
HAL Id: tel-02907322
https://theses.hal.science/tel-02907322v1

Submitted on 27 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continual learning for image classification
Anuvabh Dutt

To cite this version:
Anuvabh Dutt. Continual learning for image classification. Artificial Intelligence [cs.AI]. Université
Grenoble Alpes, 2019. English. �NNT : 2019GREAM063�. �tel-02907322�

https://theses.hal.science/tel-02907322v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ
GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Anuvabh Dutt
Thèse dirigée par Georges Quénot et Denis Pellerin

préparée au sein du Laboratoire d’Informatique de Grenoble et
Grenoble Images Parole Signal Automatique Laboratoire
dans l'École Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique (MSTII)

Continual learning for image
classification
Apprentissage continu pour la classification
des images
Thèse soutenue publiquement le 17 décembre 2019, devant le
jury composé de :

Mme. Jenny Benois-Pineau
Professeur, Université Bordeaux, Rapporteur
M. Nicolas Thome
Professeur, CNAM, Rapporteur
M. Hervé Le Borgne
Chercheur, CEA, Examinateur
M. Masih-Reza Amini
Professeur, Université Grenoble Alpes, Président
M. Denis Pellerin
Professeur, Université Grenoble Alpes, Co-directeur de thèse
M. Georges Quénot
Directeur de recherche, CNRS, Directeur de thèse

Abstract

This thesis deals with deep learning applied to image classification tasks. The
primary motivation for this work is to make current deep learning techniques
more efficient and to deal with changes in the data and label distribution. We
work in the broad framework of continual learning, with the aim to have in the
future machine learning models that can continuously improve.

The first contribution involves change in label space of a data set, with the data
samples themselves remaining the same. We consider a semantic label hierarchy
to which the labels belong. We investigate how we can utilise this hierarchy for
obtaining improvements in models which were trained on different levels of this
hierarchy.

The second contribution involves continual learning using a generative model.
We analyse the usability of samples from a generative model in the case of training
good discriminative classifiers. We propose techniques to improve the selection
and generation of samples from a generative model. Following this, we observe
that continual learning algorithms do undergo some loss in performance when
trained on several tasks sequentially. For the third contribution, we analyse the
training dynamics in this scenario and compare with training on several tasks
simultaneously. We make observations that point to potential difficulties in the
learning of models in a continual learning scenario.

Finally for the fourth contribution, we propose a new design template for con-
volutional networks. This architecture leads to training of smaller models without
compromising performance. In addition the design lends itself to easy parallelisa-
tion, leading to efficient distributed training.

In conclusion, we looked at two different types of continual learning scenarios
and we proposed methods that lead to improvements. Our analysis also points
to underlying issues that occur while training in a continual learning scenario. In
order to overcome these we provided pointers to changes required in the training
scheme of neural networks.

iii

Resumé

Cette thèse traite de l’apprentissage profond appliqué aux tâches de classification
d’images. La principale motivation du travail est de rendre les techniques d’ap-
prentissage profond actuelles plus efficaces et de faire face aux changements dans
la distribution des données et les étiquettes. Nous travaillons dans le cadre de l’ap-
prentissage continu, dans le but d’obtenir des modèles d’apprentissage automatique
pouvant être améliorés en permanence.

La première contribution implique une modification de l’espace des étiquettes
d’un ensemble de données, les échantillons de données restant les mêmes. Nous
considérons une hiérarchie d’étiquettes sémantiques. Nous montrons comment il
est possible d’utiliser cette hiérarchie pour obtenir une amélioration des modèles
formés à différents niveaux de cette hiérarchie.

La deuxième contribution implique un apprentissage continu exploitant un mo-
dèle génératif. Nous analysons la possibilité d’utiliser des échantillons issus d’un
modèle génératif pour obtenir de bons classifieurs discriminants. Nous proposons
ainsi des techniques pour améliorer la sélection et la génération d’échantillons à
partir d’un modèle génératif. Enfin, nous observons que les algorithmes d’appren-
tissage continu subissent certaines pertes de performances lorsqu’ils sont entraînés
séquentiellement à plusieurs tâches. Pour la troisième contribution, nous analysons
la dynamique de l’apprentissage dans ce scénario et comparons avec l’apprentissage
sur plusieurs tâches simultanément. Nous faisons des observations qui indiquent
des difficultés potentielles dans l’apprentissage de modèles dans un scénario d’ap-
prentissage continu.

Pour la quatrième contribution, nous proposons un nouveau type d’architectue
pour les réseaux convolutifs. Cette architecture permet d’entrainer des modèles
plus petits sans perte de performances. De plus, cette architecture se prête facile-
ment à la parallélisation, ce qui permet un apprentissage distribué efficace.

En conclusion, nous avons examiné deux types de scénarios d’apprentissage
continu et nous proposons des méthodes qui conduisent à des améliorations. Notre
analyse a mis également en évidence des problèmes plus importants, qui laissent
penser que nous aurions peut-être besoin de changements dans notre procédure
actuelle d’apprentissage de réseau neuronal.

v

Contents

1 Introduction 1
1.1 Machine learning and neural networks 1
1.2 Neural network caveats . 2
1.3 Research questions and contributions 3

2 Background 7
2.1 Machine learning . 7
2.2 Supervised learning . 9
2.3 Neural networks . 13
2.4 Convolutional networks . 21
2.5 Generative adversarial networks . 25

3 Hierarchical Classification 29
3.1 Method . 30
3.2 Experiments . 36
3.3 Discussion on related work . 40
3.4 Conclusion . 43

4 Continual Learning 45
4.1 Context, definition and notation . 46
4.2 Continual learning approaches . 48
4.3 Generative adversarial network as a replay buffer 54
4.4 Experimental analysis of continual learning with replay buffer . . . 62
4.5 Discussion on related work . 76
4.6 Conclusion . 78

5 Coupled Ensembles 81
5.1 Design of deep convolutional networks 81
5.2 Coupled ensembles . 83
5.3 Experiments . 86
5.4 Training efficiency . 97

vii

5.5 Implementation details . 100
5.6 Discussion on related work . 102
5.7 Conclusion . 104

6 Conclusion and Perspectives 105
6.1 Hierarchical classification . 105
6.2 Continual learning with replay buffers 106
6.3 Coupled ensembles . 106
6.4 General perspectives . 107

List of Publications 109

A Reproduciblity Issue 111
A.1 Performance measurement and reproducibility issues 111

B Multiple data set training 115
B.1 Training on multiple datasets . 115

Bibliography 117

viii

Chapter 1

Introduction

In this chapter we present the general theme of the thesis and motivation behind
the research questions that we ask. We summarise the contributions and present
the outline of the rest of the thesis.

1.1 Machine learning and neural networks

Machine learning is a sub-field of artificial intelligence (AI) that is concerned with
creating systems for solving a task, by providing the system with data related
to that task. This paradigm is useful when we know what task to solve but it
is hard to elucidate exactly how to solve the task. Consider the task of a cat
detection system, which outputs yes or no, depending on the presence of a cat in
a photograph. As humans we know the concept of a cat but there is a high chance
that we cannot list out all the factors that we used to conclude if a given object
is a cat. In such situations we can leverage machine learning to let a model figure
out what constitutes the concept of a cat given pictures with and without cats.
After learning the model, we can think of the model encoding the concept of a cat.
It can also be thought of as a program that is specified by the parameters of this
model. In contrast if we wrote a program, for example in python, we would write
down all the aspects that we think constitute a cat. In the case of the learned
model, these aspects are encoded inside the weights.

Machine learning has greatly matured over the past few years and has had
success in various fields such as image classification [54], speech recognition [42],
playing Go [95] and beating professionals at poker [5]. Human interaction with
machine learning systems is quite ubiquitous now as such systems are used to
provide internet search results, language translation, display news feed in social
network systems, provide product recommendations on e-commerce sites. Outside
of the immediate technological field, machine learning is increasingly being used

1

Introduction

in the other domains for tasks such as analysing radiography images, predicting
protein structure, and designing molecules.

We have a variety of machine learning models, and out of these neural network
models have emerged as the model of choice in a variety of tasks. Architectural
and algorithmic advances have made the training of neural networks possible on
a diverse range of data. The main advantage of neural networks is that they are
able to extract patters from data and learn very good representations. In a lot
of cases, such as for image and text, these representations have been found to be
much superior to human engineered ones. The ability to learn features from a
large variety of data sources have made neural network models a core component
of machine learning systems. It seems plausible that as we research and develop
more powerful AI systems, neural networks will play a central role, at least for the
foreseeable future.

1.2 Neural network caveats

Neural networks learn good representations for a variety of tasks but in most cases
there is a need for a substantially large training data set. We also require labels for
some tasks, particularly when dealing with images. Current research has shown
that deep learning models scale well with size, which means that bigger models
when given enough data show vast increase in performance. This philosophy of
scaling up current techniques has obtained impressive, and somewhat unexpected,
results in game-playing [95] and language tasks [14]. Scaling up the training pro-
cedure by using larger neural network models and bigger data sets raises computa-
tional issues. Training of neural networks in some cases is expensive both in terms
of financial cost as well as time. While this may not be a significant obstacle for
large organisations, it will surely be a roadblock for the majority of practitioners
and researchers. Machine learning and deep learning in particular are starting to
be used by people outside of the computer science community and it is not ex-
pected that large scale computing resources will be equally available. This is an
important motivation towards making neural networks more efficient. Moreover
as the data requirements will increase we will also be faced with the question of
how to annotate and store this data.

The current paradigm of machine learning systems is to train a model, and then
deploy this fixed model. While deployed, this model cannot adapt itself if the data
on which it was trained gradually changes. A step towards more powerful systems
will be procedures where the system is able to detect this change, acquire data
and undergo re-training to adapt its parameters to the current data distribution.
This paradigm is usually referred to as incremental learning or continual learning
[82]. In this thesis we use the term continual learning because the community

2

Introduction

is currently using this term. This is an important area of research if we want to
enable a continuously improving and adaptive machine learning model. In our case
we will look at continual (incremental) learning from the perspective of change in
target space, change in data distribution, and how training models in a continual
(incremental) learning scenario differs from standard model training.

There is a general need to make the training of machine learning models effi-
cient, with respect to different parameters such as the size of these networks and
the time and data required to train them. Moreover we need to have self adap-
tive and continuously learning systems that can adapt with changes in the data
distribution.

1.3 Research questions and contributions
In this thesis we concentrate on supervised learning problems, where we are given
a data set of sample and target label pairs. The goal is to learn a model that can
associate the correct label when an unseen data sample is presented. We focus on
some questions related to some aspects of continual learning in various scenarios
and design of more efficient neural network architectures.

Change in label space of data We start our discussion with investigating how
we can adapt a trained model to different granularity of target labels. The target
labels can belong to a semantic hierarchy, for example organised as a tree. One
example could be a label which is ‘cat’ and its associated child nodes are various
species of cats. From a practical viewpoint, we can initially have a large data set
labelled at a coarse scale, such as all species of cats having the same ‘cat’ label.
With time, and more resources, the data set can get annotations at a finer scale
and the cats can be more accurately labelled with the correct species labels. In
this case, how should we adapt our trained models, and can we take advantage
of multiple models trained at different levels of the semantic hierarchy of labels?
This is one aspect of continual learning where we have changes in the label space,
with the data samples remaining unchanged.

Change in data distribution We then consider the more general scenario
where a model needs to adapt to a new data distribution, after being trained on a
different older data distribution. This is unlike the previous case where only the
label space changed. For example, we have a classifier that can identify different
categories of cats, it is then presented with a data set of dogs, and is tasked to
classify both dogs and cats. This is a continual learning scenario where the model
is expected to classify over an increasing number of tasks, without forgetting how to
perform older tasks. One general approach to achieve this is to store the data from

3

Introduction

older tasks, make an expanded data set whenever new tasks and their data arrive,
and re-train the model. We investigate in detail the training dynamics of this
situation and the effect of the interaction between tasks on the global performance
of the model.

Training without access to old task data Continuing with the scenario of
continual learning, we can see that as data sets get bigger and bigger, it will become
impractical to store all of the data. In some situations, such as in embedded
devices, it is already quite difficult to store a large amount of data. In place of real
data, a generative model can be used, which acts as a compressed version of the
original data set. We investigate the current state-of-the-art generative models in
the context of using them for training of good classifiers. We discover that the
ability to generate realistic images does not necessarily correlate with training of
good classifiers.

Efficient neural network architecture Finally, our experiments on utilising
different levels of a label hierarchy led to insights on a possible design of neural
networks for image tasks. We propose a new design template for neural networks
that leads to smaller and more efficient models without compromising performance.
The design proposed also has advantages for utilising large distributed clusters of
machines without excessive communication costs among the machines. As the
architecture of the model is quite critical across a wide range of applications, im-
proved architectures will compliment better training algorithms to a great extent,
whether it be in a continual learning scenario or a standard one time training set-
ting.

Contributions of this thesis We highlighted some issues with neural networks
and briefly introduced the research questions that we ask in this thesis. For each
question, we have introduced solutions which we hope to serve as stepping stones
towards further improvements in the field of machine learning. We summarise the
main contributions of this thesis as follows:

• A classifier adaptation algorithm to utilise predictions from a semantic hi-
erarchy of labels. We show how enforcing a constraint on the probabilities
output by models at the different hierarchical levels can be used to improve
the performance of classifiers.

• We look at training of classifiers from synthetic data as a proxy for real
data sets, in a continual learning scenario. We show that current generative
models of data have limitations in modelling real world data sets. We propose

4

Introduction

a training scheme in order to reduce the gap between real data and synthetic
data in terms of the ability to train good classifiers.

• Investigation of the continual learning of a classifier in an image classification
task. We empirically show that training classifiers on different tasks sequen-
tially leads to sub-optimal performance. We investigate the reasons behind
this. To the best of our knowledge, this perspective of continual learning has
not been discussed before in the literature.

• A design for feed-forward convolution architectures that is aimed at reducing
the number of parameters and training time, without compromising perfor-
mance.

Organisation of this thesis This thesis is organised as follows:

• Chapter 2 introduces and explains the concepts needed to understand each
contribution. We give a general overview of supervised learning, neural net-
works, and the various types of neural networks considered in this thesis.

• Chapter 3 presents the idea of classifier prediction adjustment using a seman-
tic hierarchy of categories. This is motivated by the question: How do we
refine the target categories of a classifier into finer sub categories? This deals
with modifying the output probabilities of a classifier so as to be consistent
with a given semantic hierarchical relationship among the target categories.
This technique can also be thought of as a way to inject domain knowledge
into a machine learning system. This work was published in [21, 20].

• Chapter 4 starts with an introduction to the various approaches of continual
learning. We then investigate using generative models as replay buffers.
Replay buffers can be used to store data from older tasks when a model is
being trained on newer tasks. This will need to be done when the data sets
get increasingly large and it will not be possible to store all data from all
tasks. We use generative adversarial networks to model the training data
and explore the gap between training on real data and synthetic samples
from such a generative model. This work was published in [11].

• Chapter 4 then continues with an empirical investigation of continual learn-
ing using replay buffers. If tasks arrive sequentially how should the training
proceed? We take a baseline approach where all data from all tasks are al-
lowed to be stored. Experiments on the sequential training of models are
performed and we uncover that this method of training might have difficulty
in obtaining the global minimum for all tasks. The article for this work is in
preparation for submission to a venue.

5

Introduction

• Chapter 5 presents coupled ensembles of neural networks, a new convolu-
tional network design. We will see in Chapter 3 that a notion of parallel
computation paths leads to improvement in the performance of a classifier.
In this chapter we will systematically investigate this design pattern and
demonstrate its advantages over existing architectures, in terms of generali-
sation error, model compression and ability to parallelise the training. This
work was published in [19].

• Chapter 6 summarises the contributions and discusses lines of future re-
search. We discuss the perspectives gained from each contribution and po-
tential future lines of work to extend and improve the contributions.

Context of this work. The work done for this thesis was carried out at two lab-
oratories, MRIM team at Laboratoire d’Informatique de Grenoble (LIG) and the
AGPIG team of Grenoble Images Parole Signal Automatique Laboratoire (GIPSA-
Lab). Both of these laboratories are associated with Université Grenoble Alpes,
Grenoble-INP and CNRS. The work was funded by the DeCoRe1 project from the
LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01).

1https://project.inria.fr/decore/

6

https://project.inria.fr/decore/

Chapter 2

Background

In this chapter, our aim is to present in a concise manner all background con-
cepts required for understanding the next chapter which comprise the contribu-
tions made in this thesis. In addition to this chapter, each specific chapter will
include specific details pertaining to its content.

2.1 Machine learning

Machine learning can be broadly defined as discovering patterns in data and then
using these learned patterns to make useful predictions when given new data that
has not been seen before. Machine learning has two main elements: the model
and the data. We want to learn the parameters of the model given some data.
Note that some models may not have parameters in the strict sense but rather the
model itself contains rules to operate on the data (kNN classifier is an example
and we will discuss it shortly).

One can also think of machine learning as discovering a computer program. The
reason we said that is like a program is that at the the end the machine learning
model will be used to perform a task, and in order to perform this task, the steps
will be learnt and encoded in the parameters of the model. This is similar to the
program one writes when asked to solve a task, for example given a a word check
if it is a palindrome or not. In this case we know that a string is a palindrome is if
the sequence of characters is unchanged when the word is reversed. Checking for
a palindrome is a task where we know the exact rules and can express these rules
in the form of a computer program. If we move onto a task such as detecting a cat
in in image, things get a bit more complicated. We still know if a cat is present
in an image or not but we are not able to express our internal decision making as
concretely as in the case of the palindrome checking task.

Just as in the case of the cat-not-a-cat task, the real world presents several

7

Background

complex tasks which we can perform but are not able to articulate the exact and
general way to specify a solution to these tasks. Our mental model of a cat is
quite powerful enough to generalise to most unseen cats. However there is really
a lot of variation among cats and this fact is compounded further by the fact the
images can be captures by different cameras in different lighting conditions. All
this mounts to a truly monumental variation in the ways we can capture the image
of cats. We can instead devise algorithms that can learn from examples. In the
most common case of supervised machine learning we construct a model by given
it data samples which we label. Our learning algorithm then discovers patterns to
solve the task. The final model is analogous to our computer program. Machine
learning has been developed to a great degree and this philosophy of constructing
models has made many difficult tasks tractable and indeed solved by computer to
a super human level in some cases.

2.1.1 Categories of machine learning

Machine learning models and training algorithms can be categorised in a myriad
ways. Here we review the most common characterisation which is in terms of the
nature of data presented to the model.

Supervised learning This is probably the most practised form of machine
learning. Our dataset {(xi,yi); i = 1..n}, is a set of tuples. Each tuple comprises
xi, a data sample, and yi its corresponding label. The model learns a mapping
x ∈ RD → y ∈ RD′ . In slightly more formal terms, if your data set is sampled
from a distribution D, our model is defined by parameters θ, we want to estimate
the conditional probability p(y|x, θ).

Unsupervised learning The data set is of the form D = {(xi); i = 1..n}. No
labels are known and the the model has to group given data samples and discover
the categories. This problem is quite difficult to evaluate because there can be
multiple different groupings. In order for the model to discover useful patterns
these models usually are task specific. Formally, in unsupervised learning we want
to estimate p(x|θ), and this is often referred to as density estimation. See Figure
2.1 for a visual depiction of supervised and unsupervised learning.

Reinforcement learning In this case instead of having tuples of data and la-
bels, we have an environment which we can observe, take actions, and get rewards
from the environment. The model learns to take actions conditioned on the envi-
ronment state and previous actions so as to maximise its rewards. This is a bit
different from finding patterns and assigning categories to new data points. It is

8

Background

(a) Supervised learning

(b) Unsupervised learning

Figure 2.1 – Supervised and unsupervised learning toy example.1

a dynamic scenario where the model predictions influence the future data points
and actions to be taken.

2.2 Supervised learning
This thesis mainly involves algorithms and models for supervised learning. In this
section we present the fundamentals of supervised learning. We go over the notion
of loss functions and the principle on which we optimise the model parameters to
minimise a loss function. We then present linear regression which will serve as a
stepping stone towards building neural networks.

Empirical risk minimisation (ERM) In supervised learning our objective is
to learn a model or a function from a set of labelled examples of the form S =
{(xi, yi)}Ni=1. The examples belong to some unknown distribution D and have been
sampled independently of each other. The samples are said to independently and

1Figure taken from https://hal.archives-ouvertes.fr/tel-01881069

9

https://hal.archives-ouvertes.fr/tel-01881069

Background

identically distributed (iid). We want to learn a classifier that can predict the labels
of unknown samples with good performance, as measured by some criteria. For
that we define a hypothesis space of classifiers, H, such that ∀h ∈ H, h : X → Y .
We want to choose from the space of H, using the samples in S, the classifier hS
that will predict the labels of unknown examples sampled from D. In order to
evaluate the quality of a classifier hS we need a criterion, which can be defined
through the notion of ‘true risk’:

RD(h) = E
(x,y∼D)

1[h(x)6=y] (2.1)

1[p] is 1 when the predicate p is true else 0. This is an example of a loss function.
Loss functions play a critical role not only in evaluating a classifier but also in
training of the parameters of the classifier. The goal is to find the classifier with
minimum true risk. However the true risk cannot be computed since the distri-
bution D is unknown and we only have access to the samples in S. Hence we
compute the ‘empirical risk’:

RS(h) =
1

N

N∑
i=1

1[h(xi)6=yi] (2.2)

In practice we choose a classifier which minimised the empirical risk but does
not deviate too much from the true risk. The deviation can happen because we
only have a limited number of training samples and the classifier may overfit to
these samples. One way to prevent this is to choose simple classifiers. We obtain
simple classifiers through regularisation, either in the form of simple models or
restrictions places on more complex models.

Maximum likelihood estimation One of the methods used to find the param-
eters of a statistical model is maximum likelihood estimation (MLE). Following
this principle we can derive the loss functions that are used to train our models
and obtain the parameters. Formally this is expressed as:

θ̂ = argmax
θ

P (D|θ) (2.3)

Utilising the iid assumption, we can then write the likelihood estimation as:

θ̂ = argmax
θ

∏
i

P (yi|xi, θ) (2.4)

Instead of working with the product form, we can instead take the log of the ex-
pression. Since log is a monotonic function maximising the log also maximised

10

Background

the original expression. Further instead of maximising the log-likelihood, we can
minimise the negative log-likelihood. These transformations make the computa-
tion easier to handle with optimisation software package. We can then write the
negative log-likelihood (NLL) as:

l(θ) = −
∑
i

logP (yi|xi, θ) (2.5)

Equation 2.5 provides the basis for computing the loss functions for various
models. If we substitute the expression for P in Equation 2.5 we can derive the
specific loss function that needs to be minimised. We will see an example of this
next.

Linear regression Linear regression is a widely used machine learning model
which is simple to understand and provides the foundations for concepts such as
neural networks. As the name implies, the model assumes that for a given input
the corresponding output is a linear function of the input. We can write this as:

y(x) = wTx+ ε =
∑
j

wjxj + ε (2.6)

w is the parameter vector with d dimensions. x is the input with the same number
of dimensions d. We learn the parameter vector w, and each component wi acts
as weights to each component of the input x. ε is the error between output of
the model and true value. We can model non-linear relationships between the
input and output, if x is replaced with a non-linear function of the input φ(x). A
reasonable assumption to make is that the output y follows a normal distribution.
This makes the output the conditional probability of the output y, given the input
and the model parameters. We can re-write the model as:

p(y|x,w) = N (y|wTφ(x), σ2(x)) (2.7)

We can now use the MLE principle to find the parameters of out model. If we
use this expression in the MLE expression of Equation 2.5 with the additional
assumption that noise is constant (σ2(x) = σ2), we find that the log-likelihood can
be written as:

l(w) = −
N∑
i=1

log

[(1

2πσ2

) 1
2
exp

(
− 1

2σ2
(yi −wTxi)

2
)]

(2.8)

l(w) =
1

2σ2
RSS(w) +

N

2
log(2πσ2) (2.9)

11

Background

RSS is the residual sum of squares and the average RSS is commonly referred
to as the mean squared error (MSE). This is a loss function that is quite commonly
used in machine learning and here we see that it follows from applying the MLE
principle.

RSS(w) =
N∑
i

(yi −wTx)2 (2.10)

From the above equations we see that the NLL is minimised when the RSS is
minimised. This happens as the predictions of the model (wTx) get closer to the
true output (y). This loss function is differentiable and hence can be used with a
gradient based learning algorithm such as stochastic gradient descent to iteratively
find the parameters of the model 2.

MAP estimation and regularisation The MLE estimate of the parameters
may result in a situation called overfitting which means that the parameters take
on values that are are a perfect fit of the training data. This is because our
optimisation procedure is geared towards minimising the loss on the training set
and we have no restrictions on the values that the parameters can take. Essentially
the parameters ‘memorise’ the training data. This is similar to our discussion on
simple and complex hypothesis space of classifiers from the ERM principle. In
most cases if the parameter overfits to the training data it will not generalise well
to unseen test data.

In order to avoid this we place a restriction on the parameter w. We can
encourage the parameter values to be small by enforcing that the weights are
sampled from a zero-mean gaussian prior:

p(w) =
∏
j

N (wj|0, τ 2) (2.11)

If we apply the same principle as before we will finally obtain the loss function for
linear regression as:

J(w) =
1

N

N∑
i

(yi −wTx)2 + λ||w||22 (2.12)

λ controls the strength of the regularisation. This particular regularisation is
called l2 regularisation or weight decay. Larger weights lead to an higher cost,
which means that the optimisation procedure will encourage the weight values to
be small. This leads to less complex models which in most cases generalise better.
Another way to look at it is regularisation prevents machine learning models from
modelling the noise in training data.

2A closed form solution exists for linear regression which can be derived through the normal
equations and the corresponding ordinary least squares solution.

12

Background

Logistic regression Linear regression is used to obtain real valued outputs given
an input. We can use a similar model for classification which we refer to as logistic
regression. This name is due to its similarity with linear regression. We make two
different assumptions: the output is sampled from a Bernoulli distribution (Ber)
instead of a Gaussian distribution, and the output space is restricted to {0, 1}.
The restriction is implemented by passing the output through a sigmoid function,
which squashes the input between 0 and 1, which helps in interpreting this as a
probability. Finally we can write the model as:

p(y|x,w) = Ber(y|sigm(wTx) (2.13)

As before, we can apply the MLE principle to estimate the parameters of our
model. We can write the negative log-likelihood as:

NLL(w) = −
N∑
i=1

log[µ
I(yi=1)
i × (1− µi)I(yi=0)] (2.14)

= −
N∑
i=1

[yi log µi × (1− yi) log(1− µi)] (2.15)

The classification is done by thresholding the output at some value (for example
0.5), which forms the decision rule of assigning a category to each unseen test
sample.

2.3 Neural networks

Figure 2.2 – Neural network with 2 hidden layers. 3

3Figure taken from https://cs231n.github.io/neural-networks-1/

13

https://cs231n.github.io/neural-networks-1/

Background

We defined linear regression as a model of the form: f(x) = y = wTx. Neural
networks are compositions of such functions. We can write this as:

y = f(g(...h(x))) (2.16)

Each of f, g, h can be written as:

f(x) = σ(wT
f x) (2.17)

Each function has its own weight vector w. The input is transformed sequentially
by each function. The non-linear function σ, is called the activation function. This
non-linearity makes it possible to learn a non-linear mapping between the input
and output. If the activation function was linear, we can transform each w into
a single equivalent parameter w′. Figure 2.2 shows a visual depiction of a 2 layer
neural network

A neural network essentially learns a non-linear function between the input and
output. At each step the current input is linearly transformed by the parameters
associated with the function and then passed through activation function. The
parameters of each of these functions are learned jointly using some learning rule.
This general structure makes it suitable for a wide range of tasks. Recent advances
in the specific parameterisation of w, training algorithms, regularisation strategies,
and large training data sets have made neural networks the model of choice in a
wide variety of tasks.

Depth and width of neural networks Equation 2.16 shows a composition of
functions. From an implementation point of view this can be thought of as the
input going through several computation steps sequentially. The number of these
computation steps is referred to as the number of layers or the depth of a neural
network. Modern neural networks can have 100s of layers, and hence the term
deep learning.

Each layer of the neural network transforms its input by multiplying the input
with a weight matrix. For example if the input has d dimensions, the required
output has d′ dimensions, the weight matrix will have a shape of d× d′. Note that
this is in contrast to linear regression where the weight is always a vector of shape
d × 1. The width of the network at each layer is then equal to d′. This is often
called as the number of units in each layer.

Activation functions Activation functions are critical to the functioning of
neural networks, especially when the number of layers are large. The weights
of each layer are jointly. We will see later that this is done by computing the
gradient of the global loss function with respect to each weight vector. In order to

14

Background

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

0.0

0.2

0.4

0.6

0.8

1.0

(a) Sigmoid

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) TanH

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

0

2

4

6

8

(c) ReLU

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5

−2

0

2

4

6

8

(d) PReLU, α = 0.25

Figure 2.3 – Activation function plots.

compute the gradient efficiently we need the gradient to flow through each layer.
The value of the gradient depends on how we transform the input to the layer.
Additionally in order to continue training with a sufficient gradient it would be
better to have activation functions that are non-saturating. Some commonly used
activation functions are:

• Sigmoid. The sigmoid function squashes the input to be between 0 and 1.
It is defined as:

sigm(x) =
1

1 + exp(−x) (2.18)

One issue with the sigmoid function is that inputs with high or low values
saturate, that is they are close to 1 and 0 respectively. If we look at the curve
of the sigmoid function (Figure 2.3), this means that the gradient is close to
0. This is an issue in gradient based learning algorithms since a gradient of
0 means there is not much training signal.

• Hyperbolic tangent. It is similar to the sigmoid but squashes the input

15

Background

to {−1,+1}. We still have the same issue with saturation but the range of
inputs that do not saturate are higher.

• ReLU. This is a linear rectifier, any input that is below 0 is cut-off and all
inputs above 0 are unchanged. It is defined as:

ReLU(x) = max(0, x) (2.19)

The gradient for all inputs greater than 0 is 1. This helps to preserve gradient
flow through our network and this activation function is critical in training
deep networks. However the gradient is 0 for all units that produce negative
outputs. This means that the weights corresponding to these units do not
receive any gradient and hence do not learn. To avoid such situations it
should be checked that the weight values are initialised properly.

• Parametric ReLU. The problem of 0 gradient for negative input values can
be tackled by replacing the 0 with a small negative value. We can also make
this small value a parameter and learn it with the rest of the parameters of
the model. It is defined as:

PReLU(x) = 1x<0 αx+ 1x≥0 x (2.20)

These are some of the commonly used activation functions. ReLU is the most
used function. However the application and architecture of the neural network
often dictates which function to use, as for example in LSTM (a type of recurrent
neural network), sigmoid and tanh functions are used as a ReLU would make learn-
ing unstable and maybe even impossible. There exist other activation functions
such as maxout, gaussian linear unit, etc.

Weight initialisation It is important to initialise the weights of each layer
in a manner which prevents both high and low gradient magnitude early in the
training. A good initialisation leads to faster training convergence and even good
generalisation. One idea would be initialise all weights with 0. The problem with
this is that each unit computes the same output value for the input, which in turn
means that the gradient is the same for all weights. Hence the weights will learn
in the same manner and not lead to useful results. In order to avoid this, weights
could be initialised with small values close to 0. Again, too small weight values
will lead to small gradients (as the gradient is proportional to the weight value),
which hinder training and slow down convergence.

Weight initialisation without accounting for the number of inputs and outputs
and each layer leads to a blow-up of the output distribution at the start of training.
We can normalise this by scaling the weight vector by the square root of the number

16

Background

of inputs, which is called the fan-in. xavier initialisation [26] which is widely used
recommends sampling the weights from a normal distribution with zero-mean and
variance 2/(fan_in + fan_out). This derivation is for a linear case and does
not take into account the ReLU non-linearity. The recommended initialisation for
deep networks with ReLU is the kaiming initialisation [36] which samples weights
from a normal distribution with zero-mean and variance of 2/fan_in.

Each layer can have a bias parameter. Empirically it has been seen to fine
to initialise the bias values to 0. If using ReLU it is advisable to use small ini-
tial values to prevent inactive units at the start of training. There also exists
data driven approaches to weight initialisation, for example layer-sequential unit-
variance initialisation [71] which takes into account the data set and all layers
and non-linearities in the network. However these are a bit expensive to compute
and as neural network architectures have converged to a stable template, these
category of techniques are not that frequently used.

Regularisation Regularisation typically increases training error with the objec-
tive of reducing generalisation error. It acts as a mechanism for avoiding fitting
model parameters to noise in the training data. Typically deep learning models
have quite high number of parameters and hence proper regularisation is quite im-
portant. In the following, we discuss some common regularisation strategies used
in the context of deep neural networks:

• We have seen in §2.2 the theoretical view of of L2 regularisation, and it has
been used for training neural networks for a long time [55]. We can start
our discussion with another view of L2 weight penalty, to make clear how it
encourages weight values to remain small. L2 regularisation on the weights
prevents weights from taking on large values, which is one way to keep models
simple. The cost function with L2 norm penalty is J(w) + (1/2)λ||w||22. The
gradient for the cost with respect to the weights is: ∇wJ(w)+λw. One step
of gradient descent can then be written as:

wt = wt−1 − ηt(∇wJ(wt−1) + λw) (2.21)
wt = (wt−1 − ηtλwt−1)− ηt∇wJ(wt−1) (2.22)
wt = (1− ηtλ)wt−1 − ηt∇wJ(wt−1) (2.23)

We see that at every weight update step, the weights are reduced by a con-
stant multiplicative factor, 1− ηtλ.

• Data set augmentation can also be thought of as a form of regularisation.
It is almost ubiquitous in training of neural networks for image tasks. For

17

Background

example, during classification, data augmentation can comprise random flips,
translation, colour space augmentations, etc. These help to increase the
effective number of training samples and account of different test examples
that we may expect.

• Early stopping [73] is a widely used, simple regularisation strategy. It is
simple to implement, during training we keep track of the loss on a validation
set, and we stop training when the loss increases for a pre-defined number of
optimisation steps. Early stopping requires little overhead besides keeping
track of the parameter values at the steps before the loss started increasing.
Since we are training for a restricted number of epochs, it prevents gradient
descent from exploring all of the parameter space and restricts it to the
parameter space close to the starting point.

• Addition of noise to the training procedure has also been used as a form
of regularisation. Noise with a small norm added to the input is similar to
data augmentation. In de-noising autoencoders, this has been used to train
an model to de-noise input images. Another way is to add small amount of
noise to the weight at each update step. Addition of gradient noise has also
been investigated and found useful to improve generalisation of some models
such as Neural Turing Machines and Neural GPUs. The mini-batch training
procedure is also a source of noise, since the gradient that is computed is an
approximation of the exact gradient over the entire training data set, and
hence inherently noisy. It has been shown that smaller batch sizes, which are
inherently more noisy, generalise better compared to larger batch sizes. One
hypothesis is that training with noise leads to solutions with wider minima
[43].

• Dropout [98] is a way to train an exponential ensemble of neural networks
with shared weights, and in practice serves as a regulariser. Dropout out
works by stochastically dropping some connections at each training step.
The probability of dropping a connection is a hyperparameter, called the
drop probability (usually 0.5 for the hidden units). The intuition is that
since any connection can be dropped each unit must learn to produce an
good output without relying on all incoming connections. This also implies
that connections are encouraged to learn features that are useful in a variety
of contexts. More formally, this has similarities to bagging methods, where
outputs of an ensemble are used to reduce the variance in predictions from
individual models. During inference of models trained with dropout, the
weights are scaled by the drop probability in order to have a normalised
output distribution.

18

Background

Backpropagation Backpropagation [86] is the algorithm used to efficiently com-
pute the gradient of the loss with respect to each parameter in the neural network.
It is a form of dynamic programming, the gradient at each layer of the network
depends on the local gradient between the consecutive layers and the gradient of
the following layer.

Optimisers Neural networks are trained with some variety of gradient descent.
Each optimiser uses the gradient that is computed by backpropagation to de-
termine the weight update. The common algorithms include stochastic gradient
descent (SGD) and Adam. SGD is probably the most widely used when training
convolutional networks on image tasks, whereas Adam is almost exclusively used
for training generative adversarial networks (These family of models are described
in detail in the next sections).

SGD with momentum is widely used for training a variety of different neural
network models. Using momentum weight updates smoothens the optimisation
trajectory and prevents bouncing around in the loss surface especially early in
training. One weight update step is defined as:

vt = µvt−1 − ηt∇wJ(wt−1) (2.24)
wt = wt−1 + vt (2.25)

During training of deep neural networks, the learning rate, ηt needs to be adjusted.
This is called the learning rate decay schedule. One popular schedule is a step de-
cay schedule for convolutional networks. SGD with such a schedule obtains very
good generalisation across a wide range of tasks and is quite hard to beat. Some
works have focused on choosing the correct learning rate and decay schedules to
greatly speed up training convergence [66].

Adam [51] is another widely used optimiser. The weight update rule of Adam
takes into account the history of updates and gradient for each parameter individu-
ally. This means that the effective learning rate is set per-parameter, as compared
to a global learning rate in the case of SGD. A global step size can still be set
for the algorithm and empirically it has been seen that a few choices of this pa-
rameter work across several tasks. Hence there is not much need to search for a
good learning rate and a proper learning rate schedule for each specific task. This
properties make it suitable for training generative adversarial networks, which are
relatively less stable than training of other models.

Training procedure Now that we have described the various building blocks
of a neural network model and the associated training elements, we can outline

19

Background

how the weights of a neural network are trained. This description is for supervised
training but most concepts still apply to other training paradigms.

The training starts by sampling a batch of data, B, from the data set. The effect
of the size of B has been studied with several works recommending that smaller
sizes lead to better generalisation. However, it leads to increased computation
time, as current hardware is optimised for dense computations. A common batch
size is 64.
B is input to the model, the computations are done at each layer and finally we

obtain the output, ŷ. The loss function is applied to the output and the ground
truth labels, y, to obtain the loss L(y, ŷ). This is called the forward pass through
the network.

The loss is used to calculate the gradient for each parameter. This is done
efficiently through the backpropagation algorithm. In most software packages this
is implemented using reverse mode automatic differentiation. This step is called
the backward pass through the network. After the backward pass, each parameter
has the error gradient with respect to it. This gradient is used by the chosen
optimiser to update the weights.

The above steps continue until we have gone over the entire data set, at which
step we say that one epoch has completed. The learning rate for the optimiser is
adjusted as training proceeds. In order for the training to converge several epochs
are computed. One criteria to determine convergence is when the loss on a held
out validation data set plateaus.

Types of neural networks Neural networks can be categorised depending on
the nature of computations performed on the inputs and the specific parameterisa-
tion of the weights at each layer. The most general kind is a feed-forward network
in which the input is applied at the first layer, and then sequential operations are
performed by transform the input consecutively with different weights. It is called
feed-forward, because there are no connections that go back among the layers, each
layer computes an output and provides it as input to layers that come after it.

If we share the weight parameter at each layer, we obtain a recurrent neural
network. Usually this type of neural network operates on sequential data, such
as text or time-series. Each step of the sequence is given as input to the network
which produces an output. This output is then combined with the next step of the
sequence and given back as input to the network. It is called recurrent because
we can think of this architecture which applies the same weights repeatedly across
the input sequence.

These two types comprise the broad family of architecture. For both feed-
forward and recurrent, we have various special types of networks. In this work
we focus mainly on a specific type of feed-forward models, called convolutional

20

Background

networks. We describe this in detail in the next section.

2.4 Convolutional networks
Convolutional networks (CNN) [58] are a type of feed-forward neural network.
These networks are used most for image based tasks, though recently they are
starting to be used in sequence based tasks such as machine translation. Convolu-
tional networks use the convolution operation to compute the output, given an in-
put. This is in contrast to the matrix multiplication between the weight and input
that we have seen till now. In images, this operation takes advantage that pat-
terns can appear in local neighbourhoods in a given point in an image. To exploit
this fact, convolution operation operates on such local neighbourhoods, instead of
operating on the entire spatial dimension directly. This leads to vast reduction of
parameters, and consequently in the size of the model. We first describe the con-
volution and pooling operations, and then describe how a convolutional network
is constructed.

Convolution operation Mathematically, given an input x, a kernel w, the
output s as a result of convolution of x with w is:

s(t) = (x ∗ w)(t) =
∫
x(a)w(t− a)da (2.26)

The output is also referred to as the feature map. We can think of this as applying
a weighted operating around a neighbourhood of the point t. The convolution can
be extended across multiple axes instead of the single axis shown in this formula.
In practice we work with discrete points, such as pixels in images. We can then
replace the integral with summation. The resulting convolution operation can then
be written as:

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) (2.27)

Convolution is a commutative operation, which means that we can equivalently
flip the kernel with respect to the input. This leads to a somewhat equivalent
implementation which is usually found in most software packages, and called cross-
correlation.

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.28)

In the context of CNNs, each of the kernels are randomly initialised and then
learnt from data. In practice after learning the kernels have been see to recog-
nise intuitive features in the lower layers and more abstract higher dimensional

21

Background

features in the deeper layers of the network. This makes sense, since the layered
computation in neural networks implies that we expect a hierarchical composition
of features, from simple to more complex.

Properties of convolution The use of the convolution operation introduces
certain desirable properties in a neural network. Convolution introduces sparse
interaction between the input and the output because the kernel is usually much
smaller than the input. This means that every output point is the result of an
operation applied to only a small input region. For instance, if the kernel has
k parameters, and the number of output units is n, the parameters needed are
O(k× n). This does not prevent the modelling of patterns across different spatial
regions outside the neighbourhood of the kernel, since the network has several
layers, and deeper layers will indirectly induce interaction among different spatial
regions.

CNNs also require that the same kernel be applied the entire input. This is
achieved by having the weight values defining the kernel be the same across the
weight matrix. In contrast, without weights being the same, a different weight
would be applied at each position of the input. To learn different features, we can
define several kernels. Since each kernel is applied to the entire input, CNNs are
feature equivariant to translation, by design. After the weights have been learnt,
the kernel will be able to detect its corresponding feature no matter where in the
input it appears.

By design convolution operation is agnostic to the input size. However the
output size depends on the convolution operation and if it is input to some other
function which is sensitive to input size, it will lead to computational issues. In
order to avoid these, the input can be padded to make it have the correct dimensions
(for example adding pixels with 0 value at the borders of an image).

Pooling A pooling operation is used to generated a summary statistic, generally
after feature maps are obtained from a convolution operation. Pooling is way to
encode feature invariance in the network. Feature invariance means that the net-
work is able to detect if a feature exists or not but is not particularly concerned
with where exactly the feature exists. It common to have a max pool operation
after a few convolutional layers. The convolutional layers detect features, and the
pooling layer aggregates these features. Pooling also reduces the spatial dimension,
which helps increase in computational load.

Two common pooling operations are max pool and global average pool. Max
pool replaces the input of a rectangular area with the maximum of the input. A
common operation is to do max pool over 2 × 2 input regions. In convolution

22

Background

networks, max pool is present after a every few convolution layers. Global aver-
age pool operation is usually done just before the final classification layer of the
network. It replaces the input spatial region of each feature map with the average
value. This helps to summarise the feature maps and reduce the dimensionality
over which the final classification is to be done.

(a) (b)

Figure 2.4 – Illustration of convolution and pooling operations. Figure taken from
[28].

Skip connections and batch normalisation The two other building blocks
of modern CNNs are skip-connections [35, 99] and batch normalisation [48]. Skip-
connections are formed when a layer takes the input from multiple previous layers
rather than just the immediate previous layer. This can have several implemen-
tations [35, 45, 99]. It has been shown to be one of the components needed for
training very deep networks, as without skip-connections deeper networks can have
worse performance [35]. One reason is that introducing skip-connections, partic-
ularly identity skip-connections helps in the gradient flow from the loss function
back to the early layers [37]. Figure 2.5 shows an identity skip connection over
two layers.

Figure 2.5 – Visual depiction of skip-connections in a deep neural network. Figure
taken from [35].

Batch normalisation (batch_norm) normalises each component of the output
tensor along the batch dimension. For example in the case of convolution layers,

23

Background

if the output has f feature maps, and the batch size is b, each feature map will
be normalised by subtracting the mean and dividing by the standard deviation,
computed on the batch. The result of this operation is then scaled and translated
by two parameters that are learnt from data. If the input to a batch normalisation
layers is has d-dimensions, x = (x1, x2, ...xd), then the normalisation along each
dimension can be written as:

x̂k =
xk − E[xk]√
V ar[xk]

(2.29)

This normalisation would change the output and restrict what each layer can rep-
resent. In order to let the network learn parameters that enable it to remain
unconstrained so that the correct representation can be learnt, two learnable pa-
rameters, γ, β, are introduced which scale and translate the normalised values:

yk = x̂kγk + βk (2.30)

Batch normalisation has been empirically shown to speed up training, enable
training with higher learning rates, and is less sensitive to weight initialisation.
The exact mechanics of how batch normalisation helps training is not understood
completely yet and is being studied [92].

The normalising statistics are calculated over the mini-batch and hence the
number of samples in each mini-batch should be sufficiently high such that the
statistics do not have very high variance. During training, each batch norm layer
maintains a moving average of the mean and variance of the mini-batch statistics.
During testing, each batch of test samples are normalised with these stored moving
averages rather than the mini-batch statistics. This ensures a deterministic output
for every input, rather than coupling each output to other input samples in the
batch. When working with smaller batch sizes we can look at normalisation tech-
niques such as “batch renormalisation” [47] and group normalisation [106]. These
are more suited when we are constrained to smaller batch sizes, for example in
tasks such as segmentation where larger batch sizes are often not possible due to
memory constraints. Some other normalisation schemes that have been proposed
for training neural networks are layer normalisation [3] and weight normalisation
[89] .

CNN architecture We can outline a generic CNN architecture using the build-
ing blocks described. We start with a 3 layer units which comprises: convolution,
batch norm, non-linearity. These 3 layers are repeated several times. Usually the
convolution includes an appropriate stride and kernel size so the the spatial di-
mensions of the input do not change. After a few of these layers, we have a pooling
layer which aggregates the computed features and reduces the spatial dimension.

24

Background

This entire sequence of layers is then repeated two or three times, depending on
the input resolution. Finally we have a global average pooling layer which sum-
marises the final feature maps. This is then fed to a fully connected layer which
outputs score vector for the target categories. Further details are given in § 5.1.

2.5 Generative adversarial networks

Figure 2.6 – Schematic of a GAN model. 4

Generative adversarial networks (GAN) [29] are a category of generative mod-
els, which try to model the data set distribution P (x) instead of the conditional
distribution P (y|x), such as in the case of discriminative classifiers. Here x, y are
the sample and corresponding label respectively. More specifically GAN networks
are a category of differential generative networks, where the generator is imple-
mented as a neural network and the parameters of the network are trained through
some variant of gradient descent.

A GAN network has two component networks, which are trained by making
the two components compete against each other (see Figure 2.6). There is a gen-
erator network which maps a noise vector to a data sample x̂ = G(z; θG). The
second component is a discriminator network that tries to distinguish between real
training samples and generated samples. It outputs the probability of a sample
belonging to the real training data distribution as D(x; θD)). Both the generator
and discriminator are implemented as neural networks. As training proceeds, the

4Figure taken from https://twitter.com/ch402/status/793535193835417601/photo/1

25

https://twitter.com/ch402/status/793535193835417601/photo/1

Background

discriminator learns to distinguish between real and fake samples. In parallel the
generator tries to produce samples that are harder for the discriminator to distin-
guish, and one way to do that is produce samples that resemble the real training
data. Ideally at convergence, the discriminator should output a probability of 1/2
for all samples. We can write the objective function for training GANs as (taken
from [29]):

min
G

max
D

V (G,D) = Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))] (2.31)

In practice the training proceeds as follows: we train D for a few iterations, k,
to distinguish between real and fake samples. Then one weight update step is taken
for G. This iterative manner of training is less computationally expensive than first
finding the optimal parameter for D, which would also likely result in overfitting.
The iterative procedure lets the D parameters be optimal for the current setting,
and also provides meaningful gradient signal to train the G parameters. Notice
the G is trained through the loss on output of D, which means that D should
provide enough gradient signal such that G parameters can be updated. On the
other hand if the difference between G and D is too much, D would just reject all
samples from G and we would be able to train G. From this perspective D can
be though of as the loss function for training the generator, and in this setup we
learn the loss function as well instead of having a pre-defined loss function such
as L2 distance between real and fake samples.

The training of GAN networks has become more stable because of recent work
on particular architectures and loss functions for training. However, there remains
lot of open questions regarding the convergence of the training procedure and if
the training can indeed converge to the point where the data distribution can be
modelled, and finally what type of distributions can the GAN model.

Conditional generative networks Our discussion till now has involved mod-
elling the data set distribution P (x). If the samples are available with their asso-
ciated labels, it is also possible to use a GAN to model the distribution P (x|y).
This is implemented by providing as input the target label, y, or some encoding
of it, as input to the generator along with the noise vector [70]. The task of the
generator is to now map the noise to a sample that resembles the real training
data and belongs to the category y.

Implementation can take the form of first creating a one-hot encoding of the
label vector, then transforming this one-hot encoding to a dense representation
through an embedding network. In practice this learnt embedding is more neces-
sary for the discriminator than for the generator. In some cases, for the generator
it is sufficient to concatenate the noise vector and the one-hot label vector. In
more recent architectures, conditioning has been enforced by class conditional

26

Background

batch_norm layers [12], where the gain and bias of the batch norm is dependent
on the conditioning class.

Convolutional generative networks In the context of image generation, GAN
modelled as convolutional architectures have been designed for which the training
is relatively stable. See Figure 2.7 for samples generated from a BigGAN model.
DCGAN [77] proposed a convolutional GAN architecture which has been used
extensively. DCGAN generator is composed of transposed convolutional layers,
which start with noise vector and produce an image sample. The convolutional
structure enables it to model local patterns and compose them into complex im-
ages. The discriminator network is the inverse of the generator, and uses standard
convolutional layers, and resembles a classification network.

DCGAN created the template of having a generator as a kind of ‘reversed’
classifier. The building blocks were then replaced by residual blocks, which are
ubiquitous in image classification tasks. Architectures such as BigGAN [4] have
trained large GANs which produce very compelling images. Transposed convo-
lutions can learn interactions in a local neighbourhood, and across larger spatial
areas indirectly. To model interactions among features across larger spatial ar-
eas, the concept of non-local operations can be used [105], and more specifically
self-attention [110].

Figure 2.7 – Example images generated from a BigGAN model. Images taken from
[4].

27

Chapter 3

Hierarchical Classification

In the classification task, a discriminative classifier is trained on a data set of
labelled pairs (x, y), where x ∈ RD is a data sample (a vector of D dimensions)
and y is the corresponding target category vector. A classifier is trained on such
a data set, with a suitable loss function. After training the classifier produces a
output vector y′ for a given sample x′. The output of a classifier is often treated as
a distribution over the categories, which means that given a sample the classifier
gives as output the probability of the test sample belonging to a particular target
category. In the case of neural networks this is often done by applying a softmax
operation to the final layer output.

Consider a situation where we have a semantic hierarchy tree of categories.
In this tree, each node represents a coarse category and its child nodes are its
corresponding fine nodes. For example, at the fine level we can have categories
such as {car, truck, bike}, and at a coarse level they can be organised into a
{vehicle} category. It is expensive to annotate data and annotation at a fine level
may require both time and expertise. In contrast it will be cheaper and faster
to annotate data at a coarser level. We are interested in the question of how to
adapt a classifier trained at a coarse level, to classify over the finer categories, as
and when such data becomes available. We can imagine that initially we have
a classifier trained at a coarse level. Later we get access to the same data set
annotated at the finer level and want to train a classifier and use the information
contained in the older classifier trained at the coarser level. This is one instance
where a trained system needs to adapt to changes in the data distribution. For
this chapter the setting is that the label distribution changes but the data samples
remain the same.

More specifically in this chapter we take classifiers trained at different levels of
the label tree and investigate if we can utilise the relationship among the categories
to improve the performance of the classifiers. This is achieved by enforcing the
consistency of output probability distributions at different levels of a semantic

29

Hierarchical Classification

hierarchy of the target categories. Adapting the output distributions according
to this requirement results in improvement in generalisation error. This can also
be thought of as a way to inject domain knowledge during inference with the
classifiers. The experiments in this chapter are performed using deep convolutional
networks trained on an image classification task. Since this technique is concerned
with consistency of probabilities at different semantic levels, it can work with
any machine learning model that produces an output probability distribution over
categories, such as SVM with Platt normalisation.

3.1 Method

In this section we define our problem setting and present the classifier adaptation
method. We also define the kind of classifier used for the image tasks that we
validate our method on.

3.1.1 Problem Setting

We work in a standard multi-class classification setting. For each data point,
x ∈ X ,the goal is to assign a class label y ∈ Y = {l1, ..., lN}. The assignment
of labels for each input depends on the output of a classifier, f : X → Y , as
f(x) = argmaxy fy(x). We consider a probabilistic classifier, which predicts a
probability distribution over Y . This is often obtained by applying a softmax
transformation to the final model output.

We consider a setting with two sets of class (or category) labels corresponding
to a two-level hierarchy with Nc coarse labels Yc = {c1, ..., cNc} and Nf fine labels
Yf = {f1, ..., fNf

}. The hierarchical relation is defined by a function s : Yf → Yc,
specifying that the coarse category with label cs(j) is the super-category of the fine
category with label fj.

Given different classifier models, each of which are trained on different levels of
the hierarchy of categories, we would like to get an improvement in the classifier
performances at minimum additional cost. The goal is to aid the classifier in im-
proving its predictions by augmenting the information contained in its parameters
with the additional information from the hierarchy of categories.

Suppose we are given one classifier trained on Nc classes and another classifier
which is trained on Nf classes. Each of the Nf classes are fine classes of the Nc

coarse classes. Any given test sample will be assigned a probability of being correct
by both classifiers. From this setting we make two observations:

1. It is intuitive to reason that the probability of being correct at the coarse
level should be greater than the probability of being correct at the fine level.

30

Hierarchical Classification

This is due to the fact that the classifier has to discriminate among fewer
classes at the coarse class level than at the fine class level.

2. The probability assigned at the coarse class level is distributed among the
fine classes which belong to that particular coarse class. This is possible
if similar the compositionality of features can determine similar categories,
which share the same coarse super-category.

(a) (b) (c)

Figure 3.1 – Distribution of probabilities for coarse categories (X-axis) and total
probability assigned to corresponding fine categories (Y-axis). (a): Separately
trained classifiers, (b): joint training of one classifier on fine and coarse categories,
(c): Probabilities adjusted to enforce that P (coarse) =

∑
P (fine).

The probability values output by a coarse and fine classifier are shown in Figure
3.1a. We consider a single coarse category (class 1 from CIFAR-20. See § 3.2). The
X-axis shows the probability assigned to test samples for belonging to the coarse
category. The Y-axis shows the total probability assigned to the corresponding fine
categories, for the same test sample. Green dots denote positive data points which
actually belong to this coarse category. If a sample is assigned high probability of
belonging to the coarse category and also of belonging to one of the fine categories,
it will be near the top right of the figure. This would mean that classifiers trained
on the data set find the task of labelling the sample with both fine and coarse
labels to be of similar difficulty. We see that there are several green dots which are
either near the bottom right or the top left. This means that for for some samples,
the classifier has high confidence in predicting the coarse category but not the
corresponding fine category. The reverse case is true for points near the top left.
We see that the hierarchical information is not consistent among the predictions
of the classifiers trained at different category levels. In the current situation, for
some samples, the fine category is predicted with high confidence but not the
coarse category. Intuitively, we expect the prediction of the coarse category to

31

Hierarchical Classification

be an easier task since the number of categories over which the classifier has to
make a prediction are smaller. We want to enforce this consistency requirement
during the testing phase of the classifiers. We will see in the next sections that
adjusting the probability distribution of the classifier to enforce this condition
leads to improvements in generalisation error. The probability output distribution
after adjusting the classifier predictions is shown in Figure 3.1c.

3.1.2 Classifier adaptation and inference

In Figure 3.1a, we see that the previous observations do not hold for all data points.
We want to enforce the condition that the output probability that a classifier has
for a coarse category should be equal to the total probability that a classifier has
for all the corresponding fine categories. Formally, this is denoted as:

∀i ∈ {1, ..., Nc} P (ci|x) =
∑
s(j)=i

P (fj|x) (3.1)

This state is depicted in Figure 3.1c. For all data samples, Equation 3.1 will be
satisfied if we map them to the diagonal. This procedure is outlined in Algorithm
1. We start with the initial values assigned to the coarse category and the sum
of the probability assigned to the corresponding fine categories. The prediction
probability will be consistent if both probability values are mapped to the average
of the coarse probability and sum of fine probabilities. First the coarse probability
is adjusted by linearly interpolating by a factor α away from the original value
to the target value (Line 7). Then we adjust the probability value for each of
the fine categories of the current coarse category. The target probability of each
fine category is computed in proportion to its original probability value (Line 11).
Then a similar linear interpolation is carried out.

In order to control the degree to which we enforce Equation 3.1, an interpolation
factor, α is used, as mentioned above. In Algorithm 1, the term α, is present inside
the for loop. This term allows us to linearly interpolate between the original
probabilities and control the degree of adjustment that we want to carry out. In
other words, it controls the extent of transformation from Figure 3.1 left to right.
A value of α = 1 is the situation shown in Figure 3.1c and a value of α = 0 is
the situation in Figure 3.1a. It is to be noted that α = 0 means that we are not
performing any adjustment. The value of this hyper-parameter can be adjusted
during inference and allows flexibility. α, can be tuned using a validation set to
obtain the best results. Since, we modify the output probabilities based on the
test sample, we term this procedure the classifier adaptation step.

Given the trained models, inference is done by using Algorithm 1. For each test
sample, first we obtain the probabilities from the coarse and fine classifiers. These

32

Hierarchical Classification

Algorithm 1: Classifier adaptation
Input: Probabilities from coarse and fine classifiers
Output: Adapted classification probabilities, adjusted_coarse[i],

adjusted_fine[i]

1 coarse[i], fine[i] //Lists of coarse and fine classes;
2 fine_coarse[j] // Coarse class of fine classes j;
3 P_coarse[i], P_fine[j] // Probability of coarse and fine classes;
4 Q_coarse[i] =

∑
fine_coarse[j]=i P_fine[j] // sum of probability of coarse

classes of class i;
5 for i = 1, #coarse do
6 target_prob = (P_coarse[i] + Q_coarse[i]) / 2;
7 adjusted_coarse[i] =
8 (1− α)× P_coarse[i] + α× target_prob ;
9 if Q_coarse[i] != 0 then

10 for fine_coarse[j] = i do
11 fine_target_prob =
12 (P_fine[j] × target_prob[i]) / Q_coarse[i] ;
13 adjusted_fine[j] =
14 (1− α)× P_fine[j] + α× fine_target_prob;
15 end
16 else
17 adjusted_fine[j] =
18 adjusted_coarse[i] / (

∑
fine_coarse[j]=i 1)

19 end
20 end

probabilities are input to Algorithm 1. The output of the algorithm are adjusted
probabilities. The final prediction corresponds to the class having the maximum
probability after the adjustment. The cost involved in doing this step is linear in
the number of the super-classes.

Note that the adjustment of probabilities is done according to the hierarchy
of all the labels. It is not the case that only the true label of the sample is being
used. This procedure is a pre-prediction step and hence can be used with any
model which outputs a probability distribution over target categories.

3.1.3 Deep convolutional classifiers

We evaluate the proposed method on an image classification task. We choose
deep convolutional network (CNN) as our classifier, since these models have very

33

Hierarchical Classification

good performance on image tasks. Good model architectures for the CNN are
ResNet [37] and DenseNet [45]. These architectures serve as strong baselines and
are the current architecture of choice in the community.

A ResNet model is composed of several residual blocks. Each residual block
contains a certain number of convolution layers, followed by a batchnorm [48] layer
and a non-linearity, such as ReLU. A residual block takes as input, feature maps
of dimension d × d and outputs feature maps of dimension d′ × d′. Based on
their feature map dimensions, convolutional layers of residual (and many other)
networks can be organised into a number of computation stages (typically three).
At the output of each stage (or block), the feature maps are down sampled using
a pooling layer, and the number of feature maps is (typically) doubled in the
following stage. This shown in Figure 3.2a. Figure 3.2b shows a simplified view
while including the softmax operator and negative log-likelihood loss function used
during the training phase. The architecture of DenseNet [45] follows a similar
pattern, with the only difference being that each of each stage is called a “dense
block”, within which a layer L takes as input the output feature maps of all previous
layers {1...L− 1}.

3.1.4 Merged architectures

In our discussion so far, we have needed to use separate classifiers trained at the
coarse and fine category levels. This leads to increase in memory requirements
and possibly slower inference. These can be reduced by introducing some degree
of parameter sharing among the two different models. We do this by merging
some of the layers among the coarse and fine models. The intuition is that several
shared features will be useful for both the coarse and fine categories. This may
lead to faster and more robust feature learning as the training phase will benefit
from gradient signals from the two loss functions.

The granularity of the merge is at the level of the residual blocks. It has been
shown that inside each block, features are refined. New features are computed only
when the spatial dimensions change at the end of each block [30, 104]. Moreover,
merging (or splitting) layers inside a residual block is non-trivial (especially in the
case of DenseNet). Taking all of these into account, it is reasonable to have the
shared parameters at the level of the blocks and not at a finer level. We explore
merging strategies after each of the 3 computation stages. After each of the stages,
a maxpool layer is used to aggregate all the features that have been computed so
far. This serves as a point in the computation pipeline until which point the
layers should be shared. We denote the usual training setup by separate (Figure
3.2c). In this case, two models are trained, one for the coarse and one for the fine
categories. For the case of merged models, training is done for both category levels
simultaneously. We explore the following variants of merged models:

34

Hierarchical Classification

• merge-0 Fine and coarse models are trained independently but both receive
the same input and the loss is summed (Figure 3.2c). Though the networks
in Figure 3.2c and 3.2d are different, they should theoretically lead to exactly
the same training and predictions.

• merge-1, merge-2, merge-3 are depicted in Figure 3.2e, 3.2f, 3.2g. The
common blocks in the layers are closer to the input. Each model has a
separate fully connected classification layer for the coarse and fine categories.
merge-3 corresponds to a joint training where all layers are shared and only
the fully connected layers are separate.

FCConv. BlockConv. BlockConv. Block

(a)

FC / SMBlockBlockBlock LL LossImage

Label

(b)

FC / SMBlockBlockBlock LL LossImage

Fine Label

FC / SMBlockBlockBlock LL LossImage

Coarse Label

(c)

FC / SMBlockBlockBlock

FC / SMBlockBlockBlock

Image

LL

Fine Label

LL

Coarse Label

Loss+

(d)

FC / SM

FC / SM

Image Block

Block

Block

Block

Block

LL

Fine Label

LL

Coarse Label

Loss+

(e)

FC / SM

FC / SM

Image BlockBlock

Block

Block

LL

LL

Loss+

Coarse Label

Fine Label

(f)

FC / SM

FC / SM

LossImage +BlockBlockBlock

LL

LL

Coarse Label

Fine Label

(g)

Figure 3.2 – Merge architectures: (a) Standard computation stage setup in cur-
rent deep convolutional networks (Image taken from [45]; (b) simplified diagram
including the softmax and loss functions for the training phase; (c) coarse and fine
classification with separate networks; (d) merge of the loss function only; (e)-(g)
progressive merging of the convolution blocks.

35

Hierarchical Classification

3.2 Experiments

Data set We use CIFAR-100 data set [53] for evaluating the classifier probability
adjustment procedure. This data set contains 50 000 training images and 10 000
test images. The images are organised into two levels of semantic categories which
we utilise. These images are split into 100 mutually exclusive classes that we shall
consider as the fine classes and refer to as CIFAR-100. These 100 classes are
grouped into 20 coarse classes that we shall refer to as CIFAR-20. Each coarse
class has exactly 5 fine classes.

Classifier training Three deep convolutional neural network (CNN) architec-
tures were used: ALL-CNN-C [97], ResNet-164 [37], DenseNet-100 [45]. We re-
trained all these models on CIFAR-100 and CIFAR-20 ourselves. We additionally
trained them on the fused set of concepts “CIFAR-120” that directly compute both
the coarse and fine class probabilities at once. In this latter case, the softmax out-
put layer is split in two parts, corresponding to the 100 fine and 20 coarse classes.
The results obtained for CIFAR-100 are slightly different from those reported in
the corresponding papers (see § A). Standard data augmentation was used dur-
ing training, which is horizontal flips with 0.5 probability and random crops of
32× 32 after padding each training image with 4 pixels on each side. The hyper-
parameters and learning rate schedules were set according to the reported values
for each architecture in their corresponding papers.

Separate model training The three different network architectures were trained
on both CIFAR-100 and CIFAR-20 separately. After training, we applied our
method as outlined in Algorithm 1. In all cases we observe that the probability
adjustment leads to an improvement by lowering the error rate on the test images.
The error rates obtained with no (α = 0) and full (α = 1) adjustment are shown
in Table 3.1 (“Separate” column). It is important to point out that we obtain this
gain in performance without any re-training and the adjustment time is negligible
compared to the network training times. Figure 3.3 (blue dots) shows the change
in error with respect to the degree of our adaptation scheme. We observe that on
increasing the value of α, we obtain a decrease of the error. Hence, steadily going
from the situation depicted in Figure 3.1a to the one depicted in Figure 3.1c is
better in the case of predictions from separate models.

Joint model training The three different network architectures were trained
on CIFAR-120 (joint training). After training, the output probabilities are ad-
justed according to Algorithm 1. We see that the error rate for coarse category
classification improves but for fine category classification it is worse. The error

36

Hierarchical Classification

rates obtained with no (α = 0) and full (α = 1) adjustment are shown in Table
3.1 (“Joint” column). Figure 3.3 (green squares) shows the change in error with
respect to the degree of our adaptation scheme. We observe that on increasing the
value of α, we obtain a decrease (and also a corresponding increase) of the error
rate.

Model ensembles Exploiting the hierarchical relationship among the labels by
using the output from two classifiers has some similarity with ensemble learning.
The main difference with the usual ensembling setup is that instead of double
training with either twice the coarse or fine categories, the two models have a
different view of the data as they are trained with different labels, the coarse and
fine category levels. We do a contrast experiment by training two models and then
averaging the predicted probabilities. The “ensemble” predictions are better than
the adjusted ones, either from separate or from joint training, in all cases except
for the All-CNN-C network on the coarse categories. However, t is also possible
to do adjustment from the ensemble predictions and it once again always leads to
improved performance as shown in Figure 3.3 (orange diamonds).

Model Separate Joint Ensemble

CIFAR-20

All-CNN-C initial 20.72 19.74 19.78
All-CNN-C adjusted 18.42 18.48 17.58

ResNet-164 initial 15.25 14.62 13.76
ResNet-164 adjusted 12.77 13.94 11.72

DenseNet-100 initial 13.74 13.16 12.11
DenseNet-100 adjusted 11.32 12.31 10.22

CIFAR-100

All-CNN-C initial 30.65 29.63 29.43
All-CNN-C adjusted 29.64 29.94 28.48

ResNet-164 initial 23.32 23.35 21.09
ResNet-164 adjusted 22.21 23.45 20.48

DenseNet-100 initial 21.07 21.33 18.89
DenseNet-100 adjusted 19.98 21.47 18.25

Table 3.1 – CIFAR-100 error rates before and after adjustment of probabilities.

37

Hierarchical Classification

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation factor α

0.18

0.19

0.20

0.21

E
rr

or

CIFAR-20

single

ensemble

joint

0.0 0.2 0.4 0.6 0.8 1.0

0.285

0.290

0.295

0.300

0.305

CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation factor α

0.12

0.13

0.14

0.15

E
rr

or

CIFAR-20

single

ensemble

joint

0.0 0.2 0.4 0.6 0.8 1.0

0.21

0.22

0.23

CIFAR-100

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation factor α

0.10

0.11

0.12

0.13

0.14

E
rr

or

CIFAR-20

single

ensemble

joint

0.0 0.2 0.4 0.6 0.8 1.0
0.18

0.19

0.20

0.21

CIFAR-100

Figure 3.3 – Classification error with respect to interpolation. Left: Coarse cate-
gories (CIFAR-20), Right: Fine categories(CIFAR-100). For each series, we report
mean ± standard deviation.

3.2.1 Merged architecture results

We trained the five different merged architectures described in Figure 3.2c-3.2g
four times for ResNet-164 and once for DenseNet-100. We then applied classifier
adaptation while varying the α parameter from 0 to 2 and we plot the top-1 error
rate for both coarse and fine categories as a function of α for all combinations.

38

Hierarchical Classification

Results are presented in Figure 3.4 for ResNet-164 and in Figure 3.6 for DenseNet-
100. In Figure 3.4, plots are given for ensemble learning with ensembles of different
sizes: ensemble-n corresponds to the averaging of the training of n different in-
stances of the same architecture (ensemble-1 corresponds to the training of a single
instance).

For ResNet-164, using the four different training, it is possible to get a rough
estimate of the standard deviations around the mean value. In Figure 3.4, the
solid line denotes the mean and the shaded regions denote one standard deviation
around the mean. For the ensemble-4 case, it is not possible to directly estimate the
standard deviation so the one obtained from ensemble-3 under the same conditions
is used as an estimation.

Analysis of ResNet results From Figure 3.4, we can make the following ob-
servations:

• The statistical differences between the various merged architectures is low
since there is a significant overlap between the shaded areas and these are
only at one standard deviation. In particular, the separate and merge-0 are
slightly different though they should theoretically be identical. Still, the dif-
ference becomes sharper when considering the ensemble-2 and ensemble-4
versions and the evolution of the performance according to α is likely to be
significant.

• For both the CIFAR-20 and CIFAR-100, the optimum value for the α pa-
rameter is quite close to 1 as expected and classifier adaptation leads to a
significant reduction in error rate, confirming our hypothesis.

• Regarding CIFAR-20, the performances obtained only from the probability
prediction for the fine categories (α = 2) are significantly better than the
performances obtained only from the probability prediction for the coarse
categories (α = 0) but the performances obtained by combining both (α = 1)
are even better.

• Regarding CIFAR-100, the performances obtained combining probability
predictions for both coarse and fine categories (α = 1) are significantly better
than the performances obtained only from the probability prediction for the
fine categories (α = 0).

• Regarding the different merged architectures, the intermediate ones, merge-1
and merge-2, appear to have equivalent performances and to be both better
than the fully split or fully merged ones.

39

Hierarchical Classification

• Ensemble learning provides a very significant gain as this has already been
observed in simple training (without considering label hierarchy) but clas-
sifier adaptation provides an additional gain for all number of instances,
especially for the coarse categories, even though the gain tends to decrease
with the number of instances.

Analysis of DenseNet results From Figure 3.6, we can make the following
observations:

• The differences between the curves are probably not all significant though
their individual shapes might be.

• As expected, the DenseNet error rates are lower than that of ResNet.

• Regarding the merged architecture and the classifier adaptation aspects, the
results are comparable with those obtained with ResNet but not fully consis-
tent. merge-2 has now a behaviour closer to merge-3 (joint training) than
to merge-1 (as for ResNet). This indicates that the split between the fine
and coarse network paths should be kept deeper than in the ResNet case
maybe because of the long-distance shortcuts in the dense networks.

3.3 Discussion on related work

Most current work involves fine tuning a trained classifier to achieve good per-
formance on a new data set that is different from the one on which the training
was done. There is little work that addresses the issue of adapting a classifier to
situations where the data distribution remains the same but the label distribution
changes.

Royer et al.[85] proposes a probabilistic framework to adapt the predictions of
a classifier, based on the sequence of images that are presented to the classifier at
test time. Their objective is to take advantage of the fact that in real life scenarios,
test images are not presented randomly but have correlations. For examples, after
an image of a tropical tree is shown, it is unlikely that the next test image will be
of a coniferous tree covered in snow. The classifier adaptation strategy in [85] uses
the signal present in the sequence of past test images to alter prediction proba-
bilities of future images, which is achieved by modifying class prior probabilities.
Their work is concentrated on a flat distribution of categories and does not utilise
any hierarchical relationships. In our case, we are concerned with adjusting and
correcting our classifier by taking into account hierarchical relationships among
object categories. This adjustment is by taking into consideration just one given

40

Hierarchical Classification

0.0 0.5 1.0 1.5 2.0

0.13

0.14

0.15

0.16

CIFAR-20

0.0 0.5 1.0 1.5 2.0

0.22

0.23

0.24

0.25

CIFAR-100
seperate

merge-0

merge-1

merge-2

merge-3

(a) ensemble-1 for the five merged architectures

0.0 0.5 1.0 1.5 2.0
0.11

0.12

0.13

0.14

CIFAR-20

0.0 0.5 1.0 1.5 2.0

0.20

0.21

0.22

CIFAR-100
seperate

merge-0

merge-1

merge-2

merge-3

(b) ensemble-2 for the five merged architectures

0.0 0.5 1.0 1.5 2.0

0.105

0.110

0.115

0.120

0.125

0.130

CIFAR-20

0.0 0.5 1.0 1.5 2.0

0.19

0.20

0.21

CIFAR-100
seperate

merge-0

merge-1

merge-2

merge-3

(c) ensemble-4 for the five merged architectures

Figure 3.4 – Error rates (Y-axis) for the different merged ResNet-164 based archi-
tectures with respect to the interpolation factor α (X-axis). ensemble-n represents
the error rate after averaging the predictions from n models.

test sample and not the previously seen test samples. The correction they do also
takes into account the feedback from the prediction, that is whether the classifier
was correct or not. In our case our adaptation algorithm does not take into ac-
count the feedback because the relationship among categories is fixed and cannot
be changed.

In the context of using a hierarchy of categories, a closely related work is that

41

Hierarchical Classification

0.0 0.5 1.0 1.5 2.0

0.11

0.12

0.13

0.14

0.15

CIFAR-20

0.0 0.5 1.0 1.5 2.0

0.20

0.22

0.24

CIFAR-100
1

2

3

4

Figure 3.5 – Comparison of ensemble-1 to ensemble-4 for the ResNet-164
merge-1 architecture.

0.0 0.5 1.0 1.5 2.0

0.13

0.14

0.15

0.16

CIFAR-20

0.0 0.5 1.0 1.5 2.0

0.23

0.24

0.25

0.26

CIFAR-100
seperate

merge-0

merge-1

merge-2

merge-3

Figure 3.6 – Error rates (Y-axis) for the different merged DenseNet-100 based
architectures with respect to the interpolation factor α (X-axis). Results are from
a single run of ensemble-1.

of Jia et al.[49]. In this work, the authors propose an algorithm that discovers a
sub-tree of categories. The predictions of the classifier are then restricted to this
sub-tree, out of entire tree of categories that the classifier is trained on. Restricting
the prediction to some categories improves generalisation of the classifier since it
has to discriminate over fewer categories. The system identifies the sub-tree on
being given a few test images. The goal is to have a single classifier, that is trained
over a large number of categories, which adapts to the sequence of test images.
This is similar to the previously discussed work of [85]. However, they work in a
setting involving a single classifier with high capacity, trained on large amounts of
data. In our setting, we aim to ‘transfer knowledge’ between two distinct classifiers
which were trained separately. The only information we use during inference is
the given hierarchy of categories and a single test sample.

Hierarchical relationships have been used in the context of image retrieval tasks
in [13]. In this work, the authors use the semantic relationships among categories
as a ‘ranking’ function to determine related imaged when a query image is pre-

42

Hierarchical Classification

sented. This work is in the case of retrieval, as compared to classification in our
case. However, it highlights that if the semantic relationships are available it can
be utilised to improve the performance of the system. Another work that uses
hierarchy of concepts is YOLO9000 [81]. The training of YOLO9000 is done by
fusing the concepts from ILSVRC [87] and MS-COCO [63], where the fusion is
done using the common category nodes from each data set. Further at prediction
time, the softmax operation is done child nodes of the same parent. This utilised
the semantic hierarchy present. YOLO900 makes fixed predictions though, and its
output is not adaptive in any way. The semantic tree is used in a similar way to
our method but there is no dynamic adjustment after the probability values have
been calculated. Finally, HD-CNN [108] utilises a hierarchy of categories by train-
ing classifiers at each level of the hierarchy tree. The levels denote progressively
harder categories from the root to the leaf of the tree, and this tree is learnt from
data. At inference there is no explicit adjust of the output but there is a possibility
to execute only some of the trained classifiers. This constrains the output to one
part of the tree, similar to the case of YOLO9000.

3.4 Conclusion

In this chapter we introduced a classifier adaptation procedure to adjust the predic-
tions of the classifier based on the consistency of probability distributions among a
hierarchy of categories. We showed that enforcing the constraint among probabil-
ity distributions among different levels of this hierarchy resulted in improvement
of the classifier performance. Next we showed that instead of training classifiers at
different levels of the label hierarchy, it is possible to have a shared model to some
extent, which can predict a probability distribution at both levels. Currently we
have considered two levels of the categories but it is possible to extend this further
over several levels. Extending to several levels will require changing our adapta-
tion procedure to make sure that the probabilities are consistent along each path
from the root to a leaf, and across each level. Further we want to explore if it is
possible to learn the semantic hierarchy if it is not available. It will be interesting
to see what hierarchy we can recover and how the specifics of the hierarchy affect
the final adjusted probabilities.

We explored in this chapter, a scenario where the labels of a data set change,
more specifically the labels are split into sub-categories to enable fine-grained clas-
sification. This is one example of situation where a trained classifier needs to be
adapted with a change in the data distribution. Here we considered only a change
in the label distribution with no additional data points being presented to the
classifier. In the next chapter we investigate a more general case where new data

43

Hierarchical Classification

sets is presented to the classifier sequentially.

Our experiments with merged architectures were motivated by the need to
reduce the memory needed for multiple models. We saw that in this specific
context we can have some sharing of parameters. However, the sharing led to
separate predictions since by design we need different outputs at different semantic
levels. We saw that in particular merge-1 and merge-2 had better performance as
compared to the separate training and all layers shared (merge-3). This indicates
that an architecture with parallel branches may lead to superior performance. In
Chapter 5 we will investigate this observation in detail in a systematic manner. We
will see where the gain in performance comes from and explore various architectural
choices with respect to training with parallel branches.

44

Chapter 4

Continual Learning

Machine learning models are usually trained on a data set and then deployed in
an evaluation mode. During deployment we have an underlying assumption that
the data distribution is not changing. However, it is not entirely unlikely that
the distribution does change. For example we can have an animal classification
system which can classify ten different animals. After some time when we have data
available for two new animals, we would like to extend the classification system so
that it can classify the new animals as well. In the case of neural network based
models, this is challenging to achieve and the answer regarding how to do it is far
from trivial.

The sub-field which deals with questions such as these is referred to by sev-
eral names such as: continual learning [82], lifelong learning [102], or incremental
learning. In the current discussion, we will use the term continual learning, and
in the context of this work we assume that all three terms are equivalent. Re-
cently, several approaches have been proposed to enable continual learning in neu-
ral networks. The experiments and results from these works show that, for most
approaches, learning ‘continually’ leads to a worse performance as compared to
learning the tasks simultaneously. Here, we take a step back and ask the question
of how good is the representation that is learned in a continual learning scenario
as compared to training on all of the tasks at once. The differences in the repre-
sentations learnt are a likely cause of the difference in performance and may offer
pointers to how to reduce the gap in performance.

We focus on the usage of replay buffers for continual learning in neural net-
works. The implementation of a replay buffer in the form of generative models
has been proposed and used in the literature [83, 93]. We use replay buffers
implemented as Generative Adversarial Networks (GAN) [29]. In particular we
investigate the current state of GAN models with respect to their ability to gener-
ate samples from which good discriminative classifiers can be trained. We see that
current GAN models are not yet able to completely capture the diversity and qual-

45

Continual Learning

ity of real training samples. Next, we analyse a continual learning scenario where
we are allowed access to old task data. Our aim is to compare the representation
learnt for several tasks in a continual learning scenario, with the representation
learnt when training on the same tasks simultaneously.

4.1 Context, definition and notation
In this chapter we explore the idea of continual learning in feed forward neural
networks for supervised learning. Examples are fully connected networks and
convolutional networks. We consider cases where these networks have been used
in image classification tasks. In principle, the methods described and discussed,
can be applied with any feed forward network and a suitable differentiable loss
function. However, these have not been considered explicitly here.

Lifelong learning, incremental learning, continual learning are all similar sound-
ing and meaning terms and hence there is a need to define each of them specifically.
For now we consider all of them to be equivalent and use the term continual learn-
ing in this chapter. We define continual learning as follows:

• There are a set of tasks T and each task has its own dataset Dt. For each t
we associate a performance measure At

• Each Dt is presented to our model M sequentially.

• When a new Dt+1 is presented to M , the learning algorithm must update M
such that ∀t < t+ 1 At must not be negatively affected while At+1 must be
maximised.

When training neural networks with a differentiable loss function and stochastic
gradient descent, we assume that the data is i.i.d, which means that the selection
of each data sample is independent and the data samples are from the same dis-
tribution. However, in continual learning that is not the case since tasks can vary
greatly.

Let us make explicit the difference between continual learning, transfer learning
and multi-task learning [6]. Continual learning is different from transfer learn-
ing where once Dt+1 is observed we are not concerned with any previous Dt. The
primary objective of transfer learning is to re-use a trained model in case the
new task does not have sufficient training samples and (or) speed up training for
the new task. It is different from domain adaptation where the nature of Dt

changes. Take for example a model trained on images of human faces, captured
with a standard camera. Domain adaptation will be required if the model is to be
deployed on a cartoon version of the human images (like a sketch version of the
faces). Continual learning differs from multi-task learning due to the sequential

46

Continual Learning

presentation of Dt. In the case of multi-task learning the model is optimised to
learn on all the tasks at once, while in continual learning the tasks are presented
sequentially.

Some example scenarios which might be modelled as a continual learning sce-
nario are:

• Addition of new categories

• Refining existing categories to sub categories

• Additional training data for existing categories

• New task for the system

• Extending trained classifiers over additional categories

Catastrophic Forgetting Many machine learning systems do well on the task
that they are trained on. This is especially true for modern neural network sys-
tems. However, when the system is trained on tasks sequentially, it may forget
about the older tasks. This phenomenon is known as catastrophic forgetting [78,
69]. In neural networks, the primary obstacle to incremental learning is catas-
trophic forgetting. Due to this reason, a number of works concentrate on reducing
catastrophic forgetting as a means to enable continual learning.

The reason for catastrophic forgetting in neural nets is due to the backprop-
agation gradient computation algorithm [86]. At each forward pass we compute
the loss for the data batch through an error function. Then during the backward
pass, the gradient of this loss with respect to each parameter is computed. An op-
timisation step is carried out using this gradient. We can summarise this through
the following equation, where f(x,w) is the output of a model f , for a data batch
x, y. The model has parameters w. L is the loss function to measure the error
between the model prediction and ground truth y, and η is the learning rate:

wt = wt−1 − η∇wL(y, f(x;wt−1)) (4.1)

We note that there is only the notion of a data batch and no notion of what task
this data batch belongs to. Hence, during training the algorithm is only concerned
with minimising the loss for the current batch. This is why catastrophic forgetting
(or interference) occurs. If we are training for a new task Tj after an older task Ti,
the optimisation algorithm will update the parameters such that they are optimal
for Tj and completely ignore performance on Ti. To prevent this forgetting, we will
see that various methods propose to preserve the memory of Ti through several
techniques such as replaying old training data, preserving responses of output units

47

Continual Learning

corresponding to old tasks or preventing parameter values to change too much from
a configuration suitable for Ti.

In the context of modern neural networks, [27] has performed empirical com-
parison among different variations with respect to catastrophic forgetting. Their
experiments set the precedent for the evaluation of different continual learning
methods. In particular, the paper proposed to evaluate these methods in three
categories: forgetting in similar domains, forgetting in different domain, input
reformatting tasks. The components evaluated include regularisation strategy,
training algorithm and activation function. We will see that most evaluations of
more recent continual learning methods follow this methodology.

4.2 Continual learning approaches

Continual learning approaches can be grouped into several categories and we ex-
plore some of these options here, along with their related advantages and draw-
backs. For some approaches any particular category might not fully describe it or
it might be that some methods do not fall into a particular category. Based on
current work, we propose a grouping as logical as possible. The important point
is to understand that there are several differing approaches to reduce catastrophic
forgetting.

4.2.1 Memory based approaches to incremental learning

In this category of techniques for incremental learning, the core idea is to store data
which will help to avoid degradation of the model’s performance on the older tasks.
The memory can be used to store data samples, feature vectors or any encoding of
the original data. In rehearsal based techniques discussed below, training data of
older tasks in stored. In gradient episodic memory (discussed in the next section),
gradients of data with respect to the loss are stored. The interesting case is when
the entire data set is not to be stored. Then we can ask the question: how many
data samples to store, and which data samples to store?

Gradient episodic memory [65] motivates the idea of continual learning by
introducing a scenario where a machine learning model has to learn from data
samples which might belong to separate tasks. The general way of learning a
model is by applying the ERM principle where we learn a model by minimising
a loss function. One of the assumptions that make ERM valid in practice is that
training data samples are iid, which means that each data sample is independent
of each other, and that they are sampled from the same identical distribution.
However, in a continual learning scenario the model will need to learn on tasks

48

Continual Learning

sequentially, and during each training step, the iid assumption does not hold. This
leads to issues in applying ERM in an incremental learning scenario, where the
data is not iid, the data of current tasks may adversely affect older learnt tasks
(catastrophic interference). On a positive note, if the data of the current task is
related to a previous task, transfer learning can help speed up current learning
and also maybe help the older task. Dependencies between tasks can be captured
through a suitable encoding of the tasks. This task description can be used to
model the relationships among various tasks.

The setup for experiments is that all training samples are of the form (x, t, y),
where t is a task descriptor. The samples are locally iid for each task. In this
work, integer task descriptors have been used. However, potentially rich task
descriptors can be used to enable transfer learning across tasks. They define
metrics to evaluate their models, namely: average accuracy, forward transfer, and
backward transfer. Given the current task t, forward transfer measures how an
older task ti affects the performance of t. Backward transfer measures how after
training for task t, the performance of an older task ti is affected.

Gradient episodic memory essentially consists of storing samples of a task t in
a memory Mt. The total memory M comprises the Mt memory cells for each of
the tasks. There can be a fixed budget of the memory M which means that Mt

keeps changing as the number of tasks increase. Currently, they do not use any
sample selection procedure and simple store the last |Mt| samples for each task.
They mention building coresets as a strategy for saving samples in the memory.

If the training is done to minimise the loss on the current task and the loss onM
there would be overfitting to samples in M . If we enforce a loss to prevent change
in the output (for example by distillation loss as in LwF [61], iCARL [80]) we
remove the possibility of positive backward transfer since we are trying to prevent
changes to the old outputs. Instead we can use an inequality which says that the
loss onM can be decreased but not increased. If a decrease in loss is allowed, then
we have the possibility of positive backward transfer. In practice this is realised
by a dot product between the loss gradient for the current task sample and the
loss gradient for older samples (for the current parameter state).

Rehearsal mechanisms One way of preventing forgetting of older tasks is to
present the old task data to the network when it is being trained on a newer task.
This is termed as rehearsal. An extensive discussion on rehearsal and various
techniques was presented in [83, 78]. In rehearsal mechanisms a separate memory
is used to store the real data or a proxy for the old data, such as a generative
model. Rehearsal mechanisms without using real data has been proposed in [83,
2] and is termed pseudo rehearsal. These methods obtain pseudo input target
pairs by feeding random noise matrices through a trained network. They posit

49

Continual Learning

that the output vector obtained by feeding random noise is sufficient to preserve
the knowledge. It has not been tested on modern convolutional networks trained
on images.

In Deep Generative Replay (DGR) [93], the real training data is not used
directly. Instead they learn a generative model of the training data. When new
tasks arrive, a generative model is used to provide pseudo training data for the
older tasks. Since generative models as of today are not perfect, the degree to
which older tasks will be preserved is limited by the quality of the generative
model. This quality refers to both the perceptual quality and diversity. Recent
work has shown that GAN architectures cannot sufficiently replicate the quality
and diversity of the true data set distribution [91].

We also have the question of why do we not store the real training data itself.
There can be several reasons for this. One reason is privacy where we are able to
share only the model trained on this data, which can be thought of as a featurised
and compressed version of the training data. The data is restricted for sharing
because of privacy concerns, legal concerns, etc. Another reason is that the rate of
data production is growing faster than the rate at which data storage hardware is
advancing. We will soon not have the capacity to store all of the data. In this case
the generative model can serve as a loss compressed representation of the data,
from which we are able to obtain a comparable performance. We also note that
there is no provision for extending the capacity of the network. This implies that
there is a finite number of tasks that the network can solve and there needs to be
a mechanism to increase the capacity.

4.2.2 Structural regularisation approaches

Structural regularisation approaches aim to find a set of parameter weights that
are optimal for the tasks being considered by the model, without any modifications
to the architecture. This is accomplished by modifying the loss function to take
into consideration the performance of older tasks. One of the first methods was
first proposed in [40], where there are two types of weights operating at different
time scales to preserve old tasks, and also to adapt quickly to new tasks. More
recently, in Learning without Forgetting (LwF) [61] the loss function enforces that
the output corresponding to older tasks do not change while the new task is being
learnt. In Elastic Weight Consolidation (EWC) [52] there is a per parameter reg-
ularisation to prevent weights that are important for the older task from changing
too much. The general idea of this category of approaches is shown graphically in
Figure 4.1.

We have mentioned before that one of the reasons for catastrophic interference
is that when gradients are calculated using backpropagation there is no notion of
which task is being optimised for. Conceptor aided backprop (CAB) [38] proposes

50

Continual Learning

Figure 4.1 – The shaded areas show the set of parameter values that are optimal for
two tasks A and B. Structural regularisation techniques aim to find the intersection
of these two sets. Figure taken from [52].

to take into account previous tasks when the gradients are being calculated. This is
done by checking how the current task gradient would modify the weights learned
on previous tasks. The procedure modifies gradients such that the weight space of
older tasks is preserved.

This category of approaches are inherently limited as a general continual learn-
ing strategy because there is no scope for increasing model capacity. This means
that after a certain number of tasks are added, we will reach a saturation point
where the average generalisation performance will suffer. One can argue that we
can start with a grossly over parameterised model and then we can keep on adding
tasks. This would still imply that only a finite number of tasks can be added and
we would be forced to use a inefficient model (in terms of number of parameters)
until the full quota of tasks is reached. It does not present a general adaptive
framework for continual learning.

4.2.3 Architectural approaches

Architectural approaches work under the assumption that different tasks require
separate sets of parameters. The spectrum includes models which have all pa-
rameters separated and also models where there a set of parameters common to
tasks and a separate set of task specific parameters. The main idea is that the
architecture of the model is explicitly modified.

On one end of the spectrum we have Progressive Networks [88], where a com-
plete network is added as new tasks are presented to the system. At the start, we
have a single task and a network with L layers. When a new task is presented

51

Continual Learning

all L layers are duplicated. Now the model has two columns of L layers. The
second column has horizontal connections per layer with the previous column(s).
The new column is trained with data of the new task and all old columns are kept
fixed. By design, there is no catastrophic forgetting of the old tasks. Note that
the number of columns grows linearly with the number of tasks. A related method
is ExpertGate [1], where there is a network for each task. The parameters of new
task networks are initialised with the parameters of the ‘closest’ old task network.
This distance between tasks is measured through an under-complete autoencoder,
where each autoencoder is a compact representation of the respective task. The
autoencoders are also used at test time to choose which task network to evaluate.
ExpertGate is the only method mentioned here that does not need an ‘oracle’ to
identify which task the current test sample belongs to.

On the other end we have Dynamically Expandable Networks [109] where the
architecture is modified only as needed, depending on the new tasks. The summary
of the algorithm is: identify task specific parameters at each layer for a new task
and train these parameters; if performance is below a pre-defined threshold add
new parameters and train; finally to preserve performance of old tasks, check if
parameters specific to older tasks have changed greater than a given δ, if yes
duplicate these parameters. Overall, this approach is more parameter efficient as
compared to Progressive Networks.

4.2.4 Universal representations

Universal representations aim to solve several tasks by explicitly learning features
specific to each of the tasks. As several tasks are introduced to the model we can
aim to learn representations useful for solving these tasks explicitly, in contrast
to developing methods that try to adapt an existing representation for task Ti for
another task Tj. In principle explicitly learning universal representations is a more
flexible approach that should lead to better generalisation performance across a
distribution of tasks.

Residual Adapters [79] have shown that given a CNN architecture for different
image classification tasks, the only thing that needs to be specific to each task
are the BatchNorm layers. This means that we can have a universal represen-
tation by employing a base CNN architecture in which the convolutional layers
are task agnostic and all the Batch Norm layers are task specific. [32] employ a
similar idea where they use depth-wise separable convolutions followed by point
wise convolutions at each layer. The depth-wise convolutions are task specific and
the point wise convolutions are common to all tasks. Empirically they show that
they achieve a similar level of performance with a lower parameter cost. Deep
Adaptation Networks(DAN) [84] also have the aim to solve several tasks using a
single model. DAN consists of a backbone network and controller modules to select

52

Continual Learning

Method #Parameters Mean score Decathlon Score [79]

Residual Apapters [79] 2 77.17 2643
DAN [84] 2.17 77.01 2851
Piggyback [68] 1.28 76.60 2838
Depthwise Conv [32] 1 77.82 3507

Table 4.1 – Comparison of methods aiming to learn universal representations.

among tasks. The controller module specifies for each task a linear combination
of filters at each convolution layer. This approach is likely to work well when all
tasks are related to other other. In other cases a linear combination of filters might
prove to be restrictive.

Going further, Piggyback [68] proposes to have task specific parameters at all
layers and not just the BatchNorm layers. Again, we have a backbone network
from which task specific weights are identified. Piggyback identifies redundant
weights for a particular task and prunes these for that task. The pruned weights
are available to be used for other tasks. In this manner, at each layer of the network
we end up with sparse weights that are task specific. The sparse combination of
weights can be identified with task specific masks which control how each layer is
used for a particular task. The end result is another way of obtaining a universal
representation for the given tasks.

Each of these methods have a task specific prediction layer. There is also the
assumption of an oracle which identifies the task for a given test sample. There is
some discussion in [79] on predicting the task identity but the other works do not
mention this. A comparison of these methods are in Table 4.1.

4.2.5 A note on the different approaches

The different approaches discussed have various pros and cons with respect to
growing memory, execution times, etc. Techniques which have a fixed architecture
have an inherent limit to the number of tasks that they can accommodate because
they have a specific number of parameters. However, architecture expanding ap-
proaches can theoretically accommodate a large number of tasks, at the cost of
increasing memory.

Replay buffers can enable several tasks in one network but need to be sequen-
tially trained. Intuitively replay buffers seem to be more flexible than structural
regularisation approaches because there is greater freedom in changing the neural
network weights to optimise for several tasks. This is why we investigate replay
buffer based methods further.

Inference over several tasks is also a topic of further discussion and research.

53

Continual Learning

For most of the methods discussed, the task specific output layers are chosen to
make the final prediction. However, if the given task is not known there needs to be
a mechanism to decide which task a given test sample belongs to. The knowledge
of the task greatly changes the final performance of the system, as the chance for
errors increase when we have a common output layer over all tasks and the task
of the test sample is not known.

4.3 Generative adversarial network as a replay buffer

We now turn our attention to using replay buffers as a means to prevent catas-
trophic forgetting in neural networks. Replay buffers store data, or some repre-
sentation of the data, belonging to older tasks. This data is used in conjunction
with data from new tasks while training a combined model. There is a discussion
in using replay buffers in fully connected networks in [83]. More recently, Deep
Generative Replay (DGR) [93] proposes to use a GAN as a replay buffer. The use
of a GAN is motivated by the fact that in the present continual learning setting,
we are not allowed (or may not be able) to store the actual data. The basic idea of
DGR is use a generative model of old task data to prevent forgetting. Every time
a new task is to be learned, a training data batch is created by combining the old
data samples from the GAN and current task data set. This is depicted in Figure
4.2.

(b) Training Generator (c) Training Solver

 𝒙′

 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓 𝑆𝑜𝑙𝑣𝑒𝑟

 𝒙

𝑰𝒏𝒑𝒖𝒕 𝑇𝑎𝑟𝑔𝑒𝑡

 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓

 𝑆𝑜𝑙𝑣𝑒𝑟

𝑁𝑒𝑤 𝑆𝑐ℎ𝑜𝑙𝑎𝑟

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑎𝑠𝑘

𝑂𝑙𝑑 𝑆𝑐ℎ𝑜𝑙𝑎𝑟

𝐶𝑢𝑟𝑟𝑒𝑛𝑡

𝑅𝑒𝑝𝑙𝑎𝑦

 𝒙′ 𝒚′

 𝑮𝒆𝒏𝒆𝒓𝒂𝒕𝒐𝒓 𝑺𝒐𝒍𝒗𝒆𝒓

 𝒙 𝒚

𝑰𝒏𝒑𝒖𝒕 𝑻𝒂𝒓𝒈𝒆𝒕

 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟

 𝑺𝒐𝒍𝒗𝒆𝒓

𝑁𝑒𝑤 𝑆𝑐ℎ𝑜𝑙𝑎𝑟

 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑎𝑠𝑘

𝑂𝑙𝑑 𝑆𝑐ℎ𝑜𝑙𝑎𝑟

𝐶𝑢𝑟𝑟𝑒𝑛𝑡

𝑅𝑒𝑝𝑙𝑎𝑦

(a) Sequential Training

𝑇𝑎𝑠𝑘1 𝑆𝑐ℎ𝑜𝑙𝑎𝑟1

𝑇𝑎𝑠𝑘2 𝑆𝑐ℎ𝑜𝑙𝑎𝑟2

𝑇𝑎𝑠𝑘3 𝑆𝑐ℎ𝑜𝑙𝑎𝑟3

𝑇𝑎𝑠𝑘𝑁 𝑆𝑐ℎ𝑜𝑙𝑎𝑟𝑁

Figure 4.2 – Overview of Deep Generative Replay (DGR). Figure taken from [93]

DGR raises two questions. First, since a GAN is used to remember old task
data, the degree to which the performance of old tasks is preserved is determined
by the quality of the GAN model. In this section we study how good is the training
of a classifier from GAN samples as compared to real data. Next, in DGR we see
that the training procedure for the classifier is the same at every task, which means
that the overall training time for all tasks is no better than training on all tasks
at once. We will study strategies for training on tasks sequentially in § 4.4.

54

Continual Learning

4.3.1 How good are current GAN models?

Recent GAN models, such as BigGAN [4], are able to produce samples which are
quite hard to distinguish from real data. Generating ‘realistic’ samples does not
necessarily correlate to being able to train good discriminative classifiers, which is
our primary objective. In order to be as good as the real training data set, the
generative model needs to be able to reproduce both the inter category and intra
category diversity. In addition to having enough diversity, the samples should be
visually meaningful. The ability to do this has several applications such as data
compression and data privacy protection. A generative model can be thought of
as a compressed version of the real data. In a scenario where it is not possible
to store or share the real data, we can instead have, and share, the compressed
generative model. In several applications, such as in the medical domain, data
sharing may not be possible due to factors such as protecting data of patients. In
these case we can instead share the generative model, and others can reuse this
data for other applications, without compromising privacy.

We concentrate on comparing the samples from BigGAN [4], a state of the art
GAN architecture at the time of writing, to real data samples. This comparison
is carried out from the perspective of training a good discriminative classifier. In
order to compare generated samples to real data, several metrics have been pro-
posed such as Inception Score (IS) [90] and Fréchet Inception Distance (FID) [39].
These metrics aim to characterise how ‘realism’ of the generated samples. Hence
we compare the validation error of a classifier after training on samples from the
GAN, and after training on the real data set. Indeed we also investigate if good
IS and FID scores correlate with classifiers having low validation error rates.

In the next sections, we first show that training with samples directly from a
GAN does not lead to the best training of a classifier, even though the samples look
very realistic. We introduce a filtering mechanism to remove bad samples which
helps in obtaining higher quality samples, leading to training of better classifiers.
Since a generative model has limited capacity, it may not be able to capture the
complete data distribution. In order to cover more of the data distribution, we
propose to sample the training data from multiple GAN models.

4.3.2 Sample filtering

In order to train our classifier, we generate data batches by sampling from a
conditional GAN model. This means that the images are generated from a noise
vector and label on which the generating process is conditioned. In theory all
the generated image should belong to the corresponding conditioning label but
in practice this is not always the case. Additionally, even if the generated image
belongs to the correct category it may not be discriminative enough and may be

55

Continual Learning

missing some features. These cases arise because the generative model is not a
perfect model of the training data distribution. We propose to use a pre-trained
classifier, trained on the same training data as the GAN, to filter out such samples.
This is a general approach that can scale to larger data sets and categories. The
procedure for selecting a sample image from the GAN that will be used to train a
classifier is described in Algorithm 2.

We can choose different threshold values for the prediction probability obtained
from the pre-trained classifier. This ensures that we get samples that belong to
the correct category and are also informative enough to train good classifiers.
We discuss the results of training a classifier and the effect of choosing different
probability thresholds in §4.3.4. We will see that choosing a proper threshold
becomes more important when the number of target categories increase.

Algorithm 2: Selecting samples from the generator
input : C, G, θG, Classpre, thresh
output: List of samples

1 sample_list = [];
2 y ∼ U(0, C);
3 z ∼ N (0, 1);
4 x ∼ G(z, y; θG);
5 p = Classpre(x);
6 if argmax(p) == y and p[y] > thresh then
7 add x to sample_list
8 end

4.3.3 Multiple GAN sampling

Our training data sets are that of natural images which have significant variation
among categories and also within each category. We expect that this implicit
distribution is difficult for current generative models to capture because the models
have a limited number of parameters , our training algorithms are not perfect, and
we are not guaranteed that the training will converge to the global minima of the
loss function. The current literature suggests that GAN models suffer from mode
collapse which leads to the model being unable to capture all aspects of the data
distribution.

We can train multiple GAN models on the same data set to cover more of
this distribution, where each GAN model might be able to model different parts
of the distribution. We hypothesise that this might be possible due to different
starting initialisation of each of the GAN models, and non-convex loss surface

56

Continual Learning

during the training procedure of the GAN model. During training of the classifier
from synthetic samples, we can construct our data batch by sampling from these
multiple GAN models. Samples of categories coming from different GAN models
can help us to cover the data distribution in a more effective manner. Experiments
and results are discussed in §4.3.4.

4.3.4 Experiments

Datasets and models We use the CIFAR-10 and CIFAR-100 [53] data sets for
our experiments. These data sets consist of 50 000 training images divided into 10
and 100 categories respectively. The test data set comprises 10 000 images. Each
image is 32×32 pixels and 3 channel RGB. The GAN model is trained using these
data sets. In the following discussion we will refer to the original data set as DR.
We also construct a synthetic data set by sampling images from a trained GAN
model. We will refer to the synthetic data set as DG.

We use the BigGAN [4] architecture as our GAN model. The conditional ver-
sion is used to enable sampling images per category. The conditioning is achieved
via conditional batch normalisation layers. The training of the GAN is done ac-
cording to the original paper with related settings of the hyper-parameters. For
the classifier we use a 18 layer ResNet [35] model with 11M parameters because it
provides a good trade off between performance and training time.

Classifier performance comparison between real and generated data
The classifier is trained on both DR and DG is done for 156 250 steps (200 epochs
with batch size 64). In the case of DR this means iterating over the same samples
multiple times as is done usually. In the case of DG a batch of samples is obtained
from the trained GAN model. We expect in the ideal case to have different image
samples throughout the training, however in reality we are limited by the capacity
of the GAN model with respect to diversity of the data.

The blue curve depicts training on different subset sizes for 200 epochs. This
means that in case of smaller data set sizes, we have less number of optimisation
steps. The orange curve shows training on each subset for the same number of
optimisation steps. We see that in the case of less samples, training longer reduces
the classification error rate substantially.

The same classifier is trained on GAN samples, for the same number of opti-
misation steps and following the same learning rate decay schedule. Each batch
of samples for training the classifier are generated according to Algorithm 2. The
error rate for these classifiers is comparable to training on 1× 104 and 1.5× 104

real data samples in CIFAR-10 and CIFAR-100 respectively (see horizontal lines
in Figure 4.3, which are quite far away from the lowest points of the curves). This

57

Continual Learning

means that training on GAN samples lead to worse performance as compared to
training on the full data set. This indicates that the GAN is either not able to
produce samples similar to the real data or the intra class diversity is not as much
as in the real data set. Visual inspections of samples show that the generated
samples do indeed look quite similar to the real images (Figure 4.6).

A compression view of GAN A trained GAN can be viewed as a compressed
version of our training data, where the learned weights are the compressed repre-
sentation of our original data bits. We are interested in compressing the nature of
the distribution from which the training data has been sampled, rather than the
explicit training data samples themselves. To measure the degree of compression,
as before we train a classifier on samples from a GAN and measure the prediction
error on a held out validation set. The lower bound for the error that the classifier
can achieve is equal to the error that it achieves after training on all of the real
training data. We compare training on the GAN samples with varying amounts of
real training data to see how the test error evolves with varying amounts of data,
and at which point training on GAN samples is comparable with real training data
(see Figure 4.3a and Figure 4.3b, detailed results are in Table 4.2). We see that
as of now, training on GAN samples is comparable to training on around 10× 103

real data samples. The size of the GAN model is around 15MB as compared to
the 30MB for the 10× 103 samples. This shows that with a GAN we are able to
obtain good compression without compromising performance, when the number
of data samples is less. However it also highlights that current GAN samples are
quite far away from entirely modelling the real training data distribution.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
#images of dataset 1e4

6

8

10

12

14

Er
ro

r (
%

)

Same #epoches
Same # optimization steps
 1 GAN model
2 GAN models
4 GAN models
6 GAN models

(a) CIFAR-10.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
#images of dataset 1e4

25

30

35

40

45

Er
ro

r (
%

)

Same #epoches
Same # optimization steps
 1 GAN model
2 GAN models
4 GAN models
6 GAN models

(b) CIFAR-100.

Figure 4.3 – Training a classifier on real data compared with training on GAN
samples

58

Continual Learning

Effect of filtering threshold A GAN sample is used for training the classi-
fier if it belongs to the correct category and if the output probability is above
a pre-defined threshold. In Figure 4.4 we plot the relationship between output
probability of the pre-trained classifier and the final validation accuracy of the
classifier trained on GAN samples. We observe that the value of the threshold is
not significant in the case of CIFAR-10. This implies that the pre-trained classifier
is quite confident if it makes a correct prediction. The reason for this could be
that the GAN is able to generate very good images and the classifier is therefore
confident in its predictions. In our experiments this implies that if the pre-trained
classifier makes a correct prediction in most cases we can use the corresponding
sample in our synthetic training set. We need to study this further for different
data sets with varying number of target classes.

However, in the case of CIFAR-100, the probability threshold is important and
increasing the threshold leads to a reduction of the classifier error from 39.35%
to 37.62%. The threshold makes sure that only good quality image are used for
training the classifier. On the other hand, a high value of threshold can reduce
the diversity of generated samples which might lead to worse generalisation for the
classifier.

Issues with threshold based on prediction probability Filtering based on
probability values raises several questions. If we are filtering out samples based
on a probability threshold, one implication is that we are choosing only easily
classified samples. The pre-trained classifier might have biases during training
which can imply that it finds some particular images easy to classify. One step to
reduce this bias towards ‘easy’ examples is to add noise to the predicted probability
of the pre-trained classifier. The addition of noise will reduce the bias by allowing
some examples to be used for training, which did not have a probability greater
than the threshold. There is another issue which is regarding the calibration of
output probabilities. Currently we do not take this into account but for future
work this should be handled. The output probabilities should be calibrated before
comparing with the threshold. This is important since we use recent powerful
neural network models and these are known to have probability calibration issues
[31].

Filtering threshold analysis At this filtering stage we can analyse which cat-
egories are filtered out more. This would be one indication that the GAN model
has trouble to capture the distribution for these categories. We can further analyse
the predictions and features of the pre-trained classifier for the generated samples.
Similar predictions and features would indicate the repetition of samples and lack
of diversity. This can be done both at the inter and intra class level. More details

59

Continual Learning

will be explained in the next section.
In the case of CIFAR-10, most bad images are removed because of incorrect

label (green bar in Figure 4.5a). This is one reason why the threshold value does
not have too much effect. On the other hand, in Figure 4.5b we see that in the case
of CIFAR-100, the number of bad images which is filtered out by the threshold
value, increases remarkably. There are a few categories for which it is easy to gen-
erate images belonging to the correct category, while for the majority of categories
we need to sample repeatedly to get images of the correct category (green bar in
Figure 4.5b). One concern here can be that for these hard categories, the intra
category diversity is reduced when we sample repeatedly since the generator model
is inherently of limited capacity. This is a subject of future work, to investigate
and improve diversity for hard categories. We visualise several samples before and
after filtering out the bad samples in Figure 4.6a and Figure 4.6b.

In both data sets we see that the use of the pre-trained classifier is useful for
removing samples that do not belong to the correct category. The effect of the
probability threshold selection becomes more important as the number of cate-
gories increases. It has a significant effect in improving the validation error of the
classifier trained on generated samples.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Threshold

37.75

38.00

38.25

38.50

38.75

39.00

39.25

Er
ro

r (
%

)

11.5

11.6

11.7

11.8

11.9

12.0

Er
ro

r (
%

)

CIFAR100
CIFAR10

Figure 4.4 – Effect of threshold on classifier training from GAN samples in CIFAR-
100.

Multiple GAN sampling We see from Figure 4.5 that the distribution of some
categories are harder to capture for the GAN model. For some categories, we must
do repeated sampling in order to get acceptable samples that are not rejected
by the pre-trained classifier. We introduced the idea and intuition behind using
multiple GAN models for training the classifier in §4.3.3. During training of the

60

Continual Learning

car ship truck frog deer horse plane bird dog cat
0

20000

40000

60000

80000

100000

120000

#i
m

ag
es

Good images
After threshold >= 0.9
After correct label

(a) CIFAR-10

0 20 40 60 80 100
0

200000

400000

600000

800000

1000000

#i
m

ag
es

Good images
After threshold >= 0.9
After correct label

(b) CIFAR-100

Figure 4.5 – Sample generation distribution according to categories

classifier from synthetic samples, we can construct our data set by sampling from
the multiple GAN models which can help us to cover the data distribution in a
more effective manner. In Table 4.2 we see that sampling training images from
two, four and six GAN models leads to a reduction in classification test error from
11.75% to 8.86% for CIFAR-10 and from 40.25% to 35.13% in CIFAR-100. In
the case where we use 4 GAN models for generating the samples, the error in test
samples decreases by around 1% and 3% in CIFAR-10 and CIFAR-100 respectively.
This technique is particularly useful when dealing with large number of categories.
In spite of not reaching to the error of a classifier which is trained with 30× 103

real data samples, the gap is significantly reduced while also requiring less storage
bits as compared to real data. Another point to note is that FID score is improved
in all cases, which is one indication that multiple GAN models help to improve
the diversity of generated samples.

We see that although the change of IS and FID with different number of GAN
models is small, the error on testing samples of a classifier have a greater reduction.
From Table 4.2, in CIFAR-10, the value of IS and FID is in the range of 8.62 to
8.58 and from 6.84 to 6.47 respectively, however, the error is decreased by 3%. This
indicates that IS and FID scores are not the best way to evaluate a GAN when
the objective is to use the GAN for downstream tasks such as training another
classifier.

61

Continual Learning

(a) Before filtering (b) After filtering

Figure 4.6 – CIFAR-10 samples before and after applying the filtering procedure

4.4 Experimental analysis of continual learning with
replay buffer

We saw in the previous section that a GAN model is not yet able to replace the
real training data samples such that a good classifier can be trained. We proposed
methods to close the gap in classifier training between real and generated samples
but there is still a gap. If a GAN model is used as a replay buffer in a continual
learning scenario, where tasks are presented sequentially, this gap is likely to be
even larger.

The methods discussed in §4.2 have considered the sequential presentation of
tasks to a model. The problem setting enforces a constraint that data of older
tasks are not available when training on a new task. In most of the reported
experiments and results, this leads to sub-optimal performance when training on
even moderately complex tasks such as image classification on the CIFAR [53] data
sets. In most cases the methods are not able to completely alleviate forgetting on
older tasks when the number of tasks added are greater than 2. Additionally, the
final performance on all tasks is worse than when training on all tasks together. If
we are in a continual learning setting, we want the training procedure to provide
gains in one or more scenarios: training time, better generalisation, backward and
forward transfer among tasks, etc.

If we relax the data constraint by allowing access to all of the training data
corresponding to older tasks, it is still not obvious how the training should be

62

Continual Learning

Table 4.2 – GAN and classifier metrics

#GAN models Size (MB) IS (↑) FID (↓) Error (%)

CIFAR-10

1 16.6 8.62±0.13 6.84±0.69 11.75±0.23
2 33.2 8.62±0.16 6.53±0.12 10.32±0.50
4 66.4 8.56±0.16 6.47±0.14 9.32±0.02
6 99.6 8.58±0.17 6.60±0.10 8.86±0.12

Same #optimisation steps
50K-real 150 10.2 - 4.83
40K-real 120 - 5.47
30K-real 90 - 6.12
20K-real 60 - 7.69
10K-real 30 - 11.09

Same #epochs
50K-real 150 10.2 - 4.83
40K-real 120 - - 5.42
30K-real 90 - - 6.77
20K-real 60 - - 8.94
10K-real 30 - - 13.76

CIFAR-100

1 17.7 9.43±0.17 9.19±0.48 40.25±0.32
2 35.4 9.40±0.22 8.85±0.30 38.14±2.00
4 70.8 9.33±0.22 8.42±0.11 34.86±0.05
6 106.2 9.39±0.25 8.45±0.09 35.13±0.24

Same #optimisation steps
50k-real 150 12.1 - 25.39
40k-real 120 - - 26.42
30k-real 90 - - 29.72
20k-real 60 - - 35.40
10k-real 30 - - 44.99

Same #epochs
50k-real 150 12.1 - 25.39
40k-real 120 - - 26.72
30k-real 90 - - 30.36
20k-real 60 - - 36.65
10k-real 30 - - 48.64

done so as to be as efficient as possible and obtain the maximal gains. Our aim in
this section, is to take a step back, and analyse the representation learnt when a
model is trained on different tasks sequentially. If all of the data from older tasks
is used, is the representation learnt different as compared to directly training on
all of the data from all of the tasks? This is the main question that we seek to
answer. Further using the data from older tasks can be thought of as sampling
from a perfect generative model for all older task data. If we assume that we
have access to such a model, how should we sample from it and how should the

63

Continual Learning

training proceed? To answer these questions we design several continual learning
scenarios: addition of a single category to a pre-trained model and addition of
multiple categories to a pre-trained model. For each scenario we investigate the
gains, if any, of incremental training, as compared to simultaneous training of
tasks. To the best of our knowledge, this baseline scenario of continual learning,
where all data from all tasks is available, has not been investigated before.

4.4.1 Training on disjoint parts of the data

In the first experiment, we demonstrate a simple case of catastrophic forgetting.
We train a ResNet-20 [35] model on 40× 103 samples of CIFAR-100 for 200 epochs
with a step learning rate decay schedule. This model gets 34% error on the test
set. Now we restart training with the remaining 10× 103 samples and do not use
the original 40× 103 samples any more. We train for 200 epochs and follow the
same learning rate decay schedule. After finishing training, this model obtains an
error rate of 42.86% on the test set, which is much worse.

The two training sets contains examples from all categories but due to the
sequential training method, the model has forgotten the knowledge from the first
round of training and likely overfits to the 10K training samples of the second
training round. As a control, if we train on all of the 50K training samples during
the second stage, the model achieves an error rate of 31.30% which is consistent
with training on all of the data at once. This is an expected result and the
experiment serves to motivate the investigation of training procedure that can
avoid these issues while bringing improvements in performance.

4.4.2 Evaluation metrics

The different measures are labelled ek−l−m−n and used as table headings in the
following discussion:

k : number of models (1 in non-incremental training, 10 otherwise);

l : number of possible predictions during training (9 before incremental training,
10 otherwise);

m : number of possible predictions during inference (9 before incremental training
or restricted predictions, 10 otherwise), equal to the number of classes over
which the soft-max is computed ;

n : number of input classes during testing (1 for the left-out class, 9 for the
non-left-out classes, 10 otherwise).

Not all combinations are meaningful or useful. We consider:

64

Continual Learning

• Training of a single model on all 10 classes:

– e1−10−10−10 : Standard average error over the 10 classes with 10 possible
predictions. Baseline for comparison with e10−10−10−10 (below).

– e1−10−10−9 : For each of the 10 9-class sub-sets corresponding to a ‘left-
out’ class, average error over the 9 classes, with the 10 possible predic-
tions with a soft-max computed over all 10 classes. Then, global average
error over the 10 sub-sets. Baseline for comparison with e10−10−10−9 (be-
low). The global average error is the same as e1−10−10−10 but we may
look here at the per ‘left-out’ class error.

– e1−10−9−9 : For each of the 10 9-class sub-sets corresponding to a ‘left-
out’ class, average error over the 9 classes, with 10 possible predic-
tions with a soft-max computed over the 9 ‘non-left-out’ classes. Then,
global average error over the 10 sub-sets. Baseline for comparison with
e10−10−9−9 (below).

• Pre-Incremental training of 10 models on 9 classes with 9 possible predictions,
each corresponding to a ‘left-out’ class:

– e10−9−9−9 : For each model, standard average error over their 9 classes
with their 9 possible predictions. Then, global average error over the
10 models.

• Post-Incremental training of 10 models on 10 classes with 10 possible pre-
dictions, now including the previously ‘left-out’ one:

– e10−10−9−9 : For each model, average error over the original (‘non-left-
out’) 9 classes with a soft-max computed over the same 9 classes only.
Then, global average error over the 10 models. Difference with the
previous one: what is lost due to the learning of the new class when
this one is not in the possible predictions;

– e10−10−10−9 : For each model, average error over the original (‘non-left-
out’) 9 classes with a soft-max computed over all 10 classes. Then,
global average error over the 10 models. Difference with the previous
one: what is lost due to the inclusion of the new class in the possible
predictions;

– e10−10−10−1 : For each model, error over the added (previously ‘left-out’)
class with a soft-max computed over all 10 classes. Then, global average
error over the 10 models. This measure is for evaluating how well the
new class is learned compared to the previously learned ones.

65

Continual Learning

– e10−10−10−10 : For each model, average error over all 10 classes with a
soft-max computed over all 10 classes. Then, global average error over
the 10 models. This measure is a 9:1 weighted average of e10−10−10−9
and e10−10−10−1.

4.4.3 Adding one category to nine trained categories

We start our analysis with the simple case of adding one new category to a model
that is already trained on several categories. We expect that if a model is already
trained on several categories it has already learnt features that should be useful for
the new category. Given this hypothesis, we experiment with different strategies
of training to add a single new category.

Experimental setup We train CNN models with ResNet-20 [35] and DenseNet-
100-12-BC [45] architectures. Both of these architectures obtain decent perfor-
mance compared to state-of-the-art, and are relatively fast to train. Since we need
to do a large number of experiments, we choose these architectures to have a good
balance between performance and training time. The training is first done on 9
(out of 10) categories of CIFAR-10. After this initial training has converged we
add the remaining category. Data augmentation consists of random horizontal
flips and random crops. The model is trained using SGD with a step learning rate
decay schedule. The decay schedule is the same for both phases of training.

Training strategies At the time of adding a new category to a trained model,
we have different choices for the number of training epochs, proportion of samples
between old and new categories in a training batch (α), and training with weight
warmup. A summary of the results for training using ResNet are in Table 4.3 and
4.4. We can make the following observations:

• Table 4.3 shows the result of training ResNet on all categories. Training
for 200 epochs with all classes gives an error rate of 7.73 ± 0.20%. Further
training with restart of another 200 epochs with a starting learning rate of
0.1 gives an error rate of 7.44 ± 0.17. These two results serve as baseline
error rates for the next experiments.

• Table 4.4 shows the results for adding one category to a model trained on 9
categories. Each row corresponds to a different training method. All numbers
are averaged over 10 training runs, with 1 category being left out at each of
the runs.

• (200 + 200). Training on 9 categories for 200 epochs, followed by training
on all 10 categories for another 200 epochs. The overall error is lower than

66

Continual Learning

Table 4.3 – CIFAR-10 baseline error rates for ResNet and DenseNet

Architecture Single Train Train half with restart Train with restart

ResNet-20 7.73±0.20 7.78±0.15 7.44±0.17
DenseNet-100-12 4.80±0.16 4.96±0.17 4.69±0.27

training on all categories, both single run and with restart (7.36 compared to
7.73 and 7.44). The reduction in error rate may not be statistically significant
but this shows that at least in this case we do not lose any performance.
However, we also have no gain in training time as we trained for the full 200
epochs.

• (200 + 100). Train for 100 epochs when adding the new category - This
gives slightly worse results but better than the case of single run over all
categories. This method reduces the training time of the new category by
100 epochs, with a slight loss in performance.

• (200 + warmup + 100). Freeze all convolution layer weights and train only
the fc classification layer for 50 epochs. Then train all weights for another
100 epochs. The objective is to get the new added category to acceptable
error as compared to the older categories. This would make the gradients
on the ‘same scale’. In practice the results are the same as training directly
with 100 epochs.

• (200 + pseudo targets). Old categories are not used for training. We generate
pseudo input-target pairs to preserve the model responses of old categories.
This is done by giving as input ‘random noise images’ and recording the
responses from output units corresponding to the older trained categories.
These input output pairs are used as training data when the new category is
to be added. However, results of this training strategy are almost the same
as random error.

Training batch composition During the incremental training to add a new
category, we can choose how to compose our training mini-batches. The experi-
ments until now have used a uniform sampling of data samples from the old and
new categories. Since gradients are calculated for each mini batch, the proportion
of samples from the old and new categories will bias the optimisation procedure to-
wards old and new tasks respectively. We analyse the effect of varying the expected
proportion of samples from the new category α. Since there are 10 categories, uni-
form sampling of data samples implies 0.1 probability of picking a sample from

67

Continual Learning

Table 4.4 – ResNet incremental training on CIFAR-10. We start with a ResNet
trained on 9 categories and then add the left out category.

Train type e-10-9-9-9 e-10-10-9-9 e-10-10-10-9 e-10-10-10-1 e-10-10-10-10

200 + 200 7.73 6.76 7.34 7.58 7.36
200 + 100 7.73 7.00 7.60 8.08 7.65
200 + warmup(50) + 100 7.73 6.98 7.56 7.93 7.60
200 + pseudo targets 7.73 84.63 90.51 50.97 86.56

200 + 200 Adam (0.01) 12.3 11.83 12.67 13.54 12.76
200 + 200 Adam (0.001) 9.20 10.70 11.58 12.20 11.64

the new category. We experiment with α = 0.1, 0.2, 0.4. We train a DenseNet
model in the same manner as the ResNet models with different values of α (Table
4.5). We see that higher values of α negatively impacts the final performance.
Higher values of α mean that, in expectation, each batch has a greater proportion
of samples from the new category. Greater proportion of samples from new task
make the performance of older categories worse.

Table 4.5 – DenseNet training with varying batch proportion, α. The weights of
new classes are are sampled from a standard normal. First column: initial
training on 9 classes; second and third columns: after incremental training for the
9 initial classes, on 9 classes and on 10 classes respectively; fourth column: after
incremental training on the added class; fifth column: after incremental training
for the 10 classes.

α e-10-9-9-9 e-10-10-9-9 e-10-10-10-9 e-10-10-10-1 e-10-10-10-10

0.1 4.80 4.44 4.80 4.98 4.82
0.2 4.80 4.46 4.81 4.98 4.83
0.4 4.80 4.57 4.94 4.86 4.93

4.4.4 Adding 10 categories to 90 trained categories

In the previous section, we explored several strategies for adding one category to
a pre-trained model. The results are not particularly indicative of any difference
between training incrementally and training simultaneously. Going forward, we
now analyse the scenario where we add multiple categories, by adding 10 new
categories at a time. We use the CIFAR-100 [53] data set and the same ResNet
and DenseNet architectures.

68

Continual Learning

Experimental setup CIFAR-100 contains images belonging to 100 categories.
These are grouped into 20 semantic super categories. We first train on 90 categories
and then add the remaining 10. We choose the left-out categories in two ways:
combining two of the given semantic groups, and random 10 categories. For both
phases, training is done with SGD and step learning rate decay schedule.

Initialisation of fc weights for new categories The addition of new cate-
gories require the extension of the fc layer, where we have to add new weights for
each new category. The choice of initial weights will have a significant impact on
the training procedure. We hypothesise that this is more critical where we need
to add a large number of categories. In particular, the initial gradients from these
categories will be on a different scale as compared to the existing older categories.
We validate the weight initialisation choice by comparing three strategies as shown
in Table 4.6. Out of the three strategies the kaiming_uniform performs best. In
the case of sampling new weights from the standard normal, the gap in error rates
between simultaneous and incremental training is 1.20%.

Table 4.6 – Weight initialisation strategies for ResNet and DenseNet on CIFAR-
100.

Arch Weight INIT e-10-9-9-9 e-10-10-9-9 e-10-10-10-9 e-10-10-10-1 e-10-10-10-10

ResNet 200 + 200 standard normal 31.95 32.86 33.67 28.50 33.15
ResNet 200 + 200 nearest neighbour 31.95 32.05 32.91 27.83 32.40
ResNet 200 + 200 kaiming uniform 31.95 31.74 32.61 28.64 32.21

DenseNet 300 + 300 standard normal 23.23 27.59 28.23 25.76 27.99
DenseNet 300 + 300 kaiming uniform 23.23 23.48 23.96 22.70 23.84
DenseNet 300 + 150 kaiming uniform 23.23 23.56 24.09 23.34 24.01

Training strategies A model is first trained on all 100 categories for 200 epochs
and for 200 + 200 epochs with restart (see Table 4.7). These error rates serve as
baselines for each of the different training strategies, the results of which are in
Table 4.8. We can make the following observations:

• Training additional categories performs worse than training all categories
together (32.21% vs. 31.86%). Considering that the 90 categories where
essentially trained on twice, this error rate is quite far away from training
with restart which obtains 31.16%. One possible reason for this can be that
the starting weights for the training on all 100 categories is worse than a
random initialisation. We will further analyse this in the next sections.

• In the case of the standard normal initialisation, a warmup step helps. Dur-
ing the warmup step, first we train only the fc layer for a few epochs, and

69

Continual Learning

then continue training normally of all the layers. This makes sense since
these warmup epochs bring the weights and hence the gradients to a scale
similar to the weights for the older categories.

• ((R) 200 + 200). We note that which the grouping of categories also has
an effect on the final result (last line of Table 4.8). In this case, we add
categories by randomly picking from the entire set of categories. In all other
cases, we add 10 categories which belong to a semantic group.

• (200 + 200 Distillation). We use a distillation loss [41] for the outputs of
older categories, during the incremental training phase. In the incremental
training phase, the loss function for older categories is the cross entropy
loss for correct prediction of categories, and a KL divergence loss between
output of the new model and the output of the old model. This helps the
performance of older categories to be preserved. We have seen in the first
row that the error rate for older categories is 32.61%, and using distillation
loss reduces this to 31.59%.

• (200 + 100 Distillation). Since adding the distillation loss term helps the
older categories, we can try a smaller number of epochs for the incremental
training phase. In the case of starting with a high learning rate (0.1), we
obtain similar results as compared to the full training of 200 epochs (31.73%
and 31.33% respectively.) However when we train on 100 epochs by starting
with a smaller learning rate (0.01) we get a worse result (32.77%). This
implies that when training is started in the incremental step, a high initial
learning rate is required to escape the minima obtained on all categories and
find a good minima for the combined old and new categories.

• Results for adding 10 categories of CIFAR-100 to DenseNet are given in the
lower half of Table 4.6. The weight initialisation is an important factor in
determining the final combined performance. The results are consistent with
the ResNet case.

• In conclusion, we can say that naive addition of categories actually leads
to a drop in overall performance. This can be mitigated to some extent by
using a distillation loss. In addition the distillation loss helps to shorten the
incremental training phase.

4.4.5 Freezing blocks during incremental step

ResNet and DenseNet convolutions layers are arranged in blocks, where each block
comprises several convolution layers. Each block operates at a fixed spatial resolu-
tion. We experiment on training different number of blocks, while keeping the rest

70

Continual Learning

Table 4.7 – CIFAR-100 baseline errror rates for ResNet and DenseNet

Architecture Single Train Train with restart

ResNet-20 SGD 31.86±0.24 31.16±0.26
ResNet-20 Adam 34.02±0.13 33.03±0.56
DenseNet-100-12 23.23±0.41 22.70±0.41

Table 4.8 – ResNet incremental training results for CIFAR-100. We start with a
ResNet trained on 90 categories and then add the 10 left out categories.

Train type e-10-9-9-9 e-10-10-9-9 e-10-10-10-9 e-10-10-10-1 e-10-10-10-10

200 + 200 31.95 31.74 32.61 28.64 32.21
200 + 100 31.95 32.30 33.24 27.57 32.67

200 + warmup(50) + 100 31.95 32.31 33.23 28.06 32.71
200 + warmup(20) + 100 31.95 32.28 33.24 27.42 32.65

200 + 200 Distillation 31.95 30.20 31.59 28.93 31.33
200 + 100 Distillation 31.95 30.72 32.16 27.91 31.73

200 + 100 Distillation 2nd half 31.95 30.99 33.01 30.66 32.77

(R) 200 + 200 30.83 31.47 33.04 26.93 32.43

200 + 200 Adam 31.35 32.23 33.10 27.74 32.56

Table 4.9 – DenseNet incremental training results for CIFAR-100. We start with
a DenseNet trained on 90 categories and then add the 10 left out categories

Train type e-10-9-9-9 e-10-10-9-9 e-10-10-10-9 e-10-10-10-1 e-10-10-10-10

300 + 300 23.73 23.48 23.96 22.70 23.84

300 + 300 Distillation 23.73 22.48 23.81 22.70 23.70
300 + 150 Distillation 23.73 22.95 24.32 22.53 24.14

frozen. We start from the blocks closest to the input. The networks have 3 blocks,
so we train only 1 block and 2 blocks, to see how the result differs from training
all 3 blocks. Results are shown in Table 4.10. As expected they perform worse
than training all the blocks. This implies that when new categories are added,
the lower layers (layers close to the input) need to be adapted and are not general
enough to provide good performance on all categories.

4.4.6 Effect of optimiser

The optimiser has a large effect on the final parameter values. Choosing the correct
learning rate and weight decay values are critical for the training to arrive at good

71

Continual Learning

Table 4.10 – Training different number of blocks of ResNet on CIFAR-100

α #Trained Blocks e-10-9-9-9 e-10-10-9-9 e-10-10-10-9 e-10-10-10-1 e-10-10-10-10

0.1 1 31.95 32.27 33.28 29.95 32.95
0.2 1 31.95 33.72 34.97 28.14 34.29
0.1 2 31.95 32.34 33.28 27.63 32.72
0.2 2 31.95 34.30 35.42 26.67 34.54

parameter values. In this section we briefly compare the training of a deep neural
network using different optimisers and various setting for their hyper-parameter
values.

Stochastic gradient descent (SGD) is arguably the most popular optimiser for
training deep convolutional networks. Most architectures are trained with SGD
and a step learning rate decay schedule. We have seen in our experiments in the
previous section that such a schedule for the learning rate leads to sub-optimal
results when training to extend a model with new tasks. In contrast to SGD, the
Adam optimiser [51] performs weight updates as a function of gradients and a per-
parameter learning rate. In the case of SGD, the learning rate for all parameters is
the same. Having the ability to apply per-parameter learning rates seems to be a
good idea because this will update each paramter differently. If parameters critical
for older tasks are not changed too much from their existing values, it might be
possible to achieve faster training and prevent drop in performance.

We first compare training on all categories of CIFAR-10 using SGD and Adam.
Table 4.11 shows the result of training on all categories for one training cycle
starting from random initialisation. The learning rate for SGD has been optimally
found by the community. Since Adam is not commonly used, we experiment with
different values and report the results corresponding to the best validation error
rates. We see that there is a substantial gap in the error rate obtained by SGD
and Adam (7.73% and 9.74%). This implies that Adam is not able to achieve the
same level of performance as the optimally tuned settings for SGD.

Table 4.11 – Comparison of optimisers for CIFAR-10

Architecture Optimiser 1 cycles 1.5 cycles 2 cycles

ResNet-20 SGD (0.1) 7.73±0.20 7.78±0.15 7.44±0.17
ResNet-20 Adam (0.01) 13.08±0.24 13.31±0.20 12.98±0.24
ResNet-20 Adam (0.001) 9.74±0.10 9.52±0.20 8.97±0.37
DenseNet-100-12 SGD (0.1) 4.80±0.16 4.96±0.17 4.69±0.27

Our primary objective is however to evaluate the continual learning step where

72

Continual Learning

new tasks are added to a given trained model. We compare the different optimisers
at this step. In the case of SGD, a high learning rate is required to move out of
the local minima obtained for the older tasks. However this leads to worsening of
the performance on older tasks. Adam which has per-parameter adaptive learning
rates can use the gradient magnitude to enable parameter values to adapt in a
more convenient manner for old and new tasks. We show the results in Table
4.12. We see that the same pattern holds for Adam as it does for SGD. There is
a drop in performance for the older categories and newer categories do not reach
the best possible performance level. This leads to an overall worse error rate when
compared to the training of all categories together.

Table 4.12 – Comparison of optimisers during task additions in CIFAR-10

Optimiser e-10-9-9-9 e-10-10-9-9 e-10-10-10-9 e-10-10-10-1 e-10-10-10-10

200 + 200 SGD (0.1) 7.73 6.76 7.34 7.58 7.36
200 + 200 Adam (0.01) 12.3 11.83 12.67 13.54 12.76
200 + 200 Adam (0.001) 9.20 10.70 11.58 12.20 11.64

We see that the choice of the optimiser has an important effect on the final
performance of a model. However, the task addition step shows similar behaviour
for both SGD and Adam. One implication of this is that future continual learning
algorithms need to explicitly take into account task specific and task agnostic pa-
rameters. Task specific parameters should not change drastically when the model
is presented with newer tasks. However task agnostic parameters need to adapt
to provide a general performance boost for all tasks involved.

4.4.7 Weight space analysis

Our experiments till now have shown that training on tasks incrementally does not
perform as well as training on all the tasks simultaneously. The main difference
between these trainings is the starting weights of our model. In the simultaneous
training case we start with a randomly initialised model, while in the second phase
of incremental training we start with weights that are optimised for the older tasks.
We can characterise the difference between the models by measuring the distance
between models in weight space. We compute the distance between corresponding
parameters in the two models and report the mean over all the parameters.

We compute the L2 distance between weights from different scenarios, be-
fore and after training has converged. The results are summarised in Table 4.13.
The L2 distance between tasks trained incrementally and random initial weights
(inc_train, init) is 84.11. The distance between all_train, init is 90.69. We see
that in the case of training incrementally the weights have a smaller distance

73

Continual Learning

from the initialisation point but a large distance from the simultaneously trained
weights. One hypothesis about why the performance of incremental training is
inferior is that the the learned weights do not move away enough from the starting
point. The average L2 distance between training on all tasks simultaneously, and
training the same tasks incrementally (all_train, inc_train)is 105.42. In contrast
the average distance between training runs is ∼ 110.

The high distance between different training runs of the same models may be
expected since it is known that in deep neural networks there are multiple equiva-
lent local minima present [50], and it is not clear wether they will be close together
or far apart in parameter space.

The changes in weight can be measured at a finer scale by looking at the L2

norm of weight distance per stage in a network. In convolutional networks such
as ResNet and DenseNet, the layers are divided into several stages, each stage
operating at a fixed spatial resolution. Figure 4.7 shows the change is weight
distance per stage between several weight pairs corresponding to different training
setups.

• First we note that comparing between random initialisation and complete
training of all categories (all_init), the deeper layers have moved more
from the initialisation as compared to layers closer to the input.

• In the case of all_res, since we are doing a double training with restart, the
weights do not change much. The majority of the change happens in stage3
which means that there is an improvement in the more abstract high level
features.

• The weight distance in case of all_inc is maximum in stage3 which im-
plies that the high level features differ by a large amount. Both of the
compared models are trained on the same data and classify over the same
categories. The weight distance does not tell us which features are better di-
rectly. However, since the classification performance is better when training
on all categories, one conclusion is that the features are better when training
on all categories simultaneously. A support for this fact is that the weights
for fc layer change comparatively less.

• Incremental training with distillation shows a large weight distance norm for
stage3 weights as compared ordinary incremental training.

• The observations for DenseNet training are similar to that of ResNet.

In order to explore the weight space and characterise it, we can interpolate
between the considered models in weight space. To do this, we choose two models

74

Continual Learning

Table 4.13 – CIFAR-100 training with ResNet, L2 distance between models in
weight space.

Weight pairs L2

all train, all train restart 53.60±0.09
all train, inc train 105.42±1.46
inc train, init 84.11±1.94
all train, init 90.69±0.25
all train restart, init 91.23±0.11
init, other init 56.57±0.10
all train, other init 90.80±0.12
mean distance between runs ∼110
mean distance between inc runs ∼100

(a) (b)

Figure 4.7 – Change in weights per stage, measured as L2 norm, for ResNet-20
(Left) and DenseNet-100-12 (Right), on CIFAR-100.

and construct a new model by interpolating the weight values between the consid-
ered models. We then compute the corresponding validation errors for the model
having these interpolated weight values (see Figure 4.8). We see that between the
models trained on all data, one training cycle and two training cycles with restart,
there is quite a low barrier. In contrast, between the model trained on all data and
the model trained incrementally, we see a high cost barrier. This is one potential
explanation why the validation error is much worse when trained incrementally in
two steps, as compared to training on all data at once. The starting point of the
incremental step, that is the trained model, is a worse point in weight space as
compared to random initialisation.

75

Continual Learning

(a) (b) (c)

Figure 4.8 – ResNet validation error as a function of interpolation between weight
vectors. (a) interpolation between ResNet trained for 200 epochs and ResNet
trained on 200 + 200 epochs with restart. (b) ResNet trained for 200 epochs and
ResNet trained incrementally over two steps. We see that the figure on the left
shows an easy path between the two points. However, in the incremental case
there is a clear obstruction. (c) ResNet trained incrementally with distillation loss
for older categories.

4.5 Discussion on related work

Generative Adversarial Networks (GAN) [29] were introduced in § 2.5. Here we
briefly highlight the important points again. GANs are a type of generative model
whose training procedure involves a two-player game between a generator network
and a discriminator network. The generator network transforms a random noise
input into a data sample. The discriminator network classifies samples as a real
sample or a generated sample. The discriminator network serves as the loss func-
tion for training the generator network, as the objective of the generator network
is to produce samples which the discriminator classifies as real. There has been
several improvements to the original GAN model involving architectural and op-
timisation advancements. The recently proposed BigGAN [4] model presents a
framework for training GANs and produces very visually rich samples that are
quite hard to distinguish from real data.

Conditional-GAN [70] presents the framework for sampling from a GAN based
on a conditioning factor, such as image category. Most early work on GAN had fo-
cused on unconditional training of GAN. There is no clear evidence as to where in
the network the conditioning information is to be provided and different techniques
have been proposed, such as providing a one-hot class embedding at the input, or
a learnt class embedding in one of the internal layers. Conditional batch normal-
isation [12] layers have been found to be effective for modulating the activations
in a network and have been subsequently used for conditional image generation
in GANs [4, 72]. GANs were chosen as the generative model of choice because
out of the current generative models, these have produced samples which arguably

76

Continual Learning

are the most visually accurate. Hence this motivates us to study them from a
classification perspective, and ask the question if these visually sound images can
be used for training classifiers.

View of GANs from a classification perspective. Training and evaluating
classifiers on GAN samples have been investigated in [94], where the authors have
compared the classification error with other evaluation metrics such as Inception
Score (IS) and Fréchet Inception Distance (FID). Their aim is to use the classifi-
cation error on train and test data sets as an evaluation metric and they are not
concerned with generating samples that lead to training of good classifiers. In this
work our aim is not to compare different metrics and improve them but to solely
improve the validation error of a classifier on real test samples, after training a
classifier on generated samples only. From this perspective, our objective is really
not to produce samples which are visually sound but to produce samples from
which good discriminative features can be learnt.

A closely related work is that of [91]. This work focuses on a similar study as
ours with recent state-of-the-art GAN models. However, there are several differ-
ences: i) [91] trains a separate GAN model per category, whereas we train class
conditional GANs. Conditional GANs should result in better GAN models since
the learning procedure has access to more data and may also help the model to
learn to generate more diverse samples by making use of inter class information.
Training separate GANs per category is also not a scalable strategy as the number
of categories in the data set increases. ii) We aim to see how the samples from
a BigGAN model, which are visually meaningful, compares to real data samples
in the context of training a good classifier. iii) We propose methods to obtain an
improvement in training classifier from generated samples only.

Replay buffer The idea of using a replay buffer has been part of rehearsal
based techniques to prevent catastrophic forgetting [83]. However these early ex-
periments were done on smaller scale neural networks. It is not obvious how these
findings carry over to modern over parameterised deep neural networks. In this
work we use replay buffers that contain samples both from real data sets and from
a generative model. In the context of continual learning, without having access
to real data samples, one approach is to construct a pseudo replay buffer using a
generative model of the training set [93]. A generative model is learnt on older
data sets, and samples from this generative model are combined with samples from
the current data set. This prevents forgetting as the samples from the generative
model are used to learn parameters that are optimised for old and new tasks. In
practice these approaches are limited by the quality of the generative model. We
analyse the situation by considering BigGAN, the current state-of-the-art GAN

77

Continual Learning

model, in terms of sample diversity and sample quality. The data sets we consider
comprise more complex natural images as compared to digit data sets considered
in [93].

We further experiment with a replay buffer considering real data samples. This
serves two purposes: first, it is not clear how the training will proceed if we remove
the restriction of not having access to older task data. So using old task data we
can do an analysis on various training strategies. Second, using real data simulates
having access to a perfect generative model which can produce samples as good as
from the real data set. To the best of our knowledge, we did not find any related
work for this scenario of training with real data samples, hence we believe it is a
novel contribution and analysis.

4.6 Conclusion

Training classifiers from a GAN We have investigated the samples from a
state of the art generative model, BigGAN [4], from the perspective of training a
classifier. We saw that the samples generated from this model look quite realistic.
However if we want to use these samples for a downstream task, such as training
a classifier, there is still a gap in the performance between generated samples and
real data samples. A possible reason for this gap is that the GAN model is not
able to completely capture the complexity of the underlying data distribution.
On the other hand, from a compression point of view, a generative model in this
case is more efficient for storage as compared to storing the same number of real
data samples that obtain similar classification error. In order to improve the
classification performance we used a pre-trained classifier to filter out samples
based on the predicted category and prediction probability. In our experiments we
see that using a threshold for the prediction probability is essential in cases where
there are a large number of categories involved. To help the generative model
to cover more of the underlying real data distribution, we used multiple GAN
sampling, leading to significant reduction in the gap of classifier error between
training on real data and GAN samples.

We notice that currently used metrics to measure the quality of a generative
model, such as IS and FID are not completely indicative of the classifier general-
isation error. We also saw that some of the techniques led to small or negligible
improvements in these metrics but significant improvement in classification error.

Analysis of continual learning with replay buffers We see in our exper-
iments that it is not straightforward to add even one new category to a model
that can classify 9 existing categories, without extensive re-training. The same
holds for adding multiple categories. Our objective is to add the new categories

78

Continual Learning

without going through the entire training process. However we see that in the
methods that we tried, shorter training periods compromise the performance on
the combined categories. This indicates that accommodating one new category
requires significant re-adjustment of the existing weights. A weight space analysis
seems to indicate a high loss barrier between solutions obtained by training on all
categories at once, and training incrementally on the categories.

One way to reduce the re-training time when adding new categories, is to train
for fewer epochs. However, training with a low learning rate prevents the new
categories from converging to optimum weights. In contrast, a higher learning
rate is required to initially escape the local mimima that the weights are in for the
old categories, so as to accommodate the newer categories. Resuming training with
a high learning rate in turn leads to requiring more epochs to find the optimum for
all categories combined. The choice of the optimiser and the associated learning
rate decay schedule plays a big part in this training procedure. It is possible that
we need a different optimisation procedure, or a different manner of adjusting the
learning rate, for finding an optimum set of weights for all tasks combined.

On a more positive side, by preserving the classifier responses corresponding to
the older categories when we train on the new categories, we are able to improve
on the performance of the entire model. We achieve this by using a distillation
loss [41] between the responses of the old categories in the new and old model. It
is possible that other such criteria can be defined to better accommodate old and
new tasks in one model.

79

Chapter 5

Coupled Ensembles

Convolutional networks are one of the widely used architectures in deep learn-
ing. They are the model of choice in most image related tasks, ranging from
image classification to video analysis. The convolution operation leads to an effi-
cient parameterisation of the learnable weights in the network and also introduces
spatial invariance as a property that is part of the network. In this chapter we
introduce, coupled ensembles as an architecture of convolutional networks which
leads to reduced number of parameters without loss in generalisation error. Cou-
pled ensembles also lead to faster training times and lend themselves to an efficient
model parallel training scheme by design.

The inspiration for coupled ensembles arose from our semantic hierarchy pre-
dictions in Chapter 3. We saw that we had gains in performance when the CNN
architecture had parallel branches as compared to not having any parallel branches
or when they were separately trained. However we also had a probability adjust-
ment step which contributed to the overall gain in performance. Thus, the idea
of coupled ensembles arose from analysing the effect of gain in performance com-
ing from having an architecture with parallel computation paths. CNNs are used
for feature learning in a variety of tasks, which means having more efficient CNN
architectures will benefit all such downstream tasks.

5.1 Design of deep convolutional networks

The architecture of deep convolutional networks includes several design factors,
namely kernel size, number of kernels, number of layers. The convolution op-
eration has parameters which control the size of its output which include stride
and padding. Convolutional networks started with having a non uniform design.
LeNet [59] and AlexNet [54] have different kernel sizes at each layer. The layers
closest to the input have larger kernel sizes while deeper layers have smaller kernel

81

Coupled Ensembles

sizes. The reasoning is that the shallower layers with larger kernels extract coarse
features while the deeper layers learn finer features over a small receptive field. The
number of output feature maps at each layer is different, with deeper layers creating
more output feature maps. Again, we can reason that deeper layers steadily learn
a larger number of features to make the classifier more discriminative. Along this
computational pipeline of a sequence of layers there are some downsampling lay-
ers. Downsampling layers help to aggregate features across the spatial dimension.
Additionally downsampling reduces the spatial dimension which prevents memory
explosion. This is needed as the deeper layers tend to have a larger number of
output feature maps.

We can think that one of the first steps towards having a design template
for convolutional networks was with the introduction of VGGNet [96]. VVGNet
started the practice of using the same kernel size in all layers, keeping the number
of kernels constant as long as the spatial dimension of the input did not change,
and doubling the number of kernels following a downsampling operation. The
first layer of AlexNet had a convolution layer with kernel size of 7× 7 . VGGNet
replaced this with 3 layers, each with kernel size of 3× 3. The effective receptive
field is still the same but instead of computing features directly over the input
image, now it is being done in a learnt feature space. Moreover VGGNet adopted
the use of the same kernel size of 3 × 3 at all layers. The convolution operation
was carried out with padding such that the spatial dimension does not change
after applying the convolution. The spatial dimension was changed only at a few
layers, by using either maxpool or strided convolutions [97]. Each set of layers
which operate at a particular spatial dimension is called a “stage”. We see that
going from the shallower to deeper layers, after each downsampling stage, the
spatial dimension is halved and the number of kernels (and hence the output
feature maps) is doubled. This means that the total number of parameters is
roughly the same in each stage. In summary with the introduction of VGGNet,
we have the usage of 3 × 3 kernels, same number of output feature maps inside
each stage, downsampling only at specific points, and doubling the output feature
maps following the downsampling.

In VGGNet there are the final two layers which are fc layers. By nature of
their dense connectivity these layers contain a large portion of the total learnable
parameters in the entire network, even though they contain the minority of the
computations. Network in Network [62] introduced the idea of removing the fc
layers and replacing them with convolution layers which output feature maps hav-
ing dimension of C × 1 × 1. This is equivalent to the C outputs which we get
from a fc layer. Similar ideas of a all convolutional network have been presented
in [97] and ResNet [35]. Finally, in addition to these, Residual Networks [35] pro-
posed the idea of using identity skip connections among non-continuous layers.

82

Coupled Ensembles

These elements form the template using which most convolutional architectures
are designed in the context of classification. Highway Networks [99] also use skip
connections but the learnt gating mechanism performs worse in practice as com-
pared to the identity skip connection of the ResNet. DenseNet [45] replaces the
addition operation in ResNet skip connections with concatenation.

5.2 Coupled ensembles

In this section we introduce “coupled ensembles”, the required terminology and
explain the working of the architecture in detail. Coupled ensembles is an exten-
sion of the template described in the previous section. The idea is to factorise
the parameters into multiple parallel computation paths, where each path receives
the same input and produces a feature representation. These representations are
combined to make the final prediction. This design achieves generalisation er-
ror comparable to state of the art models with a significantly lower parameter
count. Figure 5.2 shows the train and test version of coupled ensembles. The
implementation is straightforward and can be combined with the design elements
we discussed. Our implementation to compose different standard architectures is
available at: https://github.com/vabh/coupled_ensembles.

Terminology. We define some terms for the following discussions:

• Branch: Each architecture comprises one or more branches. The number
of branches is denoted by e. Each branch takes as input a data sample
and produces a score vector corresponding to the target classes. Current
design of CNNs are with a single computation path, and are referred to as
single-branch (e = 1).

• Element block: This defines the architecture used to form a branch. In our
experiments, we use DenseNet-BC [45] and ResNet [37] with pre-activation
as element blocks.

• Fuse Layer: The operation used to combine the parallel branches which
make up our global model. In our experiments, branches are combined by
taking the average of score vectors, e.g. log probabilities for target classes.
The fuse layer can be used at any point in the computation path where a
score vector is available. In § 5.3.3 we explore different choices for the level
of fuse layer during training and prediction.

In this chapter, all discussion is in the context of an image classification task
where each image sample belongs to exactly one class out of a set of pre-defined

83

https://github.com/vabh/coupled_ensembles

Coupled Ensembles

classes. This is the case for CIFAR [53], SVHN [74] and ILSVRC [87] datasets. In
theory, this generalises to other tasks as well such as image segmentation, object
detection, etc.

We consider neural network models which output a score vector of the same
dimension as the number of target classes. This is usually implemented as a linear
layer and referred to as a fully connected (fc) layer. This layer can be followed by
a softmax (sm) layer to produce a probability distribution over the target classes
as illustrated in Figure 5.1 top. During training, this is followed by a loss layer,
for example, negative log-likelihood (nll) as shown in Figure 5.1 bottom. This
is the case for most architectures used for image classification [54, 96, 100, 37,
107, 45]. We note that all that is required is that the architecture produces a
score vector corresponding to the number of categories, and this can be produced
by operations other than a fc layer, such as conv1x1. The coupled ensemble
approach may be adapted to multi-label classification by replacing the sm nll)
layers by corresponding layers that are appropriate for multi-label classification.

SMFCElement Block[W] ScoresImage

SMFCElement Block[W] LL LossImage

Label

Figure 5.1 – Versions of the element network. Top: test, bottom: train.

In summary, the coupled ensemble approach requires only a score vector pro-
duced by underlying element blocks. It is agnostic to the internal architecture of
the element block, however complex it may or may not be. Each element block
takes the same input and outputs a score vector which is combined through the
fuse layer in the forward pass of training. The loss is computed after the fuse layer
operation. Gradients are computed and backpropagated back to all the element
blocks. The transformation of having multiple branches combined through the fuse
layer during training leads to a performance improvement with a lower parameter
count in all our experiments (see § 5.3). The parameter vectorW of the composite
branched model is the concatenation of the parameter vectors We of the e element
blocks with 1 ≤ i ≤ e. There is no increase in the number of parameters as all
parameters are in the “element blocks” and the “fuse layer” does not contain any
parameters.

Independent ensembles In the case of ensemble of independently trained mod-
els, first each individual prediction is obtained and then combined using some logic

84

Coupled Ensembles

to make the final predictions. The important point to note is that each of the e
instances are trained separately.

In the case of coupled ensembles, the single model is composed of parallel
branches and each branch produces a score vector for the target categories. The
score vectors are combined by the “fuse layer” during training and the model pro-
duces a single prediction. The gradient of the loss received in each branch is the
same, and it depends on the predictions made by all the other branches in the
corresponding forward pass. Moreover, there is a global budget on the number of
parameters and we compare the efficiency of coupled ensembles with other models
with similar number of parameters contained in a single branch.

SMFCElement Block[W1]

Image

SMFCElement Block[We]

⋯ AVG

SM

FCElement Block[W1]

Image

FCElement Block[We]

⋯ AVG LL Loss

LL Loss

Label

Label

SMFCElement Block[W1]

Image

SMFCElement Block[We]

⋯ AVG

LL

Loss

Label

LL

(a) Train version. Top: LL fusion, middle: LSM fusion, bottom: FC fusion.
SMFCElement Block[W1]

Image

SMFCElement Block[We]

Scores⋯ AVG

SM

FCElement Block[W1]

Image

FCElement Block[We]

Scores⋯ AVG

(b) Test version Top: SM (classical) fusion, bottom: FC fusion. AVG: averaging layer.

Figure 5.2 – Train and test setup of coupled ensembles.

Fuse layer operation. During training we can insert the fuse layer at one

85

Coupled Ensembles

of three places (Figure 5.2a) and one of two places during testing (Figure 5.2b).
These choices are:

• Activation (FC) average: Average the output of the fc layer of each branch.

• Probability (LSM) average: Average the log-probabilities for each branch.
This can be obtained by applying the log_softmax after the fc layer. Note
that, for inference, averaging the fc layer activations is equivalent to aver-
aging the log-probabilities (see § 5.5.1).

• Log Likelihood (LL) average: Average the loss of each branch. This option
should be the same as training each element block independently.

We explore combinations of these choices and discuss in more detain in § 5.3.3.
Further implementation details are given in § 5.5.

5.3 Experiments

5.3.1 Data sets

We use the CIFAR [53] and SVHN [74] data sets for validating the proposed
architecture. CIFAR-10 and CIFAR-100 consist of 50 000 training images and
10 000 test images, belonging to 10 and 100 categories respectively. SVHN consists
of 73 257 training images, 531 131 “easy” training images (we use both for training)
and 26 032 testing images belonging to 10 categories. All images have a size of
32×32 pixels.

5.3.2 Model training

All hyper parameters and data augmentation during training are the same as
in the original descriptions of the “element block” given in their corresponding
papers. This may not be the optimal setting in our case (especially the learning
rate decay schedule) but we do not alter them, so as to not introduce any bias in
comparisons. For CIFAR-10, CIFAR-100 and SVHN, the input image is normalised
by subtracting by the mean image and dividing by the standard deviation. During
training on CIFAR data sets, standard data augmentation is used, which comprises
random horizontal flips and random crops. For SVHN, no data augmentation is
used. However, a dropout ratio of 0.2 is applied in the case of DenseNet when
training on SVHN. Testing is done after normalising the input in the same way
as during training. All error rates are given in percentages and correspond to an
average of the last 10 epochs. This measure is more conservative than the one used

86

Coupled Ensembles

by the DenseNet [45] authors. All execution times were measured using a single
NVIDIA 1080Ti GPU with the optimal micro-batch (see § 5.5.2).

Experiments in § 5.3.3 and § 5.3.4 are done on the CIFAR-100 data set with the
“element block” being DenseNet-BC [45], depth L = 100, growth rate k = 12. For
experiments in § 5.3.5, we consider this same configuration (with a single branch
(e = 1)) as our baseline reference point.

5.3.3 Fuse Layer choice

In this section we compare the different fuse layer choices during training and
testing. The results are shown in each half of Table 5.1 for two different number
of element blocks (e = 4 and e = 2).

The first three rows in each half of Table 5.1 correspond to the three possible
choices for the fuse layer during training (see Figure 5.2a) and they are marked by
the “Fuse layer” column. The fourth row shows results from training each element
block separately, which is equivalent to removing the fuse layer. This is also the
same case as training with the “LL” fuse layer.

The FC and SM columns correspond to the fuse layer operation during testing
(see Figure 5.2b). The Indiv. column shows the error rate when each element
block is evaluated separately, regardless of whether they were trained jointly or
independently.

We can make the following observations based on results from the top half of
Table 5.1:

• The average error rate of each of the “element blocks” trained jointly in
coupled ensembles with LSM fuse layer (second row) is significantly lower
than the error rate of the individual instances trained separately (fourth row).
This indicates that the coupling not only forces them to learn complementary
features as a group but also to learn better representations, individually.
Averaging the log probabilities forces the network to continuously update all
branches so as to be consistent with each other. The error gradient that is
back-propagated from the fuse layer is the same for all branches, and this
gradient depends on the combined predictions. This means that at every
step all branches act complementary to the other branches’ weight updates.

• When training with FC fuse layer, the individual branches do not perform
well. This is expected since a similar FC average may be reached with quite
unrelated outputs. Depending on the initial weights, the output of each
element block can be vastly different during the early stages of trainng. The
FC training with SM prediction works a bit better but is still inferior because
the non-linearity of the sm layer distorts the FC average. FC training with FC
prediction works quite well though it does not yield the best performance.

87

Coupled Ensembles

L k e Fuse layer Indiv. FC SM Params. Epoch Test

e = 4

100 12 4 FC 74.36±26.28 22.55 31.92 3.20M 402 2.00
100 12 4 LSM 22.29±0.11 17.61 17.68 3.20M 402 2.00
100 12 4 LL 22.83±0.18 18.21 18.92 3.20M 402 2.00

100 12 4 none 23.13±0.09 18.42 18.85 3.20M 341 2.00

e = 2

100 12 2 FC 52.68±22.95 22.25 28.78 1.60M 174 0.98
100 12 2 LSM 22.17±0.32 19.06 19.43 1.60M 174 0.98
100 12 2 LL 22.78±0.08 19.33 19.91 1.60M 174 0.98

100 12 2 none 23.13±0.15 20.44 20.44 1.60M 171 0.98

Table 5.1 – Coupled ensembles of DenseNet-BC (e = 4, e = 2) with different “fuse
layer” combinations. Columns “L” and “k” define the “element block” architecture,
column “e” is the number of branches. Column “Fuse layer” indicates the type of
“fuse layer” during training (see § 5.2); “none” for separate trainings. Column
Indiv. is the mean error rate of each branch; Columns FC and SM give the error
rate for “fuse layer” choices during testing. Column “Epoch” is time taken to
complete one training epoch, “Test” is the testing time per image. The mean and
standard deviation of all error rates are computed from 4 runs.

• The FC prediction works at least as well and often significantly better than the
SM prediction. This can be explained by the fact that the sm layer normalises
values to probabilities (between 0 and 1), while the FC values remain spread
out over a greater range (have lower entropy) and preserve more information
from the individual element blocks during the final prediction.

• The results of the third row, LL fuse layer, are similar to the fourth row, which
is individual training. This is expected and serves as a ‘unit test’ for our
implementation. The difference between the third and fourth row training
manifests in the implementation. In the third row we train 4 element blocks,
for which we combine the final loss values. Hence each element block trains
the same as if they were being trained separately. This is in contrast to the
other fuse layer operations where the intermediate outputs (fc or (l)sm) are
combined before computing the final loss.

• The bottom half of Table 5.1 shows results for experiments with two branches
(e = 2). The observations are the same as with four branches. Even using
only two branches provide a significant gain over a single-branch architecture

88

Coupled Ensembles

of comparable size.

These experiments show that coupled ensemble training leads to improvement
over separately trained models, when the final predictions are combined. The
constituent element blocks each benefit from coupled ensemble training which lead
to better generalisation when the individual predictions are combined. For the
choice of fuse layer operation, LSM performs best and we use this for both training
and testing for the rest of the experiments.

5.3.4 Comparison between single branch and coupled en-
semble models

In the previous section we compared coupled ensembles with different fuse layers
and found that LSM fuse layer obtained the best generalisation. We now compare
coupled ensembles with LSM fuse layer to single branch (e = 1) models having
comparable number of parameters. The two halves of Table 5.2 show the error
rates of single-branch DenseNet models with different width (growth rate) k and
depth L configurations. The choice of single-branch models has been done by:
increasing k while keeping L constant, by increasing both k and L, or by increasing
L while keeping k constant. We can make the following observations:

• The error rate of the various single branch models are quite stable.

• Coupled ensemble training does significantly better than a single branch
model. The error rate of the best single branch model is 20.01%, with about
3.2M parameters. Keeping the same parameter budget, using 4 branches
reduces the error rate to 17.61% (−2.40) for the coupled ensemble model.
An ensemble of the independently trained models obtain 18.42% (−1.59),
which is worse than the result of the corresponding coupled ensemble model
but better than the single branch model.

• The coupled ensemble model with e = 4 and LSM “fuse layer” has almost
the same performance as a DenseNet-BC (L = 250, k = 24) model [45]
(17.61 versus 17.60), which has about 5 times more parameters (15.3M versus
3.2M).

These observations show that arranging a given budget of parameters into
parallel branches is more efficient in terms of parameters, as compared to having
a large single branch model or multiple independent models. As we observed in
this section, it is possible to reduce the number of parameters to a great extent.
In § 5.3.5, we analyse the relation between the number of branches and the model
performance.

89

Coupled Ensembles

Table 5.2 – Coupled ensembles of DenseNet-BCs compared to single branch models;
see legend of Table 5.1.

L k e Fuse layer Indiv. FC SM Params. Epoch Test

e = 4

100 12 4 LSM 22.29±0.11 17.61 17.68 3.20M 402 2.00
100 12 4 none 23.13±0.09 18.42 18.85 3.20M 341 2.00

100 25 1 n/a 20.61±0.01 n/a n/a 3.34M 164 0.8
154 17 1 n/a 20.02±0.10 n/a n/a 3.29M 245 1.3
220 12 1 n/a 20.01±0.12 n/a n/a 3.15M 326 1.5

e = 2

100 12 2 LSM 22.17±0.32 19.06 19.43 1.60M 174 0.98
100 12 2 none 23.13±0.15 20.44 20.44 1.60M 171 0.98

100 17 1 n/a 21.22±0.12 n/a n/a 1.57M 121 0.67
124 14 1 n/a 21.75±0.10 n/a n/a 1.55M 135 0.77
148 12 1 n/a 20.80±0.06 n/a n/a 1.56M 159 0.90

5.3.5 Choice of the number of branches

In the previous two sections, we saw that coupled ensembles with 2 and 4 branches
led to improvement in performance over single branch models, for a fixed parameter
budget. In this section, we investigate the optimal number of branches e for a given
model parameter budget. We evaluate on CIFAR-100, use DenseNet-BC [45] as
the “element block”, and parameter budget equal to 0.8M (number of parameters
in DenseNet-BC (L = 100, k = 12)). The optimal number of element blocks is
likely to depend upon the network architecture, upon the parameter budget and
upon the data set but this gives at least one point of reference. Related results for
larger models are in Table 5.4 (last four rows).

In Table 5.3 we show the error rate for different configurations of branches e,
depth L, and growth rate k. One difficulty in choosing the different configurations
of DenseNet-BC architecture for a target parameter count, is that there are con-
straints in choosing the L and k values (L has to be a multiple of 6 modulo 4).
This is quite critical in moderately sized models, like the 800K parameter model
targeted here because each element block itself needs to have some basic repre-
sentation power in order to contribute to the composite coupled ensemble. We
selected model configurations with about the same parameters to have a fair com-
parison. A few models have slightly more parameters so that some interpolation
can be done for possibly more accurate comparisons. We can make the following

90

Coupled Ensembles

Table 5.3 – Different number of branches, e, for a fixed parameter budget. The
models are trained on CIFAR-100 with standard data augmentation. See caption
of Table 5.1 for the meaning of row and column labels. For e > 1, “fuse layer” is
LSM. (*) Average and standard deviation on 10 runs with different seeds.

L k e Indiv. FC SM Params. Epoch Test

100 12 1 22.87±0.17(*) n/a n/a 800k 86 0.51

76 10 2 25.58±0.20 21.66 22.17 720k 103 0.63
88 9 2 25.15±0.31 21.87 22.19 747k 119 0.71
94 8 2 25.72±0.20 21.95 22.22 666k 115 0.69
100 8 2 25.42±0.20 21.87 22.07 737k 126 0.75

70 9 3 26.67±0.40 21.10 21.24 773k 129 0.77
82 8 3 26.47±0.17 21.25 21.46 800k 141 0.85
88 7 3 26.92±0.41 22.09 22.49 698k 148 0.92
94 7 3 26.50±0.12 21.95 22.35 775k 160 0.98

64 8 4 28.58±0.59 22.44 22.58 719k 142 0.88
70 8 4 27.65±0.48 21.50 22.12 828k 156 0.94

58 7 6 30.11±0.53 23.87 24.22 718k 179 1.08
64 7 6 30.65±0.62 23.08 23.36 840k 198 1.20

58 6 8 32.15±0.00 25.95 25.70 722k 219 1.35
64 6 8 31.52±0.38 24.42 24.69 843k 250 1.51

observations:

• In the considered case (DenseNet-BC, CIFAR-100 and 800K parameters), the
optimal number of branches is e = 3, L = 70, k = 9. With this configuration,
the error rates decreases from 22.87 of the single-branch (L = 100, k = 12)
DenseNet-BC model to 21.10 (−1.77).
• Using 2 to 4 branches yields a significant performance gain over the sin-

gle branch, e = 1, case, and even over the original performance of 22.27%
reported for the (L = 100, k = 12) DenseNet-BC in its paper.

• Using 6 or 8 branches performs significantly worse, possibly because the
element blocks do not have sufficient capacity to learn meaningful represen-
tations.

• Model performance is robust to slight variations of L, k and e around their op-
timal values, showing that the coupled ensemble approach and the DenseNet-
BC architecture are quite robust relative to these choices.

91

Coupled Ensembles

• The gain in performance comes at the expense of an increased training and
prediction times even though the model size does not change. This is due to
the use of smaller values of k that reduces the throughput for smaller models.

• The variation of the depth L and the growth rate k are also evaluated for
an approximately fixed parameter count. The performance is quite stable
against variations of (L, k) values.

The same experiment was done on a validation set, comprsing a 40K/10K ran-
dom split of the CIFAR-100 training set and we could draw the same conclusions
from there; they led to predict that the (L = 82, k = 8, e = 3) combination should
be the best one on the test set. The (L = 70, k = 9, e = 3) combination appeared
to be slightly better here but the difference is probably not statistically significant.

5.3.6 Comparison with state of the art

We next compare coupled ensembles to existing models of various sizes. We again
use DenseNet-BC [45] architecture as the “element block” since this was the current
state of the art at the time when we started these experiments. We also use
ResNet [37] as an element block to evaluate the architecture agnostic property of
coupled ensembles. Table 5.4 shows the current state of the art models (see § 5.6
for references) in the upper half and the performance of coupled ensembles in the
lower half. All results presented in this table correspond to the predictions of single
model. A further level of ensembling involving multiple models is considered in
§ 5.3.7.

Coupled ensembles with ResNet pre-act as element block and e = 2, 4 leads
to a significantly better performance than single-branch models, which have com-
parable or higher number of parameters.

For the DenseNet-BC architecture, we considered 6 different model sizes, rang-
ing from 0.8M up to 25.6M parameters. [45] reports results for the two extreme
cases. We chose these corresponding values for the depth L and growth rate k,
and interpolated between them according to a log scale as much as possible. Our
experiments show that the trade-off between L and k is not critical for a given
parameter budget. This was also the case for choosing between the number of
branches e, depth L and growth rate, k for a fixed parameter budget as long as
e ≥ 3 (or even e ≥ 2 for small networks). For the 6 configurations, we experi-
mented with both the single branch and coupled ensemble (e = 4) versions of the
model. Additionally, for the largest model, we tried e = 3, 6, 8 branches.

For single-branch DenseNet-BC, we obtained error rates higher than reported
by [45]. From what we have checked, their Torch7 implementation and our Py-
Torch one are equivalent. The difference may be due to the fact that we used a

92

Coupled Ensembles

Architecture C10+ C100+ SVHN #Params

ResNet L = 110 k = 64 [35] 6.61 - - 1.7M

ResNet stochastic depth L = 110 k = 64 5.25 24.98 - 1.7M
ResNet stochastic depth L = 1202 k = 64 4.91 - - 10.2M

ResNet pre-act. L = 164 k = 64 [37] 5.46 24.33 - 1.7M
ResNet pre-act. L = 1001 k = 64 4.92 22.71 - 10.2M

DenseNet L = 100 k = 24 [45] 3.74 19.25 1.59 27.2M

DenseNet-BC L = 100 k = 12 [45] 4.51 22.27 1.76 0.80M
DenseNet-BC L = 250 k = 24 3.62 17.60 - 15.3M
DenseNet-BC L = 190 k = 40 3.46 17.18 - 25.6M

Shake-Shake C10 Model S-S-I [24] 2.86 - - 26.2M
Shake-Shake C100 Model S-E-I - 15.85 - 34.4M

Snapshot Ensemble DenseNet-40 (α0 = 0.1) 4.99 23.34 1.64 6.0M
Snapshot Ensemble DenseNet-40 (α0 = 0.2) 4.84 21.93 1.73 6.0M
Snapshot Ensemble DenseNet-100 (α0 = 0.2) 3.44 17.41 - 163M

SGDR WRN-28-10 [66] 4.03 19.57 - 36.5M
SGDR WRN-28-10 3 snapshots 3.51 17.75 - 110M

ResNeXt-29, 8×64d [107] 3.65 17.77 - 34.4M
ResNeXt-29, 16×64d 3.58 17.31 - 68.1M

DFN-MR2 [112] 3.94 19.25 1.51 14.9M
DFN-MR3 3.57 19.00 1.55 24.8M

IGC-L450M2 [111] 3.25 19.25 - 19.3M
IGC-L32M26 3.31 18.75 1.56 24.1M

ResNet pre-activation L = 65 k = 64 e = 2 5.26 23.24 - 1.4M
ResNet pre-activation L = 164 k = 64 e = 2 4.24 19.92 - 3.4M
ResNet pre-activation L = 164 k = 64 e = 4 3.96 18.84 - 6.8M

DenseNet-BC L = 100 k = 12 e = 1 4.77 22.87 1.79 0.8M
DenseNet-BC L = 112 k = 16 e = 1 4.47 20.73 1.83 1.7M
DenseNet-BC L = 130 k = 20 e = 1 3.86 19.62 1.84 3.4M
DenseNet-BC L = 160 k = 24 e = 1 3.74 18.43 1.88 6.9M
DenseNet-BC L = 166 k = 32 e = 1 3.68 17.68 1.88 13.0M
DenseNet-BC L = 190 k = 40 e = 1 3.75 17.22 1.79 25.8M

DenseNet-BC L = 82 k = 8 e = 3 4.30 21.25 1.66 0.8M
DenseNet-BC L = 82 k = 10 e = 4 3.78 19.92 1.62 1.6M
DenseNet-BC L = 88 k = 14 e = 4 3.57 17.68 1.55 3.5M
DenseNet-BC L = 88 k = 20 e = 4 3.18 16.79 1.57 7.0M
DenseNet-BC L = 94 k = 26 e = 4 3.01 16.24 1.50 13.0M

DenseNet-BC L = 118 k = 35 e = 3 2.99 16.18 1.50 25.7M
DenseNet-BC L = 106 k = 33 e = 4 2.99 15.68 1.53 25.1M
DenseNet-BC L = 76 k = 35 e = 6 2.92 15.76 1.50 24.6M
DenseNet-BC L = 64 k = 35 e = 8 3.13 15.95 1.50 24.9M

Table 5.4 – Classification error comparison with the state of the art.

93

Coupled Ensembles

more conservative measure of the error rate (on the last iterations) and from sta-
tistical differences due to different initialisations and/or due to non-deterministic
computations. Still, the coupled ensemble leads to a significantly better perfor-
mance for all network sizes, even when compared to the reported performance of
DenseNet-BC.

Our larger models of coupled DenseNet-BCs (error rates of 2.92% on CIFAR
10, 15.68% on CIFAR 100 and 1.50% on SVHN) perform better than or are on par
with all current state of the art implementations that we are aware of at the time
of performing these experiments. Only the Shake-Shake S-S-I model [24] performs
slightly better on CIFAR 10.

We also compare the performance of coupled ensembles with model architec-
tures that were ‘learnt’ in a meta learning scenario. The results are presented in
§ 5.3.9.

5.3.7 Ensembles of coupled ensembles

The coupled ensemble approach is limited by the size of the network that can fit
into GPU memory and the training time. With the hardware we have access to,
it was not possible to go much beyond the 25M parameters. For going further, we
resorted to the classical ensembling approach based on independent trainings. An
interesting question was whether we could still significantly improve the perfor-
mance since the classical approach generally plateaus after quite a small number
of models and the coupled ensemble approach already includes several branches.
For instance, SGDR with snapshots [66] has a significant improvement from 1 to
3 models but not much improvement from 3 to 16 models (see Table 5.4 and 5.5).
As doing multiple times the same training is quite costly for large models, we
instead ensembled the four large coupled ensemble models, e = 3, 4, 6, 8. Results
are shown in Table 5.5. We obtained a significant gain by fusing two models and
a quite small one from any further fusion of three or four of them. To the best
of our knowledge, these ensembles of coupled ensemble networks outperform all
state of the art implementations including other ensemble-based ones at the time
of these experiments.

5.3.8 Parameter usage

Table 5.6, and the lower half of Table 5.4 (rows with e = 1 and e > 1) highlight
the difference in error rates between single and multi branch models. A coupled
ensemble model with 13M parameters has an error rate of 16.24% for CIFAR-100.
In contrast, none of the single-branch models match this performance even with
double the number of parameters. In Table 5.4 we see that coupled ensemble with
13M parameters is better than DenseNet-BC with 25M parameters. In particular

94

Coupled Ensembles

Table 5.5 – Classification error comparison with the state of the art, multiple model
trainings.

Architecture C10+ C100+ SVHN Params.

SGDR WRN-28-10 3 runs × 3 snapshots 3.25 16.64 - 329M
SGDR WRN-28-10 16 runs × 3 snapshots 3.14 16.21 - 1752M

DenseNet-BC ensemble of ensembles e = 6, 4 2.72 15.13 1.42 50M
DenseNet-BC ensemble of ensembles e = 6, 4, 3 2.68 15.04 1.42 75M
DenseNet-BC ensemble of ensembles e = 8, 6, 4, 3 2.73 15.05 1.41 100M

with 3.5M parameters, coupled ensemble has almost the same performance as
the best DenseNet-BC with 25M parameters. This is a parameter reduction of
almost 8×. Figure 5.3 compares this with other state of the art models. We see
that coupled ensembles are better than most models, with a substantially lesser
number of parameters. This means that using this architectural modification we
can reduce the model size without compromising on generalisation error. Smaller
models are useful for various application such as when deploying models on mobile
phone or other embedded systems.

Table 5.6 – Single branch and coupled ensembles CIFAR-100 classification error
rate for different number of parameters. The exact architecture details are omitted
here. Instead we focus on the error obtained for architectures having the given
parameter count.

Params. Single-branch Coupled Ensemble

0.8M 22.87 21.25
1.7M 20.73 19.92
3.4M 19.62 17.68
6.9M 18.43 16.79
13.0M 17.68 16.24
25.8M 17.22 15.68

5.3.9 Comparison with Learnt architectures

In Table 5.7, we compare the parameter usage and performance of coupled ensem-
bles with model architectures that were recovered using meta learning techniques.
We see that our method is competitive with architectures recovered using various
learning strategies. The variants which outperform coupled ensembles are using
cut-out [15] data augmentation. The results of models with and without cut-out

95

Coupled Ensembles

106 107 108 109

Parameters

3

4

5

6

E
rr

or
R

at
e

CIFAR-10

Coupled Ensembles

DenseNet-BC

SGDR-WRN

Others

106 107 108 109

Parameters

16

18

20

22

24

E
rr

or
R

at
e

CIFAR-100

106 107 108

Parameters

1.4

1.5

1.6

1.7

1.8

1.9

E
rr

or
R

at
e

SVHN

Figure 5.3 – Comparison of parameter usage and error rate among different meth-
ods, for CIFAR-10, 100 and SVHN. Coupled ensemble with DenseNet-BC as ele-
ment block. Single models up to 25M parameters after that points are of ensembles
of coupled ensembles; SGDR-WRN: snapshot ensembles up to 110M parameters
and ensembles of snapshot ensembles; “Others”: all other architectures from Table
5.4, 5.5.

96

Coupled Ensembles

seem to indicate that coupled ensembles can also gain from this data augmentation
scheme.

Architecture learning strategies typically define building blocks such as the con-
volution and maxpool operations, layer connectivity patters, etc. The branching
design of coupled ensembles can also be defined as such a building block. Our
coupled ensemble idea has been explored in an architecture search setting in [67].

Table 5.7 – Classification error comparison with learnt architectures.

System C10+ C100+ SVHN #Params

Neural Architecture Search v3 [113] 3.65 - - 37.4M
NASNet-A (6 @ 768) [114] 3.41 - - 3.3M
NASNet-A (6 @ 768) + cutout [114] 2.65 - - 3.3M
NASNet-A (7 @ 2304) [114] 2.97 - - 27.6M
NASNet-A (7 @ 2304) + cutout [114] 2.40 - - 27.6M
DARTS (second order) + cutout [64] 2.83 - - 3.4M

DenseNet-BC L = 82 k = 10 e = 4 3.78 19.92 1.62 1.6M
DenseNet-BC L = 88 k = 14 e = 4 3.57 17.68 1.55 3.5M
DenseNet-BC L = 76 k = 35 e = 6 2.92 15.76 1.50 24.6M

5.3.10 Preliminary experiments on ImageNet

We conducted preliminary experiments on ILSVRC2012 [87] to compare single
branch models and multi branch coupled ensembles.

For a baseline single branch model, we use DenseNet-169-k32-e1 and DenseNet-
201-k32-e1, and we compare this with coupled ensemble DenseNet-121-k30-e2. We
realise this is not a state-of-the-art baseline but due to the constraints we had this
was the strongest possible. The current results are in Table 5.8. It is hard to draw
conclusions from these results and there is a need to try models of different sizes to
have a proper conclusion. Since ILSVRC2012 is a very large scale data set it is in
general quite hard to find differences among methods. One interesting extension
would be to use the full ImageNet data set instead of of the ILSVRC subset. The
full data set is quite unbalanced among categories and is more challenging for all
methods.

5.4 Training efficiency
Coupled ensembles offer a large reduction in the number of parameters needed to
obtain a desired error rate, as discussed in § 5.3.8. In this section we investigate

97

Coupled Ensembles

Table 5.8 – Preliminary results on ImageNet.

L k e Params. Epochs Top-1 error

169 32 1 14.2M 90 23.90
201 32 1 20.0M 90 23.29
201 22 2 19.7M 90 23.79
167 27 2 20.9M 90 23.74

if this reduction in parameters also translates to faster training, and reduction in
overfitting. We compare the training times for different parameter budgets and
explore overfitting when the number of labelled samples is low.

5.4.1 Training time budget

Our discussion and comparison between coupled ensembles and single branch mod-
els has been in the context of a single fixed parameter budget between the two
types of models. In this context we have shown that coupled ensembles provide a
superior performance as compared to a single branch model with the same num-
ber of parameters. However, the training time of coupled ensembles is longer and
increases with the number of branches. Though this might be improved by better
parallelisation, we investigate here whether the multi branch coupled ensembles
can still improve over a single branch model with a fixed training time budget,
with the current implementation.

There are several approaches to reducing the training time: (i) reduce the num-
ber of training epochs; (ii) reduce the parameter count, smaller models will have
shorter forward and backward pass times; (iii) increase the width while reducing
the depth to keep the parameters constant. Wider models, upto a limit, are more
efficiently computed by current hardware.

Table 5.9 shows the results obtained for these three options after training on
CIFAR-10 and CIFAR-100. The baseline is a single branch DenseNet-BC L = 190,
k = 40, e = 1, which is trained for 300 epochs and needs 80 hours of wall clock
time. The corresponding multi branch baseline with the same parameter budget
is DenseNet-BC L = 106, k = 33, e = 4, whose training wall clock time is 127
hours for the same 300 epochs, which is about 1.6× that of the baseline.

We can limit the training wall clock time to 80 hours, in which we can train
the coupled ensemble model for 188 epochs. We see in Table 5.9 that this obtains
an error rate that is better than the single branch model. We can also try different
architectural configurations and train for the full 300 epochs in 80 hours. We
see from the table that these options achieve better error rates (row 4 and 5).
These options correspond to reducing the number of parameters and having a

98

Coupled Ensembles

wider network respectively. In one case we reduce the depth, and in the other we
increase the width of the network while decreasing the width to keep the number of
parameters constant. We go further and reduce the number of parameters further
and we see that these architectures also achieve better performance than an single
branch model.

We can conclude that while strictly equivalent coupled ensembles might have
a higher training time, it is possible to have configurations that match the per-
formance of single branch models. Moreover these configurations might actually
be faster to train without sacrificing any performance. This reinforces the efficacy
of coupled ensembles by showing that we can have smaller models that are fast
to train and which perform at par with target baselines. As an example, we have
DenseNet-BC L = 88, k = 20, e = 4, which has an error rate better than the
single branch baseline with a parameter count reduced by 3.7 and a training time
reduced by 1.5.

Table 5.9 – Error rate versus training time and parameters. All times are measured
on one GTX 1080Ti.

Runs L k e Params. Epochs Train time (h) C10+ C100+

10 190 40 1 25.8M 300 79.3 3.75±0.17 17.31±0.16
10 106 33 4 25.1M 300 126.6 2.99±0.05 15.80±0.16
10 106 33 4 25.1M 188 79.3 3.15±0.06 16.22±0.08
5 88 33 4 18.6M 300 79.9 3.05±0.06 16.09±0.15
5 76 44 4 25.8M 300 79.9 3.05±0.09 16.06±0.17
5 94 26 4 13.0M 300 67.1 3.13±0.09 16.27±0.16
5 88 20 4 7.0M 300 52.3 3.32±0.04 16.87±0.15

5.4.2 Training data budget

In this section we compare the performance of single branch models and coupled
ensembles in the context of a low labelled training data scenario. We train a single
branch model and multi branch coupled ensemble, both having the same number
of parameters, on two datasets: STL-10 [10] and a 10K balanced random subset of
the 50K CIFAR-100 training set. STL-10 comprises images of size 96x96, grouped
into 10 classes. Each class has 500 training images. The test set has 8000 images.
Since STL has less training examples as compared to the test set, it is critical for
the model to not overfit to the training set. Results are shown in Table 5.10. We
see that for a fixed parameter budget, coupled ensembles significantly outperform
the single branch model.

99

Coupled Ensembles

Table 5.10 – Results with low training data and limited labels.

Dataset Single-Branch Coupled Ensemble Params.

Low data

STL-10 41.73 32.01 0.8M
CIFAR-100 10K subset 41.84 36.30 3.2M

Limited labels

CIFAR-100, 5K labels 60.63 60.46 0.8M
CIFAR-100, 10K labels 46.81 41.58 0.8M
CIFAR-100, 20K labels 38.93 36.12 0.8M
CIFAR-100, 40K labels 30.91 27.36 0.8M

CIFAR-10, 5K labels 17.20 15.01 0.8M
CIFAR-10, 10K labels 12.89 11.58 0.8M
CIFAR-10, 20K labels 8.14 7.75 0.8M
CIFAR-10, 40K labels 5.49 4.94 0.8M

5.5 Implementation details

Figure 5.1 shows the common structure of the test (top) and train (bottom) ver-
sions of networks used as element blocks. In Figure 5.2b shows the possible posi-
tions for the fuse layer, after the fc layer or after the sm layer. Figure 5.2a shows
the fuse layer positions during training of coupled ensembles.

We reuse existing convolutional network architectures as “element blocks” in
their original form as much as possible both for efficiency and for ensuring more
meaningful comparisons.

Each of the e branches is defined by a parameter vector We containing the
same parameters as the original implementation. The global network is defined by
a parameter vector W which is a concatenation of all the We parameter vectors.
When training is done in the coupled mode and the prediction is done in a separate
mode or vice-versa, a dedicated script is used for splitting theW vector into theWe

ones or vice-versa. In all coupled ensemble models, for all train versions and for all
test versions, the same global parameter vector W is used with the same split and
defining the same element block functions. This is how we can combine in any way
all of the four possible training conditions with all the three possible prediction
conditions, even though not all of them are consistent or equally efficient.

The overall network architecture is determined by:

• A global hyper-parameter specifying the train versus test mode;

100

Coupled Ensembles

• The global hyper-parameter e specifying the number of branches;

• The global hyper-parameter specifying after which layer the fuse layer should
be placed (FC, LSM, LL);

• either one element block to be replicated e times with its own hyper-parameters
or a list of e element blocks, each with its own hyper-parameters. In our
experiments, we have used the same hyper parameters for all the element
blocks.

5.5.1 Test time equivalence between FC average and Log-
SoftMax average

Given branches E = {E1, E2, ..Ee}, each Ei produces a score vector of dimension
C, where C is the number of categories. An element of Ei is referenced as Ec

i ,
where c ∈ [1, C]. FC_Average denotes averaging the raw activations from each
branch. LSM_Average denotes averaging across branches, after a log_softmax
operation in applied on each branch activation vector, separately.

Case 1: FC_average: ScorescFC =
∑e

i=1E
c
i

Case 2:

LogSoftMax(Ec
n) = log

exp(Ec
e)∑

c exp(E
c
e)

= log exp(Ec
e)− log

∑
c

exp(Ec
e)

= Ec
e − Ze

(5.1)

LSM_average: ScorescLSM =
∑e

i=1E
c
i −
∑e

i=1 Zi, where Ze = log
∑

C exp(Ec
e). We

see that the LSM_average score vector is a translated version of the FC_average
score vector. Also, doing an arithmetic average of log_softmax values is equivalent
to doing a geometric average of softmax values. This holds during inference where
we are interested only in the maximum value.

5.5.2 Micro-batch versus mini-batch

For some of the larger models, it was not possible to train them with a (mini-)batch
size of 64. In this case, we split data batches into m “micro-batches” with b/m
samples each, b being equal to batch size. We accumulate the gradient over these
micro batches and take the average over the m micro-batches to get an almost
equivalent gradient, as we would have got if we processed data directly as a single
batch.

101

Coupled Ensembles

The gradient would have been exactly equivalent but for the batchnorm layer.
This is because BatchNorm uses the batch mean and standard deviation to nor-
malise the activations during the forward pass. This means that the micro-batch
statistics are used whereas, ideally to get an exact equivalent, we would need the
whole batch statistics. However, in practice this does not make a significant differ-
ence. Hence, to have the same settings for comparison among different models, we
perform parameter updates using gradient for a batch, while performing forward
passes with micro-batches (to have an optimal throughput).

In the single-branch case for a given parameter budget, the need for memory
depends mostly on the network depth and on the mini-batch (or micro-batch) size.
We use the micro-batch “trick” for adjusting the memory need to what is available
while keeping the mini-batch size equal to the default value (64 for CIFAR and
SVHN). Though this is not strictly equivalent, this does not hurt performance and
this would even yield a slight increase.

The multi-branch version does not require more memory if the branches’ width
is kept constant. More memory is needed only when the branches’ width is reduced.
Indeed, if we use branches with a constant parameter budget, we have to reduce
either the width or the depth or both. We did hyper-parameter search experiments
by cross-validation and these indicated that the best option was a reduction of
both while the exact trade-off was not very critical. In practice, for our “full-size”
experiments (25M parameters) we did the training within the 11GB memory of
a GTX 1080 Ti card, using micro-batch sizes of 16 for the single-branch versions
and of 8 for multi-branch ones. Splitting the network over two GPU cards allows
for doubling the micro-batch sizes. However, this usually does not significantly
increases the speed and this does not lead to a performance improvement.

5.6 Discussion on related work

Multi-column architectures The network architecture that we propose has
similarities with Neural Networks Committees [9] and Multi Column Deep Neu-
ral Network (MCDNN) [8], which are a type of ensemble of networks where the
“committee members” are the “DNN columns”. These correspond to our element
blocks (or branches). However, our coupled ensemble networks differ in the follow-
ing aspects: (i) we train a single model which is composed of branches, while they
train each member or column separately. (ii) we have a fixed parameter budget for
the entire model for improving the performance. This is contrary to improving it
by utilising multiple models of fixed size and therefore increasing the overall size
(though both are not exclusive); (iii) we combine the activations of the branches by
combining their log-probabilities over the target categories, and (iv) we used the
same input for all branches while they considered different pre-processing (data

102

Coupled Ensembles

augmentation) blocks for different members or different subsets of columns.

Multi-branch architectures Multi-branch architectures such as Inception [100]
and ResNet [35] have been very successful in several different tasks. Recently,
modifications have been proposed [107, 7] for these architectures using the con-
cept of “grouped convolutions”, in order to factorise spatial and depth wise feature
extraction. These modifications additionally advocate the use of template build-
ing blocks stacked together to form the complete model. This modification is at
the level of the building blocks of their corresponding base architectures: ResNet
and Inception respectively. In contrast we propose a generic modification of the
structure of convolutional networks at the global architecture level. This includes
a template in which the specific architecture of an “element block” is specified,
and then this “element block” is replicated as parallel branches to form the final
composite model, which are then trained jointly.

To further improve the performance of such architectures, Shake-Shake regular-
isation [24] proposes a stochastic mixture of each of the branches and has achieved
good results on the CIFAR data sets. However, the number of epochs required
for convergence is much higher compared to the base model. Additionally, the
technique seems to depend on the batch size. In contrast, we apply our method
using the exact same hyper-parameters as used in the underlying CNN.

[112] investigates the usage of parallel paths in a ResNet, connecting layers
across paths to allow information exchange between them. However this requires
modification at a local level of each of the residual blocks. In contrast, our method
is a generic re-arrangement of a given architecture’s parameters, which does not in-
troduce additional choices. Additionally, we empirically confirm that our proposed
configuration leads to an efficient usage of parameters.

Neural network ensembles Ensembling is a reliable technique to increase the
performance of models for a task. Due to the presence of several local minima [50],
multiple trainings of the exact same neural network architecture can reach a differ-
ent distribution of errors on a per-class basis. Hence, combining their outputs lead
to improved performance on the overall task. This was observed very early [34]
and is now commonly used for obtaining top results in classification challenges,
despite the increase in training and prediction cost. Our proposed model archi-
tecture is not an ensemble of independent networks given that we have a single
model made up of parallel branches that is trained jointly. This is similar in spirit
to the residual block in ResNet and ResNeXt, and to the inception module
in Inception but it is done at the global network level. We would like to emphasise
here that “arranging” a given budget of parameters into parallel branches leads to
an increase in performance (see Table 5.1, 5.2, 5.3, 5.4). Additionally, the classical

103

Coupled Ensembles

ensembling approach can still be applied for the fusion of independently trained
coupled ensemble models, where it leads to a significant performance improvement
(see Table 5.5).

Training multiple models for ensembling can be both time and resource heavy.
To alleviate this, recent work has proposed reusing model weights obtained dur-
ing the training of a single model. Snapshot ensembles [46] and training with
restarts [66] used the ensembling approach on checkpoints during the training
process instead of using fully converged models. This approach is quite efficient
since the obtained performance is higher for a fixed training time budget. However,
both the overall model size and prediction time are significantly increased. Given a
model size and performance measure, our approach aims to either keep the model
size constant and improve the performance, or to obtain the same performance
with a smaller model size.

Model pruning Model pruning techniques aim to reduce the size of trained
models. Coupled ensembles provide a reduction in the number of parameters for
a target test error rate, which leads to smaller model size. After training has com-
pleted, various pruning techniques can be used for further reduction in the model
size. These techniques are based on weight magnitude [57, 33] and on activation
values [60]. In these cases pruning is done a posteriori, whereas in the case of
coupled ensembles it is an a priori step. This leads to coupled ensembles having a
smaller architecture during training which reduces the computation requirements
for training as well. Pruning techniques may be applicable to coupled ensembles
after they finish training but we have not investigated this. For completeness, we
should point out that there exists other architectures which are aimed towards
smaller model sizes such as MobileNet [44], and recently architectures optimised
for having a small model size are also being searched for [101].

5.7 Conclusion
In this chapter we introduced coupled ensembles, a new convolutional network ar-
chitecture and training framework. We evaluated the model on image classification
tasks and compared it with current state of the art architectures. Our experiments
showed that the parallel branches of coupled ensembles give better performance as
compared to single branch models. Given a parameter budget, it is more efficient
to have the parameters distributed over parallel branches rather than having a
single branch. For a certain target performance, the coupled ensemble approach
is able to achieve it with much fewer parameters, leading to smaller and more
efficient models. CNNs are an integral part of several machine learning systems
and improvements in their design will have a positive impact on all these systems.

104

Chapter 6

Conclusion and Perspectives

In this chapter, we summarise the contributions for this thesis. For each contribu-
tion we provide some extensions and future directions of work.

6.1 Hierarchical classification

In Chapter 3, we explored the adaptation of classifiers with respect to change in
the label distribution of a data set. We saw that it is possible to use a semantic
hierarchy of labels to improve the classification performance. This was achieved
by making the predicted probabilities consistent for each parent and child nodes
in the label tree.

At present, we have considered only one level of semantic relationships: a coarse
category, which is a parent node, and the corresponding fine categories, which form
the child nodes. It is possible to extend this procedure to a semantic hierarchy tree
where we have more than two levels. In that case we will need to ensure that the
prediction probabilities are consistent throughout the path from a parent node to
the child nodes. Having such a tree, and classifiers corresponding to each semantic
level offers the possibility to dynamically choose the granularity of classification.
For example, we can have relatively weak classifiers trained at coarse levels and
progressively more powerful classifiers at the finer levels. This will help to make a
trade-off between computation cost and prediction accuracy.

Currently, our prediction probability relies on the fact that the semantic hier-
archy is provided to us but all data sets do have this meta-information. However it
maybe possible to learn a hierarchy from a given set of classes. One way to jointly
learn a hierarchy along with the classifier is to group together categories that have
similar responses. The response can be computed at the last convolution layer
before the final classifier output. Another way would be to construct a confusion
matrix of the categories and group together categories that are are predicted to be

105

Conclusion and Perspectives

the same. If we have a confusion matrix with rows as fine categories, and columns
as coarse categories, we assign to each fine category the coarse category which they
are most predicted to belong to. These steps can be repeated iteratively until the
assignments become stable. It will be interesting to see the nature of the learnt
hierarchy. We will have to compare this to the original hierarchies available and
analyse the effect it has on the prediction probability adjustment procedure.

6.2 Continual learning with replay buffers

We investigated the use of replay buffers in continual learning in Chapter 4. First
we evaluated the state of current GAN models for usage as a replay buffer. Our
experiments indicate that there is a substantial gap in the quality and diversity
of samples from a GAN model as compared to real data samples. Currently, we
have proposed post-processing steps to select good samples out of all samples
from a GAN. The next step will be to consider what architectural and training
modification can be done to enable better GAN models. We saw the first step
through our usage of multiple GANs to cover an increased portion of the data
distribution.

The next step will be to train different GAN models on different data samples.
This will be an approach similar to boosting [23]. We will extract features from
a pre-trained classifier, and compute distance between the features of real sam-
ples and generated samples. We hypothesise that larger distances in feature space
implies that the GAN model has difficulties in modelling the corresponding cate-
gories. Similar to boosting where harder samples are selected for further training,
we can train specific GANs on such ‘hard’ categories.

We further analysed training a neural network on several tasks sequentially,
in a continual learning setting. We analysed the learnt representation and saw
that this manner of training led to worse performance as compared to training
on all tasks at once. Training on all tasks has benefits of multi-task learning [6]
which might lead to better performance. However we also saw that there is a high
loss barrier in the weight space defined by the two learnt representations. This
indicates the need for alternate training procedures, possibly with additional loss
functions or modification to backpropagation when computing the gradients.

6.3 Coupled ensembles

Coupled ensembles was introduced as a new neural network architecture and was
presented in Chapter 5. Coupled ensembles enables training of classifiers with a
substantially reduced parameter count. This makes the trained models smaller,

106

Conclusion and Perspectives

which helps in training and during deployment, in resource constrained environ-
ments. Currently we have evaluated this architecture for image classification tasks.
Since CNNs are used for learning representations in other tasks such as objection
detection and semantic segmentation, future work needs to evaluate the effective-
ness of coupled ensembles in these tasks as well. In this case the implementation is
straightforward since the features computed by coupled ensembles can be directly
passed to the specific modules used for these tasks. It is not trivial to apply the
coupled ensemble framework to sequence based tasks, such as language modelling
and translation. We need to decide how each branch output needs to be combined
so as to be consistent with the sequential aspect of the problem. However we can
more easily see the effect in case of convolutional seq2seq models [25].

An important area of research is in predictive uncertainty of neural network
outputs. This involves calibration of the probability output which means that
the magnitude should correspond to it being correct or incorrect. Normally if an
incorrect prediction is made with high probability, it is an indication of poor cali-
bration. Current neural network models have been shown to suffer from this issue
[31]. Lakshminarayanan, Pritzel, and Blundell [56] have shown that separately
trained ensembles of neural networks can be used to improve the predictive uncer-
tainty of neural networks. Our design is readily able to provide this benefit since
we can extract the predictions from each of our branches individually. This makes
coupled ensembles usable for estimating the prediction uncertainty, in addition to
being good classifiers. However, we need to do further detailed studies to evaluate
this.

The coupled ensemble model also shares resemblance to models proposed for
adversarial robustness [75] and privacy preserving training [76]. These issues are
relevant and important today because of the wide scale deployment of machine
learning systems across all sectors of society. The design of coupled ensembles
provides opportunities for exploring the relevance and effectiveness in these as-
pects. This is a future line of research where coupled ensembles can be extended
and evaluated for these aspects.

6.4 General perspectives

Deep learning models have achieved success in a variety of fields but there still
remains a lot of room for improvement. Continual learning algorithms are try-
ing to make models more general and universal with respect to the number of
tasks that can be trained on a single model. However, during inference mode,
most proposed methods need to be informed about the task which the test sample
belongs to. Future research should focus on methods which can accommodate sev-
eral tasks and be able to infer the task of a test sample. In order to promote such

107

techniques, the community needs to develop benchmarks and evaluation metrics
specifically focused at this. Currently continual learning does not yet have a stan-
dard evaluation framework. The beginnings of a such a framework are starting
to be developed. New evaluation frameworks should explicitly pay attention to
the size of the composite model, the task inference mechanism, and training time
needed for adding each additional task to a network. There is a need to go be-
yond the average accuracy over tasks that is the current pre-dominant performance
metric.

The lottery ticket hypothesis [22] has shown that for various networks with a
large number of parameters, there exists substantially smaller sub-networks for
which the performance is the same as the large network. One approach towards
continual learning is through learning universal representations, as discussed in
Chapter 4. Using the lottery ticket hypothesis is one viable way to find task specific
sub-networks inside a large network, in a principled manner. Starting from a large
network, we can identify a small sub-network for each task consecutively. We will
have a limit on the number of tasks that can be accommodated inside one network,
depending on the starting size of the network and the nature of the tasks.

108

List of Publications

1. Anuvabh Dutt. “Towards Incremental Learning with Deep Convolutional
Networks”. In: Conférence en Recherche d’Informations et Applications
- CORIA 2017, 14th French Information Retrieval Conference, Marseille,
France, March 29-31, 2017. Proceedings. 2017, pp. 385–394. url: https:
//doi.org/10.24348/coria.2017.RJCRI%5C_4

2. Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Improving image clas-
sification using coarse and fine labels”. In: Proceedings of the 2017 ACM on
International Conference on Multimedia Retrieval. ACM. 2017, pp. 438–442

3. Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Improving Hierarchical
Image Classification with Merged CNN Architectures”. In: Proceedings of the
15th International Workshop on Content-Based Multimedia Indexing, CBMI
2017, Florence, Italy, June 19-21, 2017. 2017, 31:1–31:7

4. Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Coupled ensembles
of neural networks”. In: 6th International Conference on Learning Repre-
sentations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Workshop Track Proceedings. OpenReview.net, 2018. url: https : / /
openreview.net/forum?id=rylRCUJDG

5. Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Coupled Ensembles
of Neural Networks”. In: 2018 International Conference on Content-Based
Multimedia Indexing (CBMI). IEEE. 2018, pp. 1–6

6. Stefen Chan Wai Tim, Michele Rombaut, Denis Pellerin, and Anuvabh Dutt.
“Descriptor extraction based on a multilayer dictionary architecture for clas-
sification of natural images”. In: Computer Vision and Image Understanding
(2018). url: https://doi.org/10.1016/j.cviu.2018.08.002

7. Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Coupled ensembles of
neural networks”. In: Neurocomputing (2019). url: https://doi.org/10.
1016/j.neucom.2018.10.092

109

https://doi.org/10.24348/coria.2017.RJCRI%5C_4
https://doi.org/10.24348/coria.2017.RJCRI%5C_4
https://openreview.net/forum?id=rylRCUJDG
https://openreview.net/forum?id=rylRCUJDG
https://doi.org/10.1016/j.cviu.2018.08.002
https://doi.org/10.1016/j.neucom.2018.10.092
https://doi.org/10.1016/j.neucom.2018.10.092

Conclusion and Perspectives

8. Pham Tanh Dat, Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Clas-
sifier training from a generative model”. In: 2019 International Conference
on Content-Based Multimedia Indexing (CBMI). IEEE. 2019

110

Appendix A

Reproduciblity Issue

Our experiments in Chapter 5 mentioned that we were not able to reproduce the
results of a paper exactly, even when using the hyper-parameter values mentioned
in the original papers. Investigating this issue raised several questions about the
source of randomness in results. We compared the results of training several neural
network models if different frameworks with various setting for random seed and
other computational settings.

A.1 Performance measurement and reproducibil-
ity issues

When attempting to compare the relative performance of different methods, we
face the issue of the reproducibility of the experiments and of the statistical signifi-
cance of the observed difference between performance measures. Even for the same
experiment, we identified the five following sources of variation in the performance
measure:

• Underlying framework for the implementation: we made experiments with
Torch7 (lua) and with PyTorch.

• Random seed for the network initialisation.

• CuDNN non-determinism during training: GPU associative operations are
by default fast but non-deterministic. We observed that the results varies
even for a same tool and the same seed. In practice, the observed variation
is as important as when changing the seed.

• Fluctuations associated to the computed moving average and standard devi-
ation in batch normalisation: these fluctuations can be observed even when

111

Reproduciblity Issue

training with the learning rate, the SGD momentum and the weight decay
all set to 0. During the last few epochs of training, their level of influence is
the same as with the default value of these hyper-parameters.

• Choice of the model instance chosen from training epochs: the model ob-
tained after the last epoch, or the best performing model. Note that choosing
the best performing model involves looking at test data.

Regardless of the implementation, the numerical determinism, the Batch Norm
moving average, and the epoch sampling questions, we should still expect a disper-
sion of the evaluation measure according to the choice of the random initialisation
since different random seeds will likely lead to different local minima. It is generally
considered that the local minima obtained with “properly designed and trained”
neural networks should all have similar performance [50]. We do observe a rel-
atively small dispersion (quantified by the standard deviation below) confirming
this hypothesis. This dispersion may be small but it is not negligible and it compli-
cates the comparisons between methods since differences in measures lower than
their dispersions is likely to be non-significant. Classical statistical significance
tests do not help much here since differences that are statistically significant in
this sense can be observed between models obtained just with different seeds (and
even with the same seed), everything else being kept equal.

Experiments reported in this section gives an estimation of the dispersion in
the particular case of a moderate scale model. We generally cannot afford doing a
large number of trials for larger models.

We tried to quantify the relative importance of the different effects in the
particular case of DenseNet-BC with L = 100, k = 12 on CIFAR 100. The upper
part of Table A.1 shows the results obtained for the same experiment in the four
groups of three rows. We tried four combinations corresponding to the use of
Torch7 versus PyTorch and to the use of the same seed versus the use of different
seeds. For each of these configuration, we used as the performance measure: (i) the
error rate of the model computed at the last epoch or (ii) the average of the error
rate of the models computed at the last 10 epochs, (iii) the error rate of the model
having the lowest error rate over all epochs. For these 2×2×3 cases, we present the
minimum, the median, the maximum and the mean±standard deviation over 10
measures corresponding to 10 identical runs (except for the seed when indicated).
Additionally, in the case of the average of the error rate of the models computed
at the 10 last epochs, we present the root mean square of the standard deviation
of the fluctuations on the last 10 epochs (which is the same as the square root of
the mean of their variance). We make the following observations:

• There does not seem to be a significant difference between Torch7 and Py-
Torch implementations;

112

Reproduciblity Issue

• There does not seem to be a significant difference between using a same seed
and using different seeds; the dispersion observed using the same seed (with
everything else being equal) implies that there is no way to exactly reproduce
results;

• There does not seem to be a significant difference between the means over
the 10 measures computed on the single last epoch and the means over the
10 measures computed on the last 10 epochs;

• The standard deviation of the measures computed on the 10 runs is slightly
but consistently smaller when the measures are computed on the last 10
epochs than when they are computed on the single last epoch; this is the
same for the difference between the best and the worst measures; this was
expected since averaging the measure on the last 10 epochs reduces the fluc-
tuations due to the moving average and standard deviation computed in
batch normalization and possibly too the the random fluctuations due to the
final learning steps;

• The mean of the measures computed on the 10 runs is significantly lower
when the measure is taken at the best epoch than when they are computed
either on the single last epoch or on the last 10 epochs. This is expected
since the minimum is always below the average. However, presenting this
measure involves using the test data for selecting the best model.

Following these observations, we propose a method for ensuring the best repro-
ducibility and the fairest comparisons. Choosing the measure as the minimum of
the error rate for all models computed during the training seems neither realistic
nor a good practice since we have no way to know which model will be the best one
without looking at the results (cross-validation cannot be used for that) and this
is like tuning on the test set. Even though this is not necessarily unfair for system
comparison if the measures are done in this condition for all systems, this does
introduce a bias for the absolute performance estimation. Using the error rate at
the last iteration or at the 10 last iteration does not seem to make a difference in
the mean but the standard deviation is smaller for the latter, therefore this one
should be preferred when a single experiment is conducted. We also checked that
using the 10 or the 25 last epochs does not make much difference (learning at this
point does not seem to lead to further improvement). A value different from 10
can be used and this is not critical. In all the CIFAR experiments reported in this
paper, we used the average of the error rate for the models obtained at the last 10
epochs as this should be (slightly) more robust and more conservative. The case
for SVHN experiments is slightly different since there is a much smaller number
of much bigger epochs; we used the last 4 iterations in this case.

113

Reproduciblity Issue

Table A.1 – Performance measurement and reproducibility issues. Statistics on 10
runs.

Seeds Impl. Last L k e Min. Med. Max. Mean±SD RMS(SD)

diff. PyT. 1 100 12 1 22.64 22.80 23.22 22.89±0.21 n/a
diff. PyT. 10 100 12 1 22.67 22.83 23.14 22.87±0.17 0.13
diff. PyT. best 100 12 1 22.13 22.56 22.91 22.54±0.24 n/a

same PyT. 1 100 12 1 22.77 23.05 23.55 23.06±0.23 n/a
same PyT. 10 100 12 1 22.81 22.98 23.49 23.04±0.22 0.11
same PyT. best 100 12 1 22.44 22.67 23.02 22.71±0.18 n/a

diff. LuaT. 1 100 12 1 22.55 22.94 23.11 22.90±0.20 n/a
diff. LuaT. 10 100 12 1 22.55 22.89 23.08 22.86±0.20 0.12
diff. LuaT. best 100 12 1 22.17 22.52 22.75 22.49±0.18 n/a

same LuaT. 1 100 12 1 22.33 22.82 23.58 22.82±0.34 n/a
same LuaT. 10 100 12 1 22.47 22.92 23.51 22.87±0.30 0.12
same LuaT. best 100 12 1 22.24 22.51 23.24 22.54±0.29 n/a

diff. PyT. 1 82 8 3 21.27 21.44 21.70 21.49±0.15 n/a
diff. PyT. 10 82 8 3 21.24 21.46 21.63 21.45±0.11 0.12
diff. PyT. best 82 8 3 20.84 21.18 21.30 21.14±0.14 n/a

diff. PyT. 1 100 12 4 17.24 17.71 17.86 17.65±0.18 n/a
diff. PyT. 10 100 12 4 17.37 17.67 17.81 17.66±0.14 0.11
diff. PyT. best 100 12 4 17.11 17.46 17.66 17.45±0.16 n/a

diff. PyT. 1 106 33 4 15.59 15.69 16.02 15.75±0.15 n/a
diff. PyT. 10 106 33 4 15.64 15.78 16.18 15.80±0.16 0.10
diff. PyT. best 106 33 4 15.35 15.59 15.94 15.57±0.17 n/a

These observations have been made in a quite specific case but the principle
and the conclusions (use of the average of the error rate from the last epochs should
lead to more robust and conservative results) are likely to be general. Table A.1
also shows the results for a coupled ensemble network of comparable size, for a
coupled ensemble network four times bigger, and for a coupled ensemble network
approximately 32 times bigger. Similar observations can be made and, additionally,
we can observe that both the range and the standard deviations are smaller for
networks of comparable sizes. This might be because an averaging is already made
between the branches leading to a reduction of the variance.

114

Appendix B

Multiple data set training

In Chapter 4 we performed an analysis on the various components of training in a
continual learning scenario. The tasks were created by splitting categories of the
CIFAR data sets. A more drastic change in tasks can occur when each of the tasks
have different distributions of the input values, such as when one task is the gray
scale MNIST and another task is the colour CIFAR. We perform some experiments
in this section to highlight this effect and show that there is a need for specialised
techniques to ensure that the input data distribution is similar.

B.1 Training on multiple datasets

We train a ResNet-20 architecture to jointly classify CIFAR-10 and CIFAR-100.
Following the previous methodology, we have variants for training: Train jointly
on both data sets, and train incrementally one after the other. Joint training gives
and error of 23.82% and training incrementally (first CIFAR-10 and then CIFAR-
100) gives error of 24.02%. Weight space analysis shows that again there is a high
barrier between the two solutions.

Training on datasets with same semantics, different data distribution
We consider two digit datasets, MNIST and SVHN. MNIST is a grayscale dataset
whereas SVHN consists of colour images. Both these data sets have the same
categories, the digits 0 to 9.

To train a model on both these data sets, we need to unify the data format.
We replicate the MNIST data along the channel dimension. This gives MNIST
digits with 3 channels. Currently pad the images to 32x32 for compatibility with
CIFAR experiments. For SVHN we are only using the ‘train’ split and not using
the ‘extra’ split.

We first train a network on SVHN. This model achieves 4.11% error on the

115

Multiple data set training

SVHN test set. Using this model on the MNIST test set, we get an error of
25.23%. While this is not a great error rate for MNIST, it is much better than
random predictions.

We also train the same model on MNIST, and it obtain an error rate of 0.31%.
Using this model on the SVHN test set, we get an error of 89.97%, which is similar
to random predictions. The possible reason for this training on MNIST alone is
not enough to capture the semantics of SVHN because SVHN images are colour
images and have greater variety in their spatial orientation.

We next incorporate each data set into a model trained on the other. Adding
MNIST to a model trained on SVHN gives error rates 4.18% and 0.80% for SVHN
and MNIST respectively. Adding SVHN to a model trained on MNIST gives error
rates of 3.74% and 0.87% on SVHN and MNIST respectively. Individual double
training gives error rate of 3.62% on SVHN and 0.66% on MNIST. Interesting: the
result is better or comparable on both data sets after inclusion of the other one.

Colour MNIST SVHN and MNIST differ in the fact that one has colour images
while the other has greyscale images. We make a variant of MNIST which is colour
and call it Colour MNIST. First we create a mask for the background and a mask
for the image pixels. For each of the 3 channels in each mask we pick a random
value between 0 and 1. This creates a randomised colour image of the digits
(Figure B.1 shows some samples). We first train a model on this colour MNIST
data set, where it achieves a test error of 0.41%. Using this model on the SVHN
test set, we get an error of 42.16% which is a significant improvement over 89.97%
which was obtained from the model trained on greyscale MNIST.

Figure B.1 – Sample images from Colour MNIST

116

Bibliography

[1] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. “Expert gate:
Lifelong learning with a network of experts”. In: CVPR (2017).

[2] Bernard Ans and Stéphane Rousset. “Avoiding catastrophic forgetting by
coupling two reverberating neural networks”. In: Comptes Rendus de l’Académie
des Sciences-Series III-Sciences de la Vie 320.12 (1997), pp. 989–997.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normal-
ization”. In: arXiv preprint arXiv:1607.06450 (2016). url: http://arxiv.
org/abs/1607.06450.

[4] Andrew Brock, Jeff Donahue, and Karen Simonyan. “Large Scale GAN
Training for High Fidelity Natural Image Synthesis”. In: International Con-
ference on Learning Representations. 2019. url: https://openreview.
net/forum?id=B1xsqj09Fm.

[5] Noam Brown and Tuomas Sandholm. “Superhuman AI for heads-up no-
limit poker: Libratus beats top professionals”. In: Science 359.6374 (2018),
pp. 418–424.

[6] Rich Caruana. “Multitask learning”. In:Machine learning 28.1 (1997), pp. 41–
75.

[7] François Chollet. “Xception: Deep learning with depthwise separable con-
volutions”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 1251–1258.

[8] Dan Ciresan, Ueli Meier, and Jürgen Schmidhuber. “Multi-column deep
neural networks for image classification”. In: 2012 IEEE Conference on
Computer Vision and Pattern Recognition. IEEE. 2012, pp. 3642–3649.

[9] Dan Ciresan et al. “Convolutional neural network committees for hand-
written character classification”. In: 2011 International Conference on Doc-
ument Analysis and Recognition. IEEE. 2011, pp. 1135–1139.

[10] Adam Coates, Andrew Ng, and Honglak Lee. “An analysis of single-layer
networks in unsupervised feature learning”. In: Proceedings of the fourteenth
international conference on artificial intelligence and statistics. 2011.

117

http://arxiv.org/abs/1607.06450
http://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=B1xsqj09Fm
https://openreview.net/forum?id=B1xsqj09Fm

BIBLIOGRAPHY

[11] Pham Tanh Dat et al. “Classifier training from a generative model”. In: 2019
International Conference on Content-Based Multimedia Indexing (CBMI).
IEEE. 2019.

[12] Harm De Vries et al. “Modulating early visual processing by language”. In:
Advances in Neural Information Processing Systems. 2017, pp. 6594–6604.

[13] Jia Deng, Alexander C Berg, and Li Fei-Fei. “Hierarchical semantic in-
dexing for large scale image retrieval”. In: Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on. IEEE. 2011, pp. 785–792.

[14] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding”. In: Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics, June 2019, pp. 4171–4186. url:
https://www.aclweb.org/anthology/N19-1423.

[15] Terrance Devries and GrahamW. Taylor. “Improved Regularization of Con-
volutional Neural Networks with Cutout”. In: CoRR abs/1708.04552 (2017).
arXiv: 1708.04552. url: http://arxiv.org/abs/1708.04552.

[16] Anuvabh Dutt. “Towards Incremental Learning with Deep Convolutional
Networks”. In: Conférence en Recherche d’Informations et Applications -
CORIA 2017, 14th French Information Retrieval Conference, Marseille,
France, March 29-31, 2017. Proceedings. 2017, pp. 385–394. url: https:
//doi.org/10.24348/coria.2017.RJCRI%5C_4.

[17] Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Coupled Ensembles
of Neural Networks”. In: 2018 International Conference on Content-Based
Multimedia Indexing (CBMI). IEEE. 2018, pp. 1–6.

[18] Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Coupled ensembles of
neural networks”. In: 6th International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Work-
shop Track Proceedings. OpenReview.net, 2018. url: https://openreview.
net/forum?id=rylRCUJDG.

[19] Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Coupled ensembles
of neural networks”. In: Neurocomputing (2019). url: https://doi.org/
10.1016/j.neucom.2018.10.092.

[20] Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Improving Hierarchi-
cal Image Classification with Merged CNN Architectures”. In: Proceedings
of the 15th International Workshop on Content-Based Multimedia Indexing,
CBMI 2017, Florence, Italy, June 19-21, 2017. 2017, 31:1–31:7.

118

https://www.aclweb.org/anthology/N19-1423
http://arxiv.org/abs/1708.04552
http://arxiv.org/abs/1708.04552
https://doi.org/10.24348/coria.2017.RJCRI%5C_4
https://doi.org/10.24348/coria.2017.RJCRI%5C_4
https://openreview.net/forum?id=rylRCUJDG
https://openreview.net/forum?id=rylRCUJDG
https://doi.org/10.1016/j.neucom.2018.10.092
https://doi.org/10.1016/j.neucom.2018.10.092

BIBLIOGRAPHY

[21] Anuvabh Dutt, Denis Pellerin, and Georges Quénot. “Improving image clas-
sification using coarse and fine labels”. In: Proceedings of the 2017 ACM on
International Conference on Multimedia Retrieval. ACM. 2017, pp. 438–
442.

[22] Jonathan Frankle and Michael Carbin. “The Lottery Ticket Hypothesis:
Finding Sparse, Trainable Neural Networks”. In: International Conference
on Learning Representations. 2019. url: https : / / openreview . net /
forum?id=rJl-b3RcF7.

[23] Yoav Freund and Robert E Schapire. “A Short Introduction to Boost-
ing”. In: Journal of Japanese Society for Artificial Intelligence 14.5 (1999),
pp. 771–780.

[24] Xavier Gastaldi. “Shake-shake regularization”. In: International Conference
on Learning Representations (Workshop) (2017).

[25] Jonas Gehring et al. “Convolutional sequence to sequence learning”. In: Pro-
ceedings of the 34th International Conference on Machine Learning-Volume
70. JMLR. org. 2017, pp. 1243–1252.

[26] Xavier Glorot and Yoshua Bengio. “Understanding the difficulty of training
deep feedforward neural networks”. In: Proceedings of the thirteenth inter-
national conference on artificial intelligence and statistics. 2010, pp. 249–
256.

[27] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe. “Qualitatively char-
acterizing neural network optimization problems”. In: International Con-
ference on Learning Representations. 2015.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016.

[29] Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural
information processing systems. 2014, pp. 2672–2680.

[30] Klaus Greff, Rupesh K Srivastava, and Jürgen Schmidhuber. “Highway and
Residual Networks learn Unrolled Iterative Estimation”. In: International
Conference on Learning Representations. 2017. url: https://openreview.
net/forum?id=Skn9Shcxe.

[31] Chuan Guo et al. “On Calibration of Modern Neural Networks”. In: Inter-
national Conference on Machine Learning. 2017, pp. 1321–1330.

[32] Yunhui Guo et al. “Depthwise Convolution is All You Need for Learning
Multiple Visual Domains”. In: Thirty-Third AAAI Conference on Artificial
Intelligence. 2019.

119

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openreview.net/forum?id=Skn9Shcxe
https://openreview.net/forum?id=Skn9Shcxe

BIBLIOGRAPHY

[33] Song Han, Huizi Mao, and William J Dally. “Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman
coding”. In: International Conference on Learning Representations. 2015.

[34] Lars Kai Hansen and Peter Salamon. “Neural network ensembles”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 12.10 (1990),
pp. 993–1001.

[35] Kaiming He et al. “Deep residual learning for image recognition”. In: Pro-
ceedings of the IEEE conference on computer vision and pattern recognition.
2016, pp. 770–778.

[36] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification”. In: Proceedings of the IEEE inter-
national conference on computer vision. 2015, pp. 1026–1034.

[37] Kaiming He et al. “Identity mappings in deep residual networks”. In: Euro-
pean Conference on Computer Vision. Springer. 2016, pp. 630–645.

[38] Xu He and Herbert Jaeger. “Overcoming Catastrophic Interference using
Conceptor Aided Backpropagation”. In: International Conference on Learn-
ing Representations. 2018. url: https://openreview.net/forum?id=
B1al7jg0b.

[39] Martin Heusel et al. “Gans trained by a two time-scale update rule converge
to a local nash equilibrium”. In: Advances in Neural Information Processing
Systems. 2017, pp. 6626–6637.

[40] Geoffrey Hinton and David C Plaut. “Using fast weights to deblur old mem-
ories”. In: Proceedings of the ninth annual conference of the Cognitive Sci-
ence Society. 1987.

[41] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in
a neural network”. In: NIPS 2014 Deep Learning Workshop (2014).

[42] Geoffrey Hinton et al. “Deep neural networks for acoustic modeling in
speech recognition”. In: IEEE Signal processing magazine 29 (2012).

[43] Sepp Hochreiter and Jürgen Schmidhuber. “Flat minima”. In: Neural Com-
putation 9.1 (1997), pp. 1–42.

[44] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural net-
works for mobile vision applications”. In: arXiv preprint arXiv:1704.04861
(2017).

[45] Gao Huang et al. “Densely connected convolutional networks”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition.
2017, pp. 4700–4708.

120

https://openreview.net/forum?id=B1al7jg0b
https://openreview.net/forum?id=B1al7jg0b

BIBLIOGRAPHY

[46] Gao Huang et al. “Snapshot ensembles: Train 1, get m for free”. In: Inter-
national Conference on Learning Representations. 2017.

[47] Sergey Ioffe. “Batch renormalization: Towards reducing minibatch depen-
dence in batch-normalized models”. In: Advances in neural information pro-
cessing systems. 2017, pp. 1945–1953.

[48] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift”. In: Proceed-
ings of the 32nd International Conference on Machine Learning (ICML-15).
2015, pp. 448–456.

[49] Yangqing Jia and Trevor Darrell. “Latent task adaptation with large-scale
hierarchies”. In: Proceedings of the IEEE International Conference on Com-
puter Vision. 2013, pp. 2080–2087.

[50] Kenji Kawaguchi. “Deep learning without poor local minima”. In: Advances
in neural information processing systems. 2016, pp. 586–594.

[51] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: International Conference on Learning Representations. 2015.

[52] James Kirkpatrick et al. “Overcoming catastrophic forgetting in neural net-
works”. In: Proceedings of the National Academy of Sciences (2017).

[53] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of features
from tiny images”. In: University of Toronto, Technical report (2009).

[54] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classi-
fication with deep convolutional neural networks”. In: Advances in neural
information processing systems. 2012, pp. 1097–1105.

[55] Anders Krogh and John A Hertz. “A simple weight decay can improve gen-
eralization”. In: Advances in neural information processing systems. 1992,
pp. 950–957.

[56] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. “Simple
and scalable predictive uncertainty estimation using deep ensembles”. In:
Advances in Neural Information Processing Systems. 2017, pp. 6402–6413.

[57] Yann LeCun, John S Denker, and Sara A Solla. “Optimal brain damage”.
In: Advances in neural information processing systems. 1990, pp. 598–605.

[58] Yann LeCun et al. “Backpropagation applied to handwritten zip code recog-
nition”. In: Neural computation 1.4 (1989), pp. 541–551.

[59] Yann LeCun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

121

BIBLIOGRAPHY

[60] Hao Li et al. “Pruning filters for efficient convnets”. In: International Con-
ference on Learning Representations. 2017.

[61] Zhizhong Li and Derek Hoiem. “Learning without forgetting”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence (2017).

[62] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in network”. In: Inter-
national Conference on Learning Representations. 2013.

[63] Tsung-Yi Lin et al. “Microsoft coco: Common objects in context”. In: Eu-
ropean conference on computer vision. 2014, pp. 740–755.

[64] Hanxiao Liu, Karen Simonyan, and Yiming Yang. “DARTS: Differentiable
Architecture Search”. In: International Conference on Learning Represen-
tations. 2019. url: https://openreview.net/forum?id=S1eYHoC5FX.

[65] David Lopez-Paz et al. “Gradient Episodic Memory for Continuum Learn-
ing”. In: NIPS. 2017.

[66] Ilya Loshchilov and Frank Hutter. “Sgdr: Stochastic gradient descent with
warm restarts”. In: International Conference on Learning Representations.
2016.

[67] Vladimir Macko et al. “Improving neural architecture search image classi-
fiers via ensemble learning”. In: arXiv preprint arXiv:1903.06236 (2019).

[68] Arun Mallya and Svetlana Lazebnik. “Piggyback: Adding Multiple Tasks
to a Single, Fixed Network by Learning to Mask”. In: ECCV (2018).

[69] Michael McCloskey and Neal J Cohen. “Catastrophic interference in con-
nectionist networks: The sequential learning problem”. In: Psychology of
learning and motivation 24 (1989).

[70] Mehdi Mirza and Simon Osindero. “Conditional generative adversarial nets”.
In: arXiv preprint arXiv:1411.1784 (2014).

[71] Dmytro Mishkin and Jiri Matas. “All you need is a good init”. In: Interna-
tional Conference on Learning Representations. 2016.

[72] Takeru Miyato et al. “Spectral Normalization for Generative Adversarial
Networks”. In: International Conference on Learning Representations. 2018.
url: https://openreview.net/forum?id=B1QRgziT-.

[73] Nelson Morgan and Hervé Bourlard. “Generalization and parameter es-
timation in feedforward nets: Some experiments”. In: Advances in neural
information processing systems. 1990, pp. 630–637.

[74] Yuval Netzer et al. “Reading digits in natural images with unsupervised
feature learning”. In: NIPS Workshop on Deep Learning and Unsupervised
Feature Learning (2011).

122

https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=B1QRgziT-

BIBLIOGRAPHY

[75] Tianyu Pang et al. “Improving Adversarial Robustness via Promoting En-
semble Diversity”. In: Proceedings of the 36th International Conference on
Machine Learning. Vol. 97. Proceedings of Machine Learning Research.
2019, pp. 4970–4979. url: http://proceedings.mlr.press/v97/pang19a.
html.

[76] Nicolas Papernot et al. “Semi-supervised Knowledge Transfer for Deep
Learning from Private Training Data”. In: International Conference on
Learning Representations. 2016.

[77] Alec Radford, Luke Metz, and Soumith Chintala. “Unsupervised represen-
tation learning with deep convolutional generative adversarial networks”.
In: International Conference on Learning Representations. 2016.

[78] Roger Ratcliff. “Connectionist models of recognition memory: Constraints
imposed by learning and forgetting functions”. In: Psychological review 97.2
(1990).

[79] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. “Learning mul-
tiple visual domains with residual adapters”. In: NIPS. 2017.

[80] Sylvestre-Alvise Rebuffi et al. “icarl: Incremental classifier and representa-
tion learning”. In: Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition. 2017, pp. 2001–2010.

[81] Joseph Redmon and Ali Farhadi. “YOLO9000: better, faster, stronger”.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2017, pp. 7263–7271.

[82] Mark B Ring. “CHILD: A first step towards continual learning”. In:Machine
Learning 28.1 (1997), pp. 77–104.

[83] Anthony Robins. “Catastrophic forgetting, rehearsal and pseudorehearsal”.
In: Connection Science 7.2 (1995), pp. 123–146.

[84] Amir Rosenfeld and John K Tsotsos. “Incremental learning through deep
adaptation”. In: IEEE transactions on pattern analysis and machine intel-
ligence (2018).

[85] Amelie Royer and Christoph H Lampert. “Classifier adaptation at predic-
tion time”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2015, pp. 1401–1409.

[86] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. “Learn-
ing internal representations by error propagation”. In: Parallel Distributed
Processing. 1985.

[87] Olga Russakovsky et al. “Imagenet large scale visual recognition challenge”.
In: International journal of computer vision 115.3 (2015), pp. 211–252.

123

http://proceedings.mlr.press/v97/pang19a.html
http://proceedings.mlr.press/v97/pang19a.html

BIBLIOGRAPHY

[88] Andrei A Rusu et al. “Progressive neural networks”. In: CoRR (2016). arXiv:
1606.04671. url: http://arxiv.org/abs/1606.04671.

[89] Tim Salimans and Durk P Kingma. “Weight normalization: A simple repa-
rameterization to accelerate training of deep neural networks”. In: Advances
in Neural Information Processing Systems. 2016, pp. 901–909.

[90] Tim Salimans et al. “Improved techniques for training gans”. In: Advances
in neural information processing systems. 2016, pp. 2234–2242.

[91] Shibani Santurkar, Ludwig Schmidt, and Aleksander Madry. “A Classifica-
tion Based Study of Covariate Shift in GAN Distributions”. In: International
Conference on Machine Learning. 2018, pp. 4487–4496.

[92] Shibani Santurkar et al. “How does batch normalization help optimization?”
In: Advances in Neural Information Processing Systems. 2018, pp. 2483–
2493.

[93] Hanul Shin et al. “Continual learning with deep generative replay”. In: Ad-
vances in Neural Information Processing Systems. 2017, pp. 2990–2999.

[94] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. “How good is
my GAN?” In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 213–229.

[95] David Silver et al. “Mastering the game of go without human knowledge”.
In: Nature 550.7676 (2017), p. 354.

[96] Karen Simonyan and Andrew Zisserman. “Very deep convolutional networks
for large-scale image recognition”. In: International Conference on Learning
Representations. 2015.

[97] Jost Tobias Springenberg et al. “Striving for simplicity: The all convo-
lutional net”. In: International Conference on Learning Representations
(Workshop) (2015).

[98] Nitish Srivastava et al. “Dropout: a simple way to prevent neural networks
from overfitting”. In: The journal of machine learning research 15.1 (2014),
pp. 1929–1958.

[99] Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Training
very deep networks”. In: Advances in neural information processing sys-
tems. 2015, pp. 2377–2385.

[100] Christian Szegedy et al. “Going deeper with convolutions”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2015,
pp. 1–9.

124

http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1606.04671

BIBLIOGRAPHY

[101] Mingxing Tan et al. “Mnasnet: Platform-aware neural architecture search
for mobile”. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2019, pp. 2820–2828.

[102] Sebastian Thrun and Tom M Mitchell. “Lifelong robot learning”. In: The
biology and technology of intelligent autonomous agents. Springer, 1995.

[103] Stefen Chan Wai Tim et al. “Descriptor extraction based on a multilayer
dictionary architecture for classification of natural images”. In: Computer
Vision and Image Understanding (2018). url: https://doi.org/10.
1016/j.cviu.2018.08.002.

[104] Andreas Veit, Michael J Wilber, and Serge Belongie. “Residual networks
behave like ensembles of relatively shallow networks”. In: Advances in neural
information processing systems. 2016, pp. 550–558.

[105] Xiaolong Wang et al. “Non-local neural networks”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 7794–
7803.

[106] Yuxin Wu and Kaiming He. “Group normalization”. In: Proceedings of the
European Conference on Computer Vision (ECCV). 2018, pp. 3–19.

[107] Saining Xie et al. “Aggregated residual transformations for deep neural
networks”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 1492–1500.

[108] Zhicheng Yan et al. “HD-CNN: hierarchical deep convolutional neural net-
works for large scale visual recognition”. In: Proceedings of the IEEE inter-
national conference on computer vision. 2015, pp. 2740–2748.

[109] Jaehong Yoon et al. “Lifelong Learning with Dynamically Expandable Net-
works”. In: International Conference on Learning Representations. 2018.
url: https://openreview.net/forum?id=Sk7KsfW0-.

[110] Han Zhang et al. “Self-Attention Generative Adversarial Networks”. In: In-
ternational Conference on Machine Learning. 2019, pp. 7354–7363.

[111] Ting Zhang et al. “Interleaved group convolutions”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 4373–4382.

[112] Liming Zhao et al. “On the Connection of Deep Fusion to Ensembling”. In:
CoRR abs/1611.07718 (2016). arXiv: 1611.07718. url: http://arxiv.
org/abs/1611.07718.

[113] Barret Zoph and Quoc V Le. “Neural architecture search with reinforcement
learning”. In: International Conference on Learning Representations. 2017.

125

https://doi.org/10.1016/j.cviu.2018.08.002
https://doi.org/10.1016/j.cviu.2018.08.002
https://openreview.net/forum?id=Sk7KsfW0-
http://arxiv.org/abs/1611.07718
http://arxiv.org/abs/1611.07718
http://arxiv.org/abs/1611.07718

BIBLIOGRAPHY

[114] Barret Zoph et al. “Learning transferable architectures for scalable image
recognition”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2018, pp. 8697–8710.

126

	Introduction
	Machine learning and neural networks
	Neural network caveats
	Research questions and contributions

	Background
	Machine learning
	Supervised learning
	Neural networks
	Convolutional networks
	Generative adversarial networks

	Hierarchical Classification
	Method
	Experiments
	Discussion on related work
	Conclusion

	Continual Learning
	Context, definition and notation
	Continual learning approaches
	Generative adversarial network as a replay buffer
	Experimental analysis of continual learning with replay buffer
	Discussion on related work
	Conclusion

	Coupled Ensembles
	Design of deep convolutional networks
	Coupled ensembles
	Experiments
	Training efficiency
	Implementation details
	Discussion on related work
	Conclusion

	Conclusion and Perspectives
	Hierarchical classification
	Continual learning with replay buffers
	Coupled ensembles
	General perspectives

	List of Publications
	Reproduciblity Issue
	Performance measurement and reproducibility issues

	Multiple data set training
	Training on multiple datasets

	Bibliography

