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Résumé

Le débogage, tel qu’il est généralement défini, consiste à trouver et à supprimer les problèmes
empêchant un logiciel de fonctionner correctement. Quand on parle de bogues et de débogage,
on fait donc habituellement référence à des bogues fonctionnels et au débogage fonctionnel. Dans
le contexte de cette thèse, cependant, nous parlerons des bogues de performance et de débogage de
performance. Nous ne cherchons donc pas les problèmes engendrant de mauvais comportements
du programme, mais les problèmes qui le rendent inefficace, trop lent, ou qui induisent une trop
grande utilisation de ressources. À cette fin, nous avons développé des outils qui analysent et
modélisent la performance pour aider les programmeurs à améliorer leur code de ce point de
vue là. Nous proposons les deux techniques de débogage de performance suivantes: analyse des
goulets d’étranglement basée sur la sensibilité et Suggestions d’optimisation polyédrique basées
sur les dépendances de données.

Analyse des goulets d’étranglement basée sur la sensibilité Il peut être étonnamment
difficile de répondre à une question apparemment anodine sur la performance d’un programme,
comme par exemple celle de savoir s’il est limité par la mémoire ou par le CPU. En effet, le CPU
et la mémoire ne sont pas deux ressources complètement indépendantes, mais sont composés
de multiples sous-systèmes complexes et interdépendants. Ici, un blocage d’une ressource peut
à la fois masquer ou aggraver des problèmes avec une autre ressource. Nous présentons une
analyse des goulets d’étranglement basée sur la sensibilité qui utilise un modèle de performance
de haut niveau implémenté dans Gus, un simulateur CPU rapide pour identifier les goulets
d’étranglement de performance.

Notre modèle de performance a besoin d’une base de référence pour la performance attendue
des différentes opérations sur un CPU, comme le pic IPC et comment différentes instructions
se partagent les ressources du processeur. Malheureusement, cette information est rarement
publiée par les fournisseurs de matériel, comme Intel ou AMD. Pour construire notre modèle de
processeur, nous avons développé un système permettant de récupérer les informations requises
en utilisant des micro-benchmarks générés automatiquement.

Suggestions d’optimisation polyédrique basées sur les dépendances de données Nous
avons développé Mickey, un profileur dynamique de dépendances de données qui fournit un re-
tour d’optimisation de haut niveau sur l’applicabilité et la rentabilité des optimisations manquées
par le compilateur. Mickey exploite le modèle polyédrique, un puissant cadre d’optimisation
pour trouver des séquences de transformations de boucle afin d’exposer la localité des données
et d’implémenter à la fois le parallélisme gros-grain, c’est-à-dire au niveau thread, et grain-
fin, c’est-à-dire au niveau vectoriel. Notre outil utilise une instrumentation binaire dynamique
pour analyser des programmes écrits dans différents langages de programmation ou utilisant des
bibliothèques tierces pour lesquelles aucun code source n’est disponible.

En interne Mickey utilise une représentation intermédiaire (RI) polyédrique qui code à
la fois l’exécution dynamique des instructions d’un programme ainsi que ses dépendances de
données. La RI ne capture pas seulement les dépendances de données à travers plusieurs boucles
mais aussi à travers des appels de procédure, éventuellement récursifs. Nous avons développé
un algorithme efficace de compression de traces qui construit cette RI polyédrique à partir de
l’exécution d’un programme. L’folding algorithm trouve aussi des accès réguliers dans les accès
mémoire pour prédire la possibilité et la rentabilité de la vectorisation. Il passe à l’échelle sur de
gros programmes grâce à un mécanisme de sur-approximation sûr et sélectif pour les applications
partiellement irrégulières.
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Abstract

Debugging, as usually understood, revolves around finding and removing defects in software
that prevent it from functioning correctly. That is, when one talks about bugs and debugging one
usually means functional bugs and functional debugging. In the context of this thesis, however,
we will talk about performance bugs and performance debugging. Meaning we want to find defects
that do not cause a program to crash or behave wrongly, but that make it run inefficiently, too
slow, or use too many resources. To that end, we have developed tools that analyse and model
the performance to help programmers improve their code to get better performance. We propose
the following two performance debugging techniques: sensitivity based bottleneck analysis and
data-dependence profiling driven optimization feedback.

Sensitivity Based Performance Bottleneck Analysis Answering a seemingly trivial ques-
tion about a program’s performance, such as whether it is memory-bound or CPU-bound, can
be surprisingly difficult. This is because the CPU and memory are not merely two completely
independent resources, but are composed of multiple complex interdependent subsystems. Here
a stall of one resource can both mask or aggravate problems with another resource. We present
a sensitivity based performance bottleneck analysis that uses high-level performance model im-
plemented in Gus, a fast CPU simulator to pinpoint performance bottlenecks.

Our performance model needs a baseline for the expected performance of different operations
on a CPU, like the peak IPC and how different instructions compete for processor resources.
Unfortunately, this information is seldom published by hardware vendors, such as Intel or AMD.
To build our processor model, we have developed a system to reverse-engineer the required
information using automatically generated micro-benchmarks.

Data-Dependence Driven Polyhedral Optimization Feedback We have developed
Mickey, a dynamic data-dependence profiler that provides high-level optimization feedback on
the applicability and profitability of optimizations missed by the compiler. Mickey leverages
the polyhedral model, a powerful optimization framework for finding sequences of loop trans-
formations to expose data locality and implement both coarse, i.e. thread, and fine-grain, i.e.
vector-level, parallelism. Our tool uses dynamic binary instrumentation allowing it to analyze
program written in different programming languages or using third-party libraries for which no
source code is available.

Internally Mickey uses a polyhedral intermediate representation (IR) that encodes both
the dynamic execution of a program’s instructions as well as its data dependencies. The IR
not only captures data dependencies across multiple loops but also across, possibly recursive,
procedure calls. We have developed an efficient trace compression algorithm, called the folding
algorithm, that constructs this polyhedral IR from a program’s execution. The folding algorithm
also finds strides in memory accesses to predict the possibility and profitability of vectorization.
It can scale to real-life applications thanks to a safe, selective over-approximation mechanism
for partially irregular data dependencies and iteration spaces.
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2 CHAPTER 1. INTRODUCTION

It is now nearly fifteen years ago that Herb Sutter wrote his famous article “The Free Lunch
Is Over” [201]. In this piece, he argued that the classical methods of boosting single-core
performance, such as raising the CPU clock frequency and straight-line instruction throughput,
are no longer feasible. He claims that the single-core performance of modern microprocessors
has completely stagnated and that multi-core architectures and concurrent programming models
are the only way to increase performance going forward. Only a few years later, Hill et al. [94]
analysed the state of microprocessor designs of the time and gave some broad recommendations
that, at least partially, contradict Sutter’s conclusions. One of their recommendations states
that “Researchers should seek methods of increasing [single] core performance even at a high
cost.”.

Figure 1.1 shows data describing the overall trends in performance parameters of micropro-
cessors of the last 42 years. If we look at the data, it seems that both predictions have been,
to some degree, proven correct. Clock frequency has completely stagnated, while the average
core count of processors has exploded. And yet, the single-core performance of processors, as
measured by the SpecINT [91, 92] benchmark suite, has not stopped rising. Albeit it is ad-
mittedly growing slower than it used to. Since the clock frequency has not been rising, we can
deduce that the increase in performance has indeed been paid for “at a high”, by an increase in
complexity of hardware and software.

1970 1980 1990 2000 2010 2020

Year

100
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103

104

105

106

107
Transistors (thousands)
Single-Thread Performance (SpecINT x 103)
Frequency (Mhz)
Typical Power (Watts)
Number of Logical Cores

Figure 1.1 – 42 years of microprocessor trends [176].

In day to day programming, this increase of complexity is often hidden behind abstractions.
A modern x86 processor, for example, in many ways still pretends to work much the same
as a model from the 1980s. That is, to a programmer it, seems that instructions execute
sequentially and that every load and store directly touches main memory. Under the hood,
however, a modern CPU is a sophisticated parallel system with a deep hierarchy of memory
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caches. However, all these abstractions very quickly break down when one wants to study and
understand the performance of an application. Then it suddenly becomes crucially important
to know which data dependency stopped two instructions from execution in parallel or which
memory access caused a cache miss. To effectively analyse and debug the performance of a
program, one has to look under the hood and remove the abstractions. It is the goal of this
thesis to propose tools and techniques for helping programmers better understand the behaviour
of their programs and guide them in the process of performance optimization.

1.1 Performance Debugging

Debugging, as usually understood, revolves around finding and removing defects in software that
prevent it from functioning correctly. That is, when one talks about bugs and debugging one
usually means functional bugs and functional debugging. In the context of this thesis, however,
we will talk about performance bugs and performance debugging. Meaning we want to find defects
that do not cause a program to crash or behave wrongly, but that make it run inefficiently, too
slow, or use too many resources.

Even the best programmer has, at some point, written a buggy program. When they observe
that something is amiss they will often use functional debugging tools like GDB [74] that help
find errors in the behaviour of programs. That is, the classical problems for which programmers
turn to functional debuggers are:

1. Where is the program misbehaving or crashing?
2. Why is the program misbehaving or crashing?

Usually, these tools do not directly try to answer the question how one can prevent a program
from misbehaving or crashing since this would require changing the semantics of the program.
While there are approaches that attempt this from the fields of software verification, like runtime
enforcement [69], they require a specification of the intended semantics of a program and are
not yet commonly used.

Performance debuggers or performance analysis tools, on the other hand, help finding prob-
lems in the non-functional aspects of programs. That is, the problems which make a programmer
turn to these tools are:

1. Where is the program slow?
2. Why is the program slow?
3. How can one make the program run faster?

Historically, existing techniques have only measured and predicted the current performance
characteristics of programs and so, similarly to functional debugging tools, only help answer the
first two questions. In this thesis, we will develop two approaches that try to extrapolate the
possible performance a system could achieve to help answer the last two questions, i.e., why
programs are slow and how they can be made more efficient.

1.2 Background

1.2.1 Profiling

The standard approach for identifying performance bugs is profiling. The most straightforward
profiling technique is to measure the time required to run a piece of code. Tools like gprof [78]
help automate this process by automatically inserting code to measure the runtime of individual
functions via the compiler. Other tools like QPT [122] insert code to count the number of time
every basic block in a program executes or how many times every edge in the control-flow-
graph is taken. These approaches can help detect hot program regions, i.e., where a program is
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spending most of its time. However, knowing only where the hot regions of a program are is all
too often not enough to fix performance bugs.

To help pinpoint the causes of performance problems modern processors offer hardware per-
formance counters 1, also called hardware counters, or performance counters [44, 151]. Hardware
counters allow measuring many different performance-related events, such as the number of in-
structions executed or the number of cache hits and misses at different cache levels. At the
most basic level, performance counters work the same as time measurements. To measure, for
example, the number of L2 cache misses that occur in a given function it suffices to insert code
to read the current value of the corresponding counter at the beginning and the end of the
function and subtract the two values.

Many processors also support sampling modes which make it possible to use hardware coun-
ters without having to modify an application to explicitly read counters. Different vendors and
processor generations implement a wide variety of different sampling models such as, for exam-
ple, event-based sampling, time sampling, and instruction-based sampling. The details of how
these different sampling techniques work, how they can be used, and how precise they differ
quite a lot. However, the overall idea is that at regular, user-configured intervals the processor
halts normal execution and stores the current values of the hardware performance counters, usu-
ally by writing some data to a preconfigured memory location or by raising a special interrupt.
Sampling-based profilers then use statistical methods to extrapolate the behaviour of instruc-
tions for which they have no samples. Directly using hardware performance counters is quite
complicated and so over time a plethora of libraries and tools, such as PAPI [65], LIKWID [172],
HPCToolkit [4], Linux perf [144], Intel VTune [169], have been developed for this purpose.

Despite their utility hardware performance counters suffer from some severe limitations.
While configuring the CPU to count performance events has no, or barely any, overhead, the
reading of counters, either directly or through sampling, is not free. Directly reading coun-
ters uses at least some CPU resources such as registers and profiling requires either a costly
CPU interrupt or some writes to memory. Consequently using hardware counters can cause an
observer effect where the act of measuring the performance of an application changes its perfor-
mance. This can lead to so-called performance heisenbugs, named after Heisenberg’s uncertainty
principle. It also makes fine-grain profiling using performance counters difficult.

Linux perf, a widely used sampling-based profiling tool, for example, by default limits the
maximum sampling rate. This is to prevent programs from accidentally spending more time read-
ing performance counters and writing to internal buffers than actually executing real code [88]
On an Intel i5-4590 CPU running at 3.3 GHz the limit is 50k samples per second, which means
one can at best obtain one sample every 66k instructions.

Another problem with performance counters is that one is limited to measuring a fixed set of
metrics. With this approach, it is impossible to profile for an event for which the hardware offers
no counter. Furthermore, even on the most recent processors, one can not enable all available
performance event counters at the same time, but usually only a small handful, around four to
ten.

An alternative to using hardware performance counters is to use a simulator such as gem5 [23].
A cycle-accurate simulator makes it possible to produce a detailed trace of performance-related
events without during execution without perturbing the behaviour of the original program. Since
simulators are software, it is also possible to add new performance counters if necessary.

However, the power and flexibility of simulators also come at a cost. Developing a cycle-level
simulator is extremely time consuming and requires a lot of expertise. A detailed simulation is
also quite costly in terms of computation and runs considerably slower than native execution.
For example, gem5 at its highest level of precision requires, on average, one year to run a single

1The term “counter” can be misleading since modern processors do much more than just counting events.
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SPEC2006 benchmark [180]. A common approach to speed up simulations is to only simulate
parts of a program [188, 224] or to only simulate some aspect of the processor [36, 110, 152].

Simulators based on abstract high-level CPU core models, while not as accurate as a real
cycle-level simulator, have been shown to provide reasonable accurate execution time predictions
while running orders of magnitude faster than cycle-level simulation systems [68, 76, 202, 37].

At the end of the day, the data gathered using profiling, either using hardware counters
or simulation, is still very low-level, recording information at the level of individual machine
instructions. Tools like HPCToolkit [4], Intel VTune [169], and Linux perf [144] can map these
results back to the source code of a program using debug information, making it possible to view
aggregate results per loop or function. However, these tools still do not directly explain why a
given piece of code has a performance problem, such as too many cache misses or stalled CPU
cycles, or how to fix the problem. Finding and fixing the root causes of a performance problem
often still require substantial expertise.

Feedback-Directed Optimization (FDO) takes one step towards the direction of using pro-
filing information to improve performance [192, 11, 12]. FDO based systems collect runtime
information using profiling and use it to guide optimization heuristics in compilers. Tools like,
Intel Advisor [52] and AutoSCOPE [195], on the other hand, try to give human-readable opti-
mization advice. They are, however, not able to automatically apply code transformations, or
even necessarily prove that a transformation is valid. Instead, they propose optimizations such
as parallelization or loop fusion, leaving the task of implementing this transformation to the
programmer.

At this point, we have only given a brief overview of basic profiling techniques. Chapters 3
and 4 will present a number of more involved approaches using richer, but expensive to collect,
performance events.

1.2.2 Instrumentation and dynamic binary analysis

Since profilers analyse events that occur during the execution of a program, they need some
facility to trace these events. Sampling of hardware performance counters is an excellent low
overhead method for collecting performance-related events, but it suffers from a number of
limitations, as described in the previous section.

An alternative technique used by a large number of dynamic analysis tools, including those
presented in this thesis, is instrumentation. Instrumentation, is a very versatile technique that
allows capturing arbitrary program behaviour. Using instrumentation a profiler can implement
any new performance counter it may require in software. Besides profiling, instrumentation is
used in numerous other dynamic analyses such as dynamic control flow integrity [1] and memory
corruption checking [185].

There are some new hardware-assisted program tracing technologies, such as Intel PT [51],
on the horizon that may replace instrumentation for some profiling use cases. However, for the
moment the available hardware is still somewhat unreliable and can lose events due to internal
buffer overflows [75, 101].

Compiler based instrumentation, used by highly successful dynamic analysis tools such
gprof [78] and the LLVM Address Sanitizer [185], works directly in the compiler at the level
of its intermediate representation (IR). Instrumenting programs during the compilation process
has several advantages. In terms of productivity, the whole compiler infrastructure makes the
task of implementing some instrumentation for profiling easy. Instrumentation can easily be
performed at any level of the intermediate representation, allowing the profiling of high-level
and low-level properties. It can also take advantage of all its knowledge of the program semantics
and information provided by the diverse static analysis present in an optimizing compiler. In
particular, any property that can be statically proven or is not data-dependent, does not have
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to be profiled.
Binary instrumentation [196, 123, 134, 155, 134, 29, 145, 146], on the other hand, works

directly at the level of machine code. Analysing and manipulating binaries is difficult and
tedious, since, all too often, one has to re-discover the obvious. Because machine code contains
much less structure than source code even relatively simple analyses needed for instrumentation,
such as reconstructing the control-flow graph, become non-trivial or undecidable [145, 170].
However, working at the level of machine code has the important advantage of portability. That
is, tools that directly handle machine code are not restricted to working with a given compiler, or
programming language. It also makes it possible to compare the binaries produced by different
compilers. If, for example, icc turns out to generate the best performing code for an Intel
platform, it is clearly interesting to be able to analyse this binary and not be limited to the
output of GCC [80] or Clang [164]. Binary instrumentation even makes it possible to analyse
programs for which no source code is available or which integrate closed source third-party
libraries.

Another approach that can be used to implement static binary instrumentation is decom-
pilation. SecondWrite [8] and DisIRer [104], for example, are two tools that convert machine
code to LLVM IR and GCC IR respectively. These compiler IRs are semantically much richer
than raw machine code, and there are a variety of existing tools that can be used to analyse
and transform them. The advantage of this approach is that it has the portability of a binary
analysis tool combined with ease of use of compiler-based instrumentation. However, it is only
applicable to programs that can be statically decompiled.

There are also dynamic binary analysis frameworks that decompile machine code to compiler
IR at runtime [64]. However, while this makes it possible to apply the powerful analyses available
in a static compiler to arbitrary binaries, it also suffers from some drawbacks. The main problem
is that static compilers can afford to invest much more time in analysing and optimizing programs
than dynamic compilers. Due to this, authors of static compiler IRs and analyses often prioritize
expressiveness and maintainability over performance. A number of failed attempts to re-use
static compiler back-ends in a JIT have shown that this can lead to a prohibitive overhead at
runtime [49, 50].

Dynamic binary instrumentation and the applications we have used it for will be described
in detail in Chapter 2.

1.2.3 The polyhedral model

The most effective program optimizations for improving performance or energy consumption
are typically based on the rescheduling of instructions to expose data locality, parallelism or
both. The two main challenges for these kinds of optimizations are what transformations may
be applied without breaking the program semantics and where in the program the optimizations
should be applied to maximize the impact on the overall program performance. The polyhedral
model [71], a mathematical model that allows reasoning about programs at the levels of loops, is
one of the most powerful theoretical frameworks for finding and for applying such rescheduling
optimizations.

The polyhedral model is usually applied in the context of static compilers [160, 211, 81, 162,
25, 218]. Here it is used to find sequences of loop transformations, including tiling, permutation,
fusion, fission, and skewing, that aim to improve the temporal and spatial locality of data accesses
and uncover both coarse (i.e., thread) and fine-grain (i.e., SIMD) parallelism. To determine the
validity and profitability of these transformations, however, the polyhedral model needs precise
information about data and control-flow dependencies. That is, it needs a precise model of the
structure of loops and of the dependencies between statements.

The power of the polyhedral model comes, in part, from the fact that it does not try to model
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for (i = 0; i <= 5; i++)

for (j = 0; j <= 5 - i; j++)

S: A[i][j] = B[i][j] + C[i] * D[j];

(a) An simple loop nest with one statement S.
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(b) The 2D iteration space for statement S.

Figure 1.2 – An example program and its iteration space.

general programs. Instead, it focusses on regular loop nests operating on multi-dimensional ar-
rays. Here, loop nests are represented by a finite Cartesian space, called the iteration space [223].
In this space, each level of the loop nest gives rise to one dimension. Every loop iteration then
corresponds to a point in this iteration space whose coordinates are determined by the current
values of the iteration variables of the enclosing loops. The polyhedral model requires that the
bounds of every loop can be represented by a linear expression of the loop indices. Thanks to
this restriction the iteration space can also be represented as an integer polyhedron, i.e., a set
of points bounded by a set of linear constraints over the integers. Figure 1.2 shows a simple
2D loop nest and the corresponding iteration space. In this simple example, there is only one
loop nest and only one statement and consequently also only one iteration space. In general,
however, every statement in a program has its own iteration space. The polyhedral model also
supports conditional statements, but conditionals are restricted to linear expressions in order to
keep the iteration spaces representable. The expressions used to compute array indices, called
access functions, are also restricted to linear functions.

Since every execution of a statement, i.e., every dynamic instance, is represented as a point
in an iteration space the polyhedral model also uses linear relations to model data dependencies.
Consider the following program:

for (i = 1; i < 5; i++)

S: A[i] = A[i-1] + i;

Here every instance of the statement S depends on a previous instance of S. We note the
instance of S executed in the ith iteration of the loop as S[i]. This dependence can then be
expressed by the following relation (for simplicity, we omit the initialization of A and border
conditions):

{S[i] → S[i′] : i′ = i− 1 ∧ 2 < i < 5}

Despite this apparent simplicity, the polyhedral model is still quite expressive, but this also
comes with a cost. Finding a set of optimizing loop transformations in the polyhedral model
requires solving one ore more integer programs. A big strength of the polyhedral model is that
the complexity of these problems is independent of the number of points in the iteration space.
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Rather, the complexity is exponential in the number of different loop dimensions, statements and
dependencies. As a consequence, polyhedral compilers can, in practice, only handle programs
consisting of no more than a few hundred instructions.

In a compiler, the static analyses required to build this representation can only be applied
to programs written in a very restrictive style with no function calls, simple control-flow and no
pointer indirection [48, 62]. While there have been attempts to extend the polyhedral model to
work on more general programs [197, 18] these have only met with limited success. In practice,
one quickly runs into problems with pointer aliasing and pointer indirection, which make it
impossible to calculate access functions statically. This, in turn, makes it impossible to build
the data dependence relation. The other big hurdle one often runs into programs with complex
or data-dependent loop bounds and conditionals.

To overcome these limitations, compilers have started using hybrid analysis, which leverages
information only available at runtime to allow for more aggressive optimization. Using code
versioning combined with runtime checks for the validity of a transformation allows optimizing
programs even when the optimization statically cannot be proven to be legal or is not even legal
for every possible program execution [177, 178, 6, 62].

The Apollo [139] and PolyJIT [190] projects push the envelope even further bringing the
polyhedral model to the world of JIT compilers. They are dynamic polyhedral optimizers
that both find and apply polyhedral loop transformations at runtime. Apollo is even able to
speculatively execute optimistically optimized code, rolling back the execution if and when any
non-affine behaviour occurs.

1.3 Objectives
A large part of today’s performance-sensitive code is written in sequential imperative languages
such as C, C++ and Fortran. There have been many attempts to extend or replace these
languages and programming models, but for the foreseeable future, they will still dominate the
field. In this work, we present tools that work on these kinds of programs. They allow analysing
and modelling the performance of existing systems to help guide programmers improve their
code to get better performance.

In this thesis, we focus on analysing and modelling the performance of relatively small
compute-intensive scientific kernels. We focus on the computational and memory behaviour
of programs and do not investigate aspects like network traffic or hard disk usage. All tools
and techniques we present work at the level of machine code on compiled and optimised binary
programs.

We propose the following two performance debugging techniques: sensitivity based bottleneck
analysis and data-dependence profiling driven optimization feedback.

1.3.1 Sensitivity Based Performance Bottleneck Analysis

Performance Bottleneck analysis Even answering a seemingly trivial question about a
program’s performance, such as whether it is memory-bound or CPU-bound can be surprisingly
difficult. This is because the CPU and memory are not simply two completely independent
resources that a program uses independently. Instead, they are composed of multiple complex
interdependent subsystems. Here a stall of one resource can both mask or aggravate problems
with another resource. It is even more complicated to quantify by “how much” a resource is
a bottleneck, that is, by how much performance could be improved if that one bottleneck is
removed.

We propose a bottleneck analysis that is based on sensitivity analysis or differential profil-
ing [141, 47, 118, 132, 99]. A conceptually simple approach to finding bottlenecks that works as
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follows: One runs the program under observation multiple times, each time varying the capacity
of one or more resources. The bottleneck is then the resource whose change in capacity has
affected the overall change in performance the most.

A real-world example of this approach uses dynamic voltage and frequency scaling (DVFS)
[100]. Here, a program or parts of it are executed repeatedly, every time with a different CPU
frequency. Note that the frequency at which the CPU operates does not affect the speed at
which memory works. So, if a program finishes in roughly the same time while running at a
lower frequency as when running at a high frequency it is clearly not CPU-bound. Reversely, if
execution time is significantly affected by CPU frequency the program is CPU-bound. How-
ever, DVFS only works at a relatively high granularity and only allows detecting the presence
or absence of a general CPU bottleneck. Unfortunately, real hardware does not directly provide
many other “levers” that one can use to easily vary the capacity of resources. It is, for exam-
ple, not possible to reduce the throughput of the vector unit to see by how much this affects
performance.

Performance model To allow for a more fine-grained sensitivity analysis we have developed
an abstract, resource-based, performance model. We have built Gus, a prototypical implemen-
tation of this model in a CPU emulator to make it possible to apply it to real programs. Gus
can arbitrarily change the capacity of every resource independently making it a powerful tool
for pinpointing performance bottlenecks.

Our performance model needs a baseline, a detailed specification of the expected performance
of different operations on a CPU. That is, we need to know how many instructions of a given
type the processor can execute per cycle, how many cycles instructions require to finish, and how
instructions interact with each other. Unfortunately, hardware vendors like Intel or AMD are not
very forthcoming with this kind of information and do not publish comprehensive datasheets.
To build our processor model we have developed a system to reverse-engineer the required
information using automatically generated micro-benchmarks.

1.3.2 Dependence Profiling Driven Polyhedral Optimization Feedback

The holy grail of performance debugging is to directly tell a user how they can change their code
to improve performance. The most effective program transformations for improving performance
or energy consumption are typically based on the rescheduling of instructions so as improve
temporal and spatial locality. This can be used to uncover parallelism at both coarse, i.e.,
thread-level, and fine, i.e., vector-level, granularity. The two main challenges when using these
kinds of optimizations are what transformations may be applied without breaking the program
semantics and where in the program should the optimizations be applied to maximize the impact
on the overall program performance.

The polyhedral model is a powerful framework for finding these and other kinds of optimizing
transformations. The polyhedral model requires an exact description of both the control-flow
of a program and the structure of its data dependencies. Historically, the polyhedral model
has been designed to work on a restricted set of programs, called affine programs, for which
it is easy to statically reconstruct exact dependence information [48]. While programs can be
rewritten to fit these restrictions and help static analysis tasks, this requires significant effort
and is not guaranteed to succeed. In full programs, and in particular those relying on external
binaries visible only to the linker, often the data layout and calling context is inaccessible to
static analyses.

Dynamic approaches [139, 190] push this boundary and handle programs which, even though
they cannot be statically proven to fit the polyhedral model, do adhere to its restrictions at
runtime. However, even tools that use dynamic information to build a polyhedral representation
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still face a number of problems. The main difficulty being how to model applications that include
some non-affine dependencies and memory accesses in otherwise affine code To address this
difficulty existing dynamic polyhedral approaches either use overly pessimistic approximations
and lose information [199] or do not scale [112, 171].

Data-dependence driven polyhedral optimization feedback We have developed Mickey,
a dynamic data-dependence profiler that builds a rich polyhedral IR from traces. Mickey works
on compiled binaries and provides feedback on the applicability and profitability of polyhedral
loop transformations. It can scale to real-life applications thanks to a safe, selective over-
approximation mechanism for partially irregular data dependencies and iteration spaces.

Polyhedral interprocedural IR Mickey’s polyhedral IR encodes both the dynamic ex-
ecution of a program’s instructions as well as its data dependencies. This IR captures the
interprocedural loop nesting structure of a program in a form that is amenable to analysis by
a polyhedral optimizer. It not only captures data dependencies across multiple loops but also,
possibly recursive, procedure calls.

Linear time polyhedral trace compression To construct the polyhedral IR from a pro-
gram’s execution, we have developed the folding algorithm, an efficient trace compression algo-
rithm. This technique was inspired by existing polyhedral trace compression techniques [112,
171], with the notable difference that it uses the geometry of iteration spaces which allows it to
scale to large irregular programs. The folding algorithm also detects which instructions in a pro-
gram are used to increment loop counters and finds strides in memory accesses by building scalar
evolution expressions (SCEVs) [161, 213] for loads, stores and integer arithmetic instructions.

1.3.3 Contributions

To summarize, in this thesis we present the following contributions:
• A sensitivity based analysis tool to detect performance bottlenecks in programs (Chap-

ter 3).
• A tool to reverse engineer performance characteristics of instructions on modern x86 CPUs

(Section 3.5).
• A data-dependence based profiling tool that provides high-level optimization feedback

(Chapter 4).
• An interprocedural polyhedral intermediate representation (Section 4.4).
• A linear time polyhedral trace compression algorithm to construct this representation

(Section 4.5.5).

1.4 Structure of the Thesis
This thesis consists of four main chapters and is organized as follows:

• Chapter 2 gives a technical description of the dynamic binary instrumentation platform
we developed for our work. It contains mostly technical details and can be skipped on a
first read.

• Chapter 3 describes the bottleneck analysis algorithm and the CPU performance reverse-
engineering tool.

• Chapter 4 presents our data dependence driven tool for giving optimization feedback.
• Finally, Chapter 5 concludes the thesis, giving a summary of the contributions and per-

spectives on possible future work.
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Preliminary note: this chapter is very technical and describes the internals of some
analyses on which techniques presented later in the thesis are based. This chapter
does not necessarily present any novel approaches by itself, but gives the general
technical context of the thesis. As a consequence, it is possible to skip it at first
reading.

This chapter describes the internals of the QEMU CPU emulator and TCG plugin infras-
tructure (TPI), an infrastructure for building dynamic binary program analysis tools based on
QEMU. It also gives a general overview over the field of dynamic binary translation and also
show cases a number of analyses we have implemented using TPI. The chapter is intended to
both show how TPI works in practice as well as to present some basic techniques which are used
later throughput the thesis.

2.1 QEMU

QEMU [17, 166] is a processor emulator based on dynamic binary translation. That is, it
allows running programs written for one CPU architecture on a different CPU architecture.
QEMU only reproduces the functional aspects of a CPU, meaning it emulates the instruction
set architecture (ISA). It does not, however, match the non-functional microarchitectural details
of an architecture such as timing, cache effects, or speculative execution.

Vanilla QEMU only allows running programs on a different CPU architecture than the one
they where written for. ONe can, for example, run a program compiled for a 64 bit x86 CPU on
a 32 bit ARM computer, and vice versa. The machine code of the emulated program is translated
and run as native machine code for the architecture QEMU is running on. This makes emulation
relatively fast compared to interpreter based systems like gem5 [23].

For the purposes of this work we use a modified version of QEMU [84] that includes TPI
which makes it possible to alter programs as they execute. We chose to use QEMU for this
since it can emulate a plethora of different CPU architectures and supports all major operating
systems (OSs), including GNU/Linux, *BSD, Mac OS X and Windows. QEMU furthermore has
a simple, more or less architecture independent, intermediate representation (tiny code generator
(TCG) IR). This makes it easy to write analysis tools that work at the level of machine code
but are still portable across different system. Details of how this works will be presented in
Section 2.3, for now we will focus on presenting QEMU itself.

QEMU internally uses the following terminology, which we will reuse:
• Host CPU/OS: the CPU and OS on which QEMU is running.
• Guest program/OS: the program/OS you run inside QEMU.
• Guest CPU or virtual CPU: The state of a CPU core as emulated by QEMU.
QEMU can be run under two different modes: full system mode and user mode. Full system

mode emulates a whole computer, including the CPU and peripherals such as network cards or
hard disks. This means a whole operating system, including a kernel, is running on the simulated
machine inside QEMU. This is similar to what sytems like VirtualBox [57] or Bochs [126] provide,
but they can only run x86 programs on x86 hosts. User mode runs a single user space process
and translates the machine code from the guest ISA to the host ISA. Under this mode QEMU
runs a program compiled for one CPU architecture as a process in an operating system for
another architecture. To make this possible QEMU translates system calls to the ABI of the
host kernel. All the work done in this thesis has used QEMU in user mode, but it could easily
be modified to support full system mode.
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2.2 The Tiny Code Generator

The TCG is the component of QEMU responsible for translating guest machine instructions to
host machine instructions. TCG is essentially a just-in-time compiler (JIT) compiler that takes
real machine code as input instead of byte code.

Since TCG is a JIT it translates a program piece by piece at runtime. As a consequence the
execution of code and its compilation are interleaved. That is, when a program tries to run a
sequence of guest instructions the emulated guest CPU is halted and TCG translates the code
to host instructions. Once TCG has finished compiling the emulation resumes by executing the
new native code on the host. In the following we will refer to the moments when emulation is
halted and TCG takes over as translation time and the moments when the code of the emulated
program is running as execution time.

TCG is essentially a trace based JIT [150]. That is to say, it does not translate whole
programs or functions at a time but only works on small linear sequences of guest instructions
called trace blocks. These trace blocks are formed from the guest program using a very simple
mechanism. Whenever the guest CPU executes an instruction that has not been translated yet
a new trace block is started. This first instruction of the trace block is referred to as its entry.
QEMU then parses the guest instructions following the entry until it hits a branch instruction
1. The final trace block then contains the entry, the terminating branch and all instructions in
between. Note that instructions in the guest program that are never executed are also never
translated by TCG.

Since we are using QEMU in user mode kernel space instructions are not visible to TCG.
When guest code performs a system call this is translated to a corresponding system call on the
host system. Instructions that perform a system call, i.e. sysenter and syscall on x86, still are
considered trace block terminators. They do not, however, change the program counter of the
virtual CPU and the emulated execution simply falls through to the next guest instruction once
the system call has finished.

Due to the way trace blocks are constructed they are very similar the basic blocks of the
guest binary. That is

• a trace block has only one entry,
• a trace block has only one exit, 2

• and consequently once a trace block has been entered all instructions in it are executed
exactly once, in order.

The important difference to the original guest basic blocks is that trace blocks can overlap,
i.e. that a given guest instruction can be contained in multiple trace blocks. This happens for
example if guest code branches to an instruction which is in the middle of another trace block
that has already been translated. The only restriction being that an instruction can only be the
entry for one trace block. An illustrative example showing how a piece of code is divided into
basic blocks and trace blocks can be seen in Figure 2.1.

Internally, TCG does not directly translate the guest instructions in a trace block to host
instructions. Instead it first translates traces to a more machine independent IR. Finally, the
IR is then translated to machine instructions that can be executed directly on the host. The
sequence instructions generated for a whole trace block is called a translation block (TB). This
process is illustrated in Figure 2.2a.

TCG IR consists of simple RISC-like instructions working on registers and memory addresses.
The IR distinguishes between registers of the simulated guest CPU and virtual registers in the

1QEMU also terminates trace blocks before it finds a branch if the trace block is too long or if the guest
instructions would span two pages in memory

2like many other compilers QEMU is actually not very strict about this. Instructions that can fault, like
memory accesses or division, are not considered block terminators.
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A: test %rsi, %rsi

jz C

B: imul (%rsi), %rax

sub $8, %rsi

C: add %rdx, %rax

ret

(a) original program

A: test %rsi, %rsi

jz C

B: imul (%rsi), %rax

sub $8, %rsi

C: add %rdx, %rax

ret

(b) basic blocks

A: test %rsi, %rsi

jz C

B: imul (%rsi), %rax

sub $8, %rsi

C: add %rdx, %rax

ret

C: add %rdx, %rax

ret

(c) trace blocks

Figure 2.1 – A piece of x86 assembler in AT&T syntax and how it is divided into basic blocks and trace
blocks. Note that B: and C are split into two basic blocks since C is the target of a branch. However, B and
C form a single trace block since B does not end in a branch. There is a separate trace block containing
only C which is created when the branch at the end of A is taken.

trace block

guest ISA
(x86, ARM, …)

translation block (TB)

TCG IR

compiled TB

host ISA
(x86, ARM, …)

decode compile

(a) Illustration of how TCG translates guest code to host code.

init guest PC
look up TB for

guest PC

decode trace

block

compile TBexecute host machine code

for TB

(updates guest PC)

TB not found

TB found

(b) Main emulator loop of QEMU.

Figure 2.2 – High-level view of CPU emulation with QEMU.

IR used to hold intermediate values. It also uses distinct instructions to access memory of the
guest CPU and the host memory used for QEMU’s internal data structures. There are likewise
distinct opcodes for branches inside a TB and for branches that leave the current TB.

TCG IR is typed using a very simple type system. The only types are 32 and 64 bit integers
and pointers. Very recently, 128 and 256 bit vector types where added too. But notably there
are no types to represent floating point values.

During emulation the state of the guest CPU is represented as an object in the heap of
the QEMU process. For example, an x86 CPU has 16 general purpose 64 bit registers and so
the CPU object for x86 guests contains an array with 16 64 bit integers. An excerpt of the
definition of the structure used to represent x86 guest CPUs can be seen in Figure 2.3. Since
the registers of the guest CPU reside in host memory every use of a register in a guest program is
translated to a host memory access reading a field of the guest CPU object. Likewise, a write to
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struct CPUX86State {

/* standard registers */

unsigned long regs[16]; // register %rax at offset 0

// register %rdx at offset 0x10

// ...

unsigned long eip; // program counter at offset 0x80

unsigned long eflags;

...

};

Figure 2.3 – C structure representing the state of an emulated x86 CPU in QEMU.

a guest register becomes a host memory write. An example of how TCG translates a simple x86
instruction that illustrates all this can be seen in Figure 2.4. To reduce the overhead introduced
by these memory accesses TCG actually avoids inserting redundant loads and stores. Inside
a TB it keeps the contents of guest CPU registers in host registers as much as possible and
only flushes them back to host memory at the end of the block. This optimization is especially
important for flag registers, like x86 condition codes, which are updated by most instructions
but only read by a few.

TCGs IR is very simple, thus even translating a single guest machine instruction generates
multiple IR instructions. Since real machine instructions can have quite complex behaviour
the IR instructions for a single machine instruction can be a control flow graph (CFG) with
loops and conditional branches. Fortunately, the CFG of the IR generated for a single guest
instruction still is relatively simple though and follows some restrictions. That is, it only has one
entry, and for any instruction, except for some branch instructions, it only has one exit. While
TCG does perform some simple optimizations, such as simple dead code elimination and copy
propagation passes, to clean up the IR before translating it, it is not an optimizing compiler.

Some complex instructions, such as those for handling system calls or exceptions, are not
implemented directly as TCG IR instructions. Instead they are translated to calls to short
functions implemented in C called helper functions

Since TCG IR does not have any floating-point types or instructions all guest machine
instructions working with floating point numbers are translated to calls to helper functions
written in C. Obviously these helper functions cannot directly accept floating-point values as
arguments, since TCG IR has no way to represent them. Instead their arguments are passed
to them as pointers to the host memory representing the guest CPU floating-point registers as
arguments. This can be a source of significant performance overhead when running floating-point
heavy programs in QEMU.

Quite recently vector types and instructions working on them have been added to TCGs
IR. The current version of these instructions are relatively limited and only allow working with
vectors of integer values. TCG instructions to accesses guest memory are also still limited to at
most 64 bits. Consequently all guest vector loads and stores are split up into multiple load/store
instructions in the IR. For the moment vector IR is not yet widely used throughout QEMU.
In fact, only the ARM guest currently generates vector IR instructions for some vector guest
instructions. Guest vector instructions of other platforms are still translated either to sequences
of multiple scalar IR instructions or to calls of helper functions.

As shown in Figure 2.2b once a TB has finished executing in returns to the main emulator
loop, which then looks up the next TB to run. To avoid the overhead of this lookup for every
branch in the guest program, QEMU performs a dynamic optimization called block chaining.
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When QEMU dynamically detects that a TB always branches to the same successor it patches
a jump instruction into the host machine code for the TB. So, instead of exiting to the main
emulator loop the first TB will directly branch to the code of the successor TB. This optimization
allows QEMU to spend most of its time in generated machine code and to only exit to the main
loop to translate new trace blocks or handle special events like interrupts

In user mode QEMU has spawns one OS thread per thread in the guest program where each
OS thread has its own virtual CPU object. Therefore, the guest program can truly execute code
concurrently. To ensure that the memory ordering rules of the guest ISA are respected by the
host processor TCG inserts special memory barrier instructions wherever necessary [58]. Due
to the way threads are emulated a guest CPU will have has at most as many cores running
simultaneously as the host CPU. An accurate simulation of a highly parallel guest architecture
on a less parallel host is therefore not possible.

Examples of how QEMU translates some simple x86 instructions to TCG IR and then back
to x86 code are shown in Figures 2.4, 2.5 and 2.6.

input x86 code
# <OPCODE> <SRC1>, <DST>

# Copy contents of %rax to %rdx

mov %rax, %rdx

TCG IR
# <OPCODE> <DST>, <SRC1>, <SRC2>

# No-op that signals the start of a

# new guest instruction

insn_start <PC of guest instruction>

# Copy contents of guest register

# %rax to virtual register tmp0

#

#

mov_i64 tmp0, rax

# Copy contents of virtual register

# tmp0 to guest register %rdx

#

#

mov_i64 rdx, tmp0

generated x86 code
# <OPCODE> <SRC1>, <SRC2 and/or DST>

# host register %r14 contains a

# pointer to the guest CPU object.

# (CPUX86State as shown in Figure 2.3)

# Copy contents of guest register %rax

# to virtual register tmp0

# (guest register %rax is stored at

# offset 0 of the guest CPU struct)

mov (%r14), %rbp

# Copy contents of virtual register

# tmp0 to guest register %rdx

# (guest register %rdx is stored at

# offset 0x10 of the guest CPU struct)

mov %rbp, 0x10(%r14)

Figure 2.4 – TCG IR and x86 machine code generated to emulate an x86 mov instruction. Note that
the operand order in x86 and TCG IR is reversed.

2.3 The TCG Plugin Infrastructure
As mentioned before the work presented in this thesis is not based on the main version of QEMU,
but on a modified version [84, 85]. This modified QEMU has a mechanism for loading plugins,
called the TCG plugin infrastructure (TPI), that can both observe and alter the translation
process of TCG. To instrument a binary a plugin injects TCG IR instructions into TBs before
they get translated back to host machine code. Since plugins operate at the IR level and not
at the machine code level it is relatively easy to port plugins so they work with different guest
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input x86 code
# <OPCODE> <SRC1>, <SRC2 & DST>

# %rdx = *(%rax) + %rdx

add (%rax), %rdx

TCG IR
# <OPCODE> <DST>, <SRC1>, <SRC2>

# No-op that signals the start of a

# new guest instruction

insn_start <PC of guest instruction>

# tmp0 = guest.rax

#

#

mov_i64 tmp0, rax

# tmp1 = *tmp0

# little-endian quad-word (64-bit) load

qemu_ld_i64 tmp1, tmp0, LEQ, 0

# tmp2 = guest.rdx

#

#

mov_i64 tmp2, rdx

# tmp1 = tmp1 + tmp2

add_i64 tmp1, tmp1, tmp2

# guest.rdx = tmp1

mov_i64 rdx, tmp1

generated x86 code
# <OPCODE> <SRC1>, <SRC2 and/or DST>

# host register %r14 contains a

# pointer to the guest CPU object.

# (CPUX86State as shown in Figure 2.3)

# host.rbp = guest.rax

# (guest register %rax is stored at

# offset 0 of the guest CPU struct)

mov (%r14), %rbp

# host.rbx = *(host.rbp)

# little-endian quad-word (64-bit) load

mov (%rbp), %rbx

# host.r12 = guest.rdx

# (guest register %rdx is stored at

# offset 0x10 of the guest CPU struct)

mov 0x10(%r14), %r12

# host.r12 = host.rbx + host.r12

add %rbx, %r12

# guest.rdx = host.r12

mov %r12, 0x10(%r14)

Figure 2.5 – TCG IR and x86 machine code generated to emulate an x86 add instruction (the IR to
update the guest status flag register is omitted). Note that the operand order in x86 and TCG IR is
reversed.

CPU architectures. Simple plugins whose behaviour does not depend on the exact semantics of
guest instructions can work with multiple different guest ISA without any modification.

Even though a plugin can insert arbitrary code into the guest program the bulk of our
instrumentation is not in TCG IR, but in C and C++. Instead of generating large amounts
of IR we insert only small snippets that call the instrumentation functions. Even though this
incurs some overhead we have chosen this approach to speed up the development process, since
it is much easier to write in C/C++ than in the low level TCG IR.

Certain features of the design of QEMU and TCG incidentally work together to ease the
development of plugins. TCG IR enforces a certain separation between host memory and guest
memory, since it uses different opcodes to work with the one or the other. This means that
the IR emitted can freely use separate virtual registers and does not have to take care not
to accidentally clobber resources of the guest program. Guest programs also have no way of
accessing the registers and memory of the plugin, meaning a faulty guest cannot cause faults
in the emulator. Furthermore, temporary registers in TCG IR are distinct from guest machine
registers, meaning one can freely insert code at any place without having to spill or restore
values in and out of memory explicitly. TCGs register allocator automatically takes care of this.
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input x86 code
# jump to code at address 0xCAFEBABE

jmp 0xCAFEBABE

TCG IR
# <OPCODE> <DST>, <SRC1>, <SRC2>

# No-op that signals the start of a

# new guest instruction

insn_start <PC of guest instruction>

# virtual register 'env' contains a

# pointer to the guest CPU object.

# (CPUX86State as shown in Figure 2.3)

# no-op.

# can later be patched for TB linking

goto_tb $0x0

# guest.eip = 0xCAFEBABE

# (guest program counter is stored at

# offset 0x80 of the guest CPU struct)

movi_i64 tmp3, $0xCAFEBABE

st_i64 tmp3, env, $0x80

# exit TB, branch back to QEMU code

exit_tb ...

generated x86 code
# <OPCODE> <SRC1>, <SRC2 and/or DST>

# host register %r14 contains a

# pointer to the guest CPU object.

# (CPUX86State as shown in Figure 2.3)

# no-op

# can later be patched for TB linking

xchg %ax,%ax

jmp label

label:

# guest.eip = 0xCAFEBABE

# (guest program counter is stored at

# offset 0x80 of the guest CPU struct)

mov 0xCAFEBABE, 0x80(%r14)

# exit TB, branch back to QEMU code

lea ..., %rax

jmp <QEMU-interpreter-loop>

Figure 2.6 – TCG IR and x86 machine code generated to emulate a x86 jmp instruction. Note that the
operand order in x86 and TCG IR is reversed.

A TPI plugin is simply a shared library which QEMU loads into memory on startup, before
it even starts emulating the guest program. TPI offers a C API allowing plugins to register
callback functions which are then called whenever certain events occur. Most of these events are
related to the translation of guest instructions to TCG IR. There are, for example, events that
signal that TCG has started or finished constructing a new TB, and also events that signal that
TCG has started or finished decoding a guest machine instruction. Whenever such a callback is
called the plugin can then choose to insert new IR instructions into the TB, or alter the existing
ones. A short excerpt of the plugin API is shown in Figure 2.7

TCG decodes trace blocks, i.e., it generates all IR instructions in a TB, in one pass. Virtual
registers are not in static single assignment (SSA) form [174], and instead are reused as much
as possible to reduce memory consumption of TCG itself during translation. Consequently, a
TPI plugin written using only callbacks must emit its instrumentation directly as TCG emits
its IR or take care not to clobber virtual registers. As TPI only provides this event based API
instrumentation plugins have to be written as a state machine or in continuation passing style.

Since TCG IR generates multiple IR instructions even for the simplest guest instruction
writing plugins that maintain state across a TB can quickly become quite tedious. To make
writing plugins easier we have developed a thin C++ API wrapper around the original TPI API
that allows working with TCG IR in a more straightforward fashion. It allows plugins to work
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struct TPIOpCode; // a single TCG IR instruction

struct Translation_Block;

/// Object representing the state of a plugin.

/// Contains callbacks that will be called by TPI.

struct TCGPluginInterface {

// Called whenever TCG is about to start decoding a new trace block.

// IR for trace will be stored in 'tb'.

void (*before_decode_first_instr)(const TCGPluginInterface *tpi,

const TranslationBlock *tb);

/// Called whenever TCG has finished decoding a trace block.

void (*after_decode_last_instr)(const TCGPluginInterface *tpi,

const TranslationBlock *tb);

/// Called whenever TCG is about to decode the next instruction of

/// the current trace block.

void (*before_decode_instr)(const TCGPluginInterface *tpi, uint64_t pc);

/// Called whenever TCG has inserted a new IR instruction into

/// the current translation block.

void (*after_gen_opc)(const TCGPluginInterface *tpi, const TPIOpCode *opcode);

...

};

Figure 2.7 – Core events of the TPI C API

with the IR for an entire TB at once and to perform multiple passes over the IR and to insert
code at any point in the TB. We have also wrapped TCGs routines for allocating and freeing
virtual registers so a plugin author does not have to worry about overwriting registers used by
the guest code itself.

TCG IR has control flow but does not directly represent basic blocks, it just has set_label

and branch to label instructions. Our IR layer also detects the basic blocks in a TB and makes
it easy to iterate over successors and predecessors. However, the C++ TPI wrapper currently
does not allow altering the control flow of a TB, i.e. it cannot change jump targets and also
cannot insert or remove jumps.

2.4 Execution Tracing with QEMU

During this thesis we have developed different tools to perform high-level analyses on Executable
and Linkable Format (ELF) [206] binaries. The input of these tools are traces of events describing
different aspects of the execution of a program. This section describes three TPI plugins we
have developed to trace a program’s control-flow, data-dependencies and integer computations.

On a side note, we want to point out that execution traces of real world programs can
become extremely large. So large, in fact, that realistically we cannot store entire traces in files.
This can be illustrated with a little thought experiment. A modern CPU runs at a frequency
of several GHz, meaning every second it can execute billions of instructions. When tracing a
small program that only runs for one second if one retains even only one byte of data for every
instruction that is executed the resulting raw trace will already contain more than one gigabyte
of data. Consequently, all plugins presented here are designed as libraries that produce streams
of events which can be treated directly in memory. If necessary, for example for debugging or
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verification purposes, partial traces can still be stored to a file.

2.4.1 Control-flow tracing

The control-flow tracing plugin we have developed observes the branches executed in a program
and has the goal of distinguishing local control-flow inside a function and calls and returns
between functions. This information can in turn be used to:

• Recover the interprocedural call graph (CG) and intraprocedural control flow graph (CFG)
of a program and

• track the calling-context, that is a compact representation of the call stack, during execu-
tion.

Since portability, across CPU architectures as well as across languages, was one of our main
concerns we took great efforts to make our plugin independent of platform and language ABIs.
It does not inspect the call stack and only uses basic assumptions about branch instructions of
a given architecture. This approach is also robust against of software stack unwinders as used,
for example, for exception handling in C++.

The main problem with control-flow tracing is that, as mentioned earlier, binary machine
code is much less structured than source code. The plethora of high-level control flow found in
programs, like loops, conditionals, function calls, returns and exception handling, are all reduced
down to a small number of branch instructions. On x86, for instance, all normal control flow is
implemented using only call, ret, jmp and jcc. Hence, the machine code conflates at least some
different types of control flow by implementing them using the same instructions. Compilers can
also sometimes use different machine instructions to implement the same control flow construct
depending on they context are used in, e.g., replacing calls with a cheaper jmp where possible.
This means our plugin has to be able to detect the intended purpose of a branch instruction
from the instructions immediately surrounding it and branch target.

Since the plugin needs to be able to distinguish different forms of guest branch instructions it
cannot work solely at the level of TCG IR. To make it easier to port the plugin between different
architectures the main part of the code works does not work directly with guest opcodes. Instead
we map the different guest branch instructions to a reasonably small set of abstract terminator
types shown in Figure 2.10. Thanks to this only a small part of the plugin that is responsible
for categorizing guest instructions is architecture dependent. The majority of the code and also
all the instrumentation we generate does not need to be changed to support new platforms.

In practice, local branches inside functions are mostly regular and easy to handle. The main
problems arise when trying to handle calls and returns between functions. For example, the
“normal” way to translate a function call in C is using the call instruction. But this is by
far not only way that function calls are actually implemented. The most commonly occurring
alternative implementation, tail call optimization, which has already been mentioned, uses jmp

instructions instead, which are normally used for control-flow inside a function. But there are
also other, more exotic, ways to implement function calls. In highly hand optimized assembly
code, as can be found in the GNU C standard library, there are cases where a function call
occurs via fall-through, i.e., without any branch instructions. An example of this can be seen in
Figure 2.8. Another reason why interprocedural control flow is more difficult to handle is that in
modern code bases using virtual function dispatch and function pointers or lambda expressions
indirect branches are much more common. In general it is not possible to statically detect the
target of such indirect branches meaning we have no information about the target of the branch
before actually executing the branch.

There are also cases where call instructions are used for other purposes than function calls.
On pre 64 bit x86 CPUs there is no direct support for RIP relative addressing, which is necessary
for writing position independent code. One idiom used to work around this is show in Figure 2.9.
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0000000000149cd0 <__strcasecmp_ssse3>:

149cd0: f3 0f 1e fa endbr64

149cd4: 48 8b 05 e5 60 07 00 mov 0x760e5(%rip), %rax

149cdb: 64 48 8b 10 mov %fs:(%rax), %rdx

149cdf: 0f 1f 44 00 00 nopl 0x0(%rax, %rax, 1)

149ce4: 66 66 2e 0f 1f 84 00 data16 nopw %cs:0x0(%rax, %rax, 1)

149ceb: 00 00 00 00

149cef: 90 nop ⇐ fall-through!

0000000000149cf0 <__GI___strcasecmp_l_ssse3>:

149cf0: f3 0f 1e fa endbr64

149cf4: 48 8b 02 mov (%rdx), %rax

149cf7: f7 80 78 02 00 00 01 testl $0x1, 0x278(%rax)

149cfe: 00 00 00

149d01: 0f 85 d9 ba f5 ff jne a57e0 <__strcasecmp_l_nonascii>

149d07: 89 f1 mov %esi, %ecx

149d09: 89 f8 mov %edi, %eax

149d0b: 48 83 e1 3f and $0x3f, %rcx

149d0f: 48 83 e0 3f and $0x3f, %rax

... ... ...

Figure 2.8 – Example of a function call by fall-through. As seen in glibc 2.28.30 (Fedora 29) in
x86 (AT&T syntax). __strcasecmp_ssse3 (an optimized version of strcasecmp using x86 SSSE3 [54]
instructions) does not end in a branch instruction. Instead execution will always fall-through to
__GI___strcasecmp_l_ssse3 (another optimized variant of strcasecmp).

call here

here: pop %rax

# %rax now contains the absolute address of `here'

Figure 2.9 – 32 bit x86 assembly code to obtain the value of the program counter (AT&T syntax).

It consists of a call instruction that jumps zero bytes away, that is, it only pushes the value
of the program counter in the stack and falls through to the next instruction Even though this
uses a call instruction it is not an actual function call and is never returned from.

On 32 bit ARM the program counter is a general purpose register that can be read and
written by any instruction. Consequently any instruction can perform a branch by writing to
the program counter register. The standard return instruction on 32 bit ARM, for example, is
actually just “pop pc”. I.e. to return one simply pops the return address directly from the stack
into the program counter.

In this work we do not use any technique to reconstruct the boundaries of functions [9, 15]. In-
stead we rely on the ELF symbol table and DWARF Debug Information Format (DWARF) [205]
debug information to detect the addresses and boundaries of functions. We also make the fol-
lowing assumptions about functions:

1. All code for a function is located in a single, contiguous ELF symbol; that is, they contain
no holes.

2. Functions do not overlap; if they do we split them into multiple non-overlapping functions.
Since we want to not only support the regular code patterns emitted by most compilers, but
also hand written assembly code we also assume that functions can have multiple entry points,
i.e. a call to a function does not necessarily enter at its first instruction.

Unfortunately, the ELF symbol table and debug information do not necessarily contain
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information for all functions in a binary. Static functions in C/C++, for example, which aren’t
part of a binary’s interface are usually not included in the symbol table. As we currently have
not implemented any algorithm for recovering functions from machine code we group all the code
regions for which we have no information into one big “unknown” function. Since unmarked
code is usually spread out over the binary and the shared libraries it loads we allow this special
function to, unlike any other function, contain holes.

Given this model of functions is it is quite straightforward to distinguish the different types
of branches. All information that is required for this is:

• The type of the instruction the trace that performed the branch, i.e., whether it was a
call or jump, etc., and

• whether the source and the destination of the branch are in the same or in different
functions.

The pseudo-code for calculating the branch type can be seen in Algorithm 2.1.
Finally, to detect when branches occur in the guest it suffices to simply track whenever

execution enters a new TB. Since branch instructions always terminate their trace block we
know that if a new TB is entered a branch has been executed. The event object, which can be
seen in Figure 2.10, generated for every branch simply records the TB the branch originated
from and the target of the branch. To implement this the control-flow tracing does two things
whenever a new TB is translated:

• It allocates a descriptor object recording metadata for the TBs, and
• it inserts a call to a helper function at the beginning of the TB, passing the metadata

object as an argument. This helper function will then emit a branch event every time the
TB is executed.

Pseudo-code for this can be seen in Figure 2.11.
There is one particular case, though, where instrumenting only the entry of a TB does not

suffice. When a function does not end in a branch but falls through to the next function after
it, the current TB will typically not be terminated at this transition. Instead, the generated TB
will contain instructions from both functions. In this case, we have to insert a call to a helper
function between the two functions to emit a branch event whenever the fall-through occurs.
Ordinary fall-throughs that do not leave their function do not require any special treatment and
are handled the same as normal local branches.

Using this instrumentation we can capture nearly all forms of control flow. However, there
are two types that cannot be recovered this way, namely: the interprocedural control-flow
transfers that occur during stack unwinding, and the local fall-through branches from a call

site to the instruction following it. The control-flow tracing plugin post-processes the raw stream
of events generated by the instrumentation to detect these cases and inserts appropriate events.
Pseudo-code for this can be seen in Algorithm 2.2.

During stack unwinding, which is usually used to implement exception handling for languages
such as C++, one or more call frames can be discarded without using return instructions. Since
we store the return destination of every call on the shadow call stack we can detect when the
expected destination and the actual target do not match. In this case we pop off shadow stack
frames, adding unwind edges to the CG as we go, until we find a matching return target. Note,
that this only works if the call stack is used like a stack. Advanced uses of setjmp/longjmp or
fully fledged continuations are not supported.

In most IRs used in compilers and analysis tools interprocedural and intraprocedural control-
flow is strictly distinguished. For simplicity, function calls are furthermore not considered branch
instructions from the point of view of the control-flow inside a procedure. Instead a function
call is simply modelled as a single instruction with complex effects followed by a fall-through to
the next instruction. QEMU, on the other hand, directly emulates the behaviour of the CPU
and does not have any notion of local or non-local control-flow. Thus, the control-flow tracing
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# types of different instructions that can terminate a TB

enum Terminator_Type:

JUMP, CALL, RETURN, OTHER

# different types of branches we can detect

enum Branch_Type:

# inside a function

LOCAL_JUMP,

# between functions

CALL, TAIL_CALL, UNWIND, RETURN

struct Block:

# unique ID for the function containing this block

function: Function_Id

# PC of first guest instruction in block

start: PC

# type of the last instruction in the block

terminator_type: Terminator_Type

struct Branch_Event:

src: Block

dst: Block

brtype: Branch_Type

Figure 2.10 – Event data structures used for control flow tracing.

instrumentation will only observe a call branch out of the current function and later a return
branch from the called function to the instruction after the call. Without further treatment any
consumer of the event stream that only looks at the local control-flow would wrongly believe
that the function call never returned. Instead, the control-flow tracing plugin emits a synthetic
fall-through event after every return as shown in Algorithm 2.2, line 28. We cannot simply insert
this fall-through branch statically after every call instruction since some calls actually do not
ever return.

We will now briefly describe two low-level analyses using the final stream of branch events
produced by the control-flow tracing plugin to compute higher level information. Chapter 4
contains higher level applications that build on top of them.

2.4.1.1 CFG and CG Reconstruction

For the analyses proposed in thesis, as described in Chapter 4, we need as precise information
about control-flow as possible. However, statically reconstructing the exact CFG and CG from
machine code from is considered, in general, undecidable due to, among other things, data-
dependent branches and instruction punning. Instead of an approximate static analysis we
chose to use a dynamic analysis, based on our tracing infrastructure described above, which can
perfectly capture the control-flow of a given execution of a program. Since the stream of events
already distinguishes local branches and non-local control flow and contains both the source and
destination of every branch it is trivial to reconstruct the CFG and CG from it. The trade-off
being that the information is partial, only covering the parts of the program that actually where
executed, and depend on the input data used.

A consequence of this is that our analysis does not, strictly speaking, recover the basic
blocks of a program. Recall, that a basic block has only one entry, meaning that blocks have
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1 # types defined in Figure 2.10

2
3 def detect_branch_type(src: Block, dst: Block) -> Branch_Type:

4 if src.terminator_type == CALL:

5 return CALL

6 elif src.terminator_type == JUMP:

7 if src.function == dst.function:

8 # NOTE: we do not distinguish self-recursive

9 # tail calls and local branches.

10 return LOCAL_JUMP

11 else:

12 return TAIL_CALL

13 elif src.terminator_type == RETURN:

14 return RETURN

15 else:

16 # system call or fall-through

17
18 if src.function != dst.function:

19 # fall-through to another function.

20 return TAIL_CALL

21 else:

22 # fall-through end of block

23 return LOCAL_JUMP

Algorithm 2.1 – Distinguish calls, tail calls and local jumps.

to be split at branch targets. In machine code, though, we cannot recover the destination
of branch instructions and any instruction is a valid branch target. We however believe that
treating every instruction as a separate block would be overly conservative. As a final output
our analysis still constructs single entry-single exit blocks of instructions, but only considers
branch targets actually observed. We call these execution blocks since they correspond to the
basic blocks observed during execution. Execution blocks are constructed from trace blocks by
splitting the trace blocks seen during execution such that every instruction is contained in at
most one block.

To improve coverage of the guest program the control-flow reconstruction plugin does take
into account the targets of direct conditional branches that are never taken. It only considers
direct branches though, since their targets can be computed statically even if they are not taken.

2.4.1.2 Calling-context tracking

The behaviour of any piece of code can vary wildly with the inputs and machine state, such as
cache or branch predicator state, with which it is executed. Without a notion of context a profiler
can not differentiate different executions of the same piece of code, possibly producing wildly
misleading results. Ammons et al. [7] have proposed the idea of context sensitive profiling where
information is not attached to a single static location in a program but to a path through the
program. They also introduced the calling context tree (CCT) data structure, which encodes
paths through the CG and makes it possible to track the dynamic calling context for each
function call. Examples of a CG and CCT are shown in Figure 2.12

We have implemented a QEMU plugin which uses our control-flow trace to compute the
calling contexts in which every instruction in a program executes. Note that, while the work of
Ammons et al. goes beyond tracking calling contexts, this section is only meant to illustrate an
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# types defined in Figure 2.10

# global variable

previous_block = None

# callback that is invoked whenever a block is executed

def on_enter_translation_block(block: Block):

if previous_block != None:

brtype = detect_branch_type(previous_block, block) # Algorithm 2.1

emit Branch_Event(previous_block, block, brtype)

previous_block = block

(a) Pseudo-code for the helper function that raises the branch events.

input TCG IR

insn_start 0x401240

mov_i64 tmp1, rax

mov_i64 tmp0, rdx

or_i64 tmp0, tmp0, tmp1

mov_i64 rdx, tmp0

...

instrumented TCG IR
mov_ptr tmp0, <Block object for TB>

call on_enter_translation_block(tmp0)

insn_start 0x401240

mov_i64 tmp1, rax

mov_i64 tmp0, rdx

or_i64 tmp0, tmp0, tmp1

mov_i64 rdx, tmp0

...

(b) Example of generated instrumentation in TCG IR.

Figure 2.11 – Code inserted to trace raw branch events.
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Figure 2.12 – Example call graph and associated calling context tree.

application of control-flow tracing and focuses on our implementation of CCTs in QEMU. Sec-
tion 4.4 will present an extended algorithm that also takes local control-flow inside of functions
into account.

Our CCT implementation is, in essence, a trie [59, 27] encoding the set of call stacks that
where live during a program’s execution. Every node in the CCT represents one call frame
and stores the address of the instruction that performed the call and the address where the call
should return. The node data structure also contains an identifier of the function containing
the call instruction for easy reference. The children of a CCT node in turn correspond to all the
functions that have been called while the call frame from that node was live. By furthermore
storing a parent pointer in every node of the CCT we can compactly represent a whole call stack



26 CHAPTER 2. DYNAMIC BINARY INSTRUMENTATION WITH QEMU

1 # Shadow call stack mirroring the real call stack of the guest.

2 call_stack: Stack<Call_Frame>

3
4 def on_branch(evt: Branch_Event):

5 if evt.type == CALL:

6 # Push shadow call frame on the call stack

7 call_stack.push({evt.src, ...});

8 # Forward call event

9 emit evt

10 elif evt.brtype == RETURN:

11 caller = call_stack.pop()

12
13 if caller.return_target != evt.dst.start:

14 # Return did not go where it was supposed to due to

15 # an exception or longjmp.

16 # Unwind stack.

17
18 while True:

19 caller = call_stack.pop()

20 if caller.return_target == evt.dst.start:

21 break

22 emit Unwind_Branch(caller)

23
24 # emit the actual return event itself

25 assert caller.return_target == evt.dst.start

26 emit Return_Branch(caller, evt)

27
28 # fall-through from TB terminated by call.

29 if caller.function == evt.dst.function:

30 emit Local_Branch(caller, evt.dst)

31 else:

32 emit Tail_Call(caller, evt.dst)

33 else:

34 ...

Algorithm 2.2 – Code to handle function returns and exception unwinding.

with a single node reference.

Note that this version the CCT has no bound on the depth of the tree. With recursion the
depth of the CCT will in fact grow proportionally with the depth of the recursion. It also does
not contain any information about local control-flow inside of functions. The original version,
developed by Ammons et al., does in fact bound the depth of the tree and also encodes local
flow information. However, it only achieves this by ignoring cycles in the CG and CFG. We
have developed an extension of the CCT that captures both recursive call paths as well as loops
inside of functions which will be described in Section 4.4.

In the following we will use references to CCT nodes plus the address of an instruction as
instruction identifier. Including a CCT node in the identifier allows us to distinguish different
dynamic executions of an instruction.
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2.4.2 Data Dependence Tracing

The goal of data dependence tracing is to discover pairwise data dependencies between instruc-
tions. For our purposes we define that a data-dependence occurs when an instructions reads
data produced by another instruction. Note that we also distinguish different dynamic execu-
tions of the same instruction. That is if an instruction is executed in a loop we will emit new
data dependence events every iteration. While there are powerful static techniques to calculate
data dependencies, like the polyhedral model, they only produce accurate results for a highly
restricted class of programs. In order to be able to produce precise results for general programs
we chose, as we did for control-flow tracing, to use a dynamic approach.

To detect dynamic data dependencies in programs we use shadow memory [45, 154, 229]. A
shadow memory is a data structure that records a piece of information for each storage location
used in a program. For dependency tracking the information is usually an identifier for the last
instruction that modified that location. Now, whenever an instruction reads data from a storage
location, i.e. performs a read from memory or a register, we can find the producer of that data
in the shadow memory.

Our implementation of a shadow memory works at byte granularity, meaning that a 4-byte
write will update four shadow memory cells and a 4-byte read will look at four shadow memory
cells. We actually group entries of the shadow memory into shadow pages, similar to how normal
memory is split into pages. These pages are stored in a search tree allowing for quick retrieval.
Grouping cells together allows us to exploit the locality of memory accesses in two ways:

1. Even though a n-byte memory access touches n shadow cells all these cells are usually
located on the same page. This means that, even though we work at a byte granularity,
we only have to perform on lookup once per memory access. At most two, if the access
spans two pages. A shadow page itself is just a large array and the actual reads or updates
of shadow cells can be performed directly.

2. We have implemented a small and fast shadow page cache [229] which speeds up repeated
accesses to the same page.

Our library is not only able to trace data dependencies via memory, but also via registers
using a shadow register file. Here the mapping from guest CPU registers to shadow registers is
much more straightforward, since the registers used by a machine instruction can be determined
statically and also because the number of registers in a CPU is usually quite small. The shadow
register file is implemented as an array with one entry for every guest CPU register. For
simplicity we do not consider register aliasing. That is, a write or read of a register is always
assumed to access the whole register.

An attentive reader might have noticed that we only track read-after-write (RAW), or true,
dependencies. The plugin could easily be extended to also track write-after-write (WAW), or
output, dependencies. For the most we chose not to do so because our current applications do not
require it and because it would only generate unused events. Tracking write-after-read (WAR)
or read-after-read (RAR) dependencies directly would be more complicated and costly since it
requires updating the shadow memory at reads. If necessary WAR and RAR dependencies can
be recalculated as a post-pass from the RAW and WAW dependence information.

To reduce the size of traces and ease later analysis our shadow memory implements a simple
form of dynamic copy propagation. This mechanism applies whenever the instrumenting data-
copying instructions which only move data between storage locations without modifying it. The
instrumentation inserted to update the shadow memory for these instructions works slightly
different. If a dynamic execution of a copy instruction only reads data produced by a single
other instruction the identifier recorded in the shadow memory cell for the destination of the copy
is not that of the copy instruction but that of the actual producer. This propagation mechanism
is designed to, among other things, filter out spill code inserted by compilers to store and load the
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contents of registers to and from the stack. The idea being that instructions that don’t compute
anything and only move data around are usually not interesting for dependence analysis. Since
the exact definition of what constitutes a pure data copy is a bit vague and can vary along with
different use cases. Our shadow memory can thus be configured to also consider instructions
that perform integer truncation, sign-extension or conversion between integers and floating point
numbers as copy operations.

For x86 guests we also detect classical dependence breaker idioms as documented by Intel
and extensively used by compilers. These idioms are instructions used as hints by compilers to
break false dependence chains via registers. Take for example the instruction xor %rax, %rax,
which performs a bitwise xor on the contents of the register %rax and stores the result back into
%rax. The result of this instruction does not depend on the contents of %rax, it will always set
%rax to 0, and it does not create a data dependence on whoever last wrote to %rax.

Our current implementation of shadow memory does not support concurrent accesses by
multiple threads from the guest program. Consequently, our dependence tracking plugin can
only be used for serial programs.

2.4.3 Value tracing

The simplest form of tracing we have implemented is value tracing. The goal of value tracing is
to capture any value architecturally computed by the guest program. That is any value written
to a guest CPU register or to guest memory. We also consider memory addresses that a guest
program accesses as values, even if the addresses are calculated inside the instruction and not
stored anywhere. Same as the control-flow and data dependence tracing we use this as part of
the dynamic analysis presented in Chapter 4. As shown in that chapter we use these traced
values and addresses to detect loop iterators and regular memory access patterns.

The TPI value tracing plugin we have written generates one event for every guest instruction
executed. For our purposes we actually do not consider every instruction, but only those that
produce integral values and/or perform a memory access. Most branch, compare, floating point
or vector instructions are not considered here. The event contains an identifier for the instruction
along with space for one register sized value and one memory address. For instructions that do
not generate a value, such as store instructions, we mark the value field as unused. Similarly,
for instructions that do not access memory we mark the address field as unused. For simplicity
an event can store at most one value and address each. In the rare case that an instructions
produces more than one value or accesses more than one address we do not capture all these
values but instead mark the corresponding field in the event as unused.

2.5 Evaluation of the Overhead of Plugins
In this section we show the overhead incurred by running programs in QEMU with some of our
plugins. We also compare this to the slowdown of running the same programs in other binary
translators.

To evaluate the overhead of our plugins we have used the latest revision (3.1) of the Rodinia
benchmark suite [42, 43]. As our tool-chain does not support multi-threaded applications yet,
each benchmark is manually modified to turn into a single thread. It is then compiled using
GCC 8.1 using flags -g -O2 -msse3. We use -sse3 since QEMU does not yet have full support
any more recent vector instructions. The binary translators we used are QEMU version 3.1,
Valgrind version 3.15.0 [155], and DynamoRIO version 7.1.0 [29]. All time measurements where
performed on a single core of a Haswell i5-4590 CPU running at 3.3GHz.

We first evaluate the overhead of using QEMU-plugins as an instrumentation framework.
For that purpose we compare the execution time in different contexts:
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backprop 0.04s±0.0s 7.5x 8.8x 1.1x 455x 28x 373x 24x 63x
bfs 1.1s±0.0s 5.8x 7x 0.5x 921x 50x 859x 40x 173x
b+tree 1.1s±0.0s 5x 6.8x 0.1x 850x 40x 654x 38x 101x
cfd 2.1s±0.0s 28x 5x 0.2x 475x 34x 419x 44x 132x
heartwall 16.96s±0.1s 31x 11x 0.01x 608x 29x 464x 43x 90x
hotspot 1.1s±0.0s 5x 5x 0.3x 573x 52x 537x 33x 167x
hotspot3D 4.5s±0.0s 24x 8.5x 0.1x 725x 48x 607x 39x 164x
kmeans 3.9s±0.0s 38x 12x 0.1x 807x 39x 611x 61x 181x
lavaMD 4.1s±0.0s 38x 21x 3.7x 627x 44x 521x 54x 130x
leukocyte 11.8s±0.0s 56x 20x 1.9x 819x 48x 587x 75x 174x
lud 0.1s±0.0s 22x 11x 0.6x 804x 56x 732x 49x 170x
myocyte 0.002s±0.0s 24x 120x 22x 306x 157x 478x 82x 149x
nn 0.01s±0.0s 8.9x 26x 3.7x 518x 57x 489x 41x 121x
nw 0.1s±0.0s 2x 6.1x 0.7x 314x 19x 268x 9.8x 45x
particlefilter 0.3s±0.0s 32x 10x 0.2x 746x 39x 611x 62x 127x
pathfinder 0.8s±0.0s 6.6x 6.4x 0.7x 758x 41x 686x 39x 132x
srad_v1 0.5s±0.0s 47x 6.8x 0.2x 416x 23x 308x 53x 100x
srad_v2 0.3s±0.0s 40x 10x 1.2x 401x 26x 307x 48x 88x
streamcluster 38.1s±0.3s 42x 7.4x 0.01x 473x 23x 357x 50x 102x

Table 2.1 – Overhead of profiling on the Rodinia benchmark suite: slowdown compared to native
execution (overhead = emulator time−native time

native time ). Times are averaged over ten runs.

1. We take the native execution time as a baseline.
2. We evaluate raw execution time of different binary translators, i.e., without any instru-

mentation.
3. We evaluate the overhead of doing basic memory profiling of those frameworks (Dinero

IV [66] for cache simulation under QEMU, cachegrind [152] for Valgrind, drcachesim for
DynamoRIO).

4. We finally evaluate the overhead of CFG reconstruction plugin and a simple shadow-
memory plugin that traces data dependencies between machine instructions.

Table 2.1 reports the slowdown compared to the native execution time on backprop (bench-
mark used for our case study) and Rodinia (average values). We observe the following: Without
any plugins Valgrind and QEMU run at roughly the same speed, while DynamoRio is much
faster; Still as one could expect, the main source of overhead is the inserted instrumentation
itself. Even a highly optimised cache simulator like Cachegrind incurs a close to 4x slowdown
compared to just running Valgrind by itself. The control-flow tracing plugin has a relatively
low overhead since it only inserts instrumentation at the beginning of every trace block. The
shadow memory plugin, on the other hand, has a substantially higher overhead.

As we can see from this table QEMU is clearly not the fastest binary translation system.
However, as soon as we perform any significant instrumentation the overhead introduced of the
instrumentation clearly dominates the overhead of the binary translator.

2.6 Related Work

This section discusses some previous work related to binary instrumentation and also regarding
the applications thereof presented in this chapter.
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QEMU based tools

Two projects closely related to our work are TEMU[193], part of the BitBlaze tool suite, and
its successor DECAF [89]. Both of these tools implement a dynamic binary instrumentation
infrastructure based on QEMU. TEMU and DECAF can only run using QEMU’s full system
mode which emulates and observe a whole operating system. Like TPI, both offer a plugin API
which can be used to implement dynamic analyses. Their APIs, however, do not give plugins
direct access to TCG IR. Instead they offer a fixed set of hooks in guest programs for which
a plugin can register callbacks. TEMU and DECAF then take care of inserting these hook
functions into the emulated binaries. There are hooks to, among other things, trace the entry
and exit of functions or TBs, the execution of individual instructions, and also for tracking
memory accesses.

Neither TEMU nor DECAF offer support for tracing data dependencies, they instead im-
plement a taint tracing mechanism. Taint tracing is a dynamic analysis that is commonly used
in security analysis. For this analysis the user labels certain sources of inputs, such as the key-
board, network interface, or hard disk, as tainted. The taint tracing mechanism then keeps track
of the dynamic data-flow inside the guest system to detect where the tainted data is used. Both
TEMU and DECAF implement this using a shadow memory working at bit-level granularity.

PANDA [64] is a dynamic binary analysis tool used for reverse engineering software. As
with the other tools PANDA also allows writing individual analyses in the form of plugins. Like
DECAF and TEMU PANDA offers a fixed set of hooks into a guest program’s execution that
plugins can use. PANDA can also optionally replace QEMU’s standard compiler, TCG, with the
JIT compiler of the LLVM compiler infrastructure [124, 165]. In this mode PANDA translates
TCG IR to the semantically richer LLVM IR. Plugins can then inspect and arbitrarily modify
guest code in LLVM IR form before it is translated to host machine code. Using a more high level
IR makes writing many plugins easier and allows plugin authors to reuse the extensive catalogue
of static analyses available with LLVM. In this mode PANDA also uses LLVM to compile the
IR to host machine code. While LLVMs JIT compiler produces much better machine code than
TCG it is also considerable slower. Overall PANDAs author observe a slowdown of around 10x
compared to normal QEMU when running in this mode.

We would like to point out one last pragmatic difference between TPI and the other tools
presented above. In their implementation all these tools have extensively modified the source
code of QEMU itself. Since QEMU is a living project its code base changes over time as features
are added 3 Consequently, it takes considerable effort to maintain the forked versions of QEMU
and all project this author is aware of have fallen several releases behind the main QEMU
version. TPIs implementation, on the other hand, tries to be as non-invasive as possible and
only modifies the guest ISA independent parts of TCG. Since the API of TCG itself and its IR
are relatively stable porting the plugin infrastructure to a new release of QEMU takes less than
a day of work.

Dynamic binary instrumentation tools

There are, of course, many other dynamic binary translation and instrumentation frameworks
beside QEMU. The most widely used ones, Valgrind [155], Intel Pin [134], and DynamoRIO [29],
work similar to QEMU+TPI in user mode. Like QEMU they use trace based binary translation
of programs. They do, however, offer neither an equivalent of QEMU full system mode nor are
they able to cross translate between different ISAs and application binary interfaces (ABIs). I.e.
the host CPU must be the same as the guest CPU and the guest and host kernel must also

3Over the last five years it has received, on average 573 commits per month to its Git repository, excluding
merge commits.
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use the same ABI. They also support less different CPU architectures than QEMU. Pin, for
example, since it is an official Intel product only works on x86 programs.

Valgrind is a framework for building dynamic binary analyses that is used extensively to
debug memory management and threading problems. Like QEMU it translates machine code to
a platform independent IR before emitting the final machine code. Valgrinds IR is richer than
TCGs allowing instructions to take whole expressions as arguments instead of only registers
and constants. It also has extensive support for hooking or overwriting functions of the guest
program by plugins. Contrary to TPI Valgrind does not support running multiple plugins at
the same time.

Pin and DynamoRIO are binary instrumentation systems that provide a much thinner layer
of abstraction from the underlying CPU architecture than Valgrind or TPI. Their IR, for ex-
ample, does abstract away details of the underlying guest ISA but only offer a one to one
representation of instructions. They also do not offer any form of virtual registers. This means
that plugins need to manager machine registers used by their instrumentation themselves and
also need to make sure to not clobber guest registers. The upside of this much more direct ap-
proach to binary translation is that both Pin and DynamoRIO introduce a much lower overhead
than QEMU or Valgrind. This is because they 1 do not need to transform the guest code into a
very different representation, and 2 the final machine code they emit is usually much closer to
the original guest code.

Dyninst [145] is a set of C++ libraries for both static and dynamic binary analysis developed
as part of the Paradyn project [146]. This framework allows instrumentation to be specified via
DynC, a small C-like language, using an embedded C++ DSL or directly as snippets of machine
instructions. Dyninst uses static parsing of the binary machine code to recover the CFG of
a program. The parser can use symbol information, if available, but can also detect function
boundaries by itself. It can also resolve some types of indirect jumps such as jump tables and
uses an interprocedural analysis to detect functions that never return. It furthermore has an API
to walk the runtime stack of running programs used in sampling tools such as HPCToolkit [4].
Finally, Dyninst can also perform some static data-flow analyses to detect which instructions
affect or are affected by the value in a register or memory location.

Static binary instrumentation tools [123, 196, 173, 67] are less widely used today. As men-
tioned earlier in this chapter there are some inherently undecidable problems in static binary
analysis. Consequently that a static instrumentation tool can not work on arbitrary programs.
In practice though they work well, as long as they are presented with the mostly regular and
structured machine code emitted by a compiler [8].

Static binary re-optimizers like BOLT [157] and the work of Koju et al. do not perform full
binary instrumentation, but only try to transform a program to improve its performance. Since
they only seek to improve performance they can just ignore code patterns that they cannot
analyse. These tools also assume that the input binary has been produced with a well-known
compiler. They use this to reconstruct high-level information by matching well-known code
patterns and by making certain assumptions about the structure of the program.

There also exist static re-optimizers that work at the level of textual assembly language [60,
103]. The advantage of working at this level instead of the machine code level is that it is more
structured. Jump labels, for example, are still available in assembly making it trivial to recover
the local CFG of functions. Functions boundaries are also, for the most part, clearly demarcated.
Lastly, assembly also clearly seperates code and static data sections. It even provides a modicum
of type information, such as whether a object is a string or an array of integers.
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Dynamic CFG reconstruction

Dynamic control-flow reconstruction as presented here is less commonly used than static ap-
proaches.

PinPlay [159], a Pin based framework for recording and replaying program executions con-
tains a module to dynamically reconstruct the CFG of a program. Like with TPI, CFGs recon-
structed by PinPlay are partial and depend on the actual control flow seen during execution.
Since Pin is, like QEMU, a trace based system their definition of a dynamic control flow graph
(DCFG)[227] used in PinPlay is essentially the same as the one used in this thesis. PinPlays
DCFG also includes the virtual fall-through edges between a call instruction and the instruction
following the call. Unlike our TPI based plugin PinPlay also supports multi-threaded applica-
tions.

The Forced Execution Engine (FXE) [225] is another QEMU based tool that reconstructs
the CFG of an application from execution traces. However, FXE borrows ideas from concolic
testing frameworks [34, 184] and merges multiple execution traces to build a more complete
CFG. During execution FXE snapshots the state of the guest application at every conditional
branch that has not yet been fully explored. It then later rewinds the program state and forces
the conditional branches to follow the unexplored control paths. Unlike a full concolic execution
engine FXE does not use an expensive constraint solver to generate program states that cause
execution to flow to unexplored program regions. Instead, it simply directly modifies the guest
CPU state object to control the target a conditional branch instruction will jump to. Since
FXE modified the guest programs state to execute all possible targets of conditional branches
it often runs into illegal program states and can exercise control-flow paths that are impossible
in the original program. Finally, FXE can also explore all targets for some indirect branches. It
performs some simple pattern matching to find jump tables in the guest program and then uses
the same snapshot and replay mechanism to execute all possible indirect branch targets.

Data dependence tracing

There is a rich existing body of work on data dependence profiling techniques[153, 73, 70, 115,
114, 127, 215, 147, 46]. Until now we have only explored the first part of dependence profiling,
the actual collection of dependence pairs. We will hold off on comparing our work with these
tools until we have presented actual analysis part of it in Chapter 4. For now we will only discuss
the details of the shadow memory implementations from these tools.

Shadow memories are a heavy-weight monitoring technique that come with a large perfor-
mance overhead. This is simply due to the fact that for every memory access in a program the
instrumentation performs add at least one, usually multiple, additional memory accesses. The
most expensive part of a shadow memory requiring the most work is usually the mapping mech-
anism which translates guest memory pages to shadow memory pages. To alleviate the overhead
of mapping implementations of a shadow memory make aggressive use of caching. Umbra [229]
has both a per thread cache for the last translation performed as well as a separate one entry
cache for every memory access instruction in the guest program.

Another approach to reduce the overhead is to avoid unnecessary accesses to the shadow
memory. ParWiz [113] uses static analysis to coalesce adjacent memory accesses turning mul-
tiple smaller acesses to the shadow memory into a single big one. It is even able to hoist the
instrumentation out of some static control loops potentially greatly reducing the number in-
strumentation instructions executed at runtime. Li et al. [128] also use static analyis to skip
repeatedly executed memory accesses that lead to identical data dependencies.

Another big problem with shadow memories is their large space overhead. The SD3 [115]
algorithm used in the data-dependence profiler Prospector [114] reduces memory usage by de-
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tecting stride patterns in memory accesses and using them to compress the information stored
in the shadow memory. Another technique, which trades off space-usage for precision, uses sig-
natures to detect dependencies instead of a shadow memory [129, 215]. Signatures are a data
structure that encodes a possibly unbounded set of entries in bounded space. While signatures
can be used to answer the same types of queries as a shadow memory, all while using less space,
they are an approximate data structure. Consequently, one is no longer guaranteed to detect all
data dependencies.

A shortcoming of many shadow memory based systems [73, 70, 155] as well as our own is
that they do not support concurrent accesses from multiple threads. Even existing work on
shadow memories supporting parallel access have severe limitations. Umbra [229], for example,
only handles concurrent access to its internal mapping data structures which map from guest
addresses to shadow pages. It does not provide synchronization for the actual reads and writes
of shadow memory cells. SD3 [115], on the other hand, only reports dependencies inside threads
and not between threads. Valgrind [155], simply implements its own scheduler and interleaves
the execution of all threads of the guest program on a single host thread.

Note, that shadow memories are not only for data dependence tracing, but are also a core
component of memory error debugging tools [155, 185]. Shadow memories used in this context
often have a smaller performance impact since they often need to only track one or two bits per
byte in the guest process.

Hardware assisted tracing

Some CPU architectures allow tracing the execution of programs with little or no modification
necessary. Instead of inserting instrumentation to collect a trace, this uses specialized features
of the hardware itself. Support for this goes back as far as the 1950’s [175]. The IBM 370,
for example, introduced the Program event recording (PER) facility [56] which can capture a
stream of memory write events, instruction fetch events and branch events.

More recently, Intel has released a feature called Processor Trace (PT) [51, 168]. When PT
is activated, the CPU writes a stream of packets containing events about a process’s execution
into a buffer in user space memory. The current generation of CPUs supporting this technology
emit events for every branch and so can be used for control-flow tracing. They can also emit
packets that allow very precise execution time measurements.

The most recent generations of Intel CPUs have a specialized instruction, ptwrite that can
inject packets with arbitrary user defined word-sized data into the PT event stream. This
instruction could be leveraged by binary instrumentation tools to generate arbitrary traces with
a lower overhead than using conventional means.

Under optimal conditions hardware assisted tracing can capture a record of a program’s run
with virtually no overhead in execution time. In practice this is not possible, simply due to the
fact that the CPU can generate events faster than currently existing storage technologies can
handle. Recent work in control-flow integrity enforcement [75, 101], for example, have found that
Intel PT drops packets when tracing larger programs, such as those from the SPEC CPU2006
benchmark suite [92]. Furthermore, Intel PT traces are, by necessity, highly compressed and
actually using them to reconstruct control-flow graphs requires a non-negligible amount of post-
processing and re-parsing of the original binary. This means, that while PT is a very interesting
technology it is not yet useable for the applications we target since they require very precise
information.
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2.7 Conclusion and Perspectives
This chapter presented the internals of QEMU as well of a plugin infrastructure allowing QEMU
to be used for dynamic binary instrumentation. We have also presented a number of plugins
we have developed on this basis to trace different aspects of a program’s execution, such as
control-flow and data dependencies.

While TPI itself is already quite mature, there are still a large number of improvements to
the system and the plugins we implemented on top of it that we are planning to make.

CPU architectures often have internal states and flags that change they way they execute
instructions. Examples of this are privilege levels on ARM and memory segmentation on x86.
Many of these flags rarely or never change during the execution of a program. Consequently, to
achieve high performance, the code emitted by TCG does not actually constantly check for them.
Instead it emits specialized versions of TBs for different CPU states and switches between them
if the state does change. We are currently evaluating if the we could extend this mechanism
to allow plugins to generate different specialized versions of instrumentation. This could, for
example, be used to speed up context sensitive profiling. Instead of having to maintain the
context tree as a separate data structure and having to look up nodes dynamically it would be
baked directly into the instrumentation code.

Another use case for code specialization in TCG would be to implement sampled execution
of instrumentation with a low overhead [13]. To achieve this one simply creates one context in
which no instrumentation is inserted and one where it is. This essentially would allow turning
the instrumentation on and off simply by changing the context flag. The only overhead here is
that TBs that one wants to instrument need to be compiled twice.

The instrumentation plugins we have implemented currently do not currently work with
self-modifying code. This means our plugins will not work properly with, for example, most
programs that internally use a JIT compiler. The problem here is not QEMU, which supports
programs that create and alter machine code at runtime just fine. Instead the problem lies with
our notion of instruction and identifier and calling contexts. For the moment we use the address
of instructions in the binary for both. Consequently, if the memory containing a function that
has already been executed is overwritten with another function our instruction identifiers will
become invalid. We do, however, support the dynamic patching of the procedure linkage table
(PLT) by the dynamic linker which happens when a program calls a function in a shared library.
This works simply because a PLT indirection is only patched once the first time the associated
function is called. Unfortunately, the first call will have a different calling context than later calls
since it this first call is actually performed by code in the dynamic linker. In order to properly
support self modifying program we will have to add hooks to QEMU’s internal mechanism that
detects self modifying code. We then plan to extend TPI’s API to expose these events to plugins
so they can update their internal data structures.

As mentioned in the previous section, shadow memories are difficult to use when one wants to
monitor concurrent programs. The problem is simply that synchronization at the granularity of
individual memory accesses has too high an overhead, even when done using atomic instructions.
Another problem is that both synchronization and concurrent handling of can change the order in
which shadow memory accesses are processed. Hence, the ordering of shadow memory accesses is
no longer the same as the one used for the actual memory accesses of the underlying, or emulated
guest, hardware. As a result, the state of the shadow memory and the program memory can be
out of sync. To guarantee that both are updated correctly potentially requires reimplementing
the CPU’s memory consistency protocols. Fortunately, QEMU [58] already has support for
emulating different guest CPU memory ordering models. It achieves this by injecting special
memory barrier instructions in its IR. We are currently investigating if this mechanism could be
used to help implement a genuinely concurrent shadow memory.
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3.1 Introduction

A basic question that regularly comes up when optimizing software is what are the bottlenecks
of a system that limit performance. Examples of resources that can form bottlenecks are the
memory bandwidth or the number of floating-point or load/store instructions a CPU can process
per cycle. Once a programmer knows the bottlenecks, they can then rewrite their program to
make more careful use of that resource or offload work to other resources. Knowing what the
bottlenecks are can also be used to estimate whether a program still has any potential for
improvement or if it already reached peak performance [221].

Programs usually use different resources in complex interdependent ways. For example, stalls
caused by saturating one resource can mask or aggravate problems with other resources. Due
to this, bottlenecks are not necessarily associated with a saturated resource. And so identifying
them in a program is not a trivial task. Commonly used profiling tools such as PAPI [65], LIK-
WID [172], HPCToolkit [4], Linux perf [144], and Intel VTune [169], while good at highlighting
hot regions of a program and detecting the current utilization of resources are unable to find
real bottlenecks.

Another problem that is even harder to solve is detecting by “how much” a resource is a
bottleneck. In other words, how much would the overall performance of a program improve if a
given bottleneck was removed?

Sensitivity analysis [141, 47, 118, 132, 99], also called differential profiling, is a profiling tech-
nique used to both find bottlenecks and their severity. Sensitivity analysis works by executing a
program multiple times, each time varying the usage or capacity of one or more resources. Bot-
tlenecks can then be identified by observing by how much the change for each resource impacts
the overall performance, that is how sensitive performance is to a given resource.

Varying the capacity of a resource, for example by changing the CPU frequency via DVFS [100],
is preferable over changing the resource usage since it can be done without altering the profiled
program. Unfortunately, today’s hardware does not offer many ways to easily vary the capacity
of resources. Thus, existing approaches commonly resort to altering the program under obser-
vation. Either by changing the data set [141], the number of threads or CPU cores it executes
on [132, 141, 47] or by selectively removing instructions from a program [118]. The downside
of this is that changing the number of threads or what instructions are executed has a hard to
predict the impact on resource usage, which makes fine-grain sensitivity analysis based on these
approaches difficult. Another problem is that these changes are also likely to alter a program’s
semantics, which in turn may alter its performance characteristics.

To avoid these issues, it would be preferable to directly vary resource capacities. The SAAKE
system by Hong et al. [99] has shown that the limitations of real hardware can be overcome by
driving sensitivity analysis with a simulator. SAAKE uses input independent abstract simula-
tion to predict execution times of graphics processing unit (GPU) programs, which works well
for GPUs with their simple in-order execution model. The performance of high-end CPU ar-
chitectures, however, is much more dynamic and input dependent due to their aggressive use of
speculative out-of-order execution and more complex caches.

In this chapter, we present Gus, a prototype sensitivity-based dynamic analysis tool to find
bottlenecks that brings the ideas of SAAKE to the world of CPUs. Gus combines QEMU, a
fast functional CPU emulator, with an abstract, resource-centric CPU performance model in
the spirit of [68, 76, 37]. It is not designed to compete with cycle-accurate simulators, which
can produce highly accurate simulations at the cost of very long simulation times. Instead, Gus
aims to quickly deliver predictions that are “good enough” for sensitivity analysis.

Gus is a plugin based on the TPI infrastructure described in Chapter 2. By implementing
our performance simulator on top of a functional simulator, we can process real program traces
and accurately simulate input dependent program behaviour.
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Gus also uses a CPU model for its simulations which is designed to be easy to implement
and port to new CPU architectures. Its CPU model abstracts a uniform representation for the
different processor resources, such as the floating-point or load/store units, and the different
cache levels. This representation is low-level enough to capture real-world bottlenecks but also
simple enough so it can be automatically generated from the performance characteristics of the
CPU. To build a performance model of a processor, we require the latency and throughput of
different types of instructions as well as how they share CPU resources.

One commonly way used to represent the sharing of functional units on a CPU is a port
mapping. A port mapping is a description of which instruction type can execute on which
functional unit. For architectures that internally decompose ISA level instructions into multiple
smaller micro-operations (µops) a port mapping also needs to capture the µop decomposition
for every instruction.

Unfortunately, many CPU vendors do not publish comprehensive port mappings or data
sheets with performance metrics. Intel, for example, only publishes the latency and throughput
for “commonly used instructions” in its Software Developer’s Manual [54]. AMD used to pub-
lish an appendix for their manual detailing latencies, throughputs, and port mappings for all
their x86 architectures. However, they no longer publicly release this appendix for CPUs since
the Zen architecture. ARM is the only major company that still publishes this information.
Unfortunately, CPU vendors that have their own ARM-based processor designs like Samsung,
Qualcomm, and Apple do not.

Many of the above CPU vendors do, however, indirectly make this information available by
contributing to the back-ends of open source compilers. More specifically, the same informa-
tion required by Gus is also used by instruction scheduling algorithms in compiler back-ends.
Unfortunately, the models of mainstream compilers are not always accurate or up-to-date. For
example, the LLVM scheduling model for Intel Sandy Bridge processors, a CPU architecture
released in 2011, still required some tweaks and bug fixes as recently as 2019 [212]. Skylake
processors, on the other hand, which were released in 2015, were treated like Haswell CPUs for
the purposes of instruction scheduling until 2017 [106] even though the Skylake architecture has
much-improved handling for vector instructions.

To be able to build a more detailed and accurate CPU model for Gus we have started to
build Pipedream, a tool that can reverse-engineer the latency, throughput, and port mapping
of instructions. Pipedream achieves this by automatically generating micro-benchmarks and
measuring their behaviour using hardware performance counters. To select the port mapping
that best fits a given set of observations, we have developed an extension to the maximum flow
problem that can be efficiently evaluated with a linear program.

Pipedream does not necessarily produce a model that perfectly matches the real hardware.
It does not need to know the semantics of µops or what bit patterns encode which µop [119].
We only need a model that matches the performance behaviour of instruction and µops to allow
Gus to predict execution times with reasonable accuracy.

While still a prototype, Pipedream is already able to build a model for a significant subset
of the x86 instruction set with little user intervention.

To summarize, the contributions presented in this chapter are:

1. Gus – A sensitivity based performance debugging tool that can be used to find performance
bottlenecks and predict how much overall performance can be improved by removing these
bottlenecks.

2. Pipedream – A tool for reverse-engineering low-level performance characteristics of in-
structions on modern CPUs.
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3.2 Modern CPU Microarchitecture
Before describing the details of our CPU model used to find performance bottlenecks, we give a
high-level overview of the actual microarchitecture of modern processors. We only discuss topics
relevant for either Gus or Pipedream and this section is by no means an in-depth exploration
of the subject. For a deeper insight, we refer the reader to seminal introductory works [90,
186]. The focus of this section is on implementation techniques as used in general-purpose CPU
architectures such as x86, ARM, PowerPC, or MIPS.

From the point of view of a programmer, the behaviour of a CPU is defined by its ISA. Since
both Intel CPUs and AMD CPUs implement the same ISA one can run programs compiled for
that ISA on either. Internally, however, the CPUs of the two companies, and even different
generations of CPUs from the same company work quite differently. The actual design and
implementation, the microarchitecture, of a processor can differ significantly from the ISA, as
long as this difference is not observable from the outside. For example, most common ISAs
give the illusion that a single core always executes programs sequentially, one instruction at a
time. In reality, however, a modern CPU is a highly complicated parallel system where many
instructions execute at once. This is called instruction level parallelism and corresponds to the
dynamic parallelization of programs at the granularity of individual instructions.

The core of a CPU responsible for executing instructions can be conceptually separated into
two main components:

• The front-end, which is responsible for fetching instructions from memory and decoding
them.

• The back-end or execution unit, which is in charge of actually executing instructions.
High-performance instruction decoding for a complex instruction set such as x86 is in itself

a complex multi-stage process. To feed the back-end of the CPU with enough instructions for
parallel execution, the front-end usually decodes multiple instructions per cycle. The decoded
instructions are then placed in the instruction queue which forms the interface between the
front-end and the back-end.

3.2.1 Concepts of instruction level parallelism

The most important techniques for implementing instruction level parallelism are the following:
instruction pipelining, super-scalar execution, out-of-order execution, and speculative execution.

Instruction pipelining: One of the oldest microarchitectural techniques for parallelising the
execution of instructions is instruction pipelining. The idea of pipelining is to not execute every
instruction as a whole before moving on to the next one but to overlap the execution of multiple
instructions. That is, the execution of an instruction is split instruction up into multiple small
steps, for example: fetch input, compute result, and store result. When one instruction is in the
compute result phase the processor can already execute the fetch input step of next instruction,
before the last step of the previous one has finished. In reality, instruction pipelines are much
deeper and sometimes consist of multiple tens of steps.

Super-scalar execution: Super-scalar execution is an orthogonal approach to instruction
pipelining. With pipelining the CPU splits every instruction into smaller parts and executes
the parts of different instructions in parallel. A super-scalar processor, however, splits the
back-end into multiple parts, containing not one but multiple execution units. For example,
a processor with two separate functional units for scalar arithmetic and vector arithmetic can
execute multiple instructions at the same time by multiplexing the linear instruction stream
onto these two units. Super-scalar designs usually even contain multiple copies of highly used
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functional units to execute multiple instances of common instructions in parallel. The individual
execution units of a super-scalar processor can of course also be pipelined.

Out-of-order execution: By themselves, and even together, pipelining and super-scalar ex-
ecution can not exploit all parallelism available in many programs because they are still limited
by the order of instructions. Groups of instructions that use the same execution unit may, for ex-
ample, block super-scalar execution, leaving the other execution units idle. Out-of-Order (OoO)
processors break these constraints by dynamically rescheduling the instructions of a program at
runtime. Most OoO architectures used today use a variation of the Tomasulo algorithm [207].
The idea of the Tomasulo algorithm is, essentially, to turn a sequential program into a data-flow
program, which is then executed in parallel, only constrained by its data dependencies. Under
this scheme, instructions are still decoded in program order, but they execute in parallel. In all
typical implementations instructions also complete in order. That is, the side effects of instruc-
tions, such as writing to registers or memory, still appear to happen in the original order of the
program. This last detail is essential to uphold the convenient illusion of sequential execution
that ISAs provide to programmers.

Speculative execution: The last stumbling block for parallel execution is the frequency of
branch instructions, i.e., the length of basic blocks in programs. Most basic blocks in a program
contain less than 15 instructions [102]. Since the processor cannot know whether conditional
branches will be taken or where indirect branches will jump, it cannot execute instructions after
the branch before the branch itself finishes. That is, branch instructions essentially form barriers
for parallel execution. The idea of speculative execution is simply to let the processor guess the
destination of branches and speculatively execute instructions. If the prediction turns out to
be wrong, the processor simply discards the results of any speculatively executed instructions
and continues with the real branch target. Since even simple branch predictors correctly predict
over 90% of all branches speculative execution generally has little to no overhead and effectively
increases the “window” of parallel instructions.

3.2.2 Implementation of instruction level parallelism

The following gives a short overview of some of the data structures and algorithms used to
implement super-scalar out-of-order execution.

Reservation stations and re-order buffer: To support out-of-order execution with in-order
completion the processor needs buffers to store the instructions that are currently in-flight as well
as their arguments and results. The exact number and of usage of these buffers varies between
microarchitectures, but in this work we will focus on designs used in the current generation
of processors from Intel, AMD, and ARM. Here, the so-called reservation stations, sometimes
also called schedulers, are in charge of fetching and storing the operands of instructions. The
re-order buffer (ROB), or retirement queue, is another buffer that holds all instructions that are
currently executing along with space to store their results.

Register renaming: As mentioned earlier, the biggest limiting factor for OoO execution
are data dependencies. However, for various reasons, mostly to increase code density, processors
ISAs only expose a small number of registers to programs. Consequently, registers are constantly
reused for different independent computations which creates a large number of anti-dependencies
in the program that hinder parallel execution. To alleviate this problem processors actually have
a much larger physical register file with many more registers than the logical register file visible
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at the ISA level. During execution the processor then performs register renaming where logical
registers are mapped to physical registers to remove false dependencies. That is, instructions
in machine code still use the logical registers provided by the ISA, but internally the CPU has
a much larger pool of registers. This mapping happens on the fly when instructions are issued
from the instruction queue to the reservation stations.

Execution ports A super-scalar processor usually has a large number of different functional
units which implement the many different types of instructions. As mentioned before, the most
commonly used units are also present multiple times to allow for more parallelism. To simplify
runtime instruction scheduling, multiple functional units in the back-end are grouped together
behind one execution port. That is, the scheduler issues instructions to execution ports which
then multiplex them to the right functional unit depending on their type. Since most functional
units are usually fully pipelined an execution port can optimally accept one instruction per
cycle.

Given the above data structures, the life cycle of an instruction can be split up into multiple
distinct steps. While the exact number and names of steps that are distinguished vary between
processors and textbooks, here we will distinguish the following phases:

1. Issue – This step reads instructions from the instruction queue and is responsible for
allocating a reservation station and a slot in the ROB. If no reservation slot or ROB entry
is available the instruction and all instructions behind it are stalled.

2. Execute – In this step instructions first wait for all their operands to become available and
are then dispatched to a functional unit for execution.

3. Write – During the Write step instructions store their results to the ROB and to any
reservation station waiting for it.

4. Retire – In this last step, the result of instructions is copied from the ROB to registers or
memory. Once an instruction has finished its ROB slot is freed.

Note that the reservation stations only hold data for an instruction while it waits for its operands
and while it is executing. A slot in the re-order buffer, on the other hand, is still needed after
the instruction has finished executing and is only liberated at the very end of retirement.

All modern ISAs contain some complex instructions that perform multiple tasks. An example
of this would be an instruction that both access memory and performs some computation. To
simplify the logic of the back-end the instruction decoder splits such complex instructions into
multiple simpler micro-operations (µops). Our example instruction would then be decomposed
into distinct load/store and compute µops. This means that the four stages above, the ROB
and the reservation stations actually work at the level of µops and not entire instructions. This
µop decomposition is especially important for complex instruction sets like x86. However, even
simpler ISAs such as ARM use it for some instructions.

Since instructions are decomposed into µops, every instruction requires multiple slots in the
ROB. Furthermore, the ROB can only retire a limited number of µops per cycle. To reduce
pressure on the ROB some CPUs do not completely decompose instructions into µops in the
front-end. Instead, as detailed below, they use a technique called µop fusion where some of the
µops of one instruction can stay fused together and share one single ROB entry. Nevertheless,
the two fused µops are still executed separately. They each need their own slot in the reservation
stations and can be dispatched to different execution ports, but they do retire together. If an
instruction has too many register operands its µops can not always be fused and will use multiple
slots in the ROB. The Intel documentation calls this µop unlamination. It usually occurs for
memory accesses with that use complex addressing modes.

Most CPUs that use µops store the last few µops that have been decoded in a µop cache
similar to the instruction cache. This avoids repeatedly decoding the same instructions again



3.3. RELATED WORK 41

and again inside small loops. In this case, the end of the front-end is not the instruction queue
but a separate µop queue that is fed from both the instruction queue and the µop cache. This
µop queue then feeds into the reservation stations and ROB.

Finally, Intel and AMD processor architectures also implement a technique called macro-op
fusion, or branch fusion, to further reduce pressure on the ROB and execution ports. Though the
details vary for different architectures, a macro-op usually corresponds to a ISA level instruction.
This technique is driven by the observation that there are some patterns of instructions that
appear together very often and usually have some data dependence. The idea is then to fuse
these instructions into a single µop at the decoding stage. Note that this is different from µop
fusion since where the fused µops are later split apart again. With macro-op fusion, only one
µop is placed in the µop queue which only ever requires one slot in the various queues and
buffers of the back-end. The most common example of instructions that get fused are compare
instructions and conditional branch instructions which are used in most loops on x86.

Figure 3.1 shows a simplified view of the Intel Skylake CPU architecture which show-cases
all the data structures described above.

3.3 Related Work
This section describes previous work related to performance modelling, profiling, and bottle-
neck detection. The end of the section there also presents existing work in the field of reverse
engineering CPU performance models and port mappings.

Analytical models and symbolic execution

Analytical and symbol execution based performance models are purely static approaches using
program analysis and abstract mathematical models to estimate the performance of programs
or processors.

Probably one of the most well known and performance modelling and visualization method
is the Roofline model [221], popularized by Williams et al. in 2009, though variations of the
Roofline model had been used long before that [121, 35, 96, 38] In its basic form, the Roofline
model is a purely throughput based model consisting of a curve built from the peak GFLOPS
and memory bandwidth achievable by a computer system. By comparing measured operational
intensity of a program with this curve one can both judge how far a program is from its peak
performance as well whether it is compute-bound or memory-bound. Over time the Roofline
model has been extended and adapted for a wide range of alternative metrics [105, 133] and to
better account for the behaviour of different computer architectures such as FPGAs [189].

The execution cache model (ECM) [210] is another analytical model for predicting the exe-
cution time and find bottlenecks in bandwidth limited kernels. Unlike the Roofline model, the
ECM does not only consider throughputs, i.e. memory bandwidth and instruction throughput.
That is, the ECM also takes data transfer times between different levels of the cache hierarchy
into account. All computations, on the other hand, are assumed to overlap and, like the Roofline
model, the ECM ignores data dependencies. The ECM also does not take cache hits or misses
into account. It simply assumes all data is streamed from memory through the cache hierarchy.
Like the Roofline model, the output of ECM model can be used to determine if a program is
memory or compute-bound.

The Intel Architecture Code Analyzer (IACA) [95] is a closed-source static binary analysis
tool that estimates the instructions per cycle (IPC) of small innermost loop kernels for Intel
CPUs. IACA analyses straightline sequences of x86 machine code. It models them as the
body of an infinite loop executing in a steady state. As output, it produces a detailed report
on the expected IPC, execution port usage, and highlights possible bottlenecks in the CPU
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Figure 3.1 – The Intel Skylake CPU architecture. This image has been constructed from information
from the Intel SDM [54] and marketing material [5]. Only known throughputs are marked.

pipeline. Earlier versions of IACA also produced information related to instruction latency, but
this was discontinued in version 2.2. IACA tracks and models data dependencies via registers
but assumes that no memory accesses alias or depend on one another. Contrary to the Roofline
model or the ECM IACA focusses solely on the computational throughput of programs and does
not take memory or caches into account. It simply assumes all memory accesses to hit in L1.
IACA is only updated infrequently, the last supported architecture being Skylake, and has been
completely discontinued in April of 2019.
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The Open-Source Architecture Code Analyzer (OSACA) [125] and the LLVM Machine Code
Analyzer (llvm-mca) [194] are open source versions of IACA. OSACA is developed by the Uni-
versity of Erlangen and llvm-mca [194] was contributed to the LLVM project [124, 165] by
Sony. Like IACA, OSACA works at the level of binaries, while llvm-mca parses textual as-
sembler. Also, like IACA both tools work by performing a symbolic execution of an innermost
loop kernel. OSACA assumes the loop executes infinitely while llvm-mca executes a bounded,
user-defined, number of iterations. OSACA’s CPU model is the most abstract of all three tools,
it only considers instruction throughput, latency and port usage. llvm-mca, on the other hand,
has a more detailed simulation that models details such as instruction dispatch and retirement
bandwidth. Neither OSACA nor llvm-mca model instruction decoding, branch prediction, or
caches. llvm-mca does, however, model a load/store unit, including out-of-order execution of
memory accesses with an x86 like memory consistency model. The machine model of llvm-mca
is taken from Low-level Virtual Machine (LLVM) while OSACA’s is manually reverse-engineered
as described further in Section 3.3.0.2

Kerncraft [86] is a static performance analysis tool that uses both the Roofline and ECM
model. Kerncraft works at the level of source code and analyses program written in polyhedral
a subset of C. That is, all loops must be perfectly nested and have affine loop bounds. Kernels
also can not contain function calls, if statements, pointer arithmetic, or irregular data accesses.
The tool can predict scaling potential and help find bottlenecks by constructing Roofline and
ECM model for kernels. To statically compute instruction throughput of programs Kerncraft
compiles them and passes them to IACA. The cache behaviour of programs is estimated using a
simple custom cache simulator. Kerncraft can also perform a symbolic data structure analysis
to help determine optimal tile sizes for tiling.

The SAAKE system [99] by Hong et al. is one of the main inspirations for Gus. It uses a
fast symbolic execution engine that estimates the runtime of GPU programs to drive sensitivity
analysis for finding bottlenecks. SAAKE’s input independent abstract simulation works well
for the simpler microarchitectures of GPUs since they do not use out-of-order execution or
speculation and handle branching control flow using predicated execution. Nevertheless, the
authors admit that this approach does not scale to programs with significant divergence or
complicated cache usage patterns. Since SAAKE does not actually simulate the execution of
instructions, there are several things it can not compute that have to be provided externally.
Whether a memory access hits the cache is modelled via fixed per cache level probabilities that
are determined via a profiled execution of the kernel. The user also has to provide the number
of loop iterations to simulate for each loop via annotations.

Machine learning has also been applied to the space of analytical performance modelling.
Joseph et al. have used Radial Basis Function networks to train a non-linear analytical perfor-
mance model [109]. They applied their model to quickly explore the performance of different
CPU architectures. In this approach, one has to train a new network for every new benchmark
program used to evaluate the architecture. The input for this training are the parameters of
the CPU model, such as the size of the instruction queue and the sizes of caches, along with
the execution time of the benchmark program on that architecture. Execution times are ob-
tained using a cycle-accurate simulator. Once trained the model can then be used to predict
the execution time of the benchmark programs on new architectures.

Ithemal is a tool that uses hierarchical LSTM to predict the number of cycles required
to execute a small linear sequence of code when executed in an infinite loop. For training and
evaluation Ithemal converts the machine instructions in a basic block into a sequence of abstract
tokens consisting of the opcode as well as source and destination operands, clearly marked as
such. The system achieves good prediction rates and requires no expert knowledge to build a
model for a new architecture, though until now it has only been evaluated on x86 CPUs.



44 CHAPTER 3. SENSITIVITY BASED PERFORMANCE BOTTLENECK ANALYSIS

Profiling tools

This category of performance debugging tools encompasses profilers and other dynamic ap-
proaches that analyse performance by reasoning on actual executions of a program, whether in
real hardware or in simulators. We also cover performance analysis tools that combine results
from static analysis with information dynamically collected at runtime.

HPCToolkit[4], a profiling and performance visualization tool for large scale applications
widely used in HPC computing. It does not use any instrumentation and relies solely on the
sampling of performance counters and call stacks. The sampled call stacks are used to attribute
measurement taken via performance counters to their proper calling context. To map results
back from machine code to source code HPCToolkit uses static binary analysis. Its binary
analysis module reconstructs function boundaries and loops and identifies inlined code [203]. It
can even detect some compiler optimizations, such as loop unrolling, taking them into account
for its binary to source code mappings. Overall, HPCToolkit’s profiling mode excels at the task
of locating performance problems and resource saturation in large applications but does not help
with finding root causes of performance problems or the severity of bottlenecks. Besides its basic
profiling tools, HPCToolkit also contains a module that uses sensitivity analysis to estimate how
well programs scale for parallel execution [132]. It does this by varying the number of cores or
compute nodes a program is allowed to run on.

The Tuning and Analysis Utilities (TAU) Performance System [187, 130, 135] is another
profiling tool kit for large scale parallel applications written in C/C++, Fortran, or Java. It
gathers performance information using instrumentation, which it can do both at the source level
and at the binary level. The instrumentation it inserts can collect execution times and hardware
performance counters at the granularity of loops and functions. It also provides an API and
plugins for popular IDEs that allows programmers to manually instrument programs themselves
or designate regions of interest for instrumentation. TAU includes sophisticated visualization
tools that illustrate both the aggregate performance of instrumented regions as well as how their
performance changed the course over a program’s execution. Like HPCToolkit, TAU excels at
pinpointing hot program regions and which resources are saturated but does not go beyond this.

Raw execution times of tasks and resource utilization are often not enough to judge by how
much a parallel system can still be sped up and where to optimize first. Miller et al. [226]
have developed an approach for evaluating the concurrency and finding bottlenecks in parallel
programs based on critical path analysis. This analysis is based on the observation that the
longest sequential chain of operations, i.e., its critical path, is usually the determining factor
of the overall execution time of parallel and distributed programs. The execution time of such
systems can thus be approximated by calculating the length of the critical path, that is by
summing over the latency of every task on it. The IPS performance measurement system [149,
148] uses critical path analysis to help users diagnose performance problems in parallel and
distributed programs. It uses operating system probes and program instrumentation to collect
a program from which it computes the critical path of a program. Besides just computing the
current critical path of a program IPS is also able to show how the critical path changes if some
tasks from it were optimized or removed. This helps guide programmers to where optimization
will actually improve overall program performance. Critical path analysis has also been used to
find potential for parallelization in sequential programs [120, 73].

DECAN [118] is a dynamic performance analysis tool based on the MAQAO [61, 136] binary
analysis and instrumentation framework. It is intended for detailed performance analysis of small
kernels and not whole applications. DECAN finds bottlenecks by sensitivity analysis based on
binary rewriting. That is, DECAN removes or modifies instructions in a kernel and checks
which how much each transformation affects overall performance. It can, for example, remove
all floating-point instructions from a loop to detect compute boundedness, or rewrite all memory
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accesses to target a single memory address that is held in L1 to detect problems with caches
or memory bandwidth. DECAN measures the performance of its modified kernels via hardware
counters. The low overhead of this approach allows it to quickly explore a large set of variants
for its sensitivity analysis. The downside of DECAN’s approach is that its transformations are of
course not semantic preserving and can easily introduce crashes or floating-point exceptions. Any
transformation that causes such a crash then has to be excluded from the performance analysis.
Changing the semantics of a program like this might, of course, also change its performance
behaviour in other subtle ways, making it hard to verify or falsify the results produced by the
tool.

Code Quality Analyzer (CQA) [39] is another MAQAO based machine code level performance
analysis tool. Like DECAN, it is intended to be used to analyse the performance of small
kernels and loops. CQA contains a number of static and dynamic analyses that finds low-
level performance problems in compute-bound programs. It can, for example, detect problems
with vectorization, unaligned memory accesses or register pressure. The output of CQA is
a human-readable report that proposes different transformations and their potential benefit.
To predict the execution time of the original and transformed program CQA uses a high-level
CPU model and a symbolic execution engine similar to that in llvm-mca or OSACA. CQA’s
symbolic execution engine has no information when branches in a program are taken or not.
Instead, it simply computes a separate result for every possible control path. The performance
model of CQA does not take cache or memory effects into account and assumes that a kernel is
compute-bound.

AutoSCOPE [31, 195] is one of the few performance debugging tools that not only tries to
find hotspots and bottlenecks in a program but directly tackles the third problematic of per-
formance debugging: “How can one make the program run faster?” (see Section 1.1). When
analysing a program AutoSCOPE finds potential performance problems using HPCToolkit. At
the same time, it also measures several performance metrics, such as cache miss rates at differ-
ent cache levels, branch misprediction rates and IPC. For every potential performance hotspot
detected AutoSCOPE then combines these measurements with some static information, such
as loop nesting depth, and pattern matches them against a library of well-known performance
pathologies. It then uses a ranking algorithm to sort the matching performance pathologies
and reports possible optimizations that are known to usually be applicable for fixing them. For
example, if AutoSCOPE detects a 2D loop nest that has a large number of TLB and L2 cache
misses it will recommend the user to perform a loop interchange or perform tiling. AutoSCOPE
does not actually perform any program analysis to verify if the recommended optimizations are
legal or profitable or give precise instructions on how to actually perform them. It simply tries
to recommend a type of transformation that is generally used for a category of performance
problems.

MIAMI [137] is a set of performance analysis tools which tackles similar issues as Gus. That
is, MIAMI tries to find both computational and memory performance bottlenecks and by how
application performance can still be improved. Like Gus, MIAMI works at the level of x86
machine code, but it functions quite differently, making much heavier use of static analysis.
To analyse the computational performance of loops and functions MIAMI computes a static
critical-path driven modulo instruction schedule. This schedule is both used to predict execution
times and to estimate the load for individual execution ports. MIAMI can estimate how much
a program’s performance can benefit from different optimizations by changing parameters of
the scheduler. To, for example, detect potential for speedup from increasing instruction-level
parallelism, MIAMI’s scheduler relaxes data dependencies. While MIAMI does use profiling
to collect execution frequencies of loops and blocks to help the scheduler, it still implements
a generic scheduling algorithm which is not guaranteed to correspond to the actual hardware
scheduler. Since it computes static schedules for functions, it is also unable to capture dynamic
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interprocedural behaviour. To handle memory bottlenecks MIAMI uses reuse distance profiling
and a dynamic analysis to recognise strided access patterns. The reuse distance profiler of
MIAMI tracks the dynamic loop and calling context for every data use. Using this tree it can
find interprocedural reuse patterns. It also allows MIAMI to detect potential for optimizations
like loop interchange or tiling. Finally, memory access stride recognition is used to find memory
accesses that are problematic for the hardware prefetcher [138].

3.3.0.1 CPU simulation

Cycle-level simulators are commonly used in the hardware development to explore the perfor-
mance of new architectures [23, 30, 228]. While they produce very, potentially perfectly, accurate
results, they take a large amount of expert knowledge to build and maintain and can be very
slow. The very widely used simulator gem5, for example, when at its highest level of accuracy
executes only around 100k instructions per second [180]. At this speed, it takes, on average,
around one year to run one benchmark from the SPEC CPU2006 benchmark suite. For larger
applications, sampling is commonly used to speed up simulation [188, 224, 180]. With sampling,
a simulator does not simulate the entire execution of a program, but only small slices of it. The
program parts that are not simulated are either executed natively or handled by a faster, purely
functional emulator. This allows even a slow simulator to be able to handle larger applications.
For the purposes of implementing Gus, we have decided that simulation at this level of precision
is not suitable.

ZSim [179] is an instruction driven CPU simulator. Instead of driving the simulation with
a clock and modelling what each component does every cycle, ZSim simulates the behaviour of
programs one instruction at a time. Like Gus, ZSim uses dynamic binary instrumentation to
insert callbacks into programs to drive its simulation. The authors of ZSim claim that by using
this more abstract simulation technique, it achieves orders of magnitude faster simulation times
than cycle-level approaches. ZSim still implements a very detailed heavyweight CPU model
similar in complexity to that of the above mentioned cycle-level simulators. It encompasses all
aspects of a real CPU, from instruction decoding, to the execution pipeline, branch prediction,
and caches. ZSim supports simulating large parallel systems with many cores. To this end, it
also uses an accurate model of memory coherence on x86 including load-store reordering.

Even more high-level CPU core models, that focus only on simulating some key aspects of
a processor have been shown to provide reasonable accurate execution time predictions while
running orders of magnitude faster than cycle-level simulation systems [68, 76, 202, 37]. Interval
simulation [68, 76] and instruction-window centric simulation [37] only model some components
deemed relevant for performance in detail. Other CPU resources are assumed to function at
their peak capacity, or close to it, and their behaviour is estimated using rough approximations.

Interval simulation is based around the assumption that modern processors most of the time
smoothly run at their peak performance except when hindered to do so by infrequent miss events,
like cache misses or branch mispredictions. The core data structure in an interval simulator is a
sliding window of currently executing instructions, which simulates the ROB of an out-of-order
CPU. Inside the intervals of uninterrupted execution, which are assumed to make up the majority
of a program’s runtime, the simulator does not track the flow of individual instructions through
the CPU pipeline. It merely increases the simulated CPU clock and discards instructions from
the instruction window at a steady rate. When a miss event occurs, the simulator uses a more
detailed model to determine the performance penalty incurred by the miss. At this time, the
instruction window is scanned for data dependencies to detect which miss events are overlapped
and which instruction can be drained from the window. A strength of interval simulation, which
allows it to achieve excellent performance, is that it only ever processes every dynamically
executed instruction in a program once, in program order.
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Instruction window centric simulation is an extension of interval simulation that model sac-
rifices higher prediction accuracy for slightly slower simulation time by using a more precise
CPU model. In addition to an instruction window to simulate the ROB this type of simulator
also models execution ports in a CPU and takes instruction and memory latencies into account
by tracking the critical path along the data dependencies of all instructions in the instruction
window. The Sniper multi-core CPU simulator [36] implements both an interval as well as an
instruction window centric core model.

Cabezas et al. have combined a high-level CPU based simulator and the Roofline model
to build dynamic bottleneck analysis [33]. They estimate execution times are by computing
the critical path of the dynamic data-dependence graph of a program. The system not only
considers instruction latencies but also includes a cache simulator to take the variable latencies
of memory accesses into account. The simulator of Cabezas et al. does not directly work at the
level of machine code, but instead executes programs in LLVM IR. To detect bottlenecks and
judge their impact on performance the system uses a Roofline model.

3.3.0.2 CPU performance reverse-engineering

Probably the most renowned sources for details on the performance and microarchitecture of x86
processors is the personal web page of Agner Fog [72]. Fog has reverse-engineered the latencies,
throughputs and port mappings of instructions on all Intel, AMD, VIA CPUs released since
1996 using handwritten microbenchmarks. Even engineers from Intel itself are known to have
used his results [208]. His benchmarks and kernel drivers1 are freely available. However, the
reverse-engineering process is not automated, and the benchmark results have to be analysed
manually to generate port mappings. Fog uses hardware counters to measure the activity of
each execution port of a machine individually. If these counters are not available Fog’s initial
information about the port usage for instructions is obtained from other sources, such as official
manuals. He then creates benchmarks that mix instructions with known and unknown port
usage to infer port mappings. Among all the reverse engineering approaches presented here,
Agner Fog’s is the only one that reports µop micro-fusion.

The Intel Optimization Reference Manual [53], which is part of the Intel Software Developer’s
Manual (SDM) [54], contains diagrams giving a rough overview over the port mappings for some
of their CPU architectures as well as tables with latencies and throughputs for some commonly
used instructions.

EXEgesis [41] is a project from Google that parses the official human-readable Intel SDM [54]
to produce a machine-readable ISA description as well as a software instruction encoder and
decoder. Since Intel’s manuals are not intended to be machine-readable and contain several in-
consistencies, this is a very involved process that needs to be updated for every new version of the
SDM. EXEgesis can automatically generate microbenchmarks from its ISA description to mea-
sure the throughput, latency and port usage of instructions. The tool then uses a mixed-integer
linear program running in a custom Simplex solver to find the port mappings of instructions
from these measurements. The benchmark generator and measurement parts of EXEgesis have
been ported to the LLVM project where they are used to help validate its instruction scheduling
models. To find port mappings EXEgesis requires hardware counters for each execution port
since their solver needs to know the relative load of every port in a benchmark.

uops.info [3] provides a formalized and automated tool to produce the same results as Ag-
ner Fog. Like EXEgesis uops.info generates microbenchmarks to measure the throughput,
latency and port usage of instructions. They use this information to detect so-called blocking

1Agner has used performance hardware counters in his work since before they where commonly exposed by
operating systems.
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instructions. That is, simple instructions that decompose into only one µop. The µop decom-
position and port mapping for these instructions can be found directly using per port hardware
counters. To find mappings for more complicated multi-µop instructions they then run multi-
ple microbenchmarks that each mix one complex instruction with several blocking instructions
that “blocks”, i.e. fully saturates, a sub-set of the execution ports. uops.info then counts the
number of µops executed on the blocked set of ports and detects if all µops of the complex
instruction are accounted for or if they have been pushed to another port. By systematically
running one such benchmark for every possible combination of ports uops.info is able to infer
the µop decomposition of complex instructions. uops.info does not detect what µops compose
a machine but requires a manually curated list of possible µops as input. Note that, unlike
Pipedream, uops.info does not use throughputs, i.e., instructions per cycle or µops per cycle,
to build its model, but the absolute number of executed µops. Consequently, uops.info assumes
that all ports of a machine can be saturated by simple blocking instructions, which is not the
case on all x86 architectures. As explained later, uops.info’s uses hardcoded information to
handle special cases. For Intel architectures that have per execution port counters uops.info
provides port mappings. They also recently started providing latency and throughput informa-
tion for AMD Zen+ processors. However, no port mapping since this CPU lacks execution port
counters. uops.info can also parse the output of Intel IACA to produce port mappings and
estimate instruction throughput without running any benchmarks. uops.info was developed
concurrently with our work and published only recently in April of 2019.

The OSACA [125] performance modelling tool, already mentioned above, essentially uses a
CPU model solely based on the latency, throughput and port usage of instructions. Like Gus,
OSACA uses microbenchmarks to measure the performance characteristics of instructions and
build a performance model. Unlike the approaches described above, OSACA only measures
latencies and throughputs and does not require per execution port performance counters. The
construction of their performance model, however, is not automated. In [125] the authors
sketch out a manual procedure to construct port mappings from the latency and throughput
measurements for kernels that mix different instructions with known and unknown port mapping.
Their procedure is similar to that used by Gus, but it requires the user to already roughly know
what classes of instructions each execution port can execute. It can then find the port mapping
for new instructions based on the known mapping of other instructions. The OSACA distribution
already includes a number of port mappings for Intel and AMD processors constructed using
this process.

Like OSACA, CQA [39] also uses instruction latencies, throughputs and port mappings for
its internal performance model. Likewise, CQA also uses microbenchmarks to measure this
information. It does, however, not rely on handwritten benchmarks, but generates them from
a machine description. CQA only constructs a port mapping for simple instructions like the
blocking instructions used by uops.info. For complex instructions it falls back to the mappings
reported by Agner Fog.

3.4 Gus

This section describes Gus, our high-level CPU simulator used to predict execution times of
programs and drive our sensitivity analysis for finding performance bottlenecks. We start with
a high-level overview of the CPU performance model used in Gus. Section 3.4.2 gives an
illustrative example where we run the simulator on a small program. Section 3.4.3 finally shows
the pseudo-code of the simulator’s main algorithm.
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3.4.1 A resource-centric CPU model

Here we present the abstract performance model used by Gus to compute the execution time of
programs used to drive its sensitivity analysis. Our current implementation focuses on modelling
modern general purpose out-of-order CPUs composed of:

• A ROB.
• Execution ports that group functional units.
• A multi-level cache hierarchy.

In such architectures, instructions are first decoded and decomposed into µops that are then
issued to the ROB. Once data dependencies have been resolved, after register renaming, µops are
dispatched to the execution ports and get retired when their results are committed to registers
or memory.

We focus on modelling the following three sources of bottlenecks for these kinds of architec-
tures:

• The size of the ROB is not sufficient to hide the lack of instruction level parallelism. That
is, it is filled with issued but not yet retired µops.

• Long latency instructions, including loads with a cache miss, causing an overly long critical
path.

• One or more functional units are saturated.
Gus is an instruction driven simulator, similar to ZSim [179] or Sniper [36]. It is split into

two parts:
1. The front-end, which is built around QEMU, a purely functional CPU emulator. It uses

dynamic binary instrumentation to generate the stream of events that drive the simulation.
One event is generated per instruction executed in a program. This event records the
registers and memory addresses read and written by that instruction as well as the list of
CPU resources it uses.

2. The abstract performance model, that consumes these events and tracks the state of the
simulated CPU. The performance model computes the time at which every instruction is
issued, at which it starts executing, and when it is retired. The overall execution time of
a program is then the time the last instruction finishes. The abstract performance model
consists of the following components:
• A set of abstract throughput limited resources that model, amongst other things, the

execution ports and the bandwidth between different levels of the cache.
• A finite-sized instruction window which models the ROB.
• A shadow memory and shadow register file used to track data dependencies.
• A cache simulator to detect cache misses.

The time at which an instruction can be issued, is dictated by the instruction window.
The time it can start executing, tstart, is determined by the resources it uses and by its
data dependencies. The time it retires, tend, is simply tstart + instruction.latency.

Abstract resources:

The main element of Gus’s CPU model are “abstract” throughput limited resources. Every
instruction uses one or more of these resources as it executes. There is no global clock in the
simulator that tracks the current time. Instead, for each resource, it only tracks the time when
that resource will be available to accept another request. When all the resources an instruction
requires are available, it can execute. Otherwise the simulated CPU stalls. Every resource is
characterized solely by its throughput, i.e., the rate at which it can process instructions. Ex-
amples of things modelled using such abstract resources are the execution ports, the bandwidth
between the L1 and L2 cache, or the retirement rate of the ROB.
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We write the timestamp at which a resource R is available to accept an instruction as R.tavail.
Every time a resource is used its tavail is incremented by its inverse throughput. We also refer
to the inverse throughput of a resource as its gap, since it determines the minimum amount of
time that must elapse between two uses of the resource.

To model the throughput and sharing of CPU resources the standard formalism is a port
mapping, a tripartite graph, which describes how instructions decompose into µops and which
functional units µops can execute on. Gus instead uses a simpler two-level representation, called
a resource mapping, where instructions are directly associated with a list of abstract resources.
To account for µop decomposition, a resource can appear in this list multiple times. The details
of how we create Gus’s two-level representation from a three-level port mapping are explained
later in Section 3.5.3.

Instruction window:

The instruction window is a fixed size buffer that models the ROB of the CPU. It that tracks all
instructions that have been issued, but that have not been retired yet. The instruction window
does not store instructions, but only timestamps that indicate when each instruction will retire.
If the window is full no instruction can be issued until another one retires. We use tmin to denote
the earliest time a slot in the window will become free. tmin is thus the earliest time the current
instruction can be issued to the window. The instruction window effectively puts a limit on the
amount of instruction-level parallelism the simulator allows.

The only two operations we perform on the instruction window are querying for the smallest
element and replacing the smallest element. Both these operations can be efficiently implemented
with a min-heap data structure.

Shadow memory, shadow register file, and cache simulator:

The shadow memory and shadow register are used to detect data dependencies between instruc-
tions. For each memory cell or register they store the time at which the data in this location
will be available. It is updated through two mechanisms: First, when an instruction writes to a
location, the shadow cell for that location will be set to the time when the instruction is retired.
Second, when a cache miss occurs this counts as a “use” of all levels of the memory hierarchy up
to the one where the miss occurred. The location in the shadow memory corresponding to the
accessed memory location is then updated to the maximum of tend of the instruction that caused
the miss of the tavail of the involved resources plus their gap. Gus uses the Dinero IV cache
simulator to detect at which level of the memory hierarchy every memory access hits or misses.
Gus assumes that register renaming works perfectly and only considers flow, or read-after-write,
dependencies.

3.4.2 An illustrative example

In this section we unroll how the simulator processes a small example program. In this example
we will use a simple CPU model which consists of:

• Three different instructions: add, mul, store.
• Three resources: R1, R2 and R12.
• An instruction window, with two slots. There are no µops in this example.
• three registers: %r1, %r2, and %r3.
• A memory hierarchy with two level of cache, modelled as two resources L1 7→L2 and

L2 7→M. L1 7→L2 denotes the bandwidth between the L1 and L2 cache. L2 7→M denotes the
bandwidth between the L2 cache and main memory. The bandwidth between the CPU
and L1 is assumed to be infinite
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Resource Throughput Gap

R1 1 1
R2 1 1
R12 2 1⁄2

L1 7→L2 1⁄2 2
L2 7→M 1⁄3 3

(a) Throughputs and gaps of resources.

Instruction Latency

add 1
mul 3
store 1

(b) Instruction latencies

mul add store

R1 R2

1 1
(c) Port mapping. mul and store can only ex-
ecute on resources R1 and R2, respectively. add

can use either resource R1 or R2.

mul add store

R1 R12 R2

1 2 1
(d) Corresponding resource mapping. The fact
that add can execute either on resource R1 or R2
is modelled by the combined resource R12. mul

uses both R1 and R12

Figure 3.2 – Port mapping, resource mapping, and throughputs and gaps for individual resources
of simple example CPU. In both the port and resource mapping resources are annotated with their
throughput. store instructions also use L1 7→L2 or L2 7→M if a cache miss occurs.

The port mapping for this simple toy architecture and the resource mappings constructed
from it are shown in Figures 3.2a and 3.2b. Figure 3.2c lists the throughputs of all resources.
Figure 3.2d lists the latencies of instructions. One important detail here is the fact that the µop
produced by add can execute either on resource R1 or R2. This is modelled in the corresponding
resource mapping by creating a new combined resource R12. The µop for mul, which originally
only used resource R1 in the port mapping now uses R1 and R12. The same holds for store, which
goes from using only R2 to using R2 and R12. This combined resources R12 models the resource
sharing between add, mul, and store. The details of how exactly we construct resource mappings
are explained later in Section 3.5.3.

The example program consists of four machine instructions, and we visualize the state of the
simulator after every instruction has finished executing. In every image, the tstart for the current
instruction is shown highlighted in blue. All values used to compute tstart are underlined in blue.
The tend of every instruction and all state of the simulator that has changed while executing the
instruction is highlighted in orange.

Initial state:
The image below shows the initial state of the simulator. Initially, tavail of all resources, all
slots in the instruction window, and all locations in the shadow memory and shadow register
file are set to zero. At this point, we can already calculate the value for tstart of the first in-
struction, mul %r1,%r1. Any instruction can execute once a slot in the instruction window, all
resources it uses, and all its data dependencies are available. mul %r1,%r1 uses R1, R12 and %r1,
so tstart = max(R1.tavail, R12.tavail, %r1.tavail) = 0.
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tavail of resources:

time0 1 2 3 4

L1 7→M 0

L1 7→L2 0

R12 0

R2 0

R1 0

tmin

Instr. window:

0

0

tmin = 0

Storage:

%r3

%r2

%r1

0

0

0 ...

0xFF

...

0

0

0

Program:
Instruction Resrc. tstart tend

mul %r1,%r1 R1, R12 0

add %r2,%r2 R12

store %r1,0xFF
R2, R12,
L1 7→L2

add %r3,%r3 R1, R12

x

x

After instruction 1:
The next image shows the state of the simulator after the first instruction has finished executing.
tavail of all resources used by the instruction, here R1 and R12, has been incremented by the
resources gap. For any instruction i tend is defined as tend = tstart + i.latency. Since here a mul

has a latency of three, we calculate tend = 3. This value for tend is recorded in the instruction
window and in the shadow register for %r1.

After executing the first instruction, we can calculate tstart for the second instruction, add
%r2,%r2. This instructions uses R12 and reads from %r2, so tstart = 0.5.

tavail of resources:

time0 1 2 3 4

L1 7→M 0

L1 7→L2 0

R12 0.5

R2 0

R1 1

tmin

Instr. window:

mul %r1,%r1

0

3

tmin = 0

Storage:

%r3

%r2

%r1

0

0

3 ...

0xFF

...

0

0

0

Program:
Instruction Resrc. tstart tend

mul %r1,%r1 R1, R12 0 3

add %r2,%r2 R12 0.5

store %r1,0xFF
R2, R12,
L1 7→L2

add %r3,%r3 R1, R12

x

x

After instruction 2:
The next step shows the state after the second instruction, add %r2,%r2. As before we update
tavail for all used resources and the shadow registers that are written to. This instruction fills
the last available slot in the instruction window, so the tmin for the next instruction is updated.

The third instruction, store %r1,0xFF, has a data dependency on the first instruction via
register %r1. Consequently it cannot begin executing before mul %r1,%r1 has finished, even
though both the instruction window and the resources it uses would allow it to execute earlier.
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tavail of resources:

time0 1 2 3 4

L1 7→M 0

L1 7→L2 0

R12 1

R2 0

R1 1

tmin

Instr. window:

add %r2,%r2

mul %r1,%r1

1.5

3

tmin = 1.5

Storage:

%r3

%r2

%r1

0

1.5

3 ...

0xFF

...

0

0

0

Program:
Instruction Resrc. tstart tend

mul %r1,%r1 R1, R12 0 3

add %r2,%r2 R12 0.5 1.5

store %r1,0xFF
R2, R12,

3L1 7→L2

add %r3,%r3 R1, R12

x

x

After instruction 3:
The third instruction, store %r1,0xFF, has to wait for a slot in the instruction window to be
available before it can be issued. Consequently, the instruction will not request any resources
before it gets that slot at timestamp 1.5. We model this bubble in the CPU pipeline by setting
tavail of all used resources to tavail = max(tmin, tavail). No other instruction could have used
the resources during this bubble since there was no free slot in the instruction window. We then,
as always, increment tavail of every used resource by its gap.

The third instruction is a memory-access that hits in L2, i.e., it causes a miss in L1. Thus,
besides R2 and R12 it also uses the resource L1 7→L2. We also have to update the shadow
memory cell for address 0xFF to (L1 7→L2).tavail. The shadow memory cell for 0xFF is then later
overwritten with the tend of the store.

The fourth instruction, mul %r3,%r3, again has to wait for a slot in the instruction window,
even though there are available resources and no data dependencies. It can, at least, execute in
parallel with the store.

tavail of resources:

time0 1 2 3 4

L1 7→M 0

L1 7→L2 2.5

R12 2

R2 2.5

R1 1

tmin

Instr. window:

store %r1,0xFF

mul %r1,%r1

4

3

tmin = 3

Storage:

%r3

%r2

%r1

0

1.5

3 ...

0xFF

...

0

4

0

Program:
Instruction Resrc. tstart tend

mul %r1,%r1 R1, R12 0 3

add %r2,%r2 R12 0.5 1.5

store %r1,0xFF
R2, R12,

3 4L1 7→L2

add %r3,%r3 R1, R12 3

x

x

After instruction 4:
The fourth, and last, instruction, mul %r3,%r3, waits until timestamp 3 to get a free slot in the
instruction window. Same as with the store this causes a bubble in the CPU pipeline where
some resources are unused.

This last instruction starts executing concurrently with the store instruction and also fin-
ishes at the same time. We can see that, in this simple example, the size of the instruction
window is not big enough to mask the latency of the mul and cache miss of the store.
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tavail of resources:

time0 1 2 3 4

L1 7→M 0

L1 7→L2 2.5

R12 3.5

R2 2.5

R1 4

tmin

Instr. window:

store %r1,0xFF

add %r3,%r3

4

4

tmin = 4

Storage:

%r3

%r2

%r1

4

1.5

3 ...

0xFF

...

0

4

0

Program:
Instruction Resrc. tstart tend

mul %r1,%r1 R1, R12 0 3

add %r2,%r2 R12 0.5 1.5

store %r1,0xFF
R2, R12,

3 4L1 7→L2

add %r3,%r3 R1, R12 3 4

x

x

3.4.3 The simulator algorithm

Algorithm 3.2 shows the main algorithm used by Gus to simulate CPUs. One important factor
that helps keep the algorithm simple and efficient is that it does not directly model a sched-
uler. In real super-scalar processors the scheduler multiplexes instructions and µops onto the
functional units or execution ports. Accurately modelling this would require maintaining ready
queues and reservation stations. As illustrated in Figures 3.2a and 3.2b Gus instead models
this using optimistically combined resources. In a port mapping we map µops to a list of ports;
whenever the µop executes it uses one of these ports. Contrarily, in a resource mapping we
map instructions to a list of abstract resources; whenever the instruction executes it uses all of
these resources. Any resource can repeatedly appear in the list of an instruction, which allows
modelling instructions that decompose into multiple µops of the same type. Algorithm 3.1 shows
how we convert port mappings to resource mappings.

We use the Pipedream tool described in Section 3.5 to find port mappings for CPU ar-
chitectures. Pipedream also determines the baseline throughput of all resources as described
in Section 3.5.3. The throughput of a combined resource is equal to the throughputs of all
sub-resources it is composed of.

As stated earlier, Gus finds performance bottlenecks using sensitivity analysis. That is, we
run the simulator multiple times, each time increasing the throughput of one resource. We can
vary the throughput of “atomic” resource built from only one port as well as the throughput of
combined resources. We try multiple different throughput values for every resource. To limit
the size of the search space that needs to be explored, we only ever change the throughput of
one resource. Gus can also detect if instruction latency is a bottleneck by varying the latency of
instructions. For now, we only use one global factor that affects the latency of all instructions.
This factor is multiplied with the instruction latency on line 19 of the simulator algorithm. At
the end, Gus reports how sensitive the program’s performance is to each resource or latency.
That is, by how much an increase of every resources throughput or instruction latency reduces
the total program runtime.

Gus intentionally uses a very simple performance model to achieve good simulation times.
Consequently, the simulator algorithm has to make a number of simplifying assumptions about
programs and the underlying hardware:

• Like the ECM [210], we assume that the program has regular access memory patterns that
can be perfectly prefetched. It is assumed that all memory accesses can be overlapped and
so we do not take the latency of caches into account.

• The simulator has no model of memory consistency and allows memory accesses to be
arbitrarily reordered.

• We currently assume that the bandwidth between the CPU and L1 is infinite and do not
model it as a resource. The only penalty one incurs on an L1 hit is the latency of the
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1 struct Muop:

2 # The muop uses one of these ports when it executes.

3 ports: Set[Port]

4
5 struct Instruction:

6 # Non-empty list of muops the instruction decomposes into

7 muops: List[Muop]

8 # List of abstract resources used by the instruction.

9 # The instruction uses all these resources when it executes. Initially empty

10 resources: List[Resource]

11
12 def build_resource_model(port_mapping):

13 # Abstract resources that model the execution ports of a CPU.

14 # A set combining multiple ports is a combined resource.

15 resources: Set[Set[Port]] = {}

16
17 # Collect all sets of ports that used by muops in the port mapping.

18 for instruction in port_mapping:

19 for muop in instruction.muops:

20 resources ∪= {muop.ports}

21
22 # Create any missing port sets needed to model resource sharing.

23 while no fixed point is reached:

24 for port_set_1 in port_sets:

25 for port_set_2 in port_sets:

26 if port_set_1 ∩ port_set_2 != ∅:
27 resources ∪= {port_set_1 ∪ port_set_2}

28
29 # Assign resources to instructions

30 for instruction in port_mapping:

31 instructions.resources = []

32 for muop in instruction.muops:

33 for port_set in resources:

34 if muop.ports ⊆ port_set:

35 instructions.resources += port_set

Algorithm 3.1 – Algorithm to build a resource mapping from a port mapping. This only covers resources
representing execution ports.

memory access instruction (line 6).
• Memory accesses do not wait for the address operand for the purposes of calculating cache

misses. Instead, we assume memory requests happen as soon as the instruction has a slot
in the instruction window. This models, to some degree, the ability of modern CPUs to
speculate on the address of memory accesses (line 7).

• We do not model the write-result part of an instruction’s execution (line 33).
• The simulator does not model load/store queues or load-store forwarding.
• The simulator does not model execution pipeline hazards or operand forwarding.
• We do not direcly model branch prediction or speculative execution. All branches are

assumed to be correctly predicted and branches do not cause stalls in the CPU pipeline.
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1 for instruction in trace:

2 # [1]. Start memory requests, i.e., access caches.

3 for loc in instruction.reads | instruction.writes:

4 # Lowest level at which access hits.

5 level = access_location(loc)

6 if level in [L2, L3, MEM]:

7 level.tavail = max(level.tavail, tmin) + level.gap

8 shadow[loc] = max(shadow[loc], level.tavail)

9 # [2]. Compute time instruction can start executing.

10 # Start when a slot in the instruction window is available,

11 tstart = tmin
12 # [2.1]. Compute time all inputs are available.

13 for loc in instruction.reads:

14 tstart = max(shadow[loc], tstart)

15 # [2.2]. Compute time all resources are available.

16 for resource in instruction.resources:

17 tstart = max(resource.tavail, tstart)

18 # [3]. Compute time execution of instruction finishes.

19 tend = tstart + instruction.latency

20 # [4]. Update resource usage.

21 for resource in instruction.resources:

22 resource.tavail = max(resource.tavail, tmin) + resource.gap

23 # [5]. Update shadow memory.

24 for loc in instruction.writes:

25 if loc is a register:

26 shadow[loc] = tend # ignore WAW, assume register renaming works perfectly

27 else:

28 shadow[loc] = max(shadow[loc], tend)

29 # [6]. Update tmin & window.

30 window.push(tend) # overwrites earliest available slot

31 tmin = window.earliest_available_slot()

32 # 7. Record tend for instruction.

33 instruction.tend = tend

Algorithm 3.2 – The Bottleneck Simulator Algorithm

3.5 Pipedream

This section describes how Pipedream builds the resource CPU model for Gus. This is a two-
step process. First, Pipedream reverse engineers the following performance characteristics:

• Instruction latency – The number of cycles an instruction requires to execute.
• Peak µop retirement rate – How many fused µops the CPU can retire per cycle.
• Micro-fusion – The number of fused µops an instruction decomposes into.
• µop decomposition and µop port usage – The list of unfused µops every instruction de-

composes into and the list of execution ports every one of these µops can execute on.
These real CPU resources are then mapped to and combined into abstract resources.

The first step of the reverse engineering process consists of generating a number of mi-
crobenchmarks. Pipedream then runs these benchmark, measuring their performance using
hardware counters. The latency, throughput, and micro-fusion of different instructions can then
be read directly from these measurements. The process of finding port mappings, i.e. µop
decompositions and µop port usage, however, is more involved. For this purpose, we have de-



3.5. PIPEDREAM 57

fined a variation of the maximum flow problem which we call the instruction flow problem. We
have developed a linear program (LP) formulation of the instruction flow problem which can be
used to calculate the peak IPC and micro-operations per cycle (MPC) a benchmark kernel can
theoretically achieve with a given port mapping. The actual port mapping of the underlying
hardware is then determined by finding the mapping for which the throughput predicted by
instruction flow best matches the actual measured IPC and MPC.

The counters required by Pipedream for its measurements the are:
• An accurate cycle counter, to calculate the IPC.
• A counter for the total number of retired µops, to calculate the fused MPC.
• A counter for the total number of µops executed on any execution port, to calculate the

unfused MPC.
• A counter for each execution port that counts the number of unfused µops executed on

that port.
All of these counters are available on Intel CPUs since Sandy Bridge. For now, we have built a
model of the Skylake architecture.

The CPU model used in instruction flow is even simpler than that of Gus. It only considers
instructions, µops, and the throughput of execution ports. Any other components, such as
the ROB, the instruction scheduler, or latencies, are not directly taken into account. The
benchmarks we apply the model to are all constructed in a way so that these resources never
form a bottleneck.

In the following we will use [i1i2 . . . in] to denote a microkernel consisting of n instructions
i1 through in. By construction our kernels never have any data dependencies, so the order of
instructions in a kernel is not relevant. That is, [i1i2] = [i2i1]. The number of occurences of
an instruction in a kernel, however, is relevant. Thus, [i1i1i2] 6= [i1i2]. We the plus symbol to
denote the concatenation of kernels, i.e. [i1] + [i2] = [i1i2]. We also use the shorthand AN to
denote N repetitions of instruction A. So, for example, [i21i32] = [i1i1i2i2i2].

Throughout the rest of this chapter we use a variation of Agner Fog’s notation for execution
ports, µops, and µop decomposition [72]. Execution ports are noted as p0 . . . pn. The identifier
for a µop is simply the concatenated sequence of ports it can execute on. That is, a µop that
can execute only on port p4 will be written as p4. A µop that can execute on either p1 or p3 is
denoted as p13. For simplicity, we will assume that there are at most ten execution ports so that
they can be labelled with a single digit. A µop decomposition is simply the list of identifiers for
every µop. If a µop occurs multiple times in a decomposition, it is prefixed with the number of
occurrences. An instruction that decomposes into three µops, two of type p015 and one of type
p6, is written as 2p015 p6.

3.5.1 The instruction flow problem

Before describing the algorithm for finding port mappings, we introduce the instruction flow
problem. The instruction flow problem is a variation of the maximum flow problem which
allows for constraints that force the total flow that passes through two nodes to be equal. We
use the instruction flow to model the steady state of a CPU with a given port mapping when it
is executing a small microkernel in an infinite loop. The “flow” through such an instruction flow
problem models the rates at which instructions and µops execute on the execution ports of the
CPU. That is, a solution for an instance of the instruction flow problem directly encodes the
IPC, MPC and execution port usage a kernel can achieve. Solving instruction flow instances is
the core mechanism used in Pipedream to evaluate and find port mappings.

Pipedream uses the same notion of µop as Gus. That is, a µop is simply a list of execution
ports, and we do not consider the latency of µops nor data dependencies between them.

We define an instance of the instruction flow is a multipartite directed acyclic graph (DAG)
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G = (V,E), where V = ({kIPC} ∪· I ∪· M ∪· P ∪· {kMPC}) is a set of vertices and E ⊆ V × V is a
set of edges. V is partitioned into several disjoint subsets:

• {kIPC} – This singleton set contains the source vertex kIPC through which flow enters
the system. Conceptually, it is this vertex from which instructions flow into the CPU to
execute, and so the flow entering at this point is the total IPC for the kernel.

• I – The set of vertices I represents the different instructions in the kernel. There is only
one instruction vertex per type of instruction. I.e., if a kernel contains two add instructions
there will be only one iadd ∈ I vertex to model this.

• M – The set of vertices M represents the different µops that instructions decompose to.
Some instructions can decompose into more than one µop of a given type, but for simplicity,
we do not model this directly. Instead, if an instruction i decomposes into n instances of
µop m there will be n distinct vertices m1, . . . ,mn.

• P – The set of vertices P represents the different execution ports of the modelled CPU.
• {kMPC} – This singleton set contains the sink vertex kMPC through which flow leaves the

system. Conceptually, it is this vertex at which µops execute and leave the CPU, so the
flow leaving through this vertex is the total MPC for the kernel.

No two vertices inside one of the partitions in V can be connected by an edge, and there are
only edges between partitions. Only edges between the following pairs of partitions are allowed:

• From {kIPC} to I – These edges indicate which instructions the kernel contains. Every
instruction is connected to kIPC .

• From I to M – These edges give the decomposition of instructions into µops.
• From M to P – These edges describe which execution port a µop can execute on.
• From P to {kMPC} – These are the edges through flow leaves the system. Every port is

Every port is connected to kMPC .
We usually omit kIPC and kMPC when drawing instruction flow graphs.

µop and port vertices follow the standard rules for the conservation of flow in a flow network.
That is, the sum of all flow entering such a vertex via its incoming edges equals the flow leaving
it via its outgoing edges. This does, however, not hold for instruction vertices. When an
instruction decomposes into multiple µops it puts more pressure on the execution ports than
an instruction that only produces one µop, i.e. the MPC of the kernel will be larger than its
IPC. Consequently, when an instruction decomposes into more than one µop the flow leaving
the vertex representing it in the instruction flow graph is larger than the incoming flow. To be
precise, the total outgoing flow of an instruction vertex is equal to the incoming flow times the
number of µops it decomposes into. On the other hand, when a µop is connected to more than
one port, this means that the µop can execute on either of these ports, but it only goes to one
of them. So at this level conservation of flow is upheld and the MPC is distributed along the
different outgoing edges.

Besides the graph G, an instruction flow instance of also encompasses a set of constants that
further describe the kernels and certain characteristics of the CPU architecture being modelled.

oi ∈ N0 – The number of times an instruction i ∈ I occurs in the kernel. If oi = 0 then
(k, i) /∈ E. Likewise, if oi 6= 0 then (k, i) ∈ E.
λmax ∈ R+ – The maximum fused MPC attainable on the CPU architecture. This is
simply the maximum fused MPC observed during any benchmark run. This models the
retirement bottleneck of the ROB. We need to take this into account since Intel CPUs can
theoretically execute more µops than they can retire.
#λi ∈ N – The number of fused µops an instruction i ∈ I decomposes to.
#µi ∈ N – The number of unfused µops an instruction i ∈ I decomposes to. This
corresponds to the number of outgoing edges of the the i vertex.

A solution of an instance of the instruction flow assigns a weight to every vertex and edge in
G. These weights correspond to IPC or MPC that passes through that part of the graph. We
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kIPC

i1 i2

m1 m2 m3

p1 p2 p3 p4

kMPC

ρk, λk

oi1 oi2

ρi1 ,λi1 ,µi1 ρi2 ,λi2 ,µi2

λi1,m1
λi1,m2 λi2,m3

µi1,m1 µi1,m2
µi2,m3

λm1 ,µm1 λm2 ,µm2 λm3 ,µm3

µm1,p1 µm1,p2 µm2,p3 µm3,p3 µm3,p4

µp1 µp2 µp3 µp4

µk

Kernel

Instructions

Muops

Ports

Total IPC and fused MPC for kernel

Number of occurences of instr. in kernel

Total IPC, fused MPC, and unfused
MPC for all instances of instr. in kernel
Fused MPC between instruction and µop

Unfused MPC between instruction and µop

Total fused and unfused MPC of µop

Unfused MPC between µop and port

Total unfused MPC of port

Total unfused MPC for kernel

Figure 3.3 – Example instance of the instruction flow problem. An instance of an instruction produces
one µop for every outgoing edge, i.e., i1 decomposes into one m1 and one m2. One instance of a µop only
executes on one port, i.e., m1 can execute either on p1 or p2.

use the following notation for the weights of the different types of vertices and edges:
• ρk – The total IPC of kernel.
• λk – The total fused MPC of kernel.
• ρi – The IPC for all instances of instruction i in the kernel. The same instruction can

have different IPCs in different kernels due to differing execution port usage.
• λi – The total fused MPC of all µops generated for all instances of instruction i in the

kernel.
• µi – The total unfused MPC of all µops generated for all instances of instruction i in the

kernel.
• λi,m – The fused MPC of µop m generated from all instance of instruction i in the kernel.
• µi,m – The unfused MPC of µop m generated from all instance of instruction i in the

kernel.
• λm – The total fused MPC of all µops generated for all instructions in the kernel.
• µm – The total unfused MPC of all µops generated for all instructions in the kernel.
• µm,p – The unfused MPC of µop m executed on port p in the kernel.
• µp – The total unfused MPC of all µops executed on port p in the kernel.
• µk – The total unfused MPC of kernel.

An example instance of the instruction flow problem indicating which weight is on which node
or edge can be seen in Figure 3.3

A valid solution for an instance of the instruction flow problem must maximize the total flow
given the following constraints:
C1 – ρk =

∑
i∈I ρi
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C2 – λk =
∑

i∈I λi

C3 – µk =
∑

p∈P µp

(total flow in and out of system)

C4 – ∀i ∈ I. µi =
∑

m∈M µi,m

C5 – ∀m ∈ M. µm =
∑

i∈I µi,m

C6 – ∀m ∈ M. µm =
∑

p∈P µm,p

C7 – ∀p ∈ P. µp =
∑

m∈M µm,p

(conservation of flow)

C8 – ∀i ∈ I. (kIPC , i) /∈ E =⇒ ρi = 0
C9 – ∀i ∈ I,m ∈ M. (i,m) /∈ E =⇒ µi,m = 0
C10 – ∀m ∈ M,p ∈ P. (m, p) /∈ E =⇒ µm,p = 0

(flow only propagates along edges)

C11 – ∀i1, i2 ∈ I. (oi2 > 0 ∧ oi2 > 0) =⇒ oi2 ∗ ρi1 = oi1 ∗ ρi2
(IPC of kernel is split evenly among instructions)

C12 – ∀i ∈ I,m ∈ M. (i,m) ∈ E =⇒ ρi = µi,m

(unfused MPC is split evenly among µops for an instruction)

C13 – ∀i ∈ I. ρi =
1

#µi
∗
∑

m∈M µi,m (translate IPC to unfused MPC)
C14 – ∀i ∈ I. λi =

#λi

#µi
∗ µi (translate fused MPC to unfused MPC)

C15 – ∀p ∈ P. µp ≤ 1 (a port executes at most one µop per cycle)
C16 – λk ≤ λmax (µop retirement limit)
C17 – ∀i ∈ I. µi ≤ µ[i] (bottlenecks other than retirement or ports)
Figure 3.4 shows some instruction flow instances, each annotated with its solution according to
these constraints.

Constraints C1 – C10 encode the basic flow properties, like “the sum of flow entering a vertex
equals the sum of flow leaving it” and “flow can only propagate along edges”. Remember that
instruction vertices do not follow the standard rules for the conservation of flow. Constraint C13

models how flow entering these nodes is multiplied before leaving due to µop decomposition.
By themselves, these constraints can easily be rewritten to a standard flow network for which
a maximal solution corresponds exactly to the maximum flow solution. Such a solution would,
however, allow nonsensical behaviour, such as two different instructions in a kernel steadily
executing at different rates.

To forbid these solutions we add constraints C11 and C12. C11 forces the IPC to be spread
evenly among all instructions in a kernel, proportionally to the number of times they occur.
Likewise, C12 forces all µops generated by an instruction to have the same MPC.

Constraints C15 and C16 limit the overall flow in the system by putting a bound on the rate
at which µops can execute and retire. C15 encodes the maximum dispatch rate of execution
ports of one unfused µop per cycle and C16 encodes the maximum rate at which fused µops can
be retired. Note that C16 assumes all functional units of a CPU to be perfectly pipelined.

Finally, C17 limits the total MPC all µops for an instruction i can achieve by the total MPC
of the kernel [i] containing only that instruction. For most instructions this will not impose
any additional throughput limitation not already encoded in C15 and C16. It does, however, to
some degree, allow handling instructions that are bottlenecked by CPU resources not currently
present in the model. An example of this is the add-with-carry (adc) or subtract-with-borrow
(sbb) instructions on x86 which have an implicit data dependency via the flags register limiting
their IPC. As stated earlier, the instruction flow problem generally assumes that there are no
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k = [i1] ρk = 2

i1

m1

p1 p2µp1 = 1 µp2 = 1

µk = 2

µi1,m1 = 2

µm1,p1 = 1 µm1,p2 = 1

(a) All ports fully utilized

k = [i1i2] ρk = 2

i1 i2

m1

p1 p21 1

µk = 2

1 1

1 1

(b) All ports fully utilized

k = [i1] ρk = 1

i1

m1 m2 m3

p1 p2 p31 1 1

µk = 3

1 1 1

1⁄2 1⁄21⁄2 1⁄2 1

(c) All ports fully utilized
k = [i1i2] ρk = 2

i1 i2

m1 m2

p1 p2 p31/2 1/2 1

µk = 2

1 1

1/2 1/2 1

(d) Throughput of kernel is limited by p3 and
so p1 and p2 are not fully utilized.

k = [i1i2] ρk = 1

i1 i2

m1 m2 m3

p1 p21 1/2

µk = 11/2

1/2 1/2 1/2

1/2 1/2 1/2

(e) Throughput of kernel is limited by p1 and
so p2 is not fully utilized.

Figure 3.4 – Example solutions to some simple instruction flow problems. For simplicity every instruction
only appears once in every kernel and no µop fusion occurs. The names of weights are only shown in a,
in all other figures we only give the values of weights.

data dependencies. However, by adding C17 the IPC predicted for kernels containing these types
of instructions is still accurate enough to find exact port mappings. Examples of this will be
given in the experiments in Section 3.6.2.

Since in an instance of instruction flow G, oi, #µi, #λi, λmax, and µ[i] are fixed all the above
constraints are linear. They can thus be directly encoded as a linear optimization problem
that computes the IPC and MPC of every kernel on the given port mapping. The objective
function for this optimization problem is simply: maximizeµk That is, we maximize the weights
representing the utilization of the execution ports in every kernel. Due to constraints C4 to C7

this “pressure” automatically propagates through the whole graph which determines the rest of
the weights.

3.5.2 Finding port mappings

Now that we have introduced the instruction flow problem, we can show how it is used by
Pipedream to find a port mapping for a CPU architecture. The port mappings we produce
correspond the I, M , and P vertices from instruction flow and the edges between them. That
is, for every instruction we find which µops it decomposes into and for every µop we find the
ports it can execute on.

The I level, that is, the instruction set of a CPU is usually well documented by vendors.
For x86 we have used the ISA description from Intel xed. The P level, the execution ports,
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k = [i1] ρk = 1/2

i1

m1 m2 m3

p2p1 1 1/2

µk = 11/2

1/2 1/2 1/2

1/2 1/2 1/2

k = [i1] ρk = 1/2

i1

m1 m2 m3

p1 p21/2 1

µk = 11/2

1/2 1/2 1/2

1/2 1/2 1/2

(a) Two port mappings with identical IPC and
MPC, but differing port utilization

k = [i1] ρk = 2

i1

m1 m2

p1 p21 1

µk = 2

1 1

1 1

k = [i1] ρk = 2

i1

m1 m2

p1 p21 1

µk = 2

1 1

1/2 1/21/2 1/2

(b) Two port mappings with identical IPC and
MPC, and port utilization

Figure 3.5 – Examples of port mappings that produce the same IPC and MPC

are also relatively well documented. Most vendors at least disclose the number of execution
ports an architecture has. However, which different µops a machine uses, what µops each
instruction decomposes into, or even just the number of µops into which instruction decompose
is undocumented.

It is the goal of Pipedream to find this missing middle level of µops and the edges that
connect all of the levels. The model produced by Pipedream, however, does not necessarily
perfectly reflect the real mapping and semantics of µops on the underlying hardware. We only
need a model that accurately reflects the performance and resource sharing of instructions for
use in Gus.

The first step in the reverse engineering process of Pipedream is to determine for every
instruction i the number of fused and unfused µops it decomposes into and the execution ports
that it uses. In other words, we measure #λi, #µi and µp. This can be done directly using hard-
ware performance counters and a single benchmark kernel [i]. To differentiate the empirically
measured values for µp from those calculated by instruction flow we note them as µemp,p. For
instructions that decompose into a single µop, i.e., #µi = 1, this is already enough information
to find its µop decomposition. Since such an instruction has only one µop all ports p where
µemp,p 6= 0 must be used by that µop.

For instructions that decompose into more than one µop the situation is not as simple though,
since the sets of ports used by different µops can overlap. For these types of instructions we
solve the instruction flow LP for each possible µop decomposition. We then compare this against
the empirically measured total µop throughput, µemp,k. The decomposition of an instruction is
then assumed to be the one whose predicted throughput best matches the measured throughput,
that is the mapping that minimizes the simulation error : |µk−µemp,k|

µemp,k
2. There are, however, two

problems with this naïve algorithm.

Problem 1: There are usually a large number of different port mappings that produce the
same IPC, MPC and port usage. Figure 3.5 shows examples of such problematic cases.

Problem 2: Even though we do not have to enumerate all possible instruction flow instances
for every instruction we still have to enumerate all possible µop decompositions. That is, the

2We could equally well define the simulation error using the predicted and measured IPC, ρk and ρemp,k, since
the IPC and MPC are directly related.
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kIPC , I, M , and P nodes and the edges between kIPC , I, and M are fixed, but we need to
enumerate all possible combinations of edges between the M and P nodes.

Solution for problem 1

k = [i1] ρk = 1

i1

m1 m2

p1 p21 1

µk = 2

1 1

1 1

k = [i1] ρk = 1

i1

m1 m2

p1 p21 1

µk = 2

1 1

1/2 1/21/2 1/2

(a) The two port mappings from Fig-
ure 3.5b with identical IPC and MPC, and
port utilization

k = [i1i2] ρk = 1

i1 i2

m1 m2 m3

p1 p21/2 1

µk = 11/2

1/2 1/2 1/2

1/2 1/2 1/2

k = [i1i2] ρk = 11/3

i1 i2

m1 m2 m3

p1 p21 1

µk = 2

2/3 2/3 2/3

1/2 1/61/2 1/6 2/3

(b) By adding i2 to the kernel we can distinguish the
two port mappings

Figure 3.6 – Example of how additional instructions can be used to distinguish port mappings

If we look at the two-port mappings shown in Figure 3.5a, we see that while they produce
the same IPC and MPC the utilization of individual ports differs. We can extend the instruction
flow LP to be able to distinguish these kinds of mappings by adding the following constraints:
C18 – ∀p ∈ P. µemp,p − err ≤ µp ≤ µemp,p + err

(valid range for port utilization)
C19 – ∀p ∈ P. 0 ≤ errµ,p ≤ maxerr

(upper bound for err, maxerr is a constant)
Constraint C18 simply enforces that the usage of individual ports in an instruction flow solution
does not differ too much from the actual measured usage. Here we do not fix the predicted µp

to exact values, but only force them to be within an error margin err of the measured values.
We do this since, in practice, performance counters are not perfectly accurate, and there is some
noise in the measurements. The LP solver often cannot find any valid solution for any port
mapping if we fix exact values for the port usage. For the LP we now use two optimizations
objectives: First, minimizeerr, and second, as before, maximizeµk. That is, we first find the
minimum value for err for which there is a solution, and we then find a solution that maximizes
the throughput. Any solution for the second objective may not have a higher err than that
found by the first objective. This type of lexicographic optimization problem with multiple
objectives is directly supported by gurobi, the LP solver we use. Finally, constraint C19 sets
an upper bound for the maximum value of err. In practice, we set maxerr to a small enough
value so that the LP solver still finds a solution, for most instructions this is 0.1.

In practice, setting bounds on the port usage helps to speed up the LP solver. Usually, there
are many mappings for which the solver can very quickly determine that there is no solution
that can reproduce the observed throughputs. In our experience, the LP solver can filter out
such infeasible mappings in under ten milliseconds while calculating a feasible solution can take
several 100 milliseconds.

There are, however, port mappings that still can not be distinguished with this method. An
example of this is shown in Figure 3.5b. We use the same general approach as Agner Fog [72] and
uops.info [3] to find port mappings for these instructions. That is, to find the decomposition
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for an instruction i, we generate multiple kernels that mix i with other instructions with a
known decomposition and measure how they interact. An example of how this works can be
seen in Figure 3.6. Algorithm 3.3 shows how Pipedream uses this technique to find the µop
decomposition is multi-µop instructions. Using single-µop instructions, whose decomposition we
can easily find, we generate benchmarks that individually block all ports used by i.

Ideally, the single-µop instruction in every kernel would use exactly one port, however not
every architecture has such an instruction for every port. On x86 processors, for example, there
are two identical ports to handle the data transfer for memory reads. Any load µop can execute
on either one of these two ports. Consequently, we generate one benchmark kernel for every µop
that can be generated by a single-µop instruction. The number of different such µops is relatively
small since we do not consider the semantics of µops, but only the ports they use. On x86, for
example, integer addition, subtraction, any bitwise logical operations, and compare instructions
all produce the same µop, i.e. use the same ports, even though they perform a variety of different
tasks. The final µop decomposition for an instruction is then the one that minimizes the average
simulation error 1

k

∑ |µk−µemp,k|
µemp,k

for all k kernels. If there are multiple decompositions with the
same simulation error we choose the one with the least number of edges between M and P .
Section 3.6.2 will further explain this reasoning.

Solution for problem 2

A naive implementation of our algorithm for finding µop decompositions has to enumerate all
possible decompositions for every different instruction, which is equivalent to enumerating all
bipartite graphs. For an instruction with m µops on a CPU with p ports there are approximately∑p

k=1

(
p
k

)
(−1)p−k(2k−1)m such graphs [87]. Let us illustrate how many different decompositions

there are in practice with a small example. On any Intel Haswell, Broadwell, or Skylake x86
CPU has eight execution ports, and the median number of µops an instruction decomposes
into is two. Given these points, there are 183700 different possible µop decompositions for an
average instruction. These are, of course, far too many graphs to test in a reasonable time since

for i in MULTI_MUOP_INSTRUCTIONS():

measurements = MEASURE_KERNEL_PERFORMANCE([i])

for muop in MUOPS_GENERATED_BY_SINGLE_MUOP_INSTRUCTION():

if PORTS_USED(i) != PORTS_USED(muop):

continue

simple_inst = INSTRUCTION_GENERATING_MUOP(muop)

measurements += MEASURE_KERNEL_PERFORMANCE([simple_inst])
measurements += MEASURE_KERNEL_PERFORMANCE([i simple_inst])

best_muop_decomposition = None

smallest_error = ∞

for muop_decomposition in POSSIBLE_MUOP_DECOMPOSITIONS():

simulation_error = SOLVE_INSTFLOW_LP(muop_decomposition, measurements)

if simulation_error < smallest_error:

best_muop_decomposition = muop_decomposition

smallest_error = simulation_error

Algorithm 3.3 – Algorithm to find µop decomposition with per execution port hardware counters
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we have to solve an LP problem for every such graph. To reduce the number of different µop
decompositions we have to evaluate for an instruction i we use two techniques:

1. We only consider decompositions using the same ports as i. As stated above, all recent Intel
CPU architectures have eight execution ports. However, the average instruction only uses
four of these ports. Therefore, for an average instruction, we only need to consider around
80 different µop decompositions. Nevertheless, the number of possible decompositions still
grows very rapidly, and, in practice, this approach can only handle instructions with up
to three µops using up to four ports.

2. We can optionally also assume that all µops of an architecture can be produced by a
single-µop instruction [3]. This way we no longer have to enumerate all possible bipartite
graphs, but only all words over the alphabet of µops. For an instruction with m µops on
a CPU with N different µops there are then mN possible decompositions. On Skylake, for
example, there are roughly 15 different µops. At first glance, this does not seem like an
improvement over the previous technique, since we now have to explore 215 ≈ 32thousand
different decompositions for the average instruction. However, we do not always have to
consider all 15 µops for every instruction. We only need to try µops that use a subset of
the overall set of ports used by an instruction.
In practice, this very significantly reduces the number of possible decompositions for an
instruction. On Intel architectures the common case of an instruction that decomposes
into a computation µop and a memory load µop there is only ever one possible mapping
since the ports responsible for load/store and computations are distinct. Even instruc-
tions that decompose into four or five µops usually have less than one hundred possible
decompositions.
However, this assumption that all µops of an architecture can be generated using only
single-µop instructions actually does not hold on x86. The one exception to this are
memory store operations, which always decompose into at least two µops. However, both
of these µops use a dedicated execution port, port 4 and port 7 respectively, which means
we can easily detect instructions which use “impossible” µops Pipedream does not know
about yet. In these cases, Pipedream falls back to the first technique to find these new
µops. Once it has added the new µop to its list, other store instructions can be handled
much faster.

3.5.3 Converting port mappings to resource models

Once Pipedream has constructed a port mapping, we can convert it to a resource mapping
as used by Gus as described in Section 3.4.3. In this model, we create the following abstract
resources:

• Execution ports – We create one resource per execution port of the CPU. Since a port
can accept one instruction per cycle, the throughput of each of these resources is one. To
model µops that can execute on multiple execution ports, we also create virtual resources
representing the combinations ports. By default, the throughput of combined resources is
equal to the sum of the throughputs of all sub-resources from it is composed.

• µop retirement – We create one global resource to represent fused µop retirement limit
whose throughput is equal to the measured λmax. Every instruction uses this resource
proportionally to the number of fused µops it produces.

• Instruction throttles – Some instructions have a throughput that is limited by other CPU
resources than functional units or the ROB. This behaviour is detected by Pipedream by
observing that the peak throughput of an instruction is significantly lower than its port
mapping allows. For every such instruction i we create an abstract resource with the same
throughput as the kernel [i].
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1. spill registers to stack

2. flush CPU pipeline

3. start PAPI performance counters

4. spill PAPI handles to stack

5. flush CPU pipeline

6. initialize values in registers (optional)

7. benchmark-loop

8. flush CPU pipeline

9. restore PAPI handles from stack

10. read PAPI performance counters

11. flush CPU pipeline

12. restore registers

Figure 3.7 – General design of benchmarks generated by Pipedream

3.5.4 Benchmark design

To take the required measurements for building Gus’s CPU model Pipedream uses automat-
ically generated microbenchmarks written x86 assembler. All benchmarks are generated from
a ISA description extracted from Intel xed [55]. Every benchmark is one procedure written in
textual assembler, which is then assembled using GNU gas. Multiple benchmarks are packaged
into one shared library and then loaded into the Pipedream process for execution.

Pipedream benchmarks run in user-space and do not require root privileges on a machine.
As a consequence we can not directly read hardware performance counters with the rdpmc in-
structions since it is by default only accessible from ring 0, i.e. kernel space. Instead, we have to
use a system call to read counters. For convenience and portability, we use PAPI [65] for this.
Using a system call to read performance counters has some wide-reaching consequences we have
to account for in our benchmark design.

In general, the microbenchmark kernels we are interested in are tiny, consisting only of a
handful of instructions, usually between one and five. However, the overhead of reading perfor-
mance counters is much too high to such tiny kernels with any reasonable degree of accuracy.
As a consequence, we have to repeatedly execute a kernel many times. Nevertheless, simply
unrolling the kernel thousands of times may introduce skew the results of the measurements by
putting stress on the instruction decoder or instruction cache. To avoid this skew, we instead
wrap the kernel in a simple, statically counted loop. Since the instructions used to implement
the loop also use some CPU resources which distorts the measurements we do unroll the kernel
several times. The unrolling factor is chosen so that the loop still fits in the µop cache. Since
modern CPUs have large µop caches with upwards of a thousand entries, the benchmark loop
can safely be unrolled several dozen of times.

Figure 3.7 shows the general design of all benchmarks generated by Pipedream. The CPU
pipeline flushes in steps 2. and 5., implemented using a serializing instruction, prevent the
CPU from reordering instructions from before the kernel to execute after performance counters
have been started. Likewise, the flushes in steps 8. and 11. prevent instructions from inside the
kernel to be executed after the counters have been read. Inside the benchmark kernel, we reserve
one general-purpose register for the loop counter and, if the benchmark contains load/store
instructions, another register as a base register for memory accesses. All other registers are
available to the benchmark kernel. Register allocation in benchmarks is done after unrolling the
kernel to prevent any unwanted false dependencies. We also allocate a large contiguous block
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.kernel.loop.head:

# vaddps SRC1, SRC2, DST

vaddps %ymm1, %ymm1, %ymm0

vaddps %ymm1, %ymm1, %ymm2

vaddps %ymm1, %ymm1, %ymm3

vaddps %ymm1, %ymm1, %ymm4

...

# Decrement loop counter & iterate

# On Intel & AMD processors this is macro-fused into a single μop

sub $1, %r15

jne .kernel.loop.head

Figure 3.8 – Example benchmark to measure instruction throughput

.kernel.loop.head:

# vaddps SRC1, SRC2, DST

vaddps %ymm0, %ymm0, %ymm0

vaddps %ymm0, %ymm0, %ymm0

vaddps %ymm0, %ymm0, %ymm0

vaddps %ymm0, %ymm0, %ymm0

...

# Decrement loop counter & iterate

# On Intel & AMD processors this is macro-fused into a single μop

sub $1, %r15

jne .kernel.loop.head

Figure 3.9 – Example benchmark to measure instruction latency.

of memory called the memory arena. All load and store instructions are assigned a constant
address inside this arena.

Pipedream can also initialize any registers to a fixed value before the kernel executes, as
shown in step 6.. Usually, all registers are initialized to zero, but some instructions required
registers to be initialized to some special value. Integer division, for example, raises an exception
if the divisor is zero, so we appropriately initialize registers to avoid this.

Pipedream can not yet generate benchmarks for instructions that use a rep prefix, a lock

prefix, or AVX512 instructions. In total, it can generate benchmarks for just over 2800 different
instructions.

As cycle counter we used CPU_CLK_UNHALTED. To count the total number of µops executed
in a benchmark we used the counters UOPS_RETIRED:ALL, for unfused µops, and UOPS_RETIRED-

:RETIRE_SLOTS for fused µops. To count the number of µops executed on each execution port
we used UOPS_EXECUTED_PORT:PORT_0/1/. . . /7. Finally, we used the average value over all runs
for each counter.

Measuring instruction throughput and port usage

To measure the throughput of an instruction, i.e., how many instances of that instruction a
processor can execute per cycle, we again generate a benchmark kernel containing only copies of
that instruction. We then allocate the registers in the benchmark to create as many independent
dependency chains as possible. To the same end, all load instructions are set to read from the
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.kernel.loop.head:

# cmp SRC1, SRC2

# adcx SRC1, SRC2/DST

cmp %rax, %rax

adcx %rax, %rax

cmp %rax, %rax

adcx %rax, %rax

...

# Decrement loop counter & iterate

# On Intel & AMD processors this is macro-fused into a single μop

sub $1, %r15

jne .kernel.loop.head

Figure 3.10 – Example benchmark to measure instruction latency using an instruction with known
latency. cmp reads two general purpose registers and writes to several bits of the flags register, by itself
it cannot create a sequential dependency chain. adcx reads two general purpose registers and the carry
bit of the flags register and writes one general purpose register as well as the carry bit. Together these
instructions create a dependency chain via the carry bit.

same location in the memory arena, while store instructions all get their own memory location
to write to. An example of such a throughput benchmark can be seen in Figure 3.8 Note that
many x86 instructions have a fixed operand they both read from and write to; usually the %rax

register or the flags register. For these instructions, we can at most create one dependency chain,
so they always execute sequentially, with a throughput of at most one. Some other instructions,
like division or square root, have a very long latency or are not fully pipelined and also have a
throughput of less than one.

The measure the IPC of a benchmark we divide the number of instructions executed, which
we know statically, by the number of cycles it takes to execute the kernel. For the fused and
unfused MPC we divide the values of the corresponding counters for the number of executed µop
by the number of cycles. To account for the loop around the benchmark kernel, we subtract
the number of instructions or µops for such an empty loop from the total counts for each real
benchmark. The instructions for the loop are assumed to execute in parallel with all other
instructions, so we do not adjust the number of cycles.

The benchmarks used to measure usage of execution ports are structured the same as those
for throughput measurements. To determine the usage of each execution port, we measure the
number of unfused µops executed on it and divide that by the number of cycles as above.

Measuring instruction latency

For most instructions measuring latency, i.e., how many cycles an instruction requires to execute,
is no more complicated than measuring the throughput. The only difference being that here we
allocate registers and memory locations in a way to create exactly one dependency chain which
forces the kernel to execute completely sequentially. An example of such a latency benchmark
can be seen in Figure 3.9. The latency of an instruction is then defined as the number of
instructions executed by the benchmark divided by the number of cycles it takes to execute
it. We subtract the number of instructions and µops for the benchmark loop as is done for
throughput benchmarks.

This approach is not sufficient for measuring the latency of all instructions since not all
instructions can create a dependency chain with themselves. Instructions that read from memory
and write to a register, like some move instructions, for instance, can not be benchmarked directly
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with this approach. To measure the latency of these more complicated instructions, we add a
second instruction with an already known latency to the benchmark kernel so in order to create
a sequential dependency chain. The latency of the first instruction is then determined as the
latency of the whole kernel minus the latency of the known instruction. For a small number of
instruction types, less than 70, we even require two instructions with a known latency to create
a dependency chain. Figure 3.10 shows a benchmark kernel containing two instructions to
measure latency. Finally, there are some exotic instructions for controlling processor state that
do not directly write to any registers or memory. Though Pipedream can create throughput
benchmarks for these instructions, it current has no way to reliably benchmark their latency.

Measuring micro-fusion

The benchmarks used to measure µop micro-fusion are simpler than those for throughput and
latency since they do not depend on timings. Here, we do not need to worry about decoding,
and instruction or µop cache misses or data dependencies. So a benchmark can simply be a
long repeated sequence of the same instruction for which we measure the number of fused and
unfused µops executed.

3.6 Experiments

Both Gus and Pipedream are still early prototypes under active development. This section
highlights preliminary results of their usefulness along several case studies.

3.6.1 Gus

3.6.1.1 Case study I: Matrix multiplication

The first case study shows how we optimize a matrix multiplication kernel based on feedback from
Gus. Here we present a single-threaded version of the basic matrix-matrix product C := AB.
All versions of the code are compiled with GCC 9.1 with the flags -O2. 3 All measurements are
taken on a Skylake 7940X running at 2.3 GHz using PAPI [65]. All reported measurements are
the median over ten executions.

We use square 192 × 192 matrices of 32 bit floating-point numbers. So each matrix uses
144 kB of memory. Skylake CPUs have a 32 kB L1 cache and a 1MB L2 cache. Hence we
cannot fit one whole matrix in L1, but all three matrices can fit in L2.

The resource mappings used for the simulator have been produced with Pipedream. For
instructions that Pipedream cannot benchmark yet, such as conditional branches, we use the
mappings of Agner Fog [72]. The data-transfer bandwidth between individual cache levels and
memory have been determined using simple microbenchmarks.

For the sensitivity analysis we first run one simulation of a kernel with the default throughput
for all resources and default instruction latency. We then run one 15 simulations per resource,
each time incrementing the throughput of that resource by 1%. We configure Gus to only
simulate the performance of the computational kernel. The rest of the benchmark program,
that is the code to initialize data structures and print results, are only simulated functionally.

Step I: Naive matrix multiplication
We start from the basic naive implementation of a matrix multiplication, seen below. N is

set to 192.
3All benchmarks here are limited to 128 bit SSE instructions, since QEMU does not support newer vector

instructions yet.
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for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

for (int k = 0; k < N; k++) {

C[i * N + j] += A[i * N + k] * B[k * N + j];

}}}

The naive matrix multiplication kernel has a runtime of approximately 25 million cycles on
the test machine. It takes 3.5 cycles to perform one accumulation into C, that is, to execute
one iteration of the innermost loop. This corresponds to 0.5 32 bit floating-point operations per
cycle (FLOPs/cycle).

There are likely two performance bottlenecks in this code. The first is the fact that the
matrix B is traversed with a stride of N along the innermost k loop. That is, while it is stored in
row-major order, the algorithm traverses it in column-major order. This is likely to cause a large
number of cache misses depending on the value of N. The second possible problem is that the
innermost loop forms a reduction in C[i * N + j]. This reduction prevents any instruction-level
parallelism and forces the CPU to execute all iterations of the innermost sequentially.

Even for such a small example, it is not necessarily trivial to analytically detect which of
the two problems forms the bigger bottleneck. Instead of manually analysing the kernel, we
use Gus’s sensitivity analysis. It finds that the performance is limited most by the bandwidth
between the L1 and L2 cache. This is due to a large number of misses in the L1 cache where
each miss causes data movement between L1 and L2. A visual representation of the results of
the sensitivity analysis produced by our tool is shown below. We use a form of heat-map for the
visualization. Each bar in it represents one abstract resource. The height of each bar and its
colour indicate the speedup predicted by Gus if the throughput of that resource is increased.
Take, for example, the resource L2 THR, which represents the throughput between L1 and L2.
The graph shows that an increment of its throughput by 1% decreases the overall runtime of
the kernel by 1%. If we increment the resource’s throughput by 2%, the runtime decreases by
approximately 2%. The bar fades to white around the 13 − 14% mark, which indicates that a
15% increase in throughput produces a 13− 14% speedup. All other resources immediately face
to white at the 0% mark. That is, according to Gus, the runtime of the kernel is not affected
by increasing the throughput of any other resource. Hence, L2 THR is the bottleneck of this
version of the kernel.
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To improve the performance of the matrix multiplication kernel we need to apply a trans-
formation that reduces its usage of the bandwidth between L1 and L2. In general, we consider
three different optimizations for such cases:

1. Loop interchange – Changing the order of loops in a loop nest can improve cache usage
by changing the strides of memory accesses.

2. Loop tiling – Tiling splits the iteration space of a loop nest into smaller tiles to ensure
that data stays in cache until it is reused. Loop tiling is more difficult to apply since it
introduces new loops into the kernel, which increases the number of control instructions,
such as branches and comparisons. Have more loops with a smaller trip count may also
negatively affect branch prediction. It is also non-trivial to find optimal tile sizes to ensure
that data stays resident in the cache.

3. Data layout and alignment changes – Changing the alignment or layout of data can reduce
conflict cache misses. In this case, we could pad the matrices with additional unused
elements to ensure that the ways of the cache are fully utilized. However, changing the
alignment and layout of data is a non-local change that requires code outside the kernel
for allocating and inspecting the matrices to be modified too.

Here, we chose to perform a loop interchange on the kernel since it is the simplest of the three
transformations.

Step II: Loop interchange
We perform a loop interchange that changes the order of loops from ijk to kij.

for (int k = 0; k < N; k++) {

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j++) {

C[i * N + j] += A[i * N + k] * B[k * N + j];

}}}

The loop interchange improves the runtime of the kernel from 25 million to 15 million cycles. It
now takes 2.1 cycles to execute one iteration of the innermost loop, and the FLOPs/cycle rise
from 0.5 to 0.9. More detailed statistics are given in Table 3.1. There are two reasons why the
interchange increases the performance of the kernel:

• Changing the order of loops also changes the strides of the memory accesses to the different
matrices. It notably causes the kernel to traverse the matrix B in row-major instead of
column-major order.

• The innermost loop of the kernel now no longer forms a reduction in C[i * N + j], which
exposes a large amount of parallelism since all iterations of the innermost can now execute
in parallel.

Our sensitivity analysis now reports that the bottleneck of the modified kernel is now no longer
the bandwidth between L1 and L2 but the rate at which the ROB can retire µops. In the
visualization below, this is represented by the resource INST RET, which is used by every
instruction. µop retirement is now a bottleneck due to the large amount of instruction level
parallelism exposed by the interchange.
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To further improve the performance of the matrix multiply kernel, we need to reduce the
number of instructions that the CPU needs to retire per entry of the matrices. For kernels that
are bounded by the ROB we consider three different optimizations:

1. Vectorization – Most vector instructions use the same number of slots in the ROB as their
scalar counterparts. By replacing scalar instructions with vector instructions we can thus
effectively increase the number of computations performed per µop.

2. Loop unrolling – Unrolling loops reduces the number of control instructions and also often
exposes other redundant computations that can be removed. It is also often required to
enable vectorization.

3. Redundancy elimination – This general involves manually removing redundant computa-
tions, such as factoring out terms in strided accesses, not already detected by the compiler.

In the current version of the code the compiler has already used the sophisticated addressing
modes available on x86 to fold address computation, loads, stores, and arithmetic operations
into as few instructions as possible. There is no redundancy left remove. The kernel is, however,
a perfect candidate for unrolling and consecutive vectorization.

Simulator Real execution

Kernel Cycles L1 misses L2 misses Cycles L1 misses L2 misses

Naive 25,688,364 7,224,804 6914 25,390,280 7,281,762 6076
Loop interchange 12,451,163 481,539 6914 15,165,666 474,428 5682

Table 3.1 – Effects of a loop interchange on the matrix multiplication kernel

Step III: Loop unrolling and vectorization
To reduce the µop retirement bottleneck in the interchanged kernel unroll the innermost j

loop and the vectorize the resulting code. We use 128-bit SSE vectors for this, which process
four 32 bit floating-point numbers at once. Consequently, we reduce the number of instructions
that need to be retired per iteration of the innermost loop by approximately four. Another
optimization would to use a single fused multiply-add instruction (fma) instead of a seperate
multiply and add. However, QEMU currently does not support fma instructions on x86.
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for (int k = 0; k < N; k++) {

for (int i = 0; i < N; i++) {

for (int j = 0; j < N; j += 4) {

// set all elements of vector a to A[ i * N + k]

__m128 a = _mm_set_ps1(A[ i * N + k]);

// vector load from C

__m128 c = _mm_load_ps(&C[i * N + j]);

// vector load from B

__m128 b = _mm_load_ps(&B[k * N + j]);

// c = (a * b) + c

c = _mm_add_ps(_mm_mul_ps(a, b), c);

// vector store to C

_mm_store_ps(&C[i * N + j], c);

}}}

This reduces the runtime of the kernel from 15 million cycles to 3.6 million cycles. It now
takes 0.5 cycles instead of 2.1 to execute one accumulation into C. The FLOPs/cycle rise from
0.9 to 3.9.

The sensitivity analysis for this version of the kernel finds that the µop-retirement bottleneck
has been removed. Instead, the bandwidth between L1 and L2 is again the main limiting factor
for performance.
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We consider the same three optimizations as before for reducing the number of cache misses
and reducing the of the bandwidth between L1 and L2: loop interchange, loop tiling, and
changes to the data alignment or layout. We have already performed a loop interchange, so
this is no longer an option. As before, we prefer to not require users to change their code and
opt-out of changing the data alignment or layout. The remaining option is loop tiling.

Step IV: Loop tiling
To improve reuse of data in caches, we tile the i and j loops with a tile size of 32. The tiled

version no longer iterates over entire rows and columns of C directly. Instead, it operates on
32× 32 sub-matrices that easily fit in the L1 cache. This optimization improves the runtime of
the kernel from 3.6 million cycles to 3.2 million cycles. One accumulation into C now takes 0.45
cycles to execute, and the FLOPs/cycle rise from 3.9 to 4.3.
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for (int I = 0; I < N; I += 32) {

for (int J = 0; J < N; J += 32) {

for (int k = 0; k < N; k++) {

for (int i = I; i < I + 32; i++) {

for (int j = J; j < J + 32; j += 4) {

__m128 a = _mm_set_ps1(A[i * N + k]);

__m128 c = _mm_load_ps(&C[i * N + j]);

__m128 b = _mm_load_ps(&B[k * N + j]);

c = _mm_add_ps(_mm_mul_ps(a, b), c);

_mm_store_ps(&C[i * N + j], c);

}}}}}

The sensitivity analysis now shows that tiling has effectively reduced the number of cache
misses, and that the bottleneck of the kernel has moved back to the µop retirement rate.
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Same as at the end of Step II, we consider the following optimizations to remove the µop
retirement bottleneck: vectorization, loop unrolling, and redundancy elimination. We have
already vectorized the code and the compiler is able to eliminate any redundancy in the body of
the inner loop. Consequently, the only remaining option is to unroll the inner loop even more.

Step V: Loop unrolling
To reduce the number of control instructions executed by the benchmark we unroll the inner

j loop eight times. This last transformation reduces the runtime of the kernel from 3.2 million
cycles to 2.1 million cycles. This version now takes 0.3 cycles to perform one accumulation into
C, it achieves 6.6 FLOPs/cycle. The final version is more than ten times faster than the original,
which required 25 million cycles to complete.

Note that even this last version is still bound by the retirement rate of µop instructions.



3.6. EXPERIMENTS 75

IN
ST

LA
T

L1
T
H
R

L2
T
H
R

L3
T
H
R

M
EM

T
H
R

L1
SI
ZE

L2
SI
ZE

L3
SI
ZE

IN
ST

R
ET P0 P1 P2 P3 P4 P5 P6 P7P0

1
P0
6
P1
5
P1
6
P2
3
P4
6
P0
15
P2
37

P0
15
6

15.0
14.0
13.0
12.0
11.0
10.0
9.0
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

S
p
ee
d
u
p
(i
n
%
)

0

2

4

6

8

10

12

14

16

R
eso

u
rce

in
crem

en
t
(in

%
)

Conclusion
Figure 3.11 plots the floating-point operations per cycle predicted by Gus against those

measured using hardware performance counters. The peak FLOPs/cycle achievable with SSE
instructions is 8.

The mean absolute error of the execution times predicted by Gus across all five versions is
8%. The error in the runtime predicted by Gus is largest in the version after the loop interchange.
There, Gus’s predicted runtime is 17% faster than the actually measured runtime. As far as we
can tell the error in the version after the loop interchange is due to our optimistic model of the
ROB and macro- and micro-fusion, and µop unlamination. Pipedream is not yet able to detect
µop unlamination, and so Gus does not model it. For the moment, we optimistically assume
that both macro- and micro-fusion always occurs and that µops are never unlaminated.

Figure 3.11 – Case study I: Matrix Multiplication Comparison of floating-point operations per
cycle (FLOPs/cycle) as predicted by Gus and measured using hardware performance counters.

3.6.1.2 Case study II: Matrix block-copy

Our second case study illustrates how Gus detects a bottleneck in the execution port usage
of a program caused by an optimization missed by the compiler. The code in question was taken
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/// copy a 4x4 block from NxN matrix 'src' to 'dst'.

void copy_sse_4x4(float* restrict src, float* restrict dst,

unsigned i, unsigned j, unsigned N) {

__m128 r0, r1, r2, r3;

// vector load from src[i][j]

r0 = _mm_load_ps(&src[(i + 0) * N + j]);

r1 = _mm_load_ps(&src[(i + 1) * N + j]);

r2 = _mm_load_ps(&src[(i + 2) * N + j]);

r3 = _mm_load_ps(&src[(i + 3) * N + j]);

// vector store to dst[j][i]

_mm_store_ps(&dst[(j + 0) * N + i], r0);

_mm_store_ps(&dst[(j + 1) * N + i], r1);

_mm_store_ps(&dst[(j + 2) * N + i], r2);

_mm_store_ps(&dst[(j + 3) * N + i], r3);

}

/// benchmark kernel used in this case study

unsigned N = ...; // matrix size

float *src = ...; // src NxN matrix

float *dst = ...; // dst matrix

for (unsigned repetitions = 0; repetitions < 64; repetitions++) {

// copy matrix src to dst in 4x4 blocks

for (unsigned i = 0; i < N; i += 4) {

for (unsigned j = 0; j < N; j += 4) {

copy_sse_4x4(mat, matT, i, j, N);

}

}

}

Figure 3.12 – Kernel for copying a 4× 4 block from one matrix to another

from a library for high-performance matrix transpositions developed in our team. Fast trans-
positions of small, L1 resident matrices are an important building block for high-performance
tiled matrix multiplication of large matrices. The library contains a variety of optimized kernels
for different x86 architectures. The kernel used in this case study, copy_sse_4x4, shown in
Figure 3.12, copies a 4 × 4 block of 32 bit floating-point numbers from one matrix to another.
It targets copies of matrices that fit in L1. Here we use the version written with SSE intrinsics
since QEMU does not support more recent vector instructions. copy_sse_4x4 is used in the per-
formance regression test suite of the library to establish a performance baseline for the actual
block-wise transposition kernels. By comparing the throughput of a transposition against that
of a raw block copy, the library detects if the transposition is bounded by data movement or
vector shuffle instructions.

In this case study we call copy_sse_4x4 in a loop to copy a 64 × 64 matrix block by block.
We also repeat the entire matrix copy 64 times. Otherwise, the benchmark is too small, and we
cannot reliably measure its runtime using hardware performance counters. Gus does not need
performance counters and also works with smaller kernels. We only use hardware counters to
calculate how accurate the runtime predictions of Gus are. As a compiler we use GCC 9.1 with
the flags -O3. As in the first case study all time measurements have been taken on a Skylake
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7940X running at 2.3 GHz.
The baseline of our benchmark takes 89k cycles to execute, which corresponds to 11.7 bytes

copied per cycle. To test whether the loop control instructions in the kernel cause a significant
overhead, we unroll the inner j loop of the benchmark four times. Surprisingly, this version is
slower than the baseline. It takes 127k cycles to execute, at a rate of 8.2 bytes per cycle. This
results indicates the existence of a performance bug in our benchmark.
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Figure 3.13 – Results of the sensitivity analysis for the benchmark from Figure 3.12. The bottleneck is
execution port p1, which handles general scalar and vector arithmetic and logic instructions.

We use Gus to identify this performance bug. The results of Gus’s sensitivity analysis for
the original version of the benchmark, shown in Figure 3.13, indicate that p1 is the biggest
bottleneck here. None of the other execution ports forms a relevant bottleneck. p1 handles
general scalar and vector arithmetic and logic instructions. It does neither execute load/store
nor branch instructions. At the source level, the benchmark consists entirely of SSE load/store
intrinsics and simple loops, so it is surprising that p1 alone is a bottleneck.

The output Gus provides statistics, including the execution port usage, for all machine
instructions in the analysed program. We investigate the assembly code of the benchmark to
find the source of the performance bug. The only transformation that the compiler has performed
is to inline copy_sse_4x4. Figure 3.14 shows the assembler for the body of the innermost loop
of the benchmark. Besides the expected movaps load/store instructions the loop also contains
a number of lea instruction; one lea per movaps. lea, load effective address, instructions are
used to calculate memory addresses without performing a memory access. The lea instructions
used here calculate 32 bit addresses and can only execute only on port p1. All other instructions
execute on other ports. The lea instructions are clearly the cause of the bottleneck.

If we look back at the source code of the benchmark in Figure 3.12 we see that it uses
unsigned integers. On a 64-bit x86 platform an unsigned integer has 32 bits. Together the lea

and movaps instructions calculate the accessed addresses src[(i + 0) * N + j], src[(i + 1) * N

+ j], and so on. All these addresses computations have a common term src[i * N + j], which
could be factored out and computed once. That is, src[(i + 1) * N + j] could be rewritten to
src[(i * N + j) + N]. The author of the code expected the compiler to eliminate the redundant
re-computation of this common term. However, the compiler was unable to do this. Most likely
since it needed to preserve any possible integer over- or underflow that might occur during the
address calculation.
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Source Assembler Resources

r0 = _mm_load_ps(&mat[(i+0)*N+j]);

r1 = _mm_load_ps(&mat[(i+1)*N+j]);

r2 = _mm_load_ps(&mat[(i+2)*N+j]);

r3 = _mm_load_ps(&mat[(i+3)*N+j]);

_mm_store_ps(&matT[(j+0)*N+i], r0);

_mm_store_ps(&matT[(j+1)*N+i], r1);

_mm_store_ps(&matT[(j+2)*N+i], r2);

_mm_store_ps(&matT[(j+3)*N+i], r3);

copy_sse_4x4:

leal (%r12,%rax), %r10d

leal (%rax,%rbx), %r13d

movaps (%rdi,%r10,4), %xmm2

leal 0(%rbp,%rax), %r10d

movaps (%rdi,%r13,4), %xmm3

movaps (%rdi,%r10,4), %xmm1

leal (%r11,%rax), %r10d

addl $4, %eax

movaps (%rdi,%r10,4), %xmm0

movl %ecx, %r10d

movaps %xmm3, (%rsi,%r10,4)

leal (%rdx,%rcx), %r10d

addl %r9d, %ecx

movaps %xmm2, (%rsi,%r10,4)

movl %r8d, %r10d

movaps %xmm1, (%rsi,%r10,4)

leal (%rdx,%r8), %r10d

addl %r9d, %r8d

movaps %xmm0, (%rsi,%r10,4)

cmpl %eax, %edx

ja copy_sse_4x4

P1
P1
P23
P1
P23
P23
P1
P0156
P23

P23 P4
P1
P0156
P23 P4

P23 P4
P1
P0156
P23 P4

P6

Figure 3.14 – Assembler generated for the code in Figure 3.12. The code uses AT&T assembler syntax.
Note the explicit address calculation using lea and add. The code was generated by GCC version 9.1
with flags -O3. Clang (8.0.1) produces comparable code. Register to register copies, movl, are assumed
to be move eliminated so they use no ports. The cmpl and ja at the end of the loop are assumed to be
macro-fused.

Unlike the compiler, we know that no over- or underflow can occur during these address
computations. To “communicate” this to the compiler, we change all unsigned integers to signed
int. int is also 32-bits wide here, but, according to the C standard, the compiler is allowed to
assume that no arithmetic involving signed integers under- or overflows. Figure 3.16 shows the
assembly code for this modified benchmark. As we can see, there are no more lea instructions in
the inner loop body. We could also have manually hoisted the redundant address calculation. In
both cases, GCC generates the same assembler code. The sensitivity analysis for this optimized
version of the benchmark shows that p4, the store-data port, is now the biggest bottleneck. This
is precisely the behaviour we expect from a memory-copy kernel. The results of the sensitivity
are shown in Figure 3.15. The optimized version of the benchmark takes 81k to execute, at a
rate of 12.9 bytes per cycle. This constitutes a speedup of 11% over the baseline version.

3.6.2 Pipedream

To illustrate Pipedream’s functionality we compare and discuss the port mappings produced by
Pipedream, uops.info, and Agner Fog for several instructions. Since uops.info is currently
not publicly available we use the port mappings, latencies and throughputs published online [2].
Abel et al. do not only publish their final results but also the logs of the experiments they ran
to obtain them. Agner Fog’s port mappings are taken from his personal website [72].

All measurements where performed on an Intel® i7-6600U Skylake CPU. All benchmark ker-
nels where unrolled so the kernel contains 200 instructions and the kernel loop was set to iterate
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Figure 3.15 – Results of sensitivity analysis for optimized version of kernel from Figure 3.12 using signed

int instead of unsigned int. The bottleneck is execution port p4, the store-data port

Source Assembler Resources

r0 = _mm_load_ps(&mat[(i+0)*N+j]);

r1 = _mm_load_ps(&mat[(i+1)*N+j]);

r2 = _mm_load_ps(&mat[(i+2)*N+j]);

r3 = _mm_load_ps(&mat[(i+3)*N+j]);

_mm_store_ps(&matT[(j+0)*N+i], r0);

_mm_store_ps(&matT[(j+1)*N+i], r1);

_mm_store_ps(&matT[(j+2)*N+i], r2);

_mm_store_ps(&matT[(j+3)*N+i], r3);

copy_sse_4x4:

movaps (%rax,%r9,4), %xmm2

movaps (%rax,%r8,4), %xmm1

movaps (%rax,%rdi,4), %xmm0

movaps (%rax), %xmm3

addq $16, %rax

movaps %xmm3, (%rcx)

movaps %xmm2, (%rcx,%rdx,4)

movaps %xmm1, (%rcx,%rdx,8)

movaps %xmm0, (%rcx,%r11)

addq %rsi, %rcx

cmpq %rax, %r10

jne copy_sse_4x4

P23
P23
P23
P23
P0156
P23 P4
P23 P4
P23 P4
P23 P4
P0156

P6

Figure 3.16 – Optimized version of kernel from Figure 3.12 using signed int instead of unsigned int.
This version does not have any redundant address calculation. The code was generated by GCC version
9.1 with flags -O3. Clang (8.0.1) produces comparable code

ten thousand times. That is, every benchmark kernel executes 2 million instructions. Every
benchmark was furthermore executed 750 times, where the first 250 measurements are consid-
ered warm-up iterations to force the CPU into its highest frequency. Only the measurements
of the remaining 500 executions where used. To filter out noisy benchmark runs, such as those
where Pipedream suffered a context-switch, we furthermore discard the 5% slowest runs.

The instruction latencies and throughputs Pipedream finds are the same as found by
uops.info and Agner Fog. So the following case studies will focus on the construction of
port mappings.

The x86 instruction set is highly complex and irregular. One big source of complexity is that
in x86 the encoding of an isntruction’s opcode and of its operands is largely orthogonal. This
means that most instructions can be used with a large number of different operand combinations.
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So, most instructions exist in a number of variants that differ in the number of operands, in
the bit-width of operands, and if operands are stored in registers or memory. There are more
than thirty variants of the scalar integer addition instruction add alone. Most of the time these
different variants have the same performance and µop decomposition, but this is not always
the case. 32 bit and 64 bit addition of register values, for example, both produce the same µop
and have the same throughput and latency. But addition where one operand is in memory has
a different decomposition and performance. Another example is integer multiplication where
variants with different bit-widths have a different µop decomposition, even if all operands are
in registers.

The current version of Pipedream cannot benchmark all x86 instructions. First off, it only
supports 64 bit mode unprivileged, i.e., user space instruction. Instructions with a rep or lock

prefix, instructions that use the stack, or AVX512 instructions are not supported. Furthermore,
only unconditional branches with an immediate operand are supported. We have only tested
the port mapping algorithm for instructions that decompose into up to five unfused µops. It
also currently cannot handle instructions with a very low peak IPC like integer division. This
still covers a large subset of the x86 instruction set that includes all instructions encountered
during the Gus case studies.

In the following we will list instructions using the same pseudo Intel assembler syntax used
by Agner Fog. Here the first operand is always the destination. Operands in a general purpose
register will be written as r, memory operands as m, and xmm vector registers operands as x.
Operands are suffixed with their bit-width if it is relevant. So for example, add r, r denotes a
general register to register addition, add r, m adds a value loaded from memory to a register,
and imul r32, r32 denotes a 32 bit multiplication. Some instructions operate on a fixed register,
in these cases we directly write the name of the register. shr r, cl, for example, denotes a shift
where the first operand is in a general purpose register and the second operand is the cl register.

3.6.2.1 Case study I: Arithmetic and logic instructions

This case study shows how Pipedream detects decompositions for arithmetic and logic instruc-
tions that only operate on registers. We only present a small illustrative subset of all arithmetic
and logic instructions that includes scalar and vector integer and floating point arithmetic, bit-
wise operations, shifts, comparisons, and conditional moves. This case study only considers
instructions with register or immediate operands, load/store instructions are presented later.

On Skylake4 arithmetic and logical instructions use up to four ports, 0, 1, 5, and 6. Most
of these instructions produce only one µop, only a small number of more complex instructions
decompose into multiple µops. Table 3.3 shows the decompositions we found for a number of
different instructions. For all these instructions, and many more, Pipedream, Fog Agner, and
uops.info find exactly the same results.

For now we have only explored instruction that decompose into up to six µops, since this
covers all instructions commonly emitted by compilers. Table 3.2 gives some examples for the
number of possible µop decompositions Pipedream needs to explore. Up until 4 µops we can
still easily explore all possible mappings, for 5 or 6 µops we switch to only trying combinations
of µops that can be emitted by single µop instructions.

Example: haddpd To illustrate how Pipedream finds these port mappings we will now discuss
the process for one instruction in more detail. For this we choose haddpd x, x, “packed double
precision floating-point horizontal add”, an SSE instruction working on vectors of 2 elements [54,

4and Haswell and Broadwell



3.6. EXPERIMENTS 81

Ports 0, 1 Ports 0, 1, 5 Ports 0, 1, 5, 6

#µops all single-µop all single-µop all single-µop
decompos. inst. only decompos. inst. only decompos. inst. only

1 1 1 1 1 1 1
2 4 4 13 13 40 13
3 8 8 57 57 400 90
4 13 13 168 168 2306 396
5 19 19 402 402 9902 1324
6 26 26 843 843 35228 3699

Table 3.2 – Number of possible µop decompositions Pipedream explores for instructions using only
ports 0, 1, 5, 6. all decompos. lists the number of decompositions when we consider all possible port
mappings. single-µop inst. only lists the number of decompositions when we only consider µops
generated by single-µop instructions.

Instruction µops

add r,r p0156
sub r,r p0156
imul r,r p1
imul r16,r16,i16 p1 p0156
imul r32,r32,i32 p1
imul r64,r64,i32 p1
lea r16,i,r16 p15 p0156
lea r64,i,r64 p15
lea r16,i,r16,r16 p1 p0156
lea r64,i,r64,r64 p1
and r,r p0156
andn r,r,r p15
or r,r p0156
xor r,r p0156
cmp r,r p0156
test r,r p0156
mov r,r p0156
movsx r64,r16 p0156
movzx r64,r16 p0156

Instruction µops

neg r,r p0156
adc r,r p06
sbb r,r p06
bextr r,r,r p06 p15
blsi r,r p15
bsf r,r p1
bswap r32,r32 p15
bswap r64,r64 p06 p15
shr r,i p06
shl r,i p06
sal r,i p06
sar r,i p06
rol r,i p06
ror r,i p06
cmovb r,r p06
cmovnb r,r p06
aesenc r,r p0
aesdec r,r p0
vcvtph2ps x,x p5 p01

Instruction µops

addps x,x p01
subps x,x p01
mulps x,x p01
divps x,x p0
haddps x,x p01 2p5
hsubps x,x p01 2p5
paddb x,x p015
andps x,x p015
andnps x,x p015
orps x,x p015
cmpps x,x p01
comiss x,x p0
minps x,x p06
maxps x,x p06
cvtps2dq x,x p01
cvtps2pd x,x p01 p5
movaps x,x p015
movups x,x p015
unpcklps x,x p5

Table 3.3 – µop decomposition for select arithmetic and logical instructions. Pipedream, Agner Fog,
and uops.info all find the same decomposition for these instruction. For vector operations we only list
the “packed single” (ps) variant. The other variants behave exactly the same. No AVX2 instructions are
listed, they generally have the same decomposition as the corresponding AVX or SSE instructions.

Vol. 2A 3-441]. haddpd “horizontally” adds the lower and upper element in each of its two input
vectors and stores the resulting two elements in its first operand.

As a first step Pipedream benchmarks the kernel [haddpd x,x] containing only the haddpd

instruction. The rounded results of this measurement are the following:

Measurements
Kernel ρk #λi #µi µp0 µp1 µp5

[haddpd x,x] 1⁄2 3 3 1⁄4 1⁄4 1
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From this we can deduce that haddpd decomposes into three µops and uses three ports: 0,
1, and 5. The instruction produces three fused and three unfused µops, which means that
no micro-fusion occurs. Given this port usage and number of µops there are 57 possible port
mappings for haddpd. Out of those, 23 mappings have the same minimal simulation error for this
benchmark with err = 0.05. The remaining 34 instruction flow instances only have solutions
with very a large error and can be excluded.

To distinguish the 23 remaining mappings Pipedream now runs several benchmarks that
combine haddpd with the following single-µop instructions: aesenc, bsf, unpcklps. For illustrative
purposes we also list the performance characteristics of the single-µop instructions in isolation.
Pipedream actually uses more single-µop instruction for different port combinations, but here
this does not add any information.

Measurements
Kernel ρk #λi #µi µp0 µp1 µp5

[aesenc x,x] 1 1 1 1 0 0

[bsf r,r] 1 1 1 0 1 0

[unpcklps x,x] 1 1 1 0 0 1

[aesenc x,x haddpd x,x] 1 - - 2⁄3 1⁄3 1

[bsf r,r haddpd x,x] 1 - - 1⁄3 2⁄3 1

[unpcklps x,x haddpd x,x] 2⁄3 - - 1⁄6 1⁄6 1

Pipedream then calculates the simulation error for each mapping for this additional kernels.
Only two mappings remain that produce the same minimal simulation error: p01 2p5 and p01
2p5.

k = [haddpd] ρemp,k = 1/2

haddpd

m1 m2 m3

p0 p1 p5

µemp,p1 = 1/4 µemp,p2 = 1/4 µemp,p3 = 1

µk = 11/2

1 1 1

1/4 1/4 1/2 1/2

k = [haddpd] ρemp,k = 1/2

haddpd

m1 m2 m3

p0 p1 p5

µemp,p1 = 1/4 µemp,p2 = 1/4 µemp,p3 = 1

µk = 11/2

1 1 1

1/4 1/4 0 1/2 1/2

To break the tie between these two mappings Pipedream chooses the mapping with the
least number of edges between M and P : p01 2p5. Port 5 is documented to implement vector
shuffle instructions and ports 0 and 1 are used by vector addition. This indicates that haddpd is
internally implemented using two shuffles and one addition.

Finally, Pipedream creates the following two-level resource model for Gus from haddpd

(using the same notation as for µop decompositions): R01 2R5 3R015 Rretire. That is, every time
a haddpd instruction executes, it uses resource R01 once, R5 twice, R015 three times, and Rretire

once. Here, Rretire is the global resource modelling the retirement bottleneck of the CPU.
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Problem with port 6: There is one group of instructions for which Pipedream currently
finds a different µop decomposition than Agner Fog or uops.info. These are multi µop instruc-
tions that emit multiple µops p06 that all can execute on either ports 0 and 6. This includes some
variants of bit shift and rol instructions as well as some conditional move instructions. Take for
example the shr r, cl instruction, which according to Agner Fog and uops.info decomposes
into 2p06. For such an instruction there are 4 possible mappings, all shown in Figure 3.17. By
running a benchmark with an instruction that saturates port 0 we can exclude the two mappings
in Figure 3.17a. The is the reasoning already presented in Figure 3.6 in Section 3.5.2.

However, there is no single-µop instruction we can use to saturate port 6 by itself. Most
single-µop instruction that can execute on port 6 can also execute on at least one other port. The
only instructions that can execute only on port 6 are unconditional branches. The throughput
of branch instructions is limited by other components than execution ports and they can only
saturate port 6 to ~40%. This means that we cannot construct a benchmark that reliably
produces measurements that distinguish the two mappings in Figure 3.17b. 2p06 may be a
closer match for the actual port layout of the underlying hardware, but the performance model
constructed for Gus from either of those mappings describe the observed performances equally
well.

It is unclear how the lack of an instruction that blocks port 6 affects uops.info. In the
published experimental logs uops.info skirts the issue by not considering p6 to be a valid µop
for multi µop instructions. Unlike port 0, 1, or 5 no measurements blocking only port 6 are
taken. This behaviour seems to be slightly incoherent since the algorithm used by uops.info
needs to consider all subsets of ports.

3.6.2.2 Case study II: Store

The simplest store instruction on a current x86 CPU is a mov that reads a 64 bit value from
general purpose register and stores it to memory. When measuring port usage we can distinguish
two variants of mov that use different addressing modes. In other ways, the way that memory
addresses are encoded is different. The first, variant, which we call simple mov, specifies addresses
using a base register and a constant immediate displacement. The second variant, complex mov,
in addition to a base and displacement also uses a second index register to calculate memory
addresses. Here we only consider the versions of store using 64 bit addresses and a 32 bit dis-
placement. While there are several other variants that use different register and immediate
bit-widths this does not seem to influence the performance or µop decomposition.

An Intel Skylake, as shown in Figure 3.1 has eight execution ports, numbered from zero to
seven. Store instructions use ports 2, 3, 4 and 7. Only memory loads also use ports 2 and 3. No
other instruction type uses ports 4 or 7. Any store instruction produces at least two µops, but
there are single µop loads.

As mentioned earlier store instructions are the only instructions on current Intel x86 archi-
tectures that decompose into µops that cannot be produced by any single-µop instruction. This
can be detected without the actual mapping by observing that any store instruction decomposes
into at least two µops and that stores are the only instructions that use ports 4 and 7. Since
the port usage of a store cannot be explained by a sequence of simple µops also produced by
single-µop instructions Pipedream falls back to evaluating all possible port mappings to find
the µop decomposition.

The following table lists the IPC, MPC, and port usage for mov as well as the µop decompo-
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k = [bsf cmov] ρemp,k = 11/3

cmovbsf

m1 m2m3

p0 p6

µemp,p0=1 µemp,p6=1

µemp,k = 2

? ?

? ?

?

?

k = [bsf cmov] ρemp,k = 11/3

cmovbsf

m1 m2m3

p0 p6

µemp,p0 = 1 µemp,p6 = 1

µemp,k = 2

? ?

? ??

?

?

(a) These two mappings can be excluded by sat-
urating p0 with another instruction since there is
no valid solution of the corresponding instruction
flow instance

k = [bsf cmov] ρemp,k = 11/3

cmovbsf

m1 m2m3

p0 p6

µemp,p0 = 1 µemp,p6 = 1

µemp,k = 2

2/3 2/32/3

1/6 1/21/6 1/22/3

k = [bsf cmov] ρemp,k = 11/3

cmovbsf

m1 m2m3

p0 p6

µemp,p0 = 1 µemp,p6 = 1

µemp,k = 2

2/3 2/32/3

2/31/3 1/32/3

(b) Two mappings that have the same average
simulation error. Pipedream chooses the map-
ping with the least number of edges (at the bot-
tom)

Figure 3.17 – Illustration why the µop decompositions p6 p06 and 2p06 produce the same performance
in our model.

sitions detected by Pipedream, Agner Fog, and uops.info:

Measurements Decomposition
Instruction ρk #λi #µi µp2 µp3 µp4 µp7 Pipedream uops.info Agner Fog

simple mov m, r 1 1 2 1⁄3 1⁄3 1 1⁄3 p4 p237 p4 p237 p4 p237

complex mov m, r 1 1 2 1⁄2 1⁄2 1 0 p4 p23 N/A p4 p237

For the simple mov variant there are 40 different possible decompositions, while for complex
mov there are 13. In both cases Pipedream finds two best matching mappings that produce the
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same simulation error. Below are those for the complex mov variant:

k = [mov] ρemp,k = 1

mov

m1 m2

p2 p3 p4

µemp,p2 = 1/2 µemp,p3 = 1/2 µemp,p4 = 1

µemp,k = 2

1 1

1/2 1/2 1

(a)

k = [mov] ρemp,k = 1

mov

m1 m2

p2 p3 p4

µemp,p2 = 1/2 µemp,p3 = 1/2 µemp,p4 = 1

µemp,k = 2

1 1

1/2 1/2 0 1

(b)

These two mappings could only be distinguished with an instruction that exercises extra
pressure on p4, but not on p2 or p3. Unfortunately, there is no such instruction on x86. Note
that there can never be any flow over the edge between m1 and p4 in mapping (b) since p4 is
already saturated by m2. Pipedream chooses mapping (a) since it has less edges between µops
and ports.

Agner Fog’s results claim the behaviour of mov to be indentical for “all addressing modes” [72,
page 238]. This seems to be simply an oversight and implies no testing was done for complex mov.
uops.info does not list any results for the complex mov variant, only for the simple one. More
generally, it does not have any results for any memory access instruction using an index register.
As mentioned earlier uops.info is not able to find µops directly, only µop decompositions. The
decomposition for mov is hardcoded and used as a building block for finding the decomposition
of more complex store instructions.

3.6.2.3 Case study III: Folded load/store and arithmetic

As mentioned earlier, nearly every arithmetic or logical instruction has at least one version where
the source operand is loaded from memory or the results is written to memory instead of to
registers. These combined arithmetic and load/store instructions all decompose into multiple
µops. One or more µops for the actual arithmetic or logical operation, one µop for a load, and
two µops for a store.

Pure arithmetic/logical instructions and pure load/store operations are both restricted to
using only half the number of execution ports on Skylake. An operation that combines a cal-
culation with a memory access can potentially use all eight execution ports. So the number
of different possible µop decompositions Pipedream has to explore is potentially much larger.
Consequently, we only explore µop combinations that can be expressed as a combination of µops
produced by single-µop instructions. In practice, this works well and we never have to explore
more than a few hundred different decompositions for any instruction.

3.7 Conclusion and Future Work

In this chapter, we have introduced Gus, a profiling based performance debugging tool for
finding performance bottlenecks using sensitivity analysis, and Pipedream, an automated tool
for building CPU performance models. For now, the two tools are still early prototypes and under
active development. There are still many cases for which we need to adjust the performance
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model of Gus to get more accurate execution time predictions. The two tools are also not fully
integrated yet. The port and resource mappings produced by Pipedream, for example, still
need to be verified and ported to Gus. We are still working on these issues, and despite their
early stage of development, both tools already give promising results.

Gus

Gus guides its users during the process of program optimization by identifying the resource
or set of resources that form a performance bottleneck through sensitivity analysis. Using this
method Gus points out which optimizations may effectively reduce execution times and also
helps predict how much overall performance can still be improved.

The tool combines a fast purely functional CPU emulator with a high-level performance
model to predict the execution time of programs. By using a simulator to predict execution
times, we can finely control the throughput of individual resources, which we use in turn to
drive a fine-grain sensitivity analysis.

For now, we have more or less directly modelled the execution ports of the CPU in Gus.
Sensitivity analysis is only performed by varying the throughput of resources and the latency of
all instructions at once. One could, however, also perform a more high-level sensitivity analysis,
where instead of varying resource capacities we vary the resource usage of some instructions
or type of instruction. By, for example, reducing the cache misses caused by the instructions
for a given source-level statement one could detect if that statement forms a bottleneck or not.
Another example would be to make loads and stores through the stack pointer “free”, which
would allow detecting if spill code inserted by the compiler is a problem or not.

For the moment Gus assumes, like the ECM performance model, that all accesses to main
memory or cache levels above L1 can be overlapped. In other words, we do not take the latency
of caches into account. This assumption that all memory accesses can be overlapped only holds
for relatively simple programs, like the scientific kernels we have analysed heretofore. To expand
the range of programs that Gus can accurately model we are planning to modify the simulator
algorithm to also take the latencies of data transfers between cache levels and memory into
account.

The Dinero IV cache simulator used in Gus only supports relatively simple cache replace-
ment policies like least-recently-used (LRU). It has no implementation of algorithms commonly
used in modern CPUs like pseudo-LRU, LIRS [107], or other adaptive strategies that blend to-
gether multiple policies [142]. Adding these policies to Dinero IV or switching to another cache
simulator will allow for a more accurate simulation of cache behaviour and consequently a more
precise detection of cache bottlenecks.

Another limitation of Gus is the simplistic model of the throughput and interaction between
different levels of the cache hierarchy [97]. To address this issue we would like to develop,
similarly to the resource mapping for execution ports, a resource mapping for caches.

Another limitation of Gus is that it has no notion of branch prediction or, more importantly,
branch misprediction. All branches are optimistically assumed to be predicted correctly and do
not cause bubbles in the CPU pipeline. We intend to add a simple branch predictor to Gus
to allow it to more accurately model programs with many irregular data-dependent branches.
However, we do not plan to model speculative execution. Gus will only attribute a constant
penalty with mispredicted branches. Another option would be to add a pessimistic mode to Gus
where all branches are assumed to be mispredicted. Together, the optimistic and pessimistic
mode give a lower and upper bound on the execution time one can expect. This idea of running
both an optimistic and pessimistic simulation could also be applied to other mechansims of the
CPU, such as memory prefetching. For the moment Gus is always optimistic.
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Pipedream

Pipedream is a prototype tool for measuring performance characteristics of CPUs and reverse-
engineering performance models. We have used Pipedream to build a port mapping for the
Intel Skylake CPU architecture. The port mapping is comparable in quality to that produced
by other authors such as Agner Fog [72] and Abel et al. [3]. Pipedream can automatically
find the port mappings for some instructions for which existing approaches fall back to manual
analysis or rely on hardcoded assumptions. Pipedream is still a work in progress and for now
it can only handle a part of the x86 instruction set.

The first priority for the development of Pipedream is to extend our coverage of x86
instructions that we can benchmark and build port mappings for. We then intend to test our
tool on other CPU architectures than Skylake.

We have started working on an alternate version of Pipedream that can find port mappings
for CPU architectures without performance counters for the number of µops executed on each
individual execution port. This variant of Pipedream could, for example, be used to model
processors from AMD. A major stumbling block when constructing for this is the sheer number
of possible port mappings that have to be explored. To make Pipedream scale better to
complex architectures we will need to implement some heuristics to more intelligently prune
the search space. We have spent a considerable amount of time exploring an alternative mixed
integer linear program (MILP) encoding of the instruction flow problem where the solver does
not only calculate the throughput for a given mapping, but actually finds a mapping that best
explains the observed measurements. The advantage of this is that MILP solvers like gurobi
already implement very sophisticated heuristics for exploring large search spaces. However,
selecting a port mapping and computing its peak throughput naturally leads to two opposing
optimization goals. gurobi does support MILP programs with hierarchical objective functions
where the solver optimizes for one objective at a time, but this does not allow encoding real
multi-objective problems. We where unable to encode this modifed instruction flow problem
with a single objective and are currently planning to use other solvers that support multiple
opposing objective functions.

We are also working on a version of Pipedream that can even build a resource model for
a CPU only with timing measurements. That is, without a counter for the number of µops
retired or executed. Here, we do not attempt to reconstruct any information about the µop
decomposition of instructions and only try to build an abstract two-level port mapping. Such a
two-level mapping does not capture the real layout of the underlying hardware, but it can still
capture the performance behaviour accurately enough for building a resource mapping for Gus.

Lastly, we intend to further investigate under which circumstances macro-fusion, micro-
fusion, and µop unlamination occurs, and more importantly what stops it from occuring.
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4.1 Introduction

The most effective program transformations for improving performance or energy consumption
are typically based on the rescheduling of instructions so as improve temporal and spatial locality
and uncover both coarse, i.e., thread-level, and fine-grain, i.e., vector-level, parallelism. The
two main challenges for these kinds of optimizations are what transformations may be applied
without breaking the program semantics and where in the program should the optimizations be
applied to maximize the impact on the overall program performance. For example, detection of
parallelism and spatial locality along existing dimensions requires only relatively simple, localized
information. Showing the absence of dependencies or finding a small constant dependence
distance at the innermost loop level is sufficient to prove that parallelization or vectorization is
valid. If, on the other hand, there are more complicated dependencies direct parallelization is not
possible. Depending on the structure of the dependencies loop transformations, such as skewing
or interchange, can still be used to expose some degree of parallelism. This can then be exploited
using other loop transformations such as tiling. The polyhedral model [71] is a powerful tool for
finding and applying such rescheduling optimizations [25]. But to judge if a sequence of loop
transformations is valid and profitable compilers using the polyhedral model [160, 81, 218, 25,
162, 22] require precise information about data and control-flow dependencies.

Historically, the polyhedral model been designed to work on restricted programming lan-
guages for which it is easy to reconstruct exact dependence information statically [48]. A key
issue faced when analysing general-purpose languages are the ambiguities introduced by the lan-
guage itself: for example, the use of pointers typically restricts the ability to precisely character-
ize the data being accessed due to aliasing. This, in turn, forces the analysis that reconstructs
dependencies to use conservative approximations, which unnecessarily restrict the set of legal
transformations. In practice polyhedral approaches can only be applied to programs written in
a very restrictive style with no function calls, only very simple conditional statements and no
indirections [48, 63, 62, 40].

When a region of the source program does fit the syntactic and semantic restrictions of
the polyhedral model, it has been shown to be able to successfully find multi-dimensional loop
nest transformations that lead to significant performance improvements [26, 160, 211, 81]. While
programs can be rewritten to fit these restrictions and help static analyses this requires significant
effort and is not guaranteed to succeed. In full programs, and in particular those relying on
external binaries visible only to the linker, often the data layout and calling context is inaccessible
to static analyses.

Dynamic analysis frameworks address this limitation by reasoning on a particular execution
of the program [70, 20]. The feedback provided by existing frameworks mainly informs about
the absence of dependencies along some loop in the original program, highlighting opportunities
for parallelism [113, 219, 214, 209] or SIMD vectorization [98]. For tools that want to build
a polyhedral representation with dynamic information, there are several problems. The main
difficulty here is how to model applications including some non-affine dependencies and memory
accesses in otherwise affine code. Existing dynamic polyhedral approaches either use overly
pessimistic approximations and lose information [199] or do not scale [112, 171].

In this chapter, we present Mickey, a dynamic analysis tool-chain based on the polyhedral
model that addresses these challenges. This tool-chain works on compiled binaries and provides
feedback on the applicability and profitability of polyhedral loop transformations. It then uses
debugging data to map the suggestions back to the source code to help users implement the
transformations. The tool-chain consists of three parts:

• the front-end, which instruments binaries to collect execution traces when they execute;
• the folding algorithm, which consumes these traces in a streaming fashion to build a com-

pact polyhedral program representation;
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• the back-end, which uses this representation to find interesting loop transformations.
Mickey can accurately detect polyhedral data dependencies in programs and scales to real-life
applications, which often include some non-affine dependencies in otherwise affine code.

The contributions presented in this chapter are:
1. The development of a compact inter-procedural intermediate representation that captures

information useful for polyhedral optimizers such as properties of data dependencies, mem-
ory accesses, and induction variables in a uniform manner.

2. the folding algorithm, which builds this representation from program execution traces and
scales to real-life applications thanks to a safe polyhedral over-approximation mechanism.

3. Mickey, a tool that provides optimization feedback using binary instrumentation. Mickey
is the first framework that provides feedback on structured transformation potential for
arbitrary statically complicated binaries.

For that, we propose a safe fine-grain polyhedral over-approximation mechanism for such
dependencies. That is, our analysis emits a compact program representation allowing a classic
polyhedral optimizer to find a wide range of possible transformations. Our analysis also detects
the presence of fixed-stride memory accesses and induction variables. Fixed-stride memory
accesses are useful for exposing potential loop transformations that improve spatial locality, like
vectorization. Detecting induction variables allows removing unnecessary dependencies.

4.2 Illustrative Scenario
This section introduces the problem tackled by this work using a concrete example. It highlights
why profiling and dynamic program analyses are efficient tools for performance analysis. It
furthermore shows the limitations of existing dynamic techniques and how we overcome them.
For this, we use backprop, a benchmark from the Rodinia benchmark suite [43]. backprop is a
supervised learning method used to train artificial neural networks. We focus on the compute
kernel bpnn_layerforward shown in Figure 4.1. This kernel is also used as a running example
throughout the rest of this chapter.

4.2.1 Example problem: backprop

The main source of inefficiency in backprop is the 2D access to conn on line 13. The problem
here is that conn is laid out in row-major order, but the accesses are in column-major order.
This leads to unnecessary cache misses. A loop interchange, which switches the order of j and
the k loop, solves this problem and furthermore unlocks vectorization opportunities. Identifying
the profitability of these transformations requires detecting the strided access along the outer j

loop.
At first glance, all loop bounds and memory access functions seem to be affine functions of

loop invariant parameters, n2 and n1, and enclosing loop iterators, j and k. This kernel should
thus be a perfect target for static polyhedral optimizers such as Polly [81], built on LLVM, or
Graphite [160], part of GCC. Nevertheless, this is not the case because the conn object is not a
two-dimensional array, but an array of pointers, each allocated by a separate call to malloc as
illustrated in Figure 4.2.

Because of that it is impossible to know statically if the pointers conn[k], l1, and l2 alias,
that is, whether they refer to the same object at runtime. Due to this, a static compiler has
to conservatively assume there is a dependence between the write on line 15 and the reads on
line 13. This dependence prevents any transformation of the outer loop. Furthermore, even if
the programmer provides non-aliasing information for the three pointers GCC and LLVM, and
by extension Polly and Graphite, were still unable to handle this kernel. This is because of the
way conn is allocated. Since conn is an array of pointers, two load instructions are required for
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1 void bpnn_layerforward(float *l1, float *l2, float **conn, int n1, int n2) {

2 float sum;

3 int j, k;

4
5 /*** Set up thresholding unit ***/

6 l1[0] = 1.0;

7
8 /*** For each unit in second layer ***/

9 for (j = 1; j <= n2; j++) {

10 /*** Compute weighted sum of its inputs ***/

11 sum = 0.0;

12 for (k = 0; k <= n1; k++) {

13 sum += conn[k][j] * l1[k];

14 }

15 l2[j] = squash(sum);

16 }

17 }

18
19 float squash(float x) {

20 return 1.0 / (1.0 + exp(-x));

21 }

Figure 4.1 – A compute intensive kernel in backprop
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the access conn[k][j], as shown in Figure 4.12. The first one loads conn[k] into a temporary
variable tmp and the second one loads the value of tmp[j] into another temporary used in the
multiplication. In the IR of LLVM and GCC the fact that these two loads form a single two-
dimensional access is lost. Instead, for both compilers connk][j] is split into two accesses, where
the base pointer of the second access, tmp, depends on the dynamic contents of conn. Neither
Polly nor Graphite are able to model such an indirect access. As any polyhedral optimizer, these
compilers require an accurate polyhedral representation for every single memory access and are
thus not able to build their polyhedral representation for the backprop kernel. Consequently,
they are unable to perform any optimizations. Finally, in a static context, the function call on
line 15 has to be inlined since it might hide other memory accesses or annotated as free of side
effects. In fact, squash calls exp which writes to the global variable errno in case of a numerical
error.

Intel’s icc compiler is able to model the 2D-access conn[k][j] as a single access, but its loop
optimizer is quite limited and cannot perform an interchange since the loop nest in backprop is
not perfectly nested. Like GCC and LLVM, icc also is unable to statically resolve the aliasing
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between conn[k], l1, and l2 and requires the user to provide no-alias annotations to provide any
analysis results at all.

Dynamic analyses can side-step all these problems since they can actually observe the dy-
namic values of all pointers. They are thus able to detect the absence of pointer aliasing or
dependence. However, in the case of backprop, reconstructing the striding information required
for vectorization from the stream of memory addresses being accessed in a dynamic analysis
is still not trivial. This is, again, because the conn object is not a two-dimensional array, but
an array of pointers allocated by malloc. Since malloc gives no guarantees on the placement of
allocations, the accesses along the innermost k dimension do not have a constant stride, but are
irregular as shown in Figure 4.3.

Existing dynamic polyhedral approaches [112, 171] try to build a completely affine model
and are not able to handle even only partially irregular applications like backprop. These
algorithms do not take iterator values into account and directly work on a linear stream of
memory addresses. The irregularity along the inner k loop either stops them from detecting
that there even is an outer j or causes them to exhibit a prohibitively high time and space
complexity. There are approaches that take iterator values into account which allows them to
tolerate some irregular accesses using approximation [139, 199]. However, this approximation
mechanism is relatively conservative and if two cells of the conn are too far apart in memory it
will completely give up on trying to model the loop nest. As a consequence none of the existing
dynamic approaches scale beyond very small input data sets.

Note that, when using a modern memory allocator for the backprop benchmark from Rodinia,
conn[0], conn[1], …, conn[n1] often do happen to be laid out contiguously in memory. This is
true despite the C standard giving no guarantees on the placement of allocations created with
malloc. However, this behaviour is quite fragile and relies on the fact backprop is a simple
benchmark program that does not interleave calls to malloc and free. This allows existing
dynamic polyhedral approaches to model and optimize this synthetic benchmark. However,
more realistic applications using irregular data structures that could profit from polyhedral
optimization, such as sparse matrix algorithms, inherently use non-contiguous data structures
and exhibit irregular access patterns [198, Section 5.2].

4.2.2 Solution: Mickey

Despite the lack of information about aliasing and the presence of a non-affine memory access,
the above computation kernel presents an interesting opportunity for optimization. Our dynamic
analysis detects:

• the stride-1 access for conn[k][j] along the outer dimension j;
• the absence of dependence along dimension j;

From this information, our back-end was able to suggest loop interchange, vectorization, plus
tiling which in our case lead to a speedup of ×5.3.

The vectorization opportunity is revealed by looking at the scalar evolution [161, 213] of the
addresses being accessed, that is, how they change as a function of the values of the iterators k

and j. In the case of our example, the addresses used for loading conn[k] as shown in Figure 4.2,
can be described with the function 0j + 1k + 12, where 12 is the base address of conn. This is
because &conn[k] does not depend on j, and k is incremented by one on each iteration. Note
that due to the gap in the layout of conn, the addresses used to access conn[k][j] cannot be
described by an affine function. This is shown in Figure 4.3. Our analysis is robust against
this irregularity along dimension k and is able to produce the incomplete function 1j+>k+66.
Here, 66 is the base address of the nested array conn[0], and > represents the fact that accesses
are not affine along dimension k. However, the obtained function does indicate that the memory
address increases by one every iteration of dimension j. We refer to this as a stride-1 access.
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The folding algorithm discovers not only the structure of memory accesses but also the
structure of data dependencies in general. In our running example, it detects that there is
no dependence between the reads on line 13 and the write on line 15. It is worth mentioning
that while the algorithm is exactly the same for both, the structure of memory accesses and
dependencies are detected separately. The folding algorithm can thus handle cases where accesses
are non-affine, and dependencies are affine, and vice versa. Here the irregularity of the former
does not hinder the folding algorithm from finding the structure of the latter.

The stride-1 access along dimension j allows deducing that SIMD vectorization might be
profitable. Since j is not the innermost loop, it is necessary to perform a loop interchange
before vectorizing. That this loop interchange is valid is clear from the absence of dependencies
between the two loops observed by our tool for the profiled execution. Our analysis, like any
dynamic approach reasoning on an execution, cannot guarantee that this holds in general, but
it can still provide useful feedback. Note that the interchange will require an array expansion of
the sum variable along with a new 1-dimensional loop iterating over j to fill the l2 array.

4.3 Overview of Mickey

Mickey is a dynamic binary analysis tool implemented as a set of plugins for the TPI QEMU-
plugin instrumentation interface presented in Section 2.3. Plugins primarily work at the level
of the generic QEMU IR, making them CPU architecture agnostic. The polyhedral analysis
backend of Mickey, described in Section 4.6, is based on the PoCC compiler [162] that imple-
ments the PluTo scheduler [26]. An overview of the general structure of Mickey is shown in
Figure 4.4.

The first objective of Mickey is to construct a useful and analysable representation from a
carefully generated execution trace of the program Building such a representation constitutes
our key set of contributions, and covers the first three stages below. The fourth and last stage
then uses the polyhedral model to find optimizing loop transformations. Note that the goal here
is not to automatically perform transformations, but instead to assist the user in figuring out
where optimizations should be implemented, and more importantly which ones.

Interprocedural control structure

This first stage of Mickey, described in Section 4.4.1, dynamically discovers both the intra-
procedural CFGs and the interprocedural CG from an optimized binary. Using this information
we construct the interprocedural loop context tree which combines the notions of loop-nesting-
trees and their equivalent for call graphs, the recursive-component-set, both of which are used in
the next stage. The first stage is implemented using an extended version of the basic CFG/CG
reconstruction plugin described in Section 2.4.1.1.

Dynamic Dependence Graph

The second stage of Mickey generates the actual Dynamic Dependence Graph (DDG) [153,
147, 46], a trace representing both the dynamic execution of a program’s instructions as well as
its data dependencies. It uses the interprocedural loop-call-context-tree to construct dynamic
interprocedural iteration vectors (dynamic IIVs), a new inter-procedural representation of the
program execution that unifies two abstractions: the intra-procedural schedule tree [111, 216]
and the inter-procedural calling-context-tree [7]. The DDG, loop-call context tree (LCCT), and
dynamic IIV are described in Section 4.4.3.
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Figure 4.4 – Overview over the Mickey framework.

Compact polyhedral IR

The third stage compacts, or folds, the DDG into a polyhedral program representation. Essen-
tially, it merges sequences of individual operations in the trace are into sets using the geometry
of the multi-dimensional space spanned by the dynamic IIVs. Intuitively, when a loop executes
it generates one execution of a statement for each loop iteration and therefore one element in the
trace for each execution. This stage amounts to folding those points back into a loop-equivalent
representation, which itself can be the input of a polyhedral compiler. We also handle the gen-
eral case, where folding occurs not only across multiple loops but also across, possibly recursive,
procedure calls. This process is presented in Section 4.5.

This stage also detects which instructions in a program are used to increment loop coun-
ters and finds strides in memory accesses. The folding algorithm does this by building scalar
evolution expressions (SCEVs) [161, 213] for loads, stores and integer arithmetic instructions.
This technique borrows ideas from trace compression algorithms [112, 171], with the notable
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difference that it uses the geometry of iteration spaces which allows it to scale to large, partially
irregular programs.

Polyhedral feedback

The last stage of Mickey consists of the polyhedral analysis back-end. This back-end analy-
ses the polyhedral DDG and suggests sequences of program transformations needed to expose
multi-level parallelism and improved data locality, along with numerous statistics on the original
and potentially transformed program including parallelization and vectorization potential. Sec-
tion 4.6 describes this last step as well as how Mickey provides human interpretable feedback
to the user.

4.4 Interprocedural Program Representation

As most of the execution time of a program is usually spent in loops, Mickey has been designed
to find loop-based transformations. In practice, however, as illustrated in Figure 4.5, interest-
ing loop nests are often spread across multiple functions over call chains, obfuscating them to
traditional static analysis. Mickey is designed to be able to represent both classical loops as
well as function calls and returns in a unified way with polyhedra [222, 71].

M0

main

A0

A1

A2

A3

A

L1

B0

B1

B2

B3

B

L2

(a) Example program

main A B

(b) Call-graph

rootmain

M0

rootA

L1 : A1A0 A3

A1 A2

rootB

L2 : B1B0 B3

B1 B2

(c) Loop-nesting-forest

Figure 4.5 – Example of a loop nest that spans multiple functions. CFG nodes and edges in blue, CG
nodes and edges in orange

Mickey has been designed to handle several scenarios.
1. Nested loops containing function calls with side effects: here calls can be viewed as atomic

instructions, but profiling the storage locations they access or modify and compute the
dependencies between each call and the rest of the loop body is required.

2. Loops containing function calls that themselves contain loops, as shown in Figure 4.5: here
the objective is to view the whole interprocedural region as a multi-dimensional loop nest.

3. Recursive functions, as shown in Figure 4.6: here the primary objective is to avoid the
depth of the generated representation to grow proportionally with the depth of the call
stack; A secondary objective is to detect any underlying regular loop structure amenable
to polyhedral compilation (after recursion-to-iteration conversion).

This section explains how to go from the execution of a program to a representation of its
interprocedural control structure.
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Figure 4.6 – Example of a loop in the call graph of a recursive program. CFG nodes and edges in blue,
CG nodes and edges in orange

The first step of Mickey is to extract the inter- and intra-procedural static control structure
from a program in compiled binary form. This static control structure of the program will then
be used in a later stage of Mickey to transform the stream of raw events (jump/call/return)
gathered during execution into loop events (entry/iterate/exit).

Mickey performs this through instrumentation of jump, call, return and a few other in-
structions to dynamically trace any transfer of control during execution. It thus “dynamically”
extracts the CFG of each function and then proceeds to statically build the loop-nesting-tree (see
Section 4.4.1). Mickey also dynamically extracts the CG of the whole program and builds the
counterpart of loop-nesting-trees for call-graphs, the recursive-component-set (see Section 4.4.2).

4.4.1 Control-flow-graph and loop-nesting-tree

The notion of block used here is not exactly the same as a basic block, but that of an execution
block, as detected by the control-flow tracing plugin described in Section 2.4.1.1. Since a trans-
lation block (TB) in QEMU can span multiple execution blocks, we also insert instrumentation
inside TBs to raise virtual fall-through events where appropriate.

The algorithms presented in this section are an extension of the simple QEMU plugin de-
scribed in Section 2.4.1.2.

For the profiled CFG, the loop detection algorithm used by Mickey are computed in a single
pass by the algorithm described in [220]. As formalized by Ramalingam in [167], a loop-nesting-
forest can be recursively defined as follows:

1. Each stronlgy connected component (SCC) of the CFG containing at least one cycle con-
stitutes the region of an outermost loop;

2. for each loop, one of its entry nodes is designated the header node of the loop;
3. all edges within the loop that target its header node are called back-edges;
4. “removing” all back-edges from the CFG allows one to recursively define the next level of

sub-loops.
There exists an almost linear time algorithm for this.
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Input:
• event: Branch event.
• live_loops: Stack of currently live loops. From outermost to innermost.

Emitted events:
• E(L,H): entry into loop L; H is the header.
• I(L,H): iteration of loop L; H is the header.
• X(L,B): exit of loop L, jumping to basic-block B
• N(B): local jump to basic-block B.

1 if event.type is local-jump:

2 B = event.dst

3 while L = live_loops.peek() and L.isCFG and B not in L:

4 L.visiting = False

5 live_loops.pop()

6 emit X(L,B)

7 if B is loop-header:

8 H = B

9 L = H.loop

10 if L.visiting == False:

11 L.visiting = True

12 live_loops.push(L)

13 emit E(L,H)

14 else:

15 emit I(L,H)

16 emit N(B)

17 else:

18 . . . # Algorithm 4.2

Algorithm 4.1 – CFG-loop events generated from a jump event.

An example CFG and its corresponding loop-nesting-tree is given in Figures 4.7a and 4.7b.
Here, the CFG can be partitioned into one SCC (giving rise to loop L1 with B as its header)
plus two separated basic-blocks A and E. The region of L1, once its back-edge (D,B) has
been removed, contains one sub-SCC formed by the loop L2 and the basic-block B. Among
the two entry nodes, C and D of L2 only one, C, is selected to be its header. As depicted in
Algorithm 4.1, those notions (region, header, back-edge) are important as they allow associating
loop events (E: entry, I: iterate, and X: exit) with the stream of raw control events (jump, call,
return) that are produced by our instrumented execution. Here, generation of loop events is
driven by the control event “jump” that is emitted by our instrumentation. Whenever we detect
the start of a new iteration of a given loop (line 13), all live sub-loops are considered exited, that
is, we emit an ”exit” event (line 6). This is especially important for recursive loops as further
explained in Algorithm 4.2.

4.4.2 Call-graph and recursive-component-set

To uniquely identify each dynamic execution of an instruction, also called a dynamic instruction,
Mickey uses interprocedural iteration vectors. This is described in more detail in Section 4.4.3.

Note, that the modelling of programs containing recursive function calls with calling-context-
paths is memory inefficient since the length of the paths is proportional to the depth of the
recursion. While recursive function calls are found to be very uncommon in performance critical
code 1, we do need to handle them to ensure robustness. Mickey handles recursive programs

1the Rodinia benchmark suite, for example, does not use any recursion
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in an elegant way. The main data structure for treating recursive control flow is the recursive-
component-set which is for the call-graph what the loop-nesting-tree is for the control-flow-graph.
An example of a recursive-component-set is shown in Figure 4.7.
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components = {R1}
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(d) associated recursive-component-set

Figure 4.7 – Example CFG/CG and associated loop-nesting-tree/recursive-components-set

Before providing more details, we go through the illustrative example 1 show in Figure 4.8.
Here, the edge from B3 to B0 (in orange) is not a CFG-edge but a recursive call to B from call
site B3. The recursive-component-set computed from the CG contains one SCC with a cycle
consisting of a single function B. This example raises several questions: 1. Should C0 be part of
the associated recursive loop? It actually depends on the context: It should, when called from
B1, while it should not when called from D0. 2. What about B5? One should observe that B5 will
be executed as many times as the number of recursive calls to B: In other words, B5 should be
part of a loop.

To conclude, while CG-cycles clearly represent potential dynamic loop structures, a CG-
edge does not have the same semantic as a CFG-edge. In particular, a call will never exit
a recursive loop. For Mickey, the recursive loop ”L1” of Ex. 2 is a dynamic notion defined
as follows: 1. Entering L1 is characterized by a call to B (step 1). 2. L1 is exited when this
(first) call gets unstacked, that is, when the number of returns reaches the number of calls (step
22). 3. Everything executed in between is part of the loop and iteration, and the corresponding
increment of induction variables takes place whenever a call/return to/from B occurs (steps
10,15,20,and 21). As one can see, once the recursive-component-set has been computed from the
CG, the only relevant information dynamically used to devise recursive-loop events corresponds
to the header functions, here B.

As already stated, the recursive-component-set is for the CG what the loop-nesting-tree is
for the CFG. In a similar way it can be recursively defined as follows:

1. Find all the top-level SCCs with at least one cycle in the CG. Each gives rise to a distinct
recursive-component.

2. For each component, determine all its entry nodes.
3. Repeat the following phases until no more cycles exist:

(a) For a given SCC, choose an entry node and add it to the headers-set of the recursive-
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8 : B2 M/B R(B2) (M1/L1, 0, B2)
9 : B3 M/B N(B3) (M1/L1, 0, B3)

10 : B0 M/B/B IC(L1, B0) (M1/L1, 1, B0)
11 : B1 M/B/B N(B1) (M1/L1, 1, B1)
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20 : B5 M/B/B IR(L1, B5) (M1/L1, 3, B5)
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Figure 4.8 – Example 1. Dynamic schedule tree. CFG nodes and edges in blue, CG nodes and edges in
orange
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component, i.e., top-level SCC, it belongs to.
(b) Remove all edges inside this SCC that point to this node.

The loop-nesting-forest construction algorithm can easily be adapted to build the recursive-
component-set in almost linear time. The end result of the algorithm is a possibly empty set
of recursive-components where each recursive-component has a non-empty set of headers and a
non-empty set of entries. Algorithm 4.2 uses this data structure to associate loop events (entry,
iterate, and exit) to control events (call and return). Here:

1. Entering a recursive loop is characterized by a call to a component’s entry function (line 5).
2. A new iteration is started whenever a call/return to/from one of the components’ header

occurs (line 9).
3. An exit occurs when all the iterating calls to the headers have been unstacked, that is,

when the number of returns equals the number of calls, and we are returning from the
original function that entered the loop (line 25).

Tracking the state of the call stack is done with the following two data structures:
1. L.stackcount represents for a recursive-component L a counter of the number of calls-to a

header minus the number of returns from it.
2. L.entered_through represents the function through which L was entered. If a recursive

component is not currently live this is set to undef.

4.4.3 DDG: Dynamic Dependence Graph

The objective of the second stage of Mickey (“Instrumentation II”) is to profile the dynamic
dependence graph of a given execution, that is, to build a graph that has one vertex for every
dynamic instruction and one edge for every data dependence. Because we want to enable
feedback with structured loop transformations, we need to map this graph to a “geometric”
space that reflects the structural properties of the program. To this end, we tag each dynamic
instruction with its iteration vector (IV). The IVs uniquely identify each dynamic instruction
and naturally span a geometric space. A data dependency is then simply represented as the pair
of the IVs of the producer and the consumer.

To handle interprocedural programs we also need a notion of calling context that is scalable
in the presence of recursive calls. Our dynamic interprocedural IVs (dynamic IIVs) described
in this section addresses those objectives by unifying two notions: 1. Kelly’s mapping, which
describes intraprocedural IVs and is used by the polyhedral framework [111]. 2. Calling-context-
paths, used by profiling feedback tools. We first briefly recall those two notions.

Kelly’s mapping

For a given function, Kelly’s mapping can be explained using a form of schedule tree [216] as
shown in Figure 4.9. Here a schedule tree is nothing else than a decorated loop-nesting-forest.
The first decoration consists of associating a “static” index to each loop and basic-block: Recall
the recursive characterization of loops given by Ramalingam in the previous section. For a given
loop region (e.g. Lj in the schedule-tree of the fused version in Figure 4.9), its sub-regions
(once back-edges have been removed – here statements S and T ) form a directed-acyclic-graph
(reduced DAG represented in dashed in Figure 4.9) that can be numbered using a topological
order. This numbering is used to index the corresponding nodes at every level of the loop-
nesting-tree (e.g. S(0) and T (1) for the fused schedule or Li(0) and Li′(1) for the fissioned
one). The second decoration consists of associating a canonical induction variable, that is, an
induction variable that starts at value 0 and increments by 1, to each loop-vertex. For example,
the loop-vertex associated with Lj is labelled with Lj as well as the static index 0 followed by
its canonical variables j, resulting in Lj(0), (j). For any given statement, an IV with Kelly’s
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Input:
• event, live_loops (same as for Algorithm 4.1)

Emitted events:
• EC(L,B): call to a function header of recursive-component L and entry into the corresponding

loop. B is the current basic-block after the call.
• IC(L,B) / IR(L,B): call-to / return-from a function header of recursive-component L and itera-

tion of the corresponding loop. B is the current basic-block after the call/return.
• XR(L,B): return from a function header of recursive-component L and exit from that loop.

1 if event.type is call:

2 F = event.callee

3 B = event.dst

4 L = F.recursive_component

5 if F in L.entries and L.entered_through == undef:

6 L.was_entered_by = F

7 live_loops.push(L)

8 emit EC(L,B)

9 elif F == L.header:

10 while L' = live_loops.peek() and L' in L:

11 L'.visiting = False

12 live_loops.pop()

13 emit X(L', B)

14 L.stackcount++

15 emit IC(L, B)

16 else: emit C(F, B)

17 if event.type is return:

18 F = event.callee

19 B = event.dst

20 while L = live_loops.peek() and L.isCFG and L in F:

21 L.visiting = False

22 live_loops.pop()

23 emit X(L', B)

24 L = F.recursive_component

25 if F in L.entries and L.stackcount == 0 and L.entered_through == F:

26 L.entered_through = undef

27 emit XR(L,B)

28 elif F is L.header:

29 L = F.recursive_component

30 L.stackcount--

31 emit IR(L,B)

32 else:

33 . . . # Algorithm 4.1

Algorithm 4.2 – Different recursive-loop events generated from a call or a return event.

mapping is nothing else than the vector given by the path from the root to its corresponding
leaf, called its iteration vector. Figure 4.9 shows this mapping both in its textual form using
region names and numerical form using indices. As one can see, an interesting property of
the numerical form of this mapping is that the scheduling of the original code is given by the
lexicographical order of the so obtained iteration vectors (unique per dynamic instance).
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for (i = 0; i < N; i++)

for (j = 0; j <= i; j++)

{ S; T; }

for (i1 = 0; i1 < N; i1++)

for (j1 = 0; j1 <= i1; j1++)

{ S; }

for (i2 = 0; i2 < N; i2++)

for (j2 = 0; j2 <= i2; j2++)

{ T; }

(a) Nested loop before and after fission
root

Li(0), (i)

Lj(0), (j)

S(0) T(1)

root

Li(0), (i) Li′(1), (i
′)

Lj(0), (j) Lj′(0), (j
′)

S(0) T(0)

(b) Corresponding schedule trees. Dashed edges indicate ordering constraints in the program.

S → [Li, i, Lj, j, S]

→ [0, i, 0, j, 0]

T → [Li, i, Lj, j, T]

→ [0, i, 0, j, 1]

S → [Li1 , i1, Lj1 , j1, S]

→ [0, i1, 0, j2, 0]

T → [Li2 , i2, Lj2 , j2, T]

→ [1, i2, 0, j2, 0]

(c) Corresponding Kelly’s mapping / iteration vector

Figure 4.9 – Schedule tree and Kelly’s mapping

Calling-context-tree

Differently from the schedule tree, the calling-context-tree [7] (CCT) is only enumerative, i.e., it
does not contain any loop indices and reflects a dynamic behaviour. In other words, it encodes
the dynamic-call-tree in a compact way. The calling-context-tree of the example in Figure 4.8a
can be seen in Figure 4.8c. This figure is slightly different from the original CCT, but corresponds
to the current practice. To differentiate two calls to a common function from different basic-
blocks, callees are labelled with their call site. In Figure 4.8c they are highlighted in blue and
parenthesized. In this example, a calling-context-path, for example M1/B3 . . . B3/B1/C, can be as
long as the number of recursive calls to B. However, the calling context is fully encoded, making
it possible to differentiate the different contexts within which basic-block C0 is executed. In the
current example, one wants all the repeated calls from B1 to C to be folded into one element.

Dynamic interprocedural iteration vector (dynamic IIV)

The dynamic interprocedural iteration vector (dynamic IIV) is basically a combination of Kelly’s
mapping and the CCT. Similarly to Kelly’s mapping, the dynamic IIV alternates between
context-ids and canonical induction variables. Differently from Kelly’s mapping, but more like
the CCT, each context-id in a dynamic IIV is a, possibly empty, stack of calling contexts and
the identifier for a basic block.

Examples of dynamic IIVs are shown in Figure 4.11: Function A contains a loop L1 that
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interprocedural loops

schedule tree / IV 7 3

CCT / calling-context-path 3 7

dynamic schedule tree / dynamic IIV 3 3

Figure 4.10 – Dynamic schedule tree ≡ schedule tree ∪ CCT

M0

main

A0

A1

A2

A3

A

L1

B0

B1

B2

B3

B

L2

(a) Example program

main A B

(b) Call-graph

rootmain

M0

rootA

L1 : A1A0 A3

A1 A2

rootB

L2 : B1B0 B3

B1 B2

(c) Loop-nesting-forest

step : trace event dynamic IIV

(⊥)
1 : M0 N(M0) (M0)
2 : A0 C(A0) (M0/A0)
3 : A1 E(L1,A1) (M0/L1, 0, A1)
4 : B0 C(B0) (M0/L1, 0, A1/B0)
5 : B1 E(L2,B1) (M0/L1, 0, A1/L2, 0, B1)
6 : B2 N(B2) (M0/L1, 0, A1/L2, 0, B2)
7 : B1 I(L2,B1) (M0/L1, 0, A1/L2, 1, B1)
8 : B2 N(B2) (M0/L1, 0, A1/L2, 1, B2)
9 : B3 X(L2,B3) (M0/L1, 0, A1/B3)

10 : A2 R(A2) (M0/L1, 0, A2)
11 : A1 I(L1,A1) (M0/L1, 1, A1)

· · · · · · · · ·

(d) Example trace, associated loop events, and dy-
namic IIVs

root

M0(0)

L1(1), (i1)A0(0) A3(2)

A1(0)A1(0) A2(1)

L2(1), (i2)B0(0) B3(2)

B1(0) B2(1)

(e) Dynamic schedule tree

Figure 4.11 – Example 2. Dynamic schedule tree. CFG nodes and edges in blue, CG nodes and edges
in orange

contains a call to function B, itself containing a loop L2. In this interprocedural example basic-
block B1 in loop L2 belongs to a two-dimensional nested loop. This is reflected by our dynamic
IIV (see steps 5,7 of Figure 4.11d) which will be (M0/L1, i1, A1/L2, i2, B1) where i1/i2 are the
canonical induction variables of loop L1/L2. Here, our context-ids are loop-ids, e.g., L2, or
statement-IDs, e.g., B0. Each context-ID is decorated with a, possibly empty, call stack, e.g., A1.

Similar to Kelly’s mapping one can also construct a dynamic schedule tree from the dynamic
IIVs of a program execution. Also, note that the schedule tree is for the dynamic IIVs what the
calling-context-tree is for the set of calling context paths. The schedule tree for our example
is shown in Figure 4.11e. The relationship between these three structures is summarized in
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Figure 4.10. As described in more details later, Mickey exposes the schedule tree to the
programmer in the form of a flame-graph [79].

Figure 4.8a illustrates how the recursive-component-set is used to “fold” calling-context-
paths in the presence of recursive calls. Here, M1 is the caller site (step 4) before entering the
recursive loop L1 (step 5). Looking at C0, its multiple instances are indexed by the corresponding
recursive-loop induction variable i1 (respectively 0,1, and 2 at steps 7, 12, and 17). Within the
loop it gets executed when C is called from B1. The associated dynamic IIV is (M1/L1, i1, B1/C0).
As already mentioned, B5 is also part of the loop: Indeed there are as many instances of B5 as
there are calls to B from B3 (2 calls at steps 10,15). Observe that the value of i1 does not reflect
the size of the call stack: It does not go up and down. It keeps increasing. The main reason for
doing so is related to our polyhedral back-end: 1. we want our indexing to be lexicographically
increasing; 2. we want to match the semantics of the polyhedral model where iterators can
be represented using simple canonical induction variables. To do so, any return except the
last, which exits the recursive loop, associated with a call to B (steps 20,21) causes i1 to be
incremented by 1.

Input:
• event: Branch event (same as in Algorithm 4.1 and Algorithm 4.2)
• diiv: Current dynamic IIV.

Output:
• Updated dynamic IIV

1 if event == C(B) or EC(L,B):

2 diiv.innermost.CTX.push(L)

3 if event == TC(B) or ETC(L,B):

4 diiv.innermost.CTX.last = B

5 if event == E(L,B) or EC(L,B):

6 diiv.innermost.CTX.last = L

7 diiv.push_dimension(0, B)

8 if event == X(L,B) or XR(L,B):

9 diiv.pop_dimension()

10 diiv.innermost.CTX.last = B

11 if event == I(L,B) or IC(L,B) or IR(L,B):

12 diiv.innermost.IV++

13 diiv.innermost.CTX.last = B

14 if event == R(B):

15 diiv.innermost.CTX.pop()

16 diiv.innermost.CTX.last = B

Algorithm 4.3 – Updating of the dynamic IIV (diiv)

As previously described, loop events allow updating the dynamic IIV, as detailed in Algo-
rithm 4.3. The algorithm uses the following notation:

• diiv is a dynamic IIV where the rightmost is the innermost loop dimension. Each dimen-
sion contains two fields, the induction variable IV, followed by the context variable CTX:
For example, I(L1, A1) applied to a dynamic IIV (M0/L1, 0, A2) increments the IV of L1 by
one and changes the CTX to A1. Finally, we get diiv = (M0/L1, 1, A1).

• CTX.last represents the last element of the context variable: So, if CTX = M0/D0/C0, then
CTX.last = C0.

• CTX.push(B) appends B to end of the rightmost context: For example, C(C0) applied to
diiv = (M1/L1, 0, B1) leads to diiv = (M1/L1, 0, B1/C0).

• CTX.pop() does the reverse: That is, R(M1) applied to diiv = (M0/D0) pops D0 and updates
the last element to M1 leading to a CTX of (M1).
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• push_dimension(n, B), where n is an integer, and B a block, adds those two fields to the dy-
namic IIV: For example, EC(L1, B0) applied to (M1), appends L1 to CTX and adds a dimension
with its innermost context set to B0. Which in turn results in diiv = (M1/L1, 0, B0).

• pop_dimension() does the reverse: That is, X(L2, B3) applied to diiv = (M0/L1, 0, A1/L2, 1, B2)
results in diiv = (M0/L1, 0, A1/B3).

4.5 The Folding Algorithm

This section gives an overview of the folding algorithm which lies at the heart of Mickey
and then presents its components in detail. Before describing the core algorithm itself we first
describe its inputs and outputs in Section 4.5.1 and Section 4.5.2 and give an intuition of how it
is used Section 4.5.3. Section 4.5.4 introduces the main components of the algorithm and how
they interact. This is followed by a detailed description of the folding algorithm including an
analysis of its complexity in Section 4.5.5.

4.5.1 Inputs

The inputs for the folding-based analysis are provided by our front-end. To handle any kind of
loops in a uniform way, our front-end inserts canonical iterators in every loop. These iterators
start at zero and advance by one every iteration. The front-end is implemented as a plugin for
the dynamic binary translator QEMU [17, 84]. Even though the front-end analyses machine
code, it works at the level of the generic QEMU IR, making it CPU architecture agnostic.

The inputs of the folding algorithm are streams of two types, one for instructions and one
for dependencies. In the following sections, a static instruction is a machine instruction in the
program binary. An instruction instance is one dynamic execution of a static instruction. A
dependency is a pair consisting of an instruction instance that produced a value and another
instance consuming it. We call those instances the source and the destination respectively.
Also, our front-end only captures dataflow dependencies, that is, read-after-write dependencies
for which there are no intermediate write to the same memory location or register.

Each input stream has a unique identifier ID. An instruction stream is identified by a static
instruction. A stream of data dependencies is identified by a pair of static instructions. We note
this as Static instruction source → Static instruction destination. The two types of streams
have the same overall structure where each entry consists of two elements:

• an iteration vector (IV): a vector made up of the current values of all canonical loop
iterators;

• a label: the definition of the label differs between the two types of streams and is described
below.

For a given stream, all the IVs span a multi-dimensional space where each entry is a point.
Thus, in the following we use the terms entry and point interchangeably. Also, note that IVs
arrive in the input stream in lexicographical order.

Finally, it is worth mentioning that the front-end tracks the calling context in which instruc-
tions execute and generates different input streams for different calls to the same function.

Instructions An instruction stream for a static instruction ID contains all its instances. The
label is a scalar value whose meaning depends on the type of the static instruction. If the
instruction is an arithmetic instruction dealing with integers, the label is the integer value
representing the result computed by the instruction. If the instruction is a memory access the
label is the address read or written by the instance. As described in the next section, these
labels are used to identify induction variables and fixed-stride memory accesses.
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for (j = 1; j <= n2)

sum = 0.0;

for (k = 0; k <= n1)

tmp1 = load(&conn + k) I1 - Memory access

tmp2 = load(tmp1 + j) I2 - Memory access

tmp3 = load(&l1 + k) I3 - Memory access

sum = sum + tmp2 * tmp3 I4 - Computation

k = k + 1 I5 - Computation

j = j + 1 I6 - Computation

Figure 4.12 – C-like binary version for the code of Figure 4.1

ID=I1 ID=I2 ID=I3 ID=I4 ID=I5 ID=I6

IV Label IV Label IV Label IV Label IV Label IV Label
(cj,ck) (cj,ck) (cj,ck) (cj,ck) (cj,ck) (cj)

(0,0) 12 (0,0) 67 (0,0) 407 (0,0) N/A (0,0) 1
(0,1) 13 (0,1) 71 (0,1) 408 (0,1) N/A (0,1) 2

… … … … … … … … … …
(0,42) 54 (0,42) 243 (0,42) 449 (0,42) N/A (0,42) 43 (0) 2
(1,0) 12 (1,0) 68 (1,0) 407 (1,0) N/A (1,0) 1
(1,1) 13 (1,1) 72 (1,1) 408 (1,1) N/A (1,1) 2

… … … … … … … … … … … …

Table 4.1 – Instruction input streams from example in Figure 4.12 with n1 = 42

To illustrate the contents of the input stream of instruction instances we again use the
example of backprop from Figure 4.1. At the binary level, the considered loop-nest contains
several instructions that are represented in an abstract C-like fashion in Figure 4.12. An excerpt
of the six instruction streams for this example is shown in Table 4.1. The IV of each entry is
the vector made up of the current values of all canonical loop iterators noted cj and ck in the
table.

Dependencies A dependency stream for a pair of static instructions contains an entry for
each pair of instances for these instructions that have a data dependence. The IV of an entry
is the IV of the destination, whereas the label is the IV of the source. Table 4.2 shows three
of the six dependency input streams for the example in Figure 4.12. In this example, all the
dependencies except I4 → I4 are intra-iteration dependencies.

I1 → I2 I2 → I4 I4 → I4

IV Label IV Label IV Label
(cj,ck) (cj',ck') (cj,ck) (cj',ck') (cj,ck) (cj',ck')

(0,0) (0,0) (0,0) (0,0)
(0,1) (0,1) (0,1) (0,1) (0,1) (0,0)

… … … … … …

Table 4.2 – Three of the six dependency input streams from example in Figure 4.12
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4.5.2 Outputs
The folding algorithm processes each stream independently. For each stream, the final result
of folding is a piecewise linear function mapping IVs to labels. We refer to this piecewise
linear function as a label function. In the following we use the terms domain and geometry
interchangeably. Each piece of the domain of a label function is described by a set of affine
inequalities, hence it defines a polyhedron. More precisely, a label function can be written as:

f : Nd 7→ Z | f(c1, · · · , cd) =

 k0,1 + k1,1c1 + · · ·+ kd,1cd if (c1, · · · , cd) ∈ polyhedron1
k0,2 + k1,2c1 + · · ·+ kd,2cd if (c1, · · · , cd) ∈ polyhedron2
. . .

where ki,j ∈ Z ∪ {>}

Section 4.2.2 already showed two examples of label functions, that is, 0j+1k+12 and 1j+>k+66.
The domain of a label function contains exactly the IVs of all entries of the input stream.

Moreover, when the label function is applied to an IV of its domain it produces the label
value associated with that point in the input stream. That is, a label function is a compact
representation of an input stream since it can describe arbitrarily many points in one piece. It
also directly exposes regularity in a form that polyhedral optimizers can exploit.

The coefficients of a label function may be either an integer or > 2 , as illustrated for the
non-affine memory access of backprop shown in Figure 4.3. If a coefficient is >, this indicates
that the evolution of the label cannot compactly be expressed as an affine function along the
corresponding dimension.

When a label function does not contain any > coefficient, it can be used to precisely recon-
struct the input stream it was created from. As mentioned before, the domain of a label function
contains all IVs from the input and no other points. We can thus reconstruct the stream simply
by applying the label function to every point of its domain.

Instructions For an instruction stream, depending on the type of its corresponding static
instruction, the label function either represents the integer values computed by the instruction
or the addresses it accesses. These label functions are then used to identify induction variables
and fixed-stride memory accesses. Table 4.3 illustrates the outputs for the input streams in
Table 4.1 where n2 = 16 and n1 = 42. All instruction instances of a given input stream are now
described by a single line. We notice from this table that four of the six instructions have an
affine function where all the coefficients are known, that is, they are not >. The affine function
of instruction I4 is marked as N/A because it is computing floating point values. Instruction
I2 has an affine function with the coefficient for dimension k being >, as already discussed. In
this case, the labels of the input stream cannot be reconstructed from the IVs. Nevertheless,
the algorithm still outputs the single polyhedron describing the domain for this instruction and
produces useful information for a polyhedral optimizer. It is also worth mentioning that, unlike
in this example, the label function of each instruction can be made up of several pieces if the
domain of the instruction cannot be represented as a single convex polyhedron. In this case, the
domain would be represented as a union of polyhedra.

Dependencies The label function of a dependency is a piecewise linear function with multiple
outputs. The label function maps IVs of the consumer instances of the dependence to IVs of
the producer instances. That is, given an instruction instance the label function can be used
to determine from which other instruction instance it consumed data. Table 4.4 illustrates the
result of the folding-based analysis for the three dependency input streams in Table 4.2. All the

2as described later, the folding algorithm internally also uses special ⊥ values for coefficients, but these do not
appear in the output
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ID Polyhedron Label function
(cj,ck) f(cj,ck)

I1 0 ≤ cj ≤ 15, 0 ≤ ck ≤ 42 0cj + 1ck + 12
I2 0 ≤ cj ≤ 15, 0 ≤ ck ≤ 42 1cj +>ck + 67
I3 0 ≤ cj ≤ 15, 0 ≤ ck ≤ 42 0cj + 1ck + 407
I4 0 ≤ cj ≤ 15, 0 ≤ ck ≤ 42 N/A
I5 0 ≤ cj ≤ 15, 0 ≤ ck ≤ 42 0cj + 1ck + 1
I6 0 ≤ cj ≤ 15 1cj + 2

Table 4.3 – Output of the folding algorithm for the instructions stream of Table 4.1 with n2 = 16 and
n1 = 42

ID Polyhedron Label function
(cj,ck) f(cj,ck)

I1 → I2 0 ≤ cj ≤ 15, 0 ≤ ck ≤ 42 cj′ = cj + 0ck, ck′ = 0cj + ck
I2 → I4 0 ≤ cj ≤ 15, 0 ≤ ck ≤ 42 cj′ = cj + 0ck, ck′ = 0cj + ck
I4 → I4 0 ≤ cj ≤ 15, 1 ≤ ck ≤ 42 cj′ = cj + 0ck, ck′ = 0cj + ck − 1

Table 4.4 – Output of the folding algorithm for the dependencies stream shown in Table 4.2

dependencies of a given input stream are now described by a single line. Each one of these lines
states when the dependency between two instruction instances occurs. For example, the last
line tells us that the instance (cj, ck) of I4 depends on the instance (cj, ck − 1) of itself. As for
the output regarding instruction streams, it is worth noting that in this example the domain of
all the dependencies is described by a single polyhedron. Nevertheless, in more complex cases
these domains can be represented by a union of polyhedra.

4.5.3 Using the output

The output of the folding algorithm is intended to be consumed by the back-end of our tool
chain leveraging a classic polyhedral optimizer. Such an optimizer requires as input the list
of instructions along with their domains and their dependencies. The back-end then searches
which re-scheduling transformations can be applied to the instructions under the constraints
imposed by the data dependencies.

Before providing dependencies to the back-end, the output stream of dependencies is pruned
by removing all the dependencies involving a computation instruction identified as an induction
variable. An induction variable is a computation instruction with a label function where all
coefficients of all pieces are integers, that is, not >. The initial loop iterators are an example of
induction variable, that is, I5 and I6. Removing those instructions serves two purposes. First,
induction variables always depend on their value from the previous iteration of the loop they
are in. Consequently their dependencies constrain the execution to be completely sequential.
Removing these instructions gives the back-end more freedom and may uncover parallelism
or potential for other polyhedral transformations. The second reason for removing induction
variables is simply that it reduces the number of instructions the polyhedral back-end has to
deal with.

Then, still before providing the dependencies to the optimizer, we must process dependencies
having > coefficients in their label function. Observe that the fact that some dependencies are
not accurately captured by our folding algorithm is not a limitation of the approach, but a
choice imposed by polyhedral back-ends, the complexity of which is combinatorial with the
size of the polyhedral representation. To that end, we over-approximate those dependencies
by imposing a lexicographical ordering over their IVs for the iterators having at least one >



110 CHAPTER 4. DATA-DEPENDENCE DRIVEN OPTIMIZATION FEEDBACK

P1
⊥cj + ⊥ck + 67

0 1 2

0

1

2

67

À

ck

cj

P1
⊥cj+⊥ck+67

⊥cj + ⊥ck + 71

⊥cj + 4ck + 67

0 1 2

0

1

2

71

Á

ck

cj

P1 ⊥cj + >ck + 67

⊥cj + 4ck + 67 ⊥cj + ⊥ck + 77

0 1 2

0

1

2

77

Â

ck

cj

P1
⊥cj + >ck + 67

P4
⊥cj + ⊥ck + 68

0 1 2

0

1

2

68

Ã

ck

cj

P1

1cj + >ck + 67

⊥cj + >ck + 67

⊥cj + >ck + 68

P4

P7
⊥cj + ⊥ck + 69

0 1 2

0

1

2 69 Ä

ck

cj
P1

1cj + >ck + 67

0 1 2

0

1

2 Å

ck

cj

Figure 4.13 – Folding process for the input stream of I2 in Table 4.1 considering only three points in
both dimensions.

coefficient. With this order, it is guaranteed that all instances of the producer come before any
instances of the consumer that might possibly consume them. For instance, let us assume in
our running example that the dependency I4 → I4 is not cj′ = cj + 0ck, ck′ = 0cj + ck − 1
but cj′ = cj + 0ck, ck′ = 0cj +>ck: The over-approximated dependency given to the back-end
would be cj′ = cj ∧ ck′ ≤ ck.

Finally, the access functions for memory instructions are also given to the polyhedral opti-
mizer so that it can identify opportunities for exposing vectorization and spatial locality. For
this it needs information about stride which is given by a non-> coefficient in the label function
of an instruction accessing memory.

4.5.4 Overview

As stated in the previous section, the folding algorithm processes the stream for each identifier
separately. It is worth mentioning that exactly the same algorithm is used for both instruction
and dependency streams. This algorithm receives points in a geometrical space as specified
by the IVs. The main idea of the algorithm is to construct polyhedra from those points. For
each polyhedron the algorithm also constructs an affine function describing the label of the
points contained in the polyhedron. When receiving the first point, the algorithm creates a
0-dimensional polyhedron containing only that point. It then tries to grow this polyhedron with
the next points, adding dimensions as necessary.

To give an intuition about how the folding algorithm works, let us consider the stream of I2
in Table 4.1.

4.5.4.1 Geometric folding

The folding process for I2 is illustrated in Figure 4.13. For now we will ignore the construction of
the affine function. As shown, the process leads to the creation of many intermediary polyhedra
which are merged as the algorithm executes. The polyhedron P1, a 3 × 3 square, is the final
result of the algorithm. As shown in Figure 4.13 the main steps of the algorithm are as follows:

À create the 0-dimensional polyhedron P1 when the first point (cj = 0, ck = 0) is received;
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Á when (cj = 0, ck = 1) is received, P1 absorbs it to become a 1-dimensional polyhedron,
that is, a line segment;

Â when (cj = 0, ck = 2) is received, P1 absorbs it;
Ã notice that the loop over ck is completed when point (cj = 1, ck = 0) is received because

the iterator of the surrounding loop cj increased. Then create the new 0-dimensional
polyhedron P4;

• P4 absorbs (cj = 1, ck = 1) to become a 1-dimensional polyhedron and then absorbs
(cj = 1, ck = 2) (not shown in Figure 4.13);

Ä notice that the loop over ck is completed when point (cj = 2, ck = 0) is received. P1
absorbs P4 along dimension cj. Then create the new 0-dimensional polyhedron P7;

• P7 absorbs (cj = 2, ck = 1) to become a 1-dimensional polyhedron and then absorbs
(cj = 2, ck = 2) (not shown in Figure 4.13);

Å P1 absorbs P7 and becomes the final 3× 3 square.
The geometric folding works exactly the same for dependencies as illustrated above for

instructions. The only difference is the semantic of the reconstructed union of polyhedra. In the
case of an instruction, this union defines when the instruction is executed. For a dependency it
tells when the dependency occurs from the point of view of the destination.

4.5.4.2 Label folding

In the previous section we ignored the folding of the labels associated with each point in the
input stream. Nevertheless, this label folding takes place at the same time as geometric folding.
It is also performed in a streaming fashion. In the context of label folding, the symbol ⊥ denotes
a coefficient that has not yet been determined because the loop has not yet iterated along the
dimension associated with that coefficient. As shown in Figure 4.13 the label folding proceeds
as follows:

À create f1(cj, ck) = ⊥cj +⊥ck + 67 when point (cj = 0, ck = 0) with label 67 is received;
Á update f1 to ⊥cj + 4ck + 67 when P1 absorbs (cj = 0, ck = 1) with label 71 is received

because ck advanced by 1 and 71− 67 = 4;
Â check if f1(cj, ck) = ⊥cj + 4ck + 67 is valid when P1 absorbs (cj = 0, ck = 2) with label

77. It is not the case, so update f1 to ⊥cj +>ck + 67;
• repeat the steps above for P4 and get f4(cj, ck) = ⊥cj + >ck + 68 (not shown in Fig-

ure 4.13);
Ä update f1 to f1(cj, ck) = 1cj +>ck + 67 when P1 absorbs P4 because cj advanced by 1

and 68− 67 = 1;
Å check whether f1(cj, ck) = 1cj+>ck+67 is compatible with f7(cj, ck) = ⊥cj+>ck+69,

when P7 absorbs P1 to get the final 3× 3 square. It is the case.
When the folding algorithm finishes all remaining ⊥ coefficients can safely be set to zero.

The intuition behind this is that at the end of the folding process a ⊥ coefficient signals that
the loop for this dimension only iterated once, that is, it never influenced the label value.

The algorithm that folds the labels of a dependency is the same as the one described above
for the labels of an instruction. It is just applied individually for each scalar value in the label
vector, that is, each component of the IV of the source of the dependency.

4.5.5 The algorithm

This section introduces the structure of the main algorithm itself and then explains its sub-
components.
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4.5.5.1 Main folding function

The main function is shown in Algorithm 4.4. As explained in Section 4.5, this main function,
is applied to each input stream separately. To handle real-life applications, where input streams
are huge, the algorithm works in a streaming fashion (line 10). It is not necessary to have the
whole input available at once. The output is also emitted as a stream. The main principle
of the algorithm, as depicted in the example in Figure 4.13, consists of maintaining a worklist
of intermediate polyhedra per dimension. The intermediate polyhedra then grow by absorbing
other polyhedra. Note that a d-dimensional polyhedron can only absorb (d − 1)-dimensional
polyhedra.

Elementary Polyhedra The absorption process, explained in Section 4.5.5.2, is restricted
to only produce a sub-class of convex polyhedra that we call elementary polyhedra. Because
the folding algorithm only produces elementary polyhedra, the term polyhedra implicitly refers
to elementary polyhedra in the following. A d-dimensional elementary polyhedron is a convex
polyhedron with 2d vertices and a restricted shape. The shape restriction is motivated by
complexity concerns for the absorption process as explained in Section 4.5.6.

We define elementary polyhedra in a D-dimensional space using the following recursive def-
inition:

• an elementary 0-dimensional polyhedron is a polyhedron made of a single point;
• an elementary d-dimensional polyhedron is a convex polyhedron with 2d extreme points

such that:
1. all its extreme points must have identical coordinates in dimensions higher than d.

In other words, the polyhedron is flat on dimensions between d+ 1 and D;
2. it has two (d − 1)-faces flat on dimension d but with different coordinates for that

dth dimension. The face with the lower coordinates in d is called the lower face and
the one with the higher coordinates is called the upper face ;

3. its lower and upper faces must themselves be (d− 1)-elementary polyhedra;
4. the edges connecting the lower and upper faces can be expressed as k~S. Where k ∈ N∗

and ~S, the slope vector of the edge, is a vector where all components are either −1,
0, or +1.

All faces of an elementary polyhedron beside the upper and lower face are called side faces.
More informally, an elementary 0-dimensional polyhedron is a polyhedron made of a single

point. An elementary 1-dimensional polyhedron is an interval. An elementary 2-dimensional
polyhedron is a trapezoid. An elementary 3-dimensional polyhedron is a trapezoidal prism.
Every general polyhedron can be represented using unions of elementary polyhedra, meaning
any iteration or dependence space can be described with them. The more regular a space is the
fewer elementary polyhedra are necessary to represent it.

A polyhedron is degenerate on a given dimension if all its vertices have the same coordinate
for that dimension, that is, it has zero width in that dimension. The elementary polyhedra
produced by the folding algorithm may be degenerate on one or more dimensions.

Figure 4.14 shows examples of elementary polyhedra in a 2-dimensional space (D=2). The
vertices of the polyhedra are shown as large dots. The other integer points included in the
polyhedra are shown with small dots. Note that even though the lower face in Figure 4.14c is
degenerate it is still represented using two vertices, but they have the same coordinates.

Producing only elementary polyhedra as described above allows controlling the worst case
complexity of the absorption process described in Section 4.5.5.2. The choice of producing only
such polyhedra is also motivated by the nature of the input streams that we want to process.
The front-end we use to feed the folding algorithm always produces canonical IVs starting at
zero and only ever advancing by one. Hence, elementary polyhedra are able to represent the
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Figure 4.14 – Examples of elementary polyhedra in a 2-dimensional space (D=2) with its vertices in
orange

iteration space of most of the loops fitting the polyhedral model.

Data structures Folding works on spaces with a fixed number of dimensions D, that is, the
dimensionality of the corresponding IVs. The state of the folding algorithm is stored using
two dictionaries. The first one, absorbers (line 2), contains a list of intermediate polyhedra for
each dimension. absorbers[d] only contains d-dimensional, potentially degenerate, polyhedra.
The polyhedra in absorbers[d] are those that can still grow along dimension d by absorbing
(d − 1)-dimensional polyhedra. Those (d − 1)-dimensional polyhedra are stored in vertices-

_to_be_absorbed[d] (line 5). The keys of the dictionary vertices_to_be_absorbed[d] are the
lexicographically smallest vertices of the polyhedra to be absorbed. This point, which we name
the anchor, is used to uniquely identify the absorbed polyhedron. abso.upper_left (line 26), the
lexicographically smallest point of the upper face of abso, also called its corner, is the vertex
from which the absorption is performed. For example, in Figure 4.13, in the absorption just
before step 6, the anchor of P7 is (cj = 2, ck = 0) and upper_left of P1 is (cj =, ck = 0).

Steps of the algorithm When a point is received, the algorithm first processes the innermost
dimension (numbered 1). Then, for each loop (but for the outermost one) that completes in the
instrumented code, the algorithm processes its enclosing dimension. In other words, if no loop
finishes the algorithm processes only dimension d = 1; if the innermost loop finishes it processes
dimensions d = 1 and d = 2; if its enclosing loop finishes it processes dimensions d = 1, d = 2
and d = 3; etc. In line 17, process_dims represents that set of dimensions to be processed.

Before processing the different dimensions, the current point is added into absorbers[0]

(line 14). This state is only transient, because as soon as the innermost dimension is pro-
cessed, the point will be promoted into vertices_to_be_absorbed[1] (line 20). Then, for each
dimension d of process_dims (processed from inner to outer), three steps are performed.

The first step (line 19 to 20) promotes all polyhedra in absorbers[d-1] into vertices_to_be-

_absorbed[d]. Because dimensions are processed in increasing order, that is, from innermost to
outermost, when processing dimension d we are sure that absorbers[d-1] have already absorbed
all the (d − 2)-dimensional polyhedra it could. This promotion to d-dimensional degenerate
polyhedra allows them to be absorbed in the next step by the d-dimensional polyhedra already
in absorbers[d].

In the second step (line 23 to 38), polyhedra from absorbers[d] try to absorb polyhedra
in vertices_to_be_absorbed[d]. For absorption to be possible, the polyhedra should be ge-
ometrically compatible (line 30) and their label functions should match (line 29) as described
in Section 4.5.5.1 and Section 4.5.5.2. If a polyhedron in absorbers[d] does not absorb any
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1 # Per dimension list of absorber polyhedra.

2 absorbers: <int, poly_list_t>

3
4 # Per dimension dictionary mapping vertices to polyhedra to be absorbed

5 vertices_to_be_absorbed: <int, <point_t, poly_t>>

6
7 # While we have points

8 while True:

9 # End of stream?

10 point = wait_next_point()

11 if point == end_of_stream: break

12
13 # Put current point in absorbers[0]

14 absorbers[0].insert(new Polyhedron(point))

15
16 # for each dimension d such that d=1 or loop d-1 completed

17 for d in process_dims(point):

18 # Step 1: promote absorbers[d-1] -> vertices_to_be_absorbed[d]

19 for p in absorbers[d-1]:

20 p.move(absorbers[d-1], vertices_to_be_absorbed[d])

21
22 # Step 2: absorbers[d] try to absorb vertices_to_be_absorbed[d]

23 for abso in absorbers[d]:

24 absorbed = False

25 for v in abso.search_vectors:

26 corner = abso.upper_left

27 to_be_abso = vertices_to_be_absorbed[d][corner + v]

28 if to_be_abso != None:

29 if has_compat_label(abso, to_be_abso, d) and

30 has_compat_geometry(abso, to_be_abso, d):

31 update_geometry(abso, to_be_abso, d)

32 update_label(abso.label_function, to.label_function)

33 absorbed = True

34 break

35
36 if not absorbed:

37 # abso will never absorb anyone along d, so promote it to the next dimension

38 abso.move(absorbers[d], vertices_to_be_absorbed[d+1])

39
40 # Step 3: promote all of remaining vertices_to_be_absorbed[d] -> absorbers[d]

41 for not_abs in vertices_to_be_absorbed[d].values:

42 not_abs.move(vertices_to_be_absorbed[d], absorbers[d])

43
44 # Stream finished, flush all pending polyhedra

45 flush_pending_polyhedra()

Algorithm 4.4 – The main folding algorithm

other polyhedron, then it will never grow again along dimension d. As a consequence, it is
promoted into vertices_to_be_absorbed[d+1] (line 38). This promotion also transforms the
d-dimensional polyhedron into a (d+ 1)-dimensional degenerate polyhedron.

The third and last step (line 41 to 42) promotes all the d-dimensional polyhedra in vertices-

_to_be_absorbed[d] that have not been absorbed. Since those polyhedra will never be absorbed
again in dimension d, they are moved to the absorbers[d] list so that they will have a chance to
themselves absorb other polyhedra next time dimension d is processed.

During the execution of the algorithm, a polyhedron is retired, that is it is emitted to the
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output stream, when it is promoted to the dimension above the dimension of the space, that is,
3 for an instruction in a 2D loop nest. When the stream is finished, all remaining non-retired
polyhedra are also retired. Retired polyhedra are written to the output stream and do not
consume memory anymore. This is safe since we know that they will never grow anymore.

4.5.5.2 Absorption

As stated in the previous section, the second step of the folding algorithm grows polyhedra
by letting them absorb each other. A d-dimensional polyhedron searches for candidates to ab-
sorb by checking if its corner touches the anchor of any other (d − 1)-dimensional polyhedron
(Algorithm 4.4, line 26). This search is performed by adding the search vectors v to the coor-
dinates of the corner and performing a lookup in vertices_to_be_absorbed[d] to see if there
is a polyhedron at this position (line 27). Once a candidate has been found, the algorithm
must check that the absorption is possible (line 30), that is, leads to an elementary polyhedron
(has_compat_geometry) with a correct label function (has_compat_label). Which search vectors
are used for the lookup and how geometric compatibility is checked depends on whether the
absorber is degenerate in d or not. If the absorber is degenerate we call this a polyhedra merge.
An example of this is when P1 absorbs P4 in Figure 4.13. The second case, a polyhedra exten-
sion, occurs when the absorber is not degenerate, as seen for example when P1 absorbs P7. The
has_compat_geometry function called once a candidate has been found is shown in Algorithm 4.5.

1 # Geometry compatibility check

2 def has_compat_geometry(abso, to_be_abso, d):

3 # Polyhedra merge case

4 if abso.is_degenerate_on(d):

5 for k in [0, 2^(d - 1)[ :

6 diff = to_be_abso.vertices[k] - abso.vertices[k]

7 if not diff.is_a_search_vector(d):

8 return False

9 for side_face in side_faces_of_merged_polyhedron(abso, to_be_abso, d):

10 if not all_points_lie_on_same_hyperplane(d, side_face):

11 return False

12
13 # Polyhedra extension case

14 else:

15 for k in [0, 2^(d - 1)[ :

16 v = abso.growing_directions[k]

17 if abso.vertices[k] + v != to_be_abso.vertices[k]:

18 return False

19 return True

Algorithm 4.5 – The has_compat_geometry function which ensures that polyhedra resulting from ab-
sorption is still elementary polyhedra

Polyhedra merge In this case, the d-dimensional absorber polyhedron is degenerate on di-
mension d. Hence, it has no edges yet along that dimension. As a consequence there are many
possibilities where to look for the anchor of the to-be-absorbed polyhedron. Our algorithm uses
the set of all possible 3d−1 search vectors written as v = (0, . . . , 0, 1, δd−1, . . . , δ1) where for i < d,
δi ∈ {−1, 0, 1}.

Once a candidate polyhedron has been found, the has_compat_geometry function call verifies
that concatenating the vertices of the two polyhedra leads to a well formed polyhedron (Algo-
rithm 4.5, line 4 to 11). First, the function checks (line 4 to 8) that all the corresponding vertices
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of both polyhedra are connected through the search vectors used to find the anchor of the to-
be-absorbed polyhedron described just above. Second, the function checks (line 9 to line 11)
that all the side faces of the polyhedron resulting from the absorption are valid. As shown in
Figure 4.15, even if the lower (a square) and the upper (a triangle) faces are valid elementary
polyhedra, the result of the absorption may not be a valid polyhedron. For this we check if all
the points of the side face lie on the same hyperplane (line 11). To begin with, we arbitrarily
designate one point of the face as the origin of the plane. We then pick d − 1 other points to
calculate a normal vector n for the plane by calculating the nullspace of the space spanned by
the vectors from the origin to the other points. And finally, we verify for all remaining points p
that the dot product (origin− p) · n equals zero.

cj
ck

ci

Figure 4.15 – Example of invalid polyhedron after absorption

If absorption is performed, the resulting polyhedron will no longer be degenerate in d. By con-
struction, if well formed, the so obtained polyhedron is necessarily an elementary d-dimensional
polyhedron. Its lower face will be the original absorbing polyhedron while its upper face will be
the the absorbed polyhedron.

Polyhedra extension In this case the absorber is a non-degenerate d-dimensional polyhedron.
Hence, the absorber already has edges along dimension d. When looking for candidates to absorb,
there is only one search vector, the edge connecting the oldest vertex of the lower face to that of
the upper face. To check if the absorption is legal, has_compat_geometry simply verifies (line 14
to line 18) whether the vertices of the two polyhedra can be connected using the existing edges
of the absorber stored in the growing_directions list.

4.5.5.3 Compatibility and update of label functions

The absorption is performed only if both geometric and label compatibility are satisfied (line 30).
This section describes how label functions are represented, created and combined together.

Label functions The data structure used for label functions is shown in Figure 4.16. num-

_dimensions is the number of loops enclosing the static instruction or the destination instruction
associated with the input stream.

Creation Label functions are created when a new polyhedron is created from a single point
(line 14). At this time, all the coefficients of the function are still unknown. Their types
in the coeff_types array are set to ⊥. The coordinates of the point used to create the new
polyhedron are saved in the initial_point array. The first cell of this array is never used but
still kept to make accesses more readable, that is, initial_point[d] contains the dth coordinate.
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enum Coefficient_Type:

⊥, # coefficient undetermined

INT, # coefficient determined

> # coefficient widened

struct Label_Function:

num_dimensions: int

init_point: int[num_dimensions + 1]

coeffs: int[num_dimensions + 1]

coeff_types: Coefficient_Type[num_dimensions + 1]

Figure 4.16 – The data structure used to represent label functions

These coordinates are used when coefficients are updated. Note that once a coefficient has been
updated from an unknown to a known value, it is never updated again except to be set to >.
The life cycle of a coefficient is then the following one:

⊥ → Z → >

At creation time, coeff[0] is given the value of the label associated with the initial point.
As long as there are some ⊥ coefficients, coeff[0] contains the remaining amount contributed
by unknown coefficients. We refer to coeff[0] as the remaining value in the following. This
remaining value is updated whenever a coefficient is updated. When all coefficients are known,
the remaining value represents the constant coefficient of the affine function.

The two polyhedra involved in a compatibility check along dimension d may be degenerate on
one or more dimensions, including the dth one. As a consequence, the check may be faced with
affine functions where some coefficients are ⊥. In the following, we note the label function of
the absorbing polyhedron as f_abso, and that of the polyhedron to be absorbed as f_to_be_abso.
We notice that the polyhedron to be absorbed is always degenerate on dimension d, as stated
in Section 4.5.5.1. Hence, f_to_be_abso.coeff_types[d] = ⊥.

All dimensions below are known For illustrative purposes we first cover the simplified case
where all dimensions below d are known for the two label functions. The compatibility check
for this simple case is shown in Algorithm 4.6. First the function has_compat_label verifies that
all coefficients for dimensions from 1 to d− 1 are the same. If this is not the case the two label
functions are incompatible (line 6).

Otherwise, the check may be faced with two cases corresponding to the two different ab-
sorption cases described in Section 4.5.5.2. In the polyhedra merge case, where the absorber
polyhedron is degenerate on dimension d, that is, f_abso.coeff_types[d] = ⊥, the check al-
ways succeeds and the has_compat_label function returns True (line 10). Indeed, by setting the
proper coefficient for dimension d and by updating the remaining value, it is always possible to
make the two functions compatible as shown by the update_label function in Algorithm 4.6. The
new coefficient is equal to the difference of remaining values (line 22). Note that, in general we
would also have to divide the new coefficient by the progress made along dimension d. However,
because absorption guarantees that the two polyhedra whose label functions are being merged
touch each other the progress is always equal to 1. Finally, the remaining value is decreased
by the effective contribution of the new coefficient taking into account the dth coordinate of the
initial point (line 28).

In the polyhedra extension case, the absorber polyhedron is not degenerate on dimension
d. Its affine function already has a value computed for the coefficient on dimension d. Then
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1 # Compatibility check when all dimensions below d are known

2 def has_compat_label(f_abso, f_to_be_abso, d):

3 # Verifies coefficients below d are the same

4 for q in range [1, d-1]:

5 if f_abso.coeffs[q] != f_to_be_abso.coeffs[q]:

6 return False

7
8 # Polyhedra merge case

9 if f_abso.coeffs[d] == ⊥:

10 return True

11
12 # Polyhedra extension case

13 else:

14 new_coeff_contrib = f_abso.coeffs[d] * f_to_be_abso.coeffs[d]

15 new_remain = f_to_be_abso.coeffs[0] - new_coeff_contrib

16 return new_remain == f_abso.coeffs[0]

17
18 # Update coefficient for dimension d and remaining value of f_abso.

19 # No need to update f_to_be_abso because it will be thrown after absorption

20 def update_label(f_abso, f_to_be_abso, d):

21 # Update of coefficient

22 new_coeff = f_to_be_abso.coeffs[0] - f_abso.coeffs[0]

23 f_abso.coeffs[d] = new_coeff

24 f_abso.coeff_types[d] = INT

25
26 # Update of remaining value

27 new_coeff_contrib = new_coeff * f_abso.init_point[d]

28 f_abso.coeffs[0] = f_abso.coeffs[0] - new_coeff_contrib

Algorithm 4.6 – Simplified version of the compatibility check and update of coefficient for the case
when all dimensions below d are known. See Algorithm 4.7 and Algorithm 4.8 for the general case of
has_compat_label and update_label.

f_{abs}.coeff_types[d] 6= ⊥ and nothing needs to be updated. The compatibility check must
only ensure that this coefficient is compatible with f_to_be_abso. This is done by first computing
the contribution of the known coefficient of f_abso into f_to_be_abso using the initial point of
f_to_be_abso (line 14). Then, the check subtracts this contribution from the remaining value
of f_to_be_abso to compute its new remaining value. For the check to return true, this new
remaining value must be equal to the remaining value of f_abso (line 16).

General case In the general case the two polyhedra may be degenerate for some dimensions
below d. This happens if a dimension below d only iterates once. The compatibility check
described above must take this into account.

Function has_compat_label in Algorithm 4.7 shows the general compatibility check between
two polyhedra. The check is performed on all the matching pairs of label functions of the two
polyhedra. Remember that there are several such label functions in the case of dependencies,
one for each dimension of the source instruction.

The check works by comparing the coefficients of both functions for all the dimensions from
1 to d. If both coefficients for a dimension are known they must be the same or the check fails
(line 15). If one is known and not the other (line 20 and line 24), then the function increments
the total contribution coming from the other function for the function having the unknown
coefficient. At the end of the loop (line 33), the check ensures that the coefficient for dimension
d in f_abso is compatible with f_to_be_abso. This check relies on the total contribution variables
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1 # General compatibility check

2 def has_compat_label(abso, to_be_abso, d):

3 # Loop over all pairs of label functions

4 for f_abso, f_to_be_abso in abso.label_functions, to_be_abso.label_functions:

5 # Contributions from other functions

6 abso_diff = 0

7 to_be_abso_diff = 0

8
9 # Loop over all coefficients

10 for q in [1, d]:

11 abso_t = f_abso.coeff_types[q]

12 to_be_abso_t = f_to_be_abso.coeff_types[q]

13
14 # Both coefficients already determined, must be the same

15 if abso_t != ⊥ and to_be_abso_t != ⊥:

16 if f_abso.coeffs[q] != f_to_be_abso.coeffs[q]:

17 return False

18
19 # One coefficient is not known, the other is

20 if abso_t == ⊥ and to_be_abso_t != ⊥:

21 abso_diff = abso_diff - f_abso.init_point[q] * f_to_be_abso.coeffs[q]

22
23 # One coefficient is known, the other is not

24 if abso_t != ⊥ and to_be_abso_t == ⊥:

25 to_be_abso_diff = to_be_abso_diff - f_abso.coeffs[q] * f_to_be_abso.init_point[q]

26
27 # Both coefficients are unknown, can be ignored

28 if abso_t == ⊥ and to_be_abso_t == ⊥:

29 continue

30
31 if f_abso.coeff_types[d] == ⊥:

32 return True

33 if f_abso.coeffs[0] + abso_diff == f_to_be_abso.coeffs[0] + to_be_abso_diff:

34 return True

35 return False

Algorithm 4.7 – General compatibility check for label functions

incremented during the loop to ensure that the two functions still produce the same value after
merging.

In case they are compatible, the new coefficients, that is, the one on dimension d and po-
tentially others, and the new remaining value for the function of the absorber are computed by
the same principles as in the simplified case from Algorithm 4.6. The code for the general case
of the updated_label function that determines coefficients is shown in Algorithm 4.8.

Label widening As shown by the backprop example, the folding algorithm must be capable
of identifying labels that are affine on some dimensions and not on others. To that end, the
algorithm has a mechanism called label widening enabling it to skip the matching of labels on
a per dimension basis. If the compatibility check between two coefficients fails, then instead of
returning False (line 17 in Algorithm 4.7), the coefficient is set to > and True is returned instead.
The absorption can still happen, even if the labels of the two polyhedra are not fully compatible.
The label function of the resulting polyhedron is no longer a fully accurate representation of
the input stream. Nevertheless, this mechanism allows the folding algorithm to handle real life
applications without a perfect affine behaviour. The name label widening stems from the fact
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1 # Update coefficient for all dimensions <= d and remaining value of f_abso.

2 # No need to update f_to_be_abso because it will be thrown after absorption

3 def update_label(abso, to_be_abso, d):

4 # Loop over all pairs of label functions

5 for f_abso, f_to_be_abso in abso.label_functions, to_be_abso.label_functions:

6 abso_diff = 0

7 to_be_abso_diff = 0

8
9 for q in range(1, q + 1):

10 abso_t = f_abso.coeff_types[q]

11 to_be_abso_t = f_to_be_abso.coeff_types[q]

12
13 # One coefficient is not known, the other is

14 if abso_t == ⊥ and to_be_abso_t != ⊥:

15 abso_diff = abso_diff - f_abso.init_point[q] * f_to_be_abso.coeffs[q]

16 set_coefficient(f_abso, f_to_be_abso.coeffs[q], q)

17
18 # One coefficient is known, the other is not

19 if abso_t != ⊥ and to_be_abso_t == ⊥:

20 to_be_abso_diff = to_be_abso_diff - f_abso.coeffs[q] * f_to_be_abso.init_point[q]

21
22 # Both coefficients are unknown, can be ignored

23 if abso_t == ⊥ and to_be_abso_t == ⊥:

24 continue

25
26 if f_abso.coeff_types[d] == ⊥:

27 new_coeff = to_be_abso_diff - f_to_be_abso.coeffs[0] - f_abso.coeffs[0]

28 set_coefficient(f_abso, new_coeff, q)

29
30 def set_coefficient(fn, coeff_val: int, q: Dimension):

31 delta = -coeff_val * self.init_point[q]

32 fn.coeff_types[q] = INT

33 fn.coeffs[q] = coeff_val

34 fn.coeffs[0] = fn.coeffs[0] + delta

Algorithm 4.8 – General case for determining coefficients of label functions

that in the case of dependencies it widens the label functions from equalities to inequalities, as
shown in Section 4.5.3.

The integration of this feature into Algorithm 4.7 is straightforward. A > coefficient is
compatible with any other coefficient, and when performing absorption, any such coefficient in
one of the two label functions leads to a > coefficient in the updated function.

The label widening mechanism is crucial for the label functions of instructions because >
is a clear indicator that a memory access is not affine along a dimension. For dependencies it
simply reduces the size of the output given to the back-end by reducing the number of produced
pieces.

4.5.5.4 Geometric give up

Even with the label widening mechanism described above, some applications may lead to the
creation of a huge number of polyhedra. This happens when the geometry of instructions
and dependencies are not affine. It occurs for statements surrounded by if conditionals in the
program. In the worst case, the folding algorithm creates one polyhedron for each dynamic
instruction and for each dynamic dependency.



4.5. THE FOLDING ALGORITHM 121

To mitigate this issue, the folding algorithm has another global option called geometric
give-up. This options allows defining an upper limit on the number of intermediate polyhedra.
Remember that an intermediate polyhedron is a polyhedron in one of the worklists that can still
grow by absorbing other polyhedra. Before creating a new polyhedron (line 14), the algorithm
checks if the number of intermediate polyhedra exceeds the threshold. If so, the associated
input stream is marked as give up. Once a stream has been marked as give up all intermediate
polyhedra for that stream are discarded. The discarded polyhedra are then replaced by hyper-
rectangle that starts at the origin and extends to the maximum coordinate seen in the IVs of any
point contained in the discarded polyhedra. In other words, the geometry of the input stream
is over-approximated by a single large polyhedron. From then on every time a new point is
received for the given up stream, the folding algorithm previously described is skipped. Instead,
only the maximum coordinates of the hyper-rectangle are updated as necessary for every point.
Lastly, all coefficients for all outputs of the label function for this input stream are set to >,
that is, a geometric give up implies giving up on all dimensions of the label function.

Similar to the widening of label functions once geometric give up has occurred it is no longer
possible to reproduce the original input stream. However, the over-approximated geometry is
guaranteed to contain all points seen in the input.

4.5.6 Complexity analysis

Let us first recall the main idea of our folding algorithm. The folding process starts with
polyhedra of dimensionality zero, one for each point. Then, absorption is performed dimension
by dimension from innermost to outermost. As the process advances, the dimensionality of the
polyhedra involved grows. It turns out that the complexity of an absorption also grows with
its dimensionality. But as the dimensionality increases, the number of absorptions, that is the
number of intermediate polyhedra, also decreases. The more regularity, the more the number
of intermediate polyhedra decreases. In other words, as formalised below, but for fully irregular
programs for which neither label widening nor geometric give-up have been enabled, one should
expect an overall complexity linear in the number of input points.

More formally, in a D-dimensional space, we denote note the total number of input points as
N and the overall number of intermediate polyhedra seen in the absorbers[d] list when iterating
over it as Nd, ∀1 ≤ d ≤ D (Algorithm 4.4, line 23). For a given d ≤ D we have:

• the number of total iterations of the for loop over absorbers[d] (line 23) is Nd;
• for each absorber, there are at most 3d−1 look-ups to find a polyhedron to absorb (line 25);
• testing if absorption is possible with regards to the label criterion (has_compat_label

line 30) has cost O(d);
• testing if absorption is possible with regard to the geometry criterion (has_compat_geometry

line 30) has cost of O
(
d× 2d−1 + (2× (d− 1))×

(
d3 + d× (2d−1 − d)

))
= O

(
d2 × 2d−1

)
.

Here, the first d× 2d−1 corresponds to checking the search vectors or growing directions.
The factor (2× (d− 1)) comes from the loop over the side faces of the merged polyhedron
(line 9). The term d3 corresponds to calculating the normal vector of the hyperplane of
the sideface. And the final d× (2d−1 − d) corresponds to checking if the remaining points
of the side lie on the same hyperplane.

This leads to an overall complexity of:

O

(
D∑

d=1

Nd × 3d−1 × d× 2d−1

)
= O

(
D∑

d=1

Nd × 6d−1 × d

)

To illustrate the notations, let us assume a perfectly nested loop of depth D and size N =
nD × · · · × n2 × n1. Let also consider the scenarios where either the loop nest is fully regular
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or geometrically regular only and label widening is enabled. In these two cases, the folding
algorithm leads to a single polyhedron. We have, N = n1×n2×· · ·×nD, N1 = N , N2 = N/n1,
N3 = N/(n1 × n2), …, ND = nd. The overall complexity is then:

O

(
N +

D∑
d=2

N × 6d−1 × d∏d−1
j=1 nj

)
= O

N +N ×
D∑

d=2

d×
d−1∏
j=1

6

nj



= O

N +N ×
D∑

d=2

d−1∏
j=1

j + 1

j
× 6

nj


Observe that in practice we will almost always have ∀1 ≤ j < D, nj ≥ j+1

j × 6, which leads to
a complexity of O(N).

Obviously, Nd being always bounded by N , we have a worst case complexity of
O
(
N ×D × 6D

)
. This worst case scenario will occur for fully irregular input streams where

every absorption fails even with label widening. That is, where absorption failures are caused
by geometric incompatibility. Geometric give-up allows the algorithm to handle these input
streams with a linear complexity.

4.6 Polyhedral Feedback

An essential motivation for folding DDGs into polyhedral structures is to enable the use of
advanced polyhedral compilation systems, which are capable of finding a schedule that maximizes
parallelism and finds tiling opportunities [26].

4.6.1 Polyhedral compilation of folded-DDGs

Typically, a polyhedral compiler is applied to small numerical kernels made of a handful of
statements [77, 26, 143, 163]. Polyhedral schedulers suffer scalability challenge for larger pro-
grams [143] since their complexity typically grows exponentially with the number of statements
in the input program. Our DDG folding and over-approximation techniques allow going from
programs with thousands of statements, vastly exceeding the typical program scale these sched-
ulers can handle, to only a few hundreds.

Numerous customizations for scalability of the polyhedral compiler have been implemented,
ranging from constraining the space of legal schedules to accelerate the scheduling process to
approximation of the code generation process to quickly output a decorated simplified AST de-
scribing the program structure after transformation. For example, the presence of large integer
constants causes combinatorial blow up in the ILP solver used to solve the scheduling prob-
lem [158]. We implemented a parameterization of iteration domains, to replace those constants
by a parameter, an unknown, but constant integer value. That is, a domain {[i] : 0 <= i < 1024}
is replaced by [n] → {[i] : 0 <= i < n ∧ n ≥ 1024} prior to scheduling. We control the number
of parameters introduced by reusing the same parameter for a range of values. That is, if the
value x ∈ [1024− s, 1024 + s], for some arbitrary number s ∈ Z, usually set to s = 20, then we
replace x by n+ (x− 1024).

The reader may refer to the available implementation in PoCC [162] for further details
about the simplifications implemented, computation of profitability metrics is implemented in
the PolyFeat module.
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4.6.2 User feedback

The final output of Mickey is a report that details which regions of a program can benefit from
polyhedral optimization. Here we display the feedback produced for the backprop benchmark.
The region of interest corresponds the function facetrain, which, transitively, contains two calls
each of the computational kernels bpnn_layerforward and bpnn_adjust_weights. Both kernels
function contain a doubly-nested loop. In this case, Mickey will suggest that fusion and tiling
is possible, even across the two calls. I.e., as if the function had been inlined.

The actual textual output produced by Mickey is currently relatively undeveloped. It is
mostly based on annotating the disassembled machine code of the input program and thus still
quite hard to use for non-experts.

all

call ini..

call _dl..

call _d..

cal..

lo..

lo..

ca..

ca..

c..

c..

call init_ tls..

loop _dl_ ini..

loop _dl_ ini..

call _dl_ ini..

loop call_ in..

call call_ in..

cal..

call init_ tls+452

call _start+36

call __ libc_start_main+232

call backprop_kernel.c:42 (main)

call facetrain.c:47 (setup)

call ..

loop ..

cal..

cal..

cal..

c..

call facetrain.c:22 (backprop_ face)

call backprop.c: ..

loop ba..

call b..

call 0..

call..

loop ba..

call b..

call 0..

call..

loop backprop.c:216 (bpnn_create)

loop backprop.c:100 (bpnn_randomize_weights)

call backprop.c:100 (bpnn_randomize_weights)

call 0x400a80

call rand+4

call __ random+93

lo..

ca..

c..

call facetrain.c:27 (backprop_ face)

call backprop_k..

loop backprop.c..

loop backprop...

call backprop_kernel.c:67 (bpnn_train_kernel)

loop backprop.c:320 (bpnn_adjust_weights)

loop backprop.c:322 (bpnn_adjust_weights)

call facet..

loop backp..

cal..

cal..

ca..

call..

call..

ca..

c..

c..

Computational kernel of backprop

(a) Annotated flame-graph for entire backprop program. Also includes the parts of libc called by
backprop. Irregular parts of the program are greyed out. The parts that are potentially interesting for
polyhedral optimization are coloured. The width of nodes represents the number of instructions executed
in it.

call facetrain.c:27 (backprop_ face)

call backprop_kernel...

loop backprop.c:253 ..

loop backprop.c:254..

call backprop_kernel.c:67 (bpnn_train_kernel)

loop backprop.c:320 (bpnn_adjust_weights)

loop backprop.c:322 (bpnn_adjust_weights)

(b) Zoomed in flame-graph for the main computational kernel in backprop. Function calls in orange,
loops in purple

Figure 4.17 – Annotated flame-graph for backprop.

4.6.2.1 Statistics on the region of interest

The main user feedback produced by Mickey is the dynamic schedule-tree described in Sec-
tion 4.4.3 along with an AST that shows the structure of the input program after the application
of the suggested transformations. This AST embeds various metrics on instruction count, loop
properties such parallelism and tilability, and the list of statements in every loop. This lets the
user estimate the effort required to manually rewrite the code to apply the suggested transfor-
mations.
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To better visualize the various program regions, this information can be rendered as a flame-
graph[79]. This flame-graph is a hierarchic representation of the structure of a program. That
is, a tree where each node represents one region of code, either a loop or a function. The
children of a node are the functions called from that code region or the loops contained in
it. In this visualization the width of a node is proportional to its estimated computational
hotness, determined by the number of instructions it executed. Colours and gradients are used
to encode the estimated potential for optimization detected by Mickey. Non-interesting regions,
for example, can be greyed out. These flame-graphs are SVG files, which can be clicked and
zoomed to obtain detailed information on each region. An example flame-graph, created from
backprop, can be seen in Figure 4.17.

We also display explicit statistics for each region, breaking down by instruction type, as
shown in Figure 4.18. The statistics are computed automatically from the folded DDG by
reasoning on the number of points in each iteration domain/dependence, and the associated
assembly instructions.

Statistics on the instruction mix are useful in particular to estimate the operational intensity
as the ratio of load/store operations per total non-memory operations. Besides Mickey further-
more reports how many instructions each different loop level contains to highlight the potential
impact of transformations across deep loop nests. We also compute the values for these metrics
assuming the proposed transformation had been implemented. This is intended to assist the
user in determining the potential benefit of a transformation.

Number of iteration domains: 69

Number of dependence polyhedra: 76

Totals: 6816353 operations, 6816434 operation-to-operation dependences

Total operations: 6816353

Total FLOPs: 3670321 (53.85%)

Total load/store: 3145965 (46.15%)

Total INT: 50 (0.00%)

Total others: 17 (0.00%)

Maximal loop depth: 2

-> depth=0: 0 instructions (0.00%) 0 operations (0.00%)

-> depth=1: 40 instructions (57.97%) 340 operations (0.00%)

-> depth=2: 29 instructions (42.03%) 6816013 operations (100.00%)

Figure 4.18 – Statistics on the fat region of interest

4.6.2.2 Transformations feedback: simplified AST after transformation

A key feedback provided to the user is a simplified AST that displays the code structure after
applying the suggested transformation. Figure 4.19 shows an excerpt of this AST.

This AST obeys the following principles:
1. All statistics on the number of operations and percentages shown are cumulative, i.e., they

represent the total number of operations dominated by a node. Similarly, the statement
list is also cumulative, i.e., it captures all statements under a node, wherever they are
located in the sub-tree.

2. Loops in the output program are always named i′, j′, k′, l, l′, . . .
3. A loop can have the following attributes: sequential, or parallel. The tilable qualifier can

appear for both parallel and sequential loops. A tilable loop is necessarily permutable
with any other tilable loop in the same loop nest. A sequential/tilable loop necessarily
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...

|= AST=(0,0,i')

|-- Loop i' => parallel/tilable loop, 2097203 operations (30.77%)

+-- alignment: 3 stride-0 (524322) 2 stride-1 (1048576) 0 stride-N (0)

|-- contains: S64 S67 S62 S65 S57 S54 S55

|-- Stmts full names:

+ 4011800000000101_4011bf(c0,c1); // LOAD

+ 4011800000000101_4011cb(c0,c1); // LOAD

+ 4011800000000101_4011ac(c0,c1); // LOAD

+ 4011800000000101_4011c3(c0,c1); // FLOAT

+ 4011800000000001_4011cb(c0,c1); // LOAD

+ 4011800000000001_4011bf(c0,c1); // LOAD

+ 4011800000000001_4011c3(c0,c1); // FLOAT

|= AST=(0,0,i',j')

|-- Loop j' => parallel/tilable loop, 2097203 operations (30.77%)

+-- alignment: 1 stride-0 (524288) 0 stride-1 (0) 4 stride-N (1048610)

|-- contains: S64 S67 S62 S65 S57 S54 S55

|-- Stmts full names:

+ 4011800000000101_4011bf(c0,c1); // LOAD

+ 4011800000000101_4011cb(c0,c1); // LOAD

+ 4011800000000101_4011ac(c0,c1); // LOAD

+ 4011800000000101_4011c3(c0,c1); // FLOAT

+ 4011800000000001_4011cb(c0,c1); // LOAD

+ 4011800000000001_4011bf(c0,c1); // LOAD

+ 4011800000000001_4011c3(c0,c1); // FLOAT

|= AST=(0,6,i')

|-- Loop i' => parallel/tilable loop, 1048576 operations (15.38%)

+-- alignment: 2 stride-0 (1048576) 0 stride-1 (0) 0 stride-N (0)

|-- contains: S3 S4

...

Figure 4.19 – Excerpt of simplified AST produced for backprop

only has forward dependencies. A sequential, but not tilable, loop may or may not have
only forward dependencies, i.e., be permutable with other loops. A parallel is always
sinkable to any lower loop level, including the last one, independent of any tilability.

4. The alignment information for memory accesses is populated only if the input DDG has
information about access functions. If the label function describing the memory accesses
has only > coefficients then 0 will be printed everywhere.

5. The alignment information displayed for a loop shows how often different memory access
strides occur in that loop if it where transformed to be an inner-most loop. This gives the
user an indication of the profitability of loop interchanges. For example for the purpose
of vectorization as has been shown in the backprop example. Note, however that it is not
always possible to sink a loop to be inner-most. This is only possible for loops marked as
parallel.

6. The statements in the “Stmt full names” list appear in their prefix order in the AST.
That is, the order in which they will syntactically occur in the transformed code.

7. The Kelly’s mapping style iteration vector |= AST=(0,i',j') displayed for each node
visualizes its position in the AST. The first component represents the root of the schedule
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tree and is always 0. This is then followed by an arbitrary sequence of constant numbers
and loop iterators. Nodes are displayed in the order of a prefix traversal of the schedule
tree, i.e., by increasing lexicographic order.

4.6.2.3 Transformations feedback: transformed pseudo-code

Technically, Mickey does not only determine the existence of a loop transformation sequence
to implement parallelism and locality: it also generates the code structure that is the result
of this transformation. This representation of the transformed program can be pretty-printed
as pseudo-code. The C-like pseudo code is intended to help users with implementing more
complicated loop transformations.

Figure 4.20 shows an example of this pseudo-code for a part of backprop, where a tiling of
size 32x32 was found and implemented. Each statement in this pseudo-code corresponds to one
machine instruction of the original program. We also attach annotations to loops and statements
to show about the properties of each loop. For example if a loop is parallel or not. The user can
inspect this code to understand which statements should be grouped together under the same
loop nest to implement fusion.

...

parallel for (jTile = 0; jTile <= floor(32767/32); jTile++) {

for (i = 0; i <= 15; i++) {

parallel for (j = (32 * jTile); j <= min(32767, ((32 * jTile) + 31)); j++) {

4012280000000101_401249(i, j); /* @LOAD@ */;

4012280000000101_40125e(i, j); /* @FLOAT@ */;

4012280000000101_401265(i, j); /* @FLOAT@ */;

4012280000000101_401275(i, j); /* @FLOAT@ */;

4012280000000101_40127d(i, j); /* @FLOAT@ */;

4012280000000101_401289(i, j); /* @STORE@ */;

4012280000000101_401281(i, j); /* @FLOAT@ */;

4012280000000101_401285(i, j); /* @STORE@ */;

}

}

}

...

Figure 4.20 – Excerpt of transformed pseudo-code produced for backprop. Each statement consists of
a loop-call context tree node ID, 4012280000000101, and an instruction PC. For example 401249.

Statement names, e.g., 4012280000000101_401249, are composed of the ID of a context tree
ID, 4012280000000101, and an instruction PC, 401249. We also emit separate context includes
details about all ASM instructions, such as the original source file and line for this instructions
maps to. Note that displaying the ASM instruction and not only its type is possible, but not
shown here for simplicity.

The user can inspect this pseudo-code at a high-level, only looking at the loop structure and
the attributes of the loops. Or they can “zoom in” to understand which statements should be
grouped together, how complex the loop bounds may need to be, what range they take, and so
on.
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4.6.2.4 Transformations feedback: statistics

Finally, Mickey also produces several summary statistics for every program region. This helps
the user to quickly assess the potential for some key performance-impacting optimizations, such
as parallelization and vectorization. An example of this is shown in Figure 4.21. All information
shown here is cumulative. For example, SIMD-ready operations counts the total number of
operations that are dominated by an inner-most loop which is parallel. Note that the number
of fat fused components is the total number of distinct outer-most loops that dominate more
than 5% of the total operations, plus the fraction of total operations that they cumulatively
dominate.

...

[Stats] Total number of OpenMP-ready operations: 6816209 (100.00% total ops)

[Stats] Total number of OpenMP-ready operations in non-inner-most loops: 6816013

(100.00% total ops)↪→

[Stats] Total number of OpenMP-ready operations in outer loops only: 6816209

(100.00% total ops)↪→

[Stats] Total number of SIMD-ready operations: 6816209 (100.00% total ops)

[Stats] Total number of stride 0/1 load/stores in SIMD-ready loops: 1572930 (50.00%

total load/store ops)↪→

[Stats] Maximal number of possible stride 0/1 load/stores after some loop

permutation: 3145845 (100.00% total load/store ops)↪→

[Stats] Total number of (max. 2D) tilable operations: 6816353 (100.00% total ops)

[Stats] Total number fat (>= 5% ops) fused components: 4 (99.99% total ops)

...

Figure 4.21 – Excerpt of summary statistics produced for backprop

4.7 Experimental Results

In this section we demonstrate what kind of user feedback Mickey provides on a number of
case studies and the Rodinia benchmark suite [42, 43], and how this feedback can be used in
practice. For this we have run three sets of experiments.

1. We performed a number of case studies where we ran Mickey on a benchmark, imple-
mented the optimizations it suggested and measured the obtained speedup (Section 4.7.1).

2. We ran Polly, a static polyhehdral compiler, over the Rodinia benchmarks to see what
transformations it performs (Section 4.7.2).

3. We applied Mickey to the Rodinia benchmarks to see what transformations it suggests
and how well the folding algorithm compresses execution traces (Section 4.7.3 and Sec-
tion 4.7.4).

For our experiments we used the OpenMP version of the most recent version Rodinia, 3.1.
It consists of 20 benchmarks written in C and C++ benchmarks that are explicitly parallelized
with OpenMP. We did not use the benchmark mummergpu since it is partially written in CUDA
and our tool only supports CPU code.

As Mickey’s front-end currently does multi-threaded programs all benchmarks where run
in a single thread. Most Rodinia benchmarks did not require modifying the source code to
execute in one thread, it suffices to set the environment variable OMP_NUM_THREADS to one when
running them. However, some benchmarks contain calls to omp_set_num_threads. In these cases
we changed the code or command line arguments, as necessary, so that omp_set_num_threads is
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only ever called with an argument of 1.
All Rodinia benchmarks and case studies where compiled using GCC 8.1.1. The version of

the front-end used for these experiments uses QEMU 3.1. Since this version of QEMU cannot
handle AVX instructions we used the compiler flags -g -O2 -msse3. For speedup measurements
programs where compiled using the Intel icc and ifort compilers (version 18.0.3, flags -Ofast
-march=native -mtune=native). The measurements where taken on a machine with a Xeon Ivy
Bridge CPU with two 6 core CPUs (24 hyperthreads total), each running at 2.1 GHz (GFlop/s
are averaged over 50 runs).

All benchmarks where compiled for and run on x86 CPUs. Since many x86 instructions both
read or write memory and perform computations at the same time the instructions streams that
form the input of the folding algorithm are actually more complicated than the ones presented
in Section 4.5.1 and Table 4.1. In reality the label of an instruction can have multiple values
to account both for the addresses accessed and the values produced. The label functions for
instructions thus potentially have multiple outputs as well, just like those for dependencies.

4.7.1 Case studies

This section aims to present case studies that illustrate how the feedback provided by Mickey
can concretely be used to speed up programs.

4.7.1.1 Case study I

This case study illustrates a simple feedback Mickey can provide to users. It shows how Mickey
pinpoints the absence of dependencies along some existing orthogonal outer loop dimensions,
which enables coarse-grain parallelism via OpenMP parallel pragmas.

We selected alexnet for this study, a deep convolutional neural network used for image
classification. We exploit the ability of Mickey to discover loop structures, to report typical
runtime values to evaluate the profitability of the transformation, and to handle interprocedural
analysis in a robust way.

The version of alexnet we used [230] has five sequential convolutional layers each imple-
mented by a call to a function called convolution. Each call to convolution uses a different input
size, weights and convolutional kernel size. Furthermore, three of these five layers are split in
two, implemented by calling convolution twice, each time with only half of the input data. As
reported in Table 4.5, Mickey detects that the three outermost loops inside of convolution are
parallel. It also detects that the two calls to convolution for the split layers can be performed
in parallel.

We obtained the reported speedup by adding a single omp pragma parallel for on the out-
ermost loop in convolution. To exploit the nested parallelism of the second layer we use a
double nested parallel region. Applying these transformations increases the performance from 1
GFlop/s to 10.9 GFlop/s for the first layer and from 3.8 GFlop/s to 5.6 GFlop/s for the second.
Note that convolution is a heavily bandwidth-bound problem and performance already tops out
when using 12 of the 24 hyperthreads.

4.7.1.2 Case study II

This case study again illustrates a relatively simple feedback from Mickey. Here Mickey finds
that dependencies live within the first quartant [14]. This allows exposing data locality and
fine-grain parallelism through a loop interchange.

For this study, we selected backprop, a supervised learning method used to train artificial
neural networks extracted from the Rodinia benchmark suite [43]. In addition to what was out-
lined in the previous case study, Mickey exploits its ability to associate an iteration vector with
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Code region %ops omp parallel loops speedup

conv1 @ alexnet.cc:70 15% layers.cc:{227,229,230} 7.6 x

conv21 @ alexnet.cc:119 29% alexnet.cc:{119} 1.5 x
conv22 @ alexnet.cc:120 layers.cc:{220,222,224}

Table 4.5 – Results of the alexnet case study. Reported line numbers are from debug information. %ops
gives percentage of total number of instructions in program executed in a region. Suggested parallel loops
are represented using a set of line numbers. I.e. layers.cc:{227,229,230} is a 3D loop nest.

each memory access, and to match pointer values with scalar evolution. Since the scalar evolu-
tion expressions for a memory access describe the addresses it reads/writes, they can be used to
detect strided accesses along any dimension, which in turn can be used to detect vectorization
potential.

The flame-graph provided by Mickey is reported in Figure 4.17 where the regions of interest
are: 1. the first call (of two) to bpnn_layerfoward with a constant value of n2 = 16 ; 2. the last call
(of two) of bpnn_adjust_weights with a constant value of ndelta = 16. Both functions contain a
2D-nested-loop, called Llayer and Ladjust respectively. For both loop nests Mickey suggests an
interchange followed by vectorization. For example, see Llayer on Table 4.6 for which the two
loop dimensions are reported to be on lines 249 (outer) and 253 (inner) of file backprop.c: The
loop nest is fully permutable, that is, interchange is possible. Also, only the outermost loop
is parallel, and there are more stride 0/1 accesses along the outermost dimension (100%) than
along the innermost (50%).

To enable the suggested transformations, one needs to specialize the two interesting function
calls and array expand the scalar sum. The other calls to bpnn_layerfoward and bpnn_adjust_weights

are left unchanged, since they (a) take up much less of the overall program runtime (b) have
different arguments and do not profit from the transformation. Applying the transformation im-
proved, in our case, bpnn_layerfoward from 0.5 GFlop/s to 2.8 GFlop/s and bpnn_adjust_weights

from 0.3 GFlop/s to 5.1 GFlop/s.

Code region %ops loop parallel permutable %stride 0/1 speedup

backprop_kernel.c:52 14% backprop.c:249 yes yes 100% 5.3 x(Llayer) backprop.c:253 no yes 50%

backprop_kernel.c:57 46% backprop.c:321 yes yes 100% 7.8 x(Ladjust) backprop.c:322 yes yes 50%

Table 4.6 – Results of the backprop case study. Reported line numbers are from debug information. The
two loop nests, backprop.c:{249,253} and backprop.c:{321,322}, both profit from a loop interchange
since the outer loop has more stride 0/1 accesses.

4.7.1.3 Case study III

This case study illustrates an example of advanced feedback. By providing exact dependence
vector “directions” Mickey shows that data locality and coarse-grain parallelism can be exposed
through loop skewing and tiling.

For this study, we selected GemsFDTD, a finite difference time domain method from the SPEC
CPU2006 benchmark suite [92] written in Fortran90. Analysing Fortran code is not a problem
for Mickey as it works at the binary level. However, the compiler we used (gfortran-8.1.1)
messes up the debug information, making it necessary for the user to shift the line numbers
for the provided code references by hand. This case study fully exploits Mickey’s ability to



130 CHAPTER 4. DATA-DEPENDENCE DRIVEN OPTIMIZATION FEEDBACK

model (and compress in a polyhedral form) the data dependencies, instead of simply checking
their existence/absence. This knowledge about the structure of dependencies allows Mickey to
check for tiling opportunities. First, Mickey detects that four functions from the benchmark
execute a large amount of the program’s total number of dynamic instructions. These functions
are updateH_homo, updateE_homo, UPML_updateH, and UPML_updateE; Inside the first two of those
functions are the five hottest loop nests, so we focus on them. As reported in Figure 4.7,
Mickey annotates all five loops as fully parallel and tilable. So, to obtain a speedup we tile
each loop along all dimensions with a tile size of 32 and mark the outermost loop parallel with
an OMP PARALLEL DO directive. Recall that tiled code can always be also coarse-grain parallelized
using wavefront parallelism, as exploited by the Pluto polyhedral scheduler [26]. Tiling and
parallelising the loops increased performance in updateE_homo from 1.3 GFlop/s to 2.7 GFlop/s
and updateH_homo from 1.3 GFlop/s to 3.7 GFlop/s

Code region op tilable loop nests speedup

update.F90:106 20% update.F90:106,107,121 2.6 x
update.F90:240 18% update.F90:240,241,244 1.9 x

Table 4.7 – Results of the GemsFDTD case study. Reported line numbers are from debug information
(shifted to account for problem in gfortran).

4.7.2 Static polyhedral compilers and Rodinia

Benchmark Reasons Benchmark Reasons Benchmark Reasons

backprop A kmeans IFA particlefilter CF
bfs BF lavaMD BF pathfinder BP
b+tree BF leukocyte ICBFAP srad_v1 IF
cfd F lud BF srad_v2 IF
heartwall ICBF myocyte CBA streamcluster ICBFAP
hotspot B nn IF
hotspot3D BF nw IF

F. non-affine memory access function I. unhandled call to an external function
A. unhandled pointer aliasing C. complex CFG
P. base pointer not loop invariant B. non-affine loop bound/conditional

Table 4.8 – Reasons why Polly fails to analyse Rodinia benchmarks

To assess how well static approaches fare with the Rodinia benchmark suite we ran the static
LLVM-based [124] polyhedral compiler Polly [81] over the entire suite. This is similar to the
studies done in [40, 191]. We chose Polly over other, more sophisticated polyhedral optimizers
like PoCC [162], PPCG [218] or Pluto [25] since it can parse the source code of the Rodinia
benchmarks as is. PoCC, PPCG and Pluto only support a small subset of C, no C++ at all, and
require the user to mark code regions that should be analysed with pragmas. As a consequence
neither of them can work on Rodinia without extensive rewriting of the benchmark sources.
Polly, on the other hand, works at the level of LLVM IR and not at the source code level.
LLVM can easily parse the any of the Rodinia benchmarks without any problem. However,
since LLVM IR is quite low-level compared to C/C++ source code Polly has to reconstruct a
lot of information in order to build a polyhedral representation of a program.
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For this experiment we used Polly version 7.0.1 and the flags -O3 -ffast-math -polly-process-
unprofitable. Kernels that span multiple functions were inlined to allow Polly to see the same
code region as Mickey. Calls to external functions from the libc or the OpenMP runtime were
not inlined. Where such calls are present this usually results in Polly being unable to analyse
the kernel, though since we use -ffast-math it can handle calls to simple functions such as exp

or sqrt. Programs where compiled without -fopenmp so that the compiler does not outline loop
nests into separate functions.

Despite all of this Polly was unable to build a polyhedral model of the whole region of interest
for any of the benchmarks in Rodinia. While it was able to model some smaller subregions, 1D
or 2D loop nests, in most benchmarks, in nearly all cases its own profitability metric decided
not to optimize them. Two notable exceptions are the heartwall and lud benchmarks. In
heartwall Polly was able to model a sequence of nine 2D loop nests that accounts for roughly
two thirds of the code in the body of the kernel. For lud it managed to model the whole inner
3D loop nest of the kernel, but not the outermost loop. Finally, in all benchmarks the inability
to model the outermost loops blocks Polly from exploiting the thread level parallelism inherent
in the Rodinia benchmark suite.

A summary of the reason why Polly failed is shown in Table 4.8. The most common reason
for which Polly is unable to analyse a benchmark are calls to external functions. It should
be noted that the majority of these calls are calls to the OpenMP runtime or logging code
and could be removed without substantially altering the semantics of the benchmarks. Only a
few benchmarks, such as heartwall an nn, interleave calls to external functions that read the
benchmarks input with the actual computation kernel. The second most common problem are
non-affine loop bounds or conditionals. While there are benchmarks like streamcluster that
contain loops with dynamic data-dependent loop bounds many of these cases could be rewritten
to fit the polyhedral model. Polly can generate runtime alias checks to solve the aliasing problems
in different benchmarks, this is however not turned on by default since this increases code size
and has a possible runtime overhead.

In conclusion, most benchmark kernels in Rodinia can be modified to be amenable to polyhe-
dral analysis. However, this would require a non-negligible amount of upfront effort by the user
without any guarantee that the existing static polyhedral optimizers could find any optimizing
transformations.

4.7.3 Optimization feedback on Rodinia

The goal of this section is to demonstrate that Mickey can be systematically applied on a full
benchmark suite, and find potential for optimization. Since the output of Mickey for each
benchmark is extensive here we only illustrate the application of Mickey on Rodinia using
aggregate metrics. These metrics are not meant to be used as is by the end user. Instead, the
user is expected to work on one benchmark at a time, and navigate the feedback we provide.

Summary statistics

Table 4.9 presents summary statistics about the Rodinia 3.1 (CPU only) benchmarking suite,
that we computed/aggregated by processing the feedback from Mickey each benchmark. The
benchmarks where run on a reduced data set that exercises the same control paths as the full
data set. This was done since the polyhedral optimizer back-end currently exhausts memory for
larger DDGs.

Column %Aff reports the percentage of dynamic operations that are part of a fully affine
region without over-approximation. The low proportion of affine code reported for heartwall,
hotspot, and lud is the consequence of not supporting lattices at folding time: These programs
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Table 4.9 – Summary statistics computed from Mickey’s feedback on the Rodinia benchmark suite.
Columns are explained in Section 4.7.3
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contain hand linearised nested loops whose bounds use modulo expressions and so are not
recognized as fully affine. Note that, even when parts of a benchmark are not affine, we can
still find affine over-approximations for those regions, and potentially find transformations for
the program as a whole.

Based on the statistics provided by Mickey, the biggest region for which the optimizer
suggests a transformation has been selected by hand. The line number of the outermost loop or
call to kernel function is given in column Region. We considered a region to be interprocedural
(column interproc.) if inlining was required to perform the transformation or if it contained a call
to libc or the OpenMP runtime. Column %ops reports the percentage of dynamic operations
of the program executed inside the region, while %Mops and %FPops reports the percentage
of memory (respectively floating point) operations of the region itself. Note that the sum of
%Mops and %FPops can be greater than 100% since on x86 a single instruction can both load
and store to/from memory and perform an operation.

The next group of metrics shows what can be achieved via semantics-preserving structured
transformations. skew displays whether skewing is used in the proposed transformation, we tend
to avoid skewing unless it really provides improvements in parallelism and tilability. %||ops gives
the percentage of dynamic operations that can be parallelized using OpenMP parallel pragmas.
If a non-inner loop dimension is detected as parallel, then all its operations are considered to be
parallelisable. As a loop has at least two iterations, at least two parallel blocks can be exposed
when a loop is reported parallel. Similarly, %simdops reports the percentage of operations that
occur in parallel innermost loops.

The %reuse/%Preuse metrics report space locality that is available in the program: %reuse
is the percentage of load/stores that are stride-0 or stride-1 in the existing innermost loops in
the program, while %Preuse reports the maximal percentage of load/store operations that can
be made stride-0 or stride-1 via a sequence of loop permutations.

We report the maximal loop depth of the region in the source code (ld-src) and in the binary
code (ld-bin). This shows whether the compiler performed any transformation that modifies the
loop depth (e.g., full loop unrolling for cfd). Next the maximal tiling depth (TileD) is reported,
along with %Tilops, the percentage of operations that can be tiled.

As soon as a region can be tiled, coarse-grain (wavefront) parallelism is possible, and data
reuse could be improved. Mickey does not currently provide feedback on temporal locality
potential, but as illustrated in the backprop case study %reuse allows to evaluate spatial locality
improvements through tiling/interchange.

Finally, the metrics C/Comp./fusion outline the complexity of the loop fusion/distribution
structure that originates from the structured transformation proposed, and is an indication of
the difficulty to manually implement a transformation. Any outermost loop with more than 5%
of the total region operation counts as one “component”. For example, if the region is made
of two consecutive loop nests executing each half of the operations, then 2 components will
be reported. C reports the number of components in the binary code; Comp. the number of
components after applying the proposed structured transformation, using the fusion heuristic
reported in fusion (M for maximal loop fusion, and S for smartfuse, a somewhat balanced
fusion/distribution strategy).

Note that streamcluster, the least affine of all benchmarks, exhausted memory in the poly-
hedral back-end and therefore no result is displayed. Benchmark mummergpu is not included in
the results since it contains CUDA code and the front-end can only instrument code run on the
CPU.
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4.7.4 Trace compression results

In this section we show how well the folding algorithm is able to compress the raw DDG generated
from the Rodinia benchmarks.

Table 4.10 gives statistics on the size and precision of the output of four versions of the
folding algorithm:

• F is the basic algorithm as described in Section 4.5, with label widening for instructions
and without for dependencies.

• FW is the algorithm with label widening for both instructions and dependencies.
• FGG is the same as F but with geometric give up.
• FGG,W is the same as FW but with geometric give up.

The threshold for the geometric give up was set to allow 4d+ 1 intermediate polyhedra in each
d dimensional space. That is, enough for the affine function constructed to be made up of up
to four d dimensional pieces.

For each algorithm we report the following statistics:
• #P is the number of polyhedra in the output stream.
• For dependencies, %A is the number of dependence instances that where in an affine

piece of the label function. A piece of the label function is considered affine if it has no >
coefficient. This column is omitted for algorithm F since by construction it always contains
100%.

• Similarly for instructions, %A is the number of instruction instances that where in an
affine piece of the label function. A piece of the label function of a static instruction is
considered affine if it either:

– does not perform a memory access, or
– has no > coefficient in its memory access function.

• #ML is the maximum number of intermediate polyhedra live at any moment of the
execution, indicating the memory usage of the algorithm.

The Input Size columns show the total number of entries in all dependency and instruction
input streams. Since this experiment does not require running Mickey’s polyhedral back-
end we where able to run all benchmarks beside streamcluster with their largest data-set.
streamcluster was not run with its full input set since it triggers the worst case complexity of
the folding algorithm in FW mode. That is, with label widening but without geometric give
up there are large amount of intermediary polyhedra live at the same time. With all other
configurations streamcluster finishes in reasonable time even with the full input set.

Finally, as in the last section the numbers reported in Table 4.10 correspond to applying
the folding-based analysis on the hot region of each benchmark, we have filtered out the phases
where the benchmarks read their input or write their output. This hot region often involves
numerous function calls.

Since the polyhedral optimization performed in the back-end is an exponential problem it
is crucial that the output of the folding-based analysis is of tractable size. Table 4.10 clearly
shows that FGG and FGG,W produce drastically smaller outputs than the other two versions.
As indicated by the %A column, FGG,W is roughly as precise as FGG, but produces an even
smaller output. In fact only the output of FGG,W is small enough for the back-end to handle.

4.8 Related Work

This section describes previous work related to dynamic data-flow analysis and trace compres-
sion.
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Benchmark
Dependencies

Input F FW FGG FGG,W
Size #P #ML F %A #ML F %A #ML #P %A #ML

backprop 19 M 164 390 164 100% 390 164 100% 390 164 100% 390
bfs 5 M 810 K 958 K 781 K 94% 943 K 79 34% 774 75 34% 774
b+tree 156 M 212 K 706 K 201 K 99% 575 K 115 97% 3 K 115 97% 3 K
cfd 2 G 1 M 4 M 953 K 98% 2 M 924 23% 9 K 919 23% 9 K
heartwall 211 G 14 K 10 K 13 K 90% 8 K 1 K 10% 5 K 1 K 10% 5 K
hotspot 79 M 22 K 44 K 22 K 94% 44 K 797 0% 6 K 797 0% 6 K
hotspot3D 15 G 168 1 K 162 91% 1 K 168 100% 1 K 162 91% 1 K
kmeans 3 G 167 K 73 K 30 K 98% 12 K 248 98% 528 239 98% 513
lavaMD 18 G 31 K 2 K 30 K 94% 2 K 31 K 100% 2 K 30 K 94% 2 K
leukocyte 5 G 517 K 169 K 514 K 97% 120 K 233 99% 70 K 232 97% 68 K
lud 718 M 6 K 1 K 4 K 98% 1 K 4 K 98% 1 K 4 K 98% 1 K
myocyte 5 M 14 K 19 K 14 K 100% 19 K 14 K 100% 19 K 14 K 100% 19 K
nn 782 K 124 265 124 100% 238 124 100% 264 124 100% 238
nw 217 M 301 1 K 296 99% 1 K 301 100% 1 K 296 99% 1 K
particlefilter 3 G 4 K 93 K 3 K 99% 2 K 590 8% 2 K 581 8% 2 K
pathfinder 74 M 35 139 35 100% 135 35 100% 139 35 100% 135
srad_v1 3 G 254 855 246 94% 828 254 100% 855 246 94% 828
srad_v2 1 G 281 816 273 97% 796 281 100% 816 273 97% 796
streamcluster 2 G 1 M 1 M 1 M 85% 1 M 8 K 85% 13 K 6 K 85% 13 K

Benchmark
Instructions

Input FW FGG,W
Size #P %A #ML #P %A #ML

backprop 15 M 140 99% 304 140 99% 304
bfs 5 M 481 K 84% 491 K 38 54% 367
b+tree 99 M 122 K 79% 279 K 160 79% 1 K
cfd 1 G 566 K 97% 1 M 574 23% 5 K
heartwall 115 G 1 K 69% 3 K 1 K 9% 3 K
hotspot 47 M 13 K 70% 27 K 521 0% 3 K
hotspot3D 11 G 84 85% 782 84 85% 782
kmeans 1 G 29 K 95% 9 K 76 95% 288
lavaMD 9 G 15 K 71% 1 K 15 K 71% 1 K
leukocyte 2 G 355 K 84% 72 K 128 84% 40 K
lud 414 M 2 K 97% 843 2 K 97% 843
myocyte 3 M 9 K 99% 9 K 9 K 99% 9 K
nn 855 K 160 100% 189 160 100% 189
nw 111 M 155 100% 555 155 100% 555
particlefilter 1 G 1 K 99% 1 K 474 11% 1 K
pathfinder 42 M 24 61% 116 24 61% 116
srad_v1 2 G 179 93% 531 179 93% 531
srad_v2 721 M 204 93% 493 204 93% 493
streamcluster 1 G 611 K 71% 618 K 3 K 71% 6 K

Table 4.10 – Evaluation of the DDG compression of the folding algorithm on the Rodinia benchmark
suite. Columns are explained in Section 4.7.4
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Dynamic data-flow analysis

Dynamic data dependency analysis is a technique typically used to provide feedback to the
programmer, e.g., about the existence or absence of dependencies along loops. The detection of
parallelism along canonical directions, for loop transformations such as vectorization, has been
particularly investigated [127, 32, 219, 113, 10, 114, 70, 214, 209, 73, 52, 149, 148], as it requires
only relatively localized information. Another use case for dependence analysis the evaluation
of effective reuse [137, 131, 21, 19] with the objective of pinpointing data-locality problems.

The SD3 trace compression algorithm, already mentioned in Section 2.6, reduces the space
required to store the dependence graph using memory access strides along innermost loops.
It dynamically detects strides in the stream of memory accesses and also directly detects
data-dependencies in strided format, without necessarily having to produce a raw DDG first.
PSnAP [156], a memory access trace-compression system, uses a similar approach but achieves
more aggressive compression ratios by allowing lossy compression. PSnAP does not track de-
pendencies but only produces compressed memory access streams for use in cache simulators
and similar performance prediction tools. It does not attempt to perfectly capture the stream
addresses that a program addresses, but only a synthetic stream that exhibits similar patterns
and regularities as the original. To this end, PSnAP groups accesses by the region of memory
they access. The output of PSnAP is then a stream of grouped accesses, where for each group
it tracks the number of accesses and a histogram that track the frequency at which different
access strides.

Existing trace compression algorithms [112, 171] can be used to extract a polyhedral repre-
sentation from an instrumented program execution. However, although they excel in rebuilding
a polyhedral representation for a purely affine execution, they suffer inherent limitations for even
partially non-affine traces. They share the idea of using pattern matching with affine functions
with our folding algorithm but do not exploit geometric information as we do. The nested loop
recognition algorithm of Ketterlin et al. [112] detects outer loops by maintaining and repeatedly
examining a finite window of memory accesses. Another algorithm by Rodriguez et al. [171]
instead introduces a new loop into its representation every time it cannot handle an access. For
perfectly regular programs, Ketterlin’s approach only requires a small window and Rodriguez’s
will only create as many loops as there are in the original program. In that simple case using
a geometric approach does not make much difference, and both algorithms are very efficient.
That is, for regular programs, with D the dimension of the iteration space and n the number
of points, the complexity of both non-geometric approaches is O(2Dn), same as our approach.
However, in the context of profiling large non-fully affine programs, none of these two existing
approaches can be used. The complexity of Ketterlin’s algorithm grows quadratically with a
parameter k that bounds the size of the window. Unfortunately, this forces a trade-off between
speed and quality of the output when choosing the size of this window. If k is smaller than the
number of irregularities along the innermost dimension, it is not able to capture the regularity,
and thus compress, along outer dimensions. On the other hand, The complexity of Rodriguez’s
approach increases exponentially with the number of irregularities. So in practice, it has to give
up even for nearly affine traces.

Streaming convex hull algorithms [28, 93] could also be applied to build a compact geometric
representation of an instrumented execution. However, our approach can precisely represent non-
convex polyhedra via a union of convex ones, while convex hull can only approximate this case
with a single polyhedron.

Similarly to us, existing runtime polyhedral optimizers [190, 139] use runtime information
to create a polyhedral representation of a program. PolyJIT [190] focuses on handling programs
that do not fit the polyhedral model statically because of memory accesses, loop bounds and
conditionals that are described by quadratic functions involving parameters. Apollo [108, 139]
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handles this case, and many others, preventing static polyhedral optimizers from operating.
Compared to our analysis, PolyJIT focuses on identifying 100% affine programs which may
be rare in practice for many reasons such as the memory allocation concerns pointed out for
backprop. Contrary to our analysis front-end, which tracks both separately, Apollo only traces
memory accesses and then recomputes the dependencies from them. To handle quasi-affine access
pattern, Apollo proposes a tube approximation mechanisms [199]. However, the tube mechanism
is relatively limited and as soon as the stride distance of accesses is greater than a given constant
threshold it gives up. In practice, in programs similar to the illustrative example of backprop,
which use non-contiguous multidimensional arrays, Apollo will, as opposed to our analysis,
neither manage to over-approximate the non-constant stride along inner-most dimensions nor
detect the stride of 1 along the outer dimensions.

Static compilers increasingly use hybrid analyses approaches to handle programs that they
can not completely model. These compilers use code versioning combined with runtime alias
checks [6, 62] or dynamic checks for the validity of transformation [177, 178] to speculatively
optimize programs even when the optimizations are not guaranteed to always be legal. These
approaches very effectively broaden the range of programs that can be optimized, but it is still
very difficult to statically decide which optimizations are profitable. The analysis presented here
in this chapter could be applied to this problem of finding profitable transformations as a form
of FDO [192].

Calling context trees and interprocedural program representations

As described in Section 2.4.1.2, using calling context trees to disambiguate instructions in dif-
ferent calling contexts is an idea from Ammons, Ball and Larus [7]. In order to bound the depth
of the tree in the presence of recursion Ammons et al. do not take cyclic paths through the CG
into account. Instead the CG is transformed into an acyclic graph by pruning some edges. At
runtime, the calls corresponding to these edges are of course still executed, but the algorithm
that constructs the CCT does not take them into account. The same approach is used to ignore
cycles in the CFGs of functions that contain loops.

Loop-call context trees [181] simply encode the calling context of intra-procedural loops and
suffer from the same size problems in recursive programs. However, they do not track loop
iterations at runtime, only loop entries and exits. Consequently, this approach can not track
which events happened during which iteration of a loop, only that it happened while the loop
was active.

[200] presents an algorithm to compactly encode recursive calling contexts implemented
in a profiling tool using dynamic binary instrumentation. Here a path through the CG is
encoded using linear sequences of small integer IDs. By aggressively reusing IDs for different
functions in different contexts one can effectively keep the number of bits required to represent
IDs small. Recursive calling contexts are then represented using run-length encoding. That is,
the algorithm first finds acyclic sub-part of recursive CGs and then applies run-length encoding
to represent repeated occurrences of these acyclic sub-CGs compactly. This works very well
for simple recursive programs but breaks down for more complex cases. To handle problematic
cases the paper proposes to virtually unroll these recursive loops. Here the recursive program is
not actually unrolled, but the profiling tool changes its instrumentation on the fly to simulate
unrolling. For now, the unrolling factor has to be chosen ahead of time to fit a given application.

Kobeissi et al. [116] have developed an extension for the LLVM-based [124] polyhedral com-
piler Polly [81] which can apply polyhedral transformations to recursive loop nests [116]. Their
system first statically detects recursive functions in LLVM IR. It then generates an instrumented
version of the program to dynamically trace the execution of basic blocks inside of recursive func-
tions. This stream of basic block IDs is then fed to the polyhedral trace compression of Ketterlin



138 CHAPTER 4. DATA-DEPENDENCE DRIVEN OPTIMIZATION FEEDBACK

et al. [112], already mentioned above, to discover if the recursive program’s dynamic behaviour
can be modelled using polyhedral loop nests. In the third and final step, the tool then generates
an optimized version of the program where recursive functions have been transformed into loops
and optimized with Polly. However, the tool of Kobeissi et al. [116] is still a proof of concept.
It neither statically nor dynamically verifies whether the polyhedral behaviour observed during
the profiling step is input data-dependent or not. Consequently, the optimizer may apply loop
transformations that are only legal for some inputs.

4.9 Conclusion and Perspectives
In this chapter we introduced Mickey, a profiling-based polyhedral optimization feedback tool.
Mickey tackles the problem of dynamic data dependence profiling and polyhedral optimization
from binary programs, while addressing the associated scalability challenges of handling traces
with billions of operations, as we demonstrated. Our tool scales to real-life applications by safely
over-approximating dependencies that do not fit the polyhedral model while still recovering
precise information for those that do. It can also handle programs with recursive function calls.

Numerous technical contributions were required to enable polyhedral transformation feedback
on binary programs, a significant step in complexity compared to prior approaches typically
limited to discovering parallelization potential. We implemented numerous feedback reporting
schemes for the user in Mickey: flame-graphs, statistics on striding and vectorization potential
per loop, proposed potential structured transformation, and a simplified annotated pseudo-code
to help users to implement suggested transformations. However, the current output produced
by our tool is still quite low-level and very much tied to the structure of the input binary, not
necessarily to that of the programs source code. As a consequence, a user of Mickey has to
have quite some expertise both in reading machine code and in polyhedral transformations to
effectively leverage the optimization feedback.

The process of mapping our results back from the machine code back to the source code
is in itself a research topic, and currently we do not provide much more than what objdump

does. Our ongoing efforts in this direction leverage techniques to undo compiler optimiza-
tions [4] and polyhedral program equivalence techniques [217, 16, 182]. We have also contacted
a Human-Computer-Interaction researcher to help us better represent the information collected
by Mickey to make it easier to use and understand.

We are also currently working on several extensions to the folding algorithm that will allow
it to handle more programs. The first one consists of adding new dimensions not present in the
program to our representation. In other words, an instruction contained in, for example, a 2-
dimensional loop nest in the program could be represented by a 3-dimensional polyhedron. This
mechanism, already at work in trace compression algorithms [112, 171] will allow our analysis
to handle tiled stencil computations and programs where 2-dimensional arrays are traversed by
linearized 1-dimensional loops.

Another extension of the folding algorithm we have started to implement is a mechanism
to reduce the loss of information that occurs during the widening of label functions. Instead
of simply marking widened coefficients as > we could store an interval of values a widened
coefficient can take. This would allow us to put a lower and upper bound on the label values
that a widened label function can produce even when it has been widened. Simply put, a label
function is no longer a single linear function, but a pair of linear functions. The first gives a
lower bound on label values, and the other gives an upper bound. If no widening is necessary
the two functions coincide, which means we can still perfectly reproduce the input stream the
label function was created from.
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For decades hardware and software have increased in complexity to provide ever more per-
formance. To keep compatibility with older software and to make the life of programmers simple
this complexity is often hidden behind layers of abstraction. When analysing performance one
often has to “look under the hood” and peel away these layers of abstractions to properly under-
stand the behaviour of our programs. This thesis presented a number of performance debugging
tools that help with the daunting task of analysing the operation of programs at the machine
code level. These tools guide programmers in the process of performance analysis and optimiza-
tion by pointing out potential performance bottlenecks and program transformations that may
fix them.

5.1 Summary

This section summarizes the main contributions of the thesis and highlights some difficulties we
encountered.

5.1.1 Dynamic Binary Instrumentation with QEMU

Chapter 2 presented QEMU, the TCG plugin infrastructure (TPI), and several dynamic binary
analyses we have developed on top of them. We have implemented a number of plugins that, for
example, trace data-dependencies, or dynamically reconstruct the CFG and CG of programs.
All these plugins were written to be as language and compiler independent as possible and to be
easily portable between CPU architectures. This makes it possible to analyse programs written
in different programming languages with on single tool. They can also be used to compare the
output produced by different compilers for a single program.

Both QEMU and TPI are mature and actively maintained projects. QEMU’s more or less
machine-independent TCG IR makes it possible to write binary analyses that can be easily
ported to different target architectures. In industry, TPI is mainly used for low-level performance
measurements and to explore the performance of new hardware platforms. TPI directly exposes
the internals of QEMU and provides only a simple event-based API that is relatively cumbersome
to use for implementing higher-level analyses. During the course of this thesis we have developed
a number of wrappers for both TPI and QEMU itself. These wrappers make it possible for
plugins to inspect and modify TCG IR in a direct style at a higher granularity entire translation
blocks.

One pain point of implementing performance debugging tools with QEMU is that its support
for vector instructions on x86 is severely outdated. As of 2019 it only supports 128-bit SSE
vector instructions up to the SSSE3 instruction set. It does not even support SSE4 instructions,
which were released nearly 15 years ago. For x86 QEMU only covers the instructions emitted
by mainstream compilers with default settings. In other words, GCC or Clang without any
-march flags. There recently has been a Google Summer of Code project to add support for
newer vector instructions to QEMU [24]. However, this project has not been finished and it not
clear when and if it will be merged into upstream QEMU. For other CPU architectures, such as
ARM, QEMU is much more up to date and sometimes even implements extensions that are not
available in hardware yet. Our short term objective is thus to port all our plugins to ARM.

5.1.2 Sensitivity-Based Performance Bottleneck Analysis

Chapter 3 has presented Gus, a prototype profiling tool that uses sensitivity analysis to find
performance bottlenecks. The sensitivity analysis is driven by a CPU simulator that predicts
execution times using a high-level performance model. By using a simulator, we can exert precise
and fine-grained control over the throughput of different CPU resources, such as the functional
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units or the memory bandwidth. Gus’s CPU model, based on the notion of abstract, throughput
limited resources, is intentionally very high-level to allow for fast simulation times.

Gus is still under active development, and we are still making alterations to its performance
model to allow it to model the performance of a broader range of programs more precisely. As a
first step, we will extend the model to consider not only the throughput but also the latency of
data transfers between cache levels and memory. We are, among other things, also working on
adding more realistic cache replacement policies and a simple form of branch prediction to the
simulator. Another limitation of Gus is the simplistic model of the throughput and interaction
between different levels of the cache hierarchy [97]. To address this issue we would like to
develop, similarly to the resource mapping for execution ports, a resource mapping for caches.
An essential factor to consider here is that we do not want the model to become overly complex,
as this may significantly slow down the simulator.

A big advantage of using a simulator to drive the sensitivity analysis is that it allows to
decouple functional execution of a program from its performance model. We see great potential
in implementing a more high-level sensitivity analysis that can detect if a specific source-level
statement forms a bottleneck by varying the resource usage of its corresponding instructions.

Chapter 3 also presented Pipedream, a tool for measuring specific performance character-
istics of CPUs, which we use to build Gus’s performance model. Pipedream finds measured
performance characteristics such as the throughput and latency of instructions by running a
large set of automatically generated microbenchmarks. The tool can also find port mappings by
analysing performance measurements of specially crafted microkernels using a LP solver. We
have used it to produce a port mapping for the Intel Skylake CPU architecture that is compa-
rable in quality to that produced by other authors such as Agner Fog [72] and Abel et al. [3].
Pipedream is able to find the port mappings for some instructions for which existing approaches
fall back to manual analysis.

For the moment Pipedream can only benchmark and model a subset of the entire x86
instruction set. We are still working on extending our benchmark generator to cover more
instructions and refining the instruction flow LP solver to be more robust to measurement noise.
There are also several other machine parameters, such as the size of the ROB, that we have, for
the moment, taken from the vendor’s documentation that we intend to reverse-engineer ourselves.
We are also developing a modified version of Pipedream that can build port mappings even for
a machine without sophisticated hardware performance counters, using only time measurements
of microbenchmarks.

5.1.3 Data-Dependence Driven Optimization Feedback

Chapter 4 presented Mickey, a performance debugging tool that provides feedback on the ap-
plicability and profitability of polyhedral optimizations. Mickey analyses compiled and already
optimized programs to find optimizations missed by the compiler. Internally, Mickey uses a
polyhedral, interprocedural IR to capture the iterations domains of instructions and the data-
flow between them. This IR is constructed dynamically from a program’s execution using the
folding algorithm, an efficient trace algorithm developed by us. Mickey scales to real-life ap-
plications thanks to a safe, selective over-approximation mechanism for partially irregular data
dependencies and iteration spaces. We have applied Mickey to an entire suite of benchmarks
and found a large number of different transformations, ranging from vectorization, paralleliza-
tion, and loop interchange, to loop tiling.

We have developed numerous technical contributions in order to provide polyhedral transfor-
mation feedback for compiled programs. Mickey has to bridge the gap between the high-level
mathematical framework of the polyhedral model and the low-level details and complexities
of real machine code. One the one hand, Mickey traces and models the data-flow between
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deeply nested loops that can potentially span multiple functions and even recursive functions.
On the other hand, it has be able to handle the highly irregular control-flow of manually opti-
mized assembler and be aware of machine code idioms such as dependency breaking instructions.
While the current folding algorithm gives reasonably tight approximations for the benchmarks
we have applied it to, it seems some dependence patterns would profit from an gradual widening
mechanism.

The design of Mickey’s IR and the folding algorithm have been guided by the polyhedral
nature of the analysis back-end. We could very well explore profiling for other forms of regularity,
such as tree structured parallelism.

5.2 Perspectives
A challenge faced by performance debugging is how to exclude “false” performance bugs. That
is, just because a program spends a lot of time in a region does not mean that its performance
can be improved. To fix a performance bug one needs a valid transformation that improves the
usage of a bottleneck resource. Mickey is able to tell if such a transformation exists, while Gus
is able to tell if a given resource is a bottleneck. However, for the moment Gus and Mickey are
unconnected. For the above reasons we believe that both tools could greatly profit from each
other. As an example, when Gus finds that a program is bandwidth bound, Mickey could tell
user if a loop interchange or tiling are possible. Reversely, when Mickey finds that tiling is
possible, Gus can judge if it is actually profitable.

One fundamental aspect of performance debugging is the user experience of programmers.
We believe that our tools made a big step towards providing programmers with more useful
feedback than just aggregated execution times or cache miss statistics. One of the great advan-
tages of the performance debugging by simulation, which we have not yet developed, is that it
allows linking the low-level behaviour of the architecture with higher-level program semantics.
However, both Gus and Mickey more or less target expert developers that are at least familiar
with machine code and program optimization. Even for such an expert, the way we currently
present the feedback produced by our tools is not always straightforward to use. We have con-
tacted people working in the field of human-computer interaction and are currently exploring
different methods to visualize our optimization feedback to make it easier to use. In general,
improving the usability of performance debugging tools is vital for making them more widely
used.

An essential factor for the usability of our tools is the quality of the mapping from machine
instructions back to the source code. For the moment, we solely rely on DWARF debug infor-
mation for this purpose. One of the biggest stumbling blocks here is that Gus and Mickey
work on optimized binaries. Unfortunately, mainstream compilers, such as GCC and Clang,
are notorious for producing hard-to-use debug information at higher optimization levels. This
problem is especially noticeable for programs where the compiler aggressively reschedules in-
structions. Other performance debugging tools [203, 140] circumvent this problem using binary
analyses that “undo“ optimizations of the compiler which makes the mapping from binary to
source code clearer. Another idea, that would like to explore is to leverage techniques that show
program equivalence for this mapping problem. For the moment, it is not clear to us whether
it would be better to improve the quality of the debug information emitted by the compiler
directly or to solve this problem using more sophisticated binary analysis techniques.
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