.4.2 Mathematical biology

We briefly sketch some of the biological motivations for the problem under scrutiny here. Following
the works of Fisher, [75], Kolmogoroff, Petrovsky and Piscounoff [113], a popular model for population
dynamics in a bounded domain is the following so-called logistic-diffusive equation:

∂u
∂t = ∆u+ u(m− u) in Ω ,
u = 0 on ∂Ω ,
u(t = 0) = u0 ≥ 0 , u0 6= 0.

(4.11)

In this equation, m ∈ L∞(Ω) accounts for the spatial heterogeneity and can be interpreted in terms
of resources distribution: the zones {m ≥ 0} are favorable to the growth of the population, while
the zones {m ≤ 0} are detrimental to this population. The particular structure of the non-linearity
−u2 (which accounts for the Malthusian growth of the population) makes it so that two linear steady
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states equations are relevant to our study: the steady-logistic diffusive equation ∆θ + θ(m− θ) = 0 in Ω ,
θ = 0 on ∂Ω ,
θ ≥ 0,

(4.12)

and the first eigenvalue equation of the linearization of (4.11) around the solution z ≡ 0:{
−∆ϕm −mϕm = λ(m)ϕ in Ω ,
ϕ = 0 on ∂Ω,

(4.13)

where λ(m) is the first eigenvalue of the operator Lm defined in (4.1). More precisely, it is known (see
[19, 40, 168]) that

1. Whenever λ(m) < 0, has a unique solution θm, and any solution u = u(t, x) of (4.11) with initial
datum u0 ≥ 0 , u0 6= 0 converges in any Lp to θm as t→∞.

2. Whenever λ(m) ≥ 0, any solution u = u(t, x) of (4.11) with initial datum u0 ≥ 0 , u0 6= 0
converges in any Lp to 0 as t→∞.

The eigenvalue which we seek to minimize can thus be interpreted as a measure of the survival ability
given by a resources distribution, and later works investigated the problem of minimizing λ(m) with
respect to m under the constraint m ∈ M(Ω), where M(Ω) is defined in (4.4). In other words, this
is the problem (4.5).
In the case of Neumann boundary conditions, Berestycki, Hamel and Roques introduced the use of a
rearrangement (due to Berestycki and Lachand-Robert,[20]) in that context, see [19] and [108] for an
introduction to rearrangement, and further geometrical properties of optimizers were derived by Lou
and Yanagida, [128], by Kao, Lou and Yanagida [104]. We do not wish to be exhaustive regarding the
literature of this domain and refer to [116] where Lamboley, Laurain, Nadin and Privat investigate
several properties of solutions of (4.5) under a variety of boundary conditions, and the references
therein.

4.2 Proof of Theorem 4.1.1

4.2.1 Background on (4.5) and structure of the proof

We recall that we work in Ω = B(0;R) ⊂ R2, that

M :=M
(
B(0;R)

)
=

{
0 ≤ V ≤ 1 ,

ˆ
Ω

V = V0

}
and that r∗ is chosen so that

|B(0; r∗)| = V0

i.e such that
V ∗ = χB(0;r∗) ∈M.

We define
S∗ := ∂B∗.

We first recall the following simple consequence of Schwarz’ rearrangement:

Lemma 4.1 V ∗ is the unique minimizer of λ inM: for any V ∈M,

λ(V ∗) ≤ λ(V ),
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and equality holds if and only if V = V ∗. The associated eigenfunction u∗ is decreasing and radially
symmetric.

This result is well-known, but for the sake of completeness we prove it in Annex 4.A.
The proof of Theorem 4.1.1 relies on the study of two auxilliary problem: we introduce, for a given
δ > 0, the new admissible sets

Mδ := {V ∈M , ||V − V ∗||L1 = δ} , (4.14)

M̃δ := {V radially symmetric, V ∈M , ||V − V ∗||L1 = δ} (4.15)

and study the two variational problems
inf

V ∈M̃δ

λ(V ) (4.16)

and
inf

V ∈Mδ

λ(V ). (4.17)

Obviously, Theorem 4.1.1 is equivalent to the existence of C > 0 such that

∀δ > 0 ,∀V ∈Mδ , λ(V )− λ(V ∗) ≥ Cδ2. (4.18)

Remark 4.1 This is a parametric version of the selection principle of [1], that was developed in [31].
We refer to [30] for a synthetic presentation of this selection principle. We note however that the fact
that they use a perimeter constraint enables them to prove that a solution to their auxiliary problem is
a normal deformation of the optimal shape. The main difficulty in the analysis of [31] is establishing
C 2 bounds for this normal deformation. Here, working with subsets as shape variables gives, from
elliptic regularity, enough regularity to carry out this step when the solution of the auxiliary problem
is a normal deformation of B∗. However, we conjecture that the solutions of (4.16) and (4.17) are
equal and are disconnected (see Step 3 and the Conclusion for a precise conjecture), so that the core
difficulty is proving that handling the inequality for normal deformations and for radial distributions
is enough to get the inequality for all other sets.

To prove (A1) we follow the steps below:

1. We first show that (4.17) and (4.16) have solutions. The solutions of (4.17) will be denoted by
Vδ, the solution of (4.16) will be denoted by Hδ.

2. We prove that it suffices to establish (A1) for δ small enough.

3. For (4.16) we fully characterize the solutions for δ > 0 small enough and prove that

∀δ > 0 ,∀V ∈ M̃δ , λ(V )− λ(V ∗) ≥ Cδ2. (4.19)

In other words, we prove that Theorem 4.1.1 holds for radially symmetric functions.

4. We compute the first and second order shape derivatives of the associated Lagrangian at the ball
B∗ and prove a L2-coercivity estimate for the second order derivative. We comment upon the
fact that (unlike many shape optimization problems) this is the optimal coercivity norm at the
beginning of this Step. We use this information to prove that Theorem 4.1.1 holds for domains
that are small normal deformations of B∗ with bounded mean curvature.

5. We establish a dichotomy for the behaviour of Vδ and prove that (A1) holds for any V by using
(4.19) and the inequality for normal deformations of the ball.
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4.2.2 Step 1: Existence of solutions to (4.16)-(4.17)
We prove the following Lemma:

Lemma 4.2 The optimization problems (4.16) and (4.17) have solutions.

Proof of Lemma 4.2. The proof follows from the following claim:

Claim 4.2.1Mδ and M̃δ are compact for the weak L∞ topology.

We postpone the proof to the end of this Proof.
Lemma 4.2 follows from this claim, and we only write the details for (4.17). Let {Vk}k∈N be a
minimizing sequence for λ inMδ. From Claim 4.2.1, there exists V∞ ∈Mδ such that

Vk ⇀ V∞.

The notation ⇀ stands for the weak convergence in the weak L∞-* sense. Let, for any k ∈ N,
uk := uVk and λk := λ(Vk).
We first note that the sequence {λk}k∈N is bounded. Indeed, let ϕ ∈W 1,2

0 (Ω) be such that
´

Ω
ϕ2 = 1.

From the formulation in terms of Rayleigh quotients and Vk ≥ 0 there holds

λk ≤
ˆ

Ω

|∇ϕ|2 −
ˆ

Ω

Vkϕ
2 ≤

ˆ
Ω

|∇ϕ|2.

This gives an upper bound. For a lower bound, let λ1(Ω) be the first Dirichlet eigenvalue of Ω
(equivalently, this is the eigenvalue associated with V = 0). From V ≤ 1,

´
Ω
u2
k = 1 and the

variational formulation for λ1(Ω) there holds

λ1(Ω)− 1 ≤
ˆ

Ω

|∇uk|2 −
ˆ

Ω

V u2
k ≤ λk

so that the sequence also admits a lower bound. It is straightforward to see that {uk}k∈N is bounded in
W 1,2

0 (Ω) so that from the Rellich-Kondrachov Theorem there exists u∞ ∈W 1,2
0 (Ω) such that {uk}k∈N

converges strongly in L2 and weakly in W 1,2
0 (Ω) to u∞. Passing to the limit in the weak formulation

∀v ∈W 1,2
0 (Ω) ,

ˆ
Ω

〈∇uk,∇v〉 −
ˆ

Ω

Vkukv = λ(Vk)

ˆ
Ω

ukv,

in the normalization condition ˆ
Ω

u2
k = 1

and in
uk ≥ 0

readily shows that u∞ is a non-trivial eigenfunction of LV∞ . Furthermore, it is non-negative. Since
the first eigenfunction is the only eigenfunction with a constant sign, this proves that λ∞ = λ(V∞)
and that u∞ is the eigenfunction associated with V∞. Thus:

λ(V∞) = inf
V ∈Mδ

λ(V ).

It remains to prove Claim 4.2.1:

Proof of Claim 4.2.1. We only prove it forMδ.
Let {Vk}k∈N ∈MN

δ . We define, for any k ∈ N

hk := Vk − V ∗.
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Since V ∗ = χB∗ and 0 ≤ Vk ≤ 1, the following signe conditions hold on hk:

hk ≥ 0 in (B∗)c , hk ≤ 0 in B∗. (4.20)

Since
´

Ω
Vk =

´
Ω
V ∗ there holds ˆ

B∗
hk = −

ˆ
(B∗)c

hk. (4.21)

Finally from
||Vk − V ∗||L1 = δ

there comes

δ =

ˆ
Ω

|Vk − V ∗| (4.22)

=

ˆ
Ω

|hk| (4.23)

=

ˆ
(B∗)c

hk −
ˆ
B∗
hk from (4.20) (4.24)

= −2

ˆ
B∗
hk from (4.21) (4.25)

= 2

ˆ
(B∗)c

hk. (4.26)

We see hkχ(B∗)c as an element of L∞ ((B∗)c). Let h+
∞ be a weak-L∞ closure point of {hk}k∈N in

L∞ ((B∗)c). From (4.26) and (4.20) we have

1 ≥ h+
∞ ≥ 0 ,

ˆ
(B∗)c

h+
∞ =

δ

2
. (4.27)

For the same reason, there exists h−∞ ∈ L∞(B∗) such that

−1 ≤ h−∞ ≤ 0 ,

ˆ
B∗
h−∞ = −δ

2

and
hk ⇀ h∞ weak-∗ in L∞(B∗). (4.28)

We define
h∞ := h−∞χ(B∗)c + h−∞χB∗

and it is clear that
hk ⇀ h∞ weak-∗ in L∞(Ω).

Setting V∞ := V ∗ + h∞ there holds
Vk ⇀ V∞

and, by (4.27),(4.28), V∞ ∈Mδ(Ω).

4.2.3 Step 2: Reduction to small L1 neighbourhoods of V ∗

We now prove the following Lemma:
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Lemma 4.3 To prove Theorem 4.1.1, it suffices to prove (A1) for δ small enough, in other words it
suffices to prove that there exists C > 0 such that

lim inf
δ→0

(
inf

V ∈Mδ

λ(V )− λ(V ∗)

δ2

)
≥ C.

Proof of Lemma 4.3. We define, for any V 6= V ∗,

G(V ) :=
λ(V )− λ(V ∗)

||V − V ∗||2L1

and consider a minimizing sequence {Vk}k∈N for G. Then we either have, up to subsequence,

∀k ∈ N , ||Vk − V ∗||L1 ≥ ε > 0

or
||Vk − V ∗||L1 →

k→∞
0.

In the first case, up to a converging subsequence, Vk ⇀ V∞ in a weak L∞-∗ sense and, by the same
arguments as in the Proof of Claim 4.2.1,

||V∞ − V ∗||L1 ≥ ε > 0.

Furthermore, by the same arguments as in the proof of Lemma 4.2,

λ(Vk) −→
k→∞

λ(V∞)

so that
G(Vk) −→

k→∞

λ(V∞)− λ(V ∗)

||V∞ − V ∗||L1

and, by Lemma 4.1, G(V∞) > 0. Hence we only need to study the case ||Vk − V ∗||L1 →
k→∞

0, as
claimed.

The same arguments yield the following Lemma:

Lemma 4.4 (4.19) is equivalent to proving that there exists C > 0 such that

lim inf
δ→0

(
inf

V ∈M̃δ

λ(V )− λ(V ∗)

δ2

)
≥ C.

4.2.4 Step 3: Proof of (4.19)

In this Subsection we prove (4.19) or, in other words, we prove that Theorem 4.1.1 holds for radial
distributions.

Proof of (4.19). We recall that, by Lemma 4.2, there exists a solution to (4.16). Let Hδ be such a
minimizer.
We first characterize Hδ for δ small enough. Let

Aδ := {|x| ≤ r∗ + r′δ} \ {x , r∗ − rδ ≤ |x| ≤ r∗ + r′δ} (4.29)

be the annular structure such that
χAδ ∈ M̃δ. (4.30)
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We represent it below

Aδ Aδ

Figure 4.1 – An example of Aδ

Since r′δ is defined by the relation

|{r∗ ≤ |x| ≤ r∗ + r′δ}| =
δ

2

the set Aδ is uniquely defined. We claim the following:

Claim 4.2.2 There exists δ > 0 such that, for any δ ≤ δ,

Hδ = χAδ .

Proof of Claim 4.2.2. To prove this claim, we need the optimality conditions associated with (4.16).
We first note that, if uδ is the eigenfunction associated with Hδ, there exist two real numbers ηδ, µδ
such that

1. Hδ = χ{uδ>µδ}∩B∗ in B∗,

2. Hδ = χ{supS∗ uδ≥uδ>ηδ}∩(B∗)c in (B∗)c,

3. |{uδ > µδ} ∩ B∗| = V0 − δ
2 , |{supS∗ uδ ≥ uδ > ηδ} ∩ (B∗)c| = δ

2 .

This is readily seen from the Rayleigh quotient formulation (4.3). We only prove 1: let µδ ∈ R be the
only real number such that

|{uδ > µδ} ∩ B∗| = V0 −
δ

2
=

ˆ
B∗
Hδ

and replace Hδ by
H̃δ := χ{uδ>µδ}∩B∗ +Hδχ(B∗)c .

Since uδ is radially symmetric (because Hδ is radially symmetric), H̃δ is radially symmetric.
Then, because

´
B∗ H̃δ =

´
B∗ Hδ, we have, by the bathtub principle (see [93])

ˆ
B∗
u2
δHδ ≤

ˆ
B∗
u2
δχ{uδ>µδ}∩B∗ ,

hence
λ(Hδ) ≥

ˆ
B
|∇uδ|2 −

ˆ
B
H̃δu2

δ ≥ λ
(
H̃δ
)
.

This gives the required property.
We now need to exploit these optimality conditions. First of all, since uδ is radially symmetric, we
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can define
ζδ := uδ|S∗ .

By standard elliptic estimates, we also have

uδ →
δ→0

u∗ in C 1,s ( s < 1),

where u∗ is the eigenfunction associated with V ∗. Since ∂u∗
∂r < −c on {|x| ≥ ε}, uδ is radially

decreasing in {|x| > ε} for δ > 0 small enough. It follows that µδ > ζδ for δ small enough. For the
same reason, ζδ > ηδ for δ small enough. Hence we have

µδ > ηδ > ηδ ,Hδ = χ{uδ>µδ} + χ{ζδ≥uδ>ηδ}.

Finally, once again because uδ is radially decreasing on {|x| > ε} for δ small enough, both level sets
{uδ > µδ} and {ζδ ≥ uδ > ηδ} are connected, and Hδ is the characteristic function of a centered ball
and of an annulus, i.e

Hδ = χ{‖x‖≤r∗−zδ} + χ{r∗≤‖x‖≤r∗+yδ}.

Since
|Aδ∆B∗| =

ˆ
B
|Hδ − V ∗|

there holds
Hδ = χAδ

for δ small enough, as claimed.

We now turn to the proof of (4.19): since Hδ is the minimizer of λ in M̃δ we are going to prove
that there exists a constant C > 0 such that

λ(Hδ) ≥ λ(V ∗) + Cδ2 (4.31)

for δ ≤ δ. Because of Lemma 4.3, (4.19) will follow. To prove (4.31), we use parametric derivatives.
Let us fix notations:

1. For any δ > 0 small enough so that Hδ = χAδ , we set

hδ := Hδ − V ∗.

2. For any t ∈ [0; 1] we define Vδ,t as
Vδ,t := V ∗ + thδ

and uδ,t as the eigenfunction associated with Vδ,t:
−∆uδ,t − Vδ,tuδ,t = λtuδ,t in Ω,
uδ,t = 0 on ∂Ω.´

Ω
u2
δ,t = 1.

(4.32)

3. For any such δ, u̇δ is the first order parametric derivative of u at Vδ,t in the direction hδ and
λδ,t is the first order parametric derivative of λ at Vδ,t in the direction hδ.

As is proved in Annex 4.B, these objects are well-defined. Differentiating the equation with respect
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to t gives  −∆u̇δ,t = λ(V ∗)u̇δ,t + V ∗u̇δ,t + λ̇δ,tu∗ + hδ,tu
∗ , in Ω,

u̇δ,t = 0 on ∂Ω,´
B u∗u̇δ,t = 0,

(4.33)

and , multiplying the first equation by uδ,t and integrating by parts ,

λ̇δ,t = −
ˆ
B
hδu

2
δ,t.

We apply the mean value Theorem to f : t 7→ λδ,t. This gives the existence of t1 ∈ [0; 1] such that

λ(Hδ)− λ(B∗) = f(1)− f(0) = f ′(t1) = −
ˆ
B
hδu

2
δ,t1 .

Our goal is now to prove that

−
ˆ
B
hδu

2
δ,t1 ≥ Cδ

2 (4.34)

for some constant C > 0 whenever δ is small enough. We will actually prove the existence of δ > 0
such that, for any t ∈ [0; 1] and any δ ≤ δ, there holds

−
ˆ
B
hδu

2
δ,t ≥ Cδ2 (4.35)

for some C > 0.

Proof of Estimate (4.35). We recall that rδ and r′δ were defined in (4.29)-(4.30). We can rewrite
Hδ = χAδ ∈ Xδ under the form

ˆ r∗

r∗−rδ
tn−1dt+

ˆ r∗+r′δ

r∗
tn−1dt =

δ

cn

where cn = Hn−1(S(0; 1)) and the condition
´

Ω
hδ = 0 implies

ˆ r∗

r∗−rδ
tn−1dt =

ˆ r∗+r′δ

r∗
tn−1dt.

An explicit computation yields the existence of a constant C > 0 such that

rδ, r
′
δ ∼
δ→0

Cδ. (4.36)

Let I±δ := {hδ = ±1}. Since hδ is radial, for any t ∈ [0; 1] the function uδ,t is radial.

First facts regarding uδ,t Identifying uδ,t (resp. Vδ,t) with. the unidimensional function ũδ,t (resp.
Ṽδ,t) such that

uδ,t(x) = ũδ,t(|x|) (resp. Vδ,t(x) = Ṽδ,t(|x|))

we have the following equation on uδ,t:
− 1
rn−1

(
rn−1u′δ,t

)′
= Vδ,tuδ,t + λtuδ,t in [0;R],

u′δ,t(0) = uδ,t(1) = 0,´ 1

0
xuδ,t(x)2dx = 1

cn
.

(4.37)
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Since Vδ,t is constant in (r∗ − rδ; r∗) ∪ (r∗; r∗ + r′δ) and since uδ,t is uniformly bounded in L∞ by
standard elliptic estimates, uδ,t is C 2 in (r∗ − rδ; r∗) ∪ (r∗; r∗ + r′δ). Furthermore, Equation (4.37)
readily gives the existence of a constant M such that, uniformly in δ and in t ∈ [0; 1],

||uδ,t||W 2,∞ ≤M. (4.38)

Finally, it is standard to see that Equation (4.32) gives

||uδ,t − u∗||C 1 →
δ→0

0 (4.39)

uniformly in t. As a consequence, since
u′∗(r

∗) < 0

there exists δ1 > 0 such that, for any δ ≤ δ1 and any t ∈ [0; 1],

u′δ,t(r
∗) ≤ −C < 0. (4.40)

End of the Proof For any x ∈ I±δ and any t ∈ [0; 1], a Taylor expansion gives

u2
δ,t(x) = u2

δ,t

∣∣
S∗ ∓ 2uδ,t|∇uδ,t||S∗ dist(x;S∗) + o (dist(x;S∗)) ,

and o (dist(x;S∗)) is uniform in δ > 0 small enough and t ∈ [0; 1] by Estimate (4.38). This Taylor
expansion gives

λ̇δ,t = −
ˆ
B
hu2

δ,t

= − u2
δ,t

∣∣
S∗

ˆ
B
hδ

(
= 0 because

ˆ
B
h = 0

)
+

ˆ
I−δ

2uδ,t|∇uδ,t||S∗ dist(x;S∗) + o

(ˆ
I−δ

dist(x;S∗)

)

+

ˆ
I+
δ

2uδ,t|∇uδ,t||S∗ dist(x;S∗) + o

(ˆ
I+
δ

dist(x;S∗)

)

where the o
(´

I+
δ
dist(x;S∗)

)
are uniform in t ∈ [0; 1] and δ. Furthermore,

uδ,t|∇uδ,t|S∗ ≥ C > 0

for some constant C > 0 independent of δ and t by Estimate (4.40).
Hence

λ̇δ,t ∼
δ→0

2uδ,t|∇uδ,t||S∗

(ˆ
I+
δ

dist(x;S∗) +

ˆ
I+
δ

dist(x;S∗)

)
.

However,

ˆ
I+
δ

dist(x;S∗) =

ˆ r∗+r′δ

r∗
tn−1(t− r∗)dt

= (r∗)nr′δ

(
1

n+ 1

(
n+ 1
n

)
− 1

n

(
n

n− 1

))
+ (r∗)n−1(r′δ)

2

(
1

n+ 1

(
n+ 1
n− 1

)
− 1

n

(
n

n− 2

))
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+ o
δ→0

(δ2) by (4.36)

= (r∗)n−1(r′δ)
2 + o

δ→0
(δ2)

∼
δ→0

Cδ2

for some C > 0 by (4.36). In the same manner,

ˆ
I−δ

dist(x;S∗) =

ˆ r∗

r∗−rδ
tn−1(r∗ − t)dt ∼

δ→0
C ′δ2

and so, combining these estimates gives

λ̇δ,t ≥
δ→0

Cδ2 + o(δ2)

uniformly in δ and t, which concludes the proof.

4.2.5 Step 4: shape derivatives and quantitative inequality for
graphs

4.2.5.1 Preliminaries and notations

In this Subsection, we aim at proving Theorem 4.1.1 for V = χE and where E can be obtained as a
normal graph over B∗.

Introduction of the Lagrangian and optimality conditions We introduce the Lagrange mul-
tiplier τ associated with the volume constraint and define the Lagrangian

Lτ : E 7→ λ(E)− τV ol(E).

From classical results in the calculus of variations, we have the following optimality conditions.

Claim 4.2.3 The necessary optimality conditions for a shape E to be a local minimizer (however
they are not sufficient) are:

∀Φ ∈ X1(E) , λ′(E)[Φ] = 0 , ∀Φ ∈ X1(E) , L′′τ (E)[Φ,Φ] > 0.

Here, we use the notion of shape derivatives introduced in Definition 4.1.2. Since we only want a
local quantitative inequality for shapes that can be obtained as normal graphs over the ball B∗, we
introduce some notations.

Notations We consider in this parts functions g belonging to

X0(B∗) =

{
g ∈W 1,∞(B∗) , ||g||L∞(∂B∗) ≤ 1 ,

ˆ
∂B∗

g = 0

}
.

Whenever g ∈ X0(B∗), there exists Φg ∈ X1(B∗) such that

〈Φg, ν〉 = g on ∂B∗.
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The set X0 corresponds to a linearization of the volume constraints for normal graphs and can be
seen as a subset of the set of admissible perturbations X1(B∗) defined in Definition 4.1.2, in the sense
that we restrict admissible perturbations to normal graphs.

g(x)

Figure 4.2 – A normal deformation of the ball. The dotted line can be understood as the graph of g.

Figure 4.3 – A perturbation of the ball which can not be seen as the graph of a function

We define, for any g ∈ X0(B∗) and any t ∈ [0;T ] (with T uniform in g because of the L∞ constraint)
the set Bt,g whose boundary is defined as

∂Bt,g := {x+ tg(x)ν(x) , x ∈ ∂B∗}

i.e a slight deformation of E∗.
We define

λg,t := λ (Bt,g) .

Recall that τ is the Lagrange multiplier associated with the volume constraint. By defining L′τ (B∗)[g] :=
L′τ (B∗)[Φg] and L′′τ (B∗)[g, g] := L′′τ (B∗)[Φg,Φg], and with the same convention for other shape func-
tionals involved, necessary optimality conditions are

∀g ∈ X0(B∗) , L′τ (B∗)[g] = 0 , L′′τ (B∗)[g, g] > 0. (4.41)

We first prove that these optimality conditions hold in the case of a ball and then use them to obtain
Theorem 4.1.1 for normal perturbations.
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4.2.5.2 Strategy of proof and comment on the coercivity norm

The strategy of proof is the same as the one used in many articles devoted to quantitative spectral
inequalities. For example, we refer to [1, 31] for applications of these methods and to the recent [64],
which presents a general framework for the study of stability and local quantitative inequalities using
second order shape variations.
Although our method of proof is similar, we point out that the main thing to be careful with here is
the coercivity norm for the second-order shape derivative. Indeed, let J : E 7→ J(E) be a differentiable
shape function. In the context of shape spectral optimization, the "typical" coercivity norm at a local
minimum E∗ for J is the H

1
2 norm: in [64] a summary of shape functionals known to satisfy

J ′′(E∗)[Φ,Φ] ≥ C||〈Φ, ν〉||2
H

1
2 (∂E∗)

is established and proofs of thess coercivity properties are given. In this estimate, Φ is an admissible
vector field at E∗.
Here, in the context of parametric shape derivatives, i.e when the shape is a subdomain, it appears
(see Subsubsection 4.2.5.5) that the natural coercivity norm is the L2 norm:

L′′τ (E∗)[Φ,Φ] ≥ C||〈Φ, ν〉||2L2(∂A∗)

and this coercivity norm is optimal. This makes things a bit more complicated when dealing with
the terms of the second order derivative that involve the mean curvature. This lack of coercivity
might be accounted for by the fact that, while in shape optimization, it is the normal derivative of the
shape derivative of the eigenfunction that is involved (see [64]) here, it is just the trace of the shape
derivative of the eigenfunction on the boundary of the optimal shape that matters.
Once this L2 coercivity is established, we will prove that there exists a constant ξ,M,C > 0 such
that, for any g satisfying ||g||W 1,∞ ≤ ξ and such that the mean curvature of Bg,t is bounded by M for
any t ≤ T , there holds

|L′′τ (Bt,g)[Φg,Φg]− L′′τ (B∗∗)[Φg,Φg]| ≤ (C +M)||g||W 1,∞ ||g||2L2 . (4.42)

We then apply the Taylor-Lagrange formula to f : t 7→ Lτ (Bt,g) to get the desired conclusion, see
Subsubsection 4.2.5.7.

4.2.5.3 Analysis of the first order shape derivative at the ball and
computation of the Lagrange multiplier

The aim of this section is to prove the following Lemma:

Lemma 4.5 B∗ is a critical shape and the Lagrange multiplier associated with the volume constraint
is

τ = −u2
∗|∂B∗ .

Proof of Lemma 4.5. We recall (see [93]) that

V ol′(B∗)[g] =

ˆ
∂B∗

g (= 0 if g ∈ X0(B∗)) .

We now compute the first order shape derivative of λ. The shape differentiability of λ follows from
an application of the implicit function Theorem of Mignot, Murat and Puel, [139], and is proved in
Appendix 4.B.
Let, for any g ∈ X0(B∗), u′g be the shape derivative of the uBt,g at t = 0. We recall that this derivative
is defined as follows (see [93, Chapitre 5] for more details): we first define vt := ug,t ◦ Φg,t, we define
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u̇g as the derivative in W 1,2
0 (Ω) of vt with respect to t at t = 0, and set

u′g := u̇g − 〈Φg,∇u0〉.

We proceed formally to get the equation on u′g (for rigorous computations we refer to Appendix 4.B):
we first differentiate the main equation

−∆ug,t = λg,tug,t + Vg,tug,t

with respect to t, yielding
−∆u′g = λ′gu∗ + λ∗u

′
g + (V ∗)u′g.

We then differentiate the continuity equations to get the jump conditions: if we define

[f ](x) := lim
y→x,y∈(B∗)c

f(y)− lim
y→x,y∈B∗

f(y),

we have
[ug,t]|∂Bt,g =

[
∂ug,t
∂ν

]∣∣∣∣
∂Bt,g

= 0,

yielding [
u′g
]∣∣
∂B∗ = −g

[
∂u∗
∂ν

]∣∣∣∣
∂B∗

= 0

because u∗ is C 1, and [
∂u′g
∂ν

]∣∣∣∣
∂B∗

= −g
[
∂2u∗
∂ν2

]∣∣∣∣
∂B∗

.

However, from the Equation on u∗ we see that[
∂2u∗
∂ν2

]∣∣∣∣
∂B∗

= u∗|∂B∗ ,

so that we finally have the following equation on u′g:{
−∆u′g = λ′gu∗ + λ∗u∗ + (V ∗)u∗ in B(0;R),[
∂u′g
∂ν

]
= −gu∗|∂B∗ .

(4.43)

The weak formulation of this equation reads: for any ϕ ∈W 1,2
0 (B),

ˆ
B
〈∇u′g,∇ϕ〉 −

ˆ
∂B∗

gu∗ϕ = λ′g

ˆ
B
ϕu∗ + λ∗

ˆ
B
ϕu∗ +

ˆ
B
(V ∗)ϕu∗. (4.44)

We finally remark that, by differentiating
´
B u

2
g,t = 1, we get

ˆ
B
u∗u

′
g = 0.

Taking u∗ as a test function in (4.44) and using the normalization condition
´
B u

2
∗ = 1 thus gives

λ′g =

ˆ
B
〈∇u∗,∇u′g〉 − λ∗

ˆ
B
u′gu∗ −

ˆ
B
(V ∗)u∗u

′
g −

ˆ
∂B∗

gu2
∗. (4.45)
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However, since u′g does not have a jump at ∂B∗, we have
ˆ
B
〈∇u∗,∇u′g〉 − λ∗

ˆ
B
u′gu∗ −

ˆ
B
(V ∗)u∗u

′
g = 0

by using the Equation on u∗.
In the end, we get

λ′g = −
ˆ
∂B∗

gu2
∗.

Since u2
∗ = µ∗ is constant on ∂B∗ and g ∈ X0(B∗),

λ′g = −µ∗
ˆ
∂B∗

g = 0.

This also enables us to compute the Lagrange multiplier: for a function g ∈ W 1,∞(∂B∗) which is no
longer assumed to satisfy

´
∂B∗ g = 0, one must have

L′τ [B∗](g) = 0.

Indeed, we know, from Lemma 4.1, that B∗ is the unique minimizer of λ under the volume constraint.
However, the same computations show that

L′τ [B∗](g) = −µ∗
ˆ
∂B∗

g − τ
ˆ
∂B∗

g,

and the Lagrange multiplier is thus
τ = −µ∗ = −u2

∗|B∗ . (4.46)

We now compute the second order shape derivative of Lτ at any given shape.

4.2.5.4 Computation of the second order shape derivative of λ

We explained in Subsection 4.2.5.2 that we need to compute the second order derivative at any given
shape in order to apply the Taylor-Lagrange formula. Thus, the objectif of this section is the proof
of the following Lemma:

Lemma 4.6 The second order derivative of the eigenvalue λ at a shape E in the direction Φ ∈ X1(E)
is given by

λ′′(E)[Φ,Φ] = −2

ˆ
∂E

uu′〈Φ, ν〉+2

ˆ
∂E

∂u

∂ν

([
∇2u[Φ,Φ]

]
−
[
∂2u

∂ν2

]
〈Φ, ν〉2

)
+

ˆ
∂E

(
−Hu2 − 2u

∂u

∂ν

)
〈Φ, ν〉2,

where u′ is defined by Equation (4.43) and H is the mean curvature of E.

Proof of Lemma 4.6. To compute λ′′(E)[Φ,Φ], we use Hadamard’s second variation formula (see [93,
Chapitre 5, page 227]): let K be a C 2 domain, f(t) be a shape differentiable function , then

d2

dt2

∣∣∣∣
t=0

ˆ
KΦ,t

f(t) =

ˆ
K

f ′′(0) + 2

ˆ
∂K

f ′(0)g +

ˆ
∂K

(
Hf(0) +

∂f(0)

∂ν

)
g2. (4.47)

Let u′ be the shape derivative of uE with respect to t and u′′ the second order shape derivative of uE
with respect to t. We successively apply (4.47) to EΦ,t and f(t) = |∇ut|2 − u2

t and to (EΦ,t)
c and
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f(t) = |∇ut|2.
Since λ(EΦ,t) =

´
EΦ,t

(
|∇ut|2 − u2

t

)
+
´
EcΦ,t
|∇ut|2, this gives

λ′′(E)[Φ,Φ] =2

ˆ
Ω

〈∇u′′,∇u〉 − 2

ˆ
E

u′′u (4.48)

+ 2

ˆ
Ω

|∇u′|2 − 2

ˆ
E

(u′)2 (4.49)

+ 4

ˆ
∂E

[〈∇u,∇u′〉] 〈Φ, ν〉 − 4

ˆ
∂E

u′u〈Φ, ν〉 (4.50)

+

ˆ
∂E

(
−Hu2 − 2

∂u

∂ν

[
∂2u

∂ν2

]
− 2u

∂u

∂ν

)
〈Φ, ν〉2. (4.51)

Let us simplify this expression: First of all the weak formulation of the equation on u′ gives

2

ˆ
Ω

|∇u′|2 − 2

ˆ
E

(u′)2 = 2λ′
ˆ

Ω

u′u︸ ︷︷ ︸
=0 since

´
Ω
u′u=0

+2λ

ˆ
Ω

(u′)2 − 2

ˆ
∂E

[
u′
∂u′

∂ν

]
.

We also note that by differentiating
´

Ω
u2
t = 1 twice with respect to t we get
ˆ

Ω

u′′u+

ˆ
Ω

(u′)2 = 0. (4.52)

We note one last simplification to handle Line (4.50) in the expression for λ′′: we decompose

∇u =
∂u

∂ν
ν +∇⊥u ,

〈
∇⊥u, ν

〉
= 0.

We adopt the same decomposition for u′ and notice that, since u′ does not have a jump at ∂E,[
∇⊥u

]
= ~0.

The notation ~0 stands for the zero vector in Rn. The same holds true for u, and so, since ∂u
∂ν has no

jump at ∂E, we get

[〈∇u,∇u′〉] =
∂u

∂ν

[
∂u′

∂ν

]
.

Finally, using the weak formulation of the equation on u (Equation (4.2)) we get

2

ˆ
Ω

〈∇u′′,∇u〉 − 2

ˆ
E

u′′u = 2λ

ˆ
Ω

u′′u−
ˆ
∂E

[u′′]
∂u

∂ν
.

We then only need to compute the jump [u′′] at ∂E. However, invoking the W 2,2 regularity of the
material derivative ü, we get for the shape derivative u′′:

[u′′] = −2 [∇u′[Φ]]− [∇u[DΦ(Φ)]]−
[
∇2u [[Φ,Φ]]

]
.

We now use the fact that
[∇u] =

[
∇⊥u

]
=
[
∇⊥u′

]
= 0 on ∂E

to rewrite
[u′′] = −2

[
∂u′

∂ν

]
〈Φ, ν〉 −

[
∇2u [[Φ,Φ]]

]
.
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If we gather these expressions we get

λ′′(E)[Φ,Φ] = 2λ

ˆ
Ω

u′′u+ 2λ

ˆ
Ω

(u′)2 (= 0 because of (4.52))

+ 4

ˆ
∂E

∂u

∂ν

[
∂u′

∂ν

]
〈Φ, ν〉+ 2

ˆ
∂E

∂u

∂ν

[
∇2u [[Φ,Φ]]

]
+ 2

ˆ
∂E

u′u

− 4

ˆ
∂E

∂u

∂ν

[
∂u′

∂ν

]
〈Φ, ν〉 − 4

ˆ
∂E

u′u〈Φ, ν〉

+

ˆ
∂E

(
−Hu2 − 2

∂u

∂ν

[
∂2u

∂ν2

]
− 2u

∂u

∂ν

)
〈Φ, ν〉2

= −2

ˆ
∂E

uu′〈Φ, ν〉+ 2

ˆ
∂E

∂u

∂ν

([
∇2u[Φ,Φ]

]
−
[
∂2u

∂ν2

]
〈Φ, ν〉2

)
+

ˆ
∂E

(
−Hu2 − 2u

∂u

∂ν

)
〈Φ, ν〉2

4.2.5.5 Analysis of the second order shape derivative at the ball

The aim of this paragraph is to prove the following Lemma:

Proposition 4.1 There exists a constant C > 0 such that

∀g ∈ X0(B∗) , L′′τ [B∗](g, g) ≥ C||g||2L2(∂B∗).

We note that the proof of this Lemma relies on a monotonicity principle, which guarantees the weak
L2 coercivity. In fact, this is to be the optimal coercivity, in sharp contrast with shape optimization
with respect to the boundary of the whole domain ∂Ω, where the optimal coercivity usually occurs in
the H

1
2 norm, as noted in Subsection 4.2.5.2.

Proof of Proposition 4.1. We proceed in several steps. We identify g with the normal vector field Φg
that can be constructed from g, and, to alleviate notations, write Φ = Φg.

1. Computation of λ′′ We use Lemma 4.6 and first note that, since the vector field Φ associated
with g is normal, [

∇2u[Φ,Φ]
]

=

[
∂2u

∂ν2

]
〈Φ, ν〉2.

In the case of a ball, H = 1
r∗ . For notational simplicity, we stick to the notation

H∗ =
1

r∗
.

The second derivative of λ becomes

λ′′(B∗)[Φ,Φ] =

ˆ
∂B∗

(
−H∗u2

∗ − 2u∗
∂u∗
∂ν

)
〈Φ, ν〉2 − 2

ˆ
∂B∗

u∗u
′〈Φ, ν〉.

Taking into account the value of the Lagrange multiplier τ associated with the volume constraint,
see Equation (4.46), and

V ol′′(B∗)[Φ,Φ] =

ˆ
∂B∗

H∗〈Φ, ν〉2
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we get

L′′τ (B∗)[Φ,Φ] = 2

ˆ
∂B∗
−u∗

∂u∗
∂ν
〈Φ, ν〉2 − u∗u′〈Φ, ν〉. (4.53)

2. Separation of variables and first simplifications We identify g with a function g : [0; 2π]→ R.
We write the decomposition of g as a Fourier series:

g =
∑
k∈N

αk cos(k·) + βk sin(k·).

Since g ∈ X0(B∗) we have α0 = 0 and thus

g =

∞∑
k=1

αk cos(k·) + βk sin(k·). (4.54)

We define, for any k ∈ N∗, u′k (resp. w′k) as the shape derivative of u with respect to the
perturbation g = cos(k·) (resp. g = sin(k·)). Since B∗ is a critical shape from Lemma 4.5, u′k
satisfies  −∆u′k = λ∗u

′
k + V ∗u′k,

[u′k] = −u∗ cos(k·) on ∂B∗ ,
u′k = 0 on ∂Ω.

Since u∗ is constant on partial B∗, we can write, in polar coordinates

u′k(r, θ) = ψk(r) cos(kθ)

where ψk satisfies the following equation (and we identify V ∗ with the one dimensional function
Ṽ ∗ such that (V ∗)(x) = Ṽ ∗(|x|) = χ|x|≤r∗):

− 1
r (rψ′k)′ =

(
λ∗ + V ∗ − k2

r2

)
ψk

[ψ′k] (r∗) = −u∗(r∗)
ψk(R) = 0.

(4.55)

In the same way, we have
w′k(r, θ) = ψk(r) sin(kθ).

Whenever g admits the Fourier decomposition (4.54), the linearity (with respect to g) of the
equation on u′g gives

u′g =

∞∑
k=1

αku
′
k + βkw

′
k.

Plugging this in the expression of L′′τ , see Equation (4.53), and using the orthogonality properties
of
{

cos(k·), sin(k)̇
}
k≥1

finally yields

L′′τ (B∗)[g, g] = L′′τ (B∗)[Φ,Φ] =

∞∑
k=1

{
α2
k + β2

k

}
u∗|∂B∗

(
− ∂u∗

∂ν

∣∣∣∣
∂B∗
− ψk(r∗)

)
.

We define the relevant sequence {ωk}k∈N∗ :

∀k ∈ N∗ , ωk := − ∂u∗
∂ν

∣∣∣∣
∂B∗
− ψk(r∗), (4.56)
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so that

L′′τ (B∗)[g, g] = u∗|∂B∗
∞∑
k=1

ωk
{
α2
k + β2

k

}
. (4.57)

Our goal is now the following Lemma:

Lemma 4.7 There exists C > 0 such that

∀k ∈ N∗ , ωk ≥ C > 0.

In order to prove this Lemma, we use a comparison principle for one-dimensional differential
equations.

3. Proof of Lemma 4.7: monotonicity principle We will first prove that

∀k ∈ N∗ , ωk ≥ ω1. (4.58)

We first note that
ψ1 > 0 in (0;R). (4.59)

Before we prove, let us see how (4.59) implies (4.58). Let, for any k ≥ 2, zk be the function
defined as

zk := ψk − ψ1.

Since ψk can be expressed as ψk = AkJk( rR ) for r ≤ r∗ where Jk is the k-th Bessel function of
first kind, we have zk(0) = zk(R) = 0. Furthermore, zk satisfies

−1

r
(rz′k)′ =

(
λ∗ + V ∗ − k2

r2

)
ψk −

(
λ∗ + V ∗ − 1

r2

)
ψ1

≤
(
λ∗ + V ∗ − k2

r2

)
ψk −

(
λ∗ + V ∗ − k2

r2

)
ψ1 because ψ1 > 0 by (4.59)

≤
(
λ∗ + V ∗ − k2

r2

)
zk. (4.60)

We also have
[z′k](r∗) = 0.

However, this equation and this no-jump condition imply

zk ≤ 0. (4.61)

For k large enough, this simply follows by a contradiction argument: if λ∗ + V ∗ − k2

r2 < 0 in
(0;R) then, if zk reached a positive maximum at some interior point r, we should have

0 ≤ −1

r
(rz′′k (r)) ≤

(
λ∗ + V ∗ − k2

r2

)
zk(r) < 0,

yielding a contradiction.
A proof of (4.61) that is valid for all values of k reads as follows: identifying u∗ with its one-
dimensional counterpart (i.e with the function ũ∗ : [0;R] → R such that u∗(x) = ũ∗(|x|)) we
define

pk :=
zk
u∗
.
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We notice that pk(0) = 0 and that
[p′k](r∗) = 0.

Furthermore, by straightforward computation, pk satisfies

−1

r
(rp′k)′ =

−1

u∗
(rz′k)′ +

zk
u2
∗

1

r
(ru′∗)

′ + 2
u′∗
u∗
p′k.

By (4.60) and by non-negativity of u∗ we get

−1

r
(rp′k)′ ≤ −k

2

r2
pk.

From this it is straightforward to see by a contradiction argument that pk can not reach a
positive maximum at an interior point. It remains to exclude the case pk(R) > 0.
We argue, once again, by contradiction, and assume that pk(R) > 0. Since by l’Hospital rules
we have

pk(r) ∼
r→R

z′k(r)

u′∗(r)

we must have z′k(r) ≤ 0. However once again by l’Hospital’s rule,

p′k(r) =
u∗z
′
k

u2
∗
− u′∗zk

u2
∗
∼
r→0

1

2
z′k2u∗ < 0.

Hence pk is locally decreasing at R, yielding a contradiction. Thus pk ≤ 0 and in turn ψk−ψ1 =
zk ≤ 0, completing the proof of (4.58).
The proof of (4.59) follows from the same arguments: we define

Ψ1 :=
ψ1

u∗

and observe that
−1

r
(rΨ′1)′ = − 1

r2
Ψ1 + 2

u′∗
u∗

Ψ′1 , [Ψ
′
1](r∗) = −u∗(r∗).

We once again argue by contradiction and assume that Ψ1 reaches a negative minimum. From
the jump condition at r∗, if this maximum is reached at an interior point, it cannot be at r = r∗

and the contradiction follows from the Equation. We exclude the case of a negative minimum
at R through the same reasons as for pk.
It follows that ψk ≤ ψ1 so that

ωk − ω1 = ψ1(r∗)− ψk(r∗) ≥ 0.

To conclude the proof of Lemma 4.7, it remains to prove that

ω1 > 0. (4.62)

Proof of (4.62). We define
Ψ := u′∗ + ψ1.

We note that

−1

r
(r(u′∗)

′)′ =

(
λ∗ + V ∗ − 1

r2

)
u′∗ , [(u′∗)

′](r∗) = [u′′](r∗) = u∗(r
∗).
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By Hopf’s Lemma, u′∗(R) < 0 and, since u∗ is C 2 in B∗, u′∗(0) = 0.
We get the following equation on Ψ:

−1

r
(rΨ′)′ =

(
λ∗ + V ∗ − 1

r2

)
Ψ , [Ψ′](r∗) = 0 , Ψ(0) = 0 , Ψ(R) < 0.

Defining

Θ :=
Ψ

u∗

we get

−1

r
(rΘ′)′ = − 1

r2
Θ + 2

u′∗
u∗

Θ′

and Θ can thus not reach a positive maximum at an interior point. Since it is negative at r = R
we get Θ ≤ 0 in [0;R]. Furthermore, it is not identically zero since Θ(R) 6= 0, and the strong
maximum principle implies Θ < 0 in (0;R). This gives

Θ(r∗) < 0

or, equivalently
ω1 = −Θ(r∗) > 0

and this concludes the proof of Lemma 4.7.

4. Conclusion of the proof To prove Proposition 4.1, we simply write

L′′τ (B∗)[g, g] =

∞∑
k=1

ωk
{
α2
k + β2

k

}
by (4.57)

≥ C
∞∑
k=1

{
α2
k + β2

k

}
by Lemma 4.7

= C||g||2L2

= C||〈Φ, ν〉||2L2 .

The proof of the Proposition is now complete.

4.2.5.6 Taylor-Lagrange formula and control of the remainder

We now state the main estimate which will enable us to apply the Taylor-Lagrange formula.

Proposition 4.2 Let M > 0 and η > 0. There exists s ∈ (0; 1) , ε = ε(η) > 0 such that for any
Φ ∈ X1(B∗) satisfying

||Φ||C 1,1 ≤M , ||Φ||C 1,s ≤ ε

there holds
|L′′τ (BΦ)[Φ,Φ]− L′′τ (B∗)[Φ,Φ]| ≤ η||〈Φ, ν〉||2L2 . (4.63)

As mentioned earlier, this will prove a quantitative inequality for sets of bounded curvature that
are in a C 1,s neighbourhood of B∗. Note that working in the C 1,s norm rather than in a C 2,s norm
will be enough, since elliptic regularity estimates will prove sufficient for our proofs.
The proof of this proposition is technical but not unexpected in this context. We postpone the proof
to Appendix 4.C.
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4.2.5.7 Conclusion of the proof of Step 4

Recall that we have defined
f(t) := λ(BtΦ).

Then:

λ(BΦ)− λ(B∗) = f(1)− f(0)

= f ′(0) (= 0 because B∗ is critical )

+

ˆ 1

0

(1− t)f ′′(t)dt

=
1

2
f ′′(0) +

ˆ 1

0

(1− t) (f ′′(t)− f ′′(0)) dt

≥ C||〈Φ, ν〉||2L2 − η||〈Φ, ν〉||2L2

≥ C

2
||〈Φ, ν〉||2L2

≥ C ′||〈Φ, ν〉||2L1 by the Cauchy-Schwarz Inequality

= C ′δ2 because |BΦ∆B∗| = δ.

whenever ||∇Φ||L∞ is small enough. This concludes the proof of Step 4.

4.2.5.8 A remark on the coercivity norm

The L2 coercivity established in Proposition 4.1 is not only sufficient, but also optimal. Indeed, since
ψk is non-negative in (0;R), we immediately have the bound

0 ≤ ωk ≤ −
∂u∗
∂ν

.

In other words, the coercivity norm for the second derivative is the L2 (rather than the H
1
2 ) norm of

the perturbation. This is due to the fact that here, in the context of parametric optimization, it is the
value of the shape derivative u′ rather than the value of its normal derivative that is involved in the
second order shape derivative. We not that this is in sharp contrast with classical shape optimization,
where the optimization is carried out with respect to the whole domain Ω, and where the coercivity
norm is the H

1
2 norm, see [64] and the references therein.

4.2.6 Step 5: Conclusion of the proof of Theorem 4.1.1

We now conclude the proof of Theorem 4.1.1: let Vδ be a solution of the variational problem (4.17) In
the same way we derived the optimality conditions for the radial version of the optimization problem,
that is, for the variational problem (4.16), it is easy to see that Vδ is equal to 0 or 1 almost everywhere
and that, furthermore, if uδ is the associated eigenfunction, that there exists two real numbers µδ and
ηδ such that

{Vδ = 1} =
({

uδ ≥ µδ
}
∩ B∗

)
∪
(
{uδ ≥ ηδ} ∩ (B∗)c

)
.

Remark 4.2 We actually expect that
Vδ = Hδ

where Hδ was defined in Step 3, at least for δ > 0 small enough, in which case Step 4 would prove
irrelevant. We were however not able to prove this fact. Put otherwise, we expect the solution to
(4.17) to be a radially symmetric set, given the symmetries properties involved.
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We introduce one last parameter: let ζδ be the unique real number such that∣∣∣{uδ > ζδ}
∣∣∣ = V0. (4.64)

In the two figures below, we represent the two most extreme cases we might face (note that we always
represent sets that are symmetric with respect to the x-axis; this is allowed by Steiner’s rearrangement
but this property will not be used in what follows)

{uδ = ζδ}

{uδ = µδ}

{uδ = ηδ}

{Vδ = 1}

Figure 4.4 – Here, the set Vδ is connected, and we might compare it with a normal deformation of B∗.
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{Vδ = 1}

Figure 4.5 – Here, the set Vδ is disconnected, and we might compare it with a radial distribution.

To formalize this, we introduce the quantity

f(δ) := |{uδ ≥ ζδ}∆ ({uδ ≥ ηδ} ∩ (B∗)c)| .

Since
|{uδ ≥ ηδ} ∩ (B∗)c| = δ

2

because Vδ ∈Mδ,

f(δ) ≤ δ

2
.

We now distinguish two cases:

1. First case: comparison with a radial distribution The first case is defined by

f(δ)

δ
→
δ→0

` > 0.

In that case, f(δ) ∼
δ→0

`δ.We now apply the bathub principle: let E1
δ be the solution of

inf
E⊂{uδ>ζδ} ,|E|=V0−f(δ)

−
ˆ
{uδ≥ζδ}∩E

u2
δ .

If ζδ,1 is defined through ∣∣∣ {uδ > ζδ,1}
∣∣∣ = V0 − f(δ)

then ζδ,1 > ζδ and consequently
E1
δ = {uδ > ζδ,1}.
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In the same way, we define E2
δ as the solution of

inf

E⊂
(
{uδ>ζδ}

)c
,|E|=f(δ)

−
ˆ
{uδ≥ζδ}c∩E

u2
δ

and, if we define ζδ,2 through the equation∣∣∣ {ζδ > uδ > ζδ,2}
∣∣∣ = f(δ)

then
E2
δ = {ζδ > uδ > ζδ,2} .

We replace Vδ by
Wδ := χE1

δ
+ χE2

δ
.

From the bathutb principle,

−
ˆ

Ω

Vδu2
δ ≥ −

ˆ
Ω

Wδu
2
δ .

However, Wδ might not satisfy ˆ
Ω

|Wδ − χB∗ | = δ.

We represent Eiδ, i = 1, 2, below:

Figure 4.6 – An illustration of the process

Finally, following the notations of step 3, we recall that Af(δ) is defined as

Af(δ) :=
{
|x| ≤ r∗ − rf(δ)

}
∪ {r∗ ≤ |x| ≤ r∗ + r′f(δ)} , χAf(δ)

∈Mf(δ).

Our competitor is Af(δ):
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Let u∗δ be the Schwarz rearrangement of uδ. By equimeasurability of the Schwarz rearrangement,
we have ˆ

Af(δ)

(u∗δ)
2 =

ˆ
Ω

Wδu
2
δ .

By the Polya-Szego Inequality (see [108]),
ˆ

Ω

|∇u∗δ |2 ≤
ˆ

Ω

|∇uδ|2.

Finally, we have established the chain of inequalities

λ(Vδ) ≥
ˆ

Ω

|∇uδ|2 −
ˆ

Ω

Wδu
2
δ

≥
ˆ

Ω

|∇u∗δ |2 −
ˆ

Ω

χAf(δ)
(u∗δ)

2

≥ λ
(
A(f(δ)

)
by the Rayleigh quotient formulation (4.3).

Now, by (4.19),
λ
(
A(f(δ)

)
≥ λ∗ + Cf(δ)2

and thus, since
f(δ) ∼

δ→0
`δ

we have
λ(Vδ)− λ∗ ≥ C ′`2δ2

which concludes the proof.

2. Second case: comparison with a normal deformation The second case is defined by

f(δ)

δ
→
δ→0

0. (4.65)

In this case, we use Step 4 of the proof, i.e the quantitative inequality for normal deformations
of the ball.
Let us replace Vδ with

Wδ := χ{uδ>ζδ}.

Recall that ζδ was defined in such a way that Wδ ∈M(Ω). By the bathtub principle,

λ(Vδ) ≥ λ(Wδ).
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Furthermore, Condition (4.65) implies

|{uδ > ζδ}∆B∗| = δ + o
δ→0

(δ).

Indeed,
δ

2
= |{uδ > ηδ} ∩ (B∗)c| = |{uδ > ζδ} ∩ (B∗)c|+ f(δ).

Finally, standard elliptic estimates imply (in dimension 2 and 3) that

uδ
C 1,s(Ω)→
δ→0

u∗ (4.66)

and, since ∂u∗

∂ν |∂B∗ 6= 0 and ζδ →
δ→0

u∗|∂B∗ it follows that ∂ {uδ > ζδ} is a C 1 hypersurface by the
implicit function Theorem.
It remains to prove that ∂ {uδ > ζδ} is a graph above ∂B∗. We start by noticing that (4.66)
implies

dH({uδ > ζδ} ,B∗) →
δ→0

0, (4.67)

where dH is the Hausdorff distance. We then argue by contradiction and assume that, for every
δ > 0 there exists xδ ∈ ∂B∗ , t1 6= t2 ∈ R such that

xδ + tkν(xδ) ∈ ∂ {uδ > ζδ} , k = 1, 2.

It follows that
uδ(xδ + t1ν(xδ)) = uδ(xδ + t2ν(xδ))

and by the intermediate value Theorem and (4.67), there exists tδ ∈ R such that

〈∇uδ(xδ + tδν(xδ)) , ν(xδ)〉 = 0 , tδ →
δ→0

0.

By passing to the limit in this equation up to a subsequence, there exists a point x∗ ∈ ∂B∗ such
that

〈∇u∗(x∗) , ν(x∗)〉 = 0.

This is a contradiction since
∂u∗
∂ν

∣∣∣∣
∂B∗
6= 0.

We can then say that ∂ {uδ > ζδ} is the graph of a function ϕδ over ∂B∗. Besides, the Conver-
gence result (4.66) implies that

ϕδ
C 1(∂B∗)→
δ→0

0.

Finally, since the set {uδ ≥ µδ} converges in the C 1,s topology to B∗, there exists a uniform
radius r > 0 such that, for any x ∈ ∂{uδ ≥ µδ}, there exists yx satisfying

x ∈ B(yx, r) ,B(yx, r) ⊂ {uδ ≥ µδ}.

Since Vδ is constant in B(yx, r), we can apply elliptic regularity results to get a uniform C 2 norm
on uδ in {uδ ≥ µδ}: there existsM > 0 such that, for any x ∈ {uδ ≥ µδ}, dist(x , ∂{uδ, µδ}) ≤ r,
|∇2u(x)| ≤M . Hence, the curvature of {uδ ≥ µδ} is uniformly bounded by some constant M .
To prove that the curvature of {uδ > ζδ} is uniformly bounded as well, we note the following
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fact: for any x ∈ ∂{uδ > ζδ}, let xδ be its orthogonal projection on {uδ ≥ µδ}. Then,

µδ − ζδ ∼
δ→0
|xδ − x|

∂uδ
∂ν

(xδ)

and so the map ∂{uδ ≥ ζδ} 3 (x, y) 7→ |x−xδ|
|y−yδ| converges uniformly to 1. {uδ > ζδ} can thus

be described, asymptotically, as {uδ ≥ µδ} + B(0; tδ), so that it also has a uniformly bounded
curvature.

Remark 4.3 We could have worked directly with {uδ ≥ µδ}+ B(0; tδ), by choosing a suitable
tδ but in this context, it seemed more relevant to work with level sets.

We can hence apply Step 4:

λ(Vδ) > λ(Wδ)

≥ λ∗ + C |{uδ > ζδ}∆B∗|2 by Step 4

≥ λ∗ + C(δ + o
δ→0

(δ))2

≥ λ∗ + C ′δ2.

The proof of Theorem 4.1.1 is now complete.

�

4.3 Concluding remarks and conjecture

4.3.1 Extension to other domains

We do believe that this quantitative inequality is valid not only in the ball but for more general
domains. Let, for any domain Ω, VΩ be a solution of (4.5). Let uΩ be the associated eigenfunction.
By the bathtub principle, it is easy to see that there exists µΩ ∈ R such that

VΩ = χ{uΩ≥µΩ} = χEΩ
.

We give the following conjecture:

Conjecture 4.1 Assume that

1. The minimizer is regular in the sense that ∂uΩ

∂ν ≤ −C < 0 on ∂EΩ,

2. EΩ is a non-degenerate shape minimizer: for any admissible variation Φ ∈ X1(EΩ), if Lτ is the
associated lagrangian, there holds

L′′τ (EΩ)[Φ,Φ] > 0.

Then there exists a parameter η > 0 such that, for any V ∈M(Ω),

||V − VΩ||L1(Ω) ≤ η ⇒ λ(V )− λ(V ∗) ≥ C||V − V ∗||2L1(Ω).

Here the main difficulty lies not only in the quantitative inequality for normal perturbations of
the domain (Step 4 of the proof of Theorem 4.1.1) but also in the quantitative inequality for possibly
disconnected competitors (Step 3 of the proof). Indeed, since the parametric derivatives u̇Ω are no
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longer constant on the boundary of the set EΩ, the approach used in Step 3 might fail. We note,
however, that the infinitesimal quantitative bound

λ̇(VΩ)[h] ≥ C||h||2L1(Ω)

still holds. To see why, we notice that

λ̇(VΩ)[h] = −
ˆ

Ω

hu2
Ω

and consider, for a parameter δ, the solution hδ of

min
h admissible at VΩ ,||h||L1(Ω)=δ

λ̇(VΩ)[h].

By the bathtub principle, hδ can be written for any δ as a level set of uδ and, for δ small enough, one
can prove that hδ writes as follows:

hδ = χE+
δ
− χE−δ ,

where E+
δ ⊂ EcΩ and E−δ ⊂ EΩ and can be described as follows: if ν is the unit normal vector to EΩ,

E±δ := {x± tν(x) , t ∈ (0; tδ±(x))}.

We can then prove that
tδ±
δ
→
δ→0

f± > 0

uniformly in x ∈ ∂E. It remains to apply the methods of Step 3 of the Proof of Theorem 4.1.1 and to
do a Taylor expansion of −u2

Ω at ∂EΩ to get

λ̇(VΩ)[hδ] ≥ Cδ2

for some constant C that depends on inf ∂uΩ

∂ν . Thus, the infinitesimal inequality seems valid. However,
it seems complicated to go further using only this information, since the parametric derivatives u̇ are
no longer constant on ∂EΩ.

4.3.2 Other constraints
It would be relevant to consider perimeter constraints instead of volume constraints, but we expect the
behaviour of the sequences of solutions to the auxiliary problems to be quite different. We nonetheless
believe that the free boundary techniques used in [31] might apply directly to get regularity.

4.3.3 A conjecture
Our conjecture is that the solution of the optimization problem (4.17) is, for any δ > 0 small enough,
equal to Hδ. This would make Step 4 of the proof irrelevant. Moreover, this problem seems interesting
in of itself. Je sais comment faire pour une des deux parties: pour tout x, h−(x) = h+(x) en termes
de longueur. Donc ça passe. Il faut egalement noter que h− > h+
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APPENDIX

4.A Proof of Lemma 4.1

We briefly recall that the Schwarz rearrangement of a function u ∈ W 1,2
0 (B), u ≥ 0 is defined as the

only radially symmetric non-increasing function u∗ such that, for any t ∈ R,

|{u ≥ t}| = |{u∗ ≥ t}| .

Proof of Lemma 4.1. We use the Polya-Szego Inequality for the Schwarz rearrangement: for any u ∈
W 1,2

0 (B) , u ≥ 0, ˆ
B
|∇u∗|2 ≤

ˆ
B
|∇u2|.

We also use the Hardy-Littlewood Inequality: for any u, v ∈ L2(Ω),
ˆ
B
u∗v∗ ≥

ˆ
B
uv

and the equimeasurability of the rearrangement:
ˆ
B
u2 =

ˆ
B
(u∗)2.

We refer to [108] for proofs. Using the Rayleigh quotient formulation (4.3), for any V ∈M(B),

λ(V ) =

´
B |∇uV |

2 −
´
B V u

2
V´

B u
2
V

≥
´
B |∇u

∗
V |2 −

´
B V
∗(u∗V )2´

B(u∗V )2

≥ λ(V ∗).

This also proves that uV ∗ = u∗V ∗ . Since the eigenvalue is simple, the eigenfunction is radially sym-
metric. The fact that it is decreasing follows from the Equation satisfied by uV ∗ in polar coordinates.
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4.B Proof of the shape differentiability of λ

4.B.1 Proof of the shape differentiability

Proof of the shape differentiability. Let E be a regular subdomain of B, (u0, λ0) be the eigenpair
associated with V := χE , and let Φ be an admissible vector field at E. Let TΦ := (Id + Φ) and
E∗Φ := TΦ(E). Let uΦ be the eigenvalue associated with VΦ := χEΦ

and λΦ be the associated
eigenvalue. If we introduce

JΩ(Φ) := det(∇TΦ) , AΦ := JΩ(Φ)DT−1
Φ

(
DT−1

Φ

)t
then the weak formulation of the equation on uΦ is: for any v ∈W 1,2

0 (Ω),
ˆ
B
〈AΦ∇uΦ,∇v〉 = λΦ

ˆ
B
uΦvJΩ(Φ) +

ˆ
B
VΦuΦvJΩ(Φ).

We define the map F in the following way:

F :

{
W 1,∞(Rn,Rn)×W 1,2

0 (B)× R→W−1,2(B)× R,
(Φ, v, λ) 7→

(
−∇ · (−∇ · (AΦ∇v)− λvJΩ(Φ)− VΦvJΩ(Φ),

´
B v

2JΩ(Φ)− 1
)
.

It is clear from the definition of the eigenvalue that

F (0, u0, λ0) = 0.

Furthermore, the same arguments as in [63, Lemma 2.3] show that F is C∞ in B ×W 1,2
0 (Ω) × R,

where B is an open ball centered at ~0.
The differential of F at (0, u0, λ0) is given by

Dv,λF (0, u0, λ0)[w, µ] =

(
−∆w − µu0 − λ0w − V w,

ˆ
B

2u0w

)
.

To prove that this differential is invertible, it suffices to show that, if (z, k) ∈ W−1,2(Ω) × R, then
there exists a unique couple (w, µ) such that

Dv,λF (0, u0, λ0)[w, µ] = (z, k).

By the Fredholm alternative, we know that we must have

µ = −〈z, u0〉.

There exists a solution w1 to the equation

−∆w − µu0 − λ0w −m∗w = z.

We fix such a solution. Any other solution is of the form w = w1 + tu0 for a real parameter t. We
look for such a t. From the equation

2

ˆ
Ω

u0w = k

there comes
t =

k

2
−
ˆ

Ω

w1u0.
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hence the couple (w, µ) is uniquely determined. From the implicit function theorem, the map Φ 7→
(uΦ, λΦ) is C∞ in a neighbourhood of ~0.

4.B.2 Computation of the first order shape derivative

Proof of Lemma 4.6. Let Φ be a smooth vector field at E and Et = Tt(E) where Tt := Id + tΦ. We
define Jt := JΩ(tΦ) and At := AtΦ. The other notations are the same as in the previous paragraph.
Let (λt, ut) be the eigencouple associated with Vt := χEt . We first define

vt := ut ◦ Tt : B→ R.

The derivative of vt with respect to t will be denoted u̇. This is the material derivative, while we aim
at computing the shape derivative u′ defined as

u′ = u̇+ 〈Φ,∇u0〉.

For more on these notions, we refer to [93].
Obivously vt ∈W 1,2

0 (Ω). The weak formulation on ut writes: for any ϕ ∈W 1,2
0 (Ω),

ˆ
B
〈∇ut,∇ϕ〉 = λt

ˆ
B
utϕ+

ˆ
Et

utϕ.

We do the change of variables
x = Tt(y),

so that, for any test function ϕ,
ˆ
B
〈At∇vt,∇ϕ〉 = λt

ˆ
B
vtϕJt +

ˆ
E

vtϕJt. (4.68)

It is known that
J (x) :=

∂Jt
∂t

∣∣∣∣
t=0

(t, x) = ∇ · Φ,

and that
A(x) :=

∂At
∂t

∣∣∣∣
t=0

(t, x) = (∇ · Φ)In −
(
∇Φ + (∇Φ)T

)
.

We recall that A has the following property: if Φ1 and Φ2 are two vector fields, there holds

〈AΦ1,Φ2〉 = ∇ · (〈Φ1,Φ2〉Φ)− 〈∇(Φ · Φ1),Φ2〉 − 〈∇(Φ · Φ2),Φ1〉. (4.69)

We differentiate Equation (4.68) with respect to t to get the following equation on u̇:
ˆ
B
〈∇ϕ,∇u̇+A∇u0〉 = λ̇

ˆ
B
u0ϕ+ λ0

ˆ
B
J u0ϕ+ λ0

ˆ
B
u̇ϕ+

ˆ
E

u̇ϕ+

ˆ
E

J (x)u0ϕ. (4.70)

Through Property (4.69) we get

〈A∇u0,∇ϕ〉 = ∇ · (〈∇u0,∇ϕ〉Φ)− 〈∇(〈Φ,∇u0〉),∇ϕ〉 − 〈∇(〈Φ,∇ϕ〉),∇u0〉.

We deal with these three terms separately: from the divergence Formula
ˆ
B
∇ · (〈∇u0,∇ϕ〉Φ) = −

ˆ
∂E

[〈∇u0,∇ϕ〉] 〈Φ, ν〉.
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We do not touch the second term.
The third term is dealt with using the weak equation on u0:

ˆ
B
〈∇(〈Φ,∇ϕ〉),∇u0〉 = λ0

ˆ
B
〈Φ,∇ϕ〉u0 +

ˆ
E

u0〈Φ,∇ϕ〉 −
ˆ
∂E

[〈∇u0,∇ϕ〉] 〈Φ, ν〉.

Hence ˆ
B
〈A∇u0,∇ϕ〉 =

ˆ
B
∇ · (〈∇u0,∇ϕ〉Φ)− 〈∇(〈Φ,∇u0〉),∇ϕ〉 − 〈∇(〈Φ,∇ϕ〉),∇u0〉

= −
ˆ
B
〈∇(〈Φ,∇u0〉),∇ϕ〉

− λ0

ˆ
B
〈Φ,∇ϕ〉u0 −

ˆ
E

u0〈Φ,∇ϕ〉.

The left hand term of (4.70) becomes
ˆ
B
〈∇u̇+A∇u0,∇ϕ〉 =

ˆ
B

〈
∇
(
u̇− Φ · ∇u0

)
,∇ϕ

〉
− λ0

ˆ
B
〈Φ,∇ϕ〉u0 −

ˆ
E

u0〈Φ, ϕ〉.

Thus ˆ
B

〈
∇
(
u̇− Φ · ∇u0

)
,∇ϕ

〉
− λ0

ˆ
B
〈Φ,∇ϕ〉u0 −

ˆ
E

u0〈Φ,∇ϕ〉

= λ̇

ˆ
B
u0ϕ+ λ0

ˆ
B
J (x)u0ϕ+ λ0

ˆ
B
u̇ϕ+

ˆ
E

u̇ϕ+

ˆ
E

J (x)u0ϕ.

By rearranging the terms, we get
ˆ
B

〈
∇
(
u̇− Φ · ∇u0

)
,∇ϕ

〉
= +λ̇

ˆ
B
u0ϕ+ λ0

(ˆ
B
J (x)u0ϕ+

ˆ
B
〈Φ,∇ϕ〉u0

)
+λ0

ˆ
B
u̇ϕ+

ˆ
E

u̇ϕ+

ˆ
E

J (x)u0ϕ+

ˆ
E

u0〈Φ,∇ϕ〉.

However, since J (x) = ∇ · Φ(x), we have

J (x)ϕ+ 〈Φ,∇ϕ(x)〉 = ∇ · (ϕΦ) .

Hence ˆ
B
J (x)u0ϕ+

ˆ
B
〈Φ,∇ϕ〉u0 =

ˆ
B
∇ · (Φϕ)u0

= −
ˆ
B
ϕ〈Φ,∇u0〉,
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because u0 satisfies homogeneous Dirichlet boundary conditions. In the same way
ˆ
E

J (x)u0ϕ+

ˆ
E

〈Φ,∇ϕ〉u0 =

ˆ
B
∇ · (Φϕ)u0

= −
ˆ
E

ϕ〈Φ,∇u0〉+

ˆ
∂E

〈Φ, ν〉u0ϕ.

We turn back to the shape derivative; recall that it is defined as

u′ := u̇− 〈Φ,∇u〉.

The previous equation rewrites
ˆ
B
〈∇u′,∇ϕ〉 =λ̇0

ˆ
B
u0ϕ+ λ0

ˆ
B
u′ϕ+

ˆ
E

u′ϕ

+

ˆ
∂E

〈Φ, ν〉u0ϕ

Thus there appears that u′ solves

−∆u′ = λ′u0 + λ0u1 + V u′

along with Dirichlet boundary conditions and[
∂u′

∂r

]
= −〈Φ, ν〉u0.

Obtaining the jump condition on u′′ is done in the same way as in [63].

4.B.3 Gâteaux-differentiability of the eigenvalue

The parametric differentiability is also proved using the implicit function theorem applied to the
following map:

G :

{
L∞(Ω)×W 1,2

0 (Ω)× R→W−1,2(Ω)× R,
(h, v, λ) 7→

(
−∆v − λv − (V + h)v,

´
Ω
v2 − 1

)
.

The invertibility of the differential follows from the same arguments as the ones used to prove the
invertibility of DF in the previous section.

4.C Proof of Proposition 4.2

Proof of Proposition 4.2. We can not apply in a straightforward manner the methods of [64], which
are well-suited for the proof of a convergence in the H

1
2 topology. Some minor adjustments are in

order.
Let us define TΦ := (Id+ Φ) and, for any function f : Ω→ R,

f̂ := f ◦ TΦ.

We define the surface Jacobian

JΣ(Φ) := det(∇TΦ)
∣∣(t∇T−1

Φ

)
ν
∣∣ ,
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the volume Jacobian
JΩ(Φ) := det (∇Φ)

and, finally
AΦ := JΩ(Φ)(Id+∇Φ)−1(Id+t ∇Φ)−1.

It is known (see [64, Lemma 4.8]) that∣∣∣∣JΩ/Σ(Φ)− 1
∣∣∣∣
L∞
≤ C||Φ||W 1,∞ , ||AΦ − 1||L∞ ≤ C||Φ||W 1,∞ . (4.71)

We define u0 as the eigenfunction asociated with B∗ and u′0 the shape derivative of u0 in the direction
Φ.
Finally let u′Φ be the shape derivative in the direction Φ and û′Φ := u′Φ ◦ TΦ. Let HΦ be the mean
curvature of BΦ. Using the change of variable y = TΦ(x), the fact that Φ is normal to B∗ and the
value of the Lagrange multiplier τ given by (4.46), we get

L′′τ (BΦ)[Φ,Φ] = −2

ˆ
∂B∗

JΣ(Φ)ûΦû
′
Φ〈Φ, ν〉+

ˆ
∂B∗

JΣ(Φ)

(
−ĤûΦ

2 − 2ûΦ
∂ûΦ

∂ν

)
〈Φ, ν〉2

− τ
ˆ
∂B∗

Ĥ〈Φ, ν〉2

= −2

ˆ
∂B∗

JΣ(Φ)ûΦû
′
Φ〈Φ, ν〉+

ˆ
∂B∗

JΣ(Φ)

(
Ĥ(ûΦ

2 − u2
0)− 2ûΦ

∂ûΦ

∂ν

)
〈Φ, ν〉2.

Hence we have

L′′τ (BΦ)[Φ,Φ]− Lτ (B∗)[Φ,Φ] = −2

ˆ
∂B∗

(JΣ(Φ)ûΦû
′
Φ − u0u

′
0)〈Φ, ν〉

+

ˆ
∂B∗

(
Ĥ(JΣ(Φ)ûΦ

2 − u2
0)
)
〈Φ, ν〉2

+

ˆ
∂B∗

(
2u0

∂u0

∂ν
− 2JΣ(Φ)ûΦ

∂ûΦ

∂ν

)
〈Φ, ν〉2.

(4.72)

We will prove the Proposition using the following estimates

Claim 4.C.1 For any η > 0 there exists ε > 0 such that, for any Φ satisfying

||Φ||C 1 ≤ ε

there holds

1.
||ûΦ − u∗||C 1(Ω) ≤ η, (4.73)

2.
||û′Φ − u′0||W 1,2

0
≤ η ||〈Φ, ν〉||L2(Σ) . (4.74)

Proof of Claim 4.C.1. Estimate (6.34) follows from a simple contradiction argument and by using the
fact that, if a sequence {Φk}k∈N converges in the C 1 norm to 0, then uΦk converges, in every C 1,s(Ω)
(s < 1) to u0. To prove (4.74), we first prove that there exists a constant M such that

||û′Φ||W 1,2
0
≤M ||〈Φ, ν〉||L2(Σ) . (4.75)
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By the change of variable y := TΦ(x), we see that û′Φ satisfies

−∇ ·
(
AΦ∇û′Φ

)
= JΩ(Φ) (λΦû

′
Φ + (V ∗)û′Φ + λ′ΦûΦ) , [AΦ∂ν û

′
Φ] = −JΣ〈Φ, ν〉ûΦ (4.76)

with homogeneous Dirichlet boundary conditions. The orthogonality conditions gives
ˆ

Ω

JΩ(Φ)ûΦû
′
Φ = 0

and we will use a Spectral Gap Estimate (4.81) combined with a bootstrap argument.

Spectral gap estimate For any V ∈M(B), λ(V ) was defined as the first eigenvalue of the operator
LV defined in (4.1). We recalled in the Introduction that this eigenvalue is simple. Let, for any
V ∈ M(Ω), λ2(V ) > λ(V ) and u2,V be the second eigenvalue and an associated eigenfunction (we
choose a L2 normalization). We claim there exists ω > 0 such that, for any V ∈M(Ω),

ω ≤ λ2(V )− λ(V ). (4.77)

To prove this, we use a direct argument. Let S(V ) := λ2(V )−λ(V ) be the spectral gap associated with
V . We consider a minimizing sequence {Vk}k∈N ∈ M̃(Ω) (the radiality assumption is not necessary
here) which, up to a subsequence, converges weakly in L∞−∗ to some V∞ ∈ M̃(Ω). It is standard to
see that

λ(Vk) →
k→∞

λ(V∞) , uVk →
k→∞

uV∞ strongly in L2(B), weakly in W 1,2
0 (B).

The only part which is not completely classical is to prove that

λ2(Vk) →
k→∞

λ2(V∞). (4.78)

However, for any k ∈ N, λ2(Vk) is defined as

λ2(Vk) = min
u∈W 1,2

0 (B) ,
´
B u

2=1u∈〈uVk 〉⊥
RVk [u], (4.79)

where 〈u〉⊥ is the subspace of functions that are L2-orthogonal to u, and u2,Vk is defined as a minimizer
for this problem (there a possibly multiple eigenfunctions). In the same way we proved that λ(V ) is
uniformly bounded in V , one proves that λ2(V ) is uniformly bounded inV . Let λ2,∞ be such that

λ2(Vk) →
k→∞

λ2,∞.

Standard elliptic estimates prove that there exists a function u2,∞ ∈ W 1,2
0 (Ω) such that u2,Vk →

k→∞
u2,∞ strongly in L2(B) and weakly in W 1,2

0 (B). Passing to the limit in
ˆ
B
u2,VkuVk = 0

gives ˆ
B
u2,∞uV∞ = 0. (4.80)

Passing to the limit in the weak formulation of the equation on u2,Vk proves that u2,∞ is an eigen-
function of LV∞ associated with λ2,∞. It follows from the orthogonality relation (4.80) that

λ2,∞ ≥ λ2(V∞).
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Hence
lim inf
k→∞

S(Vk) ≥ λ2(V∞)− λ(V∞) ≥ ω1 > 0

because λ(V∞) is a simple eigenvalue.
As a consequence of the spectral gap estimate (4.77), we get the following estimate:

∀V ∈M(Ω) ,∀u ∈ 〈uV 〉⊥ , ω
ˆ

Ω

u2 ≤
ˆ

Ω

|∇u|2 −
ˆ

Ω

V u2 − λ(V )

ˆ
B
u2. (4.81)

Indeed, let V ∈ M(Ω) and u ∈ 〈uV 〉⊥, u 6= 0. Then, by the Rayleigh quotient formulation on λ2(V ),
see Equation (4.79),

ˆ
B
|∇u|2 −

ˆ
B
V u2 ≥ λ2(V )

ˆ
B
u2 ≥ ω

ˆ
B
u2 + λ(V )

ˆ
B
u2 by (4.77),

which is exactly the desired conclusion.

Proof of (4.75) First of all, multiplying (4.76) by û′Φ and integrating by parts gives
ˆ

Ω

AΦ|∇û′Φ|2 −
ˆ

Ω

V ∗JΩ(Φ)(û′Φ)2 =

ˆ
∂B∗

JΣûΦû
′
Φ〈V, ν〉.

By the Spectral gap estimate, using the fact that eigenfunctions are uniformly bounded and by con-
tinuity of the trace operator we get the existence of a constant M such that

ˆ
Ω

(û′Φ)2 ≤M ||〈Φ, ν〉||L2(∂B∗)||û′Φ||W 1,2
0 (Ω). (4.82)

We rewrite
||û′Φ||W 1,2

0 (Ω) = ||û′Φ||L2(Ω) + ||∇û′Φ||L2(Ω).

By the shape differentiability of E 7→ (λ(E), uE), there exists C such that

||∇û′Φ||L2(Ω) ≤ C

for any Φ such that ||Φ||W 1,∞ ≤ 1.
We then let X := ||û′Φ||L2(Ω). The estimate (4.82) rewrites

X2 ≤M ||〈Φ, ν〉||L2(∂Ω)X +MC||〈Φ, ν〉||L2(∂Ω),

from where it follows that there exists M > 0 such that

||û′Φ||L2(Ω) ≤M
√
||〈Φ, ν〉||L2(∂Ω).

We now multiply (4.75) by û′Φ and integrate by part, giving, for some constant M ,
ˆ

Ω

|∇û′Φ|2 ≤ C||〈Φ, ν〉||L2(∂Ω) + ||〈Φ, ν〉||L2(∂Ω)||∇û
′
Φ||L2(Ω) + ||〈Φ, ν〉||L2(∂Ω)

3
2

which in turn yields, using the same arguments,

||∇û′Φ||L2(Ω) ≤
√
||〈Φ, ν〉||L2(∂Ω).
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We use this in (4.82), giving

||û′Φ||2L2(Ω) ≤M
(
||〈Φ, ν〉||L2(∂Ω)||û

′
Φ||L2(Ω) + ||〈Φ, ν〉||L2(∂Ω)

3
2

)
.

This yields
||û′Φ||L2(Ω) ≤M ||〈Φ, ν〉||L2(∂Ω)

and, finally, from the weak formulation of the equation,

||∇û′Φ||L2(Ω) ≤M ||〈Φ, ν〉||L2(∂Ω).

Proof of (4.74) We now turn to the proof of the continuity estimate (4.74), for which we will apply
the same kind of bootstrap arguments, combined with a version of the splitting method, see [64,
Lemma 4.10].
Let us define HΦ as the solution of

−∆HΦ = VΦHΦ,[
∂HΦ

∂ν

]
= uΦ〈Φ, νΦ〉 on ∂Et,

HΦ = 0 on ∂Ω.
(4.83)

Then it appears that

λ′Φ = −
ˆ
∂Et

u2
Φ〈Φ, νΦ〉 = λΦ

ˆ
Ω

HΦuΦ.

We can prove using the same bootstrap arguments used to prove (4.75) that

||ĤΦ||W 1,2
0 (Ω) ≤ C||〈Φ, ν〉||L2(∂Ω).

Indeed, multiplying (4.84) by HΦ, doing a change of variables and integrating by parts gives
ˆ

Ω

At|∇ĤΦ|2 −
ˆ

Ω

JtĤ
2
Φ ≤ ||〈Φ, ν〉||L2(∂Ω)||ĤΦ||W 1,2

0 (Ω)

and, by the variational formulation of the eigenvalue,
ˆ

Ω

Ĥ2
Φ ≤ ||〈Φ, ν〉||L2(∂Ω)||ĤΦ||W 1,2

0 (Ω).

We then use the same bootstrap argument: we first prove that this implies ||ĤΦ||L2(Ω) ≤M
√
||〈Φ, ν〉||L2(∂Ω)

and plug this estimate in the weak formulation of the equation. The conclusion follows.
We turn back to (4.74).
Let πΦ be the orthogonal projection on 〈uΦ〉⊥. We decompose u′Φ as

u′Φ = −πΦHΦ + ξΦ

where ξΦ solves  −∆ξΦ = λΦξΦ + VΦξΦ − λΦπΦHΦ,
ξΦ = 0 on ∂Ω.´

Ω
ξΦuΦ = 0.

(4.84)

Thanks to the Fredholm alternative, such a ξΦ exists and is uniquely defined.
We now prove that ∣∣∣∣∣∣ĤΦ −H0

∣∣∣∣∣∣
W 1,2

0 (Ω)
≤Mη||〈Φ, ν〉||L2(∂Ω) (4.85)
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for ||Φ||C 1 small enough. To that end, we define

HΦ := ĤΦ −H0.

Direct computation shows that

−∆HΦ = (V ∗)HΦ + (V ∗)ĤΦ(Jt − 1) +∇ ·
(

(At − Id)∇ĤΦ

)
along with Dirichlet boundary conditions and[

∂HΦ

∂ν

]
= (u0 − JΣûΦ)〈Φ, ν〉+

[
〈(Id−At)∇ĤΦ , ν〉

]
.

We proceed in the same fashion: we first multiply the equation on HΦ by HΦ, integrate by parts and
use the variational formulation of the eigenvalue to get

||HΦ||2L2(Ω) ≤ ||Jt − 1||L∞ ||ĤΦ||L2(Ω) + ||At − Id||L∞(Ω)||∇ĤΦ||L2(Ω)||∇HΦ||L2(Ω)

+ ||〈Φ, ν〉||L2(∂Ω)||HΦ||W 1,2
0 (Ω)||u0 − JΣûΦ||L∞(∂Ω)

up to a multiplicative constant. This first gives, using (6.34),

||HΦ||L2(Ω) ≤M
√
||〈Φ, ν〉||L2(∂Ω)(||∇Φ||L∞ + η).

We then apply the same bootstrap method to get the desired conclusion.
Finally, we need to show the following estimate, which will conclude the proof:

||ξ̂Φ − ξ0||W 1,2
0 (Ω) ≤ η||〈Φ, ν〉||L2(∂Ω) (4.86)

for ||Φ||C 1 small enough. However, this follows from the same arguments as in [64, Lemma 4.10,
Paragraph 3 of the proof] and from the same bootstraps arguments.

Finally, going back to (4.72), it suffices to use the continuity of the trace to control the terms
involving u′Φ and Estimates (6.34)-(4.74) to conclude the proof of Proposition 4.2.
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CHAPTER 5

CONTROL OF A BISTABLE
REACTION-DIFFUSION EQUATION IN
A HETEROGENEOUS ENVIRONMENT

With D. Ruiz-Baluet and E. Zuazua

Les petites choses n’ont l’air de rien, mais
elles donnent la paix.

Bernanos,
Journal d’un curé de campagne

Ils vont trop vite, ils se casseront le cou.

Robespierre, cité par Michelet,
Histoire de la Révolution Française
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CHAPTER 5. CONTROL OF SPATIALLY HETEROGENEOUS BISTABLE EQUATIONS

General presentation of the chapter: main difficulties
and methods

In this Chapter, which corresponds to [MRBZ19], we mainly focus on the controllability of bistable
reaction-diffusion equations in spatially heterogeneous environments. Our two main results, Theorems
5.1.2 and 5.1.4 may be summed up as follows:

• For slowly varying environments: This corresponds to Theorem 5.1.2. We prove, using a new
technique coupled with a careful analysis of the staircase method of [58], that the controllability
properties of the equation are the same as that of the spatially homogeneous equation. This
new technique uses perturbation methods but on a possibly varying domain.

• For rapidly varying environments: This corresponds to Theorem 5.1.4. We study a particular
example of rapidly varying environment to prove that the behaviour of the equation might be
drastically different. Namely, a sharp transition might lead to a lack of controllability to any
of the three steady-states of the bistable reaction-diffusion equation, in sharp contrast with the
spatially homogeneous case. Our analysis, in that case, relies on a fine study of the phase
portrait, and is completed by several numerical simulations.

172



CHAPTER 5. CONTROL OF SPATIALLY HETEROGENEOUS BISTABLE EQUATIONS

Contents
General presentation of the chapter: main difficulties and meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.1.1 Setting and main results . . . . . . . . . . . . . . . . . . . . . . . . . 174
5.1.2 Motivations and known results . . . . . . . . . . . . . . . . . . . . . 177

5.1.2.1 Modelling considerations . . . . . . . . . . . . . . . . . . . . . . 177
5.1.2.2 Known results regarding the constrained controllability of bistable

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.1.3 Statement of the main controllability results . . . . . . . . . . . 179

5.1.3.1 A brief remark on the statement of the Theorems . . . . . . . . 179
5.1.3.2 Gene-flow models . . . . . . . . . . . . . . . . . . . . . . . . . . 179
5.1.3.3 Spatially heterogeneous models . . . . . . . . . . . . . . . . . . 181

5.2 Proof of Theorem 5.1.1: gene-flow models . . . . . . . . . . . . . . 186
5.3 Proof of Theorem 5.1.2: slowly varying total population size 186

5.3.1 Lack of controllability to 0 for large inradius . . . . . . . . . . 186
5.3.2 Controllability to 0 and 1 . . . . . . . . . . . . . . . . . . . . . . . . 187
5.3.3 Proof of the controllability to θ for small inradiuses . . . . . 189

5.3.3.1 Structure of the proof: the staircase method . . . . . . . . . . . 189
5.3.3.2 Perturbation of a path of steady-states . . . . . . . . . . . . . . 191

5.4 Proof of Theorem 5.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.5 Proof of Theorem 5.1.4: Blocking phenomenon . . . . . . . . . . . 198
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.6.1 Obtaining the results for general coupled systems . . . . . . . . 205
5.6.2 Open problem: the minimal controllability time and spatial het-

erogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5.A Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

173



CHAPTER 5. CONTROL OF SPATIALLY HETEROGENEOUS BISTABLE EQUATIONS

5.1 Introduction

5.1.1 Setting and main results

Motivations Reaction-diffusion equations have drawn a lot of attention from the mathematical
community over the last decades, but most usually in spatially homogeneous setting, while the lit-
erature devoted to spatially heterogeneous domains only started developing recently. This growing
interest led to many interesting questions regarding the possible effects of spatial heterogeneity on,
for instance, the dynamics of the equation, or on optimization and control problems: how do these
heterogeneities impact the dynamics or the criteria under consideration? Can the results obtained in
the homogeneous case be obtained in the heterogeneous one, which is more relevant for applications?
In this article, we study some of these questions and the influence of spatial heterogeneity from the
angle of control theory. Some of our proofs and results are, however, of independent interest for
reaction-diffusion equations.

We investigate a boundary control problem arising naturally from population dynamics models
and which has several interpretations. For instance, one might consider the following situation: given
a population of mosquitoes, a proportion of which is carrying a disease, is it possible, acting only on
the proportion of sick mosquitoes on the boundary, to drive this population to a state where only sane
mosquitoes remain? Such questions have drawn the attention of the mathematical community in the
past years, see for instance [5] Another example might be that of linguistic dynamics: considering a
population of individuals, a part of which is monolingual (speaking only the dominant language), the
other part of which is bilingual (speaking the dominant and a minority language), is it possible, acting
only on the proportion of bilingual speakers on the boundary of the domain, to drive the population to
a state where there remains a non-zero proportion of bilingual speakers, thus ensuring the survival of
the minority language? Such models are proposed, for instance, in [175]. In both cases, the influence
of the spatial heterogeneity has still not been investigated, and the aim of this work is to provide some
informations on such matters.

We give, in Section 5.1.2, more bibliographical references related to modelling issues and the
mathematical analysis of the equations studied here.

The equation and the control system We now present the main equations that will be studied
here. We refer to Section 5.1.2 for more informations on modelling.

In this article, we consider a boundary control problem for bistable reaction-diffusion equations.
Such bistable equations are well-suited to describe the evolution of a proportion of a population and
are characterized by the so-called Allee effect : there exists a threshold for the proportion of the
population under scrutiny such that, in the absence of spatial diffusion, above this threshold, this
subgroup will invade the whole domain (and drive the other subgroup to extinction) while, under this
threshold, this subgroup of the population will go extinct. This Allee effect is, on a mathematical
level, taken into account via a bistable non-linearity, that is, a function f : R→ R such that

1. f is C∞ on [0, 1],

2. There exists θ ∈ (0; 1) such that 0 , θ and 1 are the only three roots of f in [0, 1], This parameter
θ accounts for the Allee effect mentioned above.

3. f ′(0) , f ′(1) < 0 and f ′(θ) > 0,

4. Without loss of generality, we assume that
´ 1

0
f > 0.

We give an example of such a bistable non-linearity in Figure 5.1 below:
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Figure 5.1 – Graph of a typical bistable non-linearity.

The typical example of such a non-linearity is

f(ξ) = ξ(ξ − θ)(1− ξ),

and in this case requiring that
´ 1

0
f > 0 is equivalent to asking that θ satisfies θ < 1

2 .
Models with spatial diffusion were studied from the angle of control theory in [163, 157], see

Section 5.1.2. Here, we want to study more precise version of this equation and take into account
two phenomenons of great relevance for applications, see Section 5.1.2: gene-flow models and spatially
heterogeneous models. To write these models in a synthetic way, we will consider, in general, a function
N = N(x, p). As will be explained later, gene-flow models correspond to N = N(p) and spatially
heterogeneous models correspond to N = N(x).

With a bistable non-linearity f and such a function N , in a domain Ω ⊂ Rd, the equation we
consider writes, in its most general form

∂p

∂t
−∆p− 2〈∇ (ln(N(x, p))) ,∇p〉 = f(p). (5.1)

Here, once again, p stands for a proportion of the total population (for instance, the proportion of
infected mosquitoes or of monolingual speakers). Of particular relevance are the spatially homogeneous
steady-states of this equation: p ≡ 0, p ≡ θ and p ≡ 1. Our objective in this article is to investigate
whether or not it is possible to control any initial datum to these spatially heterogeneous steady-states.

Let us formalize this control problem. Given an initial datum p0 ∈ L2(Ω) such that

0 ≤ p0 ≤ 1

we consider the control system

∂p

∂t
−∆p− 2〈∇ ln(N),∇p〉 = f(p) in (0, T )× Ω ,

p = u(t, x) on (0, T )× ∂Ω,

p(t = 0, ·) = 0 ≤ p0 ≤ 1,

(5.2)

where, for every t ≥ 0 , x ∈ ∂Ω,
u(t, x) ∈ [0, 1] (5.3)

is the control function. Our goal is the following:

Given any initial datum 0 ≤ p0 ≤ 1,
is it possible to drive p0 to 0, θ, or 1 in

(in)finite time with a control u satisfying (5.3)?

In other words, can we drive any initial datum to one of the spatially homogeneous steady-states of
the equation? If one thinks about infected mosquitoes, driving any initial population to 0 is relevant
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for controlling the disease while, if one thinks about mono or bilingual speakers, driving the initial
datum to the intermediate steady-state θ ensures the survival of the minority language.

Let us denote the steady-states as follows

∀a ∈ {0, θ, 1} , za ≡ a.

By controllability, we mean the following: let a ∈ {0, θ, 1}, then

• Controllability in finite time: we say that p0 is controllable to a in finite time if there exists a
finite time T < ∞ such that there exists a control u satisfying the constraints (5.3) and such
that the solution p = p(t, x) of (5.2) satisfies

p(T, ·) = za in Ω.

• Controllability in infinite time: we say that p0 is controllable to za in infinite time if there exists
a control u satisfying the constraints (5.3) such that the solution p = p(t, x) of (5.2) satisfies

p(t, ·) C 0(Ω)−→
t→∞

za.

Remark 5.1 Note that, in the definition of controllability in finite time, we do not ask that the
controllability time be small; it might actually be large because of the constraint 0 ≤ u ≤ 1, and the
question of the minimal controllability time for this problem is, as far as the authors know, still open.

Definition 5.1.1 We say that (5.2) is controllable to za in (in)finite time if is is controllable to za
in (in)finite time for any initial datum 0 ≤ p0 ≤ 1.

Here, for modelling reasons (which we present in the next paragraph), we only consider two cases for
the flux N = N(x, p):

• The gene-flow model: In this case, the function N = N(x, p) assumes the form

N(x, p) = N(p). (H1)

This model is referred to as the gene-flow models and appears in many situations (we refer to
Section 5.1.2ă and mention that this corresponds to a limit case of a system of coupled reaction-
diffusion equations). In this case, the environment is spatially homogeneous, and we prove that
the controllability results established in [163, 157] still hold under the same assumptions.

• The spatially heterogeneous model: In this case, N = N(x, p) is of the form

N = N(x). (H2)

This case corresponds to a spatially heterogeneous environment: when p is a proportion of a
total population, this term accounts for the spatial variations of the total population, see [146]
and Section 5.1.2. We mention that this corresponds to another limit in a system of coupled
reaction-diffusion equations. Regarding this spatially heterogeneous model, we will focus on two
situations: a slowly varying environment, in a sense made precise in the statement of Theorem
5.1.2, and a rapidly varying environment, see Theorem 5.1.4. In the first case, we prove that
controllability still holds while, in the second case, we give an exemple of N that proves that it
is in general hopeless to try and control the equation in a rapidly varying environment under
the constraints (5.3).
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5.1.2 Motivations and known results

5.1.2.1 Modelling considerations

In this paragraph, we lay out the biological motivations for our work.
Reaction-diffusion equations such as (5.2) have been used since the seminal works [75, 113] to give

mathematical models of population dynamics. The bistable non-linearity accounting for the Allee
affect is omnipresent in mathematical biology and we refer, for instance, to [9, 15, 14] for some of its
uses in population dynamics. We also point to [43, 143, 152] for modelling issues, or to [101, 175],
where a game theory approach is undertaken. Here, p stands for the frequency of some trait, or of the
proportion of a type of a population, and the drift term accounts for either the spatial heterogeneity
of the environment, or for the gene-flow phenomenon.

We note that gene-flow models have been used in the modelling of evolutionary processes of
differentiation, see [79, 135]. We point, for further references regarding the adaptative point of view
on gene-flow, to [23], as well as [49]. A mathematical study of the impact of gene-flow models on
adaptative dynamics is carried out in [140], while a traveling-wave point of view is studied in [146].

In [146, Section 6], a possible derivation of the equations under study in our article is carried out.
We can briefly sketch their arguments as follows: let us consider a population with size N = n1 + n2

where, for i = 1, 2, ni is the number of individuals with trait i (e.g infected or sane mosquitoes).
Let us define the proportion p = n1

N . We assume the population evolves in a spatially heterogeneous
environment Ω, and that the heterogeneity is modelled by a resources distribution m : Ω → R. We
introduce the death rates associated to each group d1 > d2, the fertility rates F1 < F2. The following
system is proposed in [170] to model this situation:

∂n1

∂t −∆n1 = F1n1(1− N
m )− δd2n1 ,

∂n2

∂t −∆n2 = F2n2(1− p)(1− N
m )− d2n2 ,

(5.4)

for some δ > 0.
One then shows that p solves

∂p

∂t
− µ∆p− 2〈∇ ln(N) ,∇p〉 = p(1− p) (F1(1−N)(p− 1) + d1(1− δ)) .

The authors of [146] distinguish two limits

• Homogeneous environment and large birth rate:

Assuming that F2 >> 1 and that m is constant, it is possible to show that there exists h = h(p)
such that, when F2 →∞, p solves

∂p

∂t
− µ∆p+ 2|∇p|2h

′(p)

h(p)
= p(1− p)(p− θ)

for some θ ∈ (0; 1) which is the gene-flow model studied in this article.

• Heterogeneous environment and large birth rate:

We apply the same reasoning, with F2 >> 1 and the additional assumption that
∣∣∆m
m

∣∣ << 1.
We then obtain

∂p

∂t
− µ∆p+ 2

〈
∇m
m

,∇p
〉

= p(1− p)(p− θ),

for some θ ∈ (0; 1), which is the spatially heterogeneous model under consideration here.
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As was explained earlier in this Section, one can think of the unknown p as the infection frequency in
a population of mosquitoes, as is the case in [5, 146] or as the proportion of mono or bilingual speakers
as proposed in [175]. This last interpretation was one of the motivations of [157, 172]. Thus, we may
think of wanting to drive p0 to θ as wanting to reach an equilibrium regarding the languages spoken
inside a community, for instance to preserve the existence of this minority language.

The main contribution of this article is understanding how spatial heterogeneity might affect this
controllability. We insist upon the fact that such questions pertain to a growing field, see [19, 116,
MNP19a, 166] for an optimization approach to spatial heterogeneity for monostable case. In the case
of bistable equations, a possible reference from the mathematical point of view is [146]. We refer to
[166] for a more biology oriented presentation of such topics in mathematical biology.

Namely, we will prove that, provided the environment is not rapidly varying, the controllability
properties still hold, while giving examples where sharp changes keep us from controlling the equation.
Intuitively, this result makes sense: if there is a sharp transition in the environment in the center of
the domain, it is hopeless to control what is happening inside the domain only using the boundary. To
give an example of such quick transitions, we will investigate the case where the spatial heterogeneity
is a gaussian, and give a qualitative analysis of the controllability properties when the variance is
either small or large.

5.1.2.2 Known results regarding the constrained controllability of
bistable equations

The influence of spatial heterogeneity on population dynamics and its interplay with optimization
problems has drawn a lot of attention in the past years. Regarding the controllability properties of
these equations, the available literature is scarce.

In [157], the controllability to 0, θ or 1 of the equation

∂p

∂t
−∆p = f(p)

with a constraints on the boundary control is carried out using a phase portrait analysis. In their case,
the domain is Ω = [−L,L]. Namely, they prove, using comparison principles that, regardless of L, the
static strategy u = 1 allows you to control to z1 ≡ 1 in infinite time. They prove that there exists a
threshold L∗ such that control to 0 is possible of and only if L < L∗, in which case the static strategy
u ≡ 0 works. This threshold is established by proving that there exists L∗ such that, for any L ≥ L∗
there exists a non trivial solution to the equation with homogeneous Dirichlet boundary conditions;
this solution acts as a barrier and prevents controllability. Finally, they prove, using a precise analysis
of the phase portrait of the equation and the staircase method of [58] that the equation is controllable
to zθ ≡ θ in finite time if and only if L < L∗.

These results were extended, for the same equation, to the multi-dimensional case in [163].
In [172], the equation

∂p

∂t
−∆p = p(p− θ(t))(1− p)

is considered, but this time, it is the Allee parameter θ = θ(t) that is the control parameter and the
target is a travelling wave solution.

In [5], an optimal control problem for the equation without diffusion

∂p

∂t
= f(p) + u(t),

and with an interior control u (rather than a boundary one) is considered. We underline that, in their
study, u only depends on the time, and not on the space variable.

Finally, we mention [146], in which the existence of traveling-waves for the gene-flow model (H1)
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is established and (non)-existence and properties of traveling-waves solutions for the (H2) model are
studied. The authors prove that, under certain assumptions on the heterogeneity N (for instance, a
high exponential growth on a large enough interval of R), the invasion of the front is blocked. This
result seems loosely to the lack of controllability in a rapidly varying environment, see Theorem 5.1.4.

5.1.3 Statement of the main controllability results

We recall that we work with Equation (5.2)
∂p

∂t
−∆p− 2〈∇ ln(N),∇p〉 = f(p) in R+ × Ω ,

p = u(t, x) on (0, T )× ∂Ω,

p(t = 0, ·) = p0 in Ω,

where u ∈ [0, 1] and that we want to control any initial datum to 0, θ or 1.

5.1.3.1 A brief remark on the statement of the Theorems

We are going to present controllability and non-controllability results for the gene-flow models and
the spatially heterogeneous ones. Regarding obstructions to controllability, the main obstacles are the
existence of non-trivial steady-states, namely solutions to

−∆ϕ− 2

〈
∇N
N

,∇ϕ
〉

= f(ϕ) in Ω

associated with the boundary conditions ϕ = 0 or ϕ = 1. However, given that the existence of non-
trivial solutions for the Dirichlet boundary conditions ϕ = 0 is obtained through a sub and super
solution methods, the natural quantity appearing is the inradius of the domain, i.e

ρΩ = sup{r > 0 ,∃x ∈ Ω ,B(x, r) ⊂ Ω},

while non-existence of non-trivial solutions is usually done through the study of the first Laplace-
Dirichlet eigenvalue

λD1 (Ω) := inf
u∈W 1,2

0 (Ω) ,u 6=0

ˆ
Ω

|∇u|2
ˆ

Ω

u2
,

which explains why both quantities ρΩ and λD1 (Ω) appear in the statements. Using Hayman-type
inequalities, see [30], we could rewrite λD1 (Ω) in terms of the inradius when the set Ω is convex.
Indeed, it is proved in [30, Proposition 7.75] that, when Ω is a convex set with ρΩ <∞ then

1

cρ2
Ω

≤ λD1 (Ω) ≤ C

ρ2
Ω

,

so that the theorems can be recast in terms of inradius only in the case of convex domains.

5.1.3.2 Gene-flow models

For the gene flow model (H1), i.e when N assumes the form

N = N(u),
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the main equation of (5.2) reads

∂p

∂t
−∆p− 2

N ′

N
(p)|∇p|2 = f(p).

Then the controllability properties of the equation are the same as in [163]:

Theorem 5.1.1 Let, for any Ω ⊂ Rd, ρΩ be its inradius:

ρΩ = sup{r > 0 ,∃x ∈ Ω ,B(x, r) ⊂ Ω}. (5.5)

When N satisfies (H1), there exists ρ∗ = ρ∗(f) such that, for any smooth bounded domain Ω,

1. Lack of controllability for large inradii: If ρΩ > ρ∗, then (5.2) is not controllable to 0 in (in)finite
time in the sense of Definition 5.1.1: there exist initial data 0 ≤ p0 ≤ 1 such that, for any control
u satisfying the constraints (5.3), the solution p of (5.2) does not converge to 0 as t→∞.

2. Controllability for large Dirichlet eigenvalue If λD1 (Ω) > ||f ||L∞ , then (5.2) is controllable to 0,
1 in infinite time for any initial datum 0 ≤ p0 ≤ 1, and to θ in finite time for any initial datum
0 ≤ p0 ≤ 1.

Hence the situation is exactly the same as in [163, 157], and we give, in Figure 5.2 and 5.3 schematic
representations of domains where controllability might hold or not.

Remark 5.2 The result makes sense: even if the domain has a large measure, if it is also very thin,
it makes sense that a boundary control should work while if it has a big bulge, it is intuitive that a lack
of boundary controllability should occur:

Figure 5.2 – A domain with a large inradius, for which constrained boundary control does not enable
us to control the population to an intermediate trait.

Figure 5.3 – A domain with a large eigenvalue, for which constrained boundary control enables us to
control the population to an intermediate trait.
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5.1.3.3 Spatially heterogeneous models

In this case, we work under assumption H2, i.e with N = N(x) in Ω.
As explained in the introduction, we need to distinguish between two cases: that of a slowly varying
environment and that of sharp changes in the environment.

Slowly varying environment In the first part of this paragraph, we consider the case of a slowly
varying total population size: we consider, for a homogeneous steady state za ≡ a, a ∈ {0, θ, 1}, a
function n ∈ C 1(Rd;R) and a parameter ε > 0 the control system

∂p
∂t −∆p− ε〈∇n,∇p〉 = f(p) in R+ × Ω ,
p = u(t, x) on ∂Ω,
0 ≤ u ≤ 1,
p(t = 0, ·) = p0 , 0 ≤ p0 ≤ 1 ,

(5.6)

which models an environment with small spatial changes in the total population size; this amounts to
requiring that ∣∣∣∣∇NN

∣∣∣∣ << 1,

where N satisfies (H2). Indeed, we can then formally write

N ≈ N0 +
ε

2
n(x),

where N0 is a constant1.

Remark 5.3 For simplicity, we assume that n is defined on Rd rather than on Ω. Since we already
assumed that N was C 1, this amounts to requiring that n can be extended in a C 1 function outside of
Ω, which once again would follow from regularity assumptions on Ω.

Theorem 5.1.2 Let, for any Ω ⊂ Rd, ρΩ be its inradius (defined in Equation (5.5)).
Let n ∈ C 1(Rd).

1. Lack of controllability for large inradii: There exists ρ∗ = ρ∗(n, f) > 0 such that if ρΩ > ρ∗,
then (5.6) is not controllable to 0 in (in)finite time in the sense of Definition 5.1.1: there exist
initial data p0 such that, for any control u satisfying the constraints (5.3), the solution p of (5.6)
does not converge to 0 as t→∞.

2. Controllability for large Dirichlet eigenvalue and small spatial variations: If λD1 (Ω) > ||f ||L∞ ,
there exists ε∗ = ε∗(n, f,Ω) such that, when ε ≤ ε∗, the Equation (5.6) is controllable to 0 and
1 in infinite time f and to θ in finite time in the sense of Definition 5.1.1.

To prove this theorem, we have to introduce perturbative arguments to the staircase method of [58],
which we believe sheds a new light on this method as well as on the influence of spatial heterogeneity
on reaction-diffusion equations.

The case of radial drifts The previous result, however general, is proved using a very implicit
method that does not enable us to give explicit bounds on the perturbation ε. In the case where the
total population size n : Ω→ R∗+ can be extended into a radial function n : Rd → R∗+ we can give en

1We can assume, without loss of generality, that N0 = 1. Indeed, the equation (5.2) is invariant under the scaling
N 7→ λN where λ ∈ R∗+.

181



CHAPTER 5. CONTROL OF SPATIALLY HETEROGENEOUS BISTABLE EQUATIONS

explicit bound on the decay rate of N to ensure the controllability of
∂p

∂t
−∆p− 〈∇N

N
(x),∇p〉 = f(p) in Ω× (0, T ) ,

p = u(t, x) on ∂Ω× (0, T ),
0 ≤ p , u(t, x) ≤ 1,
p(t = 0, ·) = ϕ0 , 0 ≤ ϕ0 ≤ 1 ,

(5.7)

In other words, when the total population size is the restriction to the domain Ω of a radial function,
we can obtain controllability results.

Theorem 5.1.3 Let Ω be a bounded smooth domain in Rd. Let N ∈ C 1(Rd;R∗+) , inf N > 0 and N
be radially symmetric. Let

λD1 (Ω, N) := inf
u∈W 1,2

0 (Ω)

ˆ
Ω

N2|∇u|2
ˆ

Ω

N2u2

be the weighted eigenvalue associated with N .
If

||f ′||L∞ ≤ λD1 (Ω, N) (5.8)

and if

N ′(r) ≥ −d− 1

2r
N(r), (A1)

then the equation (5.7) is controllable to z0 in infinite time and to θ in finite time, for any initial
datum 0 ≤ p0 ≤ 1.

This Theorem is proved using energy methods and adapting the proofs of [163].

Lack of controllability for rapidly varying total population size: blocking phenomenons
As mentioned, the lack of controllability occurs when barriers appear. For instance, if a non-trivial
solution to {

−∆ϕ− 2〈∇NN ,∇ϕ〉 = f(ϕ) in Ω ,
ϕ = 0 on ∂Ω,

exists, then it must reach its maximum above θ and thus, from the maximum principle, it is not
possible to drive an initial datum p0 ≥ ϕ0 to 0 with constrained controls. This kind of counter-
examples appear when the drift is absent, see [163, 157]. They are usually constructed by means
of sub and super solutions of the equation. What is more surprising however is that adding a drift
actually leads to the existence of non-trivial solutions to{

−∆ϕ1 − 2〈∇NN ,∇ϕ1〉 = f(ϕ1) in Ω ,
ϕ = 1 on ∂Ω,

which never happens when no drift is present, meaning that driving the population from an initial
datum p0 ≤ ϕ1 to z1 is impossible. Here, we need to carry out a precise analysis of the equation:
Equation (5.11) has a variational formulation but since z1 ≡ 1 is always a global minimizer of the
natural energy associated with Equation (5.11), using an energy argument is not possible.
In this paragraph we give an explicit example of some N in the one-dimensional case such that the
equation is not controllable to either 0, θ or 1. Let, for any σ > 0, the gaussian of variance

√
σ be

defined as
Nσ(x) :=

1√
2πσ

e−
x2

2σ ,
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so that the control problem (5.2) becomes, in the one dimensional case

∂ϕ

∂t
− ∂ϕ

∂x2
+

2x

σ

∂ϕ

∂x
= f(ϕ) in Ω ,

ϕ(−L) = u(t,−L) , ϕ(L) = u(t, L),

0 ≤ ϕ , u(t, x) ≤ 1,

ϕ(t = 0, ·) = ϕ0 , 0 ≤ ϕ0 ≤ 1 ,

ϕ(t = T, ·) = za , T ∈]0; +∞],

(5.9)

Introduce the following barrier equations (i.e, if there exists a non-trivial solution to these equations,
controllability might fail) on some interval [−L,L]:

−∂
2ϕ
∂x2 + 2x

σ
∂ϕ
∂x = f(ϕ) in [−L,L] ,

ϕ(±L) = 0,

0 ≤ ϕ ≤ 1,

(5.10)

and 
−∂

2ϕ
∂x2 + 2x

σ
∂ϕ
∂x = f(ϕ) in [−L,L] ,

ϕ(±L) = 1,

0 ≤ ϕ ≤ 1,

(5.11)

Theorem 5.1.4 1. Existence of critical lengths Lσ: For any σ > 0, there exists Lσ(0) > 0 (resp.
Lσ(1)) such that the Equation (5.10) (resp. Equation (5.11)) has a non-trivial solution in
Ω = [−Lσ(0);Lσ(0)] (resp. [−Lσ(1);Lσ(1)]). As a consequence, for a = 0, 1, Equation (5.9) is
not controllable in infinite time to a or θ on [−Lσ(a);Lσ(a)].
For any L ≥ L∗σ(1), Equation (5.11) has a non-trivial solution on [−L,L].

2. Asymptotic analysis of Lσ: Define Lσ(a)∗ as the minimal length of the interval such that con-
trollability fails on [−Lσ(a)∗;Lσ(a)∗], then

Lσ(1)∗ →
σ→∞

+∞ , Lσ(1)∗ →
σ→0

0 , L∗σ(0) →
σ→0

0.

In other words, the sharper the transition, the smaller the interval where lack of controllability
occurs.

3. Double-blocking phenomenon: There exists L∗∗σ such that both Equations (5.10) and (5.11) have
a non-trivial solution on [−L∗∗σ , L∗∗σ ]. Equation (5.9) is not controllable to either 0, θ or 1 on
[−L∗∗σ , L∗∗σ ].

We illustrate the existence of non-trivial solutions in Figures 5.4, 5.5, 5.6 and 5.7.
To prove this Theorem, we will study the energy

E : (u, v) 7→ 1

2
v2 + F (u).
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Figure 5.4 – σ = 40 and f(s) = s(1 − s)(s − θ), θ = 0.33. Phase portrait (Left): the trajectory
corresponding to the nontrivial solution is in black, the energy set {E = F (1)} in red, the energy set
{E = F (0)} in blue. Nontrivial solution of (5.11) (Right).

0 1

u

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

u
x

Trajectory for a=0.5000

-6 -4 -2 0 2 4 6

x

0

1

u

Non trivial solution

Figure 5.5 – Same class of parameters σ, θ, f . Phase portrait (Left): the trajectory corresponding to
the nontrivial solution is in black, the energy set {E = F (1)} in red, the energy set {E = F (0)} in
blue. Nontrivial solution of (5.10) (Right).

We also observe this "double-blocking" phenomenon (i.e the existence of non-trivial solutions to
(5.11) and (5.10) in the same interval) numerically, when trying to control an initial datum to θ:
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Figure 5.6 – N(x) = e
−x2

σ , σ = 40, L = 5, (Left) initial datum u0 = 1, (Right) intial datum u0 = 0.

There can also be controllability from 0 to θ, but not from 1 to θ, as shown, numerically, below:
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Figure 5.7 – N(x) = e
|x|
σ , σ = 40, T = 150, L = 15. (Left) initial datum u0 = 1, (Right) intial datum

u0 = 0.

Remark 5.4 As noted, these sharp changes in the total population size have been known, since [146],
to provoke blocking phenomenons for the traveling-waves solutions of the bistable equation, and our
results seems to lead to the same kind of interpretation: when a sudden change occurs in N , it is
hopeless for a population coming from the boundary to settle everywhere in the domain. We prove
this result using a careful analysis of the phase portrait for the non-autonomous system to establish
existence of non-trivial solutions to the steady-state equations with homogeneous Dirichlet boundary
conditions equal to either 0 or 1.

We note that our proofs could be extended to the multi-dimensional case, when considering a
multi-dimensional gaussian distribution.
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5.2 Proof of Theorem 5.1.1: gene-flow models

Proof of Theorem 5.1.1. The proof consists in a simple transformation of the equation, already used
in [146, Proof of Theorem 1], which will turn the equation into the classical bistable reaction diffusion
equation already considered in [163]. We consider the equation

∂p

∂t
−∆p− 2

N ′

N
(p)|∇p|2 = f(p), (5.12)

and introduce the anti-derivative of N as

N : x 7→
ˆ x

0

N2(ξ)dξ.

We first note that multiplying N by any factor λ leaves the equation (5.12) invariant. We thus fix
ˆ 1

0

N2(ξ)dξ = 1.

Multiplying (5.12) by N2 we get

N2(p)
∂p

∂t
−N2(p)∆p− 2N ′(p)|∇p|2 = (N (p))t −∇ ·

(
N2(p)∇p

)
= (N (p))t −∆(N (p)).

Hence, as N is a diffeomorphism the function p̃ := N (p) satisfies

∂p̃

∂t
−∆p̃ = f̃

(
N −1(p̃)

)
N2
(
N −1(p̃)

)
=: f̃(p̃).

However, it is easy to see that, f being bistable, so is f̃ . Furthermore, N is a C 1 diffeomorphism
of [0, 1], and it is easy to see that p is controllable to 0, θ or 1 if and only if p̃ is controllable to 0, θ
or 1, and we are thus reduced to the statement of [163, Theorem 1.2], from which the conclusion
follows.

5.3 Proof of Theorem 5.1.2: slowly varying total
population size

5.3.1 Lack of controllability to 0 for large inradius

We prove here the first point of Theorem 5.1.2. Recall that we want to prove that, if the inradius
ρΩ is bigger than a threshold ρ∗ depending only on f , then equation (5.6) is not controllable to 0 in
(in)finite time.
Following [157], we claim that this lack of controllability occurs when the equation −∆η − ε〈∇n ,∇η〉 = f(η) in Ω ,

η = 0 on ∂Ω ,
0 ≤ η ≤ 1

(5.13)

has a non-trivial solution, i.e a solution such that η 6= 0. Indeed, we have the following Claim:

Claim 5.3.1 If there exists a non-trivial solution η 6= 0 to (5.13), then (5.6) is not controllable to 0
in infinite time.

186



CHAPTER 5. CONTROL OF SPATIALLY HETEROGENEOUS BISTABLE EQUATIONS

Proof of Claim 5.3.1. This is an easy consequence of the maximum principle. Indeed, let η be a
non-trivial solution of (5.13) and let p0 be any initial datum satisfying

η ≤ p0 ≤ 1.

Let u : R+ × ∂Ω→ [0, 1] be a boundary control. Let pu be the solution of
∂pu

∂t −∆pu − ε〈∇n ,∇pu〉 = f(pu) in Ω ,
pu = u on R∗+ × ∂Ω ,
pu(t = 0 , ·) = p0,

(5.14)

From the parabolic maximum principle [158, Theorem 12], we have for every t ∈ R+,

η(t, ·) ≤ pu(t, ·),

so that pu cannot converge to 0 as t→∞. This concludes the proof.

It thus remains to establish the following Lemma:

Lemma 5.1 There exists ρ∗ = ρ∗(n, f) such that, for any Ω satisfying

ρΩ > ρ∗

there exists a non-trivial solution η 6= 0 to equation (5.13).

Since the proof of this Lemma is a straightforward adaptation of [163, Proposition 3.1], we postpone
it to Appendix 5.A.

5.3.2 Controllability to 0 and 1

We now prove the second part of Theorem 5.1.2, which we rewrite as the following claim:

Claim 5.3.2 1. Controllability to 0: There exists ρ∗ = ρ∗(n, f) such that, for any Ω, if ρΩ ≤ ρ∗,
Equation (5.2) is controllable to 0 in infinite time.

2. Controllability to 1: There exists ε > 0 such that, for any ε ≤ ε, Equation (5.2) is controllable
to 1 in infinite time.

Proof of Claim 5.3.2. 1. Controllability to 0:

The key part is the following thing:

There exists ρ∗ > 0 such that, if ρΩ < ρ∗, then y ≡ 0 is the only solution to{
−∆y − ε〈∇n ,∇y〉 = f(y) , in Ω
y = 0 on ∂Ω.

(5.15)

Indeed, assuming that the uniqueness result (5.15) holds, consider the static control u ≡ 0 and
the solution of 

∂p
∂t −∆p− ε〈∇n ,∇p〉 = f(p) , in R+ × Ω ,
p = 0 on R+ × ∂Ω,
p(t = 0, ·) = p0 in Ω.
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From standard parabolic regularity and the Arzela-Ascoli theorem, p converges uniformly in Ω
to a solution p of {

−∆p− ε〈∇n ,∇p〉 = f(p) , in R+ × Ω
p = 0 on (0, T )× ∂Ω.

However, by the uniqueness result (5.15), we have p = 0, whence

p(t, ·) C 0(Ω)→
t→∞

0,

which means that the static strategy drives p0 to 0.
Finally, we claim that (5.15) follows from spectral arguments: first of all, uniqueness holds for{

−∆y − ε〈∇n ,∇y〉 = f(y) , in Ω
y = 0 on ∂Ω

if the first eigenvalue λ(ε, n,Ω) of the operator

Lε,n = −∇ · (eεn∇u)

with Dirichlet boundary conditions satisfies

λ1(ε, n,Ω) > ||f ′||L∞eε||n||L∞ ,

as is standard from classical theory for non-linear elliptic PDE, see [21].
We now notice that, n being positive, the Rayleigh quotient formulation for the eigenvalue

λ(ε, n,Ω) = inf
u∈W 1,2

0 (Ω)

´
Ω
eεn|∇u|2´

Ω
u2

yields that
λ(ε, n,Ω) ≥ λD1 (Ω)

where λD1 (Ω) is the first eigenvalue of the Laplace operator with Dirichlet boundary conditions.
Thus we are reduced to checking that

λD1 (Ω) > ||f ′||L∞eε||n||L∞ ,

as claimed. If the condition λD1 (Ω) > ||f ′||L∞ , taking the limit as ε→ 0 yields the desired result.

2. Controllability to 1 Using the same arguments, we claim that controllability to 1 can be achieved
through the static control u ≡ 1 provided the only solution to −∆p− ε〈∇n ,∇p〉 = f(p) , in Ω ,

p = 1 on ∂Ω,
0 ≤ p ≤ 1

(5.16)

is p ≡ 1.
We already know (see [163, 157]) that uniqueness holds for ε = 0. Now this implies that
uniqueness holds for ε small enough. Indeed, argue by contradiction and assume that, for every
ε > 0 there exists a non-trivial solution pε to (5.16). Since pε 6= 1, p reaches a minimum at some
xε ∈ Ω, and so

f(pε(xε)) < 0
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which means that
pε(xε) < θ.

Standard elliptic estimates entail that, as ε → 0, pε converges in W 1,2(Ω) and in C 0(Ω) to p
satisfying  −∆p = f(p) in Ω ,

p = 1 on ∂Ω,
0 ≤ p ≤ 1

(5.17)

and such that there exists a point x satisfying

p(x) < θ

which is a contradiction since we now uniqueness holds for (5.16). This concludes the proof.

5.3.3 Proof of the controllability to θ for small inradiuses

5.3.3.1 Structure of the proof: the staircase method

We recall that we want to control the semilinear heat equation
∂p
∂t −∆p− ε〈∇n ,∇p〉 = f(p) in Ω ,
p = u(t) on ∂Ω,
p(t = 0, ·) = y0

(5.18)

to zθ ≡ θ.
We give the following local exact controllability result from [157, Lemma 1] or [154, Lemma 2.1],
which is the starting point of the method:

Proposition 5.1 [Local exact controllability] Let T > 0. There exists δ1 > 0 such that for all steady
state yf of (5.18), for all 0 ≤ yd ≤ 1 satisfying

||yd − yf ||C 0 ≤ δ1

then (5.18) is controllable from yd to za in finite time T < ∞ through a control u. Furthermore,
letting u = yf |∂Ω, the control function u = u(t) satisfies

||u(t)− u||C 0(∂Ω) ≤ C(T )δ1 (5.19)

for some constant C(T ) > 0.

We now assume that ρΩ ≤ ρ∗, that is, thanks to Claim 5.3.2, we assume that we have uniqueness
for the equation {

−∆y − ε〈∇n ,∇y〉 = f(y) in Ω ,
y = 0 on ∂Ω

The way to prove controllability is to proceed along two different steps:

• Step 1: Starting from any initial conditon 0 ≤ p0 ≤ 1, we first set the static control

u(t, x) = 0.

Since n is C 1, standard parabolic estimates and the Arzela-Ascoli theorem ensures that the
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solution pu of (5.6) converges uniformly, as t→∞ to a solution η of −∆η − ε〈∇n ,∇η〉 = f(η) in Ω ,
η = 0 on ∂Ω ,
0 ≤ η ≤ 1

(5.20)

However, from Claim 5.3.2, ρΩ ≤ ρ∗(n, f) implies that z0 ≡ 0 is the unique solution of this
equation. Thus, this static control guarantees that, for every δ1 > 0, there exists T1 > 0 such
that, for any t ≥ T1

||pu(t, ·)||L∞ ≤ δ.

• Step 2: We prove that there exists a steady state p0 of (5.18) such that

0 < inf
x∈Ω

p0(x) ≤ ||p0||L∞ ≤
δ

2

and, applying Proposition 5.1, we drive pu(T1, ·) to p0 in finite time.

• Step 3: If we can drive p0 to θ, then we are done. Thus, we are, in this setting, reduced to the
controllability of initial datum in a small neighbourhood of 0 to θ. This is what we are going to
prove, using the staircase method.

The staircase method The key idea to do that is the same as in [157], that is, we want to use the
staircase method of Coron and Trélat, see [58] for the one-dimensional case (which uses quasi-static
deformations) and [154] for a full derivation. We briefly recall the most important features of this
method and the way we wish to apply it to our problem.
Assume that there exists a C 0-continuous path of steady-states of (5.18) Γ = {ps}s∈[0,1] such that
p0 = y0 and p1 = y1.
Then (5.18) is controllable from y0 to y1 in finite time. Indeed, as is usually done, we consider a
subdivision

0 = si1 < · · · < siN = 1

of [0, 1] such that
∀j ∈ {0, . . . , N1} , ||psi − psi+1 ||C 0(Ω) ≤ δ1

where δ1 is the controllability parameter given by the local exact controllability result. We then
control each psi to psi+1 in finite time using Proposition 5.1.

This result does not necessarily yield constrained controls, but, thanks to estimate (5.19) we can
enforce these constraints, by choosing a control parameter δ1 small enough.

Thus, the tricky part seems to be finding a continuous path of steady-states for the perturbed
system with slowly varying total population size (5.6). However, it suffices to have a finite numbers
of steady-states that are close enough to each other, starting at y0 and ending at y1. We represent
the situation in Figure 5.8 below:
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p0•

ps1 •

ps2•

ps3•

p1•

Figure 5.8 – The dashed curve is the path of steady states (for instance in W 1,2(Ω)∩C 0(Ω)), and the
points are the close enough steady states. We represent the exact control in finite time T with the
pink arrows.

5.3.3.2 Perturbation of a path of steady-states

We are going to perturb the path of steady-states using the implicit function Theorem in order to get
a sequence of close enough steady-states, so that the previous staircase strategy still applies.

Remark 5.5 Here, if we were to try and prove, for ε small enough, the existence of a continuous
path of steady states, the idea would be to start from a path (ps,0)s∈[0,1] for ε = 0 (which we know
exists from [163, 157]) and to try and perturb it into a path for ε > 0 small enough, thus giving us
a path {pε,s}s∈[0,1] ,ε>0. However, doing it for the whole path requires some kind of implicit function
theorem or, at least, some bifurcation argument. Namely, to construct the path, we would need to
ensure that either

Ls,ε := −∇ · (eεn∇)− eεnf ′(p0,s)

has no zero eigenvalue for ε = 0 or that it has a non-zero crossing number (namely, a non zero number
of eigenvalues enter or leave R∗+ as ε increases from −δ to δ). In the first case, the implicit function
theorem would apply; in the second case, Bifurcation Theory (see [111, Theorem II.7.3]) would ensure
the existence of a branch pε,s for ε small enough. These conditions seem too hard to check for a
general path of continuous of steady states.

Hence, we focus on perturbing a finite number of points close enough on the path since, as we
noted, this is enough to ensure exact controllability.

We will strongly rely on the properties of the path of steady-states built in [163, 157].
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p0•

p0,s1 •
pε,s1•

p0,s2•
pε,s2 •

p0,s3•
pε,s3•

p1•

Figure 5.9 – In dark purple, the perturbed steady states, linked to the unperturbed steady states.
We do not know whether or not a continuous path of steady states linking these new states exists;
however, such points enable us to do exact controllability again and to apply the stair case method.

Henceforth, our goal is the following proposition:

Proposition 5.2 Let δ > 0. There exists N > 0 and ε > 0 such that, for any ε ≤ ε, there exists a
sequence {pε,i}i=1,...N satisfying:

• For every i = 1, . . . , N , pε,i is a steady-state of (5.6):

−∆pε,i − ε〈∇n ,∇pε,i〉 = f(pε,i),

• pε,N = zθ ≡ θ , 0 < inf pε,1 ≤ ||pε,1||L∞ ≤ δ

• For every i = 1, . . . , N ,
δ

2
≤ pε,i ≤ ||pε,i||L∞ ≤ 1− δ

2
,

• For every i = 1, . . . , N − 1,
||pε,i+1 − pε,i||L∞ ≤ δ.

As explained, this Proposition gives us the desired conclusion:

Claim 5.3.3 Proposition 5.2 implies the controllability to θ for any initial datum p0 in Equation
(5.2).

Before we prove Proposition 5.2, we recall how the paths of steady-states are constructed when
ε = 0.

Known constructions of a path of steady-states For the multi-dimensional case, it has been
shown in [163] that one can construct a path of steady-states linking z0 ≡ 0 to zθ ≡ θ in the following
way: let Ω be the domain where the equation is set and let RΩ > 0 be such that

Ω ⊆ B(0;RΩ).

The path of steady state is defined as follows: first of all, if uniqueness holds for{
−∆y = f(y) in B(0;RΩ) ,

y = 0.
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then, for η > 0 small enough, there exists a unique solution to{
−∆yη = f(yη) in B(0;RΩ)

yη = η on ∂B(0;RΩ).

Define, for any s ∈ [0, 1], let p0,s be the unique solution to the problem −∆p0,s = f
(
p0,s
)
in B(0;R) ,

p0,s(0) = sθ + (1− s)yη(0) ,
p0,s is radial.

(5.21)

Using the polar coordinates, the authors prove that the equation above has a unique solution, and
that this solution is admissible, i.e that we even have, for any 0 < s0 < 1,

0 < inf
s∈[s0;1] ,x∈B(0;R)

p0,s(x) ≤ sup
s∈[0,1] ,x∈B(0;R)

p0,s(x) < 1.

This is done using energy type methods and gives a path on B(0;RΩ). To construct the path on Ω,
it suffices to set

p̃0,s := p0,s
∣∣
Ω
.

Furthermore, by elliptic regularity or by studying the equation in polar coordinates, we see that, for
every s ∈ [0, 1],

p0,s ∈ C 2,α(B(0;RΩ))

for any 0 < α < 1. Instead of perturbing the functions p̃0,s ∈ C 2,α(Ω), we will perturb the functions
p0,s ∈ C 2

(
B(0;RΩ)

)
.

Henceforth, the parameter RΩ > 0 is fixed and, for any s ∈ [0, 1], p0,s is the unique solution to
(5.21)

Proof of Proposition 5.2. Let δ > 0. Let {si}i=1,...,N be a sequence of points such that

0 < p0,s0 ≤ ||p0,s0 ||L∞ ≤
δ

2
, (5.22)

and
∀i ∈ {0, . . . , N − 1} ,

∣∣∣∣p0,si − p0,si+1
∣∣∣∣
L∞
≤ δ

4
. (5.23)

We define, for any i = 1, . . . , N ,
p0,i = p0,si .

Fix a parameter α ∈ (0; 1). We define a one-parameter family of mappings as follows: for any
i = 1, . . . , N , let

Fi :

 C 2,α (B(0;RΩ))× [−1; 1] → C 0,α (B(0;RΩ))× C 0 (∂B(0;RΩ)) ,

(u, ε) 7→
(
−∇ · (eεn∇u)− f(u)eεn , u|∂B(0;RΩ) − pi0|∂B(0;RΩ)

)
.

We note that
∀i ∈ {0, . . . , N} ,Fi(p0,i, 0) = 0.

We wish to apply the implicit function theorem, which is permitted provided the operator

Li : u 7→ −∆u− f ′(p0,i)u

with Dirichlet boundary conditions is invertible. If this is the case we know that there exists a
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continuous path pε,i starting from p0,i such that

Fi(p
i
ε, ε) = 0

Denoting, for any differential operator A its spectrum by Σ (A ), this invertibility property amounts,
thanks to elliptic regularity (see [80]) to requiring that

∀i ∈ {1, . . . , N} , 0 /∈ Σ(Li). (5.24)

If the condition (5.24) is satisfied, then p0,i perturbs into piε and we can define

p̃iε := piε
∣∣
Ω

as a suitable sequence of steady states in Ω. Since we are working with a finite number of points,
taking ε small enough guarantees

∀i = 1, . . . , N , ||pε,i − p0,i||L∞ ≤
δ

4

and we would then have, for any i = 1, . . . , N1,

||pε,i+1 − pε,i||L∞ ≤ ||pε,i+1 − p0,i+1||L∞ + ||p0,i − pε,i||L∞ + ||p0,i+1 − p0,i||L∞

≤ δ

4
+
δ

4
+
δ

2
= δ,

which is what we require of the sequence.
Let us define the set of resonant points (i.e the points where the implicit function Theorem does not
apply) as

Γ := {j ∈ {1, . . . , N} , 0 ∈ Σ(Li)} .

We note that 0 /∈ Γ because the first eigenvalue of

L0 = −∆− f ′(0)

is positive: indeed, since f ′(0) < 0, this first eigenvalue is bounded from below by the first Dirichlet
eigenvalue of the ball B(0;R). Hence 0 /∈ Γ. We proceed as follows:

1. Whenever i /∈ Γ, we can apply the implicit function Theorem to obtain the existence of a
continuous path pε,i starting from p0,i such that

pε,i|∂B(0;RΩ) = p0,i|∂B(0;RΩ) ,F(pε,i, ε) = 0,

so that, taking ε small enough, we can ensure that, for any i /∈ Γ,

||pε,i − p0,i||L∞ ≤
δ

4
.

2. Whenever i ∈ Γ, we apply the implicit function theorem on a larger domain B(0;RΩ + δ̃), δ̃ > 0.
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•
•
RΩ + δ̃

•
RΩ

x

y

Figure 5.10 – The initial solution p0,i on B(0;RΩ) is continued into a solution on B(0;RΩ + δ̃), and
we apply the implicit function theorem on this domain to obtain the blue curve.

Let, for any i ∈ Γ, λi(k,RΩ) be the k-th eigenvalue of Li with Dirichlet boundary conditions
on B(0;RΩ).
Let, for any i ∈ Γ,

ki := sup {k , λi(k,R) = 0} .

Obviously, there existsM > 0 such that ki ≤M uniformly in i, since λi(k,RΩ)→∞ as k →∞.
We then invoke the monotonicity of the eigenvalues with respect to the domain. Let, for any δ̃,
pδ̃0,i be the extension of p0,i to B(0;RΩ + δ̃); this is possible given that p0,i is given by the radial
equation (5.21).

Let L̃i : u 7→ −∆u− f ′(pδ̃0,i)u and λ̃i(·, RΩ + δ̃) be its eigenvalues. By the min-max principle of
Courant (see [92]) we have, for any k ∈ N and any δ̃ > 0,

λ̃i(k,RΩ + δ̃) < λi(k,RΩ).

Hence, for every i ∈ Γ, there exists δ̃i > 0 small enough so that, for any 0 < δ̃ < δ̃i,

0 /∈ Σ
(
L̃i
)
.

We then choose ˜̃δ = mini∈Γ δ̃i and apply the implicit function theorem on B
(

0;RΩ +
˜̃δ
2

)
. This

gives the existence of ε̃ > 0 such that, for any ε < ε̃ and any i ∈ Γ, there exists a solution p
˜̃δ
ε,i

of 

−∆p
˜̃δ
ε,i − ε〈∇n ,∇p

˜̃δ
ε,i〉 = f(p

˜̃δ
ε,i) in B(0;RΩ +

˜̃δ
2 ) ,

p
˜̃δ
ε,i = p0,i|S(0;RΩ+

˜
δ̃
2 )
,

pε,i
C 0(B(0;RΩ+

˜
δ̃
2 ))

→
ε→0

p
˜
δ̃
2
0,i

(5.25)

Furthermore,
pδ0,i|S(0;RΩ+δ) →

δ→0
p0,i|∂B(0;RΩ).
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Thus, by choosing ˜̃δ small enough, we can guarantee that, by defining

p̃ε,i := p
˜̃δ
ε,i|B(0;RΩ)

we have for every ε small enough

||p̃ε,i − p0,i||L∞ ≤
δ

4
.

We note that p̃ε,i does not satisfy, on ∂B(0;RΩ) the same boundary condition as p0,i, but this
would be too strong a requirement.

This concludes the proof.

5.4 Proof of Theorem 5.1.3

Proof of Theorem 5.1.3. Proceeding along the same lines as in Theorem 5.1.2, we prove that for any
drift N ∈ C∞(Ω;Rd) (regardless of whether or not it is the restriction of a radial drift N to the
domain Ω), we prove that, when condition (5.8) then z0 ≡ 0 is the only solution to −∆p− 2〈∇NN ,∇p〉 = f(p) in Ω ,

p = 0 on ∂Ω,
0 ≤ p ≤ 1,

(5.26)

and note that the main equation is equivalent to

−∇ ·
(
N2∇u

)
= f(p)N2.

Indeed, assuming there exists a non-trivial solution to (5.26) then from the mean value theorem, we
can write

f(p) = f ′(y)p

for some function y and, multiplying the equation by p and integrating by parts gives, using the
Rayleigh quotient formulation of λD1 (Ω):

λD1 (Ω)

ˆ
Ω

p2 ≤
ˆ

Ω

|∇p|2 ≤
ˆ

Ω

N2|∇p|2 ≤ ||f ′||L∞ ||N2||L∞
ˆ

Ω

p2,

which is contradiction unless p = z0.
Once we have uniqueness for (5.26) we follow, for any initial datum p0, the staircase procedure

explained in the proof of Theorem 5.1.2: we first set the static control u = 0, we drive the solution
to a C 0 neighbourhood of z0, then to a steady-state solution of (5.7) in this neighboorhood. Thus,
we only need to prove the existence of a path of steady states linking z0 to zθ. In order to prove that
such a path of steady states exists under assumption (A1), we use an energy method.

Let R > 0 be such that Ω ⊂ B(0;R). As in [163], we define, for any s ∈ [0, 1], ps as the unique
solution of  −∆ps − 2〈∇NN ,∇ps〉 = f(ps) , in B(0;RΩ)

ps is radial in B(0;R),
ps(0) = sθ.

(5.27)

We notice that the first equation in (5.27) rewrites as

−∇ · (N2∇ps) = f(ps)N.

196



CHAPTER 5. CONTROL OF SPATIALLY HETEROGENEOUS BISTABLE EQUATIONS

Since N is radially symmetric, this amounts to solving, in radial coordinates{
− 1
rd−1

(
rd−1N2p′s

)′
= f(ps)N

2 in [0;R] ,
ps(0) = sθ , p′s(0) = 0.

(5.28)

We prove the existence and uniqueness of solutions to (5.28) below but underline that the core difficulty
here is ensuring that

0 ≤ ps ≤ 1.

Claim 5.4.1 For any s ∈ [0, 1], there exists a unique solution to (5.28).

Claim 5.4.2 Under Assumption A1 the path is admissible: we have, for any s ∈ [0, 1],

0 ≤ ps ≤ 1. (5.29)

Furthermore, the path {ps}s∈[0,1] is continuous in the C 0 topology.

Proof of Claim 5.4.2. 1. Admissibility of the path under Assumption A1: We now prove Estimate
(5.29), which proves that the path of steady states is admissible (with respect to the constraints).
To do so, we introduce the energy functional

E1 : x 7→ 1

2
(p′s(x))2 + F (u(x)).

Differentiating E1 with respect to x, we get

E ′1(x) = (p′′s (x) + f(ps)) p
′
s(x)

=

(
−d− 1

r
− 2

N ′(r)

N(r)

)
(p′s(r))

2 from Equation (5.28)

≤ 0 from Hypothesis A1.

In particular, we have, for any s 6= 0, ps 6= 0 in (0;R): arguing by contradiction if, for x ∈ (0;R)
we had ps(x) = 0 then

E1(x) =
1

2
(p′s(x))

2 ≥ 0.

However, E1(0) = F (sθ) < 0, so that a contradiction follows. For the same reason, ps 6= 1 in
[0;R], for otherwise , if ps(x) = 1 at some x ∈ [0, 1] we would have

E1(x) ≥ F (1) > 0,

which is once again a contradiction. It follows that, for any s ∈ (0; 1],

0 ≤ ps ≤ 1,

as claimed. This concludes the proof of the admissibility of the path.

2. Continuity of the path: We want to prove the C 0 continuity of the path. Let s ∈ [0, 1] and let
{sk}k∈N ∈ [0, 1]N be a sequence such that

sk →
k→∞

s.

Let pk := psk . Our goal is to show that

pk
C 0(B(0;R))→
k→∞

ps. (5.30)
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We will use elliptic regularity to ensure that. We first derive a W 1,∞ estimate from the one-
dimensional equation and use it to derive a C 2,α estimate for the equation set in B(0;R).

By the admissibility of the path we have, for every k ∈ N,

0 ≤ pk ≤ 1.

Passing into radial coordinates and integrating Equation (5.28) between 0 and x gives

−p′k(x) =
1

N2(x)xd−1

ˆ x

0

f (pk(t))N2(t)td−1dt. (5.31)

From Equation (5.31) we see that {pk}k∈N is uniformly bounded in W 1,∞((0; 1)),
We now consider the Equation in B(0;R), i.e we work with (5.27). Since {pk}k∈N is uniformly
bounded in any C 0,α(B(0;R)) by the first step and since N ∈ C∞(B(0;R)), it follows from
Hölder elliptic regularity (see [80] that there exists M ∈ R such that, for every k ∈ N,

||pk||C 2,α(B(0;R)) ≤M

hence {pk}k∈N converges in C 1(B(0;R)), up to a subsequence, to p∞. Passing to the limit in
the weak formulation of the equation, we see that p∞ satisfies

−∇ ·
(
N2∇p∞

)
= f(p∞)N2.

Passing to the limit in
∀k ∈ N , pk(0) = sk

we get p∞(0) = s and, finally, since for every k ∈ N, pk is radial, i.e

∀k ∈ N ,∀i, j ∈ {1, . . . , d} , xj
∂pk
∂xi
− xi

∂pk
∂xj

= 0,

we can pass to the limit in this identity to obtain that p∞ is radial. In particular,

p∞ = ps

and so the continuity of the path holds.

To conclude the proof of Theorem 5.1.3, it suffices to apply the staircase method.

5.5 Proof of Theorem 5.1.4: Blocking phenomenon

Proof of Theorem 5.1.4. The proof that there exists Lσ(0) > 0 such that, for any L ≥ Lσ a non-
trivial solution to (5.10) exists is exactly the same as for the case without a drift a relies on an energy
argument, as is done in the proof of Lemma 5.1.

Such energy arguments fail however when trying to prove that (5.11) has a solution, since the
natural energy of the equation (5.11) satisfies, when N is the gaussian,

E [L, u] =

ˆ L

−L
e−

x2

σ (u′)2 −
ˆ L

−L
e−

x2

σ F (u) ≥ E [L, z1] with z1 ≡ 1,

because F (u) ≥ F (1).
To prove the existence of a non-trivial solution, we give a fine study of the phase portrait which will
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ensure that Lσ(1) is well-defined and that Lσ(1) > 0.
Let α ∈ (0; θ). Let uα,σ be the solution, in R, of

−u′′α,σ + 2 xσu
′
α,σ = f(uα,σ) ,

uα,σ(0) = α ,
u′α,σ(0) = 0.

(5.32)

We first note that uα,σ is an even function.
Our goal is to prove that

∃ασ ∈ [0; θ] such that
(
∃xασ > 0 , and uα,σ(xασ ) > 1 ,∀t ∈ (0;xασ ) , 1 > uα,σ(t) > 0.

)
. (5.33)

If this holds, choosing ασ and defining Lσ(1) := xασ automatically yields the desired conclusion.
Since we use in this proof energy arguments, let us define, for any x ∈ R+,

Eα(x) :=
1

2
(u′α,σ(x))2 + F (uα,σ(x))

and carry out some elementary computations.
First of all, we notice that

d

dx
Eα(x) =

2x

σ
u′α,σ(x)2

=
4x

σ
(Eα(x)− F (uα,σ(x))

≥ 4x

σ
(Eα(x)− F (1)) .

Proof of (5.33). We start with the following result:

Claim 5.5.1 For any σ, α > 0, there exists xα,σ,θ > 0 such that

uα,σ(xα,σ,θ) = θ , 0 < uα,σ < θ on (0;xα,σ,θ) , u
′
α,σ(xα,σ,θ) > 0 , u′α,σ > 0 on (0;xα,σ,θ).

Proof of Claim 5.5.1. Since uα,σ is continuous and since uα,σ(0) = α < θ, there exists δ > 0 such that

uα,σ([0; δ]) ⊂ [0; θ].

Let xα,σ,θ be defined as

xα,σ,θ := sup {δ > 0 , uα,σ([0; δ]) ⊂ [0; θ]} > 0.

Note that we might have xα,σ,θ = +∞, but we will exclude this case: we prove that uα,σ is increasing
on [0;xα,σ,θ] and, we show at the same time, that xα,σ,θ < +∞.

As a consequence, uα,σ(xα,σ,θ) = θ and 0 < uα,σ < θ on [0;xα,σ,θ].
uα,σ is increasing on [0;xα,σ,θ): On [0;xα,σ,θ), we have f(uα,σ) < 0, whence

u′′α,σ(x) >
2x

σ
u′α,σ(x). (5.34)

From the Grönwall inequality, it follows that, for every x ∈ (0;xα,σ,θ), u′α,σ(x) > 0. Thus, uα,σ ≥ α
on (0;xα,σ,θ) so

uα,σ(x) →
x→xα,σ,θ

θ.
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xα,σ,θ <∞: Let x ∈ (0;xα,σ,θ). For any x ∈ (x;xα,σ,θ) the Grönwall inequality applied to Equation
(5.34) gives

u′α,σ(x) ≥ e 2
σ (x2−x2)u′α,σ(x) > u′α,σ(x) > 0.

It follows that xα,σ,θ <∞ and so uα,σ(xα,σ,θ) = θ , u′α,σ(xα,σ,θ) > 0 and uα,σ(x) > 0 on (0;xα,σ,θ].

Claim 5.5.2 There holds
xα,σ,θ →

α→0 ,α>0
+∞.

Proof of Claim 5.5.2. This is a consequence of the Grönwall inequality applied to

ξ(x) :=
1

2
(u2
α,σ + u′2α,σ).

First of all note that we know from Claim 5.5.1 that uα,σ , u′α,σ > 0 on [0;xα,σ,θ]. Let L > 0 be defined
as

L := sup
x∈[0,1]

−f(t)

t
> 0.

Differentiating ξ gives

dξ

dx
= u′α,σ(x)

(
uα,σ(x) + u′′α,σ(x)

)
= u′α,σ(x)

(
uα,σ(x)− f(uα,σ) + 2

x

σ
u′α,σ(x)

)
≤ u′α,σ(x)

(
uα,σ(x) + Luα,σ(x) + 2

x

σ
u′α,σ(x)

)
≤ u′α,σ(x)uα,σ(x) (L+ 1) + 2

x

σ
u′α,σ(x)2

≤ L+ 1

2
(u′α,σ(x)2 + uα,σ(x)2) + 2

x

σ
(u′α,σ(x)2 + uα,σ(x)2)

≤ ξ(x)
(
L+ 1 + 4

x

σ

)
.

Since ξ(0) = 1
2α

2 we conclude from Grönwall’s lemma that

ξ(x) ≤ α2

2
e(L+1)x+2 x

2

σ .

As a consequence, at xα,σ,θ, we must have

θ ≤
√
ξ(xα,σ,θ) ≤

α√
2
e
L+1

2 xα,σ,θ+
x2
α,σ,θ
σ .

Thus, we have
xα,σ,θ →

α→0
+∞,

as claimed.

Claim 5.5.3 Let xα,σ,θ be defined as

xα,σ,θ := inf {x , x satisfies the conclusion of Claim 5.5.1} .

For any σ > 0, there exists α ∈ (0; θ) such that

u′α(x) →
x→∞

+∞ , u′α,σ(x) > 0 on [xα,σ,θ; +∞).
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Proof of Claim 5.5.3. We first notice that

d

dx
u′α,σ = −f(uα,σ) +

2x

σ
u′α,σ(x) =: g(x) (5.35)

The non-linearity changes sign at xα,σ,θ.

We note that g(xα,σ,θ) = u′α,σ(xα,σ,θ)) > 0. We want to ensure that the right-hand side of (5.35)
enjoys some monotonicity property.

To guarantee this, we first note that, on [0;xα,σ,θ],

d

dx
Eα(x) =

2x

σ
u′α,σ(x)2 ≥ 0

and so
Eα(x) ≥ Eα(0) = F (α).

Thus,
u′α,σ(xα,σ,θ) ≥

√
2 (F (α)− F (θ)).

We hence assume that α ≤ θ
2 , which implies F (α) ≥ F

(
θ
2

)
. This gives a uniform lower bound of the

form
u′α,σ(xα,σ,θ) ≥ c0 > 0.

Now, regarding the monotonicity of the right-hand side of (5.35), we note that

g′(x) = −u′α,σf ′(uα,σ) +
2

σ
u′α,σ +

2x

σ

(
2x

σ
u′α,σ − f(uα,σ)

)
= u′α,σ

(
−f ′(uα,σ) +

2

σ
+ 4

x2

σ2
− f(uα,σ)

u′α,σ

)
= u′α,σG(x, uα,σ, u

′
α,σ)

with

G(x, u, v) := −f ′(u) +
2

σ
+ 4

x2

σ2
− f(u)

v
.

We now want to ensure the following condition:

∀v ≥ c0 ,∀x ≥ xα,σ,θ , G(x, u, v) ≥ 0. (5.36)

Extending if need be f into a W 1,∞ function outside of [0, 1], we see that this condition is guaranteed
if, for any x ≥ xα,σ,θ we have

||f ′||L∞ +
||f ||L∞
c0

≤ 2

σ
+ 4

x2

σ2
. (5.37)

This is turn implies a condition on xα,σ,θ, and we need to guarantee that xα,σ,θ can be chosen arbitrarily
large as α→ 0. However this is a consequence of Claim 5.5.2.

As a consequence, coming back to (5.35), we see that, since g is locally positive because g(xα,σ,θ) =
u′α,σ(xα,σ,θ) > c0 we can define

A1 := sup{A ∈ R∗+ , u′α,σ ≥ u′α,σ(xα,σ,θ) in [xα,σ,θ;xα,σ,θ +A]} > 0

and we now show that
A1 = +∞.

We first note that g is non-decreasing on [xα,σ,θ;xα,σ,θ+A], by (5.36) and since g′ = u′α,σG(x, uα,σ, u
′
α,σ).
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That A1 =∞ is now an easy consequence of this fact: indeed, we have

d

dx
(u′α,σ) = g(x) ≥ g(xα,σ,θ) > 0

and so we have
u′α,σ(x) →

x→∞
+∞.

As a consequence of these two claims, there exists xα,σ,1 such that

uα(xα,σ,1) = 1 , uα,σ > 0 on [0;xα,σ,1].

This concludes the proof of (5.33).

This concludes the proof of the existence part of Theorem 5.1.4 by setting L(1)
σ = xα,σ,1. Let us

set
L∗σ(1) := inf{L > 0 , (5.11) has a non-trivial solution in [−L,L]} > 0.

We now prove that L∗σ(1) →
a→∞/0

∞/0. The analysis when σ →∞ is quite easy, while the case σ → 0

is harder to tackle.

Claim 5.5.4 It holds
L∗σ(1) →

σ→∞
+∞.

Proof of Claim 5.5.4. Let u1 be a non-trivial solution of (5.11). We can assume that u1 is a radially
symmetric solution, i.e u1(x) = u1(−x). Assume this is not the case, and set x1 such that

u1(x1) = minu1 < θ

by the maximum principle. We can assume without loss of generality that x1 > 0. Define

ϕ1 : [0;L] 3 x 7→ u1(x1)1[0;x1] + u1(x)

and extend it by parity to [−L,L]. Then ϕ1 is a radially symmetric supersolution of the equation, and
z0 ≡ 0 is a subsolution of the same equation. The constructive iterative procedure of the construction
of sub and super solutions gives the existence of a radially symmetric solution to the equation.

Thus we assume that u1 is even.
Let α := u1(0), we then have u1 = uα,σ, where uα,σ was constructed in the first part of the proof

of the Theorem.
We start by noticing that integrating Equationă (5.32) we have, for every x ∈ [0;L],

e−
x2

σ u′α,σ(x) =

ˆ x

0

(−f(uα,σ))(t)e−
t2

σ dt

≤
ˆ x

0

||f ||L∞

Thus, for any x > 0, we have
u′α,σ(x) ≤ e x

2

σ x||f ||L∞ .
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Integrating this inequality between 0 and L, we get

1 ≤ e
L2

σ L2||f ||L∞
2

.

As a consequence, L∗σ(1) can not stay bounded as σ →∞, which concludes the proof.

We now pass to the proof of the following Claim:

Claim 5.5.5 There holds
L∗σ(1) →

σ→0
0.

Proof of Claim 5.5.5. We argue by contradiction. Assume that there exists a sequence {σk}k∈N such
that

L∗σk(1) 6→
k→∞

0 , σk →
k→∞

0

Let
L := limk→∞L

∗
σk

(0) > 0.

Let α > 0 be fixed. From Claim 5.5.1 we know that, for every σ > 0, there exists xα,σ,θ > 0 such that

uα,σ(xα,σ,θ) = θ , uα,σ is increasing on [0;xα,σ,θ].

Let
uk := uα,σk , xk := xα,σk,θ.

We reach a contradiction by distinguishing two cases:

1. 0 is an accumulation point of {xk}: Up to a subsequence, we can assume that

xk →
k→∞

0.

From the mean value theorem, there exists {yk}k∈N such that

yk →
k→∞

0 , u′k(yk) =
θ − α
xk

→
k→∞

+∞.

This implies that u′k → +∞ "uniformly on [yk; yk+ε] for every ε small enough" as made precise
in the following statement:

∀ε > 0 ,∀M ∈ R∗+ ,∃kM ∈ N ,∀k ≥ k′ , u′k ≥M on [yk; yk + ε].

This is once again an application of the Grönwall Lemma: we have

d

dx
u′k ≥ −||f ||L∞ +

2x

σ
u′k.

This implies

∀t ≥ 0 , u′k(yk + t) ≥ (u′k(yk)− ||f ||L∞t) e
(yk+t)2−y2

k
σ ,

giving the desired conclusion.

Fixing ε = L
2 and using u′k(yk) →

k→∞
+∞ gives the desired conclusion.

It immediately follows that, for k large, enough, there exists xk,1 such that |xk,1 − yk| ≤ L
2 ,

uk(xk,1) = 1 and uk > 0 on (0;xk,1), which is obviously a contradiction.
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2. 0 is not an accumulation point of {xk}: Assuming 0 is not an accumulation point of {xk}k∈N, a
contradiction ensues in the following manner: we now that there thus exists a point x > 0 such
that

y ≤ limk→∞xk , lim
k→∞

uk(y) ≤ θ − δ

for some δ > 0. Then we note that, by integration of (5.32) we get

u′k(y) = e
y2

σ

ˆ y

0

e
−t2
σ (−f(uk(t))dt. (5.38)

Since y ∈ [0;xk] for every k large enough, we have α ≤ uk ≤ θ − δ for every t ∈ [0; y], so that

∃δ′ > 0 , f(uk) ≤ −δ′ on [0; y].

Plugging this in the integral formulation (5.38) gives the lower bound

u′k(y) ≥ δe
y2

σ

ˆ y

0

e−
t2

σ dt.

We estimate the right hand side using Laplace’s method:

ˆ y

0

e−
t2

σ dt ∼
σ→0

C
√
σ

for some C > 0, which immediately gives

u′k(y) →
k→∞

+∞.

We conclude as in the first case.

We use the same type of arguments to analyse the behaviour of L∗σ(0) as σ → 0. Obviously, when
σ →∞, L∗σ(0) goes to L∗, the threshold for existence of a non-trivial solution to (5.10) already studied
in [157]. We now prove that adding a gaussian drift yields the existence of a non-trivial drift with a
small variance σ leads to the existence of non-trivial solutions around 0, even when the length of the
interval is quite small.

Claim 5.5.6 There holds
L∗σ(0) →

σ→0
0.

Proof of Claim 5.5.6. Here we only need to prove

∀L > 0 ,∃σL > 0 ,∀σ ≤ σL , (5.10) has a non-trivial solution,

which is stronger that what we require.
To do so, we use an energy argument similar to that of the proof of Theorem 5.1.2: introduce, for

a given L > 0, the energy functional of Equation (5.10):

Eσ : W 1,2
0 ((−L,L]) 3 u 7→ 1

2

ˆ L

L

|∇u|2e− x
2

σ −
ˆ L

L

F (u)e−
x2

σ .

We now consider a smooth function ϕ ∈ C∞((−L;L)) with compact support and with

0 ≤ ϕ ≤ ϕ(0) = 1 , ϕ ≡ 1 on (−L
2

;
L

2
).
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We apply the Laplace method to
E σ[ϕ].

We first note that we immediately have, since ϕ is is a fixed test function with a zero derivative on a
neighborhood of 0, ˆ L

L

|∇u|2e− x
2

σ = o
σ→0

(
√
σ).

On the other hand, the right hand side satisfies, thanks to the Laplace methode,
ˆ L

L

F (u)e−
x2

σ ∼
σ→0

CF (1)
√
σ

where C > 0 is a positive constant. Thus, for σ small enough, we have

Eσ[ϕ] < 0,

hence the existence of a non-trivial solution for (5.10).

5.6 Conclusion

5.6.1 Obtaining the results for general coupled systems

As explained in Section 5.1.2 of the Introduction, the equations considered in this article correspond
to some scaling limits for more general coupled systems of reaction-diffusion equations, and it seems
interesting to investigate whether or not the results we obtained in this article might be generalized
to encompass the case of such general systems. As was explained in Section 5.1.2, these models can
be used to control populations of infected mosquitoes and arise in evolutionary dynamics. Obtaining
a finer understanding of the real underlying dynamics rather than the simplified version under scru-
tiny here seems, however, challenging. Indeed, although controllability results for linear systems of
equations exist (see for instance [123]), the non-linear case has not yet been completely studied.

However, given that, as explained in the Introduction, gene-flow models and spatially heterogen-
eous models are limits in a certain scaling of such systems, it would be interesting to see whether or
not our perturbation arguments, that were introduced to pass from the spatially homogeneous model
the the slowly varying one, could work to pass from this scaling limit to the whole system in a certain
regime.

5.6.2 Open problem: the minimal controllability time and
spatial heterogeneity

Let us now list a few questions which, to the best of our knowledge, are still open and seem worth
investigating.

• The qualitative properties of time optimal controls:

As suggested in [157] one might try to optimize the control with respect to the controllability
time. Indeed, its is known that, under constraints on the control, parabolic equations have a
minimal controllability time, see for instance [177, 154].

For constrained controllability it is known that there exists a minimal controllability time to
control, for instance, from 0 to θ (see [157]). We may try to optimize the control strategies so as
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to minimize the controllability time. In our case, that is, the spatially heterogeneous case, are
these controls of bang-bang type? Another qualitative question that is relevant in this context
is that of symmetry: in the one dimensional case, when working on an interval [−L,L], are
time-optimal controls symmetric? In the multi-dimensional case, when the domain Ω is a ball,
is it possible to prove radial symettry of time optimal controls?

• The influence of spatial heterogeneity on controllability time:

Adding a drift (which corresponds to the spatially heterogeneous model) modifies the controllab-
ility time. As we have seen, such heterogeneities might lead to a lack of controllability. However,
it is also suggested in the numerical experiments shown below that adding a drift might be be-
neficial for the controllability time. It might be interesting to consider the following question:
given L∞ and L1 bounds on the spatial heterogeneity N , which is the drift yielding the min-
imal controllability time? In other terms: how can we design the domain so as to minimize
the controllability time? In the simulation below, we thus considered the following optimization
problem: letting, for any drift N , T (N) be the minimal controllability time from 0 to θ of the
spatially heterogeneous equation (5.2) (with T (N) ∈ (0; +∞]), solve

inf
−M≤M≤1 ,

´L
−LN=0

T (N).

We obtain the following graph with M = 250 and L = 2.5:
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Figure 5.11 – Time optimal spatial heterogeneity.
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APPENDIX

5.A Proof of Lemma 5.1

Proof of Lemma 5.1. Let us first remark that (5.13) has a variational structure. Indeed, u is a solution
of

−∆u+ ε〈∇n ,∇u〉 = f(u) , u ∈W 1,2
0 (Ω)

if and only if
−∇ · (eεn∇u) = f(u)eεn , u ∈W 1,2

0 (Ω). (5.39)

Following the arguments of [21, Remark II.2], we introduce the energy functional associated with
(5.39): let

E1 : W 1,2
0 (Ω) 3 u 7→ 1

2

ˆ
Ω

eεn|∇u|2 −
ˆ

Ω

eεnF (u),

From standard arguments in the theory of sub and super solutions [21], if there exists v ∈ W 1,2
0 (Ω)

such that
E1(v) < 0 (5.40)

then there exists a non-trivial solution to (5.13). We now prove that there exists v ∈ W 1,2
0 (Ω) such

that (5.40) holds, by adapting the construction of [163]: let B(x; ρΩ) be one of the ball of maximum
radius inscribed in Ω. Up to a translation, we assume that x = 0.
Let δ > 0. We define vδ as follows

vδ :


x ∈ B(0; ρΩ − δ) 7→ 1,

x ∈ B(0; ρΩ)\B(0; ρΩ − δ) 7→ ρ2
Ω−||x||

2

ρ2
Ω−(ρΩ−δ)2 ,

x ∈ Ω\B(0; ρΩ) 7→ 0.

An explicit computation yields ˆ
Ω

|∇v|2 ∼δ→0 Cρ
d
Ω

for some constant C > 0, and ˆ
Ω

F (v) = F (1)ρdΩ + O
δ→0

(ρd−1
Ω ).

Hence, since n is bounded, the conclusion: as ρΩ →∞ ad δ → 0 the energy of v1 is negative.
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General presentation of the chapter: main difficulties
and methods

In this Chapter, which corresponds to [HMP19], we investigate a shape optimization problem: let D
be a box, and let for any Ω ⊂ D regualar enough uΩ be a solution of the semi-linear equation −∆uΩ + ρf(uΩ) = g in Ω ,

uΩ = 0 on ∂Ω.

The function g : D → R is fixed, f is regular, ρ > 0 is a small parameter; we consider the shape
optimization problem

inf
Ω⊂D ,|Ω|=V0

1

2

ˆ
Ω

|∇uΩ|2 −
ˆ

Ω

gu.

The main results can be summed up as follows:

• Existence properties:

The main problem here is that the functional is not energetic. Using a porous medium approx-
imation and a fine analysis of the witch function associated with the problem, we prove that,
under various monotonicity assumptions on the non-linearity f , or under sign assumptions on
g, the optimization problem has a solution. These results can be found in Theorem 6.2.1.

• (In)stability of minimizers:

We then analyse a particular case, that of a radially symmetric, non-increasing g. It is known that
Ω∗ = B(0; r∗) is the unique minimizer for ρ = 0. We then show, using comparison techniques,
that Ω∗ satisfies second order optimality conditions under certain assumptions on g for ρ small
enough while proving that, for g ≡ 1, we can construct a non-linearity f such that Ω∗ is not
a minimizer for any ρ > 0 small enough. The technique to prove this instability is new, and
uses a fine understanding of the second order shape derivatives. More specifically, we use the
(in)stability of Ω∗ as a minimizer for ρ = 0 to obtain our results. These results can be found in
Theorem 6.2.2.
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6.1 Introduction

6.1.1 Motivations and state of the art
Existence and characterization of domains minimizing or maximizing a given shape functional under
constraint is a long story. Such issues have been much studied over the last decades (see e.g. [36, 68,
92, 110, 93]). Recent progress has been made in understanding such issues for problems involving for
instance spectral functionals (see e.g. [95]).

The issue of minimizing the Dirichlet energy (in the linear case) with respect to the domain is
a basic and academical shape optimization problem under PDE constraint, which is by now well
understood. This problem reads:

Let d ∈ N∗ and D be a smooth compact set of Rd. Given g ∈ H−1(D) and m ≤ |D|,
minimize the Dirichlet energy

J(Ω) =
1

2

ˆ
Ω

|∇uΩ|2 − 〈g, uΩ〉H−1(Ω),W 1,2
0 (Ω),

where uΩ is the unique solution of the Dirichlet problem1 on Ω associated to g, among all
open bounded sets Ω ⊂ D of Lebesgue measure |Ω| ≤ m.

As such, this problem is not well-posed and it has been shown (see e.g. [88] or [93, Chap. 4] for a
survey of results about this problem) that optimal sets only exist within the class

Om = {Ω ∈ A(D), |Ω| ≤ m}, (6.1)

where A(D) denotes the class of quasi-open sets2 of D.
This article is motivated by the observation that, in general, the techniques used to prove existence,

regularity and even characterization of optimal shapes for this problem rely on the fact that the
functional is "energetic", in other words that the PDE constraint can be handled by noting that the
full shape optimization problem rewrites

min
Ω∈A(D)
|Ω|≤m

min
u∈W 1,2

0 (D)

{
1

2

ˆ
Ω

|∇u|2 − 〈g, u〉H−1(Ω),W 1,2
0 (Ω)

}
.

In this article, we introduce and investigate a prototypal problem close to the standard “Dirichlet
energy shape minimization”, involving a nonlinear differential operator. The questions we wish to
study here concern existence of optimal shapes and stability issues for “non energetic” models. We
note that the literature regarding existence and qualitative properties for non-energetic, non-linear
optimization problems is scarce. We nevertheless mention [MNP19b], where existence results are
established in certain asymptotic regimes for a shape optimization problem arising in population
dynamics.

Since our aim is to investigate the optimization problems in the broadest classes of measurable
domains, a volume constraint, known to lead to potential difficulties due to lack of compactness for
standard topologies, is considered.

1in other words

uΩ = argmin
u∈W1,2

0 (D)

{
1

2

ˆ
Ω
|∇u|2 − 〈g, u〉

H−1(Ω),W
1,2
0 (Ω)

}
.

2Recall that Ω ⊂ D is said quasi-open whenever there exists a non-increasing sequence (ωn)n∈N such that

∀n ∈ N, Ω ∪ ωn is open and lim
n→+∞

cap(ωn) = 0
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In the close version of the Dirichlet problem we will deal with, the linear PDE solved by uΩ is
changed into a nonlinear one but the functional to minimize remains the same. Since, in such a
case, the problem is not "energetic" anymore (in the sense made precise above), the PDE constraint
cannot be incorporated into the shape functional. This calls for new tools to be developed in order to
overcome this difficulty. Among others, we are interested in the following issues:

• Existence: is the resulting shape optimization problem well-posed?

• Stability of optimal sets: given a minimizer Ω∗0 for the Dirichlet energy in the linear case, is
Ω∗0 still a minimizer when considering a “small enough” non-linear perturbation of the problem?

This article is organized as follows: the main results, related to the existence of optimal shapes
for Problem (6.3) and the criticality/stability of the ball are gathered in Section 6.2. Section 6.3 is
dedicated to the proofs of the existence results whereas Section 6.4 is dedicated to the proofs of the
stability results.

6.1.2 The shape optimization problem
In what follows, we consider a modified version of the problem described above, where the involved
PDE constraint is now nonlinear.

Let d ∈ N∗, D a compact set (i.e the closure of a bounded open set) of Rd, g ∈ L2(D) and
f ∈ W 1,∞(R). For a small enough positive parameter ρ, let uΩ ∈ W 1,2

0 (Ω) be the unique
solution of the problem {

−∆uρ,Ω + ρf(uρ,Ω) = g in Ω

uρ,Ω ∈W 1,2
0 (Ω).

(6.2)

For m ≤ |D|, solve the problem:

inf
Ω∈Om

Jρ(Ω) where Jρ(Ω) =
1

2

ˆ
Ω

|∇uρ,Ω|2 −
ˆ

Ω

guρ,Ω, (6.3)

where Om is defined in (6.1).

In this problem, the smallness assumption on the parameter ρ guarantees the well-posedness of the
PDE problem (6.2) for generic choices of nonlinearities f .

Lemma 6.1 There exists ρ > 0 such that, for any Ω ∈ Om, for any ρ ∈ [0, ρ), Equation (6.2),
understood through its variational formulation, has a unique solution in W 1,2

0 (Ω).

This follows from a simple fixed-point argument: let λ1(Ω) be the first eigenvalue of the Dirichlet
Laplacian on Ω. We note that the operator

T : W 1,2
0 (Ω) −→ W 1,2

0 (Ω)
u 7−→ wΩ,

where wΩ is the unique solution of{
−∆w − g = −ρf(u) in Ω

w ∈W 1,2
0 (Ω),

is Lipschitz with Lipschitz constant CT (Ω) such that CT (Ω) ≤ ρ 1
λ1(Ω)‖f‖W 1,∞ . By the monotonicity

of λ1 with respect to domain inclusion (see [92]), we have, for every Ω ∈ Om, λ1(D) ≤ λ1(Ω), so that
CT (Ω) ≤ ρ‖f‖W1,∞

λ1(D) .
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6.2 Main results of the paper

6.2.1 Existence results

We state hereafter a partial existence result inherited from the linear case. Indeed, we will exploit a
monotonicity property of the shape functional Jρ together with its lower-semi continuity for the γ-
convergence to apply the classical theorem by Buttazzo-DalMaso (see Subsection 6.3.1). Our approach
takes advantage of the analysis of a relaxed formulation of Problem (6.3). To introduce it, let us first
consider a given box D ⊂ Rn (i.e a smooth, compact subset of Rn) such that |D| > V0.

In the minimization problem (6.3), let us identify a shape Ω with its characteristic function 1Ω.
This leads to introducing the “relaxation” set

Ôm =

{
a ∈ L∞(D, [0, 1]) such that

ˆ
D

a ≤ m
}

For a given positive relaxation parameter M , we define the (relaxed) functional ĴM,ρ by

ĴM,ρ(a) =
1

2

ˆ
D

|∇uM,ρ,a|2 +
M

2

ˆ
Ω

(1− a)u2
M,ρ,a −

ˆ
Ω

guρ,Ω, (6.4)

for every a ∈ Ôm, where uM,ρ,a ∈W 1,2
0 (D) denotes the unique solution of the non-linear problem{

−∆uM,ρ,a +M(1− a)uM,ρ,a + ρf(uM,ρ,a) = g in D
uM,ρ,a ∈W 1,2

0 (D).
(6.5)

Our existence result involves a careful asymptotic analysis of uM,ρ,a as ρ→ 0 to derive a monotonicity
property.

Standard elliptic estimates entail that, for every M > 0 and a ∈ Ôm, one has uM,ρ,a ∈ C 0(Ω).

Remark 6.1 Such an approximation of uρ,Ω is rather standard in the framework of fictitious do-
mains. The introduction of the term M(1 − a) in the PDE has an interpretation in terms of porous
materials (see e.g. [72]) and it may be expected that uM,ρ,a converges in some sense to uρ,Ω as
M → +∞ and whenever a = 1Ω. This will be confirmed in the analysis to follow.

Roughly speaking, the existence result stated in what follows requires the right-hand side of equa-
tion (6.2) to have a constant sign. To write the hypothesis down, we need a few notations related to
the relaxed problem (6.5), which is the purpose of the next lemma.

Lemma 6.2 Let m ∈ [0, |D|], a ∈ Ôm and g ∈ L2(D) be nonnegative. There exists a positive constant
Nm,g such that

∀a ∈ Ôm, ∀M > 0, ∀ρ ∈ [0, ρ), ‖uM,ρ,a‖∞ ≤ Nm,g, (6.6)

where ρ is defined in Lemma 6.1, uM,ρ,a denotes the unique solution to (6.5). In what follows, Nm,g
will denote the optimal constant in the inequality above, namely

Nm,g = sup{‖uM,ρ,a‖L∞(Ω), a ∈ Ôm,M > 0, ρ ∈ [0, ρ)}.

This follows from standard arguments postponed to Section 6.A.
We now state the main results of this section. Let us introduce the assumptions we will consider

hereafter:

(H1) There exist two positive numbers g0, g1 such that g0 < g1 and g0 ≤ g(·) ≤ g1 a.e. in D.
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(H2) One has f ∈ W 1,∞(R) ∩D2, where D2 is the set of twice differentiable functions (with second
derivatives not necessarily continuous). Moreover, f(0) ≤ 0 and there exists δ > 0 such that the
mapping x 7→ xf(x) is non-decreasing on [0, Nm,g + δ] where Nm,g is given by Lemma 6.2.

Theorem 6.2.1 Let us assume that one of the following assumptions holds true:

• g or −g satisfies the assumption (H1);

• g is non-negative and the function f satisfies the assumption (H2) or g is non-positive and the
function −f satisfies the assumption (H2);

Then, there exists a positive constant ρ0 = ρ0(D, f(0), ‖f‖W 1,∞) such that the shape optimization
problem (6.3) has a solution Ω∗ for every ρ ∈ (0, ρ0).

Remark 6.2 The proof of Theorem 6.2.1 rests upon a monotonicity property of the relaxed functional
ĴM,ρ given by (6.4). This is the first ingredient that subsequently allows the well-known existence result
of Buttazzo and Dal-Maso to be applied.

It is natural to wonder whether or not it would be possible to obtain this result in a more direct way,
for instance by using shape derivatives. We claim that such an approach would require to consider
domains Ω having a smooth boundary so that the shape derivative (in the sense of Hadamard) of Jρ at
Ω in direction V , where V denotes an adequate vector field, makes sense. This relaxed version enables
us to encompass less regular domains.

6.2.2 Stability results

In what follows, we will work in R2. B∗ denotes the centered ball with radius R > 0 such that B∗ ∈ Om
and we introduce S∗ = ∂B∗. The notation ν stands for the outward unit vector on S∗, in other words
ν(x) = x/|x| for all x ∈ S∗.

In this section, we will discuss the local optimality of the ball for small nonlinearities. We will
in particular highlight that the local optimality of the ball can be either preserved or lost depending
on the choice of the right-hand side g. Indeed, if ρ = 0 and if g is radially symmetric and non-
increasing, the Schwarz rearrangement3 ensures that, for any Ω ∈ Om, J0(Ω) ≥ J0(B∗). Without such
assumptions, not much is known about the qualitative properties of the optimizers.

According to the considerations above, we will assume in the whole section that

(H3) g is a non-increasing, radially symmetric and non-negative function in L2(B∗) and f is a given
C 2 non-linearity.

Notice that the analysis to follow can be generalized to sign-changing g. Here, this assumption allows
us to avoid distinguishing between the cases where the signs of normal derivatives on S∗ are positive
or negative. For the sake of simplicity, for every ρ ≥ 0, we will call uρ the solution of the PDE{

−∆uρ + ρf(uρ) = g in B∗
uρ ∈W 1,2

0 (B∗) on ∂B∗ = S∗. (6.7)

Proving a full stationarity result4 is too intricate to tackle, since we do not know the minimizers
topology. Hereafter, we investigate the local stability of the ball B∗: we will prove that the ball is
always a critical point, and show that we obtain different stability results, related to the non-negativity
of the second shape derivative of the Lagrangian, depending on f and g.

3see e.g. [108] for an introduction to the Schwarz rearrangement.
4in other words, proving that for any ρ ≤ ρ∗ B∗ is the unique minimizer of Jρ in Om
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To compute the first and second order shape derivatives, it is convenient to consider vector fields
V ∈ W 3,∞(R2) and to introduce, for a given admissible vector field V (i.e such that, for t small
enough, (Id +tV )B∗ ∈ Om), the mapping

fV : t 7→ Jρ ((Id +tV )B∗) .

The first (resp. second) order shape derivative of Jρ in the direction V is defined as

J ′ρ(B∗)[V ] := f ′V (0) , (resp. J ′′ρ (B∗)[V, V ] := f ′′V (0)).

To enforce the volume constraint |Ω| = m, we work with the unconstrained functional

LΛρ : Ω 7→ Jρ(Ω)− Λρ (Vol(Ω)−m) ,

where Vol denotes the Lebesgue measure in R2 and Λρ denotes a Lagrange mulltiplier associated with
the volume constraint. Recall that, for every domain Ω with a C 2 boundary and every vector field in
W 3,∞(R2,R2), we have

Vol′(Ω)[V ] =

ˆ
∂Ω

V · ν and Vol′′(Ω)[V, V ] =

ˆ
∂Ω

H(V · ν)2,

where H stands for the mean curvature of ∂Ω. The local first and second order optimality conditions
for Problem (6.3) read as follow:

L′Λρ(Ω)[V ] = 0

L′′Λρ(Ω)[V, V ] ≥ 0

}
for every V ∈W 3,∞(R2,R2) such that

ˆ
S∗
V · ν = 0.

For further informations about shape derivatives, we refer for instance to [93, Chapitre 5]. Let us
state the main result of this section. In what follows, ρ is chosen small enough so that Equation (6.2)
has a unique solution.

Theorem 6.2.2 Let f and g satisfying the assumption (H3). Let V ∈W 3,∞(R2,R2) denote a vector
field such that

´
S∗ V · ν = 0.

1. (Shape criticality) B∗ is a critical shape, in other words J ′ρ(B∗)[V ] = 0.

2. (Shape stability) Assume that

πR2g(R) ≤
ˆ
B∗
g and 0 <

ˆ
B∗
g, (6.8)

where R denotes the radius of the ball B∗. Let Λρ be the Lagrange multiplier associated wit the
volume constraint. There exists ρ > 0 and C > 0 such that, for any ρ ≤ ρ,

(Jρ − Λρ Vol)′′(B∗)[V, V ] ≥ C‖V · ν‖2L2(Ω). (6.9)

3. (Shape instability) Assume that g is the constant function equal to 1 and that f is a C 1 non-
negative function such that f ′ < −1 on [0, 2‖u0‖L∞), where u0 is the solution of (6.2) with
ρ = 0 and Ω = B∗. Then, the second order optimality conditions are not fulfilled on B∗: there
exists ρ > 0 and V̂ ∈W 3,∞(R2,R2) such that

´
S∗ V̂ · ν = 0 and, for any ρ ≤ ρ,

(Jρ − Λρ Vol)′′(B∗)[V̂, V̂ ] < 0.

Remark 6.3 Let us comment on the strategy of proof. It is known that estimates of the kind (6.9)
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can lead to local quantitative inequalities [64]. We first establish (6.9) in the case ρ = 0, and then
extend it to small parameters ρ with the help of a perturbation argument. Assumptions of the type
(6.8) are fairly well-known, and amount to requiring that B∗ is a stable shape minimizer [65, 94].
Finally, the instability result rests upon the following observation: if g = 1 and if V1 is the vector field
given by V (r cos(θ), r sin(θ)) = cos(θ)(r cos(θ), r sin(θ)), then one has

(J ′′0 − Λ0 Vol)′′(B∗)[V, V ] = 0

while higher order modes are stable [65, 94]. It therefore seems natural to consider such perturbations
when dealing with for small parameters ρ.
It should also be noted that our proof uses a comparison principle, which shortens many otherwise
lengthy computations.

6.3 Proof of Theorem 6.2.1

6.3.1 General outline of the proof
The proof of Theorem 6.2.1 rests upon an adaptation of the standard existence result by Buttazzo-
DalMaso (see either the original article [38] or [93, Thm 4.7.6] for a proof), based on the notion of
γ-convergence, that we recall below.

Definition 6.3.1 For any quasi-open set Ω ∈ Om, let RΩ be the resolvent of the Laplace operator
on Ω. We say that a sequence of quasi-open sets (Ωk)k∈N in Om γ-converges to Ω ∈ Om if, for any
` ∈ H−1(D), (RΩk(`))k∈N converges in W 1,2

0 (D) to RΩ(`).

The aforementioned existence theorem reads as follows.
theorem[Buttazzo-DalMaso] Let J : Om → R be a shape functional satisfying the two following

assumptions:

1. (monotonicity) For every Ω1,Ω2 ∈ Om, Ω1 ⊆ Ω2 ⇒ J(Ω2) ≤ J(Ω1).

2. (γ-continuity) J is lover semi-continuous for the γ-convergence.

Then the shape optimization problem
inf

Ω∈Om
J(Ω)

has a solution. theorem
As is customary when using this result, the lower semi-continuity for the γ-convergence is valid

regardless of any sign assumptions on g or of any additional hypothesis on f . This is the content of
the next result, whose proof is standard and thus, postponed to Appendix 6.B.

Proposition 6.1 Let f ∈W 1,∞(R) and ρ ≥ 0. The functional Jρ is lower semi-continuous for the
γ-convergence.

It remains hence to investigate the monotonicity of Jρ. Our approach uses a relaxed version of Jρ,
namely the functional ĴM,ρ defined by (6.4). More precisely, we will prove under suitable assumptions
that

∀M ≥ 0 ,∀a1, a2 ∈ Ôm , a1 ≤ a2 =⇒ ĴM,ρ(a1) ≥ ĴM,ρ(a2). (6.10)

The following result, whose proof is postponed to Appendix 6.C for the sake of clarity, allows us to
make the link between ĴM,ρ and Jρ.

Lemma 6.3 Let Ω ∈ Om. There exists (Mn)n∈N such that

Mn → +∞ and lim
n→+∞

ĴMn,ρ(1Ω) = Jρ(Ω).
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Setting then a1 = 1Ω1
, a2 = 1Ω2

, M = Mn, where Mn is chosen as in the statement of Lemma
6.3, and passing to the limit in (6.10) as n→∞ gives the monotonicity of Jρ.

In the next sections, we will concentrate on showing the monotonicity property (6.10). To this aim,
we will carefully analyze the so-called “switching function” (representing the gradient of the functional
ĴM,ρ) as the parameter M is large enough.

6.3.2 Structure of the switching function

It is notable that, in this section, we will not make any assumption on g or f . LetM > 0. Considering
the following relaxed version of Problem (6.3)

inf
a∈Ôm

ĴM,ρ(a), (6.11)

it is convenient to introduce the set of admissible perturbations in view of deriving first order optimality
conditions.

Definition 6.3.2 : tangent cone, see e.g. [55] Let a∗ ∈M and Ta∗ be the tangent cone to the
set Ôm at a∗. The cone Ta∗ is the set of functions h ∈ L∞(D) such that, for any sequence of positive
real numbers εn decreasing to 0, there exists a sequence of functions hn ∈ L∞(D) converging to h as
n→ +∞, and a∗ + εnhn ∈ Om for every n ∈ N.

In what follows, for any a ∈ Ôm, any element h of the tangent cone Ta will be called an admissible
direction.

Lemma 6.4 : Differential of ĴM,ρ Let a ∈ Ôm and h ∈ Ta. Let vM,ρ,a be the unique solution of{
−∆vM,ρ,a +M(1− a)vM,ρ,a + ρf ′(uM,ρ,a)vM,ρ,a = ρf(uM,a) in D
vM,ρ,a ∈W 1,2

0 (D).
(6.12)

Then, ĴM,ρ is differentiable in the sense of Fréchet at a in the direction h and its differential reads
〈dĴM,ρ(a), h〉 =

´
D
hΨa, where Ψa is the so-called “switching function” defined by

Ψa = −M
(
vM,ρ,a +

uM,ρ,a

2

)
uM,ρ,a.

Proof of Lemma 6.4. The Fréchet-differentiability of ĴM,ρ and of the mapping Om 3 a 7→ uM,ρ,a ∈
W 1,2

0 (D) at m∗ is standard (see e.g. [93, Chap. 8]). Let us consider an admissible perturbation h of
a and let u̇M,ρ,a be the differential of uM,ρ,a at a in direction h. One has

〈dĴM,ρ(a), h〉 =

ˆ
D

∇uM,ρ,a · ∇u̇M,ρ,a +M

ˆ
D

(1− a)uM,ρ,au̇M,ρ,a −
M

2

ˆ
D

hu2
M,ρ,a

−〈g, u̇M,ρ,a〉H−1(Ω),W 1,2
0 (Ω),

where u̇M,ρ,a solves the system{
−∆u̇M,ρ,a +M(1− a)u̇+ ρf ′(uM,ρ,a)u̇M,ρ,a = MhuM,a in D
u̇M,ρ,a ∈W 1,2

0 (D).
(6.13)

Let us multiply the main equation of (6.5) by u̇M,ρ,a and then integrate by parts. We get
ˆ
D

∇uM,ρ,a · ∇u̇M,ρ,a +M

ˆ
D

(1− a)uM,ρ,au̇M,ρ,a + ρ

ˆ
D

f(uM,ρ,a)u̇M,ρ,a = 〈g, u̇M,ρ,a〉H−1(Ω),W 1,2
0 (Ω)

218



CHAPTER 6. A NON-LINEAR SHAPE OPTIMIZATION PROBLEM

and therefore,

〈dĴM,ρ(a), h〉 = −M
2

ˆ
D

hu2
M,ρ,a∗ − ρ

ˆ
D

f(uM,ρ,a∗)u̇M,ρ,a∗

Let us multiply the main equation of (6.13) by vM,ρ,a and then integrate by parts. We get
ˆ
D

∇vM,ρ,a · ∇u̇M,ρ,a +M

ˆ
D

(1− a)vM,ρ,au̇M,ρ,a + ρ

ˆ
D

f ′(uM,a)u̇M,avM,ρ,a = M

ˆ
D

huM,avM,ρ,a.

Similarly, multiplying the main equation of (6.12) by u̇M,ρ,a and then integrating by parts yields
ˆ
D

∇vM,ρ,a ·∇u̇M,ρ,a+M

ˆ
D

(1−a)vM,ρ,au̇M,ρ,a+ρ

ˆ
D

f ′(uM,ρ,a)u̇M,ρ,avM,ρ,a = ρ

ˆ
D

f(uM,ρ,a)u̇M,ρ,a.

Combining the two relations above leads to

ρ

ˆ
D

f(uM,ρ,a)u̇M,ρ,a = M

ˆ
D

huM,ρ,avM,ρ,a.

Plugging this relation into the expression of 〈dĴM,ρ(a), h〉 above yields the expected conclusion.

6.3.3 Proof that (6.10) holds true whenever ρ is small enough

Let us consider each set of assumptions separately.

Existence under the first assumption: g or −g satisfies the assumption (H1).

According to the discussion carried out in Section 6.3.1, proving Theorem 6.2.1 boils down to
proving monotonicity properties for the functional ĴM,ρ whenever ρ is small enough, which is the
purpose of the next result.

Lemma 6.5 Let a1 and a2 be two elements of Ôm such that a1 ≤ a2 a.e. in D. If g or −g satisfies
the assumption (H1), then there exists ρ1 = ρ1(D, g0, g1, ‖f‖W 1,∞) > 0 such that

ρ ∈ (0, ρ1)⇒ ĴM,ρ(a1) ≥ ĴM,ρ(a2).

Proof of Lemma 6.5. Assume without loss of generality that g0 > 0, the case g1 < 0 being easily
inferred by modifying all the signs in the proof below. Then, one has

−∆uM,ρ,a +M(1− a)uM,ρ,a = g − ρf(uM,ρ,a) ≥ 0 in D,

whenever ρ ∈ (0, g0/‖f‖∞), and therefore, one has uM,ρ,a ≥ 0 by the comparison principle.
Similarly, notice that

−∆uM,ρ,a ≤ g1 + ρ‖f‖∞ in D,

which implies that uM,ρ,a ≤ (g1 + ρ‖f‖∞)wD were wD is the torsion function of D. By the classical

Talenti’s estimate of the torsion function [171], we have ‖wD‖∞ ≤ 1
2d

(
|D|
ωd

)2/d

(where ωd is the volume
of the unit ball). Thus

‖uM,ρ,a‖∞ ≤ (g1 + ρ‖f‖∞)
1

2d

(
|D|
ωd

)2/d

:= C(g0, ρ, ‖f‖∞, D).
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Setting UM,ρ,a = 1
2uM,ρ,a+vM,ρ,a, elementary computations show that UM,ρ,a solves the problem{

−∆UM,ρ,a + (M(1− a) + ρf ′(uM,ρ,a))UM,ρ,a = ρ
2 (f(uM,ρ,a) + uM,ρ,af

′(uM,ρ,a)) + g
2 in D,

UM,ρ,a = 0 on ∂D.
(6.14)

Lemma 6.6 Let us choose ρ1 in such a way that

ρ1(‖f‖∞ + C(g0,
1

2
, ‖f‖∞, D)‖f ′‖∞) < g0, and ρ1‖f ′‖∞ ≤

λ1(D)

2
, (6.15)

where λ1(D) denotes the first eigenvalue of the Dirichlet-Laplacian operator on D. For every ρ ∈
[0, ρ1), UM,ρ,a is non-negative in D.

Proof of Lemma 6.6. The result follows immediately from the generalized maximum principle which
claims that if a function v satisfies

−∆v + a(·)v ≥ 0 with a(·) > −λ1(D) (6.16)

and v = 0 on ∂D, then v ≥ 0 a.e. in D. Here we have chosen ρ1 in such a way that

M(1− a) + ρf ′(uM,ρ,a) ≥ −λ1(D)

and the right-hand side of (6.14) is non-negative which yields the result.

Coming back to the proof of Lemma 6.5, consider h = a2 − a1. According to the mean value
theorem, there exists ε ∈ (0, 1) such that

ĴM,ρ(a2)− ĴM,ρ(a1) = 〈dĴM,ρ(a1 + εh), h〉 = −M
ˆ
D

huM,a1+εhUM,a1+εh ≤ 0,

according to the combination of the analysis above with Lemma 6.4. The expected conclusion follows.

Existence under the second assumption: g is non-negative and the function f satisfies the
assumption (H2) or g is non-positive and the function −f satisfies the assumption (H2).

The main difference with the previous case is that g might possibly be zero. Deriving the conclusion
is therefore trickier and relies on a careful asymptotic analysis of the solution uM,ρ,a as ρ→ 0.

Proposition 6.2 There exists C = C(D, ‖f‖L∞(Ω)) > 0 such that, for any M ∈ R+, any a ∈ Ôm
such that a ≥ 0 a.e. in D, there holds

‖uM,ρ,a − uM,0,a‖L∞(D) ≤ Cρ. (6.17)

Proof. Let us set zρ = uM,ρ,a − uM,0,a for any ρ > 0. A direct computation yields that zρ satisfies

−∆zρ +M(1− a)zρ = −ρf(uM,ρ,a).

By comparison with the torsion function wD of D, this implies

‖zρ‖∞ ≤ ρ‖f‖∞‖wD‖∞

and the result follows, with a constant C explicit by Talenti’s Theorem like in the proof of Lemma 6.5.
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Let us consider the switching function Ψ = −MUM,ρ,auM,ρ,a where uM,ρ,a and UM,ρ,a respectively
solve (6.5) and (6.14), and we will prove that both uM,ρ,a and UM,ρ,a are non-negative, so that one
can conclude similarly to the previous case.

Lemma 6.7 The functions uM,ρ,a and UM,ρ,a non-negative whenever ρ is small enough.

Proof. Let us choose ρ such that ρ‖f‖∞ < λ1(D). Since uM,ρ,a satisfies

−∆uM,ρ,a +M(1− a)uM,ρ,a + ρf(uM,ρ,a) ≥ 0

the non-negativity of uM,ρ,a is a consequence of the generalized maximum principle (6.16). Indeed,
for ρ small enough, we have

M(1− a) + ρf(uM,ρ,a) > −λ1(D).

Since UM,ρ,a satisfies (6.14), the proof follows the same lines assuming the ρ‖f ′‖∞ < λ1(D) and
using the assumption (H2) to get non-negativity of the right-hand side. By mimicking the reasoning
done at the end of the first case, one gets that (6.10) is true if ρ is small enough.

Thus, in both cases, the monotonicity of the functional is established, so that the theorem of
Buttazzo and Dal Maso applies.

6.4 Proof of Theorem 6.2.2

Note first that the functional Jρ is shape differentiable, which follows from standard arguments, see
e.g. [93, Chapitre 5].
Our proof of Theorem 6.2.2 is divided into two steps: after proving the criticality of B∗ for ρ small
enough, we compute the second order shape derivative of the Lagrangian associated with the problem
at the ball. Next, we establish that, under Assumption (6.8), there exists a positive constant C0 such
that, for any admissible V , one has

(J0 − Λ0 Vol)′′(B∗)[V, V ] ≥ C0‖V · ν‖2L2(Ω). (6.18)

Finally, we prove that, for any radially symmetric, non-increasing non-negative g, there exists M ∈ R
such that, for any admissible V , one has

(Jρ − Λρ Vol)′′(B∗)[V, V ] ≥ (J0 − Λ0 Vol)′′(B∗)[V, V ]−Mρ‖V · ν‖2L2(Ω). (6.19)

Local shape minimality of B∗ for ρ small enough can then be inferred in a straightforward way.
If V is an admissible vector field, we will denote by u′ρ,V and u′′ρ,V the first and second order

(eulerian) shape derivatives of uρ at B∗ with respect to V .

6.4.1 Preliminary material
Lemma 6.8 Under the assumptions of Theorem 6.2.2, i.e when g is radially symmetric and non-
increasing function, for ρ small enough, the function uρ is radially symmetric nonincreasing. We
write it uρ = ϕρ (| · |). Furthermore, if ρ = 0, one has

−∂u0

∂ν
≥ R

2
g(R).

Proof of Lemma 6.8. The fact that uρ is a radially symmetric nonincreasing function follows from a
simple application of the Schwarz rearrangement. Integrating the equation on the ball B∗ yields

−
ˆ
B∗

∆u0 = −
ˆ
∂B∗

∂u0

∂ν
= −2π

∂u0

∂ν
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on the one-hand, while using the fact that g is decreasing:

−
ˆ
B∗

∆u0 =

ˆ
B∗
g ≥ 2πg(R)

ˆ R

0

rdr = πRg(R)

By differentiating the main equation and the boundary conditions (see e.g. [93, Chapitre 5]), we
get that the functions u′ρ,V and u′′ρ,V satisfy{ −∆u′ρ,V + ρf ′ (uρ)u

′
ρ,V = 0 in B∗

u′ρ,V = −∂uρ∂ν V · ν on ∂B∗ (6.20)

and {
−∆u′′ρ,V + ρf ′ (uρ)u

′′
ρ,V + ρf ′′(uρ)

(
u′ρ,V

)2
= 0 in B∗

u′′ρ,V = −2
∂u′ρ,V
∂ν V · ν − (V · ν)2 ∂

2uρ
∂ν2 on ∂B∗.

(6.21)

6.4.2 Proof of the shape criticality of the ball

Proving the shape criticality of the ball boils down to showing the existence of a Lagrange multiplier
Λρ ∈ R such that for every admissible vector field V ∈W 3,∞(R2,R2), one has

(Jρ − Λρ Vol)′(B∗)[V ] = 0 (6.22)

Standard computations (see e.g. [93, chapitre 5]) yield

J ′ρ(B∗)[V ] =

ˆ
B∗
〈∇uρ,∇u′ρ,V 〉 −

ˆ
B∗
gu′ρ,V +

ˆ
S∗

1

2
|∇uρ|2V · ν

=

ˆ
S∗
u′ρ,V

∂uρ
∂ν
− ρ

ˆ
B∗
u′ρ,V f(uρ) +

ˆ
S∗

1

2
|∇uρ|2V · ν

= −
ˆ
S∗

(
∂uρ
∂ν

)2

V · ν +

ˆ
S∗

1

2
|∇uρ|2V · ν − ρ

ˆ
B∗
u′ρ,V f(uρ)

= −1

2

ˆ
S∗
|∇uρ|2V · ν − ρ

ˆ
B∗
u′ρ,V f(uρ).

We introduce the adjoint state pρ as the unique solution of{
−∆pρ + ρpρf

′(uρ) + ρf(uρ) = 0 in B∗
pρ = 0 on S∗. (6.23)

Since uρ is radially symmetric, so is pρ. Multiplying the main equation of (6.23) by u′ρ,V and integ-
rating by parts yields

−ρ
ˆ
B∗
u′ρ,V f(uρ) =

ˆ
S∗

∂pρ
∂ν

∂uρ
∂ν

V · ν,

and finally

J ′ρ(B∗)[V ] =

ˆ
S∗

(
∂pρ
∂ν

∂uρ
∂ν
− 1

2

(
∂uρ
∂ν

)2
)
V · ν.
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Observe that ∂pρ
∂ν and ∂uρ

∂ν are constant on S∗since uρ and pρ are radially symmetric. Introduce the
real number Λρ given by

Λρ =
∂pρ
∂ν

∂uρ
∂ν
− 1

2

(
∂uρ
∂ν

)2
∣∣∣∣∣
S∗
, (6.24)

we get that (6.22) is satisfied, whence the result.

In what follows, we will exploit the fact that the adjoint state is radially symmetric. In the
following definition, we sum-up the notations we will use in what follows.

Definition 6.4.1 Recall that ϕρ (defined in Lemma 6.8) is such that

uρ(x) = ϕρ(|x|), ∀x ∈ B∗.

Since pρ is also radially symmetric, introduce φρ such that

pρ(x) = φρ(|x|), ∀x ∈ B∗.

6.4.3 Second order optimality conditions

Let us focus on the second and third points of Theorem 6.2.2, especially on (6.9). Since B∗ is a
critical shape, it is enough to work with normal vector fields, in other words vector fields V such that
V = (V · ν)ν on S∗. Consider such a vector field V . For the sake of notational simplicity, let us set
J ′′ρ = J ′′ρ (B∗)[V, V ], L′′Λρ = (Jρ − Λρ Vol)′′(B∗)[V, V ], u = uρ, u′ = u′ρ,V and u′′ = u′′ρ,V .

6.4.3.1 Computation of the second order derivative

To compute the second order derivative, we use the Hadamard second order formula [93, Chap. 5,
p. 227] for normal vector fields, namely

d2

dt2

∣∣∣∣
t=0

ˆ
(Id +tV )B∗

f(t) =

ˆ
B∗
f ′′(0) + 2

ˆ
S∗
f ′(0)V · ν +

ˆ
S∗

(
1

R
f(0) +

∂f(0)

∂ν

)
(V · ν)2,

applied to f(t) = 1
2 |∇ut|

2 − gut, where ut denotes the solution of (6.2) on (Id +tV )B∗.
The Hadamard formula along with the weak formulation of Equations (6.20)-(6.21) yields

J ′′ρ =

ˆ
B∗
〈∇u,∇u′′〉 −

ˆ
B∗
gu′′ +

ˆ
B∗
|∇u′|2 + 2

ˆ
S∗

∂u

∂ν

∂u′

∂ν
V · ν − 2

ˆ
S∗
gu′V · ν

+

ˆ
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= −ρ
ˆ
B∗
f(u)u′′ − ρ

ˆ
B∗

(u′)2f ′(u) +

ˆ
S∗
u′′
∂u

∂ν
+

ˆ
S∗
u′
∂u′

∂ν

+ 2

ˆ
S∗

∂u

∂ν

∂u′

∂ν
V · ν − 2

ˆ
S∗
gu′V · ν +

ˆ
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= −ρ
ˆ
B∗
f(u)u′′ − ρ

ˆ
B∗

(u′)2f ′(u) +

ˆ
S∗

(
−2

∂u′

∂ν
V · ν − ∂2u

∂ν2
(V · ν)2

)
∂u

∂ν

−
ˆ
S∗

∂u

∂ν

∂u′

∂ν
V · ν + 2

ˆ
S∗

(
∂u

∂ν

∂u′

∂ν
− gu′

)
V · ν +

ˆ
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= −ρ
ˆ
B∗
f(u)u′′ − ρ

ˆ
B∗

(u′)2f ′(u)−
ˆ
S∗

∂u

∂ν

∂2u

∂ν2
(V · ν)2 −

ˆ
S∗

∂u

∂ν

∂u′

∂ν
(V · ν)
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+ 2

ˆ
S∗
g
∂u

∂ν
(V · ν)2 +

ˆ
S∗

(
1

2R
|∇u|2 +

∂u

∂ν

∂2u

∂ν2
− g ∂u

∂ν

)
(V · ν)2

= −ρ
ˆ
B∗
f(u)u′′ − ρ

ˆ
B∗

(u′)2f ′(u) +

ˆ
S∗

(
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2 −

ˆ
S∗

∂u

∂ν

∂u′

∂ν
V · ν.

As such, the two first terms of the sum in the expression above are not tractable. Let us rewrite
them. Multiplying the main equation of (6.23) by u′′ and integrating two times by parts yields

−ρ
ˆ
B∗
f(u)u′′ =

ˆ
S∗
u′′
∂pρ
∂ν
− ρ

ˆ
B∗

(u′)2pρf
′′(u).

To handle the last term of the right-hand side, let us introduce the function λρ defined as the solution
of {

−∆λρ + ρλρf
′(u) + ρu′pρf

′′(u) = 0 in B∗
λρ = 0 on S∗. (6.25)

Multiplying this equation by u′ and integrating by parts gives

−ρ
ˆ
B∗
f ′′(u)(u′)2 =

ˆ
S∗
u′
∂λρ
∂ν

.

To handle the term −ρ
´
B∗(u

′)2f ′(u) of J ′′ρ , we introduce the function ηρ, defined as the only
solution to {

−∆ηρ + ρηρf
′(u) + ρu′f ′(u) = 0 in B∗

ηρ = 0 on S∗. (6.26)

Multiplying this equation by u′ and integrating by parts gives

−ρ
ˆ
B∗

(u′)2f ′(u) =

ˆ
S∗
u′
∂ηρ
∂ν

= −
ˆ
S∗
V · ν ∂ηρ

∂ν

∂u

∂ν
.

Gathering these terms, we have

J ′′ρ =

ˆ
S∗
u′′
∂pρ
∂ν

+

ˆ
S∗
u′
∂λρ
∂ν
−
ˆ
S∗

∂ηρ
∂ν

∂u

∂ν
V · ν −

ˆ
S∗

∂u

∂ν

∂u′

∂ν
V · ν

+

ˆ
S∗

(
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2.

Using that

Λρ =
∂pρ
∂ν

∂uρ
∂ν
− 1

2

(
∂uρ
∂ν

)2
∣∣∣∣∣
S∗

and Vol′′(B∗) =

ˆ
S∗

1

R
(V · ν)2,

one computes

L′′Λρ =

ˆ
S∗
u′′
∂pρ
∂ν

+

ˆ
S∗
u′
∂λρ
∂ν
−
ˆ
S∗

∂ηρ
∂ν

∂u

∂ν
V · ν −

ˆ
S∗

∂u

∂ν

∂u′

∂ν
V · ν

+

ˆ
S∗

(
−Λρ
R

+
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2

(6.27)
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6.4.3.2 Expansion in Fourier Series

In this section, we recast the expression of L′′Λρ in a more tractable form, by using the method
introduced by Lord Rayleigh: since we are dealing with vector fields normal to S∗, we expand V · ν as
a Fourier series. This leads to introduce the sequences of Fourier coefficients (αk)k∈N∗ and (βk)k∈N∗

defined by:
V · ν =

∑
k∈N∗

(
αk cos(k·) + βk sin(k·)

)
,

the equality above being understood in a L2(S∗) sense.
Let vk,ρ (resp. wk,ρ) denote the function u′ associated to the perturbation choice Vk given by

Vk = V ck := cos(k·)ν (resp. Vk = V sk := sin(k·)ν), in other words, vk,ρ = u′ρ,V ck
(resp. wk,ρ = u′ρ,V sk

).
Then, one shows easily (by uniqueness of the solutions of the considered PDEs) that for every k ∈ N,
there holds

vk,ρ(r, θ) = ψk,ρ(r) cos(kθ) (resp. wk,ρ(r, θ) = ψk,ρ(r) sin(kθ)),

where (r, θ) denote the polar coordinates in R2, where ψk,ρ solves{
− 1
r (rψ′k,ρ)

′ = −
(
k2

r2 + ρf ′(u)
)
ψk,ρ in (0, R)

ψk,ρ(R) = −ϕ′ρ(R).
(6.28)

By linearity, we infer that
u′ =

∑
k∈N∗

αkvk,ρ + βkwk,ρ.

For every k ∈ N∗, let us introduce ηk,ρ as the solution of (6.26) associated with vk,ρ. One shows that
ηk,ρ satisfies {

−∆ηk,ρ + ρf ′(u)ηk,ρ + ρf ′(u)vk,ρ = 0 in B∗
ηk,ρ = 0 on S∗. (6.29)

Similarly, one shows easily that
ηk,ρ(r, θ) = ξk,ρ(r) cos(kθ),

where ξk,ρ satisfies {
− 1
r (rξ′k,ρ)

′ = −
(
k2

r2 + ρf ′(u)
)
ξk,ρ − ρψk,ρ in (0, R)

ξk,ρ(R) = 0.
(6.30)

Notice that one has ξk,ρ = 0 whenever ρ = 0, which can be derived obviously from (6.26).
Since uρ is radially symmetric we denote by r 7→ ϕρ(r) this radial function.
Finally, we introduce a last set of equations related to λρ. Let us define ζk,ρ as the solution of{

−(rζ ′k,ρ)
′ = −k

2

r2 ζk,ρ − rρζk,ρf ′(u)− ρrψk,ρφρf ′′(u) in (0, R)

ζk,ρ(R) = 0.
(6.31)

and verify that λρ = ζk,ρ(r) cos(kθ) whenever V = Vk.

Proposition 6.3 The quadratic form L′′Λρ expands as

L′′Λρ =

∞∑
k=1

ωk,ρ
(
α2
k + β2

k

)
, (6.32)

where, for any k ∈ N∗,
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ωk,ρ = πR
(
− 2ψ′k,ρ(R)φ′ρ(R)− ϕ′ρ(R)ζ ′k,ρ(R)− ϕ′′ρ(R)φ′ρ(R)

− ξ′k,ρ(R)ϕ′ρ(R)− Λρ
R

+
1

2R
(ϕ′ρ)

2 + g(R)ϕ′ρ(R)− ϕ′ρ(R)ψ′k,ρ(R)
)
, (6.33)

the functions ψk,ρ, ξk,ρ, ζk,ρ being respectively defined by (6.28), (6.30), (6.31), and Λρ is given by
(6.24).

Proof of Proposition 6.3. Let us first deal with the particular case V ·ν = cos(k·). According to (6.20),
(6.21) and (6.27), one has

L′′Λρ =

ˆ
S∗
u′′
∂pρ
∂ν

+

ˆ
S∗
u′
∂λρ
∂ν
−
ˆ
S∗

∂ηρ
∂ν

∂u

∂ν
V · ν −

ˆ
S∗

∂u

∂ν

∂u′

∂ν
V · ν

+

ˆ
S∗

(
−Λρ
R

+
1

2R

(
∂u

∂ν

)2

+ g
∂u

∂ν

)
(V · ν)2

= R

ˆ 2π

0

(
−2 cos(kθ)2ψ′k,ρ(R)− cos(kθ)2ϕ′′ρ(R)

)
φ′ρ(R)dθ −R

ˆ 2π

0

cos(kθ)2ϕ′ρ(R)ζ ′k,ρ(R)dθ

−R
ˆ 2π

0

cos(kθ)2ξ′k,ρ(R)ϕ′ρ(R)dθ +R

ˆ 2π

0

cos(kθ)2

(
−Λρ
R

+
1

2R
(ϕ′ρ)

2 + g(R)ϕ′ρ(R)

)
dθ

−R
ˆ 2π

0

cos(kθ)2ϕ′ρ(R)ψ′k,ρ(R)dθ

and therefore

L′′Λρ
πR

= −2ψ′k,ρ(R)φ′ρ(R)− ϕ′ρ(R)ζ ′k,ρ(R)− ϕ′′ρ(R)φ′ρ(R)− ξ′k,ρ(R)ϕ′ρ(R)

−Λρ
R

+
1

2R
(ϕ′ρ)

2 + g(R)ϕ′ρ(R)− ϕ′ρ(R)ψ′k,ρ(R)

We have then obtained the expected expression for this particular choice of vector field V . Similar
computations enable us to recover the formula when dealing with the vector field V given by V · ν =
sin(k·). Finally, for general V , one has to expand the square (V · ν)2, and the computation follows
exactly the same lines as before. Note that all the crossed terms of the sum (i.e. the term that do not
write as squares of real numbers) vanish, by using the L2(S) orthogonality properties of the families
(cos(k·), sin(k·))k∈N.

6.4.3.3 Comparison principle on the family {ωk,ρ}k∈N∗

The next result allows us to recast the ball stability issue in terms of the sign of ω1,ρ.

Proposition 6.4 There exists M > 0 such that, for any ρ small enough,

∀k ∈ N∗, ωk,ρ − ω1,ρ ≥ −Mρ and |ω1,ρ − ω1,0| ≤Mρ.

Proof of Proposition 6.4. Fix k ∈ N and introduce ω̃k,ρ = ωk,ρ/(πR). Using (6.33), one computes

ω̃k,ρ − ω̃1,ρ =
(
−ϕ′ρ(R)− 2φ′ρ(R)

)
(ψ′k,ρ(R)− ψ′1,ρ(R))

−ϕ′ρ(R)
(
ξ′k,ρ(R)− ξ′1,ρ(R) + ζ ′k,ρ(R)− ζ ′1,ρ(R)

)
.

We need to control each term of the expression above, which is the goal of the next results, whose
proofs are postponed at the end of this section.
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Lemma 6.9 There exists M > 0 and ρ̄ > 0 such that for ρ ∈ [0, ρ̄], one has

max
{
‖ϕ′ρ − ϕ′0‖L∞(0,R), ‖φ′ρ‖L∞(0,R), ‖ξ′k,ρ‖L∞

}
≤Mρ and ‖ζ ′k,ρ‖L∞ ≤Mρ2.

According to Lemma 6.8, one has in particular ϕ′0(R) < 0. We thus infer from Lemma 6.9 the
existence of δ > 0 such that

min{−ϕ′ρ(R)− 2φ′ρ(R),−ϕ′ρ(R)} ≥ δ > 0.

for ρ small enough. Furthermore, Lemma 6.9 also yields easily the estimate

|ζ ′k,ρ(R)− ζ ′1,ρ(R)| ≤Mρ2

Hence, we are done by applying the following result.

Lemma 6.10 There exists M̂ > 0 and ρ̄ > 0 such that for ρ ∈ [0, ρ̄], one has

ψ′k,ρ(R)− ψ′1,ρ(R) ≥ 0 and
∣∣ξ′k,ρ(R)− ξ′1,ρ

∣∣ (R) ≤ M̂ρ. (6.34)

Indeed, the results above lead to

ωk,ρ − ω1,ρ ≥ δ(ψ′k(R)− ψ′k,ρ(R) + ξ′k,ρ(R)− ξ′k,ρ(R)) ≥ 0

for every k ≥ 1 and ρ small enough.
Finally, the proof of the second inequality follows the same lines and are left to the reader.

Proof of Lemma 6.9. These convergence rates are simple consequences of elliptic regularity theory.
Since the reasonings for each terms are similar, we only focus on the estimate of ‖φ′ρ‖L∞(Ω). Recall
that pρ solves the equation (6.23). Multiplying this equation by pρ, integrating by parts and using
the Poincaré inequality yield the existence of C > 0 such that(

1− ρC‖f ′‖L∞(B∗)
)
‖∇pρ‖2L2(B∗) ≤ ρ‖f‖L∞(B∗)‖pρ‖L2(B∗),

so that ‖pρ‖W 1,2
0 (B∗) is uniformly bounded for ρ small enough. Hence, the elliptic regularity the-

ory yields that pρ is in fact uniformly bounded in W 2,2(B∗), and there exists M̂ > 0 such that
‖pρ‖W 2,2

0 (B∗) ≤ M̂ρ and, since B∗ ⊂ R2, we get

‖pρ‖L∞(B∗) ≤Mρ.

Since ∆pρ = ρpρf
′(uρ) + ρf(uρ) and the right-hand side belongs to Lp0(B∗) for all p ≥ 1, the elliptic

regularity theory yields the existence of C > 0 such that

‖pρ‖W 2,p
0 (Ω) ≤ C (ρ‖pρ‖L∞‖f ′‖L∞ + ρ‖f‖L∞) ≤Mρ

and using the embedding W 2,p ↪→ C 1,α for p large enough, one finally gets

‖∇pρ‖L∞(B∗) ≤Mρ.

Proof of Lemma 6.10. The two estimates are proved using the maximum principle. Let us first prove
that, for any k and any ρ small enough, ψk,ρ is non-negative on (0, R). Since, for ρ small enough,
−ϕ′ρ(R) is positive, and therefore ψk,ρ(R) > 0. Since vk belongs toW

1,2
0 , one has necessarily ψk,ρ(0) =
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0. Furthermore, according to (6.28), by considering ρ > 0 small enough so that

− 1

r2
+ ρ‖f ′‖L∞ ≤ −

1

2r2

it follows that

−1

r
(rψ′k,ρ)

′ = ck,ρ(r)ψk,ρ with ck,ρ = −k
2

r2
− ρf ′(u0) < 0.

Let us argue by contradiction, assuming that ψk,ρ reaches a negative minimum at a point r1. Because
of the boundary condition, r1 is necessarily an interior point of (0, R). Then, from the equation,

0 ≥ −ψ′′k,ρ(r1) = ck,ρ(r1)ψk,ρ(r1) > 0,

which is a contradiction. Thus there exists ρ > 0 small enough such that, for any ρ ≤ ρ and every
k ∈ N∗, ψk,ρ is non-negative on (0, R).

Now, introduce zk = ψk,ρ − ψ1,ρ for every k ≥ 1 and notice that it satisfies

−1

r
(rz′k)′ =

1

r2
ψ1,ρ −

k2

r2
ψk,ρ − ρf ′(u0)zk.

Since ψk,ρ is non-negative, it implies

−1

r
(rz′k)′ ≤

(
−k

2

r2
− ρf ′(u0)

)
zk, and zk(R) = zk(0) = 0.

Up to decreasing ρ̄, one may assume that for ρ ≤ ρ, −k
2

r2 − ρf ′(u0) < 0 in (0, R). If zk reached a
positive maximum, it would be at an interior point r1, but we would have

0 ≤ −z′′k (r1) <

(
−k

2

r2
− ρf ′(u0)

)
zk(r1) < 0.

Hence, one has necessarily zk ≤ 0 in (0, R) and zk reaches a maximum at R, which means in particular
that z′k(R) = ψ′k,ρ(R)− ψ′1,ρ(R) ≥ 0.

6.4.4 Shape (in)stability of B∗

6.4.4.1 Under Assumption (6.8)

Stability under Assumption (6.8) is well known (see [65]) in the case where ρ = 0. Hereafter, we recall
the proof, showing by the same a stability result for ρ > 0.

Lemma 6.11 Under assumption (6.8), one has ω1,0 > 0.

This Lemma concludes the proof of the second part of Theorem 6.2.2. Indeed, according to
Propositions 6.3 and 6.4, there holds

L′′Λρ(B
∗)[V, V ] ≥

(ω1,0

2
+ O(ρ)

) ∞∑
k=1

(
α2
k + β2

k

)
=

(ω1,0

2
+ O(ρ)

)
‖V · ν‖2L2

for ρ small enough.
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Proof of Lemma 6.11. To compute ω1,0, recall that, for ρ = 0, the function ψ1,0 solves

−1

r
(rψ′1,0)′ = − 1

r2
ψ1,0 and ψ1,0(R) = −ϕ′0(R),

and therefore, ψ1,0(r) = − r
Rϕ
′
0(R) for all r ∈ [0, R], so that

ω1,0

πR
= −Λ0

R
+

1

2R
(ϕ′0(R))2 + g(R)ϕ′0(R)− ϕ′0(R)ψ′1,0(R)

=
1

R
(ϕ′0(R))2 + g(R)ϕ′0(R) +

1

R
(ϕ′0(R))2

=
2

R
(ϕ′0(R))2 + g(R)ϕ′0(R)

= −ϕ′0(R)

(
− 2

R
ϕ′0(R)− g(R)

)
where the expression of Λ0 is given by (6.24). Since −Rϕ′0(R) =

´ R
0
tg(t)dt = 1

2π

´
B∗ g, and ϕ

′
0(R) < 0,

we infer that the sign of ω1,0 is the sign of

− 2

R
ϕ′0(R)− g(R) =

1

πR2

ˆ
B∗
g − g(R),

and the positivity of this last quantity is exactly Assumption (6.8). The conclusion follows.

6.4.4.2 An example of instability

In this part, we will assume that g is the constant function equal to 1, i.e. g = 1. Even if the ball
B∗ is known to be a minimizer in the case ρ = 0, it is a degenerate one in the sense that ω1,0 = 0
coming from the invariance by translations of the problem. In what follows, we exploit this fact and
will construct a suitable nonlinearity f such that B∗ is not a local minimizer for ρ small enough, in
other words such that ω1,ρ < 0.

We assume without loss of generality that R = 1 for the sake of simplicity.

Lemma 6.12 There holds
ω1,ρ =

ρ

4
(w1 + w′1)(1) + O(ρ2)

where w1 solves {
−(rw′1)′ = − 1

rw1 − r2

2 f
′(ϕ0)− r2

2 in (0, 1)

w1(1) = −
´ 1

0
tf(ϕ0) dt.

(6.35)

Proof of Lemma 6.12. The techniques to derive estimates follow exactly the same lines as in Lemma
6.9. First, we claim that

ϕρ = ϕ0 + ρϕ1 + O(ρ2) in C 1, (6.36)

where ϕ1 satisfies {
− 1
r (rϕ′1)′ = −f(ϕ0) in (0, 1)

ϕ1(1) = 0.
(6.37)

Indeed, considering the function δ = ϕρ − ϕ0 − ρϕ1, one shows easily that it satisfies{
− 1
r (rδ′)′ = ρ(f(ϕ0)− f(ϕρ)) in (0, 1)

δ(1) = 0.

Therefore, by mimicking the reasonings done in the proof of Lemma 6.9, involving the elliptic regularity
theory, and the fact that ‖ϕρ − ϕ0‖W 1,∞ = O(ρ), we infer that ‖δ‖C 1 = O(ρ2), whence the result.
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Using that ϕρ satisfies − 1
r (rϕ′ρ)

′ + ρf(ϕρ) = g and integrating this equation yields

−ϕ′ρ(1) =
1

2
− ρ

ˆ 1

0

tf(ϕρ) dt =
1

2
− ρ

ˆ 1

0

tf(ϕ0(t)) dt+ O(ρ2). (6.38)

The Equation on φρ reads{
−(rφ′ρ)

′ = r
(
− ρφρf ′(ϕρ)− ρf(ϕρ)

)
in (0, 1)

φρ(0) = 0.

and according to Lemma 6.9, there holds ‖φρ‖L∞ = O(ρ). We thus infer that

−φ′ρ(1) = −ρ
ˆ 1

0

tf(ϕ0) dt+ O(ρ2). (6.39)

From (6.38) and (6.39),we infer that

Λρ =
1

2
(
(
ϕ′ρ(1)

)2 − φ′ρ(1)ϕ′ρ(1) =
1

2
ϕ′0(1)2 − ρϕ′0(1)

ˆ 1

0

tf(ϕ0) dt+ ρϕ′0(1)

ˆ 1

0

tf(ϕ0) dt+ O(ρ2)

=
1

2
ϕ′0(1)2 + O(ρ2). (6.40)

Regarding ψ1,ρ and using that it satisfies (6.28), we get

ψ1,ρ(1) = −ϕ′ρ(1) =
1

2
− ρ

ˆ 1

0

tf(ϕ0) dt.

We then infer that ‖ψ1,ρ + rϕ′0,ρ(1)‖C 1 = O(ρ). Plugging this estimate in (6.28) allows us to show
that

ψ1,ρ(r) = −ϕ′0(1)r + ρy1(r) + O(ρ2) in C 1(0, 1), (6.41)

where y1 solves {
− (ry′1)

′
= − 1

ry1 + r2ϕ′0(1)f ′(ϕ0) in (0, 1)

y1(1) = −
´ 1

0
tf(ϕ0) dt.

(6.42)

Regarding ξ1,ρ and using that it satisfies (6.30), we easily get that ‖ξ1,ρ‖W 1,∞ = O(ρ), according
to Lemma 6.9. This allows us to write

ξ1,ρ = ρz1 + O(ρ2) in C 1(0, 1) (6.43)

where z1 satisfies {
−(rz′1)′ = − 1

r z1 + r2ϕ′0(1) in (0, 1)
z1(1) = 0.

(6.44)

Let us now expand ω1,ρ with respect to the parameter ρ. Recall that

ω1,ρ =
1

2

(
−2ψ′1,ρ(1)φ′1,ρ(1)− ϕ′′ρ(1)φ′1,ρ(1)− ϕ′ρ(R)ζ ′1,ρ(R)

−ξ′1,ρ(1)ϕ′ρ(1) + Λρ +
1

2
(ϕ′ρ)

2 + ϕ′ρ(1)− ϕ′ρ(1)ψ′1,ρ(1)

)
.

Regarding the term ϕ′0,ρ(R)ζ ′1,ρ(R), we know from Lemma 6.9 that ‖ζ ′1,ρ(R)‖L∞ = O(ρ2).
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Using this estimate and plugging the expansions (6.36)-(6.40)-(6.41)-(6.43) in the expression above
yields successively

−2ψ′1,ρ(1)φ′ρ(1) = 2ρϕ′0(1)

ˆ 1

0

tf(ϕ0) dt+ O(ρ2) = −ρ
ˆ 1

0

tf(ϕ0) dt+ O(ρ2).

−ϕ′′ρ(1)φ′ρ(1) = −ϕ′′0(1)φ′ρ(1) + O(ρ2) =
ρ

2

ˆ 1

0

tf(ϕ0) dt+ O(ρ2).

−ξ′1,ρ(1)ϕ′ρ(1) = −ϕ′0(1)ξ′1,ρ(1) + O(ρ2) =
ρ

2
z′1(1)

Λρ +
1

2
(ϕ′ρ)

2 = ϕ′0(1)2 − ρ

2

ˆ 1

0

tf(ϕ0) dt+ O(ρ2) =
1

4
− ρ

2

ˆ 1

0

tf(ϕ0) dt+ O(ρ2)

ϕ′ρ(1) = −1

2
+ ρ

ˆ 1

0

tf(ϕ0) dt+ O(ρ2)

−ϕ′ρ(1)ψ′1,ρ(1) = ϕ′0(1)2 − ρϕ′0(1)y′1(1) + ρϕ′0(1)

ˆ 1

0

tf(ϕ0) dt+ O(ρ2)

=
1

4
+
ρ

2
y′1(1)− ρ

2

ˆ 1

0

tf(ϕ0) dt,

by using that ‖φρ‖W 1,∞ = O(ρ) and ‖ξ1,ρ‖W 1,∞ = O(ρ). This gives

ω1,ρ = −ρ
ˆ 1

0

tf(ϕ0) dt+
ρ

2

ˆ 1

0

tf(ϕ0) dt+
ρ

2
z′1(1)

+
1

4
− ρ

2

ˆ 1

0

tf(ϕ0) dt− 1

2
+ ρ

ˆ 1

0

tf(ϕ0) dt+
1

4
+
ρ

2
y′1(1)− ρ

2

ˆ 1

0

tf(ϕ0) dt+ O(ρ2).

As expected, the zero order terms cancel each other out and we get

ω1,ρ = −ρ
2

ˆ 1

0

tf(ϕ0) dt+
ρ

2
z′1(1) +

ρ

2
y′1(1) + O(ρ2),

which concludes the proof by setting w1 = y1 + z1.

Construction of the non-linearity. Recall that we are looking for a non-linearity f such that
ω1,ρ < 0, in other words such that (w1 + w′1)(1) < 0 according to Lemma 6.12. To this aim, let us
consider the function w1 solving (6.35). Let us consider a non-negative function f such that

f ′(·) < −1 on [0, ‖ϕ0‖L∞ ]. (6.45)

It follows that

w1(1) = −
ˆ 1

0

tf(ϕ0) dt < 0.

Besides,

−(rw′1)′ = −1

r
w1 −

r2

2
(f ′(ϕ0) + 1) ≥ −1

r
w1

by using(6.45). Thus w1 cannot reach a local negative minimum in (0, 1). Moreover, by using that
w1 is regular (w1 is the sum of two functions at least C 1 according to the proof of Lemma 6.12) and
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integrating the equation above yields

−rw′1(r) +
1

2

ˆ r

0

s2 (f((ϕ0(s)) + 1) ds = −
ˆ r

0

w1(s)

s
ds

for r > 0. The left-hand side is well-defined and it follows that so is the right-hand side, which implies
that necessarily w1(0) = 0 (else, we would immediately reach a contradiction).

Since w1 cannot reach a local minimum on (0, 1) and since 0 = w1(0) > w1(1), we get that w1 is
decreasing on (1− δ, 1) for some δ > 0, ensuring that w′1(1) < 0. The conclusion follows.
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APPENDIX

6.A Proof of Lemma 6.2

Recall that we want to establish a uniform (with respect to a and M) L∞ bound on the solutions of{
−∆uM,ρ,a +M(1− a)uM,ρ,a + ρf(uM,ρ,a) = g, in D,
uM,ρ,a ∈W 1,2

0 (Ω).
(6.46)

Here, it is assumed that g is non-negative.
Define φg as the solution of {

−∆φg + ρf(φg) = g, in D,
φg ∈W 1,2

0 (Ω).

Standard Lp estimates show that φg is continuous and that

‖φg‖L∞(Ω) < +∞.

Define z := φg − uM,ρ,a ∈W 1,2
0 (Ω). We can write

−∆z + ρ
f(φg)− f(uM,ρ,a)

φg − uM,ρ,a
z = M(1− a)uM,ρ,a ≥ 0

The generalized maximum principle, and the fact that f is Lipschitz entails that z reaches its minimum
on the boundary ∂D, so that z is non-negative. Thus

0 ≤ uM,ρ,a ≤ φg ≤ ‖φg‖L∞(Ω) < +∞

and we conclude by noting that the quantity in the right-hand side is uniformly bounded with respect
to ρ ∈ [0, ρ).

6.B Proof of Proposition 6.1

We recall that we want to establish that if (Ωk)k∈N ∈ ON
m γ-converges to Ω, then

Jρ(Ω) ≤ lim inf
k→∞

Jρ(Ωk).
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Fix such a sequence (Ωk)k∈N that γ-converges to Ω. For the sake of clarity, we drop the subscript ρ, f
and g and define, for every k ∈ N, uk ∈W 1,2

0 (D) the unique solution to
−∆uk + ρf(uk) = g in Ωk,

uk ∈W 1,2
0 (Ωk),

uk is extended by continuity as a function in W 1,2
0 (D).

First note that, for any k ∈ N, multiplying the equation by uk and integrating by parts immediately
yields

λ1(D)

ˆ
D

u2
k = λ1(D)

ˆ
Ωk

u2
k ≤ λ1(Ωk)

ˆ
Ωk

u2
k ≤

ˆ
Ωk

|∇uk|2

≤ ‖g‖L2(Ωk)||u||L2(Ωk) + ρ‖f‖L∞(R)|Ωk|
1
2 ‖uk‖L2(Ωk).

The sequence (uk)k∈N is thus uniformly bounded in W 1,2
0 (D). By the Rellich-Kondrachov Theorem,

(uk)k∈N converges (up to a subsequence, strongly in L2(D) and weakly in W 1,2
0 (D)) to a function

u ∈W 1,2
0 (D).

The dominated convergence theorem then yields that the sequence (f(uk))k∈N converges strongly in
W−1,2

0 (D), to f(u). Thus, the sequence (g − f(uk))k∈N converges strongly in W−1,2
0 (D) to g − f(u).

Since by assumption (Ωk)k∈N γ-converges to Ω and since the right hand term converges strongly to
g − ρf(u) in W−1,2

0 (D), it follows that (uk)k∈N converges strongly in W 1,2
0 (D) to u and that u solves{

−∆u+ ρf(u) = g in Ω,

u ∈W 1,2
0 (Ω),

This strong convergence immediately implies that

J(Ω) ≤ lim inf
k→∞

J(Ωk),

thus concluding the proof of Proposition 6.1.

6.C Proof of Lemma 6.3

Let us first prove that (uM,ρ,a)M≥0 is uniformly bounded in W 1,2
0 (D) with respect to M and ρ. To

this aim, let us multiply (6.2) by uM,ρ,a and integrate by parts. One gets
ˆ
D

|∇uM,ρ,a|2 ≤
ˆ
D

|∇uM,ρ,a|2 +M(1− a)u2
M,ρ,a

≤ ‖g‖H−1(D)‖uM,ρ,a‖L2(D) + ρ (f(0) + ‖f‖W 1,∞) ‖uM,ρ,a‖L2(D).

By using the Poincaré inequality, we infer an uniform estimate of uM,ρ,a inW
1,2
0 (D). According to the

Rellich-Kondrachov Theorem, there exists u∗ ∈ W 1,2
0 (D) such that, up to a subfamily, (uM,ρ,a)M≥0

converges to u∗ weakly in H1(D) and strongly in L2(D). As a consequence, up to a subsequence,
(f(uM,ρ,a))M≥0 converges to f(u∗) in L2(D) by using that f is Lipschitz and (〈g, uM,an〉H−1,H1

0
)M≥0

converges to 〈g, u∗〉H−1,H1
0
. By rewriting (6.5) under variational form with u = uM,ρ,a, and passing to

the limit as M → +∞ after having adequately extracted subsequences, we infer that u∗ is the unique
solution of (6.5). By using the previous convergence results and the fact that

ĴM,ρ(a) = −ρ
2

ˆ
D

uM,ρ,af(uM,ρ,a)− 1

2
〈g, uM,ρ,a〉H−1(D),W 1,2

0 (D)
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we have
ĴM,ρ(a)→ −ρ

2

ˆ
D

u∗f(u∗)− 1

2
〈g, u∗〉H−1(D),W 1,2

0 (D) as M → +∞.

Finally, if a = 1Ω, by multiplying (6.5) by uM,ρ,a and integrating by parts, one gets
ˆ
D

|∇uM,ρ,a|2 +M

ˆ
D\Ω

u2
M,ρ,a =

ˆ
D

(g − ρf(uM,ρ,a))uM,ρ,a,

and since the right-hand side is uniformly bounded with respect to M , we infer that
√
MuM,ρ,a is

bounded in L2(D\Ω) so that u∗ ∈W 1,2
0 (Ω).

The conclusion follows.

235



CHAPTER 6. A NON-LINEAR SHAPE OPTIMIZATION PROBLEM

236



AUTHOR’S PUBLICATIONS

[HMP19] A. Henrot, I. Mazari, and Y. Privat. Shape optimization of the dirichlet energy for semi-
linear elliptic partial differential equations. Preprint, 2019.

[Maz19a] I. Mazari. Quantitative inequality for the first eigenvalue of a schrödinger operator in the
ball. Journal of Differential Equations, Accepted for publication, 2020.

[Maz19b] I. Mazari. Trait selection and rare mutations: The case of large diffusivities. Discrete &
Continuous Dynamical Systems - B, 2019.

[MNP18] I. Mazari, G. Nadin, and Y. Privat. Optimal control of resources for species survival.
PAMM, 18(1):e201800086, 2018.

[MNP19a] I. Mazari, G. Nadin, and Y. Privat. Optimization of a two-phase, weighted eigenvalue
with dirichlet boundary conditions. Preprint, 2019.

[MNP19b] I. Mazari, G. Nadin, and Y. Privat. Optimal location of resources maximizing the total
population size in logistic models. Journal de Mathématiques Pures et Appliquées, October
2019.

[MRBZ19] I. Mazari, D. Ruiz-Balet, and E. Zuazua. Constrained controllability for bistable reaction-
diffusion equations: gene-flow & spatially heterogeneous models. 2019.

237



AUTHOR’S PUBLICATIONS

238



BIBLIOGRAPHY

[1] E. Acerbi, N. Fusco, and M. Morini. Minimality via second variation for a nonlocal isoperimetric
problem. Communications in Mathematical Physics, 322(2):515–557, Sep 2013.

[2] R. A. Adams and J.F. Fournier. Sobolev Spaces. Academic Press, 1975.

[3] G. Allaire. Shape Optimization by the Homogenization Method. Springer New York, 2002.

[4] G. Allaire. Conception optimale de structures. Springer Berlin Heidelberg, 2006.

[5] L. Almeida, Y. Privat, M. Strugarek, and N. Vauchelet. Optimal releases for population replace-
ment strategies, application to Wolbachia. SIAM Journal on Mathematical Analysis, 51(4):3170–
3194, 2019.

[6] A. Alvino, P.-L. Lions, and G. Trombetti. Comparison results for elliptic and parabolic equations
via symmetrization: a new approach. Differential Integral Equations, 4(1):25–50, 1991.

[7] A. Alvino and G. Trombetti. A lower bound for the first eigenvalue of an elliptic operator.
Journal of Mathematical Analysis and Applications, 94(2):328 – 337, 1983.

[8] W. Arendt and D. Daners. Uniform convergence for elliptic problems on varying domains.
Mathematische Nachrichten, 280(1-2):28–49, 2007.

[9] D.G Aronson and H. F. Weinberger. Multidimensional nonlinear diffusion arising in population
genetics. Advances in Mathematics, 30(1):33–76, October 1978.

[10] I. Averill, Y. Lou, and D. Munther. On several conjectures from evolution of dispersal. Journal
of Biological Dynamics, 6(2):117–130, 2012. PMID: 22873583.

[11] N. Bacaër. A short history of mathematical population dynamics. Springer, 2011.

[12] X. Bai, X. He, and F. Li. An optimization problem and its application in population dynamics.
Proc. Amer. Math. Soc., 144(5):2161–2170, May 2016.

[13] C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control, and
stabilization of waves from the boundary. SIAM journal on control and optimization, 30(5):1024–
1065, 1992.

239



BIBLIOGRAPHY

[14] N. H. Barton and Michael Turelli. Spatial waves of advance with bistable dynamics: Cytoplasmic
and genetic analogues of allee effects. The American Naturalist, 178(3):E48–E75, September
2011.

[15] N.H Barton. The effects of linkage and density-dependent regulation on gene flow. Heredity,
57(3):415–426, December 1986.

[16] F. Belgacem. Elliptic Boundary Value Problems with Indefinite Weights, Variational Formula-
tions of the Principal Eigenvalue, and Applications. Chapman & Hall/CRC Research Notes in
Mathematics Series. Taylor & Francis, 1997.

[17] F. Belgacem and C. Cosner. The effect of dispersal along environmental gradients on the dy-
namics of populations in heterogeneous environment. Canadian Applied Mathematics Quarterly,
3:379–397, 01 1995.

[18] O. Bénichou, V. Calvez, N. Meunier, and R. Voituriez. Front acceleration by dynamic selection
in fisher population waves. Phys. Rev. E, 86:041908, Oct 2012.

[19] H. Berestycki, F. Hamel, and L. Roques. Analysis of the periodically fragmented environment
model : I – species persistence. Journal of Mathematical Biology, 51(1):75–113, 2005.

[20] H. Berestycki and T. Lachand-Robert. Some properties of monotone rearrangement with ap-
plications to elliptic equations in cylinders. Mathematische Nachrichten, 266(1):3–19, mar 2004.

[21] H. Berestycki and P. L. Lions. Some applications of the method of super and subsolutions.
In C. Bardos, J. M. Lasry, and M. Schatzman, editors, Bifurcation and Nonlinear Eigenvalue
Problems, pages 16–41, Berlin, Heidelberg, 1980. Springer Berlin Heidelberg.

[22] P. Bernhard and A. Rapaport. On a theorem of danskin with an application to a theorem of von
neumann-sion. Nonlinear Analysis: Theory, Methods & Applications, 24(8):1163–1181, 1995.

[23] D. I. Bolnick and B.M. Fitzpatrick. Sympatric speciation: Models and empirical evidence.
Annual Review of Ecology, Evolution, and Systematics, 38(1):459–487, December 2007.

[24] V. Bonnaillie-Noël and C. Léna. Spectral minimal partitions of a sector. Discrete and Continuous
Dynamical Systems-Series B, 19(1):27–53, 2014.

[25] M-H. Bossel. Membranes élastiquement liées inhomogènes ou sur une surface: Une nouvelle ex-
tension du théorème isopérimétrique de rayleigh-faber-krahn. Zeitschrift für angewandte Math-
ematik und Physik ZAMP, 39(5):733–742, Sep 1988.

[26] E. Bouin. Propagation of structured fronts in biology - Modelling and Mathematical analysis.
Theses, Ecole normale supérieure de lyon - ENS LYON, December 2014.

[27] E. Bouin and S. Mirrahimi. A hamilton-jacobi approach for a model of population structured
by space and trait. Communications in Mathematical Sciences, 13, 07 2013.

[28] B. Brandolini, F. Chiacchio, A. Henrot, and C. Trombetti. Existence of minimizers for eigenval-
ues of the dirichlet-laplacian with a drift. Journal of Differential Equations, 259(2):708 – 727,
2015.

[29] L. Brasco and G. Buttazzo. Improved energy bounds for schrãÂűdinger operators, 2014.

[30] L. Brasco and G. De Philippis. Shape optimization and spectral theory, chapter Spectral inequal-
ities in quantitative formS. De Gruyter, 01 2017.

240



BIBLIOGRAPHY

[31] L. Brasco, G. De Philippis, and B. Velichkov. Faber–krahn inequalities in sharp quantitative
form. Duke Math. J., 164(9):1777–1831, 06 2015.

[32] A. Bressan, G.M. Coclite, and W. Shen. A multidimensional optimal-harvesting problem with
measure-valued solutions. SIAM J. Control Optim., 51(2):1186–1202, 2013.

[33] A. Bressan and W. Shen. Measure-valued solutions for a differential game related to fish har-
vesting. SIAM J. Control Optim., 47(6):3118–3137, 2008.

[34] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer New
York, 2010.

[35] H. Brezis and J.L. Vazquez. Blow-up solutions of some nonlinear elliptic problems. 1997.

[36] D. Bucur and G. Buttazzo. Variational methods in shape optimization problems, volume 65 of
Progress in Nonlinear Differential Equations and their Applications. Birkhäuser Boston, Inc.,
Boston, MA, 2005.

[37] D. Bucur, V. Ferone, C. Nitsch, and C. Trombetti. The quantitative faber-krahn inequality for
the robin laplacian. Journal of Differential Equations, 11 2016.

[38] G. Buttazzo and G. Dal Maso. An existence result for a class of shape optimization problems.
Archive for Rational Mechanics and Analysis, 122(2):183–195, Jun 1993.

[39] X. Cabré and Y. Martel. Weak eigenfunctions for the linearization of extremal elliptic problems.
Journal of Functional Analysis, 156(1):30–56, June 1998.

[40] R. S. Cantrell and C. Cosner. Diffusive logistic equations with indefinite weights: Population
models in disrupted environments II. SIAM Journal on Mathematical Analysis, 22(4):1043–1064,
jul 1991.

[41] R. S. Cantrell and C. Cosner. The effects of spatial heterogeneity in population dynamics. J.
Math. Biol., 29(4):315–338, 1991.

[42] R. S. Cantrell and C. Cosner. On the effects of spatial heterogeneity on the persistence of
interacting species. Journal of Mathematical Biology, 37(2):103–145, Aug 1998.

[43] R. S. Cantrell and C. Cosner. Spatial Ecology via Reaction-Diffusion Equations. John Wiley &
Sons, 2003.

[44] R. S. Cantrell, C. Cosner, and V. Hutson. Permanence in ecological systems with spatial hetero-
geneity. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 123(3):533–559,
1993.

[45] R.S. Cantrell, C. Cosner, and V. Hutson. Ecological models, permanence and spatial hetero-
geneity. Rocky Mountain J. Math., 26(1):1–35, 03 1996.

[46] J. Casado-Díaz. Smoothness properties for the optimal mixture of two isotropic materials: The
compliance and eigenvalue problems. SIAM J. Control and Optimization, 53:2319–2349, 2015.

[47] J. Casado-Díaz. Some smoothness results for the optimal design of a two-composite mater-
ial which minimizes the energy. Calculus of Variations and Partial Differential Equations,
53(3):649–673, 2015.

[48] J. Casado-Díaz. A characterization result for the existence of a two-phase material minimizing
the first eigenvalue. Annales de l’Institut Henri Poincare (C) Non Linear Analysis, 34, 10 2016.

241



BIBLIOGRAPHY

[49] T.J. Case and M.L. Taper. Interspecific competition, environmental gradients, gene flow, and
the coevolution of species borders. The American Naturalist, 155(5):583–605, May 2000.

[50] F. Caubet, T. Deheuvels, and Y. Privat. Optimal location of resources for biased movement of
species: the 1D case. SIAM Journal on Applied Mathematics, 77(6):1876–1903, 2017.

[51] S. Chanillo, D. Grieser, M. Imai, K. Kurata, and I. Ohnishi. Symmetry breaking and other
phenomena in the optimization of eigenvalues for composite membranes. Communications in
Mathematical Physics, 214(2):315–337, Nov 2000.

[52] A. Cianchi, L. Esposito, N. Fusco, and C. Trombetti. A quantitative polya-szego principle. J.
Reine Angew. Math.

[53] A. Cianchi and V.G. Maz’ya. Global lipschitz regularity for a class of quasilinear elliptic equa-
tions. Communications in Partial Differential Equations, 36(1):100–133, 2010.

[54] G. M. Coclite and M. Garavello. A time-dependent optimal harvesting problem with measure-
valued solutions. SIAM J. Control Optim., 55(2):913–935, 2017.

[55] R. Cominetti and J-P. Penot. Tangent sets to unilateral convex sets. C. R. Acad. Sci. Paris
Sér. I Math., 321(12):1631–1636, 1995.

[56] C. Conca, A. Laurain, and R. Mahadevan. Minimization of the ground state for two phase
conductors in low contrast regime. SIAM Journal of Applied Mathematics, 72:1238–1259, 2012.

[57] C. Conca, R. Mahadevan, and L. Sanz. An extremal eigenvalue problem for a two-phase con-
ductor in a ball. Applied Mathematics and Optimization, 60(2):173–184, Oct 2009.

[58] J-M. Coron and E. Trélat. Global steady-state controllability of one-dimensional semilinear heat
equations. SIAM J. Control and Optimization, 43:549–569, 01 2004.

[59] C. Cosner and Y. Lou. Does movement toward better environments always benefit a population?
Journal of Mathematical Analysis and Applications, 277(2):489–503, jan 2003.

[60] S. Cox and R. Lipton. Extremal eigenvalue problems for two-phase conductors. Archive for
Rational Mechanics and Analysis, 136:101–117, 12 1996.

[61] G. Dal Maso. An introduction to Γ-convergence, volume 6. Springer Science & Business Media,
2012.

[62] M. Dambrine. On variations of the shape hessian and sufficient conditions for the stability of
critical shapes. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales - Serie
A: Matematicas, 96:95–122, 01 2002.

[63] M. Dambrine and D. Kateb. On the shape sensitivity of the first dirichlet eigenvalue for two-
phase problems. Applied Mathematics & Optimization, 63(1):45–74, jul 2010.

[64] M. Dambrine and J. Lamboley. Stability in shape optimization with second variation. working
paper or preprint, February 2018.

[65] M. Dambrine and P. Michel. About stability of equilibrium shapes. ESAIM: Mathematical
Modelling and Numerical Analysis, 34(4):811–834, July 2000.

[66] D. Daners. A faber-krahn inequality for robin problems in any space dimension. Mathematische
Annalen, 335(4):767–785, Aug 2006.

[67] J. Dardé, H. Hakula, N. Hyvönen, S. Staboulis, and E. Somersalo. Fine-tuning electrode in-
formation in electrical impedance tomography. Inverse Probl. Imaging, 6:399–421, 2012.

242



BIBLIOGRAPHY

[68] M. C. Delfour and J.-P. Zolésio. Shapes and geometries, volume 22 of Advances in Design and
Control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 2011. Metrics, analysis, differential calculus, and optimization.

[69] W. Ding, H. Finotti, S. Lenhart, Y. Lou, and Q. Ye. Optimal control of growth coefficient on a
steady-state population model. Nonlinear Analysis: Real World Applications, 11(2):688 – 704,
2010.

[70] J. Dockery, V. Hutson, K. Mischaikow, and M. Pernarowski. The evolution of slow dispersal
rates: a reaction diffusion model. Journal of Mathematical Biology, 37(1):61–83, 1998.

[71] J. L. Ericksen, David Kinderlehrer, Robert Kohn, and J.-L. Lions, editors. Homogenization and
Effective Moduli of Materials and Media. Springer New York, 1986.

[72] A. Evgrafov. The limits of porous materials in the topology optimization of Stokes flows. Appl.
Math. Optim., 52(3):263–277, 2005.

[73] G. Faber. Beweis, dass unter allen homogenen membranen von gleicher fläche und gleicher
spannung die kreisförmige den tiefsten grundton gibt. Sitzungsberichte der mathematisch-
physikalischen Klasse der Bauerischen Akademie der Wissenschaften zu München Jahrgang,
1923.

[74] A. Ferone and R. Volpicelli. Minimal rearrangements of sobolev functions: a new proof. Annales
de l’Institut Henri Poincaré, 20:333–339, 2003.

[75] R. A. Fisher. The wave of advances of advantageous genes. Annals of Eugenics, 7(4):355–369,
1937.

[76] G. B. Folland. Introduction to partial differential equations. Princeton University Press, 1995.

[77] R. Fourer, D. M Gay, and B. W. Kernighan. A modeling language for mathematical program-
ming. Management Science, 36(5):519–554, 1990.

[78] N. Fusco, F. Maggi, and A. Pratelli. The sharp quantitative isoperimetric inequality. Annals of
Mathematics, 168(3):941–980, November 2008.

[79] S. Gavrilets. Fitness landscapes and the origin of species. Princeton University Press, 2004.

[80] D. Gilbarg and N.S Trudinger. Elliptic Partial Differential Equations of Second Order. Springer
Berlin Heidelberg, 1983.

[81] L. Girardin. Competition in periodic media: I – Existence of pulsating fronts. Discrete and
Continuous Dynamical Systems - Series B, 22(4), June 2017.

[82] L. Girardin. Propagation phenomena and reaction–diffusion systems for population dynamics in
homogeneous or periodic media. Theses, Sorbonne Université , UPMC, July 2018.

[83] J. Hadamard. Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques
encastrées. Mémoires présentés par divers savants à l’Académie des sciences de l’Institut de
France: Éxtrait. Imprimerie nationale, 1908.

[84] F. Hamel, N. Nadirashvili, and E. Russ. Rearrangement inequalities and applications to isoperi-
metric problems for eigenvalues. Annals of Mathematics, 174(2):647–755, sep 2011.

[85] F. Hamel and L. Roques. Mathematical analysis of the optimal habitat configurations for species
persistence. Math. Biosci., 210(1):34–59, 2007.

243



BIBLIOGRAPHY

[86] W. Hansen and N. Nadirashvili. Isoperimetric inequalities in potential theory. Potential Analysis,
3(1):1–14, Mar 1994.

[87] G. H. Hardy. Note on a theorem of hilbert. Mathematische Zeitschrift, 6(3):314–317, Sep 1920.

[88] M. Hayouni. Lipschitz continuity of the state function in a shape optimization problem. J.
Convex Anal., 6(1):71–90, 1999.

[89] W. He and W-M. Ni. Global dynamics of the Lotka–Volterra competition–diffusion system with
equal amount of total resources, III. Calc. Var. Partial Differential Equations, 56(5):56:132,
2017.

[90] X. He and W-M. Ni. Global dynamics of the lotka-volterra competition-diffusion system: Diffu-
sion and spatial heterogeneity is. Communications on Pure and Applied Mathematics, 69(5):981–
1014, 2015.

[91] X. He and W-M. Ni. Global dynamics of the lotka–volterra competition–diffusion system with
equal amount of total resources, ii. Calculus of Variations and Partial Differential Equations,
55, 04 2016.

[92] A. Henrot. Extremum problems for eigenvalues of elliptic operators. Frontiers in Mathematics.
Birkhäuser Verlag, Basel, 2006.

[93] A. Henrot and M. Pierre. Variation et optimisation de formes: une analyse géométrique,
volume 48. Springer Science & Business Media, 2006.

[94] A. Henrot, M. Pierre, and M. Rihani. Positivity of the shape Hessian and instability of some
equilibrium shapes. Mediterr. J. Math., 1(2):195–214, 2004.

[95] Antoine Henrot, editor. Shape optimization and spectral theory. De Gruyter Open, Warsaw,
2017.

[96] P. Hess. Periodic-parabolic boundary value problems and positivity, volume 247 of Pitman Re-
search Notes in Mathematics Series. Longman Scientific & Technical, Harlow; copublished in
the United States with John Wiley & Sons, Inc., New York, 1991.

[97] P. Hess and T. Kato. On some linear and nonlinear eigenvalue problems with an indefinite
weight function. Communications in Partial Differential Equations, 5(10):999–1030, 1980.

[98] L. Hillairet and C. Judge. Generic spectral simplicity of polygons. Proc. Amer. Math. Soc.,
137(6):2139–2145, 2009.

[99] M. Hintermüller, C.-Y. Kao, and A. Laurain. Principal eigenvalue minimization for an elliptic
problem with indefinite weight and Robin boundary conditions. Appl. Math. Optim., 65(1):111–
146, 2012.

[100] M. W Hirsch. Differential topology, volume 33. Springer Science & Business Media, 2012.

[101] J. Hofbauer, V. Hutson, and G.T. Vickers. Travelling waves for games in economics and biology.
Nonlinear Analysis: Theory, Methods & Applications, 30(2):1235–1244, December 1997.

[102] V. Hutson, Y. Lou, and K. Mischaikow. Spatial heterogeneity of resources versus lotka-volterra
dynamics. Journal of Differential Equations, 185(1):97 – 136, 2002.

[103] K. Jha and G. Porru. Minimization of the principal eigenvalue under Neumann boundary
conditions. Numer. Funct. Anal. Optim., 32(11):1146–1165, 2011.

244



BIBLIOGRAPHY

[104] C-Y. Kao, Y. Lou, and E. Yanagida. Principal eigenvalue for an elliptic problem with indefinite
weight on cylindrical domains. Math. Biosci. Eng., 5(2):315–335, 2008.

[105] T. Kato. Perturbation theory for linear operators. Classics in Mathematics. Springer-Verlag,
Berlin, 1995. Reprint of the 1980 edition.

[106] T. Kato. Perturbation theory for linear operators. Springer Science & Business Media, 2012.

[107] K. Kawasaki, N. Shigesada, and E. Teramoto. Traveling periodic waves in heterogeneous envir-
onments. Theoretical Population Biology, 30(1):143–160, August 1986.

[108] B. Kawohl. Rearrangements and Convexity of Level Sets in PDE. Springer Berlin Heidelberg,
1985.

[109] B. Kawohl. On the isoperimetric nature of a rearrangement inequality and its consequences for
some variational problems. Archive for Rational Mechanics and Analysis, 94(3):227–243, 1986.

[110] B. Kawohl, O. Pironneau, L. Tartar, and J.-P. Zolésio. Optimal shape design, volume 1740
of Lecture Notes in Mathematics. Springer-Verlag, Berlin; Centro Internazionale Matematico
Estivo (C.I.M.E.), Florence, 2000. Lectures given at the Joint C.I.M./C.I.M.E. Summer School
held in Tróia, June 1–6, 1998, Edited by A. Cellina and A. Ornelas, Fondazione CIME/CIME
Foundation Subseries.

[111] H. Kielhöfer. Bifurcation Theory. Springer New York, 2012.

[112] N. Kinezaki, K. Kawasaki, N. Shigesada, and F. Takasu. Biological Invasion into Periodically
Fragmented Environments: A Diffusion-Reaction Model, pages 215–222. 01 2003.

[113] A. Kolmogorov, I. Pretrovski, and N. Piskounov. étude de l’équation de la diffusion avec crois-
sance de la quantité de matière et son application à un problème biologique. Moscow University
Bulletin of Mathematics, 1:1–25, 1937.

[114] E. Krahn. Über eine von rayleigh formulierte minimaleigenschaft des kreises. Mathematische
Annalen, 1925.

[115] K-Y. Lam and Y. Lou. An integro-PDE model for evolution of random dispersal. Journal of
Functional Analysis, 272(5):1755–1790, 2017.

[116] J. Lamboley, A. Laurain, G. Nadin, and Y. Privat. Properties of optimizers of the principal
eigenvalue with indefinite weight and Robin conditions. Calculus of Variations and Partial
Differential Equations, 55(6), December 2016.

[117] A. Laurain. Global minimizer of the ground state for two phase conductors in low contrast
regime. ESAIM: Control, Optimisation and Calculus of Variations, 20(2):362–388, 2014.

[118] E.H. Lieb and M. Loss. Analysis. American Mathematical Society, 2001.

[119] J-L. Lions. Contrôlabilité exacte perturbations et stabilisation de systèmes distribués(tome 1,
contrôlabilité exacte. tome 2, perturbations). Recherches en mathematiques appliquées, 1988.

[120] J-L. Lions. Exact controllability, stabilization and perturbations for distributed systems. SIAM
review, 30(1):1–68, 1988.

[121] J-L. Lions and E. Magenes. Problemi ai limiti non omogenei (iii). Annali della Scuola Normale
Superiore di Pisa - Classe di Scienze, Ser. 3, 15(1-2):41–103, 1961.

[122] P-L. Lions. On the existence of positive solutions of semilinear elliptic equations. SIAM Review,
24(4):441–467, 1982.

245



BIBLIOGRAPHY

[123] P. Lissy and E. Zuazua. Internal observability for coupled systems of linear partial differential
equations. SIAM Journal on Control and Optimization, 57(2):832–853, January 2019.

[124] G. Liu. Rellich type identities for eigenvalue problems and application to the pompeiu problem.
Journal of mathematical analysis and applications, 330(2):963–975, 2007.

[125] Y. Lou. On the effects of migration and spatial heterogeneity on single and multiple species.
Journal of Differential Equations, 223(2):400 – 426, 2006.

[126] Y. Lou. Some Challenging Mathematical Problems in Evolution of Dispersal and Population
Dynamics, pages 171–205. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[127] Y. Lou. Tutorials in Mathematical Biosciences IV: Evolution and Ecology, chapter Some Chal-
lenging Mathematical Problems in Evolution of Dispersal and Population Dynamics, pages 171–
205. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[128] Y. Lou and E. Yanagida. Minimization of the principal eigenvalue for an elliptic boundary value
problem with indefinite weight, and applications to population dynamics. Japan J. Indust. Appl.
Math., 23(3):275–292, 10 2006.

[129] Y. Lou and E. Yanagida. Minimization of the principal eigenvalue for an elliptic boundary value
problem with indefinite weight, and applications to population dynamics. Japan J. Indust. Appl.
Math., 23(3):275–292, 2006.

[130] D. Ludwig, D. G. Aronson, and H. F. Weinberger. Spatial patterning of the spruce budworm.
Journal of Mathematical Biology, 8(3):217–258, 1979.

[131] Y. L Luke. Integrals of Bessel functions. McGraw-Hill, 1962.

[132] T.R. Malthus. An Essay on the Principle of Population. Oxford world’s classics. 1798.

[133] S. Mandelbrojt. Classes of infinitely differentiable functions. 1942.

[134] H. Matano. Convergence of solutions of one-dimensional semilinear parabolic equations. J.
Math. Kyoto Univ., 18(2):221–227, 1978.

[135] E. Mayr. Animal Species and Evolution. Harvard University Press, 1963.

[136] A. D. Melas. The stability of some eigenvalue estimates. J. Differential Geom., 36(1):19–33,
1992.

[137] N. G. Meyers. An lp-estimate for the gradient of solutions of second order elliptic divergence
equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Ser. 3, 17(3):189–
206, 1963.

[138] A.M. Micheletti. Metrica per famiglie di domini limitati e proprietà generiche degli autovalori.
Ann. Scuola Norm. Sup. Pisa (3), 26:683–694, 1972.

[139] F. Mignot, J.P. Puel, and F. Murat. Variation d’un point de retournement par rapport au
domaine. Communications in Partial Differential Equations, 4(11):1263–1297, 1979.

[140] S. Mirrahimi and G. Raoul. Dynamics of sexual populations structured by a space variable and
a phenotypical trait. Theoretical Population Biology, 84:87–103, March 2013.

[141] F. Murat. Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients.
Annali di Matematica Pura ed Applicata, 112(1):49–68, Dec 1977.

246



BIBLIOGRAPHY

[142] F. Murat and L. Tartar. Calculus of Variations and Homogenization, pages 139–173. Birkhäuser
Boston, Boston, MA, 1997.

[143] J.D. Murray. Mathematical Biology. Springer Berlin Heidelberg, 1993.

[144] G. Nadin. The effect of the schwarz rearrangement on the periodic principal eigenvalue of a
nonsymmetric operator. SIAM Journal on Mathematical Analysis, 41(6):2388–2406, jan 2010.

[145] G. Nadin. Phénomènes de propagation pour différents modèles de réaction-diffusion. Hdr, Sor-
bonne Université , UPMC, July 2018.

[146] G. Nadin, M. Strugarek, and N. Vauchelet. Hindrances to bistable front propagation: application
to wolbachia invasion. Journal of Mathematical Biology, 76(6):1489–1533, May 2018.

[147] G. Nadin and A. I. Toledo Marrero. On the maximization problem for solutions of reaction-
diffusion equations with respect to their initial data. working paper or preprint, July 2019.

[148] K. Nagahara and E. Yanagida. Maximization of the total population in a reaction–diffusion
model with logistic growth. Calculus of Variations and Partial Differential Equations, 57(3):80,
Apr 2018.

[149] O.A. Oleinik, A.S. Shamaev, and G.A. Yosifian. Mathematical Problems in Elasticity and Ho-
mogenization, Volume 26 (Studies in Mathematics and its Applications). North Holland, 1992.

[150] B. Opic and A. Kufner. Hardy-type Inequalities. Pitman research notes in mathematics series.
Longman Scientific & Technical, 1990.

[151] S.W. Pacala and J. Roughgarden. Spatial heterogeneity and interspecific competition. Theor-
etical Population Biology, 21(1):92 – 113, 1982.

[152] B. Perthame. Parabolic Equations in Biology. Springer International Publishing, 2015.

[153] B. Perthame and P.E. Souganidis. Rare mutations limit of a steady state dispersion trait model.
2015.

[154] D. Pighin, , and E. Zuazua. Controllability under positivity constraints of semilinear heat
equations. Mathematical Control & Related Fields, 8(3):935–964, 2018.

[155] E. Polak. Optimization: algorithms and consistent approximations, volume 124. Springer Science
& Business Media, 2012.

[156] A. Porretta and E. Zuazua. Long time versus steady state optimal control. SIAM Journal on
Control and Optimization, 51(6):4242–4273, January 2013.

[157] C. Pouchol, E. Trélat, and E. Zuazua. Phase portrait control for 1d monostable and bistable
reaction-diffusion equations. Nonlinearity, 05 2018.

[158] M.H. Protter and H.F. Weinberger. Maximum Principles in Differential Equations. Springer
New York, 1984.

[159] J-M. Rakotoson. Réarrangement relatif, volume 64 of Mathématiques & Applications (Berlin)
[Mathematics & Applications]. Springer, Berlin, 2008. Un instrument d’estimations dans les
problèmes aux limites. [An estimation tool for limit problems].

[160] M. Reed and B. Simon. Methods of modern mathematical physics: Functional analysis, volume 1.
Gulf Professional Publishing, 1980.

247



BIBLIOGRAPHY

[161] S. Roman. An Introduction to Catalan Numbers. Compact Textbooks in Mathematics. Springer
International Publishing, 2015.

[162] L. Roques and R.S. Stoica. Species persistence decreases with habitat fragmentation: an analysis
in periodic stochastic environments. Journal of Mathematical Biology, 55(2):189–205, February
2007.

[163] D. Ruiz-Balet and E. Zuazua. Controllability under constraints for reaction-diffusion equations:
The multi-dimensional case.

[164] N. Sekeljik. Asymptotic expansion of bessel functions. Dynamics at the Horsetooth, 2A:1–11,
2010.

[165] J. Serrin. A symmetry problem in potential theory. Archive for Rational Mechanics and Analysis,
43(4):304–318, Jan 1971.

[166] N. Shigesada and K. Kawasaki. Biological Invasions: Theory and Practice. Oxford University
Press, 1997.

[167] J. Simon. Second variations for domain optimization problems. International Series of Numerical
Mathematics, 91, 01 1989.

[168] J. G. Skellam. Random dispersal in theoretical populations. Biometrika, 38(1-2):196–218, 06
1951.

[169] G. Stampacchia. Le problème de dirichlet pour les équations elliptiques du second ordre à
coefficients discontinus. Annales de l’Institut Fourier, 15(1):189–257, 1965.

[170] M. Strugarek and N. Vauchelet. Reduction to a single closed equation for 2-by-2 reaction-
diffusion systems of lotka-volterra type. SIAM Journal of Applied Mathematics, 76:2060–2080,
2016.

[171] G. Talenti. Nonlinear elliptic equations, rearrangements of functions and orlicz spaces. Annali
di Matematica Pura ed Applicata, 120(1):159–184, Dec 1979.

[172] E. Trélat, J. Zhu, and E. Zuazua. Allee optimal control of a system in ecology. Mathematical
Models and Methods in Applied Sciences, 28(09):1665–1697, August 2018.

[173] E. Trélat and E. Zuazua. The turnpike property in finite-dimensional nonlinear optimal control.
Journal of Differential Equations, 258(1):81–114, January 2015.

[174] O. Turanova. On a model of a population with variable motility. Mathematical Models and
Methods in Applied Sciences, 25(10):1961–2014, 2015.

[175] J-R. Uriarte and N. Iriberri. Minority language and the stability of bilingual equilibria. Ration-
ality and Society, 24, 01 2011.

[176] A. Wächter and L.T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Math. Program., 106(1, Ser. A):25–57, 2006.

[177] G. Wang and E. Zuazua. On the equivalence of minimal time and minimal norm controls for
internally controlled heat equations. SIAM Journal on Control and Optimization, 50(5):2938–
2958, January 2012.

[178] G.N. Watson. A treatise on the theory of Bessel functions. Cambridge university press, 1995.

[179] J. M. Yong and P. J. Zhang. Necessary conditions of optimal impulse controls for distributed
parameter systems. Bull. Austral. Math. Soc., 45(2):305–326, 1992.

248



BIBLIOGRAPHY

[180] E. Zuazua. Controllability and observability of partial differential equations: some results and
open problems. Handbook of differential equations: evolutionary equations, 3:527–621, 2007.

249



BIBLIOGRAPHY

250



Résumé
Cette thèse est dédiée à l’étude de problèmes d’optimisation de forme et de contrôle qui apparaissent
naturellement en écologie spatiale. Considérant une population dont la densité dépend d’un terme de
ressource à travers l’équation aux dérivées partielles de Fisher-KPP hétérogène en espace, on cherche à

déterminer une répartition de ressources garantissant sa survie ou optimisant la taille de la population. Dans
cette perspective, plusieurs approches reposant sur l’introduction et l’analyse de problèmes d’optimisation de
forme et de contrôle mettant en jeu la solution de cette EDP et/ou une quantité spectrale dépendant du

terme de ressource sont envisagés. L’analyse de ces problèmes nécessite

• le développement de méthodes asymptotiques pour étudier l’existence et certaines propriétés qualitatives
(concentration et fragmentation des ressources) de formes optimales, ou encore la stabilité de certaines
configurations de ressources ;

• l’établissement d’une inégalité spectrale quantitative pour un opérateur de Schrödinger dans la boule ;

• l’introduction d’une méthode perturbative pour étudier la contrôlabilité des équations de réaction-
diffusion en milieu hétérogène.

Mots clés: Équations de réaction-diffusion, Optimisation spectrale, Optimisation de formes, Contrôle des
EDP, Inégalités quantitatives, Analyse qualitative.

Summary
This thesis is devoted to the study of shape optimisation and control problems stemming from the study of

spatial ecology. Assuming we are working with a population whose density depends on a spatially
heterogeneous Fisher-KPP equation involving a resources distribution, we wish to investigate which of these
resources distributions optimises the survival, or total population size of the population. In order to study
such questions, we introduce and analyse several shape optimisation and control problems involving the
solutions of reaction-diffusion PDEs and/or spectral quantities that depend on the resources distribution.

The analysis of these problems leads to

• developing asymptotic methods to study the existence and some qualitative properties (e.g concentra-
tion, fragmentation) of optimal shapes, as well as their stability;

• proving a quantitative spectral inequality for a Schrödinger operator in the ball;

• introducing a perturbative method to study controllability properties of spatially heterogeneous reaction-
diffusion equations.

Keywords: Reaction-diffusion equations, Spectral optimization, Shape optimization, PDE Control,
Quantitative inequalities, Qualitative analysis.
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