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Résumé long

Introduction

Contexte

L’ingénierie inverse, également appelée la rétro-ingénierie, est le processus d’analyse d’un système

qui permet d’identifier les composants et leur relation afin de créer des représentations du système

à un niveau d’abstraction supérieur ou différent. L’ingénierie inverse est utilisée sur des systèmes

logiciels afin de comprendre leur fonctionnement interne. Cette pratique est courante concernant

le développement de logiciels, l’étude de programmes malveillants, l’audit de sécurité et également

dans le but de mettre en échec les systèmes de protection logicielle. Dans ce dernier cas, lorsque

des utilisateurs malveillants ont un accès complet à un logiciel, l’ingénierie inverse est utilisée pour

les attaques de type Man-At-The-End (MATE).

Afin de se protéger contre l’ingénierie inverse, et plus généralement contre les attaques de type

MATE, les techniques de protection des logiciels sont largement utilisées de sorte à préserver la

valeur commerciale du logiciel. Les algorithmes de protection logicielle appartiennent à quatre

catégories:

• l’obscurcissement du code pour rendre l’ingénierie inverse plus difficile en les rendant inin-

telligibles ;

• des méthodes d’inviolabilité utilisées pour se protéger contre des modifications illicites d’un

logiciel;

• le tatouage numérique insérant des messages de vérification afin d’identifier le propriétaire

et ses droits;

• le marquage, dit de naissance, utilisé pour extraire les caractéristiques inhérentes au pro-

gramme d’origine de maière à en détecter l’originalité.

Dans cette thèse, nous nous concentrons principalement sur l’obscurcissement de code en tant

que technique de protection des logiciels.
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Défis Scientifiques

L’obscurcissement de code est perçu comme une stratégie de gestion de l’information visant à

masquer le sens pouvant être tiré d’un logiciel, tout en préservant ses fonctionnalités d’origines.

Actuellement, l’obscurcissement est utilisé comme mécanisme de protection de la propriété in-

tellectuelle, mais aussi pour dissimuler les comportements malveillants de certain code binaire.

Par conséquent, l’évaluation des méthodes d’obscurcissement est une question ouverte à laquelle

il est souvent répondu par des méthodologies de dés-obscurcissement. Le processus de dés-

obscurcissement est constitué par des méthodes d’ingénierie inverse qui évaluent la force des

protections d’obscurcissement appliquées. Cependant, ces méthodes se concentrent souvent sur

des protections spécifiques.

Cette thèse porte sur l’évaluation des transformations d’obscurcissement appliquées aux codes

binaires. L’objectif est de fournir différentes études et méthodologies afin d’aider les évaluateurs et

les rétro-concepteurs durant l’analyse des logiciels obscurcis.

Contributions

Le processus de dés-obscurcissement peut être vu sous différentes approches, telles que la sup-

pression d’une ou plusieurs transformations, la simplification du programme ou encore la collecte

d’informations dites « méta-données » à propos du code obscurci.

Dans cette thèse, nous contribuons à chaque approche de dés-obscurcissement comme décrit

dans les paragraphes suivants.

Contribution 1 – DoSE, Dés-obscurcissement basée sur l’équivalence sémantique de code

La première contribution consiste en une approche de simplification de programme. Il s’agit d’une

méthodologie de dés-obscurcissement basée sur l’équivalence sémantique de code, appelée DoSE.

DoSE permet principalement de simplifier le code binaire en vérifiant l’équivalence syntaxique et

sémantique de portions d’un code binaire. Cette vérification permet de supprimer les nouvelles

transformations d’obscurcissement qui entravent les analyses de dés-obscurcissement de pointe,

basées sur l’analyse dynamique et symbolique d’un code.

Contribution 2 – L’évaluation des prédicats opaques de manière statique grâce à l’apprentissage

automatique et à l’analyse binaire

La deuxième contribution consiste en une approche de suppression de transformation d’obscur-

cissement. Basée sur une méthodologie d’apprentissage automatique et supervisée, notre approche

vise à détecter puis supprimer des schémas d’obscurcissement spécifiques, mais largement utilisés,
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nommé prédicat opaque. À notre connaissance, il s’agit de la première méthodologie d’élimination

de transformation d’obscurcissement utilisant des techniques d’apprentissage automatique.

Contribution 3 – La détection des transformations d’obscurcissement basées sur un ensemble

de modèle d’apprentissage et le raisonnement sémantique

La troisième contribution de cette thèse se base sur une méthode de collecte de méta-données

du code protégé. En utilisant des techniques avancées d’apprentissage automatique et de raison-

nement sémantique, la méthodologie proposée permet aux analystes d’identifier plusieurs couches

de transformations d’obscurcissement appliquées au code binaire, ce qui représente une étape

importante précédent la suppression de ces protections.

État de l’art

Obscurcissement du code

L’obscurcissement de code est une stratégie de gestion de l’information visant à obscurcir la sig-

nification du code, tout en préservant ses fonctionnalités. L’objectif principal est de protéger la

propriété intellectuelle des auteurs de logiciels. Cependant, l’obscurcissement est également très

utilisé par les auteurs de logiciels malveillants pour empêcher la détection et l’analyse de leurs

codes. Par conséquent, la capacité d’évaluation de telles transformations d’obscurcissement est

une étape importante vers une meilleure protection des logiciels. De ce fait, nous introduisons par

la suite différentes définitions de l’obscurcissement. Puis nous décrivons brièvement différentes

méthodes d’obscurcissement et de dés-obscurcissement, avant de présenter les outils en lien avec

ce domaine d’étude.

Obscurcissement en boîte noire virtuelle

Une première définition de l’obscurcissement prend en compte la propriété d’indiscernabilité entre

deux programmes. La propriété essentielle, appelée boîte noire virtuelle, nécessite que tout ce qui

est efficacement calculable avec le programme obscurci puisse également être calculé avec un accès

oracle au programme initial. Cependant, cette définition étant trop restrictive, elle ne permet pas sa

mise en pratique.

Obscurcissement indiscernable

Cette définition de l’obscurcissement repose sur deux conditions: le programme obscurci doit

obtenir les mêmes résultats que le programme original. Le programme obscurcit ne doit pas être

distinguable du programme non obscurcit (les deux programmes ayant la même fonctinnalité).
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Toutefois, la définition ne fournit aucune garantie quant à l’obscurcissement de deux circuits dotés

de fonctionnalités différentes.

Obscurcissement empirique

Cette définition consiste essentiellement en des propriétés moins strictes, de manière à ce que le

programme obscurci doit avoir le même comportement observable. L’obscurcissement empirique

évite la complexité transformationnelle des deux définitions précédentes et est largement utilisé

par des outils d’obscurcissement à des fins de protection de logiciels.

Les outils d’obscurcissement empiriques, ou pratiques, sont basés sur des compositions de

différentes transformations de programmes. Chacune de ces transformations ajoute sa propre

complexité et leur combinaison contribue à la résilience globale du programme protégé. Un

outil d’obscurcissement peut appliquer ces transformations à différentes représentations d’un

programme, telles que le code source, la représentation intermédiaire ou le langage assembleur.

Les transformations par obscurcissement sont évaluées selon quatre critères:

1. La furtivité décrivant la capacité de détection de la transformation par un adversaire;

2. La résistance permettant de mesurer si la transformation appliquée affaiblit d’autres transfor-

mations;

3. La résilience indiquant si le processus d’inversion de la transformation nécessite plus de

ressources que sa création, soit sa force contre un adversaire;

4. Le coût, révélant les pénalités en termes de temps d’exécution ou de taille du code qu’implique

l’application de la transformation.

Chacun de ces critères peut être mesuré à l’aide de métriques de complexité telles que:

• métriques basées sur le flux de contrôle: complexité cyclomatique, niveaux de nidification,

nœuds;

• mesures basées sur les flux de données: fan-in / fan-out, flux de données;

• métriques basées sur les instructions: nombre d’opérandes, vocabulaire du programme,

volume du programme.

Des études récentes tentent de mesurer les critères d’un programme obscurci (furtivité, puis-

sance et résilience) sur la base d’un modèle d’attaquant. Le modèle d’attaquant repose sur des

attaques automatiques basées sur des techniques génériques de dés-obscurcissement fondées
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sur des moteurs d’exécution symboliques dynamiques ou concoliques. De plus, des techniques

d’apprentissage automatique sont mises en place pour évaluer la furtivité de la transformation par

obscurcissement, appelée attaque via la récupération de méta-données (metadata recovery attacks).

Néanmoins, la capacité à mesurer avec précision les critères de transformations d’obscurcissement

reste une question ouverte.

Il existe plusieurs transformations d’obscurcissement, chacune d’elles ayant des objectifs différents.

Elles peuvent être classées en différentes catégories, telles que l’obscurcissement des données,

l’obscurcissement de code statique et l’obscurcissement de code dynamique.

Les méthodes d’obscurcissement des données modifient la forme dans laquelle les données

sont stockées dans un programme, afin de se prémunir contre des analyses directes. En général,

l’obscurcissement des données nécessite la modification du code du programme, de sorte que la

représentation des données d’origine puisse être reconstruite durant l’exécution. Ces modifications

sont effectuées par ré-ordonnancement, codage ou conversion de données statiques en procédures.

Les transformations statiques d’obscurcissement de code sont similaires aux techniques d’opti-

misation des compilateurs. Elles modifient le code du programme mais la sortie sera exécutée sans

aucune modification. La modification du code peut être effectuée par certaines des techniques

suivantes : substitution d’instructions, duplication de code, insertion de code mort ou non perti-

nent, prédicats opaques, réorganisation, transformation en boucle, division ou fusion de fonctions,

chevauchement de code, repli de code, aplatissement de flux de contrôle, modifications de noms

de fonctions ou de variables, parallélisation de code et suppression des appels de bibliothèque

statiques.

L’obscurcissement de code dynamique est caractérisé par le fait que le code exécuté diffère de

ce qui est statiquement visible dans le binaire. Les techniques utilisées pour l’obscurcissement

dynamique du code sont le chiffrement ou la compression du code, la virtualisation, l’insertion de

mesures empêchant le débogage mais encore l’exécution de code dépendant du matériel.

Dés-obscurcissement

Le terme de dés-obscurcissement regroupe toutes les techniques visant à évaluer les protections de

logiciels. À savoir, le processus de dés-obscurcissement peut être vu comme:

1. La suppression des transformations d’obscurcissement appliquées;

2. La simplification du code obscurci;
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3. La collecte d’informations sur le code protégé.

Il existe plusieurs approches et méthodologies de dés-obscurcissement des programmes: statique,

dynamique et symbolique.

Les techniques de dé-obscurcissement statiques utilisent l’analyse statique visant à déduire des

informations sur un programme en raisonnant sur toutes les exécutions possibles de celui-ci.

Plusieurs analyses de flux de données statiques ont été proposées pour traiter les transformations

d’obscurcissement, par exemple l’analyse de dépendance des données ou d’alias. Cependant, elles

sont sujettes à des limitations, car l’analyse statique peut perdre en précision face à des techniques

d’obscurcissement telles que l’aplatissement du flux de contrôle.

L’analyse dynamique est une partie importante de l’étude des programmes malveillants. Elle permet

l’étude des exécutions réelles d’un programme, que ce soit en direct (pendant l’exécution) ou en

différé (en utilisant des traces d’exécutions enregistrées). Cependant, une analyse dynamique peut

manquer certains chemins d’exécution lorsque le nombre de voies possibles dans un programme

est trop important pour être testé de manière exhaustive. Cette limitation, également appelée «

problème de couverture de code », est en général inévitable en raison de son caractère indécidable. À

cette fin, alors que l’analyse statique opte pour la précision par rapport au coût, l’analyse dynamique

privilégiera la couverture plutôt que le coût.

Les méthodologies de dés-obscurcissement les plus courantes et les plus utilisées sont basées sur

des techniques d’exécution symboliques. Alors que les autres approches existantes sont essen-

tiellement divisées en méthodes statiques et dynamiques, les approches symboliques offrent un

équilibre précieux entre les deux. Les techniques d’exécution symboliques statiques capturent

la sémantique d’un programme. Un interpréteur est utilisé afin de suivre le programme, tout en

supposant des valeurs symboliques pour les entrées plutôt que d’obtenir des valeurs concrètes

comme le ferait une exécution normale. L’exécution symbolique dynamique, également appelée

exécution concolique, est largement utilisée pour le dés-obscurcissement. L’exécution symbolique

nécessite les avantages d’un chemin d’exécution concret.

Les méthodologies de dés-obscurcissement sont créées pour des transformations d’obscur-

cissement spécifiques et utilisent les deux approches suivantes :

• L’utilisation de techniques d’analyse avancées contre les transformations générales pour

simplifier un programme ou récupérer des éléments clés;

• L’utilisation de techniques d’analyse spécifiques pour cibler une transformation d’obscur-
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cissement précise.

Les méthodologies de dés-obscurcissement se concentrent généralement sur l’évaluation

d’aspects clés du code obscurci tels que les prédicats opaques, l’aplatissement du flux de con-

trôle ou la virtualisation. Cependant, il existe également des méthodologies génériques de dés-

obscurcissement qui commencent par générer des traces d’exécution. Puis, elles reconstruisent le

graphe de flux de contrôle parcouru au moyen d’une exécution symbolique dynamique.

Contribution 1 – DoSE, Dés-obscurcissement basée sur l’équivalence sé-

mantique de code

En vue de vaincre les techniques d’obscurcissement récentes, les méthodologies de dés-obscur-

cissement dites génériques sont basées sur l’exécution symbolique dynamique. Ces approches

nécessitent souvent une trace d’exécution, ce qui requiert la génération d’entrées pour un pro-

gramme, ce qui est coûteux en temps. De ce fait la couverture de code et l’applicabilité sont

deux des leurs principaux problèmes. En outre, dans le contexte de l’analyse des programmes

malveillants, l’exécution symbolique dynamique est confrontée à des composants et conditions

basées sur des événements de réseau (par exemple, la connexion à un serveur de commande et

de contrôle), ce qui permet de rendre le dés-obscurcissement plus difficilement applicable. En

outre, les nouvelles techniques d’obscurcissement exploitent ces limitations pour entraver da-

vantage les analyses. Leur objectif est de diviser le nombre de chemins et de forcer les moteurs

d’exécution symboliques dynamiques à ralentir lors de la tentative de couverture complète du code.

Dans la course pour contrer et supprimer les techniques d’obscurcissement les plus avancées, il

est nécessaire de réduire la quantité de code à couvrir. De ce fait, nous proposons notre première

contribution, consistant en une nouvelle approche de dés-obscurcissement basée sur l’équivalence

sémantique, appelée DoSE. Avec DoSE, nous visons à améliorer et à compléter les techniques de

dés-obscurcissement dynamiques basées sur l’exécution symbolique dynamique en éliminant

statiquement les transformations d’obscurcissement construites à partir de la duplication de code.

Notre transposition des techniques existantes de différenciation de binaire nous permet de fournir

une méthodologie concrète pour détecter et supprimer de manière statique les protections basées

sur la duplication de code. Certaines de ces protections ne sont pas traitées par les méthodologies

actuelles de dés-obscurcissement, alors que d’autres visent à prévenir les approches génériques.

Notre contribution, contrairement aux techniques actuelles, vise également de nouvelles techniques

d’obscurcissement basées sur la réutilisation de code et détecte les constructions à prédicats

opaques bidirectionnels pour lesquelles il n’existe pas de méthodologie de dés-obscurcissement.
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Nous avons implémenté DoSE et l’avons appliqué à différentes familles de logiciels malveillants

récents pour montrer comment elle réduit considérablement la quantité de code à couvrir. Afin

d’évaluer DoSE, nous avons utilisé des logiciels malveillants connus tels que Cryptowall, WannaCry,

Flame et BitCoinMiner, ainsi que des exemples de code obscurci. Nos résultats expérimentaux

montrent que DoSE est une stratégie efficace de détection et suppression des transformations

d’obscurcissement basées sur la réutilisation de code. Nous obtenons de faibles taux de faux positifs

et faux négatifs dans nos résultats, et parvenons jusqu’à 63% de réduction du code sur certains

types de programmes malveillants. Nous discutons également de la façon dont il peut être utilisé

pour combiner et compléter les techniques de dés-obscurcissement génériques existantes.

Contribution 2 – L’évaluation des prédicats opaques de manière statique

grâce à l’apprentissage automatique et à l’analyse binaire

Les techniques et les outils actuels de dés-obscurcissement des prédicats opaques présentent

quelques limitations. Les techniques qui évaluent les prédicats opaques se concentrent sur des con-

structions spécifiques et manquent donc de généricité pour tous les schémas d’invariant existants.

De plus, les techniques de dés-obscurcissement les plus récentes sont basées sur une exécution

symbolique dynamique qui nécessite la génération de traces d’instructions. Par conséquent, la

possibilité de couvrir tous les chemins du programme est un problème qui empêche, dans certains

cas, le dés-obscurcissement complet du code. Enfin, les solveurs SMT utilisés dans les analyses

d’atteignabilité de chemin souffrent de plusieurs limitations en fonction de la construction des

prédicats opaques. Certaines constructions basées sur des pointeurs ou des expressions mixtes

booléennes et arithmétiques empêchent généralement les solveurs SMT de prédire la faisabilité

d’un chemin.

De ce fait, notre deuxième contribution consiste en une nouvelle approche qui relie les techniques

d’analyse de binaire à la classification par apprentissage supervisé et automatique. Notre objectif est

de fournir une technique d’évaluation statique et générique pour les prédicats opaques, quelle que

soit leur construction. Nous utilisons notre méthodologie comme un outil de dés-obscurcissement

automatisé et statique afin d’éliminer les prédicats opaques introduits par les transformations

d’obscurcissement. Notre travail a pour objectif de réintroduire l’analyse statique pour l’évaluation

et la dés-obscurcissement de logiciels obscurcis.

Nous présentons donc plusieurs études en vue de la construction de modèles d’apprentissage
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automatique capables de détecter un prédicat opaque ou de prédire sa valeur invariante sans

exécuter le code. Nous étendons également notre conception au dés-obscurcissement, quelle que

soit leur construction, en créant un outil d’analyse statique. Pour évaluer plus en profondeur notre

méthodologie, nous la comparons aux outils disponibles basés sur l’exécution symbolique statique

et dynamique pour le dés-obscurcissement des prédicats opaques. Nous menons d’autres évalua-

tions contre des obscurcissements tels que Tigress et OLLVM. Selon nos résultats expérimentaux,

nos modèles ont une précision pouvant atteindre 98% pour la détection et la dés-obscurcissement

de prédicats opaques. En revanche, les méthodes de dés-obscurcissement basées sur une exécu-

tion symbolique montrent moins de précision, principalement en raison des contraintes liées aux

solveurs SMT.

Les conséquences de cette contribution montrent que la combinaison de techniques d’appren-

tissage automatique et d’analyse symbolique statique fournit une méthodologie générique, automa-

tique et précise pour l’évaluation des prédicats opaques. Notre travail montre que l’apprentissage

automatique permet une efficacité et une généricité meilleures pour cette application, tout en nous

permettant de faire abstraction des solveurs SMT.

Contribution 3 – Détection des transformations d’obscurcissement basées

sur un ensemble de modèles d’apprentissage et le raisonnement séman-

tique

Parmi la diversité des techniques et méthodes d’obscurcissement, la capacité de détecter efficace-

ment les protections logicielles utilisées est primordiale. De ce fait, les travaux récents de Salem

et Banescu se concentrent sur la détection des transformations d’obscurcissement. Leur objectif

est de faciliter la sélection et l’application de techniques de dés-obscurcissement adéquates. À

notre connaissance, il sont les premiers à étudier la détection des méthodes d’obscurcissement

par l’apprentissage automatique. Cependant, leur méthodologie est également sujette à certaines

limitations. Tout d’abord, l’apprentissage automatique et le raisonnement syntaxique utilisés pour

la détection des transformations peuvent conduire à une forte dépendance entre la fonctionnalité

du code étudié et leur modèle, diminuant ainsi la précision des résultats. De plus, la méthodologie

utilisée repose sur des problèmes de classification comportant plusieurs classes. Par conséquent, ils

considèrent qu’un binaire ne peut être obscurci avec plus d’une transformation d’obscurcissement.

Cependant, les transformations peuvent être combinées, d’où la nécessité de pouvoir détecter

plusieurs couches de transformation.

13



C’est pourquoi la troisième contribution de cette thèse consiste en une nouvelle approche

combinant des techniques de raisonnement sémantique et un ensemble de modèle de classification

dans le but de fournir un cadre de détection statique des transformations par obscurcissement. La

capacité à détecter efficacement les protections de logiciel utilisées est primordiale pour faciliter

la sélection et l’application de techniques de dés-obscurcissement adéquates. Ainsi, nous four-

nissons plusieurs études sur les meilleures pratiques d’utilisation des techniques d’apprentissage

supervisée pour un modèle évolutif et efficace. De plus, nous étendons notre travail à la détection

de constructions de transformations d’obscurcissement, fournissant ainsi une fine méthodologie.

Nous pensons que le raisonnement sémantique empêchera notre modèle de dépendre de la fonc-

tionnalité des codes étudiés. De plus, nous appliquons un modèle d’ensemble multi-étiquettes et

multi-sorties qui nous permet de détecter plusieurs couches de transformations combinées.

Selon nos résultats expérimentaux et nos évaluations sur des outils d’obscurcissement tels que

Tigress et OLLVM, nos modèles ont une précision pouvant atteindre 91% sur les transformations

d’obscurcissement. La précision de notre modèle pour la détection leurs constructions va jusqu’à

100% de précision. Contrairement aux travaux existants, nous proposons des solutions qui ex-

ploitent le raisonnement sémantique, par opposition au code désassemblé.

Notre approche souligne l’efficacité du raisonnement sémantique combiné à des techniques

avancées d’apprentissage automatique, telles que des ensembles de modèles ainsi que l’approche

multi-étiquettes avec multi-sorties.

Conclusions

Dans cette thèse, nous avons étudié différentes approches de dés-obscurcissement en vue d’une

évaluation statique des transformations d’obscurcissement. Nous nous sommes principalement

concentrés sur le raisonnement sémantique statique, en le combinant avec des techniques bien con-

nues issues d’autres domaines de recherche, telles que la différenciation binaire et l’apprentissage

automatique. Nous avons également étudié et développé plusieurs quadriciels de dés-obscur-

cissement, un pour chacune des approches suivantes: simplifier le code obscurci, supprimer les

transformations d’obscurcissement ou collecter des informations sur les protections appliquées.

Nos méthodologies et nos outils ont été évalués sur des logiciels malveillants bien connus et des

outils d’obscurcissement mettant en œuvre des transformations d’obscurcissement complexes

ainsi que largement utilisées.
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Reverse engineering is the mechanism of extracting the knowledge or design blue-prints from

anything man-made. Many reasons exists to perform reverse engineering, which takes it origins in

the analysis of hardware for commercial or military advantages [40]. Reverse engineering is usually

performed to obtain missing ideas, knowledge or designs. In some cases, these informations are

owned and not shared. In other cases, they can be simply lost or destroyed. In 1990, the Institute of

Electrical and Electronics Engineers (IEEE) provided a definition for reverse engineering as :

“the process of analyzing a subject system to identify the system’s components and their

interrelationships, and create representations of system in another form or at a higher level of

abstraction”. (IEEE, 1990).

Such a definition can also be applied to software, which are nowadays omnipresent technologies

in our everyday lives. The usage of software is vast, from critical applications to entertainment ones,

and software reverse engineering can help improving, maintaining and even securing them.
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1.1 Software reverse engineering

The application of software reverse engineering can be seen as two main categories, namely software

development and security.

On one hand, software developers can employ reverse engineering techniques to study inter-

operability with undocumented software. It can also be used to evaluate third-party code, or to

improve internal technologies by extracting valuable informations on competitors products.

On the other hand, reverse engineering is employed also for software evaluation and security

auditing. The discovery of vulnerabilities, bugs or bad implementations can be reported for develop-

ers to fix their products. Reverse engineering is also widely used against cryptographic algorithms.

In this case, understanding the internal design of the algorithm can help discover some secrets,

or security issues, putting at harm the end users once the software is deployed. Many famous

case of reverse engineering can be found throughout the history. In 1987, Bell Laboratories

reverse-engineered the Mac OS System 4.1 so they could run it on RISC machines of their own.

More recently in 2011, the software Skype was reverse-engineered for the purpose of creating an

open-source tool similar to it. This led to the revealing of the inner workings of Skype, endangering

the security of more than 600 million people’s communications.

Malware developers often use reversing techniques to locate weaknesses in operating systems

and other software. These vulnerabilities can be used to penetrate a system defense layers and

allow its infection. Moreover, in order to detect, analyze, and prevent malicious software, reverse

engineering is also required. By tracing every step taken by a malware, the expected rate of infection,

and how it can be removed from a system, security analysts and anti-virus developers employ

reverse engineering techniques.

Finally, reverse engineering is very popular to defeat software protection schemes, also referred

to as cracking. Nowadays, media content providers control the distribution of digital media content

throughout developed or acquired technologies. These are also referred to as Digital Right Manage-

ment (DRM) technologies. Their goal is to prevent cracking by controlling the use, modification,

and distribution of copyrighted works and is of common use by the entertainment industry (e.g.

Apple's iTunes Store). Despite these technological progressions, reverse engineering is often

employed when malicious users have complete access over a software or hardware. Such approach

allows them to examine, modify, probe, or tamper at will [37, 64]. It is considered as the problem of

the Man-At-The-End (MATE) attacks [2], as discussed in the next paragraph.
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1.2 Man-at-the-end attacks

MATE attacks exists under several forms [2]. In each case, the adversary has physical and authorized

access to its target. These attacks are considered an open problem since they are difficult to resolve.

Existing counter-measures do not aim at preventing an attack, but rather at slowing it down [46].

Subsequently, no software is considered likely to stay secure for a long period of time.

Therefore, the Digital Asset Protection Association (DAPA) was launched in July 2011 to address

the particular challenges of MATE attacks. By addressing the general public, software developers,

politicians, and even government agencies, they created some awareness regarding the seriousness

of MATE attacks.

Figure 1.1: MATE attacks scheme

As presented in Figure 1.1, MATE attacks schemes usually involve both the attacker and the

defender of the assets. Assets are generally considered as secrets within a software or a device, such

as cryptographic keys, or proprietary designs. The attacker, who has complete access to the software

or hardware, can study the assets protections and try to attack the software. However, monitoring

techniques and tools, as well as updating services, allows the defender to protect the assets.

Different kinds of MATE attack scenarios exist in the literature, e.g. [64, 92, 122]. Thus, software

protections techniques are widely used to protect against reverse engineering, and more generally

against MATE attacks, as discussed in the followings.
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1.3 Software protection

The term software protection is typically used to refer to protection of software against piracy,

overuse, and reverse engineering. The purpose of software protection is to safeguard the commercial

value of the software, regardless of whether any intellectual property contained within it has been

compromised. This requires a combination of techniques related to anti-piracy, licensing, and anti-

reverse engineering. Often combined with Intellectual Property (IP) protection, software protections

can be achieved in several different ways. According to [64], software protection algorithms fall into

four basic categories:

1. Code obfuscation which makes a program harder to reverse-engineer;

2. Tamper-proofing applied to render a program harder to modify;

3. Watermarking that allows program to be tracked;

4. Birth-marking used for the detection of code lifting.

Many well-known companies are showing interest in software protection schemes [44]. Such in-

formation can be deduced by the number of owned or applied patents. Microsoft for example owns

several software watermarking, obfuscation, and birth-marking patents, e.g. [56, 67, 68, 126, 205].

Apple also holds patents in code obfuscation, e.g. [102]. Other companies such as Cloakware,

sold to Irdeto, hold patents on white-box cryptography and also propose their own solutions for

software protections, such as [178, 179].

In this thesis, we mainly focus on code obfuscation as a software protection technique. In-

troduced by Frederick B. Cohen [42], code obfuscation was first considered as a technique to

automatically create multiple versions of the same program. The goal was to enhance the difficulty

for malware to analyze and modify each generated versions. Ironically, malicious software nowa-

days employ code diversity to avoid detection. Currently, code obfuscation [45] is perceived as an

information management strategy that aims at obscuring the meaning that can be drawn from a

software or a code, while preserving its functionality. Many commercial programs use obfuscation

as a protective layer to protect themselves against the duplication of their codes, or to hide details

of their implementation. As examples, Skype or Dropbox combine code obfuscation and cryp-

tography to fortify their communication protocols [147]. Other uses of obfuscation can be found

on malwares. Their goal is to avoid engine analysis, anti-virus detection, as well as reverse engi-

neering. Overall, code obfuscation is now a widely and commonly used software protection scheme.
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The next paragraph will introduce this thesis context, related to code obfuscation as a software

protection strategy.

1.4 Context

The evaluation and certification of software sometimes requires reviews from analysts within a

short amount of time. Thus, the easy access to evaluation frameworks, and efficient analyses are

at a prime. The goal is to find poor designs, vulnerabilities and other issues in the code that may

facilitate attacks and cause harm to the end-users.

In the context of code obfuscation, the transformations evaluation is an open question which is

often answered by proposing deobfuscation methodologies. The deobfuscation process evaluates

the strength of the applied protections, often focusing on specific ones. Other approaches, based

on code metrics, can be used to measure the stealth, cost, and quality of the applied protections.

This thesis focuses on the evaluation of obfuscation transformation applied on binary codes.

The goal is to provide efficient and scalable methodologies or frameworks to support evaluators, and

reverse-engineers, for the analysis of obfuscated programs. In the next section, we briefly introduce

our contributions before presenting an overview of the thesis.

1.5 Contributions

The evaluation of obfuscated binaries can be seen as two main approach: either the ability to

deobfuscate, or to measure some characteristics of the applied transformations. Furthermore, the

deobfuscation process can be seen as different approaches, such as removing transformations,

simplifying the program, or gathering metadata information about the obfuscated code. This thesis

aims at contributing to each deobfuscation approaches, namely:

• Program simplification approach: our first contribution consists in a deobfuscation method-

ology based on semantic equivalence called DoSE. DoSE principally allows the simplification

of binary code, with extension to some protections removal. These additions allow us to

remove novel obfuscation transformations that cause harm to state-of-the-art deobfuscation

analyses. Our methodology is also implemented as tool, and evaluated against well known

malwares such as Cryptowall [206] or Flame [24].

• Transformation removal approach: our second contribution consists in a machine learning

based methodology to remove specific, yet widely used, obfuscation schemes. This is, to the

best our knowledge, the first transformation removal approach that uses machine learning
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techniques. We provide several studies toward an efficient design of our methodology and

illustrate how it can overcome the inherent limitations of these obfuscation schemes. The

implementation of our design is also evaluated against state-of-the-art obfuscators and

compare to existing tools that aim at removing the targeted obfuscation transformation.

• Metadata gathering approach: our third contribution is based on advanced machine learning

techniques and semantic reasoning. It allows analysts to identify the applied obfuscation

transformations on a binary code. The identification process is an important step in order to

select the appropriate methodology for the protections removal. Our contribution underlines

the efficiency of advanced machine learning techniques combined with semantic reasoning

for that goal. The implementation of our design is also evaluated against state-of-the-art

obfuscators.

Beforehand, this thesis provides an overview of state-of-the-art code obfuscation definitions and

empirical transformations. We also present existing deobfuscation techniques, either generic or

specific to some protection schemes. Finally, we describe some state-of-the-art tools related to the

evaluation of code obfuscation.

This thesis is organized as follows: In Chapter 2 we introduce the state-of-the-art on code obfusca-

tion and deobfuscation. We also present an overview of existing tools related to these subjects.

Chapter 3 is dedicated to our first contribution called DoSE. DoSE is a static Deobfuscation

methodology based On Semantic Equivalence, for the purpose of contributing existing deobfusca-

tion techniques based on dynamic symbolic execution. Our implementation of DoSE as an IDA Pro

plug-in is presented.

Chapter 4 presents this thesis second contribution. We describe a first methodology for static

code deobfuscation based on machine learning techniques, implemented and evaluated against

state-of-the-art obfuscators.

Chapter 5 focuses on our final contribution, also based on machine learning techniques. We

propose a static and automated framework for the detection of obfuscation transformations in

order to detect multiple obfuscation layers, and fine-tuned to also scale on their constructions.

We conclude this thesis with our perspectives and possible future work in Chapter 6.
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Chapter 2

State-of-the-art on code obfuscation and

deobfuscation

Contents

2.1 Code obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Virtual black-box obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.2 Indistinguishability Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.3 Empirical obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.4 Obfuscation transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Deobfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.1 Static deobfuscation techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.2 Dynamic deobfuscation techniques . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.3 Symbolic deobfuscation techniques . . . . . . . . . . . . . . . . . . . . . . . . 58

2.2.4 Existing evaluations techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 State-of-the-art tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.1 Obfuscators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3.2 Deobfuscation tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

In this chapter we introduce code obfuscation, from the virtual black-box definition to the

empirical description. Several obfuscation transformations are also presented and illustrated, either

static, dynamic, or data-driven for software protection. Afterwards, state-of-the-art evaluations

techniques, either specific to some transformations, or generic, are described. Finally, we close this

chapter by introducing related tools used to apply or to evaluate code obfuscation transformations.
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2.1 Code obfuscation

Code obfuscation [44] is an information management strategy that aims at obscuring the meaning

that can be drawn from a software or a code, while preserving its functionality. Obfuscation trans-

formations can be used in specific contexts and for different purposes, such as the improvement of

software security, the protection against software alteration, or the protection of the intellectual

property. However, since its main goal is to protect software against reverse-engineering, obfus-

cation is also widely used by malware applications to prevent their detection and analysis. Thus,

being able to evaluate such obfuscation transformations or to deobfuscate them is an important

step towards a better protection of our intellectual properties and privacy.

In this section we introduce the different definitions of obfuscation namely, virtual black-box

obfuscation, indistinguishability obfuscation, and empirical obfuscation.

2.1.1 Virtual black-box obfuscation

A first obfuscation definition that takes into account the indistinguishability property between two

programs is presented in[80]. Afterwards, Barak et al. gave a less restrictive definition using the

virtual black-box principle, as defined next.

Definition 2.1.1. Let us denote by P a program. Barak et al. [15] defined an obfuscator O as a

probabilistic compiler transformation of P in O(P ), which satisfies the following properties:

• Functionality: O(P ) computes the same function as P;

• Polynomial slow-down: for all P, O(P ) execution time is at most polynomially slower than P

execution time, or polynomially bigger than P size;

• Virtual black-box: everything efficiently computable with O(P ) can also be computable with

only an oracle access to P.

With such definition, and by building a set of functions that cannot be obfuscated, it has been

demonstrated that rendering a program unintelligible, as defined previously, is not possible [15, 16].

However, this does not mean that there are no solutions to make a program unintelligible with a

less absolute definition given to the obfuscation term.

2.1.2 Indistinguishability Obfuscation

Another approach called indistinguishability obfuscation exists to define obfuscation, for which we

know that it is achievable for all circuits [76]. The definition of the indistinguishability obfuscation

is as follows:
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Definition 2.1.2. A uniform probabilistic polynomial time (i.e. PPT) machine iO is called an indis-

tinguishability obfuscator for a circuit class Cλ if:

• For all security parameters λ ∈N, for all C ∈Cλ and all inputs x we have that:

Pr [C ′(x) =C (x)|C ′ ← iO (λ,C )] = 1.

This is called the correctness condition.

• For any PPT distinguisher D, there exists a negligible function ε such that, for all security

parameters λ ∈N, for all pairs of circuits C0,C1 ∈Cλ, we have that if C0 =C1(x) for all inputs x

then :

|Pr [D(iO (λ,C0)) = 1]−Pr [D(iO (λ,C1)) = 1]|6 ε(λ).

This is called the security condition.

In other words, we first have the correctness condition which establishes that, for all inputs, the

obfuscated version of the circuit computes the same results as the original circuit. This is similar to

the Functionality property of the virtual black-box obfuscation. The second condition regarding the

security definition of iO indicates that, for any pair of circuits which compute the same functionality,

the respective obfuscated circuits should be indistinguishable.

However, the indistinguishability obfuscation only guarantees that two programs with the

same functionality are indistinguishable when obfuscated. The definition does not provide any

guarantees about obfuscating two circuits with different functionalities. Nevertheless, Barak et

al. [16] state that, if it is possible to distinguish these circuits, then it must also be possible to find

inputs on which they differ. Moreover, they also argue that iO is as good as any other obfuscator

in such cases. Yet, the notion is considered tricky to be used in practice [8]. This underlines the

necessity of empirical obfuscation techniques, as introduced in the next section.

2.1.3 Empirical obfuscation

In [45], Collberg, Thomborson and Low propose a definition of code obfuscation that avoids the

paradigm of the virtual black-box definition.

Definition 2.1.3. Let P
T−→ P ′ be a transformation T of a source program P into a target program

P ′. We call P
T−→ P ′ an obfuscation transformation if P and P ′ have the same observable behavior.

Consequently, the following conditions must be fulfilled for an obfuscation transformation:

• if P fails to terminate, or terminates with an error condition, then P ′ may or may not terminate;
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• otherwise, P ′ must terminate and produce the same output as P.

Empirical or practical obfuscators are based on the composition of different program trans-

formations. Each of these obfuscation transformations adds its own complexity and combining

them contributes to the global resilience of the protected program. An obfuscator can apply its

techniques on different representations of a program, such as:

• Source code: obfuscating a source code enables the use of obfuscation techniques that exploit

some specificities of the input programming language. The source code obfuscation is also

used for interpreted languages where the source code can be decompiled easily. Moreover,

source-to-source obfuscators are easier to integrate into an existing compilation chain. They

also allow a multi-architecture use of the protected program. Yet, source-to-source obfusca-

tors implicitly use intermediate languages, such as CIL [136] for Tigress. The major issue of

source-to-source obfuscation is the restriction on the input programming language.

• Intermediate representation: intermediate representations (IR) are widely used by compilers

or reverse engineering frameworks to represent a code. Obfuscators based on an interme-

diate representation are more fitted to work on input program with different programming

languages and can also target multiple assembly languages. However, the integration of an

IR-based obfuscator into a compilation tool-chain can be trickier than for source-to-source

obfuscators. Yet, several obfuscators are based on LLVM [114] or Obfuscator-LLVM [96] to

facilitate their integration, e.g. [200].

• Assembly language: applying obfuscation transformations on the assembly code is more

difficult than other approaches. It can lead to a loss of information compared to IR-based

obfuscators. Yet, several obfuscation transformation such as code virtualization or anti-

debugging (e.g. packing, c.f. 2.1.4) can be applied directly on the assembly language. Other

approaches are more hybrid [156], providing patching mechanisms of the assembly code and

source-to-source transformations.

Next, we describe some properties and metrics used to evaluate obfuscation transformations,

as introduced in the work of Collberg, Thomborson and Low [45].

2.1.3.1 Metric-based obfuscation measurements

Obfuscation transformations are evaluated according to four criteria as described in [45]:

1. Stealth to describe the ability to detect the obfuscation transformation by an adversary;

2. Potency to report if the applied obfuscation transformation weaken other transforms;
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3. Resiliency to express if the reversing process of the obfuscation transformation requires more

resources than creating it, i.e. its strength against an adversary;

4. Cost to capture the overhead in space or time implied by the application of the obfuscation

transformation.

Each of these criteria can be measured using complexity metrics, as presented by Collberg,

Thomborson and Low, such as:

• control-flow based metrics: cyclomatic complexity [125], nesting levels [82], knots [197],

• data-flow based metrics: fan-in/fan-out [120], data-flow slicing [143],

• instructions-based metrics: number of operands, program vocabulary, program volume [81],

The previous list is not exhaustive, other program metrics exists (e.g. alias-based, data-based), for

which a more detailed presentation can be found in [52]. The following paragraphs will provide

detailed definitions of these criteria.

Stealth. While a resilient transformation may not be sensitive to attacks from automated deobfus-

cators, it may still be prone to attacks by humans. Particularly, if a transformation introduces new

codes that differ from the original program by a large margin, it would be easy for a reverse engineer

to detect it. In other words, it is essential that obfuscated code keeps enough similarities with the

original code. If that is the case, the obfuscation transformation is considered stealthy.

Potency. Informally, an obfuscation transformation is potent if it succeed in confusing an adver-

sary by hiding the intent of the original code. Formally, let T be a semantic-preserving obfuscation

transformation such that P
T−→ P ′ transforms a program P into its obfuscated version P ′. Let E(P )

be the complexity of P, as defined by several metrics (e.g. Halstead [81], McCabe [125], Harri-

son [82], etc.). Based on these metrics, Collberg, Thomborson and Low define properties for the

transformation T to be a potent obfuscation technique as follows:

• T should increase the overall program size and introduce new methods and functions for

code obfuscation;

• T should introduce new predicates and increase the nesting level of conditional and looping

constructs;

• T should increase the number of method arguments and variables dependencies;

• T should increase the height of the inheritance tree.
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Resiliency. Since some obfuscation transformation may be easily undone by automated deobfus-

cation analyses, Collberg, Thomborson and Low introduced the measure of resiliency. This concept

captures how well a transformation holds up under attack from an automated deobfuscator. Thus,

resiliency of a transformation T can be seen as the combination of two measures:

• the effort required to construct an automated deobfuscator that is able to effectively reduce

the potency of T , i.e. the programming effort;

• the execution time and space required by such deobfuscator to effectively reduce the potency

of T , i.e. the deobfuscator effort.

Some highly resilient obfuscation transformation are called one-way if they can never be undone

(e.g. formatting variable names). Other transformations add useless information to the program

without changing its observable behavior, but increase the quantity of information an analyst has to

work with. These transformations can be undone with varying degrees of difficulty.

Cost. The cost of an obfuscation transformation is the execution time and space penalty it adds

to a program. Some trivial transformations are free (e.g. variable scrambling) since they cause no

additional runtime cost. However, other transformations may have a varying amount of overhead,

depending on their use and location. Collberg, Thomborson and Low define the cost of a trans-

formation as follows: let T be a behavior-conserving transformation such that P
T−→ P ′ transforms

a source program P into a target program P ′. Tcost (P ) is the extra execution time and space of P ′

compare to P such that:

• if executing P ′ requires O (1) more resources than P then the transformation’s cost is free;

• if executing P ′ requires O (n) more resources than P then the transformation’s cost is cheap;

• if executing P ′ requires O (np ), p > 1, more resources than P then the transformation’s cost is

costly;

• if executing P ′ requires exponentially more resources than P then the transformation’s cost is

dear.

Quality. Based on the previous definitions of obfuscations metrics, Collberg, Thomborson and

Low give a definition of the quality of an obfuscation transformation. Let Tqual (P ) be the quality of

transformation T such as:

Tqual (P ) = (Tpot (P ),Tr es(P ),Tcost (P ))
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The quality of a transformation T is thus defined by the combination of the potency, resilience and

cost of T .

Other definitions of these four criteria can be found, e.g. [7, 100]. However, by using software

complexity metrics, those criteria definitions do not take into account the reverse engineering

process. This is the reason why more recent work measures these criteria based on an attack model,

as described next.

2.1.3.2 Attack model-based obfuscation measurements

Recent studies try to measure the criteria of an obfuscated program (i.e. stealth, potency, and

resiliency) based on an attacker model. Ceccato et al. [37] define human-assisted attacks, e.g.

debugging, to measure the potency. Their work is based on studies where test subjects are asked to

perform specific reverse-engineering tasks on obfuscated codes. Dalla Preda [149] models attacks

against obfuscation transformation as abstract domains expressing some properties about the

program behaviors. Such methodology allows to compare obfuscation transformations with respect

to their potency against various attackers.

More recent works from Banescu et al. [13, 14] propose to set-up an attacker model in order to

measure the resiliency of obfuscated programs. The attacker model is based on state-of-the-art

automatic attacks, i.e. generic de-obfuscation technique (c.f. Section 2.2.4.4) based on dynamic

or concolic symbolic execution engines such as KLEE [34] or Angr [192] (for other tools, readers

can refer to Chapter 2.3). Using two datasets of programs obfuscated with Obfuscator-LLVM

and Tigress, they measured the symbolic execution slowdown applied to both protected and

unobfuscated codes, based on an attacker model that aims to obtain a complete code coverage.

Moreover, the second dataset is used to compare the different symbolic execution engines, based on

another attacker model that aims to reach a specified path. Their work illustrates which obfuscation

transformations, or combination of them, bring the higher resilience in their predefined context.

Furthermore, Salem and Banescu introduced the use of machine learning techniques to evaluate

the stealth of obfuscation transformation by detecting them (otherwise called meta-data recovery

attack). However, their approach remains dependent to the type of program evaluated.

Despite the above mentioned approaches, the ability to accurately measure obfuscation transfor-

mations criteria remains an open question. The next section will introduce a non-exhaustive list of

existing obfuscation transformations.
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2.1.4 Obfuscation transformations

Several obfuscation transformations exist, each of them having their own purposes. They can be

classified into different categories, such as data obfuscation, static code obfuscation, and dynamic

code obfuscation. Many of the described obfuscation techniques appeared first in malware samples,

thus, it is difficult to reference the original source. However, early techniques are given by Collberg,

Thomborson and Low [45], as well as Collberg and Nagra [44].

2.1.4.1 Data obfuscation

Code obfuscation related to data modifies the form in which they are stored in a program. The

purpose of data obfuscation is to hide sensitive information from direct analysis of the code. Usually,

these transformations require the program code to be modified so that the original data represen-

tation can be reconstructed dynamically, thus during execution of the code. Next, we present a

non-exhaustive overview of existing transformation for data obfuscation.

Data reordering. Data variables can be split into several pieces in order to make it more difficult

for an analyst to identify them. The mapping between an actual value of a variable and its split

representation is managed by several functions. One function is used at obfuscation time whereas

the other function reconstructs the original value at runtime. Different types of data, such as

integers or string variables, can be obfuscated the same way. Based on the same principle, several

data variables can also be combined together, i.e. merged, to avoid identification.

Arrays are also prone to reordering. They can be divided into two or more sub-arrays, or multiple

arrays can be merged into one. Moreover, other techniques such as folding and flattening can

respectively increase or decrease the number of dimensions of the array [47, 60].

Example 2.1.1. Splitting arrays can be seen as dividing an array A of size n into several arrays

Bi , each of them having a size mi . In this case, it is necessary to have a selection function that

determines in which array Bi an element A[ j ] must be. Moreover, other functions are needed in

order to have the localization of each element in the newly created arrays. Figure 2.1 illustrates an

example from [52] where an array A is split into two new arrays B and C .

Figure 2.1: Illustration of data reordering transformations on split arrays from [52].
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Encoding. Static data within binaries, such as strings or constant values, contain useful informa-

tion for an analyst. The use of encodings as an obfuscation transformation converts data into a

different representation. The transformation is based on special encoding functions to mitigate the

need of storing the static data in clear text within the binary. During execution, the inverse function

is used to decode the obfuscated data.

Definition 2.1.4. To obfuscate a variable V in a program, one must convert it from its initial rep-

resentation to another representation harder for an attacker to analyze, denoted by V ′. Thus, any

value that V can take during execution must be representable in the obfuscated representation V ′, as

well as any operations performed on V that must be also performed on V ′. Finally, two functions are

needed to encode and decode V into V ′ and vice versa.

Ideally, to prevent pattern-matching attacks, the obfuscated representation must be parame-

terized in order to have a family of representations. In other words, each representation will be

different-looking obfuscated variables. However, they all will be based on the same obfuscating

algorithm.

Example 2.1.2. Examples of variable encoding are numerous. Listing 2.1 from [44] shows an

encoding transformation based on number-theoretic tricks. It is used to obfuscate an integer e into

the representation N ∗p +e, where N is the product of two close primes, and p is a random value.

1 typedef int T4;

2 #define N (53*59)

3

4 T4 encode(int e, int p){

5 return p*N+e;

6 }

7 int decode(T4 e) {

8 return e%N;

9 }

10 T4 encoded_addition(T4 a, T4 b) {

11 return a+b;

12 }

13 T4 encoded_multiplication(T4 a, T4 b) {

14 return a*b;

15 }

16 BOOL encoded_lower_than(T4 a, T4 b) {

17 return decode(a)<decode(b);

18 }

Listing 2.1: Encoding transformation on an integer based on number-theoretic tricks
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In this example, N must be larger than any integer V we want to represent. Decoding the transfor-

mation consists in removing N ∗p by reducing modulo N . Moreover, addition and multiplication

can, in this example, be performed on the encoded representation, unlike the comparison function

encode_lower_than which requires the decode function first.

Converting static data to procedures. This obfuscation transformation replaces static data with

a function that calculates the data at runtime. For example, specific constant values can be built

during the execution of the binary so that an analyst cannot extract them statically.

Figure 2.2: Dynamically computed address used for a call and generated with Tigress.

Example 2.1.3. One basic example of building static data during code execution can be observed

when dynamically computed addresses are used to define where the instruction pointer has to

go next. Figure 2.2 illustrates such transformation where the address of the function to be called

during execution. We can observe, underlined in yellow, the call operation with the register rdx as

operand, which will contain at runtime the address of the function to go to.

2.1.4.2 Static code obfuscation

Static code obfuscation transformations are similar in some cases to compiler optimizations. They

modify the program code during the obfuscation process, or the compilation, but the output will be

executed without any runtime (i.e. dynamic) modifications.
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Instructions substitutions. Each behavior of a program can be implemented in multiple ways

[195] and instructions or sequences of instructions can be replaced with syntactically different, yet

semantically equivalent code. More complex obfuscations of this type include the replacement

of call instructions with a combination of push and ret instructions [111]. De Sutter et al [183]

substitute opcodes that are rarely used with more frequently used instructions. This transformation

reduced the total number of different opcodes used in the code and normalized their frequency.

Moreover, potentially malicious code can also be hidden in side effects of legit-looking sequences of

instructions [170].

Example 2.1.4. One explicit example of instructions substitutions can be found with the MoVfuscator 1

tool that compiles a program into mov instructions.

19 <isprime >:

20 push ebp

21 mov ebp ,esp

22 sub esp ,0x10

23 cmp DWORD PTR [ebp+0x8],0x1

24 jne 0x8048490 <is_prime +0x13 >

25 mov eax ,0x0

26 jmp 0x80484cf <is_prime +0x52 >

27 cmp DWORD PTR [ebp+0x8],0x2

28 jne 0x804849d <is_prime +0x20 >

29 mov eax ,0x1

30 jmp 0x80484cf <is_prime +0x52 >

31 mov DWORD PTR [ebp -0x4],0x2

32 jmp 0x80484be <is_prime +0x41 >

33 mov eax ,DWORD PTR [ebp+0x8]

34 cdq

35 // [[... ... LINES REMOVED ... ...]]

36 leave

37 ret

Listing 2.2: Un-obfuscated assembly code of an isprime function

Listing 2.2 illustrates the assembly code of a function, named isprime, which verifies if a given

number is prime without any obfuscation transformation applied. Listing 2.3 shows one possible

application of instructions substitutions, using the MoVfuscator, on the isprime function.

1the MoVfuscator : https://github.com/xoreaxeaxeax/movfuscator [Online; accessed the 01-10-2019]

43

https://github.com/xoreaxeaxeax/movfuscator


38 <isprime >:

39 mov eax ,ds:0 x83fc638

40 mov edx ,0 x88048744

41 mov ds:0x81fc4c0 ,eax

42 mov DWORD PTR ds:0x81fc4c4 ,edx

43 mov eax ,0x0

44 mov ecx ,0x0

45 mov edx ,0x0

46 mov al,ds:0 x81fc4c0

47 mov ecx ,DWORD PTR [eax*4+0 x8056ad0]

48 mov dl,BYTE PTR ds:0 x81fc4c4

49 mov dl,BYTE PTR [ecx+edx*1]

50 mov DWORD PTR ds:0x81fc4b0 ,edx

51 mov al,ds:0 x81fc4c1

52 mov ecx ,DWORD PTR [eax*4+0 x8056ad0]

53 // [[... ... LINES REMOVED ... ...]]

54 mov eax ,ds:0 x83fc628

55 mov eax ,DWORD PTR [eax*4+0 x83fc620]

56 mov DWORD PTR [eax],0x0

Listing 2.3: Obfuscated assembly code of the isprime function generated by the MoVfuscator

Code cloning. Code cloning or copying is a widely used obfuscation technique [171] consisting

in diversifying paths of the program in order to increase the amount of code an attacker has to

analyze. The cloned parts of the code are often syntactically different but shall remain semantically

equivalent. In other words and from a functional point of view, the original portion of the code and

its clone are the same. To prevent the clones from being syntactically equivalent, code cloning is

often combined with other obfuscation transformations such as instruction re-ordering or dead

code insertion. Code cloning, as an obfuscation technique, can also be used implicitly with other

obfuscation transformations such as control-flow flattening or opaque predicates [44]. Other

uses of code cloning consist in duplicating small functions or of creating semantically equivalent

input-dependent paths within a binary in order to prevent state-of-the-art generic deobfuscation

techniques [201].

Example 2.1.5. An example of code cloning, as an obfuscation transformation, can be found in the

most resilient challenge of the CHES 2017 "Capture the flag" WhibOx Contest [48]. This contest

consists in building and evaluating white-box implementations of the AES-128 [54] algorithm.

This challenge2, in order to prevent reverse-engineering, implements over 1200 small functions,

2Source code is available at https://run.whibox.cr.yp.to:5443/show/candidate/777.
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that are referred to as sub-functions (i.e. branch functions), among which 1180 are semantically

equivalent (i.e. clones). It also implements virtualization, dummy operations and renaming to

further obfuscate the code. Listing 2.4 illustrates two of these cloned sub-functions.

1 void wGzZ(uint oEHmwk , uint KCZu , uint MtCA) {

2 ooGoRv [( kIKfgI+oEHmwk)&262143]= ooGoRv [( kIKfgI+KCZu)&262143]^ ooGoRv [(

kIKfgI+MtCA)&262143];

3 }

4

5 // [[... ... LINES REMOVED ... ...]]

6

7 void pZwSZ(uint eCFI , uint picb , uint aqQiUv) {

8 ooGoRv [( kIKfgI+eCFI)&262143]= ooGoRv [( kIKfgI+picb)&262143]^ ooGoRv [( kIKfgI+

aqQiUv)&262143];

9 }

Listing 2.4: Example of two cloned sub-functions from the challenge adoring_poitras of the

WhibOx contest.

Opaque predicates. A predicate is a boolean-valued function. An opaque predicate, however,

represents an obfuscated predicate with its outcome known at obfuscation time but difficult to

determine for a deobfuscator.

Opaque predicates are used to confuse static reverse engineering by adding a evaluation prob-

lem that is difficult to solve without executing the code. Sometimes paired with bogus code, opaque

predicates [47] are meant to encumber control-flow graphs with redundant infeasible paths. Com-

pared to other control-flow obfuscation transformations such as control-flow flattening or call-stack

tampering [112], opaque predicates are supposedly more stealthy (i.e. hard for an attacker to de-

tect) because of the difficulty to differentiate an opaque predicate from original path conditions

in a binary code. Several types and constructions of opaque predicates exist [128]. The following

paragraphs give an overview of them.

Opaque predicate types. Opaque predicates exist under different types. Each of them has speci-

ficities and can be constructed in different manners. We denote by φ a predicate, i.e. a conditional

jump within a piece of code. Such predicate can be evaluated to both true or false (i.e. 0 or 1). We

denote by O the obfuscation function that generates opaque predicates, which takes as input a

predicate φ such that O (φ) is the obfuscated version of φ, i.e. the opaque predicate. By definition,

O (φ) should be stealthy (indistinguishable from any φ) and its value should not be easily known
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by an attacker. There are two types of invariant opaque predicates and the two-ways opaque

predicates.

Definition 2.1.5. Invariant opaque predicates: Let O (φ) : X → {0,1} be an obfuscated predicate that

evaluate to either 1 (i.e. true), or 0 (i.e. false), and O be the function that obfuscated the predicate. We

denote by X the set of all possible inputs x. Then, we can say that:

• if ∀x ∈ X , O (φ)(x) = 1 then the predicate is always true.

• if ∀x ∈ X , O (φ)(x) = 0 then the predicate is always false.

Thus, these opaque predicates are of an invariant type, because they always evaluate to the

same value for all possible inputs.

Example 2.1.6. Figure 2.3 illustrates an opaquely true predicate, P T , generated with the Obfuscator-LLVM [96]

on a function that check if two given strings are anagrams.

46



Figure 2.3: Invariant opaquely true predicate generated with O-LLVM.
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Definition 2.1.6. Two-ways opaque predicates: Another type of opaque predicate is referred to as

two-way, which can be either true or false for all possible inputs. Such a construction requires both

branches to be semantically equivalent in order to preserve the functionality of the code that will be

executed. In other words we have:

• if ∀x ∈ X , Prx←X [O (φ)(x) = 1] = 1
n then the predicate is either true or false, regardless of the

input x, for all n ∈N+.

Example 2.1.7. Figure 2.4 illustrates a two-way predicate P ? generated with the Tigress obfusca-

tor [43]. The two basic blocks colored in green are semantically equivalent. Thus, regardless of the

P ? output, the same functionality will always be executed.

Figure 2.4: Two-way opaque predicate generated with Tigress.

Collberg, Thomborson and Low denoted these invariant and two-ways predicates by, respec-

tively, P T , P F and P ?. Several works use two-ways opaque predicates constructs, either referred

to as range-dividers [13] or as correlated opaque predicates [129, 199]. Regardless of their output,

e.g. their type, there exist many different kinds of constructions in order to render these predicates

opaque and make them more resilient against known analyses. We further elaborate on this matter

in Chapter 4.
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Dead code insertion. Dead code represents parts of a program that will never be reached and

thus never executed. The application of dead code as an obfuscation transformation can make

the analysis of a program more time consuming, as it increases the amount of code that has to

be covered. In practice, dead code insertion if often based on code cloning and also on opaque

predicates to make them unreachable during the execution of the program. Figure 2.3 can also be

seen as an illustration of dead code insertion combined with an invariant opaque predicate, with

the unreachable basic block colored in red. In this example, the instruction jmp loc_400DF5 will

never be executed.

Irrelevant code insertion. Irrelevant or garbage code represent sequences of instructions that do

not have an effect on the execution of a program. This transformation aims at making analyses

more complex. One simple example of irrelevant code consists in the NOP instruction as they do not

have any effect on the program state. As opposed to dead code, irrelevant code can be reached by

the control flow of the program and executed. However it has no effects on a program functionality.

Example 2.1.8. Listing 2.5 illustrates a function in C code with one irrelevant line that computes

the square of the variable a. This line is irrelevant since it does not have any effect on the code

functionality.

1 int function (int arg){

2 int a = arg;

3 int b = a*a; // irrelevant code

4 int c = a+a;

5 return c;

6 }

Listing 2.5: Example of an irrelevant instruction.

Reordering. Similarly to data structures, expressions and statements can be reordered to decrease

locality if the reordering does not affect the program behavior. Such techniques were originally

introduced for code optimization [11], but they can also be applied for code obfuscation. Moreover,

this transformation can be pushed further to move parts of code, or functionalities, into different

modules or programs, as studied in the Stuxnet malware [123].

Example 2.1.9. The reordering of instructions is often used by malware authors for metamorphism

purposes. Such transformation is only possible if no dependencies exist between instructions.

Listing 2.6 illustrates two basic instructions. In this simple case, swapping the two instructions is

allowed if: r1 does not equal r4, r2 does not equal r3 and r1 does not equal r3.
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1 add r1, r2

2 add r3, r4

Listing 2.6: Instructions snippets.

Loop transformations. Initially, loop transformations have been made to improve the perfor-

mance and space usage [11]. However, some of these transformations increase the complexity of

the code, which makes them potential candidates for code obfuscation. Other transformation can

also be applied on loops, such as hiding its condition with the use of an opaque predicate.

Example 2.1.10. One example of obfuscation transformation on loops can be to split them. It

consists in breaking down the body of the loop into several others that have the same iteration

space. The decomposition must take into account the relationships between the instructions within

the body of the loop. Moreover, such decomposition can be made random if the sequence of

instructions allows it.

57 for (i=1; i<n, i++){

58 a[i] += c;

59 b[i+1] += d*b[i-1]*a[i];

60 }

Listing 2.7: Loop sample before the application of obfuscation transformations

Listing 2.7 illustrate a simple loop in C code with two instructions and without any transfor-

mations applied. Listing 2.8 shows the splitting tranformation of the first loop into two new loops.

Each original instruction is dispatched in one of the two generated loops.

61 for (i=1; i<n, i++){

62 a[i] += c;

63 }

64

65 for (j=1; j<n; j++){

66 b[j+1] += d*b[j-1]*a[j];

67 }

Listing 2.8: Loop sample after the application of a splitting transformation

50



Function splitting or recombination. Functions cloning describes the concept of splitting the

control-flow in two or more paths that look different to the analyst, while they are in fact semantically

equivalent. Another type of obfuscation transformation merges the bodies of different functions.

The new function will have the parameters of all merged functions, as well as an extra parameter

that selects the function body to be executed.

Example 2.1.11. Listing 2.9 shows an example of function recombination. We have two different

functions, namely function1 and function2. The obfuscation transformation that merges both

functions, i.e. merged_functions_1_2, takes the parameters of both functions and adds an extra

one that selects the body to be executed.

1 void function1 (int arg1){

2 // body of the function1

3 }

4

5 void function2 (char* arg2){

6 // body of the function2

7 }

8

9 void merged_functions_1_2 (int arg1 , char* arg2 , int select_function){

10 if (select_function == 1){

11 // body of the function1

12 }

13 else{

14 // body of the function2

15 }

16 }

Listing 2.9: Example of function recombination

Overlapping codes. Overlapping functions reflects a part of the binary code where one function

ends with bytes that also define the beginning of another function. Compilers usually use this

strategy for optimization purposes, which may also confuse some disassemblers. More sophisti-

cated methodologies where introduced, e.g. Jacob, Jakubowski and Venkatesan [90], where two

independent code blocks are interleaved in a way that, depending on the entry and exit points of

the merged code, a different functionality is executed.

Example 2.1.12. Overlapping instructions is a common anti-disassembly mechanism. The fol-

lowing example from [25] illustrates an execution sequences of bytes extracted from the packer

tELock0.99.
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1 0x1006e7a fe 04 0b inc byte [ebx+ecx]

2 0x1006e7d eb ff jmp +1

3 0x1006e7e ff c9 dec ecx

4 0x1006e80 7f e6 jg 0x1006e68

5 0x1006e82 8b c1 mov eax , ecx

Listing 2.10: Example of overlapping assembly code of tELock0.99

In this example, the instruction at the address 0x1006e7d is jmp +1 and it is encoded with two

bytes. The result is that it jumps to the second byte of its opcode, at address 0x1006e7d+1, which

corresponds to the instruction dec ecx that shares the opcode ff with the jump instruction. As a

result, both instructions overlap each other.

Aliasing. Inserting spurious aliases (i.e. pointers to memory locations) can make code analysis

more complex, as the number of possible ways for modifying a particular location in memory

increases [87, 152]. These pointer-references can also be used as indirection to complicate the

reconstruction of the control-flow of a program using static analysis scenarios [191]. Aliasing, as an

obfuscation transformation, can also be used to strengthen other transforms.

Control-flow flattening. This class of obfuscation transformation aims at obscuring links between

basic-blocks. Wang et al. [191] first referred to control-flow flattening as chenxification, which puts

the basic-blocks of a program into a large switch-statement, called dispatcher, that decides where to

jump next. Control-flow flattening using a central dispatcher was also described by Chow et al. [41].

A similar concept by Lynn and Debray [117] uses what is called branch functions, which directs the

control-flow to the actual target based on a call table. Popov, Debray and Andrews [148] proposed

to replace control transfer instructions by traps that cause signals. The signal handling code then

performs the originally intended control-flow transfer. Further control-flow obfuscation techniques

are described in [36, 51, 115, 169].

Definition 2.1.7. The basic definition for flattening a function F consists in the following. First, the

body of F is broke up into basic-blocks, that were originally at different nesting levels, into the same

level. Then, each basic-blocks are encapsulated in a selective structure (e.g. a switch statement) with

each block into separate cases. However, the correct control-flow of F must be ensured by a control

variable cv which represents the state of the program. At the end of each basic-blocks, cv must be set

and used in the predicates of the structure enclosing loop and selection.
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Several methods exists for the selective structure, the following list give an overview of some of

them:

• a switch dispatch where each block becomes a case in a switch statement which is wrapped

inside an infinite loop,

• an if-and-else dispatch where each block is accessed trough a series of if and else conditions,

• a goto dispatch which uses direct gotos to jump between blocks,

• an indirect dispatch which uses indirect gotos through a jump table to select blocks,

• a call dispatch where each blocks becomes its own function for which indirect calls through a

table of function pointers are used for selection.

Example 2.1.13. Figure 2.5 illustrates the control-flow graph of a binary search function without

any obfuscation applied. Figure 2.6 shows the same function with control-flow flattening. In the

second illustration, we can observe a dispatcher combined with several if and else structures in

order to select the next bloc of instructions to be executed.

Figure 2.5: Control-flow graph of a binary

search function without any obfuscation

transformation.

Figure 2.6: Control-flow graph of a binary

search function after control-flow flattening.
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Name scrambling. Modifying identifier names, such as the ones of variables or functions, and

replacing them with random strings is a well known application of source code obfuscation.

Example 2.1.14. Many examples of name scrambling can be found. The illustration in Listing 2.11

is taken from an cryptographic white-box implementation of the AES algorithm, submitted during

the 2019 WhibOx challenge of the CHES conference.

1 #define _ for

2 #define __ ++

3 #define ___ +=

4 #define ____ +

5 #define _____ (

6 #define ______ )

7 #define _______ {

8 #define ________ }

9 #define _________ *

10 #define __________ !=

11 #define ___________ ->

12 #define ____________ ,

13 #define _____________ [

14 #define ______________ ]

15 #define _______________ ;

16 #define ________________ ^

17 #define _________________ int

18 #define __________________ void

19 #define ___________________ char

20 #define ____________________ return

21 #define _____________________ switch

22 #define ______________________ case

23 #define _______________________ break

24 #define ________________________ unsigned

25 #define _________________________ -=

26 #define __________________________ %

27 #define ___________________________ if

28 #define ____________________________ AES_128_encrypt

29 #define _____________________________ struct

30 // [[... ... LINES REMOVED ... ...]]

Listing 2.11: Name scrambling in the challenge 21 from the 2019 CHES WhibOx contest
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Parallelized code. Initially a technique for software optimization, parallelizing code also became

common for code obfuscation. When used as a protective transformation, code parallelization

makes the program more difficult to understand compared to any sequential code [45]. In addition,

the insertion of useless processes into a program or the parallelization of portions of code that are

not mutually dependent often raises additional complexity for analyses.

Removing library calls. The invocations of libraries used in programming languages provides to

a reverse-engineer useful information. This is due to the fact that their names cannot be obfuscated.

Nonetheless, these calls can be omitted by replacing generic libraries with custom copies, thus

allowing their obfuscation. Dynamically tying libraries into the program or merging several small

libraries into a large one is also seen as one application of library call obfuscation.

2.1.4.3 Dynamic code obfuscation

The dynamic code obfuscation transformations aim at modifying the code during execution in

order to prevent static analysis approaches. In the followings, we introduce some of the existing

dynamic obfuscation transformations.

Packing and encryption. Hiding a code by encoding or encrypting it is a dynamic code obfus-

cation transformation which is also referred to as packing. Not only used by legitimate software,

packing is also widely used by malicious software to avoid static analyses. Packing a binary involves

the usage of a routine that translates back the encrypted or encoded data into interpretable code,

during execution. By changing the encryption or encoding keys, a packed program code can easily

be rewritten upon distribution to complicate simple pattern matching analysis. The packing tech-

nique can also be combined with code polymorphism [135]. Such transformation is used for several

reasons. First, since packing often employs compression, this technique renders reduction of the

storage space. Second, it also employs other obfuscation transformations in order to obscure the

code. Therefore, numerous commercial packers exist such as VMProtect [189], ASPack, Armadillo,

or Themida [142]. Malware authors also widely use these tools in order to hide the malicious intents

of their code.

Several works study packing as an obfuscation transformation. Cappaert et al. [35] present a

different form of packing, where code can be decrypted at a fine granularity right before execution.

To that purpose, they use a key which is built from other code sections. Wu et al. [198] discuss a

polymorphism based concept called mimimorphism. Their approach aims at confusing the analysts

by encoding data to make them look like code. Mavrogiannopoulos, Kisserli and Preneel et al. [124]

also provide a taxonomy of transformations and packing techniques. Other work [164] surveys the

different approaches used by malwares for packing.
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Dynamic code modification. Obfuscation transformations based on dynamic code modification

conceal the code by providing a general template in memory. The latter is patched right before

its execution [45]. Therefore, evaluation methodologies based on static analysis are inefficient as

the program functionality is only available during its execution. Other works [98, 121] construct

dynamic code modification by deliberately adding incorrect erroneous of code and correcting them

just before their execution.

Environmental requirements. Riordan and Schneier [159] suggested the idea of environmental

key generation in which a cryptographic key is not placed dynamically in a binary, but constructed

from data collected from the computing environment. The program is only able to generate

the key and execute the code if a specific environmental condition is met, i.e. the activation

environment. Otherwise, no sensitive data are revealed. Therefore, similar concepts are extended

for code obfuscation. Sharif et al. [174] proposed a malware obfuscation scheme that makes the

code conditionally dependent on an external trigger value. The activated action is shielded from

dynamic analysis without the awareness of this specific value. Similar techniques can be widely

observed in malicious software.

Hardware-assisted code obfuscation. In order to enhance the resiliency of the overall applied

obfuscation transformations, hardware tokens are a solution [22, 73, 212]. The main idea is to bind

both hardware and software by making the execution of the software dependent on some hardware

token. Therefore, analyses of the software will fail without the token due to the lack of important

information (e.g. targets of indirect jumps).

68 int function(int arg){

69 int a = arg;

70 int b = 2;

71 int c = a * b;

72 return c;

73 }

74

75 /*

76 ** byte -codes equivalence:

77 ** 31 ff 00 09: mov r0 , r9

78 ** 31 01 02 00: mov r1 , 2

79 ** 44 00 00 01: mul r0 , r0 , r1

80 ** 60: ret

81 */

Listing 2.12: A simple function written in C code with its associate byte-code
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Code virtualization. Virtualization consists in the translation of a program functionality into

byte code for a specific and customized virtual machine (VM) interpreter that is integrated in the

program [77, 106]. Code virtualization can also be combined with other transformations such as

code polymorphism [6]. Other work [190] proposes a combination of fine-grained encryption and

virtualization to hide the virtual machine code from analysis. Collberg, Thomborson and Low [45]

described a variant of this concept under the term table interpretation. A similar concept by Monden,

Monsifrot and Thomborson [131] uses a finite state machine-based interpreter to dynamically map

between instructions and their semantics.

Example 2.1.15. Listing 2.12 illustrates a function written in C code, from [167], that is to be

virtualized. The disassembly of the function byte-code is listed as comments. Once the code is

compiled into the virtual machine byte-code, it must be interpreted by the virtual machine itself.

82 void virtualisation(ulong vpc , struct vmgpr* gpr){

83 while (1){

84 // Fetch and decode

85 struct opcode* i = decode(fetch(vpc));

86 // Dispatch

87 switch (i->getType ()){

88 // Handlers

89 case ADD: // byte -code 0x21

90 gpr ->r[i->dst] = i->op1 + i->op2;

91 vpc += 4;

92 break;

93 case MOV: // byte -code 0x31

94 gpr ->r[i->dst] = i->op1;

95 vpc += 4;

96 break;

97 case MUL: // byte -code 0x44

98 gpr ->r[i->dst] = i->op1 * i->op2;

99 vpc += 4;

100 break;

101 case RET: // byte -code 0x60

102 vpc += 1;

103 return;

104 }

105 }

106 }

Listing 2.13: Application of code virtualization on a function written in C code
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The sample of code illustrated by Listing 2.13 shows the virtualization of the function which

is called with an initial vpc pointing to the first opcode of the byte-code (e.g. the virtual address

of instruction mov r0, r9). Once the opcode has been fetched and decoded by the VM, the

dispatcher points to the appropriate handler to virtually execute the instruction and then, the

handler increments vpc to point to the next instruction to execute and so on until the virtualized

program terminates. As we can see, the control flow of the original program is replaced by a

dispatcher pointing on all handlers.

Anti-debugging and disassembly techniques. This class of transformations involves techniques

that prevent analyses based on disassemblers or debuggers. As an example, the use of a debuggers

can be detected using timing or latency analyses. Software breakpoints also induce specific code

modifications that can be detected. The execution of undocumented or rarely used instructions is

another approach used to confuse a tool or a human analyst [27]. M.V. Yason [204] gives an overview

of existing anti-debugging and disassembly tricks present in malware.

Example 2.1.16. Listing 2.14 shows an example from [204] of a code made to identify if a debugger

is present using the IsDebuggerPresent() API and the PEB.BeingDebugged flag.

107 // call kernel32!IsDebuggerPresent ()

108 call [IsDebuggerPresent]

109 test eax ,eax

110 jnz .debugger_found

111

112 // check PEB.BeingDebugged directly

113 mov eax ,dword [fs:0x30] // EAX = TEB.ProcessEnvironmentBlock

114 movzx eax ,byte [eax+0x02] // AL = PEB.BeingDebugged

115 test eax ,eax

116 jnz .debugger_found

Listing 2.14: Examples of anti-debugging tricks written in assembly language

However, these checks are obvious thus many obfuscators, such as packers, add other layers of

obfuscation upon them to enhance the stealth of the anti-debugging and disassembly tricks.
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2.2 Deobfuscation

The term deobfuscation encompasses all techniques aiming at evading the protections introduced

previously by obfuscation. Namely, the deobfuscation process can be seen as:

1. Reverting applied obfuscation transformations;

2. Simplifying the obfuscated code;

3. Collecting information about the obfuscated code.

There exist many approaches and methodologies to deobfuscate programs. In the following sections,

we present each approach, namely static, dynamic, and symbolic deobfuscation techniques.

2.2.1 Static deobfuscation techniques

Static analysis is widely used for code optimizations, finding or proving the absence of bugs, and

also for reverse-engineering. More generally, it refers to any program analysis that is performed by

inspecting the executable code or a disassembled representation of a program, without executing

it. Thus, static analysis is also used for software deobfuscation since it deduces information about

a program by reasoning on the possible executions it has. We say that a static analysis method is

considered to be sound if it is guaranteed that it includes all possible execution path of the program.

However, because of undecidability questions, static analysis can only achieve soundness by over-

approximating, i.e. by generalizing the concrete program behavior thus accepting execution paths

that will not occur in real executions. Many static data-flow analyses have been proposed to address

obfuscation transformations, e.g. data dependency, alias analysis, and abstract interpretation [138,

150]. However, they are prone to limitations, as static analysis that can be thwarted by obfuscation

techniques such as control-flow flattening, which forces the analysis to lose precision.

2.2.2 Dynamic deobfuscation techniques

Dynamic analysis is an important part of todays forensic and malware analysis [62]. It studies real

executions of a program, either online (i.e. during the execution) or offline (i.e. using a recorded

trace). Dynamic analysis is conceptually dual to static analysis, as a sound dynamic analysis

considers a subset of all execution paths of a program and is therefore an under-approximation.

Thus, each observed behavior is guaranteed to also occur during at least one execution. Nevertheless,

if the number of possible traces in a program is too large to be analyzed exhaustively, dynamic

analyses can miss certain execution paths. Also known as code coverage issue, this limitation is

usually inevitable due to undecidability results. Thus, while static analysis balances precision

against cost, dynamic analysis compromises coverage against cost.
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2.2.3 Symbolic deobfuscation techniques

State-of-the-art deobfuscation methodologies are nowadays based on symbolic execution tech-

niques. While other existing approaches are essentially divided into static and dynamic methods,

symbolic approaches offer a valuable balance between both. Given a path in a program, the main

insight of symbolic execution techniques is the possibility in many cases to compute a formula (i.e.

a path predicate) such that a solution to this formula is a test input exercising the considered path.

Then, exploring all the bounded paths of the program allows intensive testing. First introduced

by King [105], symbolic execution techniques re-emerged when it was mixed with concrete execu-

tion [173, 196] and with the satisfiability modulo theories (SMT) solvers. Thus, symbolic execution

has successfully been applied in a wide range of security applications, such as vulnerability and

malware analysis [10, 85]. More precisely, static symbolic execution techniques capture the seman-

tics (i.e. logic) of a program by assigning a generic value to all inputs. An interpreter is then used to

trace the program, which uses symbolic values for the calculations rather than obtaining concrete

values as a normal execution would. A symbolic state S is built and consists in a set of symbolic

expressions S for each variables (e.g. registers, memory, flags, etc.). Several techniques exist for

symbolic execution [12], however, it suffers from the same limitations listed for static deobfuscation

techniques. Thus, dynamic symbolic execution (DSE) [173, 196], also known as concolic execution,

is widely used for deobfuscation purposes. It takes the advantages of a concrete execution path to

perform the symbolic execution and provides the following conveniences:

• the sound execution of the program since the paths are sure to be feasible in practice;

• the next instruction executed is always known;

• all loops are unrolled.

Dynamic symbolic execution runs and interprets a program using its concrete state, as opposed

to static symbolic execution which simulates the execution of the program with symbolic values.

Then, SMT solvers are used to generate new concrete state and explore more paths to enhance

the coverage. Recently, DSE methodologies are used to either extract the protected code [94] or to

reduce the complexity of a control-flow graph of an obfuscated binary [201], contributing in this

way to an improved analysis of obfuscated programs.

We discuss next existing evaluation methodologies for obfuscated programs. First, we introduce

techniques that are specific to some transformations. Finally, we describe generic deobfuscation

methodologies.
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2.2.4 Existing evaluations techniques

In this section we provide an overview of existing state-of-the-art evaluation, i.e. deobfuscation,

methodologies created for specific obfuscation transformations. We can see the evaluations tech-

niques as two different approaches:

• the use of advanced analysis techniques (e.g. symbolic execution) against general transforma-

tions to simplify a program or recover key parts of the implemented algorithm,

• the use of specific analysis techniques to target a precise obfuscation transformation.

2.2.4.1 Evaluation of opaque predicates

The insertion of opaque predicates is a commonly used obfuscation transformations. Thus, they

are the target of several published attacks, each of them having their strengths and limitations as

described below.

Probabilistic check is a first deobfuscation methodology which consists in executing n times a

program segment to see if a predicate is invariant [213]. This technique is however prone to high

false positives and negatives results.

Pattern matching attack (otherwise called dictionary attack) [63], consists in taking obfuscated

predicates from a program being attacked and pattern-matches the source code against known

examples. However, the possibility to build variants of opaque predicates that cannot be matched

using dictionary attacks implies a high false negative rate.

Abstract interpretation [150] employed by static analysis is another technique that provides

correctness and efficiency in the deobfuscation of specific constructions of opaques predicates.

Another recently introduced technique [23] uses program synthesis. Originally made for the

deobfuscation of virtualized code, this approach has been successful for the simplification of MBA

expressions.

Current state-of-the-art deobfuscation approaches use automated proving [17, 129]. Udupa,

Debray and Madou [187] use static path feasibility analysis based on the SMT solvers to determine

the reachability of execution paths. However, their methodology is prone to the limitations of static

analysis. Thus, more recent approaches are based on dynamic symbolic execution [17].

Yet, automated proving based analysis, either static or dynamic, may suffer from symbolic exe-

cution limitations as well as SMT solvers restraints. Indeed, it has been showed that SMT solvers fail

against MBA opaque predicates [211], whereas symbolic execution can be slowed down effectively,

or even misguided, as in the case of alias-based constructions or more recent opaque predicates

constructions such as the bi-opaque ones [200].
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Overall, automated proving is currently considered the most effective methodology against

opaque predicates.

2.2.4.2 Evaluation of control-flow flattening

The control-flow flattening obfuscation transformation aims at obscuring the control-flow logic

of a program by placing the basic block at the same nesting level. In that way, each basic blocks

will have the same set of predecessors and successors. Thus, the actual control-flow is preserved

using a selection of dispatcher variables. Many constructions exist for the selection methodology of

the control-flow flattening. However, several works have presented deobfuscation and evaluation

techniques against them.

Udupa, Debray and Madou [187] present in their work different analyses and program trans-

formations that are, according to them, useful against control-flow flattening. They first propose

to use static path feasibility analysis, which refers to a constraint-based static analysis that deter-

mines whether an execution path is reachable, i.e. feasible. Such analysis is used for different

obfuscation techniques such as opaque predicates, however the subtility of the analysis resides in

the construction of the path constraints for which several variants exists. They use a conservative

approximation, taking into account the effects of arithmetic operations on the values of variables

used and propagating the information along a single execution path to verify its feasibility. However,

their main approach consists in an hybrid methodology that combines the conservative static analy-

sis with dynamic analysis. The latter is used to get an under-approximation of the set of control-flow

edges taken during execution on which they can apply the static path feasibility analysis. They also

propose an alternative in which they start with an over-approximation with the static path feasibility

analysis and then use dynamic analysis to remove the paths that are not actually taken at runtime.

More recently, the works of Yadegari and Debray [202] and Yagedari et al. [203] propose to

use a concolic approach combined with taint analysis at a bit-level of granularity to avoid the

existing limitations. Since analyses based on symbolic execution are important when dealing with

obfuscated programs, their precision is essential as well. Identifying too many execution paths

can lead to path explosions, while missing some execution paths can leads to code coverage issues.

In their methodology, they first start by identifying input and output values, namely, any value

that is obtained from the command line or defined by a routine (i.e. an input) and any value that

is defined by an instruction or read by a routine (i.e. an output). They also use a combination

of taint propagation and control-dependence analysis to identify instructions within execution

traces, which are related the input and output values. Afterwards, semantics-preserving code

simplifications are applied, in order to use the new simplified trace for the generation of a reduced

control-flow graph. Simplifications on the control-flow graph are also applied in order to eliminate

spurious execution paths. Figure 2.7 illustrates the application of their methodology on a binary
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search algorithm obfuscated using ExeCryptor [180].

Figure 2.7: Control-flow graph reduction results from [203]

2.2.4.3 Evaluation of code virtualization

Code virtualization protects a program from reverse engineering by compiling it into byte-code,

for a randomized virtual architecture, and with a corresponding interpreter. Thus, most static

analyses are inefficient against this kind of obfuscation transformations, where only the code of the

interpreter is directly visible. Rolles [162] introduced how to analyze and de-obfuscate programs

obfuscated with code virtualization by means of manual attacks. Guillot and Gazet [79] present how

to use an intermediate representation to convert the virtual machine byte-code into its original

assembly instructions. Moreover, they illustrate that the reverse engineering of the complete

interpreter is not required when using symbolic execution. However, the approaches of both Rolles

as well as Guillot and Gazet are dependent to minor modification of the obfuscation transformation

scheme, and may be time consuming due to the lack of automation.

Another static analysis methodology is given in [103, 104]. These works lift a location-sensitive

analysis to be used in the presence of virtualization-based obfuscation schemes.

Dynamic analyses also exist for the evaluation of code virtualization. Coogan, Lu and Debray [50]

show how to use execution traces with symbolic execution and taint analysis on predefined values,

to reason about the inner workings of a protected binary. For that, they focus in the interaction of
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the program with its environment in the form of system calls. Therefore, they use taint tracking

of the system call values and trace them back throughout the execution. Since the effect of code

virtualization is similar to control-flow flattening regarding the dispatching (i.e. selection) loop, the

work of Yadegari et al. [203] is also used to evaluate both. Their approach is similar to the Coogan,

Lu and Debray work as it is based on dynamic analysis, concolic execution and taint tracking. Note

that, they taint the input and output values as described in the previous paragraph (c.f. Section

2.2.4.2). Other works [97] are based either on hybrid analysis (i.e. combining both existing static

and dynamic approaches) or propose a methodology to de-obfuscate and recompile the simplified

code [167] using symbolic path exploration and taint analysis. However, these approaches suffer

from the dynamic analysis limitations, such as code coverage.

Therefore, recent work uses program synthesis [23] to obtain the semantics of the virtualized

code. This work demonstrate how Monte Carlo Tree Search [31] can be used to compute a simplified

expression that represents a deobfuscated version of the input.

2.2.4.4 Generic evaluation techniques

Since obfuscation-specific evaluations techniques may have the limitation to be only effective

against previously-seen obfuscation transformations, generic deobfuscation methodologies have

been introduced.

The first step of most generic deobfuscation methods consists in generating execution traces

of a protected binary. Using forward and backward taint analysis [172], only the instructions

manipulating the inputs are collected. Based on these traces, an initial control-flow graph is built,

which can then be completed using dynamic symbolic execution combined with a constraint solver.

A first generic approach has been established by Yadegari et al. [203]. We presented their method-

ology as an evaluation methodology against control-flow flattening transformation. However, since

they make only few assumptions about the analyzed code, their semantic approach is considered

generic in order to face previously unseen obfuscation techniques. Yadegari and Debray [202], in

their methodology, use control dependency analysis in order to handle obfuscation transformations

such as implicit flow, or call/return tampering. Code optimizations and simplifications are then

applied on the generated traces in order to build a reduced control-flow graph.

More recent approaches for a generic deobfuscation also emerged (e.g. [167]). They are based on

the same principal, namely, that deobfuscation is a problem of identifying and simplifying the code

that affects the input to output transformation. However, as presented before, this methodology

differs in the manner that they capture and map the semantics of the program. Salwan et al. [94],

[167] use transformations at the LLVM intermediate representation [114], which allow them to build

a deobfuscated binary directly from the collected traces. Their approach succeeds against most

of the Tigress challenges [43]. A similar approach from Garba and Favaro [75] exploits the LLVM
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intermediate representation with existing optimizations passes to provides a generic deobfuscation

framework which has been shown efficient against existing licensed obfuscators.

Yet, the main drawback is that generic deobfuscation techniques based on DSE often needs

execution traces, which requires inputs generation. This may be time consuming and make code

coverage and scalability the main issue of those techniques. Moreover, in the context of malware

analysis, DSE is confronted to network event based components and conditions (e.g. connection to

a command and control server) that makes the deobfuscation more difficult in terms of scalability.

Finally, recent works propose to counter DSE-based deobfuscation approaches [13, 140]. For

example, Banescu et al. [13] propose novel obfuscation transformations (e.g. range dividers) that

deliberately explodes the number of paths through a function, thus increasing the search space

for dynamic symbolic execution engines. They also propose new ways of improving existing

obfuscation transformations against these attacks by altering the functionality property of an

obfuscator definition (c.f. Section 2.1.3). More generally, their methods exploit existing issues of

symbolic execution, e.g. path explosion, path divergence, and complex constraints [5].

2.3 State-of-the-art tools

In this section we present some state-of-the-art obfuscation and deobfuscation tools. We start

by presenting publicly available and well-known obfuscators used in this thesis, along with the

obfuscation transformations that they can generate.

2.3.1 Obfuscators

The role of an obfuscator is to add layers of transformation in a code. To this end, several possibilities

exists:

1. The user can apply obfuscation transformations on source code for portability;

2. The user can apply obfuscation transformations during compilation;

3. The user can apply obfuscation transformations on the binary.

Most of the existing obfuscators use the first or the second solution. In the followings, we first

present the Obfuscator-LLVM that applies the transformations during compilation using the LLVM

intermediate language. Afterwards, we introduce Tigress that works directly on the source code,

generating a new obfuscated version of it.
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2.3.1.1 Obfuscator-LLVM

Obfuscator-LLVM [96] (OLLVM) is a project initiated in June 2010 by the information security group

of the University of Applied Sciences and Arts Western Switzerland of Yverdon-les-Bains (HEIG-VD).

It provides an open-source fork of the LLVM compilation suite able to provide increased software

security through code obfuscation and tamper-proofing. They work at the intermediate repre-

sentation level. OLLVM is compatible with several programming languages and target multiple

platforms.

Obfuscator-LLVM supports three obfuscation transformations, as described in the following

paragraphs.

Bogus control-flow. The bogus control-flow obfuscation transformation of OLLVM modified a

function call graph by adding a new basic block before the current original one. The generate basic

block contains an invariant and thus bloc-centric opaque predicate.

Instruction substitution. In order to bring diversity into a program, instruction substitution aims

at replacing standard binary operators (e.g. addition, subtraction, boolean operators) by functionally

equivalent ones. The substitution is generated as a more complicated sequences of instructions.

Control-flow flattening. As presented in Section 2.1.4, control-flow flattening aims at obscuring

links between basic-blocks, by leveling-out each basic blocks. OLLVM algorithms fully flattens the

control-flow and uses an if-nest based construction.

2.3.1.2 Tigress

Tigress is a diversifying virtualizer and obfuscator for the C language. It supports many novel de-

fenses against both static and dynamic reverse engineering and de-virtualization attacks. Tigress

is freely available, with a large collection of obfuscation transformations. The obfuscator oper-

ates on the C language, at the source code level. In particular, Tigress protects against static

de-virtualization by generating virtual instruction sets of arbitrary complexity and diversity, by

producing interpreters with multiple types of instruction dispatch, and by inserting code for anti

alias analysis. Tigress protects against dynamic de-virtualization by merging the real code with

bogus functions, by inserting implicit flow, and by creating slowly-executing re-entrant interpreters.

Tigress implements its own version of code packing through the use of runtime code generation.

Finally, Tigress dynamic transformation provides a generalized form of continuous runtime code

modification.

The following paragraphs presents the obfuscation transformations that can be generated with

Tigress.
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Major transformations. Tigress can generate several major transformations, mainly to prevent

static analysis of the code. These transformations are the followings:

Virtualize: Code virtualization, or Virtualize, turns a functions into an interpreter. The byte-

code language of the interpreter is specialized. Tigress generate this transformation by first

constructing type-annotated abstract syntax tree (AST) from the input C code. Based on the AST,

it generates control-flow graphs of instruction trees. Then, Tigress selects a random instruction

set architecture (ISA) and generates a byte-code program specialized for the input function. The

dispatch methodology is also randomly selected, before generated the obfuscated output program.

Tigress supports different mechanisms in order to generate an ISA with a high degree of

diversity and stealth, either statically or dynamically. Moreover, the dispatch method selection can

be made with different constructions, such as switch-based, direct, indirect or call-based dispatch.

Jit: The Jit transformation is an example of runtime code generation, as presented in Section

2.1.4.3. It translates a function F into a new function F ′ which consists in a sequence of intermediate

code instructions. With such, when F ′ is executed, F will be dynamically compiled to machine code.

Jit Dynamic: Based on the previous Jit transformation, Tigress propose a dynamic variant

which continuously modifies and updates the jitted code during execution.

Supporting transformations. In order to reinforce major transformations, Tigress also provides

supporting techniques as describe in the followings.

Flatten: The Flatten transformation apply control-flow flattening on a given function. As

opposed to OLLVM, Tigress allows more diversity. First, it propose several constructions for the

dispatch method, such as switch, goto, indirect or call-based techniques. Second, flattened basic-

blocks can be split-up, and their order randomized. Tigress also supports encodings and the

insertion of opaque predicates in order to calculate the next basic-block to reach, or the conditional

branches generated.

Merge: The Merge transformation combines multiple functions into one. The transformation

also merges the argument list and the local variables of targeted functions. By doing so, an additional

argument is added in order to select the desired function to be called and executed.

Split: As opposed to the Merge transformation, Tigress allows to split pieces of function into

their own functions. Such transformation can be useful to bring more stealth on large obfuscated
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function. By dividing them into smaller pieces, they become less conspicuous. Tigress supports

different splitting methods for this transformation.

RndArgs: The RndArgs transformation randomize the order of arguments to a function and

can also add bogus ones.

AddOpaque: Tigress can generate opaque predicates using the AddOpaque transformations.

It supports many invariant constructions, e.g. structured-based, input-based or environment-based,

as well as two-ways opaque predicate types. Moreover, when combined with encodings, Tigress

opaque predicates can be formed as mixed-boolean and arithmetic constructions.

Encodings: Tigress implements many types of encoding transformation, namely Encode-

Data, EncodeLiterals and EncodeArithmetic. The EncodeData transformation replace integer vari-

ables with non-standard representations. The goal is that a variable real value is never revealed

until it is printed or it escapes the program. The EncodeLiterals transformation obfuscate integers

and string literals. It can also replace them with opaque expressions. Finally, the EncodeArithmetic

transformation replace integer with more complex expressions, often combining arithmetic and

boolean operators.

Anti-analysis transformations. In order to strengthen the obfuscated code against existing de-

obfuscation analyses, Tigress proposes several transformations. First, the AntiBranchAnalysis

makes harder for automated static tools such as disassemblers to determine the target of branches

in the code. Transformations such as AntiAliasAnalysis and AntiTaintAnalysis disrupt static or static

analysis tools that make use of, respectively, inter-procedural alias analysis or taint analysis. Finally,

Tigress allows the used API calls to be hidden using the EncodeExternal transformation.
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2.3.2 Deobfuscation tools

In this section we discuss some of the tools that can be of use when reverse engineering or evaluating

obfuscated binaries. The following list is not exhaustive, but based on tools studied or used in this

thesis.

2.3.2.1 Interactive DisAssembler

Interactive DisAssembler3, mainly known as IDA, is the state-of-the-art reverse engineering tool [61].

It is widely used for software reverse engineering, with built-in command languages. IDA supports a

number of executables formats for variety of processors and operating systems. Moreover, IDA is

used by a wide community of analysts that contribute to the tool by creating plug-ins that extend

the disassembler functionality even further. Among these plug-ins, we can find:

• Optimice4: This plug-in enables you to remove some common obfuscations (e.g. dead code,

jmp removal) and rewrite code to a new segment.

• VMAttack5: Static and dynamic virtualization-based packed analysis and deobfuscation.

• HexRaysDeob6: A Hex-Rays microcode API plugin breaking an obfuscating compiler used to

create an in-the-wild malware family.

• BinCAT 7: BinCAT is a static Binary Code Analysis Toolkit, designed to help reverse engineers,

directly from IDA.

Many other plug-ins exists for various uses and applications. IDA also possesses a decompiler8 for

several architectures (e.g. x86-x64, ARM and PowerPC). However, when dealing with obfuscated code

IDA may sometimes face some issues. In this thesis, our contributions are mainly implemented as

plug-ins for IDA. However, there exist other tool for the same applications such as Hopper9, Binary

Ninja10, OllyDbg11, radare212, CFGRecovery (Insight Framework)13 or Ghidra as introduced

in the following paragraph.

3https://www.hex-rays.com/products/ida/
4https://code.google.com/archive/p/optimice/
5https://github.com/anatolikalysch/VMAttack
6https://www.hex-rays.com/contests/2018/index.shtml
7https://github.com/airbus-seclab/bincat
8https://www.hex-rays.com/products/decompiler/
9https://www.hopperapp.com/

10https://binary.ninja/
11http://www.ollydbg.de/
12https://rada.re/r/
13https://insight.labri.fr/
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2.3.2.2 Insight Framework

The Insight Framework is made for binary analysis, with several purposes such as binary verifica-

tion, reverse-engineering, binary test-cases extractions and decompilation [18, 39]. It also contains

the CFGRecovery tool which aims at recovering a program control-flow and any information that

can be rebuilt in under-approximation.

2.3.2.3 Ghidra

Ghidra14 is a newly release reverse enginering tool made by the US National Security Agency.

Ghidra software reverse engineering framework is a full-featured, high-end software analysis tools

that enable users to analyze compiled code on a variety of platforms including Windows, Mac OS,

and Linux. Capabilities include disassembly, assembly, decompilation, graphing, and scripting,

along with hundreds of other features. Ghidra supports a wide variety of processor instruction sets

and executable formats and can be run in both user-interactive and automated modes. Users may

also develop their own Ghidra plug-in components and scripts using Java or Python

2.3.2.4 Metasm

Metasm15 is an open source framework developed by Yoann Guillot. It is an open source software for

manipulating binary executable files and covering a wide range of actions, allowing the compilation

of source files as well as the disassembly of binaries, through process debugging and shell-code

analysis.

2.3.2.5 Miasm

Miasm16 is a reverse engineering framework developed by Fabrice Declaux. It offers PE and ELF ma-

nipulation, assembling and disassembling. The framework possess its own intermediate language

called MiasmIR, thus most common instructions have their semantics encoded as a list of MiasmIR

expressions. One of the main motivations behind the design and implementation options of this

framework is to circumvent current limitations of existing malware and binary programs analysis

solutions. All the contributions of this thesis are based on MiasmIR and Miasm symbolic execution

engine.

14https://ghidra-sre.org/
15https://github.com/jjyg/metasm
16https://github.com/cea-sec/miasm
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2.3.2.6 Angr

Angr17 is a platform-agnostic binary analysis framework developed by the Computer Security Lab

at UC Santa Barbara and their associated CTF team, Shellphish. Angr is a suite of python libraries

that allows user to load and binary and process several analyses on it such as:

• Disassembly and intermediate-representation lifting;

• Program instrumentation;

• Symbolic execution;

• Control-flow analysis;

• Data-dependency analysis;

• Value-set analysis (VSA).

Angr was also one of the underpinnings of Shellphish’s Cyber Reasoning System for the DARPA Cyber

Grand Challenge, enabling them to win third place in the final round.

2.3.2.7 Triton

Triton18 is a dynamic binary analysis (DBA) framework. It provides internal components like a

Dynamic Symbolic Execution (DSE) engine, a dynamic taint engine, AST representations of the x86,

x86-64 and AArch64 Instructions Set Architecture (ISA), SMT simplification passes, an SMT solver

interface. As previously discussed, Triton succeeds against most of the Tigress challenges [43].

2.3.2.8 BINSEC

BINSEC19 is a developed tool by the CEA List in collaboration with Verimag and LORIA. The general

objective of the open-source platform is to encourage the next generation of binary-level analysis

tools. The open-source framework aim at filing bringing together formal methods over executable

code and binary-level security analyses. Thus, it is based on a binary-level semantic approaches.

The BINSEC framework targets domains such as vulnerability analyses, malware analyses, code

protection and binary-level verification.

In the following chapters, each contributions of this thesis are introduced. We start by presenting

DoSE, our deobfuscation methodology based on semantic equivalence.

17https://angr.io/
18https://triton.quarkslab.com/
19https://binsec.github.io/
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Chapter 3

Deobfuscation based on Semantic

Equivalence
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In order to defeat recent obfuscation techniques, state-of-the-art generic deobfuscation method-

ologies are based on dynamic symbolic execution (DSE). However, DSE suffers from limitations such

as code coverage and scalability. In the race to counter and remove the most advanced obfuscation

techniques, there is a need to reduce the amount of code to cover. To that extend, we propose in

this chapter our first contribution which is a novel deobfuscation approach based on semantic

equivalence, called DoSE. With DoSE, we aim to improve and complement DSE-based deobfusca-

tion techniques by statically eliminating obfuscation transformations (built on code-reuse). This

improves the code coverage. Our method’s novelty comes from the transposition of existing binary

diffing techniques, namely semantic equivalence checking, to the purpose of the deobfuscation

of untreated techniques, such as two-way opaque constructs, that we encounter in surreptitious

software. In order to challenge DoSE, we used both known malwares such as Cryptowall, WannaCry,

Flame and BitCoinMiner and obfuscated code samples. Our experimental results show that DoSE

is an efficient strategy of detecting obfuscation transformations based on code-reuse with low rates

of false positive and/or false negative results in practice, and up to 63% of code reduction on certain

types of malwares
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3.1 Introduction

Recent binary deobfuscation techniques [17, 50] based on dynamic symbolic execution emerged

in order to face obfuscation techniques such as code virtualization [141, 142, 189] or control-flow

flattening [115, 191]. Generic deobfuscation methods have appeared in order to deobfuscate

protected binaries, as introduced in Chapter 2. Such techniques can either extract protected code

[94] or reduce the complexity of a control-flow graph of an obfuscated binary [201], contributing in

this way to an improved analysis.

3.1.1 Motivation

Generic deobfuscation techniques based on DSE often needs execution trace, which requires inputs

generation. This may be time consuming and make code coverage and scalability the main issues of

those techniques. Moreover, in the context of malware analysis, DSE is confronted to network event

based components and conditions (e.g. connection to a command and control server) which makes

the deobfuscation more difficult in terms of applicability. Besides, novel obfuscation techniques

exploit these limitations to further hinder the analyses. Their goal is to divide the number of paths,

forcing dynamic symbolic execution engines to slow down when trying to cover all the code.

3.1.2 Contributions

We propose a novel deobfuscation method based on semantic equivalence, called DoSE. The novelty

of our contribution is built on the application of diffing methods based on semantic equivalence to

deobfuscate binaries. Our transposition of existing binary diffing techniques allows us to provide

a concrete methodology to statically detect and remove protections based on code-reuse. Some

of these protections are not handled by current deobfuscation methodologies, while others aim at

preventing generic ones. Our approach, in contrary to the current techniques, threats also novel

obfuscation techniques based on code-reuse and detects two-way opaque predicates constructs for

which no deobfuscation methodology exists. We implemented DoSE as an IDA plug-in and applied

it to different families of recent malwares to show how it reduces significantly the amount of code to

cover. We also discuss how it can be used to combine and complete existing generic deobfuscation

techniques.
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We present our first contribution as follows:

• First we present background information about obfuscation techniques based on code-reuse

such as range dividers, highlighting the need to analyze and deobfuscate them. We also

discuss the utility of such methods in other use cases such as white-box cryptography (Section

3.2).

• Second, we propose our methodology of Deobfuscation based on Semantic Equivalence (i.e.

DoSE). Formal definitions of our core methodology are given (Section 3.3) along with some

improvements which make DoSE more efficient and more precise (Section 3.3.3).

• Third, we present concrete applications of DoSE, namely control-flow graph reduction (Section

3.4.1), two-way opaque predicate removal (Section 3.4.2) and cloned sub-functions detection

(Section 3.4.3). Each application contains a detailed explanation of our approach and an

evaluation on real-world malwares.

• Fourth, we introduce our implementation of DoSE as an IDA plug-in with with illustration of

its usage (Section 3.5).

• Finally, we present a discussion on our perspectives and conclusions regarding DoSE (Sections

3.6.1 and 3.6.2).

3.2 Background

In this section, we will study code cloning and its combination with obfuscation techniques such

as range dividers [13]. We will explain why these transformations cannot be detected by existing

techniques and how DoSE can contribute. Then, we will present the benefits of such detection to

the simplification of control-flow graphs and the removal of bogus branch functions. In the next

sections, we will also focus on opaque predicates [47, 144] and more precisely on two-way constructs

since most recent opaque predicate detection analyses and tools [17, 128] do not handle such type

of constructions.

3.2.1 Range dividers

Range dividers is a novel obfuscation transformation, introduced by Banescu et al. [13], which

exploits the limitations of generic deobfuscation techniques, such as path explosion, code coverage

and complex constraints. Range dividers are input-based condition branches that cause symbolic

execution engines to explore more feasible paths, thus slowing it down.

However, in order to preserve the functionality property of an obfuscator, equivalent instruction

sequences are used in all branches of range dividers, as illustrated in Listing 3.1. Such construction
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illustrates that being able to detect and merge cloned blocks allows the deobfuscation of these

obfuscation transformations, along with reducing the number of paths to explore and the number

of inputs to generate. These properties are crucial for the construction of a generic deobfuscation

technique in order to have a wide code coverage and prevent too much slowdown from the symbolic

execution engine.

1 unsigned char *str = argv [1];

2 unsigned int hash = 0;

3

4 for(int i=0; i<strlen(str); str++, i++) {

5 char chr = *str;

6 if (chr > 42) {

7 hash = (hash << 7) ^ chr;

8 // semantically equivalent to else case

9 }

10 else {

11 hash = (hash * 128) ^ chr ;

12 // semantically equivalent to if case

13 }

14 }

15

16 if (hash == 809267){

17 printf ("win \n");

18 }

Listing 3.1: S. Banescu et al. illustration of range dividers [13]

Our approach aims at removing this novel obfuscation technique by detecting and grouping clones.

3.2.2 Two-way opaque predicates

Opaque predicates [47, 128, 144] are a fundamental illustration of the implication of code-reuse in

software obfuscation. Such transformations are defined as expressions whose values are known by

the defender, but hard to deduce for an attacker. There are different kinds of opaque predicates.

Collberg, Thomborson and Low defined P F , P T and P ? as being opaque predicates that are always

evaluated to false, true or unknown (either true or false) respectively. The latter construction of

opaque predicates P ? are called two-way opaque predicates and are a current limitation to state-

of-the-art analysis and tools that only handle predicates of type P T and P F . Moreover, since they

use constraint solvers to check feasibility or infeasibility of each path, they are currently limited to

arithmetic-based predicates, while other types of opaque predicates (e.g. MBA-based [211]) cannot
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be analyzed.

Figure 3.1: Example of a two-way opaque predicate.

Figure 3.1 illustrates an example of a two-way predicate where the value of (∗p)%2 depends on

the allocated memory area. The predicate can be evaluated to either true or false. However, both

branches are semantically equivalent, meaning that no matter the value of the predicate, a same

entry will produce the same output for both branches.

We will present how semantic-based comparison can be extended to detect and remove such

constructions of opaque predicates which are currently not handled by state of the art deobfuscation

techniques [17, 128].

3.2.3 Binary diffing techniques

Detecting clones between binaries has a wide variety of applications such as software develop-

ment [146, 194], software plagiarism detection [118, 193], vulnerabilities exploration [32, 137, 139]

and malware variant detection [3, 65, 89]. Different comparison approaches have been published,

either syntax-based (i.e. text-based) for example by measuring instruction sequences [134] or using

byte n-grams [132], [99], metrics-based [65, 165] or structure-based [110, 214].

While the previous comparison techniques can be defeated with obfuscation or even with

code optimizations, more recent methods use semantic-based approaches since, by definition, an

obfuscation transformation should preserve the logic of the original program.

3.2.3.1 Semantic-based comparison

Semantic-based comparisons methods disassemble the binaries to be compared before extracting

the logic of their instructions (i.e. the semantics) using an intermediate representation of the
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assembly language. From this intermediate representation, one first analyzes the basic blocks1 to

express their inputs to outputs behavior using symbolic execution [105]. Once the input to output

expressions are generated, a constraint solver is used to check the equivalence between the basic

blocks. This method has been first introduced by Gao, Reiter and Song [74] as a static analysis in

order to detect plagiarism between a set of binaries. It has since been modified, optimized [113] and

extended to dynamic analysis combined with taint techniques, either to accept more noise [118], or

to be more efficient [127, 130].

Our work is built on these approaches for the purpose of deobfuscating binaries. The novelty of

DoSE comes from the transposition and a combinations of binary diffing techniques, used statically

and optimized for the purpose of deobfuscation. The following section presents our methodology.

3.3 DoSE: Deobfuscation based on Semantic Equivalence

In this section, we present a new method for deobfuscation using semantic equivalence compar-

isons. We call our methodology DoSE, for Deobfuscation based on Semantic Equivalence. DoSE

consists in several steps: syntactic equivalence, semantic equivalence and conditional equiva-

lence. We start by formalizing syntax-based basic blocks comparisons to afterwards introduce

the semantic-based approach. Then, we present our improvements based on conditional equiva-

lence checking to prevent false positives, combined with normalization and optimizations steps

to eliminate false negatives, and prevent too much slowdown. DoSE, in one hand simplifies and

deobfuscates the code and on the other hand, makes generic dynamic symbolic execution based

deobfuscation techniques more scalable and efficient.

3.3.1 Syntax-based basic blocks comparison

Syntax-based comparison relies on the assembly code of the basic blocks. In order to define the

syntactic equivalence between two basic blocks, we start by defining the inclusion of a basic block

into another. Furthermore, we define an inclusion score in order to quantify the number of included

instructions. In the following definitions we use the notations syn for syntax, sem for semantic and

cond for conditional.

Definition 3.3.1. Syntactic Inclusion: Let B and B ′ be two basic blocks and let In be the n-th instruc-

tion of B and Im the m-th instruction of B ′, m, n ∈N. We say that B is syntactically included in B ′ if

for all In ∈ B, there exists a unique Im ∈ B ′ such that Im =syn In , with m = n, and we set B ⊂syn B ′.

In other words, Im =syn In with m = n means that we have exactly the same instruction at the

same position (i.e. same order).

1A basic block is a straight-line code sequence with only one entry point and one exit point.
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Definition 3.3.2. Syntactic Inclusion Score: In order to measure the inclusion of two basic blocks

B and B ′, we need to define a score. Let σsyn(B ,B ′) be the syntactic inclusion score of B compared

to B ′, N the number of equivalent instructions between B and B ′, and |B | and |B ′| the number of

instructions of B and B ′ respectively. Then σsyn(B ,B ′) = N
|B | . As an example, σsyn(B ,B ′) = 1 means that

all the instructions of B are included in B ′.

Definition 3.3.3. Syntactic Equivalence: Let B and B ′ be two basic blocks. If B ⊂syn B ′ and B ′ ⊂syn B

then we write B =syn B ′, meaning that both basic blocks are equivalent (i.e. B is a clone of B ′ and

vice versa). Syntactic equivalence between two basic blocks can also be represented by σsyn(B ,B ′) =
σsyn(B ′,B) = 1.

Obviously, such method is not resilient to obfuscation techniques. The probability that we

will find equivalent basic blocks based on their syntax may be low. However, in the context of an

evaluation, starting by simple methods is coherent since it can sometimes discard semantic-based

analysis, which requires more resources and more time.

3.3.2 Semantic-based basic blocks comparison

As opposed to the syntactic approach, comparisons based on semantic equivalence rely on an

intermediate representation of a basic block. It uses symbolic execution combined with a constraint

solver in order to verify the equivalence between the computed expressions. The inputs of basic

blocks are treated as symbols while the output of the symbolic execution returns a set of expressions

that represents the input-output relations of these basic blocks.

Definition 3.3.4. Semantic Inclusion: Let B and B ′ be two basic blocks and let I RB and I RB ′ be the

intermediate representation of B and B ′ respectively after their symbolic execution. Let XB and YB ′

be two sets of all outputs expressions of I RB and I RB ′ respectively. Let xi ∈ XB be the i -th output

expression of I RB and y j ∈ YB ′ be the j -th output expression of I RB ′ , i , j ∈N (note that i = j or i 6= j ).

We can say that B is semantically included in B ′ if ∀xi ∈ XB , ∃!y j ∈ YB ′ such that y j =sem xi and we set

B ⊂sem B ′. The semantic inclusion between two expressions is verified using an SMT solver.

Definition 3.3.5. Semantic Inclusion Score: Based on the same principle as for the syntax-based

comparison, we define a score for semantic-based basic block inclusion. Letσsem(B ,B ′) be the semantic

inclusion score function of B compared to B ′, N the number of equivalent output expressions and

|XB | and |YB ′ | the number of output expressions of B and B ′ respectively. Then σsem(B ,B ′) = N
|XB | .

Definition 3.3.6. Semantic Equivalence: As in the definition of syntactic equivalence, two semanti-

cally equivalent basic blocks, or cloned basic blocks, can be represented by σsem(B ,B ′) =σsem(B ′,B) = 1,

meaning that B ⊂sem B ′ and B ′ ⊂sem B. Our approach tries all possible pairs to find if there exists a

bijective mapping between the output expressions of B and B ′.
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In order to achieve a complete analysis of two basic blocks, we start by comparing their syntax.

If the syntax-based comparison fails, we use the semantic equivalence along with our conditional

equivalence step. The latter is an improvement which is introduced in Section 3.3.3.

3.3.3 Minimizing false positive/negative rates

As it is the case for any analysis, false positive or false negative results may occur. Our objective is to

reduce them as much as possible using optimizations and conditional equivalence. The latter is

presented in the followings.

3.3.3.1 False positive prevention: Conditional-equivalence

A false positive means that two basic blocks labeled as clones may actually have different purposes.

Since our context requires strict equivalence in order to remove cloned blocks within a function,

it is important to have a good correctness. Our semantic equivalence step is efficient in finding

functionally equivalent portion of code. However, the semantic approach is made regardless of the

memory area used, or of the function called within the blocks. Thus, in some cases, functionally

equivalent codes may use different values which may generate different outputs. Such example is

given in Figure 3.2, where the two blocks compute the same operations using different memory

areas.

Figure 3.2: Example of two functionally equivalent basic block using different memory areas, from

Vipasana ransomware.

We choose to treat such type of code as false positives. Statically, it is undecidable whether two

different memory areas used contain the same values, or two calls to different functions return the

same values. Thus, our conditional equivalence step consists in replacing all inputs (e.g. memory

areas, registers, return value of a function) by randomly generated concrete values, in order to verify

whether two blocks compute the same outputs. If it is the case, then we can conclude that the

two blocks are equivalent under a given condition, i.e. the concrete value. A similar technique is
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already used in the context of binary diffing [130]. Definitions of the conditional inclusion score

and equivalence are similar to the semantic definitions, as presented below.

Definition 3.3.7. Conditional Inclusion: Let B and B ′ be two basic blocks and let I RB and I RB ′ be

the intermediate representation of B and B ′ respectively after their symbolic execution. Let XB and

YB ′ be two sets of all outputs expressions of I RB and I RB ′ respectively. Let xi ∈ XB be the i -th output

expression of I RB and y j ∈ YB ′ be the j -th output expression of I RB ′ , i , j ∈ N (note that i = j or

i 6= j ). Let C be a concretization function which replaces all symbols of a given output expression x by

random concrete values. We say that B is conditionally included in B ′ if for all xi ∈ XB , there exists a

unique y j ∈ YB ′ such that C (y j ) =cond C (xi ) and set B ⊂cond B ′.

Definition 3.3.8. Conditional Inclusion Score: Let σcond(B ,B ′) be the conditional inclusion score

function of B compared to B ′, N the number of equivalent output expressions injected with con-

crete values and |XB | and |YB ′ | the number of output expressions of B and B ′ respectively such that

σcond(B ,B ′) = N
|XB | . As an example, if σcond(B ,B ′) = 1 then we say that B ⊂cond B ′, meaning that B is

conditionally included in B ′.

Definition 3.3.9. Conditional Equivalence: Two conditionally equivalent basic blocks can be repre-

sented by σcond(B ,B ′) =σcond(B ′,B) = 1, meaning that B ⊂cond B ′ and B ′ ⊂cond B under the condition of

the injected concrete values.

The conditional equivalence step can be added after the comparisons based on semantic

equivalence in order to confirm that two given basic blocks do represent clones. This step allows

us to find codes that are equivalent with respect to the values used and also to prevent false

positives. Since DoSE aims at contributing and completing generic deobfuscation techniques based

on dynamic analysis, we can mark the blocks that are semantically but not conditionally equivalent,

as undecidable. The user can further verify the equivalence when using dynamic analysis.

3.3.3.2 False negative prevention: Normalization and optimizations

False negatives are another downside of comparisons based on semantic equivalence. They rep-

resent basic blocks that are not considered as clones (i.e. semantically equivalent) when in fact

they are. This limitation does not impact on the quality of our approach as all results will indeed

be real clones. However, its efficiency may be questioned as some clones may not be detected. In

order to prevent this issue, we add a normalization step for both syntax and semantic equivalence

comparisons.

The normalization step for syntax-based comparisons aims at removing any unnecessary in-

structions (such as nop instructions) or destination addresses for jmp instructions (since two cloned
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basic blocks may jump to different blocks located at different addresses). Moreover, we symbolize

the registers used by the instructions in order to handle register substitution without using the

semantic equivalence step. This allows us to have better performances since we do not need to

query the SMT solver. An illustration of the syntactic normalization is given in Figure 3.3.

Figure 3.3: Normalization of the syntax of two blocks which are cloned.

The normalization phase for semantic equivalence comparisons consists in the following steps:

• Symbolize all variables, registers, memory access used by the basic blocks;

• Keep the concrete values of immediate values;

• Use constant propagation on the intermediate language;

• Use arithmetic simplifications on the intermediate language.

These optimization and simplification techniques allow us to improve the precision of DoSE in

the purpose of preventing false negative results, as well as optimizing the performances. Table 3.1

illustrates the differences in execution time and false negatives and positives results of our method,

before and after our improvements.

Sample Function (#FP, #FN) before time (s) before (#FP, #FN) after time (s) after
Asprox 0x10009b82 (5,0) 48.03s (0,0) 18.14s
Asprox 0x1000be35 (32,2) 1851.09s (0,0) 243.32s
Flame 0x1003177b (6,1) 230.84s (0,0) 26.14s
WannaCry 0x4043b6 (2,0) 124.06s (0,0) 23.48s
CryptoWall 0x401100 (3,11) 227.57s (0,3) 67.21s
Vipasana 0x429954 (6,7) 106.95s (0,5) 24.40s

Table 3.1: Differences of false positives, false negatives results and execution time before and after

our improvements, based on control-flow graph reduction of several malware functions.
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As we can see, our improvements eliminate most of the false positives and false negatives

results. Moreover, it allows DoSE to run significantly faster, e.g. from 1851 seconds to 243 seconds

on function 0x1000be35 of the Asprox malware. Thus, our improvements are an important step

toward the detection and removal of obfuscation transformations based on code-reuse.

The next section presents some applications of our methodology along with their evaluation.

3.4 Applications

In this chapter we present some concrete applications of DoSE. We show how it can be used to

reduce control-flow graphs, detect and remove two-way opaque predicates as well as cloned sub-

functions. For each application, we illustrate our process based on DoSE, along with their respective

evaluations and limitations. DoSE is implemented as an IDA Pro [86] plug-in, based on the reverse-

engineering framework Miasm [57] in order to be easily integrated in other reverse-engineering and

deobfuscation frameworks. All our evaluations are done on a Windows 7 virtual machine, using 8gb

of RAM, and a Intel vPro i7 CPU.

The next section start by introducing the main application of DoSE for the reduction of control-

flow graphs.

3.4.1 Reducing control-flow graphs

Reducing control-flow graphs by grouping similar nodes can ease the understanding of the code

and eliminate some paths for further dynamic analysis, thus contributing to generic deobfuscation

techniques. Since some obfuscation techniques generate equivalent basic blocks, we extended our

methodology to the static reduction of control-flow graphs by detecting and grouping such blocks.

Moreover, in another context, e.g. the evaluation of cryptographic white-box implementations,

there is a need for clone removal.

3.4.1.1 Methodology

Our methodology for reducing control-flow graphs is based on static clone detection and is divided

in two parts. The first part collects needed information about the obfuscated function to analyze.

This information is then transmitted to the second step which performs the comparisons in order

to detect clones. In the remaining of this section, we will describe these steps.

Basic blocks collection. Given a function F that we want to analyze (and which has been previ-

ously simplified in order to merge basic blocks, cf. Section 3.3.1) we start by collecting all basic

blocks of the function. For each basic block B of F , we gather both its instructions IB and its

associated intermediate representation I RB . The collected instructions will be normalized in order
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be compared syntactically. Their intermediate language will be first simplified, to prevent any false

positive results, before being used as input for the symbolic execution engine. The latter will return

the expressions that illustrate the inputs and outputs behavior (i.e. functionality) of a basic block.

These expressions, that we note XB , will then be processed by our normalization phase before being

compared to find semantic equivalences. All of the basic blocks are represented by a structure that

will contain all gathered information (i.e. IB , I RB and XB ). Based on this structure, we initialize a list

L containing the collected information for each B , so that it can be used as input for the comparison

method.

Algorithm 1 illustrates the pseudo-code for our static clone detection technique, given an

obfuscated function F . More precisely, it shows how information is gathered and analyzed in order

to perform syntactic along with semantic equivalence comparisons. Moreover, it includes both

simplification and normalization steps in order to prevent any misleading results (i.e. false positives

and false negatives).

Algorithm 1 Control-flow graph reduction

1: procedure CLONE DETECTION(F : a function)
2: Initialize a dictionary C to store clones
3: Initialize a list L of basic block structures
4: for each basic block B in F do
5: IB ← GetInstructions(B)
6: NormalizeInstructions(IB )
7: I RB ← GetIntermediateLanguage(IB )
8: Simplify(I RB )
9: XB ←SymbolicExecution(I RB )

10: NormalizeSemantics(XB )
11: L[B ] ←< IB , I RB , XB >
12: end for
13: C ←Syntactic and semantic equivalence comparisons(L)
14: // see Algorithm 2.
15: return C
16: end procedure

Basic blocks comparisons. After the collection step, we proceed to the comparisons, using the

list L of all basic block structures. Once the two basic blocks named B and B ′ are selected, we

check whether they are located at the same addresses within the binary or if they already have

been analyzed in order to avoid unnecessary computations. Since we require a bijective mapping

between B and B ′, we can also verify whether these two blocks have the same number of instructions

(i.e. |B | = |B ′|) or the same number of output expressions (i.e. |XB | = |YB ′ |). If two blocks pass those

verifications, we proceed to the syntactic comparison. If the syntactic inclusion score is 1 for B
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Algorithm 2 Basic blocks comparisons

1: procedure SYNTAX AND SEMANTIC EQUIVALENCE COMPARISONS(L: List of basic blocks)
2: Initialize a dictionary C of clones
3: for each basic block B in L do
4: for each basic block B ′ in L do
5: if AlreadyComputed(B ′, B) = F al se then
6: if σsyn(B ,B ′) =σsyn(B ′,B) = 1 then
7: C [B ] ← B ′ // add B ′ as a clone of B
8: C [B ′] ← B // add B as a clone of B ′

9: else if σsem(B ,B ′) =σsem(B ′,B) = 1 then
10: if σcond(B ,B ′) =σcond(B ′,B) = 1 then
11: C [B ] ← B ′

12: C [B ′] ← B
13: else
14: pass // B ′ is not a clone of B .
15: end if
16: else
17: pass // B ′ is not a clone of B .
18: end if
19: end if
20: end for
21: end for
22: return C
23: end procedure

compared to B ′, and vice-versa, then we assume that these blocks are clones and we add them to our

dictionary C which groups all detected cloned blocks. However, if the syntax-based comparison fails

at determining that B and B ′ are equivalent, we proceed to the semantic equivalence comparison in

order to verify the inclusion between the selected blocks. If those blocks are semantically equivalent,

we use the concretization function in order to prevent false positives. This function replaces the

symbols of each expression by concrete values in order to check for a conditional equivalence. Only

if B and B ′ are equivalent both semantically and conditionally, we assume that the basic blocks

are clones and update the dictionary C . If one of those verification steps fails, we consider that the

selected basic blocks are not clones and move on to the next couple of basic blocks. The different

verification steps are described in Section 3.3.

Algorithm 2 illustrates the second part of our methodology. It returns the dictionary C of

detected clones in order to remove them.

The next section will present the evaluation of semantic equivalence comparison for the purpose of

reducing control-flow graphs.
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Sample Type Function EP # Nodes % Reduction (#FP, #FN) time (s)
BitCoinMiner Trojan 0x40a900 97 52.58% (0,0) 25.42s

0x407240 697 47.06% (0,0) 933.49s
Hupigon Backdoor 0x49935c 321 58.57% (0,0) 141.00s

Asprox Trojan 0x1000be35 436 41.97% (0,0) 243.32s
0x10009b82 57 45.61% (0,0) 18.14s
0x100096a5 67 20.90% (0,0) 14.01s
0x100091ac 33 39.39% (0,0) 1.38s

Dircrypt Trojan 0x409c70 113 33.63% (0,0) 13.14s
0x4060c0 44 18.18% (0,0) 3.39s
0x406da0 30 23.33% (0,0) 2.57s

Vipasana Ransomware 0x429954 95 25.26% (0,5) 24.40s
0x425b50 80 40.00% (0,0) 6.46s
0x424fc8 64 25.00% (0,0) 7.51s
0x4278a8 63 23.81% (0,0) 20.14s
0x42d578 60 33.30% (0,0) 6.09s
0x4399f8 123 63.41% (0,0) 43.52s
0x42be04 59 50.85% (0,0) 6.20s

Cryptowall Ransomware 0x401100 179 44.13% (0,3) 67.21s
Flame Worm 0x100586ea 365 21.64% (0,0) 58.44s

0x1003177b 157 29.30% (0,0) 26.14s
0x10023fd6 29 31.03% (0,0) 4.14s
0x1006e7b9 100 36.00% (0,0) 15.60s
0x1004949f 54 37.04% (0,0) 3.26s

WannaCry Ransomware 0x4043b6 123 16.26% (0,0) 23.48s
0x403cfc 98 35.71% (0,0) 12.30s

Dexter Trojan 0x404ad0 86 27.91 % (0,0) 25.55s
0x402050 33 18.18% (0,0) 5.00s

OnionDuke Trojan 0x10005b60 76 38.16% (0,0) 11.56s

Table 3.2: Evaluation of static control-flow graph reduction using DoSE

3.4.1.2 Evaluations

To illustrate the efficiency of our analysis, we used several malware samples2 among Flame [24] and

Cryptowall [206] as shown in Table 3.2. We analyzed some functions of these samples with their

entry-points listed in column "Function EP". These functions have been selected for their large sizes

in order to measure the scalability of DoSE. Column "# Nodes" indicates the numbers of nodes of

each function before the application of DoSE whereas "% Reduction" illustrates the efficiency of our

approach for detecting and grouping semantically equivalent basic blocks within the control-flow

graph of each function. Finally, the last columns show a pair representing the false positive and

false negative results and also the execution time of the analysis. For each application of DoSE,

2Samples are available at https://github.com/lamaram/DoSE
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positive and negative results were verified by using heuristics based on the transitivity property of

an equivalence. The inclusion scores are also used to facilitate the detection of false negatives. We

also proceeded with mainly manual reverse engineering to verify our results. As shown in Table 3.2,

Figure 3.4: Example of CryptoWall main function control-flow graph reduction.

DoSE can reduce in most of the cases one-third of the malware functions control-flow graphs with

no false positives in practice and only a few false negative results. In some cases, such as Vipasana

sample, we reduced 62.6% of a function’s control-flow graph. Figure 3.4 illustrates the application

of DoSE on Cryptowall main function. The tagged control-flow graph (i.e. CFG) illustrates the

detected cloned blocks (with one color for each group). We can see that DoSE is quite efficient in

reducing the amount of paths to cover (46 similar paths are removed), and grouping cloned blocks

(78 of the 179 basic blocks are clones) in an acceptable amount of time (approximately 1 minute).

DoSE can also scale to more complex functions, as illustrated with the BitCoinMiner sample, on

which we are able to reduce 47.06% of the 697 basic-blocks with no false positive/negative results,
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in approximately 15 minutes. Another example of DoSE applications to the Vipasana ransomware

is given in Figure 3.5.

Figure 3.5: Example of a Vipasana function control-flow graph reduction.

3.4.1.3 Limitations

One limitation of DoSE is its block-centric approach. Indeed, some malware such as the Vipasana

ransomware combine opaque predicates with code cloning, thus some clones are divided into

several basic blocks with no direct successors. Since DoSE compares each basic block, such type of

clones is not detected which explains the false negatives results in our evaluations. We believe that

by extending our analysis on paths, it will be possible to handle such limitation. However, the cost

of such analysis will be greater and could lead to path explosion issues.

3.4.2 Detecting two-way opaque predicates

As discussed in Section 2.2, P ? are excluded from known analysis. In this section, we propose

a methodology, based on DoSE in order to handle two-way opaque predicates. The aim of this
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methodology is to detect and remove all P ? without even making any assumption on their type.

Since we do not try to solve the predicate but rather check for semantic equivalence between

the paths generated from it, this means that the opaque predicate can be of any construct (e.g.

MBA-based, arithmetic-based, alias-based, etc.).

3.4.2.1 Methodology

Our methodology to detect two-way opaque predicates is composed of three steps. Before present-

ing these steps, we present some notations. We denote by φn the n-th predicate of a binary B, such

that φn ∈B, n ∈N. Let φF
n be the false branch of a given φn and let φT

n be its true branch. We denote

by ωF
n and ωT

n all paths generated from respectively φF
n and φT

n to a common basic-block within

their function. Based on these notions, we proceed as follows:

Path-constraints collection. The first step consists in identifying all φn , n ∈ N, within B. If an

identified φn is a two-way predicate, then all paths ωT
n , generated from the true branch φT

n , are

semantically equivalent to all paths ωF
n , generated from the false branch φF

n . We will use this

property afterwards.

Generating paths. After collecting all paths constraints (i.e. predicates), we want to generate all

paths ωT
n and ωF

n from respectively φT
n and φF

n to their first common basic-block, using a depth-first

search algorithm as illustrated in Algorithm 3. Indeed, if φn is a two-way opaque predicate, then ωT
n

and ωF
n must end either on a common block or on a returning block3. Moreover, since we aim at

comparing basic blocks, we iterate only once over an encountered loop.

Algorithm 3 Two-way predicate detection

1: procedure TWO-WAY PREDICATE DETECTION(D : disassembly of the targeted binary)
2: Initialize a dictionary R to store the results
3: for each φn in D do
4: ωT ← GetTruePaths(φn)
5: ωF ← GetFalsePaths(φn)
6: R[φn] ← PathEquivalenceChecking(ωT , ωF )
7: end for
8: return R
9: end procedure

Checking path equivalence. Our final step consists in comparing all basic blocks of the same

depth from ωT
n and ωF

n . However, we do not only check for semantic and conditional equivalence,

3A returning block refers to a basic block that exits a function.
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but also for inclusions (cf. Section 3.3). For these purposes, let us note Seq the equivalence score

between two given ωT
n and ωF

n , and let us note Sinc their inclusion score. Seq and Sinc represent the

amount of coupled basic blocks that are equivalent and included respectively. Moreover, we define

a total score Stot such that:

Stot =Seq +Sinc

We note that if an equivalence is detected between two paths, we increment Seq without studying

their inclusion. Thus, Stot equals at most the number of ωT
n or ωF

n .

Stot 6mi n(#ωT
n ,#ωF

n ).

In order to check the paths equivalence and inclusion, we compare all Bm with B ′
m such that

Bm ∈ωT
n , B ′

m ∈ωF
n and m ∈ [1,min(#ωT

n ,#ωF
n )].

Then, three cases could occur:

• Bm and B ′
m are syntactically equivalent; then we increment the score Seq.

• Bm and B ′
m are semantically and conditionally equivalent; then we increment the score Seq.

• Bm is semantically and conditionally included (but not equivalent) to B ′
m ; then we increment

the score Sinc (likewise if B ′
m is included in Bm).

Algorithm 4 describes this process. Based on the calculated score, we can verify if a given

predicate is a two-way opaque construct:

• if Seq >Sinc and = max(#ωT
n ,#ωF

n ) then we mark the predicate as a two-way opaque construct.

• if Seq <Sinc and = max(#ωT
n ,#ωF

n ) then we mark the predicate as a probable two-way opaque

construct. This label means that, since there is more inclusions than equivalences, a false

positive is likely. Thus, we suggest in case of a probable two-way opaque predicate to verify

the result manually.

• if < max(#ωT
n ,#ωF

n ) and > 0 then we mark the predicate as normal and we propose to group

equivalent basic blocks to reduce the control-flow graph.

3.4.2.2 Evaluations

For the evaluation, we used the Tigress obfuscator [43] which implements these opaque pred-

icates4. We have selected four C code samples (Huffman as sample A, bubble sort as sample B,

binary sort as sample C and matrix multiplication as sample D) which are obfuscated using two-way

4Tigress refers to two-way opaque predicates as question opaque predicates (i.e. P ?).
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Algorithm 4 Paths equivalence checking

1: procedure PATHS EQUIVALENCE CHECKING(ωT
n : true path, ωF

n : false path)
2: Seq,Sinc,Stot = 0,0,0
3: for each basic blocks B , B ′ in ωT

n , ωF
n do

4: if σsyn(B ,B ′) =σsyn(B ′,B) = 1 then
5: Seq ++
6: else if σsem(B ,B ′) =σsem(B ′,B) = 1 then
7: if σcond(B ,B ′) =σcond(B ′,B) = 1 then
8: Seq ++
9: end if

10: else if B ⊂sem B ′ or B ′ ⊂sem B then
11: if σcond(B ,B ′) = 1 or σcond(B ′,B) = 1 then
12: Sinc ++
13: end if
14: end if
15: end for
16: Stot =Seq +Sinc

17: if Seq >Sinc and = max(#ωT
n ,#ωF

n ) then
18: return two-way
19: else if Seq <Sinc and = max(#ωT

n ,#ωF
n ) then

20: return probable
21: else if < max(#ωT

n ,#ωF
n ) and > 0 then

22: propose Control-flow graph reduction() // see Algorithm 1
23: end if
24: return normal
25: end procedure

opaque predicates constructs. We combined them with other obfuscation techniques implemented

in Tigress, such as control-flow flattening (i.e. Flat), encodings of respectively data (i.e. EncD),

arithmetics (i.e. EncA) and literals (i.e. EncL) and finally code virtualization (i.e. Virt). These combi-

nations allow us to measure the efficiency as well as the limitations of DoSE for two-way opaque

predicates detection. Table 3 groups our evaluations of the four code samples listed above, in a

way to present results according to the obfuscation techniques that they use. For example, "Case

1" represents the application of ten opaque predicates P ? to our samples A, B, C, and D with the

corresponding evaluation; "Case 2" represents the application of four P ? combined with four P T

or P F in all samples, etc. The column "(#OP, #FP, #FN)" represents a tuple in which "#OP" is the

number of detected two-way predicates, "#FP" is the number of false positive results and "#FN" the

number of false negatives.

As we can see, we are able to detect all two-way opaque predicates with no false positives and

no false negatives in the majority of the cases. The reasons for the few false positive and negative

results are the block-centric approach of DoSE and the insertion of infeasible paths. We present
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Case study P ? P T , P F EncD EncA EncL Flat Virt (#OP, #FP, #FN) time avg.(s)
Case 1 (A, B, C, D) ×10 (10,0,0) 4.54s
Case 2 (A, B, C, D) ×4 ×4 (4,0,0) 2.32s
Case 3 (A, B, C, D) ×4 X (4,0,0) 2.38s
Case 4 (A, B, C, D) ×4 X (4,0,0) 4.04s
Case 5 (A, B, C, D) ×4 X (4,0,0) 3.32s
Case 6 (A, B, C, D) ×6 X X (6,0,0) 4.46s
Case 7 (A, B, C, D) ×6 X X X (6,0,0) 5.16s
Case 8 (B, C, D) ×8 ×4 X X X (7,1,1) 12.45s
Case 8 (A) ×8 ×4 X X X (8,0,0) 13.28s
Case 9 (A, B, C, D) ×6 X (6,0,0) 7.84s
Case 10 (A, B, C, D) ×10 ×4 X X X X (8,1,2) 29.09s
Case 11 (B, C) ×4 X (4,0,0) 4.54s
Case 11 (A, D) ×4 X (3,0,1) 3.31s
Case 12 (A, B, C, D) ×8 X X (6,0,2) 9.13s
Case 13 (B, C) ×10 ×4 X X X X X (8,0,2) 31.21s
Case 13 (A) ×10 ×4 X X X X X (9,2,1) 32.28s
Case 13 (D) ×10 ×4 X X X X X (7,1,3) 31.48s

Table 3.3: Evaluation on the generated use cases with Tigress.

these limitations in the following paragraph.

We also evaluated our implementation against real world malwares. Table 3.4 illustrates our

results. We analyzed some functions of these samples with their entry-points listed in column

"Function EP" in order to ease the detection of any false positive or negative results. Column 3

shows the number of detected two-way predicates, false positive and false negative results as a

tuple whereas column 5 shows the execution time. As we can see, two-way opaque predicates

are efficiently detected, within an acceptable amount of time. Further, in some cases, such as the

Vipasana malware, specific patterns are used (based on an additional subtraction with 0 within

their cloned blocks) to construct their two-way opaque predicates. Such information can be used to

create more detection rules for these malwares.

Sample Function EP (#OP, #FP, #FN) time (s)
Vipasana 0x437fa4 (1,0,0) 1.63s
Vipasana 0x434df0 (10,0,0) 21.76s
ZeuS 0x437814 (2,0,0) 196.04s
GuaGua 0x41b510 (1,0,0) 2.04s
Kryptik 0x40fe00 (4,0,0) 22.10s
Rombertik 0x4c2c3d (1,0,0) 1.46s
Ixesh 0x40106d (1,0,0) 3.58s

Table 3.4: Evaluation on malwares for two-way opaque predicates detection and removal.
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3.4.2.3 Limitations

The performed evaluations underline the problematic of inserting infeasible paths with opaque

predicates of types P T or P F within a path generated from a two-way opaque predicate. Such

combination inserts bogus blocks that will never be reached within equivalent path derived from a

P ? opaque predicate. This limitation shows that our approach must be considered as an additional

analysis to state-of-the-art opaque predicate tools in order to first check infeasible paths by detecting

P T and P F , and afterwards complete the analysis by detecting P ? predicates.

Another limitation is due to the insertion of branch functions. These functions are cloned but

their entry point addresses are different. This causes our conditional equivalence step to generate

dissimilar values for each function. Since both functions have different addresses, they will also

have distinct symbols, thus causing some false negative results. However, being able to detect

these cloned branch functions (i.e. sub-functions) beforehand prevents such limitations. The

next paragraph will introduce the extension of DoSE for the purpose of detecting these cloned

sub-functions.

3.4.3 Detecting cloned sub-functions

In the case of opaque predicates or control-flow flattening, another kind of obfuscation transforma-

tion may be applied: replacing a basic block by a function to be called. We refer to these functions

as sub-functions since they represent only one basic block. In such case, we need to extend our

methodology to the detection of these cloned sub-functions.

3.4.3.1 Methodology

Such analysis is based on the following process: we take as inputs two different sub-functions F1

and F2 and we compare all basic blocks of F1 with all basic blocks of F2, as it is presented in the

following definition:

Definition 3.4.1. Sub-functions Semantic Inclusion: Let F1 and F2 be two sub-functions. We say that

F1 is semantically equivalent to F2 (i.e. cloned) if for every basic block of F1 there exists a unique

semantically and conditionally equivalent basic block in F2.

Thus, for each B in F1 and B ′ in F2, we can apply a similar approach as the one illustrated in

Algorithm 2 in order to check for their syntactic, semantic and conditional equivalence. The only

difference is that the algorithm takes two lists of basic-blocks, one for each function. All detected

clones are added in a dictionary C . Afterwards, C is given to a function which verifies whether

our definition for the sub-functions semantic inclusion is satisfied and it returns a boolean value

accordingly. Thus, it allows us to confirm if F1 and F2 are cloned or semantically different. However,
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the above comparison needs to be adapted in order to properly compare two functions containing

more complex structures.

3.4.3.2 Evaluations

We evaluated the detection of statically equivalent sub-functions against known malwares as il-

lustrated in Table 3.5. Column 3 represents the number of functions before our analysis whereas

column 4 illustrates the number of detected cloned sub-functions.

Sample Type # Functions # Clones (#FP, #FN) time (s)
Flame Worm 8464 1954 (0,0) 1866.16s
LoadMoney Trojan 78 3 (0,0) 2.01s
Skylock Trojan 1212 10 (0,2) 321.93s
Vipasana Ransomware 1715 45 (0,0) 358.85s
WannaCry Ransomware 142 2 (0,0) 19.92s
OnionDuke Trojan 755 67 (0,0) 113.93s
Polip Trojan 2458 246 (1,0) 648.93s
Dircrypt Trojan 232 13 (0,0) 39.63s

Table 3.5: Evaluation of sub-functions detection

Column "(#FP, #FN)" shows the number of false positive and false negative results. Our evalua-

tion shows that some malwares use what we defined as sub-functions, notably the worm Flame for

which we were able to detect 1954 clones with neither false positives or false negative results. Such

a detection is important, specially toward the reduction of control-flow graphs or the detection of

two-way opaque predicates which contain jumps or calls to these cloned functions.

3.4.3.3 Limitations

For now, our approach is limited to small sub-functions with no complex structure (e.g. loops). We

are looking to extend this application of DoSE to more complex functions while preserving efficiency

and an acceptable time of execution.

3.5 Implementation

In this section we introduce our implementation of DoSE as an IDA plug-in. We start by presenting

our tool for each applications previously introduced (see Section 3.4), namely reducing control-flow

graphs, detecting two-way opaque predicates and detecting cloned sub-functions. Finally, we will

describe the different libraries used to develop our plug-in.
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3.5.1 DoSE plug-in for control-flow graph reduction

DoSE plug-in permits users to select different applications, directly within IDA. Once the plug-in is

running, the application menu pops-up as illustrated in Figure 3.6. In this section we present the

Figure 3.6: Start-up menu for application selection of DoSE IDA plug-in.

first application for control-flow graph reduction. Such application can be tweaked by the user in

order to fit his requirements. The next pop-up window asks these information in order to run the

desired analyses. As we can see in Figure 3.7, the user can select several options:

• The scope of the analysis: the plug-in propose either to work on the complete function in

order to detect all cloned basic blocks, or to select two basic-blocks to compare.

• The analyses: these options are mostly made for debugging. The user can then compare DoSE

methodology with only syntax-based, semantic-based or conditional-based equivalence.

• The conditional equivalence bound: this options sets the amount of time two conditionally-

equivalent expressions have to match before ruling them as equivalent.

• The optional display features: the user can select either to rebuild a new control-flow graph

without the detected clones, and also to color each equivalent basic-blocks with the same

color.

• The debugging options: these options are mainly present to set up the verbosity of the plug-

in, as well as comparing the methodologies with and without memory randomization during

the equivalence checks.

Once the application is running, it will detect each cloned basic-blocks as described in DoSE

methodology (see Section 3.3). An example of such application’s output is illustrated in Figure 3.8.
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Figure 3.7: Options menu for DoSE plug-in applications to control-flow graph reduction.

We can see that DoSE displays on the original control-flow graph each equivalent basic-blocks with

the same color. Moreover, it recreates a new control-flow graph without any clones. An optional

pop-up window is displayed to inform the user about the amount of basic-blocks before and after

the analysis.

3.5.2 DoSE plug-in for two-way opaque predicate detection

In order to detect two-way opaque predicates, the plug-in first start by collect each predicates. In this

case, the user can choose either to specify a function, or to work on the whole binary. Each collected

predicate is then displayed in an informative window, as illustrated in Figure 3.9. The window will

97



Figure 3.8: Example of DoSE output for control-flow graph reduction on the CryptoWall ransomware.

also display, after analysis, each equivalence score (namely syntactic, semantic, conditional, and all

combined) in order to rule the predicate as either two-way opaque or normal. Afterwards, the user

can right-click on any predicate in order to select from the following options:

• Jump to predicate: the user can jump to the disassembled code of the predicate.

• Color successors: the user can color all paths following the predicate.

• Check selected predicate: the user can check if the selected predicate is opaque or not.

• Check all predicates: the user can check all collected predicates.

Note that other options are from IDA. Finally, once all predicates are analyzed by the plug-in, all

results are directly displayed within the predicates window as shown in Figure 3.11. As we can see,

all scores are added for each analyzed predicates. Moreover, the user can visualize the disassembled

code of a selected predicates, in our example an opaque one. This helps the user better understand

the underlying construction of the detected obfuscation transformation.

3.5.3 DoSE plug-in for cloned sub-functions detection

The final application of DoSE plug-in consists in detecting cloned sub-functions within the whole

targeted binary. To that end, the plug-in simply analyses each functions, and renames any cloned

one so that the user can see them directly in the functions windows of IDA. Figure 3.12 illustrates

the output of such application within IDA.
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Figure 3.9: DoSE plug-in window of collected predicates.

3.5.4 Development

In order to develop our methodology as a plug-in for IDA, we choose the following API:

• Miasm2: the symbolic execution engine as well as Miasm intermediate representation are used

to work directly on the semantics of the analyzed code.

• IDA Python: the IDA Python API is required to build our tool as an integrated plug-in for

IDA.
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Figure 3.10: DoSE plug-in options on collected predicates.

Figure 3.11: Example of DoSE output for two-way opaque predicate detection on the Vipasana

ransomware.

3.6 Conclusions

In this section we present our concluding remarks and perspective about our methodology, and

tool, for deobfuscation based on semantic equivalence.
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Figure 3.12: Example of DoSE output for sub-functions detection on the OnionDuke malware.

3.6.1 Perspectives

The following paragraphs present our perspectives as future work for DoSE.

3.6.1.1 Opaque predicate deobfuscation framework

Using our approach to detect two-way opaque predicates constructs combined with existing opaque

predicate detection tools can contribute not only to counter the limitations of these tools, but also

prevent DoSE limitation due to infeasible branches. Indeed, if prior to detect two-way opaque

predicates, we detect and remove P T and P F constructs, then we will no longer have our current

limitation.

3.6.1.2 Hybrid analysis

Even if our current approach is evaluated statically, it is straightforward to use it dynamically through

DSE. Using our approach dynamically would prevent limitations due to emulation of memory

access since their concrete values are available at runtime. However, limitations of dynamic analysis

would still be relevant and it will prevent us of contributing to generic de-obfuscation techniques by

statically reducing the amount of code to cover. Thus, we are looking forward to a clever combination

of static and dynamic analysis in order to keep our goal of contributing to generic deobfuscation

techniques statically while improving our accuracy dynamically, and preserving DoSE scalability to

real-world use-cases.
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3.6.2 Conclusion

Obfuscated software raise many issues during their reverse engineering or evaluation. Most of

the deobfuscation techniques come with limitations since they are based on dynamic symbolic

execution. We have proposed a novel deobfuscation method based on semantic equivalence, called

DoSE. We applied binary diffing methods based on semantic equivalence to deobfuscate binaries in

order to provide a methodology to statically detect and remove protections based on code-reuse.

We presented this approach by formalizing and improving it for a better correctness and efficiency.

Several applications of DoSEwere also presented: detect and remove two-way opaque predicates,

reduce control-flow graphs by detecting range dividers and code-reuse and detect cloned sub-

functions. The benefits of DoSE are also demonstrated with several realistic classes of opaque

predicates using Tigress, along with existing malwares. Our evaluations show that DoSE can

efficiently reduce control-flow graphs of malwares such as Flame up to 62%, or even detect 1954

sub-functions, with an acceptable amount of time. Moreover, we demonstrated that DoSE can

be efficiently extended to the detection of two-way opaque predicates, which until then were not

detected by any known technique. Therefore, this work paves the way for combining semantic

equivalence methodologies with existing generic deobfuscation techniques, in order to improve

their efficiency and scalability.
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Chapter 4

Defeating Opaque Predicate using Binary

Analysis and Machine Learning
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In this chapter, we present our second contribution consisting in a new approach that bridges

binary analysis techniques with machine learning classification. Our goal is to provide a static and

generic evaluation technique for opaque predicates, regardless of their constructions. We use this

technique as a static automated deobfuscation tool to remove the opaque predicates introduced

by obfuscation mechanisms. According to our experimental results, our models have up to 98%

accuracy at detecting and deobfuscating state-of-the-art opaque predicates patterns. By contrast,

the leading edge deobfuscation methods based on symbolic execution show less accuracy mostly

due to the SMT solvers constraints and the lack of scalability of dynamic symbolic analyses. Our

approach underlines the efficiency of hybrid symbolic analysis and machine learning techniques

for a static and generic deobfuscation methodology.
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4.1 Introduction

As introduced in Chapter 2, opaque predicates [47] are widely used as technique for various security

applications, e.g. metamorphic malware mutation [33], Android applications [109] or white-box

cryptographic implementations. As a consequence, several works focus on the deobfuscation

of opaque predicates (e.g. [17, 21, 23, 63, 129, 150, 185]) in order to evaluate the quality of the

obfuscated code rendered by this transformation. However, these techniques are often based on

dynamic analysis and are therefore limited or not scalable.

4.1.1 Problem setting

Existing state-of-the-art opaque predicates deobfuscation techniques and tools suffer from the

following limitations:

1. Specificity: Techniques that evaluate opaque predicates are often focused on specific con-

structions, hence lacking of generality towards all existing patterns of such obfuscation

transformation.

2. Code coverage: Most recent deobfuscation techniques are based on dynamic symbolic execu-

tion which require the generation of instruction traces. The ability to cover all paths of the

program is an issue that prevents, in some cases, the complete code deobfuscation.

3. Scalability: Dynamic symbolic execution techniques may also lack of scalability on some

types of code such as malwares that use specific triggers (e.g. an input from a Command and

Control server) to execute the non-benign part of the code. Thus, dynamic analysis may not

scale and cover the non-triggered part of the code.

4. Satisfiability modulo theories solvers: SMT solvers used in path-reachability analyses suffer

from several limitations depending on the constructions of the opaques predicates. Some

constructions that are based on aliases or mixed boolean and arithmetic expressions usually

cause SMT solvers to fail at predicting the feasibility of a path.

Our work has the goal to re-introduce static analysis for obfuscated software evaluation and de-

obfuscation. To this end, we propose a new approach that bridges static symbolic execution and

machine learning models to provide a generic evaluation of opaque predicates.

We present several studies and experiments towards the construction of machine learning

models that can either detect an opaque predicate or predict its invariant value without executing

the code. We also extend our design to the deobfuscation of such obfuscation transforms, regardless
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of their constructions, by creating a static analysis plug-in within a widely used reverse engineering

tool called IDA [86]. To further evaluate our methodology, we compare it against available static

and dynamic symbolic-based tools for the deobfuscation of opaque predicates. We conduct further

evaluations against obfuscators such as Tigress [43] and OLLVM [96].

The aftermath of this contribution shows that combining machine learning techniques with static

symbolic analysis provides a generic, automatic, and accurate methodology towards the evaluation

of opaque predicates. Our work shows that machine learning enables a better efficiency and

genericity for this application, while allowing us to work without SMT solvers to predict reachable

paths.

4.1.2 Contributions

In order to face the above listed limitations, we provide the following contributions:

1. We present our novel methodology that binds binary analysis and machine learning tech-

niques to evaluate and deobfuscate opaque predicates statically. A presentation of several

studies towards an efficient and accurate creation of machine learning models is also given.

2. The evaluation of our methodology against state-of-the-art obfuscators such as Tigress and

OLLVM, as well as novel opaque predicate constructions such as bi-opaque predicates.

3. The illustration of the efficiency of our methodology, used as a static analysis deobfuscation

tool, on several datasets by comparing it to existing state-of-the-art deobfuscation tools based

on symbolic execution and SMT solvers.

Our contribution is organized as follows: in Section 4.2 we recall background information on opaque

predicates types, constructions, and deobfuscation methods. Then we introduce some notions

of supervised machine learning. In Section 4.3, we present our methodology which combines

binary analysis and machine learning to achieve an efficient evaluation and deobfuscation of

opaque predicates. Section 4.4 presents our experiments towards an accurate model construction,

whereas Section 4.5 illustrates our evaluations on state-of-the-art publicly available obfuscators. A

comparison to existing symbolic-based deobfuscation techniques against our methodology is also

provided in Section 4.5.3. We then describe our design limitations and perspectives in Section 4.6,

along with related work in Section 4.7.

4.2 Background

Several types and constructions of opaque predicates exist [128]. The following paragraphs give

an overview of them. Collberg, Thomborson and Low defined these predicates by, respectively,
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P T , P F and P ? opaque predicates. Several works use these two-ways opaque predicates constructs,

either referred to as range-dividers [13], or as correlated opaque predicates [129, 199]. Moreover,

regardless of their output, e.g. their type, there exists many different kinds of construction in order

to render these predicates opaque.

4.2.1 Opaque predicate constructions

Apart from their types, opaque predicates are defined by their constructions. Several proposals exist

in the literature about how to construct a resilient and stealthy opaque predicate [9, 47, 133, 199, 200],

as presented in [55]. Each of these constructions have for purposes to thwart specific deobfuscation

analyses, e.g. static or symbolic, as they will be summarized in Section 4.5.3.

4.2.1.1 Arithmetic-based

Opaque predicates can be constructed using mathematical formulas which are hard to solve. They

aim at encoding invariants into arithmetic properties on numbers. Listing 1 shows an opaque

predicate generate by OLLVM [96]. This opaque predicate is the encoding of the 7y2−1 6= x2 predicate,

in x86 language.

1 mov eax , ds:x

2 mov ecx , ds:y

3 imul ecx , ecx

4 imul ecx , 7

5 sub ecx , 1

6 imul eax , eax

7 cmp ecx , eax

8 jz <bogus_addr >

Listing 4.1: Example of an arithmetic-based opaque predicate generated by OLLVM.

The purpose of this construction is to hide the invariant property of such predicates, however,

they are not resilient to static symbolic attacks based on abstract interpretation [150] or SMT

solvers [17, 129].

4.2.1.2 Mixed-boolean and arithmetic based

Introduced by Zhou et al. [211], Mixed Boolean-Arithmetic (i.e. MBA) consists in a data encoding

technique based on linear identities involving boolean and arithmetic operations, together with

invertible polynomial functions. The resulting encoding is made dependent on external inputs such

that it cannot be deobfuscated using compiler optimization techniques. Listing 2 shows an example

108



of the Tigress obfuscator [43] encoding option on the simple expression x + y + z. Tigress can

generate linear MBA expressions of several layers, increasing their complexity, which makes these

expressions hard to simplify symbolically or using SMT solvers.

1 # Normal expression

2 x + y + z

3

4 # MBA -based obfuscated expression

5 (((x ^ y) + ((x & y) << 1)) | z) + (((x ^ y) + ((x & y) << 1)) & z)

Listing 4.2: Example of an MBA-based opaque predicate generated by Tigress.

4.2.1.3 Alias-based

Aliasing is represented by a state of a program where certain memory location is referenced to by

multiple symbols, e.g. variables, in the program. Pointer alias analysis is undecidable, thus using

them for opaque predicate constructs in a pertinent choice. Collberg, Thomborson and Low [47]

first choose to use this undecidability result to build opaque predicates using pointers in linked lists

or arrays. Listing 3 shows an example of a pointer aliasing invariant opaque predicate.

1 void foo () {

2 item * pointer_1 = create_circular_list(rand());

3 pointer_1 = move (pointer_1 , rand());

4 item * pointer_2 = insert(pointer_1);

5 int random = rand();

6 pointer_1 = move(pointer_1 , random);

7 pointer_2 = move(pointer_2 , random);

8 if (pointer_2 == pointer_1) {

9 // never taken

10 }

11 }

Listing 4.3: Pointer aliasing invariant opaque predicate

In this example, the function create_circular_list creates a list of a random size and returns

a pointer to it. Then the move function shifts the current pointer. Finally, the insert function adds a

new item in the list and returns a pointer to it. Thus, variable pointer_1 cannot alias with variable

pointer_2, which makes this an alias-based invariant opaque predicate.
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4.2.1.4 Environment-based

Environment-based opaque predicate consists in using invariant from the system, or libraries, to

construct opaque predicates. Listing 4 illustrate an example of an environment-based opaque

predicates using the strcpy library function’s output.

1 char s1 [4] = "Foo";

2 char s2 [11] = "Helloworld";

3

4 if(strcpy(s2 ,s1) == s2) {

5 // always taken as strcpy returns s2

6 }

Listing 4.4: Environment-based invariant opaque predicate

4.2.1.5 Concurrence-based

Concurrence-based opaque predicates are encoded using race-condition properties. Thus, both

static and dynamic analyses are known to be difficult and unreliable for proving properties on such

concurrent code, which makes this construction of opaque predicates efficient although difficult to

make reliably.

4.2.1.6 Bi-opaque

Recent work introduces opaque predicates constructs that aim at employing the weaknesses of

symbolic execution to compose them such that they can evade detection from symbolic execution-

based adversaries [200]. Based on the observation that deobfuscation techniques using symbolic

execution are prone to some challenges and limitations, Xu et al. introduced bi-opaque predicates

which intend to either introduce false negatives or false positives results. Therefore, bi-opaque

predicates are based on techniques such as symbolic memory or floating point instructions in

order to exploit current deobfuscation methodologies and tools. Such construction has been shown

effective against state-of-the-art deobfuscation tools based on dynamic symbolic execution, such

as Triton [1] or Angr [175].

4.2.2 Deobfuscation

Because of their wide utilization and popularity, opaque predicates are targets of several published

attacks. Each of these deobfuscation methodologies have their strengths and limitations, as it will

be synthesized in the following paragraphs.
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4.2.2.1 Probabilistic check

Since using brute-force to check all possible inputs x ∈ X such that a predicate O (φ)(x) = {0,1} is

time consuming (depending on the size of x), a methodology to deobfuscate opaque predicate

proposes to randomly choose x and execute the program segment to compute O (φ)(x) for all these

values. If the output is always the same, then one might suspect that O (φ) is an invariant predicate.

Such technique can be practiced with fuzzing on the inputs. However, this approach is prone to

high false positives/negatives results when the opaque predicates are not input-dependent (e.g.,

environment-based) or correlated (i.e. two-ways type).

4.2.2.2 Pattern matching

Due to the overhead introduced by most complex opaque predicates constructs, it has been showed

in the literature that there are surprisingly relatively few predicates that are used over and over again.

This leads to a possible pattern matching attack (otherwise called dictionary attack) [63], where one

takes obfuscated predicates from a program being attacked and pattern-matches the source code

against known examples. However, it is possible to build variants of opaque predicates that cannot

be matched using dictionary attacks, which implies a high false negative rate.

4.2.2.3 Abstract interpretation

First proposed by Dalla Preda et al. [150], abstract interpretation for opaque predicate deobfuscation

is static and semantic-based attack. Since dynamic or hybrid attacks may be either not precise or

time consuming, their work provides correctness and efficiency in the deobfuscation of certain

constructions of opaques predicates. Indeed, this technique can only be efficient against some

classes of invariant arithmetic-based opaque predicates, and do not focuses on other types and

constructions.

4.2.2.4 Automated proving

Current state-of-the-art deobfuscation approach use SMT-solvers to compute if a predicate is

constant [17, 128], i.e. opaque. Udupa, Debray and Madou [187] use static path feasibility analysis

based on these SMT solvers to determine whether an execution path is feasible. However, their

methodology is prone to the limitations of static analysis, that is why recent automated proving

techniques are based on dynamic analysis, e.g. instructions traces, to check path feasibility and

thus to detect and deobfuscate opaque predicates. Sometimes combined with taint analysis,

it allows to capture only instructions or semantics related to the targeted predicate. However,

since these techniques target only the question of feasibility, Bardin, David and Marion [17] uses

bounded-backward analysis to target infeasibility questions. Yet, automated proving based analyses,
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either static or dynamic, may suffer from symbolic execution limitations as well as SMT solvers

restraints. Indeed, it has been showed that SMT solvers fail against MBA opaque predicates, whereas

symbolic execution can be slowed down effectively, or even misguided. For example, alias-based

constructions or more recent opaque predicates constructions such as the bi-opaque ones.

4.2.2.5 Program synthesis

Recently introduced by T.Blazytko et al. [23], program synthesis aims at synthesizing code of ar-

bitrary complexity. Their approach is based on execution traces which are simplified, and from

which the semantics are extracted and then ’learned’ by a synthesis module. Originally made for the

deobfuscation of virtualized code, their approach has been successful for the simplification of Mixed

Boolean and Arithmetic expressions. However, their work is not focused on opaque predicates and

thus do not cover all types and constructs as presented in the previous paragraphs.

Table 4.1 summarizes the strengths and targets of existing researches regarding the evaluation

and deobfuscation of opaque predicates, in terms of their constructions. As we can see, auto-

mated proving, often based on dynamic symbolic execution (abbreviated DSE), is the most effective

methodology against opaque predicates. However, the evaluation of such techniques has been

shown effective mainly against arithmetic or environment based opaque predicates, hence the

importance of a generic methodology that can help evaluate both their stealth and resiliency, while

covering all existing constructions.

Overall, dynamic symbolic execution is currently considered the most effective methodology

against opaque predicates, but the evaluation of such technique has been shown effective mainly

against arithmetic or environment based opaque predicates. This demonstrates the importance

of a generic and scalable methodology that can evaluate both stealth and resilience of opaque

predicates for all existing constructions.

4.2.3 Supervised Machine Learning

The decision of labeling a predicate as opaque, and even more as invariant P T or P F opaque

predicate, can be considered as classifications problems. Our target is to find algorithms that work

from external supplied instances (e.g., binaries, instructions traces) in order to produce general

hypotheses. From these hypotheses, we want to make predictions about future instances. Supervised

machine learning provides a dedicated methodology that achieves this goal. The aim of supervised

machine learning is to build a classification model which will be used to assign labels to testing
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Constructions Probabilistic check Pattern matching Abstract interpretation Automated proving Program synthesis

Arithmetic-based
3[187]

High FN/FP
7

High FN
3[150] 3[17, 129] 7

MBA-based
7

High FN/FP
3[63] 7

7

(limitations of SMT solver)
3[21, 23]

Alias-based
7

High FN/FP
7 7

7

(limitations of symbolic execution)
7

Concurrence-based
7

High FN/FP
7 7

7

(limitations of symbolic execution)
7

Environment-based
7

High FN/FP
7 7 3[17, 129] 7

Bi-opaque
7

High FN/FP
7 7

7

High FN/FP
7

Table 4.1: Illustrations of opaque predicates deobfuscation strengths and targets against known

constructions and types.

or unknown instances. In other words, let X be our inputs (i.e. instances) and Y the outputs (i.e.

predicted labels). A supervised machine learning algorithm will be used to learn the mapping

function f such that Y = f (X ). The goal is to approximate f such that for any new instance X we

can predict its label Y .

Figure 4.1 provides a generic overview of a supervised machine learning classification scheme.

In our case the inputs are represented by n-dimensional vectors of numerical features that represent

these features, i.e. features vectors, for which the extraction is described in the following paragraph.

Figure 4.1: Generic overview of a supervised machine learning classification scheme.

4.2.3.1 Feature extraction.

In the machine learning terminology, the inputs of a model are usually derived from what is called

raw data, i.e. the data samples we want to classify or predict. These data samples cannot be directly
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given to a classification model and need to be processed beforehand. This processing step is called

feature extraction and consists in combining the raw data variables into numerical features. It allows

to effectively reduce the amount of data that must be processed, while accurately describing the

original dataset of raw data. In our case, since raw data are text documents (e.g. disassembly code,

symbolic execution state, etc.), one practical use of feature extraction consists in extracting the

words (i.e. the features) from the raw data and classify them by frequency of use (i.e. weights).

Different approaches exist for understanding what a word is and to compute its weight. In this

chapter we use the bag of words approach which identifies terms with words. As for the weights, we

studied term frequency (i.e. how frequently a word occurs in a document) with and without inverse

document frequency [95] used in Section 4.4 in order to select the best possible extraction technique.

In other words, the approach we use consists in several steps. First, a vocabulary of known words is

created. Second, we measure the presence (i.e. occurrence) of each known words. With such, any

information about the order or the structure of words in our dataset is discarded. Our model will

only focus on whether known words occur or not in a given dataset.

4.2.3.2 Classification algorithm

The choice of which specific learning algorithm to use is a critical step. Many classification algo-

rithms exist [91], each of them having different mapping functions. Our methodology is based

on the Decision tree algorithm which predicts the output by learning simple decision rules de-

duced from the training dataset. One downside of Decision tree models is over-fitting [58] which

may cause the creation of over-complex trees that do not generalize the data well. To that end,

ensemble methods such as Adaptative Boosting classifiers [71] and Random Forest [29] have been

introduced. They consist of several decision trees called weak learners in which the output are

computed through aggregations of the predications of the individual decision trees. Several other

classification exists (e.g. Support Vector Machine [84], Bayesian Network Classifiers [72], etc.), each

of them having different mapping functions. Our choice of using decision tree based models is

made because of their transparency (i.e. the easy interpretation of the results) and their efficiency

for opaque predicates evaluations. The choice of such model is illustrated in Section 4.4 presenting

our experiments. Since classification is a common application of machine learning, there are many

metrics that can be used for evaluation as describe in the following paragraph.

4.2.3.3 Classification evaluations

Classification problems are a common type of machine learning problem and, as such, there are

many metrics that can be used to evaluate the efficiency of a model. In our different experimen-

tations and evaluations, our goal is to measure the accuracy as well as the efficiency in terms of
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Figure 4.2: Illustration of a 5-folds cross-validation evaluation.

execution time of our models. In order to compute these metrics, k-Fold Cross-Validation is a com-

monly used technique. Cross-validation [107] consists in reserving a particular set of samples on

which the model doesn’t train. It is a commonly used evaluation methodology in applied machine

learning to properly estimate the efficiency of a model on unknown data. Thus, it allows to use a

limited set of samples in order to estimate how the model is expected to perform in general when

used to make predictions on data not used during the training phase. The parameter k refers to the

number of folds that a given dataset of samples is split into. Figure 4.2 illustrates the division of the

dataset into 5-folds for a cross-validation evaluation. This allows us to calculate the mean of our

models accuracy as well as the F1-score based on the value of k. While the accuracy of the model

represents the ratio of correctly predicted labels to the the total of labels, F1-score takes both false

positives and negatives into account. We can also estimate the variance of each metrics based on

the different portions of the initial datasets on which the predictions are done for the testing phase.

Thus, during our evaluations and experiments, accuracy and F1-scores are calculated using k-fold

cross-validation, with k = 20 for a better generalization of our model to unknown instances.

4.3 Our Methodology

Our methodology design is built in two parts. The first part consists in creating a machine learning

model for the evaluation and deobfuscation of opaque predicates. The second part uses the
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Figure 4.3: Evaluation scheme for the detection and deobfuscation of opaque predicates using both

binary analysis and machine learning techniques.

validated model in order to remove such obfuscation transformation statically. Figure 5.2 illustrates

our methodology. The first step consists in generating a set of obfuscated binaries. Our datasets of C

code samples are presented in Section 5.4.1. In the second step, the binary is disassembled and we

collect and labelize each predicate, e.g. defining if the predicate is opaque or normal, as described in

Section 4.3.1. The third step consists in a depth-first search algorithm to collect each path leading to

a predicate. We use a thresholded static symbolic execution to collect our raw data for the machine

learning model. These data are normalized, processed and used to train and validate our model in a

fourth step, as presented in Section 4.3.2. Finally, the fifth and final step shows that our model can

be used and integrated in a static deobfuscation tool to predict and remove opaque predicates as

presented in Section 5.5.

4.3.1 Binary analysis

Our methodology relies on static symbolic execution to retrieve the semantics of the predicate

constructions before the machine learning classification models evaluates them. Thus, a first step in

our design is the generation of raw data. This refers to a representation of data samples that contain

noisy features and need to be processed in order to extract informative characteristics from the data

samples, before training a model. Since our goal is to evaluate the opaque predicates, we choose to

generate our raw data from the disassembled binary code control-flow graph.

Moreover, in order to have a scalable methodology, we work statically in order to prevent the

need of executing the code. This approach also permits a better code coverage compared to existing

dynamic approaches. However, our approach can be extended to instruction traces in cases where

the analyzed code is encrypted or packed. The raw data used contains the symbolic expressions S

of collected predicates φ denoted by Sφ.

We studied different formats and contents of such raw data as well as their impact on the
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efficiency of the trained model (see Section 4.4). In the following sections we present the binary

analysis part of our design, namely thresholded static symbolic execution, which we employ to

generate the raw data from predicates.

4.3.1.1 Thresholded Static Symbolic Execution

Static symbolic execution is a binary analysis technique that captures the semantics (i.e. logic) of a

program. An interpreter is used to trace the program, while assuming symbolic values for inputs

rather than obtaining concrete values as a normal execution would. A symbolic state S is built and

consists in a set of symbolic expressions S for each variables (i.e. registers, memory, flags, etc.).

Several techniques exist for symbolic execution [12].

In our work we use disassembled functions to collect the symbolic expressions of a predicate

Sφ. We start by generating all possible paths from a function entry point to a predicate φ using a

depth-first search algorithm. The latter prevents us from using SMT solvers to generate all feasible

paths since they are prone to limitations and errors depending on the protections applied. In order

to avoid path explosion, we use a thresholded static symbolic execution technique that bounds the

number of paths generated for one predicate and the amount of time the analysis has to iterate

on a loop. Note that our methodology is intra-procedural since publicly available obfuscators, e.g.

Tigress and OLLVM, generate intra-procedural opaque predicates.

Path generation. We denote byφn the n-th predicate within a disassembled function F in a binary

B . When a predicate is identified, we generate all paths from F entry point to the collectedφn using a

depth-first search (i.e. DFS) algorithm. DFS expands a path as much as possible before backtracking

to the deepest unexplored branch. This algorithm is often used when memory usage is at a premium,

however it remains hampered by paths containing loops. Thus, we use two distinct thresholds, one

for loop iterations denoted by αloop , and one for the number of paths to be generated denoted

αpaths .

Symbolic state generation. In order to have a symbolic state, we use all collected paths of a

predicate. We denote by P the set of all collected paths σ of a predicate φ. Let S be the symbolic

execution interpreter function such that S(σi ) = Sφσi . In other words, the symbolic execution

interpreter S returns a symbolic state Sφσi for a path σi , i ∈ [O, |P |] of a predicate φ. The generated

symbolic states for all predicates will be used as raw data and then be processed for the classification

models. Algorithm 5 illustrate our methodology for the generation of the raw data. The next section

introduces our machine learning part. We will further describe the content of our raw data as well

as the feature extractions algorithm used and the different models we want to create.
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Algorithm 5 Predicate symbolic state collection

1: procedure RAW DATA GENERATION(F : disassembled function)
2: Initialize a list P to store the paths
3: Initialize a dictionary S to store symbolic states
4: for all predicate φ in F do
5: P = DFS_generate_paths(φ, αloop , αpaths)
6: for each path σ in P do
7: S= S(σ)
8: end for
9: Generate_raw_data(S)

10: end for
11: end procedure

4.3.2 Machine learning

We experiment different instances for our classification models to study the impact on their accuracy.

Since symbolic execution is often based on an intermediate representation that captures all the

semantics as well as side effects of the assembly instructions, several intermediate representations

exist and are widely used, e.g. LLVM-IR or MiasmIR [57]. We implemented our methodology

using Miasm2 reverse engineering framework, which integrates translators from MiasmIR to other

languages (e.g. SMT-LIBv2 [19], Python [163], or C [101]). This gives us the ability to study the

impact of the language used to express the symbolic expressions, within our raw data, on our

classification models.

4.3.2.1 Raw data

Intermediate representations use concrete values within their generated expressions. This causes

raw data to depend on addresses that are specific to some binaries and prevents our models to scale

on unknown data. Listing 4.5 illustrates this issue with one predicate symbolic expression in the

MiasmIR language. Moreover, some intermediate representations, e.g. MiasmIR, use identifiers in

order to express modified registers name or memory locations. This may further affect the scalability

of our trained models.

1 # MiasmIR predicate expression of an P^T opaque predicate

2 ExprId('IRDst', size =64) = ExprInt (0x401e87 , 64)

3

4 # MiasmIR predicate expression of an P^F opaque predicate

5 ExprId('IRDst', size =64) = ExprInt (0x4028f8 , 64)

Listing 4.5: MiasmIR predicate expressions with identifiers and concrete values
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For the purpose of having a model that can scale to unknown data, we use a normalization

phase that replaces identifiers and concrete values by symbols, and non-alphanumerical characters

by alphanumerical words. This is a necessary step for a complete feature extraction phase that

sometimes excludes non-alphanumerical characters when working on text-based raw data. In

Listing 4.6 we provide examples of the normalization step, based on Listing 4.5 predicates.

1 # MiasmIR predicate expression of an P^T opaque predicate

2 ExprId(id1 , size =64) = ExprInt(v1 , 64)

3

4 # MiasmIR predicate expression of an P^F opaque predicate

5 ExprId(id1 , size =64) = ExprInt(v1 , 64)

Listing 4.6: MiasmIR predicate expressions after our normalization phase

Since our methodology computes a full symbolic state from any function entry-point to a

targeted predicate, there is a need to know if all information within the collected symbolic state is

relevant for our models. The goal is to have many features for an accurate classification without

adding too much noise. Another issue to be avoided is having raw data samples that do not contain

enough information to distinguish between samples that have different labels, as illustrated also in

Listing 4.6. In other words, we may have two expressions that are identical but have different labels,

e.g. the first being the expression of a P T and the second an expression of a P F .
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1 # MiasmIR predicate expression of an P^T opaque predicate

2 ExprId('af', size =1) = ExprSlice(ExprOp('^', ExprOp('+', ExprId('RSP_init ',

size =64), ExprInt (0 xffffffffffffffb8 , 64)), ExprOp('+', ExprId('

RSP_init ', size =64), ExprInt (0 xfffffffffffffff8 , 64)), ExprInt (0x40 ,

64)), 4, 5)

3 ExprId('RBP', size =64) = ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0

xfffffffffffffff8 , 64))

4 ExprMem(ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xffffffffffffffc0

, 64)), size =64) = ExprId('RDI_init ', size =64)

5 ExprId('pf', size =1) = ExprInt (0x1 , 1)

6 ExprId('RAX', size =64) = ExprOp('call_func_ret ', ExprInt (0x400510 , 64),

ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xffffffffffffffb8 ,

64)), ExprId('RCX_init ', size =64), ExprId('RDX_init ', size =64), ExprId(

'R8_init ', size =64), ExprId('R9_init ', size =64))

7 ExprMem(ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xfffffffffffffff0

, 64)), size =64) = ExprMem(ExprOp('segm', ExprId('FS_init ', size =16),

ExprInt (0x28 , 64)), size =64)

8 ExprId('IRDst', size =64) = ExprInt (0x401e87 , 64)

9 ExprId('zf', size =1) = ExprInt (0x1 , 1)

10 ExprMem(ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xfffffffffffffff8

, 64)), size =64) = ExprId('RBP_init ', size =64)

11 ExprId('of', size =1) = ExprInt (0x0 , 1)

12 ExprId('nf', size =1) = ExprInt (0x0 , 1)

13 ExprId('cf', size =1) = ExprInt (0x0 , 1)

14 ExprId('RSP', size =64) = ExprOp('call_func_stack ', ExprInt (0x400510 , 64),

ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xffffffffffffffb8 ,

64)))

15 ExprId('RDI', size =64) = ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0

xffffffffffffffe0 , 64))

Listing 4.7: MiasmIR always true invariant opaque predicate expressions after our normalization

phase

To avoid this matter we use the thresholded symbolic execution, which generates expressions

for each path leading to a predicate. Listings 4.7 and 4.8 illustrate respectively the P T and P F

predicates expressions from Listing 4.6 along with others memory and registers expressions from

their symbolic state. We can see that now we have more informations that allows us to distinguish

between both predicates.
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1 # MiasmIR predicate expression of an P^F opaque predicate

2 ExprId('af', size =1) = ExprInt (0x0 , 1)

3 ExprId('RBP', size =64) = ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0

xfffffffffffffff8 , 64))

4 ExprId('RCX', size =64) = ExprOp('^', ExprMem(ExprInt (0x604078 , 64), size

=64), ExprInt (0x1 , 64))

5 ExprMem(ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xffffffffffffffc0

, 64)), size =64) = ExprId('RDI_init ', size =64)

6 ExprId('pf', size =1) = ExprOp('parity ', ExprOp('&', ExprCompose(ExprOp('&',

ExprMem(ExprInt (0x604078 , 64), size =32), ExprInt (0x1, 32)), ExprInt (0

x0, 32)), ExprInt (0xff , 64)))

7 ExprId('RAX', size =64) = ExprInt (0x2 , 64)

8 ExprMem(ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xfffffffffffffff0

, 64)), size =64) = ExprMem(ExprOp('segm', ExprId('FS_init ', size =16),

ExprInt (0x28 , 64)), size =64)

9 ExprId('IRDst', size =64) = ExprInt (0x4028f8 , 64)

10 ExprId('zf', size =1) = ExprCond(ExprCompose(ExprOp('&', ExprMem(ExprInt (0

x604078 , 64), size =32), ExprInt (0x1 , 32)), ExprInt (0x0 , 32)), ExprInt (0

x0, 1), ExprInt (0x1, 1))

11 ExprMem(ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xfffffffffffffff8

, 64)), size =64) = ExprId('RBP_init ', size =64)

12 ExprId('RDX', size =64) = ExprOp('^', ExprMem(ExprInt (0x604078 , 64), size

=64), ExprInt (0x1 , 64))

13 ExprId('nf', size =1) = ExprInt (0x0 , 1)

14 ExprId('cf', size =1) = ExprInt (0x0 , 1)

15 ExprId('RSP', size =64) = ExprOp('call_func_stack ', ExprInt (0x400510 , 64),

ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xffffffffffffffb8 ,

64)))

16 ExprId('RIP', size =64) = ExprInt (0x4028f8 , 64)

17 ExprId('of', size =1) = ExprInt (0x0 , 1)

18 ExprId('RDI', size =64) = ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0

xffffffffffffffe0 , 64))

Listing 4.8: MiasmIR always false invariant opaque predicate expressions after our normalization

phase
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We study the use of several expressions in our raw data to distinguish between samples that have

different labels. To this end, we divide our instances into three sets:

• Set 1: with samples containing only the expression of the predicate in a static single assign-

ment form (i.e. SSA) as illustrated in Listing 4.6.

• Set 2: with samples containing only the expressions of the predicate and its corresponding

flags in an SSA form.

• Set 3: with samples containing the full symbolic state of a path, from an entry-point to a

targeted predicate, i.e. all memory, flags, and registers modified in a SSA form as illustrated in

Listing 4.8 or 4.7.

In Section 4.4.2.2, each set is studied in order to find the best possible raw data content. We

start by calculating for each set the similarity percentages based on 5000 samples of predicates,

either normal or opaque predicates generated by the Tigress obfuscator on a dataset of C code

samples (see Section 5.4.1). In other words, we search for raw data with different labels (e.g. P F

and P T ) but with the same content. As we can see in Table 4.4, only the Set 3 has a low rate of

similarities between opaque or legit raw data content (3.5%) and between P T and P F raw data (6%).

This indicates that Set 3 is more suited for our raw data representation.

Raw data Detection similarities Deobfuscation similarities
Set 1 24.94% 31.92%
Set 2 17.38% 26.62%
Set 3 3.5% 6%

Figure 4.4: Number of raw data content similarities experiments in different datasets of various

contents.

4.3.2.2 Decision tree based models

Decision trees [161] predict the output by learning simple decision rules deduced from the training

dataset. The internal nodes of a decision tree contain binary conditions based on input features

vectors, whereas the leaves are associated with the class labels we want to predict. Decision trees are

built recursively. The root node contains all the training instances and each internal node splits its

training instances into two subsets according to a condition based on the input. Leaf nodes however

represent a classification or decision on these training instances. Different approaches exist for

the splitting conditions of internal nodes [83]. However, one downside of decision tree models is

over-fitting [58] which may cause the creation of over-complex trees that do not generalize the data
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well. In our case, the decision tree model is capable of identifying and deobfuscating an opaque

predicate O (φ). We choose to create two distinct models: a first one that evaluates the stealth

of an opaque predicate and a second one to evaluate its resiliency, as presented in the following

paragraphs.

Model for stealth (detection). The construction of a classifier consists in the definition of a map-

ping function Cf : D → [0,1] that, given a document d (i.e. an input), returns a class label, which is

represented by a number (here 0 or 1) that defines the category of d . Applied to the evaluation of

opaque predicates stealthiness, the function can be seen as:

Cf : D → [NORMAL, OPAQUE].

In other words, given the term-frequency vector of a symbolic execution state D, from a function

entry point to a predicate, our model mapping function C f will return two values: NORMAL

or OPAQUE. If a model is capable of detecting a predicate as opaque, we can assume that the

transformation is not stealthy.

Model for resiliency (deobfuscation). In order to evaluate the resiliency of an opaque predicate,

we construct a model with a different function as presented for the evaluation of stealthiness. Indeed,

our goal is to predict if an opaque predicate is of type P T or P F , thus, the function Cf : D → [0,1] in

that context can be expressed as:

Cf : D → [TRUE, FALSE].

The choice of the best suited classification algorithm is often made on accuracy but in our work

we choose our model based on its transparency to easily interpret our results. Since many learning

algorithms exist, the next section will present our experiments to select the best classification model

for both detection and deobfuscation of opaque predicates.
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4.4 Experiments

In this section we present our study of efficient and accurate creation of classification models. We

start by introducing the datasets variety used in our work.

4.4.1 Datasets

Our experiments are made on several C code samples. We use the scikit-learn API [145] for the

implementation of the models. The datasets contain various types of code, each of them having

different functionalities in order to have a model that does not fit to a specific type of program, as

listed below:

• GNU core utilities (i.e. core-utils) binaries [151] for normal predicate samples;

• Cryptographic binaries for obfuscated and non-obfuscated predicates [49];

• Samples from [13] containing basic algorithms (e.g. factorial, sorting, etc.), non-cryptographic

hash functions, small programs generated by Tigress;

• Samples involving the uses of structures and aliases [4, 88].

Our choice is motivated by their low ratio of dependencies and their straightforward compilation.

This makes their obfuscation possible using tools such as Tigress and OLLVM without errors during

compilation. A list of all different combinations of obfuscation transformations and options related

to Tigress is given in Appendix A.1 and Listing 22.

4.4.1.1 Dataset size determination

One important point is to determine the amount of samples required since this can significantly

impact the cost of our studies and evaluations, as well as the reliability of our results. If too many

samples are collected, we face a longer evaluation time but if there are not enough samples in

our dataset, our results may be irrelevant. Several propositions based on statistical tests allow to

determine the size of our datasets depending on the area of research [66]. Based on this work, we

estimated the required samples based on several parameters:

• The confidence level, i.e. how confident to we need to be that the classification of our model

did not occur by chance. We set this parameter at 99%, leaving only 1% to chance.

• The percentage of difference that we want to detect. The lower the percentage, the more

sample is required, thus we set this parameter at 1%.
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• The distribution of our samples which is supposed to be balanced, e.g. 50% of opaque

predicate and 50% of normal ones.

Figure 4.5 illustrates the amount of samples required for two confidence levels, 95% and 99%,

depending on the probability of difference we want classify. As we can see, the best possible size of

datasets for our use-cases should contain 27.000 samples. However, the generation of that amount

of samples for each opaque predicates constructions provided by each obfuscators is costly. To that

end, we use in the followings datasets with 5000 to 15.000 samples in order to have a high probability

of detection and of confidence level. Each of our datasets are balanced, i.e. with an equal number of

samples of each classes. Next, we present our studies using these datasets.
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Figure 4.5: Number of sample required to detect between 1% to 9% of difference between in our

use-cases.
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4.4.2 Preliminary studies

The goal of our experiments is to investigate and answer the following questions:

• Study 1: Which raw data language is the most efficient (in terms of time and space) and also

the most accurate?

• Study 2: Which raw data content best expresses the normal and opaque predicates?

• Study 3 and 4: Which classification model is more accurate and which feature extraction

algorithm is best suited?

The following paragraphs present our experiments for each question. For this section and for

our evaluations (see Section 5.5) we used a laptop running Windows 7 with 16 GB of RAM and a Intel

Core i7-6820HQ vPro processor.

4.4.2.1 Study 1: Raw data language selection

Our goal is to select the most appropriate language for the symbolic execution engine. We use

MiasmIR, which we compare with the translators it implements in SMT-LIBv2 language, C, and

Python. After normalizing these languages, as presented in Section 4.3.2.1, we use our dataset of

normal predicates from core-utils binaries along with structured-based opaque predicates from

Tigress to study several points:

1. Which set of samples is more efficient in terms of disk space?

2. Which set of samples is more efficient in terms of computation time?

3. Which language is more accurate for our models when representing our raw data?

Raw data language Miasm2 SMT-LIBv2 C Python
Detection accuracy (%) 94% 90% 87% 87%
Deobfuscation accuracy (%) 88% 80% 78% 78%
Execution time for detection (s) 15s 114s 21s 20s
Execution time for deobfuscation (s) 12s 50s 15s 13s
Size of dataset (GB) 1.91GB 37.4GB 2.11GB 1.98GB

Figure 4.6: Study of the raw data language accuracy and efficiency

Table 4.6 illustrates our experiments using 20-fold cross-validation on decision-tree based

models. For each language, we used a dataset of 10000 balanced samples. We observe that Miasm2

intermediate representation gives higher accuracy rates for both the detection and deobfuscation
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model. Moreover, it is more efficient in terms of disk space used (as opposed to the SMT-LIBv2

dataset), which leads to a faster time of execution. This is mainly due to the fact that Miasm2

intermediate language has a small set of terms expressing the semantics of the code as compared to

other languages in our study. According to these results, we choose Miasm2 for all of our raw data

samples for the remaining of the chapter.

4.4.2.2 Study 2: Raw data content selection

It remains to single out the most suitable content that will express the construction of normal and

invariant opaque predicates. Table 4.4 in Section 4.3.2.1 shows that the use of full symbolic state

representation prevents having similarities between samples of different classes (i.e. labels). Thus,
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Figure 4.7: Predictions accuracy on the different raw data sets

based on the same dataset of core-utils and structured-based opaque predicates generated with

Tigress, we measure the average of our models accuracies for both detection and deobfuscation,

evaluated with a 20-fold cross-validation. Figure 4.7 confirms that the Set 3, i.e. the full symbolic
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state, presents a better accuracy for both detection (at 94%) and deobfuscation (at 88%) when using

the decision tree algorithm on balanced datasets of 10000 samples.

4.4.2.3 Study 3 and 4: Classification algorithm and feature extraction selection

In order to properly evaluate our methodology, we need to select the appropriate features extraction

techniques combined with an accurate classification algorithm.

We have done experiments with the most common classifications models [108], namely decision

trees, k-nearest neighbors [53], support vector machines, neural network [176, 207], naive Bayes [93]

and random forest [30]. The use-case of our experiments is to evaluate the stealth of structured-

based opaque predicates generated with Tigress on our datasets. The features are expressed

using term-frequency (i.e. tf) vectors as well as td-idf vectors in order to compare both extraction

techniques. Default parameters are applied for each classification algorithms used in our study.

Classification algorithm Term-frequency vectors TD-IDF vectors
Decision-tree 94% 93%
k-Nearest Neighbors 91% 92%
Support Vector Machine 87% 71%
Linear Support Vector Machine 77% 83%
Multi-layer Perceptron 84% 92%
Multinomial Naive-Bayes 58% 75%

Figure 4.8: Accuracy results of different classification models using term-frequency and td-idf

vectors.

The evaluation is made with a 20-fold cross-validation, each time increasing the number of

samples in order to have an accuracy curve for our models. Features are expressed using term-

frequency vectors as well as inverse document frequency vectors in order to compare both extraction

techniques. Figures 4.9 illustrate the learning curves of each studied algorithms on datasets with

different sizes. Table 4.8 illustrate our results. We can observe that the decision tree model stands

out from others when term-frequency vectors are used. It averages 94% of detection accuracy

whereas k-Nearest Neighbors averages 91%. As for the use of td-idf vectors, the decision tree model

has a better accuracy at 93%.

According to this experiment, we choose the Decision-tree classification algorithm with term-

frequency as features extraction technique in our methodology.
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Figure 4.9: Learning curves of several models using tf and tf-idf for the detection of Tigress opaque

predicates
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4.5 Evaluations

Our goal in this section is to evaluate opaque predicates stealth and resiliency using a model based

on decision trees. We divide our evaluation into two parts:

1. Stealth: can the model differentiate an opaque predicate from a normal predicate, i.e. is the

opaque predicate stealthy?

2. Resilience: can the model differentiate a P T opaque predicate from a P F opaque predicate,

i.e. is the opaque predicate resilient?

4.5.1 Measuring stealth

In this section we focus on the evaluation of stealthiness of opaque predicates. Namely, we want

to see if our model is able to distinguish opaque predicates from normal predicates. Based on our

datasets, our goal is to measure the efficiency of our model for the detection of opaque predicates

based on different constructions. Note that each dataset is balanced and contains 10000 samples.

Dataset 1 Dataset 2 Dataset 3
Number of samples 10000 10000 10000
% Opaque samples 46.03% 49.99% 50.03%
% Normal samples 53.97% 50.01% 49.97%

Types of opaque predicates
Arithmetic,

Environment-based
Arithmetic,

Structure-based
Arithmetic, MBA,
Structure-based

Other transformations None None
EncA, EncL, EncD,

Flat, Virt
Analysis time (s) 1.13 s 1.74 s 1 s
Accuracy (%) 93 % 95 % 99 %
F1-score (%) 93 % 95 % 98 %
Variance (%) 1 % 2 % 1 %

Figure 4.10: Evaluations of stealth (detection) using Tigress

4.5.1.1 Tigress

The Tigress obfuscator can generate a variety of complex obfuscation transformations, e.g. MBA-

based, structured-based or environment-based. To this end, we use several datasets of different

opaque predicates constructions, balanced with normal predicates, to evaluate our model for

detection. Dataset 1 contains arithmetic, MBA and environment-based opaque predicates whereas

Dataset 2 contains structured-based (i.e. alias-based) opaque predicates. Moreover, we used a third

dataset (Dataset 3) that combines these opaque predicates with other obfuscation transformations
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such as arithmetic, literal, and data encodings (i.e. EncA, EncL, and EncD, respectively) joined with

control-flow flattening (Flat) and code virtualization (Virt).

Our results are illustrated in Table 4.10. Regardless of their types and of the implication of

other obfuscation transformations, our detection model is able to efficiently predict if a predicate

is opaque or normal. Indeed, the detection of arithmetic and environment-based opaque predi-

cates scores an accuracy and F1-score of 93%, whereas arithmetic and structured-based opaque

predicates are less stealthy for our model with scores up to 95%. However, as more obfuscation

techniques are combined with opaque predicates, our predictions accuracy and F1-score rises to

respectively 99% and 98%. This is due to the fact that opaque predicates patterns, once combined

with other combination of transforms, become more specific thus lower their stealthiness. In our

case however, code virtualization (i.e. Virt) is applied before opaque predicates, as illustrated in

Appendix A.1. The opposite, namely applying code virtualization after other transformations, is

a limitation to our methodology since the generated opaque predicates will be virtualized, thus

transformed into byte-code.

4.5.1.2 OLLVM

In order to evaluate our model against opaque predicates generated by OLLVM, we split our eval-

uations in two sets. The first set uses samples obfuscated only with opaque predicates (i.e. the

bogus control-flow transformations bcf ). The second set uses samples obfuscated with opaque

predicates combined with control-flow flattening and instructions substitutions (i.e. fla and sub,

respectively) to see if we can evaluate opaque predicates stealthiness when they are combined

with others transformations. Table 4.11 illustrates our results. In the second dataset, our model is

Dataset 1 Dataset 2
Number of samples 10000 10000
% Opaque samples 50.02% 49.97%
% Normal samples 49.98% 50.03%
Types of opaque predicates Arithmetic-based Arithmetic-based
Other transformations None fla, sub
Analysis time (s) 2 s 1 s
Accuracy (%) 89 % 95 %
F1-score (%) 89 % 94 %
Variance (%) 3 % 2 %

Figure 4.11: Evaluations of stealth (detection) using OLLVM

able to efficiently detect the labels of most predicates. However, when opaque predicates are not

combined with other obfuscation transformation, we observe a loss of efficiency, from 95% to 89%
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accuracy. This indicates that OLLVM opaque constructions are stealthier than other constructs, thus

our model cannot properly distinguish them from normal predicates. At best, it will requires more

training samples for our model in order to have a better accuracy. One reason for their stealthiness

in regard to our model is the fact that OLLVM arithmetic opaque predicates are bloc-centric, with

basic encodings, which may have similar patterns to normal predicates from hash functions or cryp-

tographic codes in our datasets. However, when they are combined to the other transformations,

their patterns become more specific and our model has better prediction results.

4.5.1.3 Bi-opaque

Several constructions exist for bi-opaque predicates, among which float-based (i.e. using floating

instructions) or symbolic-memory based. We use their obfuscator based on the OLLVM framework

to evaluate our detection model. As we can see in Table 4.12, our model is efficient at detecting

Dataset 1 Dataset 2
Number of samples 10000 10000
% Opaque samples 49.98% 50.02%
% Normal samples 50.02% 49.98%
Types of opaque predicates float-based symbolic-memory based
Other transformations None None
Analysis time (s) 0.6 s 0.9 s
Accuracy (%) 93 % 98 %
F1-score (%) 93 % 98 %
Variance (%) 2 % 4 %

Figure 4.12: Evaluations of stealth (detection) using Bi-opaque predicates from [200]

bi-opaque predicates with 93% accuracy for float-based constructs. Bi-opaque predicates are

constructed based on the same patterns as OLLVM opaque predicates but using floating-point

instructions and registers instead. However, symbolic-memory based constructs rely on more

specific patterns, thus allowing a better detection rate at 98% accuracy and F1-score.

4.5.2 Measuring resiliency

Once a predicate is detected as being opaque, our goal is to measure its resiliency. In other words,

we want to know if our model is able to deobfuscate, i.e. predict the output of the opaque predicate.

Our evaluations are based on invariant opaque predicates, P T and P F , generated using different

constructions.
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4.5.2.1 Tigress

The patterns between P T and P F are more difficult to predict since both predicates are opaque and

generated using the same construction. However, the underlying invariant properties render our

models efficient towards their deobfuscation. Table 4.13 shows our results. We can observe that

Dataset 1 Dataset 2 Dataset 3
Number of samples 5000 5000 5000
% Opaque samples 51.50% 50.02% 50.02%
% Normal samples 48.50% 49.98% 49.98%

Types of opaque predicates
Arithmetic,

Environment-based
Arithmetic,

Structure-based
Arithmetic, MBA,
Structure-based

Other transformations None None
EncA, EncL, EncD,

Flat, Virt
Analysis time (s) 0.3 s 1 s 3 s
Accuracy (%) 90 % 88 % 92 %
F1-score (%) 91 % 87 % 92 %
Variance (%) 3 % 3 % 2 %

Figure 4.13: Evaluations of resiliency (deobfuscation) using Tigress

our model is able to detect environment-based invariants with scores of 90% accuracy and 91% of

F1-score on balanced datasets of 5000 samples. For structure-based invariants, we get slightly lower

results, with 88% and 87% of accuracy and F1-score. This is due to the fact that structured-based

invariants use aliasing, producing patterns which are less dissimilar than for environment-based

opaque predicates. However, our model has a better accuracy and F1-score (92% for both) when

other transformations are used. Thus, we are able to efficiently and accurately predict the invariant

value of opaque predicates generated with Tigress, regardless of their constructions, and of the

combination of obfuscation transformations used..

4.5.2.2 Bi-opaque, OLLVM and Tigress

Since OLLVM only produces P T opaque predicates, we choose to combine all available samples

generated from our three evaluated obfuscators. A first dataset is used to evaluate our deobfuscation

models against normal predicates and opaque predicates generated without any other transforma-

tions. A second dataset is used to combine opaque predicates with others existing transformations

from these obfuscators. Note that all datasets are balanced and contain 15000 samples. Our results

in Table 4.14 show that our methodology is efficient against all patterns of opaque predicates from

available obfuscators. Our model is able to detect the invariant patterns of all the opaque predicate

constructs with 92% accuracy and 91% F1-score. Moreover, when these opaque predicates are
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Dataset 1 Dataset 2
Number of samples 15000 15000
% Opaque samples 50.02% 50.00%
% Normal samples 49.98% 50.00%

Types of opaque predicates
Arithmetic, MBA,

Environment, Structure,
Symbolic-memory, float-based

Arithmetic, MBA,
Environment, Structure,

Symbolic-memory, float-based

Other transformations None
fla, bcf,

EncA, EncL, EncD,
Flat, Virt

Analysis time (s) 1 s 0.5 s
Accuracy (%) 92 % 95 %
F1-score (%) 91 % 95 %
Variance (%) 4 % 5 %

Figure 4.14: Evaluations of resiliency (deobfuscation) using Bi-opaque, OLLVM and Tigress

combined with other obfuscation transformations, the scores rise up to 95%.

4.5.3 Deobfuscation methodology

Our methodology can be used as an efficient deobfuscation technique, if it is based on an adequate

dataset of training samples. We developed our methodology as an experimental IDA [86] plug-in that

detects directly on the disassembled binary any opaque predicates and deobfuscates them, if needed.

We will compare our results with existing opaque predicates deobfuscation tools based on SMT

solvers and symbolic execution, such as DROP [158]. The latter is an IDA Pro plug-in based on Angr,

which uses static symbolic execution for the removal of invariant and contextual opaque predicates.

Meanwhile, for the dynamic symbolic execution, we use Miasm2 dynamic symbolic execution

engine. We employ several datasets of opaque predicates obfuscated with various constructions

and transformations. Moreover, we remove all samples used in our evaluations datasets from our

learning samples used to built our model.

Our invariant opaque predicates are generated mainly from [13] and Table 4.15 shows the results.

For each deobfuscation tool we use several samples obfuscated by different obfuscators (c.f. column

Obfuscator) and obfuscation transformations (c.f. Obfuscation). Column "OP detection rate"

indicates the percentage of removed opaque predicates, whereas column "#FP, #FN" shows the

number of false positive and false negative results respectively. Finally column "Errors" indicates if

an error occurred during the analysis, e.g. lack of memory or a timeout.

We observe that, for a static analysis, our experimental plug-in performs better at removing opaque
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predicates with complex constructs such as the one generated by Tigress, or the bi-opaque

constructs. We obtain better results than the experimental plug-in DROP, as well as a better rate than

DSE-based techniques for most constructions of opaque predicates.

Tool Obfuscator Obfuscation OP detection rate % #FP, #FN Error
OLLVM bcf 100% 1,0 0
OLLVM bcf, sub 100% 0,0 1

Bi-opaque float 100% 4,0 0
Bi-opaque symbolic-memory 75% 1,5 2

Tigress Environment-based 60% 1,8 0
Tigress Structure-based 25% 2,12 1

DROP

Tigress MBA, struct 10% 0,10 8
OLLVM bcf 100% 0,0 0
OLLVM bcf, sub 100% 0,0 0

Bi-opaque float 92% 0,0 0
Bi-opaque symbolic-memory 100% 1,0 0

Tigress Environment-based 88% 2,3 0
Tigress Structure-based 82% 1,4 0

Our methodology

Tigress MBA, struct 85% 2,2 0
OLLVM bcf 100% 0,0 0
OLLVM bcf, sub 100% 0,0 0

Bi-opaque float 100% 0,0 0
Bi-opaque symbolic-memory 85% 0,3 0

Tigress Environment-based 88% 1,2 0
Tigress Structure-based 65% 1,7 0

Miasm DSE

Tigress MBA, struct 52% 2,10 6

Figure 4.15: Comparisons of opaque predicates deobfuscation using machine learning vs. SMT-

solver based analyses.

4.6 Limitations and perspectives

Our experiments and evaluations underline the efficiency of decision tree models to detect and

deobfuscate opaque predicates. The most important achievement of our technique is that it

allows a generalization to most invariant opaque predicates constructions. Next we enumerate the

limitations of our method.

A first limitation is due to decision tree models and the switch between obfuscators. Namely, we can

observe that a model that learns from samples generated using one obfuscator, cannot efficiently

fit to transformations of another obfuscator if they use different kinds of constructions. This also

hinders our ability to detect new constructions of opaque predicates.
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A second limitation comes from the use of static symbolic execution to generate the symbolic state

as a raw data. Such process is part of the deobfuscation application of our methodology, and, as any

static analysis, may be time consuming. This explains the use of our thresholded static symbolic

execution in order to prevent as much as possible issues such as path explosion.

Our work proposes a new application of machine learning techniques for the purpose of evaluating

obfuscation transformations, and also for removing them in a static automated manner. Our

experimentations and evaluations, indicate that our design can be extended to other complex

constructions of opaque predicates such as thread-based and hash-based constructs. Future work

includes also a more in-depth study of obfuscation transforms combinations and options as well as

the generation of deobfuscated program to report any good or bad behaviors (e.g. crashes).

4.7 Related work

Many binary analysis techniques are often based on pattern matching for either detecting plagiarism,

or malicious behaviors. Recent studies show the efficiency of machine learning and deep learning

techniques for the detection and classification of malwares, e.g. [157], which also implicates the

detection of similar codes within the malwares samples. More closely related to the obfuscation area,

the work in [166] aims at recovering meta-data information using machine learning techniques.

Their goal is to detect the obfuscation transformation used in several protected binaries generated

by Tigress. Their evaluations show that naive Bayes and decision tree models can be efficient at

detecting obfuscation transformations using filtered instruction traces. However, their work focuses

on the recovery of informations about the obfuscation techniques used, but it does not aim at

deobfuscating.

Another work, [13], aims at predicting the resiliency of obfuscated code against symbolic ex-

ecution attacks. They use machine learning to measure the ability of several different symbolic

execution engines to run against various layers and combinations of obfuscation techniques. Nev-

ertheless, machine learning is not primarily used to remove any obfuscation transforms.

To summarize, existing work shows that machine learning techniques are pertinent with respect to

the classification or the detection of features, within binary samples. However, to the best of our

knowledge, no deobfuscation study and methodology exists regarding these techniques. For this

reason, in this chapter, we proposed an efficient way to evaluate both the stealth and the resilience

of opaque predicates through several studies and experiments combining binary analysis technique

and machine learning.
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4.8 Conclusion

In this contribution we applied machine learning techniques to the evaluation of opaque predicates.

By introducing the different constructions of opaque predicates and the limitations from dynamic

symbolic execution techniques and SMT solvers, we underlined the importance of studying other

alternatives for generic evaluations of these transformations.

We proposed a new approach that bridges a thresholded static symbolic execution with machine

learning classification to evaluate both the stealth and resilience of invariant opaque predicates

constructions. The use of static symbolic execution allows us to have a better code coverage

and scalability, which combined with a machine learning model, permits a generic approach

by discarding the use of SMT solvers. Our studies illustrate that our choices conduct towards

the implementation of an efficient and accurate evaluation framework against state of the art

obfuscators. We created two models for the evaluation of stealth and resiliency of state-of-the-art

opaque predicates constructions, with results up to 99% for detection and 95% for deobfuscation.

Moreover, we extended our work to a deobfuscation plug-in and compared our results to other

tools, showing the efficiency of machine learning for the deobfuscation of most invariant opaque

predicates constructions. As future work, we propose to extend machine learning techniques to the

evaluation of other obfuscation transformations as well as a more in-depth study of deep learning

techniques, which we envision to render promising results.

We believe that our work provides a new framework to evaluate opaque predicates transformations,

as well as a new alternative towards their static and automated deobfuscation.
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Chapter 5

Fine-Grained Static Detection of

Obfuscation Transforms Using
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reasoning
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The third contribution of this thesis consists in a novel approach that combines semantic

reasoning techniques with ensemble learning classification for the purpose of providing a static

detection framework of obfuscation transformations. The ability to efficiently detect the software

protections used is at a prime to facilitate the selection and application of adequate deobfuscation

techniques. Thus, we provide several studies for the best practices of the use of machine learning

techniques for a scalable and efficient model. Moreover, we extend our work to detect constructions

of obfuscation transformations, thus providing a fine-grained methodology. According to our

experimental results and evaluations on obfuscators such as Tigress and OLLVM, our models have

up to 91% accuracy on state-of-the-art obfuscation transformations. Our overall accuracies for

their constructions are up to 100%. By contrast to existing work, we provide solutions that exploit

semantic reasoning, i.e. semantics, as opposed to disassembled code. Our approach underlines the

efficiency of semantic reasoning combined with advanced machine learning techniques, such as

ensemble learning and multi-label with multi-output classification models.

140



5.1 Introduction

In order to properly evaluate obfuscation transformations, or to efficiently analyze malwares, many

deobfuscation techniques have emerged. Their goal is to remove the protection layers applied on

the code. The deobfuscation process can be seen as different strategies such as reverting, simplify-

ing, or gathering information about the obfuscated code. For this contribution, we mainly focus on

information gathering, namely, the static detection of obfuscation transformations. We also study

an extension to the transformations constructions. This approach is previously known as metadata

recovery attacks [166], as it will be introduced next.

As discussed in Chapter 2, state-of-the-art deobfuscation techniques are often specific to obfus-

cation transformations. For example, the work of Udupa, Debray and Madou [187] targets control-

flow transformations, whereas others [17, 129, 150, 185] aim at removing opaque predicates. Generic

deobfuscation techniques, however, make no assumption about the applied protections [167, 203].

These techniques are based on dynamic symbolic execution and may lack in code coverage and

scalability.

Though obfuscation transformations are semantic-preserving, they may introduce side effects

to the code [45]. Each transformations has its own construction methodology, thus specific patterns.

Recent works try to tackle the detection of software protections using machine learning or deep

learning techniques. Ugarte-Pedrero et al. [188] propose a semi-supervised learning approach

in order to classify packed and unpacked binaries. Sun et al. [182], and more recently Biondi et

al. [20], aim at detecting and identifying packers using machine learning techniques. In the previous

chapter [184], we propose a deobfuscation methodology for invariant opaque predicates based on

machine learning techniques.

From the variety of obfuscation techniques, as well as deobfuscation methodologies, the ability

to efficiently detect the software protections used is at a prime. To that end, the recent work of

Salem and Banescu [166] focuses on the detection of obfuscation transformations. Their goal is

to facilitate the selection and application of adequate deobfuscation techniques. To the best of

our knowledge, their work is the first to tackle code obfuscation detection using machine learning.

However, their methodology is also prone to some limitations as explained next.
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5.1.1 Current limitations

Existing detection technique for code obfuscation [166] based on machine learning techniques

comes with the following limitations:

1. Syntax reasoning: detecting obfuscation transformations often reasons about the syntax of

the targeted code. They are either based on the use of metrics or disassembly code. However,

the syntax may provide limitations such as architecture-dependency or implementation

dependencies, thus lowering the accuracy of classification models.

2. Code dependency: machine learning and syntax-reasoning used for the detection of obfus-

cation transformations can lead to code dependency. Namely, the trained model becomes

dependent to the analyzed code used in the training set, thus lowering its accuracy.

3. Multi-class problem: the methodology used relies on multi-class problems for classification.

Namely, they consider that one binary cannot be obfuscated with more than one obfuscation

transformation. However, transformations can be combined, thus the necessity to be able to

detect the several applied layers.

4. Granularity: the detection technique has a high-level of granularity. They may detect an

obfuscation transformation, but they do not focus on their constructions types. The latter

is of importance in order to decide which analysis to apply on obfuscated code. Many

transformations constructions are made to prevent existing deobfuscation techniques.

5. Mono-models: the detection technique mainly use a single trained model. More advanced

classification techniques, such as ensemble-learning models, may provide a better accu-

racy for classification problems [119, 160]. We study this approach for the specific task of

obfuscation transformation detection.

5.1.2 Motivation

When applying obfuscation transformations for software protections, stealth is sometimes not

desired. Many applications aim for dissuasion in order to prevent reverse-engineering. In any

case, the goal of our methodology is to provide a static and automated framework to help reverse-

engineers. By detecting obfuscation transformations, and more specifically their constructions, an

analyst will save an important amount of time. The selection of the deobfuscation process to apply

requires such knowledge beforehand. A motivating example is illustrated in Figure 5.1. It represents

the obfuscated control-flow graph of a quick-sort function. Based on the previously introduced

problems, our goal is to answer the following questions:

• Complexity: can we detect all applied layers of obfuscation transformation?
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• Granularity: can we detect the constructions of applied obfuscation transformations?

• Efficiency: can we create accurate and generic enough models for unknown data?

Figure 5.1: Control-flow graph of a quick-sort function obfuscated using several Tigress transfor-

mations.

As an example, several opaque predicates constructions prevent SMT-solver based deobfusca-

tion techniques [200]. Other recent works prevent the application of dynamic symbolic execution

techniques [14? ]. Thus, knowing which transformations and constructions analysts are facing may

prevent using unadapted techniques for the deobfuscation process.
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5.1.3 Contributions

In order to face the above listed limitations and provide answer to our motivating questions, we

bring the following contributions:

1. A novel methodology that combines semantic reasoning with ensemble learning techniques.

We believe that semantic reasoning will prevent our model from code dependency limitations.

2. The application of a multi-label and multi-output ensemble model. This classification ap-

proach provides us with the ability to detect several combined layers of obfuscation transfor-

mations.

3. An extension of our methodology for a fine-grained detection. Based on our main approach,

a second classification model is used for the detection of the transformations constructions,

based on a multi-class classification model.

4. Several studies and experiments that justify the constructions of our methodology. We com-

pare different machine learning approaches and techniques in order to build efficient and

scalable models.

5. The evaluation of our methodology against state-of-the-art obfuscators such as Tigress [43]

and Obfuscator-LLVM [96] (i.e. OLLVM).

This chapter is organized as follows: in Section 2 we present the background information about

code obfuscation and targeted transformations. We also introduce related work, as well as notions of

supervised machine learning. In Section 3, we describe our methodology which combines semantic

reasoning with ensemble learning. Section 4 contains our studies and experiments towards an

efficient implementation of our methodology. Section 5 illustrates our evaluations on state-of-the-

art and publicly available obfuscators. Section 6 briefly discuss the application of our methodology

to setup deobfuscation strategies. Then, we discuss our design limitations in Section 7, as well as

our perspectives in Section 8. Finally, we conclude in Section 9.

5.2 Background

In this section we briefly introduce several notions related to supervised machine learning. We also

present related work to our contribution, namely metadata recovery attacks.

5.2.1 Classification algorithms

As previously discussed in Chapter 4, the choice of which specific learning algorithm to use is

a critical step. Many classification algorithms exist [91], each of them having different mapping

functions. Classification is a common application of machine learning. As such, there are many
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metrics that can be used to measure and evaluate our models. In order to compute these metrics,

k-Fold Cross-Validation [107] is a frequently used technique.

The definition of k-fold cross-validation consists in reserving a particular set of samples on

which the model does not train. The limited set of samples allows to estimate how the model is

expected to perform on data not used during the training phase. The parameter k refers to the

number of groups that a given dataset of samples is split into, in order to calculate the mean of

our models accuracy as well as the F1-score based on the value of k. While the accuracy of the

model represents the ratio of correctly predicted labels to the total of labels, F1-score takes both

false positives and negatives into account. In our experimentations and evaluations, the accuracies

and F1-scores are calculated using k-fold cross-validation, with k = 10 for a better generalization

of our model to unknown instances. Another application of cross-validation, introduced in [166],

consists in a functionality-based folding. In other words, the learning set and training set are

divided based on the functionality of the samples from which the raw data is generated. The goal

of such an evaluation methodology is to measure if the model is dependent from the underlying

code functionality, independently of the obfuscation transformation applied. The next paragraph

introduce furthermore the work of Salem and Banescu [166], known as metadata recovery attack.

5.2.2 Metadata recovery attack

Salem and Banescu [166] introduce the use of machine learning techniques to evaluate the stealth

of obfuscation transformations throughout their detection (otherwise call metadata recovery attack).

Their primary hypothesis is that machine learning techniques are capable of implementing these

attacks by classifying obfuscated programs according to the transformations applied. Their experi-

ments are based on two learning algorithms, namely Naive Bayes [72] and Decision trees [161]. Their

raw data is based on static disassembly or dynamic instruction traces, either stripped or not. Thus,

we refer to such raw data generation as syntax-reasoning. The evaluation of their models is made

with two classification techniques. The first one is a traditional k-fold cross validation, with k = 10.

The second one is more fine-tuned since it discriminates the training and test dataset on program

functionality. In other words, the test dataset is excluded of any raw data that have been used in

the training dataset, based on the functionality they implement. Such process is also repeated 10

times, to calculate the average accuracy for each fold. Their results are promising, showing up to

100% of accuracy for obfuscation transformations detection with decision trees, on dynamic traces.

However, these results are obtained with the conventional cross-validation, whereas the second

classification mode provides lower results (up to 61% of accuracy) with decision trees. This indicates

that their model is dependent of the functionality implemented in their raw data. Moreover, their

work is not implemented yet to cover several layers of obfuscation transformations, as it can be the

case in most obfuscated programs.
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Our goal for this contribution is to combine semantic reasoning and more advanced machine

learning classification techniques. We want to have a static analysis tool, based on symbolic

execution, in order to have a model that does not depend on the functionality of the program. The

models are used to detect several layers of obfuscation transformations, thus having a multi-label

and multi-output classification problem. Then, we extend our detection not only to the obfuscation

transformations but also to their constructions. To this end, in the next section, we present our

approach and methodology.

Figure 5.2: Design steps for fine-grained static detection of obfuscation transformations and con-

structions.

5.3 Methodology

In this section we present our methodology composed of several steps, as illustrated in Figure 5.2.

I. In order to create our models, we need to generate obfuscated as well as clean samples. The

generation of our obfuscated sample is done using publicly available obfuscators, namely Tigress

and OLLVM. II. We then employ semantic reasoning via symbolic execution to extract our raw data,

from the generated samples. This step is presented in Section 5.3.1. III. We create two different

datasets for two different kinds of classifications. Using labeled raw data, we build our datasets for

the detection of obfuscation transforms, including several combinations. Another dataset is made

for the detection of specific constructions related to the transformations. These steps are introduced

in Section 5.3.4. IV. The previous datasets are used to train our models. In order to select the most

relevant approach and learning algorithms, several studies and experiments are provided in Section

5.4. V. The final step consists in their evaluation and their application on unknown instances, as

presented in Section 5.5.
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5.3.1 Semantic reasoning

Static symbolic execution is a binary analysis technique that captures the semantics (i.e. logic)

of a program. An interpreter is used to trace the program, while assuming symbolic values for

inputs rather than obtaining concrete values as a normal execution would. A symbolic state S

is built and consists in a set of symbolic expressions S for each variables (i.e. registers, memory,

flags, etc.). Several techniques exist for symbolic execution [12]. Since static symbolic execution is

prone to limitations (e.g. path explosion), we use an intra-procedural and bloc-centric approach, as

summarized next.

5.3.1.1 Bloc-centric intra-procedural symbolic execution

We use semantic reasoning for the generation of our raw data. The symbolic representation helps

to efficiently detect obfuscation transformations and constructions. Raw data refers to the represen-

tation of data samples, containing noisy features, which need to be processed in order to extract the

informative characteristics to train the models. For the detection of obfuscation transformations,

we choose to work on disassembled functions of binary code. On these functions, we apply static

symbolic execution to retrieve their semantic representation. In our work we use disassembled

functions to collect the symbolic expressions from the code, as illustrated in Algorithm 6. First,

the semantic reasoning part of our methodology is given a disassembled function F as input. For

the learning phase of our methodology, F needs to be labeled. In other words, we need to know

which transformations are applied in order to properly train our model. However, in order to use

our methodology as a static and automated detection framework, F does not require to be labeled

once the models are trained. Based on F , we iterate over each basic block B . We then collect

the instructions of B , denoted by IB , with the function getInstructions(). IB is translated into

an intermediate language, denoted by I RB , using getIntermediateLanguage(). Finally, I RB is

being used for the bloc-centric symbolic execution function symbolicExecution(). The latter will

return the symbolic state SB , in other words, expressions of each modified variables in a static single

assignment form, based on the intermediate representation I RB previously used. The generated

semantics SB is then normalized using normalizeSemantics() function. Finally, the normalized

semantics N SB is added to the dictionary L containing all normalized semantics for each processed

basic block B . The content of L will be used to generate our raw data as text file. Our normalization

step has the crucial role of making the model scale to unknown data. Next, Section 5.3.2 describes

this step, along with the content of our raw data.
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Algorithm 6 semantic reasoning for raw-data generation

1: procedure SEMANTIC REASONING(F : a disassembled function)
2: Initialize a dictionary L
3: for each basic block B in F do
4: IB ← getInstructions(B)
5: I RB ←getIntermediateLanguage(IB )
6: SB ←symbolicExecution(I RB )
7: N SB ←normalizeSemantics(SB )
8: L[B ] ← N SB

9: end for
10: textFile = generateRawData(L, F )
11: return textFile

12: end procedure

5.3.2 Semantic-based raw data

Intermediate representations often use concrete values within their generated expressions. This

causes raw data to depend on addresses that are specific to some binaries and prevents our models

to scale on unknown data. Some intermediate representations also use identifiers in order to express

modified registers or memory areas. This notation may further affect the scalability of our trained

models. For the purpose of having a model that can scale to unknown data we use a normalization

phase. The normalization consists in replacing all identifiers and concrete values by symbols, and

non-alphanumerical characters by alphanumerical words. This is a necessary step for a complete

features extraction phase that sometimes excludes non-alphanumerical characters when working

on text-based raw data. In our methodology, we generate the raw data using the Miasm2 [57]

intermediate language. This language is part of the symbolic execution engine that we use for

the implementation of our methodology as IDA Pro plug-in. Additionally, Miasm2 intermediate

language has also been successful for the application of machine learning techniques in order to

deobfuscate opaque predicates [184].

Listing 1 illustrates the symbolic state S of the first basic-block of the function quick-sort, which

is illustrated in Figure 5.1. Note that the complete raw data will contain the symbolic states of each

basic-blocks of the quick-sort function. We can see that Miasm2 intermediate language uses several

keywords to express the semantics of the basic blocks. For example, ExprId is used for registers and

ExprInt for concrete values. The registers and concretes values prevent our model from scaling

to unknown data, thus potentially lowering our model accuracy. This underlines the necessity to

normalize the intermediate language for an efficient semantic reasoning. Listing 30 illustrates the

same basic-block symbolic state, but normalized.
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1 ExprMem(ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xffffffffffffffd0

, 64)), size =64) = ExprId('RDI_init ', size =64)

2

3 ExprId('af', size =1) = ExprSlice(ExprOp('^', ExprOp('+', ExprId('RSP_init ',

size =64), ExprInt (0 xffffffffffffffc8 , 64)), ExprOp('+', ExprId('

RSP_init ', size =64), ExprInt (0 xfffffffffffffff8 , 64)), ExprInt (0x30 ,

64)), 4, 5)

4

5 ExprId('RBP', size =64) = ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0

xfffffffffffffff8 , 64))

6

7 ExprMem(ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xffffffffffffffc8

, 64)), size =32) = ExprSlice(ExprId('RDX_init ', size =64), 0, 32)

8

9 ExprId('pf', size =1) = ExprOp('parity ', ExprOp('&', ExprMem(ExprInt (0

x606078 , 64), size =64), ExprInt (0xff , 64)))

10

11 ExprId('RAX', size =64) = ExprMem(ExprInt (0x606078 , 64), size =64)

12

13 ExprId('IRDst', size =64) = ExprCond(ExprMem(ExprInt (0x606078 , 64), size =64)

, ExprInt (0x40064b , 64), ExprInt (0x400644 , 64))

14

15 ExprId('zf', size =1) = ExprCond(ExprMem(ExprInt (0x606078 , 64), size =64),

ExprInt (0x0, 1), ExprInt (0x1, 1))

16

17 ExprMem(ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0 xfffffffffffffff8

, 64)), size =64) = ExprId('RBP_init ', size =64)

18

19 ExprId('of', size =1) = ExprInt (0x0 , 1)

20

21 ExprId('nf', size =1) = ExprSlice(ExprMem(ExprInt (0x606078 , 64), size =64),

63, 64)

22

23 ExprId('cf', size =1) = ExprInt (0x0 , 1)

24

25 ExprId('RSP', size =64) = ExprOp('+', ExprId('RSP_init ', size =64), ExprInt (0

xffffffffffffffc8 , 64))

26

27 ExprId('RIP', size =64) = ExprInt (0x400650 , 64)

28

29 ExprId('IRDst', size =64) = ExprInt (0x400650 , 64)

Listing 5.1: Symbolic state using Miasm2 intermediate language
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1 ExprMem(ExprOp(op+, REG0 , v0), size =64) = REG1

2

3 REG2 = ExprSlice(ExprOp(op^, ExprOp(op+, REG0 , v1), ExprOp(op+, REG0 , v2),

v3), 4, 5)

4

5 REG3 = ExprOp(op+, REG0 , v2)

6

7 ExprMem(ExprOp(op+, REG0 , v1), size =32) = ExprSlice(REG4 , 0, 32)

8

9 REG5 = ExprOp(opparity , ExprOp(op&, ExprMem(v4 ,size =64), v5))

10

11 REG6 = ExprMem(v4 , size =64)

12

13 IRDst = ExprCond(ExprMem(v4 , size =64), v7 , v8)

14

15 REG8 = ExprCond(ExprMem(v4, size =64), v9, v10)

16

17 ExprMem(ExprOp(op+, REG0 , v2), size =64) = REG9

18

19 REG10 = v9

20

21 REG11 = ExprSlice(ExprMem(v4 , size =64), 63, 64)

22

23 REG12 = v9

24

25 REG13 = ExprOp(op+, REG0 , v1)

26

27 REG14 = v11

28

29 IRDst = v11

Listing 5.2: Symbolic state using our normalized Miasm2 intermediate language

Additionally, the normalization step also reduces the size of the raw data. This helps enhancing the

efficiency of learning and testing phase in terms of execution time. The next sections will present

the different machine learning techniques used in our methodology. The purpose is to create

automated and efficient models for the detection of obfuscation transformations, as well as their

constructions.
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5.3.3 Ensemble learning

In machine learning, ensemble methods [59] use multiple learning algorithms. They are mostly

used to obtain better predictive performance than could be obtained from any of the constituent

learning algorithms alone [119, 160]. An ensemble, in this case, consists of a set of individually

trained classifiers whose predictions are combined when processing novel instances. Different

families of ensemble learning methods exists, e.g. Bagging [28], Boosting [69, 70] or Stacking [177].

Since every model has its strengths and weaknesses, ensemble models combine individual models

to help cope with the weaknesses of each algorithms.

In order to select the best possible predictions from our ensemble, we use a voting [181] algo-

rithm. A voting classifier simply aggregate the predictions of each classifier and predict the class

that gets the most votes. Also nown as hard voting, this approach is usually used for classification

problems. The bagging approach (i.e. bootstrap aggregating approach) consists in using the same

training algorithm for each model, but the training is done on different random subsets of the

training dataset. The booster approach consists in training the models sequentially, each trying

to correct its predecessor. A generic overview of ensemble learning for supervised classification is

given in Figure 5.3.

Figure 5.3: Generic overview of a supervised ensemble learning scheme.

Our work emphasizes the benefits of the ensemble learning approach, as opposed to individual

models. Thus, we based our approach on voting classifiers. However, a more in-depth studies of
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other approaches could provide better results in terms of accuracy or execution time.

5.3.4 Multi-label and multi-class classifications

As discussed previously, several classification problems exists. Multi-label classification methods

for example, are increasingly required by modern applications [26, 116]. We use multi-label with

multi-output classification, in order to return all the detected obfuscation layers, specially when

combined. We also focus on multi-class classifications. These approaches are important in our

methodology because:

1. the detection of all the applied obfuscation transformations is a multi-label classification

problem. For example, if our set of labels are the applied transformations, namely control-

flow flattening and code virtualization, then one binary can have both protections. In such

case, our methodology needs to return all predicted labels. We then refer to such model as a

multi-output classification.

2. the fine-grained detection of the constructions is a multi-class classification problem. For

example, if we know that control-flow flattening is applied on a code, then its constructions

can only be one unique label (e.g. switch-based, ifnest-based, indirect, call-based, etc.).

Multi-label classification methods differ from binary or multi-class approaches. Tsoumakas and

Katakis [186] group multi-label classification methods into two categories: problem transformation

methods that transform the multi-label classification problem either into one or more single-label

classification problems, and algorithm adaptation methods that extend specific learning algorithms

in order to handle multi-label data directly. In our methodology we use classifier chains [154],

where each model is an ensemble of learning algorithm, as presented in Section 5.3.3. We also

study the binary relevance methodology [78] in Section 5.4. These two methodologies are briefly

introduced in the following paragraphs.

5.3.4.1 Problem transformation methods

Binary relevance method [208] is one problem transformation technique that transforms any multi-

label problem into one binary problem for each label. Hence, it trains several classifiers, one for each

class, i.e. one per obfuscation transformations. The union of all classes that are predicted is taken as

the multi-label output. Binary relevance method is popular because of its ease of implementation.

However, the main drawback is that it ignores the possible correlations between labels.

Classifier chains [155] however, as opposed to binary relevance method, take into account the

labels correlations. With this methodology we have for n labels also n binary classifiers f0, f1, ..., fn
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constructed. The construction is made as a chain where a classifier fi uses the predictions of all its

previous classifiers f j with j < i . The chain order is randomly selected in our design.

Another known problem transformation method is called Label Powerset (or Label Combination)

which considers each combination of labels as a single label. In our work we do not study this

approach because of its high computational complexity due to the possible combinatorial explosion.

Table 5.1 provides an overview of the above listed problem transformation methods based on the

work of Ceylan and Pekel [38].

Method Computational complexity Advantage(s) Disadvantage(s)

Binary Relevance O(n)
Computationally efficient.

Simple and fast.
Does not consider

the relationship among labels.

Classifier Chains O(n)
High predictive performance.

Works with any type of classifier.
Cannot use unlabeled data.

Label Powerset O(2n) Considers relationship among labels
Computationally expensive and complex.

May lead to over-fitting.

Table 5.1: Comparison of some problem transformation methods for multi-label classification

The core of our methodology is based on Classifier Chains because of its computational complexity

and advantages.

5.3.4.2 Algorithm adaptation methods

Algorithm adaptation extends single label classification to the multi-label context. It is usually done

by changing the decision functions. Some learning algorithms support multi-label and multi-output

classification (e.g. [209, 210]), whereas other can be extended.

During our experiments, these two classifications approaches, and multi-label problems will be

studied in Section 5.4. Our objective is to provide the best suited algorithms and techniques for an

efficient and accurate model.

5.4 Experiments

In this section we present first the dataset used, common with previous related work [166, 184]. Our

preliminary studies towards an efficient implementation of a fine-grained detection framework are

also introduced. All our experiments and evaluations are done on a Windows 7 laptop, using 16GB

of RAM, and an Intel processor.
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5.4.1 Datasets

Our experiments are made on several C code samples. We use the scikit-learn API [145] for the

implementation of the models. The datasets contain various types of code, each of them having

different functionalities in order to have models that do not fit to a specific type of program. The

used samples are listed below:

• GNU core utilities (i.e. core-utils) binaries [151] for normal predicate samples;

• Cryptographic binaries for obfuscated and non-obfuscated predicates [49];

• Samples from [13] containing basic algorithms (e.g. factorial, sorting, etc.), non-cryptographic

hash functions, small programs generated by Tigress;

• Samples involving the uses of structures and aliases [4, 88].

Our choice is motivated by the samples low ratio of dependencies and their straightforward compi-

lation. This makes their obfuscation possible using tools such as Tigress and OLLVM without errors

during compilation. Furthermore, all datasets used for the studies and evaluations are balanced

and contain between 1000 to 5000 samples. The obfuscation transformations applied are given in

Appendix B.2 and B.1. The next section will present our studies based on these datasets.

5.4.2 Preliminary studies

Our goal in this section is to provide some answers to the following questions related to our method-

ology:

• Study 1: when only one obfuscation transformation is applied, is a single model more effective

than ensemble models for the detection?

• Study 2: when several obfuscation transformations are applied, can the model from Study 1

be applied to the multi-label and multi-output classification problems?

• Study 3: when several obfuscation transformations are applied, is a multi-label and multi-

output model more efficient than one binary model for each transformation, i.e. classifier

chains?

• Study 4: for the fine-grained detection of obfuscation constructions, is a single model more

efficient than ensemble models?

Our different studies and evaluations present two different types of results based on two different

evaluations approaches. One is the traditional k-folds cross-validation with scores in black colored

font. The other is made with the functionality-based cross-validation approach in red colored
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font, used in Salem and Banescu related work [166]. Besides, we use as a traditional single-model

random-forest algorithm throughout all our studies. As for the ensemble models, we combined

extra-tree and random-forest learning algorithms. These algorithms were selected because they

provided the best scores in terms of accuracy, precision and recall. For simplicity, a preliminary

evaluation was made between several learning algorithms [108] (e.g. decision trees, k-nearest

neighbors, support vector machines, neural network, naive Bayes, random forest, etc). In order

to select the best ensemble models, we combined between 2 to 6 single models, and selected the

combination that provided the best scores.

5.4.2.1 Study 1

In this study we experiment traditional models against ensemble learning for multi-class classifica-

tion problems. Namely, each sample is assigned with an unique label. Thus our model returns only

one label per sample. We experiment here if ensemble learning can be more efficient at detecting ob-

fuscation transformation, when only one layer is applied. Therefore, we do not combine obfuscation

transformations for this study. Table 5.2 illustrates our results where we see that ensemble-learning

Obfuscation transformation Mono-model Ensemble-learning
Tigress transformations Random-forest Extra-tree & Random-forest

EncA 93% / 98% 95% / 100%
EncL 100% / 97% 100% / 100%
EncD 95% / 98% 95% / 100%
AddO 100% / 100% 98% / 100%
Flat 97% / 100% 97% / 100%
Virt 100% / 100% 100% / 100%
Jit 100% / 100% 100% / 100%

clean 91% / 100% 91% / 100%
Overall Accuracy 97% / 99% 97% / 100%

Table 5.2: Multi-class accuracy and F1-scores per labels for the detection of Tigress obfuscation

transformations (1 layer).

provides a similar accuracy to random-forest, up to 97%, with traditional cross-validation. The

illustrated F1-scores per labels, namely the obfuscation transforms, also points out that most of

them are predicated similarly with both approaches. An exception is made for arithmetic encoding,

i.e. EncA, and opaque predicates, i.e. AddO. With the functionality-based cross-validation approach

however, the results differs more as observed in red font. Ensemble-learning technique provides

100% accuracy and F1-score for each classes, whereas random-forest achieves slightly lower results,

with an average accuracy at 99%. Due to the semantic reasoning of our methodology, the results are

better with this approach when having one layer of obfuscation. Yet, these results are not sufficient
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to select traditional mono-models over ensemble-learning, or the opposite way. Hence, the next

study will experiment these two approaches for multi-label and multi-output classification.

5.4.2.2 Study 2

In the following study, we combine all obfuscation transformations. The goal of our model is to

give n correct output for each n obfuscation transformation applied. Each sample can have one or

more labels. We aim to compare the random-forest algorithm with the ensemble model based on

random-forest and extra-trees for multi-label and multi-output classification.

Our results in Table 5.3 illustrate that traditional cross-validation provides a higher overall

accuracy for ensemble learning classifier as opposed to random forest. Our ensemble of mod-

els scores 92% as opposed to 90% for random-forest, with F1-scores per labels above 91%. The

functionality-based cross-validation provides lower results, with an overall accuracy at 83% and at

82% for respectively random forest and ensemble models. Still, our result indicates that both ap-

proaches can efficiently detect several layers of obfuscation transforms. However, we may improve

our results using problem transformations methods such as classifier chains.

Obfuscation transformation Multi-label mono-model Multi-label ensemble
Tigress transformations Random-forest Extra-tree & Random-forest

EncA 95% / 93% 96% / 92%
EncL 90% / 78% 92% / 85%
EncD 95% / 93% 96% / 92%
AddO 96% / 88% 97% / 88%
Flat 98% / 97% 99% / 91%
Virt 99% / 98% 99% / 99%
Jit 100% / 95% 97% / 92%

clean 90% / 90% 91% / 87%
Overall Accuracy 90% / 83% 92% / 82%

Table 5.3: Multi-label accuracy and F1-scores per labels for the detection of Tigress obfuscation

transformations (several layers).

The next study will experiment this hypothesis.

5.4.2.3 Study 3

As in the second study, we combine all obfuscation transformations but we use binary classification

problem for multi-label and multi-output classification using classifier chains. Our results with

standard cross-validation does not differ much from previous Study 2 as illustrated in Table 5.4.

The functionality-based cross-validation provides improved overall accuracies and F1-scores per
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Obfuscation transformation Mono-model chain Ensemble chain
Tigress transformations Random-forest Extra-tree & Random-forest

EncA 95% / 92% 97% / 90%
EncL 90% / 80% 93% / 87%
EncD 95% / 92% 97% / 96%
AddO 96% / 92% 97% / 88%
Flat 97% / 97% 99% / 91%
Virt 99% / 98% 99% / 99%
Jit 100% / 90% 100% / 92%

clean 88% / 90% 92% / 90%
Overall Accuracy 90% / 85% 92% / 90%

Table 5.4: Classifier chain accuracy and F1-scores per labels for the detection of Tigress obfuscation

transformations (several layers).

labels. Ensemble models used in classifier chains provide 90% of overall accuracy, compared to

random-forest used in classifier chains that score 85% of overall accuracy. This study led us to select

ensemble-learning techniques with classifier chains in our methodology since classifier chains

allow us to create an efficient and accurate model for the detection of obfuscation transformations

with one or more layers.

5.4.2.4 Study 4

For this final study, our goal is to evaluate the models for the fine-grained detection of an obfuscation

transformation construction.

Code virtualization Mono-model Ensemble model
Tigress constructions Random-forest Extra-tree & Random-forest

linear-based 100% / 99% 100% / 100%
switch-based 100% / 98% 100% / 100%
if-nest-based 100% / 100% 100% / 100%

Overall Accuracy 100% / 99% 100% / 100%

Table 5.5: Accuracy and F1-scores per labels for the detection of Virtualized constructions.

We use in our dataset several Virtualized samples with Tigress for our experiment. Tigress

allows the user to select different kinds of constructions, such as switch-based, ifnest-based, linear-

based, interpolation-based for example. This experiment is equivalent to Study 1 in the sense that it

is a multi-class classification problem. Namely, each sample has a unique label and the selected

model will return one unique label per instance.
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Our results in Table 5.5 show that both random-forest and ensemble models provides the same

F1-scores per labels. Their overall accuracies with standard cross-validation are also with 100%

accuracy. With functionality-based cross-validation, ensemble models are more efficient with a

100% accuracy as opposed to 99% for mono-model based on random-forest. This led us to select

ensemble models in our methodology also for the classification of constructions, as it allows a

fined-grained detection capability.

5.5 Evaluations

In this section we evaluate our models with respect to the following classification problems:

1. Multi-label and multi-output evaluation: can our model, based on a classifier chain of

ensemble models, efficiently and accurately detect all obfuscation transformations when one

or more layers are applied?

2. Multi-class evaluation: once the obfuscation transformation detected, can our ensemble

model efficiently and accurately detect the construction of the latter?

We use both cross-validation evaluation schemes as detailed in Section 5.2.1. Our evaluations

are made with publicly available obfuscators, namely Tigress and OLLVM, in order to combined

obfuscation transformations from different tools.

5.5.1 Transformations detection

First, our goal is to evaluate the stealth of obfuscation transformation, either applied as unique

layer or combined. We use our multi-label and multi-output model based on ensemble-models and

classifier chain to detect all the transformations applied. To measure the efficiency of our model, we

used both traditional and functionality-based cross-validation as explained in Section 5.2.1. A list of

all combinations of the applied transformations used in our evaluations can be found in Appendix

B.1 and B.2. Additionally, command line options for Tigress and OLLVM are given in Appendix A.1

and B.2.

5.5.1.1 OLLVM

Our first evaluation uses OLLVM. It implements transformations such as opaque predicates (i.e.

bogus control flow, bcf ), instruction substitutions (i.e. sub) and control-flow flattening (i.e. fla). We

built a dataset with several combinations of these transformations (c.f. Appendix B.2) in order to

measure the efficiency of our model.
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Obfuscation transformation Classifier Chain
OLLVM Ensemble model

bcf 98% / 98%
fla 92% / 95%

sub 82% / 80%
clean 94% / 93%

Overall Accuracy 86% / 89%

Table 5.6: Evaluated accuracy and F1-scores per labels for the detection combined OLLVM transfor-

mations.

Table 5.6 shows our results. Our model achieves an overall accuracy of 86% with traditional

cross-validation and 89% with the functionality-based one. F1-scores for labels bcf, fla and non-

obfuscated samples marked as clean, are over 92% and up to 98% for bcf. However, the efficiency of

our model to detect OLLVM instructions substitutions transformations, labeled as sub, achieves a

low F1-score at 80%. Further evaluations indicate that sub is often considered clean by our model.

Thus, when combined with other transformations, sub transformation is often undetected.

5.5.1.2 Tigress

Our second evaluation is done with the Tigress obfuscator. Tigress can generate state-of-the-art

transformations such as dynamic-code generation (i.e. Jit), code-virtualization (i.e. Virt), control-

flow flattening (i.e. Flat), opaque predicates (i.e. AddO) and several encoding (i.e. Arithmetics,

Literals and Data, respectively EncA, EncL and EncD), among others.

Obfuscation transformation Classifier Chain
Tigress Ensemble model

EncA 94% / 90%
EncL 90% / 86%
EncD 92% / 91%
AddO 95% / 96%
Flat 96% / 98%
Virt 99% / 100%
Jit 100% / 100%

clean 91% / 89%
Overall Accuracy 90% / 91%

Table 5.7: Evaluated accuracy and F1-scores per labels for the detection combined Tigress trans-

formations.

As illustrated in Table 5.7, our model accuracy is up to 90% with standard cross-validation.
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With functionality-based cross-validation, the overall accuracy is at 91%. F1-scores for heavy

transformation such as Virt and Jit are up to 99% and 100%. The lowest F1-score is for i.e. EncL which

is sometimes considered as a clean sample by our model. Regardless, our evaluation underlines the

accuracy and efficiency of our methodology against Tigress transformations.

5.5.1.3 OLLVM and Tigress

Our final evaluation combines the datasets for both OLLVM and Tigress. We aim to see if our model

is able to detect common obfuscation transformations. Table 5.8 shows our results. F1-scores

Obfuscation transformation Classifier Chain
Tigress and OLLVM Ensemble model

EncA and sub 93% / 90%
EncL 88% / 88%
EncD 90% / 88%

AddO and bcf 95% / 95%
Flat and fla 96% / 99%

Virt 99% / 100%
Jit 100% / 100%

clean 83% / 80%
Overall Accuracy 88% / 86%

Table 5.8: Evaluation accuracy and F1-scores per labels for the detection of both combined Tigress

and OLLVM transformations.

for heavy transformations such as Virt, Jit and Flat are high, averaging up to 100% for Jit as an

example. Combined test samples between obfuscators such EncA-sub, AddO-bcf, and Flat-fla have

high F1-scores, even when combined with other transformations. These heavy transformations

introduce important side-effects to the code, allowing an efficient and accurate detection of our

model. The ability to efficiently detect non-obfuscated samples is still low compared to the ability to

detect all layers of obfuscation transformations. In that case, our model F1-scores are up to 83% and

80% depending on the cross-validation approach used. Still, our model is averaging an accuracy up

to 88% and 86%. These overall accuracies illustrate our model efficiency regarding the detection

of obfuscation transformations, even when combined, and between the two different obfuscators.

The execution time average approximately two minutes for a balanced dataset of 4000 raw data.

5.5.1.4 OLLVM vs. Tigress

Our final evaluation aims to compare the accuracies of our model depending on the learning dataset

used. First, we use a learning dataset only based on OLLVM transforms. The model will be then
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evaluated against some similar obfuscation transformations generated by Tigress. Second, we

do the opposite, namely train our model on Tigress samples to evaluate it on OLLVM raw data.

The results are displayed in Table 5.9. As we can see, our model efficiently detects Tigress Flat

Training dataset Testing dataset Overall accuracy
OLLVM Tigress (Flat) 100% / 100%
OLLVM Tigress (Flat, AddO) 68% / 61%
Tigress OLLVM (fla) 95% / 92%
Tigress OLLVM (all) 82% / 75%

Table 5.9: Overall accuracies of our model using either OLLVM or Tigress learning dataset.

transformation when training on 1000 samples of all OLLVM transforms, with 100% of accuracy.

Results are lower when the training dataset is based on Tigress (4000 samples), against OLLVM

fla transform, with an overall accuracy up to 95% with a standard cross-validation. Moreover, we

can observe that our model cannot efficiently detect Tigress opaque predicates, i.e. AddO, when

training only on OLLVM transforms. The results, in that case, indicates that our model efficiently

detects the Flat transformation, but only few AddO ones. Finally, when our model is trained

on Tigress, the overall accuracy is up to 82% against all OLLVM transforms (c.f. Appendix B.2).

This result indicates that our methodology provides some genericity, while still having room for

improvement.

5.5.2 Constructions detection

In this section we evaluate our model for the detection of specific obfuscation transformations

constructions. We use our multi-class model, based on ensemble-models, to provide a fine-grained

detection technique. As for previous evaluations, we use traditional and functionality-based cross-

validation techniques. A first evaluation on code virtualization is already presented in Study 4,

Section 5.4.2.4. In the followings we focus on control-flow flattening and opaque predicates con-

structions.

5.5.2.1 Control-flow flattening

As for code virtualization, control-flow flattening can also be constructed in several ways, as intro-

duced in Section 2.1.4.

Facing the same limitations as for code virtualization constructions, we evaluated two con-

structions namely switch-based from the Tigress obfuscator, and ifnest-based from OLLVM. The

evaluation results are in Table 5.10. Our model averages high F1-scores and accuracy, the latter

being at 98% with standard cross-validation evaluation.
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Control-flow flattening Ensemble model
Tigress and OLLVM Extra-tree & Random-forest

switch-based 98% / 95%
if-nest-based 98% / 100%

Overall Accuracy 98% / 97%

Table 5.10: Evaluation accuracy and F1-scores per class for the detection of control-flow flattening

constructions.

5.5.2.2 Opaque predicates

Many opaque predicates constructions exists (cf. Chapter 2, Section 2.1.4). For the detection of

their constructions, we used Tigress, OLLVM but also novel bi-opaque constructions [200]. Our

results in Table 5.11 show that our model is accurately detecting opaque predicates constructions.

F1-scores are up to 100% with standard cross-validation. Bi-opaque constructions are however

often un-detected when combined with other transformations.

Opaque predicates Ensemble model
Tigress and OLLVM Extra-tree & Random-forest

Floats 85% / 89%
Symbolic-memory 87% / 87%

Arithmetic 100% / 100%
Aliasing 100% / 99%

Mixed-boolean and arithmetic 100% / 96%
Overall Accuracy 95% / 93%

Table 5.11: Evaluation accuracy and F1-scores per class for the detection of opaque predicates

constructions.

Yet, the overall accuracy of our model is at 95% and 93% depending on the evaluation approach

used. This illustrates the efficiency of our methodology towards the detection of obfuscation

transformations constructions.

5.6 Application

As previously discussed in [166], metadata recovery attacks are usually manual tasks, therefore a

potential bottleneck in the reverse engineering process. Our methodology, which could be plugged-

in a disassembler framework, provides all applied transformation and construction and allows

reverse-engineers to setup automated deobfuscation strategies. In particular, it may prevent the
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use of analyses that are inefficient against specific transformations, such as mixed-boolean and

arithmetic opaque predicates against SMT solvers, or dynamic-symbolic execution against range

dividers.

Since code obfuscation may introduce some overhead to the execution time of a binary, the

transformations are not applied throughout all the functions. Generally, heavy transformations are

used to protect sensitive code portions. Thus, another application of an efficient metadata recovery

framework consists in the detection of sensitive functions, which are detected as obfuscated with

several transforms.

Finally, malware authors are usually known to implement specific protections schemes and pat-

terns to hide their malicious intent. With a proper training dataset, we believe that our methodology

can scale to the detection of such patterns, thus providing another application for the classification

of malicious samples.

5.7 Limitations

One threat to the validity of our results is that we only use datasets of relatively small C programs,

except for the core-utils binaries used for non-obfuscated samples. However, we consider that our

dataset can be representative for a large number of programs. They use all common programming

language constructions and different functionalities (e.g. hash functions, sorts, cryptographic

algorithms, etc.). Nevertheless, our work shows that semantic reasoning combined with advanced

machine learning present capabilities for a fine-grained detection of obfuscation transforms.

The capability of detecting unknown transformations or constructions represents another

limitation of our methodology. If our model did not trained on one specific transformation or

constructions, it will not predict properly the unknown sample. This can lead to a loss of accuracy

when unknown transformations are combined with others.

Dynamic transformations cause limitations to our model for the static detection of obfuscation

transforms. Despite from the fact that we are able to accurately detect some of these transformations

(i.e. Jit, Code Virtualization), when other obfuscation transformations are applied before them, our

model is less efficient. Moreover, other transformations such as packing, or anti-symbolic execution

techniques may lower the accuracy of our model. However, as we introduce in the next section,

our methodology can scale to dynamically collected traces which allows to thwart some of these

limitations.
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5.8 Perspectives and future work

First, more in-depth studies of aggregation approaches used in ensemble learning must be done in

order to see if ensemble learning are more efficient for that task compared to mono-models. The

hard voting scheme used is a simple approach, but may not achieve the real gain behind the use of

the ensemble learning approach.

As already shown in other work related to deobfuscation [184], semantic reasoning and machine

learning provides promising results. We believe that, compared to the results in Salem et al. work,

our model does not depend on the code functionality as illustrated in our evaluations. However, a

more accurate comparison must be made as future work.

In order to overcome the dynamic transformations limitations, our methodology is easily adapt-

able to dynamically collected instructions traces. With a given instructions trace, it is possible to

reconstruct each basic-blocks and apply our semantic reasoning approach in order to generate raw

data. This step can be done either for the learning or the evaluation phase. Our future work consists

in extending the implementation of our framework for this and evaluating other combinations of

obfuscation transformations based on dynamic traces.

Another future work we need to consider is the application of n layer of the same obfuscation

transformations. For now, our evaluations is done by combining several transformations, but using

one time each of them. We believe that extending our evaluations to the use of one transformation

several times is an interesting study.

5.9 Conclusions

In this chapter we presented the efficiency of semantic reasoning combined with advanced machine

learning techniques. This combination is motivated by the construction of a fine-grained detection

framework of obfuscation transformations and constructions. By extending our approach to multi-

label and multi-output classification, we enhanced metadata recovery attacks to the detection of

multiple layers of obfuscation transformations. We proposed a new approach that combines a

bloc-centric symbolic execution with machine learning ensemble model and classifier chains. We

used our models to evaluate the stealth of both obfuscation transformations and constructions. Our

results are promising, with overall accuracies up to 91% for the transformations and 100% for the

constructions. The use of static symbolic execution allows us to be dependent on the underlying

functionality of the code samples used for the learning phase. Our empirical studies illustrate

that our choices conduct towards the implementation of an efficient and accurate evaluation

framework against state of the art obfuscators. However, there is still place for improvements with

a more in-depth study of learning algorithms used and their parameters. Yet, our work improves
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metadata-recovery attacks, and paves the way towards the efficient use of advanced machine

learning combined with semantic
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Chapter 6

Conclusion

Contents
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6.1.3 How can we help reverse-engineers select the adequate deobfuscation analy-
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6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

In this thesis we have studied different deobfuscation approaches toward a static evaluation

of obfuscation transformations. We mainly focused on static semantic reasoning, combining it

with well known techniques from other research areas such as binary diffing and machine learning.

We studied and developed several deobfuscation frameworks, one for each of the followings ap-

proaches; simplifying the obfuscated code, removing the obfuscation transformations or gathering

informations about the protections applied. Our methodologies and designs have been validated

on well known malwares and state-of-the-art obfuscators implementing widely used obfuscation

transformations. In this chapter, we start by giving a summary of all this thesis contributions. We

conclude with our perspectives for future work.

167



6.1 Contributions summary

This thesis contributions are made to answer the following questions:

1. How can we contribute to existing generic deobfuscation methodologies?

2. How can we use machine learning techniques for the purpose of removing widely used obfusca-

tion transformations?

3. How can we help reverse-engineers select the adequate deobfuscation analyses?

6.1.1 How can we contribute to existing generic deobfuscation methodologies?

In order to answer the first question, we transposed semantic-based binary diffing techniques for

the purpose of statically simplifying obfuscated binaries. We developed our methodology, called

DoSE, as an IDA Pro plug-in and for three major applications, namely:

• A bloc-centric and intra-procedural approach to statically simplify control-flow graph by

detecting cloned basic-blocks;

• An path-oriented, bounded and intra-procedural approach to statically detect two-way

opaque predicates. To the best of our knowledge, no other work tackles these types of opaque

predicates.

• A function-oriented approach to detect cloned branching functions in order to reduce the

amount of code to be analyzed.

We evaluated each applications against real-world and well-known malwares such as Cryptowall

and Flame. Our evaluations underlines the efficiency of DoSE for each applications, with up to 63%

of control-flow graph reduction or 1954 cloned functions detected on Flame. We demonstrated

that DoSE can be efficiently extended to the detection of two-way opaque predicates, which until

then were not detected by any known technique. Therefore, this contribution paves the way for

combining semantic equivalence methodologies with existing generic deobfuscation techniques, in

order to improve their efficiency and scalability.

6.1.2 How can we use machine learning techniques for the purpose of removing widely

used obfuscation transformations?

Our second contribution is, to the best of our knowledge, the first deobfuscation technique based

on machine learning for the purpose of removing obfuscation transformations. By introducing the
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different constructions of opaque predicates and the limitations from dynamic symbolic execu-

tion techniques and SMT solvers, we underlined the importance of studying other alternatives for

generic evaluations of these transformations.

We developed an IDA Pro plug-in, a new approach that bridges a thresholded static symbolic

execution with machine learning classification to evaluate both the stealth and resilience of invariant

opaque predicates constructions. The use of static symbolic execution allows us to have a better

code coverage and scalability, which combined with a machine learning model, permits a generic

approach by discarding the use of SMT solvers.

Our studies illustrate that our choices conduct towards the implementation of an efficient and

accurate evaluation framework against state of the art obfuscators. We created two models for

the evaluation of stealth and resiliency of state-of-the-art opaque predicates constructions, with

results up to 99% for detection and 95% for deobfuscation. Moreover, we extended our work to a

deobfuscation plug-in and compared our results to other tools, showing the efficiency of machine

learning for the deobfuscation of most invariant opaque predicates constructions.

Thus, this contribution initiate the use of machine learning techniques in order to remove obfusca-

tion transformations while preserving a genericity with respect to their constructions.

6.1.3 How can we help reverse-engineers select the adequate deobfuscation analyses?

The third contribution of this thesis aims at improving existing metadata recovery attack. Existing

technique syntax-oriented and thus suffers from several limitations. We presented the efficiency of

semantic reasoning combined with advanced machine learning techniques. This combination is

motivated by the construction of a fine-grained detection framework of obfuscation transformations

and constructions. By extending our approach to multi-label and multi-output classification, we en-

hanced metadata recovery attacks to the detection of multiple layers of obfuscation transformations,

as well as their constructions.

Our results are promising, with overall accuracies up to 91% for the transformations and 100% for

the constructions. This further illustrates that our choices conduct towards the implementation of

an efficient and accurate evaluation framework against state of the art obfuscators.
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6.2 Perspectives

Our different contributions give us several perspectives for future work. Since we developed two

evaluation methodologies based on machine learning techniques, a first perspective is to provide a

more in-depth study on deep learning techniques for deobfuscation purposes.

Second, all of our contributions are based on static analyses. The ability to combine them with

existing dynamic techniques to provide more efficient generic deobfuscation approach is another

idea for future work.

Third, from existing works and our contributions, a possible future work is to build a complete

evaluation framework that gathers all its different approaches, namely, the collection of metadata

informations, the simplification, and the removal of obfuscation transforms. With such framework,

for example as an IDA plug-in, we can provide analysts and reverse-engineer a complete set of tools

and techniques to efficiently and rapidly work on protected binaries.

Overall, we believe that our approach of combining semantic-reasoning of a program with machine

learning techniques can be applied to further code obfuscation and deobfuscation research subjects,

which is something that we envision to explore.
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Appendix A

Defeating Opaque Predicate using Binary

Analysis and Machine Learning

Contents
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In the following we present appendixes for the second contribution of this thesis, namely the

evaluation of our methodology for breaking opaque predicates using binary analysis and machine

learning.
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A.1 Tigress commands

In the followings, we list the combinations of obfuscation transformations used for our datasets, in

their application order. Note that the combinations listed in italic are considered as clean samples

since they do not generate opaque predicates.

• AddOpaque (16 or 32 times)

• AddOpaque, EncodeLiterals

• EncodeLiterals

• AddOpaque, EncodeArithmetics

• EncodeArithmetics, AddOpaque

• EncodeArithmetics

• AddOpaque, EncodeData

• EncodeData, AddOpaque

• EncodeData

• AddOpaque, EncodeArithmetics, EncodeLiterals, EncodeData

• EncodeData, EncodeArithemtics, EncodeLiterals, AddOpaque

• AddOpaque, Flatten

• Flatten, AddOpaque

• Flatten

• Flatten, EncodeData, EncodeArithemtics, EncodeLiterals

• Virtualize, AddOpaque

• Virtualize

• Virtualize, EncodeData, EncodeArithemtics, EncodeLiterals

• Virtualize, Flatten

• Flatten, AddOpaque, EncodeData, EncodeArithemtics, EncodeLiterals

• Virtualize, AddOpaque, EncodeData, EncodeArithemtics, EncodeLiterals

• Virtualize, Flatten, AddOpaque, EncodeData, EncodeArithemtics, EncodeLiterals
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A.1.1 Commands options

1 # AddOpaque options

2 tigress --Transform=InitEntropy --Transform=InitOpaque --InitOpaqueStructs=

list ,array ,env --Functions=main --Transform=AddOpaque --Functions=${3}

--AddOpaqueCount=${NUM} --AddOpaqueKinds=call ,fake ,true

3

4 # Flatten

5 tigress --Transform=Flatten --FlattenDispatch=switch ,goto --Functions=${3}

6

7 # Virtualize

8 tigress --Transform=Virtualize --VirtualizeDispatch=switch ,direct ,ifnest ,

linear --Functions=${3}

9

10 # EncodeLiterals

11 tigress --Transform=EncodeLiterals --Functions=${3} --EncodeLiteralsKinds=

integer

12

13 # EncodeArithmetics

14 tigress --Transform=EncodeArithmetic --Functions=${3} --EncodeLiteralsKinds

=integer

15

16 # EncodeData

17 tigress --Transform=EncodeData --LocalVariables=${4} --EncodeDataCodecs=

poly ,xor ,add --Functions=${3}

Listing A.1: Tigress commands for sample generation
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Appendix B

Fine-Grained Static Detection of

Obfuscation Transforms Using

Ensemble-Learning and semantic

reasoning

Contents
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In the following we present appendixes for the third contribution of this thesis, namely the

fine-grained static detection of obfuscation transforms using ensemble-learning and semantic

reasoning.
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B.1 Tigress transformations

In the followings, we list the combinations of obfuscation transformations used for our datasets, in

their application order.

• AddOpaque (16 or 32 times)

• AddOpaque, EncodeLiterals

• EncodeLiterals

• AddOpaque, EncodeArithmetics

• EncodeArithmetics, AddOpaque

• EncodeArithmetics

• AddOpaque, EncodeData

• EncodeData, AddOpaque

• EncodeData

• AddOpaque, EncodeArithmetics, EncodeLiterals, EncodeData

• EncodeData, EncodeArithemtics, EncodeLiterals, AddOpaque

• AddOpaque, Flatten

• Flatten, AddOpaque

• Flatten

• Flatten, EncodeData, EncodeArithemtics, EncodeLiterals

• Virtualize, AddOpaque

• Virtualize

• Virtualize, EncodeData, EncodeArithemtics, EncodeLiterals

• Virtualize, Flatten

• Flatten, AddOpaque, EncodeData, EncodeArithemtics, EncodeLiterals

• Virtualize, AddOpaque, EncodeData, EncodeArithemtics, EncodeLiterals

• Virtualize, Flatten, AddOpaque, EncodeData, EncodeArithemtics, EncodeLiterals
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• Jit

• Jit, AddOpaque

• Jit, AddOpaque, EncodeData, EncodeArithemtics, EncodeLiterals

B.1.1 Commands options

1 # AddOpaque options

2 tigress --Transform=InitEntropy --Transform=InitOpaque --InitOpaqueStructs

=list ,array ,env --Functions=main --Transform=AddOpaque --Functions=${3}

--AddOpaqueCount=${NUM} --AddOpaqueKinds=call ,fake ,true

3

4 # Flatten

5 tigress --Transform=Flatten --FlattenDispatch=switch ,goto --Functions=${3}

6

7 # Virtualize

8 tigress --Transform=Virtualize --VirtualizeDispatch=switch ,direct ,ifnest ,

linear --Functions=${3}

9

10 # Jit

11 tigress -include $TIGRESS_HOME/jitter -amd64.c --Transform=Jit --Functions=

${3} --JitEncoding=hard

12

13 # EncodeLiterals

14 tigress --Transform=EncodeLiterals --Functions=${3} --EncodeLiteralsKinds=

integer ,string

15

16 # EncodeArithmetics

17 tigress --Transform=EncodeArithmetic --Functions=${3} --

EncodeLiteralsKinds=integer

18

19 # EncodeData

20 tigress --Transform=EncodeData --LocalVariables=${4} --EncodeDataCodecs=

poly ,xor ,add --Functions=${3}

21

Listing B.1: Tigress commands for sample generation

B.2 OLLVM transformations

In the followings, we list the combinations of obfuscation transformations used for our datasets, in

their application order.
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• bcf

• bcf, sub

• bcf, sub, fla

• bcf, fla, sub

• sub

• sub, bcf

• sub, bcf, fla

• fla

• fla, bcf

• fla, sub, bcf

• fla, bcf, sub

B.2.1 Commands options

1 # Bogus control -flow

2 clang ${1}.c -o ${1} -mllvm -bcf -mllvm -bcf_prob =50

3 clang ${1}.c -o ${1} -mllvm -bcf -mllvm -bcf_prob =100

4

5 # Control -flow flattening

6 clang ${1}.c -o ${1} -mllvm -fla

7 clang ${1}.c -o ${1} -mllvm -fla -mllvm -split

8

9 # Instruction substitution

10 clang ${1}.c -o ${1} -mllvm -sub

11

12

Listing B.2: O-LLVM commands for sample generation
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