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amitié !
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discussions scientifiques plus générales et les nombreux livres conseillés.
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Chapter 1

Introduction

Numerical simulations play a major role in the design and use of complex industrial sys-
tems. Nuclear reactors are no exception, as design choices are important for both safety con-
cerns and optimization. There are several disciplines involved in their analysis, encompassing
mechanics, thermal-hydraulics and neutronics [1]. The Commissariat à l’Énergie Atomique
et aux Énergies Alternatives (CEA) takes interest in all the research and development as-
pects of these physics. Specifically, the Service d’Études des Réacteurs et de Mathématiques
Appliquées (SERMA), where this PhD work has been done, is devoted to the development
of codes to simulate the transport of neutrons in reactor cores.

Neutrons are the main vector of the fission chain reaction, that is the source of energy
in the aptly named fission nuclear reactors. The knowledge of the population of neutrons is
thus of primary importance in the study of reactor designs. The equation that governs the
transport of these neutrons is the Boltzmann transport equation. A simplified stationary
form of this balance equation reads :(

Ω̂ ·∇ + Σt(r, E)
)
ψ(r, E, Ω̂) =∫

4π

dΩ̂′
∫ ∞

0

dE ′Σs(r, E
′ → E, Ω̂′ → Ω̂)ψ(r, E ′, Ω̂′) + S(r, E, Ω̂). (1.1)

The unknown function ψ denotes the angular neutron flux, characterizing the average pop-
ulation of neutrons in the phase space. The terms Σx are called macroscopic cross-sections
for nuclear reactions of kind x. I will describe them shortly thereafter. The quantity S
gathers general source terms, possibly depending on the flux ψ itself, as in the case of fission
contributions.

There exist two main approaches to the numerical simulation of this equation. On one
hand, deterministic methods, which rely on a discretization of the spatial (r), angular (Ω̂)
and energy (E) variables in this equation [2]. On the other hand, stochastic methods, and
specifically Monte Carlo methods, which sample the ’history’ of individual neutrons to form a
statistics describing the population [3]. The latter methods have found many applications in
the study of different topics in physics, mathematics and finance, although they were actually
first used with the precise goal of studying population of neutrons [4].
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The properties of the medium through which the neutrons propagate are described by the
macroscopic cross-sections noted Σx in equation (1.1). They characterize the probability of
a generic interaction x of the neutrons with their environment. Their knowledge is of critical
importance for an accurate simulation of the neutron transport. Macroscopic cross-sections
are related to more fundamental physical quantities called microscopic nuclear cross-sections
by

Σx(r, E) =
∑
i

Ni(r)σ(i)
x

(
E, T (r)

)
. (1.2)

The summation is on the different nuclei composing the medium. The quantities Ni are
their corresponding density and σ

(i)
x is the physical quantity describing the probability of

the considered interaction with a single nucleus of type i. The variable T designates the
temperature of the medium.

Relation (1.2) aims at separating geometrical properties, i.e. the local concentrations
of nuclei, from physical properties, i.e. the interaction probabilities between neutrons and
matter. This separation is not total since microscopic cross-sections still have a temperature
dependency, which pertains to local property of the medium. This PhD work is focused on
some aspects of the study of these cross-sections.

1.1 Cross-section study

The reactions to be taken into account in the Boltzmann equation result from short-
distance nuclear interactions between neutrons and nuclei. There are various possible such
interactions according to, among other factors, the energy of the incident neutron. Their
study is a very active topic of research and involves many fields of physics.

From a nuclear reactor standpoint however, we take particular interest only in some
reactions and energy ranges. Specifically for the latter, we are mainly concerned with neutrons
with energies between 10−5 eV and 20 MeV. In this energy range, the prominent interactions
are elastic and inelastic scattering, fission and radiative capture (emission of one or multiple
photons after capture of a neutron by a nucleus). Without giving a very extensive list of
all possible interactions, we can also cite more complicated ones such as the n-2n reaction
(where a neutron frees a pair of neutron after a collision) or the n-alpha reaction (where an
entire alpha nucleus is emitted from the nucleus).

1.1.1 R-matrix theory

In reactor physics, cross-section profiles may or may not be resonant according to the
considered nucleus or the energy range. A tabulated data description of the former is much
more difficult to obtain than that of a smooth profile. Hence, physicists set out to find a
model to give an analytical expression of the resonant cross-sections. These would involve a
set of so-called resonance parameters, to be later fitted based on experimental measurements.
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For this purpose, E. Wigner and L. Eisenbud developed the R-matrix theory [5, 6], which
is a subset of what is known today as quantum scattering theory. The idea stems from the fact
that, at the scale of nucleons, particles have to be considered as quantum probability waves.
The framework then chosen was that of the first quantization. On one hand, the nucleons
composing the nucleus are all described by probability wave functions. On the other hand,
their interactions are described by scalar potentials representing the nuclear and Coulombian
forces. The R-matrix theory uses the short distance nature of nuclear interactions to simplify
the study of the Schrödinger equation describing the evolution of the wave function of the
whole system.

The R-matrix theory was further developed by A.M. Lane and R.G. Thomas in a very
extensive article published in 1958 [7]. In it, they described more precisely the inclusion of
interactions such as the radiative capture which require elements of quantum field theory.
They also discussed the treatment of inelastic reactions in the R-matrix theory.

In parallel, D.L. Hill and J.A. Wheeler discussed and proposed a model for the fission
reaction, which involves a priori rather different physical phenomena [8]. These theoretical
elements are gathered in the excellent book by J.E. Lynn published in 1968 [9]. Two articles
by F. Fröhner also offer an interesting overview of the R-matrix theory [10, 11].

1.1.2 Cross-section representation formalisms

The formulae for the cross-sections and the associated sets of resonance parameters in-
volved in the full R-matrix theory do not lend themselves easily to fitting with experimental
measurements. As such, further approximations of the theory were needed. The first one
was proposed by G. Breit and E. Wigner [12]. The resonance peaks in the cross-sections
profiles are modelled by a sum of terms that describe each resonance separately. Although
quite simplistic, this model proved itself quite good as a first step for the representation
of cross-sections. It lacked, however, precision for the elastic cross-section, where interfer-
ence phenomena between resonances must be taken into account for more accurate results.
The extended Multi-Level Breit-Wigner formalism became more widely used to tackle these
issues.

Later, with the progress of computer capabilities, a new formalism was proposed by
C.W. Reich and M.S. Moore [13]. Its use was motivated by the lack of accuracy of previous
formalisms for the fission process and cross-sections presenting very close resonance peaks.
Some of such nuclei are of paramount importance in nuclear reactor applications : U235, U238
and Pu239. Through the years, more and more nuclei cross-sections have been described with
the use of this formalism, as the previous concerns about computing cost became largely
irrelevant. For this same reason, a new formalism called R-matrix limited format is set to
replace the use of these older formalisms in the coming years [14].
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1.1.3 The multipole and other alternative cross-section represen-
tations

The choice and use of the different formalisms were initially driven by the limited comput-
ing capabilities. Consequently, physicists took interest in finding alternative mathematical
forms of the complicated cross-sections formulae. These ideas stemmed from the original
A.M. Lane and R.G. Thomas paper [7], which remarked some of the meromorphic prop-
erties of the elements of the R-matrix theory. This was further discussed by G. Saussure
and R.B. Perez in their rationale published in 1969 [15]. Their idea was that cross-sections
formulae derived from the R-matrix theory could likely be seen as rational functions of the
energy.

D.B. Adler and F.T. Adler built on this idea to define a new alternative formulation of
the cross-sections [16]. R.N. Hwang later proposed the so-called multipole representation
that made an even larger use of these mathematical properties [17, 18]. He surmised that
some of the 0K cross-sections that admit a description with resonance parameters could be
written

σnx(E) ∝ 1

E
<
(∑

p

ap + bp exp(−2iφp(E))√
E − zp

)
. (1.3)

This is almost what is known to mathematicians as a partial fraction decomposition. The
denominator variables zp are complex numbers known as poles, while the numerator vari-
ables ap and bp are complex numbers known as residues. The function φp differentiates it
slightly from being exactly a partial fraction decomposition. However, the main idea of
writing the cross-sections as a sum of so-called pole terms is still valid. We will see shortly
thereafter that this formulation is far-reaching for computing the temperature dependency
of the cross-sections. This idea was successfully applied by R.N. Hwang to both the Reich-
Moore formalism [18] and the Multi-Level Breit-Wigner formalism [19]. He developed a code
named WHOPPER to perform the conversion from standard resonance parameters to these
multipole parameters, which is still in use at MIT [20].

1.1.4 Doppler broadening of the cross-sections

All the aforementioned models describe interactions between a neutron and a single mo-
tionless target nucleus. Actually, in nuclear reactor applications, and even in the experimental
measurements of cross-sections, the target nuclei are not motionless : the neutrons ’see’ mov-
ing targets as per the well-known Doppler effect [21]. Hence, the cross-sections have to be
Doppler-broadened in accordance with the distribution of motion of the targets for a given
temperature. This distribution is usually chosen to be that of the free gas model, also known
as the Maxwell-Boltzmann distribution [22],

p(w)dw =
1

π3/2w3
T

exp

(
−‖w‖

2

w2
T

)
dw with

Mw2
T

2
= kBT. (1.4)
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The cross-sections are then broadened with the following formula :

σ (E, T ) = +
1√
4πE

∫ ∞
E=0

√
E ′√
ET

σ (E ′, 0) exp

(
−(
√
E −

√
E ′)2

ET

)
dE ′

− 1√
4πE

∫ ∞
E=0

√
E ′√
ET

σ (E ′, 0) exp

(
−(
√
E +
√
E ′)2

ET

)
dE ′. (1.5)

with ET =
mw2

T

2
=

m

M
kBT . The letters m and M denote respectively the mass of the

neutron and the mass of the target nucleus. The Boltzmann constant is noted kB and the
temperature of the medium is noted T .

The particular kernel appearing when gathering these integrals, with the particular Maxwell-
Boltzmann distribution, is known as the Solbrig kernel [23].

1.2 Nuclear data evaluation and processing

The ENDF collaboration [14] aims at gathering nuclear data for different nuclei. Among
these data, cross-sections for different nuclear interactions are available. Either tabulated
values or sets of resonance parameters are provided. The latter are used to reconstruct the
0K cross-sections with specific formulae for each different formalism. The choice of this
formalism is up to the evaluator who performs the measurement of the cross-sections. These
evaluations are obtained by codes such as SAMMY [24] and CONRAD [25]. More insight
about the choice of formalisms and the fits can be found in their respective documentations.

These data are finally gathered in files that are then processed by different software such
as NJOY [26], PREPRO [27] and GALILÉE-1 [28] to reconstruct, among other quantities of
interest, the 0K cross-sections. The codes then perform the Doppler broadening to obtain
the cross-sections at the desired temperatures. This is done typically with variations of the
so-called sigma-1 algorithm [21], which is based on a linearization of the 0K cross-sections
and a broadening of this approximated profile with analytical tools.

Other approaches have been studied to broaden the cross-sections. G. Ferran [29] has
worked on a Fourier-transform-based method to compute the integrals of formula (1.5). Finite
difference methods have also been investigated to compute these same integrals [30, 31].

1.3 On the temperature dependency of cross-sections

1.3.1 Multi-physics simulation challenges

The temperature dependency of the cross-sections is one of the main coupling effect of
thermal-hydraulics with respect to neutron transport. It is a key issue in multi-physics
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simulations involving feedbacks. The usual approach of Monte Carlo simulation is to store in
memory the required cross-section data at all temperatures and energies of interest. These
cross-sections are generated before running the simulation by the codes previously cited.

The nature of the Monte Carlo method implies storing a continuous energy, i.e. finely
tabulated profile of these cross-sections. The sheer amount of data to store is a limitation to
the problems that can be studied. Indeed, a single temperature cross-section profile can take
up to the order of a megabyte of data for a nucleus with numerous resonances, such as the
isotopes of Uranium or Plutonium. Hence, storing the cross-sections of a hundred nuclei for
various reactions and a handful of temperatures can easily occupy the order of the gigabytes
in memory.

Moreover, the access itself to the memory during simulations can become a limiting factor
to the performance of codes. Efforts have been recently made to alleviate this issue, notably
by the implementation of methods accelerating the lookup in the stored tabulated cross-
sections [32, 33, 34].

These limitations in memory availability and access speed suggest looking at on-the-fly
approaches, where some data is computed as needed (instead of being stored in advance).
Particular interest for on-the-fly computation of the temperature dependency has surged in
the recent years. The idea is to store only a limited amount of cross-section data, corre-
sponding to one or few temperatures. The desired cross-sections at the required temperature
are then computed as needed during the simulation.

1.3.2 Overview of the ”on-the-fly” methods

Monte Carlo codes have adopted distinct approaches to this on-the-fly temperature de-
pendency calculation [35]. I list here four of them that are of current interest :

• the so-called sigma-1 method, which consists in storing linearized 0K cross-section
profiles. The cross-section at a desired energy and temperature is then computed at
each collision by the exact same algorithm as it would be before launching the simulation
by software as NJOY [26] or GALILÉE-1 [28]. The numerical integration scheme of
these linearized profiles is described by Cullen in [21].
• a target motion sampling algorithm [36, 37]. As the name suggests, the cross-sections

are not averaged with respect to the target nuclei motion distribution. Rather, the
motion of the target nuclei is sampled at each collision according to expression (1.4).
• an interpolation scheme between a set of cross-sections at carefully chosen temperatures

over a pre-defined energy grid [38].
• an on-the-fly multipole Doppler broadening. Only the equivalent multipole representa-

tion of the 0K cross-sections is stored.

There exist multiple implementations of the methods listed here. In this work we have chosen
to focus on the last approach.
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1.3.3 Focus on the multipole representation

The additive nature of the multipole representation, combined with the linear nature of
the Doppler broadening, can be successfully used to compute the broadened cross-sections.
Indeed, from these two properties, the broadening of a cross-section can be written as the
sum of the broadening of each pole term in expression (1.3). The broadening of each pole
term is done via an integral that can be analytically expressed in terms of a special function
known as the Faddeeva function [39].

The Faddeeva function [39] is of particular interest in the field of spectroscopy and plasma
physics, and has been studied extensively. It is closely related to the so-called complex error
function. Numerical algorithms to compute these special functions can be found in [40]
and [41]. An overview and comparison of different approaches for the particular Faddeeva
function are provided in [42]. An implementation used by the code ABINIT [43] done by the
MIT is available online.

In recent years, the group of B. Forget at MIT has investigated the possibility of using the
multipole representation for the on-the-fly Doppler broadening [20], especially in connection
with their Monte Carlo code OpenMC [33].

Two main challenges have been encountered. On the one hand, not all cross-sections for
all nuclei admit a multipole representation. This is due to both theoretical and practical
reasons that I will discuss later in this report. On the other hand, on-the-fly computation
cost with the multipole representation can be significantly larger than that of the sigma-1
approach mentioned above. Indeed, the accurate computation of the Faddeeva function can
be quite challenging. Efforts have been made to tackle both issues.

Concerning the computing cost, C. Josey has developed an algorithm, called the ”win-
dowed” multipole method, to reduce the number of poles to be taken into account at a given
energy [44, 45]. It builds on the idea of R.N. Hwang that poles far away from a given energy
can be approximated by fewer so-called pseudo-poles [18, 19].

Concerning the non-universality of the multipole representation of cross-sections, vector
fitting techniques have been directly applied to the cross-section profiles [46, 47, 48]. The goal
is to ensure a multipole representation even for those cross-sections that lack a theoretical
justification for a multipole representation. It is hoped that a systematic treatment of all
cross-sections for all nuclei will ultimately be possible.

The CEA has also taken interest in on-the-fly approaches for its own Monte Carlo trans-
port codes TRIPOLI-4R© [49] and PATMOS [50]. As of today, the former uses only the
method of stochastic interpolation (also used by MCNP [51]). The sigma-1 approach has
been implemented in the latter. The multipole representation offers yet another approach for
an on-the-fly Doppler broadening and is as such of great interest. Additionally, it provides an
alternative way of reconstructing and working with the 0K cross-sections. These two aspects
were the prime motivations for this PhD work.
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1.4 Plan of this report

As outlined in the introduction, in my thesis, I have taken interest in the theoretical and
numerical aspects of the multipole representation of the cross-sections. One of the goals was
to assert mathematically, and possibly improve, the results of R.N. Hwang concerning this
alternative representation. Another was to provide algorithms and their computer imple-
mentations to convert the usual ENDF resonance parameters into multipole parameters.

The first part of this manuscript provides a general setup concerning cross-section recon-
struction, as well as a set of mathematical properties that will be relevant for the rest of my
work.

• Chapter 1 is a very brief summary of the R-matrix theory and of the basic cross-section
formulae. It presents the different algebraic elements that will appear throughout the
manuscript.
• Chapter 2 outlines the relevant details of the implementation of the cross-section re-

construction in the frame of the ENDF collaboration.
• Chapter 3 gives the useful mathematical tools that I have used during my PhD work.

These include a list of properties of rational functions, which are at the heart of the
multipole representation. I also expose here some elements of the key issue of finding
the roots of polynomials, as well as the solutions I have adopted to tackle these issues.

The second part of this thesis is devoted to an in-depth theoretical investigation of the
multipole representation. There are currently two main reconstruction formalisms used for
representing cross-sections. We will see that they involve rather different challenges as far as
the multipole representation is concerned. We will finally discuss some qualitative aspects of
this representation of the cross-sections.

• Chapter 1 focuses on the conversion of the Multi-Level Breit-Wigner resonance param-
eters to multipole parameters. This chapter involves a careful mathematical investiga-
tion of the energy dependency of some of the resonance parameters. I will show that
a multipole representation with fewer poles than previously thought is possible. This
will provide some insights related to the idea presented by C. Jammes and R.N. Hwang
in [19], as well as an algorithm to find these new parameters.
• Chapter 2 focuses on the conversion of the Reich-Moore resonance parameters to mul-

tipole parameters. This chapter involves heavy algebraic manipulations of the cross-
section formulae. The root-finding issue will be more central than in the previous
chapter. A fast and robust algorithm is proposed in order to find a new multipole
representation with fewer poles than the previously established results [18, 20].
• In Chapter 3, I provide some insights about the nature of the poles and the qualitative

differences in their contribution to the cross-sections profile. I wish to show here that,
once the multipole parameters are computed, the interpretation of the poles is largely
independent of the formalism from which they were obtained.

The third part of this thesis is devoted to some applications of the multipole representa-
tion. I have implemented a code performing the conversion of standard resonance parameters
to multipole parameters. These are used for two purposes :
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• In Chapter 1, I show that these parameters can be used to reconstruct the 0K cross-
sections for a large number of nuclei. This confirms the validity of the extensive math-
ematical study I have done in the second part of my work. I present numerical results
for some nuclei of interest.
• In Chapter 2, I discuss some theoretical aspects of the Doppler broadening with the

multipole representation, notably concerning the use of the Faddeeva function. I also
give some encouraging numerical results of the Doppler broadening with my newly
computed multipole parameters.

I will finally draw some conclusions and discuss perspectives concerning the applications and
limitations of the multipole representation.
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Part I

Background and context
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Chapter 1

From the R-matrix theory to the
cross-section reconstruction
formalisms

1.1 General concepts of the R-matrix theory

The R-matrix theory aims at modelling the interactions between particles composed of
nucleons in the framework of the first quantization of quantum mechanics. The very extensive
details required to properly explain it are far outside the scope of this report. They can be
found in the seminal article of A.M. Lane and R.G. Thomas [7]. I will only present here the
elements that are relevant to the definition and manipulation of cross-sections.

1.1.1 Definition of the channels

The system composed of N nucleons is described by a probability wave function of 3N
spatial dimensions. To be able to study such a complex wave function, the variable space
is separated in an external and an internal region. The external region is restricted to
configurations where the nucleons composing the system are gathered in exactly two particles.
It is further separated in so-called channels. These are characterized by :

• a pair of particles a and A of respective spins i and I. These particles and their internal
states are gathered in a single notation α,
• an orbital quantum number noted l,
• a channel spin noted s,
• a total angular momentum and its parity noted Jπ. Often the parity is implicitly

included in the notation J .
• the projection of the total angular momentum on a quantification axis mJ

The orbital quantum number l can take any non negative integer value and corresponds to a
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spherical harmonics decomposition whose description is outside the scope of this manuscript.
The channel spin s can take values between |I − i| and |I + i| as per usual spin sum rules.
The total angular momentum J can take value between |l − s| and |l + s|. Finally, the parity
is computed as the product of the parity of a, the parity of A and (−1)l. A fundamental
property of nuclear reactions is the conservation of the total angular momentum and parity.

Additionally, in relation with the aforementioned quantities characterizing a channel, we
define :

• a channel radius ac beyond which the two particles of the channel have no nuclear
interactions,
• a wave number kc or conversely a De Broglie wave length λ̄c that characterizes the

relative motion of the two particles,

1

kc
= λ̄c =

~√
2µcE

, (1.1)

where ~ is the reduced Planck constant and µc the reduced mass of the two particles a
and A,
• a statistical factor gc that is concerned with spin properties and possible degeneracies

of the solutions of the channels. These are linked notably to the projection number
mJ , that will not appear in later formulae. Its expression is

gc =
(2J + 1)

(2i+ 1)(2I + 1)
. (1.2)

The definition of the channels is such that the space of waves solutions of the Schrödinger
equation is exactly two-dimensional. A basis can be chosen with an incoming wave noted Ic
and an outgoing wave noted Oc. A global solution of the Schrödinger equation is entirely
described by its decomposition on the two wave basis of each channel. Not all such decom-
positions are possible. They are constrained so that prescribing the decomposition on the
incoming waves imposes the rest of the decomposition on the outgoing waves. This relation is
linear and it is possible to define a matrix encoding it. Namely if xc and yc are the coefficients
of the decomposition on the Oc and Ic, there exists a relation of the form

xc = −
∑
c′

Ucc′yc′ . (1.3)

where U is the so-called collision matrix. The cross-sections will be naturally defined from
this matrix. If the Ic and Oc are properly normalized, the matrix U will be unitary. Finally,
from the conservation of Jπ, all elements of this collision matrix between channels of different
total angular momentum and parity are null.

1.1.2 The R-matrix parametrization

The R-matrix theory provides a way to indirectly parametrize the collision matrix. The
aforementioned constraining relation between incoming and outgoing waves is found by work-
ing with an internal region. It is defined to connect the otherwise disjoint channels of the
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external region, and allow for nuclear reactions between the pair of particles. The conserva-
tion of Jπ is particularly crucial in this internal region. Hence, only channels of common such
value are really connected with each other through this region. Moreover, this means that
even if the Hamiltonian of the complete system cannot be easily separated in the internal
region : there is still a separation possible between the different Jπ values. At a fixed value
of the total angular momentum and parity, the R-matrix theory states that we can relate the
value of the wave function on each concerned channel surface with the value of its derivative
on these surfaces. The matrix R does so and is defined by

Rcc′ :=
∑
λ

γλcγλc′

Eλ − E
δππ

′

JJ ′ . (1.4)

where the Eλ and the γλc are real numbers notably independent of the energy E of the
system. The Kronecker symbol δ asserts that this R-matrix only relates channels of common
Jπ. This description is obtained by considering the Schrödinger equation at fixed total
angular momentum and parity, restrained to the internal region, with the addition of some
real boundary conditions. These are prescribed on each channel surface and impose the ratio,
noted Bc, between solution derivatives and solution values. Following the R-matrix theory,
this yields a set of eigenvalues Eλ and real valued eigenvectors ψλ that constitute a basis of
wave functions in the internal region (of corresponding Jπ value, this index being omitted
here and in the following). The parameters γλc are projections of ψλ on channel surface c.

1.1.3 Continuity between the internal and external regions

Just on the other side of the channel surfaces, in the channel themselves, the value of
the wave function and its derivative have well known analytical expressions. The following
diagonal matrices contain these properties :

Lcc =

(
rc
Oc

∂Oc

∂rc

)
rc=ac

, (1.5)

Scc = <(Lcc), (1.6)

Pcc = =(Lcc), (1.7)

Ωcc = exp(−iφc) with φc = arg(Oc(ac)). (1.8)

In this formulae, the symbols < and = denote respectively the real and imaginary parts of
a complex number. The elements of Scc are called level-shift factors and will, as their name
suggests, shift the levels Eλ. The elements of Pcc are called penetration factors. They occur
in the definition of the width of a channel c for level λ :

Γλc := 2γ2
λcPcc. (1.9)

Finally, the elements φc are called phase-shift factors. I will provide more details about these
three factors later on, as they are of central importance to my work.

From the definition of R and the different factors I just presented, it is then possible
to give a relation between the matrix U , that relates the incoming and outgoing waves,
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to the matrix R, which relates the properties of the wave function on the surface between
internal and external region. The following expression can be derived after many algebraic
manipulations :

U = ΩP 1/2
(
Id−R(L−B)

)−1(
Id−R(L∗ −B)

)
P−1/2Ω. (1.10)

where the matrix L∗ is the conjugate transpose of L and Id is the identity matrix. This
relation is central to the R-matrix theory. On one hand, the cross-sections are naturally
defined from the matrix U . On the other hand, the matrix R can be represented with
a convenient set of parameters (to be experimentally fitted). We have bridged these two
definitions which will now allow defining the cross-sections.

1.2 Intermediary algebraic elements to define the cross-

sections

1.2.1 Auxiliary matrices X and ρ

So as to alleviate a bit the notations of (1.10), it is usual to define the X matrix as,

X = P 1/2(Id−R(L−B))−1RP 1/2, (1.11)

or the ρ matrix which is very similar,

ρ = −iX. (1.12)

Then the fundamental relation (1.10) between U and R can be written in terms of X or ρ :

U = ΩP 1/2
(
Id−R(L−B)

)−1(
Id−R(L∗ −B)

)
P−1/2Ω

= ΩP 1/2
(
Id−R(L−B)

)−1(
Id−R(L−B) +R(L−B)−R(L∗ −B)

)
P−1/2Ω

= ΩP 1/2
(
Id+

(
Id−R(L−B)

)−1
R(L− L∗)

)
P−1/2Ω

= Ω
(
Id+ 2iP 1/2

(
Id−R(L−B)

)−1
RP 1/2

)
Ω

= Ω (Id+ 2iX) Ω

= Ω (Id− 2ρ) Ω. (1.13)

1.2.2 Cross-sections in function of the collision matrix U

We admit that the cross-sections of the reaction producing a state described by the
channel c′ from a state described by the channel c is

σcc′ = πλ̄2
cgc |δcc′ − Ucc′ |2 δππ

′

JJ ′ . (1.14)
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The multiplicative term δππ
′

JJ ′ will be dropped going further as it is often equivalently included
in the definition of the collision matrix U . From now on, it will be implicit that terms
concerning channels of different Jπ will be null.

The total cross-section of a channel c is obtained by summing over c′ all the terms σcc′ :

σc,total =
∑
c′

σcc′ =
∑
c′

πλ̄2
cgc|δcc′ − Ucc′ |2

= πλ̄2
cgc
∑
c′

|δcc′ − Ucc′|2

= πλ̄2
cgc

(
|1− Ucc|2 +

∑
c′ 6=c

|Ucc′ |2
)

= πλ̄2
cgc

(
1− 2<

(
Ucc
)

+ |Ucc|2 +
∑
c′ 6=c

|Ucc′|2
)

= πλ̄2
cgc

(
1− 2<

(
Ucc
)

+ 1
)

= 2πλ̄2
cgc

(
1−<

(
Ucc
))
. (1.15)

The key property here is the unitarity of the matrix U .

1.2.3 Cross-sections in function of the matrix ρ

The relation (1.13) between U and ρ with explicit indices c and c′ reads,

Ucc′ = exp(−i(φc + φc′)) (δcc′ − 2ρcc′) , (1.16)

so the cross-section formulae in function of ρ are, for c 6= c′,

σcc′ = 4πλ̄2
cgc|ρcc′ |2, (1.17)

and for c = c′,

σcc = 4πλ̄2
cgc
[
sin2(φc)

(
1− 2<(ρcc)

)
+ sin(2φc)=(ρcc) + |ρcc|2

]
. (1.18)

1.3 Approximations to the R-matrix theory

Although the general expression of the R-matrix given in expression (1.4) is somewhat
elegant, further approximations of this model are necessary for practical applications. I am
going to give a very quick summary of the two main approximations of the R-matrix currently
in use for cross-section reconstruction.

The developments I will make in this section give a very schematic overview of the neces-
sary algebraic manipulations. My aim here is simply to expose some of these elements that
will be of use later.
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1.3.1 Definition of the level matrix A

The fundamental idea is to define, implicitly, the so-called level matrix A :

γTAγ =
(
Id−R(L−B)

)−1
R, (1.19)

where the γ matrix is the matrix whose elements are the γλc. The previously defined R, X
and ρ matrices all describe relations between channels. This newly defined A matrix describes
relations between levels.

It is possible to show that, from this implicit definition, A−1 actually admits an explicit
definition :

A−1
λµ = (Eλ − E)δλµ −

∑
c

γλc(Lcc −Bcc)γµc. (1.20)

Although the manipulation of infinite dimension matrices may lack a rigorous mathematical
framework, the idea of switching from channel-based expressions to level-based ones is far-
reaching. Most approximations, among which are the two I am about to present, have been
naturally derived from the latter perspective.

Finally, with the implicit definition of A, let us also note that,

ρ = −iP 1/2γTAγP 1/2. (1.21)

1.3.2 The Multi-Level Breit-Wigner formalism

We assume that the matrix A−1 is diagonal, therefore,

Aλµ =
1

(Eλ − E)−
∑
c

γ2
λc(Lcc −Bcc)

δλµ. (1.22)

By definition, Lcc = Scc + iPcc. We can rewrite the denominator of Aλµ :

(Eλ − E)−
∑
c

γ2
λc(Lcc −Bcc) = Eλ −

∑
c

γ2
λc(Scc −Bcc)− E − i

∑
c

γ2
λcPcc. (1.23)

The total width of the level λ is defined by

Γλ : =
∑
c

Γλc (1.24)

=
∑
c

2γ2
λcPcc by definition of Γλc. (1.25)

The shifted energy level is defined as

E ′λ := Eλ −
∑
c

γ2
λc(Scc −Bcc). (1.26)
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With these two new definitions :

Aλλ =
−1

E − E ′λ + iΓλ/2
. (1.27)

The formulae for the cross-sections are then, for c 6= c′,

σcc′ = 4πλ̄2
cgc|ρcc′ |2 (1.28)

with ρcc′ = i
∑
λ

P
1/2
cc γλcP

1/2
c′c′ γλc′

E − E ′λ + iΓλ/2
. (1.29)

and particularly for c = c′,

σcc = 4πλ̄2
cgc
(
sin2(φc)(1− 2<(ρcc)) + sin(2φc)=(ρcc) + |ρcc|2

)
(1.30)

with ρcc =
i

2

∑
λ

Γλc
E − E ′λ + iΓλ/2

. (1.31)

The square modulus in formulae (1.28) and (1.30) account for interference between levels.
The Multi-Level Breit-Wigner formalism does not account for interferences between channels.
This is one of the improvements of the Reich-Moore formalism that I am about to present.

1.3.3 The Reich-Moore formalism

The approximations adopted in the Reich-Moore formalism are more subtle. We do not
assume that A−1 is diagonal. Instead we start by separating the channels containing photons
and those which do not,

A−1
λµ = (Eλ − E)δλµ −

∑
c

γλc(Lcc −Bcc)γµc

= (Eλ − E)δλµ −
∑
c∈γ

γλc(Lcc −Bcc)γµc −
∑
c/∈γ

γλc(Lcc −Bcc)γµc. (1.32)

Then we make the approximation that the only significant contribution of the photon channels
are in the diagonal. The physical reasons for this choice are outside the scope of this summary.
I refer to the article A.M. Lane and R.G. Thomas [7] and the subsequent article of C.W. Reich
and M.S. Moore [13] for details.

A−1
λµ ≈

(
(Eλ − E)−

∑
c∈γ

γ2
λc(Lcc −Bcc)

)
δλµ −

∑
c/∈γ

γλc(Lcc −Bcc)γµc

=

(
(Eλ − E)−

∑
c∈γ

γ2
λc(Scc −Bcc)− i

∑
c∈γ

γ2
λcPcc

)
δλµ −

∑
c/∈γ

γλc(Lcc −Bcc)γµc. (1.33)

We define a shifted energy level,

E ′λ = Eλ −
∑
c∈γ

γ2
λc(Scc −Bcc). (1.34)
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We define a total photon width,

Γλγ : =
∑
c∈γ

Γλc (1.35)

=
∑
c∈γ

2γ2
λcPcc by definition of Γλc. (1.36)

Then with these new notations,

A−1
λµ = (E ′λ − E − iΓλγ/2) δλµ −

∑
c/∈γ

γλc(Lcc −Bcc)γµc. (1.37)

We write,
Id = A−1A, (1.38)

and we substitute the expression of A−1,

δλµ =
∑
α

(E ′λ − E − iΓλγ/2) δλαAαµ −
∑
α

∑
c/∈γ

γλc(Lcc −Bcc)γαc

Aαµ

= (E ′λ − E − iΓλγ/2)Aλµ −
∑
c/∈γ

(
γλc(Lcc −Bcc)

∑
α

γαcAαµ

)
, (1.39)

then,

δλµ
E ′λ − E − iΓλγ/2

= Aλµ −
∑
c/∈γ

(
γλc

E ′λ − E − iΓλγ/2
(Lcc −Bcc)

∑
α

γαcAαµ

)
. (1.40)

Let c′ and c′′ be two non-photon channels. We multiply the previous expression by γλc′γµc′′
and sum on λ and µ,∑

λµ

γλc′δλµγµc′′

E ′λ − E − iΓλγ/2
=
∑
λµ

γλc′Aλµγµc′′

−
∑
λµ

γλc′
∑
c/∈γ

(
γλc

E ′λ − E − iΓλγ/2
(Lcc −Bcc)

∑
α

γαcAαµ

)
γµc′′∑

λ

γλc′γλc′′

E ′λ − E − iΓλγ/2
=
∑
λµ

γλc′Aλµγµc′′

−
∑
c/∈γ

[(∑
λ

γλc′γλc
E ′λ − E − iΓλγ/2

)
(Lcc −Bcc)

(∑
αµ

γαcAαµγµc′′

)]
.

(1.41)

We define the reduced R-matrix by,

R̂cc′ :=
∑
λ

γλcγλc′

E ′λ − E − iΓγλ/2
, (1.42)

30



and recall that,
ρ = −iP 1/2γTAγP 1/2,

so that the indexed relation (1.41) can be written with matrices as

R̂ = iP−1/2ρP−1/2 − R̂(L−B)iP−1/2ρP−1/2. (1.43)

Multiplying by P 1/2 left and right yields

P 1/2R̂P 1/2 = (Id− P 1/2R̂(L−B)P−1/2)iρ. (1.44)

A few algebraic manipulations give us the relation of the matrix ρ in terms of this newly
defined reduced R-matrix :

ρ = −i(Id− P 1/2R̂(L−B)P−1/2)−1P 1/2R̂P 1/2

= −i(P−1/2 − R̂(L−B)P−1/2)−1R̂P 1/2

= −iP 1/2(Id− R̂(L−B))−1R̂P 1/2. (1.45)

Additionally, it is often assumed that Scc − Bcc = 0. This means that L − B = iP , which
simplifies the previous expression. The final relation between the matrix ρ and the reduced
R-matrix is

ρ = −iP 1/2(Id− iR̂P )−1R̂P 1/2

= P 1/2(Id− iR̂P )−1(−iR̂P )P−1/2

= P 1/2(Id− iR̂P )−1(Id− iR̂P − Id)P−1/2

= Id− P 1/2(Id− iR̂P )−1P−1/2

= Id− (Id− iP 1/2R̂P 1/2)−1. (1.46)

The cross-sections are then defined again from the relations (1.17) and (1.18). The matrix
inversion present here makes the Reich-Moore formalism significantly more costly from a
computational standpoint than the Multi-Level Breit-Wigner formalism. However, it allows
capturing the physics of interference between channels and particularly fission channels. This
is particularly important for some heavy fissile nuclei, as Uranium 235 or Uranium 238.

1.4 Definition and properties of the penetration, level-

shift and phase-shift factors

In this section, I will give a definition and some properties of the scattering factors defined
in expressions (1.5) to (1.8). As I mentioned, the outgoing and incoming waves in each channel
have well known expressions. Particularly, for non charged particles, they are the solutions
to the projection of the Schrödinger equation on the spherical harmonics in the absence of
potential : the special spherical Bessel functions. Their logarithmic derivative also have well
known expressions that I will now describe.
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They take an adimensioned argument just like trigonometric functions and they depend
on the azimuthal number l of the spherical harmonic considered. For the channel c, their
argument are built from the wave number kc (the inverse of the De Broglie wavelength of the
channel) and the radius ac.

The expression of the penetration factor noted Pl, the level-shift factor noted Sl and
the (hard-sphere) phase-shift factor noted φl for the first few values of l are,

l Pl(ρ) Sl(ρ) φl(ρ)
0 ρ 0 ρ

1
ρ3

ρ2 + 1

−1

ρ2 + 1
ρ− arctan(ρ)

2
ρ5

ρ4 + 3ρ2 + 9

−3ρ2 − 18

ρ4 + 3ρ2 + 9
ρ− arctan

(
3ρ

3− ρ2

)
Table 1.1: Expressions of the penetration, level-shift and phase-shift factors for the first

values of l

The following recursive formulae allow computing them at higher values of l :

Pl+1(ρ) =
ρ2Pl(ρ)

P 2
l (ρ) +

(
l + 1− Sl(ρ)

)2 ,

Sl+1(ρ) =
ρ2
(
l + 1− Sl(ρ)

)
P 2
l (ρ) +

(
l + 1− Sl(ρ)

)2 − (l + 1).

(1.47)

with the initial conditions P0(ρ) = ρ and S0(ρ) = 0.

Pl and Sl are both rational functions of their argument ρ. Let me stress that this will
be a very important point later in my work. As we can see in Table 1.1, they have a
common denominator polynomial. Furthermore their numerator and denominator as they
are presented here have no common roots. I give a proof of these properties during my study
of the multipole representation of the Multi-Level Breit-Wigner formalism. If we write Pl
and Sl as quotient of some polynomials,

Pl =
pl
ql
, (1.48)

Sl =
sl
ql
. (1.49)

I admit here the empirical properties on the degree of the numerator polynomials and (com-
mon) denominator polynomial,

deg(pl) = 2l + 1,

deg(sl) = max(2l − 2, 0),

deg(ql) = 2l.

(1.50)
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but I will demonstrate these properties later on.

The phase-shift factor φl has a slightly more complicated expression, specifically it is not
a rational function of its argument. The contribution of φl in the cross-sections formulae is
somewhat separated from that of the penetration and level shift factors. Particularly, it can
be ignored during the study of the multipole representation. I will take interest in it when
studying the Doppler broadening of the cross-sections with the multipole representation.
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Chapter 2

Practical aspects of resonant
cross-sections reconstruction in the
ENDF format

As I explained in the introduction of this manuscript, resonant cross-sections are described
by analytical formulae and a set of corresponding parameters. In the previous chapter, I have
given an overview of the derivation of such formulae from physical models. In this chapter, I
give the implementation details of the Multi-Level Breit-Wigner and Reich-Moore formalisms
as well as a short description of the resonance data in the framework of the ENDF format.

An important change concerns the notation adopted for the energy of the system, and
particularly in the cross-section formulae. In the presentation of the R-matrix theory, the
energy E was expressed in the center of mass of the two particles. For experimental purposes,
and later the fitting of the R-matrix parameters, it is more natural to work in terms of the
energy of the incident neutron in the laboratory frame noted Elab. The relation between
these two definitions is

Elab =
M +mn

M
E (2.1)

where the quantity mn is the mass of the neutron and the quantity M is the mass of the
target nucleus. As mentioned in [52], all formulae presented before can be kept identical just
by multiplying reduced widths and energy levels by a constant :

Elab
λ =

M +mn

M
Eλ, (2.2)

γlabλc =

√
M +mn

M
γλc. (2.3)

The parameters given in evaluations are those defined in the laboratory frame. Since we
are concerned with these parameters, the lab superscript will not be noted explicitly in the
formulae, and, from now on, the energy E will always designate the energy of the incident
neutron in the laboratory frame where the target nucleus is motionless.
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2.1 Implementation of the Multi-Level Breit-Wigner

and Reich-Moore formalisms

2.1.1 Common simplifications and approximations

The formulae I have derived theoretically in the previous chapter, although resulting from
some approximations, are still quite general. Practically, the Multi-Level Breit-Wigner and
Reich-Moore formalisms are used to describe very specific interactions between a neutron
and a target nucleus. The four corresponding cross-sections are the radiative capture, the
elastic, the fission (when relevant) and the total cross-sections.

To obtain these cross-sections from the rather abstract channel cross-sections described
before, one must sum the correct channel terms σcc′ . In our case, the initial state of the
system is that of a neutron and a nucleus. The final state of the system depends on the
considered reaction. In the ENDF format, this sum on channel cross-sections is not done on
the indices c and c′. Rather, the sum is explicit on the indices characterizing each channel :
α, l, s and Jπ (as explained before, the index mJ that completes the characterization of a
channel is taken into account in cross-section formulae through the statistical spin factor gc).

The indices characterizing each channel can be split into two parts. The first one, simply
noted α, describes the pair of particles of the channels. It is replaced by n, for the entry
composed of a neutron and a nucleus, and x for the considered reaction. The index x is either
n for elastic scattering, f for fission, γ for capture and t for total. The second one is the
quantum number triplet (l, s, Jπ). In theory, only Jπ (noted J in the rest of this manuscript)
is conserved in nuclear reactions. This would imply a sum of terms of different (l, s) and (l′, s′)
values. In practice, the ENDF evaluation format further imposes the conservation of l and s
for the Multi-Level Breit-Wigner and Reich-Moore formalism implementations. As a result,
the cross-section formulae in the ENDF format are a sum of terms noted σ

(l,s,J)
nx . To each

quantum triplet (l, s, J) corresponds a specific set of resonances (with their individual energy
and widths). Such a set will be called a pack of resonances throughout this manuscript.

The c indices in the quantities φc and gc defined in (1.8) and (2.4) are replaced by the
particular index of the channel they depend on. Consequently the phase-shift φc is noted φl
as it depends only on the quantum number l. Similarly, the statistical spin factor gc, defined
in (1.2), is noted gJ as it only depends on the total angular momentum J :

gJ =
2J + 1

2(2I + 1)
for a neutron of spin i = 1/2 and a target nucleus of spin I (2.4)

The wavelength λ̄c defined in (1.1) that appears in front of all cross-section terms σcc′ is
replaced by the equivalent wave number k = 1/λ̄c. Further, the index c can be dropped
because the entry is always a neutron. The formula is

1

k
= λ̄ =

A+ 1

A

~√
2mnE

(2.5)

where the quantity A is the mass of the considered target nucleus expressed in neutron mass.
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The energy E is the energy of the incident neutron in the laboratory frame as specified in
the beginning of this subsection.

As hinted at before, there is a switch from the concept of levels to the concept of resonances
in the cross-section formulae. The definition of levels in the R-matrix theory makes them
mostly a mathematical concept. The exact link between levels and resonances, which are
more a physical observation on the experimental cross-section profiles, is not trivial. Insights
can be found in the article of P. Descouvemont [53] which proposes an overview of some
aspects of the R-matrix theory. The level indices λ are replaced by resonance indices r. In
combination with the change from channel indices c to reaction indices x, the reduced and
non-reduced width are noted slightly differently :

γλc → γxr and Γλc → Γxr.

For any practical applications the number of resonances taken into account in the formulae
will always be finite.

In further contrast with the theory of the R-matrix, the channel-radii that appear in the
computation of the penetration, level-shift and phase-shift factors are not necessarily the
same. Three main possibilities are given :

• the use of a unique channel-radius computed as

ac = 0.123
3
√
A(in amu) + 0.08, (2.6)

where A is again the mass of the target nucleus, expressed in atomic mass unit,
• the use of a so-called scattering radius specified per nucleus. A l-dependent scattering

radius is sometimes specified,
• in rare occasions, the use of an energy-dependent scattering radius. I hereby exclude

the concerned nuclei from my study as no multipole representation can then be - math-
ematically - extracted as far as I know.

Based on the previous elements, I will now present the formulae given by ENDF for the
cross-sections, for a neutron of incident energy E, at 0K (motionless target nucleus).

2.1.2 Multi-Level Breit-Wigner cross-section formulae

The formulae are :

σnn(E) =
4π

k2

∑
(l,s,J)

gJ

[
sin2 (φl) + <

(
ρ(l,s,J)
nn exp (−2iφl)

)
−<(ρ(l,s,J)

nn ) +
∣∣ρ(l,s,J)
nn

∣∣2] , (2.7)

σnf (E) =
π

k2

∑
(l,s,J)

gJ
∑
r

ΓfrΓnr
(E − E ′r)2 + Γ2

tr/4
, (2.8)

σnγ(E) =
π

k2

∑
(l,s,J)

gJ
∑
r

ΓγrΓnr
(E − E ′r)2 + Γ2

tr/4
, (2.9)
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ρ(l,s,J)
nn (E) =

i

2

∑
r

Γnr
(E − E ′r) + iΓtr/2

, (2.10)

σnt(E) = σnn(E) + σnγ(E) + σnf (E), (2.11)

E ′r = Er +
Γnr

2Pl(|Er|)
[Sl(|Er|)− Sl(E)] . (2.12)

Although not explicitly noted, the resonance energies Er and associated widths all pertain
to a particular (l, s, J) index set. For clarity, these indices have been dropped from the
notations.

The expression of the level-shifted energies varies slightly from its theoretical definition of
expression (1.26). For channels concerned with the radiative capture and fission reaction, the
boundary condition and the level-shift factor are entirely neglected. For channels concerned
with the elastic reaction, the level-shift is not neglected but the boundary conditions are
chosen level by level.

Finally, one has to note a major difference with the theoretical presentation and derivation
of the Multi-Level Breit-Wigner formalism I talked about in the previous chapter. Namely,
the radiative capture and fission cross-sections presented here do not account for interference
between resonances.

2.1.3 Reich-Moore cross-section formulae

The formulae are :

σnf (E) =
4π

k2

∑
(l,s,J)

gJ
(
|ρna|2 + |ρnb|2

)
, (2.13)

σnn(E) =
4π

k2

∑
(l,s,J)

gJ

(
sin2(φl) + <(ρ(l,s,J)

nn exp(−2iφl))−<(ρ(l,s,J)
nn ) +

∣∣ρ(l,s,J)
nn

∣∣2) , (2.14)

σnt(E) =
4π

k2

∑
(l,s,J)

gJ
(
sin2(φl) + <(ρ(l,s,J)

nn exp(−2iφl))
)
, (2.15)

σnγ(E) =
4π

k2

∑
(l,s,J)

gJ

(
<(ρ(l,s,J)

nn )−
∣∣ρ(l,s,J)
nn

∣∣2)− σnf (E). (2.16)

The matrix ρ appearing in these formulae, as well as the reduced R-matrix R̂ on which it
is defined both have at most three entries here. These are the elastic entry noted n, the
fission A entry noted a, and the fission B entry noted b. Here again I will drop the (l, s, J)
index set for clarity, although it is important to keep in mind that there is a matrix ρ and a
reduced matrix R̂ for each index set (l, s, J). We recall their respective expressions :

ρ = Id−
(
Id− iP 1/2R̂P 1/2

)−1

, (2.17)

R̂cd =
∑
r

γcrγdr
Er − E − iΓγr/2

, (2.18)
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where c and d are generic indices that are either n, a or b.

Let us also note that there is no level-shift on the resonance energies. This results from the
simplification described at the end of the theoretical derivation of the Reich-Moore formalism.
Namely, the difference between boundary conditions Bc and level-shift factor Sc is taken to
be zero.

2.1.4 Quick comparison of the cross-section formulae

We can already see similarities and differences between the formulae of the two formalisms.
The elastic cross-sections written in terms of ρ are, not surprisingly, very close to each other.
The differences lie in the definition of ρ which in the Multi-Level Breit-Wigner case is a single
sum term, whereas it involves a matrix inversion for the Reich-Moore case.

The radiative capture and fission cross-sections are very different. On one hand, the
practical Multi-Level Breit-Wigner formalism formulae for both these cross-sections are not
even really ”Multi-Level”. Interference cross terms have been neglected from the definition
of σcc′ of expression (1.28). On the other hand, for the Reich-Moore formalism formulae,
the fission cross-section is obtained from a summation from two different channels. The
multiplicity of these channels is a key component of this formalism and allows for a better
description of the complexity of the fission phenomenon. The radiative capture cross-section
is obtained by a perturbative treatment. It was initially separated during the approximations
leading to the Reich-Moore formalism cross-section expressions.

Finally, in the Multi-Level Breit-Wigner formalism case, the total cross-section is obtained
from a summation of the partial cross-sections. In the Reich-Moore formalism case, it is
obtained with a formula involving some elements of the ρ matrix. It is worth mentioning
that there exist other strictly equivalent formulations where an intermediary absorption cross-
section is defined. I have chosen to only include here the formulae I will be working with
later.

2.2 Specification of the nucleus and resonance data

The quantities of interest that occur in the cross-sections are provided in ENDF resonance
data files. The general description of such files can be found in [14]. Notably, the format of
the resonance data files may vary for different formalisms. Interestingly, the parameters used
in Multi-Level Breit-Wigner and Reich-Moore formalisms are very similar. I provide here a
short description of their important elements.

The mass of the target nucleus as well as the scattering radius are provided in the begin-
ning of the resonance file. A set of flags indicates which radius to utilise in the penetration,
level-shift and phase-shift factors.

The number of orbital quantum number l taken into account in the cross-section formulae
is then specified. For each of these values of l, a list of resonances is provided. They all pertain
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to a particular pack of resonances (identified by a triplet (l, s, J) as I mentioned before). They
are individually characterized by their energy and a set of reaction widths. Intuitively, these
specify the magnitude and importance of a reaction for that particular resonance. The usual
ENDF notation for the parameters characterizing a resonance of index r are, Er the energy
of the resonance r, GXr the reaction width X of the resonance r. X is a placeholder for
one of the different reactions considered. Usually, we note GNr the elastic width, GGr the
radiative capture width, GTr the total width, and GFr the fission width if relevant.

These parameters correspond to the evaluation of the widths noted Γxr at the energy of the
resonance they belong to. Namely, if we recall that the widths hide an energy dependency :

GNr = Γnr(Er) = 2γ2
nrPl(Er), (2.19)

GFr = Γfr(Er) = 2γ2
fr, (2.20)

GGr = Γγr(Er) = 2γ2
γr, (2.21)

GTr = Γnr(Er) + Γfr(Er) + Γγr(Er) = 2γ2
nrPl(Er) + 2γ2

fr + 2γ2
γr. (2.22)

We have written here the fact that the penetration for fission and radiative capture is always
considered constant equal to 1. From these expressions, one can obtain the reduced widths
γxr. These can in turn be used to compute the widths Γxr as needed.

2.3 Choice of notation for the scattering factors in this

manuscript

As a final point, I would like to comment on a choice of notation. The penetration factors
as they appear in (2.19) are noted in accordance with the definition of the ENDF formulae
in [14]. A more correct notation, in my opinion, would be to first write

Pl(ka) = Pl

(
M

M +mn

√
2mnE

~
a

)
= Pl

(
M

M +mn

√
2mn

~
a
√
E

)
.

In my work, when studying a pack and having fixed the value of a, I will note as often as
possible :

Pl(β
√
E) with β :=

M

M +mn

√
2mn

~
a. (2.23)

Similarly, it is sometimes useful to replace k by its expression in terms of
√
E in formulae. I

will note

k = α
√
E with α :=

M

M +mn

√
2mn

~
. (2.24)
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Chapter 3

Mathematical tools

This chapter is a standalone section that can be read almost separately from the rest of
this manuscript. I will describe here the mathematical tools that I will repeatedly use during
my work. They mainly concern rational functions and root-finding algorithms.

3.1 Summary of properties of rational functions

A vast portion of my work is devoted to the study of rational functions. A rational
function is the quotient of two polynomial functions. I will list hereby some properties and
simple results that will be useful in the following. Proofs of theorems and their corollaries
can be found in [54].

3.1.1 Partial fraction decomposition

One of the most interesting properties of rational functions is the partial fraction decom-
position theorem. I give here a simplified version in a set of cases of particular interest for
my work.

Let f be a complex-valued polynomial (its coefficients are complex numbers) of degree
m, and let g be a complex-valued polynomial of degree n. We assume that m ≤ n, that the
roots of g are all simple roots, and that none of these roots are roots of f . Then, there exists
a set of n complex numbers (zk) called poles (the roots of g) and n complex numbers (ak)
called residues, such that, for any complex number z,

f(z)

g(z)
= c+

∑
k

ak
z − zk

(3.1)

with c the remainder of the fraction, computed as the limit on the real axis of :

c = lim
x→±∞

f(x)

g(x)
. (3.2)
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If deg(f) < deg(g) then the remainder c is zero. In any case, the (ak) are computed by

ak =
f(zk)

g′(zk)
. (3.3)

Note that if one of the root of g was also a root of f , the corresponding residue would be 0
and then the contribution to the sum in (3.1) would be 0.

3.1.2 Coprime polynomials

When working with the partial fraction decomposition theorem, it is important to ensure
that the numerator and denominator polynomials have no common roots. If they share some
roots, we have just seen that the partial fraction decomposition will have too many terms.

Just as with rational numbers, we ought to simplify the polynomial fractions we work
with. Like integers, polynomial functions admit a unique prime factor decomposition (up to
a multiplicative constant). Namely, any complex valued polynomial f(z) of degree n admits
a decomposition as a product of n prime factors of the form (z − zk), zk ∈ C, 1 ≤ k ≤ n.
The zk are the roots of the polynomial.

We say that two polynomials are coprime when they admit no common prime factors.
That is equivalent to saying that they have no common roots. Our work will focus on simplify-
ing rational functions as much as possible before applying the partial fraction decomposition
theorem.

3.1.3 Real valued polynomials with positive denominator

In our work, the rational functions that we will study often have additional properties.
Firstly, the numerator is real-valued on the real axis. Secondly, the denominator is also real-
valued and, additionally, positive on the real axis. With these hypotheses, we have additional
results on the partial fraction decomposition theorem.

Let f and g be two non-zero polynomial functions. We assume that :

• f and g are real valued polynomials (their coefficients are real number),
• deg(f) < deg(g),
• all the roots of g are simple roots,
• g(x) > 0,∀x ∈ R.

The positivity of g on the real axis implies that it is of even degree, which we will denote
2n. Indeed if its degree was odd, it would necessarily change sign somewhere on the real
axis. Furthermore, the fact that g is real-valued implies that the 2n complex roots of g are
all conjugated by pair. We denote them (z1, · · · , zn, z1, · · · , zn).

We have the following partial fraction decomposition, for any complex number z :

f(z)

g(z)
=
∑
k

ak
z − zk

+
∑
k

bk
z − zk

(3.4)
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with

ak =
f(zk)

g′(zk)
, (3.5)

bk =
f(zk)

g′(zk)
. (3.6)

Under the hypothesis that f and g are real-valued we can further rewrite (3.6) as

bk =
f(zk)

g′(zk)
=
f(zk)

g′(zk)
= ak. (3.7)

The two important results are, for any complex number z :

f(z)

g(z)
=
∑
k

ak
z − zk

+
∑
k

ak
z − zk

, (3.8)

and in particular for any real number x,

f(x)

g(x)
= <

[∑
k

2ak
x− zk

]
. (3.9)

3.1.4 Product of two partial fraction decompositions

The case will often arise that we have calculated separately the partial fraction decom-
position of two rational functions and that we need to compute their product. The product
of two rational functions is also a rational function. As such it also admits a partial fraction
decomposition.

It is possible to give directly the partial fraction decomposition of the product from the
partial fraction decomposition of each term of the product. I propose here some formulae for
specific cases that will arise later on.

Let (x1, · · · , xm) be m complex poles and (a1, · · · , am) be their residues for the first partial
fraction decomposition. Let (y1, · · · , yn) be n complex poles and (b1, · · · , bn) be their residues
for the second partial fraction decomposition.

We assume the restrictive condition that no xk is equal to an yl. This turns out to be true
in all applications of interest in this work. In the most general case, poles with multiplicity
could arise and make the situation somewhat more complicated.

We have the following relations, for any complex number z :(
m∑
k=1

ak
z − xk

)(
n∑
l=1

bl
z − yl

)
=

m∑
k=1

n∑
l=1

(
ak

z − xk
bl

z − yl

)
=

m∑
k=1

n∑
l=1

(
akbl

xk − yl

[
1

z − xk
− 1

z − yl

])
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=
m∑
k=1

n∑
l=1

akbl
xk−yl
z − xk

+
m∑
k=1

n∑
l=1

akbl
yl−xk
z − yl

=
m∑
k=1

ak
∑

l
bl

xk−yl
z − xk

+
n∑
l=1

bl
∑

k
ak

yl−xk
z − yl

. (3.10)

A particular case is when m = n and the (yl) and (bl) are exact complex conjugates of
the (xk) and (ak). Then we have the following equality for any complex number z :(

m∑
k=1

ak
z − xk

)(
m∑
l=1

al
z − xl

)
=

m∑
k=1

ak
∑

l
al

xk−xl
z − xk

+
m∑
l=1

al
∑

k
ak

xl−xk
z − xl

. (3.11)

In particular for any real number x,(
m∑
k=1

ak
x− xk

)(
m∑
l=1

al
x− xl

)
= <

[
m∑
k=1

2ak
∑

l
al

xk−xl
x− xk

]
. (3.12)

3.2 Root-finding algorithms

I have just described the principles of the partial fraction decomposition theorem of ratio-
nal functions. One of the central issues to be able to give the partial fraction decomposition
of these functions is to find the roots of their denominator polynomial.

The problem of finding the roots of a polynomial has been studied extensively in mathe-
matics. In my work, I have investigated several methods to solve this problem. There exist
multiple families of root-finding algorithms each adapted to tackle different issues. The ones
that I have studied can be qualitatively split in three categories, namely :

• Companion matrix and eigenvalue problem formulation,
• Simultaneous root-finding algorithms,
• Newton type algorithms.

I will now provide a short description of the advantages and shortcomings of each family and
explain my final choice of a Newton type algorithm.

3.2.1 Companion matrix and eigenvalue problem formulation

The matrix formulation consists in assembling a matrix whose eigenvalues will be the roots
of the polynomial we are working with. Then, one can apply a power iteration approach to
find the largest eigenvalue of the matrix and therefore a root of the polynomial. The Frobenius
companion matrix is a constructive example of such matrix. It is readily built from the values
of the coefficients of the polynomial we want to find the roots of. The size of the matrix will
be that of the degree of the polynomial. This approach is somewhat interesting for small
degree polynomials with well conditioned coefficients.
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The root elimination is somewhat convoluted. A first idea is to compute (with good
numerical accuracy) the eigenvector corresponding to the eliminated eigenvalue and work in
some new restricted space. Numerical accuracy limits the application of this method past
the first few eigenvalues. A second idea is to simplify the polynomial with the newly found
roots and to form a new companion matrix. The numerical accuracy problems arise again
and the computation of more than a few eigenvalues is very difficult. In general, finding the
complete spectrum of a matrix is a complicated mathematical problem when the matrix is
large. There exist less naive approaches which I will discuss briefly shortly thereafter [55].

3.2.2 Simultaneous root-finding algorithms

The simultaneous root-finding algorithms seems interesting in that they do not require
some sort of successive root elimination. Indeed, successive elimination may lead to catas-
trophic error accumulation and propagation, so that only the first few roots can be computed
with good accuracy.

There exist algorithms for finding all the eigenvalues of matrices (QR algorithm [56, 57])
at the same time but a closer look reveal that these still involve some form of sequential op-
erations. This does not solve the problems of error accumulation. Moreover, as far as I know,
these matrix algorithms require again to have computed the coefficients of the polynomial. I
did not consider them for my work.

The Durand-Kerner method [58, 59] finds simultaneously the roots of polynomials with-
out particularizing any of them. Interestingly for my work, the Durand-Kerner approach
only requires to be able to compute the polynomial and its derivative (more precisely its
logarithmic derivative). However, it appeared numerically unstable for the polynomials of
high degree I studied so I did not investigate it further than for very simple cases.

3.2.3 Newton-Raphson algorithm

The family of algorithms I eventually settled with are the Newton type algorithms, and
particularly the Newton-Raphson algorithm [60]. The general idea is to start from a guess
of a root and to apply the iteration

xk+1 = xk −
P (xk)

P ′(xk)
with x0 some guess about a root. (3.13)

There exist quite a few variations of this algorithm where the update term on the right-hand
side differs but the general idea is always to have an update term that will be zero when we
reach a root. Moreover, we wish the iteration to be stable in the vicinity of a root. Of all
the variations that have been developed and studied through the years, the one presented
above is one of the simplest. It requires a good knowledge of the logarithmic derivative of the
polynomial we are working with, but no particular knowledge of the individual coefficients
of that polynomial.
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In the applications of my work, this was the key factor for choosing this family of al-
gorithms. We have to keep in mind that there are a few issues with the Newton-Raphson
algorithm.

First, the choice of the initial guess is very important for convergence. Indeed, there
exist some initial points for which the algorithm will never converge. In my work I did not
encounter this issue, provided the initial guesses were carefully chosen. As such, some insight
on the particular polynomial we are working with goes a long way and the initial guesses are
integral part of the work I will present.

Second, the root elimination is not necessarily trivial. If we do not have access to the
coefficients of the polynomial, we cannot simplify it to eliminate the root. I consider for
instance a polynomial of degree 3 with a trivial root x0. In such a case, it is somewhat
common knowledge that you can divide the polynomial by X − x0 and obtain a polynomial
of degree 2 with the two remaining roots to find. This procedure requires however the
expression of the coefficients of the polynomial.

To solve this second concern, H.J. Maehly suggested an additional procedure to eliminate
formally the roots by modifying slightly the Newton-Raphson algorithm [61, 62].

Let us assume that we have found the root z0 of some polynomial P . The idea is to write
the Newton-Raphson algorithm for the formal polynomial P (X)/(X − z0). The Newton-
Raphson iteration becomes

xk+1 = xk −
P (xk)

xk − z0

d

dX

(
P (X)

X − z0

)
(xk)

= xk −
P (xk)

xk − z0

P ′(xk)

xk − z0

− P (xk)

(xk − z0)2

= xk −
1

P ′(xk)

P (xk)
− 1

xk − z0

. (3.14)

Interestingly, we find a form in which we still only need to be able to compute the
logarithmic derivative of P . We add a second term which can be thought of as a repulsive
term so as to avoid converging to an already found root. This idea is readily extended to
multiple found roots by just adding to the denominator of (3.14) a repulsive term for each
found root.

This is the algorithm I adopted in my work. The main motivation was my lack of access
to the coefficients of the polynomials I had to find the roots of. Thankfully, it worked very
well in all applications, provided good initial guesses are given. The challenges were to choose
these guesses and, mainly, to find a way to evaluate the term P ′/P in a numerically stable
way.
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3.2.4 A word on roots with multiplicity

It is well known by mathematicians that a major issue for most algorithms concerns roots
with multiplicity. In this case all theoretical results on rates of convergence or stability of
algorithms are much worse than for simple roots. I have not discussed this issue because I
was always able to ensure in some way that the polynomials I worked with had only simple
roots. As a side-note, the Newton-Raphson algorithm presented just above, in combination
with Maehly’s procedure, is still able to compute the roots with multiplicity but both the
convergence rate and the numerical accuracy are greatly affected.
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Part II

Theoretical study of the multipole
representation
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Chapter 1

Study of the multipole representation
of the Multi-Level Breit-Wigner
cross-sections

My goal in this chapter is to show that the elastic, radiative capture, fission - when
relevant - and total cross-sections of the Multi-Level Breit-Wigner formalism can be written
under the so-called multipole representation :

σnx(E) =
4π

k2
<
(∑

p

ap + bp exp(−2iφl)√
E − zp

)
(1.1)

where x is one of the aforementioned interaction and k is related to E by (2.24) from Part I.

The possibility of such representation has already been studied and proven in [19]. I
will show that the number of so-called pole terms in the sum of (1.1) can be reduced com-
pared to these previous results. Broadly, this chapter will involve the close study of the
energy dependencies in the cross-sections formulae and the application of the partial fraction
decomposition theorems provided in the mathematical tools chapter.

The formulae provided for the reconstruction of the cross-sections with the Multi-Level
Breit-Wigner formalism can be found in [14]. As mentioned before, the contribution of each
pack can be computed separately. The formulae for the contribution of a pack indexed (l, s, J)
containing N resonances are :

σ(l,s,J)
nn (E) =

4π

k2

∑
(l,s,J)

gJ

[
sin2 (φl) + <

(
ρ(l,s,J)
nn exp (−2iφl)

)
−<(ρ(l,s,J)

nn ) +
∣∣ρ(l,s,J)
nn

∣∣2] , (1.2)

σ
(l,s,J)
nf (E) =

π

k2

∑
(l,s,J)

gJ
∑
r

ΓfrΓnr
(E − E ′r)2 + Γ2

tr/4
, (1.3)

σ(l,s,J)
nγ (E) =

π

k2

∑
(l,s,J)

gJ
∑
r

ΓγrΓnr
(E − E ′r)2 + Γ2

tr/4
, (1.4)
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ρ(l,s,J)
nn (E) =

i

2

∑
r

Γnr
(E − E ′r) + iΓtr/2

, (1.5)

σ
(l,s,J)
nt (E) = σ(l,s,J)

nn (E) + σ(l,s,J)
nγ (E) + σ

(l,s,J)
nf (E). (1.6)

The elastic and total widths hide some energy dependency. Given my choice of notation
described in section 2.3 of Part I :

Γnr = Pl
(
β
√
E
) GNr

Pl
(
β
√
|Er|

) , (1.7)

Γtr = GTr −
(
Pl
(
β
√
|Er|

)
− Pl

(
β
√
E
)

Pl
(
β
√
|Er|

) )
GNr. (1.8)

On the contrary, the radiative capture and fission widths are independent of the energy :

Γfr = GFr, (1.9)

Γγr = GGr. (1.10)

Furthermore, there is a shift on the resonance energies to use :

E ′r = Er +

(
Sl
(
β
√
|Er|

)
− Sl

(
β
√
E
)

2Pl
(
β
√
|Er|

) )
GNr. (1.11)

These energy dependencies through the penetration and level-shift factors are the source of
the complexity of the Multi-Level Breit-Wigner multipole representation.

I describe in this chapter the approach I followed to give the exact mathematical repre-
sentation of the Multi-Level Breit-Wigner cross-sections. First I will focus on two simplified
situations for which I will derive a multipole representation. Then, I will show the need to
study the mathematical properties of the penetration and level-shift factors. I will give a
summary and proof of the results I found during this study. Finally I will show that we can
give an exact multipole representation (mathematical equivalency with the formulae) of the
Multi-Level Breit-Wigner cross-sections with less poles than initially surmised.

We will omit the index (l, s, J) from now on as we will focus on a particular pack.

1.1 From a simplified setting to the full complexity of

the MLBW formalism

1.1.1 Neglecting the energy dependency of the widths and the
level-shift of the resonances

As a first step, I neglected all energy dependencies of the reaction widths. The elastic
cross-section formula is more complicated than the radiative capture and fission cross-section
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formulae. Indeed, we will see that the modulus square of the ρnn term in (1.2) imposes
additional calculations.

For now we will focus on these two latter partial cross-section formulae. We will consider
the index x to designate either of them as they are perfectly identical to the width involved.
Neglecting the hidden energy dependencies of Γnr, Γtr and E ′r, we get

σnx(E) =
π

k2

N∑
r=1

GNrGXr

(E − Er)2 + GT2
r/4

. (1.12)

First, we see that the contribution of each resonance is linearly added to the contribution
of the pack. This is not the case for elastic cross-section (and through it the total cross-
section). This property is very useful for the multipole representation as it allows us to work
separately on each resonance contribution.

Second, in our simplified setting, we can immediately give a partial fraction decomposition
of each term as they are all simple rational functions. Indeed we have for any resonance r :

GNr GXr

(E − Er)2 + GT2
r/4

=
GNrGXr/iGTr

(E − Er)− iGTr/2
− GNrGXr/iGTr

(E − Er) + iGTr/2
. (1.13)

This is one of the simplest case we will encounter. The rational function on the left hand
side is the quotient of constant polynomial function with a polynomial function of degree 2.
The roots of the denominator polynomial function are trivially computed. Given that they
are not identical, we can give the partial fraction decomposition on the right hand side. This
is already what we could call a multipole representation. However we have neglected energy
dependencies, which unsurprisingly simplifies a lot the study.

Furthermore, for the Doppler broadening we are interested in, it is more convenient to
work with

√
E. The idea to get an expression with

√
E is to remark that the right-hand side

is actually the real part of one term :

GNrGXr/iGTr

(E − Er)− iGTr/2
− GNrGXr/iGTr

(E − Er) + iGTr/2
= <

[
2GNrGXr/iGTr

(E − Er)− iGTr/2

]
. (1.14)

Then we look at the term inside the real part as a rational function of
√
E and not simply E.

It is again a rational function with a denominator polynomial of degree 2 in
√
E. Its roots

are the complex roots of Er + iGTr/2. We note u+
r the root with positive real value and u−r

the root with negative real value. Therefore we have

GNrGXr

(E − Er)2 + GT2
r/4

= <
[

2GNrGXr/iGTr

(E − Er)− iGTr/2

]
(1.15)

= <
[

(GNrGXr)/(iGTru
+
r )√

E − u+
r

+
(GNrGXr)/(iGTru

−
r )√

E − u−r

]
. (1.16)

We then gather these terms to form the contribution of the pack :

σnx(E) =
π

k2

N∑
r=1

<
[

(GNrGXr)/(iGTru
+
r )√

E − u+
r

+
(GNrGXr)/(iGTru

−
r )√

E − u−r

]
. (1.17)
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This is the typical form we wish to achieve. We can see that each resonance can be
represented with two pole terms. In the case we do not neglect energy dependency, more
poles will be needed to exactly represent all resonances. However the two main points that
we have shown here are true in the non-simplified situation. First, for the radiative capture
and fission cross-section, each term can be computed separately. Second, the problem lies
in computing the partial fraction decomposition of each of these terms. Here it was quite
straightforward. This will not be the case later. Let us move to a slightly more complicated
situation and see where the complexity arises from.

1.1.2 Preliminary study of the multipole representation of the ra-
diative capture and fission cross-sections for a pack of quan-
tum orbital number l = 0

The elastic width has a hidden energy dependency that cannot be neglected for a good
representation of the cross-sections. This energy dependency is done through the penetration
factor Pl, which is always a rational function of

√
E.

We have seen that the exact expression of the penetration factors involves the definition
of a radius, either the so-called channel radius noted ac or the scattering radius noted AP.
Thankfully, in the case of a pack of quantum orbital number l = 0, the notations are lighter
because much can be simplified in the expressions of the scattering factors from Table 1.1 of
Part I. Namely,

Γnr = GNr

√
E√
|Er|

, (1.18)

Γtr = GTr −GNr + GNr

√
E√
|Er|

, (1.19)

E ′r = Er. (1.20)

There is no level-shift and the choice of the radius has no importance since it cancels between
Pl
(
β
√
E
)

and Pl
(
β
√
|Er|

)
.

The contribution of a resonance for either the fission or radiative capture cross-section
can be extended as

ΓxrΓnr
(E − E ′r)2 + Γ2

tr/4
=

GXrGNr

√
E/
√
|Er|

(E − Er)2 +
(

GTr −GNr + GNr

√
E/
√
|Er|

)2

/4
.

The situation is already significantly more complicated than before. We cannot do sepa-
rately a first partial fraction decomposition in term of E then a second one in term of

√
E as

we did previously when neglecting energy dependencies. The numerator polynomial is not a
constant : it is a polynomial of degree 1 in

√
E. The denominator is neither a polynomial in

E. It is a polynomial in
√
E of degree 4.
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We can however use the second property of rational function of subsection 3.1.3 of Part I.
The numerator and denominator polynomials are

f(u) :=
(

GXrGNr/
√
|Er|

)
u, (1.21)

g(u) := (u2 − Er)2 +
(

GTr −GNr +
(

GNr/
√
|Er|

)
u
)2

/4 (1.22)

with u =
√
E.

Their coefficients are all real numbers. g is positive on the real axis provided that the two
square terms do not cancel at the same time. The case can arise that this is not true but it
is rather pathological and I exclude it from the study. The numerator and denominator are
coprime polynomials because the only root of the numerator is 0 and it is not a root of the
denominator.

The hypothesis of subsection 3.1.3 of Part I being verified, we note u
(1)
r , u

(2)
r and their

complex conjugates the 4 poles of g. We note a
(1)
r ,a

(2)
r and their complex conjugates the 4

corresponding residues. We can then write

GXrGNr

√
E/
√
|Er|

(E − Er)2 +
(

GTr −GNr + GNr

√
E/
√
|Er|

)2

/4
=

a
(1)
r√

E − u(1)
r

+
a

(2)
r√

E − u(2)
r

+
a

(1)
r

√
E − u(1)

r

+
a

(2)
r

√
E − u(2)

r

= <
[

2a
(1)
r√

E − u(1)
r

+
2a

(2)
r√

E − u(2)
r

]
.

We find back the very interesting result of the simplified case (1.17). The resonance
contribution can be given a multipole representation in the form of the real part of only
two pole terms. However, the poles are not as simple as before and one needs to perform a
root-finding algorithm on a polynomial of degree 4. The Newton-Raphson algorithm I have
proposed in subsection 3.2.3 performs very well on this kind of problem.

We have shown here that the multipole representation of the radiative capture and fission
cross-section are relatively straightforward to compute for packs of quantum number l = 0.
We need only two poles per resonance. We will now study the more general case and show
that we need to add more poles per resonance to give an exact multipole representation of
each resonance term.
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1.1.3 Preliminary study of the multipole representation of the ra-
diative capture and fission cross-sections for a pack of quan-
tum orbital number l > 0

Rational function associated with each resonance term

R.N. Hwang was well aware of the energy dependencies hidden in the scattering factors.
However, he remarked that since the penetration and level-shift factors were rational functions
of
√
E, the resonance terms would still be rational functions. We have just seen that the

l = 0 situation is not particularly difficult. The general energy dependency for higher l > 0
is much more complicated.

Let us unmask the hidden energy dependency to see the full problem we have to tackle.
We start from a resonance term,

Tr(E) :=
ΓnrΓxr

(E − E ′r)2 + Γ2
tr/4

=
ΓnrΓxr

|(E − E ′r) + iΓtr/2|2
. (1.23)

We note u :=
√
E. Again we adopt the notations of subsection 3.1.3 of Part I for β and the

scattering factors. The expanded expression of Tr(E) becomes

Tr(E) =

GNrGXr

Pl(β
√
|Er|)

Pl(βu)∣∣∣∣∣u2 − Er + GNr

Sl(βu)− Sl(β
√
|Er|)

2Pl(β
√
|Er|)

+ i(GTr −GNr)/2 + iGNr
Pl(βu)

2Pl(β
√
|Er|)

∣∣∣∣∣
2

=

GNrGXr

Pl(β
√
|Er|)

Pl(βu)∣∣∣∣∣u2 − Er + iGTr/2−GNr

Sl(β
√
|Er|) + iPl(β

√
|Er|)

2Pl(β
√
|Er|)

+ GNr
Sl(βu) + iPl(βu)

2Pl(β
√
|Er|)

∣∣∣∣∣
2 .

We adopt two additional notations, first the reduced elastic width given by

γnr :=

√√√√ GNr

2Pl

(
β
√
|Er|

) , (1.24)

then the perturbed (complex valued) energy,

Ẽr := Er − iGTr/2 + GNr

Sl
(
β
√
|Er|

)
+ iPl

(
β
√
|Er|

)
2Pl
(
β
√
|Er|

) . (1.25)

We can then write the previous expression in a cleaner way :

Tr(u) =
2γ2

nrGXrPl(βu)∣∣∣u2 − Ẽr + γ2
nr

(
Sl(βu) + iPl(βu)

)∣∣∣2 . (1.26)
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For l = 0 the numerator and denominator of this expression are polynomial functions and we
can proceed to the partial fraction decomposition. This is exactly what we did just previously.
For l > 0, Sl and Pl are rational functions and the numerator and denominator are no more
directly polynomial functions.

My aim will be to give an expression of Tr(u) as a quotient of two polynomial functions.
Moreover, I want these polynomial functions to be coprime with each other. Namely, I need
to find a form in which the numerator and denominator of Tr(u) are polynomials with no
common roots. I will then be able to do a partial fraction decomposition, and therefore
obtain a multipole representation.

First approach to the problem

Pl and Sl have a common denominator polynomial as seen in Table 1.1 of Part I. We
note Sl = sl/ql and Pl = pl/ql. To do the partial fraction decomposition of (1.26), we need
to rewrite the expression as a quotient of polynomial functions. Let us examine it with our
new notations :

Tr(u) =

2γ2
nrGXr

pl(βu)

ql(βu)∣∣∣∣u2 − Ẽr + γ2
nr

sl(βu) + ipl(βu)

ql(βu)

∣∣∣∣2 . (1.27)

The natural approach that had been used up until now [19] is to multiply the numerator and
denominator by q2

l . This yields

Tr(u) =
2γ2

nrGXrpl(βu)ql(βu)∣∣∣ql(βu)
(
u2 − Ẽr

)
+ γ2

nr (sl(βu) + ipl(βu))
∣∣∣2 . (1.28)

The polynomial ql enters the modulus square as it has real coefficients and u is a real number.

We have for numerator and denominator polynomials :

f(u) := 2γ2
nrGXrpl(βu)ql(βu), (1.29)

g(u) :=
∣∣∣ql(βu)

(
u2 − Ẽr

)
+ γ2

nr (sl(βu) + ipl(βu))
∣∣∣2. (1.30)

The degrees of these polynomials are found from the degrees of pl, sl and ql given in expres-
sion (1.50) of Part I. Namely,

deg(f) = deg(pl) + deg(ql) = 4l + 1, (1.31)

deg(g) = 2 max (deg(ql) + 2,max(deg(sl), deg(pl))) = 4l + 4. (1.32)

We have not verified that f and g have no common roots but it is still possible to give
a partial fraction decomposition. However, there will be no guarantee that the number of
poles and residues is the minimal one.
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In [19], C. Jammes and R.N. Hwang have done this exact development to give a multipole
representation of the fission and radiative capture cross-sections. They surmise that one needs
2l + 2 poles to represent a resonance term. However, they also found the peculiar property
that the residues of some poles were very small.

This is typical of the fact that the numerator and denominator in the fraction (1.28)
may have a common root. We have seen that, in in this case, the expression of the residue
corresponding to this pole from expression (3.3) of Part I will be zero. Numerically it is not
surprising that we do not obtain exactly zero but some float number really close to it.

My approach was to further study the property of the Pl and Sl factors. Indeed it seems
that for l > 0 there is always some common roots between f and g defined in (1.29) and (1.30).
I show in the next part that ql and sl + ipl do have common roots for l > 0. From that I will
show that the expression (1.28) can be simplified. This confirms and explains the existence
of poles with null residues. It also provides a way to circumvent this over-determination of
the number of poles.

1.2 Study of the mathematical properties of the pene-

tration, level-shift and phase-shift factors

1.2.1 General properties and need for a closer study

The scattering factors have well known expressions for the first values of l. I have gathered
them in Table 1.1 of Part I. For higher values of l, a recursive formula is provided, namely
for the penetration and level-shift factors,

Pl+1(ρ) =
ρ2Pl(ρ)

P 2
l (ρ) +

(
l + 1− Sl(ρ)

)2 , (1.33)

Sl+1(ρ) =
ρ2
(
l + 1− Sl(ρ)

)
P 2
l (ρ) +

(
l + 1− Sl(ρ)

)2 − (l + 1), (1.34)

with initial conditions P0(ρ) = ρ and S0(ρ) = 0.

l Pl(ρ) Sl(ρ)
0 ρ 0

1
ρ3

ρ2 + 1

−1

ρ2 + 1

2
ρ5

ρ4 + 3ρ2 + 9

−3ρ2 − 18

ρ4 + 3ρ2 + 9

In the context of our study, we wish to have separate formulae for the numerator and
denominator of these rational functions for any l. Let us assume that we have the following
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fractional representation at rank l,

Pl(ρ) =
pl(ρ)

ql(ρ)
, (1.35)

Sl(ρ) =
sl(ρ)

ql(ρ)
. (1.36)

Writing such a fractional representation, we have further assumed that the denominator
polynomials are identical for the penetration and the level-shift factors. This is visibly true
for the first values of l as seen in Table 1.1. We will later prove that this holds at any value
of l.

Let us inject the expressions (1.35) and (1.36) in (1.33) and (1.34) :

Pl+1(ρ) =

ρ2pl(ρ)

ql(ρ)(
pl(ρ)

ql(ρ)

)2

+

(
(l + 1)− sl(ρ)

ql(ρ)

)2 (1.37)

=
ρ2pl(ρ)ql(ρ)

p2
l (ρ) +

(
(l + 1)ql(ρ)− sl(ρ)

)2 , (1.38)

Sl+1(ρ) =

ρ2

(
(l + 1)− sl(ρ)

ql(ρ)

)
(
pl(ρ)

ql(ρ)

)2

+

(
(l + 1)− sl(ρ)

ql(ρ)

)2 − (l + 1) (1.39)

=
ρ2
(
(l + 1)ql(ρ)− sl(ρ)

)
ql(ρ)

p2
l (ρ) +

(
(l + 1)ql(ρ)− sl(ρ)

)2 − (l + 1). (1.40)

We would be very pleased to announce that,

pl+1(ρ) = ρ2pl(ρ)ql(ρ), (1.41)

ql+1(ρ) = p2
l (ρ) +

(
(l + 1)ql(ρ)− sl(ρ)

)2
, (1.42)

sl+1(ρ) = ρ2
(
(l + 1)ql(ρ)− sl(ρ)

)
ql(ρ)− (l + 1)q2

l+1(ρ). (1.43)

Unfortunately, we have no guarantee that pl+1 and ql+1 have no common roots with these
expressions. As a matter of fact we can already see that these formulae do not give back the
expressions of the numerator and denominators for l ≥ 1. The expressions that are given here
are actually already simplified. The computation with the formulae (1.41) to (1.43) would
yield polynomials whose degrees approximately double at each iteration. I will now detail
the derivation of the correct formulae, namely formulae that give a fractional representation
with coprime numerator and denominator polynomials.
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1.2.2 Induction proof of the properties of the level-shift and pen-
etration factors

The forms of (1.33) and (1.34) strongly suggest studying the recursive sequence of rational
functions (Sl − (l + 1)) + iPl. The induction formula for these rational functions is given by

(
Sl+1(ρ)− (l + 2)

)
+ iPl+1(ρ) =

ρ2
(
(l + 1)− Sl(ρ) + iPl(ρ)

)
P 2
l (ρ) +

(
l + 1− Sl(ρ)

)2 − (2l + 3) (1.44)

=
−ρ2(

Sl(ρ)− (l + 1)
)

+ iPl(ρ)
− (2l + 3). (1.45)

For any l ≥ 0, (Sl − (l + 1)) + iPl is a rational function of ρ. We note gl/hl a possible
fractional representation of this rational function, with gl and hl two coprime polynomials.
We have a choice of a multiplicative constant to define gl and hl, we decide that hl will have
a leading coefficient equal to 1. We are going to prove the following properties of gl and hl,
l ≥ 1 by induction :

gl(0) = −(i)l
(2l + 1)!

2ll!
, (1.46)

gl(ρ) = iρ2hl−1(ρ) + i(2l + 1)gl−1(ρ), (1.47)

hl(ρ) = −igl−1(ρ), (1.48)

deg(gl) = l + 1 and its leading coefficient is 1, (1.49)

deg(hl) = l. (1.50)

The initial values of the sequence are

(S0(ρ)− 1) + iP0(ρ) = −1 + iρ =
−1 + iρ

1
, (1.51)

(S1(ρ)− 2) + iP1(ρ) =
−1

ρ2 + 1
− 2 +

iρ3

ρ2 + 1
(1.52)

=
iρ3 − 2ρ2 − 3

ρ2 + 1
. (1.53)

We already see that iρ3 − 2ρ2 − 3 and ρ2 + 1 are not coprime polynomial since they both
admit i as a root. We can thus divide numerator and denominator by ρ− i yielding

(S1(ρ)− 2) + iP1(ρ) =
iρ2 − 3ρ− 3i

ρ+ i
. (1.54)

The numerator and the denominator are now coprime since the denominator has only one
root, −i, and that the numerator is non zero at −i. Moreover, the denominator leading
coefficient is 1 so we do not have to multiply by a constant to get the fractional representation
we desire.

Finally we have the following expressions for the first values of gl and hl :

g0(ρ) = iρ− 1, (1.55)
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h0(ρ) = 1, (1.56)

g1(ρ) = iρ2 − 3ρ− 3i, (1.57)

h1(ρ) = ρ+ i. (1.58)

The 5 induction properties are verified for both l = 1. Let us assume that they are true
up to some l ≥ 1. From expression (1.45), we have

gl+1(ρ)

hl+1(ρ)
=
−ρ2hl(ρ)

gl(ρ)
− (2l + 3) =

−ρ2hl(ρ)− (2l + 3)gl(ρ)

gl(ρ)
.

We have replaced (Sl+1 − (l + 2)) + iPl+1 and (Sl − (l + 1)) + iPl by their fractional repre-
sentation.

First let us prove that the numerator and denominator of the right-hand side are co-
prime. Then we will just have to find the multiplicative coefficient to make the denominator
polynomial leading coefficient be 1.

Let z be a root of gl : if it were a root of the numerator then it would be a root of ρ2hl.
By the definition of the fractional representation gl and hl are coprime. Therefore z cannot
be a root of hl. We conclude that necessarily z is a root of ρ2 i.e. z = 0. However, we
know that gl(0) 6= 0 by hypothesis of induction, which contradicts that z = 0 is a root of gl.
Therefore the numerator and denominator have no common root : they are coprime.

We now have to find the correct multiplicative coefficient so that the denominator has
a leading coefficient of 1. By hypothesis of induction the leading coefficient of gl is i so the
correct multiplicative coefficient is −i. Finally we can write

gl+1(ρ)

hl+1(ρ)
=
iρ2hl(ρ) + i(2l + 3)gl(ρ)

−igl(ρ)
. (1.59)

By definition and unicity of the fractional representation we have chosen, we can identify
numerator and denominator in the previous expression. This yields :

gl+1(ρ) = iρ2hl(ρ) + i(2l + 3)gl(ρ), (1.60)

hl+1(ρ) = −igl(ρ). (1.61)

We can compute the degrees :

deg(gl+1) = max(deg(ρ2hl), deg(gl))

= max(2 + l, l + 1)

= l + 2, (1.62)

deg(hl+1) = deg(gl)

= l + 1. (1.63)

Moreover the leading coefficient of gl+1 is i times the leading coefficient of hl, namely i.
Ultimately, from (1.60),

gl+1(0) = i(2l + 3)gl(0) = −(i)l+1 (2l + 1)!

2ll!

(2l + 3)(2l + 2)

2l + 2
= −(i)l+1 (2l + 3)!

2l+1, (l + 1)!
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. We have thus achieved the proof by induction. Therefore properties (1.46) to (1.50) are
true for any l ≥ 1.

An additional and striking result can be extracted from combining (1.47) and (1.48). We
obtain a second order linear recursive relation for the sequence (gl) (and simultaneously for
the sequence (hl)). Namely, for l ≥ 0,

gl+2(ρ) = ρ2gl(ρ) + i(2l + 5)gl+1(ρ), (1.64)

hl+2(ρ) = ρ2hl(ρ) + i(2l + 3)hl+1(ρ). (1.65)

1.2.3 Using the underlying linear recurring sequence to give a for-
mula of pl, sl and ql

As it stands, we have a fractional representation for (Sl(ρ)− (l + 1)) + iPl(ρ). We would
like to give a fractional representation of Pl(ρ) and Sl(ρ) separately. In particular, we would
like to have real valued polynomials for the numerator and denominator. For this purpose,
we need to find an expression of the real part and imaginary part of the denominator so as to
be able to multiply both numerator and denominator by the conjugate of the denominator
in classical complex algebra approach.

The form of (1.65) does not allow to give an expression for the real and imaginary part
of hl separately. However, multiplying by (−i)l+2 yields

(−i)l+2hl+2(ρ) = (−i)2(−i)lρ2hl(ρ) + i(−i)(−i)l+1(2l + 3)hl+1(ρ),

(−i)l+2hl+2(ρ) = −(−i)lρ2hl(ρ) + (−i)l+1(2l + 3)hl+1(ρ). (1.66)

As such if we note al = <((−i)lhl) and bl = −=((−i)lhl), these two newly defined sequences
verify the recursive linear relations

al+2(ρ) = −ρ2al(ρ) + (2l + 3)al+1(ρ), (1.67)

bl+2(ρ) = −ρ2bl(ρ) + (2l + 3)bl+1(ρ). (1.68)

Finally, we can write

(Sl(ρ)− (l + 1)) + iPl(ρ) =
gl(ρ)

hl(ρ)

=
ihl+1(ρ)

hl(ρ)

=
i(−i)lhl+1(ρ)

(−i)lhl(ρ)

= −al+1(ρ)− ibl+1(ρ)

al(ρ)− ibl(ρ)
(1.69)

and then, by taking real and imaginary parts,

Pl =
albl+1 − al+1bl

a2
l + b2

l

, (1.70)
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Sl =
(l + 1)(a2

l + b2
l )− (al+1al + bl+1bl)

a2
l + b2

l

. (1.71)

This can be written for numerators and denominators separately :

pl = albl+1 − al+1bl, (1.72)

sl = (l + 1)(a2
l + b2

l )− (al+1al + bl+1bl), (1.73)

ql = a2
l + b2

l . (1.74)

The initial values are :

a0(ρ) = 1,

a1(ρ) = 1,

b0(ρ) = 0,

b1(ρ) = ρ.

l al(ρ) bl(ρ) ql(ρ) sl(ρ) + ipl(ρ)
0 1 0 1 iρ
1 1 ρ ρ2 + 1 iρ3 − 1
2 3− ρ2 3ρ ρ4 + 3ρ2 + 9 iρ5 − 3ρ2 − 18
3 15− 6ρ2 15ρ− ρ3 ρ6 + 6ρ4 + 45ρ2 + 225 iρ7 − 6ρ4 − 90ρ2 − 675

Table 1.1: Expressions of al, bl, ql and sl + ipl for the first values of l.

Table 1.1 gathers the expressions of these polynomials for the first few values of l.

1.2.4 Properties of pl

We notice that for the first few values of l, we seem to consistently have pl = ρ2l+1. We
are going to show this property by induction. Let l ≥ 0, we have, from (1.72),

pl+1 = al+1bl+2 − al+2bl+1. (1.75)

We can replace al+2 and bl+2 by their expression from the recursive formulae (1.67) and (1.68) :

pl+1(ρ) = al+1(ρ)
(
−ρ2bl(ρ) + (2l + 3)bl+1(ρ)

)
−
(
−ρ2al(ρ) + (2l + 3)al+1(ρ)

)
bl+1(ρ)

= −ρ2al+1(ρ)bl(ρ) + ρ2al(ρ)bl+1(ρ)

= ρ2pl(ρ). (1.76)

Furthermore p0(ρ) = ρ, so for any l ≥ 0, pl(ρ) = ρ2l+1.

1.2.5 Divisibility properties of pl, sl and ql

We recall that our goal in this mathematical study is to find possible common roots
between sl + ipl and ql. We note

rl = al + ibl. (1.77)
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From expressions (1.72), (1.73) and (1.74), we have

ql = rlrl,

sl + ipl = (l + 1)rlrl − rlrl+1 = rl
(
(l + 1)rl − rl+1

)
.

This shows that sl + ipl do indeed have common roots, at least all those of rl. We know that
deg(rl) = deg((−i)lhl) = deg(hl) = l. In the case of l = 0 previously studied, rl is equal to 1
and there are no roots in common to be found.

Formally speaking we have not proven that these are all the roots in common between
sl + ipl. We need to show that the other terms have no common roots. Namely that rl
and (l + 1)rl − rl+1 are coprime polyomials. This is equivalent to showing that rl and rl+1

are coprime polynomials, which is itself equivalent to showing that rl and rl+1 are coprime
polynomials. Given the definition of rl and the recursive formulae (1.67) and (1.68) :

rl+2(ρ) = (2l + 3)rl+1(ρ)− ρ2rl(ρ). (1.78)

From this formula we can show that the only common roots of ql and sl + ipl are exactly
those of rl. Let us assume that for some rank l ≥ 0, rl+1 and rl are coprime. Let us assume
then that rl+2 and rl+1 have a common root z. From the recursive formula we would have
z2rl(z). We know that z 6= 0 because rk(0) 6= 0 for all k ≥ 0. Therefore we would have
rl(z) = 0. We would have found a common root of rl and rl+1, which is absurd by our initial
hypothesis : rl+1 and rl+2 have no common roots. To complete this proof by induction we
only need to show that r0 and r1 are coprime, which is true since r0 = 1, and as such has no
roots.

The final divisiblity result we were looking for is

sl + ipl
ql

=
(l + 1)rl − rl+1

rl
(1.79)

where the numerator and the denominator on the right hand side are coprime polynomials.

1.3 Theoretical results for a multipole representation

of the Multi-Level Breit-Wigner cross-sections with

less poles

1.3.1 Multipole representation of the radiative capture and fission
cross-sections

We wanted to find the partial fraction decomposition of resonance terms in the radiative
capture and fission cross-sections. Let us recall the expression of a resonance term from (1.26),

Tr(u) =
2γ2

nrGXrPl(βu)∣∣∣u2 − Ẽr + γ2
nr

(
Sl(βu) + iPl(βu)

)∣∣∣2 . (1.80)
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Instead of multiplying numerator and denominator by q2
l as in (1.28), we are going to just

multiply by ql. This yields,

Tr(u) =
2γ2

nrGXrpl(βu)

ql(βu)

∣∣∣∣u2 − Ẽr + γ2
nr

(
(l + 1)rl(βu)− rl+1(βu)

rl(βu)

)∣∣∣∣2 . (1.81)

Since ql = rlrl, we can further write

Tr(u) =
2γ2

nrGXrpl(βu)∣∣∣rl(βu)(u2 − Ẽr) + γ2
nr

(
(l + 1)rl(βu)− rl+1(βu)

)∣∣∣2 . (1.82)

To give a partial fraction decomposition we need to find the roots of the denominator. We
note

Dr(u) := rl(βu)(u2 − Ẽr) + γ2
nr

(
(l + 1)rl(βu)− rl+1(βu)

)
, (1.83)

fr(u) := 2γ2
nrGXrpl(βu), (1.84)

gr(u) := |Dr(u)|2. (1.85)

We are in the situation of a positive denominator polynomial (3.9). Dr admits l+ 2 roots

that we note (z
(k)
r ). We note the corresponding residues of the rational function (a

(k)
r ) and

we have the following equality for all complex number z :

Tr(u) =
fr(u)

gr(u)

=
2γ2

nrGXrpl(βz)

|Dr|2(z)

=
l+2∑
k=1

a
(k)
r

z − z(k)
r

+
l+2∑
k=1

a
(k)
r

z − z(k)
r

. (1.86)

Particularly, for u a real number,

Tr(u) = <
[
l+2∑
k=1

2a
(k)
r

u− z(k)
r

]
. (1.87)

We now need to actually find the roots of Dr. We adopt the approach I have described
in section 3.2. Without discussing here the details of the algorithm, we need to choose some
initial guesses to find the roots. Looking at (1.83), we see that if γ2

nr is small compared to

Ẽr, it is a good choice to take as initial guesses the l roots of rl(βu) and the two complex

square roots of Ẽr.

This choice of initial guess appeared to be quite reasonable in most practical numerical
applications I have performed. Then, we need to compute the residues corresponding to
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these roots of the denominator. Given z
(k)
r (1 ≤ k ≤ l + 2) a root of Dr, the residue a

(k)
r is

computed by,

a(k)
r =

2γ2
nrGXrpl(βz

(k)
r )

Dr(z
(k)
r )D′r(z

(k)
r ) +D′r(z

(k)
r )Dr(z

(k)
r )

=
2γ2

nrGXrpl(βz
(k)
r )

D′r(z
(k)
r )Dr(z

(k)
r )

=
2γ2

nrGXrpl(βz
(k)
r )

D′r(z
(k)
r )Dr

(
z

(k)
r

) . (1.88)

Finally, we have given a multipole representation of each resonance term and we can substi-
tute them in (1.12) to give the multipole representation of the radiative capture and fission
cross-section for a pack :

σ(l,s,J)
nx (E) =

π

k2

N∑
r=1

l+2∑
j=1

<
[

2a
(j)
r√

E − z(j)
r

]
. (1.89)

Interestingly, the poles for the radiative capture of fission reaction are the same. However,
the corresponding widths do appear in the residue calculation.

The number of poles we have found is lower than previously thought. Namely l + 2 per
resonance instead of 2l + 2. This does not affect the resonance of pack of orbital quantum
number l = 0 but yields a lower number of poles for packs of higher orbital quantum number
value.

1.3.2 Multipole representation of the elastic and total cross-sections

We have chosen to focus on the radiative capture and fission cross-sections at first because
it allowed us to study the resonance terms separately. In the case of the elastic cross-section
there is a square modulus of a sum of contributions of each resonance. We will proceed in
two steps. First we will give a partial fraction decomposition of ρnn from (1.5). Then we
will take the square modulus of this partial fraction decomposition and show that it can be
simplified to take again a suitable form for multipole representation.

We recall that

ρnn(E) =
i

2

N∑
r=1

Γnr
(E − E ′r) + iΓtr/2

, (1.90)

and, with the notation adopted before,

ρnn(E) =
N∑
r=1

iγ2
nrpl(βu)/ql(βu)

Dr(u)/rl(βu)
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=
1

rl(βu)

N∑
r=1

iγ2
nrpl(βu)

Dr(u)
. (1.91)

Let us recall that pl(βu) = (βu)2l+1, as I have proven in subsection 1.2.4. If we separate it
into two parts we obtain

ρnn(E) =
(βu)l

rl(βu)

N∑
r=1

iγ2
nr(βu)l+1

Dr(u)
. (1.92)

The interest of this form is that both terms of the products are rational functions with
denominator of degree non smaller than the degree of their respective numerator. Indeed
deg(rl) = l and deg(Dr) = l + 2 for any resonance r.

We have already computed the roots of Dr, so it is straightforward to give the partial
fraction decomposition of the terms inside the sum. We note the corresponding residues b

(k)
r .

They are computed as

b(k)
r =

iγ2
nr

(
βz

(k)
r

)l+1

D′r(z
(k)
r )

. (1.93)

Separately we compute the partial fraction decomposition of the left term in (1.92). This
can be done quite easily by storing the l roots of rl for the first values of l ≥ 0. We note
them vj, 1 ≤ j ≤ l. Then the roots of u 7→ rl(βu) are (vj/β). We have the following partial
fraction decomposition :

(βu)l

rl(βu)
= c+

l∑
j=1

(vj)
l/(βr′l(vj))

u− vj/β
. (1.94)

It is a slightly different partial fraction decomposition that we have not seen before. There
is a constant noted c in front of the sum because numerator and denominator have the same
degree. Fortunately it can be easily computed as the limit of the rational function when u
goes to infinity. This yields c = 1/il.

Gathering (1.93) and (1.94) yields

ρnn(E) =

(
c+

l∑
j=1

cj
u− vj/β

)(
N∑
r=1

l+2∑
k=1

b
(k)
r

u− z(k)
r

)
. (1.95)

We are basically in the situation of the product of two partial fraction decompositions. Let
us clean a bit the notations. We note N the number of resonances in the pack we are working
on. We write (wp) the (l + 2)N poles of the right term and (dp) the corresponding residues,

ρnn(E) =

(
c+

l∑
j=1

cj
u− vj/β

)(l+2)N∑
p=1

dp
u− wp

 . (1.96)
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We can thus give a partial fraction decomposition of ρnn(E) in terms of u =
√
E with exactly

l+ (l+ 2)N poles and residues. We refer to expression (3.10) of Part I for the computations
of the residues. A final gathering of notations with the set of poles noted zp and the residues
ap, 1 ≤ p ≤ l + (l + 2)N ,

ρnn(E) =

l+(l+2)N∑
p=1

ap
u− zp

. (1.97)

We revert to the formulae for the elastic cross section (1.2) :

σ(l,s,J)
nn (E) =

4π

k2

[
sin2 (φl) + < (ρnn exp (−2iφl))−<(ρnn) + |ρnn|2

]
.

The point (3.12) of Part I allows us to compute the partial fraction decomposition of the
|ρnn|2 from the partial fraction decomposition of ρnn,

|ρnn|2 = <

l+(l+2)N∑
p=1

bp
u− zp

 (1.98)

with bp := 2ap

l+(l+2)N∑
q=1

aq
zp − zq

. (1.99)

Then we have,

σ(l,s,J)
nn (E) =

4π

k2

sin2 (φl) + <

l+(l+2)N∑
p=1

ap(exp(−2iφl)− 1) + bp√
E − zp

 . (1.100)

which is almost the multipole representation that we set out to find at the beginning of
the chapter. Namely, there are some additional sin2(φl) terms in front of the pole terms.
These are usually considered part of the multipole representation. They are inherent to the
elastic cross-sections and will also appear in the multipole representation of the Reich-Moore
formalism cross-sections.

Speaking of φl, we have ignored the energy dependency of the phase shift factor until
now. This dependency is precisely the reason why the multipole representation is not strictly
speaking just a partial fraction decomposition. Let us keep in mind that one of our goals is
to perform on-the-fly Doppler broadening. In that context, we will see that this remaining
energy dependency is not a major issue. The total cross-section is computed as a sum of
the three partial cross-sections. A tabulated background must be added in some cases. The
formulae I have given for the total cross-section could be more aptly named resonant total
cross-section. Through the elastic cross-section, this resonant total cross-section has two
types of pole terms as in (1.100). The corresponding residues are computed as the sum of
the residues of the three partial cross-sections.

We have found that we needed l + 2 poles per resonance for the radiative capture and
fission cross-sections. Then we have shown that we need the same l + 2 poles per resonance
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for the elastic cross-section. We also need an additional l poles for the whole pack. Being only
related to the aforementioned polynomial rl, they are actually common to all packs of same
quantum orbital number l. However, I choose to not factorize them from the packs, since the
development I have proposed until now is clearer if we work with packs of resonances strictly
separated.

Our results improve those of the article of C. Jammes [19] by reducing the number of
poles. It also provides an adequate explanation for the poles with residues very close to zero.
Let us summarize the method to obtain our new multipole representation of the Multi-Level
Breit-Wigner cross-sections.

1.4 Algorithmic summary

Inside each pack, resonances are treated separately. We recall that they are characterized
by a resonance energy and up to 4 widths. We form the polynomialDr from expression (1.83) :

Dr(u) = rl(βu)(u2 − Ẽr) + γ2
nr

(
(l + 1)rl(βu)− rl+1(βu)

)
. (1.101)

The reduced elastic widths are defined by (1.24). The perturbed resonance energies Ẽr are
defined by (1.25). Finally, the polynomials rl are defined by (1.77). Each resonance belongs
to a pack of resonance defined by a set of quantum number (l, s, J). This determines the
value of l in rl and rl+1.

We then need to find the roots of each polynomial Dr. This polynomial is of degree
l + 2. One can use the Newton-Raphson algorithm I described in subsection 3.2.3 of Part I.
This algorithm performs better with some guesses. On one hand, we chose the 2 complex
square roots of Ẽr. On the other hand, we chose the l roots of z 7→ rl(βz). I will discuss
these choices in the qualitative study of the poles. The quantity β is computed according to
expression (2.23) of Part I and is fixed for each pack. The roots of this polynomial are, up
to a division by β, those of rl. They can be computed once and for all for each value of l.
The roots obtained are exactly the poles of the multipole decomposition.

For the elastic and total cross-sections, l poles have to be added per pack of resonances.
For l = 0, there are no such additional poles. For higher value of l, the poles are directly the
roots of z 7→ rl(βz). These are exactly the complex conjugate of the roots of z 7→ rl(βz).

Once the poles have been computed, we look for the corresponding residues. There is
one residue per pole for the radiative capture and fission cross-sections. They are computed
with expression (1.88). There are two residues per pole for the elastic and total cross-sections
(terms with or without a phase-shift). They are computed with expression (1.99).
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Chapter 2

Study of the multipole representation
of the Reich-Moore cross-sections

Our goal in this chapter is very similar to that of the previous one, although the means to
achieve it will be rather different. Again, we want to show that the elastic, radiative capture,
fission and total cross-sections can be written under the so-called multipole representation

σnx(E) =
4π

k2
<
(∑

p

ap + bp exp(−2iφl))√
E − zp

)
(2.1)

where k is related to E by expression (2.24) of Part I.

We have seen in the previous chapter that it is possible to give a multipole representation
for the Multi-Level Breit-Wigner cross-sections. One of the key points we used was that
the representation of each resonance could be computed completely separately for partial
cross-sections with no interference between resonances (i.e. fission and radiative capture
cross-sections). For the elastic cross-section (and through it, the total cross-section), this
result was not directly applicable, since the Multi-Level Breit-Wigner does take into account
interferences between resonances for this reaction. However, the derivation process was still
quite similar and allowed for a somewhat separated treatment of each resonance.

This is not the case for the Reich-Moore formalism. The Reich-Moore formalism takes
into account interferences between resonances - and additionally channels - for all partial
cross-sections that are to be reconstructed : the radiative capture, fission, elastic and total
cross-sections. The resonance parameters that are provided are used through formulae that
involve matrix inversions. The different entries of those matrices correspond to different
channels and different partial cross-sections. The inversion insures that there will always
be some interferences between all resonances within a pack. Again, it is possible to give
a multipole representation for each pack separately, since their contribution to the cross-
sections are added linearly.

A reduced R-matrix is defined for each pack of resonances. It has up to 3 entries that
correspond to the different channel considered in the model, namely the elastic, fission A
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and fission B. The existence of two fission channels (and so two entries) is a choice of the
formalism that allows representing more physical subtleties of the fission phenomenon (there
will still be only one fission cross-section in the end). The radiative capture channel is not
a proper entry, as this physical phenomenon is treated as a perturbation of the resonance
energy (it does not mean it is neglected, but rather that the corresponding width of this
reaction compared to others makes it more suited to a perturbative treatment).

The three entries of the reduced R-matrix are noted n,a and b. They correspond respec-
tively to the elastic, fission a and fission b reactions. It is defined by

R̂cd =
N∑
r=1

γcrγdr
Er − E − iΓγr/2

(2.2)

where c and d are either n, a or b. The reduced widths are related to the ENDF resonance
parameters by

γnr =
√

GNr/2Pl(|Er|), (2.3)

γar =
√

GFAr/2, (2.4)

γbr =
√

GFBr/2, (2.5)

Γγr = GGr. (2.6)

The penetration factor is equal to 1 for the fission entries. In accordance to my choice of
notation concerning the energy dependency of the penetration factors described in (2.23) of
Part I, the penetration matrix is defined by

P(E) =

Pl(β√E) 0 0
0 1 0
0 0 1

 . (2.7)

Then the ρ matrix is defined by

ρ = Id−
(
Id− iP1/2R̂P1/2

)−1

(2.8)

where Id is the 3 × 3 identity matrix. I had previously noted P the matrix containing the
penetration factors when deriving the Reich-Moore formalism. I have chosen to note it P
here so as to differentiate it from the notation of its elements Pl

ρ is also a 3× 3 matrix whose computation involves a matrix inversion. From the coeffi-
cients of this ρ matrix, we have the following formulae for the contribution of a pack to the
different cross-sections :

σnf (E) =
4π

k2

(
|ρna|2 + |ρnb|2

)
, (2.9)

σnn(E) =
4π

k2

(
sin2(φl) + <(ρnn exp(−2iφl))−<(ρnn) + |ρnn|2

)
, (2.10)

σnt(E) =
4π

k2

(
sin2(φl) + <(ρnn exp(−2iφl))

)
, (2.11)
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σnγ(E) =
4π

k2

(
<(ρnn)− |ρnn|2

)
− σnf (E). (2.12)

The radiative capture and fission cross-sections have a more complicated formula than
before. We see that they both involve a square modulus and the coefficient of the newly
defined ρ matrix. As such we do not expect their study to be particularly easier than that of
the elastic and total cross-sections. This is in contrast to the approach we adopted for the
Multi-Level Breit-Wigner multipole representation.

Given the formulae for the R and ρ matrix, we will begin by considering non-fissile nuclei
treated under the Reich-Moore formalism. For such nuclei, the R and ρ matrix will be
significantly easier to study. I will show that the problem of the multipole representation is
akin to solving a polynomial of potentially high degree. I will propose an adapted Newton-
Raphson algorithm to find the roots of these polynomials. I will then show that the more
general problem of fissile nuclei - and its more complicated reduced R matrix - can be solved
as the non fissile nuclei with some additional calculations.

2.1 Study of the multipole representation of non-fissile

Reich-Moore nuclei

In the case of non-fissile nuclei, the parameters GFA and GFB are set to zero for all
resonances. As such the reduced R-matrix of (2.11) takes a somewhat simplified form :

R̂ =


N∑
r=1

γ2
nr

Er − E − iΓγr/2
0 0

0 0 0
0 0 0

 . (2.13)

Then

P1/2R̂P1/2 =


N∑
r=1

γ2
nrPl(β

√
E)

Er − E − iΓγr/2
0 0

0 0 0
0 0 0

 . (2.14)

Hence, the ρ matrix of (2.8) takes the form

ρ =


1− 1

1 + i
∑N

r=1
γ2nrPl(β

√
E)

E−Er+iΓγr/2

0 0

0 0 0
0 0 0

 . (2.15)

As we could expect it for non-fissile nuclei, the only non zero element of the ρ matrix will be
the upper left one coefficient, noted ρnn in the formulae (2.12) to (2.11). Namely,

ρnn = 1− 1

1 + i
∑N

r=1
γ2nrPl(β

√
E)

E−Er+iΓγr/2

. (2.16)
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The resonance energies Er are assumed to have no shift, in contrast with the Multi-Level
Breit-Wigner formalism. The radiative capture widths Γγr are independent of the energy so
that

ρnn = 1− 1

1 +
N∑
r=1

iγ2
nrPl(β

√
E)

E − Er + iGGr/2

. (2.17)

The denominator is a rational function of
√
E. As such, the quantity ρnn is also rational

function of
√
E. However, the situation is quite different from the Multi-Level Breit-Wigner

formalism. The sum on the resonance terms is at the denominator. Our goal is to find its
partial fraction decomposition. We first need to write it as a quotient of polynomial functions.

First let us adopt some more convenient notations :

u =
√
E, (2.18)

Ẽr = Er − iGGr/2, (2.19)

ar = iγ2
nr. (2.20)

With these new notations, expression (2.17) becomes

ρnn = 1− 1

1 +
N∑
r=1

arPl(βu)

u2 − Ẽr

. (2.21)

We recall that Pl can be written pl/ql with pl and ql two polynomial functions whose properties
are given in section 1.4 and section 1.2. We adopt the aditionnal notations :

Q(u) =
N∏
r=1

(u2 − Ẽr), (2.22)

Qr(u) =
∏
s 6=r

(u2 − Ẽs). (2.23)

We multiply the numerator and denominator of (2.17) by Q(u)ql(βu), yielding

ρnn = 1− Q(u)ql(βu)

Q(u)ql(βu) +
N∑
r=1

arQr(u)pl(βu)

(2.24)

=

−
N∑
r=1

arQr(u)pl(βu)

Q(u)ql(βu) +
N∑
r=1

arQr(u)pl(βu)

. (2.25)

We note the numerator and denominator polynomials

f(u) := −
N∑
r=1

arQr(u)pl(βu), (2.26)
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g(u) := Q(u)ql(βu) +
N∑
r=1

arQr(u)pl(βu). (2.27)

The degree of these polynomials are,

deg(f) =
N

max
r=1

(deg(Qrpl))

=
N

max
r=1

(deg(Qr) + deg(pl))

= 2N − 2 + (2l + 1) = 2N + 2l − 1, (2.28)

deg(g) =
N

max
r=1

(deg(Qql), deg(f))

=
N

max
r=1

(2N + 2l, 2N + 2l − 1) = 2N + 2l. (2.29)

We now have to find the roots of g so as to give the partial fraction decomposition of f/g.

2.1.1 Finding the roots of the denominator

As explained in subsection 3.2.3 of Part I, we need to find a way to compute the logarith-
mic derivative of the polynomial g, and doing so without computing its coefficients. Under
the form

g(u) = Q(u)ql(βu) +
N∑
r=1

arQr(u)pl(βu), (2.30)

a straightforward differentiation of g seems rather complicated. The idea here is to go a few
steps back and factorize Q(u)ql(βu). We get

g(u) = Q(u)ql(βu)

(
1 +

pl(βu)

ql(βu)

N∑
r=1

ar

u2 − Ẽr

)
. (2.31)

We would like to get an even simpler expression before differentiation. Let us consider in
particular the term

pl(βu)

ql(βu)

N∑
r=1

ar

u2 − Ẽr
. (2.32)

This is a rational function of u and as such we can give it a partial fraction decomposition.
We have the asymptotic properties

pl(βu)/ql(βu) = O(u), (2.33)

N∑
r=1

ar

u2 − Ẽr
= O(1/u2). (2.34)

Therefore their product tends to zero. Its poles are readily seen to be the roots of z 7→ ql(βz)

and the complex square roots of the Ẽr.

75



We note vj, 1 ≤ j ≤ 2l, the roots of ql. Thus, the roots of z 7→ ql(βz) are the vj/β,
1 ≤ j ≤ 2l. We admit that we can compute them very accurately. The corresponding
residues are computed as

bj :=
pl(vj)

βq′l(vj)

N∑
r=1

ar

(vj/β)2 − Ẽr
. (2.35)

We note u+
r (resp. u−r ), 1 ≤ r ≤ N , the complex square root of the Ẽr with positive (resp.

negative) real part. The corresponding residues are computed as

c+
r :=

pl(βu
+
r )

ql(βu+
r )

ar
2u+

r

. (2.36)

We have a total of 2l+2N roots and we note them under a common notation (wk), and their
corresponding residues (bk) with 1 ≤ k ≤ 2N + 2l.

We now have
pl(βu)

ql(βu)

N∑
r=1

ar

u2 − Ẽr
=

2N+2l∑
k=1

bk
u− wk

. (2.37)

Furthermore, under these notations,

Q(u)ql(βu) =
N∏
r=1

(u2 − Ẽr)
2l∏
j=1

(βu− vj)

= β2l

N∏
r=1

(u− u+
r )

N∏
r=1

(u− u−r )
2l∏
j=1

(u− vj
β

)

= β2l

2N+2l∏
k=1

(u− wk). (2.38)

Let us revert to (2.31), we can now write

g(u) = Q(u)ql(βu)

(
1 +

pl(βu)

ql(βu)

N∑
r=1

ar

u2 − Ẽr

)
(2.39)

= β2l

2N+2l∏
k=1

(u− wk)
(

1 +
2N+2l∑
k=1

bk
u− wk

)
. (2.40)

The logarithmic derivative of g now has an expression that does not involve computing
the coefficients of a potentially huge polynomial :

g′(u)

g(u)
=

2N+2l∑
k=1

1

u− wk
−

2N+2l∑
k=1

bk
(u− wk)2

1 +
2N+2l∑
k=1

bk
u− wk

. (2.41)
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The wk are easily computed, they are either a root of ql(βu) (the vj/β where the vj can

be computed once for each value of l) or the complex square root of a Ẽr. From the wk, the
bk are readily computed in an accurate fashion.

The expression (2.41) to compute the logarithmic derivative of g is rather stable. There
are three potentially large sums to compute, each one can be done with good accuracy if
care is applied (Kahan summation for instance [63]). The final step is the addition of the left
sum and the right fraction. This one can be trickier, as for values of u close to wk they are
both very large and yet almost exactly compensate each other. In all practical cases I have
never noticed that it was a particular problem if the two terms to add had been previously
computed with good accuracy.

We admit that with the Newton-Raphson algorithm decribed in subsection 3.2.3 it is
possible to compute the 2N+2l roots of g. I will later give some numerical insight concerning
the difficulties arising when this number of roots to compute is large. We note the roots of
g, zk, 1 ≤ k ≤ 2N + 2l. We now need to compute the residues corresponding to these poles
for the rational function f/g.

2.1.2 Giving a partial fraction decomposition of ρnn

We go back to expression (2.25),

ρnn =

−
N∑
r=1

arQr(u)pl(βu)

Q(u)ql(βu) +
N∑
r=1

arQr(u)pl(βu)

. (2.42)

Given the roots zk of g computed with the expression of the logarithmic derivative of g we
have derived before, we want to compute the residues to give a partial fraction decomposition
of ρnn. To that end, we need to evaluate f/g′ at these roots. We have an expression of g′/g,
the idea is to use a convenient expression of f/g. We use expressions (2.21) and (2.37) :

ρnn = 1− 1

1 +
2N+2l∑
k=1

bk
u− wk

. (2.43)

77



Then, we write

f(u)

g′(u)
=
f(u)/g(u)

g′(u)/g(u)
=

1− 1

1 +
2N+2l∑
k=1

bk
u− wk

2N+2l∑
k=1

1

u− wk
−

2N+2l∑
k=1

bk
(u− wk)2

1 +
2N+2l∑
k=1

bk
u− wk

(2.44)

=

2N+2l∑
k=1

bk
u− wk(

1 +
2N+2l∑
k=1

bk
u− wk

)
2N+2l∑
k=1

1

u− wk
−

2N+2l∑
k=1

bk
(u− wk)2

. (2.45)

Finally we evaluate this expression at one zj to get its corresponding residue

αj :=
f(zj)

g′(zj)
=

2N+2l∑
k=1

bk
zj − wk(

2N+2l∑
k=1

1

zj − wk

)(
1 +

2N+2l∑
k=1

bk
zj − wk

)
−

2N+2l∑
k=1

bk
(zj − wk)2

. (2.46)

Gathering all previous results and notations we finally have the partial fraction decomposition
of ρnn. Namely,

ρnn(u) =
2N+2l∑
j=1

αj
u− zj

. (2.47)

2.1.3 Multipole representation of non-fissile Reich-Moore nuclei

In the case of non fissile materials, we have formulae for the radiative capture, elastic and
total cross-sections. Let us recall that the contribution of a pack of resonances is :

σnγ(E) =
4π

k2

(
<(ρnn)− |ρnn|2

)
, (2.48)

σnn(E) =
4π

k2

(
sin2(φl) + <(ρnn exp(−2iφl))−<(ρnn) + |ρnn|2

)
, (2.49)

σnt(E) =
4π

k2

(
sin2(φl) + <(ρnn exp(−2iφl))

)
. (2.50)

We now also have the partial fraction decomposition of ρnn, so we are very close to the
multipole representation we are looking for.
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We use the previously proven result about the partial fraction decomposition of |ρnn|2,
namely for any real number u,

|ρnn|2 =

∣∣∣∣∣
2N+2l∑
k=1

αk
u− zk

∣∣∣∣∣
2

(2.51)

= 2<
(

2N+2l∑
k=1

αk
∑2N+2l

j=1
αl

zk−zj

u− zk

)
. (2.52)

We note the new residues

δk := 2αk

2N+2l∑
j=1

αj
zk − zj

. (2.53)

We substitute these partial fraction decompositions in the cross-sections formulae and give
the final multipole representation of the radiative capture, elastic and total cross-sections for
non-fissile Reich-Moore nuclei :

σnγ(E) =
4π

k2
<
(

2N+2l∑
p=1

αp − δp√
E − zp

)
, (2.54)

σnn(E) =
4π

k2
sin2(φl) +

4π

k2
<
(

2N+2l∑
p=1

αp
(
e−2iφl − 1

)
+ δp√

E − zp

)
, (2.55)

σnt(E) =
4π

k2
sin2(φl) +

4π

k2
<
(

2N+2l∑
p=1

αpe
−2iφl

√
E − zp

)
. (2.56)

The (αp), (δp) and (zp) are all independent of the energy E. However, φl has an energy
dependency. Its variations are sufficiently small in the broadening zone so that we do not
look for a further decomposition of the cross-sections.

We have proven that we need exactly 2N+2l poles and 2 times that amount of residues, to
be able to give the multipole representation of a pack of resonance of quantum number l. As
far as I know, no result has been given separately for the non-fissile and fissile Reich-Moore
nucleus. This first step was very successful in understanding the requirement of the root
finding algorithm. We will see in the next section that this approach can even be extended to
fissile nuclei after some work. This will yield a more effective algorithm to give the multipole
representation of nuclei with a large amount of resonances and multiple reaction channels.

2.2 Study of the multipole representation of fissile Reich-

Moore nuclei

We now go back to the more general (and complicated) case of fissile Reich-Moore nuclei.
As outlined in the introduction of this chapter, not only the elements to compute involve
the inversion of a 3 × 3 matrix (with rational function coefficients of very high degree) but
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the number of resonances in each pack is usually way larger than for non-fissile nuclei. This
is due to the fact that fissile nuclei are often heavier nuclei, and heavier nuclei tend to have
more resonances in their cross-section profiles on the energy range of interest.

We wish to show here that we can get back to the mathematical situation of the non-fissile
nuclei multipole representation.

2.2.1 Understanding the complexity of the R-matrix partial frac-
tion decomposition problem

For the sake of clarity, we assume that the penetration factor is 1 for all channels. This
does not change much the mathematical situation and allows for a better understanding of
the problem to solve. As such, the ρ matrix is given by

ρ = Id− (Id− iR̂)−1 (2.57)

= Id−


Id+



N∑
r=1

iγnrγnr

E − Ẽr

N∑
r=1

iγnrγar

E − Ẽr

N∑
r=1

iγnrγbr

E − Ẽr
N∑
r=1

iγarγnr

E − Ẽr

N∑
r=1

iγarγar

E − Ẽr

N∑
r=1

iγarγbr

E − Ẽr
N∑
r=1

iγbrγnr

E − Ẽr

N∑
r=1

iγbrγar

E − Ẽr

N∑
r=1

iγbrγbr

E − Ẽr





−1

. (2.58)

Therefore, for instance, the expression of the element ρnn (first row, first column), which was
previously (2.25), is now (with the cofactor formula),

ρnn = 1−

∣∣∣∣∣∣∣∣∣∣
1 +

N∑
r=1

iγarγar

E − Ẽr

N∑
r=1

iγarγbr

E − Ẽr
N∑
r=1

iγbrγar

E − Ẽr
1 +

N∑
r=1

iγbrγbr

E − Ẽr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 +
N∑
r=1

iγnrγnr

E − Ẽr

N∑
r=1

iγnrγar

E − Ẽr

N∑
r=1

iγnrγbr

E − Ẽr
N∑
r=1

iγarγnr

E − Ẽr
1 +

N∑
r=1

iγarγar

E − Ẽr

N∑
r=1

iγarγbr

E − Ẽr
N∑
r=1

iγbrγnr

E − Ẽr

N∑
r=1

iγbrγar

E − Ẽr
1 +

N∑
r=1

iγbrγbr

E − Ẽr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (2.59)

The coefficients in each determinant are rational functions. As such, the determinant them-
selves are guaranteed to also be rational functions. Finally, ρnn is itself a rational function
as a quotient of two rational functions. However, it is not clear how to proceed to find its
partial decomposition.
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First we need to get ρnn an expression as a quotient of two polynomials, at least formally.
In (2.59) we see that the coefficients in the determinants diverge when E → Ẽr, for any
1 ≤ r ≤ N . As such, my first approach was to multiply numerator and denominator by

(
Q(E)

)3
=

(
n∏
r=1

(E − Ẽr)
)3

. (2.60)

The polynomial enters in the determinants and we have

ρnn = 1−

Q

∣∣∣∣∣∣∣∣∣∣
Q+

N∑
r=1

iγarγarQr

N∑
r=1

iγarγbrQr

N∑
r=1

iγbrγarQr Q+
N∑
r=1

iγbrγbrQr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q+
N∑
r=1

iγnrγnrQr

N∑
r=1

iγnrγarQr

N∑
r=1

iγnrγbrQr

N∑
r=1

iγarγnrQr Q+
N∑
r=1

iγarγarQr

N∑
r=1

iγarγbrQr

N∑
r=1

iγbrγnrQr

N∑
r=1

iγbrγarQr Q+
N∑
r=1

iγbrγbrQr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.61)

with, again,

Q(u) =
N∏
r=1

(u2 − Ẽr), (2.62)

Qr(u) =
∏
s 6=r

(u2 − Ẽs). (2.63)

Under this new form, the determinants both have polynomial coefficients. As such, they are
both polynomial functions themselves. However, we do not know whether these numerator
and denominator polynomials have common roots or not.

Let us assume for the moment that they have no common roots. For the pack of N
resonances we are studying, we would have to find some 3N roots. Furthermore, we have
neglected the energy dependency of the penetration factor and as such we should be working
in terms of

√
E. Then, we would have to find twice as many roots, namely 6N . For a pack

of some 1000 resonances, not uncommon for some heavy nuclei, it would imply finding about
6000 roots. This is definetely not an easy task, even more so considering that we do not have
a very simple expression of the denominator polynomial in (2.61).

R.N. Hwang surmised in [17], and correctly so, that there are only 2N poles to be found
(in the case of quantum level l = 0). In other words, there are some common roots between
the numerator and denominator in the form of ρnn in (2.61). I give in the next section a
mathematical proof of this result based on a mathematical study of the polynomial denomi-
nator.
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Let us keep neglecting the energy dependency of the penetration factor and work with E
as a variable. We would like to find the 3N roots of the denominator in (2.61), or at least
find some of them. We note this denominator polynomial

D(E) :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Q+
N∑
r=1

iγnrγnrQr

N∑
r=1

iγnrγarQr

N∑
r=1

iγnrγbrQr

N∑
r=1

iγarγnrQr Q+
N∑
r=1

iγarγarQr

N∑
r=1

iγarγbrQr

N∑
r=1

iγbrγnrQr

N∑
r=1

iγbrγarQr Q+
N∑
r=1

iγbrγbrQr

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.64)

The first idea is to look at the value of D at one of the resonance energy Er, 1 ≤ r ≤ N .
From the definition of the Qs in (2.63), we see that for s 6= r, Qs(Er) = 0. Therefore,

D(Er) =

∣∣∣∣∣∣
iγnrγnrQr(Er) iγnrγarQr(Er) iγnrγbrQr(Er)
iγarγnrQr(Er) iγarγarQr(Er) iγarγbrQr(Er)
iγbrγnrQr(Er) iγbrγarQr(Er) iγbrγbrQr(Er)

∣∣∣∣∣∣ (2.65)

=
(
iQr(Er)

)3

∣∣∣∣∣∣
γnrγnr γnrγar γnrγbr
γarγnr γarγar γarγbr
γbrγnr γbrγar γbrγbr

∣∣∣∣∣∣ (2.66)

=
(
iQr(Er)

)3
γ2
nrγ

2
arγ

2
br

∣∣∣∣∣∣
1 1 1
1 1 1
1 1 1

∣∣∣∣∣∣ . (2.67)

A very striking result is that the determinant is equal to 0, since the matrix is of rank 1.
Namely, for any resonance 1 ≤ r ≤ N , D(Er) = 0. We have immediately found N roots out
of the 3N we are looking for.

It is actually possible to show that the Er, 1 ≤ r ≤ N , are not only roots of D but also
roots of the derivative of D. This is not a completely obvious result and I do not show here
the mathematical proof as this is more a pedagogical example than the solution I finally
adopted. Admitting that they are roots of multiplicity 2, we actually have found 2N roots
out of the 3N we are looking for.

With a similar approach, we could show that the Er, 1 ≤ r ≤ N are also roots of the
numerator with multiplicity 2. The numerator is a product of Q and a 2 × 2 determinant.
Q has the Er, 1 ≤ r ≤ N , as roots. The 2 × 2 determinant also has the Er, 1 ≤ r ≤ N , as
roots by the same proof that for D.

We can conclude that multiplication by Q3 of the numerator and denominator in (2.59)
was a bit excessive. Indeed it resulted in numerator and denominator polynomials sharing
some 2N roots.

In theory we could have just multiplied numerator and denominator of (2.59) by Q.
However, even if we know that the numerator and denominator are polynomials, it does
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not seem easy to compute the logarithmic derivative of the denominator, which is needed to
compute the partial fraction decomposition. To tackle this issue, I tried to write some matrix
algebra giving a form of the denominator polynomial easier to work with. I am going to show
that we can actually go back to the non-fissile case and study of ρnn that I have presented
previously.

2.2.2 Study of the determinant and cofactors of the reduced R-
matrix

We now take into account the energy dependency of the elastic width. We will see that
this merely adds a few poles to compute. We recall that the ρ matrix is defined by

ρ = Id−
(
Id− iP1/2R̂P1/2

)−1

. (2.68)

The main obstacle is the matrix inversion so we wish to extract the P1/2 terms from it.
From (2.68), we can write

ρ = Id−
(
Id− iP1/2R̂P1/2

)−1

= Id− P−1/2
(
P−1/2 − iP1/2R̂

)−1

= Id− P−1/2
(
Id− iPR̂

)−1

P1/2. (2.69)

We will first focus on the matrix inversion and worry about the surrounding P−1/2 and
P1/2 terms later. We note u =

√
E and

M(u) : = Id− iPR

=



1 + Pl(βu)
N∑
r=1

iγnrγnr

u2 − Ẽr
Pl(βu)

N∑
r=1

iγnrγar

u2 − Ẽr
Pl(βu)

N∑
r=1

iγnrγbr

u2 − Ẽr
N∑
r=1

iγarγnr

u2 − Ẽr
1 +

N∑
r=1

iγarγar

u2 − Ẽr

N∑
r=1

iγarγbr

u2 − Ẽr
N∑
r=1

iγbrγnr

u2 − Ẽr

N∑
r=1

iγbrγar

u2 − Ẽr
1 +

N∑
r=1

iγbrγbr

u2 − Ẽr


. (2.70)

Among the coefficients of the matrix inverse of M , only some are relevant for the cross-
sections formulae. We will focus on these terms, although the other terms can be treated
likewise.

The coefficients of the inverse of M can be computed by the cofactor formula. We note
N := M−1. Then we have the following relations :

Nnn := (M−1)nn = +
detnn(M)

det(M)
, (2.71)

83



Nna := (M−1)na = −detan(M)

det(M)
, (2.72)

Nnb := (M−1)nb = +
detbn(M)

det(M)
. (2.73)

with detcd the determinant of the matrix M where we have extracted the row indexed c and
the column index d. The signs will have limited importance later on but I put them here so
as to respect the exact definitions of the cofactor formula.

The coefficients of M are rational functions. As such, the determinant and the extracted
determinants will also be rational functions. We would like to give a partial fraction decom-
position of Nnn, Nna and Nnb.

We are going to proceed in a few steps,

• The rational function det(M) appears in the denominator of the three terms that we
are studying. We are going to show that it admits a partial fraction decomposition
with at most 2N + 2l simple poles.
• The numerator are extracted determinants. They are also rational functions. We are

going to show that the three of them admit a partial fraction decomposition with at
most the same 2N + 2l simple poles of det(M).
• Given these numerators and the denominator partial fraction decompositions, we are

going to work on the partial fraction decomposition of the quotients.

2.2.3 Partial fraction decomposition of the determinant

We want to give a partial fraction decomposition of the determinant. The usual approach
for this problem is to write the rational function that we are studying as a quotient of
polynomials. Then we look at the roots of the denominator polynomials, which are exactly
the poles.

For det(M), this is not possible since we definitely do not have any simple expression
as a quotient of polynomials. We do know however that a rational function diverges when
evaluated at its poles.

If we examine the coefficients of the matrix M , we see that for most values of u all of
them are finite. Then for these values the determinant of the matrix will necessarily be finite.
This immediately narrows down our search to a restricted set of values of u.

Namely, the coefficients can only diverge at one of the 2N u±r complex square roots of

the Ẽr or at a pole of z 7→ Pl(βz) (one of the 2l roots of z 7→ ql(βz)). This limits the
possible poles, but does not guarantee that they are exactly the poles. It is possible that the
coefficients diverge in such a way that the determinant will still be finite. In that case the
divergent value is not a pole. Conversely, it is possible that the pole has larger multiplicity
than 1. To answer these two questions, we are going to look at the value of the corresponding
residue with a limit formula.
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Residue corresponding to a resonance pole

We know that det(M(u)) can diverge when u goes to some u±r . Our goal is to find an
expression of the limit of (u − u±r ) det(M(u)). There are three possible cases that will help
us decide if u±r is a pole, not a pole, or a pole with high multiplicity :

• the limit is zero, in which case u±r was actually not a pole even if some coefficients of
the matrix M were divergent at that value.
• the limit is finite and not zero, in which case u±r is a simple pole and the limit is the

residue corresponding to this pole. This is what we aim at proving.
• the expression diverges, in which case u±r is a pole with multiplicity larger than 1.

It took me quite a long time during my work to find a suitable expression of (u −
u±r ) det(M(u)). The following development is the shortest derivation I eventually settled
with, although not necessarilly the most intuitive.

Let r be the index of a resonance, 1 ≤ r ≤ N . We note

γr =

γnrγar
γbr

 . (2.74)

This allows writing M in a more compact way :

M(u) = Id+ iP(βu)
N∑
r=1

γrγ
T
r

u2 − u2
r

(2.75)

where γTr is the transpose of the vector γr, and γrγ
T
r is a 3× 3 matrix.

We consider the following 4 × 4 matrix defined by blocks, where we have somewhat
separated a resonance indexed s. The upper-left block is a scalar. The upper-right block is
a horizontal vector. The lower-left block is a vector. The lower-right block is a 3× 3 matrix.

Hs(u) :=

 1 −γTs
i
P(βu)γs
u2 − u2

s

Id+ iP(βu)
∑
r 6=s

γrγ
T
r

u2 − u2
r

 . (2.76)

We have the following block matrices multiplication equality :

Hs(u)×
(

1 γTs
0 Id

)
=

 1 0

i
P(βu)γs
u2 − u2

s

M(u)

 . (2.77)

Then, by taking the determinant of (2.77), where the block triangular matrices determinant
are trivially evaluated, we have

det(Hs(u)) = det(M(u)). (2.78)
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In particular, by multiplying the first column of Hs(u) by u− u±s , from (2.76) and (2.78) we
have

(u− u±s ) det(M(u)) = (u− u±s ) det (Hs(u))

= (u− u±s )

∣∣∣∣∣∣∣
1 −γTs

i
P(βu)γs
u2 − u2

s

Id+ iP(βu)
∑
r 6=s

γrγ
T
r

u2 − u2
r

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
(u− u±s ) −γTs
i
P(βu)γs
u− u∓s

Id+ iP(βu)
∑
r 6=s

γrγ
T
r

u2 − u2
r

∣∣∣∣∣∣∣ . (2.79)

Finally, taking limits yields

(u− u±s ) det
(
M(u)

)
−−−−−−→
u→ u±s

∣∣∣∣∣∣∣
0 −γTs

i
P(βu±s )γs

2u±s
Id+ iP(βu±s )

∑
r 6=s

γrγ
T
r

u2
s − u2

r

∣∣∣∣∣∣∣ . (2.80)

Let us discuss the value of the limit determinant in (2.80). First, let us remark that the
resonances all have different energies. As such, the u2

s − u2
r will never cancel in the lower

right block. The only possible divergence of the coefficients would come from Pl(βu
±
s ). The

poles of z 7→ Pl(βz) are the roots of z 7→ ql(βz). For l = 0 there are no such roots so there is
no divergence. For l = 1 these roots are pure imaginary numbers. The u±r are the complex
square roots of the perturbed resonances and are never pure imaginary so, again, there is
no divergence. For l > 1 the situation is more complicated. As it stands, I have not found
a simple condition to guarantee that βu±s cannot be a root of ql. However, it seems highly
unlikely and has never happened in any numerical applications.

As it stands we are almost guaranteed that the determinant will be finite. If it is zero,
then the u±r of interest is not a pole. I have not found a simple condition to guarantee a
non zero value. However, it is of limited practical importance. Indeed, most of the following
developments will not rely on the u±r being or not a pole but rather on the number of possible
poles being limited and identified.

From now on we admit that this limit is always numerically finite and not zero. Under
this assumption, we have found 2N simple poles of det(M). Their residues are computed
by (2.80).

Residue corresponding to an orbital pole

Let vk/β, 1 ≤ k ≤ 2l, be one of the 2l poles of z 7→ Pl(βz). As we have seen section 1.2,
we can write the rational function Pl as a quotient of two polynomials pl and ql. We multiply
the first line of (2.75) by (u− vk/β) :u− vk/β 0 0

0 1 0
0 0 1

×M(u) =

u− vk/β 0 0
0 1 0
0 0 1


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+ i

(u− vk/β)Pl(βu) 0 0
0 1 0
0 0 1

 N∑
r=1

γrγ
T
r

u2 − u2
r

. (2.81)

By taking the determinant of (2.81), and then the limit when u goes to vk/β, we obtain

(
u− vk

β

)
det (M(u)) −−−−−→

u→ vk
β

∣∣∣∣∣∣∣∣
0 0 0

0 1 0
0 0 1

+


ipl(vk)

βq′l(vk)
0 0

0 1 0
0 0 1


(

N∑
r=1

γrγ
T
r

(vk/β)2 − u2
r

)∣∣∣∣∣∣∣∣ .
(2.82)

We need to ask the same question as just before. Provided we have assumed that the u±r
are never roots of ql, the (vk/β)2 − u2

r are never zero. Then, no coefficient in the right hand
determinant of (2.82) can diverge. Under the assumption of separation of orbital poles and
resonance poles, the limit is finite.

Again, there is no simple guarantee that the limit is non zero. For the same reason as for
the resonance poles, we proceed as if it were.

Again, we admit that this limit is finite and numerically always not zero. Under this
assumption, the vk/β, 1 ≤ k ≤ 2l, are simple poles of z 7→ det(M(z)) with the corresponding
residues given by the limit in (2.82).

Partial fraction decomposition formula

We have found all the poles of det(M) and their residues. Let us look at the limit of this
rational function when u goes to ∞. From (2.70) that M converges to the 3 × 3 identity
matrix. Indeed, Pl(βu) behaves like O(u) while the sums on resonance terms all behave
as O(1/u2). It then follows that their product goes to zero and only the 1 in the diagonal
remain. By continuity of the determinant

det
(
M(z)

)
−−−−−→
z →∞ 1. (2.83)

Finally ,we have the partial fraction decomposition of det(M) :

det
(
M(u)

)
= 1 +

N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

(2.84)

with

a+
r =

∣∣∣∣∣∣∣
0 −γTr

i
P(βu+

r )γr
2u+

r

Id+ iP(βu+
r )
∑
s 6=r

γsγ
T
s

Ẽr − Ẽs

∣∣∣∣∣∣∣ , (2.85)
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a−r =

∣∣∣∣∣∣∣
0 −γTr

i
P(βu−r )γr

2u−r
Id+ iP(βu−r )

∑
s 6=r

γsγ
T
s

Ẽr − Ẽs

∣∣∣∣∣∣∣ , (2.86)

bk =

∣∣∣∣∣∣∣∣
0 0 0

0 1 0
0 0 1

+


ipl(vk)

βq′l(vk)
0 0

0 1 0
0 0 1


(

N∑
r=1

γrγ
T
r

(vk/β)2 − u2
r

)∣∣∣∣∣∣∣∣ . (2.87)

We have found a partial fraction decomposition of det(M) (with possibly some zero
residues). We are going to show that most of the arguments we have used can also be
applied to the extracted determinants.

2.2.4 Partial fraction decomposition of the extracted determinants

Let us write the extracted determinants formulae :

det
nn

(M(u)) =

∣∣∣∣∣∣∣∣∣∣
1 +

N∑
r=1

iγarγar

u2 − Ẽr

N∑
r=1

iγarγbr

u2 − Ẽr
N∑
r=1

iγbrγar

u2 − Ẽr
1 +

N∑
r=1

iγbrγbr

u2 − Ẽr

∣∣∣∣∣∣∣∣∣∣
, (2.88)

det
an

(M(u)) =

∣∣∣∣∣∣∣∣∣∣
Pl(βu)

N∑
r=1

iγnrγar

u2 − Ẽr
Pl(βu)

N∑
r=1

iγnrγbr

u2 − Ẽr
N∑
r=1

iγbrγar

u2 − Ẽr
1 +

N∑
r=1

iγbrγbr

u2 − Ẽr

∣∣∣∣∣∣∣∣∣∣
= Pl(βu)

∣∣∣∣∣∣∣∣∣∣

N∑
r=1

iγnrγar

u2 − Ẽr

N∑
r=1

iγnrγbr

u2 − Ẽr
N∑
r=1

iγbrγar

u2 − Ẽr
1 +

N∑
r=1

iγbrγbr

u2 − Ẽr

∣∣∣∣∣∣∣∣∣∣
. (2.89)

Examining these determinants and the argument I have developed previously to identify
the possible poles of det(M), I surmised that I could apply the same approach to them. I
do not detail the whole derivation here but it possible to show that we have the following
partial fraction decompositions :

det
nn

(M(u)) = 1 +
N∑
r=1

ω+
nr

u− u+
r

+
N∑
r=1

ω−nr
u− u−r

, (2.90)

det
an

(M(u)) = Pl(βu)

(
N∑
r=1

ω+
ar

u− u+
r

+
N∑
r=1

ω−ar
u− u−r

)
, (2.91)
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det
bn

(M(u)) = Pl(βu)

(
N∑
r=1

ω+
br

u− u+
r

+
N∑
r=1

ω−br
u− u−r

)
. (2.92)

Moreover, the residues ω±nr, ω
±
ar and ω±br are computed from the formulae (2.85) and (2.86).

One needs to extract the line and column corresponding to the extracted determinant being
studied (the determinant becomes 3× 3).

2.2.5 Partial fraction decomposition of the coefficients of ρ

We have shown that

det(M(u)) = 1 +
N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

. (2.93)

The formula (2.69) and the cofactor formulae (2.71), (2.72) and (2.73) yields

ρnn(u) = 1− detnn(M(u))

det(M(u))
, (2.94)

ρna(u) =
−1

P
1/2
l (βu)

detan(M(u))

det(M(u))
, (2.95)

ρnb(u) =
+1

P
1/2
l (βu)

detbn(M(u))

det(M(u))
. (2.96)

Partial fraction decomposition of ρnn

We have

ρnn(u) = 1−
1 +

N∑
r=1

ω+
nr

u− u+
r

+
N∑
r=1

ω−nr
u− u−r

1 +
N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

. (2.97)

At the cost of an additional step to compute the coefficients ω+
nr, ω

−
nr, a

+
r , a−r and bk, we

have found a very similar formula to that of the non-fissile case for ρnn. The difference lies in
the numerator, which is not constant and equal to 1 anymore. However, we are going to give
the partial fraction decomposition of ρnn by using the same ideas that we used previously.

The problem is, as in the non-fissile case, that we do not have a polynomial numerator
and denominator. However, the numerator and denominator partial fraction decompositions
have the same poles. We multiply by Q(u)ql(βu) as we did in the non-fissile case. Then, we
define

f(u) = Q(u)ql(βu)

(
1 +

N∑
r=1

ω+
nr

u− u+
r

+
N∑
r=1

ω−nr
u− u−r

)
, (2.98)
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g(u) = Q(u)ql(βu)

(
1 +

N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

)
. (2.99)

We do not develop the product with the expression between parentheses. f and g are both
polynomials and we have

ρnn(u) = 1− f(u)

g(u)
. (2.100)

To find the roots of g, we can apply the exact same idea as the one I used in the non-fissile
case in (2.41). Namely, the logarithmic derivative of g admits the following expression :

g′(u)

g(u)
=
Q′(u)

Q(u)
+
βq′l(βu)

ql(βu)
−

N∑
r=1

a+
r

(u− u+
r )2

+
N∑
r=1

a−r
(u− u−r )2

+
2l∑
k=1

bk
(u− vk/β)2

1 +
N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

=
N∑
r=1

1

u− u+
r

+
N∑
r=1

1

u− u−r
+

2l∑
k=1

1

u− vk/β

−

N∑
r=1

a+
r

(u− u+
r )2

+
N∑
r=1

a−r
(u− u−r )2

+
2l∑
k=1

bk
(u− vk/β)2

1 +
N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

. (2.101)

This might seem complicated, and it is in some sense, but compared to computing a
polynomial of degree 2N+2l and its derivative, this expression is quite satisfactory. It involves
only sums and very few multiplications. Applying the algorithm described in subsection 3.2.3,
we can then compute the roots of g that we note zp, 1 ≤ p ≤ 2N + 2l. We compute the
residues using the same idea as in the non-fissile case. Specifically, we use a convenient
expression of f/g,

f(u)

g(u)
=

1 +
N∑
r=1

ω+
nr

u− u+
r

+
N∑
r=1

ω−nr
u− u−r

1 +
N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

, (2.102)

so that

f(u)

g′(u)
=
f(u)/g(u)

g′(u)/g(u)
. (2.103)

The full expanded expression is very long and is composed of the following four terms :

A(u) := 1 +
N∑
r=1

ω+
nr

u− u+
r

+
N∑
r=1

ω−nr
u− u−r

, (2.104)
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B(u) := 1 +
N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

, (2.105)

C(u) :=
N∑
r=1

1

u− u+
r

+
N∑
r=1

1

u− u−r
+

2l∑
k=1

1

u− vk/β
, (2.106)

D(u) :=
N∑
r=1

a+
r

(u− u+
r )2

+
N∑
r=1

a−r
(u− u−r )2

+
2l∑
k=1

bk
(u− vk/β)2

. (2.107)

Then
f(u)

g′(u)
=

A(u)

B(u)C(u)−D(u)
. (2.108)

The residues corresponding to the roots of g are finally computed as

ηnp :=
f(zp)

g′(zp)
=

A(zp)

B(zp)C(zp)−D(zp)
. (2.109)

Finally, the partial fraction decomposition of ρnn is

ζnp :=

1 +
N∑
r=1

ω+
nr

zp − u+
r

+
N∑
r=1

ω−nr
zp − u−r

N∑
r=1

a+
r

(zp − u+
r )2

+
N∑
r=1

a−r
(zp − u−r )2

+
2l∑
k=1

bk
(zp − vk/β)2

. (2.110)

By taking the limit of f/g when u goes to infinity, the remainder is 1. Finally we have the
partial fraction decomposition of f/g :

f(u)

g(u)
= 1 +

2N+2l∑
p=1

ζnp
u− zp

; (2.111)

this immediately yields the partial fraction decomposition of ρnn :

ρnn(u) = 1− (1 +
2N+2l∑
p=1

ζnp
u− zp

) (2.112)

:=
2N+2l∑
p=1

ηnp
u− zp

. (2.113)

Partial fraction decomposition of |ρna|2 and |ρnb|2

The situation for ρna and ρnb is a bit different, since there is a term of the form P
1/2
l (βu). I

will focus on ρna, since the study is exactly the same for ρnb. We have the following expression
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for ρna :

ρna(u) = P
1/2
l (βu)

N∑
r=1

ω+
ar

u− u+
r

+
N∑
r=1

ω−ar
u− u−r

1 +
N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

. (2.114)

Conveniently, the terms appearing in the cross-sections formulae are the modulus square of
ρna and ρnb. Therefore, the terms we want to study are rational functions and admit a partial
fraction decomposition :

|ρna(u)|2 = Pl(βu)

∣∣∣∣∣∣∣∣∣∣∣

N∑
r=1

ω+
ar

u− u+
r

+
N∑
r=1

ω−ar
u− u−r

1 +
N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

∣∣∣∣∣∣∣∣∣∣∣

2

. (2.115)

Similarly to ρnn, we can write a partial fraction decomposition for the term inside the modulus
square. The partial fraction decomposition in the denominator is exactly the same and so
are the resulting poles of the quotient. We do not detail the exact expressions of the residues
as they are very similar to that of ρnn previously made explicit. We then have the following
relation :

N∑
r=1

ω+
ar

u− u+
r

+
N∑
r=1

ω−ar
u− u−r

1 +
N∑
r=1

a+
r

u− u+
r

+
N∑
r=1

a−r
u− u−r

+
2l∑
k=1

bk
u− vk/β

=
2N+2l∑
p=1

ηap
u− zp

. (2.116)

The relation (2.116) will come in handy shortly thereafter.

Then,

|ρna(u)|2 = Pl(βu)

(
2N+2l∑
p=1

ηap
u− zp

)(
2N+2l∑
p=1

ηap
u− zp

)
. (2.117)

This is a rational function of u. We have, for u going to ∞,

Pl(βu) = O(u),

2N+2l∑
p=1

ηap
u− zp

= O(1/u),

2N+2l∑
p=1

ηap
u− zp

= O(1/u).
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We conclude that their product goes to 0 when u goes to ∞. Its poles are all simple and
are the poles of z 7→ Pl(βz), the zp and the zp. Therefore, it admits a partial fraction
decomposition of the form

|ρna(u)|2 =
2l∑
k=1

gk
u− vk/β

+
2N+2l∑
p=1

hap
u− zp

+
2N+2l∑
p=1

hap
u− zp

. (2.118)

The residues are computed by

gk =
pl(vk)

βq′l(vk)

(
2N+2l∑
p=1

ηap
vk/β − zp

)(
2N+2l∑
p=1

ηap
vk/β − zp

)
, (2.119)

hap = Pl(βzp)ηap

2N+2l∑
q=1

ηaq
zp − zq

. (2.120)

Using relation (2.116), we can show that the gk are all mathematically null. Indeed, evaluating
it at some vk/β yields

0 =
2N+2l∑
p=1

ηap
vk/β − zp

. (2.121)

Using this expression in (2.119) yields that the corresponding gk is zero. The key factor
here is that the partial fraction decomposition in the numerator of (2.116) has no term
corresponding to the vk/β. Consequently, the numerator is finite whereas the denominator
diverges when evaluated.

Finally, the partial fraction decomposition of |ρna|2 is

|ρna(u)|2 =
2N+2l∑
p=1

hap
u− zp

+
2N+2l∑
p=1

hap
u− zp

(2.122)

= 2<
(

2N+2l∑
p=1

hap
u− zp

)
. (2.123)

Partial fraction decomposition of |ρnn|2

We need to write the partial fraction decomposition of one last term, namely |ρnn|2. We
have given a partial fraction decomposition of ρnn. From (3.12), we can write for some real
u,

|ρnn(u)|2 = <
(

2N+2l∑
p=1

δp
u− zp

)
(2.124)

with

δp := 2ηnp

2N+2l∑
q=1

ηnq
zp − zq

. (2.125)
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We have been able to give a partial fraction decomposition of all the terms of interest
of the cross-sections formulae with 2N + 2l poles. Let us give a multipole representation of
these cross-sections.

2.2.6 Multipole representation of the fission, radiative capture,
elastic and total cross-sections

After substitution of the different partial fraction decompositions (2.123), (2.113) and (2.124)
into the cross-sections formulae (2.9) to (2.11) :

σnf (E) =
4π

k2
<
(

2N+2l∑
p=1

2hap + 2hbp√
E − zp

)
, (2.126)

σnγ(E) =
4π

k2
<
(

2N+2l∑
p=1

ηnp − δp − 2hap − 2hbp√
E − zp

)
, (2.127)

σnn(E) =
4π

k2
sin2(φl) +

4π

k2
<
(

2N+2l∑
p=1

ηnp(exp(−2iφl)− 1) + δp√
E − zp

)
, (2.128)

σnt(E) =
4π

k2
sin2(φl) +

4π

k2
<
(

2N+2l∑
p=1

ηnp exp(−2iφl)√
E − zp

)
. (2.129)

We have shown that for a pack of quantum number l containing N resonances, we need
exactly 2N +2l poles to give the multipole representation. The previous result was 2N(l+1)
poles [17, 18].

I surmise that this previous result was not a problem for the practical use of the multipole
representation. The authors of [17, 18] have noticed that some of these poles are very close
to each other. Indeed we have proven by a mathematical study that only 2l are needed for
a whole pack and not 2l per resonance as before. A pseudo-pole approach, which aims at
reducing numerically the number of poles, should then be very effective at gathering these
pole contributions into a few approximated poles.

However, the main advantage of the present result is sensible for the pole/root finding
algorithm. Finding the roots of a polynomial is not at all linear with respect to the degree
of the polynomial. The difference in terms of speed and numerical accuracy between finding
the roots of a polynomial of degree 2N + 2l and 2N + 2lN is tremendous.

2.3 Algorithmic summary

The resonances of a pack have to be treated together. We recall that they are characterized
by an energy Er and a set of widths. The first step is to form the perturbed resonance energies
Ẽr from formula (2.19).
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In the case of non-fissile nuclei, one must compute the formal inversion of a partial frac-
tion decomposition whose poles are the complex roots of the perturbed resonance energies
Ẽr and the roots of z 7→ ql(βz). The corresponding residues are computed according to
formulae (2.36) and (2.35). The result of this formal inversion will be a partial fraction de-
composition of ρnn, which then allows giving the multipole representation of the cross-section
according to formulae (2.54) to (2.56). The formal inversion requires finding the roots of a
polynomial (defined by expression (2.30)), which is done by a modified Newton-Raphson
algorithm described in subsection 3.2.3 of Part I. This approach requires computing the
logarithmic derivative of the polynomial of interest. This is done by formula (2.41).

In the case of fissile nuclei, an additional step is needed to get back to a situation very
similar to the non-fissile case. This additional step consists in computing the partial fraction
decomposition of the determinant, and extracted determinants, of a 3 × 3 matrix defined
by expression (2.70). The poles of these partial fraction decompositions are again the per-
turbed resonance energies and the roots of z 7→ ql(βz). Finding the corresponding residues
constitutes the main added computational step. This is done according to subsection 2.2.3
and subsection 2.2.4. Once this is done, a formal inversion is required to obtain the partial
fraction decomposition of ρnn, ρna and ρnb. The formal inversion is common to these three
elements and uses the exact same Newton-Raphson algorithm as in the non-fissile case. The
computation of the corresponding residues is slightly more complicated and is described in
subsection 2.2.5. This yields the multipole representation of the cross-sections of formu-
lae (2.126) to (2.129).
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Chapter 3

Qualitative aspects of the multipole
representation

In the previous two chapters, we have been interested in finding a multipole representa-
tion for the cross-sections described under the Multi-Level Breit-Wigner and Reich-Moore
formalisms. This new representation of the 0K cross-sections allows manipulating them from
a new perspective a priori agnostic of the original formalism they were reconstructed with.
The challenges to obtain these poles are rather different for the two formalisms I worked
with. However, I will show that they can be classified in a rather similar way for both cases.
I will describe some of their qualitative properties and discuss the contribution of individual
pole terms to the cross-sections profiles.

3.1 Classification of the poles

3.1.1 Multi-Level Breit-Wigner multipole representation

We have shown in the corresponding theoretical chapters that the cross-sections recon-
structed with the Multi-Level Breit-Wigner formalism admit a multipole representation. This
was already proven by R.N. Hwang and C. Jammes in [19]. The contribution of my work is
that we need only l + 2 poles per resonances instead of 2(l + 1) at the cost of l poles for a
whole pack of resonances.

We began by working with the radiative capture and fission cross-sections. For these,
the multipole representation is obtained by studying the contribution to the cross-sections of
each resonance separately. For one such resonance contribution, we gave its partial fraction
decomposition. This involved finding the roots of the denominator polynomials

Dr(u) := rl(βu)(u2 − Ẽr) + γ2
nr

(
(l + 1)rl(βu)− rl+1(βu)

)
. (3.1)

The exact definition of each element appearing in this polynomial can be found in chapter 1.
As explained, this polynomial is of degree l+2. The roots are obtained by a Newton-Raphson
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algorithm, which uses some guesses as starting point. In all practical situations the roots to
which the algorithm converged were always close to the guesses.

I give here no theoretical proof of this observation. The intuitive reasoning is as follows.
The polynomial Dr is a sum of two polynomials. One of these is considered small because it
is multiplied by the reduced elastic width of the resonance. In numerical applications, this
width is always small. The generic mathematical study would be that of a polynomial of the
form

P (u) + εQ(u); (3.2)

If ε is sufficiently small, it is not unreasonable to expect that the roots of this polynomial will
be close to that of P . A mathematically correct approach would necessitate a more careful
study of Q and its roots in relation to those of P . We admit that the intuitive rationale
is valid in my applications provided that γ2

nr in (3.1) are small compared to Ẽr (defined in
(1.25)).

The roots of z 7→ rl(βz)(z2 − Ẽr), which I chose as my guesses, are well known. Two of

them are the complex square roots of Ẽr.

On one hand, this perturbed resonance energy is a complex number, although it usually
has a small imaginary part compared to its real part. As such, we expect its complex square
roots to be close to the real axis. One will lie on the negative part of that axis, the other on
the positive part. If we admit that the roots are close to the guesses, the roots corresponding
to these two guesses will also lie in the aforementioned locations. This is the first result that
I wish to underline. For each resonance, two poles are inherited from the resonance energies
and will lie close to the real axis.

On the other hand, l guesses are the roots of z 7→ rl(βz). Let us discuss briefly the cases
for the first few values of l. For l = 0 resonances, the polynomial rl is constant and there
are no such additional guess and root to find. For l = 1, r1 has one root, the unit complex
number i. Hence the guess is i/β which lies on the imaginary axis. It is again expected
by the perturbative argument, that the roots found with this guess will also be very close
to the imaginary axis. For higher values of l, there is no simple location for the root of rl.
However, these roots can be computed once and for all, as the definition of rl is not only
independent of the resonance but also of the studied nuclei themselves. Such a preliminary
study shows that they are always away from the real axis. As a result, the roots obtained
with such guesses are expected to also lie away from the real axis.

For the elastic and total cross-sections we saw that we need l additional poles for the
multipole representation of each pack of quantum number l. These are not obtained from
guesses and a Newton-Raphson algorithm as before. Rather, they are directly the l roots of
rl. They lie on the opposite side of the real axis from the roots of rl. As I have just mentioned
for the roots of the latter - that we used as guesses - they are far away from the real axis.

We see that three types of poles naturally emerge. Some are obtained from the perturbed
resonance energies Ẽr. They have either negative or positive real part and are close to the
real axis. Others are obtained from roots of rl or are directly roots of rl.

98



3.1.2 Reich-Moore multipole representation

I have shown that the cross-sections reconstructed with the Reich-Moore formalism also
admit a multipole representation. Again, this was already proven by R.N. Hwang in [17, 18].
I have obtained a representation with less poles and provided a new algorithm to compute
it.

The different cross-sections are treated together through a reduced R-matrix. The exis-
tence of the multipole representation had already been proven. The first step was to find and
prove the exact number of poles needed. This was done in subsection 2.2.1 of the theoretical
chapter about the Reich-Moore formalism

The multipole representation has to be computed pack of resonances by pack of resonances
and cannot be computed for each resonance separately as for the Multi-Level Breit-Wigner
formalism. However, the root-finding algorithm still uses some guesses.

We have proven in Chapter 2 that we need 2N + 2l poles for a pack of quantum number
l containing N resonances. We previously chose the guesses with a perturbative argument.
The polynomials to solve in the Reich-Moore case do not lend themselves easily to such an
intuitive approach. However, the location of the poles in the results of R.N. Hwang for the
Reich-Moore case are not significantly different than for the Multi-Level Breit-Wigner case.
This is despite the significant difference in the number of poles needed for the multipole
representation. I surmise that we still expect some poles to be inherited from the resonances
and others from the penetration factors.

On one hand, we chose the complex square roots of the perturbed resonance energy Ẽr.
These do not have the same expression as in the Multi-Level Breit-Wigner case, but have the
similar property of having a small imaginary part. Consequently, their square roots lie close
to the real axis with one having a negative real part and the other one a positive real part.

On the other hand, there are 2l guesses which correspond to the poles of the penetration
factor. These are the roots of z 7→ ql(βz). These are exactly the l roots of rl and the l roots of
rl defined in subsection 1.2.5 of the theoretical chapter about the Multi-Level Breit-Wigner
formalism.

This choice proved to be very good, provided again that the resonance widths were small
compared to the resonance energies. This may suggest that a perturbative argument still
apply, although I must admit it eluded me.

3.1.3 Types of poles

As explained, although the number of poles required for the multipole representation of
the Reich-Moore and Multi-Level Breit-Wigner formalisms is different, a common natural
classification of them emerges. Namely, they fall under three categories :

• Poles with positive real part and small imaginary part. These are obtained from the
positive real part complex square root of the perturbed energies. I denote them posi-
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tive resonance poles.
• Conjointly, poles with negative real part and small imaginary part. These are obtained

from the negative real part complex square root of the perturbed energies. I denote
them negative resonance poles.
• Poles that lie away from the real axis, or (said differently), have a larger imaginary part

than real part. These are obtained from the roots of rl or rl. A closer look at their
location depends on the value of l considered. I admit that the property of being far
away from the real axis is always true. I denote them orbital poles.

There are two pathological cases I wish to discuss before looking at the qualitative con-
tribution of these three types of poles.

First, some resonances described in the ENDF files, both for the Multi-Level Breit-Wigner
and Reich-Moore formalism, have negative resonance energies. Those can serve as background
correction for the cross-section. I did not pay attention to these in my theoretical study as
they have no impact on the results that I have presented. However, the resonance poles
corresponding to these resonance are significantly different from the first two categories I
have presented above. Their resonance energies being negative, the corresponding Ẽr has
a negative real part. As such, its complex square roots lie cloes to the imaginary axis.
Conveniently, from a practical standpoint, I have noticed that they are very similar to orbital
poles with l = 1. I will not discuss them further.

Second, it can happen for some nuclei that a resonance has an energy and a corresponding
width similar in order of magnitude. This is the case, for instance, for the first resonance of
Plutonium 239 around 0.3 eV. For such a resonance, the perturbed energy Ẽr does not lie
particularly close to the real axis. As a direct consequence, its complex square roots do not
either. From a qualitative standpoint, I still treat the poles obtained with these guesses as
positive and negative resonance pole, even though they do not have the property of being
close to the real axis.

3.2 Qualitative description of the contribution of the

different types of poles

3.2.1 Types of pole terms

The types of poles differ notably by their locations in the complex plan. I am now going
to briefly show the qualitative difference of the contribution of each pole terms given their
type.

A pole term contribution is either of the form,

Ap(E) :=
4π

k2
<
(

ap√
E − zp

)
(3.3)
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or,

Bp(E) :=
4π

k2
<
(
bp exp(−2iφl(β

√
E))√

E − zp

)
. (3.4)

I will not study the latter type of terms as the variations of the φl term, while not negligible
for l = 0 or l = 1, do not affect the qualitative study I will now present.

We focus on the terms noted Ap. A more convenient form would be :

Ap(E) ∝ 1

E
<
(

ap(
√
E − zp)

(
√
E −<(zp))2 + =(zp)2

)
(3.5)

∝ 1

E

(
<(ap)

√
E

(
√
E −<(zp))2 + =(zp)2

− <(apzp)

(
√
E −<(zp))2 + =(zp)2

)
. (3.6)

We write ap = a+ ib and zp := x+ iy,

Ap(E) ∝ 1

E

(
a
√
E

(
√
E − x)2 + y2

− ax+ by

(
√
E − x)2 + y2

)
(3.7)

∝ 1

E

(
a(
√
E − x)

(
√
E − x)2 + y2

− by

(
√
E − x)2 + y2

)
. (3.8)

We see that Ap is a linear combination of two sub-terms,

1

E

√
E − x

(
√
E − x)2 + y2

, (3.9)

1

E

y

(
√
E − x)2 + y2

. (3.10)

I have not studied the exact features of the mix depending on the values of the residues. The
main idea is to show their variation and their asymptotic behavior. I will show both the shape
of (3.9) and (3.10) for the different types of poles. I will do so by choosing representative
values of x and y for each of these types. These choices are not completely arbitrary and are
motivated by numerical applications of the multipole representation that I will discuss later.
In Figure 3.1 to Figure 3.3, the red line corresponds to the first type of terms and the blue
line to the second type.

3.2.2 Negative resonance poles

First let us consider a pole z = −10 + 0.03i. This is typical of a negative resonance pole
whose resonance energy is around 100 eV and total width 0.001 eV.
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Contribution of a negative resonance pole to the cross-section profile

Figure 3.1: Qualitative contribution of a negative resonance pole to a cross-section profile

An immediate asymptotic study of the terms (3.9) and (3.10) would show the observed
behavior on the left and right parts of the range on Figure 3.1. There is a slow variation on
the energy range presented. This type of poles are called non-fluctuating by R.N. Hwang in
his study of [18, 19].

The vertical spacing between the red and blue line has no particular significance. The
choice of the normalization of each type of sub-terms is arbitrary. This translates into this
separation in the logarithmic scale.

3.2.3 Orbital poles

Let us now consider a pole z = 1000i. This is typical of an orbital pole for a quantum
number l = 1.
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Figure 3.2: Qualitative contribution of an orbital pole to a cross-section profile

We observe on Figure 3.2 a very similar behavior to that of a negative resonance pole of
Figure 3.1. Namely, there is no major variation on the energy range and we also consider
them non-fluctuating poles.

3.2.4 Positive resonance poles

The last type of pole is the most interesting as far as resonant cross-sections are concerned.
I have chosen a pole z = 10 + 0.03i, which would typically correspond to the same resonance
as the negative resonance pole I have chosen before.
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Figure 3.3: Qualitative contribution of a positive resonance pole to a cross-section profile

As it can be seen on Figure 3.3, the contribution is sharply peaked around the square of
the real part for both sub-terms (3.9) and (3.10).

The absolute value of sub-term (3.9) is presented here because the logarithmic scale does
not allow for negative values. Practically these negative values are not a problem for the
reconstruction of cross-section profiles. Indeed, the other types of poles are able to provide
a positive background such that the sum of all pole terms is always positive.
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Figure 3.4: Close-up of the qualitative contribution of a positive resonance pole to a
cross-section profile around its resonant part

Figure 3.4 offers a close-up look around the resonant part in a linear scale. We see that
the two types of sub-terms can be interpreted as symmetric and anti-symmetric contribution
to the cross-section profile, which was not the case for the two previous types of poles.

The next part of this manuscript is devoted to applications of the multipole representation.
We will see how these pole types are mirrored in the cross-section profiles reconstructed from
multipole parameters.
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Part III

Some applications of the multipole
representation
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Chapter 1

Reconstruction of the 0K
cross-sections with the multipole
representation

The previous chapters have been devoted to the theoretical aspects of the multipole
representation. In this chapter, I wish to discuss the reconstruction of the 0K cross-sections
with the multipole representation.

I wrote a code performing the conversion from standard resonance parameters to multipole
parameters for the Multi-Level Breit-Wigner and Reich-Moore formalisms. This is a direct
implementation of the theoretical results that I have presented. The aim was then to verify the
correctness of the obtained parameters. One way to do this is to compare the reconstruction
of the cross-sections with multipole parameters to a classic reconstruction with resonance
data and the analytical formulae derived from the R-matrix theory. As I mentioned in
the introduction of this manuscript, these are done by codes such as PREPRO, NJOY or
GALILÉE-1. I chose to compare my results to NJOY considering that these three codes
agree to a very good accuracy for the reconstruction of the 0K cross-sections.

My goal was to achieve a uniformly lower than 10−6 relative error for the four recon-
structed cross-sections : elastic, fission (when relevant), radiative capture and total. The
relative error is defined by

εrelative =
|σmultipole − σNJOY|

|σNJOY|
. (1.1)

This choice of maximum relative error corresponds to the limit on the precision of resonance
parameters in the ENDF format. This is also a good enough precision for most uses of
cross-sections, particularly considering the errors introduced when broadening them. This
goal proved to be realistic and attainable for numerous nuclei.

In this chapter, I will show the successful reconstruction of 0K cross-sections with mul-
tipole parameters for such nuclei. I will try and explain that they are representative of the
different challenges of the conversion to multipole parameters. In relation to the previous
chapter about the qualitative types of poles, I will describe the contribution of individual
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pole terms to the cross-section profile on a particular example. Finally, I will comment on the
scope and challenges of a conversion of an entire ENDF library to this new representation.

1.1 Reconstruction of 0K cross-sections

The theoretical studies leading to the multipole representation of the different formalisms
involved rather different challenges for each case. As such, I will present separate results for
Multi-Level Breit-Wigner, non-fissile Reich-Moore and fissile Reich-Moore nuclei. For each of
these three categories, I will discuss the expected issues and present successful reconstruction
with the newly computed multipole parameters.

For each nucleus, I will show a graph of elastic, radiative capture, fission (when relevant)
and total cross-sections on the resolved resonance range reconstructed with multipole pa-
rameters. Together with these cross-section profiles, I will also display the relative error to
NJOY reconstructed cross-sections. A table will give the maximum relative error for each
cross-section. Additionally, a table will summarize some properties of the packs of resonances
of the considered nucleus. This will include the number of resonances of each pack, the previ-
ous number of poles required to represent them (established by R.N. Hwang and C. Jammes
in [18, 19]), as well as the new number of poles I have established. The reconstructions
presented on the aforementioned graphs are done with this new reduced number of poles.

1.1.1 Multi-Level Breit-Wigner nuclei

Let us first focus on the Multi-Level Breit-Wigner case. The main issues I have identified
while working on the multipole representation of the cross-sections are the energy dependen-
cies of the penetration and level-shift factors. The form of this dependency depends on the
quantum number l of the considered pack of resonances. For a pack of quantum number l, a
careful mathematical study allowed reducing the multipole representation from 2l + 2 poles
per resonance to only l + 2 per resonance at the cost of l poles for the whole pack. I will
present two reconstruction results that confirm that this theoretical result does not impact
the numerical accuracy of the multipole representation. First, Silver 107 which possesses only
packs of resonances of quantum number l = 0. I have shown that, in this case, the multipole
representation is rather easy to obtain. Second, Zirconium 91 which contains packs with
quantum number l = 1 where there is an effective reduction of the number of poles required.

Another concern could be that of the number of resonances in each pack. This aspect is
largely irrelevant as the multipole representation is mostly obtained resonance by resonance
(except for one additional step for the elastic cross-section). Obviously, if a nucleus has a
large number of resonances, small numerical inacuracies on the multipole representation of
each of them might accumulate in a more problematic way than for a small number of reso-
nances. The opposite argument could also be made, namely, errors on individual resonance
multipole representation might be hidden in the sheer number of resonances. Practically, I
did not encounter particular problems when studying Multi-Level Breit-Wigner nuclei with
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higher number of resonances. In the development stage of my conversion code, errors on
the multipole representation of specific resonances always appeared clearly around them and
made the debugging process rather easy.

l J
Number of
resonances

Previous number
of poles

New number
of poles

0 0 14 28 28
1 43 86 86

total 57 114 114

Table 1.1: Number of resonances and poles for Silver 107

Silver 107 is a nucleus with two packs of resonances, both with quantum number l = 0.
The resolved resonance range extends from 10−5 eV to 1057.9 eV. Table 1.1 displays the
relevant pack and pole properties. The packs are only characterized by (l, J) and not with
a triplet of quantum numbers (l, s, J) as they were before. This is but a mere peculiarity of
the implementation of the Multi-Level Breit-Wigner formalism that I chose not to specify as
it has absolutely no impact on the multipole representation. Otherwise, as expected, there
is no gain in the number of poles for the representation of packs of quantum number l = 0.
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Figure 1.1: Reconstruction with multipole parameters of the 0K cross-sections of the
Multi-Level Breit-Wigner nucleus Silver 107

Figure 1.1 shows the reconstructed radiative capture, elastic and total cross-sections with
the newly computed multipole parameters. The relative error is consistently under 5 · 10−7

for the partial cross-sections and below 10−6 for the total cross-section. This demonstrates
that the conversion to multipole parameters is correct. This is a good result but not an
unexpected one given the simplicity of the resonance data of this nucleus.

The second case I chose to present is that of Zirconium 91, which has packs of resonances
of quantum number l = 1. For such nuclei, I have improved the previous theoretical results
concerning the number of poles. Table 1.2 displays the relevant pack and pole properties.
We do lower the total number of poles from 502 to 396 (approximately 20% reduction). The
resolved resonance range extends from 10−5 eV to 30160 eV.
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l J
Number of
resonances

Previous number
of poles

New number
of poles

0 2 16 32 32
3 15 30 30

1 1 6 24 19
2 32 128 97
3 39 156 118
4 33 132 100

total 141 502 396

Table 1.2: Number of resonances and poles for Zirconium 91
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Figure 1.2: Reconstruction with multipole parameters of the 0K cross-sections of the
Multi-Level Breit-Wigner nucleus Zirconium 91
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Figure 1.2 shows that the reconstruction is very satisfactory with the new multipole
parameters. Similarly to Silver 107, the relative errors are below 10−6. This confirms the
results of the theoretical study concerning the possibility of lowering the number of poles
required.

As I have mentioned, the number of resonances in each pack is not a particular obstacle
for the Multi-Level Breit-Wigner formalism multipole representation. For that reason I did
not focus on this aspect when presenting these two successful reconstructions. I also did
not present fissile nuclei as the fission cross-section formula is almost identical to that the
radiative capture cross-section. As a result, there are no numerical difficulties associated
with the former that would not appear for the latter.

1.1.2 Reich-Moore nuclei

For the Reich-Moore nuclei, I identified three possible issues for the implementation of
the conversion of standard resonance parameters to multipole parameters.

The first issue I perceived as an obstacle was again the energy dependency of the penetra-
tion and level-shift factors. This quickly appeared to be less of a problem for the Reich-Moore
formalism. On one hand, there is no level-shift of the resonance energies. On the other hand,
while there still is a penetration factor, the number of poles per resonance does not grow
with the quantum number l of the pack they belong to. Compared to previous results on
the multipole representation, we go from (2l + 2) poles per resonance (as initially in the
Multi-Level Breit-Wigner case) to 2 poles per resonance whatever the value of l of the pack
of resonances. This is at the cost of 2l poles for the whole pack. Numerical applications were
necessary to prove that this is indeed a limited source of problems.

Second, the analytical formulae of the cross-sections involve the inversion of a reduced
R-matrix. This poses a major problem for deriving the multipole representation as it implies
the use of formal calculus tools to manipulate determinant and rational functions. One of
my theoretical results was to show that additional steps allow reducing the complexity of
this problem to that of a scalar inversion. At this stage, however, it still remained unclear
whether this would impact the numerical accuracy of the values input in the root-finding
algorithm that follows.

Third, the root-finding problem itself is vastly more complicated than in the Multi-Level
Breit-Wigner case. Resonances cannot be treated separately for multipole representation.
The algorithmic challenge consists in finding the roots of polynomials of very high degree
(higher than 50) for many Reich-Moore nuclei.

Non-fissile Reich-Moore nuclei

I will begin with the case of non-fissile Reich-Moore nuclei, which skips the second point
and avoids the possible numerical inaccuracies it could introduce. This allows focusing on
the two other points. For the first point, I will present the reconstructed cross-sections of the
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nucleus Aluminium 27. It possesses a large number of packs, some with quantum number up
to l = 2. This will validate my approach to treat the corresponding energy dependency of
the penetration factor and to reduce the number of poles. For the third point, I will present
those of the nucleus Chromium 53, whose resonance packs are larger. This will indicate the
validity of the root-finding algorithm I have adopted.

A coincidental advantage of Aluminium 27 is that each of its packs contain few resonances.
It allows separating the complexity coming from the penetration factor energy dependency
(that we are trying to convince ourselves can be overcome easily for the Reich-Moore case)
from the complexity of solving high degree polynomials. Table 1.3 displays the relevant pack
and pole properties. The theoretical reduction of the total number of poles is of 30%, which
is quite significant. The resolved resonance range extends from 10−5 eV to 845000 eV.

l s J
Number of
resonances

Previous number
of poles

New number
of poles

0 2 2 10 20 20
3 3 14 28 28

1 2 1 10 40 22
2 9 36 20
3 8 32 18

3 2 3 12 8
3 0 0 0
4 3 12 8

2 2 0 2 12 8
1 3 18 10
2 1 6 6
3 4 24 12
4 0 0 0

3 1 2 12 8
2 3 18 10
3 1 6 6
4 4 24 12
5 2 12 8

total 78 312 204

Table 1.3: Number of resonances and poles for Aluminium 27

As a remark, one may notice lines with zero resonances in Table 1.3. My result concerning
the number of poles needed for such packs may suggest that we would need 2N + 2l = 2l 6= 0
poles. However, since there are no resonances, there are no associated widths and no resonant
contributions of these packs to the cross-sections (there still is a contribution to the so-called
scattering potential, but this is irrelevant as far as the poles are concerned).
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Figure 1.3: Reconstruction with multipole parameters of the 0K cross-sections of the
non-fissile Reich-Moore nucleus Aluminium 27

Figure 1.3 shows the reconstructed 0K cross-sections with the newly computed multipole
parameters. The maximum relative errors are all below 10−6. Interestingly, the maximum
error on the elastic cross-section is lower than for the radiative capture cross-section. I
expected the opposite considering that the formulae for the former are more complicated and
involve phase-shifts. However, for Reich-Moore nuclei, the radiative capture cross-section is
obtained by a perturbative treatment, which might well be an adequate explanation. In any
case, this required quite a lot of coding work to get the implementation right and particularly
for the choice of the mass of the nucleus (which is prescribed slightly differently in various
parts of the ENDF files).

The second example of a non-fissile nucleus is that of Chromium 53. It contains packs of
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resonances with quantum number up to l = 1. The previous results concerning Aluminum 27
shows that the corresponding energy dependencies can be treated accurately. This nucleus,
however, possesses packs with a larger number of resonances and consequently a larger num-
ber of poles to find. Table 1.4 summarizes these properties. Considering the higher number
of resonances in the packs of quantum number l = 1, the gain in the total number of poles is
of 40%, which is even better than before. The resolved resonance range extends from 10−5 eV
to 564000 eV

l s J
Number of
resonances

Previous number
of poles

New number
of poles

0 1 1 40 80 80
2 2 55 110 110

1 1 0 12 48 26
1 91 364 184
2 35 140 72

2 1 11 44 24
2 50 200 102
3 56 224 114

total 350 1210 712

Table 1.4: Number of resonances and poles for Chromium 53
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Figure 1.4: Reconstruction with multipole parameters of the 0K cross-sections of the
non-fissile Reich-Moore nucleus Chromium 53

Figure 1.4 shows that the reconstructed cross-sections are in excellent accordance with
NJOY reconstructed ones. Let me draw attention to the fact that it required finding the
roots of polynomials of degree higher than a hundred. This is in contrast to the multipole
representation of Aluminium 27, which does not involve such a challenge.

Fissile Reich-Moore nuclei

The case of fissile Reich-Moore nuclei was the hardest to treat. As I mentioned before,
an added computational step is needed to reduce a matrix inversion to a scalar inversion. It
proved quite challenging to implement in a numerically stable way. On top of that, most fissile

118



nuclei are heavier and present more resonances on the resolved resonance range. The case
of Chromium 53 suggested that my adapted Newton-Raphson algorithm for the root-finding
was a good approach. I still needed to test cases where even higher degree polynomials were
involved. I will present here three successful cases of major importance for nuclear reactor
physics : Plutonium 239, Uranium 235 and Uranium 238.

Plutonium 239 has only 2 packs of resonances, both with quantum number l = 0. Each
of them contains a very high number of resonances as presented in Table 1.5. This table also
shows that, as expected, I need the same number of poles as previously established. My goal
with this nucleus was to test further the accuracy of my root-finding algorithm. The resolved
range extends from 10−5 eV to 2500 eV

l s J
Number of
resonances

Previous number
of poles

New number
of poles

0 0 0 231 462 462
1 1 812 1624 1624

total 1043 2086 2086

Table 1.5: Number of resonances and poles for Plutonium 239
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Figure 1.5: Reconstruction with multipole parameters of the 0K cross-sections of the fissile
Reich-Moore nucleus Plutonium 239

Figure 1.5 shows a very satisfactory reconstruction result with all relative errors under
10−6. Finding this new multipole parameters involved solving a polynomial of degree 462 and
a polynomial of degree 1624. As for the case of Chrome 53, the Newton-Raphson algorithm
proved to be adequate to solve this problem.

I then tried to convert the standard resonance parameters of Uranium 235 to multipole
parameters. This nucleus also has 2 packs of resonances, both of quantum number l = 0, as
presented in Table 1.6. The resolved resonance range extends from 10−5eV to 2250eV.
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l s J
Number of
resonances

Previous number
of poles

New number
of poles

0 3 3 1449 2898 2898
4 4 1744 3488 3488

total 3193 6386 6386

Table 1.6: Number of resonances and poles for Uranium 235

The number of resonances and the corresponding number of poles is much larger than for
Plutonium 239. The degree of the polynomials we need to find the roots of goes up to the
thousands.
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Figure 1.6: Reconstruction with multipole parameters of the 0K cross-sections of the fissile
Reich-Moore nucleus Uranium 235
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Figure 1.6 shows that, as for Plutonium 239, the reconstruction is very satisfactory. This
was the major test of my algorithm as the number of poles to find is higher than for any
other nuclei of the JEFF-3.2 library.

Having treated Plutonium 239 and Uranium 235 succesfully, I decided to try and treat
Uranium 238. As I have mentioned, these first two nuclei only have packs with quantum
number l = 0. As such, and as can be seen in Table 1.5 and Table 1.6, I have not reduced the
number of needed poles. This is emphatically not the case for Uranium 238, which contains
a huge pack of resonances of quantum number l = 1. As we can see in Table 1.7, my new
multipole representation significantly reduces the number of required poles. The resolved
resonance range extends from 10−5 eV to 20000 eV.

l s J
Number of
resonances

Previous number
of poles

New number
of poles

0 1/2 1/2 929 1858 1858
1 1/2 1/2 850 3400 1702

3/2 1566 6264 3134
total 3193 11522 6694

Table 1.7: Number of resonances and poles for Uranium 238

Figure 1.7 shows a successful reconstruction with these new multipole parameters, but
less satisfactory than the previous ones I presented. First we can see larger relative errors,
up to 5.27 · 10−6, on the fission cross-sections above 1 keV. These are due to the very low
fission cross-section of Uranium 238 in that range of energy and the limited precision of the
NJOY generated file. They are printed in the same format as ENDF evaluations which only
allows for 5 decimals for numbers with exponent lower than minus nine. I quickly looked up
a comparison between GALILÉE-1 and NJOY, which revealed a similar situation. I am not
particularly concerned about this type of error, as it is relatively specific to Uranium 238
and still quite satisfactory. The error for the elastic and fission cross-sections are below 10−6,
as I sought, but higher than 5 · 10−7, in contrast to Plutonium 239 and Uranium 235. This
is still a very good result and confirms the interest of the multipole representation for 0K
cross-section reconstruction.
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Figure 1.7: Reconstruction with multipole parameters of the 0K cross-sections of the fissile
Reich-Moore nucleus Uranium 238

1.2 Contributions of the different types of poles to a

reconstructed 0K cross-section profile

In the previous chapter I have proposed a qualitative classification of the poles. In the
previous section I have shown that the conversion to multipole parameters and their use for
reconstruction of 0K cross-sections is quite successful. I now wish to show how these two
elements are mirrored in the reconstruction of cross-section profiles, and particularly how
each type of pole contributes to them.

A good test-case that exhibits such properties is Plutonium 239. In Figure 1.5, we can see
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that there is a resonance around 0.3 eV that is quite separated from the others. This will hope-
fully illustrate with clarity the contribution of an individual pole. For this same resonance, I
will show how symmetric and anti-symmetric pole terms contribute to the asymmetric shape
of the elastic cross-section. I will then discuss the importance of positive resonance poles
compared to that of negative resonance poles and orbital poles.

1.2.1 One pole contribution
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Figure 1.8: A unique pole contribution to the radiative capture cross-section profile of
Plutonium 239

Figure 1.8 shows the radiative capture cross-section of Plutonium 239 and the contribution
of a single positive resonance pole term. Considering that the poles are found by studying
packs of resonances all together, it is not immediately apparent to which pole corresponds
to which resonance, although in this case the first resonance is sufficiently isolated so that I
had no trouble finding it.

It is striking on this graph that the resonance peak profile is very well captured with just
one pole contribution. We can also see that the low energy profile is wrong. Other positive
resonance poles are expected to give this same low energy contribution. This suggests that
the other types of poles are very necessary for a correct low energy profile. Figure 1.9 presents
the relative error of these two curves around the first resonance peak. We can see that the
error at the peak itself is quite low, but rises rather quickly above the percent. As a remark,
the inverted peak in the relative error that is not centered on the resonance corresponds to
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the intersection of the pole contribution and the full radiative capture cross-section. The
fact that this peak does go further down on the graph is merely a plotting artefact of the
logarithmic scale.
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Figure 1.9: Relative error between a unique pole contribution and the complete radiative
capture cross-section profile of Plutonium 239 around its first resonance peak

Figure 1.10 presents a zoom on the elastic cross-section for the same resonance. I have
briefly mentioned in my qualitative study of the type of poles that the elastic cross-section
resonance peaks are notoriously asymmetric. I have shown that the asymmetry of positive
resonance poles contribution is related to the value of the residues. I have plotted the
contribution of the same pole as for the radiative capture. The two other curves on this
plot correspond to the symmetric and anti-symmetric parts of pole contribution. As for the
radiative capture cross-section profile, a one-pole contribution captures very well the elastic
cross-section resonance shape. The contribution of the other poles is necessary to provide
the background that would align vertically the cross-section and the pole contribution. This
was interestingly not the case for the radiative capture cross-section.
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Figure 1.10: Detail of a unique pole contribution to the elastic cross-section of
Plutonium 239 around its first resonance

1.2.2 All positive resonance pole contributions

Figure 1.11 presents again the radiative capture cross-section, but this time the other
curve is the sum of all positive resonance pole contributions. The fit on the first few resonance
peaks seems very good. A closer look at the other resonances peak proved that this was
systematically the case. However, we can already see a significant difference in the two profiles
at the depression between the first and the second resonance. I observed that this was also
the case for the other depressions in between resonance peaks after a closer examination. As
expected from the one pole contribution seen on Figure 1.8, the low energy dependency is very
wrong. Both aspects confirm the need for other poles to correctly represent the non-resonant
part of the cross-section profiles.
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Figure 1.11: Contribution of all positive resonance poles to the profile of the radiative
capture cross-section of Plutonium 239

1.2.3 Negative resonance poles and orbital poles contribution

I wished to compare the magnitude of the contribution of all other poles (orbital and
negative resonance poles) to the profile of the radiative capture cross-section to visualize the
missing elements in Figure 1.11. Figure 1.12 displays both the plot of the profile and the
total contribution of these other poles. This contribution is not always positive. In order to
still be able to use the logarithmic scale, I plotted the absolute value. The two peaks on the
green curve are plotting artefacts due to this choice of scale. They correspond to a change
of sign which is not well captured graphically and is of little importance for the magnitude
comparison.

First, we can see that the low energy profile is similar to that of the positive resonance
pole contributions. Since the sum of all pole contributions yield the correct profile as seen
in Figure 1.5 of the previous section, we can surmise that the wrong low energy profile of
Figure 1.11 and Figure 1.12 will compensate exactly to yield the correct one. Second, and
more critically, we can see that the contribution compared to the complete cross-section is
far from insignificant up until 102 eV. This suggests that, although the contribution of each
individual negative resonance pole and orbital pole is rather non-fluctuating, their combi-
nation can have a more complicated shape. Admittedly, it is not as subtle as a positive
resonant pole contribution and an approximation of this contribution with few pseudo-poles
seems reasonable and possible.
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Figure 1.12: Contribution of all non positive resonance poles to the profile of the radiative
capture cross-section of Plutonium 239

1.3 Scope of the application to the ENDF libraries

The examples that I have presented are mostly successful reconstructions. They demon-
strate the validity of my theoretical study and its code implementation. The next logical
step is to try and convert the standard resonance parameters to multipole parameters for all
available nuclei. I have worked mainly with the ENDF library JEFF-3.2 [64]. The numbers
presented thereafter may vary slightly between libraries but the general orders of magnitude
are the same for libraries published at similar time.

JEFF-3.2 proposes nuclear data for some 472 nuclei. Among those, 65 do not have
resonance data. Of those which do have resonance data, 11 do not have resonance data in
the resolved resonance range. This leaves us with 392 nuclei with resonance data in the
resolved resonance range. I have extensively discussed the Multi-Level Breit-Wigner and
Reich-Moore formalisms. This is motivated by the fact that the vast majority of the 392
nuclei previously mentioned fall under one of these two categories. Namely, 175 nuclei have
resonance data under the Multi-Level Breit-Wigner formalism and 209 under the Reich-
Moore formalism. This leaves aside 12 nuclei. Ten of them have resonance data under the
Single-Level Breit-Wigner formalism. I have not discussed their treatment, as it is very close
to that of the Multi-Level Breit-Wigner case. Two of them have resonance data under the
upcoming R-matrix limited format formalism.

128



The application of my work is constrained to the 175 Multi-Level Breit-Wigner nuclei and
the 209 Reich-Moore nuclei. The cases I have previously presented suggested that aiming at
a 10−6 maximum relative error for the elastic, fission (when relevant), and radiative capture
cross-sections was not unreasonable. This error threshold also appeared to be reasonable for
the total-cross-section. With these criteria, approximately two third of the nuclei passed the
validation test.

I started, but did not complete, a review of the nuclei that failed the test. A lot of issues
I encountered could be solved somewhat globally but some of them will require individual
work. For the former I can cite the addition of background terms to the cross-sections.
For the total cross-section this can correspond to other reactions which are not treated with
resonance parameters but rather tabulated and provided in conjoint data files to the resonance
data files. For the elastic, fission and radiative capture cross-section, this corresponds to
background terms that are required to get the correct profile. This, among other issues,
posed implementation challenges that, while not particularly complicated, were rather time
consuming. With hindsight, I could have solved them by working with reconstruction codes
such as GALILÉE-1, that already tackle such problems. I am hopeful that my implementation
of the conversion to multipole parameters will benefit tremendously from an integration in
such codes.

Regarding individual problems, this mainly concerns errors or discrepancies in the ENDF
resonance data file. Sometimes two resonances are listed with the same energy. Sometimes
the presented triplet (l, s, J) of the pack of resonance of a nucleus is not in accordance with
its spin. There are many other pathological cases that would require individual attention
outside the scope of this work. Thankfully, they only concern a handful of nuclei and is not
necessarily an obstacle to the use of the multipole representation.

All things considered, the reconstruction of the cross-sections of nuclei such as Pluto-
nium 239, Uranium 235 and Uranium 238 is quite encouraging. The treatment of a complete
library will require more time.
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Chapter 2

Doppler broadening of the
cross-sections with the multipole
representation

In this chapter, I will give a brief summary of the formulae and approximations used to
broaden the cross-sections. I will detail how the multipole representation can be used to
perform this broadening. Notably, I will describe the analytical tools that are required for
this computation. Finally, I will present some numerical results of the Doppler broadening
for a few nuclei of interest.

2.1 Short theoretical framework

2.1.1 Free-gas model and the Solbrig kernel

The cross-sections formulae that I have presented before model interactions between mov-
ing neutrons and motionless target nuclei. To obtain cross-sections at a given temperature,
one must first describe the corresponding distribution of velocities of the nuclei. Under
the commonly adopted free-gas model, this velocity distribution is known as the Maxwell-
Boltzmann distribution. I note it p(w)dw where w is the velocity. It is defined by :

p(w)dw =
1

π3/2w3
T

exp

(
−‖w‖

2

w2
T

)
dw, (2.1)

Mw2
T

2
= kBT (2.2)

where the quantity M is the mass of an individual nucleus, the quantity kB is the Boltzmann
constant and the quantity T is the absolute temperature of the medium expressed in Kelvin
(K).

In presence of temperature effects, the reaction rates of the interactions of the neutron
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with the medium have to be averaged with respect to the velocity distribution of the nuclei.
The corresponding formula is

‖v‖σ
(
m‖v‖2/2, T

)
=

∫
‖v −w‖σ

(
m‖v −w‖2

2
, 0

)
p(w)dw (2.3)

where the vector v is the velocity of the considered neutron and the quantity m its mass.

In the particular case of the Maxwell-Boltzmann distribution, by substituting (2.1), we
get

‖v‖σ
(
m‖v‖2

2
, T

)
=

1

π3/2w3
T

∫
‖v −w‖σ

(
m‖v −w‖2

2
, 0

)
exp

(
−‖w‖

2

w2
T

)
dw

=
1

π3/2w3
T

∫
‖w‖σ

(
m‖w‖2

2
, 0

)
exp

(
−‖v −w‖

2

w2
T

)
dw. (2.4)

The particular form of the Maxwell-Boltzmann distribution allows us to rewrite this integral,
initially over all the velocity space, as an integral on the norm of the velocity. The details
can be found in [65]. We note v = ‖v‖ and w = ‖w‖. Equation (2.4) becomes

σ

(
mv2

2
, T

)
= +

1√
πwTv2

∫ ∞
w=0

w2σ

(
mw2

2
, 0

)
exp

(
−(v − w)2

w2
T

)
dw

− 1√
πwTv2

∫ ∞
w=0

w2σ

(
mw2

2
, 0

)
exp

(
−(v + w)2

w2
T

)
dw. (2.5)

In this formula, I have split the integral in two parts for clarity. Furthermore, it is sometimes
written in terms of the energy of the neutron instead of its velocity. We note

E =
mv2

2
and E ′ =

mw2

2
. (2.6)

Then, after a change of variable in the integrals :

σ (E, T ) = +
1√
4πE

∫ ∞
E′=0

√
E ′√
ET

σ (E ′, 0) exp

(
−(
√
E −

√
E ′)2

ET

)
dE ′

− 1√
4πE

∫ ∞
E′=0

√
E ′√
ET

σ (E ′, 0) exp

(
−(
√
E +
√
E ′)2

ET

)
dE ′ (2.7)

with the Doppler width defined by ET :=
mw2

T

2
=
m

M
kBT .

The main result is that the computation of cross-sections at temperature T is a linear
operation on the 0K cross-sections. This is what is generally called a kernel operator in
mathematics. Gathering the two integrals, we would have a product of the cross-section with
the difference of the two exponential terms. This function is called the Solbrig kernel [23]. I
will now discuss the approximations of formula (2.7) to effectively broaden the cross-sections.
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2.1.2 Approximations on the Doppler broadening energy range

The cross-sections models are only valid on a certain range of energies. The ones that we
have studied in this manuscript are concerned with the so-called resolved resonance range. A
priori, the integrals in expression (2.7) are to be computed on the whole real positive axis. As
such, many different descriptions of the cross-sections would be required in the computation
of a single energy cross-section. This does not make much physical sense and I am going to
present the classical approximation to solve this problem.

The broadening is somewhat restrained to a small energy range centered around the en-
ergy of interest noted E in expression (2.7). The commonly accepted argument is that the
exponential terms are strongly decaying, so that we can restrain the range of the integrals to
smaller intervals. This argument is central to many approximations of the Doppler broad-
ening. I am going to develop the semi-quantitative approach that describes this interval for
each integral. In the following, we will consider that the exponential term is vanishingly
small if its argument is larger than 100. This is a rather conservative choice compared to the
literature [26]. However, the general ideas presented here are well suited for a change to a
lesser strict condition if need be.

I will first discuss how we can reduce the range of each of these integrals depending on
the energy we are broadening the cross-sections around. Then I will discuss the appropriate
modelling of the cross-sections on these reduced ranges of integration.

Second integral

We will treat the two integrals of expression (2.7) separately to examine the impact of
this approximation. We began with the second integral, whose treatment is simpler. The
exponential term is small if

√
E +
√
E ′ < 10

√
ET (2.8)

√
E ′ < 10

√
ET −

√
E. (2.9)

First case, if E > 100ET , this second integral can be considered null as there is no value
of
√
E ′ in the range of integration. This threshold depends on the value of ET , which itself

depends on the temperature and the mass of the target nucleus considered. Its lowest value
is reached for heavy nuclei and low temperature. For Plutonium 239 and a temperature
of 300K, it evaluates to approximately 10−2 eV. On the contrary, for light nuclei and high
temperature it reaches its highest values. For Aluminium 27 and a temperature of 3000K, it
evaluates to approximately 2 eV.

Second case, namely E < 100ET , the integral range is bounded by
(
10
√
ET −

√
E
)2

,
which is itself bounded by 100ET .
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First integral

The impact of the approximation for the first integral is more complicated. With the
vanishing exponential argument, the reduced range of integration is defined by

−10
√
ET < (

√
E −

√
E ′) < 10

√
ET (2.10)

√
E − 10

√
ET <

√
E ′ <

√
E + 10

√
ET . (2.11)

First case, if
√
E < 10

√
ET , or equivalently, E < 100ET , then the left hand-side is

negative, so the reduced range of integration becomes

0 < E ′ < (
√
E + 10

√
ET )2. (2.12)

In the worst case, namely E = 100ET , this upper bound is equal to 400ET . This is similar
to the case of the second integral, to the difference that the reduced range of integration is
slightly larger.

Second case, if
√
E > 10

√
ET , or equivalently, E > 100ET . The range of integration

becomes

(
√
E − 10

√
ET )2 < E ′ < (

√
E + 10

√
ET )2. (2.13)

Whereas the second integral vanishes for E > 100ET , the first one will be solely responsible
for the computation of the Doppler broadening.

Choice of cross-section modelling on each range

For both integrals, the vanishing exponential argument implies the definition of a low-
energy threshold of 100ET . Below this threshold, the Doppler broadening formula (2.7) can
be approximated by

σ (E, T ) ≈+
1√
4πE

∫ 400ET

E′=0

√
E ′√
ET

σ (E ′, 0) exp

(
−(
√
E −

√
E ′)2

ET

)
dE ′

− 1√
4πE

∫ 100ET

E′=0

√
E ′√
ET

σ (E ′, 0) exp

(
−(
√
E +
√
E ′)2

ET

)
dE ′. (2.14)

The multipole representation is valid at these energies, but replacing the cross-sections by the
sum of the pole terms does not allow for an easy computation of the integrals. Moreover, there
exists a much simpler representation of the cross-sections below 400ET . At low energy, most
cross-sections can be approximated by simple 1/

√
E laws. The elastic and total cross-sections

require the addition of a constant to be accurately described. Replacing the cross-sections by
these simple, yet accurate models, the integrals of expression (2.14) can be computed rather
easily. This is done with the use of analytical tools such as the error function. Details can
be found in [65].
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Above this low-energy threshold of 100ET , the second integral is considered null and the
Doppler broadening formula is approximated by

σ (E, T ) ≈ 1√
4πE

∫ (
√
E+10

√
ET )2

(
√
E−10

√
ET )2

√
E ′√
ET

σ (E ′, 0) exp

(
−(
√
E −

√
E ′)2

ET

)
dE ′. (2.15)

If we take an energy E in the resolved resonance range, the cross-section profile is well
represented by the multipole representation. However, the range of integration can reach
outside the resolved resonance range, notably in the unresolved resonance range. The cross-
sections do not admit a multipole representation there. This means that even if it is well
suited to describe 0K cross-sections up to a certain energy Eupper, we can only use it in the
integral of expression (2.15) for broadening cross-sections up to

(
√
E + 10

√
ET )2 <Eupper (2.16)
√
E <

√
Eupper − 10

√
ET (2.17)

E <(
√
Eupper − 10

√
ET )2. (2.18)

For heavy nuclei with a resolved resonance range upper limit around 104 eV and a temperature
of 300K, this means that we cannot use the multipole representation of the cross-sections on
the last 50 eV of this range. For light nuclei with a resolved energy range upper limit around
106 eV and temperature of 3000K, this concerns the last 1000 eV. In any case, this upper part
of the range typically contains resonances and the multipole representation, which is useful
to describe them at 0K, is not sufficient for the Doppler broadening.

To conclude, if we need to broaden cross-sections at energies below 100ET , we will use
simple power laws and perform the broadening according to expression (2.14). If we need to
broaden cross-sections at energies above 100ET , we will use the multipole representation of the

cross-sections. Finally, we assume that we broaden cross-sections below
(√

Eupper−10
√
ET
)2

to avoid the problematic of representing the cross-section in the unresolved resonance range.
I will now detail the use of the multipole representation and the mathematical aspects of the
computation of (2.15) with it.

2.2 Doppler broadening of the different multipole terms

On the reduced range of energies defined previously, we broaden the cross-sections with
formula (2.15). Let us do a change of variable in the integral of this expression. We pose
uT :=

√
ET and u =

√
E ′ :

σ (E, T ) ≈ 1√
4πE

∫ √E+10uT

√
E−10uT

2u2

uT
σ (u, 0) exp

(
−(u−

√
E)2

u2
T

)
du. (2.19)

The multipole representation of the cross-section is a set of analytical formulae that
coincides with the 0K cross-sections on the resolved resonance range. However, the formulae
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are well defined for any value of u, provided that it is a real number. The idea is to extend
the range of the integrals so as to be able to use well known analytical tools to compute
them. With the argument on the vanishing exponential, this range can be formally extended
to the entire real axis :

σ (E, T ) ≈ 1√
4πE

∫ +∞

−∞

2u2

uT
σ (u, 0) exp

(
−(u−

√
E)2

u2
T

)
du. (2.20)

One of the particular interest of the multipole representation is that the cross-sections are
described by a sum of independent terms. The linearity of the operation on the cross-section
of expression (2.20) allows treating the broadening of these terms separately. To each of them
will correspond a different type of integral to compute, which I will now describe.

There are various types of terms that occur additively in the multipole representation of
the cross-sections. We note a general pole z and one of its residue a. The quantity k is related
to the energy E at which we consider the cross-section by k = α

√
E. The definition of α is

that of expression (2.24) of Part 1. We note again u =
√
E. The multipole representation of

the cross-sections is a sum of terms that can all be split in 4 different categories :

• Simple pole terms of the form
4π

k2
<
(

a

u− z

)
.

These are the main type of terms of the multipole representation. Their Doppler
broadening is done with the Faddeeva function.

• Phase-shifted pole terms of the form
4π

k2
<
(
a exp(−2iφl(βu)

u− z

)
.

These appear conjointly with the first type of terms for the elastic and total cross-
sections. The treatment of the φl term necessitates further approximations that I will
discuss.

• The so-called potential scattering terms of the form
4π

k2
sin2(φl(βu)).

There are only few such terms but they are important nonetheless for the elastic and
total cross-sections. We will see that their broadening is rather simple.
• Background terms and other tabulated cross-sections.

These are not peculiar to the multipole representation and are present for several cross-
sections. I will briefly hint at some ideas to treat them.

2.2.1 Simple pole terms

We replace σ(u, 0) by
4π

k2
<
(

a

u− z

)
in equation (2.20) :

σ (E, T ) =
1√
4πE

∫ +∞

−∞

2u2

uT

4π

k2
<
(

a

u− z

)
exp

(
−(u−

√
E)2

u2
T

)
du

=
1√
4πE
<
(
a

∫ +∞

−∞

2u2

uT

4π

α2u2

1

u− z exp

(
−(u−

√
E)2

u2
T

)
du

)
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=
4π

α2E
<
(
a

1√
πuT

∫ +∞

−∞

1

u− z exp

(
−(u−

√
E)2

u2
T

)
du

)
. (2.21)

We make a change of variable to get an adimensioned integral. For this purpose, we pose
x = (u−

√
E)/uT . Then we have

σ (E, T ) =
4π

α2E
<
(
a

1√
πuT

∫ +∞

−∞

1

uTx+
√
E − z

exp
(
−x2

)
uTdx

)

=
4π

α2E
<

a 1√
πuT

∫ +∞

−∞

1

x− z −
√
E

uT

exp
(
−x2

)
dx

 . (2.22)

The integral can be computed with the help of the Faddeeva function. Formally, it is defined
by

w(z) := exp(−z2)

(
1 +

2i√
π

∫ z

0

exp(t2)dt

)
. (2.23)

One demonstrable property of the Faddeeva function for a complex number z with positive
imaginary part is

w(z) =
i

π

∫ +∞

−∞

exp(−x2)

z − x dx. (2.24)

Using this expression, we can further rewrite expression (2.22) :

σ (E, T ) =


4π

α2E
<
(
a

1√
πuT

(+iπ)w

(
+
z −
√
E

uT

))
if =(z) > 0

4π

α2E
<
(
a

1√
πuT

(−iπ)w

(
−z −

√
E

uT

))
if =(z) < 0

. (2.25)

The case of =(z) = 0 is not taken into account because poles never have a null imaginary
part. The interest of this formulation is that the Faddeeva function is a well known special
function that can be evaluated in many different ways [39]. However, its evaluation can be
somewhat costly compared to more usual special functions such as the error function.

Interestingly, the integral depends on the pole value but not on the residue. Since the four
partial cross-sections that are described with the multipole representation have a common
set of poles, we only need one evaluation of the Faddeeva function to compute the Doppler
broadening of a pole term for the different concerned cross-sections. An additional step in
the form of a multiplication by their corresponding residue, noted a here, must then be
performed.

2.2.2 Phase-shifted pole terms

The pole terms with a phase-shift look more complicated at first sight. The form of the
energy dependency of φl depends on the value of l.

137



For l > 0, exp(−2iφl(βu)) is numerically very close to 1 on the whole resolved resonance
range. We do not need to adopt such a strong approximation but rather, we assume that it
does not vary much around the energy E. Rather, we compute the same integral as for the
simple pole term case with an additional multiplicative term in front of the integral :

σ (E, T ) ≈ 4π

α2E
<

aexp
(
−2iφl(β

√
E)
)

√
πuT

∫ +∞

−∞

1

x− z −
√
E

uT

exp
(
−x2

)
dx

 (2.26)

=


4π

α2E
<
(
a

exp
(
−2iφl(β

√
E)
)

√
πuT

(+iπ)w

(
+
z −
√
E

uT

))
if =(z) > 0

4π

α2E
<
(
a

exp
(
−2iφl(β

√
E)
)

√
πuT

(−iπ)w

(
−z −

√
E

uT

))
if =(z) < 0

. (2.27)

For l = 0, the phase-shift φl(βu) = βu is no longer such that exp(−2iφl(βu)) is close to 1.
However, its variations are of the order of βuT , which is somewhat negligible. I have found
an analytical treatment of this dependency with the Faddeeva function. We start back from
an expression as (2.21) with a phase-shift :

σ (E, T ) =
4π

α2E
<
(
a

1√
πuT

∫ +∞

−∞

exp(−2iβu)

u− z exp

(
−(u−

√
E)2

u2
T

)
du

)
(2.28)

=
4π

α2E
<

aexp(−2iβ
√
E)√

πuT

∫ +∞

−∞

exp(−2iβuTx)

x− z −
√
E

uT

exp
(
−x2

)
dx

 . (2.29)

We are going to work a bit on this integral, so we first note ω = βuT and y = (z−
√
E)/uT .

We assume that =(y) > 0. We define

Fy(ω) =

∫ +∞

−∞

exp(−2iωx)

x− y exp
(
−x2

)
dx. (2.30)

We derive in terms of ω :

∂Fy
∂ω

=

∫ +∞

−∞

−2ix exp(−2iωx)

x− y exp
(
−x2

)
dx

=

∫ +∞

−∞

((−2ix+ 2iy)− 2iy) exp(−2iωx)

x− y exp
(
−x2

)
dx

= −2i

∫ +∞

−∞
exp(−2iωx) exp

(
−x2

)
dx− 2iyFy(ω)

= −2i
√
π exp(−ω2)− 2iyFy(ω). (2.31)

We can see that Fy verifies a first-order linear differential equation. By the Picard-Lindelöf
theorem [66], if we find a solution of this equation that is equal to Fy for any value of ω
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then these functions will be equal for all values of ω. We consider the function G(ω) :=
iπ exp(−ω2)w(y + iω), where w denotes again the Faddeeva function. Let us show that G is
the solution that we are looking for :

∂G

∂ω
= iπ exp(−ω2) (−2ωw(y + iω) + iw′(y + iω)) . (2.32)

The Faddeeva function verifies the following differential equation on the whole complex plan :

w′(z) = −2zw(z) +
2i√
π
. (2.33)

We can then replace w′(y + iω) in expression (2.32) with the help of this relation :

∂G

∂ω
= iπ exp(−ω2)

(
−2ωw(y + iω)− 2i(y + iω)w(y − iω) + i

2i√
π

)
(2.34)

= iπ exp(−ω2)

(
−2iyw(y + iω)− 2√

π

)
(2.35)

= −2iy(iπ exp(−ω2)w(y + iω))− 2i
√
π exp(−ω2) (2.36)

= −2i
√
π exp(−ω2)− 2iyG(ω). (2.37)

Hence G and Fy verify the exact same differential equation. The final argument relies on
their evaluation at ω = 0 :

Fy(0) =

∫ +∞

−∞

1

x− y exp
(
−x2

)
dx = iπw(y), (2.38)

G(0) = iπw(y). (2.39)

Their equality at ω = 0 implies equality for any value of ω. Finally, we have

σ (E, T ) =
4π

α2E
<

aexp(−2iβ
√
E)√

πuT

∫ +∞

−∞

exp(−2iβuTx)

x− z −
√
E

uT

exp
(
−x2

)
dx

 (2.40)

=
4π

α2E
<
(
a

exp(−2iβ
√
E)√

πuT
iπ exp(−(βuT )2)w

(
z −
√
E

uT
+ iβuT

))
. (2.41)

I have made no further approximations here. However, we now need to compute a second
evaluation of the Faddeeva function for each pole.

We have assumed that =(y) > 0. There is again a split case on the sign of the imaginary
part of the pole. If =(y) < 0, the whole reasoning presented here is still valid by considering
G = −iπ exp(−ω2)w(−y − iω). Then, we compute the broadening of a term with

σ (E, T ) =
4π

α2E
<
(
a

exp(−2iβ
√
E)√

πuT
(−iπ) exp(−(βuT )2)w

(
−z −

√
E

uT
− iβuT

))
. (2.42)
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This point appeared to be particularly important for the correct Doppler broadening of the
depression part of the elastic cross-sections. As I have mentioned previously, the resonance
peaks for this particular cross-section present a strong asymmetry. Not doing the procedure
I presented here for the phase-shifted pole terms with l = 0 produced major discrepancies
with other codes for Doppler broadening. This was up to 50% error for the first resonance
of Plutonium 240, which has a significant elastic depression.

2.2.3 Potential scattering

For the elastic and total cross-sections we need to broaden terms of the form

4π

k2
sin2

(
φl(βu)

)
. (2.43)

For l > 0, we consider that this term is slowly fluctuating on the Doppler broadening range
so that we just compute

σ (E, T ) =
1√
4πE

∫ +∞

−∞

2u2

uT

4π

k2
sin2

(
φl(βu)

)
exp

(
−(u−

√
E)2

u2
T

)
du

=
1√
4πE

∫ +∞

−∞

2u2

uT

4π

α2u2
sin2

(
φl(βu)

)
exp

(
−(u−

√
E)2

u2
T

)
du

=
4π

α2E

1√
πuT

∫ +∞

−∞
sin2

(
φl(βu)

)
exp

(
−(u−

√
E)2

u2
T

)
du

≈ 4π

α2E
sin2

(
φl
(
β
√
E
))
. (2.44)

For l = 0, we have φl(βu) = βu. We can give an analytical expression of integral (2.44) :

σ (E, T ) =
4π

α2E

1√
πuT

∫ +∞

−∞
sin2(βu) exp

(
−(u−

√
E)2

u2
T

)
du

=
4π

α2E

1

2
√
πuT

∫ +∞

−∞
(1− cos(2βu)) exp

(
−(u−

√
E)2

u2
T

)
du

=
2π

α2E
− 4π

α2E

1

2
√
πuT
<
(∫ +∞

−∞
exp(2iβu) exp

(
−(u−

√
E)2

u2
T

)
du

)
=

2π

α2E

[
1− exp

(
−(βuT )2

)
cos
(
2β
√
E
)]
. (2.45)

When uT goes to 0, we get back the original non broadened potential term.

2.2.4 Other partial cross-sections and background terms

In addition to the resonant terms described in the three previous subsections, there are
interpolated values to add to the cross-sections. For the elastic, fission and radiative capture
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cross-sections, they correspond to the background terms needed because the cross-sections are
not accurately described by the resonance formalisms alone. For the total cross-sections, not
only these partial background terms have to be added, but also other tabulated cross-sections
not described with resonance parameters have to be taken into account.

All those additional terms are provided as a set of energy points, corresponding values
to add, and interpolation schemes to apply to obtain the values in between the tabulated
points. The ENDF format proposes mainly 5 interpolation schemes on the interval [14] :

• Histogram. The background is a constant on the interval σ(E) = b
• Linear-Linear interpolation. The background on the interval is given by σ(E) = aE+b.

From a mathematical standpoint, the histogram scheme is a subset of this case.
• Logarithmic-Linear interpolation. The background on the interval is given by log(σ(E)) =
aE + b
• Linear-Logarithmic interpolation. The background on the interval is given by σ(E) =
a log(E) + b
• Logarithmic-Logarithmic interpolation. The background on the interval is given by

log(σ(E)) = a log(E) + b

I will not detail here the different way to broaden these terms. I simply wish to say that
Linear-Linear and Logarithmic-Linear can be treated analytically with the use of the error
function. As far as I know, the last two are not suitable for such a treatment. On one
hand, the use of Linear-Logarithmic interpolation is somewhat anecdotal in the latest ENDF
libraries. On the other hand, the Logarithmic-Logarithmic interpolation scheme is widely
used. As of today, the Doppler broadening of such terms necessitates other approaches such
as the sigma-1 method.

This is outside of the scope of my work but I have to mention that such terms appear for
many nuclei cross-sections. In addition to the nuclei with no resonance parameters on the
resolved resonance range (whose cross-sections have therefore no analytical description), this
is one of the biggest limitation to the multipole approach for the Doppler broadening of the
cross-sections.

2.3 First numerical applications and results of the Doppler

broadening with the multipole representation

In the previous chapter I have presented the reconstruction of the cross-sections with
multipole parameters. The very good accuracy of these results, with respect to reconstruction
with reference codes such as NJOY, suggests that the multipole parameters I have computed
are correct. In this section I will present the Doppler broadening of the cross-sections with
these multipole parameters following the procedure I have described in the previous sections.

In contrast to the 0K reconstruction, we do not expect to obtain exactly the same cross-
sections as NJOY. The reference codes use the sigma-1 algorithm. The main approximations
introduced by this approach are the linearization of the cross-sections on an energy grid. The
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precision of the broadening is tightly related to the accuracy of this operation. The default
tolerance displayed for this process has been set to 10−3. It is important to keep in mind that
it is not a guaranteed point-wise precision criterion. We aim at reconstructing the elastic,
radiative capture and fission cross-sections at 5 · 10−3. The total cross-section that I present
is always computed as the sum of these three partial cross-sections and must respect this
same criterion.

In all figures of broadened cross-section that I will present, there will be a discontinuity
in the error at low energy. This corresponds to a switch between the models that I use for
the broadening. Namely, before this discontinuity I approximate the elastic cross-section by
the sum of a 1/

√
E law and a constant. This solves the problems of very low energy Doppler

broadening at the cost of a numerical fit to obtain this law. This fit is done between the
lowest energy of the resolved resonance range and 100 times this energy. This is typically
10−5 eV and 10−3 eV. It is possible that a more accurate choice should be made by taking
into account specificities of the nucleus cross-section profile but I have not done such a study.

I then use the multipole representation with the Faddeeva function to broaden each pole
term. This is a straightforward implementation of the results of the previous section. I
did not implement myself the computation of the Faddeeva function : I used two separate
implementations, one from ABINIT [43] and one from the numerical recipes [41]. Their
source code is substantially different but the results I obtained were virtually identical so
that I will not comment more on such a choice.

Finally, I have cut the resolved energy range according to the choice of the upper threshold
that I have presented in the first section of this chapter. This cut varies for each of the
presented nuclei with respect to its resolved resonance range and its mass. It is worth
keeping in mind that in any case the broadened cross-sections are displayed on a slightly
smaller energy range than the total resolved resonance energy range. The results that I
present here are mostly those of the nuclei presented in the 0K case for which I am confident
the multipole parameters are correct.
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Figure 2.1: Silver 107 300K cross-sections broadened with the multipole representation

Figure 2.1 displays the broadened cross-sections of the nucleus Silver 107 at 300K. We can
see that the maximum relative errors are below 5 · 10−3, which I consider satisfactory. Inter-
estingly, the maximum relative error on the elastic cross-section happens at the discontinuity
between the low energy approximation and the multipole representation. The fact that the
jump at the discontinuity is very high suggests that moving the low-energy threshold to the
left, or improving the power law that models the cross-section below this threshold, would
be beneficial.

143



10−5 10−4 10−3 10−2 10−1 100 101 102 103 104

Energy (eV)

10−4

10−3

10−2

10−1

100

101

102

103

104
C

ro
ss

-S
ec

ti
on

(b
ar

ns
)

Zr91 300K multipole broadened cross-sections

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104

Energy (eV)

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2
Relative errors to 300K NJOY broadened cross-sections

total
elastic
radiative capture

total elastic fission radiative capture
5.94E-04 5.95E-04 - 8.30E-03

Maximum relative errors

Figure 2.2: Zirconium 91 300K cross-sections broadened with the multipole representation

Figure 2.2 displays the broadened cross-sections of the nucleus Zirconium 91 at 300K.
The jump at the low energy threshold is smaller here. Moving it to the left again would
probably lower it, although it is more acceptable than before and the relative error on the
elastic cross-section is not bounded by its choice. I must admit that I have not found a
correct heuristic that could apply to all nuclei. I recall that this threshold is computed as
100ET . Given that Silver 107 and Zirconium 91 have a similar mass and that we work at the
same temperature, it does not seem obvious why the threshold performed well the latter and
not the former. A closer look at the resonance structure of the nuclei could help improve this
choice. The relative error on the radiative capture reaches higher values close to the percent,
which is a bit worrying. We will discuss it shortly there after as it is a recurring hurdle in
my comparison to NJOY Doppler broadened cross-sections.
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Figure 2.3: Aluminium 27 300K cross-sections broadened with the multipole representation

Figure 2.3 displays the broadened cross-sections of the nucleus Aluminium 27 at 300K.
The choice of the low energy threshold is relatively good here, too. The situation is also
similar to that of the nucleus Zirconium 91 for the elastic cross-section (satisfactory) and the
radiative capture (localized error peaks). I zoomed on the cross-section profile where these
higher relative errors happen. It revealed that they are not localized on resonance peaks
themselves but rather on their sides. Let us recall that the multipole representation of the
radiative capture only requires simple pole terms and no phase-shift occur whatsoever. This
suggests that this problem cannot be attributed to the added approximation choices on the
treatment of these phase-shifts. This encouraged me to try a different implementation of
the Faddeeva function but, as I mentioned previously, this did not have any impact of the
obtained Doppler broadened cross-section.

145



10−5 10−4 10−3 10−2 10−1 100 101 102 103 104

Energy (eV)

10−4

10−3

10−2

10−1

100

101

102

103

104
C

ro
ss

-S
ec

ti
on

(b
ar

ns
)

Zr91 300K multipole broadened cross-sections

10−5 10−4 10−3 10−2 10−1 100 101 102 103 104
10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3
Relative errors to 300K GALILEE broadened cross-sections

total
elastic
radiative capture

total elastic fission radiative capture
1.19E-04 2.42E-04 - 1.58E-04

Maximum relative errors

Figure 2.4: Zirconium 91 300K cross-sections compared to GALILÉE-1
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Figure 2.5: Aluminium 27 300K cross-sections compared to GALILÉE-1

To investigate this issue I decided to also do a comparison to GALILÉE-1. As NJOY,
this code uses the sigma-1 algorithm to broaden the cross-sections. The choice of precision to
generate these cross-sections was set to 2 ·10−4. Figure 2.4 and Figure 2.5 display the relative
errors of multipole broadened 300K cross-sections to that of GALILÉE-1 for, respectively,
Zirconium 91 and Aluminium 27. We can see that my Doppler broadening is in very good
agreement with GALILÉE-1 and that the localized error peaks have disappeared.
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Figure 2.6: Plutonium 239 300K cross-sections broadened with the multipole representation

Figure 2.6 displays the broadened cross-sections of the nucleus Plutonium 239 at 300K.
The choice of the low energy threshold is as bad as for Silver 107. Namely, the relative error
on the elastic cross-section is bounded by the value at the gap. This suggests that moving
the threshold left would have a positive impact. Nonetheless the broadening is satisfactory
with the 5 · 10−3 accuracy goal. The relative error is even lower than 5 · 10−4 for the total
cross-section.
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Figure 2.7: Uranium 235 300K cross-sections broadened with the multipole representation

Figure 2.7 displays the broadened cross-sections of the nucleus Uranium 235 at 300K. The
results are comparable to those of Plutonium 239 and are very satisfactory. Consequently, I
did not perform a comparison to GALILÉE-1 for these two nuclei.
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Figure 2.8: Uranium 238 300K cross-sections broadened with the multipole representation

Figure 2.8 displays the broadened cross-sections of the nucleus Uranium 238 at 300K.
The results are significantly less satisfactory than previously and the error on the radiative
capture cross-section cannot be ignored. Interestingly, the relative error peaks (that reach
the order of the percent) are not particularly on the side of the resonances as they were
for Aluminium 27. A closer look reveals that there are non physical results in the NJOY
broadening. Comparison studies between NJOY and GALILÉE-1 that already revealed such
anomalies can be found in [67]. I must admit that I have not examined each of the hundreds
of error peaks on the radiative capture cross-section to prove that they are of this nature,
but a look at a random dozen of them showed it to be the case. A more systematic approach
to that issue should be done.
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Figure 2.9: Uranium 238 300K cross-sections compared to GALILÉE-1

I tried to use GALILÉE-1 again to see if such discrepancies disappeared. Figure 2.9 dis-
plays the cross-sections broadened with it. The results are very satisfactory as the maximum
relative errors are all well below the limit of 5 · 10−3 I have fixed.

I have not performed a systematic study of the errors to NJOY or GALILÉE-1 but these
first results are very encouraging. More work needs to be done particularly concerning the
treatment of background piece-wise terms and the upper part of the resolved resonance range.
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Conclusions and perspectives

Main results of this thesis

In my thesis, I was concerned with the development of original tools allowing us to find
a multipole representation of the resonant cross-sections for neutron-nucleus interactions.
Although the investigations carried out in this work were mainly focused on theoretical
aspects, the findings of my thesis lend themselves to a forthcoming use for on-the-fly Doppler-
broadening schemes in the Monte Carlo particle transport code(s) developed at SERMA.
These approaches to the computation of the temperature dependency of the cross-sections
allow a considerable breakthrough for the issue of memory occupation and are thus central
for the development of next-generation codes oriented towards multi-physics and massively
parallel simulations.

The first part of this thesis presented an overview of the context of my work, as well as
the tools I would later use in the study of the multipole representation. This included a short
description of the R-matrix theory to represent resonant cross-sections, its implementation in
the ENDF format, and some mathematical elements pertaining to the study of polynomials
and rational functions.

In the second part of this thesis, I have presented a new mathematical investigation of
the multipole representation of the cross-sections at zero temperature (0 K) :

• Chapter 1 was devoted to the study of the multipole representation of the Multi-Level
Breit-Wigner formalism. I have shown that such a representation is possible with
less poles than previously established [19]. Namely, resonances pertaining to a pack
of quantum number l can be represented with only l + 2 poles (down from 2l + 2).
This is at the cost of l additional poles per pack. This also explained the numerical
observation presented in [19] concerning some poles with null residues. These results
involved a carefull mathematical study of penetration and level-shift factors in section
2 of this chapter. These will be useful in further investigations of the cross-section
formulae properties.
• Chapter 2 was devoted to the study of the multipole representation of the Reich-Moore

formalism. Again, I have shown that such a representation is possible with less poles
than previously established [18]. Namely, resonances pertaining to a pack of quantum
number l can be represented with only 2 poles (down from 2l + 2). This is at the
cost of 2l additional poles per pack. For this formalism, the obtention of the multipole
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representation requires finding the roots of polynomials of high degree (superior to 50).
Hence, reducing the number of poles needed also reduces the complexity of this root-
finding step. I have also provided a way of simplifying the matrix treatment involved
in the fissile case to get back to the simpler non-fissile case.
• Chapter 3 was aimed at describing some qualitative properties of the poles and their

respective contributions to the resulting cross-section profiles. Admittedly this did not
provide new results but served as a framework for the applications of the multipole
representation.

Finally, in the third part of this thesis, I have presented two relevant applications of the
multipole representation :

• Chapter 1 gathered reconstruction results of 0K cross-sections with multipole parame-
ters. These results were achieved by implementing the theoretical formulae presented
in Part II of this manuscript into an ad-hoc computer code developed during this the-
sis. The newly computed multipole parameters were then used to obtain cross-section
profiles for several nuclei. These profiles were compared to NJOY reconstructed cross-
sections with standard resonance parameters and formulae, used as a reference. The
findings for these comparisons were very satisfactory and proved the correctness of both
the theoretical results and their code implementation.
• Chapter 2 gathered results concerning the Doppler broadening of the cross-sections with

the multipole approach. This first involved describing the theoretical tools used both
for a general Doppler broadening and the ones specific to the multipole method. In par-
ticular, I provided a few theoretical elements that had not been previously addressed in
the literature, and that might improve the accuracy of the Doppler broadening. Then, I
performed a comparison of the multipole Doppler broadening with the classical sigma-1
approach implemented in the NJOY code. Some results were immediately satisfactory,
whereas a few displayed numerical inaccuracies and required further investigation. For
the latter, comparisons were also made with the GALILÉE-1 code, developed at CEA.
These new comparisons were entirely satisfactory, which suggests that the few discrep-
ancies of the multipole Doppler broadening with respect to NJOY might actually be
due to underlying choices in the implementation of the sigma-1 method in NJOY.

Challenges and perspectives

Short-term goals

The theoretical findings obtained in this thesis might rapidly benefit to the nuclear data
treatment code GALILÉE-1. In particular, the following items should be considered :

• the conversion of standard resonance parameters into multipole parameters. Although
the application of the theoretical results was rather successful for the cases considered in
this manuscript, some nuclei that are reconstructed under the Multi-Level Breit-Wigner
formalism still elude a theoretical treatment. This is due to pathological numerical
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values of the resonance parameters that are found in the nuclear data libraries (for
the JEFF-3.2 library, for instance, this issue concerns a dozen nuclei). Furthermore,
I did not provide results for the Single-Level Breit-Wigner formalism, which concerns
a comparable number of nuclei. These issues might be solved with relatively small
implementation efforts.
• the reconstruction of zero-temperature cross-sections with multipole parameters. The

results I have presented in this thesis are quite satisfactory, but concern cross-sections
with no background terms. The addition of these terms in the framework of GALILÉE-
1 should be quite natural and will allow verifying the reconstruction with multipole
parameters of the resonant part of the cross-sections for nuclei whose cross-sections
have such background terms.
• the Doppler broadening of cross-sections with multipole parameters. First, the defini-

tion of the low-energy threshold for the Doppler broadening still needs adjustments.
Second, the background terms needed at zero-temperature must also be Doppler-
broadened. An exact treatment could be very difficult for some backgrounds, partic-
ularly those described with logarithmic-logarithmic interpolation scheme. An idea to
circumvent both issues would be to use a sigma-1 approach for the broadening of both
low energy cross-sections and background terms (the resonant part being broadened
quite accurately with the help of the Faddeeva function).

Challenges for the use of the multipole representation

Two main concerns about the use of the multipole representation seem to emerge from
the considerations presented in this manuscript.

First, concerning the theoretical aspects of the multipole representation, the use of a new
formalism is now encouraged for cross-section evaluations. The so-called R-matrix limited
format includes interactions with emitted charged particles (proton and alpha particles, for
instance) and inelastic scattering. Moreover, the size of the reduced R-matrices involved in
the formulae can be significantly larger than for the Reich-Moore formalism (for which these
are at most 3 by 3). Concerning the inclusion of new reactions, this poses serious challenges
to the derivation of a multipole representation as the cross-sections formulae will not readily
be rational functions of the square root of the energy. Concerning the size of the reduced R-
matrices, the determinant study I have provided in the Reich-Moore multipole representation
chapter might prove useful.

Second, I have not studied the on-the-fly aspect of the temperature dependency calcula-
tion in this thesis. I hope that the results presented in the last chapter will be the stepping
stone of future work. Admittedly, the requirement of efficiency related to on-the-fly compu-
tation are somewhat in opposition to the search for precision I concentrated upon. Hence,
significant work will be needed to find a good compromise between accuracy (that I have
at least partially achieved) and computing speed. The pseudo-poles method which aims at
reducing the number of poles to take into account at a given energy, and its application to
on-the-fly Doppler broadening, constitutes a key element of such a work. The windowed
multipole method [45] developed at MIT applies these ideas and should serve as a basis for
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future studies.

It must also be underlined that the MIT has already proposed a method to circumvent
the lack of theoretical foundation for the multipole representation of some cross-sections.
As I briefly outlined in the introduction of this manuscript, they have applied vector-fitting
techniques to cross-section profiles [47]. This allows treating entire libraries under the multi-
pole representation, at the expense of a more limited accuracy than the one achieved in this
thesis.

Perspectives

In addition to the previous elements, I would like to propose a few perspectives that might
stem from the present work.

This first concerns the use of the multipole representation as an analytical description
of the 0K cross-sections. From its simple form, it is possible to differentiate analytically,
and accurately, the cross-sections with respect to their energy dependency. This could allow
computing important points of the cross-section profiles such as extrema and inflexion points.
These could be used to, for instance, improve the linearization of these profiles. Further, this
idea of using analytical formulae could also be applied to the computation of the moments
of the cross-sections, that could in turn be used to compute probability tables. Finally, in
combination with the Faddeeva function, the multipole representation might also provide an
original way of obtaining the derivative of the cross-sections with respect to the temperature
for extended sensitivity and perturbation studies.

These personal perspectives and the investigation of the methods concurrently and inde-
pendently developed at MIT concerning the multipole representation should provide inspira-
tion for future work. The implementation of the results presented in this manuscript in the
CEA code GALILÉE-1, and its potential application in TRIPOLI-4R©, will serve as a first
step in this direction.
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Résumé en français

Introduction

Les simulations numériques ont un rôle prépondérant dans la conception et l’utilisation
des réacteurs nucléaires. Ces études impliquent de multiples disciplines dont la mécanique,
la thermohydraulique et la neutronique. Le Commissariat à l’Énergie atomique (CEA)
s’intéresse à ces multiples aspects et, plus particulièrement, le Service d’Études des Réacteurs
et de Mathématiques Appliquées (SERMA) se concentre sur le développement de codes sim-
ulant le transport des neutrons dans ces réacteurs.

Ce dernier est modélisé par l’équation du transport de Boltzmann dans laquelle les inter-
actions des neutrons avec le milieu qu’ils traversent sont décrites par des quantités appelées
sections efficaces macroscopiques. A leur tour, celles-ci dépendent d’une part de la concen-
tration locale des différents noyaux et d’autre part de quantités physiques appelées sections
efficaces microscopiques. Ces dernières décrivent des interactions entre un neutron et un
noyau individuel immobile. Pour tenir compte de l’agitation thermique des noyaux, les sec-
tions microscopiques, qui ne dépendent a priori que de l’énergie du neutron incident, doivent
être élargies par effet Doppler et ont donc une dépendance supplémentaire en température.

La nature des simulations par méthode Monte-Carlo implique une description continue
en énergie et température de ces sections. Cela correspond aujourd’hui d’un point de vue
informatique au stockage en mémoire de tabulations fines des sections efficaces. Celles-ci
ont une empreinte mémoire conséquente ce qui limite la précision des études pouvant être
effectuées. Une idée consiste à calculer au vol la dépendance en température des sections
efficaces, permettant de réduire de manière conséquente leur occupation de la mémoire au
prix de calculs supplémentaires durant les simulations.

Différentes méthodes pour effectuer ce calcul au vol peuvent être envisagées. L’idée
générale est de ne stocker un profil en énergie des sections qu’à un nombre limité de températures.
Cette thèse est consacrée à l’étude de la représentation multipôle des sections à température
nulle en vue de son utilisation pour une approche au vol. Ce manuscrit est divisé en trois
grandes parties. La première contient différents rappels concernant les modèles physiques
décrivant les sections efficaces, une description de leur utilisation dans le format ENDF et une
liste de quelques outils mathématiques utiles dans le reste du manuscrit. La seconde partie
est consacrée à l’étude théorique de la représentation multipôle dans deux cas d’importance
majeure. Enfin, la troisième partie expose quelques applications de la représentation mul-
tipôle.
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Partie I : Rappels et contexte

Le premier chapitre est un sommaire de la théorie de la matrice R dont sont dérivés les
formalismes de représentation des sections efficaces nucléaires. Ce sont des modèles physiques
permettant de décrire les sections efficaces nucléaires résonnantes par des formules analytiques
et des ensembles de paramètres. L’obtention théorique des deux formalismes principalement
utilisés aujourd’hui y est décrite : le formalisme Multi-Level Breit-Wigner et le formalisme
Reich-Moore.

Le second chapitre décrit l’utilisation particulière qui est faite des formalismes dans le
cadre du format ENDF. Il s’agit de présenter les approximations additionnelles qui sont
faites aux deux formalismes précédemment cités. On fixe notamment les formules de sections
efficaces et les paramètres de résonance qui sont le point de départ de l’étude théorique faite
par la suite.

Le troisième chapitre rassemble les notions mathématiques qui sont utilisées pour l’étude
théorique et sa mise en oeuvre informatique. D’une part, il propose quelques rappels concer-
nant les fractions rationnelles et le théorème de décomposition en éléments simples. D’autre
part, on y décrit quelques algorithmes de recherche de racines de polynômes, et plus partic-
ulièrement celui qui est adopté par la suite.

Partie II : Étude théorique de la représentation mul-

tipôle

L’étude théorique repose sur les travaux de R.N. Hwang [17, 18] qui a proposé le premier
la représentation multipôle. En utilisant certaines particularités du format ENDF et en
étudiant les propriétés mathématiques des formules des sections, on propose une réduction
du nombre de pôles nécessaires pour obtenir cette représentation.

Le premier chapitre est consacré à l’étude de la représentation multipôle des sections
efficaces reconstruites sous le formalisme Multi-Level Breit-Wigner. Les contributions des
résonances peuvent être étudiées séparément ce qui permet d’obtenir de façon relativement
simple la représentation recherchée. Un résultat original de cette thèse consiste en une étude
mathématique de ces termes de résonance individuels permettant de réduire le nombre de
pôles nécessaires par rapport aux résultats précédemment établis. La démonstration implique
l’étude des propriétés des facteurs de pénétrabilité et de décalage de niveau. Ceux-ci ont des
expressions bien connues et il s’agit ici de mettre en lumière certaines propriétés de divisibilité.

Le deuxième chapitre est consacré à l’étude du formalisme Reich-Moore. Les contributions
des résonances ne peuvent pas être étudiées séparément ce qui complique significativement
l’obtention de la représentation multipôle. On propose une méthode de résolution du cas
des noyaux non-fissiles pour lequel le problème apparâıt plus simple de prime abord. Cela
nécessite tout de même la résolution de polynômes de très haut degré (supérieur à 50 et
pouvant atteindre plusieurs milliers). Un algorithme de Newton-Raphson adapté décrit dans
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la partie I de ce manuscrit permet de résoudre ce problème. On propose ensuite une méthode
pour obtenir la représentation multipôle pour le cas plus général des noyaux fissiles. Une
contribution originale de ces travaux est de ramener l’étude du cas fissile à celui du cas non-
fissile dont on a mâıtrisé la résolution. Il convient de souligner qu’on obtient ici aussi une
réduction théorique du nombre de pôles nécessaire, ce qui a un fort intérêt algorithmique
pour la recherche des racines de polynômes.

Cette partie est complétée par un court troisième chapitre décrivant les contributions
qualitatives de différent pôles de la représentation multipôle. On y rappelle notamment une
classification de ces pôles qui ne dépend pas du formalisme initial à partir duquel ils ont été
obtenus.

Partie III : Applications de la représentation multipôle

La partie III rassemble des applications de la représentation multipôle. Il fait suite à une
mise en oeuvre informatique personnelle des résultats théoriques qui permet d’obtenir un
ensemble de paramètres multipôles à partir de paramètres de résonance classiques.

Le premier chapitre est consacré à la reconstruction des sections efficaces à température
nulle par la représentation multipôle. On compare ici la reconstruction des sections par la
représentation multipôle (avec l’ensemble de paramètres nouvellement calculés) et la recon-
struction des sections par un code de traitement de données nucléaires de référence NJOY.
On présente successivement des résultats de reconstruction pour des noyaux dont les sec-
tions sont reconstruites sous le formalisme Multi-Level Brei-Wigner, puis sous le formalisme
Reich-Moore pour des noyaux non-fissiles et enfin sous le formalisme Reich-Moore pour des
noyaux fissiles. Les résultats obtenus et présentés sont excellents et suggèrent donc que les
nouveaux paramètres multipôles sont corrects. Ceci inclut notamment certains noyaux fis-
siles de première importance : Uranium 235, Uranium 238 et Plutonium 239. Cela valide
notamment l’approche de résolution des polynômes adoptée, dont le degré atteint plusieurs
milliers pour les noyaux précédemment cités. Il convient cependant de souligner certaines
limites liées à la mise en oeuvre informatique de la reconstruction. Le traitement de la partie
non-analytique des sections efficaces n’est pas pris en compte ce qui limite la comparaison
à deux tiers des noyaux reconstruits aux formalismes Multi-Level Breit-Wigner et Reich-
Moore. Une inclusion dans un code de traitement de données nucléaires tel GALILÉE-1 (qui
effectue déjà de telles opérations) permettrait vraisemblablement de résoudre ce problème.

Le second chapitre rassemble des résultats concernant l’élargissement Doppler des sections
efficaces par l’approche multipôle. Dans un premier temps, on décrit des outils théoriques
classiques utilisés pour cet élargissement puis ceux spécifiquement associés à la méthode mul-
tipôle. Le principe remarquable déjà proposé par le passé est d’utiliser la nature additive de
la représentation multipôle et la linéarité de l’opération d’élargissement Doppler par le noyau
de Solbrig. On se ramène alors à l’étude de l’élargissement des termes de pôle individuels,
effectué notamment par la fonction de Faddeeva. On décrit aussi ici un ajout théorique orig-
inal qui améliore la précision de l’élargissement des termes de pôle avec décalage de phase.
Dans un second temps, une comparaison est faite à l’élargissement Doppler par NJOY qui
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utilise la méthode classique sigma-1. Certains des résultats s’avèrent immédiatement satis-
faisants tandis que d’autres présentent des imprécisions numériques et suggèrent le besoin
d’une étude plus approfondie. Pour une partie de ces derniers, des comparaisons addition-
nelles et complémentaires au code GALILÉE-1 ont été effectuées. Elles se révèlent être très
bonnes ce qui laisse penser que les écarts précédemment observés pourraient être dus à des
choix de mise en oeuvre informatique de la méthode sigma-1 dans NJOY.

Conclusion

Ce manuscrit présente des résultats théoriques originaux permettant de réduire le nombre
de pôles nécessaires pour obtenir une représentation multipôle des sections efficaces nucléaires
résonnantes. Cela concerne les formalismes de représentation Multi-Level Breit-Wigner et
Reich-Moore. Des applications numériques confirment la validité de l’étude théorique et la
possibilité d’effectuer un élargissement Doppler via cette représentation. La généralisation
des résultats théoriques au formalisme ”R matrix limited” à venir nécessitera des travaux
supplémentaires. Des études plus avant seront aussi requises concernant l’utilisation de la
méthode pour des calculs au vol. L’intégration du code de conversion des paramètres de
résonance classiques en paramètres multipôles dans un code tel GALILÉE-1 pourrait faciliter
de telles études. Enfin, pour une perspective plus personnelle, on pourra envisager d’utiliser
la forme analytique relativement simple de la représentation multipôle pour calculer avec
précision les dérivées des sections efficaces en énergie et en température.
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Ces sections dépendent à la fois de l’énergie du neutron et de la 
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profils des sections efficaces présentent en général de nombreuses 
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aux formalismes Multi-Level Breit-Wigner et Reich-Moore peut 
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de référence est présentée afin de démontrer la pertinence et 

l’exactitude des paramètres multipôles nouvellement calculés. 

Les résultats sont extrêmement satisfaisants quoique limités par 
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l’utilisation de la représentation multipôle pour l’élargissement 

Doppler des sections efficaces : une comparaison à des sections 

élargies par la méthode classique (dite « sigma-1 ») est 

présentée. Les résultats de cette comparaison sont aussi très 

satisfaisants mais des efforts sont encore nécessaires aux 

frontières du domaine d’énergie des résonances résolues. 

Dans le cadre des simulations de transport par méthode de 

Monte-Carlo, la linéarité de l’élargissement et la nature additive 

de la représentation multipôle suggèrent la possibilité de 

calculer la section efficace « au vol » à chaque collision du 

neutron, ce qui permettrait de réduire très fortement 

l’encombrement mémoire par rapport à l’approche actuelle 
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Abstract : In nuclear reactor physics, the knowledge of the 

cross-sections describing interactions of neutrons with the 

medium through which they diffuse is of paramount importance. 

These sections depend both on the energy of the neutron and the 

temperature of the medium. Concerning the energy dependency, 

cross-section profiles display, in general, numerous resolved 

resonances on the energy range of interest. The multipole 

representation is an additive and exact description of the resonant 

cross-sections at zero temperature. The temperature dependency 

is then computed by a linear operation using analytical tools such 

as the Faddeeva function. 

This thesis is devoted to the theoretical aspects of the multipole 

representation as well as two main applications. Concerning the 

theoretical study, we show that the number of required poles for 

the representation of sections under the Multi-Level Breit-Wigner 

and Reich-Moore formalisms can be reduced compared to 

previously established results. This requires, notably, a formal 

study of rational functions and solving polynomials of very high 

degree (greater than 50 and potentially reaching the thousands). 

Concerning the applications, the first one focuses on the 

implementation of the original theoretical elements found 

during the thesis. A reconstruction of sections at zero 

temperature and a comparison with reference results is 

proposed in order to prove the relevance and correctness of the 

newly computed multipole parameters. The results are 

extrememly satisfying albeit limited by nature to resonant cross-

sections. The second application consists in using the multipole 

representation for the Doppler broadening of cross-sections : a 

comparison to sections broadened with the usual method (so-

called « sigma-1 ») is presented. The results of this comparison 

are also very satisfying although some efforts are still necessary 

on the border of the energy domain of resolved resonances. 

In the context of Monte Carlo transport simulations, the linearity 

of the Doppler broadening and the additive nature of the 

multipole representation suggest that it is possible to compute 

cross-sections « on-the-fly », at each neutron collision, which 

would allow strongly reducing the memory footprint compared 

to current approaches (tabulation in energy of the cross-section 

profiles at multiple temperatures). 
 

 


	Introduction
	Cross-section study
	R-matrix theory
	Cross-section representation formalisms
	The multipole and other alternative cross-section representations
	Doppler broadening of the cross-sections

	Nuclear data evaluation and processing
	On the temperature dependency of cross-sections
	Multi-physics simulation challenges
	Overview of the "on-the-fly" methods
	Focus on the multipole representation

	Plan of this report

	I Background and context
	From the R-matrix theory to the cross-section reconstruction formalisms
	General concepts of the R-matrix theory
	Definition of the channels
	The R-matrix parametrization
	Continuity between the internal and external regions

	Intermediary algebraic elements to define the cross-sections
	Auxiliary matrices X and rho
	Cross-sections in function of the collision matrix U
	Cross-sections in function of the matrix rho

	Approximations to the R-matrix theory
	Definition of the level matrix A
	The Multi-Level Breit-Wigner formalism
	The Reich-Moore formalism

	Definition and properties of the penetration, level-shift and phase-shift factors

	Practical aspects of resonant cross-sections reconstruction in the ENDF format
	Implementation of the Multi-Level Breit-Wigner and Reich-Moore formalisms
	Common simplifications and approximations
	Multi-Level Breit-Wigner cross-section formulae
	Reich-Moore cross-section formulae
	Quick comparison of the cross-section formulae

	Specification of the nucleus and resonance data
	Choice of notation for the scattering factors in this manuscript

	Mathematical tools
	Summary of properties of rational functions
	Partial fraction decomposition
	Coprime polynomials
	Real valued polynomials with positive denominator
	Product of two partial fraction decompositions

	Root-finding algorithms 
	Companion matrix and eigenvalue problem formulation
	Simultaneous root-finding algorithms
	Newton-Raphson algorithm 
	A word on roots with multiplicity



	II Theoretical study of the multipole representation
	Study of the multipole representation of the Multi-Level Breit-Wigner cross-sections
	From a simplified setting to the full complexity of the MLBW formalism
	Neglecting the energy dependency of the widths and the level-shift of the resonances
	Preliminary study of the multipole representation of the radiative capture and fission cross-sections for a pack of quantum orbital number l=0
	Preliminary study of the multipole representation of the radiative capture and fission cross-sections for a pack of quantum orbital number l>0

	Study of the mathematical properties of the penetration, level-shift and phase-shift factors 
	General properties and need for a closer study
	Induction proof of the properties of the level-shift and penetration factors
	Using the underlying linear recurring sequence to give a formula of pl, sl and ql
	Properties of pl
	Divisibility properties of pl, sl and ql 

	Theoretical results for a multipole representation of the Multi-Level Breit-Wigner cross-sections with less poles
	Multipole representation of the radiative capture and fission cross-sections
	Multipole representation of the elastic and total cross-sections

	Algorithmic summary

	Study of the multipole representation of the Reich-Moore cross-sections
	Study of the multipole representation of non-fissile Reich-Moore nuclei
	Finding the roots of the denominator
	Giving a partial fraction decomposition of rho nn
	Multipole representation of non-fissile Reich-Moore nuclei

	Study of the multipole representation of fissile Reich-Moore nuclei
	Understanding the complexity of the R-matrix partial fraction decomposition problem
	Study of the determinant and cofactors of the reduced R-matrix
	Partial fraction decomposition of the determinant 
	Partial fraction decomposition of the extracted determinants
	Partial fraction decomposition of the coefficients of rho
	Multipole representation of the fission, radiative capture, elastic and total cross-sections

	Algorithmic summary

	Qualitative aspects of the multipole representation
	Classification of the poles
	Multi-Level Breit-Wigner multipole representation
	Reich-Moore multipole representation
	Types of poles

	Qualitative description of the contribution of the different types of poles
	Types of pole terms
	Negative resonance poles
	Orbital poles
	Positive resonance poles



	III Some applications of the multipole representation
	Reconstruction of the 0K cross-sections with the multipole representation
	Reconstruction of 0K cross-sections
	Multi-Level Breit-Wigner nuclei
	Reich-Moore nuclei

	Contributions of the different types of poles to a reconstructed 0K cross-section profile
	One pole contribution
	All positive resonance pole contributions
	Negative resonance poles and orbital poles contribution

	Scope of the application to the ENDF libraries

	Doppler broadening of the cross-sections with the multipole representation
	Short theoretical framework
	Free-gas model and the Solbrig kernel
	Approximations on the Doppler broadening energy range

	Doppler broadening of the different multipole terms
	Simple pole terms
	Phase-shifted pole terms
	Potential scattering
	Other partial cross-sections and background terms

	First numerical applications and results of the Doppler broadening with the multipole representation

	Conclusions and perspectives
	List of Figures
	List of Tables
	Résumé en français
	Bibliography


