
HAL Id: tel-02906138
https://theses.hal.science/tel-02906138

Submitted on 24 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Apprentissage continu : S’attaquer à l’oubli foudroyant
des réseaux de neurones profonds grâce aux méthodes à

rejeu de données
Timothée Lesort

To cite this version:
Timothée Lesort. Apprentissage continu : S’attaquer à l’oubli foudroyant des réseaux de neurones
profonds grâce aux méthodes à rejeu de données. Machine Learning [cs.LG]. Institut Polytechnique
de Paris, 2020. English. �NNT : 2020IPPAE003�. �tel-02906138�

https://theses.hal.science/tel-02906138
https://hal.archives-ouvertes.fr

626

N
N

T
:2

02
0I

PP
A

E0
03 Continual Learning: Tackling

Catastrophic Forgetting in Deep Neural
Networks with Replay Processes

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à Ecole nationale supérieure de techniques avancées

École doctorale n◦626 École Doctorale de l’Institut Polytechnique de Paris (ED IPP)
Spécialité de doctorat: Informatique, Données, IA

Thèse présentée et soutenue à Palaiseau, le 12/06/2020, par

TIMOTHÉE LESORT

Composition du Jury :

Alexander Gepperth
Professor, Fulda University (Computer Science Department) Président

Irina Rish
Associate Professor, Montreal University (MILA) Rapporteur

Georges Quénot
Directeur de Recherche au CNRS, Laboratoire d’Informatique de
Grenoble (LIG) Rapporteur

Razvan Pascanu
Research Scientist, Deepmind London Examinateur

David Filliat
Professor, Ensta Paris (U2IS) Directeur de thèse

Andrei Stoian
Research Scientist, Thales (Theresis) Co-encadrant de thèse

2

Remerciements

J’ai passé trois années pour ce doctorat pendant lesquelles j’ai pu travailler avec beaucoup de liberté
sur mon sujet de thèse. J’ai ainsi pu réaliser de nombreuses collaborations ainsi qu’aller à plusieurs
conférences. Tout cela m’a permis de m’épanouir dans ma recherche et dans mon sujet et de pouvoir
varier mes activités et mes modes de travail. Je suis ainsi reconnaissant à tous les acteurs de cet
environnement de travail qui m’a amené à obtenir mon diplôme de doctorat. Par ailleurs, pendant
la période de cette thèse, j’ai aussi continué à exercer des activités diverses à côté grâce à ma famille
et à mes amis, merci à tous également.

Pour entrer plus dans le détail, tout d’abord j’aimerais remercier mon directeur de thèse, David,
qui a été présent pendant toute la durée de ma thèse pour m’aider, me conseiller et m’écouter.
Merci pour ta présence, merci pour ta patience.

Je souhaite remercier aussi Andrei et Jean-François qui ont successivement été mes co-directeurs
de thèse côté Thales. Merci, d’avoir accepté de m’encadrer et merci pour le temps que vous m’avez
consacré.

Par ailleurs, je suis reconnaissant envers mes collègues de Thales qui ont participé chacun à
leur manière à faire régner une bonne ambiance au sein du laboratoire, merci Tiago, Thierry, J-E,
David, Stéphanie (x2) :), Michael (x3), Kevin, Cédric, Jean-Yves, Stéphane, Andreina, Yassine,
Tom, Rémi, Céline, Louis, Thomas et tous les autres.

Merci également à mes collègues de l’ensta, mes multiples co-bureau, Antonin, Victor, Florence.
Les camarades des trois actes déjeuner-café-baby, Thibault, Olivier, Julien, Alex, Thomas et les
autres. Les partenaires de sport: Gabriel, Vyshakh (t’es nul!!), Hugo. Merci à tous mes co-auteurs,
de l’ensta et d’ailleurs, grâce à qui ma thèse a pu avancer plus vite: Natalia (so much work together
!), Hugo, Antonin (again), René, Te, Massimo, Vincenzo, Alexander, Florian, Mathieu, Ashley !

Merci à ma famille, merci à mes parents toujours là pour me soutenir, m’aider et m’accueillir,
merci à Zaz, Cacou et Céc, une belle friterie toujours prête à partager un bon repas. Merci aussi à
Manf notamment pour ces deux formidables neveu et nièce, Loulou et Milou. Merci à mon grand-
père Henri, un exemple de ténacité et de vigueur. Ainsi qu’au reste de la famille, notamment Sabine
et Claire qui se greffent occasionnellement aux mardis friterie.

Merci à mes amis d’ici et d’ailleurs pour être ce qu’ils sont et avoir été là afin que je puisse
penser à d’autres choses que le doctorat! La TBC : Julaix, Günter, GrandMax, Sylvain, Eddine,
Etienne, Jej, Joss et Tang, tous grands amateurs de tarot et de bibines! Les négligés : Mon p’tit
fréro LaKajette (surnom favori s’il en est), Dug mon eternel colloc Munichois et traître parmi les
traîtres, mon camarade de chant Driss, Cheucheu, Roro, Pauline et les autres... :) Les ex-fumistes :
Sophie, Loubier, Lucie, Romain, Lucile, Eline, Antho, Quentin, Alexis, PX, Christophe. Les autres
amis de Paris, ex-Parisiens ou d’ailleurs: Minot, Camille, Emmanuelle, Guidg, Hugo, Louis, Nasta,
Olivier, Margaux, Claire, Romdav, Paul, Thomas, le brave Remillieux, Sylvestre, Capucine et tant
d’autres. Les potes de Montréal : Vincent, Florian, César, Alexandre, Thomas, Massimo, Laurent,
Theodora. A bientôt, j’espère ;). Les bons vieux des scouts, Emile, Balt et Martin, ça fait plaisir
qu’on se voit encore parfois. Les cibeinsois Sean, Marion, Lucie, Mélanie et bien d’autres. Et enfin
Beber et Sylvain, ces personnes respectables et talentueuses, j’espère bien vous voir plus souvent
pour travailler efficacement et expérimenter le présent de vérité générale.

Merci également à tous mes relecteurs, ceux de tout temps mais aussi pour ceux qui ont directe-
ment participé à ce manuscrit : mon père, ma mère, Zaz, Colin, Cacou, Victor, Vyshakh, Jacko,
Günter, Etienne, Capucine, Florence, Andrei et bien sûr, David.

Contents

Contents 3

List of Figures 5

List of Tables 7

1 Introduction 11
1.1 Context . 11
1.2 Contributions and Scope . 13
1.3 Publications . 13
1.4 Outline . 14

2 Deep Learning Backround: Principles and Applications 15
2.1 Training Deep Neural Networks by Gradient Descent 16
2.2 Learning Paradigms . 18
2.3 Learning procedure . 30
2.4 Towards Continual Learning . 32
2.5 Conclusion . 34

3 Continual Learning 37
3.1 Introduction . 37
3.2 Definition of Continual Learning . 38
3.3 Key vocabulary . 39
3.4 A Framework for Continual Learning . 43
3.5 State of the art . 49
3.6 Evaluation . 55
3.7 Applications : Continual Learning for Robotics . 62
3.8 Conclusion . 66

4 Supervision Free Inference in Continual Learning 69
4.1 Introduction . 69
4.2 Background . 70
4.3 Regularization Approach . 71
4.4 Propositions . 73
4.5 Experiments . 80
4.6 Discussion . 84

3

4 CONTENTS

4.7 Conclusion . 86

5 Learning Continually a Generative Models 87
5.1 Introduction / Motivation . 87
5.2 Background . 88
5.3 Approach . 91
5.4 Experiments . 91
5.5 Results . 94
5.6 Discussion . 103
5.7 Conclusion . 103

6 Generative Replay for Classification 105
6.1 Introduction . 105
6.2 Background . 106
6.3 Approach . 108
6.4 Experiments . 112
6.5 Results . 113
6.6 Discussion . 121
6.7 Conclusion . 121

7 Replay for Policy Distillation 123
7.1 Introduction . 123
7.2 Background . 124
7.3 Approach . 126
7.4 Experiments . 128
7.5 Results . 130
7.6 Discussion and Future Work . 135
7.7 Conclusion . 135

8 Discussion 137
8.1 Rethinking Continual Learning Objectives . 137
8.2 Discussion on the thesis choices . 141
8.3 Continual Learning Pitfalls . 145
8.4 Research recommendations . 146

9 Conclusion 149
9.1 Summary of Contributions . 149
9.2 Future Research . 150

Bibliography 153

List of Figures

1.1 Disjoint tasks illustration. 12

2.1 Illustration of a deep neural network (DNN). 15
2.2 Illustration of an artificial neuron. 16
2.3 Illustration of an convolution neuronal network. 19
2.4 Illustration of reinforcement learning environment. 21
2.5 Illustration of famous RL benchmarks. 23
2.6 Illustration of the variational auto-encoder (VAE). 25
2.7 Illustration of the generative adversarial network (GAN). 26
2.8 Illustration of Fitting Capacity method (FiC). 28
2.9 Samples from MNIST-like datasets. 29
2.10 Samples from Cifar10 dataset. 29
2.11 Dog samples from ImageNet dataset. 30

3.1 Task label and concept drift: illustration of the different scenarios. 47
3.2 Venn diagram of some of the most popular CL strategies. 56
3.3 Illustation for robotics tasks . 64

4.1 Illustration of a decision boundary learned. 74
4.2 Simple case of continual learning classification in a multi-task setting. 80
4.3 Case of representation overlapping in one task classification setting. 81
4.4 Case of representation overlapping in multi-tasks classification setting. 81
4.5 Illustration of the MNIST-Fellowship dataset’s three tasks. 82
4.6 Experiment on disjoint classes without test label vs test label. 83
4.7 Experiments with joint classes. 83

5.1 Illustration of the disjoint setting considered . 88
5.2 Fitting capacity evaluation of various generative models on MNIST. 89
5.3 Comparison between generative model evaluations. 90
5.4 Test set classification accuracy on MNIST and Fashion-MNIST 93
5.5 Comparison between FID results and Fitting Capacity results 94
5.6 Fitting Capacity metric evaluation of VAE, CVAE, GAN, CGAN and WGAN 95
5.7 EWC results with CGAN . 96
5.8 Reproduction of EWC experiments from [218] . 97
5.9 Generated samples with MNIST . 98

5

6 List of Figures

5.10 Generated Samples with Fashion-MNIST . 99
5.11 Fitting Capacity results for GAN and VAE on MNIST 100
5.12 Generated samples with CIFAR10 . 101
5.13 Generated samples on CIFAR10 with each method. 102
5.14 FiC and FID on CL tasks with WGAN_GP, on CIFAR10. 102
5.15 Samples at each task for the best working solution, GAN with generative replay. 104

6.1 Illustration of a multi-tasks learning continuum. 108
6.2 MNIST training data for rotation tasks. 108
6.3 MNIST training data for permutation-type tasks. 109
6.4 Samples of MNIST training data for the disjoint tasks 109
6.5 Samples of MNIST training data for the permutations tasks 110
6.6 Illustration of Generative Replay and Conditional Replay for continual learning. 111
6.7 Illustration of classes imbalances for different replay strategies. 112
6.8 Test set accuracies during the training on different tasks 114
6.9 Comparison of the accuracy of each approach on the first task. 116
6.10 Comparison of the FID of each approach’s generative models 117
6.11 Generated samples of MNIST for the permutations tasks 118
6.12 Comparison between conditional and marginal replay accuracy. 120

7.1 Image of the three robotics tasks. 124
7.2 Overview of our full pipeline for Continual multi-tasks Reinforcement Learning. 127
7.3 Illustration of SRL Combination model . 127
7.4 Representation of data sampling strategies to distill the teacher policy. 131
7.5 Accumulated rewards on each task. 132
7.6 Performance comparison with different sampling strategies 132
7.7 Demonstration of the effectiveness of distillation. 133
7.8 Distillation of teacher policies into a student network. 134

List of Tables

3.1 Illustration of continual learning scenarios. 46
3.2 Classification of continual learning main strategies . 54
3.3 Continual learning’s benchmarks and environments . 57
3.4 Illustration of accuracy matrix R . 59

4.1 Model architecture for regularization methods evaluation. 82

5.1 Classifier architecture for Fitting Capacity computation 93
5.2 Results table on the 10 disjoint tasks setting . 94

6.1 Hyperparameters table for MNIST and Fashion MNIST 111

7.1 Mean normalized performance of a student policies . 131

7

8 List of Tables

List of Abbreviation

CL Continual Learning

LLL LifeLong Learning

DL Deep Learning

ANN Artificial Neural Network

NN Neural Network

CNN Convolutional Neural Network

SGD Stochastic Gradient Descent

MLP Multi Layer Perceptron

i.i.d. Independent and Identically Distributed

MAP Maximum A posteriori Probability estimate

MLE Maximum Likelihood Estimation

PCA Principal Component Analysis

RGB Red Green and Blue

RL Reinforcement Learning

LwF Learning without Forgetting

GEM Gradient Episodic Memory

iCaRL Incremental Classifier and Representation Learning

EWC Elastic Weight Consolidation

Résumé Français

Les humains apprennent toute leur vie. Ils accumulent des connaissances à partir d’une succession
d’expériences d’apprentissage et en mémorisent les aspects essentiels sans les oublier. Les réseaux
de neurones ont des difficultés à apprendre dans de telles conditions. Ils ont en général besoin
d’ensembles de données rigoureusement préparés pour apprendre à résoudre des problèmes comme
de la classification ou de la régression. En particulier, lorsqu’ils apprennent sur des séquences
d’ensembles de données, les nouvelles expériences leurs font oublier les anciennes. Ainsi, les réseaux
de neurones artificiels sont souvent incapables d’appréhender des scénarios réels tels ceux de robots
autonomes apprenant en temps réel à s’adapter à de nouvelles situations et à de nouveaux problèmes
[141].

L’apprentissage continu est une branche de l’apprentissage automatique s’attaquant à ce type
de scénarios. Les algorithmes continus sont créés pour apprendre des connaissances, les enrichir et
les améliorer au cours d’un curriculum d’expériences d’apprentissage.

Il existe quatre grandes familles d’approches pour l’apprentissage continu. Premièrement, les
méthodes à architecture dynamique consistent à faire évoluer l’architecture du réseau de neu-
rones afin que différentes expériences d’apprentissages soient apprises avec différents neurones ou
groupes de neurones. Secondement, les méthodes de régularisation évaluent l’importance des
neurones ayant déjà été entrainés afin de limiter leurs modifications en conséquence. Il s’agit
ainsi d’apprendre de nouvelles tâches préférentiellement avec des neurones jusqu’alors peu ou pas
utiles. Troisièmement, les méthodes à répétitions de données consistent à sauvegarder des im-
ages représentatives des connaissances apprises et à les rejouer plus tard pour se les remémorer. Le
quatrième type de méthode, appelé rejeu par génération utilise un réseau de neurones auxili-
aire apprenant à générer les données d’apprentissage actuelles. Ainsi plus tard le réseau auxiliaire
pourra être utilisé pour régénérer des données du passé et les remémorer au modèle principal pour
éviter qu’il ne les oublie. Nous présentons en détail l’état de l’art de l’apprentissage continu dans
le chapitre 3.

Dans cette thèse, nous proposons d’étudier ces deux dernières méthodes sur des problèmes
d’apprentissage sur images. Nous les rassemblont au sein de la famille des méthodes à rejeu de don-
nées. Les méthodes de rejeu de données permettent de trouver un compromis entre l’optimisation
de l’objectif d’apprentissage actuel et ceux des experiences d’apprentissage passées.

Nous montrons que ces méthodes sont prometteuses pour l’apprentissage continu. Elles perme-
ttent la réévaluation des données du passé avec des nouvelles connaissances et de confronter des
données issues de différentes expériences. Ces caractéristiques confèrent un avantage certain aux
méthodes de rejeu de données par rapport aux méthodes à architecture dynamique ou à régulari-
sation, qui peuvent être incapables d’apprendre à différencier des données provenant de différentes
expériences d’apprentissage [139].

9

10 List of Tables

Pour mettre en valeur les avantages de ces méthodes, nous expérimentons les algorithmes à
redifussion de données sur des séquences de tâches disjointes. Des tâches disjointes sont des tâches
d’apprentissage clairement séparées sans intersection dans leur critère d’apprentissage. En classifi-
cation, par exemple, il s’agit d’apprendre à reconnaitre des images provenant de différents ensembles
de classes séparés. Le réseau de neurones apprend les uns après les autres chacun des ensembles de
classes. Il doit être capable, in fine, de pouvoir reconnaitre une image provenant de n’importe lequel
des ensembles et d’identifer sa classe. Ces expérimentations permettent d’évaluer premièrement, la
capacité d’apprendre à distinguer des concepts (e.g classes) appris séparément et deuxièmement, la
capacité à se souvenir de concepts appris tout au long de la séquence de tâches.

Afin d’étudier au mieux les méchanismes d’apprentissage et d’oubli continus, les tâches d’apprentissage
sont construites à partir d’ensemble de données d’images classiques tels que MNIST [132], Fashion-
MNIST [266] ou CIFAR10 [123]. Ceux-ci sont des ensembles de données faciles à résoudre en
apprentissage profond classique, mais peuvent toujours être ardu à résoudre dans un contexte con-
tinu [186]. Nous expérimentons, par ailleur, dans le chapitre 7 un scénario proche d’une situation
réelle en apprenant à un robot à résoudre une séquence de tâche de renforcement.

Nous pouvons ainsi résumer nos contributions de la façon suivante:

• Nous présentons un aperçut approfondit de l’apprentissage continu (Chapitre 3). Nous ré-
sumons l’état de l’art sur le sujet ainsi que les différents bancs d’expérimentations et méthodes
d’évaluations. De plus, nous approfondissons l’exemple de la robotique pour mettre en valeur
les potentielles applications de l’apprentissage continu.

• Nous apportons une preuve théorique des limitations des méthodes dites de régularisation pour
l’apprentissage continu. Nous montrons que ces méthodes ne permettent pas d’apprendre à
différencier les données provenant de différentes expériences d’apprentissage.

• Nous réalisons une étude empirique sur l’entrainement des modèles génératifs sur des scénarios
d’apprentissage continu et nous introduisons une nouvelle méthode d’évaluation des modèles
génératifs : la capacité d’adaptation (Fitting Capacity).

• Nous expérimentons différentes méthodes de rejeu de données pour l’apprentissage continu.
Nous appliquons en particulier ces méthodes aux scénarios de tâches disjointes pour mettre
en avant leurs avantages pour l’apprentissage continu.

Pour résumer, nous démontrons la capacité des méthodes de rejeu de données à apprendre
continuellement à travers les paradigmes d’apprentissage non-supervisé (Chapitre 5), supervisé
(Chapitres 4 et 6) et de renforcement (Chapitre 7). Ces experimentations nous permettent de
présenter et de mettre en valeur les avantages de ces méthodes et de démontrer leur pouvoir à
apprendre certains aspects essentiels d’un curriculum d’expérience d’apprentissage faisant défaut
aux méthodes concurrentes.

Chapter 1

Introduction

1.1 Context

In recent years, machine learning with deep neural networks has significantly improved the state
of the art in solving many research and industrial problems. In vision problems, deep neural
networks particularly improve the state of the art in classification and detection. In natural language
processing, deep neural are nowadays used for search engines or text analysis. Deep learning also
improved reinforcement learning performances. It has made it possible to learn policy and skills in
various applications such as video-games, board-games or control.

Robotics is a field which offers significant opportunities for deep learning. Its successes could im-
prove robots cognitive functions such as vision, language processing or exploration. Moreover, deep
reinforcement learning can help leverage challenging robotics tasks, such as object manipulation or
autonomous driving.

However, the learning algorithms suffer from many shortcomings. An important restriction of
deep learning is the dependence on the quality of the data sets, a clean and well-built dataset being
a critical condition to an effective learning process. In most machine learning algorithms, training
data are assumed to be independent and identically distributed (iid), i.e. the data distribution is
assumed static. If the data distribution changes while learning, the new data will interfere with
current knowledge and erase it. This phenomenon is so dazzling [76] and it so drastically challenges
the algorithms’ performance that we call it “catastrophic forgetting”. This problem has many
implications in the way algorithms train neural networks and in the potential application fields for
machine learning.

Let us consider, for example, a robot working in an evolving environment and being assigned the
goal of manipulating new objects or solving new tasks. The robot will then need to incrementally
learn new knowledge and skills to improve and adapt its behaviour to new situations. With classical
machine learning techniques, in order to incorporate new knowledge while avoiding catastrophic
forgetting, the model will have to re-learn everything from scratch. A robot which needs only
the new data to improve and develop knowledge and skills, would be much more efficient in this
situation.

Continual learning (CL) is a branch of machine learning aiming at handling this type of situa-
tion and more generally, settings with non-iid data sources. It aims at creating machine learning
algorithms able to accumulate a set of knowledge learned sequentially. The general idea behind
continual learning is to make algorithms able to learn from a real-life data source. In a natural

11

12 CHAPTER 1. INTRODUCTION

environment, the learning opportunities are not simultaneously available and need to be processed
sequentially. Learning from the present data and being able to continue later with new data rather
than learning only once for all, seems very appropriate. It opens the possibility to improve the
algorithms on a certain task or to make them learn new skills/knowledge without forgetting. It also
enables transfer between learning experiences. Previous knowledge acquired may help in learning
to solve new problems and new knowledge which may improve the solutions found for past tasks.
Nevertheless, because of the catastrophic forgetting phenomena, learning continually is a challeng-
ing discipline. The strategy consisting in saving everything to avoid any forgetting is not satisfying
because it would not be scalable in terms of memory and computation. The amount of memory used
might grow too fast. It is therefore important to remember only the essential concepts. Moreover,
to deal with catastrophic forgetting, algorithms should identify the potential source of interference
between tasks1 to come up with a smoother forgetting process.

Figure 1.1: Illustration of a disjoint task setting with ImageNet images [124]. There are two tasks
learned sequentially, in the first there are two classes, black cats (c1) and white cats (c1), second
task is the same but for dogs (c3 vs c4). At the deployment stage, we expect the model to be able
to distinguish any class from any other, as white cats from black dogs. Therefore, the model needs
both to solve the two tasks and to solve the higher level task which consists of distinguishing classes
from various tasks.

In this thesis, we study specifically learning scenarios where the data is static by parts. Each
part is different from the other and is referred to as “a task”. This setting is called disjoint tasks
setting and, in classification, it is also called class-incremental setting. Each task brings new classes
to the learning curriculum and past ones are not available anymore. We show an illustration of
class incremental learning in Figure 1.1. In this type of setting, the forgetting happens only when
tasks change. Moreover, as classes are available only in one task, it is convenient to evaluate how
the neural network learns and memorizes them. On the other hand, this setting makes it possible to
assess if algorithms are able to learn to differentiate classes from different tasks, which is challenging
in continual learning. Therefore, we study how algorithms are able to deal with this kind of setting
as the ability to solve disjoint settings is a necessary condition to be able to deal with real-life
settings.

1The interferences are phenomena happening when different learning criteria conflict.

1.2. CONTRIBUTIONS AND SCOPE 13

1.2 Contributions and Scope

As will be detailed later in the thesis, continual learning approaches can be divided into four main
categories: Regularization, Dynamics Architectures, Rehearsal and Generative Replay.
In our work, we show that Regularization and Dynamics Architectures methods have theoretical
shortcomings for continual learning and therefore we focus on studying applications of replay meth-
ods, i.e. Rehearsal and Generative Replay methods, to categorization and reinforcement learning.
More precisely, we study the generative replay and rehearsal methods capacity to learn continually
in disjoint settings.

The contributions of this thesis are:

• A global overview of the continual learning research field (Chapter 3). We present the state
of the art in continual learning and introduce classical benchmarks and metrics. Moreover,
we develop the example of robotics as an application of continual learning solutions.

• A theoretical proof of the shortcomings of regularization methods for continual learning (Chap-
ter 4). We show that regularization methods do not provide learning criterion to differentiate
data available at different learning experiences in disjoint tasks settings.

• An empirical study on generative models capabilities in learning continually (Chapter 5) with
a new evaluation metric: the Fitting Capacity.

• We experiment with replay methods in continual learning settings (Chapters 5, 6 and 7). We
study in particular class-incremental settings with supervision free inference. This benchmark
highlights the need for replay in continual learning.

This thesis aims at giving an extended perspective on replay methods in continual learning and
insights into the advantages of these approaches for continual learning. We apply replay methods
to unsupervised, supervised and reinforcement learning to illustrate our statement.

Moreover, we propose an extensive discussion to stress the real requirements of continual learn-
ing, to present the advantages of replay methods in continual learning and spread in light the
research direction that should be explored to make it progress.

1.3 Publications

Our work has resulted in the following publications:

1.3.1 Journals

• [141] Continual Learning for Robotics: Definition, Framework, Learning Strate-
gies, Opportunities and Challenges (2019) T Lesort, V Lomonaco, A Stoian, D Mal-
toni, D Filliat, N Dìaz-Rodrìguez, Information Fusion, Elsevier, 2019, ISSN 1566-2535, doi:
10.1016/j.inffus.2019.12.004.

1.3.2 International Conferences

• [135]Generative Models from the perspective of Continual Learning (2019) T Lesort,
H Caselles-Dupré, M. Garcia-Ortiz, J-F Goudou, D Filliat, IJCNN - International Joint
Conference on Neural Networks, Budapest, Hungary

14 CHAPTER 1. INTRODUCTION

• [140] Training Discriminative Models to Evaluate Generative Ones (2019) T Lesort,
A Stoian, J-F Goudou, D Filliat, Artificial Neural Networks and Machine Learning – ICANN
2019: Deep Learning, Springer International Publishing, pp 604-619

• [137]Marginal Replay vs Conditional Replay for Continual Learning (2019) T Lesort,
A Gepperth, A Stoian, D Filliat, Artificial Neural Networks and Machine Learning – ICANN
2019: Deep Learning, Springer International Publishing, pp.466-480

1.3.3 Workshops in International Conferences

• [112] Continual Reinforcement Learning deployed in Real-life using Policy Distil-
lation and Sim2Real Transfer (2019) R Traoré*, H Caselles-Dupré*, T Lesort*, T Sun,
G Cai, N Dìaz-Rodrìguez, D Filliat, ICML Workshop on Multi-Task and Lifelong Learning,
2019, Long Beach

• [248] DisCoRL: Continual Reinforcement Learning via Policy Distillation (2019) R
Traoré*, H Caselles-Dupré*, T Lesort*, T Sun, G Cai, N Dìaz-Rodrìguez, D Filliat, Deep
RL Workshop, NIPS 2019, Vancouver

1.4 Outline

The organization of the remainder of this manuscript is the following:

• Chapter 2 introduces necessary deep learning background to understand the learning processes
applied in the thesis experiments.

• Chapter 3 proposes a global overview of continual learning, its objectives, applications and
evaluation.

• Chapter 4 motivates the research in replay methods by pointing out theoretical shortcomings
of other methods and by shedding light on replay methods advantages.

• Chapter 5 presents the generative replay method and evaluate its core component ability: the
generative model in a continual context.

• Chapter 6 experiments the generative replay method in incremental classification tasks se-
quences.

• Chapter 7 brings supplementary results on replay methods by applying rehearsal strategies
to a continual multi-task reinforcement learning setting. The resulting algorithm is applied
on real robots.

• Chapter 8 discusses continual learning objectives and use cases, the choices made in the thesis
and the traps of continual learning research.

• Chapter 9 conclude this 3-year work on continual learning and replay methods and opens
research directions for its extension.

Chapter 2

Deep Learning Backround: Principles and
Applications

Deep learning is a research field that aims at developing learning algorithms. Those algorithms
should learn a function that optimizes an objective function on data. In deep learning, this function
is implemented as a deep neural network, i.e. a neural network with more than one hidden layer
[20, 214] (Figure 2.11).

Figure 2.1: Illustration of a deep neural network (DNN).

Deep learning has many applications such as signal processing, language processing or image
processing. The scope of this thesis is limited to image processing: we work on algorithms learning
from images to understand other images. However, there is no theoretical limitation to transfer
results of this thesis in other application fields.

This chapter introduces the basic concepts of classical deep learning in Section 2.1 and its
applications in Section 2.2. For a more in-depth understanding of the subject we suggest to refer
to the book “Deep Learning” [87]. We also present the global deep learning pipeline in Section 2.3
and introduce in Section 2.4 its constraints leading to continual learning.

1Image taken from https://towardsdatascience.com/a-laymans-guide-to-deep-neural-networks-ddcea24847fb

15

https://towardsdatascience.com/a-laymans-guide-to-deep-neural-networks-ddcea24847fb

16 CHAPTER 2. DEEP LEARNING BACKROUND: PRINCIPLES AND APPLICATIONS

2.1 Training Deep Neural Networks by Gradient Descent

We present in this section the simplest method to train deep neural networks: Stochastic Gradient
Descent. We also introduce the optimization objective and the libraries dedicated to deep learning.

2.1.1 Deep Neural Networks (DNN)

Deep neural networks (DNN) are artificial neural networks with multiple hidden layers. A layer is
composed of a set of neurons connected to neurons from previous layer. They perform a computation
and output a single value sent to the next layer. The neurons together form the neural network.
A representation of a deep neural structure can be found Fig. 2.1. By combining all the neurons
into a coherent ensemble, the neural network should be able to learn complex functions to solve
complex problems.

Mathematically, for a set of n− 1 input values x1, x2, .., xn a neuron will compute the following
output:

out = σ(

n∑
i=1

xiωi + b) (2.1)

with σ(.) a non-linear activation function, b the bias and ωi the weights of the neuron. An illustration
of a single neuron is presented in Fig. 2.2. To train a neural network, we tune the weights (or
parameters) and bias of all neurons in order to produce a specific function.

Figure 2.2: Illustration of an artificial neuron.

There are different types of neural networks such as convolutional network or fully connected
neural networks. We will present them in Section 2.2.1. In the next section, we will see how to
train a DNN.

2.1.2 Stochastic Gradient Descent (SGD)

We define the function f(.) implemented by a neural network. f(.) is parametrized by θ ∈ RN a
vector of N real values corresponding to the connection weights and biases of all neurons. For an
input data x we have:

ŷ = f(x; θ) (2.2)

ŷ being the neural network’s output.
We assume the dataset composed of pairs (x, y), with x a data point and y its associated

expected output. For each data point x ∈ D, we can compute the output ŷ = f(x; θ) and the loss

2.1. TRAINING DEEP NEURAL NETWORKS BY GRADIENT DESCENT 17

`(ŷ, y). `(ŷ, y) evaluates the difference between the expected output y and the actual output ŷ. The
loss function is a differentiable function, for example the squared Euclidean distance:

`2(y, ŷ) =‖ y − ŷ ‖22 (2.3)

The training procedure goal is then to find the best vector θ∗ that minimize the cost function
`(.) on a dataset D.

Deep neural networks are designed such as for each parameter of θ, θj ∈ θ, we can compute the
gradient ∇θj :

∇θj = ∇θj (x, y) =
∂`(f(x; θ), y)

∂θj
(2.4)

One of the assets of deep neural networks is the efficient back-propagation of the gradient
through the model. The gradient can use the chain rule to be transmitted from a layer to another.

∂`(f(x; θ), y)

∂θj
=
∂`(f(x; θ); θj), y)

∂f(x; θ)
· ∂f(x; θ)

∂θj
(2.5)

Hence, ∂`(f(x;θ);θj),y)∂f(x;θ) can be computed once for all and be used after to compute all the ∇θj .
The gradient is then used to update the value of all θj such that `(ŷ, y) is minimized.

θj ← θj − η∇θj (2.6)

with η the learning rate.
This operation is then repeated for all (x, y) sampled randomly from the dataset, until conver-

gence to a local minima θ∗ of `(f(x; θ), y). This process is called stochastic gradient descent (SGD)
[26]. It is the simplest method to train a deep neural network by gradient descent. Data randomly
sampled are called i.i.d. (Identically and Independently Distributed). The i.i.d. assumption on the
data distribution is often an essential condition to the success of the training algorithms.

The update rule (eq. 2.6) can be modified for a more efficient optimization. Some well known
optimization methods are Adagrad [64], Nesterov momentum [239], Adam [118], RMSProp [55].
They add momentum and acceleration components to the gradient in order to learn faster. For the
practical applications in this thesis, we mainly used Adam and SGD with momentum to optimize
deep neural networks.

2.1.3 Overfitting and Generalization

The optimization process described in Section 2.1.2 minimizes the loss function on the training data
until finding a local minima θ∗:

θ∗ = argmin
θ

E(x,y)∼Dtr
`(f(x; θ), y) (2.7)

with Dtr the training dataset.
However, the true objective of deep learning optimization is to make good predictions on never

seen data, i.e. to generalize knowledge from training data to new data. The ability of making good
predictions on unknown data is called Generalization. It is measured by computing the loss on a
test set Dte never seen by the model. If the training loss is very low but the loss on the testing

18 CHAPTER 2. DEEP LEARNING BACKROUND: PRINCIPLES AND APPLICATIONS

set is high, the model did not learn a good solution to solve the task. This phenomenon is called
overfitting. If the loss of the testing set is low then we consider that the model generalized well and
the training is successful.

One of the main objectives of machine learning and deep learning is to learn functions that
generalize well on new data. However, it is important to note that the test set should be similar to
the training set. A neural network can not generalize to completely different data.

2.1.4 Deep Learning Programming Frameworks

The training of neural networks is in most situations achieved thanks to programming libraries that
are specific to deep learning. Those libraries allow to compute efficiently and automatically the
gradient for all the parameters and to train neural network faster. Using those libraries makes it
also possible to develop code faster and have an easy way to use GPU acceleration for deep neural
network training. The most famous deep learning library nowadays are Pytorch [182], TensorFlow
[1] and Keras [44] but some years ago caffe [106] and Theano [11] were the most used ones. All of
those libraries can be used with python, but some of them have an interface to be used with other
programming languages such as C++.

In recent years, those libraries have been developed very intensively, making it possible to find
pre-trained models and already implemented architectures, neural layers and optimization processes.
Today, they are complete frameworks to develop and train deep neural networks.

In this thesis, all the code to train deep neural networks have been developed in python with
the Pytorch framework.

2.2 Learning Paradigms

The training of deep neural networks has been applied to different learning paradigm. These
paradigms differs in their supervision signal. Supervised algorithms have a true label for all data
point, reinforcement learning algorithms have a sparse label referred to as reward and unsupervised
algorithms have no label at all.

2.2.1 Classification

Images classification (or images recognition) is a typical application of deep learning. It consists
of learning to predict the class associated with input data. In this part, we are interested only in
supervised training of deep neural networks for classification. Training by supervision is the most
common method for learning classification.

History

In the beginning of the 2010s, deep neural networks helped to make significant progress in the
image recognition domain, especially with convolutional neural networks (CNN) architectures [77]
and hardware computation acceleration with graphical processors units (GPU).

The development of GPU hardware contributed to the acceleration of neural networks training.
It substantially helped to develop deep neural networks with more layers growing from a few thou-
sands to hundreds of millions parameters in past few years. Since then, they have been ubiquitous
in classification challenges such as PASCAL VOC [67], ImageNet [57], MS COCO [145] or Open
Images [126].

2.2. LEARNING PARADIGMS 19

Deep neural networks consist of a stack of different neural layers that learn to detect essential
features in the data and take decisions. In the early years of classification, feature extractor where
hand-engineered, outside the learning algorithm, and only the decision layer was learned. Today,
both feature extraction and decision can be learned automatically inside a single neural network.
In the next section, we present the important types of neural layers needed for feature extraction
and decision making.

Based on these layers, the most famous architectures that helped the development of deep neural
networks are LeNet [131], AlexNet [124], Inception [242], VGG [231], ResNet [93]. Those models
proposed different types of connections between neurons and layers of neurons to help learning
features for image recognition.

Convolution Layers

In image classification, the feature extractor is generally composed of a stack of convolution layers
[77].

Figure 2.3: Illustration of a multi-layer convolution neural network for image classification. The
feature maps contain all the activation output computed with learned filters. The sub-sampling
consists of transmitting only a part of the feature map to the next layer.

The convolution layers are designed to limit significantly the number of parameters with respect
to a fully connected layer (presented in the next section). They are able to capture local depen-
dencies and benefit from the invariance of certain features to learn better, e.g. a car is still a car
whatever its position in the images. The convolution layers are composed of discrete convolution
filters (Illustration Figure 2.3). The goal of each filter is to detect a certain pattern. For a given
input, the more the input is close to the feature the higher the output of the convolution will be.
By stacking convolution layers, the model can detect more and more complex features. Training
the neural network consists of learning the right filters to detect discriminative features allowing
them to solve the classification tasks.

The output of a convolution layer is a vector h composed of a set of feature map, characteristic
of the input features x. It is parameterized by the number of filters, their size and how they are
applied to the input vector. h is then transmitted to the next layer.

20 CHAPTER 2. DEEP LEARNING BACKROUND: PRINCIPLES AND APPLICATIONS

Fully Connected Layers

The fully connected (FC) layers have the particularity of connecting all the neurons from one
layer to another. Those layer can learn to approximate a high variety of functions, however since
they contain a lot of connection, they have a lot of parameters. Their training is then more time
consuming and energy consuming than convolution layers.

A FC layer of size N realizes the following function:

o = W ∗ h+ b (2.8)

with h the input vector of size H, W a weight matrix of size H ∗N and b the bias vector of size N .

Output interpretation and loss

The output layer is designed to make the right prediction and to be able to compute a gradient
that will be back-propagated through the model.

With respect to the learning procedure introduced in Section 2.1, in the classification case, the
expected output y is a label (most of the time an integer) associated with a class of images. The
model (i.e. the neural network) should then, for any image x, output a label ŷ equal to y.

In order to predict such an integer, the classification models have an customized output layer to
learn efficiently a solution. Generally, this layer is a fully connected layer which outputs one value
per class, the highest value indicating the class selected by the neural network.

Thus, if there are N classes, the output vector o is a tensor of float with N values. The predicted
class is then computed as:

ŷ = argmax
i∈J0,N−1K

(o[i]) (2.9)

For probabilistic interpretation of the output, it is common to apply a softmax operation to the
output. Then, each float value o[i] is transformed to σ(o[i]) with:

σ(o[i]) =
eo[i]∑
j e
o[j]

(2.10)

so that all values are mapped between 0 and 1 and they sum to 1. We will note the resulting
tensor σ(o). We can then compute a loss function to compute a gradient and train the neural
network by gradient descent. One example commonly used with the softmax is the negative log-
likelihood loss:

`(ŷ, y) = −log(σ(o)[y]) (2.11)

with ŷ = σ(o).
The gradient descent can then be applied as described in Section 2.1.

In this thesis, these layers will be directly exploited in Chapter 4 and the Chapter 6 dealing
with continual learning for classification. Note that the convolutional and fully connected layers
presented in this section are used for reinforcement learning and unsupervised learning as well.

2.2. LEARNING PARADIGMS 21

2.2.2 Reinforcement Learning

Reinforcement Learning is a machine learning paradigm where the goal is to train an agent to
perform actions sequences in a particular environment. The agent should learn a policy which
associates the best action to each state of the environment. It is guided by a reward function
providing reward according to policy performance. In order to maximize the expected cumulative
reward, the agent should explore its environment to discover reward sources and exploit them.

Training methods

Most reinforcement learning processes can be described as Markov decision processes (MDPs).
MDPs provide a mathematical framework for modeling decision making in situations where out-
comes are partly random and partly under the control of a decision-maker2. At each time-step
t, the process is in some state st, and the decision-maker may choose any action at that is avail-
able. The process responds at the next time-step by moving into a new state st+1 and giving the
decision-maker a corresponding reward rt. This process is illustrated in Figure 2.4.

Figure 2.4: Illustration of reinforcement learning environment. With π(·) the policy function fol-
lowed by the agent, rt the reward at time step t, st the state of the environment and at the action
taken by the agent.

The objective of reinforcement learning is to maximize the accumulated reward gathered in a
sequence of actions:

Rtot =

T∑
i=1

ri (2.12)

The total reward Rtot is the sum of reward received over all the episode (sequence of actions).
A discount factor γ can be added to all reward ri to ponder them.

For each state st, the neural network function should choose an action to perform. This function
is called the policy π(·), such as:

p(a|s) = π(a, s) (2.13)

2Definition taken from https://en.wikipedia.org/wiki/Markov_decision_process.

https://en.wikipedia.org/wiki/Markov_decision_process

22 CHAPTER 2. DEEP LEARNING BACKROUND: PRINCIPLES AND APPLICATIONS

The expected reward received by an agent following a policy starting at a state st is computed
by the value function V π(st):

V π(st) = E[

T∑
i=1

γi−1ri] (2.14)

The optimal value function V ∗(st) is the value function for the best possible policy:

V ∗(st) = max
π

V π(st) (2.15)

then the best policy π∗ is:

π∗ = argmax
π

V π(st) (2.16)

Many reinforcement learning algorithms rely on good representation of state quality to maximize
the expected cumulated reward. Learning the value function is a way of approximating the state
quality and learn a good policy.

However, the value function alone does not give directly the right action to realize, it only
evaluates the current state. To find the right action to achieve, the Q-function is introduced which
evaluates action quality at each state, such as:

V ∗(st) = argmax
at

Q∗(st, at) (2.17)

with Q∗(st, at) the optimal Q-function. The Q-function makes it possible to introduce the Bellman
equation [17] which links values, rewards and Q-functions:

Q(st, at) = R(st, at) + γE[V (st+1)] (2.18)

with R(st, at) the reward received after realizing action at at state st.
We can then learn a policy that maximizes the reward based on a neural network implementing

Q. A particular method is to learn the optimal Q function which gives directly the best policy. This
method is called Q-Learning [259]. There also exist other reinforcement learning training methods
types.

In the Chapter 7, we will use the PPO (Proximal Policy Optimization) algorithm [216] that
belongs to the family of policy gradients methods to directly learn robotics policies. This algorithm
is an extension of TRPO (Trust region policy optimization) algorithm [215]. TRPO introduces the
trust-region in the policy space. It adds a surrogate loss to constraint the update in the policy
space. The goal is to not create drastic changes in the policy and stabilize the learning process.
This constraint is implemented as a constraint on the KL divergence between the old and the new
policy. KL divergence should not be to high. PPO algorithm does not compute the KL divergence
but approximate its action by defining another function that clips the objective function: if the
ratio between new policy and old policy is too far from one, the surrogate objective is clipped. PPO
is today a commonly used algorithm for various reinforcement learning applications, we used it for
many robotics experiments in [189, 190, 112, 248].

For more information about reinforcement learning, we link the reader to the “Reinforcement
Learning: An Introduction” book [240].

2.2. LEARNING PARADIGMS 23

Reward functions

The reward function defines which behaviour are good or bad for the agent. The reward function
can either be sparse and distributes reward only for specific actions (and states) or dense and gives
a reward for each action proportionally to the quality of this action. Dense reward functions make
the policy easier to learn but it might be expensive to design. Sparse functions can be cheap and
easy to design but it might be very hard to learn the best policy from them. The good reward
function is just sparse enough to be cheap to design and easy to use for learning algorithms.

For example, a reward function could be one point when a robot put a basketball in the basket.
However, the policy that solves those problems might be very difficult to find. It might be really
hard to get the first reward and exploit it. The model needs then to explore the environment to
find a potential source of reward. The space to explore might be very large, in the example of
basketball, it will be very hard for the algorithms to explore all the possibilities of launching the
ball in the basket without some more hints beforehand. The reward shaping approach is a way to
tune the reward function to help the algorithm find a solution. In particular, it aims make reward
more frequent during exploration to give more hints of actions’ quality.

Classical benchmarks

Reinforcement learning has known recent big success in games such as chess [230], go [229] or Dota 2
video games [175]. However, commonly used benchmarks are most of the time with simpler robotics
settings as in Mujoco [247] or simple video games as Atari [168].

Figure 2.5: Right: Illustration of the Mujoco environment with the ant task. The ant should walk
and move as fast as possible. Left: Illustration of the Atari environment with one of the games.
The car should go as fast as possible and stay in the circuit.

Reinforcement learning is a very appealing subject because it promises that from a simple reward
function we can train an algorithm to execute a difficult task. It has many potential applications as
robotics [122], autonomous vehicles [120, 243] etc. However, in practice, the reinforcement learning
algorithms are still very unstable and difficult to train. It remains a very interesting research
topic, challenging our understanding of how animals and humans learn and questioning the level of
supervision needed to learn a given task.

In this thesis, reinforcement learning paradigm will be applied in Chapter 7 in order to learn
multiple policies with a robot.

24 CHAPTER 2. DEEP LEARNING BACKROUND: PRINCIPLES AND APPLICATIONS

2.2.3 Unsupervised learning

Unsupervised learning is a wide subject in machine learning. In this thesis we are specifically
interested in Generative models, as they are used in continual learning for generative replay (see
Chapter 3). They are particular types of neural networks designed to reproduce the input data
distribution. We call data distribution, in this context, a theoretical probabilistic distribution that
generates the dataset D and could generate any testing data. The goal is to learn to generate data
from this distribution, similar but not identical to the data of the training set. For generative
models, the generalization is therefore the capacity to generate novel data points. In this thesis, we
focus on generative models for images.

In recent years, generative models such as BigGAN [29], VQ-VAE [252] or StyleGAN [114] have
shown incredible progress in generating high quality images. In this section, we introduce two
generative models frameworks that led to this progress: variational auto-encoders (VAE) [119, 194]
and generative adversarial networks (GAN) [88]. We also introduce a tedious challenge of generative
models: the evaluation of generated data.

Variational Auto-Encoder (VAE)

Auto-encoders are models that learn to reproduce their input data in their output layer. The vari-
ational auto-encoder (VAE) [119, 194] framework is a particular kind of auto-encoder (Illustration
Fig 2.6). It is composed generally of an encoder, mapping the input into a latent space and a
decoder which learn to regenerate the input image from the latent vector. Those models are useful
to learn data compression: if the latent vector is in low dimension, then we can compress input
data and decompress it later with the decoder. The VAE learns to map data into a Gaussian latent
space, generally chosen as a univariate normal distribution N (0, I) (where I is the identity matrix).
The particularity of the latent space comes from the minimization of the Kullback-Leibler (KL)
divergence between the distribution of data in the latent space and a prior distribution N (0, I).
The KL divergence [125] is a measure of the difference between two probability distributions. The
decoder then learns the inverse mapping from the univariate normal distribution N (0, I) to the ob-
servation space. However, since the latent space distribution is the univariate normal distribution,
we can sample it without encoding data and generate novel data points. This characteristic makes
the VAE an interesting option for generating new data after training.

Then, to train the VAE and respecting the prior on the latent distribution, the loss function
can be written:

` =‖ x− x̂ ‖2 +DKL(N (µ, σ),N (0, I)) (2.19)

with x the input data, x̂ the output of the VAE, µ and σ the two VAE latent vectors, N is a
H dimensional (size of the latent dimension) normal distribution parametrized by a mean and a
standard deviation vector.

The Kullback-Leibler between two probabilistic distributions P and Q:

DKL(P ‖ Q) =

∫ ∞
−∞

P (x)log

(
P (x)

Q(x)

)
dx (2.20)

We can note that DKL(P ‖ Q) 6= DKL(Q ‖ P).
In the case of the VAE the Kullback-Leibler can be simplified to:

2.2. LEARNING PARADIGMS 25

Figure 2.6: Illustration of the variational auto-encoder (VAE). The encoder computes two vectors
from the input data, a mean vector µ and a standard deviation vector σ. Then the vector h is
sampled from a Gaussian distribution N (µ, σ) and the decoder output the reconstruction of the
input image from h.

∀i ∈ J0, H − 1K, DKL(N (µi, σi),N (0, 1)) = log

(
1

σi

)
+ σ2

i + µ2
i −

1

2
(2.21)

with µi and σi the i-th dimension of respectively µ and σ.

Generative adversarial networks (GAN)

Generative adversarial network [88] is another framework of generative models (Illustration Fig 2.7).
The learning process is a game between two networks: a generator G learns to produce images from
the data distribution P and a discriminator D learns to discriminate between generated and true
images. The generator learns to fool the discriminator and the discriminator learns to not be fooled.
Therefore both D and G have the same loss function `GAN (x, z), but G try to minimize it while D
try to maximize it:

`GAN (x, z) = Ex[log(D(x))] + Ez[log(1−D(G(z)))] (2.22)

In this function, D(x) is the discriminator’s estimate of the probability that real data instance
x is real, Ex is the expected value over all real data instances, G(z) is the generator’s output when
given noise z, D(G(z)) is the discriminator’s estimate of the probability that a fake instance is real,
Ez is the expected value over all random inputs to the generator3.

This class of generative models can produce visually realistic samples from diverse datasets but
they suffer from instabilities in their training.

First introduced in [88], many follow-up work have extended and improved upon the original
model. Among these, GANs have been extended to Conditional-GANs (or CGANs) to support class-
conditional generation [166], and numerous of papers [9, 23, 173, 90] have focused on modifying

3Equations and legends are taken from https://developers.google.com/machine-learning/gan/loss

https://developers.google.com/machine-learning/gan/loss

26 CHAPTER 2. DEEP LEARNING BACKROUND: PRINCIPLES AND APPLICATIONS

Figure 2.7: Illustration of the generative adversarial network (GAN). An input vector z sampled
from a random distribution is given to the generator. The generator output a generated sample.
The discriminator receives a mix of true samples and generated samples and predicts if they are
true samples or generated one.

the objective function 2.22 to stabilize training and improve the generation quality. One of the
model we evaluate, the Wasserstein GAN (WGAN) [9], try to address training issues by enforcing
a Lipschitz constraint on the discriminator, i.e. they clip the discriminator’s gradient to make
training more stable.

There exist many variations of those two frameworks aiming at improving data generation and
stability of model with improved losses and architectures.

Evaluation methods

A remaining problem of generative models is the evaluation of the generated samples because
generative models produce images, and it is tedious to have a formal definition of a good image.
Furthermore, the expectations on the generated images might be different from one application to
another. For example, one might expect images that maximize their reality likelihood while others
might expect to maximize their variability.

We present here a partial list of evaluation methods for image generation:

• Visual Turing Test The visual Turing test [81] is performed by asking humans if images
look real or not to assess the generative model quality.

• Multi-scale structural similarity Multi-scale structural similarity [258] (MS-SIM) is a
measurement that gives a way to incorporate image details at different resolutions in order
to compare two images. This similarity is generally used in the context of image compression

2.2. LEARNING PARADIGMS 27

to compare images before and after compression. However, it can be used to estimate the
variability of features in generated images [174].

• Inception score One of the most used approaches to evaluate a generative model is Inception
Score (IS) [209, 174]. The authors use an inception classifier model pre-trained on ImageNet
dataset to evaluate the sample distribution. They compute the conditional classes distribution
P (Y |X = x) at each generated sample x and the general classes distribution P (Y) over the
generated dataset.

They proposed the following score:

IS(X) = exp(EX [DKL(P (Y |X) ‖ P (Y))] (2.23)

where DKL is the Kullback-Leibler divergence. The KL term can be rewritten :

DKL(P (Y |X) ‖ P (Y)) = H(P (Y |X), P (Y))−H(P (Y |X)) (2.24)

whereH(P (Y |X)) is the entropy of P (Y |X) andH(P (Y |X), P (Y)) the cross-entropy between
P (Y |X) and P (Y).

The inception score measures if the inception model predictions gives high confidence in varied
classes for the generated data. This relies on the hypothesis that if prediction confidence is
high, the input image is good.

• Frechet Inception Distance

Another approach to evaluate generative adversarial networks is the Frechet Inception Dis-
tance (FID) [97]. The FID, as the inception score, is based on features low moment analysis.
It compares the mean and the covariance of activations between real data (µ and C) and
generated data (µgen, Cgen). The activation is taken from an inner layer in a pre-trained
inception model. The comparison is done using the Frechet distance (see Eq. 2.25). The
inception model is trained on Imagenet.

d2((µ,C), (µgen, Cgen)) =‖ µ− µgen ‖22 +Tr(C + Cgen − 2(C ∗ Cgen)
1
2) (2.25)

FID measures the similarities between the distribution of the generated feature and the dis-
tribution of real features. It assumes a Gaussian distribution of features over the dataset.

• Fitting Capacity

The fitting capacity (FiC) approach is to use labeled generated samples from a generator G
(GAN or VAE) to train a classifier and evaluate this classifier afterward on real data [140].
It is illustrated in figure 2.8. This estimation of the generative model quality is one of the
contributions of this thesis [140]. It is presented more in depth in Chapter 5.

The fitting capacity of G is the test accuracy of a classifier trained with G’s samples. It
measures the generator’s ability to train a classifier that generalizes well on a testing set,
i.e the generator’s ability to fit the distribution of the testing set. This method aims at
evaluating generative models on complex characteristics of data and not only on their features
distribution.

28 CHAPTER 2. DEEP LEARNING BACKROUND: PRINCIPLES AND APPLICATIONS

Generator

1. Train

Train
Dataset

2. Generate Generated
Dataset 3. Train Classifier

4. Test

Test
Dataset

Figure 2.8: Illustration of Fitting Capacity method (FiC): 1. Train a generator on real training data,
2. Generate labeled data, 3. Train classifier with the generated data, 4. Evaluate the generator by
testing the classifier on the test set composed of real data

There exist a lot of different evaluation for generative models as listed and discussed in [25].
Anyhow, the best evaluation for a generative model is generally dependent on the future use of the
generated data.

In this thesis, the Chapter 5 deals with continual learning for data generation and the 6 take
advantage of generative models for continual classification.

2.2.4 Classical Benchmarks

We now present some classical machine learning benchmarks (MNIST, Cifar10, ImageNet) and
some other benchmarks we will use in the experimental work of this thesis (Fashion MNIST and
KMNIST).

MNIST and MNIST-like datasets

• MNIST [132] is a common benchmark for computer vision systems and classification prob-
lems (Fig. 2.9). It consists of gray scale 28x28 images of handwritten digits (ten balanced
classes representing the digits 0-9). The train, test and validation sets contain 55.000, 10.000
and 5.000 samples, respectively.

• Fashion MNIST [266] consists of grayscale 28x28 images of clothes (Fig. 2.9). We choose
this dataset because it claims to be a “more challenging classification task than the simple
MNIST digits data [266]” while having the same data dimensions, number of classes, balancing
properties and number of samples in train, test and validation sets.

• KMNIST [266] consists of grayscale 28x28 images of Kuzushiji (japanese cursive) (Fig. 2.9).
As for Fashion-MNIST, we use this dataset because it is a drop in replacement of MNIST
dataset and it is a more challenging classification task than the simple MNIST digits data
and adds some diversity in the training data.

2.2. LEARNING PARADIGMS 29

(a) MNIST (b) Fashion-MNIST (c) KMNIST

Figure 2.9: Samples from MNIST-like datasets.

Cifar10 / Cifar100

Cifar10 [123] dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per
class. There are 50000 training images and 10000 test images. The classes are completely mutu-
ally exclusive. This dataset have been used a lot to design and prototype classification and data
generation machine learning algorithms. CIFAR100 is the same dataset with 90 more classes.

Figure 2.10: Samples from Cifar10 dataset.

ImageNet

ImageNet [124] is a dataset associated with the ILSVRC challenge (ImageNet Large Scale Vi-
sual Recognition Challenge). The dataset used in this context is composed of one thousand non-
overlapping classes. The images are in color and are from different shapes and resolution but they

30 CHAPTER 2. DEEP LEARNING BACKROUND: PRINCIPLES AND APPLICATIONS

are often normalized at 224*224 pixels. This dataset is one that leads to the revolution of machine
learning for classification. It is also used nowadays for data generation purposes.

Figure 2.11: Exemples of Imagenet samples with dog pictures.

The benchmark listed above are linked to supervised classification, but they have been adapted
for benchmarking other type of machine learning such as data generation, few shot-learning or dis-
entanglement. In this thesis we adapted these classical benchmarks into continual learning bench-
marks. Even if some of them can looks almost trivial for nowadays machine learning algorithms
they can still be challenging in continual learning settings [186]. In Chapter 3, we will present the
different continual learning benchmarks.

2.3 Learning procedure

Besides the training optimization process, the success of deep learning algorithms relies significantly
on data handling. In this section, we present the classical full pipeline necessary to train a neural
network.

2.3.1 Data Gathering

First of all, to train a DNN, data needs to be gathered to create a dataset. In classification, the
image of the different categories needs to be selected and their label set and verified. Building a
good quality dataset is difficult, categories need to be balanced, images should be varied and a

2.3. LEARNING PROCEDURE 31

trivial solution should not bias the problem if we want to train correctly a neural network. For
example, one should avoid that to classify cows from birds, it might be possible to only check if the
image is mostly blue (because of sky) or green (because of grass) to solve the classification, instead
of looking at intrinsic characteristics from cows and birds. The trivial solutions come from bias
into the training set making the learning model believe false causal relationship. A well-designed
dataset aims at avoiding misleading correlations in the data.

2.3.2 Data Splitting

Before training the neural network, the dataset is split into three different sets. The training set,
used to learn parameters, the validation set, used to select the hyper-parameters and the test set
that will be used to evaluate the final performance and verify if the model trained can generalized
on new data. It is important to split those set wisely because they should be similar but different
enough to be able to measure generalization.

2.3.3 Model Architecture

Once the dataset is built, we choose a model architecture. The model architecture consists of the
stack of layers, the characteristics of each layer and how they connected to each other. The archi-
tecture defines implicitly the family of functions we are searching our solution θ∗ in. Architectures
are often parametrized by hyper-parameters that can change the model architecture to better fit a
learning problem, e.g. the number of layers, the number of convolutional filters by layer, the size
of the filters or the padding...

2.3.4 Model Initialization

Once the architecture is chosen, the model and optimization process should be initialized, i.e. all
parameters and hyper-parameters should be set. The architecture hyper-parameter (HP) described
in the previous Subsection 2.3.3 are generally chosen empirically based on existing algorithms. The
optimizer hyper-parameters such as the learning rate or the ones specific to certain optimizers are
also chosen empirically. In the frameworks described in Section 2.1.4, the optimizer functions are
proposed with default values that can be used directly.

Once the hyper-parameters are fixed, we initialize the parameters. In the literature, there are
several heuristics to initialize parameters, generally following a random policy. The most famous
one are Xavier initialization [84], or Kaiming initialization [94], or a simple normal initialization
N(0, 1).

For example, in the Xavier initialization, layers are initialized such as any weight (parameter)
w is sampled according to:

w ∼ U(−
√

6√
ni + ni+1

,+

√
6√

ni + ni+1
) (2.26)

with U the uniform probabilistic distribution, ni the incoming network connections and ni+1 the
out coming network connections from that layer. The bias are initialized to zero.

32 CHAPTER 2. DEEP LEARNING BACKROUND: PRINCIPLES AND APPLICATIONS

2.3.5 Data Preprocessing

In order to maximize the learning process chance of converging to a satisfying solution, one could
choose to apply specific transformations to the data. First, the data can be modified to be easier to
process by the model. For example by applying an heuristic transformation to improve the saliency
of crucial components of data. For example, change the color spectre to remove useless colors. In
deep learning, a known heuristic for data preprocessing is to normalize value such as the mean is
zero and the standard deviation 1. Another common one is the normalization of input data such
that all data have the same mean and standard deviation channel by channel. For example, the
default values in pytorch to normalize input for model trained on ImageNet are, respectively for
channel RGB mean = [0.485, 0.456, 0.406], std = [0.229, 0.224, 0.225].

To improve the model’s generalization performance (see Section 2.1), we can perform data
augmentation, i.e. add a random modification to training images. Those modifications should
change the image without changing what it represents, i.e. without changing essential features.
Thus, we expect from the model to learn only important features and ignore the rest. As discussed
in Section 2.3.1, the construction of a dataset can be difficult and produce some bias. The data
augmentation can help to correct them artificially. For example, to detect a car in an image, we
expect the model to not give importance to the color (cars can be in any color). If the car’s color
in the dataset is only white, it will create a bias in the model making it believe that cars are always
white. To correct this bias we can then artificially change the color of cars.

2.3.6 Parameters Optimization

The model can now be trained by gradient descent and learn the best set of parameters θ∗ as
described in Section 2.1. θ∗ should optimize the loss on training data but its real objective is to
optimize the loss on unknown data. As described in Section 2.1.3, the real application goal is to
train a model able to generalize.

2.3.7 Hyper-Parameters Optimization

Frequently, the hyper-parameters set at the beginning do not allows to learn the most satisfying
solution. The validation set help then to select the model that has learned and generalizes best.
Indeed, the validation data has not been used for training, the error computed on this set is not
biased by the optimization process and can be used to select the best hyper-parameters. The hyper-
parameters selection is a tough problem, contrary to parameters it is not possible to compute the
gradient of the hyper-parameters, their selection should then follow empirical heuristics. Among
the possible approaches, grid search consists in searching all the combination of hyper-parameters
for specific regularly separated values, but it is also advised to rather search them randomly [22].

There is a research field aiming at finding automatically hyper-parameters, called auto-machine
learning [72, 65]. The final goal is still to maximize the generalization capacity on never seen data
as presented in Section 2.1.3, but these approaches are computationally extremely intensive and
are rarely used in practice.

2.4 Towards Continual Learning

The deep learning pipeline, as presented in the previous section, has shown impressive results in
numerous applications such as classification, detection, generation, language processing... However,

2.4. TOWARDS CONTINUAL LEARNING 33

it imposes to have all the data at the beginning of the learning process. In particular, it assumes i.i.d.
data during training. This assumption is unfortunately difficult to maintain in many situations, for
example when data are gathered online. In this section we introduce context in which the pipeline
presented in Section 2.3 can not be applied rigorously. Then, we will present briefly the implications
in the optimization process.

2.4.1 Context

The constraint of collecting all the data before training a neural network is inconvenient in many
cases. De facto, a dataset is very likely to be completed with new data, either to increase the
variability of existing concepts in data or to add new concepts. In the classification perspective,
either to add data to existing classes or to add new classes to the existing ones.

A trivial solution is to train a neural network from scratch with all data every time new data
are available. Nevertheless, training large neural networks can take weeks to months to be trained,
then retraining every time can be costly and time-consuming. Especially if new data are regularly
available as in a stream of data. Being able to improve a trained network with new data only would
be then quite advantageous. Another situation, where training from scratch is not possible, is when
the data is not available anymore. For example, if a client buys a pre-trained model but has no
access to the initial training data. If this client wants to improve the model with its own data, he
can not retrain it from scratch since the initial data are not available. It can also happen if the data
have not been saved for legal reasons or memory limitations. From a more general point of view, it
would be more convenient to learn from the data available and improve later with new resources.
In order to handle such settings, representations should be learned in an online manner [143]. As
data gets discarded and has a limited lifetime, the ability to forget what is not important and retain
what matters for the future are the main issues that algorithms should targets and focuses on.

The field of deep learning aiming at solving this problem of data availability is called Continual
Learning. In particular, it aims at finding working solutions for agents which learn from an evolving
environment and that need to learn continually to adapt to unseen situations and remember already
learned solutions to known situations. For examples robots.

Indeed, from a robotics point of view, CL is the machine learning answer to developmental
robotics [151]. Developmental robotics is the interdisciplinary approach to the autonomous design
of behavioral and cognitive capabilities in artificial agents that directly draws inspiration from
developmental principles and mechanisms observed in children’s natural cognitive systems [35, 151]
In this context, CL must consist of a process that learns cumulative skills and that can progressively
improve the complexity and the diversity of tasks handled. Autonomous agents in such settings
learn in an open-ended [61] manner, but also in a continual way. Besides CL, crucial components
of such developmental approach consist of learning the ability to autonomously generate goals and
explore the environment, exploiting intrinsic motivation [176] and computational models of curiosity
[177].

2.4.2 Continual Learning procedure

We have seen that the classical pipeline for deep learning have limitations in continual learning,
in particular, because all the data might not be available at the same time. The pipeline from
Section 2.3 should therefore be adapted so that data gathering and learning can be simultaneous
or interleaved.

34 CHAPTER 2. DEEP LEARNING BACKROUND: PRINCIPLES AND APPLICATIONS

Optimization

Concerning the optimization process to train neural networks, the fact that all data are not available
at the same time removes the i.i.d. assumption. Many deep learning algorithms are then not adapted
anymore for such situations. For most of them, in a continual learning situation, the neural network
will automatically adapt to the last data only and forget everything learned on the previous one.
This phenomenon is named “catastrophic forgetting” [76].

Data gathering

In fact, gathering data continually is not the essential problem, as theoretically, it is still possible
that gathered data are drawn i.i.d. The real problem is the evolution of the underlying data
distribution. If this data distribution changes, then “catastrophic forgetting” might happen. This
phenomenon is called concept drift [82]. In order to find suitable algorithms to avoid catastrophic
forgetting, the concept drift needs to be detected and estimated. This process is tedious because
the concept drift can be abrupt or very progressive, making it difficult to grasp.

Evaluation

Furthermore, the evaluation process when the data distribution is not static is complicated. As
seen in Section 2.3.1, building a dataset to learn should be achieved carefully, there should be a
proper balance between classes, a good variability in the data to learn. In the case of continual
learning, the evaluation set should be constructed while learning, which might be difficult. Anyhow,
it remains essential to have an evaluation set to avoid overfitting.

Hyper-Parameters Optimization

Another tedious process in continual learning is the hyper-parameters optimization. In classical
deep learning, the hyper-parameters are tuned to make the algorithms learn better its full task.
However, for a convenient set of hyper-parameter at a time t it is possible that at time t + T
this set is not good anymore, the hyper-parameter should then be modifiable during the training.
Moreover, a HP set can be good to learn but not to remember, so at time t + T if the algorithms
forget everything it can not come back at time t to re-learn. The HP selection should both be
optimized to present data and withstand to potential future concept drifts.

We will not propose a new pipeline for continual learning because many continual learning cases
are different and should not be handled in the same way. Nevertheless, the spirit of the pipeline
from Section 2.3 should be maintained. The idea of gathering data, preprocessing them, designing
a proper model and train it should be kept but more dynamically than in classical deep learning
settings. The less impacted step of the original pipeline is Model Initialization since it should be
achieved only once at the training’s beginning.

2.5 Conclusion

In this chapter, we presented the simplest method to train deep neural networks: Stochastic Gradi-
ent Descent (SGD). The training is achieved by optimizing the model parameter on a dataset. The
training goal is to make a neural network able to make decisions on never seen data, i.e. able to

2.5. CONCLUSION 35

generalized its training data. We described the complete pipeline of deep neural network classical
training, from data gathering to hyper-parameters selection and we point out the limitation of this
pipeline for real-life applications. Finally, we introduced continual learning, a research field that
aims at overcoming those limitations.

In the next chapter, we present a more in-depth overview of continual learning state of the
art, key vocabulary and objectives. We also present a framework to frame any continual learning
approach, with a set of benchmarks and evaluation metrics.

Chapter 3

Continual Learning

In the previous chapter, we introduced classical deep learning basic concepts and pipeline and
showed their lack of adaptability in practical situations. We also introduced how continual learning
aims at solving those shortcomings. In this chapter, we present the continual learning research
field more extensively. We illustrate the need for continual learning through the lens of robotics.
In particular, we stress the need for better practice in research for better transfer from a field to
another, as from simulation to robotics.

This work was the fruit of a collaboration with Vincenzo Lomonaco and Natalia Díaz-Rodríguez.
It was published in the “Information Fusion” Journal [141]. The original article has been slightly
modified to better fit the thesis thread and updated to add some recent papers.

3.1 Introduction

As described in Section 2.4, machine learning (ML) approaches generally learn from a stream of
data randomly sampled from a stationary data distribution. This is often a sine qua non condition
to learn efficiently, which makes many application scenarios difficult to solve.

For convenience, we can empirically split the data stream into several temporally bounded parts
called tasks. We can then observe what we learn or forget when learning a new task. Even if there
is no mandatory constraint on a task, a task often refers to a particular period of time within which
the data distribution may (but not necessarily) be stationary, and the objective function constant.
Tasks can be disjoint or related to each other, in terms of learning objectives, depending on the
setting.

We now propose a framework for continual learning. This framework also sets the opportunities
for continual learning to have a description frame to present approaches in a clear and systematic
way. We can summarize the chapter’s contributions as following:

• We propose an in depth state of the art of continual learning approaches.

• We present a framework to help characterizing continual learning approaches and benchmarks.

• We gather a list of benchmarks and evaluation metrics for continual learning.

• We develop the example of robotics as an application field of continual learning research.

37

38 CHAPTER 3. CONTINUAL LEARNING

In the sequel, we first present the context and the history of continual learning. Second, we aim
at disentangling vocabulary around continual learning to have a clear basis. Third, we introduce
our framework as a standard way of presenting CL approaches to help transfer between different
fields of continual learning, especially to robotics. Fourthly, we present a set of metrics that will
help to better understand the quality and shortcomings of every family of approaches. Finally, we
present the specifics and opportunities of continual learning in robotics that make CL so crucial.

3.2 Definition of Continual Learning

Given a potentially unlimited stream of data, a Continual Learning algorithm should learn from a
sequence of partial experiences where all data is not available at once. A non-continual learning
setting would then be when the algorithm can have access to all data at once and can process it as
desired. Continual learning algorithms may have to deal with imbalanced or scarce data problems
[235], catastrophic forgetting [76], or data distribution shifts [82].

We consider continual learning a synonym of Incremental Learning [82, 193], Lifelong Learning
[43, 245] and Never Ending Learning [36, 167]. For the sake of simplicity, for the remainder of
the chapter we refer to all Continuous, Incremental and Lifelong learning synonyms as Continual
Learning (CL). However, in the discussion of the thesis (Chapter 8) we show that we can use them
to distinguish different continual learning scenarios.

In this section we first present the history and motivation of continual learning, then we present
several definitions of terms related to CL and, finally, we present challenges addressed by CL in
machine learning.

3.2.1 History and Motivation

The concept of learning continually from experience has always been present in artificial intelligence
and robotics since their birth [250, 261]. However, it is only at the end of the 20th century that it
has begun to be explored more systematically. Within the machine learning community, the lifelong
learning paradigm has been popularized around 1995 by [245] and [199].

Between the end of the 90s and the first decade of the 21st century, sporadic attention has
been devoted to the topic within the supervised, unsupervised and reinforcement learning domains.
However, despite the first pioneering attempts and early speculations, research in this area has never
been carried out extensively until the recent years [179, 43]. We argue that this is because there
were more complex and fundamental problems to solve and a number of additional constraints:

• Lack of systemic approaches: Machine learning research for the past 20 years has focused
on statistical and algorithmic approaches on simple tasks (e.g., tasks where the distribution
of data is assumed static). CL typically needs a systems approach that combines multiple
components and learning algorithms in complex and dynamic tasks. The complexity of tasks
and their multiple uses in continual learning greatly complicates training and evaluation pro-
cedures. Disentangling “static” learning performance from continual learning side effects is
important for the very incremental nature of the research and to facilitate comparison between
approaches in this area.

• Limited amount of data and computational power : Digital data is a luxury of the 21st century.
Before the big data revolution, collecting and processing data was a daunting task. Moreover,
the limited amount of computational power available at the time did not allow complex and

3.3. KEY VOCABULARY 39

expensive algorithmic solutions to run effectively, especially in a continual learning setting
which undoubtedly makes learning more complex by having to deal with multiple tasks at the
same time, as well as having to incorporate the concept of time into the learning process.

• Manually engineered features and ad-hoc solutions: Before early 2000s and first works on
representation learning, creating a machine learning system meant to handcraft features and
finding ad-hoc solutions, which may differ significantly depending on the task or domain.
Having a general algorithm with a more systematic approach seemed for a long time a very
distant goal. Manually engineered features is also a clear limitation to achieve autonomy, as
new tasks need to have the same features or re-engineered ones.

• Focus on supervised learning : creating labelled data is probably the slowest and the most
expensive step in most ML systems. This is why learning continuously has been for a long
time not a viable and practical option.

The relaxation of these constraints, thanks to recent advancements and results in machine
learning research, as well as the rapid technological progress witnessed in the last 20 years, have
open the door for starting tackling more complex problems such as learning continually.

We argue that the robotics community, which has always been intrigued by endowing embodied
machines with lifelong and open-ended learning [61] of new skills and new knowledge, would highly
benefit from the recent advances of ML in this area. Robotics applications in unconstrained environ-
ments, indeed, have always raised questions out of reach for previous machine learning techniques.
On the other hand, CL developed in the context of robotics is involved in understanding the role
and the impact of the concept of “embodiment” in intelligent machines that learn and think like
humans.

Learning, embodiment, and reasoning are presented as the three great families of challenges
for robotics in [238]. We postulate that CL tackles the learning problem, taking into account the
importance and constraints of embodiment. At best, CL would also benefit from reasoning in order
to maximize the learning process. Thus, continual learning lies in the intersection of crucial robotics
challenges.

Though lifelong learning approaches do exist in various ML disciplines (such as evolutionary
algorithms for example [14, 13, 28, 15]), we will focus, in the rest of this thesis, on recent con-
tinual learning developments in the context of gradient-based neural network and deep learning
approaches. For a more detailed description of many other classic approaches to continual learning
with shallow architectures we refer the reader to [43].

3.3 Key vocabulary

Definition 1. Learning objective The learning objective is composed of a data set and a loss
function, that has to be optimized. The learning objective change if either the loss or the data
change.

Definition 2. Task A task is a learning experience characterized by a unique task label t and its
target function g∗

t̂
(x) ≡ h∗(x, t = t̂), i.e., the objective of its learning.

Definition 3. Task label The task label is a variable that define tasks boundaries. It might be
available or not depending on the learning scenario.

40 CHAPTER 3. CONTINUAL LEARNING

Definition 4. Continuum The continuum is the full learning experience. It is composed by a
sequence of tasks.

Definition 5. Data distribution The data distribution, is a theoretical statistical distribution
that generate the data. This distribution can be constant or may variate through time.

Definition 6. Data stream The data stream is the flux of samples generated by the data distri-
bution. A task is a set of the data stream, the continuum is the full data stream.

Definition 7. Forgetting A neural network forget when its performance on a data distribution is
decreased by learning on another one.

Definition 8. Interferences In machine learning, interferences are conflicts between two (or
more) objective functions leading to prediction errors.

Definition 9. Concept drift The concept drift characterizes the learning objective variations, i.e.
when the learning criterion or the data distribution changes. When there is no concept drift the
learning objective is constant. Concept drift may lead to forgetting in neural networks models.

3.3.1 Terminology Clarification

In this section we aim at clarifying the distinction and similarities of continual learning with related
topics and terms used in the literature.

Online learning: Online learning is a special case of CL [110] where updates are done on per
single data point basis and therefore, the batch size is one. Online learning algorithms are suited
to scenarios where information should be processed instantly, either to adapt the model to learn as
fast as possible or because data cannot be saved.

Few-shot Learning: Few shot learning [127, 70] is the ability to learn to recognize new concepts
based on only few samples of them. It may be used for continual learning problems when the number
of data points is very low. The extreme case of zero-shot learning consists of the ability to detect
new classes while being trained with a disjoint set of classes [256].

Curriculum Learning: Curriculum learning [21] is a training process that proposes a se-
quence of more and more difficult tasks to a learning algorithm in order to make it able to learn,
at last, a generally harder task. The sequence of tasks is designed in order to be able to learn the
last one. Both CL and curriculum learning learn on a sequence of tasks (or partial experience).
However, in curriculum learning, tasks are chosen in a way that makes possible to learn tasks of
different complexity, by taking into account the difficulty of them, while in CL, tasks are not vol-
untarily chosen nor ordered. Furthermore, while the interest of curriculum learning ultimately lies
into solving the last task, the continual learning objective is to be able to solve all tasks.

Meta-learning: Meta-learning [27] is a learning process that uses meta-data about past
experiences, such as hyper-parameters, in order to improve its capacity to learn on new experiences.
It also learns several different tasks; however, its goal is not to learn without forgetting but to
progressively improve the learning efficiency while learning on more and more tasks. It is also
called “learning to learn”, and it can be used or not in a continual learning setting.

Transfer learning: Transfer learning [188, 73, 270] is the ability to use what has been learned
from a previous task on a new task. The difference with continual learning is that transfer learning
is not concerned about keeping the ability to solve previous tasks. In computer vision, transferring

3.3. KEY VOCABULARY 41

what has been learned from a past environment to new environments would be often referred to as
domain adaptation [183, 53].

Active Learning: Active learning is a special case of semi-supervised machine learning in
which a learning algorithm is able to interactively query the user (or some other information source)
to obtain the desired output labels for new data points [220, 221]. Active learning may be used in
CL to query new examples and have control of the data the algorithm has access to.

3.3.2 Challenges Addressed by CL

In this section we describe the specific problems addressed by continual learning; the kind of prob-
lems that arise when data cannot be assumed i.i.d., and when the hypothesis that the data distri-
bution is static is not valid.

Catastrophic Forgetting

Catastrophic forgetting [162, 76] refers to the phenomenon of a neural network experiencing per-
formance degradation at previously learned concepts when trained sequentially on learning new
concepts [162]. Since by definition the continual learning setting deals with sequences of classes
or tasks, the catastrophic forgetting is an important challenge to be tackled. Catastrophic forget-
ting might also be referred to as catastrophic interference. The notion of interference is pertinent
since the acquisition of new skills interferes with past skills by modifying important parameters as
described in definition 8.

Handling Memories

One of the main components that distinguishes two CL approaches is the way they handle memories.
In order to deal with catastrophic forgetting, each strategy should find a way to remember what may
be destroyed by learning future tasks. Continual learning needs a mechanism to store memories of
past tasks, which can take very various forms. It is important to note that memories can be saved
in different manners: as raw data, as representations, as model weights, regularization matrices,
etc. An efficient memory management strategy should only save important information, as well as
be able to transfer knowledge and skills to future tasks. In practice, it is almost impossible to know
what will be important and what could be transferable in the future; a trade off should then be
found between the precision of the information saved and the acceptable forgetting. This trade-off
problem is known as the stability/plasticity dilemma [163].

An important challenge inherent to handling memories is to automatically assess them. Learning
new tasks may lead to degradation of the memories. As a consequence, the memory process needs
mechanisms to evaluate how the memories are degraded, i.e., how it forgets. As no more data and
labels from past tasks may be available, this check-up might be very challenging.

Another challenge is the stability of the learning process, which is crucial to learn and remem-
ber. Instability might lead to exploding gradients that would accidentally and permanently erase
memories.

Detecting Distributional Shifts (concept drift)

When the distribution is not stationary, a shift into the data stream is observed. When there
is no external information concerning this shift, the CL model has to detect it, and account for

42 CHAPTER 3. CONTINUAL LEARNING

fixing it by itself. An undetected shift in the data distribution will irrevocably lead to forgetting.
Changes in the data distribution over time are commonly referred to as concept drift. This idea
is related to online change detection algorithms [211, 170] or Bayesian surprise [237] in ML. Two
kinds of concept drift are defined [82]: Virtual and real concept drift. Virtual concept drift concerns
the input distribution only, and can easily occur, e.g., due to imbalanced classes over time. Real
concept drift, on the contrary, is caused by novelty on data or new classes, and can be detected by
its effect, on e.g., classification accuracy. However, shift may also happen when the task changes.
In RL for example an agent may have to solve a new task. Then the shift is not exactly in the data
distribution but in the supervision signal. Regardless of where exactly the shift happened it has to
be detected to avoid catastrophic interference with non related skills or knowledge.

3.3.3 Learning Paradigms Orthogonal to Continual Learning

In this section we describe the relationship of continual learning with respect to the main three, gen-
erally acknowledged machine learning paradigms introduced in Chapter 2: supervised, unsupervised
and reinforcement learning.

Supervised Continual Learning

Supervised learning is the machine learning problem of learning from input-output example pairs
[205]. In Chapter 2, we introduced supervised learning and its different use cases.

While the study of continual learning in this context may help disentangling the complexity
introduced by algorithms that learn continually, in the context of robotics, the lack of supervision
does not allow, most of the time, to apply directly supervised methods.

Unsupervised Continual Learning

Unsupervised learning refers to machine learning algorithms that do not have labels or rewards to
learn from. In Chapter 2, we already introduced unsupervised learning and in particular generative
models. In the context of robotics, unsupervised continual learning may play an important role
in building increasingly robust multi-modal representations over time to be later fine-tuned with
an external and very sparse feedback signal from the environment. In order to learn robust and
adaptive representations with unsupervised learning, the main objective is to find suitable surrogate
and meaningful learning signals, as robotics priors [108, 138], self-supervised models or curiosity
driven techniques.

A particular unsupervised task learned in a continual learning setting is the generation of images.
Image generation is achieved by training generative models to reproduce images from a dataset.
In a CL setting, the distribution changes over time and the generative model should be able to
produce at the end images from the whole distribution. This problem has been studied for various
generative models as adversarial models [263, 135], variational auto-encoders [172, 191, 2, 69, 135]
and standard auto-encoders [249, 271].

There is also a different relation between unsupervised learning and CL, since unsupervised
models can be used to learn representations from vast amounts of data sources and can then
generate such data (cf Section 3.5.4). This capacity can then be used to perform CL for classification
[265, 226, 249, 137] or reinforcement learning tasks [38].

3.4. A FRAMEWORK FOR CONTINUAL LEARNING 43

Continual Reinforcement Learning

Reinforcement Learning is a machine learning paradigm where the goal is to train an agent to
perform actions in a particular environment in order to maximize the expected cumulative reward.
As explained in Chapter 2, in traditional RL, the world is modeled as a stationary MDP: i.e., fixed
dynamics and states that can recur infinitely often [198]. Chapter 2 also presented a basic learning
process of reinforcement learning. Since in general, complex RL environments have no access to all
data gathered at once, RL could often be framed as a CL situation. Moreover, RL borrows several
tools used in CL models, such as approximating data to an i.i.d. distribution, via either i) setting
multiple agents or actors to learn in parallel [157], or ii) using a replay buffer (or experience replay
[169]), that is equivalent to a particular category of CL (rehearsal, see Section 3.5.3). Another link
is found in a popular stable method in RL, the TRPOalgorithm [215], which constrains learning by
using an estimate of the Fisher information matrix to improve learning continually, in the same way
as some CL strategies (e.g., EWC, see Section 3.5.1). Most of Continual Learning approaches in
RL have been applied in simulation settings such as Atari games [121]. However, many approaches
[248, 112, 13, 28] also solve use cases on real robots.

As we can see, the continual learning problems are real shortcoming in reinforcement learning
algorithms. Improving continual learning will therefore necessarily help improving reinforcement
learning performance.

3.4 A Framework for Continual Learning

Despite the rapidly growing interest in continual learning and mainly empirical developments of the
recent years [179], very little research and effort has been devoted to a common formalization of
algorithms that learn continually in dynamic environments. However, the availability of a common
ground for thoroughly evaluating and understanding continual learning algorithms is essential to
reduce ambiguities, enhancing fair comparisons and ultimately better advancing research in this
direction.

3.4.1 Setting Description

Being able to better compare and evaluate continual learning strategies, while still being general
enough to overlook implementation-dependent details over different learning paradigms, becomes
essential. This is specially true when targeting deployment of CL paradigms in real-word applica-
tions, such as robotics. Nowadays, despite the existence of a basic set of shared practices, many
are the fundamental questions often overlooked in recent continual learning research. For example,
questions about the data availability during training and evaluation, the amount of supervision
with respect to the tasks separation and composition, as well as common but biased assumptions
on the nature of the data among others. A list of questions of interest we would like to address and
report are the following:

3.4.2 Questions

(a) Data Availability

• Q1: Does some data need to be stored? if yes, how and what for? (e.g. regularization,
re-training, validation)?

44 CHAPTER 3. CONTINUAL LEARNING

• Q2: Is the algorithm tuned based on the final performance? I.e. is it possible to go back
in time to improve performance?

• Q3: Are data distributions assumed i.i.d. at any point?
• Q4: Is each task assumed to be encountered only once?

(b) Prior Knowledge

• Q5: Is the continual learning algorithm agnostic with respect to the structure of the
training data stream? (e.g. number of classes, numbers of tasks, number of learning
objectives...)

• Q6: Does the approach need a pretrained model for the CL setting? If so, what is the
new knowledge that needs to be acquired while learning continually?

(c) Memory and Computational Constraints

• Q7: How much available memory does the algorithm require while learning? Does the
memory capacity requirement changes as more tasks are learned?

• Q8: Is the continual learning algorithm constrained in terms of computational overhead
for each learning experience? Does the computational overhead increase over the task
sequence?

• Q9: Is the continual learning algorithm agnostic with respect to the data type? (e.g.
images, video, text,...)

• Q10: Is the continual learning algorithm able to handle situations where there is not
enough time to learn?

(d) Amount/Type of Supervision

• Q11: In the presence of multiple tasks, is the task label available to the algorithm during
the training phase? And during evaluation?

• Q12: Are all the data labeled? or only the first training set? Can the user provide sparse
label/feedback (e.g. active learning) to correct the system errors?

(e) Performance Expectation

• Q13: What is expected from the algorithm to remember at the end of the full stream? Is
it acceptable to forget somehow, when task, context or supervision change?

To summarize these questions, in any new CL algorithm proposition, it is fundamental to clearly
describe the data stream, its use, the algorithm functioning, its assumed prior knowledge, and its
requirements in terms of supervision, memory and computation. We will answer those questions in
the discussion chapter of the thesis (Chapter 8).

We will now propose a comprehensive and detailed framework to help distinguish and disentangle
different approaches in different continual learning settings and help answer these questions.

Early theoretical attempts to formalize the CL paradigm are found in [198] as a combination
between reinforcement learning and inductive transfer. More general framework approaches include
the one on non i.i.d. tasks of [185]. As in [185], we assume CL is tackling a probably approximately
correct (PAC) learnable problem in the approximation of a target hypothesis h∗ as well as learning
from a sequence of non i.i.d. training sets. Our framework could also be seen as a generalization of
the one proposed in [150], where learning happens continuously through a continuum of data and
a “task supervised signal” t may be provided along with each training example.

3.4. A FRAMEWORK FOR CONTINUAL LEARNING 45

3.4.3 Framework Definitions

In continual learning data can be conveniently seen as drawn from a sequence of distributions Di,
and thus the need to redefine a CL framework taking into account this important property is defined
as follows.

Definition 10. Continual Distributions and Training Sets
In Continual Learning, D is a potentially infinite sequence of unknown distributions D =

{D1, . . . , DN} over X × Y , with X and Y input and output random variables, respectively. At
time i a training set Tri containing one or more observations is provided by Di to the algorithm.

As the framework hereby proposed is supposed to be general enough to cover the orthogonal and
classical unsupervised, supervised and reinforcement learning approaches, Tri, as better detailed
in Definition 12, is a collection of training observations/data samples that act as signal of the joint
distribution to be learned.

Definition 11. Task
A task is a learning experience characterized by a unique task label t and its target function

g∗
t̂
(x) ≡ h∗(x, t = t̂), i.e., the objective of its learning.

It is important to note that the tasks are just an abstract representation of a learning experience
represented by a task label. This label helps to split the full learning experience into smaller learning
pieces. However, there is not necessarily a bijective correspondence between data distributions and
tasks.

Definition 12. Continual Learning Algorithm Given h∗ as the general target function (i.e.
our ideal prediction model), and a task label t, a continual learning algorithm ACL is an algorithm
with the following signature:

∀Di ∈ D, ACLi : < hi−1, T ri,Mi−1, ti >→< hi,Mi > (3.1)

Where:

• hi is the current hypothesis at timestep i, or, practically speaking, the parametric model learned
continually.

• Mi is an external memory where we can store previous training examples or partial computa-
tion not directly related to the parametrization of the model.

• ti is a task label, that can be used to disentangle tasks and customize the hypothesis parameters.
For simplicity, we can assume N as the number of tasks, one for each Tri.

• Tri is the training set of examples. Each Tri is composed of a number of examples eij with
j ∈ [1, . . . ,m]. Each example eij =< xij , y

i
j >, where yi is the feedback signal and can be

the optimal hypothesis h∗(x, t) (i.e., exact label yij in supervised learning), or any real tensor
(from which we can estimate h∗(x, t), such as a reward rij in RL).

It is worth pointing out that each Di, can be considered as a stationary distribution. However,
this framework setting allows to accommodate continual learning approaches where examples can
also be assumed to be drawn non i.i.d. from each Di over X × Y , as in [82, 91].

46 CHAPTER 3. CONTINUAL LEARNING

Definition 13. Continual Learning scenarios A CL scenario is a specific CL setting in which
the sequence of N task labels respects a certain “task structure” over time. Based on the proposed
framework, we can define three different common scenarios:

• Single-Incremental-Task (SIT): t1 = t2 = · · · = tN .

• Multi-Task (MT): ∀i, j ∈ [1, .., n]2, i 6= j =⇒ ti 6= tj.

• Multi-Incremental-Task (MIT): ∃ i, j, k : ti = tj and tj 6= tk.

Table 3.1 illustrates an example to clarify the definition of SIT, MT and MIT.
An example of Single-Incremental-Task (SIT) scenario is an ordinary classification task between

cats and dogs, where the distribution changes through time. First, there may only be input images
of white dogs and white cats, and later only black dogs and black cats. Therefore, while learning
to distinguish black cats from black dogs the algorithm should not forget to differentiate white cats
from white dogs. The task is always the same, but the concept drift might lead to forgetting.

However, in a classification setting, a Multi-Task (MT) scenario would first consist of learning
cats versus dogs, and later cars versus bikes, without forgetting. The task label changes when
the classes change, and the algorithm can use this information to maximize its continual learning
performance. The Multi-Incremental-Task (MIT) is the scenario where the same task can happen
several times in the sequence of tasks.

Table 3.1: Illustration of continual learning scenarios. Sequential task labels (corresponding to
different distribution Di ∈ D) to reflect differences among CL categorization w.r.t. number and
unicity of tasks for SIT, MT and MIT. Notice that a MIT setting requires relaxing the constraint
definition of SIT but also relaxing the constraint definition of MT, i.e., it corresponds to the case
where not all the tasks are considered having the same ID, and not all the task are considered
distinct.

Task ID/Session CL settings
Task ID SIT MT MIT
t1 0 1 0
t2 0 2 1
t3 0 3 0
...
ti 0 i ...

In any learning problem (be it classification, RL or unsupervised learning), the ability to adapt
to new concepts to be learned (from the PAC ML framework [251]), as well as new instances of
each concept, should be accounted. This is the objective of the next definition where we formally
set three different settings an algorithm is required to manage, as they can have very high impact
on the algorithm performance.

Definition 14. Task label and concept drift scenarios The task label can specify different
assumptions made in a continual learning scenario. We can define three main categories of task
label assumptions regarding concept drift:

• No task label: Changes in the distribution are not signaled by any task label. The task is
always the same (equivalent to SIT scenario).

3.4. A FRAMEWORK FOR CONTINUAL LEARNING 47

• Sparse task label: Changes in the distribution are sparsely signaled by the task label. There
are several tasks but changes in distribution may as well happen inside a task.

• Task label oracle: Every change in the data distribution is signaled by the task label, which is
given.

We illustrate the different scenarios in Figure 3.1.

Figure 3.1: Task label and concept drift: illustration of the different scenarios.

Definition 15. Availability of task label. When a task label is provided, it is worth distinguishing
among two different cases:

• Learning labels: Task labels are provided for learning only. At test time, inference should be
done without knowing from which task a data point is coming from.

• Permanent labels: The task labels are provided for learning, and it is assumed they will also
be provided at test time for inference.

The need for a task label is a need for supervision. It might be legit for training since it helps
significantly the learning process. However, it might be a shortcoming in terms of autonomy at test
time (for inference).

Definition 16. Content Update Type The nature of the data samples or observations contained
in each Tri can be conveniently framed in three different categories:

• New Instances (NI): Data samples or observations contained in the training set at time-step i
relate to the same dependent variable Y used in the past.

• New Concepts (NC): Data samples or observations contained in the training set at time-step
i relate to a new dependent variable Y to be learned from the model.

• New Instances and New Concepts (NIC): Data samples or observations contained in the training
set at time-step i relate to both, already encountered dependent variables, and new ones (Y).

48 CHAPTER 3. CONTINUAL LEARNING

In order to exemplify the concept of Content Update Type defined in Definition 16, let us recover
the aforementioned example of classification. If an algorithm learns the cat vs dogs classification
problem on a dataset and then new images of cat vs dogs are provided to the algorithm, we are
then in a New Instances case (NI), we have new data but no new concepts. If the new instances
were of different classes (e.g. cars vs bikes) we then would face the New Concepts case (NC). The
new instances and new concepts case would then have been a mix of both new images of known
and new classes.

If a CL algorithm uses a network pretrained on a dataset, the features of such dataset will need
to be accounted for as one more task or the same, depending on the distribution of new instances
and new classes according to definitions 13 and 16. In other words, using a pretrained model is
similar to assume there is a task already learned by the model, and the new learning experiences of
the algorithm are just a continuum of learning curricula. If there is any intersection between the
pretraining and the new tasks, it should be reported in the setting description. The pretraining
effect can then be estimated with the metrics proposed in Section 3.6.2.

3.4.4 Constraints

In this section, we phrase constraints that are advised to be respected to make small experiments
scalable to bigger ones.

Constraint 1. For every step in time, the number of current examples contained in the memory
is lower than the total number of previously seen examples1.

Constraint 2. Memory and computation for each iteration step i are bounded. Given two func-
tions ops() and mem() that compute the number of operations and memory occupation required by
ACLi , two reasonably small values max_ops and max_mem should exist, such that, for each i,
ops(ACLi) < max_ops and mem(hi−1,Mi−1) < max_mem.

max_ops and max_mem are the max throughput, in number of operations, and the max
memory capacity of the system running ACLi . Having a memory and computational bounds for
each iteration i is an important constraint for a continual learning algorithm. The reason is that
the number of training sets Tri can potentially be unlimited, and thus, computation and memory
should not be proportional to the number of hypothesis updates hi over time. A finite upper bound
should exist and be considered, especially with n→∞.

3.4.5 Relaxation and desiderata

Given the difficult setting and the additional constraints imposed by Continual Learning with
respect to the classic “static” setting, many researchers in the recent literature have proposed new
CL strategies in slightly relaxed [206, 121, 153, 150] yet reasonable settings:

Relaxation 1. Memory relaxation: Removes the fixed memory bound constraint over ops() and
mem().

Relaxation 2. Computation relaxation: Removes the fixed computational bound constraint ops(hi) <
max_ops.

1I.e., if we could fit all previous examples in memory M , it would become a problem of scarce interest for the
CL community, given that re-training the entire model hi from scratch would be always possible [110]

3.5. STATE OF THE ART 49

In both cases we assume that for practical applications, either a finite (and reasonable) number
of tasks N are encountered or that we are transigent with the memorization of past tasks, hence,
for many settings with a generous memory and computational bounds, many continual learning
strategies that, in terms of complexity and memory usage, grow somehow proportional to the
number of training sets Tri may still be a viable option, especially if they can guarantee better
performance.

Having defined a formal framework for CL, we can therefore highlight a number of desiderata:

Desideratum 1. Online Continual Learning: Limit the size of each training set, moving towards
online learning so that |Tri| = 1.

Being able to learn without storing any raw data would mean a large step towards continual
learning. In fact, getting rid of storing raw data means that the learning algorithm is able to extract
information from the current task that may be not only useful and accurate for the current task,
but also transferable for the future.

In our biological counterparts, namely the brain, a system-level consolidation process is often
thought to take place, where memories are encoded, stored and than retrieved for rehearsal purposes
[56]. However, the idea of storing high-dimensional perceptual data appears impractical given the
incredible amount of information flowing into our brain every day from our multi-modal senses.
Being able to process data online as well, is an important desideratum especially for reducing
adaptation time and operational memory usage in an embedded or robotics setting. At least,
unprocessed data should be selected to keep only essential information.

Desideratum 2. Task indicator free Continual Learning: Learning continually without help of an
external signal t indicating the current task, in particular at test time, is strongly desirable.

Desideratum 3. Be ready for the future: Prepare the model to be robust and provided with good
representation for handling future learning experiences. Solving only the current task only is probably
not sufficient.

3.5 State of the art

Continual learning can be classified in four families of approaches. Each family has its own method
to manage memories and learning without forgetting in non-iid settings.

3.5.1 Regularization

Regularization is a process of introducing additional information in order to prevent overfitting [30].
In the context of Continual Learning, the model should not overfit a new problem because it would
make it forget it’s previous skills. The regularization approaches in continual learning consist of
modifying the update of weights when learning in order to keep memory of previous knowledge.

Penalty Computing

Basic regularization techniques that could be used for CL are weight sparsification, dropout [86],
and early stopping [155]. These simple regularization techniques reduce the chance of weights being
modified, and thus decrease the probability of forgetting. More complex methods consist of search-
ing for important weights inside the models and protect them afterwards to prevent forgetting.

50 CHAPTER 3. CONTINUAL LEARNING

The Fisher matrix can be used to estimate the importance of weights and produce an adapted
regularization as for Elastic Weight Consolidation (EWC) approach [121]. For efficiency purpose,
EWC only use the diagonal of the Fisher matrix to estimate importance. [201] proposes an al-
ternative to get a better estimation of the Fisher matrix using the Kronecker factorization. EWC
approach needs to have clear task delimitation to compute Fisher matrix at the end of the task,
but Synaptic Intelligence (SI) [269] extended the method in an online learning fashion to relax this
constraint. [133] propose to use a regularization method called incremental moment matching to
overcome catastrophic forgetting. This method saves the moment posterior distribution of neural
networks weights from past tasks and uses it to regularize learning of a new task. Two different
declinations of this method are proposed: one with the use of first order moment IMM-mean and
one with second order moment IMM-mode.

Another method to apply regularization for continual learning is the use of Conceptor [102, 95].
Conceptor are memory mechanism that store learned patterns and representation. They are used
to guide the gradient of the loss function to prevent forgetting and then favor modification for some
weights and penalize others.

The regularization methods have been shown to be efficient in reinforcement learning [121],
classification [121, 201, 269, 95] and also generative models [172, 218]. A limitation is that after
several tasks the model may saturate because of a too high regularization, and finding a good trade-
off between regularization that allows learning without forgetting may be hard. Some regularization
methods are described more in depth in Chapter 4.

Knowledge Distillation

Distillation techniques were introduced by [99] in order to transfer knowledge from neural network
A to neural network B. The idea is that after A has learned to solve a task, we want B to share
this skill with A. We then forward the same input to both A and B and impose B to have the same
output as A. Distillation should be more efficient than retraining B because A produces a soft-target
that helps B to learn faster. In order to apply this method for continual learning, after network A
learned to solve the first task, and while B is learning the second one, we distill knowledge from A
to B. In the end, B should be able to solve both tasks. This and related methods have been used
in various approaches [263, 217, 78, 207, 112, 248, 58, 164]. A drawback of distillation is that it
generally needs to preserve a reservoir of persistent data learned for each task in order to apply
distillation from a teacher model to a student model. Distillation can also be used to transfer policy
learning from one model to another [207].

3.5.2 Dynamic Architecture

The architecture of learning models has a strong influence on how they learn. One approach to
CL is to modify dynamically the architecture of a model to make it learn new concepts or skills
without interfering with old ones. We present two types of dynamic architectures. First, when
the changes in the architecture are explicit; and second, when changes are implicit architectural
changes by freezing weights. We also present an important architectural approach to CL: dual
memory models.

3.5. STATE OF THE ART 51

Explicit Architecture Modification

Explicit dynamics architecture gather all methods that add, clone or save parts of parameters of
the models to avoid catastrophic forgetting.

Progressive neural networks [206] is one of the first approaches within this paradigm for deep
neural networks. For each new task to be learned, a new model is created connected to all past ones.
The goal of this new model is to learn the new task by using what was already learned by previous
models, and so develop the new skills needed. At test time, the method needs to inject data into
each neural network previously created, and needs to know the task index to pick the right output.
Because the weights are used to connect neural networks together, the growth of parameters is
quadratic w.r.t. the number of tasks. This growth is generally to be prevented. Instead, layers may
be dynamically expanded in a single network without the need of re-training or freezing previously
learned parameters, improving model capacity over time [257].

Another type of dynamic architecture strategy consists of dynamically adding neurons for new
tasks. As an example, output layers can be added in order not to change output parameters from
previous tasks as in LWF approach [143]. This method ensures that the output layer will not be
modified; however, as the feature extraction layers are shared between tasks, some parameters risk
to be modified and forgotten. In addition, at test time, the method needs the task label.

It is worth mentioning that we consider as dynamic architecture, those approaches that adapt
their architecture specifically with the aim of not forgetting, while similar mechanisms can be used
for other purposes2.

Implicit Architecture Modification

Implicit architecture modification is the use of model adaptation for continual learning without
modifying its architecture. This adaptation is typically achieved by inactivating some learning
units or by changing the forward pass path.

We categorize the fact of dynamically freezing weights as an implicit dynamic architecture
approach. It is implicit because the architecture of the model does not change; however, the
model’s capacity is necessarily affected.

Freezing weights consist of choosing some weights at the end of a task that will no more change
in the future. The backward pass will not be able to tune them anymore; however, they can still
be used in the forward pass. This method ensures that these weights will not be modified, and
tries to keep enough free parameters to learn in the future [154, 153, 219]. The difficulty lies in
freezing enough weights to remember, but not too much to still be able to learn new skills. The
way weight freezing is implemented in PackNet [154], Piggypack [153] or HAT [219] is by defining a
special mask for each task that is used to both protect weights when new tasks are learned, and to
define which weights to use at inference time for a given task. The use of masks to freeze important
weights can be referred to as hard attention process [219]. Weight freezing can also be used to keep
the decision boundary of the output unchanged [109].

An alternative to a weight freezing when tasks change is to define a dynamics path inside the
model in order to use a specific path for a specific task and not modify already learned weights.
This is the idea exploited in PathNet [71].

2If the architecture is changed without this objective, it is not considered as part of the CL approach. As an
example, when new classes are available, we might choose to make the output size grow to handle these, without
making it as a way to not forget.

52 CHAPTER 3. CONTINUAL LEARNING

The use of implicit architecture modifications is not incompatible with explicit architecture
modification as it is shown in [153, 219].

Dual Architectures

Dual approaches characterize architectures that are split into two models. One model is used in
order to learn the current task and should be easily adaptable, while the second model is used as a
memory of past experiences. This approach can be linked to interactions between the hippocampus
and neocortex to avoid catastrophic interference in mammals [161]. The stable network plays the
role of the neocortex, and the flexible one plays the role of hippocampus [78, 82, 83, 155].

The use of dual architecture is explicit in many bio-inspired approaches such as [78, 83, 178, 235,
116]. Dual architectures are extended in [235] with the addition of an embedding model, and then,
continual learning happens in the embedding space. The dual architecture can also be extended
to more than two components, as in FearNet [116], which takes inspiration from the basolateral
amygdala from the brain to add a third component that is able to choose between the flexible and
the stable memory for recall.

3.5.3 Rehearsal

Rehearsal approaches gather all methods that save samples as memory of past tasks either raw or
processed.

These samples are used to maintain knowledge about the past in the model. Ideally, those
samples are carefully chosen in order to be representative of past tasks; by default, they can be
randomly chosen.

The initial strategy is to save the representative samples and incorporate them in the new
training set [193, 92, 135]. In the third article samples are chosen randomly for continual learning of
generative models but in [193, 92] the set is carefully sorted in order to keep the most representative
samples into a coreset. This process allows to dynamically adapt the weights of the feature extractor
and strengthen the network connections for memories already learned without forcing to keep
previous weights.

However, the coreset can also be used for regularization purpose and not just to be replayed
from time to time along with new data in the learning process.

For example, the coreset can be used for distillation in [202], in A-LTM (Active Long Term
Memory Networks) [78] and in DisCorl for continual reinforcement learning [248]. They can also be
useful to regularize the gradient when learning new tasks as in GEM (Gradient Episodic Memory)
[150], A-GEM (Averaged Gradient Episodic Memory) [42] and [7]. Coresets have also been used to
regularize the continual learning of a generative model in the CloGAN approach [200]. In a bayesian
learning setting the coreset can be incorporated into the prior to regularize learning update as in
[172]. The authors experimented the use of a coreset to create a variational continual learning
model (VCL).

The coresest should be built in order to maintain knowledge and to be able to learn to distinguish
old data from new ones. Moreover, the saved samples should not be used extensively in order to
avoid overfitting them. In [5], the authors save samples but only use samples creating interference
with current tasks. This makes it possible to use only appropriate memories.

The disadvantage of rehearsal approaches is the utilization of a separate memory for raw and
unprocessed data which is a vanilla way of saving knowledge that does not respect data privacy.
Nevertheless it ensures that the memories are not degraded through time. In order to mitigate this

3.5. STATE OF THE ART 53

problem, some methods aimed at saving data point representation for rehearsal purpose using deep
neural networks latent representation [18, 32, 184].

Another problem could arise in rehearsal methods; since memory is limited, there could be a
large unbalance between data from previous tasks and new data. However, this problem can be
partially addressed by rescaling weights of learning criterion [19, 100, 264].

Pseudo-rehearsal [202, 255], a similar method to rehearsal, is is an approach to continual learning
that generates pseudo-input as a memory of past tasks. The pseudo-inputs are data points generated
by gradient descent on the classification models to match a randomly sampled output. Pseudo-
rehearsal has been abusively used as a synonym to generative replay described in the next section
in the continual learning literature. However, the fundamental difference is that the pseudo-inputs
depend only on the classifier knowledge and are not produced by a generative model.

3.5.4 Generative Replay

Instead of modeling the past from few samples as it is done in Rehearsal approaches, Generative
Replay approaches train generative models on the data distribution. Therefore, they are able to
afterwards sample data from past experience when learning on new data. By learning on current
data and artificially generated past data, they ensure that the knowledge and skills from the past is
not forgotten. These methods have also been associated with the term Intrinsic Replay [62]. They
could be understood as methods that perform regeneration of samples or internal states, and thus,
they can be associated with model-based learning, where the model learns the data distribution
of past experiences. The generative models is generally a GAN [88] as in [265, 135, 226] or an
auto-encoder as in [62, 116, 38, 113].

A classical method implementing a generative replay normally makes use of dual models [113,
226, 265, 69, 116]. One frozen model generates samples from past experiences and another learns
to generate and classify current samples in addition to the regenerated ones. When a task is over,
we replace the frozen model by the current one, freeze it, and initialize a new model to learn next
task.

Generative Replay models can be categorized into two different approaches: "Marginal Replay"
and "Conditional Replay" [137]. Techniques usingMarginal Replay make use of standard generative
models, while Conditional Replay are a particular case of the former where the generative model
is conditional. Conditional models can generate data from a specific condition, e.g. a class or a
task. In continual learning, it allows then to choose from which past learning experience we want
to generate. It is important for example to balance data in generated replay [137].

While most of the Generative Replay based approaches are meant to solve classification tasks
[116, 113, 226, 265, 200], some models use it for unsupervised learning [135, 263] or reinforcement
learning [38].

3.5.5 Hybrid Approaches

Memorization processed described are not incompatible, therefore they can be combined. Most CL
approaches have an implicit dual architecture strategy, as they always have a slow learning and
a fast learning mechanisms to learn continually. For example, in rehearsal approaches the stable
model role is played by a memory that stores samples, in generative replay approaches a generative
model plays the role of stable model, in some regularization approaches the stable model is played
by the Fisher matrix which saves important weights.

54 CHAPTER 3. CONTINUAL LEARNING

Moreover, most of continual learning approaches do not rely on a single strategy to tackle catas-
trophic forgetting. As stated in previous sections, each approach offers advantages and disadvan-
tages, but most of the times, combining strategies allows to find the best solutions. We summarize
in Table 3.2 and Figure 3.2 the different approaches cited and the strategies they propose.

Table 3.2: Classification of continual learning main strategies

References
Regularization Rehearsal Architectural

Generative-
Replay

Zhou et al. [271] X
Goodfellow et al. [86] X
Lyubova et al. [152] X
Rusu et al. [207] X
Camoriano et al. [34] X X
Furlanello et al. [78] X X
Li et al. [143] (LwF) X X
Rusu et al. [206] (PNN) X
Jung et al. [109] X X
Aljundi et al. [6] X
Rebuffi et al. [193] (Icarl) X X
Kirkpatrick et al. [121] (EWC) X
Fernando et al. [71] X
Lee et al. [133] X
Lee et al. [267] X
Triki et al. [249] X
Seff et al. [218] X
Shin [226] (DGR) X
Velez et al. [254] X
Lopez-Paz et al. [150] (GEM) X X
Zenke et al. [269] (SI) X
Nguyen et al. [172] (VCL) X X X
Ramapuram et al. [191] X X
Mallya et al. [154] X
Kamra et al. [113] X
Draelos et al. [62] X
Serra et al. [219] X
Mallya et al. [153] X
Parisi et al. [178] (GDM) X X X
He et al. [95] X X
Hayes et al. [92] X
Wu et al. [265] X X
Ritter et al. [201] X
Schwarz et al. [217] X
Maltoni et al. [155] X X
Achille et al. [2] X X
Wu et al. [263] (MeRGAN) X X

Continued on next page

3.6. EVALUATION 55

Table 3.2 – Continued from previous page

References
Regularization Rehearsal Architectural

Generative-
Replay

Dhar et al. [58] X
Lesort et al. [135] X
Castro et al. [39] X
Caselles-Dupré et al. [38] X
Riemer et al. [197] (MER) X X
Rios et al. [200] (CloGAN) X X X
Lesort et al. [137] X
Sprechmann et al. [235] X X
Hayes et al. [92] (ExStream) X
Belouadah et al. [18] (DeeSIL) X
Kemker et al. [116] (FearNet) X X
Chaudhry et al. [42] X X
Wu et al. [264] X
Kalifou1 et al. [112] X X
Aljundi et al. [5] X X X
Michieli et al. [164] X X
Caccia et al. [32] X
Hou et al. [100] X
Traore et al. [248] X X
Aljundi et al. [7] X X
Belouadah et al. [19] X

3.6 Evaluation

Before applying CL solutions to autonomous agents, they should be experimented and evaluated in
simulation or toy examples. It is crucial to have a set of good evaluation metrics and benchmarks to
assess if the approaches are scalable to real problems or may not solve harder ones. It is important
to distinguish the evaluation of the performances and the evaluation of algorithms. In research, the
evaluation should be able to make predictions of success in applications, while in applications, the
evaluation only assesses if the results are satisfying. Therefore, in research, we assess the method
while in an application we should assess the result. In this section we summarize existing evaluation
methods and benchmarks and highlight some of them we believe worth using when targeting the
deployment of practical CL applications.

3.6.1 Benchmarks

In continual learning, the difficulty of learning on a sequence of tasks is first of all dependant on
the difficulty of each of the tasks separately. If a task is difficult to learn, a model will have to
deeply modify its weights. If those weights contain knowledge from previous tasks, there is a high
probability they will be degraded. On the other hand, the risk of forgetting is also dependant on
the likelihood of tasks occurring. Indeed, after learning a task Tt, it is easier for a neural network to

56 CHAPTER 3. CONTINUAL LEARNING

Figure 3.2: Venn diagram of some of the most popular CL strategies w.r.t the four approaches
illustrated in Section 3.5: CWR [149], PNN [206], EWC [121], SI [269], LWF [143], ICARL [193],
GEM [150], FearNet [116], GDM [178], ExStream [92], Pure Rehearsal, GR [226], MeRGAN [263]
and AR1 [155]. Rehearsal and Generative Replay upper categories can be seen as a subset of replay
strategies. Better viewed in color.

learn a radically different task Tt+1 without forgetting, than learning a task Tt+1 with similarities
to Tt [69].

There are several kinds of similarities in a sequence of tasks:

• Similarities in learning objectives: They occur when the objective is similar from task to
task. For example, in a classification setting, when the same classes are used from one task
to another (e.g. Permuted MNIST), or in RL, the same tasks need to be achieved in different
environments.

• Similarities in features: the features from task to task are the same or very similar (e.g.
Rotation MNIST).

Beyond the similarity among tasks and the learnability of each task, the availability of data is
primordial to evaluate the difficulty of a benchmark. For convenience, most of the classical bench-
marks assume that each task is available long enough to learn a satisfying solution. Nevertheless,
even when there is no constraint on the time to learn a task, data from the past cannot be available
again in the future. In several approaches, past data is used for model selection, however using
the performance obtained on task Tt to fine-tune a model that will learn on T0 violates temporal
causality [186]. Data might be saved for later use as in rehearsal approaches, but this must be done
before moving on to the next task.

Most CL benchmarks are adapted from others fields, for instance:

3.6. EVALUATION 57

Table 3.3: Benchmarks and environments for continual learning. For each resource, paper use cases
in the NI, NC and NIC scenarios are reported.

Benchmark NI NC NIC Use Cases
Split MNIST/Fashion MNIST X [137, 135, 95, 200]
Rotation MNIST X [150, 137, 197]
Permutation MNIST X [86, 121, 71, 226, 269, 137, 95, 197]
iCIFAR10/100 X [193, 155, 39, 116, 19, 264, 100]
SVHN X [115, 218, 200]
CUB200 X [267, 92]
CORe50 X X X [149, 178, 155, 92]
iCubWorld28 X [180, 148, 92]
iCubWorld-Transformation X [181, 33]
LSUN X [263]
ImageNet X [193, 153, 39, 18, 264, 100, 19]
Omniglot X [128, 217]
Pascal VOC X [164, 227, 164]
Atari X [207, 121, 217]
RNN CL benchmark X [233]
CRLMaze (based on VizDoom) X [147]
DeepMind Lab X [157]
MNIST Fellowship X X [139]

• Classification: MNIST [132], Fashion-MNIST [266], KMNIST [46], CIFAR10/100 [123],
Street View House Numbers (SVHN) [171], CUB200 [260], LSUN [268], MNIST-Fellowship
[134], ImageNet [124], Omniglot [128] or Pascal VOC [66] (object detection and segmentation).

• Reinforcement Learning: Arcade Learning Environment (ALE) [16] for Atari games, SUR-
REAL [68] for robot manipulation and RoboTurk for robotic skill learning through imitation
[156], CRLMaze extension of VizDoom [147] and DeepMind Lab [157].

• Generative models: Datasets that prevail in this domain are the same as those used in
classification tasks.

These datasets are then split, artificially modified (e.g., with image rotations or permutation of
pixels) or concatenated together to create sequences of tasks and build a continual learning setting.
As an example, permuted MNIST [121] and rotated MNIST [150] are continual learning datasets
artificially created from MNIST.

Another possible continual learning scenario is the use of naturally non i.i.d. datasets (e.g. NICO
[96]) or learning sequentially different datasets either on the same input space [133, 219] or in a
multi-modal fashion [115]. However, only few datasets, such as CORe50 [149], OpenLORIS-Object
[223], OpenLORIS-Scene [225] or MNIST-Fellowship [134], are specifically built with continual
learning in mind.

In robotics, numerous datasets are often recorded in a online fashion through video. Therefore,
they are suitable to evaluate continual learning algorithms. As an example, those proposed by
[180, 181, 10] are composed of sequences of images captured during robotics object manipulation;

58 CHAPTER 3. CONTINUAL LEARNING

they are used for classification and detection algorithms. A summary of the main datasets and
examples of their applications can be found in Table 3.3.

For the remainder of the thesis, we experiment with quite easy datasets, such as MNIST, Fashion-
MNIST or KMNSIT (presented in Chapter 2), to focus more on continual learning problems rather
than on learning problems. Solving hard problems is important to know if approaches are scalable
but for prototyping purposes, it is not always necessary. We discuss this point furthermore in
Chapter 8.

3.6.2 Metrics

Following the algorithm evaluation on a benchmark, we should make sure that the evaluation
criteria are rigorous and cover the representative aspects of algorithm capacities. A thorough
research evaluation should report more than just the final accuracy. We should also evaluate how
fast it learns and forgets, if the algorithm is able to transfer knowledge from one task to another,
and if the algorithm is stable and efficient while learning. In this section we gather a set of metrics
to evaluate a CL approach.

For evaluation purpose, we assume access to series of test sets Tei. The aim is to assess and
disentangle the performance of our hypothesis hi as well as to evaluate if it is representative of the
knowledge that should be learned by the corresponding training batch Tri.

For instance, one example of such evaluation is one of the first metrics proposed for CL [91]; it
consists of an overall performanceM in a supervised classification setting. It is based on the relative
performance of an incrementally trained algorithm with respect to an offline trained algorithm
(which has access to all the data at once). In our notation,M is:

M =
1

N

N∑
i=1

Ri,i
RCi,i

. (3.2)

Where N is the number of tasks encountered, RCi,j is the potentially best accuracy we can have
on TeCi if the model was trained with all data at once, i.e. on TrCi (the accumulation of training
sets TrCt from t=0 to t=i). TeCi is the accumulation of all test sets TeCt from t = 0 to t = i. M =
1 indicates identical performance to an off-line cumulative setting; anM larger than one is possible
when the offline model is worse than trained in a CL paradigm.

In [219], instead, the authors try to directly model forgetting with the proposed forgetting ratio
metric ρ after learning i tasks, defined as:

ρj≤i =
1

N

N∑
i

N∑
j

(
Rij −RRj
RCij −RRj

− 1

)
(3.3)

Where, RRj is the accuracy of a random stratified classifier using the class information of task j.
Always in the same sequential setting, in [150] other three metrics are proposed: Average Ac-

curacy (ACC), Backward Transfer (BWT), and Forward Transfer (FWT). In this case, after the
model finishes learning about the training batch Tri, its performance is evaluated on all (even
future) test batches Tej .

The larger these metrics, the better the model. The metrics are extended for more fine grained,
generic evaluation [59] so that the original accuracy [150] (as well as BWT and FWT) can account
for performance at every timestep in time. Average Accuracy is defined as:

3.6. EVALUATION 59

ACC =

∑N
i=1

∑i
j=1Ri,j

N(N+1)
2

(3.4)

where R ∈ RN×N is the training-test accuracy matrix that contains in each entry Ri,j the test
classification accuracy of the model on task tj after observing the last sample from task ti, Average
Accuracy (ACC) considers all accuracies of training set Tri and test set Tej by considering the
diagonal elements of R, as well as all elements below it (i.e., averages Ri,j where i >= j see Table
3.4).

It should not be confused with the classical accuracy A.

A =

∑N
i=1Ri,i
N

(3.5)

A computes the average performance at time t and does not take into account the previous perfor-
mance evolution. We can compare A and ACC to get some more insight of the algorithm behaviour.
If A > ACC then the mean performance on past tasks improved through the learning of new tasks,
if A < ACC then the mean performance decreased and the algorithm forgot and, finally, if A =
ACC, then either the algorithm stays very stable or the progress and forgetting compensate each
others.

Table 3.4: Illustration of accuracy matrix R: elements accounted to compute ACC (white & cyan),
BWT (cyan), and FWT (gray). R∗ = Rii, Tri = training, Tei= test tasks.

R Te1 Te2 Te3

Tr1 R1,1 R1,2 R1,3

Tr2 R2,1 R2,2 R2,3

Tr3 R3,1 R3,2 R3,3

Backward Transfer (BWT) measures the influence that learning a task has on the performance
on previous tasks. It is defined as the accuracy computed on Tei right after learning Tri as well as
at the end of the last task on the same test set (see Table 3.4 in light cyan).

BWT =

∑N
i=2

∑i−1
j=1(Ri,j −Rj,j)
N(N−1)

2

(3.6)

The original BWT [41, 150] is extended into two terms to distinguish among two semantically
different concepts (so that, as the rest of metrics, is to be maximized and in [0,1]).

REM = 1− |min(BWT, 0)| (3.7)

i.e., Remembering, and (the originally positive) BWT, i.e., improvement over time, Positive Back-
ward Transfer :

BWT+ = max(BWT, 0) (3.8)

Likewise, the FWT redefined to account for the dynamics of CL at each timestep is

FWT =

∑j−1
i=1

∑N
j=1Ri,j

N(N−1)
2

(3.9)

60 CHAPTER 3. CONTINUAL LEARNING

FWT accounts for the train-test accuracy entries Ri,j above the principal diagonal of R, ex-
cluding it (see elements accounted in Table 3.4 in light gray). Forward transfer can occur when the
model is able to perform zero-shot learning.

FWT and BWT can be interpreted as trans-task generalization capacity of an algorithm. It is
important to note that FWT and BWT give no insight into the algorithms assets if not compared
to another algorithm. It is not possible to easily disentangle the generalization performance from
the similarity of tasks.

A Learning Curve Area (LCA) (∈ [0, 1]) metric to quantify the learning speed by a CL strategy
is proposed in [42]. It uses the b-shot performance (where b is the mini-batch number) after being
trained for all the N tasks:

Zb =
1

N

N∑
i=1

ai,b,i (3.10)

where ai,k,j ∈ [0, 1] is the accuracy evaluated on the test set of task j after the model has been
trained with the k-th mini-batch of task i. This amount is equivalent to previous accuracy matrix
entry Rij but at a lower granularity of a batch level. ai,k,j is used to define a forgetting measure
∈ [−1, 1] that quantifies the drop in accuracy on previous tasks [41]. fkj is the forgetting on task j
after the model is trained with all mini-batches up to task k:

fkj = max
l∈1,..,k−1

al,Bl,j − ak,Bk,j (3.11)

where Bi is all mini-batches corresponding to training dataset of task k (Dk).
LCAβ is the area of the convergence curve Zb during training as a function of b ∈ [0, β]:

LCAβ =
1

β + 1

∫ β

0

Zbdb =
1

β + 1

β∑
b=0

Zb (3.12)

The interpretation of LCA is intuitive: an LCA0 is the average 0-shot performance (FWT), and
LCAβ is the area under the Zb curve, which is high if the 0-shot performance is good and if the
learner learns quickly. LCA aims at disambiguating the performance of models that may have the
same Zb or AT , but very different LCAβ because despite both eventually obtaining the same final
accuracy, one may learn much faster than the other.

While forgetting and knowledge transfer could be quantified and evaluated in various ways, as
argued in [69, 91, 115], these may not suffice for a robust evaluation of CL strategies. For exam-
ple, in order to better understand the different properties of each strategy in different conditions,
especially for embedded systems and robotics, it would be interesting to keep track and unambigu-
ously determine the amount of computation and memory resources exploited. In this context, the
metrics proposed in [150] are extended in [59] to unify in a common evaluation framework different
infrastructural and operational metrics. Other practical metrics included are Continual Memory
Size (CMS) and Computational Efficiency (CE). We briefly describe them next.

The memory size of model hi is quantified in terms of parameters θ at each task i, Mem(θi)
and the eventual external memory to save data MDatai ; with the idea that it should not grow too
rapidly with respect to the size of the model that learned the first task, Mem(θ1):

MS = min(1,

∑N
i=1

Mem(θ1)
Mem(θi)+MDatai

N
) (3.13)

3.6. EVALUATION 61

To compute the MS metric, it is important to note that MDatai may contain data to remember
and evaluation data needed for hyper-parameters selection.

A metric that bounds the Computational efficiency (CE) by the number of operations for training
set Tri is defined as:

CE = min(1,

∑N
i=1

Ops↑↓(Tri)·ε
1+Ops(Tri)

N
) (3.14)

where Ops(Tri) is the number of (mul-adds) operations needed to learn Tri, Ops ↑↓(Tri) are the
operations required to do one forward and one backward (backprop) pass on Tri, and ε is a scaling
factor (associated to the nr of epochs needed to learn Tri). Overall CLscore and CLstability metrics
are also finally proposed [59] in order to aggregate different criteria to be maximized that allow to
rank CL strategies.

In future evaluation scenarios, particularly in robotics, stability is another important property
that should be evaluated since in many robotic tasks and safety-critical conditions, potential abrupt
performance drifts would be a major concern when learning continuously. The metrics presented
here can also be combined to assess higher-level capabilities. As an example, if we are to assess the
scalability of a CL algorithm, one could use a weighted average of MS, and CE.

The metrics presented in a supervised classification context [59] can also be generalized with
different performance measure P , instead of task accuracy Ri,j , and used in the same way in the
metrics proposed previously. For example, it could be used for reinforcement and unsupervised
learning. For instance, they can be extended to RL; the underlying performance metric is, instead
of accuracy, the accumulated reward on test episodes. In general in RL, cumulative reward plots
over time are common norm to evaluate policy learning algorithms. Extra performance metrics
in RL tasks will very much depend on the task being assessed, the reward function, and other
evaluation metrics that act as evaluation proxies, as it is common in semi/unsupervised learning
settings.

The evaluation of generative models in any setting is challenging. Fréchet Inception Score (FID)
[97] is a common metric that compares features from generated data and true data. Inception Score
(IS) [209] has also been widely used as a proxy to evaluate the quality of generative models. It
measures if the class of generated samples are varied by making use of a model trained on ImageNet.
One shortcoming of these scores is that they may be maximized by over-fitting generative models.
Another evaluation method is using generated data to train a classifier and evaluate its accuracy
on a test set of true data [140]. The test accuracy, called Fitting Capacity (FC) gives a proxy on
the quality of the generated data. Fitting Capacity and Fréchet Inception Score were used in a CL
setting in [137, 135].
More methods for evaluating generative models are described and assessed more in depth in [25, 107];
however, they have never been used in a CL setting. In any case, the need for real data is mandatory
in most evaluation schemes. In a CL setting, evaluating the generation of data from past tasks may
need to violate the data availability assumption. The different metrics for generative models may
then be useful tools for example for evaluating generative replay methods; however, they have to
be manipulated carefully to be incorporated into the continual learning spirit.

For the remainder of this thesis, we are particularly focus on the final accuracy performance
(eq. 3.5). Even if the other metrics are interesting to evaluate an algorithm, the most valuable
results are the final performance. We discuss more this point in Chapter 8. Moreover, we mostly
study disjoint settings and in such setting BWT learning and FWT learning cannot happen, so
the corresponding metrics are not relevant. Finally, reporting the experiments computational costs

62 CHAPTER 3. CONTINUAL LEARNING

would be clearly interesting, but would require a higher number of experiments than what has been
possible to achieve within this work.

3.7 Applications : Continual Learning for Robotics

In the previous section we listed and described the different existing types of strategies to tackle
continual learning. In this section, we will present real use cases of CL with an emphasis on
robotics applications. First, we present why continual learning is crucial for robotics, and then, the
challenges that robotics face in CL tasks. Finally, we present concrete robotic applications with
potential insights to draw from CL.

3.7.1 Opportunities for Continual Learning in Robotics

A robot is an agent that interacts with the real world. It means that it cannot go back in time to
improve what it has learn in the past. These particularities of robotic platforms make them a natural
playground for CL algorithms. Furthermore, robots suffer from several constraints in terms of power
or memory, which CL intends to optimize, in the way it addresses learning problems. On the other
hand, robots have rich information about their experiences. They are in control of their interaction
with the environment, which may help them understanding the concept of causality, and extracting
knowledge from different kinds of sensors (images, sound, depth...). This rich information helps
machines to produce strong representations which are crucial for a well performing CL algorithm
[136].

We could almost conclude that CL is born for robotics, and it may be true; however, today most
of CL approaches are not robotics related and rather focus on experiments on image processing or
simulated environments. The next section will present the challenges that make CL difficult to
apply in robotic environments.

3.7.2 Challenges of Continual Learning in Robotics

Robotics Hardware

The first challenge to deal with when doing any experiment with robots is the hardware. Robots
are known to be unstable and fragile. Robot failures are one of the main restrictions for researchers
to propose new approaches on robotics tasks. They add unavoidable delay in any experiment and
are expensive to fix. Moreover, if the failure is not hardware but software, since it is not possible
to reset the state of the robot automatically, manual help is often needed, e.g., to put back the
robot in his starting position or recover it from an irrecoverable state. Furthermore, most of the
time building or buying a robot is itself quite costly. Once the robot is correctly working, one new
problem arises, which is its autonomy in terms of energy. This aspect is also a main difficulty to deal
with when experiments need to be set. It is difficult to program long experiments without manually
recharging the robot and making sure that it will not stop by a lack of power supply or failure.
Lastly, robots are embedded platforms and, consequently, have limited memory and computation
resources, which should be carefully managed to avoid overflow.

The difficulties of using robots in experiments explain why there are so few approaches of
continual learning with robots in the literature. In the next section, we will see how robotic
environments challenge continual learning algorithms.

3.7. APPLICATIONS : CONTINUAL LEARNING FOR ROBOTICS 63

Data Sampling

When a robot needs to learn a task in a known or unknown environment, it must collect its own
training data in the real world [262]. Data serves as the basis for environment exploration and
comprehension. This problematic is exactly the same as the one met by RL algorithms [241]. In
infants, a crucial component of lifelong learning is the ability to autonomously generate goals and
explore the environment driven by intrinsic motivation [176, 35]. Self-supervised approaches [187,
142, 262, 224] also help to automatically explore environments. Curiosity [31] and self-supervision
[60] allow to search for new experiences (or data) and build a base of knowledge useful to achieve
current or future tasks via transfer learning [178]. As an example, manipulation tasks [117] such as
grasping [187], reaching [189, 48], pushing buttons [138], throwing [236, 117] or stacking [48] objects
(cubes, balls...) are common complex tasks built on comprehensive sets of experiments.

Data gathered in this way can then be used on the fly in an online learning process or stored
for later processing. However, in order to improve learning algorithms the need for annotations or
external help is crucial. In the next subsection we will describe the particular needs for annotations
in robotics.

Data Labelling

As seen in previous section, gathering a varied set of raw data is already a difficult task. However,
using it and understanding it is even more tedious. In this section, we detail different needs for
labelling that autonomous agents such as robots need. First of all, to understand its environment,
a robot will need to apprehend the objects that compose it. To do so, the robot will need at some
point that an external expert assesses that the object representation learned is good. This is the
first kind of label the robot will need, i.e., object labelling [50, 52]. Second, if we want the robot
to perform a certain task, it will need to get information about the goals we gave it and also about
what it should not do. This is generally done by a reward function that defines credit assignment
[165], or it can also be defined internally by more abstract rules such as self-supervision [89, 232],
intrinsic motivation or curiosity [176, 213] as in [75, 49, 52, 130]. Third, the robot should know
when the task changes, and what task it should try to perform. This process consists of labelling
the task; and the label is called the task identifier [150].

All these types of labels are not mandatory, but they drastically help and impact the learning
process. The downside of labelling is that it is expensive and time consuming, which slows down
the learning algorithms. To tackle those two problems, CL needs to find efficient solutions that can
make the best out of the available labels for learning.

The specific fields that aim at answering these questions are few-shot learning [127, 70] and active
learning [221]. The former tries to grasp a concept from very few data points. Active learning aims
at identifying and selecting the most needed labels in order to maximize learning. By combining
optimization procedures in learning from few instances and minimizing the needs for labels, the
field of robotics could be more suitable for leveraging continual learning settings in the real world.
Furthermore, efficiency in learning reduces the risks of forgetting and degrading memories.

Learning Algorithms Stability

In continual learning, algorithms face several learning experiences in a row. From each learning
experience, some memory should be saved to later prevent for not forgetting. The stability of
learning algorithms is then crucial: if only one learning experience fails, the whole process may

64 CHAPTER 3. CONTINUAL LEARNING

be corrupted. Moreover, if we respect the continual learning causality, we cannot go back one
or several tasks earlier in time in order to fix an current problem. The corruption of one learning
experience can lead to the corruption of memories and then to the model degradation when learning
later tasks. The needs for robust mechanisms to validate or reject results of a learning algorithm
is key to keep sane memories and weights; however, the instability of deep learning models must
also be addressed to overcome this drawback. As an example, generative models are powerful
tools for continual learning but their instability may make them unsuitable for this kind of setting
[135]. Reinforcement learning algorithms are also known to be unstable and unpredictable, which
is disastrous for continual learning.

3.7.3 Applications Fields

Figure 3.3: Sample tasks tested for unsupervised open-ended learning [189, 61] and continual learn-
ing settings [112] in a couple of robotics labs, among others, from the DREAM project.

Real-word applications of continual learning are virtually unlimited. In fact, any learning algo-
rithm that needs to deal with the real world will face a non i.i.d. data stream. This as well happens
for autonomous robots that learn new manipulation tasks, for exploration policies, as well as for au-
tonomous vehicles that need to learn and adapt to new circumstances [24, 47, 104, 195]. Non-static
settings are also faced by algorithms that learn how to predict trends based on data streams from
internet user activities, e.g., among others, for advertisement or finance. This problem is likewise
confronted when an already trained algorithms needs to acquire new knowledge without forgetting,
e.g., recognize new classes for classification, anomaly detection, etc. However, in this section we
focus on specific continual learning use cases on robotics.

Perception

While the world of perception is a multi-faceted topic at the very center of every application on
autonomous sytems, the vast majority of CL algorithms in the literature are evaluated on object

3.7. APPLICATIONS : CONTINUAL LEARNING FOR ROBOTICS 65

recognition tasks. Most models, indeed, are evaluated on datasets including static or moving objects.
This is motivated by the fact that before any further action or policy, an autonomous agent (or
robot) needs to identify the different component of its environment. In the case of classification,
the robot may be pre-trained from an initial dataset. However, in any environment the robot would
probably need to learn new objects from the new domain, and new variants (different poses, lighting,
aspect) of already learned objects should be leveraged to improve its recognition [152] capabilities.
CL is crucial to deal with such dynamic scenarios. Initial progresses in this area have been proposed
in [245, 180, 148, 33, 149]. Concrete Continual learning approaches to object segmentation can be
found in [164, 164], and in object detection in [227].

Visual saliency for semantic segmentation and unsupervised object detection are other equally
important applications in the context of perception which have been recently explored under contin-
ual learning and robotics settings [51]. RL-IAC (RL Intelligent Adaptive Curiosity), in particular,
explores to learn visual saliency incrementally [52] with an articulated autonomous exploration tech-
nique based on curiosity to efficiently and continually learn a saliency model in a complex robotics
environment tested in the real-world.

A classic problem in robotics within inherently continual learning settings are simultaneous
localization and mapping (SLAM) [40] and navigation [245]. In [245], using a HERO-2000 mobile
robot with a radar sensor a continual learning algorithm based on explanation-based neural network
learning (EBNN) is proposed to perform room mapping and navigation. Action models in EBNN
explain (in terms of previous experiences) and analyze observations to transfer task-independent
(navigation) knowledge via predicting collisions and their prediction certainty.

Reinforcement Learning

In reinforcement learning the data distribution is dependent on the actions taken by the controlled
agent. Therefore, since the actions taken are not random, data is not i.i.d. and the data distribution
is not stationary. In the context of reinforcement learning similar techniques to those proposed in
CL are often adopted in order to learn over a data distribution which is approximately stationary.
An example of such techniques is the use of a external memory for rehearsal purposes, also know
as experience or memory replay buffer [144, 212, 92].

The first challenge for RL is the extraction of representations to understand and compact what is
relevant from the input data [136]. Continual learning of state representations for RL is intrinsically
close to unsupervised learning or representation learning for classification; the methods used in both
cases may then be very similar or worth leveraging across.

The second RL challenge is learning a policy to solve a specific task. The CL challenge of policy
learning is different because it often should take into account both state and context. Context is
usually handled with recurrent neural networks, and this kind of model is not yet been studied
extensively in CL; one example is in [233]. Different robot manipulation tasks such as grasping
and reaching objects that are used as benchmarks can be seen in Fig. 3.3 and, for instance, in
state representation learning for robotics goal-based tasks [189, 112]. These two challenges face
continual learning problems, to learn representations and to learn policies from non stationary
data distributions. However, it is worth distinguishing among both problems because learning and
transfer between tasks are different challenges. Two tasks may need similar representations with
different policies, while similar policies may require dissimilar representations.

In the context of robotics, fewer RL approaches have been proposed than in video-games or
simulation settings. In particular, this is due to the low data efficiency of RL algorithms [189].

66 CHAPTER 3. CONTINUAL LEARNING

We can still note several approaches that successfully tackle this problem, either in an end-to-
end manner [111, 187], or by splitting the two challenges to address them separately, i.e., by first
learning a state representation [136] and later performing policy learning [74, 253, 160, 3, 63, 108].
Nevertheless, a solution to this problem is to learn the policy in simulation and transfer it to deploy
it in a real world robot [24, 208, 80, 112].

Model-based Learning

Smoothly moving and interacting with always different, unpredictable environments, while building
a consistent model of the external world, is one of the holy grails of robotics. For many years,
researchers in this area have tried to propose robust and general enough sensory-motor solutions to
complex problems such as navigation or object grasping. However, as it appears to be also true for
humans, there will always be an environment or situation in which our biased model of the world
fails and would require a further adaptation

Online (inverse dynamics) learning has also been applied in robotics, but generally not using
deep learning. In [203, 34], the inverse and semiparametric dynamics of an iCub humanoid robot
is learned in an incremental manner. This means both parametric modelling (based on rigid body
dynamics equations) and nonparametric modelling (using incremental kernel methods) are used. In
[204] it is shown that derivative-free models outperform numerical differentiation schemes in online
settings when applied to non parametric (e.g. Gaussian processes with kernel function) model
structures.

In the pioneering work by [245], a model of both the external world and the robot itself is
incrementally learned through reinforcement learning in complex navigation tasks on a real robot.
However, incrementally and autonomously building a causal model of the external world, still
remains a poorly explored topic in the context of robotics. Nevertheless, as it has been shown in
recent RL literature, a model-based approach may be of fundamental importance in the real-world
where millions of trials and errors are not always conceivable.

3.8 Conclusion

Several notions appear to be crucial to clearly describe learning algorithms in CL settings, to
compare them fairly enough and to transfer them from simulation to real autonomous systems and
robotics. First of all, identifying the exact problem we want to solve, and what are the existing
constraints is mandatory. The framework we introduce in Section 3.4 should be an help in achieving
the characterization of these settings. This formal step helps finding the proper approach to use
and identifying similarities with other settings. Secondly, in the same spirit of defining what we
want to learn, it is important to define the level of supervision we are able to give to our learning
algorithm. For example, if we can give it the task label, or some kind of information about the
structure of the input data stream (number of classes, type of data distribution, number of instances
of each task, etc.). This point is also discussed in our proposed framework (Section 3.4). Finally,
it is important to exactly clarify what is the expected performance of the algorithm. The set of
metrics and benchmarks gathered in Section 3.6 should help defining and articulating the dimension
of evaluation for important properties worth considering in the development of embodied agents
that learn continually.

To summarize, in this chapter, we proposed a generalized framework to hold a variety of CL
strategies and make easier the connection between machine learning and robotics in continual

3.8. CONCLUSION 67

learning settings. We reviewed the state of the art in continual learning and illustrated how to
use the proposed framework to present various approaches. We also discussed benchmarks and
evaluation techniques currently being used in continual learning algorithms. Machine learning and
robotics are fields undergoing an aggressive development period. We believe that pushing them
forward to find formalization solutions to facilitate transfer between both fields is critical in order
to understand each other, and make them profit from each other’s successes. Moreover, the example
of robotics for continual learning is well representative of the challenge addressed for the autonomy
of learning agents.

In the following chapters of this manuscript, we will refer to this chapter for state of the art
description, continual learning scenarios, benchmarks, and evaluation metrics. But some content
will also be summarized in the context of each chapter.

Chapter 4

Supervision Free Inference in Continual
Learning

In the previous chapter, we presented extensively the continual learning research field and illustrate
its application potential through the lens of robotics. In this chapter, we discuss the need for
supervision during the inference in some continual learning approaches and the practical limitations
following from this requirement.

4.1 Introduction

In continual learning, some approaches such as dynamic architectures need to know from which
task a data point is coming from in order to perform an inference. Indeed, since they use different
inference paths or different models for prediction they need the task label to choose which one to
use. For regularization methods, it is often assumed that the task label is needed only at training
time. However, in this chapter, we show that in class-incremental settings, the approach can not
distinguish classes from different tasks. Therefore, the task label is necessary at test time.

The class-incremental settings we study is considered iid by parts. Each iid part is referred to as
a task and the data distribution changes are signalled by a task label. Each task contains different
classes. In continual learning, this setting is called a class-incremental or disjoint-task scenario, as
introduced in Chapter 3. It consists of learning sets of classes incrementally. Each task is composed
of new classes. As the training ends, the model should classify data from all classes correctly.

In this chapter, the setting considers the task label as provided for training but not for inference.
Then, without task labels for inference, the model needs to both learn the discrimination of intra-
task classes and the inter-task classes discrimination (i.e. distinctions between classes from different
tasks). On the contrary, if the task label was available for inference, only the discrimination of intra-
task classes needs to be learned. The discrimination upon different tasks is given by the task label.
Learning without access to task labels at test time is then much more complex, since it needs to
discriminate data that are not available at the same time in the data stream. We study in particular
a widely used approach for continual learning: regularization. We show that in the classical setting
of class-incremental tasks, this approach has theoretical limitations and can not be used alone.
Indeed, it can not distinguish classes from different tasks.

The contributions of this chapter are:

69

70 CHAPTER 4. SUPERVISION FREE INFERENCE IN CONTINUAL LEARNING

• We prove theoretical shortcomings of regularization based approaches in class-incremental
settings.

• We propose an existing alternative to circumvent this problem.

We believe this chapter presents important results for a better understanding of CL which will
help practitioners to choose the appropriate approach for practical settings.

4.2 Background

Let’s first summarize the information from Chapter 3 relevant to this chapter. In continual learning,
algorithms protect knowledge from catastrophic forgetting by saving them into a memory. The
memory should be able to incorporate new knowledge and protect them from modification.

In continual learning, we distinguish four types of memorization approaches:

• Dynamic architecture: The neural networks create new weights automatically that will
learn new tasks. Trained weights are frozen to protect memories [206, 71, 143]. In this case,
the memory is composed of the old weights that are not modified anymore.

• Rehearsal: In order to maintain knowledge from past learning experiences, the algorithms
save a subset of training data as memory [193, 172, 5, 18, 112, 264, 100, 32, 248].

• Generative Replay: Instead of saving samples, this method learns generative models that
will produce artificial samples as memory of past learning experiences [226, 135, 263, 137].

• Regularization: Regularization defines a loss that will constrain weight updates to retain
knowledge from previous tasks [121, 269, 155], or distill knowledge [99] from old models to a
new one to remember past learning experiences [143, 217].

As presented in Section 3.5.5, many approaches use combinations of these families to allow better
memorization. The effectiveness of these approaches is related to the use of the task label defined
in Section 3.3. The task label t is an abstract representation built to help continual algorithms to
learn. It is designed to give information about the current task and notify if the task changes.t is
typically a simple integer indexing the tasks in the learning curricula. The different use cases of task
labels are described in Section 3.4.3. Families of approaches have different dependencies to the task
label. For example, dynamic architecture is an effective approach but it needs the task label at test
time for inference. Unfortunately, this necessity of supervision at test time is not desirable in most
continual learning settings. Rehearsal and Generative Replay methods generally need the task label
for learning but not for inference. As mentioned in the chapter’s introduction, for regularization
methods, it is often assumed that the task label is needed only at training time. To challenge
this belief, we study the case of class-incremental settings. We would like to demonstrate that
regularization methods can not distinguish classes from different tasks and therefore, that the task
label is also necessary at test time to expect a good prediction.

4.3. REGULARIZATION APPROACH 71

4.3 Regularization Approach

In the class incremental setting presented in chapter’s introduction, we would like to demonstrate
that regularization does not help learn the discrimination between tasks. For example, if a first task
is to discriminate white cats vs black cats and the second is the same with dogs, a regularization
based method does not provide the learning criteria to learn features to distinguish white dogs from
white cats.

4.3.1 Formalism

Let’s first introduce a more detailed formalization of regularization. We assume that the data
stream is composed of N disjoint tasks learned sequentially one by one (with N >= 2). Task t is
noted Tt and Dt is the associated dataset. The task label t is a simple integer indicating the task
index. We refer to the full sequence of tasks as the continuum, noted CN . The dataset combining
all data until task t is noted Ct. While learning task Tt, the algorithm has access to data from Dt
only.

We study a disjoint set of classification tasks where classes of each task only appear in this task
and never again. We assume at least two classes per task (otherwise a classifier cannot learn).

Let f be a function parametrized by θ that implements the neural network’s model. At each
task t the model learns an optimal set of parameters θ∗t optimizing the task loss `Dt(·). Since we
are in a continual learning setting, θ∗t should also be an optima for all tasks Tt′ , ∀t′ ∈ J0, tK.

We consider the class-incremental setting with no test label. It means that an optima θ∗1 for T1
is a set of parameters which at test time will, for any data point x from D0 ∪D1, classify correctly
without knowing if x comes from T0 or T1. Therefore, in our continual learning setting, the loss to
optimize when learning a given task t is augmented with a remembering loss:

`Ct
(f(x;θ), y) = `Dt

(f(x;θ), y) + λΩ(Ct−1) (4.1)

where `Ct
(.) is the continual loss, `Dt

(.) is the current task loss, Ω(Ct−1) is the remembering loss
with Ct−1 represents past tasks, λ is the importance parameter.

4.3.2 Problem

In continual learning, the regularization approach is to define Ω(·) as a regularization term to
maintain knowledge from Ct−1 in the parameters θ such as while learning a new task Tt, f(x;θ∗t−1) ≈
f(x;θ), ∀x ∈ Ct−1. In other words, it aims at keeping `Ct−1

(f(x;θ), y) low ∀x ∈ Ct−1 while learning
Tt.

The regularization term Ωt−1 act as a memory of θ∗t−1. This memory term depends on the
learned parameters θ∗t−1, on `Ct−1

the loss computed on Tt−1 and the current parameters θ. Ωt−1
memorizes the optimal state of the model at Tt−1 and generally the importance of each parameter
with regard to the loss `Ct−1

. We note ΩCt−1
the regularization term memorizing optimal parameters

for all past tasks.
When learning the task Tt, the loss to optimize is then:

`Ct
(f(x;θ), y) = `Dt

(f(x;θ), y) + λΩCt−1
(θ∗t−1, `Ct−1

,θ) (4.2)

Eq. 4.2 is similar to eq. 4.1 but in this case the function Ω(·) is a regularization term depending
on past optimal parameters θ∗t−1, loss on previous tasks `Ct−1

and the vector of current model

72 CHAPTER 4. SUPERVISION FREE INFERENCE IN CONTINUAL LEARNING

parameters θ only. It could be for example a matrix pondering weights importance in previous
tasks [121, 201, 269].

4.3.3 Regularization methods

To illustrate the previous section, we present several well known regularization methods in our
formalism.

Elastic Weight Consolidation

(EWC) [121] is one of the most famous regularization approaches for continual learning. The loss
augmented with a regularization term is at task t:

`Ct
(θ) = `Dt

(f(x;θ), y) +
λ

2
∗ Ft−1(θ∗t−1 − θ)2 (4.3)

We can then by identification, extract our function Ωt(θ
∗, `D,θ)

Ωt(θ
∗, `Ct−1

,θ) =
1

2
∗ Ft−1(θ∗t−1 − θ)2 (4.4)

Ft is a tensor of size card(θ)2, specific to task t, characterizing the importance of each parameter
θk. Ft is computed at the end of each task and will protect important parameters to learn without
forgetting. In EWC, the Ft tensor is implemented as a diagonal approximation of the Fisher
Information Matrix:

Ft = E(x,y)∈Dt

[(
∂log p(ŷ)

∂θ

)2
]

(4.5)

where ŷ ∼ P (f(x;θ)). The diagonal approximation allows to save only card(θ) values in Ft.

K-FAC Fisher approximation

The K-FAC Fisher approximation [201] is very similar to EWC but approximates the Fisher matrices
with a Kronecker factorization (K-FAC) [158] to improve the expressiveness of the posterior over the
diagonal approximation. However, the Kronecker factorization saves more values than the diagonal
approximation.

Incremental Moment Matching

Incremental Moment Matching (IMM) [133] proposes two regularization approaches for continual
learning which differ in the computation of the mean θ0:t and the variance σ0:t of the parameters
on all tasks.

The idea is to regularize parameters such that the moments of their posterior distributions
are matched in an incremental way. It means that each parameter is approximated as a normal
distribution and their mean or standard deviation should match from one task to another. This
regularization, on the parameters’ low-order moments, helps to protect the model from forgetting.

4.4. PROPOSITIONS 73

• Mean based Incremental Moment Matching (mean-IMM)

θ0:t =

t∑
i=0

αiθ
∗
i and σ0:t =

t∑
i=0

αi(σi + (θ∗i − θ0:t)2) (4.6)

αi are importance hyper-parameters to balance past task weight into the loss function. They
sum up to one.

• Mode based Incremental Moment Matching (mode-IMM)

θ0:t = σ0:t ·
t∑
i=0

(αiσ
−1
i θ∗i) and σ0:t = (

t∑
i=0

αiσ
−1
i)−1 (4.7)

σi is computed as the Fisher matrix (eq. 4.5) at task i.

Then at task t, with θ0:t−1 and σ0:t−1 we can compute:

Ωt(θ
∗, `Ct−1 ,θ) =

1

2
σ0:t−1(θ0:t−1 − θ)2 (4.8)

Synaptic Intelligence

The original idea of Synaptic Intelligence approach (SI) [269] is to imitate synapse biological ac-
tivity. Therefore, each synapse accumulates task relevant information over time, and exploits this
information to rapidly store new memories without forgetting old ones. In this approach, we can
identify Ωt as:

Ωt(θ
∗, `Ct−1

,θ) = Mt(θ
∗
t−1 − θ)2 (4.9)

Mt is a tensor of size card(θ) specific to task t characterizing the importance of each parameter θk
over the all past tasks such as:

Mt =
∑

0<i<t

mi

∆2
i + ξ

(4.10)

Mt is the sum over mi which characterizes the importance of each parameter on task i, with
∆i = θ∗i − θ∗i−1. ξ is a supplementary parameter to avoid null discriminator.

mi =

∫ Ti

Ti−1

∇θδθ(t)dt (4.11)

With δθ(t) the parameter update at time step t.

4.4 Propositions

In this section, we present the proposition concerning the shortcomings of regularization methods
in class-incremental settings. We also present preliminary definitions and lemmas to prepare for
the proposition and we illustrate the proposition with practical examples.

74 CHAPTER 4. SUPERVISION FREE INFERENCE IN CONTINUAL LEARNING

4.4.1 Preliminary Definition / Lemma

Definition 17. Linear separability
Let S and S′ be two sets of points in an n-dimensional Euclidean space. S and S′ are linearly
separable if there exists n + 1 real numbers ω1, ω2, ..., ωn, k such that ∀x ∈ S,

∑n
i=1 ωixi > k and

∀x ∈ S′,
∑n
i=1 ωixi < k

where xi the i-th component of x. This means that two classes are linearly separable in an
embedded space if there exists a hyper-plane separating both classes of data points.

It can be written, ∀x ∈ S and ∀x′ ∈ S′.

(q · x+ q0) · (q · x′ + q0) < 0 (4.12)

with q = [ω1, ω2, ..., ω] and q0 = −k respectively the normal vector

Figure 4.1: Illustration of a decision boundary learned between two sets of points.

and position vector of a hyper-plane Q.
In the case of learning a binary classification with linear model, the model is the best hyper-

plane separating two dataset as in Fig. 4.1. As soon as eq. 4.12 can be solved, then it is possible to
define a function f(x, θ) and a loss `(.) to learn a hyper-plane that will separate S and S′ perfectly.

Definition 18. Interferences
In machine learning, interferences are conflicts between two (or more) objective functions leading
to prediction errors.

As such, optimizing one of the objective function increases the error on the other one. In
continual learning, interferences happen often after a drift in the data distribution. The loss on
previous data is increased with the optimization of the loss for the new data leading to interferences
and catastrophic forgetting.

We would like to present the following general lemma, as a preparatory step for the later
proposition presented in this chapter:

Lemma 4.4.1. ∀(S, S′) bounded set of discrete points in Rn and linearly separable by a hyper-plane
Q. For any algorithm, it is impossible to assess Q as a separation hyper-plane without access to S′
set.

Proof. Let S and S′ be two bounded and linearly separable set of discrete points in Rn. Let Q be
a potential linear separation between S and S′. The hyper-plane Q can not be assessed as a linear

4.4. PROPOSITIONS 75

separation between S and S′ if there exists at least one hyper-plane indistinguishable from Q and
which is not a separation boundary between S and S′.

Let P be a hyper-plane, defined as a normal vector p and position vector p0. P is a separation
boundary between S and S′ if all the point of S are on one side of P and all point of S′ are on the
other side. It can be formalized as follows:

∀x ∈ S & ∀x′ ∈ S′:

(p · x+ p0) · (p · x′ + p0) < 0 (4.13)

where < · > is the scalar product.
Without the access to S′, eq. 4.13 can not be evaluated to verify that S and S′ are each entirely

on different side of the P.
However, we can evaluate if all the point of S are on the same side of P. By definition if all the

point sof S are above P then:

∀x ∈ S
(p · x+ p0) > 0 (4.14)

If all the point are under P then:
(p · x+ p0) < 0 (4.15)

And if neither eq. 4.14 nor eq. 4.15 are verified then all the points of S are not on the same
side of P. Finally, we can merge both 4.14 and eq. 4.15 and verify only:

∀x ∈ S
sign(p · x+ p0) = constant (4.16)

where sign(.) is the function which returns the sign of any real value.
The lemma 4.4.1 is proven if ∃ P such as eq. 4.16 is true but not eq. 4.13, because P would not

be a linear separation of S and S′ and would not be distinguishable from Q without access to S′.
Now, we will build an hyper-plan P that respect eq. 4.16 and not eq. 4.13. We know that

S is bounded, then it has both upper and lower bounds in all the direction of Rn. If eq. 4.16 is
respected, then Q is a bound of S in the direction of its normal vector q. If we move Q along the
direction of q (i.e. if we change the position vector q0), we can find at least one other plane P
respecting eq. 4.16: the opposing bound of S along the direction q.

Since, P and Q are two opposing bounds of S in the same direction q, then:

∀x ∈ S
sign(p · x+ p0) 6= sign(q · x+ q0) (4.17)

If Q is a lowerbound of S in the direction q and an upperbound of S′ in the same direction then,
a lowerbound of S′ in the direction q is a lowerbound of S in the same direction and an upperbound
of S in the direction q is an upperbound of S′ in the same direction. (We leave the demonstration
to the reader).

Therefore, Q and P are both upperbounds or both lowerbounds of S′ in the direction of q:

∀x′ ∈ S′:
sign(p · x′ + p0) = sign(q · x′ + q0) (4.18)

Then with 4.17 and eq. 4.18:

76 CHAPTER 4. SUPERVISION FREE INFERENCE IN CONTINUAL LEARNING

(p · x+ b) · (p · x′ + b) > 0 (4.19)

Consequently, from eq 4.16 and eq 4.19, ∃ a hyper-plane P which respects eq. 4.16 and not eq
4.13, P is indistinguishable from Q and is not a separation boundary between S and S′.

Let’s summarize this demonstration in a more insightful way. For any bounded set of points S,
there is an infinite number of linearly separable set of points. Thus, there exists an infinite number
of potential separating hyper-planes. If the second set of points S′ is not known, then it is not
possible to choose among the infinite number of potential separating hyper-plane which one is a
good one. And even if one is chosen, there is no way to tell if it is better or not than another.

In the context of machine learning, this demonstration says that without an assessment criterion
for a classification problem, it is not possible to learn a viable solution. Hence, we can not optimize
the parameters. For binary classification, the lemma 4.4.1 can be interpreted as: “The decision
boundary between two classes can not be assessed nor learned if there is no access to data from
both simultaneously”.

After presenting the lemma about finding linear separation between sets of points, we would
like to add another one concerning finding a projection making two mixed sets of points linearly
separable. This lemma will also help in the proposition proof presented in this chapter.

Lemma 4.4.2. ∀(S, S′) two bounded datasets not linearly separable. For any algorithm, it is
impossible to assess a function g(.) as a projection of S and S′ into a space were they are linearly
separable without access to S′ set.

Proof. g(.) is a projection of S and S′ into a space where they are linearly separable means:

∀x ∈ S & ∀x′ ∈ S′, then g(x) and g(x′) respect eq. 4.13.

Without access to S′ this condition can not be verified. However, we can verify eq. 4.16 with
g(x).

The lemma 3.4 is proven if ∀x ∈ S & ∀x′ ∈ S′, ∃ a projection f , that respect eq. 4.16 with f(x)
but not eq. 4.13 with f(x) and f(x′), because then f and g are indistinguishable without access to
S′.

Let f be the identity function, ∀z ∈ R f(z) = z. We define Sf and S′f , the set of point S and
S′ after projection by f . Since f is the identity function, S and S′ are respectively identical to Sf
and S′f . Since S is bounded, Sf is also bounded. Hence there exists a hyper-plane P that verify
eq. 4.16 with f(x) ∀x ∈ S. By hypothesis, S and S′ are not linearly separable so Sf and S′f is also
not linearly separable. Then ∃! hyper-plane P which respect eq. 4.13 with f(x) and f(x′).

Thus, f exists and therefore it is impossible to assess any function as a projection of S and S′
into a space were they are linearly separable without S′ set.

In a more insightful way, for any bounded set of points, there is an infinite number of projections
of the initial set of point in a space where it could be linearly separable from another set of points.
Then, if you don’t know the second set of points S′ you can not choose among the infinite number
of potential projections which one is a good one. And if you ever choose one, you have no way to
tell if it is better or not than another.

4.4. PROPOSITIONS 77

In the context of binary classification, the previous lemma can be interpreted as: “Two classes
representation cannot be disentangled if there is no access to data from both simultaneously”.

In those lemma, the concept of “not having access to” a certain dataset can both be applicable to
not being able to sample data point from the distributions and to not have a model of the dataset.
It can be generalized to not having access to any representative data distribution of a dataset.

4.4.2 Shortcomings in class-incremental tasks

We now prove that in incremental-class tasks, it is not possible to discriminate classes from differ-
ent tasks using only a regularization based memory. The main point is that, to correctly learn to
discriminate classes over different tasks the model needs access to both data distributions simulta-
neously.

In regularization methods, the memory only characterizes the model and the important parame-
ters as explained in Section 4.3.2. This memorization gives insight on some past data characteristics
but it is not a model of their distributions. If we take the cat vs dog example, a model that needs to
discriminate white cats from black cats will learn to discriminate black features from white features.
This “knowledge” can be saved in Ω but Ω will not save the full characteristics of a cat because the
model never has to learn it. We bring then the following proposition:

Proposition 4.4.3. While learning a sequence of disjoint classification tasks, if the memory Ω of
the past tasks is only dependent on trained weights and learning criterion of previous task and does
not model the past distribution, it is not possible for deep neural networks to learn new tasks without
interference.

Proof. The proof is organized in the following way: first, we present material necessary for the
demonstration, then in a second part, we demonstrate that at any moment the classification task
can be reduced to a binary classification task and in a third part we will show that we can not learn
to solve this binary classification correctly.

First part
In the context of learning with a deep neural network, we can decompose the model into a non-

linear feature extractor g(·) and an output layer to predict a class y = argmax(softmax(A·g(x)+b)).
With A and b, respectively the matrix of projection and the bias of the linear layer. softmax(.) is
the output function that for a given class i in a logits output z gives softmax(zi) = ezi∑N−1

j=0 ezj
. The

softmax(.) function does not change the argmax result and only regularize the output values and
the gradient for later back propagation. We can thus remove it for our demonstration purposes.

The non-linear projection g(.) should, therefore, disentangle classes and the linear output layer
learns to predict the good class. The output layer allows for all classes i to learn hyperplanes A[:, i]
with bias b[i] such as: ∀i ∈ J1, NK

∀(x, y) ∈ Ct, argmax
i

(A[:, i]h+ b[i]) = y (4.20)

with h = g(x).

Second part
For the sake of the demonstration, we would like to reduce the multi-classes classification problem

into a binary classification problem. Hence, we can artificially split classes into two groups: classes
from the past YCt−1 and current classes YTt .

78 CHAPTER 4. SUPERVISION FREE INFERENCE IN CONTINUAL LEARNING

We can then ∀(x, y) ∈ Ct compute which class ŷCt−1 upon the past classes YCt−1 is the most
probable and compute which class ŷTt upon the current classes YTt is the most probable.

ŷCt−1
= argmax

i∈YCt−1

(A[:, i]h+ b[i]) and ŷTt
= argmax

i∈YTt

(A[:, i]h+ b[i]) (4.21)

Hence, the equation 4.20 can be rewritten into a binary operation:

∀(x, y) ∈ Ct, argmax
i∈{ŷCt−1

,ŷTt}
(A[:, i]h+ b[i]) = y (4.22)

y = argmax(A[:, ŷCt−1
] · h+ b[ŷCt−1

] , A[:, ŷTt
] · h+ b[ŷTt

])

= argmax(0, (A[:, ŷTt
]−A[:, ŷCt−1

]) · h+ b[ŷTt
]− b[ŷCt−1

])
(4.23)

Equation 4.23 can directly be rewritten into the linear separability equation from definition
17. To make a proper decision, we should have ∀(x, y) ∈ Ct, with g(x) = h and y = ŷCt−1

and
∀(x′, y′) ∈ Dt, with g(x′) = h′ and y′ = ŷTt

.

(q · h+ q0) · (q · h′ + q0) < 0 (4.24)

Then, by identification, the classes ŷCt−1
and ŷTt

need to be separated by the hyperplane Q defined
by a normal vector q = A[:, ŷTt

]−A[:, ŷCt−1
] and a position vector q0 = −(b[ŷTt

]− b[ŷCt−1
]).

This binary classification description highlight that it is essential to be able to discriminate any
class ŷCt−1

from the past from any class ŷTt
from the present for accurate predictions.

Third part
We will now, to prove proposition 4.4.3, show that we cannot learn the hyperplane Q from eq.

4.24.
To learn new tasks Tt for 0 < t < N , there are two different cases: first g(·) is already a good

projection for Ct tasks, i.e. classes are already disentangled in the embedded space. We assume
that if classes are already disentangled, only the output layer has to be trained to solve Ct tasks.
Secondly, g(·) needs to be adapted, i.e. classes are not yet disentangled in the embedded space and
new features need to be learned by g(·) to fix it. We refer as features, intrinsic characteristics of
data that a model needs to detect to distinguish a class from another. We will show that it is not
possible to learn to discriminate correctly the classes ŷCt−1 from ŷTt from previous part.

First case: Classes are disentangled
Since we are in a regularization setting, at task Tt, we have access to Ωt−1 which contains clas-
sification information from previous tasks (Ct−1 tasks). However, by hypothesis, Ωt−1 does not
model the data distribution from Ct−1 and therefore it does not model data distribution from Ct−1
classes.

Following from the second part of the proof, ∀x ∈ Ct tasks, to make an accurate prediction,
we need the right hyperplane Q that distinguish the most probable class from Ct−1, ŷCt−1 and the
most probable class from Tt, ŷTt

.
ŷCt−1

and ŷTt
classes images are a bounded set of points and ŷCt−1

points are, by definition, not
accessible, consequently following lemma 4.4.1, it is impossible to assess a boundary between ŷTt

and ŷCt−1 even if by hypothesis this boundary exists. Therefore, we can not learn the hyperplane
that discriminate ŷCt−1 from ŷTt and ensure an accurate prediction.

Second case: g(·) needs to be updated with new features.
Let δt−1 be the set features already learned by gt−1(·) the feature extractor from previous task.

4.4. PROPOSITIONS 79

Ωt−1 should keep δt−1 unchanged while learning Tt. The goal is to make ŷCt−1 and ŷTt linearly
separable ∀x ∈ Ct. Then, either δt−1 already solve the problem and we are in first case, or a new
set of features δt needs to be learned while learning Tt. In the second case, the set δt contains
features to solve Tt, but features δt−1:t that distinguish classes from Tt−1 to classes from Tt should
also be learned. Then two cases raise, δt−1:t 6⊂ δt or δt−1:t ⊂ δt.

• if δt−1:t 6⊂ δt, then supplementary features δt−1:t need to be learned. ŷCt−1
and ŷTt

classes images are a bounded set of points not linearly separable and since Ωt−1 does not give
access to Ct−1 data points, from lemma 4.4.2 we can not assess a projection that put images from
ŷTt and ŷCt−1 into a linearly separable space, i.e. we can not learn the set of features δt−1:t to
discriminate ŷCt−1 images from ŷTt images and solve the continual problem.

• δt−1:t ⊂ δt is possible, however, since data from Ct−1 are not available anymore, there
is no way to project them in the new latent space with δt features. Therefore, without access of
classes from both Ct−1 and Tt tasks at time t we can not identify δt−1:t features which are in δt
features. It is also impossible to know if δt−1:t ⊂ δt. In other words, this case is not detectable and
even if detected the features δt−1:t can not be used without data from Tt−1 (which is by definition
prohibited).

In these two cases, there will be in any way conflict between losses leading to interference in
the decision boundaries either because classes are not linearly separable or because a separation
hyperplane cannot be found. In other words, the regularization methods can not discriminate
classes from different tasks and they are then not suited to class-incremental settings.

We can note that proposition 4.4.3, still holds if tasks are only partially disjoint, i.e. only some
classes appear only once in the continual curriculum.

Indeed, in partially disjoint settings, several classes pairs are never in the same task. If we
define two set of disjoint classes Y and Y ′, that will never be in the same task, the demonstration of
proposition 4.4.3 can be applied on Y and Y ′. Then, classes Y and Y ′ will suffer from interference
showing a shortcoming of regularization methods for this case too.

Therefore, if there is a class-incremental setting hidden into another setting, the regularization
approach will not be able to solve it perfectly either. We could note that in many applications
there are latent class-incremental problem to address in the learning curriculum. We mention some
applications in Section 4.6.1.

A simple trick used in some regularization approaches to compensate their shortcomings is to
use the task label for inferences, it gives a simple way to distinguish tasks from each other. However,
it assumes the algorithms rely on a supervision signal for inferences. In the section 4.5, we show
that regularization shortcoming is easily highlighted with simple experiments.

4.4.3 Practical examples

To illustrate the proposition from Section 4.4.2, we present two insightful examples of regularization
limitations and

The Task Separability Problem

In the first case of proposition 4.4.3 proof, we already have a perfect feature extractor. Classes are
already linearly separable and only the output layer needs to be learned continually.

80 CHAPTER 4. SUPERVISION FREE INFERENCE IN CONTINUAL LEARNING

If we have only two classes in the first task, the model will learn one hyper-plane Q0 separating
the instances of these two classes (See Figure 4.2). For the second task, we have two new classes
and a regularization protecting Q0. Then, we can learn a hyper-plane Q1 that separates our two
new classes. In the end, we have learned the hyper-planes Q0 and Q1 to distinguish classes from
T0 and classes from T1. But none of those hyper-planes helps to discriminate T0 classes from T1
classes, as illustrated Figure 4.2. This will lead to error in the neural networks predictions.

Figure 4.2: Simple case of continual learning classification in a multi-task setting. Left, the task T0:
learning a hyper-plane splitting two classes (red and blue dots). Right, the task T1: learning a line
splitting two classes (yellow and green squares) while remembering T0 models without remembering
T0 data (pale red and blue dots).

The Latent Features Problem

In the second case of Proposition 4.4.3 proof, the feature extractor needs to be updated to learn
new features extractors.

If we have only two classes in the first task, the model will learn to separate classes instances
into two groups with the features extractor g0 and one hyper-plan Q0 separating the two classes
instances (See Figure 4.3).

For the second task, we have two new classes and a regularization protecting Q0 and g0. Then,
we can learn a features extractor g1 to disentangle new class instances in the latent space and a
hyper-plane Q1 that separates them. In the end, we can disentangle classes from T0 and classes
from T1 and we have two hyper-planes Q0 and Q1 to distinguish classes from T0 and classes from
T1. But we can not disentangle T0 classes from T1 classes and none of the learned hyper-planes
helps to discriminate T0 classes from T1 classes (See Fig. 4.4). It leads to errors in the neural
network predictions. At test time, it will not be possible for the model to discriminate between
classes correctly.

However, with the task label for inference, we could potentially perfectly use g0, g1, Q0 and Q1

to make good predictions. Nevertheless, assuming that the task label is available for prediction is
a strong assumption in continual learning and involves a need of supervision at test time.

4.5 Experiments

To illustrate the concrete effects of the limitations presented earlier, we propose the dataset “MNIST-
Fellowship” for our experiments. This dataset is composed of three datasets (Fig. 4.5): MNIST
[132], Fashion-MNIST [266] and KMNIST [46], each composed of 10 classes, those datasets should
be learned sequentially one by one. We choose this dataset because it gathered three easy datasets

4.5. EXPERIMENTS 81

Figure 4.3: D0 feature space before learning T0 (Left), D0 feature space after learning T0 with a
possible decision boundary (Right). Data points are shown by blue and red dots. The line (right
part) is the model learned to separate data into the feature space.

Figure 4.4: Case of representation overlapping while continual learning classification in a multi-task
setting. At task T1, feature space of D1 before learning T1 (Left), Feature space of D1 after learning
T1 with a possible decision boundary (Right). New data are plotted as yellow and green squares
and old data that are not available anymore to learn are shown with pale red and blue dots.

for prototyping machine learning algorithms but solving those three quite different datasets is still
harder than solving only one.

Our goal is to illustrate the limitation of regularization based methods in disjoint settings. In
particular that they can not distinguish classes from different tasks. We would like also to show
that the shortcomming happen both in the output layer and in the feature extractor. Thus, we
propose three different settings with the MNIST-Fellowship dataset.

• 1. Disjoint setting: all tasks have different classes (i.e. from 0 to 29).

• 2. Joint setting: all tasks have the same classes (i.e. from 0 to 9) but different data.

• 3. Disjoint setting with test label: All tasks have different classes but at inference, we
know from which task a data-point is coming from.

First setting (disjoint with no test label), is the hardest because all classes need to be discrim-
inated from all the others. The second setting (joint) is a bit easier because we don’t need to
discriminate task from each other but the model needs to use the same output layer for all task
which can produce interferences. Theoretically, the second setting requires only the feature extrac-
tor to be learned. The last setting (disjoint with test label) is the easiest, classes from different
tasks don’t need to be compared and the output layer is different for each task. The model used is
presented in Table 4.1.

82 CHAPTER 4. SUPERVISION FREE INFERENCE IN CONTINUAL LEARNING

(a) Task 0 (b) Task 1 (c) Task 2

Figure 4.5: The three tasks of the MNIST-Fellowship dataset.

Table 4.1: Model architecture, convolution have 5*5 kernel size, maxpool have 2*2 kernel size.
Parameters not mentioned are default parameters in Pytorch library [182] (in torch.nn). BS is for
batch size, which is 64. All layers are initialized with Xavier init method [84].

Layer Name Layer Type Input Size Output Size
Conv1 ReLu(MaxPool2d(Conv2d(input))) BS*1*28*28 BS*10*12*12
Conv2 ReLu(MaxPool2d(Conv2d(input))) BS*10*14*14 BS*20*4*4
FC1 ReLu(Linear(input)) BS*320 BS*50
FC2 functional.log_softmax(Linear(input)) BS*50 BS*10

With those three settings, We present two different experiments, a first one comparing disjoint
settings with and without a label for inference. The goal is to bring to light that regularization fails
in disjoint settings if the task label is not provided. Secondly, we experiment with the joint setting,
to show that even if the feature extractor only needs to be learned the approach still struggles to
learn continually and forget significantly.

We present EWC results with diagonal Fisher Matrix [121] and with Kronecker Factorization
of the Fisher matrix [201]. We add an expert model which learned on the full dataset at once
and a baseline model who learned continually without any memorization process. All models are
trained with stochastic gradient descent with a learning rate of 0.01 and a momentum of 0.9. Even
if continual learning does not support a-posteriori hyper-parameter selection, for fairness in com-
parison, the parameter lambda has been tuned. The best lambda upon [0.1; 1; 2; 5; 10; 20; 100; 1000]
is selected for each model. Then the model is trained on 5 different seeds.

The first experiment (Fig. 4.6), shows that regularization methods performances are signifi-
cantly reduced when there is no test label in the disjoint settings. The experiment also shows that
without labels for inference the model forgets almost instantaneously the first task when switching
to the second one. Those results support the proposition 4.4.3. Indeed, the low performance of reg-
ularization methods without test labels in disjoint settings illustrates the output layer shortcomings
in continual learning (task separability problem, Section 4.4.3).

In Experiment 2 (Fig. 4.7), since the classes are the same in all tasks, only the feature extrac-

4.5. EXPERIMENTS 83

tor needs to be learned continually. The low performance of the proposed models illustrates the
shortcomings in the continual learning of the feature extractor (the latent features problem, Section
4.4.3).

Figure 4.6: Experiment on disjoint classes without test label vs test label. Left, the mean accuracy
of all 3 tasks, vertical dashed line are task transitions. Right, accuracy on the first task. Legends
with ‘Lab_’ indicate experiments with task labels for test. The expert model is trained with i.i.d.
data from all task and the baseline model is finetuned on each new task without any continual
process.

Figure 4.7: Experiments with joint classes. Left, the mean accuracy of all 3 tasks, vertical dashed
line are task transitions. Right, accuracy on the first task.

These two experiments show that learning continually with regularization is only efficient in the
setting with task label and maintains performance on task 0. The two other settings seem to either
have interference in the output layer and in the feature extractor.

84 CHAPTER 4. SUPERVISION FREE INFERENCE IN CONTINUAL LEARNING

4.6 Discussion

The goal of this chapter is to propose a theoretical approach to the shortcomings of regularization
methods in class-incremental settings. Regularization methods might have great characteristics for
continual learning under certain conditions, but it is important to know their limitations to use the
best of their capabilities. Regularization shortcomings could be offset with a replay method such
as rehearsal or generative replay. We discuss in this section the potential applications where the
shortcomings described have an impact, we also discuss the relationship between learning repre-
sentation and memorizing. We finish by introducing how the replay methods could overcome the
shortcomings described here.

4.6.1 Applications

In this section, we point out supplementary shortcomings of regularization in other types of learning
situations, namely a classification task with one only class and multi-task continual reinforcement
learning. We also use proposition 4.4.3 for the case of pre-trained models.

Learning from one class only

A classification task with only one class might look foolish, however, in a sequence of tasks with
varying number of classes, it makes more sense and it seems evident that a CL algorithm should
be able to handle this situation. Nevertheless, a classification neural network needs at least two
classes to learn discriminative parameters. Hence, in a one-class task, the model learns no useful
parameters, a regularization term can then a fortiori not protect any knowledge. As noted in [137],
the regularization method is not suited for such setting. It is worth noting that in a real-life settings
it is mandatory to be able to learn only one concept at a time.

Multi-task Continual Reinforcement Learning

Results from Section 4.4.2 can also be generalized to continual multi-tasks reinforcement learning
settings [248]. In this setting, a model has to learn several policies sequentially to solve different
tasks. At test time with no task label, the model needs both to be able to run the policies correctly
but to infer which policy to run. However, since policies are learned separately inferring which
one to run is equivalent to a class incremental task. Therefore, following proposition 4.4.3, the
regularization based method will not be able to learn the implicit classification correctly. Hence, in
continual multi-tasks RL a regularization method alone will fail if task label is not enabled at test
time.

4.6.2 Using pre-trained models for continual learning

We showed in Section 4.4.2 that, in a class incremental classification scenario, regularization meth-
ods are not sufficient to learn continually. In the case of a pre-trained classification model on N
classes that we want to train on new classes without forgetting, if the training data are not avail-
able for some reasons, then we don’t even have a regularization term Ω to protect some. Following
the proposition 4.4.3 and a fortiori without the regularization term, the model will forget past
knowledge while learning new classes.

4.6. DISCUSSION 85

Using pre-trained models can be useful to converge faster to a new task solution but it will
undoubtedly forget what it has learn previously.

4.6.3 Representation Learning and Memorization

We presented the theoretical impossibility to distinguish past classes from current classes based
only on regularization. Primarily, because we are unable to find the good decision boundaries in
the output layer and because we can not learn features to disentangle the past from the present.
But also because the model representation overfits the task. The classifier only optimizes the
current learning criterion, therefore data representations are restricted to it. Those representations
could be insufficient to memorize the learning experiences correctly for future tasks, as in the
cat/dog tasks described in the Section 4.3. In any way, to maximize discrimination between tasks
with no test label it is mandatory to have good memorization of past tasks. This memorization
can be performed either by modelling their data distribution with generative models or samples
or by adding surrogate losses that help the model to learn general representations of past tasks.
Memorization is intrinsically linked to representation. Hence, adding surrogate loss to improve the
learned representation would a priori improve memorization and consequently continual learning.

4.6.4 Toward Replay Methods

In this chapter, we assume that a training “task label” is available, indicating each time a drift
happens in the data distribution while learning. These settings make learning easier than when the
drifts are not signalled in any way. In case of task label unavailability, it is even more important to
have a robust and resilient memorization process to detect data distribution drift and to deal with
catastrophic forgetting.

To be easily applicable in real-life scenarios, algorithms should eventually have access to task
labels for learning but not for inference. A family of algorithms that fit this requirement is the
family of replay methods. It gathers rehearsal methods and generative replay described in Chapter
3. Replay methods emulate the simultaneous apparition of two concepts making it possible to learn
good decision boundaries. Replay hence enables the possibility to reinterpret data from past tasks
with the current state of knowledge and belief. They can learn task where there is only one concept
at a time. The memorization process is agnostic to the past task learning criterion. It is driven by
high-level rules. Moreover, the method is agnostic to the number of tasks, the model solving the
current task and the task label at test time. Finally, the memory is easy to control, if in any way
we want to forget some knowledge, the algorithms just have to stop replaying them and the model
will forget automatically.

Some additional assets can be attributed to rehearsal and generative replay separately:

• Rehearsal: As long as the samples are saved in the memory, they can not be forgotten and
there is no risk of damaging memories. Rehearsal is very suited for online learning, it can
save samples as soon as they have been received.

• Generative Replay: The generative replay uses a learning criterion to learn the data dis-
tribution different from the task criterion. Therefore, it enables the possibility of a supple-
mentary generalization than the generalization of the task learning criterion. Moreover, the
generative model synthesizes the information and offers an automatic compression process for
memorization.

86 CHAPTER 4. SUPERVISION FREE INFERENCE IN CONTINUAL LEARNING

The replay methods look, therefore, very appealing for research in continual learning. They
look adapted, robust and resilient enough to deal with various continual learning settings.

4.7 Conclusion

Regularization is a widespread method for continual learning. However, we proved that for class-
incremental classification, no regularization method can learn alone to discriminate classes from
different tasks. At test time, this shortcoming makes them dependent on the task label for pre-
diction. This need for supervision during inference restricts significantly the application scenario
possible for regularization methods alone.

The class-incremental scenario is a specific benchmark measuring the ability of algorithms to
learn sequentially different classes. However, being unable to deal with this setting implies that in a
more complex learning environment, all sub-tasks interpretable as class-incremental will be ignored
by the algorithm.

This shortcoming in regularization methods is one of the motivations to study replay methods
for continual learning in the following chapters of this thesis. In particular, in the next chapter, we
will study the capacity of generative models to learn continually. This study allows to determine
the best conditions to use a generative model for generative replay.

Chapter 5

Learning Continually a Generative Models

In the previous chapter, we have highlighted the shortcomings of regularization methods for con-
tinual learning in the case of disjoint classification. We also stressed the benefits of replay for
continual learning. The use of rehearsal is a known method for continual learning and the recent
improvements of generative models motivate us to explore generative replay methods. But first, we
wanted to evaluate the capacity of generative models to learn continually. In this chapter, we lead
an empirical study of generative models in the context of disjoint task generation.

This work has been realized in collaboration with Hugo Caselles-Dupré and led to the publication
“Generative Models from the perspective of Continual Learning” published at IJCNN 2019 [135].
The original article has been slightly modified and extended to better fit the thesis and include
figures and results cut by article size restriction. Moreover, we incorporate some results of the paper
“Training Discriminative Models to Evaluate Generative Ones” [140] in the background section. This
second paper has been published at ICANN 20019.

5.1 Introduction / Motivation

In this chapter, we focus on generative models in Continual Learning scenarios. Previous work on
CL has mainly focused on classification tasks [121, 193, 226, 217] with approaches such as regular-
ization, rehearsal and architectural strategies, as described in Chapter 3. However, discriminative
and generative models strongly differ in their architecture and learning objective (classify images
vs generating images). Several methods developed for discriminative models are thus not directly
extendable to the generative setting. Once they are trained, generative models can be used as
memory of the past for learning continually especially in reinforcement learning and classification.
For example in [226], successful CL strategies with generative models have been used, via sample
generation as detailed in the next section, to continually train discriminative models. Hence, study-
ing the viability and success/failure modes of CL strategies for generative models is an important
step towards a better understanding of generative models but also Continual Learning as a whole.

We conduct a comparative study of generative models with different CL strategies. In our
experiments, we sequentially learn generation tasks. We perform ten disjoint tasks, using commonly
used benchmarks for CL: MNIST [131], Fashion MNIST [266] and CIFAR10 [123]. In each task,
the model gets a training set from one new class, and should learn to generate data from this class
without forgetting what it learned in previous tasks, see Fig. 5.1 for an example with disjoint tasks
on MNIST.

87

88 CHAPTER 5. LEARNING CONTINUALLY A GENERATIVE MODELS

Figure 5.1: Illustration of the disjoint setting considered. At task i the training set includes images
belonging to category i, and the task is to generate samples from all previously seen categories.
Here MNIST is used as a visual example, we experiment in the same way Fashion MNIST and
CIFAR10.

We evaluate several generative models: Variational Auto-Encoders (VAEs)[119], Generative Ad-
versarial Networks (GANs) [88], their conditional variant (CVAE ans CGAN), Wasserstein GANs
(WGANs)[9] and Wasserstein GANs Gradient Penalty (WGAN-GP)[90].We introduced those mod-
els in Section 2.2.3.

We compare results on approaches taken from CL in a classification setting: finetuning, rehearsal,
regularization and generative replay. Generative replay consists of using generated samples to
maintain knowledge from previous tasks. All CL approaches are applicable to both variational and
adversarial frameworks. We evaluate with two quantitative metrics, Fréchet Inception Distance [97]
and fitting capacity (FiC) [140], as well as visualization. Also, we discuss the data availability and
scalability of CL strategies.

Our contributions are:

• We propose the Fitting Capacity, an evaluation method for generative models.

• Evaluating a wide range of generative models in a Continual Learning setting.

• Highlight success/failure modes of combinations of generative models and CL approaches.

• Comparing, in a CL setting, two evaluation metrics of generative models.

We describe related work in Section 5.2, and our approach in Section 5.3. We explain the
experimental setup that implements our approach in Section 5.4. Finally, we present our results
and discussion in Section 5.5 and 5.6, before concluding in Section 5.7.

5.2 Background

In this section, we will re-introduce the Fitting Capacity with some results from the original paper.
The fitting capacity is a contribution from this thesis, we proposed to have a general evaluation of
generative models. Then, we will present a brief state of the art on continual learning and generative
models.

5.2. BACKGROUND 89

5.2.1 Fitting Capacity

As presented in Chapter 2, the Fitting Capacity (FiC) is a method to evaluate generative models.
It measures the accuracy of a classifier trained on generated data to estimate the quality of the
generator. It does not directly assess the realistic characteristics of the generated data but rather if
their content and variability contain enough information to classify real data. This method makes
it possible to take into account the complex characteristics of the generated samples and not only
the distribution of their features. In this background section, we present a summary of [140] results
to illustrate FiC evaluation.

The process for the fitting capacity is the following:

1. Train a conditional generative model over a train set

2. Generate a dataset Dgen

3. Train a discriminative model (a classifier) over Dgen

4. Iterate the process for several generative models and compare the accuracy of the classifiers
on the test set.

Figure 5.2: Fitting capacity evaluation of various generative models on MNIST. Each model has
been trained on 8 different seeds to create plot bars. NB: the figure is zoomed to better appreciate
the difference between models but consequently an outlier of the GAN model is hidden and is
around 0.1.

The method makes it possible to compare generative models trained on similar datasets. In
Figure 5.2, we can find the FiC of various generative models trained on MNIST and appreciate the
difference among models. We can also evaluate the relative difference between metrics in Figure
5.3. This figure highlights the differences by normalizing performance on the best models. The
baseline is a classifier trained on real data and not on generated ones. We can see that the FiC
discriminates real data the most from generated ones and that FiC results do not correlate with
other metrics results.

90 CHAPTER 5. LEARNING CONTINUALLY A GENERATIVE MODELS

Figure 5.3: Comparison between normalized evaluation with inception score (IS), Frechet Inception
Distance (FID) and Fitting Capacity (FiC). The normalization is achieved such as the sum of each
metric over all the generative models is 0 with 1 standard deviation.

The Fitting Capacity is time-consuming since it necessitates to train a classifier for evaluation.
Nevertheless, we believe that the fitting capacity is a good evaluation to estimate the intrinsic
characteristics of generated data.

The outcome of the fitting capacity evaluation of generative models in article [140], was that
GAN or WGAN models were producing the best samples but that VAE and CGAN were more
stable and had a better mean accuracy. Moreover, conclusion was that inception score and Frechet
inception distance do not make possible to predict if the data is good enough for downstream tasks.
Similar evaluation methods also came out with that conclusion [210, 228, 54, 192].

In this chapter, we will use the Fitting Capacity to evaluate generative models trained continu-
ally.

5.2.2 State of the art

As said in the introduction of this chapter, discriminative and generative models do not share the
same learning objective (classify data vs generate data) and architecture (top down vs bottom
up). For this reason, CL strategies for discriminative models are usually not directly transferable
to generative models. Continual Learning in the context of generative models remains largely
unexplored compared to CL for discriminative models. In this section, we present the state of the
art of continual learning specifically for generative models.

Among notable previous work, [218] successfully apply EWC on the generator of Conditional-
GANs (CGANS), after observing that applying the same regularization scheme to a classic GAN
leads to catastrophic forgetting. However, their work is based on a scenario where two classes are
presented first, and then unique classes come sequentially, e.g the first task is composed of 0 and 1
digits of MNIST dataset, and then is presented with only one digit at a time on the following tasks.
This is likely due to the failure of CGANs on single digits, which we observe in our experiments.
Moreover, the method is only shown to work on CGANs. Another method for generative Continual
Learning is Variational Continual Learning (VCL) [172], which adapts variational inference to a

5.3. APPROACH 91

continual setting. They exploit the online update from one task to another inspired from Bayes’
rule. They successfully experiment on a single-task scenario. However, they experiment only on
VAEs. Moreover, since they use a multi-head architecture, they use specific weights for each task,
which requires task index for inference. A second method experimented on VAEs is to use a student-
teacher method where the student learns the current task while the teacher retains knowledge
[191]. Finally, VASE [2] is a third method, also experimented only on VAEs, which allocates spare
representational capacity to new knowledge, while protecting previously learned representations
from catastrophic forgetting by using snapshots (i.e. weights) of previous model.

A different approach, introduced by [226] is an adaptation of the generative replay method. It is
applicable to both adversarial and variational frameworks. It uses two generative models: one which
acts as a memory, capable of generating all past tasks, and one that learns to generate data from
all past tasks and the current task. It has mainly been used as a method for Continual Learning
of discriminative models [226, 222]. Recently, [263] authors have developed a similar approach
called Memory Replay GANs, where they use Generative Replay combined to replay alignment, a
distillation scheme that transfers previous knowledge from a conditional generator to the current
one. However, they note that this method leads to mode collapse because it could favor learning to
generate few class instances rather than a wider range of class instances.

5.3 Approach

Typical previous works on Continual Learning for generative models focus on presenting a novel
CL technique and comparing it to previous approaches, on one type of generative model (e.g. GAN
or VAE).

On the contrary, we focus on looking for the best generative model and CL strategy association.
For now, empirical evaluation remains the only way to find the best performing combinations.
Hence, we compare several existing CL strategies on a wide variety of generative models with the
objective of finding the most suited generative model for Continual Learning.

In this chapter, we use two evaluation methods: the fitting capacity (FiC) [140] and the FID[97].
We believe that using these two metrics is complementary. FID is a commonly used metric based
solely on the distribution of images features. In order to have a complementary evaluation, we
use the fitting capacity, which evaluate samples on a classification criterion rather than features
distribution. For unconditional models, we used an adaptation of the FiC where data are labelled
by an expert network trained on the dataset.

For all the progress made in quantitative metrics for evaluating generative models [25], qualita-
tive evaluation remains a widely used and informative method. While visualizing samples provides a
instantaneous detection of failure, it does not provide a way to compare two well-performing models.
It is not a rigorous evaluation and it may be misleading when evaluating sample variability.

5.4 Experiments

In this section, we present the experiments conducted to evaluate the generative models and different
training strategies.

92 CHAPTER 5. LEARNING CONTINUALLY A GENERATIVE MODELS

5.4.1 Experimental setup

We now describe our experimental setup: data, tasks, and evaluated approaches. The code is
available online1.

Our main experiments use 10 sequential tasks created using the MNIST, Fashion MNIST and
CIFAR10 datasets. This setting is referenced to as disjoint classes setting or class-incremental
setting. For each dataset, we define 10 sequential tasks, one task consists of learning to generate
a new class and all the previous ones (See Fig. 5.1 for an example on MNIST). Both evaluations,
FID and fitting capacity of generative models, are computed at the end of each task.

5.4.2 Strategies for continual learning

We focus on strategies that are usable in both the variational and adversarial frameworks. We use
3 different strategies for Continual Learning of generative models, that we compare to 3 baselines.
Our experiments are done on 8 seeds with 50 epochs per tasks for MNIST and Fashion MNIST
using Adam [118] for optimization. For CIFAR10, we experimented with the CL strategy that
performed the best on the previous datatsets.

The first baseline is Fine-tuning, which consists of classical training, ignoring catastrophic for-
getting. It is essentially a lower bound of the performance. Our other baselines are two upper
bounds: Upperbound Data, for which one generative model is trained on joint data from all past
tasks, and Upperbound Model, for which one separate generator is trained for each task.

For Continual Learning strategies, we first use a vanilla Rehearsal method, where we keep a
fixed number of samples of each observed task, and add those samples to the training set of the
current generative model. We balance the resulting dataset by copying the saved samples so that
each class has the same number of samples. The number of samples selected, here 10, is motivated
by the results in Fig. 5.4a and 5.4b, where we show that 10 samples per class is enough to get a
satisfactory but not maximal validation accuracy for a classification task on MNIST and Fashion
MNIST.

As they use the same test set, the fitting capacity (FiC) and the original accuracy with 10 samples
per task can be compared. A higher FiC shows that the memory prevents catastrophic forgetting.
Equal FiC means overfitting of the saved samples and lower FiC means that the generator failed
to even memorize these samples.

We also experiment with EWC. We follow the method described by [218] for GANs, i.e. the
penalty is applied only on the generator’s weights , and for VAEs we apply the penalty on both
the encoder and decoder. As tasks are sequentially presented, we choose to update the diagonal of
the Fisher information matrix by cumulatively adding the new one to the previous one. The last
method is Generative Replay, described in Section 5.2.2. Generative replay is a dual-model approach
where a “frozen” generative model Gt−1 is used to sample from previously learned distributions and
a “current” generative model Gt is used to learn the current distribution and Gt−1 distribution.
When a task is over, Gt becomes the “frozen” model for training Gt+1.

The classification model used for experiments with MNIST and Fashion-MNIST is described
in table 5.1. The model is slightly different from the one in Chapter 4, indeed we added the
batch-normalization layer [101] to boost the model training speed and performance.

If we describe the experiments as proposed in the framework presented in Chapter 3, then we
are in an unsupervised learning setting, multi-task scenario, with 10 disjoint tasks with iid data,

1https://github.com/TLESORT/Generative_Continual_Learning

5.4. EXPERIMENTS 93

(a) MNIST (b) fashion-MNIST

Figure 5.4: Test set classification accuracy as a function of number of training samples, on MNIST
(Left) and Fashion-MNIST (Right). Those figures make possible to estimate the minimal number
of samples needed to achieve a high test accuracy. Furthermore, by comparing against the fitting
capacity we can estimate how many different images of the dataset a generator can produce.

Table 5.1: Classifier architecture, convolution have 5*5 kernel size, maxpool have 2*2 kernel size.
Parameters not mentioned are default parameters in Pytorch library [182] (in torch.nn). BS is for
batch size, which is 64. All layers are initialized with Xavier init method [84].

Layer Name Layer Type Input Size Output Size
Conv1 ReLu(MaxPool2d(Conv2d(input))) BS*1*28*28 BS*10*12*12
Conv2 ReLu(MaxPool2d(Conv2d(Dropout(input,p=0.5)))) BS*10*14*14 BS*20*4*4
FC1 ReLu(Linear(BatchNorm1d(input))) BS*320 BS*50
FC2 functional.log_softmax(Linear(input)) BS*50 BS*10

with an integer oracle task label for training but not for testing (learning labels). The content
update of this setting, is a new concepts type (NC).

Concerning the approaches experimented, the growth of memory is less than linear and the
growth of computation is bounded by liner growth.

For memory, the generative replay has only one generative models as a memory and the regu-
larization model only retains a set of weights and a Fisher matrix. It makes the growth in memory
less than linear. For regularization, the sample number grows linearly but the memory of the model
itself stays constant. Therefore the growth in memory is also less than linear.

The model upperbound method, which saves one mode per task has a linear growth in memory,
the upperbound data has also a linear growth since it saves all data (and because tasks have the
same size).

For computation, the growth of computation of generative replay is close to linear. The number
of samples to generate increases linearly with the number of tasks. For rehearsal, the growth is also
almost linear. In regularization, the growth is almost constant after the second task.

The upperbound model has constant computation and the upperbound data has linear growth

94 CHAPTER 5. LEARNING CONTINUALLY A GENERATIVE MODELS

Table 5.2: Mean and standard deviations for Fitting Capacity (in %) metric evaluation on last task
of 10 disjoint tasks setting, on MNIST and Fashion MNIST, over 8 seeds.

Strategy Dataset GAN CGAN WGAN WGAN-GP VAE CVAE
Fine-tuning MNIST 18.43±4.85 11.93±2.97 23.17±5.66 22.79±5.75 38.98±5.57 11.96±2.56

EWC - 20.34±2.39 11.53±1.42 29.57±5.59 22.00±3.39 34.93±7.06 13.37±3.28
Rehearsal - 82.69±18.21 66.14±19.2 92.05±0.64 74.79±25.25 92.99±0.64 86.47±1.69

Generative Replay - 95.81±0.31 93.89±0.35 95.41±2.41 91.12±5.09 79.38±4.40 84.95±1.24
Upperbound Model - 94.50±9.51 96.84±3.22 95.72±6.93 79.41±27.85 97.82±0.17 97.89±0.12
Upperbound Data - 97.10±0.13 96.65±0.21 96.76±0.29 84.79±27.76 96.88±0.27 96.17±0.19

Fine-tuning Fashion MNIST 20.82±4.69 12.30±3.33 19.68±3.92 18.75±2.58 18.60±4.24 12.82±3.55
EWC - 22.22±2.03 12.58±3.48 19.81±4.18 22.63±6.91 17.70±1.83 11.00±1.16

Rehearsal - 65.34±21.3 57.12±14.4 76.32±0.33 63.28±7.9 76.03±1.77 71.73±1.29
Generative Replay - 81.52±0.87 72.98±1.22 81.50±1.26 75.37±5.49 54.49±3.24 68.70±1.71
Upperbound Model - 77.93±15.07 80.96±0.69 73.20±5.63 65.5±2.69 78.64±1.36 79.15±0.96
Upperbound Data - 83.27±0.41 80.09±0.94 83.29±0.52 81.5±0.50 80.21±0.79 79.51±0.55

of computation since the number of data grows linearly.

5.5 Results

Figure 5.5: Comparison, averaged over 8 seeds, between FID results (left, lower is better) and
Fitting Capacity results (right, higher is better) with GAN trained on MNIST.

The figures we report show the evolution of the metrics through tasks. Both FID and FiC are
computed on the test set. A well-performing model should increase its FiC and decrease its FID.
We observe a strong correlation between the FiC and FID (see Fig. 5.5 for an example on GAN
for MNIST).

Nevertheless, FiC results are more stable: over the 8 random seeds we used, the standard
deviations are less significant than in the FID results. For that reason, we focus our interpretation
on the FiC results.

5.5. RESULTS 95

Figure 5.6: Means and standard deviations over 8 seeds of Fitting Capacity metric evaluation
of VAE, CVAE, GAN, CGAN and WGAN. The four considered CL strategies are: Fine Tuning,
Generative Replay, Rehearsal and EWC. The setting is 10 disjoint tasks on MNIST and Fashion
MNIST.

96 CHAPTER 5. LEARNING CONTINUALLY A GENERATIVE MODELS

Figure 5.7: CGAN augmented with EWC. MNIST samples after 5 sequential tasks of 2 digits each.
Catastrophic forgetting is avoided.

5.5.1 MNIST and Fashion MNIST results

Main results

Our main results with fitting capacity (FiC) are displayed in Fig. 5.6 and Table 5.2. The best
combination was Generative Replay + GAN with a mean FiC of 95.81% on MNIST and 81.52% on
Fashion MNIST. We observe that, for the adversarial framework, Generative Replay outperforms
other approaches by a significant margin. However, for the variational framework, the Rehearsal
approach was the best performing. The Rehearsal approach worked quite well but is unsatisfactory
for CGAN and WGAN-GP. Indeed, the FiC is lower than the accuracy of a classifier trained on 10
samples per classes (see Fig. 5.4a and 5.4b).

In our setting, EWC is not able to overcome catastrophic forgetting and performs as well as
the naive Fine-tuning baseline which is contradictory with the results of [218] who found EWC
successful in a slightly different setting. We replicated their result in a setting where there are two
classes by tasks, showing the strong effect of task definition (Illustration Figure 5.7).

In [218] authors already found that EWC did not work with non-conditional models but showed
successful results with conditional models (i.e. CGANs). The difference comes from the experimen-
tal setting. In [218], the training sequence starts by a task with two classes. Hence, when CGAN
is trained it is possible for the Fisher Matrix to understand the influence of the class-index input
vector c. In our setting, since there is only one class at the first task, the Fisher matrix does not
capture the importance of the class-index input vector c. Hence, as for non-conditional models, the
Fisher Matrix is not able to protect weights appropriately and at the end of the second task the
model has forgotten the first task. Moreover, since the generator forgot what it learned at the first
task, it is only capable of generating samples of only one class. Then, the Fisher Matrix will still
not capture the influence of c until the end of the sequence.

Moreover, we show that even by starting with two classes, when there is only one class for the
second task, the Fisher matrix is not able to protect the class from the second task in the third
task (see Figure 5.8).

Our results do not highlight a clear distinction between conditional and unconditional models.
However, adversarial methods perform significantly better than variational methods. GANs variants
are able to produce better, sharper quality and variety of samples. Hence, adversarial methods seem
more viable for CL. Samples for each model can be visualized on figures 5.9 and figure 5.10. We can

5.5. RESULTS 97

(a) Task 2 (b) Task 3 (c) Task 4

Figure 5.8: Reproduction of EWC experiments from [218] with four tasks. First task with 0 and 1
digits, then digits of 2 for task 2, digits of 3 for task 3 etc. The first task results are not shown in
the figure but the generated images where accurate 0 and 1 as expected. When task contains only
one class, the Fisher information matrix cannot capture the importance of the class-index input
vector because it is always fixed to one class. This problem makes the learning setting similar to a
non-conditional models one which is known to not work [218]. As a consequence 0 and 1 are well
protected when following classes are not. Samples to illustrate that the method works if there are
several classes at each tasks are in Fig. 5.7

link the accuracy from 5.4a and 5.4b to the fitting capacity results. As an example, we can estimate
that GAN with Generative Replay is equivalent for both datasets to a memory of approximately
100 samples per class.

98 CHAPTER 5. LEARNING CONTINUALLY A GENERATIVE MODELS

Figure 5.9: For each method and model, images sampled after the 10 sequential tasks with MNIST.

5.5. RESULTS 99

Figure 5.10: For each method and model, images sampled after the 10 sequential tasks with Fashion-
MNIST.

100 CHAPTER 5. LEARNING CONTINUALLY A GENERATIVE MODELS

Corollary results

Catastrophic forgetting can be visualized in Fig.5.11. Each square’s column represents the task
index and each row the class, the color indicates the fitting capacity (FiC). Yellow squares show
a high FiC, blue ones show a low FiC. We can visualize both the performance of VAE and GAN
but also the performance evolution for each class. For Generative Replay, at the end of the task
sequence, VAE decreases its performance in several classes but GAN does not. For Rehearsal, we
observe the opposite.

(a) Fine-tuning (b) G. Replay (c) EWC (d) Rehearsal

Figure 5.11: Fitting Capacity results for GAN (top) and VAE (bottom) on MNIST. Each square is
the accuracy on one class for one task. Abscissa is the task index (left: 0 , right: 9) and orderly is
the class index (top: 0, down: 9). The accuracy is proportional to the color (dark blue : 0%, yellow
100%)

Concerning the high performance of original GAN and WGAN with Generative Replay, those
models benefit from their samples quality and their stability. In comparison, samples from CGAN
and WGAN-GP are moisier and samples from VAE and CVAE blurrier. However, in the Rehearsal
approach, GANs-based models seem much less stable (See variance in Table 5.2 and Figure 5.6). In
this setting, as the dataset is made of few data samples, the discriminative task is almost trivial for
the discriminator and easy to overfit which makes training harder for the generator. In opposition,
VAE-based models are particularly effective and stable in the Rehearsal setting (See Fig. 5.11).
Indeed, their learning objective (pixel-wise error) is not disturbed by a low samples variability and
their probabilistic hidden variables make them less prone to overfit.

However, the FiC of Fine-tuning and EWC in Table 5.2 is higher than expected for unconditional
models. As the generator is only able to produce samples from the last task, the FiC should be
near 10%. This is a downside of using an expert for annotation before computing the FiC. Fuzzy
samples can be wrongly annotated, which can artificially increase the labels variability and thus
the FiC of low performing models, e.g., VAE with Fine-tuning. However, this results stay lower
than the FiC of well performing models.

Incidentally, an important side result is that the fitting capacity (FiC) of conditional generative
models is comparable to results of Continual Learning classification. Our maximal performance in
this setting is with CGAN: 94.7% on MNIST and 75.44% on Fashion MNIST. In a similar setting

5.5. RESULTS 101

with two sequential tasks, which is arguably easier than our setting (one with digits from 0,1,2,3,4
and another with 5,6,7,8,9), [95] authors achieve a performance of 94.91%. This shows that using
generative models for CL could be a competitive tool in a classification scenario. It is worth noting
that we did not compare our results of unconditional models FiC with classification state of the art.
Indeed, in this case, the FiC is based on an annotation from an expert not trained in a continual
setting. The comparison would then not be fair.

5.5.2 CIFAR10 results

Figure 5.12: Images sampled from a WGAN-GP at the end of each tasks with CIFAR10. The
images are similar to real images in their features but still not very likely to be real images.

In this experiment, we selected the best performing CL methods on MNIST and Fashion MNIST,
Generative Replay and Rehearsal, and tested them on the more challenging CIFAR10 dataset. We
compared the two methods to naive Fine-tuning, and to Upperbound Model (one generator for
each class). The setting remains the same, one task for each category, for which the aim is to avoid
forgetting of previously seen categories. We selected WGAN-GP because it produced the most
visually satisfying samples on CIFAR10 (Figure 5.12). We can note that visual assessment allows
detecting failing training even if it is not accurate to distinguish the best models.

FID and fitting capacity (FiC) curves throughout training are provided in Fig. 5.14, and gen-
erated samples after the 10 sequential tasks are displayed in Fig. 5.13, where we display images
sampled after the 10 sequential tasks. The FiC results show that all four methods fail to generate
images that allow to learn a classifier that performs well on real CIFAR10 test data. As stated for
MNIST and Fashion MNIST, with non-conditional models, when the FiC is low, it can been artifi-

102 CHAPTER 5. LEARNING CONTINUALLY A GENERATIVE MODELS

Figure 5.13: For each method, images sampled after the 10 sequential tasks with WGAN-GP trained
on CIFAR10.

Figure 5.14: Fitting capacity and FID score of Continual Learning methods applied to WGAN_GP,
on CIFAR10. The fitting capacity (FiC) (right figure) is too low to be significant. Within this
range of fitting capacities, we cannot make any comparison between models. FiC is more suited for
models which already work quite well. It explains probably why fine-tuning seems to work better
than rehearsal in the CIFAR10 experiments.

cially increased by automatic annotation which makes the difference between curves not significant
in this case. Naive Fine-tuning catastrophically forgets previous tasks, as expected. Rehearsal does
not yield satisfactory results. While the FID score shows improvement at each new task, visual-
ization clearly shows that the generator copies samples in memory, and suffers from mode collapse.
This confirms our intuition that Rehearsal overfits to the few samples kept in memory. Generative
Replay fails; since the dataset is composed of real-life images, the generation task is much harder to
complete. At task 0, the generator is able to produce images that roughly resemble samples of the
category, here planes. As tasks are presented, minor generation errors accumulated and snowballed
into the result in task 9 (see Fig. 5.13): samples are blurry and categories are indistinguishable. As
a consequence, the FID improves at the beginning of the training sequence, and then deteriorates
at each new task. We also trained the same model separately on each task, and while the result
might look visually satisfactory (see Upperbound in Fig. 5.13), the quantitative metrics show that
generation quality is not excellent.

5.6. DISCUSSION 103

These negative results show that training a generative model on a sequential task scenario is
not equivalent to successfully training a generative model on all data or each category, and that
state-of-the-art generative models struggle on real-life image datasets like CIFAR10. Designing a
CL strategy for these type of datasets remains a challenge.

5.6 Discussion

Besides the quantitative results and visual evaluation of the generated samples, the evaluated
strategies have, by design, specific characteristics relevant to CL that we discuss in this section.

Rehearsal violates the data availability assumption that might be required in CL scenarios, by
recording part of the samples. Furthermore, the risk of overfitting is high when only few samples
represent a task, as shown in the CIFAR10 results. EWC and Generative Replay respect this
assumption. EWC has the advantage of not requiring any computational overload during training,
but this comes at the cost of computing the Fisher information matrix, and storing its values as
well as a copy of previous parameters. The memory needed for EWC to save information from the
past is twice the size of the model which may be expensive in comparison to rehearsal methods. As
an example, the model we used to solve MNIST classification problem, is 95.5 kBytes, it is the same
memory space as approximately 120 images. We saw that with 10 images per classes the rehearsal
is quite effective. Nevertheless, with Rehearsal and Generative Replay, the model has more and
more samples to learn from at each new task, which makes training computation cost increase at
each new tasks.

Finally, we want to highlight the importance of using metrics that are sensitive to mode collapse
(like the one we used). For example, [263] proposes a metric to evaluate CL for conditional gener-
ative models. For a given label l, they sample images from the generator conditioned on l and feed
it to a pre-trained classifier. If the predicted label of the classifier matches l, then it is considered
correct. In our experiment we find that it gives a clear advantage to rehearsal methods. As the
generator may overfit the few samples kept in memory and then maximizes the evaluation proposed
by [265], while not producing diverse samples. Nevertheless, even if their metric is unable to detect
mode collapse or overfitting, it can efficiently expose catastrophic forgetting in conditional models.

5.7 Conclusion

In this chapter, we experimented with the viability and effectiveness of generative models on Contin-
ual Learning (CL) settings. We evaluated the considered approaches on commonly used datasets for
CL, with two quantitative metrics. Our experiments indicate that on MNIST and Fashion MNIST,
the original GAN combined to the Generative Replay method is particularly effective (samples at
each task can be visualized Figure 5.15). This method avoids catastrophic forgetting by using the
generator as a memory to sample from the previous tasks and hence maintains past knowledge.
Furthermore, we shed light on how generative models can learn continually with various methods
and present successful combinations. We also revealed that generative models do not perform well
enough on CIFAR10 to learn continually. Since generation errors accumulate, they are not usable
into a complex continual setting.

In the next chapter, we will study the use of generative models for learning continually on
classification tasks.

104 CHAPTER 5. LEARNING CONTINUALLY A GENERATIVE MODELS

Figure 5.15: Samples at each task for the best working solution, GAN with generative replay.

Chapter 6

Generative Replay for Classification

In the previous chapter, we evaluate different generative models’ ability to learn continually. In
this chapter, we use the results of the previous section for a classification task. In particular, we
study the use of generative replay for classification and the advantage of conditional models over
marginal models for continual classification.

This work was done in collaboration with Alexander Geppert from Fulda University (Germany),
it led to the publication of “Marginal Replay vs Conditional Replay for Continual Learning” at
ICANN 2019 [137]. The original article has been slightly modified and extended to better fit the
thesis and include figures and results cut by article size restriction.

6.1 Introduction

As seen in the previous chapter, the generative replay uses a generative model to generate data
from past learning experiences to remember them. The generative replay approach is in principle
model-agnostic. Indeed, it can be performed with a variety of machine learning models such as
decision trees, support vector machines (SVMs) or deep neural networks (DNNs). It is also the case
more generally to every replay method.

A downside of generative replay and similar approaches, such as rehearsal, is that the time
complexity of adapting to a new task is not constant but depends on the number of preceding tasks
that should be replayed. Or, conversely, if continual learning should be performed at constant time
complexity, only a fixed amount of samples can be generated, and thus there will be forgetting,
although it won’t be catastrophic.

As in the previous chapter, we decided to investigate two different types of generative models:
Generative adversarial networks (GAN) and variational auto-encoder (VAE). On one hand GAN
are known to generate samples of high quality but on the other hand VAE directly maximize the
likelihood of the learned distribution while training. It was then interesting to experiment both of
them to compare their performances.

This chapter proposes and evaluates a particular method for performing replay using DNNs,
termed “conditional replay”, which is similar in spirit to [226] but presents important conceptual
improvements (see next section). The main advantage of conditional replay is that samples can be
generated conditionally, i.e., based on a provided label. Thus, labels for generated samples need
not be inferred in a separate step as other replay-based approaches, e.g., [226], which we term

105

106 CHAPTER 6. GENERATIVE REPLAY FOR CLASSIFICATION

marginal replay approaches. Since inferring the label of a generated sample inevitably requires
the application of a possibly less-than-perfect classifier, avoiding this step conceivably reduces the
margin for error in complex continual learning tasks.

The original contributions of this chapter can be summarized as follows:

• Conditional replay as a method for continual classification learning We experi-
mentally establish the advantages of conditional replay in the field of continual learning by
comparing conditional and marginal replay models on a common set of benchmarks.

• Improvement of marginal learning We furthermore propose an improvement of marginal
replay as proposed in [226] by using generative adversarial networks

• New experimental benchmarks for generative replay strategies To measure the merit
of these proposals, we use two experimental settings that have not been previously considered
for benchmarking generative replay: rotations and permutations. In addition, we promote the
”10-class-disjoint” task as an important benchmark for continual learning as it is impossible
to solve for purely discriminative methods (at no time, samples from different classes are
provided for training so no discrimination can happen).

• Comparison of generative replay to EWC We show the principled advantage that gen-
erative replay techniques have with respect to regularization methods like EWC in a “one
class per task” setting, which is a very common setting in practice and in which discrimina-
tively trained models strongly tend to assign the same class label to every sample regardless
of content. Those experiences correlate with what was discussed in Chapter 4.

The chapter organization is the following: first, in Section 6.2, we present some background
material about generative replay state of the art. Second, in Section 6.3, we describe the methods
used as well as the benchmarks. Third, in Section 6.5, we present the experiments conducted
to compare conditional replay and marginal replay. Then, in Section 6.6 we show and discuss our
results. Finally, in Section 6.7 we conclude about the advantages and limitations of the experimented
methods.

6.2 Background

In this section, we present a summary of the state of the art from Chapter 3 oriented on generative
replay for continual learning classification and introduce advanced methods for generative replay
with improved sampling strategies.

6.2.1 State of the art

As already presented in Chapter 3 and 5, generative replay consists of training a generative model
on the current task to replay it later. It benefits from the task learning criterion and the generation
learning criterion to learn without forgetting in various types of tasks.

Concerning recent advances in generative replay improving upon [226], several works propose the
use of generative models in continual learning of classification tasks [113, 265, 263, 222, 200]. Those
approaches generally improves vanilla approach [226] with supplementary losses as with distillation
loss [99]. They also experiment with harder datasets than MNIST such as LSUN [268] in [263].
However, their results do not provide comparison between different types of generative models.

6.3. APPROACH 107

Our results from [135] (Chapter 5) offer more insights on which generative models suit continual
learning the best. In this chapter, we propose to build on those results to search for best generative
replay method for classification.

Generally, each approach to continual learning has its advantages and disadvantages:

• dynamic architecture methods suffer from little to no interference between present and past
knowledge as usually different networks or sub-networks are allocated to different learning
tasks. The problem with this approach is that, on the one hand, model complexity is not
constant, and more seriously, that the task from which a sample is coming from must be
known at inference time in order to select the appropriate (sub-)network.

• regularization approaches are very diverse: in general, their advantage is simplicity and (of-
ten) a constant-time/memory behaviour w.r.t. the number of tasks. However, they have some
theoretical shortcomings in class-incremental learning (See Chapter 4), the impact of the reg-
ularizer on continual learning performance is difficult to understand, and several parameters
need to be tuned whose significance is unclear (i.e., the strengths of the regularization terms).

• generative replay show very good and robust continual learning performance, although time
complexity of learning depends on the number of previous tasks for current generative replay
methods. In addition, the storage of weights for a sufficiently powerful generator may prove
very memory-consuming, so this approach cannot be used in all settings.

Hence, the choice of the generative model is crucial to correctly learn continually. The way
generative models are used is also particularly important to maximize the algorithm’s performance
and make the best out of a trained generative model. We detail, in next section, the importance of
sampling to improve results.

6.2.2 Sampling generative models

A well trained generative model can generate original data from the training data distribution.
The generation process is generally the following, a seed z is sampled from a random distribution,
typically a normal or uniform distribution. z it then fed to the generative model as input and the
generative model outputs a data point. The objective is that for two different z the model generates
two different data points.

The sampling can also be generated under conditions. The generative model can be trained to
generate different types of data depending on a defined flag. For example, the flag can indicate
from which class the model should generate data or from which task. The data is still generated
randomly from z but a supplementary input c is given, conditioning the data point generated. This
is the kind of sampling we use for conditional replay.

The sampling can also be adapted to maximize a certain criterion, like variety or similarity. In
continual learning, it can be tuned to find the samples creating the maximum of interferences to
use them and solve a conflict between learning criterion [5]. Finding the best sampling method is
an interesting research field. However, in this chapter, the samples were selected uniformly as a
vanilla method for fair comparison purposes.

108 CHAPTER 6. GENERATIVE REPLAY FOR CLASSIFICATION

sub-task 1 sub-task 2 sub-task 3train

test

time

all data all data all data...

sub-task 1 sub-task 2 sub-task 3train

test

time

all data all data all data...

Figure 6.1: Illustration of a multi-tasks learning continuum. Left: The problem setting of continual
learning as investigated in this chapter. DNN models are trained one after the other on a sequence
of tasks (of which three are shown here), and are continuously evaluated on a test set consisting
of the union of all task test sets. This gives rise to results as shown exemplarily on the right-hand
side of the figure, i.e., plots of test set accuracy over time for different models, where boundaries
between tasks (5 in this case) are indicated by vertical lines.

(a) task 0 (b) task 1 (c) task 2 (d) task 3 (e) task 4

Figure 6.2: MNIST training data for rotation tasks.

6.3 Approach

In this chapter, “learning a task” denotes learning on a classification problem that is composed of two
or more tasks presented sequentially to the neural network model. Fig. 6.1 offers a visualization
of the problem setting. Here, the tasks are constructed from two standard visual classification
benchmarks: MNIST and Fashion MNIST, either by dividing available classes into several tasks,
or by performing per-sample image processing operations that are identical within, and different
between, tasks. All continual learning models are then trained and evaluated in an identical fashion
on all tasks, and performances are compared by a simple visual inspection of classification accuracy
plots.

6.3.1 Continual learning tasks

All tasks are constructed from the underlying MNIST and FashionMNIST benchmarks, so the
number of samples in train and test sets for each task depend on the precise way of constructing
them, as described below.

• Rotations New tasks are generated by choosing a random rotation angle β ∈ [0, π/2] and

6.3. APPROACH 109

Figure 6.3: MNIST training data for permutation-type tasks.

(a) Task 0 (b) Task 1 (c) Task 2 (d) Task 3 (e) Task 4

(f) Task 5 (g) Task 6 (h) Task 7 (i) Task 8 (j) Task 9

Figure 6.4: Samples of MNIST training data for the disjoint tasks. Each task adds one more visual
class, a principle which carries over identically to FashionMNIST.

then performing a 2D in-plane rotation on all samples of the original benchmark. As both
benchmarks we use contain samples of 28x28 pixels, no information loss is introduced by
this procedure. We limit rotation angles to π/2 because larger rotations could mix MNIST
classes like 6 and 9. Each task in rotation-based tasks contains all 10 classes of the underlying
benchmark, leading to 55.000 and 10.000 samples, respectively, in the train and test sets of
each task.

• Permutations New tasks are generated by defining a random pixel permutation scheme, and
then applying it to each data sample of the original benchmark. Each task in permutation-
based tasks contains all 10 classes of the underlying benchmark, leading to 55.000 and 10.000
samples, respectively, in the train and test sets of each task.

• Disjoint classes For each benchmark, this task has as many tasks as there are classes in the
benchmark. Each task contains the samples of a single class, i.e., roughly 6.000 samples in the
train set and 1.000 samples in the test set. As the classes are balanced for both benchmarks,
this does not unduly favor certain classes. This task presents a substantial challenge for
machine learning methods since a normal DNN would, for each task, learn to map all samples
to a single class label irrespective of content. Selective discrimination between any two classes
is hard to obtain except if replay is involved, because then a classifier actually “sees” samples
from different classes at the same time.

110 CHAPTER 6. GENERATIVE REPLAY FOR CLASSIFICATION

Figure 6.5: Visualization of training data for the MNIST permutations continual learning setting.
The first line shows each task original training data. The other lines show the effect of all tasks
inverse permutations applied to those data. Obviously, the inverse permutation i, results in original
data at task i. This figure should help the interpretation of Figure 6.11

In this chapter, we will experiment with three different scenarios: 10 disjoint tasks (Fig. 6.4),
five permutation tasks (See Fig. 6.3 and Fig. 6.5) and five rotation tasks (See Fig. 6.2).

6.3. APPROACH 111

(a) Generative replay (b) conditional replay

Figure 6.6: Illustration of Generative Replay and Conditional Replay for continual learning. The
representation is done with a GAN architecture for the generative model but it could be adapted
for another one. The Generative replay method train the current generative model Gt and classifier
Ct with a mixture of the current dataset Dt and generated data from Gt−1 and associated label y
given by Ct−1. At the end of the task only Gt and Ct are kept frozen as the memory of the past.
For Conditional Replay, the label is imposed to the generative model, therefore, we don’t need an
old classifier Ct−1 but only Gt−1. At the end of the task, only Gt−1 is kept frozen. Conditional
Replay is then lighter to realize.

6.3.2 Models

Table 6.1: Hyperparameters for MNIST and Fashion MNIST all models (all CL settings have the
same training hyper parameters with Adam)

Method Epochs LR Classifier LR Generator beta1 beta2 Batch Size
Marginal Replay 25 0.01 2e-4 5e-1 0.999 64

Conditional Replay 25 0.01 2e-4 5e-1 0.999 64
EWC 25 0.01 - 5e-1 0.999 64

As a reference implementation, we use a fully-connected network (2 hidden layers with 200
neurons each) with ReLU activation function. No batch normalization or dropout is performed.
All other training parameters are described in Tab. 6.1. In this chapter, we compare a number of
deep learning models: unless otherwise stated, we employ the Rectified Linear Unit (ReLU) transfer
function, cross-entropy loss for classifier training, and the Adam optimizer.

• EWC We re-implemented the algorithm described in [121], choosing two hidden layers with
200 neurons each.

• Marginal replay In the context of classification, the marginal replay [135, 226, 263] method
works as follows: For each task t, there is a dataset Dt, a classifier Ct, a generator Gt and
a memory of past samples composed of a generator Gt−1 and a classifier Ct−1. The latter
two allow the generation of artificial samples Dt−1 from previous tasks. Then, by training Ct
and Gt on Dt and Dt−1, the model can learn the new task t without forgetting old ones. At
the end of the task, Ct and Gt are frozen and replace Ct−1 and Gt−1 (see Fig. 6.6a). In the
default setting, we use the generator for marginal replay in a way that ensures a balanced

112 CHAPTER 6. GENERATIVE REPLAY FOR CLASSIFICATION

distribution of classes from past tasks Dt−1, see also Fig. 6.7. This is achieved by choosing
a predetermined number of samples N to be added for all tasks t, and letting the generator
produce tN previous samples at task t. Thus, the number of generated samples increases
linearly over time. We choose to evaluate two different models for the generator: WGAN-GP
as used in [226] and the original GAN model [88] since it is a competitive baseline [140].

• Conditional replay The conditional replay method is derived from marginal replay : instead
of saving a classifier and a generator, the algorithm only saves a generator that can generate
conditionally (for a certain class). Hence, for each task t, there is a dataset Dt, a classifier
Ct and two generators Gt and Gt−1 (see Fig. 6.6b). The goal of Gt−1 is to generate data
from all the previous tasks during the training on the new task. Since data is generated
conditionally, samples automatically have a label and do not require a frozen classifier. We
follow the same strategy as for marginal replay (previous paragraph) for choosing the number
of generated samples at each task. However, conditional replay does not require this: it can,
in principle, keep the number of generated samples constant for each task since it is trivially
possible to generate a balanced distribution of N

t samples per class, from t different classes,
via conditional sample generation. Ct and Gt learn from generated data Dt−1 and Dt. At
the end of a task t, Ct is able to classify data from the current and previous tasks, and Gt is
able to sample from them also. We choose to use two different popular conditional models:
CGAN described in [166] and CVAE [234].

6.4 Experiments

Figure 6.7: Illustration of classes imbalances for different replay strategies. Why marginal replay
must linearly increase the number of generated samples: distribution of classes produced by the
generator of a marginal replay strategy after sequential training of 10 tasks (of 1 class each). This
essentially corresponds to the “disjoint” type of tasks. Shown are three cases: “balanced : tN ” (blue
bars) where tN samples are generated for each task t, “unbalanced: N ” (orange bars) where the
number of generated samples is constant and equal to the number of newly trained samples N for
each task, and “unbalanced: 0.1tN ” where 0.1tN samples are generated. We observe that, in order
to ensure a balanced distribution of classes, the number of generated samples must be re-scaled, or,
in other words, must increase linearly with the number of tasks.

6.5. RESULTS 113

We conduct experiments using all models and tasks described in the previous section. Each
class (regardless of the task) is presented for 25 epochs, Results are presented either based on
the time-varying classification accuracy on the whole test set, or on the class (from the test set)
that was presented first. In the first case, accuracy should ideally increase over time and reach its
maximum after the last class has been presented. In the second case, accuracy should be stable if
the model does not forgot or decrease over time, reflecting that some information about the first
class is forgotten. We distinguish two major experimental goals or questions:

• Establishing the performance of the newly proposed methods (marginal replay with GAN,
conditional replay with CGAN or CVAE) w.r.t. the state of the art. To this effect, we
conduct experiments that increase the number of generated samples over time in a way that
ensures an effectively balanced class distribution (see Fig. 6.7). We do this both for marginal
and conditional replay in order to ensure a fair comparison, although technically conditional
replay can generate balanced distribution even with a constant number of generated samples.

• Demonstrating the advantages of conditional w.r.t. marginal replay strategies, especially when
only few samples can be generated, thus obtaining a skewed class distribution for marginal
replay (see Fig. 6.7).

Results shedding light on the first question are presented in Fig. 6.8 (showing classification
accuracy on whole test set over time, see Fig. 6.9 for accuracy on first task), whereas the second
question is addressed in Fig. 6.12 for the disjoint task.

On the other hand, we can also analyze the stability performances of the different models.
Results from Fig. 6.8 presenting accuracy performance on the different tasks sequence can be com-
pared with the FID results of generative models Fig. 6.10. We can see a high similarity between the
performance of generative models (FID) and the performance of the continual learning approach.

If we describe the experiments as proposed in the framework presented in Chapter 3, then we
are in a supervised learning setting with multi-task scenario. They are 10 disjoint tasks with iid
data or 5 joint tasks with iid data (for rotations and permutations tasks), with an integer oracle
task label for training but not for testing (learning labels). The content update is a new concepts
type (NC) for disjoint tasks and new instances for the others. The growth of used memory is less
than linear and the growth of computation cost is bounded by linear growth as for generative replay
described in Chapter 5.

6.5 Results

From the experiments described in the previous section, we can state the following principal findings:

6.5.1 Replay methods outperform EWC

As can be observed from Fig. 6.8, the novel methods we propose (marginal replay with GAN and
WGAN-GP, conditional replay with CGAN and conditional replay with CVAE) outperform EWC,
on all tasks, sometimes by a large margin. Particular attention should be given to the performance
of EWC: while generally acceptable for rotation and permutation tasks, it completely fails for the
disjoint task. This is due to the fact that there is only one class in each task, making EWC try to
map all samples to the currently presented class label regardless of input, since no replay is available
to include samples from previous tasks.

114 CHAPTER 6. GENERATIVE REPLAY FOR CLASSIFICATION

(a) accuracy for MNIST disjoint task (b) accuracy for Fashion MNIST disjoint task

(c) accuracy for MNIST permutation task
(d) accuracy for Fashion MNIST permutation
task

(e) accuracy for MNIST rotation task (f) accuracy for Fashion MNIST rotation task

Figure 6.8: Test set accuracies during the training on different tasks, shown for all tasks (indicated
by dotted lines).

6.5. RESULTS 115

6.5.2 Marginal replay with GAN outperforms WGAN-GP

The clear advantage of GAN over WGAN-GP is the higher stability of the generative models. This
is not only observable in the accuracy (see Fig. 6.8), but also when measuring performance on the
first task only during the course of continual learning (see Fig. 6.9) and in the generative model
FID (see Fig. 6.10). We show some samples of GAN for the permutation tasks in Fig. 6.11 (Fig. 6.5
helps to understand Fig. 6.11 by showing how original training data look like and how they look
like after applying each inverse permutation. It makes it easier to see that a single trained GAN
can generate correct data in all tasks whatever the permutation.). The permutation task is the
hardest one for a generative model but we can see that the GAN is able to successfully generate
samples from each tasks.

116 CHAPTER 6. GENERATIVE REPLAY FOR CLASSIFICATION

(a) MNIST: disjoint task (b) Fashion MNIST: disjoint task

(c) MNIST: permutation task (d) Fashion MNIST: permutation task

(e) MNIST: rotation task (f) Fashion MNIST: rotation task

Figure 6.9: Comparison of the accuracy of each approach on the first task. This is another,
very intuitive measure of how much is forgotten during continual learning. Means and standard
deviations computed over 8 seeds.

6.5. RESULTS 117

(a) MNIST: disjoint task (b) Fashion MNIST: disjoint task

(c) MNIST: permutation task (d) Fashion MNIST: permutation task

(e) MNIST: rotation task (f) Fashion MNIST: rotation task

Figure 6.10: Comparison of the FID of each approach’s generative models. Means and standard
deviations computed over 8 seeds.

118 CHAPTER 6. GENERATIVE REPLAY FOR CLASSIFICATION

Figure 6.11: Visualization of data generated during the training of marginal replay + GAN on the
MNIST permutation tasks. The first line shows each task generated data. The other lines show
the effect of all tasks inverse permutations applied to those data as in Fig. 6.5. We observe that
at each task the generative model can generate data in all previous permutation spaces. Then, we
have a stable retention behaviour as the number of achieved tasks increases, while data from the
current task is learned successfully as well.

6.5. RESULTS 119

6.5.3 Conditional replay can be run at constant time complexity

A very important point in favour of conditional replay is run-time complexity, as expressed by
the number of samples that need to be generated each time a new task is trained. Since the
generators in marginal replay strategies generate samples regardless of class, the distribution of
classes will be proportional to the distribution of classes during the last training of the generator,
which leads to an unbalanced class distribution over time, with the oldest classes being strongly
under-represented (see Fig. 6.7). This is avoided by increasing the number of generated samples
over time for marginal replay, leading to a balanced class distribution (see also Fig. 6.7) while vastly
increasing the number of samples. Conditional replay, on the other hand, can selectively generate
samples from a defined class, thus constructing a class-balanced dataset without needing to increase
the number of generated samples over time. In the interest of accuracy, it can of course make sense
to increase the number of generated samples over time, just as for marginal replay. This, however,
is a deliberate choice and not something required by conditional replay itself.

6.5.4 Marginal replay vs Conditional Replay performances

From Fig. 6.8, it can be observed that marginal replay outperforms conditional replay by a small
margin. This comes at the price of having to generate a large number of samples, which will become
unfeasible if many classes are involved in the retraining.

The results of Fig. 6.12 show that conditional replay is superior to marginal replay when gen-
erating fewer samples at each task (more precisely: 0.1tN samples instead of tN , for task t and
number of new samples per task N). This can be understood quite easily: since we generate only
0.1tN samples instead of tN samples at each task, marginal replay produces an unbalanced class
distribution, see Fig. 6.7, which strongly impairs classification performance. This is a principal
advantage that conditional replay has over marginal replay: generating balanced class distributions
while having much more control over the number of generated samples.

120 CHAPTER 6. GENERATIVE REPLAY FOR CLASSIFICATION

(a) Unbalanced MNIST Disjoint (b) Unbalanced Fashion Disjoint

(c) Balanced MNIST Disjoint (d) Balanced Fashion Disjoint

Figure 6.12: Comparison between conditional and marginal replay accuracy. We compare final
accuracy when the ratio between size of old task and size of new task is 1 (balanced) or 1/10
(unbalanced, factor was chosen empirically).

6.6. DISCUSSION 121

6.6 Discussion

In this chapter, we have seen that to ensure the best performance of generative replay, and in
replay methods in general, the most straight forward method is to replay samples while taking care
of balancing the instance of classes.

Even if balancing the classes offer the best performing results, it is not satisfying in term of
computation, indeed since we should balance classes, the amount of computation needs grows
linearly with the number of past classes to learn sequentially. It becomes then interesting to look
for a solution to reduce the amount of replay needed to reduce the total computational cost. In
our results, we show that conditional models are more likely to learn continually if the number of
samples is reduced. It would be interesting to also study the impact of balancing the loss instead
of the replay to see if we could also improve the computational cost. It might also be interesting to
sample more data but processing only a subset of them that could maximize the memorization as
proposed in [5] or find smarter methods of sampling.

While one might argue that MNIST and FashionMNIST are too simple for a meaningful eval-
uation, this holds only for non-continual learning scenarios. In fact, recent articles [186] show that
MNIST-related tasks are still a major obstacle for most current approaches to continual learning
under realistic conditions. So, while we agree that MNIST and FashionMNIST are not suitable
benchmarks in general anymore, we must stress the difficulty of MNIST-related tasks in continual
learning, thus making these benchmarks very suitable indeed in this particular context. The use of
intrinsically more complex benchmarks, such as CIFAR,SVHN or ImageNet is at present not really
possible since generative methods are not really good enough for replaying these data [135] (see or
experiments with CIFAR in Chapter 5).

An interesting point is that the disjoint type tasks pose enormous problems to conventional ma-
chine learning architectures, and therefore represent a very useful benchmark for continual learning
algorithms. As pointed in the Chapter 4, if each task contains a single visual class, training them
one after the other will induce no between-class discrimination at all since every training step just
“sees” a single class. Replay-based methods nicely bridge this gap, allowing continual learning
while allowing between-class discrimination. In our opinion, any application-relevant algorithm for
continual learning therefore must include some form of experience replay.

6.7 Conclusion

In this chapter, we have proposed several ways of performing continual learning with replay-based
models and empirically demonstrated (on novel benchmarks) their merit w.r.t. the state of the
art, represented by the EWC method. A principal conclusion of this chapter is that conditional
replay methods show strong promise because they have competitive performance, and they impose
less restrictions on their use in applications. Most notably, they can be used at constant time
complexity, meaning that the number of generated samples does not need to increase over time,
which would be problematic in applications with many tasks and real-time constraints.

Nevertheless, as noted in Chapter 5 one of the biggest limitations of generative replay is the
difficulty to train generative models with real images. Generative models are generally very long to
train and suffer from high instability.

Ultimately, the goal of our research is to come up with replay-based models where the effort spent
on replaying past knowledge is small compared to the effort of training with new samples. Then,

122 CHAPTER 6. GENERATIVE REPLAY FOR CLASSIFICATION

to minimize the amount of replay necessary the model needs also to limit catastrophic forgetting
without replay.

Chapter 7

Replay for Policy Distillation

In the previous chapters, we studied generative replay methods for continual learning on two as-
pects: the continual learning process of generative models and the generative replays applied to
classification. We have seen the successes and failures of these uses of generative models for contin-
ual learning. In this section, we study the rehearsal method for reinforcement learning. We apply
a replay method to train a robot to learn several tasks sequentially and test them in a real-life
setting.

This work is a collaboration with René Traoré, Hugo Caselles-Dupré, Te Sun and Guanghang
Cai. It has been published at NeurIPS deep Reinforcement Learning workshop as “DisCoRL:
Continual Reinforcement Learning via Policy Distillation” [248]. The original article has been
slightly modified to include additional figures and results.

7.1 Introduction

An autonomous agent should be able to acquire and exploit knowledge through its entire life. In
a sequence of learning experiences, it should therefore be able to build representations and skills
online and be able to reactivate and reuse them later. In this chapter, we focus on a setting where
an agent learn skills sequentially using a single model, and use them afterwards.

This challenge is partially addressed by a sub-domain of machine learning called multi-task
learning. Multi-task learning [37] studies how to optimize several problems simultaneously with a
single model. However, when those problem can not be optimized at the same time, but sequentially,
we identify the learning setting as a continual learning problem. In this chapter, we address a
continual learning problem of reinforcement learning (RL). In this setting, each learning experience
is called task, and each task solution is called policy.

To propose a learning setting compatible with a real autonomous agent, we define three simulated
robotics tasks to solve sequentially. At each task, the agent need to learn a policy based on a reward
function and a RL algorithm.

As presented in Section 2.2.2, RL is a popular framework to learn robot controllers that also has
to face the continual learning (CL) challenges. In order to learn a multi-task reinforcement learning
policy continually , we use a method called policy distillation [207] that allows to transfer several
policies learned sequentially into one in a single model. To validate our approach, we evaluate the
final results on the three simulated learning settings but also in a real life settings matching the
simulation (Figure 7.1). It is important to note that, at test time, the agent does not have access

123

124 CHAPTER 7. REPLAY FOR POLICY DISTILLATION

Figure 7.1: Image of the three tasks, in simulation (top) and in real life (bottom) sequentially
experienced. Learning is performed in simulation, real life is only used at test time.

to a task label to determine which policy to run, and thus, it needs to figure it out by itself from
its observations. As discussed in the previous chapters, it is an important feature for the autonomy
of decision making.

Our contribution are:

• We propose DisCoRL (Distillation for Continual Reinforcement learning): a modular, effec-
tive and scalable pipeline for continual RL. This pipeline uses policy distillation for learning
without forgetting [76], without access to previous environments, and without task labels.
Our results show that the method is efficient and learns policies transferable into real-life
scenarios.

• We explore various sampling strategies for policy distillation and compare their performances
for task transfer.

The chapter is structured as follows: Section 7.2 introduces related work, Section 7.3 details
the methods utilized, Section 7.4 describes the robotics setting and tasks, Section 7.5 presents the
experiments performed, and Section 7.6 concludes with future insights from our experiments.

7.2 Background

In this section, we present some background material about multi-task reinforcement learning as
well as reinforcement learning in continual learning and robotics.

7.2. BACKGROUND 125

7.2.1 Multi-task RL

The objective of Multi-task learning (MTL) [37] is to learn several tasks simultaneously; generally
by training tasks in parallel with an unique model. Therefore, multi-task RL aims at constructing
one single policy that can solve a number of different tasks. Note how in classification this problem
is quite simple, as data from all tasks just have to be shuffled randomly and can then be learned
all together at once. However, in RL environments, data is sampled on sequences that can not
be shuffled randomly with all other environments because the environments are not accessible
simultaneously. Learning multiple tasks at once is thus more complicated.

Policy distillation [207] can be used to merge different policies into one single module/network.
This approach uses two models, a trained policy (the teachers) to annotate data with soft-labels,
and a model to learn from the former (the student). The student is trained in a supervised manner
with the soft-labels. The soft-annotation helps the student to learn faster than the teacher did [79].
Policy distillation can then be used to learn several policies separately and simultaneously, and
distill them into a single model as in the distral algorithm [244]. In our approach, we also use
distillation but we do not keep the teacher model. We just label a set of data and then we don’t
need to keep the teacher model anymore and we can delete it to save memory space. Furthermore,
tasks are learned sequentially, and not simultaneously. Other approaches such as SAC-X [196] or
HER [8] take advantage of Multi-task RL by learning auxiliary tasks in order to help learning a
main task. This approach is extended in the CURIOUS algorithm [48] which selects tasks to be
learned that improve an absolute learning progress metric the most.

7.2.2 Continual Learning

We present here a brief recall of Chapter 3 on continual learning for reinforcement learning.
Continual learning (CL) is the ability of a model to learn new skills without forgetting previous

knowledge. It is in many ways similar to multi-task learning but with the difference past task can
not be accessed directly. In our context, it means learning several tasks sequentially and being able
to solve any of the learned tasks at the end of the sequence.

In continual RL, several approaches have been proposed, such as the use of Progressive Nets
in [208], Elastic Weight Consolidation (EWC) [121], Progress And Compress (P&C) [217], or CRL-
Unsup [147]. However, they either need a task indicator at test time to choose which policies to
run or, they have some hyper-parameter difficult to tune during a continual learning training, such
as the importance of the Fisher information matrix in EWC. Our method does not add any new
hyper-parameter to tune during the sequence of tasks and does not need a task label at test time.

7.2.3 RL in Robotics

As discussed in Chapter 3, applying RL to real-life scenarios such as robotics is still a major
challenge.

One of the main problem in this setting is that sampling data, and a fortiori learning, is costly.
Therefore sample efficiency and stability in learning are highly valuable. One common approach to
reduce training cost, is training policies in simulation and then deploying them in real-life hoping
that they will successfully transfer, considering the gap in complexity between simulation and the
real world. Such approaches are termed Sim2Real [85], and have been successfully applied [45, 159]
in different scenarios. One of these approaches is Domain Randomization [246], which we use in
this chapter. This technique trains policies in numerous simulations that are randomly different

126 CHAPTER 7. REPLAY FOR POLICY DISTILLATION

from each other (different background, colors, etc.). Using this technique, the transfer to real life
is easier.

Another method we also exploit is to first learn a state representation [136] to compress the
observation into a low dimensional embedding and secondly learn the policy on top of this repre-
sentation. This method helps to improve sample efficiency and stability of RL algorithms [189] and
thus can make them directly applicable in real life.

Others have tried to train a policy directly on real robots, facing the hurdle of the lack of sample
efficiency of RL algorithms. SAC-X [196] is one example that takes advantage of multi-task learning
to improve efficiency, by simultaneously learning the policy and a set of auxiliary tasks to explore
its observation space - in search for sparse rewards of the externally defined target task.

In the literature, most approaches focus on the single-task or simultaneous multi-task scenario.
In this chapter, we attempt to train a policy on several tasks sequentially and deploy it in real life
by combining policy distillation, training in simulation and state representation learning.

7.3 Approach

In this section we present our approach towards continual reinforcement learning for a sequence of
vision based tasks. We assume that observations visually allow to recognize the current task from
other tasks. We first explain how we learn a single task by combining state representation learning
(SRL) [136] and reinforcement learning (RL), then how each task is incorporated in the continual
learning pipeline. Finally, we present how we evaluate the full pipeline.

7.3.1 Learning one task

Each task i is solved by first learning a state representation encoder Ei in order to compress
input images into a representation of the important underlying factor of variation. This step
allows to reduce the input space for the reinforcement learning algorithm and makes it learn more
efficiently [189]. To train this encoder, as shown in Fig. 7.2 (left), we sample data from the
environment Envi with a random policy. We call this dataset DR,i. DR,i is then used to train the
SRL model composed of an inverse model and an auto-encoder. The inverse model is trained to
predict the action at that led to transition from state st to st+1, both extracted from respective
observations ot and ot+1 by the auto-encoder using Ei. The auto-encoder is additionally trained to
reconstruct the observations from the encoded states. The architecture is motivated by the results
from [189], and illustrated in the Figure 7.3.

Once the SRL model is trained, we use its encoder Ei to provide features as input of a policy
πi

1 trained using RL. We also experimented to learn the policy directly in the raw pixel space but,
as shown in [189], it was less sample efficient.

Once πi is learned, we use it to generate sequences of on-policy observations with associated
actions, which will eventually be used for distillation (Fig. 7.2, right). We call this the distillation
dataset Dπi

. We generate Dπi
the following way: we randomly sample a starting position and then

let the agent generate a trajectory. At each step we save both the observation and associated action
probabilities. We collect the shortest sequences maximizing the reward for an episode. We also
experiment to generate Dπi with a regular sampling and a random policy but annotated with πi to
compare results, as detailed in Section 7.5.1.

1Architecture available at: https://github.com/araffin/srl-zoo/blob/438a05ab625a2c5ada573b47f73469d92de82132/
models/models.py#L179-L214

https://github.com/araffin/srl-zoo/blob/438a05ab625a2c5ada573b47f73469d92de82132/models/models.py#L179-L214
https://github.com/araffin/srl-zoo/blob/438a05ab625a2c5ada573b47f73469d92de82132/models/models.py#L179-L214

7.3. APPROACH 127

Figure 7.2: Overview of our full pipeline for Continual Reinforcement Learning. White cylinders
are for datasets, gray squares for environments, and white squares for learning algorithms, whose
name corresponds to the model trained. Each task i is learned sequentially and independently by
first generating a dataset DR,i with a random policy to train a state representation with an encoder
Ei with an SRL method (1), then we use Ei and the environment to learn a policy πi in the state
space (2). Once trained, πi is used to create a distillation dataset Dπi that acts as a memory of the
learned behaviour. All policies are finally compressed into a single policy πd:1,..,i by merging the
current dataset Dπi

with datasets from previous tasks Dπ1
∪ ... ∪Dπi−1

and using distillation (3).

It+1

It

st

st+1

ât

Ît It

at

LReconstruction

LInverse

Figure 7.3: SRL Combination model: combines the prediction of an image I’s reconstruction loss
and an inverse dynamics model loss in a state representation s. Arrows represent inference, dashed
frames represent losses computations, rectangles are state representations, circles are real observed
data, and squares are model predictions; t represents the timestep.

From each task we only keep dataset Dπi
. As soon as we change task, DR,i and Envi are not

available anymore. Dπi is split into a training set and a validation set.

128 CHAPTER 7. REPLAY FOR POLICY DISTILLATION

7.3.2 Learning continually

Learning policies independently ensures that learning a new policy will not degrade the previous
policies. Nevertheless, it does not prevent forward transfer between tasks, since models are initial-
ized with weights from the previous task.

In order to learn continually, we adapt policy distillation [207] to a continual learning setting.
The distillation consists of training a student policy to imitate a teacher policy. In our case, a
student model learns from a teacher policy the action probabilities associated to each observation.
Each dataset Dπi

allows to distill the policy πi (the teacher model) into a new network πd:i (the
student model). In classic distillation, both data and models are saved , however saving just
soft-labeled data is a lighter solution adapted to a continual setting.

With the aggregation of several distillation datasets Dπi
, we can distill several policies into

the same network that can achieve all tasks (Fig.7.2, bottom right). By extension of the previous
nomenclature, we denote πd:1,..,n a model where policies π1 ... πn have been distilled in. When
distilling all policies into the student, we select our best models with early stopping using the
validation set of Dπi , and test later in simulation and in real life settings.

Since we assume that observations visually allow to recognize the current task, πd:1,..,n is able
to choose the right action for the current task without a task indicator.

The method, termed DisCoRL for Distillation for Continual Reinforcement learning, allows to
learn continually several policies while minimizing forgetting. Regarding scalability, saving data
from all past experiments may not look ideal if there is a high number of tasks. However, this
solution is highly effective for remembering and letting the reinforcement learning algorithm be
absolutely free to learn a new policy without regularization. It is worth mentioning that RL is the
real bottleneck in the whole process: Dataset Dπi

contains approximately 10k samples per task,
which allows to perform the distillation quickly, relative to how long and computationally expensive
RL is (few minutes needed to learn πd:i while several hours are needed to learn πi). Thus, in this
context, it is better not to curb RL with regularization. Indeed, as will be explained in Section
7.5.4, we tried several regularization based approaches that were not successful.

If we describe the experiments as proposed in the framework presented in Chapter 3, then we are
in a reinforcement learning setting, multi-task (MT) scenario. We have 3 disjoint tasks with non-iid
data and we have an integer oracle task label for training but not for testing (learning labels). Our
setting fall in the NIC (New Instances and New Concepts) content update type for each task. Our
approach can be classified into the rehearsal family of approaches where memory is saved as data
points. The growth of memory is linear per number of tasks and the growth of computation is less
than linear growth. Indeed, the computation is mostly spent on learning the tasks using RL and
not much on the continual learning model.

7.4 Experiments

We apply our approach to learn continually three 2D navigation tasks applicable in real life. The
software related to our experimental setting is available online2.

2https://github.com/kalifou/robotics-rl-srl

https://github.com/kalifou/robotics-rl-srl

7.4. EXPERIMENTS 129

7.4.1 Robotic setup

The experiments consists of 2D navigation tasks using a 3 wheel omni-directional robot similar to
the 2D mobile navigation in [190]. The input image is a top-down view of the floor and the robot is
identified by a black QR code. The room where the real-life robotic experiments are performed is
lighted by surroundings windows and artificial illumination and is subject to illumination changes
depending on the weather and time of the day. The robot uses 4 high level discrete actions (move
left/right, move up/down in a Cartesian plane relative to the robot) rather than motor commands.

We simulate the experiment to increase sampling and learning speed. The simulation is per-
formed by artificially moving the robot picture inside the background image according to the chosen
actions. We use domain randomization [246] to improve the stability and facilitate transfer to the
real world: during RL training, at each time-step, the color of the background is randomly changed.

7.4.2 Continual learning setup

Our continual learning scenario is composed of three similar environments, where the robot is
rewarded according to the associated task (Fig. 7.1). In all environments, the robot is free to
navigate for up to 250 steps, performing only discrete actions within the boundaries identified by a
red line. Each task is associated to a visual target, which color depends on the task. This way, the
controller can automatically infer which policy it needs to run and thus, does not need task labels
at test time.

• Task 1. The task of environment 1 is named Target Reaching (TR). The robot gets at each
time-step t a positive reward +1 for reaching the target (red square), a negative reward −1
for bumping into the boundaries, and no reward otherwise.

• Task 2. The task of environment 2 is named Target Circling (TC). The robot gets at each
time-step t a reward Rt defined in Eq. 7.1 (where zt is the 2D coordinate position with respect
to the center of the circle) designed for agents to learn the task of circling around a central
blue tag. This reward is highest when the agent is both on the circle (red (first) square in
Eq. 7.1), and has been moving for the previous k steps (blue, second square). An additional
penalty term of −1 is added to the reward function in case of bump with the boundaries (last,
green square). A coefficient λ = 10 is introduced to balance the behaviour.

Rt = λ ∗ (1− λ(‖zt‖ − rcircle)2) ∗ ‖zt − zt−k‖22 + λ2 ∗ Rt,bump (7.1)

• Task 3. The task of environment 3 is named Target Escaping (TE). Robot A is being chased
down by another robot B with an orange tag. Robot B is hard-coded to follow robot A, and
robot A has to learn to escape using RL. Robot A gets at each time-step t a reward of +1 if
it’s far enough from robot B, otherwise, if it is in the range of robot B, it gets a reward of
−1. Additionally, robot A gets a negative reward −1 for bumping into the boundaries.

All RL tasks are learned with PPO algorithm [216] from stable baselines [98] and the same
state representation learning (SRL) model, as described in Section 7.3.1. We select the model
architecture as in [190] for RL and SRL. The input observations of all models are RGB images of
size 224 ∗ 224 ∗ 3.

130 CHAPTER 7. REPLAY FOR POLICY DISTILLATION

7.4.3 Dataset generation

For each task, a dataset of (image, annotation) pairs is created after the teacher has been trained.
The images are the agent observations starting from a random point. The trajectory are sampled
using the different strategies described in the next section. The annotations are the soft-labels
predicted by the teacher.

Each tasks may use slightly different sampling methods. While generating on-policy datasets
Dπ1 (see Section 7.3.1) for task 1 (TR), we allow the robot to perform a limited number of contacts
with the target to reach (Ncontacts = 10) in order to mainly preserve the frames associated with
the correct reaching behaviour. There are no such additional constraints when recording for task 2
(TC) or 3 (TE), the limit is the standard episode length, i.e. 250 time-steps.

Different tasks will lead to different coverage of the space while sampling, therefore we adapted
slightly the sampling for task 1 to maximize the samples space coverage, by modifying the sampling
end criterion.

7.5 Results

In this section, we present how we select the best strategy for sampling and distilling policy. Then,
we use these choices to present our main result: the distillation of three tasks continually into a single
policy that can achieve the three tasks both in simulation and real-life. We provide a supplementary
video of this policy deployed in real-life on the robot showing the successful behaviours at https:
//youtu.be/mzUigGWEfbU. We also present the different strategies we tried but that did not work
in our setting.

7.5.1 Sampling and Distilling Methods

This section present the different distillation and sampling methods experimented and the results.

Distillation strategies:

Distillation loss minimizes the difference between the student model’s output and the teacher
model’s output for the same input. As in the policy distillation paper [207], we investigate variations
of the loss function:

• Mean Squared Error loss:

LMSE(x, y) = E
[
||x− y||22

]
(7.2)

• Kullback-Lieber divergence, and Kullback-Lieber divergence with temperature smoothing:

LKL,τ (p|q) = E
[
softmax

(p
τ

)
ln

(
softmax(pτ)

softmax(q)

)]
(7.3)

We run a performance comparison of the different losses by computing the mean normalized
performance of a student policy trained to perform all three tasks (Tab. 7.1). Using the Kullback-
Lieber divergence loss function with temperature smoothing with τ = 0.01 is best, and optimizing
the temperature parameter yields a small performance boost. This result is coherent with [207]
where they reach the same conclusion.

https://youtu.be/mzUigGWEfbU
https://youtu.be/mzUigGWEfbU

7.5. RESULTS 131

Distillation loss Student performance (± std)
MSE 0.71 (± 0.22)
KL (τ = 1) 0.76 (± 0.14)
KL (τ = 0.1) 0.68 (± 0.18)
KL (τ = 0.01) 0.77 (± 0.13)

Table 7.1: Mean normalized performance3 of a student policies trained with distillation using 4
different loss functions. The student policy is trained to perform all three tasks. Kullback-Lieber
divergence with τ = 0.01 performs best.

Figure 7.4: Representation of data sampling strategies to distill the teacher policy. Left, on policy
sampling. Right, grid sampling.

Data sampling strategies:

We evaluate the effect of three different sampling strategies to create Dπi
for policy distillation.

Data sampling is a key component as the sampled dataset should be as small as possible but contain
sufficient information for student model training. The strategies involved for data generation are:

• On-policy generation (Fig.7.4, left): We start an episode from a random point, then at each
timestep t, we collect an observation ot and perform the action aπi,t of the teacher policy. Dπi

is thus composed of tuples (ot, p(aπi,t | ot)), with p(aπi,t | ot) the action probability associated
to the action aπi,t taken by the teacher, i.e., a soft label, since we use the Kullback-Lieber
divergence loss.

• Off-policy generation from a grid walker (Fig.7.4, right): at each time-step t, we collect an
observation ot by performing an action agrid,t of a grid walker exhaustively exploring the
space of the arena. However, for each ot we save the probability of action p(aπi,t | ot) that
would have been taken by a teacher policy. The goal of this strategy is to provide a more
exhaustive sampling of the space of robot positions.

• Random Walker : We start an episode from a random point, then at each time-step t, we
realize random action for 200 time-steps. This method is proposed as a baseline.

Performance of policies distilled using such strategies (see Fig. 7.6) show that on-policy gener-
ation (i.e., demonstrations) suffice to reproduce performance close to those of teacher policies on

132 CHAPTER 7. REPLAY FOR POLICY DISTILLATION

every task individually, with reasonable stability. In particular cases, see Fig. 7.6 for task TC, this
strategy even provides a small boost in performances in the student policy over the teacher policy.

However, using off-policy data generation from a grid walker for distillation results in either
unstable or poorly performing policies, especially in tasks defined by a reward function requiring
the agent to move actively (TC task, blue part of eq. 7.1) or anticipate the behaviour of another
agent (TE task). In this case, the resulting policy reaches the performances of a lower-bound
baseline obtained by distilling from trajectories of an untrained policy (see Student on off-policy
data with a random walker in fig. 7.6), i.e. from a policy with random weights with input in the
raw pixels’ space.

Figure 7.5: Mean and standard error of rewards during RL learning of each task separately. Each
task is learned using the same type of SRL model (SRL Combination), trained on each environment.
All three tasks are mastered within roughly 2M time-steps.

Figure 7.6: Efficiency (normalized rewards w.r.t the best teacher performance) of policies distilled
on 8 seeds using various data sampling strategies for each task separately. Each evaluated policy is
distilled on 15k tuples of sampled observations and action probabilities, for 4 epochs (see criteria
of stopping in Section 7.3.2 and Figure 7.5).

We performed a more explicit evaluation of distillation in the task 2 (Target Circling (TC)).
While we train a policy using RL, we save the policy every 200 episodes (50K), and distill it into
a new student policy which we test. This is illustrated in Fig. 7.7. Both curves are very close,
which indicates that policy distillation enables to reproduce the skills of a teacher policy regardless
of the teacher’s state of convergence on the evaluated task. Moreover, distillation is able to transfer

7.5. RESULTS 133

Figure 7.7: Demonstration of the effectiveness of distillation. Blue: RL training curve of an SRL
based Policy (SRL Combination) on the target circling (TC) task. Green: Mean and standard
deviation performance on 8 seeds of distilled student policy. The teacher policy in blue is distilled
into a student policy every 200 episodes (1 episode = 250 time-steps).

knowledge from teacher policy into a student using a small number of observations, i.e only 15k
samples (w.r.t. the volume of samples required to learn the teacher policy, see Fig. 7.5).

7.5.2 Evaluation of each task separately

We perform two evaluations on our final models. Our first evaluation is the performance of the final
policy on the simulated environment. This evaluation can then be compared with the performance
of each teacher policy. For the second evaluation we test if the policy is robust to the reality gap
and can be adapted into a real life scenario. The simulation is voluntary close the real life setting
but the reality gap is notoriously problematic.

Before moving to a continual setup, we tested if it is possible to solve each task separately using
distillation. Therefore, we evaluate distillation process for each task separately. The challenges,
is not only the ability to distill knowledge, but also the ability to know when a policy has been
distilled, i.e. properly learned by the student. Indeed, due to the hypothesis of real continual
learning settings, access to previous environments is not possible. Then, the challenges is to find a
proxy task that can help indicate when early stopping of the policy distillation can be applied. That
proxy task or signal should be different from the reward achieved in previous environments, which
is no longer available. In our experiments, we found empirically that all policy could be distilled
and that limiting training to a small number of epochs, i.e N = 4, guarantee policy learning.

7.5.3 Main result

In this section, we present our final results. We used on policy data generation and training using
KL-divergence loss with τ = 0.01, as described in Section 7.5.1. In figure 7.8, we show box plots

134 CHAPTER 7. REPLAY FOR POLICY DISTILLATION

over 10 episodes of reward performances for teacher policies in each task, and for the distillation of
the same three teachers into a single student using DisCoRL. Each policy is evaluated in simulation
and also in real-life on the robot. As a reference, we also show the performance of a random agent in
each task. Our approach is effective in a continual reinforcement learning setting: the performance
of teachers and student are similar.

More precisely, there are two main challenges to overcome in our setting: learning a behaviour
via distillation by using only a limited number of examples, and the reality gap which can notori-
ously [246] introduce variations that may lead the policy to fail. Fig. 7.8 demonstrates the efficiency
of our approach at overcoming both of these issues: only a small fraction of performance is lost
from teacher to student, and from simulation to reality. We can see that the single student distilled
policy achieves close to maximum rewards in all tasks, in real-life.

Target Reaching (TR)

200

100

0

100

200

Re
w

ar
ds

1

2
3 4 5

Target Circular (TC)
25000

20000

15000

10000

5000

0

1

2 3 4 5

Target Escape (TE)

200

100

0

100

200

1

2
3 4 5

Figure 7.8: Main result: distillation in a continual learning setting of three teacher policies into a
single student policy. The resulting policy is able to perform all three tasks both in simulation and
in the real world, while minimizing forgetting.

7.5.4 Negative results

While distillation is effective for policy transfer, we also tested other alternatives worth mentioning.

Elastic Weight Consolidation (EWC)

EWC [121] was implemented as a continual learning baseline to compare with the distillation
method. EWC has the appealing advantage of not re-using any data from previous tasks. However,
in all cases we found the method unsuccessful.

Tuning the λ parameter that controls the trade-off between weight protection and learning the
new task showed that either λ is too low and catastrophic forgetting happens, or λ is too high and
nothing new is learned (i.e., the full network is frozen). A λ value providing a proper balance in
between both effects could not be found for such sequential tasks to be learned.

Progress and Compress (P&C)

P&C [217] was tested but as EWC, we had problems with the importance factor λ and we where
not able to learn three policies into a single model with this method.

7.6. DISCUSSION AND FUTURE WORK 135

Adding task labels for distillation

Even if all tasks contain a visually differentiating identifier, they remain visually similar. In cases,
we found that a distilled policy trained to perform well on several tasks can mix up tasks and
thus not perform adequately. Hence, either adding tasks labels directly, or adding a module in
the network that predicts the task label could be a way to improve the efficiency of distillation.
However, none of the approaches were successful in practice, yielding the same results with or
without task labels.

Gumbel-Softmax action sampling for the student

This trick [103] allows to sample from a categorical distribution using a softmax output layer. It
has proven to be useful for action sampling in policy learning [216]. However, in our case we saw
no improvement over a simple argmax strategy for action sampling when we used it on the student
policy at test time.

7.6 Discussion and Future Work

Even if we believe this work proposes a stable and scalable framework for continual reinforcement
learning, several possibilities for improvement exists. For example, we could have not only a policy
learned in a continual way, but also the SRL model associated. We would need to update the SRL
model as new tasks are presented sequentially. One possible approach would be to use Continual
SRL methods like S-TRIGGER [38] or VASE [2]. Moreover, we would like to optimize more the
memory needed to save samples by reducing their number and their size.

Moreover, training policies on real robot experiences without the use of simulation would be
desirable. However, at the moment, this is more a RL challenge than a CL challenge. One promising
approach would be to use model-based RL while learning the state representation learning (SRL)
model to improve sample efficiency. Though, nowadays approaches still do not offer solutions
working in a reasonable amount of time.

7.7 Conclusion

In this chapter, we presented DisCoRL, an approach for continual reinforcement learning. Dis-
coRL is a simple yet efficient method for continual multi-tasks reinforcement learning. It performs
independent learning of different policies without disabling forward learning transfer with a fast
merging policy methodology. Moreover, at test time DiscoRL can run all the policies with a single
model without the supervision of a task label.

The method consists of summarizing sequentially learned policies into a dataset to distill them
into a student model. It allows to learn sequential tasks in a stable pipeline without forgetting.
Some loss in performance may occur while transferring knowledge from teacher to student, or while
transferring a policy from simulation to real life. Nevertheless, our experiments show promising
results in simulated environments and real life settings.

Chapter 8

Discussion

In the previous chapters, we presented a global overview of continual learning, the strength of replay
methods and the analysis of generative replay methods. We focused on the study of generative
models in a CL setting and the application of generative replay to classification problems. We also
experimented with the rehearsal method for continual multi-task reinforcement learning.

In this chapter, we would first like to discuss continual learning research in a more global picture.
Hence, we will discuss popular objectives in continual learning. We also try to disentangle potential
use cases and present application scenarios for continual learning. Secondly, we discuss the work
done in this thesis and the choices made. Then, we introduce a few continual learning pitfalls that
should be avoided to perform healthy continual improvements.

8.1 Rethinking Continual Learning Objectives

Continual learning is a vast research domain with very ambitious objectives. The general aim is
to learn from non-static data-sources but more particularly to learn from the real world. In this
section, we first present the popular objectives of continual learning. Then we introduce several use
cases we believe are the main long term objectives of continual learning.

8.1.1 Popular objectives of continual learning

Several continual learning papers [129, 69, 141, 4] present general desiderata for continual learning.
Those desiderata are presented as characteristics that continual learning algorithms should have.
The most common ones are:

• Maximize Final performance: Algorithm should have the best performance possible at
test time.

• Learning without forgetting: The ability to learn sequentially and incrementally knowl-
edge or/and skills.

• Graceful forgetting: Remembering the essential only.

• Detecting concept drift: The ability to detect when the data distribution changes to avoid
forgetting.

137

138 CHAPTER 8. DISCUSSION

• Storage-Free Continual Learning: Avoiding the storage of raw data.

• Efficient learning / Few shot learning : Grasping new concepts thanks to only few data
points.

• Applicable algorithms: Algorithms able to solve problems with reasonable constraints such
as limited memory or power consumption.

• Transfer between tasks: The ability to improve a specific knowledge/skill by learning
another one (forward learning and backward learning).

• Transfer between settings: An algorithm able to learn in an environment/continuum A
should be able to learn in a similar environment/continuum B.

• Execution time: The ability to learn in a limited time, at best near to on-line.

• Reproducible results: Being able to reproduce results by an independent party.

Many of those characteristics are quite easy to evaluate. The metrics proposed in Section 3.6.2
associated with the right benchmarks make it possible to evaluate most of them or, at least, it makes
it possible to compare two algorithms. Unfortunately, most of them are not intrinsically interesting
for continual learning and they should be put in a more long term perspective to understand what
is important to be addressed. For example, the desiderata of transfer between tasks is usually not
the true objective. The true objective is either to reduce the execution time or improve the final
accuracy. The transfer might be an answer to those objectives but the transfer is finally not exactly
a goal but just a way to reach another goal. Similarly, graceful forgetting or few-shot learning are
interesting, for us, only if they improve other objectives such as final performance or execution
time.

By analyzing the desiderata again we find that the most important one for continual learning
are the same as for machine learning:

1. Maximize final performance (and generalization)

2. Applicable algorithms (being able to adapt algorithms to specific constraint on power con-
sumption / memory / training time / inference time)

3. Reproducible results

Indeed, the difference between classical machine learning and continual learning is not the objective
or criterion to optimize but the hypothesis on the input data (iid vs non-iid).

Nevertheless, the difference in input data might lead to supplementary constraint to fulfill the
global desiderata and overcome some needs such as:

• Minimizing memory

• Minimizing training time

• Minimizing computation power

• Autonomous inference (label free inference)

8.1. RETHINKING CONTINUAL LEARNING OBJECTIVES 139

The tools to answer those desiderata and constraints might be provided by other research domains
such as:

• Few-Shot learning

• Transfer (Backward / Forward ; upon tasks / settings)

• Knowledge distillation (for Graceful forgetting)

• Learning from sparse labels

• Detecting concept drift

• Minimizing storage

• Sparsity

• [...]

Hence, progress in those research domains might be useful or necessary to leverage continual
learning problems but it always depends on the targeted problem. Nevertheless, it is safer to keep
apart desiderata from side constraints and from other research field to keep track of what we are
trying to do.

We can also mention the bio-inspiration as a side objective. The biological agents provide many
ideas to solves continual learning problems. However, as the other side objective, it is not what
continual learning aims at solving. For example, even if biological agents don’t store raw data, it
does not mean that continual learning should not do it either. In many cases, saving raw data
helps, as shown in Chapter 7. Creating false prohibition is deleterious for continual learning. The
aeroplane is a working solution illustrating that biological agents do not necessarily have the optimal
solution for our needs.

In the same spirit of finding the real goal of continual learning, in the next section, we present
what we believe are the potential type of use cases for continual learning.

8.1.2 Potential use cases

The long term objectives are linked to the potential use cases of continual learning. Depending
on them, the side objectives described in the previous section are not expected to be optimized in
the same way. The application cases can be numerous and quite different. Therefore, to develop
specialized approaches for different scenarios, it is necessary to identify the important differentiating
factors. We present here a possible classification of potential use case scenarios that are more
interesting to target specifically than continual learning in general.

• Incremental Learning The objective is to learn new knowledge or/and skills without for-
getting. In this case, the goal is not to improve knowledge but only to incrementally grow a
set of knowledge. This is typically the case of a trained classification model that should learn
a new class without forgetting the previous ones with very limited access to data from the
past. This case is the most straightforward to describe, the primary criterion that matters is
learning without forgetting. The past learning experiences are not supposed to be accessible
again and consequently, everything forgotten is lost forever. In this case, since the forgetting

140 CHAPTER 8. DISCUSSION

should be minimized as much as possible, it looks more acceptable to not be too restrictive
on the memory needed or the efficiency of learning or computation.

Example: Adding classes to a classifier

A company, let’s call it AItowardAGI, needs a trained model for a classification purpose. A
solution is to buy a trained classification model from a company, training4U, that has access
to more computation and more data. However, AItowardAGI has some personal data and
would like to improve the model on this personal data without damaging initial models. Then,
the company will need an incremental learning method to learn without forgetting and improve
the model with new classes. We hope that AItowardAGI has read Chapter 4 of this thesis and
therefore they know that they will not be able to improve the model if they don’t ask for some
more information about the initial training data from training4U company.

• Lifelong Learning Lifelong learning consists of learning a never ending task, there are few
variations in the tasks but the agent should always improve and be able to handle more
and more of those little variations. It could be essential for applications where smart agents
need to keep improving and gain efficiency from experiences on a specific task. In this case
for example, forgetting is not unconditional, it is somehow acceptable to forget if globally it
allows to improve the performance. However, as the agent learns at the same time it is used,
it is expected to learn as fast as possible to adapt to changing situations.

Example: Gift wrapping robot

A company wants to build robots that wrap gift papers. They want to send those robots in
shops to wrap gifts automatically. However, each year the gifts are different and each robot
needs to be updated. Moreover, shops sell objects of different sizes and shapes. Therefore, if
all robots had a learning algorithm that could adapt to new sizes and shapes without selling
company intervention, it would be very practical. This company could use an algorithm similar
to the one used in Chapter 7.

• Multi-task agent Multi-task agent is a mixture of the incremental learner and the lifelong
learner. Similar to the lifelong learner, it is in a never ending situation however it has sev-
eral different tasks to learn and improve in its lifelong learning curricula. In the multi-task
learning, as for lifelong-learning, forgetting can be acceptable in order to improve the global
performance, however improving on one task should not deteriorate too much another one to
keep progress positive.

Example: Periodic improvement

The training4U company sells pre-trained classification models. So at any time, they should
be able to sell a final trained model, however, they regularly receive new data about new or
existing classes that could help to improve their models. Training again from scratch is too
expensive and they will need a continual process to improve the models on new data without
damaging current knowledge. Then, they need multi-task learning methods to keep improving
existing classes and still be able to add new ones. We hope they also read the Chapter 4 of this
thesis, and therefore they will have developed a correct remembering process for their models.

• Autonomous agent

The autonomous agent is a multi-task agent which can additionally set its own objectives
and has the capacity to explore and understand without clear tasks. This agent possess

8.2. DISCUSSION ON THE THESIS CHOICES 141

curiosity [176, 213]. The curiosity is a self-motivated objective leading an agent to explore
its environment and the possible interactions. It helps the agent to improve on past and new
tasks and enable it to eventually anticipate future tasks. Moreover, the autonomous agent
should be able to create its own innovative solution to problems with limited supervision, as
in Open Ended Learning [61]. This kind of agent should make the best use of the resource
that is available to it. It also has to be curious, creative and have some kind of survival reflex
to evolve without auto-destruction.

Example: Robots on a Foreign Planet

A space exploration program would like to send a robot to a very far exoplanet for discovery.
The problem is that any communication can take weeks or years to be sent, so communication
is very limited and the robot needs to be autonomous to survive in this unknown environment.
Moreover, we would like the robot to autonomously explore and adapt to the environment to
complete future tasks faster. For example, the robot could automatically learn to recognize
the type of grounds where it can pass to be able to move better later. The robot then needs a
continual learning algorithm to complete its mission, explore and survive.

For each case, we described what we believe are the most emblematic objective to optimize
in the potential use cases. However, depending on the use case more objectives may have to be
optimized like computation power which could be restricted in certain situations like in embedded
platforms. In any case, an approach would be more useful in the global research effort if it targets
long-term or/and short-term objectives specifically.

To summarize, in continual learning, the essential expected ability is to be able to improve a
model based on new data, either by adding new concepts or by improving/strengthening already
known concepts. A second important notion is adaptability to various types of supervision signals
to learn, at best an algorithm should be able to learn at least “something” whatever the sparsity of
supervision signal or its type (reward or label). Therefore, continual learning is somehow the science
of learning autonomously and might have links to the auto-machine learning research field [72].

8.2 Discussion on the thesis choices

In this section, we discuss the different choices made in this thesis and the conducted experiments.

8.2.1 Replay methods

In this thesis, we presented the use of replay to deal with catastrophic forgetting. Indeed, replay
methods have both the advantage to make models able to remember and learn on past tasks.
We study it in particular in the context of incremental classes or tasks. We showed that in such
settings, regularization and dynamic architecture approaches rely on a task label for inference.
Replay methods propose a label-free inference model that can be therefore easily deployed after
training.

As presented earlier in the thesis, the assets of replay are:

• A posteriori understanding: Past learning experiences can be reinterpreted with current
knowledge and favor backward transfer.

142 CHAPTER 8. DISCUSSION

• Task agnostics memorization: Some part of the memorization process is not affected by
the current task and just aims at representing the learning experience data.

• Test labels agnostic: The learned model does not need any supervision for inference.

• Model agnostic: The memorization process is at least partially not affected by the model
architecture.

• Manageable memory: The memory is easy to control, if a memory is considered useless,
it can be erased by just deleting it or not replaying it anymore

• Unconditional remembering: (Rehearsal only) By saving raw data the memorization is
theoretically robust to misinterpretation and memory modification.

• Good on-line capabilities: (Rehearsal only) Saving raw data is quite fast in comparison
to learning a memorization model.

• Auto-Memorization with self synthesizing models: (Generative Replay Only) The
generative model automatically learns to synthesize data and compress it in its weights.

• Supplementary understanding of data for memorization: (Generative Replay Only)
The generative models can potentially generalize processed data and share its understanding
with the inference model.

The continual learning use case that fits perfectly with the project of this thesis is “incremental
learning” (Section 8.1.2), a model that learns different tasks sequentially and should and never
forgets. Studying this setting produce results that can be transferred to lifelong algorithms and
multi-task continual learning. We believe, as demonstrated in Chapter 4, that in all learning
situations, two concepts need anyhow to be confronted to be distinguished and replay might be the
only method able to achieve it.

8.2.2 Static Deployment

We can define two type of deployments for continual learning:

• Static Deployment: The model is trained and used frozen. The training can still be
continued later.

• Never Ending Learning: In this case, the training never stops; every new experience can
be exploited to learn and be integrated in the model.

Moreover, it might be worth distinguishing two types of potential use. First, the “milestone” use
case, the model is trained and it should be ready at some point to be used. We don’t care about
how it learns as long as at some point in time the model is ready. Secondly, the “always ready”
use case, where at any time the model could be used and should be aware of the last data point
processed.

We target models with milestone use case and static deployment. Those models can learn in a
continual environment and learn concept and skills sequentially until deployment start.

We considered as too ambitious the always ready scenario and we argue that static inference
is probably the use of continual algorithms that could be the safest. For the static inference

8.2. DISCUSSION ON THE THESIS CHOICES 143

scenario, after training, the model can be assessed and be deployed without fearing for uncontrolled
or adversarial modification of the model. A model that would continue to learn after deployment
would be harder to assess and the learning processes are nowadays not stable enough to be deployed.

8.2.3 Task labels

The use of training labels can be seen as a limitation of the approaches. The use of the task label
allows targeting only the learning-without-forgetting problems without addressing concept-drift
detection.

We think that task labelling is cheap and may significantly help continual algorithms to learn.
In many applications of continual learning, we can assume that at training time, the algorithm has
a bit of assistance to learn. If no task label is provided, the algorithms have a higher risk to diverge
and misunderstand its learning experiences.

8.2.4 Data stream distribution

In the same way we assumed task label available for training, we assume that the learning curriculum
is independently and identically distributed by part (except in Chapter 7). This is a clear limitation
that should be solved before expecting to tackle real environment settings, however, this setting
allows to better understand catastrophic forgetting behaviour and memory processes. Since we
know exactly at which moment the model will start forgetting, it is easier to analyse it and address
it. The iid by part settings is then very interesting for research purpose.

8.2.5 Classification tasks

Ideally, algorithms can learn on-line new concepts from unprocessed data. Therefore, it is unlikely to
have a fully annotated dataset correctly preprocessed to maximize learning easiness. Benchmarks
using sparse labelling would therefore be more appropriate and more in the spirit of continual
learning. However, the use of fully annotated classification benchmarks makes it possible to focus
on continual learning problems rather than having to deals with sparse label problems. Nevertheless,
in Chapter 7, we did experiments with reinforcement learning environments that have sparse labels.
And we have seen that even if learning tasks from those environments is much harder it does not
make the continual learning problems significantly harder.

8.2.6 Evaluations

In this thesis, we evaluate essentially our algorithms with the final performance, we believe that,
with the computation cost, it is the most valuable metrics to evaluate CL as discussed in Chapter
3. The computation cost is however often difficult to evaluate rigorously and we did not evaluate
it to focus on the final performance.

The MNIST, Fashion-MNIST or KMNIST benchmarks we used are simple. Some experiments
have been conducted on Cifar10 and Core50 (not described in the manuscript), however, the results
were not stable enough to conclude from the experiments. The main conclusion is that generative
models are difficult to train on those datasets in a continual setting. Therefore, it is still too early to
expect generative replay to work in continual real-life settings. However, with the rapid progress of
generative models we expect generative replay to became a viable solution in complex environments.
As discussed for the classification task above, the use of simple datasets makes it possible to get

144 CHAPTER 8. DISCUSSION

rid of learning shortcomings of models and only focus on continual learning shortcomings. If it is
already difficult to train a model in a classical setting, studying it in a continual setting is limited
by the machine learning shortcomings.

8.2.7 Answers to the framework questions

In Chapter 3, we compiled a set of questions that continual learning approaches should answer to
have a proper explanation of the setting and the method.

Here, we compile the global answers for those questions concerning the thesis results.

• Q1: Does some data need to be stored? If yes, how and what for? (e.g. regularization,
re-training, validation)?

Yes, we store data for model selection purposes (validation set) and in the rehearsal approaches
for remembering.

• Q2: Is the algorithm tuned based on the final performance? I.e. is it possible to go back in
time to improve performance?

Normally no, but we admit that some hyper-parameters have been tuned empirically, so we
did not respect the temporal coherence perfectly in our results.

• Q3: Are data distributions assumed i.i.d. at any point?

Yes, the data distribution is assumed iid by part (iid during each task). Except in reinforce-
ment learning experiments.

• Q4: Is each task assumed to be encountered only once?

Yes, for unsupervised learning, no for the other experiments (even if all tasks are only en-
countered only once in the reported experiments for clearer evaluation purposes).

• Q5: Is the continual learning algorithm agnostic with respect to the structure of the training
data stream? (e.g. number of classes, numbers of tasks, number of learning objectives...)

Yes, the number of classes / tasks can be dynamically changed.

• Q6: Does the approach needs a pretrained model for the CL setting? If so, what is the new
knowledge that needs to be acquired while learning continually?

No pretrained model is used for continual learning experiments.

• Q7: How much available memory does the algorithm require while learning? Does the memory
capacity requirement change as more tasks are learned?

The model architecture is chosen empirically based on the non-continual performance on
classical benchmarks, it stays fixed. Only the output layer can be dynamically changed to
add more classes. In rehearsal experiments the memory grow as there are more past tasks.

• Q8: Is the continual learning algorithm constrained in terms of computational overhead for
each learning experience? Does the computational overhead increase over the task sequence?

There is no particular constraint, the amount of computation increases at least linearly with
the number of same size tasks.

8.3. CONTINUAL LEARNING PITFALLS 145

• Q9: Is the continual learning algorithm agnostic with respect to the data type? (e.g. images,
video, text,...)

The architecture model is designed for images and their dimension is known in advance.

• Q10: Is the continual learning algorithm able to handle situations where there is not enough
time to learn?

Not yet for generative replay. For rehearsal, yes since the algorithms just need the time to
save data to remember them.

• Q11: In the presence of multiple tasks, is the task label available to the algorithm during the
training phase? And during evaluation?

Task label is used for training but not for testing.

• Q12: Are all the data labeled? or only the first training set? Can the user provide sparse
label/feedback (e.g. active learning) to correct the system errors?

In supervised experiments, all data are labeled, the labels are also used for evaluation in
unsupervised learning, there are sparse labels for reinforcement learning.

• Q13: What is expected from the algorithm to remember at the end of the full stream? Is it
acceptable to forget somehow, when task, context or supervision change?

Since the number of tasks in the experiments is not very high, the algorithm is expected to
remember everything as much as possible.

8.3 Continual Learning Pitfalls

With regard to the potential use cases from Section 8.1.2, it is important to not fall into pitfalls
that do not help to push forward true objectives.

8.3.1 The bias of the future

In opposition to classical machine learning, the temporality in continual learning is essential. A
CL algorithm should be prepared for its future without knowing it. Therefore hypothesis should
be done about the future. In a chaotic world, it would not be possible to make any plan about
the future, fortunately, we are not in a chaotic world and we can have reasonable hypothesis of the
future to consider what can likely happen or not.

Nevertheless, we should not use the future to improve learning algorithm. Indeed, in research
experiments we can virtually control the temporality of learning experiences and potentially use
the future. Thus, we should be cautious to not create causal incoherence.

The main problem is that tuning the parameter at time t = 0 based on results at time t > 0
is aberrant. Algorithms can not be perfectly designed in a one-shot process, however, if they are
designed on one curriculum they should be tested on another one to be valuable.

In the scope of continual learning, the hyper-parameter should be selected only based on the
present tasks and past tasks. In a lifelong task, we believe the use of populations of models might be
a good solution to deal with hyper-parameters selection. Indeed if we have a population of models
with different hyper-parameters we could select the best hyper-parameter in one run.

146 CHAPTER 8. DISCUSSION

8.3.2 Spread out objectives

As explain in the Section 8.1, continual learning is a wide research domain with ambitious expec-
tations. However, it is clear that no algorithm can tackle all learning situations. Understandably,
algorithms have a limited scope of application, aiming at finding the algorithm that can solve all
problems is chimeric.

One of the pitfalls in continual learning is to not specify what kind of setting is targeted. It
is probably not possible to find an approach that can solve catastrophic forgetting no matter the
subject. Then, to better address continual learning approaches and application generally it is
appropriate to specify precisely the goals and scope of a research project. The question presented
in Section 8.2.7 and Chapter 3 should allow to specify the essential aspects of a continual learning
research project such as the learning subject, the learning setting, the learning objectives and the
learning tools.

Therefore, we should target reasonable goals to expect to be able to bring useful solutions and
not being lost in a far too big space of exploration.

8.3.3 Scalability: a Double-Edged Sword

In machine learning research, a comment often present in article reviews is “Have you tried on harder
problems?”. There exist many incentives to try to tackle difficult problems in order to validate a
theory or an approach. However, those incentives are just a rule of thumb following the adage “who
can do more can do less”. However, in machine learning, the successful transfer from one settings
to another might have low correlation with the difficulties of tasks.

Then, asking for proof of scalability is probably more a mandatory obstacle to overcome to
have recognition than a legitimate request for evaluation. Asking for more baseline or compar-
isons however might be a better request to estimate the legitimacy and the appropriateness of any
approach.

In continual learning (and in other machine learning fields), the MNIST dataset is often used,
and reviewers often ask for harder settings rather than for stronger baselines. However, it is not clear
if continual learning specific difficulties are correlated with machine learning difficulties. Therefore
asking for harder datasets is not necessarily a service for the community. Asking for more datasets
can however be legitimate to compare approaches with similar results.

In the next section, we gather a set of recommendations that we believe are important to have
in mind for research projects in continual learning.

8.4 Research recommendations

For more concrete indications on what we consider worthwhile checking while creating a CL ap-
proach, we suggest a set of recommendations. Those recommendation point out research topics
that should be privileged or methodology that should be respected.

Recommendation 1. On-line capabilities: CL algorithms should adapt to new data as soon as
they are available without assumptions like the number of tasks or classes.

Recommendation 2. Autonomous inference: CL algorithms should be autonomous at least for
inference, therefore they should not assume labeling information at test time.

8.4. RESEARCH RECOMMENDATIONS 147

Recommendation 3. Scalability evaluation: In order to provide a proper evaluation of the scal-
ability and continual learning performance, we recommend, as the authors from [69], to evaluate
algorithms on more than two tasks.

Recommendation 4. Resources evaluation: To be practical, CL systems should evaluate resources
consumption as for memory or computation.

Recommendation 5. Reporting metrics: We recommend reporting exactly the targeted objectives
of the method and report the associated metrics.

Recommendation 6. Ablation studies: we recommend reporting ablation studies to motivate
as best as possible the different components and choices made in the CL algorithm and identify
their importance for the different objectives or tools (learning without forgetting, transfer, few-shot-
learning,...).

Recommendation 7. Distributional shifts: We recommend to formally describe the mechanism to
handle distributional shifts, not only when tasks change, but also among batches where data points
conform to different distributions.

Recommendation 8. Report precisely and clearly how an approach learns and the assumptions it
make, as described in the framework (Chapter 3).

In this chapter, we discussed continual objectives and how specific criteria can be put in long
term ambitions. We presented the global aim of the thesis regarding those objectives and justified
the different choices made. We compiled a set of pitfalls that can divert continual learning from
its progress and its potential applications and finally proposed a set of recommendation rules for
continual learning. In the next chapter, we will conclude this thesis and provide some potential
future research directions.

Chapter 9

Conclusion

To conclude this thesis, we will first summarize the contributions presented in this manuscript.
Then, we present research directions that could extend this work and improve the understanding
and efficiency of replay methods for continual learning.

9.1 Summary of Contributions

The overall aim of the thesis was to study methods able to learn on incremental settings and which
do not rely on any supervision to be deployable in real world applications.

First of all, we presented a framework for continual learning, built on top of [146] framework.
This framework makes it possible to frame any continual learning approach systematically. It helps
to rigorously set out the method, the scope and the evaluation of a CL algorithm to ease the
comparison of the methods and transfer from one application to another.

Second, we demonstrate the advantages of replay methods in comparison with regularization
and dynamic architecture methodology. We show that in the absence of task labels, the replay is
the only method that could learn classification incrementally.

Third, we applied replay methods in unsupervised learning (Chapter 5), supervised learning
(Chapter 6) and reinforcement learning (Chapter 6) settings. We experimented, in particular, the
generative replay methods and introduced the “Conditional Replay” method for continual learning.
We showed that generative replay is agnostic to the test label and the number of tasks. Moreover,
the generative model learns to memorize in a potentially more compact way than the initial dataset,
it can generate never seen samples and offer its generalization capacity to learn downstream tasks.
We also used the rehearsal strategy for multi-task continual reinforcement learning, presenting the
DiscoRL algorithm. DiscoRL advantages are the unconditional ability to remember thanks to the
hard memory process, the independence of individual policy learning and global policy learning
without preventing forward transfer. We showed the effectiveness of the method on robots both in
simulation and in real-life settings.

Finally, we present an extensive discussion on continual learning ultimate objectives, the choices
made in the thesis experiments, the pitfalls of continual learning research and we introduce a list
of recommendations which should help to push forward the limits of continual learning.

149

150 CHAPTER 9. CONCLUSION

9.2 Future Research

We presented our contributions to research in continual learning with replay methods. However,
many research directions may improve these methods. We mention here several of them: im-
proving sampling methods, improving generative models, detecting concept drift, improving hyper-
parameters selection with meta-learning and estimating knowledge retention. Progress in those
research direction will push continual learning possibilities forward.

9.2.1 Improving Replay Methods

Even if theoretically the replay method has clear advantages, there are still potential improvements,
in particular in the construction of the memory either by improving the validation of generative
models for memory replay or by improving the selection criterion for coreset. The data replayed
should be representative enough to remember the task and general enough to be used in other tasks.
Another research subject that would deserve to be studied is the protection against overfitting
memory and insuring a good generalization. Sampling the memory should then be carefully done
to find the good trade-off between the benefit of the memory without spoiling it. Smart sampling
would also helps to reduce the algorithms computation consumption.

9.2.2 Improving Generative Models

Generative models are promising for continual learning. They theoretically propose a satisfying
memorization solution for neural networks. However, in the generative replay framework, the
generative model is a serious bottleneck in the learning process both in computation and accuracy.
Their training is long, computation heavy and they often suffer from instability.

Since the experiments proposed in this thesis were performed, it seems that a lot of progress
has been made in generated image quality. Therefore, we hope that those progresses will overcome
generative model current limitations and fully exploit their potential for continual learning.

9.2.3 Detecting Concept Drift

In this thesis, we did not tackle the problem of concept drift detection. This problem is probably
as crucial as tackling catastrophic forgetting for continual learning when the i.i.d assumption does
not hold anywhere in the learning curricula. It would be worth studying it more intensively, as it
is essential to make lifelong learning work.

9.2.4 Improving Hyper-Parameter Selection with Meta-Continual Learning

As discussed, in Chapter 2, the hyper-parameters (HP) selection is difficult in continual learning.
In classical machine learning, we can select HPs that minimize validation set loss. However, in
continual learning, we don’t have access to the full validation set. It is then crucial to develop
strategies to improve HP selection.

Meta-learning, or learning to learn, is a training concept that aims at improving the learning
process on new tasks by learning from many others. Meta-algorithms learn the best parameters
or/and hyper-parameters to solve new tasks efficiently. In continual learning, it could help to
prepare learning algorithms for future tasks and improve existing strategies. It has already been
used in many approaches [197, 105, 12].

9.2. FUTURE RESEARCH 151

For replay methods, meta-continual learning could be useful to improve memorization pro-
cesses, especially by automatically learning the memorization hyper-parameters. For example, it
could improve its learning of criterion for data selection or improve memory sampling to maximize
remembering and minimize overfitting.

Nevertheless, meta-learning needs to replay tasks several times to learn (or at least similar tasks)
and it does not remember from one task to another. It might thus not be relevant in all continual
learning settings.

9.2.5 Estimating Knowledge Retention

In this thesis, the algorithm’s goal is, at any time, to remember everything of the past in the active
memory. Knowledge retention is only estimated as the knowledge that can be directly used for
inference. For example, in classification, we only check if the neural network can correctly classify
test images. However, latent representations from past tasks can be hidden in the weights but can
not be directly activated, i.e. the neural network can have memories of past tasks in inner layers
without being able to use them directly because, for example, the output layer has been modified.
It would be interesting to tell the difference between a model that still has latent representations
of past tasks and a model that forgot everything.

Therefore, it would be relevant to develop methods that promote latent knowledge which could
be easily reactivated and valuable again.

Bibliography

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Good-
fellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz
Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek
Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal
Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensor-
Flow: Large-scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[2] Alessandro Achille, Tom Eccles, Loic Matthey, Christopher P Burgess, Nick Watters, Alexan-
der Lerchner, and Irina Higgins. Life-long disentangled representation learning with cross-
domain latent homologies. arXiv preprint arXiv:1808.06508, 2018.

[3] Pulkit Agrawal, Ashvin Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to
poke by poking: Experiential learning of intuitive physics. CoRR, abs/1606.07419, 2016.

[4] Rahaf Aljundi. Continual learning in neural networks. arXiv preprint arXiv:1910.02718, 2019.

[5] Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Char-
lin, and Tinne Tuytelaars. Online continual learning with maximal interfered retrieval. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems 32, pages 11849–11860. Curran
Associates, Inc., 2019.

[6] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning
with a network of experts. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3366–3375, 2017.

[7] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selec-
tion for online continual learning. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems
32, pages 11816–11825. Curran Associates, Inc., 2019.

[8] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welin-
der, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. In Advances in Neural Information Processing Systems, pages 5048–5058,
2017.

153

154 BIBLIOGRAPHY

[9] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint
arXiv:1701.07875, 2017.

[10] Pablo Azagra, Florian Golemo, Yoan Mollard, Manuel Lopes, Javier C Civera, and Ana C
Murillo. A Multimodal Dataset for Object Model Learning from Natural Human-Robot
Interaction. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS 2017), Vancouver, Canada, September 2017.

[11] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra, Ian J. Goodfellow, Ar-
naud Bergeron, Nicolas Bouchard, and Yoshua Bengio. Theano: new features and speed
improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012 Workshop,
2012.

[12] Shawn Beaulieu, Lapo Frati, Thomas Miconi, Joel Lehman, Kenneth O Stanley, Jeff Clune,
and Nick Cheney. Learning to continually learn. arXiv preprint arXiv:2002.09571, 2020.

[13] F. Bellas, R. J. Duro, A. Faina, and D. Souto. Multilevel darwinist brain (mdb): Artificial
evolution in a cognitive architecture for real robots. volume 2, pages 340–354, Dec 2010.

[14] Francisco Bellas, José Antonio Becerra, and Richard J Duro. Using promoters and functional
introns in genetic algorithms for neuroevolutionary learning in non-stationary problems. Neu-
rocomputing, 72(10-12):2134–2145, 2009.

[15] Francisco Bellas, Andrés Faiña, Gervasio Varela, and Richard J Duro. A cognitive devel-
opmental robotics architecture for lifelong learning by evolution in real robots. pages 1–8,
2010.

[16] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. Journal of Artificial Intelligence
Research, 47:253–279, 2013.

[17] Richard Bellman. Dynamic Programming. Dover Publications, 1957.

[18] Eden Belouadah and Adrian Popescu. Deesil: Deep-shallow incremental learning. In Proceed-
ings of the European Conference on Computer Vision (ECCV), pages 0–0, 2018.

[19] Eden Belouadah and Adrian Popescu. Scail: Classifier weights scaling for class incremental
learning. In The IEEE Winter Conference on Applications of Computer Vision, pages 1266–
1275, 2020.

[20] Yoshua Bengio et al. Learning deep architectures for ai. Foundations and trends® in Machine
Learning, 2(1):1–127, 2009.

[21] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.
In Proceedings of the 26th annual international conference on machine learning, pages 41–48.
ACM, 2009.

[22] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Jour-
nal of Machine Learning Research, 13(Feb):281–305, 2012.

[23] David Berthelot, Thomas Schumm, and Luke Metz. Began: boundary equilibrium generative
adversarial networks. arXiv preprint arXiv:1703.10717, 2017.

BIBLIOGRAPHY 155

[24] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat Flepp,
Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai Zhang, Xin Zhang,
Jake Zhao, and Karol Zieba. End to end learning for self-driving cars. CoRR, abs/1604.07316,
2016.

[25] A. Borji. Pros and Cons of GAN Evaluation Measures. ArXiv e-prints, February 2018.

[26] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In in COMP-
STAT, 2010.

[27] Pavel Brazdil, Christophe Giraud-Carrier, Carlos Soares, and Ricardo Vilalta. Metalearning:
Applications to Data Mining. Springer Publishing Company, Incorporated, 1 edition, 2008.

[28] Nicolas Bredeche, Evert Haasdijk, and Abraham Prieto. Embodied evolution in collective
robotics: A review. Frontiers in Robotics and AI, 5:12, 2018.

[29] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In International Conference on Learning Representations, 2019.

[30] Peter Bühlmann and Sara van de Geer. Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer Publishing Company, Incorporated, 1st edition, 2011.

[31] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A.
Efros. Large-scale study of curiosity-driven learning. In ICLR, 2019.

[32] Lucas Caccia, Eugene Belilovsky, Massimo Caccia, and Joelle Pineau. Online learned con-
tinual compression with adaptative quantization module. arXiv preprint arXiv:1911.08019,
2019.

[33] R. Camoriano, G. Pasquale, C. Ciliberto, L. Natale, L. Rosasco, and G. Metta. Incremental
robot learning of new objects with fixed update time. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 3207–3214, May 2017.

[34] Raffaello Camoriano, Silvio Traversaro, Lorenzo Rosasco, Giorgio Metta, and Francesco Nori.
Incremental semiparametric inverse dynamics learning. In Robotics and Automation (ICRA),
2016 IEEE International Conference on, pages 544–550. IEEE, 2016.

[35] Angelo Cangelosi and Matthew Schlesinger. From babies to robots: The contribution of
developmental robotics to developmental psychology. Child Development Perspectives, 2018.

[36] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka Jr, and
Tom M Mitchell. Toward an architecture for never-ending language learning. In AAAI,
volume 5, page 3. Atlanta, 2010.

[37] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, Jul 1997.

[38] Hugo Caselles-Dupré, Michael Garcia-Ortiz, and David Filliat. S-TRIGGER: Continual
State Representation Learning via Self-Triggered Generative Replay. arXiv e-prints, page
arXiv:1902.09434, Feb 2019.

156 BIBLIOGRAPHY

[39] Francisco M Castro, Manuel J Marin-Jimenez, Nicolas Guil, Cordelia Schmid, and Karteek
Alahari. End-to-end incremental learning. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 233–248, 2018.

[40] Tommaso Cavallari, Stuart Golodetz, Nicholas A Lord, Julien Valentin, Luigi Di Stefano, and
Philip HS Torr. On-the-fly adaptation of regression forests for online camera relocalisation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4457–4466, 2017.

[41] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr. Rieman-
nian walk for incremental learning: Understanding forgetting and intransigence. In ECCV,
2018.

[42] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Effi-
cient lifelong learning with a-gem. In ICLR, 2019.

[43] Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial
Intelligence and Machine Learning, 12(3):1–207, 2018.

[44] François Chollet. keras. https://github.com/fchollet/keras, 2015.

[45] Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin,
Pieter Abbeel, andWojciech Zaremba. Transfer from simulation to real world through learning
deep inverse dynamics model. arXiv preprint arXiv:1610.03518, 2016.

[46] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto,
and David Ha. Deep learning for classical japanese literature. CoRR, 2018.

[47] Felipe Codevilla, Matthias Müller, Alexey Dosovitskiy, Antonio López, and Vladlen Koltun.
End-to-end driving via conditional imitation learning. CoRR, abs/1710.02410, 2017.

[48] Cédric Colas, Pierre Fournier, Olivier Sigaud, and Pierre-Yves Oudeyer. CURIOUS: intrinsi-
cally motivated multi-task, multi-goal reinforcement learning. CoRR, abs/1810.06284, 2018.

[49] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. GEP-PG: decoupling exploration and
exploitation in deep reinforcement learning algorithms. CoRR, abs/1802.05054, 2018.

[50] Alvaro Collet, Bo Xiong, Corina Gurau, Martial Hebert, and Siddhartha S Srinivasa. Herb-
disc: Towards lifelong robotic object discovery. The International Journal of Robotics Re-
search, 34(1):3–25, 2015.

[51] C. Craye, D. Filliat, and J. Goudou. Exploration strategies for incremental learning of object-
based visual saliency. In 2015 Joint IEEE International Conference on Development and
Learning and Epigenetic Robotics (ICDL-EpiRob), pages 13–18, Aug 2015.

[52] Céline Craye, Timothée Lesort, David Filliat, and Jean-François Goudou. Exploring to learn
visual saliency: The rl-iac approach. Robotics and Autonomous Systems, 112:244–259, 2019.

[53] Gabriela Csurka. Domain adaptation for visual applications: A comprehensive survey. CoRR,
abs/1702.05374, 2017.

https://github.com/fchollet/keras

BIBLIOGRAPHY 157

[54] P. T. Dat, A. Dutt, D. Pellerin, and G. Quénot. Classifier training from a generative model.
In 2019 International Conference on Content-Based Multimedia Indexing (CBMI), pages 1–6,
Sep. 2019.

[55] Yann N. Dauphin, Harm de Vries, Junyoung Chung, and Yoshua Bengio. Rmsprop and
equilibrated adaptive learning rates for non-convex optimization. CoRR, abs/1502.04390,
2015.

[56] Jean-Francois Delvenne. Science of memory: Concepts. henry l. roediger iii, yadin dudai, and
susan m. fitzpatrick (eds.). oxford university press, new york, 2007. no. of pages 464. isbn
978-0-19-531044-3.(paperback). Applied Cognitive Psychology: The Official Journal of the
Society for Applied Research in Memory and Cognition, 23(6):895–896, 2009.

[57] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[58] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng, Ziyan Wu, and Rama Chellappa.
Learning without memorizing. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[59] Natalia Díaz-Rodríguez, Vincenzo Lomonaco, David Filliat, and Davide Maltoni. Don’t for-
get, there is more than forgetting: new metrics for Continual Learning. In Workshop on Con-
tinual Learning, NeurIPS 2018 (Neural Information Processing Systems, Montreal, Canada,
December 2018.

[60] Carl Doersch and Andrew Zisserman. Multi-task self-supervised visual learning. In Proceed-
ings of the IEEE International Conference on Computer Vision, pages 2051–2060, 2017.

[61] Stephane Doncieux, David Filliat, Natalia Díaz-Rodríguez, Timothy Hospedales, Richard
Duro, Alexandre Coninx, Diederik M. Roijers, Benoît Girard, Nicolas Perrin, and Olivier
Sigaud. Open-ended learning: a conceptual framework based on representational redescrip-
tion. Frontiers in Neurorobotics, 2018.

[62] Timothy J. Draelos, Nadine E. Miner, Christopher C. Lamb, Jonathan A. Cox, Craig M.
Vineyard, Kristofor D. Carlson, William M. Severa, Conrad D. James, and James B. Aimone.
Neurogenesis deep learning: Extending deep networks to accommodate new classes. 2017
International Joint Conference on Neural Networks (IJCNN), pages 526–533, 2017.

[63] Wuyang Duan. Learning state representations for robotic control. M. Thesis, 2017.

[64] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[65] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
arXiv preprint arXiv:1808.05377, 2018.

[66] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes challenge: A retrospective. International Journal of Computer
Vision, 111(1):98–136, January 2015.

158 BIBLIOGRAPHY

[67] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338, June
2010.

[68] Linxi Fan, Yuke Zhu, Jiren Zhu, Zihua Liu, Orien Zeng, Anchit Gupta, Joan Creus-Costa,
Silvio Savarese, and Li Fei-Fei. Surreal: Open-source reinforcement learning framework and
robot manipulation benchmark. In Conference on Robot Learning, 2018.

[69] Sebastian Farquhar and Yarin Gal. Towards robust evaluations of continual learning. arXiv
preprint arXiv:1805.09733, 2018.

[70] Li Fei-Fei, Rob Fergus, and Pietro Perona. One-shot learning of object categories. IEEE
transactions on pattern analysis and machine intelligence, 28(4):594–611, 2006.

[71] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A.
Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent
in super neural networks. CoRR, abs/1701.08734, 2017.

[72] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum,
and Frank Hutter. Efficient and robust automated machine learning. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information
Processing Systems 28, pages 2962–2970. Curran Associates, Inc., 2015.

[73] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. arXiv preprint arXiv:1703.03400, 2017.

[74] Chelsea Finn, Xin Yu Tan, Yan Duan, Trevor Darrell, Sergey Levine, and Pieter Abbeel.
Deep spatial autoencoders for visuomotor learning. CoRR, abs/1509.06113, 2015.

[75] Sébastien Forestier, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated goal
exploration processes with automatic curriculum learning. arXiv preprint arXiv:1708.02190,
2017.

[76] Robert M. French. Catastrophic forgetting in connectionist networks. Trends in Cognitive
Sciences, 3(4):128–135, 1999.

[77] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a mechanism
of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4):193–202,
1980.

[78] T. Furlanello, J. Zhao, A. M. Saxe, L. Itti, and B. S. Tjan. Active Long Term Memory
Networks. ArXiv e-prints, June 2016.

[79] Tommaso Furlanello, Zachary C Lipton, Michael Tschannen, Laurent Itti, and Anima Anand-
kumar. Born again neural networks. arXiv preprint arXiv:1805.04770, 2018.

[80] Dhiraj Gandhi, Lerrel Pinto, and Abhinav Gupta. Learning to fly by crashing. CoRR,
abs/1704.05588, 2017.

[81] Donald Geman, Stuart Geman, Neil Hallonquist, and Laurent Younes. Visual turing test for
computer vision systems. Proceedings of the National Academy of Sciences, 112(12):3618–
3623, 2015.

BIBLIOGRAPHY 159

[82] Alexander Gepperth and Barbara Hammer. Incremental learning algorithms and applications.
In European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, 2016.

[83] Alexander Gepperth and Cem Karaoguz. A Bio-Inspired Incremental Learning Architecture
for Applied Perceptual Problems. Cognitive Computation, 8:924 – 934, 2016.

[84] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[85] Florian Golemo. How to Train Your Robot - New Environments for Robotic Training and New
Methods for Transferring Policies from the Simulator to the Real Robot. Theses, Université
de Bordeaux, December 2018.

[86] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical investigation
of catastrophic forgetting in gradient-based neural networks. ArXiv e-prints, dec 2013.

[87] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[88] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative Adversarial Networks. arXiv e-prints,
page arXiv:1406.2661, Jun 2014.

[89] Alison Gopnik, Andrew Meltzoff, and Patricia Kuhl. The scientist in the crib: Minds, brains
and how children learn. Journal of Nervous and Mental Disease - J NERV MENT DIS, 189,
03 2001.

[90] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved training of wasserstein gans. In Advances in Neural Information Processing Systems,
pages 5767–5777, 2017.

[91] T. L. Hayes, R. Kemker, N. D. Cahill, and C. Kanan. New metrics and experimental paradigms
for continual learning. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 2112–21123, June 2018.

[92] Tyler L. Hayes, Nathan D. Cahill, and Christopher Kanan. Memory efficient experience replay
for streaming learning. CoRR, abs/1809.05922, 2018.

[93] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. CoRR, abs/1512.03385, 2015.

[94] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
international conference on computer vision, pages 1026–1034, 2015.

[95] Xu He and Herbert Jaeger. Overcoming catastrophic interference using conceptor-aided back-
propagation. In International Conference on Learning Representations, 2018.

[96] Yue He, Zheyan Shen, and Peng Cui. NICO: A Dataset Towards Non-I.I.D. Image Classifi-
cation. arXiv e-prints, page arXiv:1906.02899, Jun 2019.

http://www.deeplearningbook.org

160 BIBLIOGRAPHY

[97] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs Trained by a
Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. ArXiv e-prints, June
2017.

[98] Ashley Hill, Antonin Raffin, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, Rene
Traore, Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, and Yuhuai Wu. Stable baselines. https:
//github.com/hill-a/stable-baselines, 2018.

[99] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network.
In NIPS Deep Learning and Representation Learning Workshop (2015), pages 1–9, 2015.

[100] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified
classifier incrementally via rebalancing. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2019.

[101] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In Proceedings of the 32nd International Conference
on International Conference on Machine Learning - Volume 37, ICML’15, page 448–456.
JMLR.org, 2015.

[102] Herbert Jaeger. Using conceptors to manage neural long-term memories for temporal patterns.
Journal of Machine Learning Research, 18(13):1–43, 2017.

[103] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[104] Maximilian Jaritz, Raoul de Charette, Marin Toromanoff, Etienne Perot, and Fawzi
Nashashibi. End-to-end race driving with deep reinforcement learning. CoRR,
abs/1807.02371, 2018.

[105] Khurram Javed and Martha White. Meta-learning representations for continual learning. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 1818–1828. Curran Associates,
Inc., 2019.

[106] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM International Conference on Multimedia, MM
’14, page 675–678, New York, NY, USA, 2014. Association for Computing Machinery.

[107] D. Jiwoong Im, H. Ma, G. Taylor, and K. Branson. Quantitatively Evaluating GANs With
Divergences Proposed for Training. ArXiv e-prints, March 2018.

[108] Rico Jonschkowski and Oliver Brock. Learning state representations with robotic priors.
Autonomous Robots, 39(3):407–428, 2015.

[109] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim. Less-forgetting learning in deep
neural networks. CoRR, abs/1607.00122, 2016.

https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines

BIBLIOGRAPHY 161

[110] Christoph Käding, Erik Rodner, Alexander Freytag, and Joachim Denzler. Fine-tuning deep
neural networks in continuous learning scenarios. In Asian Conference on Computer Vision,
pages 588–605. Springer, 2016.

[111] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation. CoRR,
abs/1806.10293, 2018.

[112] René Traoré Kalifou, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Natalia Diaz-Rodriguez,
and David Filliat. Continual reinforcement learning deployed in real-life using policydistilla-
tion and sim2real transfer. In ICML Workshop on Multi-Task and Lifelong Learning, 2019.

[113] N. Kamra, U. Gupta, and Y. Liu. Deep Generative Dual Memory Network for Continual
Learning. ArXiv e-prints, October 2017.

[114] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4401–4410, 2019.

[115] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan. Measuring Catastrophic
Forgetting in Neural Networks. ArXiv e-prints, aug 2017.

[116] Ronald Kemker and Christopher Kanan. Fearnet: Brain-inspired model for incremental learn-
ing. In International Conference on Learning Representations, 2018.

[117] Seungsu Kim, Alexandre Coninx, and Stéphane Doncieux. From exploration to control:
learning object manipulation skills through novelty search and local adaptation. CoRR,
abs/1901.00811, 2019.

[118] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[119] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

[120] B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A. Al Sallab, Senthil
Yogamani, and Patrick Pérez. Deep Reinforcement Learning for Autonomous Driving: A
Survey. arXiv e-prints, page arXiv:2002.00444, Feb 2020.

[121] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks. Proc. of the national academy
of sciences, 2017.

[122] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research, 32(11):1238–1274, 2013.

[123] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

162 BIBLIOGRAPHY

[124] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[125] S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist., 22(1):79–
86, 03 1951.

[126] Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper R. R. Uijlings, Ivan Krasin, Jordi Pont-
Tuset, Shahab Kamali, Stefan Popov, Matteo Malloci, Tom Duerig, and Vittorio Ferrari. The
open images dataset V4: unified image classification, object detection, and visual relationship
detection at scale. CoRR, abs/1811.00982, 2018.

[127] Brenden Lake, Ruslan Salakhutdinov, Jason Gross, and Joshua Tenenbaum. One shot learning
of simple visual concepts. In Proceedings of the Annual Meeting of the Cognitive Science
Society, volume 33, 2011.

[128] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept
learning through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[129] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales Leonardis,
Gregory Slabaugh, and Tinne Tuytelaars. Continual learning: A comparative study on how
to defy forgetting in classification tasks, 2019.

[130] Adrien Laversanne-Finot, Alexandre Péré, and Pierre-Yves Oudeyer. Curiosity driven explo-
ration of learned disentangled goal spaces. CoRR, abs/1807.01521, 2018.

[131] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[132] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. public, 2010.

[133] Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Over-
coming catastrophic forgetting by incremental moment matching. In Advances in Neural
Information Processing Systems, pages 4652–4662, 2017.

[134] Timothée LESORT. Continual learning data former, January 2020.

[135] Timothée Lesort, Hugo Caselles-Dupré, Michael Garcia-Ortiz, Jean-François Goudou, and
David Filliat. Generative models from the perspective of continual learning. In IJCNN -
International Joint Conference on Neural Networks, Budapest, Hungary, Jul 2019.

[136] Timothée Lesort, Natalia Díaz-Rodríguez, Jean-François Goudou, and David Filliat. State
representation learning for control: An overview. Neural Networks, 2018.

[137] Timothée Lesort, Alexander Gepperth, Andrei Stoian, and David Filliat. Marginal replay
vs conditional replay for continual learning. In International Conference on Artificial Neural
Networks, pages 466–480. Springer, 2019.

[138] Timothée Lesort, Mathieu Seurin, Xinrui Li, Natalia Díaz Rodríguez, and David Filliat.
Unsupervised state representation learning with robotic priors: a robustness analysis. In
International Joint Conference on Neural Networks, 2019.

BIBLIOGRAPHY 163

[139] Timothée Lesort, Andrei Stoian, and David Filliat. Regularization shortcomings for continual
learning. arXiv preprint arXiv:1912.03049, 2019.

[140] Timothée Lesort, Andrei Stoian, Jean-François Goudou, and David Filliat. Training discrim-
inative models to evaluate generative ones. In Igor V. Tetko, Věra Kůrková, Pavel Karpov,
and Fabian Theis, editors, Artificial Neural Networks and Machine Learning – ICANN 2019:
Image Processing, pages 604–619, Cham, 2019. Springer International Publishing.

[141] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Davide Maltoni, David Filliat, and
Natalia Díaz-Rodríguez. Continual learning for robotics: Definition, framework, learning
strategies, opportunities and challenges. Information Fusion, 58:52 – 68, 2020.

[142] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

[143] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[144] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 8(3-4):293–321, 1992.

[145] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft
COCO: common objects in context. CoRR, abs/1405.0312, 2014.

[146] Vincenzo Lomonaco. Continual learning with deep architectures. 2019.

[147] Vincenzo Lomonaco, Karan Desai, Eugenio Culurciello, and Davide Maltoni. Continual re-
inforcement learning in 3d non-stationary environments. arXiv preprint arXiv:1905.10112,
2019.

[148] Vincenzo Lomonaco and Davide Maltoni. Comparing incremental learning strategies for
convolutional neural networks. In IAPR Workshop on Artificial Neural Networks in Pattern
Recognition, pages 175–184. Springer, 2016.

[149] Vincenzo Lomonaco and Davide Maltoni. CORe50: a New Dataset and Benchmark for
Continuous Object Recognition. In Sergey Levine, Vincent Vanhoucke, and Ken Goldberg,
editors, Proceedings of the 1st Annual Conference on Robot Learning, volume 78 of Proceedings
of Machine Learning Research, pages 17–26. PMLR, 13–15 Nov 2017.

[150] David Lopez-Paz and Marc-Aurelio Ranzato. Gradient episodic memory for continual learn-
ing. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 6467–6476.
Curran Associates, Inc., 2017.

[151] Max Lungarella, Giorgio Metta, Rolf Pfeifer, and Giulio Sandini. Developmental robotics: a
survey. Connection Science, 15(4):151–190, 2003.

[152] Natalia Lyubova, Serena Ivaldi, and David Filliat. From passive to interactive object learning
and recognition through self-identification on a humanoid robot. Autonomous Robots, page 23,
2015.

164 BIBLIOGRAPHY

[153] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network
to multiple tasks by learning to mask weights. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 67–82, 2018.

[154] Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by
iterative pruning. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7765–7773, 2018.

[155] Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-task
scenarios. Neural Networks, 116:56–73, 2019.

[156] Ajay Mandlekar, Yuke Zhu, Animesh Garg, Jonathan Booher, Max Spero, Albert Tung, Julian
Gao, John Emmons, Anchit Gupta, Emre Orbay, Silvio Savarese, and Li Fei-Fei. Roboturk:
A crowdsourcing platform for robotic skill learning through imitation. In Conference on Robot
Learning, 2018.

[157] Daniel J Mankowitz, Augustin Žídek, André Barreto, Dan Horgan, Matteo Hessel, John Quan,
Junhyuk Oh, Hado van Hasselt, David Silver, and Tom Schaul. Unicorn: Continual learning
with a universal, off-policy agent. arXiv preprint arXiv:1802.08294, 2018.

[158] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored ap-
proximate curvature. In International conference on machine learning, pages 2408–2417,
2015.

[159] Jan Matas, Stephen James, and Andrew J Davison. Sim-to-real reinforcement learning for
deformable object manipulation. arXiv preprint arXiv:1806.07851, 2018.

[160] Jan Mattner, Sascha Lange, and Martin A. Riedmiller. Learn to swing up and balance a real
pole based on raw visual input data. In Neural Information Processing - 19th International
Conference, ICONIP 2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part V, pages
126–133, 2012.

[161] James L McClelland, Bruce L McNaughton, and Randall C O’reilly. Why there are comple-
mentary learning systems in the hippocampus and neocortex: insights from the successes and
failures of connectionist models of learning and memory. Psychological review, 102(3):419,
1995.

[162] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks:
The sequential learning problem. In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[163] Martial Mermillod, Aurélia Bugaiska, and Patrick Bonin. The stability-plasticity dilemma:
investigating the continuum from catastrophic forgetting to age-limited learning effects. Fron-
tiers in psychology, 4(August):504, 2013.

[164] Umberto Michieli and Pietro Zanuttigh. Knowledge distillation for incremental learning in
semantic segmentation, 2019.

[165] M. Minsky. Steps toward artificial intelligence. Proceedings of the IRE, 49(1):8–30, Jan 1961.

BIBLIOGRAPHY 165

[166] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[167] T. Mitchell, W. Cohen, E. Hruscha, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi, M. Gard-
ner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mohammad, N. Nakashole, E. Pla-
tanios, A. Ritter, M. Samadi, B. Settles, R. Wang, D. Wijaya, A. Gupta, X. Chen, A. Saparov,
M. Greaves, and J. Welling. Never-ending learning. In AAAI, 2015. : Never-Ending Learning
in AAAI-2015.

[168] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602, 2013.

[169] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015.

[170] Vincent Moens and Alexandre Zenon. Learning and forgetting using reinforced bayesian
change detection. bioRxiv, 2018.

[171] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng.
Reading digits in natural images with unsupervised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning 2011, 2011.

[172] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational continual
learning. In International Conference on Learning Representations, 2018.

[173] Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural
samplers using variational divergence minimization. In Advances in Neural Information Pro-
cessing Systems, pages 271–279, 2016.

[174] Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier GANs. In Proceedings of the 34th International Conference on Machine
Learning, 2017.

[175] OpenAI, :, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław
Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal
Józefowicz, Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé
de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szy-
mon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with Large Scale
Deep Reinforcement Learning, Dec 2019.

[176] P.-Y. Oudeyer, F. Kaplan, and V.V. Hafner. Intrinsic motivation systems for autonomous
mental development. Evolutionary Computation, IEEE Transactions on, 11(2):265–286, April
2007.

[177] Pierre-Yves Oudeyer. Computational theories of curiosity-driven learning. CoRR,
abs/1802.10546, 2018.

166 BIBLIOGRAPHY

[178] German I. Parisi, Tani Jun, Cornelius Weber, and Stefan Wermter. Lifelong Learning of Spa-
tiotemporal Representations with Dual-Memory Recurrent Self-Organization. arXiv preprint
arXiv:1805.10966, pages 1–20, 2018.

[179] German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 113:54 – 71,
2019.

[180] G. Pasquale, C. Ciliberto, F. Odone, L. Rosasco, and L. Natale. Teaching icub to recognize
objects using deep convolutional neural networks. In Proceedings of the 4th International
Conference on Machine Learning for Interactive Systems - Volume 43, MLIS’15, pages 21–
25. JMLR.org, 2015.

[181] G. Pasquale, C. Ciliberto, L. Rosasco, and L. Natale. Object identification from few examples
by improving the invariance of a deep convolutional neural network. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4904–4911, Oct
2016.

[182] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. dAlché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[183] V. M. Patel, R. Gopalan, R. Li, and R. Chellappa. Visual domain adaptation: A survey of
recent advances. IEEE Signal Processing Magazine, 32(3):53–69, May 2015.

[184] Lorenzo Pellegrini, Gabrile Graffieti, Vincenzo Lomonaco, and Davide Maltoni. Latent replay
for real-time continual learning. arXiv preprint arXiv:1912.01100, 2019.

[185] Anastasia Pentina and Christoph H Lampert. Lifelong learning with non-iid tasks. In Ad-
vances in Neural Information Processing Systems, pages 1540–1548, 2015.

[186] B. Pfulb and A. Gepperth. A comprehensive, application-oriented study of catastrophic
forgetting in DNNs. In International Conference on Learning Representations, 2019.

[187] Lerrel Pinto and Abhinav Gupta. Supersizing self-supervision: Learning to grasp from 50k
tries and 700 robot hours. CoRR, abs/1509.06825, 2015.

[188] Lorien Y Pratt. Discriminability-based transfer between neural networks. In Advances in
neural information processing systems, pages 204–211, 1993.

[189] Antonin Raffin, Ashley Hill, Kalifou René Traoré, Timothée Lesort, Natalia Díaz-Rodríguez,
and David Filliat. Decoupling feature extraction from policy learning: assessing benefits of
state representation learning in goal based robotics. In ICLR, 2019.

[190] Antonin Raffin, Ashley Hill, René Traoré, Timothée Lesort, Natalia Díaz-Rodríguez, and
David Filliat. S-rl toolbox: Environments, datasets and evaluation metrics for state repre-
sentation learning. arXiv preprint arXiv:1809.09369, 2018.

BIBLIOGRAPHY 167

[191] Jason Ramapuram, Magda Gregorova, and Alexandros Kalousis. Lifelong generative model-
ing. arXiv preprint arXiv:1705.09847, 2017.

[192] Suman Ravuri and Oriol Vinyals. Classification accuracy score for conditional generative
models. In Advances in Neural Information Processing Systems, pages 12247–12258, 2019.

[193] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2001–2010, 2017.

[194] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In Proceedings of the 31th International
Conference on Machine Learning,, 2014.

[195] Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep imitative models for flexible
inference, planning, and control. CoRR, abs/1810.06544, 2018.

[196] Martin Riedmiller, Roland Hafner, Thomas Lampe, Michael Neunert, Jonas Degrave, Tom
Van de Wiele, Volodymyr Mnih, Nicolas Heess, and Jost Tobias Springenberg. Learning by
playing-solving sparse reward tasks from scratch. arXiv preprint arXiv:1802.10567, 2018.

[197] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Ger-
ald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing
interference. arXiv preprint arXiv:1810.11910, 2018.

[198] Mark B Ring. Toward a formal framework for continual learning. In NIPS workshop on
Inductive Transfer, Whistler, Canada., 2005.

[199] Mark Bishop Ring. Continual learning in reinforcement environments. PhD thesis, University
of Texas at Austin Austin, Texas 78712, 1994.

[200] Amanda Rios and Laurent Itti. Closed-loop memory gan for continual learning. In Proceedings
of the 28th International Joint Conference on Artificial Intelligence, IJCAI’19, pages 3332–
3338. AAAI Press, 2019.

[201] Hippolyt Ritter, Aleksandar Botev, and David Barber. Online structured laplace approxima-
tions for overcoming catastrophic forgetting. In Advances in Neural Information Processing
Systems, pages 3738–3748, 2018.

[202] Anthony Robins. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection Science,
7(2):123–146, 1995.

[203] Diego Romeres, Mattia Zorzi, Raffaello Camoriano, and Alessandro Chiuso. Online semi-
parametric learning for inverse dynamics modeling. arXiv e-prints, page arXiv:1603.05412,
March 2016.

[204] Diego Romeres, Mattia Zorzi, Raffaello Camoriano, Silvio Traversaro, and Alessandro Chiuso.
Derivative-free online learning of inverse dynamics models. CoRR, abs/1809.05074, 2018.

[205] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Press, Upper Saddle River, NJ, USA, 3rd edition, 2009.

168 BIBLIOGRAPHY

[206] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell. Progressive neural networks. ArXiv e-prints, jun 2016.

[207] Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Pol-
icy Distillation. arXiv e-prints, page arXiv:1511.06295, Nov 2015.

[208] Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia
Hadsell. Sim-to-real robot learning from pixels with progressive nets. CoRR, abs/1610.04286,
2016.

[209] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. CoRR, abs/1606.03498, 2016.

[210] Shibani Santurkar, Ludwig Schmidt, and Aleksander Mądry. A classification-based study of
covariate shift in gan distributions. arXiv preprint arXiv:1711.00970, 2017.

[211] Pradipta Sarkar and William Q Meeker. A bayesian on-line change detection algorithm with
process monitoring applications. Quality Engineering, 10(3):539–549, 1998.

[212] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[213] Jürgen Schmidhuber. Formal theory of creativity, fun, and intrinsic motivation (1990–2010).
IEEE Transactions on Autonomous Mental Development, 2(3):230–247, 2010.

[214] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks,
61:85–117, 2015.

[215] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International conference on machine learning, pages 1889–1897,
2015.

[216] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[217] Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable frame-
work for continual learning. In ICML, 2018.

[218] Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Continual learning in generative adversarial
nets. CoRR, abs/1705.08395, 2017.

[219] Joan Serra, Didac Suris, Marius Miron, and Alexandros Karatzoglou. Overcoming catas-
trophic forgetting with hard attention to the task. ICML, 80:4548–4557, 10–15 Jul 2018.

[220] Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-
Madison Department of Computer Sciences, 2009.

[221] Burr Settles. Active learning literature survey. Computer Sciences Technical Report 1648,
University of Wisconsin–Madison, 2009.

BIBLIOGRAPHY 169

[222] Haseeb Shah, Khurram Javed, and Faisal Shafait. Distillation techniques for pseudo-rehearsal
based incremental learning. arXiv preprint arXiv:1807.02799, 2018.

[223] Qi She, Fan Feng, Xinyue Hao, Qihan Yang, Chuanlin Lan, Vincenzo Lomonaco, Xuesong Shi,
Zhengwei Wang, Yao Guo, Yimin Zhang, Fei Qiao, and Rosa H. M. Chan. Openloris-object:
A dataset and benchmark towards lifelong object recognition, 2019.

[224] Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward:
Self-supervision for reinforcement learning. arXiv preprint arXiv:1612.07307, 2016.

[225] Xuesong Shi, Dongjiang Li, Pengpeng Zhao, Qinbin Tian, Yuxin Tian, Qiwei Long, Chunhao
Zhu, Jingwei Song, Fei Qiao, Le Song, Yangquan Guo, Zhigang Wang, Yimin Zhang, Baoxing
Qin, Wei Yang, Fangshi Wang, Rosa H. M. Chan, and Qi She. Are we ready for service
robots? the openloris-scene datasets for lifelong slam, 2019.

[226] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep
generative replay. In Advances in Neural Information Processing Systems, pages 2990–2999,
2017.

[227] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremental learning of object
detectors without catastrophic forgetting. CoRR, abs/1708.06977, 2017.

[228] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. How good is my gan? In
Proceedings of the European Conference on Computer Vision (ECCV), pages 213–229, 2018.

[229] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hass-
abis. Mastering the game of go with deep neural networks and tree search. Nature, 529:484–
503, 2016.

[230] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[231] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In International Conference on Learning Representations, 2015.

[232] Linda Smith and Michael Gasser. The development of embodied cognition: Six lessons from
babies. Artificial life, 11:13–29, 12 2005.

[233] Shagun Sodhani, Sarathcon Chandar, and Yoshua Bengio. On training recurrent neural
networks for lifelong learning. CoRR, abs/1811.07017, 2018.

[234] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation us-
ing deep conditional generative models. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 3483–
3491. Curran Associates, Inc., 2015.

170 BIBLIOGRAPHY

[235] Pablo Sprechmann, Siddhant M Jayakumar, Jack W Rae, Alexander Pritzel, Adria Puig-
domenech Badia, Benigno Uria, Oriol Vinyals, Demis Hassabis, Razvan Pascanu, and Charles
Blundell. Memory-based parameter adaptation. arXiv preprint arXiv:1802.10542, 2018.

[236] Freek Stulp, Laura Herlant, Antoine Hoarau, and Gennaro Raiola. Simultaneous on-line
discovery and improvement of robotic skill options. In Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on, pages 1408–1413. IEEE, 2014.

[237] Yi Sun, Faustino Gomez, and Jürgen Schmidhuber. Planning to be surprised: Optimal
bayesian exploration in dynamic environments. In International Conference on Artificial
General Intelligence, pages 41–51. Springer, 2011.

[238] Niko Sünderhauf, Oliver Brock, Walter J. Scheirer, Raia Hadsell, Dieter Fox, Jürgen Leitner,
Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, and Peter Corke. The limits
and potentials of deep learning for robotics. CoRR, abs/1804.06557, 2018.

[239] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of ini-
tialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147, 2013.

[240] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The
MIT Press, second edition, 2018.

[241] Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning, volume 2.
MIT press Cambridge, 1998.

[242] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolu-
tions. In Computer Vision and Pattern Recognition (CVPR), 2015.

[243] Victor Talpaert, Ibrahim Sobh, B. Kiran, Patrick Mannion, Senthil Yogamani, Ahmad El-
Sallab, and Patrick Pérez. Exploring Applications of Deep Reinforcement Learning for
Real-world Autonomous Driving Systems. In 14th International Conference on Computer
Vision Theory and Applications, pages 564–572, Prague, Czech Republic, February 2019.
SCITEPRESS - Science and Technology Publications.

[244] Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell,
Nicolas Heess, and Razvan Pascanu. Distral: Robust multitask reinforcement learning. In
Advances in Neural Information Processing Systems, pages 4496–4506, 2017.

[245] Sebastian Thrun and Tom M Mitchell. Lifelong robot learning. In The biology and technology
of intelligent autonomous agents, pages 165–196. Springer, 1995.

[246] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel.
Domain randomization for transferring deep neural networks from simulation to the real world.
In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
23–30. IEEE, 2017.

[247] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033, Oct
2012.

BIBLIOGRAPHY 171

[248] René Traoré, Hugo Caselles-Dupré, Timothée Lesort, Te Sun, Guanghang Cai, Natalia Díaz
Rodríguez, and David Filliat. Discorl: Continual reinforcement learning via policy distillation.
CoRR, abs/1907.05855, 2019.

[249] Amal Rannen Triki, Rahaf Aljundi, Matthew B. Blaschko, and Tinne Tuytelaars. Encoder
based lifelong learning. CoRR, abs/1704.01920, 2017.

[250] Alan M Turing. Computing machinery and intelligence. In Parsing the Turing Test, pages
23–65. Springer, 2009.

[251] Leslie G Valiant. A theory of the learnable. In Proceedings of the sixteenth annual ACM
symposium on Theory of computing, pages 436–445. ACM, 1984.

[252] Aaron van den Oord, Oriol Vinyals, et al. Neural discrete representation learning. In Advances
in Neural Information Processing Systems, pages 6306–6315, 2017.

[253] H. van Hoof, N. Chen, M. Karl, P. van der Smagt, and J. Peters. Stable reinforcement learning
with autoencoders for tactile and visual data. In 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 3928–3934, Oct 2016.

[254] Roby Velez and Jeff Clune. Diffusion-based neuromodulation can eliminate catastrophic for-
getting in simple neural networks. PloS one, 12(11), 2017.

[255] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A. Efros. Dataset distillation.
CoRR, abs/1811.10959, 2018.

[256] Wei Wang, Vincent W. Zheng, Han Yu, and Chunyan Miao. A survey of zero-shot learning:
Settings, methods, and applications. ACM Trans. Intell. Syst. Technol., 10(2):13:1–13:37,
January 2019.

[257] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Growing a brain: Fine-tuning by
increasing model capacity. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2471–2480, 2017.

[258] Z Wang, E P Simoncelli, and A C Bovik. Multiscale structural similarity for image quality
assessment. In Proc 37th Asilomar Conf on Signals, Systems and Computers, 2003.

[259] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[260] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-
UCSD Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology,
2010.

[261] Juyang Weng, James McClelland, Alex Pentland, Olaf Sporns, Ida Stockman, Mriganka
Sur, and Esther Thelen. Autonomous mental development by robots and animals. Science,
291(5504):599–600, 2001.

[262] Jay M Wong. Towards lifelong self-supervision: A deep learning direction for robotics. arXiv
preprint arXiv:1611.00201, 2016.

172 BIBLIOGRAPHY

[263] Chenshen Wu, Luis Herranz, Xialei Liu, yaxing wang, Joost van de Weijer, and Bogdan
Raducanu. Memory replay gans: Learning to generate new categories without forgetting. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31, pages 5962–5972. Curran Associates,
Inc., 2018.

[264] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and Yun
Fu. Large scale incremental learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 374–382, 2019.

[265] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, Zhengyou
Zhang, and Yun Fu. Incremental classifier learning with generative adversarial networks.
CoRR, abs/1802.00853, 2018.

[266] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[267] Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with
dynamically expandable networks. arXiv preprint arXiv:1708.01547, 2017.

[268] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun: Construction of a
large-scale image dataset using deep learning with humans in the loop. CoRR, abs/1506.03365,
2015.

[269] Friedeman Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelli-
gence. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Con-
ference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
3987–3995, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[270] Chenyang Zhao, Timothy M Hospedales, Freek Stulp, and Olivier Sigaud. Tensor based knowl-
edge transfer across skill categories for robot control. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence, pages 3462–3468. AAAI Press, 2017.

[271] Guanyu Zhou, Kihyuk Sohn, and Honglak Lee. Online incremental feature learning with
denoising autoencoders. In Neil D. Lawrence and Mark Girolami, editors, Proceedings of
the Fifteenth International Conference on Artificial Intelligence and Statistics, volume 22
of Proceedings of Machine Learning Research, pages 1453–1461, La Palma, Canary Islands,
21–23 Apr 2012. PMLR.

Titre: Apprentissage Continu: S’attaquer à l’Oubli Foudroyant des Réseaux de Neurones Profonds grâce aux
Methodes à Rejeu de Données

Mots clés: Apprentissage profond, Apprentissage Continu, Régénération, Méthodes de Rejeu

Résumé:
Les humains apprennent toute leur vie. Ils accu-
mulent des connaissances à partir d’une succession
d’expériences d’apprentissage et en mémorisent les
aspects essentiels sans les oublier. Les réseaux de
neurones artificiels ont des difficultés à apprendre
dans de telles conditions. Ils ont en général besoin
d’ensembles de données rigoureusement préparés
pour pouvoir apprendre à résoudre des problèmes
comme de la classification ou de la régression. En
particulier, lorsqu’ils apprennent sur des séquences
d’ensembles de données, les nouvelles expériences
leurs font oublier les anciennes. Ainsi, ils sont sou-
vent incapables d’appréhender des scénarios réels
tels ceux de robots autonomes apprenant en temps
réel à s’adapter à de nouvelles situations et de-
vant résoudre des problèmes sans oublier leurs
expériences passées.
L’apprentissage continu est une branche de
l’apprentissage automatique s’attaquant à ce type
de scénarios. Les algorithmes continus sont créés
pour apprendre des connaissances, les enrichir et
les améliorer au cours d’un curriculum d’expériences
d’apprentissage.
Dans cette thèse, nous proposons d’explorer

l’apprentissage continu avec rejeu de données. Les
méthodes de rejeu de données rassemblent les
méthodes de répétitions et les méthodes de rejeu
par génération. Le rejeu par génération consiste à
utiliser un réseau de neurones auxiliaire apprenant
à générer les données actuelles. Ainsi plus tard le
réseau auxiliaire pourra être utilisé pour régénérer
des données du passé et les remémorer au modèle
principal. La répétition a le même objectif, mais cette
méthode sauve simplement des images spécifiques
et les rejoue plus tard au modèle principal pour éviter
qu’il ne les oublie. Les méthodes de rejeu permet-
tent de trouver un compromis entre l’optimisation de
l’objectif d’apprentissage actuel et ceux du passé.
Elles permettent ainsi d’apprendre sans oublier sur
des séquences de tâches.
Nous montrons que ces méthodes sont prometteuses
pour l’apprentissage continu. En particulier, elles
permettent la réévaluation des données du passé
avec des nouvelles connaissances et de confron-
ter des données issues de différentes expériences.
Nous démontrons la capacité des méthodes de re-
jeu à apprendre continuellement à travers des tâches
d’apprentissage non-supervisées, supervisées et de
renforcements.

Title: Continual Learning: Tackling Catastrophic Forgetting in Deep Neural Networks with Replay Processes

Keywords: Deep Learning, Continual Learning, Generative Replay, Replay Processes

Abstract:
Humans learn all their life long. They accumulate
knowledge from a sequence of learning experiences
and remember the essential concepts without forget-
ting what they have learned previously. Artificial neu-
ral networks struggle to learn similarly. They often
rely on data rigorously preprocessed to learn solu-
tions to specific problems such as classification or re-
gression. In particular, they forget their past learn-
ing experiences if trained on new ones. Therefore,
artificial neural networks are often inept to deal with
real-life settings such as an autonomous-robot that
has to learn on-line to adapt to new situations and
overcome new problems without forgetting its past
learning-experiences.
Continual learning (CL) is a branch of machine learn-
ing addressing this type of problem. Continual al-
gorithms are designed to accumulate and improve
knowledge in a curriculum of learning-experiences
without forgetting.

In this thesis, we propose to explore continual al-
gorithms with replay processes. Replay processes
gather together rehearsal methods and generative re-
play methods. Generative Replay consists of regen-
erating past learning experiences with a generative
model to remember them. Rehearsal consists of sav-
ing a core-set of samples from past learning experi-
ences to rehearse them later. The replay processes
make possible a compromise between optimizing the
current learning objective and the past ones enabling
learning without forgetting in sequences of tasks set-
tings.
We show that they are very promising methods for
continual learning. Notably, they enable the re-
evaluation of past data with new knowledge and
the confrontation of data from different learning-
experiences. We demonstrate their ability to learn
continually through unsupervised learning, super-
vised learning and reinforcement learning tasks.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Contributions and Scope
	Publications
	Outline

	Deep Learning Backround: Principles and Applications
	Training Deep Neural Networks by Gradient Descent
	Learning Paradigms
	Learning procedure
	Towards Continual Learning
	Conclusion

	Continual Learning
	Introduction
	Definition of Continual Learning
	Key vocabulary
	A Framework for Continual Learning
	State of the art
	Evaluation
	Applications : Continual Learning for Robotics
	Conclusion

	Supervision Free Inference in Continual Learning
	Introduction
	Background
	Regularization Approach
	Propositions
	Experiments
	Discussion
	Conclusion

	Learning Continually a Generative Models
	Introduction / Motivation
	Background
	Approach
	Experiments
	Results
	Discussion
	Conclusion

	Generative Replay for Classification
	Introduction
	Background
	Approach
	Experiments
	Results
	Discussion
	Conclusion

	Replay for Policy Distillation
	Introduction
	Background
	Approach
	Experiments
	Results
	Discussion and Future Work
	Conclusion

	Discussion
	Rethinking Continual Learning Objectives
	Discussion on the thesis choices
	Continual Learning Pitfalls
	Research recommendations

	Conclusion
	Summary of Contributions
	Future Research

	Bibliography

