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Abstract

The description of critical lattice models by Conformal Field Theories (CFTs) has been
studied in detail for several decades. Recent years have seen a growing interest in the
study of a particular class of critical models with continuum limits that are described
by so-called non-compact CFTs, identified by the appearance of a continuum of critical
exponents. A striking feature of a number of such models is that this “non-compactness”
appears despite their lattice descriptions admitting only a finite number of degrees of
freedom - hence classified as so-called “compact” lattice models. The connection be-
tween critical, compact lattice models and non-compact CFT has not yet been brought
under sufficient control and leaves open a number of questions. This thesis addresses
these and related questions by turning to the corresponding open critical lattice models
and uses tools from integrability, boundary conformal field theory and lattice algebra
representation theory.

The early parts of this thesis deal with the antiferromagnetic Potts model, known
to be closely related to the non-compact CFT referred to as the Euclidean Black Hole
theory. The representation theory of the underlying lattice algebra of the Potts model
is related to the representation theory of the Virasoro algebra, resulting in a set of new
identities relating the Black Hole Theory to the Parafermion CFT - a compact theory.
Other aspects of these CFTs - such as fusion, normalisability and disorder operators -
are understood from a lattice point of view.

The middle part of this thesis turns to boundary integrability and in particular the
Bethe Ansatz technique. An exact mapping is presented between the antiferromagnetic
Potts model and an integrable model constructed from the twisted affine D2

2 Lie alge-
bra. The known integrable boundary conditions of this D2

2 model are then interpreted
in the context of the antiferromagnetic Potts model and the Black Hole theory.

The final part looks at a different boundary condition in the D2
2 model and finds

that it admits a simple geometrical interpretation in the Potts model, resulting in an
exact solution which had, until now, been lacking. This exact solution is used to study
the continuum limit of the model and is found to result in a non-compact boundary
CFT. This lattice boundary condition is observed to correspond to a repulsive fixed
point under RG, and flows towards free boundary conditions in the antiferromagnetic
Potts model.
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Chapter 1

Introduction

Since its birth in the first half of the 20th century, its later evolution and final accep-
tance as a viable descriptor of nature in the second half of the century, Quantum Field
Theory (QFT) has become an immensely powerful tool in a variety of contexts ranging
from the study of fundamental particles to quantum many-body physics and condensed
matter theory. Any situation that calls on QFT to tackle it is invariably reduced to
the problem of calculating its correlation functions - a concept that is most intuitively
understood in the path integral approach, most easily compared with ordinary quan-
tum mechanics in the operator formalism and has what could be described as the most
mathematically rigorous definition in the bootstrap approach to QFT [1].

A significant part of late 20th and early 21st century research in theoretical physics
has been and continues to be dedicated to calculating the contributions to QFT correla-
tion functions from Feynman diagrams at higher and higher orders. Such an approach
necessarily involves perturbation theory - and hence approximations - thus putting aside
any attempt at an exact solution. For any given QFT, one could hope to enhance this
approach by appealing to the symmetries of the field theory under study. Indeed, it has
been known for several decades that, while the correlation functions of most physical
QFTs depend strongly on some length scale - the so-called correlation length - there
also exist “scale-invariant” theories where this length scale diverges. Furthermore, it is
known that under certain constraints, this scale invariance is in fact enhanced to confor-
mal invariance [2] - leading us to label such theories as Conformal Field Theories (CFTs).

Conformal Field Theories in fact occupy particularly special points in the space
of all possible QFTs. A generic QFT comes equipped with a characteristic length or
energy scale below which - or above respectively - the theory is no longer valid in the
sense that the resulting calculations should no longer be expected to correspond to the
physical phenomenon under study - the famous “cut-off” of the energy scale in the path
integral. One can reduce this energy cut-off and at the same time change the coupling
constants of the theory in such a way as to compensate for the change in the cut-off and
hence end up with the same result for the correlation function with either energy scale.
Doing so continuously leads to a flow in the space of coupling constants - the so-called
“Renormalisation Group” (RG) flow [3]. This leads to the concept of “universality” -
whereby two quantum field theories with different coupling constants can be described
by the same theory in the long distance/low energy limit - and are hence referred to as
being in the same “universality class”. Conformal Field Theories are the theories at the
fixed points of these RG flows.

9



10 CHAPTER 1. INTRODUCTION

Conformal invariance however is not generally enough to calculate exactly the cor-
relation functions of a QFT. Indeed, it is remarked in [4] that in D spatial dimensions,
conformal invariance amounts to just “slightly more than rotation or scale invariance”
and hence one should not necessarily expect all conformally invariant field theories to
admit an exact solution just by the observation of this symmetry alone. The power
of CFT becomes apparent however when we consider D = 2 spatial dimensions, where
after allowing for local conformal transformations (discussed in more detail in chapter
2) one observes that there are an infinite number of independent such transformations
under which the theory is invariant. This observation allowed the authors of [5] to find
an exact solution of an infinite family of CFTs - now referred to as the minimal models
- thus giving rise to the modern study of two dimensional CFT. These minimal models
were found by studying irreducible representations of the celebrated Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (1.1)

which will be discussed in more detail in chapter 2. More exotic CFTs (such as those
that are logarithmic - see e.g. [6, 7, 8, 9]) can be found by allowing for indecomposable,
reducible representations of the Virasoro algebra. In any case, the problem of classifying
two dimensional CFTs is equivalent to classifying the representations of the Virasoro
algebra.

While providing a set of non-perturbative tools to solve certain strongly interacting
QFTs is a valuable achievement, two dimensional CFT becomes even more exciting
when applied to statistical mechanics and critical phenomena. It has long been known
that lattice models undergoing a second-order phase transition have no characteristic
length scale - (see for example the discussion in [10]) - and as discussed above, scale
invariance typically leads to conformal invariance. One would therefore expect the long
distance limit of critical lattice models to be described by CFTs, and indeed this is
invariably observed to be the case. Furthermore, critical lattice models can also be
categorised into universality classes in the sense that very often, two models that are
described by different classical Hamiltonians (and hence different Boltzmann weights)
can belong to the same universality class and hence be described by the same CFT in
the long distance limit.

Modern research in CFT can be broadly classed into two main categories. The first
category involves trying to gain a better understanding of CFT in dimensions higher
than D = 2, and therefore map out new RG fixed points in the space of all QFTs. An
important aspect of this is the conformal bootstrap [11, 12, 13, 14, 15] - a technique that
aims to build and map out the space of conformal field theories just by using conformal
symmetry and constraints that arise from consistency conditions. The second category
involves taking advantage of the spectacular success of CFT in two dimensions in order
to understand more complicated and physically relevant CFTs (such as those that are
non-compact, logarithmic or non-unitary) that describe systems in quantum many body
physics and statistical mechanics [16, 17].

This thesis will focus on the second category and will revolve around the CFT de-
scription of various critical systems defined on the lattice to find out a) what this can
tell us about the thermodynamic properties of these lattice systems and b) what these
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lattice systems can tell us about certain interesting CFTs.

However, phase transitions only exist in the thermodynamic limit - one should not
therefore necessarily expect to be able to observe properties of a CFT directly on the
finite lattice, even when the coupling constants are tuned to their critical values. Thank-
fully however, the CFT does leave a trace of its existence even in finite size and we can
observe it by studying the finite size scaling behaviour of the eigenvalues of either the
transfer matrix or Hamiltonian describing the lattice system [18, 19, 20] - this is dis-
cussed in detail in chapter 2.

Interestingly, there are situations where certain properties of the CFT can in fact
be observed directly on the finite lattice. In particular, the structure of certain rep-
resentations of the Virasoro algebra is precisely the same as the structure of certain
representations of a lattice algebra known as the Temperley-Lieb algebra [21, 22, 23]
and its extension - the so-called blob algebra [24, 25] - a result that is taken advantage of
in chapter 3 to understand the connection between two different CFTs - the “Euclidean
Black Hole CFT” and the “Parafermion CFT”.

While finding the CFT that describes the thermodynamic behaviour of a given crit-
ical lattice model is often referred to as having “solved” the model, this “solution” is
only exact when the lattice size is infinite. In this thesis the word “solved” will be used
in this sense, and the expression “exactly solved” will be used to refer to a model that
is solved in finite size - i.e. having found the eigenvalues and eigenvectors of the corre-
sponding Hamiltonian/Transfer Matrix for all finite sizes or, as is more commonly the
case, having found a method to obtain the eigenvalues and eigenvectors that is more
numerically efficient than directly diagonalising the Hamiltonian/Transfer Matrix.

An exact solution in finite size is in fact very often used to find the CFT solution in
the thermodynamic limit. Precisely this procedure is carried out in chapters 5 and 6 by
using the Bethe Ansatz - a tool that can be applied to integrable models (see chapter
4). Integrability, and in particular the Bethe Ansatz technique, typically allows us to
reduce the problem of diagonalising a transfer matrix or Hamiltonian to solving a set
of coupled non-linear equations - a problem which is vastly easier to tackle numerically
for Hamiltonians acting on large Hilbert spaces.

This thesis “solves” and “exactly solves” - in the sense defined above - a number of
models that are listed here and explained in more detail in the main text. A central
result of chapter 3 is the solution to an open boundary loop model described by a
transfer matrix written entirely in terms of Temperley Lieb algebra generators ei and
blob algebra generators b:

T = t1t2 , (1.2)

where

t1 = b(e1)(x+ e3)(x+ e5) · · · (x+ e2L−1)(1 + xe2)(1 + xe4) · · · (1 + xe2L−2) (1.3)

t2 = (1− b)(e1)(x+ e3)(x+ e5) · · · (x+ e2L−1)(1 + xe2)(1 + xe4) · · · (1 + xe2L−2) (1.4)

where x is related to the Potts model coupling constant, defined in chapter 3. Chapter
5 both solves and exactly solves a Hamiltonian written entirely in terms of Temperley
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Lieb generators ei:

H = − 1

cos γ
(e1 + e2L−1) + 2 cos γ

2L−1∑
m=1

em −
2L−2∑
m=1

(emem+1 + em+1em) . (1.5)

Chapter 6 both solves and exactly solves another Hamiltonian written in terms of ei:

H = 2 cos γ
2L−1∑
j=1

ej −
2L−2∑
j=1

(ejej+1 + ej+1ej) (1.6)

Chapter 6 also finds that the Hamiltonian in (1.6) flows under RG to the Hamiltonian
in (1.5).

This thesis is structured as follows: chapter 2 provides a brief review of confor-
mal field theory, boundary conformal field theory and its connection to critical models
in statistical mechanics. Chapter 3 considers the antiferromagnetic Potts model - the
starting point of the analysis is the solution to the transfer matrix written in (3.68).
This paves the way to interpreting various aspects of the CFT on the lattice such as
non-normalisable states, fusion and the appearance of disorder operators. Chapter 4
provides a brief review of integrability and the Bethe Ansatz, with a particular focus on
open integrable models. Chapter 5 presents an exact mapping between the vertex rep-
resentation of the antiferromagnetic Potts model and an integrable model constructed
from the twisted affine D2

2 Lie algebra. This leads to the interpretation of a particu-
lar set of integrable boundary conditions (i.e. K-matrices) in terms of Temperley-Lieb
generators so that the full Hamiltonian of the model with these boundary conditions
becomes that written in (1.5). The exact solution of the model then leads to the solu-
tion of the corresponding CFT. A similar procedure is carried out in chapter 6, where a
different D2

2 boundary condition is considered and this time it is shown to correspond
to the Hamiltonian in equation (1.6)- in this case the transfer matrix also permits an
interpretation in terms of Temperley Lieb generators (see equation (6.22)). A com-
plete Bethe Ansatz solution to the Hamiltonian in (1.6) is found and used to show
that the corresponding boundary CFT is non-compact and is interpreted in terms of
the Euclidean Black Hole CFT with w = 1. Finally, an RG flow is observed from the
Hamiltonian in 1.6 to the Hamiltonian in (1.5), corresponding to an RG flow from a
non-compact boundary CFT to a compact one.



Chapter 2

Bulk and Boundary CFT

The following chapter will provide a brief overview of conformal field theory (CFT) and
will introduce the main objects of interest. Its main purpose is to define the notation
and to introduce the tools that will be used extensively throughout this thesis. We will
briefly discuss how we can use CFT to describe critical lattice models, and in particular,
how we can use boundary CFT to describe open critical lattice models. We will start
with a brief review of conformal transformations, followed by a concise discussion of the
consequences of conformal symmetry in two-dimensional quantum field theories. We
will introduce boundary conformal field theory before discussing the tools that will be
used to relate statistical mechanics and CFT.

2.1 Conformal Transformations

A conformal transformation of spacetime coordinates x is an invertible mapping x→ x′

such that the induced change in the metric:

g′µν(x′) =
∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x) (2.1)

is reduced to a rescaling:

g′µν(x′) = Λ(x)gµν(x) (2.2)

That the transformation is invertible and defined everywhere will turn out to be a strong
constraint, allowing only for so-called global conformal transformations. Local confor-
mal transformations obey (2.2) but are not necessarily invertible or defined everywhere.
Global conformal transformations are of four possible types: translations, rotations,
dilations and so-called special conformal transformations (this result is derived in many
places, see e.g. [26, 4]). An infinitesial translation is of the form:

x′µ = xµ + εµ (2.3)

with εµ an infinitesimal vector. An infinitesimal rotation is of the form:

x′µ = xµ + εµνxν (2.4)

with εµν an infinitesimal antisymmetric tensor. Infinitesimal dilations (i.e. scalings) are
of the form:

x′ = x + εx (2.5)

13
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with ε an infinitesimal scalar. Finally, infinitesimal special conformal transformations
are given by:

x′µ = xµ + 2(ε.x)xµ − εµx.x (2.6)

with εu an infinitesimal vector. In two dimensions we observe that the conformal group
is six dimensional: two from translational symmetry, one from rotational symmetry, one
from scaling and two from special conformal transformations. In what follows, we will
exclusively consider two dimensions.

When we relax the constraint that the transformation x→ x′ is invertible and defined
everywhere, we are left only with the constraint in equation (2.2) and it can be shown [4]
that, in two dimensions, this constraint becomes just the Cauchy-Riemann equations,
implying that the function x′(x) can be reformulated in terms of complex variables and
is holomorphic. To do this, we introduce the complex variables:

z = x0 + ix1

z̄ = x0 − ix1
(2.7)

The transformation x → x′ can then be reformulated as a function z → f(z) and
the constraint (2.2) requires that the function f(z) be holomorphic. Since the set
of holomorphic functions is infinite dimensional, so too is the set of local conformal
transformations in two dimensions. This result has profound consequences in the context
of field theories, both classical and quantum.

2.2 Conformal Invariance in Field Theories

2.2.1 The classical case

Conformal invariance of a classical field theory amounts to invariance of the action
under conformal transformations; the constraint that the action be invariant under
local conformal transformations therefore results in an infinite number of conserved
currents/charges via Noëther’s theorem, rendering the theory exactly solvable.

One of these conserved currents is the stress-energy tensor, corresponding to trans-
lational symmetry. We can simplify the relevant notation greatly by sticking with
complex coordinates z and z̄ and then making use of the notions of holomorphic and
anti-holomorphic functions. The components of the stress energy tensor in this coordi-
nate system become:

Tzz =
1

4
(T11 − T22 + 2iT12)

Tz̄z̄ =
1

4
(T11 − T22 − 2iT12)

Tzz̄ = Tz̄z =
1

4
(T11 + T22)

(2.8)

Scale invariance causes the trace of the stress energy tensor T11 + T22 to vanish so we
are only left with the terms Tzz and Tz̄z̄. (Note that the vanishing trace holds also at
the level of operators in the quantum theory.) The conservation law from Noëther’s
theorem:
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∂µT
µν = 0 (2.9)

becomes in complex coordinates:

∂z̄Tzz + ∂zTzz̄ = 0

∂zTz̄z̄ + ∂z̄Tz̄z = 0
(2.10)

But since Tzz̄ and Tz̄z vanish due to the disappearing trace, we have just:

∂z̄Tzz = 0

∂zTz̄z̄ = 0
(2.11)

If we define T (z, z̄) ≡ Tzz and T̄ (z, z̄) ≡ Tz̄z̄ then (2.11) tells us that T is functionally
independent from z̄ and that T̄ is functionally independent from z and we can write
T (z, z̄) = T (z) and T̄ (z, z̄) = T̄ (z̄). In other words, T (z) is holomorphic and T̄ (z̄) is
anti-holomorphic. We can therefore expand T (z) as:

T (z) =
∑
n∈Z

z−n−2Ln (2.12)

with the Ln given by:

Ln =
1

2πi

∮
dzT (z)zn+1 (2.13)

This definition of Ln actually coincides with the conserved Noëther charge resulting
from a holomorphic (i.e. locally conformal) transformation given by z → z + εzn+1.
Similarly we can write:

T̄ (z̄) =
∑
n∈Z

z̄−n−2L̄n (2.14)

with the L̄n given by:

L̄n =
1

2πi

∮
dzT̄ (z̄)z̄n+1 (2.15)

2.2.2 Quantum Conformal Field Theories

We will now consider the consequences of conformal invariance in quantum field theories.
In the context of the discussion of the stress energy tensor in section 2.2.1, promoting a
classical theory to a quantum theory makes the operators T (z) and T̄ (z̄) independent
operators and hence the Ln and L̄n are independent also. One can show (see e.g. [4])
that in the quantum theory, the Ln operators satisfy:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (2.16)

where c is the so-called central charge, one of the defining parameters of any particular
conformal field theory. Equation (2.16) is the defining relation of the celebrated Vira-
soro algebra. The L̄n satisfy the same commutation relation as (2.16) and commute
with Ln. We have arrived at one of the central results of two dimensional bulk quantum
conformal field theory: the full symmetry algebra is given by two copies of the Virasoro
algebra defined in (2.16).
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More generally, conformal invariance in a quantum theory amounts to invariance of the
correlation functions under conformal transformations, leading to certain constraints
that these correlation functions must satisfy. There is a certain class of fields in the
quantum theory known as quasi-primary fields, an important subset of which are the
primary fields. A spinless quasi-primary field φ(x) transforms under a scaling transfor-
mation as:

φ(x)→ φ′(x′) = λ−∆φφ(x) (2.17)

where we have introduced ∆φ, known as the scaling dimension of the field φ(x). More
generally, under any global conformal transformation a quasi-primary field transforms
as:

φ(x)→ φ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣−
∆φ
2

φ(x) (2.18)

It can then be shown [4] that the two point correlation function of quasi-primary fields
has the following form:

〈φ(x1)φ(x2)〉 =
A

|x− y|2∆φ
(2.19)

for some constant A. A spinless primary field, as distinct from a quasi-primary field,
transforms as (2.18) for all local conformal transformations, not just the global subset.
The scale invariance of the quantum field theory imposes the following constraint on
the n point function of a spinless quasi-primary field:

〈φ(λx1)...φ(λxn)〉 = λ−n∆φ〈φ(x1)...φ(xn)〉 (2.20)

It is clear that the two point correlation function in (2.19) satisfies (2.20). An example
of a field that is quasi-primary but not primary is provided by the stress energy tensor.
We can see this more clearly by returning to complex coordinates z. One can define a
map from the plane to the cylinder by:

w =
L

2π
log z (2.21)

so that the “space" direction becomes the periodic axis of the cylinder and time flows
along the other axis. Under such a local conformal transformation, the stress energy
tensor transforms in the following way:

Tcyl(w) =

(
2π

L

)2 [
Tpl(z)z

2 − c

24

]
(2.22)

One observes the appearance of the central charge c which ensures that the stress
energy tensor does not obey (2.18) under this transformation, and hence is not primary.
Interestingly, we can see that even when we impose that the vacuum expectation value
of the stress energy tensor on the plane vanishes, it does not vanish on the cylinder and
is instead given by:

〈Tcyl(w)〉 = − π
2c

6L2
(2.23)

This will prove to be an important result when we formulate the CFT as a Hamiltonian
acting on some Hilbert space in the next section.
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2.3 The Hilbert Space

The Hilbert space of a CFT must form a representation space of a direct sum of two
copies of the Virasoro algebra. We can take advantage of this setup by defining concen-
tric circles around the origin as the surfaces of equal time, then the dilation operator:

D = L0 + L̄0 (2.24)

generates “time” translations and can be used to define the Hamiltonian of the theory.
It is natural in this set up to consider the mapping from the plane to the infinite
cylinder of length L, using the transformation in (2.21). The dilation operator in (2.24)
now generates translations along the “time” axis of the cylinder and we define the
Hamiltonian with the following normalisations:

H =
2π

L
(L0 + L̄0 −

c

12
) (2.25)

The constant term can be seen to arise from (2.23), where the extra factor of L in (2.23)
comes from the fact that T (w) is an energy density. A central result of CFT is that
there is a one to one mapping between the primary fields introduced in section 2.2.2
and between so-called “primary states” in the Hilbert space which obey:

Ln|h, h̄〉 = 0 , n > 0

L̄n|h, h̄〉 = 0 , n > 0

L0|h, h̄〉 = h|h, h̄〉
L̄0|h, h̄〉 = h̄|h, h̄〉

(2.26)

The whole Hilbert space is spanned by these primary states and by the “descendant
states” which are obtained by acting on the primaries |h, h̄〉 with Ln and L̄n. We have
introduced the quantities h and h̄ as eigenvalues of the operators L0 and L̄0 and they
are connected with the scaling dimension ∆ of a primary field and with the spin s in
the following way:

∆ = h+ h̄

s = h− h̄
(2.27)

The full Hilbert space can be divided into a series of conformal “families”; each family
is constructed by starting with a primary state |h, h̄〉 and acting with Ln and L̄n. Note
that one cannot move from one conformal family to another just by acting with Ln or
L̄n. Since Ln and L̄n commute, we can consider separately the states that they generate,
referred to as the “holomorphic” sector and the “anti-holomorphic” sector respectively.
An important object defined for each of these sectors in any given conformal family is
the “generating function” or “character” of the representation, given by:

Xc,h(q) = Tr qL0− c
24 (2.28)

where q is referred to as the “modular parameter”. This thesis will make regular use of
the generating function and very often the aim will be to observe it on the lattice. Note
that only in some special cases will a CFT have a finite number of conformal families.
This thesis will be particular interested in theories with not only an infinite number of
primaries and hence of conformal families, but a continuum of them, a key feature of
so-called “non-compact” conformal field theories.
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z1z2

z∗1z∗2

Figure 2.1: The contour integral in equation (2.30) for a boundary CFT. Boundary CFTs
are only defined in the upper half plane but by using the so-called method of images [18]
one can extend it to the whole plane such that the boundary CFT correlation functions
are identified with those of a bulk CFT with twice as many insertions.

2.4 Boundary CFT

We have so far been working in the entire complex plane and therefore considering “bulk”
conformal field theories. The most convenient way to introduce a boundary into the
system is to consider the field theory to exist only in the upper half plane and to impose
that there is no “momentum transfer” across the imposed boundary. This amounts to
the condition: T12 = T21 = 0 along the real line which in complex coordinates gives
Tzz = Tz̄z̄ along the real line. We can implement this constraint by imposing:

T (z) = T̄ (z̄) (2.29)

which means that T and T̄ are no longer independent operators. From (2.13) and
(2.15) we see that Ln and L̄n are no longer independent either and hence the symme-
try algebra of a boundary conformal field theory is just one copy of the Virasoro algebra.

The dependence of T̄ on T (and of L̄n on Ln) has far reaching consequences which
will now be briefly outlined. The invariance of a QFT under a continuous symmetry
leads to a set of constraints - the Ward identities - that the correlation functions of
the theory must satisfy and conformal symmetry is no exception. The derivation of the
conformal Ward identity for a bulk CFT can be found in many places, see for example
[4, 27, 28]. The main result is that for a local conformal transformation parameterised
by ε(z), (where we note that it is of crucial importance that ε is a function of z), the
variation of the correlation function X ≡ 〈φ(x1)...φ(xn)〉 due to the variation of the
fields is given by:

δε〈X〉 =
1

2πi

∮
C

dzε(z)〈T (z)X〉 − 1

2πi

∮
C

dz̄ε̄(z̄)〈T̄ (z̄)X〉 (2.30)

where the contour C must surround all of the points xi. In the case of a boundary
CFT however, the contour is constrained to be in the upper half plane and furthermore,
the two terms on the right hand side of (2.30) are not independent due to equation
(2.29). The sum of the two terms then become the contour integrals in Figure 2.1,
where the horizontal parts of both contours can be seen to cancel out - leaving us with
a full circular contour that enters the lower half plane, now with twice the number of
insertions as before. This is the “method of images” presented in [29] - the key result
of which is the following: the correlation function 〈φ(z1, z̄1)...φ(zn, z̄n)〉 in a boundary
CFT, defined in the upper half plane, can be written as the holomorphic correlation
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function 〈φ(z1)...φ(zn)φ(z∗1)...φ(z∗n)〉 of the bulk CFT - which we see has twice as many
operator insertions.

The Hilbert space of a boundary CFT is spanned by the primary states and the states
created by acting with Ln. Acting on the primaries with L̄n does not create states that
are independent from those created by Ln. In the bulk case we mapped the plane to the
infinite cylinder and defined the Hamiltonian as the generator of translations along the
“time” direction of the cylinder. In the boundary case we will map the upper half plane
to the infinite strip of width L, again via the map (2.21). The generator of translations
along the infinite time axis is now given by the Hamiltonian:

H =
π

L
(L0 −

c

24
) (2.31)

The infinite strip is not however required to have the same boundary condition on both
sides. One could impose a boundary condition labelled by a on the left side of the strip,
and a boundary condition labelled by b on the right side. On the plane, this corresponds
to having a different boundary condition on the negative real axis to the positive real
axis. We can implement this by inserting a “boundary changing operator" φab at the
origin. Correlation functions in the theory are then calculated with φab inserted at the
origin, or equivalently, the “vacuum” of the boundary conformal field theory is obtained
by acting on the vacuum of the bulk theory by φab.

2.5 Statistical Mechanics

A large part of this thesis will be concerned with calculating CFT quantities from finite
size lattice models. We briefly review here the techniques to do so, and in particular
how we can use tools from statistical mechanics to study CFT. We will be particularly
interested in models that can be described by a transfer matrix. Very generally speaking,
the transfer matrix is an object that encodes the Boltzmann weights of one full row of
the lattice under consideration, including the contribution from the interaction with the
row beneath it. The full partition function of the model (i.e. the sum of the Boltzmann
weights) is then typically given by

Z = TrTm (2.32)

where m is the number of rows in the lattice and where we must be careful by what we
mean by Tr. For models with Boltzmann weights defined locally, Tr is just the usual
matrix trace. However for models with non-local Boltzmann weights, e.g. loop models,
this trace must be modified to become the “Markov Trace”, a topic which we will not
be too concerned with here. For lattice models with periodic boundary conditions, it is
sometimes useful to decompose the transfer matrix into a product of “R-matrices”:

T = Tra(Ra1...RaL) (2.33)

It will be discussed in chapter 4 that when the R-matrix satisfies the Yang-Baxter equa-
tion the transfer matrix in (2.33) is integrable.

To understand how this discussion of statistical mechanics quantities is related to
CFT consider the example of a lattice model living on the cylinder with local degrees
of freedom σt,j where t and j label the rows and columns of the lattice respectively. We
will consider m rows and n columns and take the periodic direction to be the horizontal
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direction, hence σt,j = σt,j+n. We will for now consider the variables σ to be the spins of
the Ising model [30] but the discussion also applies to other models with locally defined
Boltzmann weights. It is a well known and easily proved result [4] that the two point
correlation function is given by:

〈σt,jσt+r,k〉 =
Tr(Tm−rσ̂jT

rσ̂k)

TrTm
(2.34)

We have introduced here the lattice operators σ̂j that act on the Hilbert space upon
which the transfer matrix acts and whose eigenvalues are given by σj . Using the result
in (2.34), and taking an infinite cylinder, i.e. m→∞, we find:

〈σt,jσt+r,k〉 ≈ 〈0|σ̂j
(
T

Λ0

)r
σ̂k|0〉 (2.35)

where |0〉 is the eigenstate of the transfer matrix with the largest eigenvalue Λ0. Inserting
now a complete set of eigenstates |n〉〈n| into the expression in (2.35), and using the fact
that the expectation value of σ̂ is vanishing, we find that it reduces to:

〈0|σ̂jT r|1〉〈1|σ̂k|0〉
Λr0

∝
(

Λ1

Λ0

)r
(2.36)

We have shown therefore that the two point correlation function on the infinite cylinder
scales with the ratio of the first two eigenvalues of the transfer matrix, a result which
will prove to be useful when calculating the CFT data. Consider now the CFT two
point correlation function on the plane in (2.19), where fields can be normalised such
that the constant A becomes 1. Under the transformation z → w from the plane to the
cylinder in (2.21), this correlation function becomes:

〈φ(r, x1)φ(0, x2)〉 =

(
2π

L

)2∆φ
[
2 cosh

(
2πr

L

)
− 2 cos

(
2πx12

L

)]−∆φ

(2.37)

where we have w = r + ix and:
x12 = x1 − x2 (2.38)

Taking the large r limit, we observe that the correlation function decays as:

〈φ(r, x1)φ(0, x2)〉 ∝ e−
r
ξ (2.39)

where the correlation length ξ is given by:

ξ =
L

2π∆φ
(2.40)

Equating the scaling behaviour of the lattice two point correlation with that of the
CFT, we have then: (

Λ1

Λ0

)r
∝ e−

r2π∆φ
L (2.41)

which allows us to write:

log

(
Λ1

Λ0

)
= −

2π∆φ

L
+ o

(
1

L

)
(2.42)

and we recall that we have quite generally:

∆ = h+ h̄ (2.43)
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Equation (2.42) provides us with a practical way to observe the scaling dimension ∆φ

on the lattice by observing the scaling behaviour of the transfer matrix eigenvalues for
sufficiently large L. We can in fact observe all of the scaling dimensions in the theory
this way by the following more general result [26, 19, 18]:

log Λi
L

= f0 −
2π

L2

( c
12
− hi − h̄i

)
+ o

(
1

L2

)
(2.44)

where Λi is the i-th largest transfer matrix eigenvalue and hi and h̄i are the confor-
mal dimensions of the primary operator corresponding to that eigenvalue. Comparing
equation (2.44) with (2.25) we see that after subtracting the non-universal bulk energy
term term f0, the log of the transfer matrix of the closed model corresponds to the bulk
CFT Hamiltonian on the cylinder. One therefore expects a similar relationship to hold
between the transfer matrix of open critical models with the Hamiltonian of a boundary
CFT on the strip. The scaling behaviour of the eigenvalues of the open transfer matrix
is [26, 31]:

log Λi
L

= f0 +
fs
L
− π

L2

( c
24
− hi

)
+ o

(
1

L2

)
(2.45)

where fs is a non-universal quantity corresponding to the surface energy, h0 is the
conformal dimension of the corresponding boundary changing operator inserted at the
origin, and the other hi are the conformal dimensions of its descendants. Comparing
(2.45) with (2.31) one observes that the Hamiltonian of a boundary CFT on the infinite
strip is given by the log of the open transfer matrix after subtracting the non-universal
terms f0L and fs.





Chapter 3

The Potts model

This chapter will discuss a particular critical lattice model in the context of the dis-
cussion of bulk and boundary CFTs in chapter 2. The model of interest is the Potts
model on the square lattice which has two distinct critical points, one where the model
is “ferromagnetic” and one where it is “antiferromagnetic”, labels which stem from the
sign of the nearest neighbour coupling constant appearing in the classical Hamiltonian
at each of these critical points. The ferromagnetic region has been well studied and its
critical properties well established, see for instance [32, 33] as well similar work applied
to Potts spin chain in [34, 35]. The antiferromagnetic region however is less well un-
derstood despite a large amount of literature on the topic [36, 32, 37, 38, 39]. Its most
striking property, when studied with periodic boundary conditions, is the appearance
of a continuum of critical exponents and its subsequent description, in the continuum
limit, by a non-compact CFT. The remarkable nature of this result should be empha-
sised: the lattice model has a finite number of degrees of freedom and is compact, yet
produces a non-compact field theory in the continuum limit. This continuum limit is
known to be closely related to the SL(2,R)k/U(1) coset model [40, 41, 42], also known
as the “Euclidean Black Hole CFT” as a result of its origins in string theory.

This leads us to ask questions surrounding the nature of the corresponding boundary
CFT. While there are a number of examples of lattice models with a finite number of
degrees of freedom that are described by non-compact continuum limits [43, 44, 45, 46],
these examples only consider the periodic case. As was discussed in chapter 2, boundary
conformal field theories are in some sense “simpler” than their bulk counterparts due to
the appearance of just one copy of the Virasoro algebra. One would therefore hope that
a more intricate understanding of the field theory limit could be reached when studied
in the “simpler” case with open boundaries. The price to be paid is that one must search
for lattice boundary conditions that do indeed correspond to conformal boundary con-
ditions [47, 48, 49]; it is no guarantee that any particular boundary condition will do
the trick and we will in fact present here a boundary condition that is conformal in the
ferromagnetic model but seemingly not conformal in the antiferromagnetic case.

The point of this chapter is to elucidate the results of this search and to explore
their consequences. New boundary conditions in the antiferromagnetic model are indeed
found and the corresponding spectrum generating functions in the continuum limit are
identified with the discrete characters of the SL(2,R)k/U(1) coset, hence confirming the
close relationship between the antiferromagnetic Potts model and the Euclidean black
hole. A number of other new results are obtained along the way. In particular, it is well

23



24 CHAPTER 3. THE POTTS MODEL

known that the Potts model can be reformulated as a RSOS height model, when the
new boundary conditions are interpreted in this language one finds that the spectrum
generating functions in this context are identified with the “string functions” of the
SU(2)k−2/U(1) parafermion theory [50], a compact CFT. By using the representation
theory of the lattice algebra, the Temperley Lieb algebra and its extension known as the
blob algebra, the connection between the compact and non-compact models (i.e. the
parafermion theory and the black hole theory) is made more precise by an expression
identifying the string functions with an alternating infinite sum of discrete black hole
characters.

We will begin in section 3.1 with a review of the Potts model on the square lattice and
its formulation as a loop, height and vertex model. The algebraic structures required for
the remainder of the chapter, namely the Temperley Lieb algebra and the blob algebra,
will be reviewed. Section 3.2 will then review the Potts model at its ferromagnetic
critical point. We will then consider the antiferromagnetic Potts model in section 3.3
where we will study the continuum limit of the model with free boundary conditions.
The new boundary conditions mentioned above and the corresponding continuum limit
will be presented in section 3.4. This section will also consider the RSOS version of the
model and study the new boundary conditions in this context. Section 3.5 will consider
the issues of normalisability in the black hole theory and discuss its interpretation on the
lattice. Sections 3.6 and 3.7 will consider the antiferromagnetic Potts model with the
new boundary conditions on both sides of the lattice and relate this to the fusion rules
in the CFT. In fact, the fusion rules in the parafermion theory will be both observed
numerically and derived analytically from the lattice results. Section 3.8 will specialise
to the case of the two and three state Potts model and section 3.9 will discuss the
disorder operators of the parafermion theory and their appearance on the lattice.

3.1 The lattice model

We will consider here the Q-state Potts model on the square lattice defined by the
classical Hamiltonian:

H = −K1

∑
〈ij〉1

δσi,σj −K2

∑
〈ij〉2

δσi,σj , (3.1)

where 〈ij〉1 and 〈ij〉2 denote respectively the set of horizontal and vertical nearest
neighbours, while K1 and K2 are the corresponding coupling constants. Eq. (3.1) gives
the partition function

Z =
∑
{σ}

∏
〈ij〉1

exp(K1δσi,σj )
∏
〈ij〉2

exp(K2δσi,σj ) , (3.2)

where the sum is over all configurations of the Potts spins σ. Here each spin can take
the integer values σi = 1, 2, . . . , Q, and {σ} denotes the collection of all spins. We will
be particularly interested in the isotropic model, i.e. K1 = K2 = K. In this case,
eqs. (3.1)–(3.2) become

H = −K
∑
〈ij〉

δσi,σj (3.3)

and
Z =

∑
{σ}

exp(−H) =
∑
{σ}

∏
〈ij〉

exp(Kδσi,σj ) (3.4)
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respectively. It is known that the model admits a duality transformation. Recall that
the dual lattice can be defined by placing a lattice site at each face of the original lattice.
A duality transformation then is one which defines the model on this new lattice with
new coupling constants such that the new partition function only differs from the old
one by a multiplicative normalisation factor. Under such a transformation the variable
v ≡ eK−1 is replaced by its dual value v∗ ≡ Q/v. It turns out that the “self-dual” point,
i.e. vc =

√
Q, corresponds to the ferromagnetic critical point [51]. Notice that under

duality, a horizontal pair of nearest neighbours is replaced by a dual vertical pair, and
vice versa. The isotropic square-lattice Potts model is also critical at another value,
vAF = −2 +

√
4−Q, the antiferromagnetic critical point [36]. Note that this point

is clearly not self-dual, hence the dual value of the antiferromagnetic critical coupling
v∗AF ≡ Q/vAF = −2−

√
4−Q provides a second AF critical point in the same univer-

sality class as vAF.

3.1.1 Loop Model Formulation

The partition function in (3.2) is written as a sum over spin configurations {σ}. We
will now proceed to formulate the Potts model as a loop model, i.e. to write Z in (3.2)
as a sum over loop configurations. Consider again the anisotropic model where we can
write

exp(K1δσi,σj ) = 1 + v1δσi,σj

exp(K2δσi,σj ) = 1 + v2δσi,σj
(3.5)

and evaluating these identities for δσi,σj = 0 or 1, we see that they are satisfied provided
we set

v1 = eK1 − 1

v2 = eK2 − 1 .
(3.6)

Following the strategy of Fortuin and Kasteleyn [52], we insert (3.5) into (3.2) and
expand out the products. For each term in the expansion, we draw a line between
neighbouring Potts spins i and j provided it corresponds to picking the second term
vkδσi,σj in (3.5), and no line if the first term, 1, is taken. Making this choice for each
nearest neighbour pair defines a graph G of clusters (connected components) containing
|G1| horizontal and |G2| vertical lines. We can then write the partition function as a
sum over all possible clusters:

Z =
∑
G

v
|G1|
1 v

|G2|
2

∑
{σ}

∏
〈ij〉∈G

δσi,σj , (3.7)

where
∑
G

is a sum over all clusters. We denote the total number of lines in G as

|G| = |G1|+ |G2| . (3.8)

If we define the quantity C(G) as the number of connected components in G, the
partition function (3.2) can be rewritten as [52]

Z =
∑
G

v
|G1|
1 v

|G2|
2 QC(G) . (3.9)

Following Baxter, Kelland and Wu [53], we can next transform this cluster model
into a loop model, i.e., rewrite the partition function as a sum over loops. The graph
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(a) (b) (c) (d)

Figure 3.1: Each tile on the lattice will take one of the forms shown in panels (a),
(b), (c) and (d). The black circles represent the points where the Potts spins lie. The
vertices with no black circles are points on the dual lattice.

Figure 3.2: The one-to-one mapping between cluster configurations and loop configura-
tions.
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of clusters G is made up of four different types of tiles, shown in Figure 3.1, defined
by the following two binary choices: 1) For tiles of type (a) and (c), the Potts spins
(resp. dual Potts spins) stand at the top and bottom vertices (resp. at the left and right
vertices) of the tile, while it is the other way around for tiles of type (b) and (d). 2)
For tiles of type (a) and (b), the FK expansion contains a line between the two Potts
spins, while for tiles of type (c) and (d) there is no such line. A loop representation
equivalent to the FK one is now defined by assigning to each tile two quarter-turn loop
segments, as shown in Figure 3.1. Doing this for each tile of the lattice (with appropri-
ate boundary conditions), we obtain an ensemble of closed loops, as shown in Figure 3.2.

It follows from this property of surrounding that the number of loops ` in any given
configuration is the sum of the number of connected components C and the number of
independent cycles S in the corresponding FK cluster configuration:

` = C + S (3.10)

We furthermore have another easily verified topological identity for each cluster config-
uration:

C = |V | − |G|+ S , (3.11)

where |V | is the number of vertices on the lattice. Combining eqs. (3.10)–(3.11) gives
us

C =
1

2
(|V | − |G|+ `) , (3.12)

and inserting this into (3.9) gives us the partition function expressed as a sum over loop
configurations[53]

Z = Q
|V |
2

∑
loops

x
|G1|
1 x

|G2|
2 Q

`
2 , (3.13)

where we have defined x1 ≡ eK1−1√
Q

and x2 ≡ eK2−1√
Q

. The isotropic case corresponds to
x1 = x2 = x. In other words, apart from an unimportant overall factor, Z consists of
local weights x1, x2 depending on the choice of tiles, and a non-local weight of

√
Q per

loop.

3.1.2 The Temperley-Lieb algebra

It will be convenient to describe the model within an algebraic framework that we now
define. It will turn out that by writing the transfer matrix in terms of generators of
a particular algebra, we can use some powerful tools from the representation theory of
that algebra to understand aspects of the model both at the level of the lattice in finite
size and of the underlying CFT itself.

In the open case with “free” boundary conditions the cluster and loop expansions de-
scribed previously work in the same way. If we consider the Potts model on a strip of
the square lattice of width L, the loop model defined in(3.13) can be described by a
transfer matrix “propagating” in the vertical direction, given by:

T = (x1 + e1)(x1 + e3) · · · (x1 + e2L−1)(1 + x2e2)(1 + x2e4) · · · (1 + x2e2L−2) . (3.14)

Equation (3.14) and the operators ei can be most easily understood using a graphical
representation. In the factors of the form (x1 + e2k−1) the first term corresponds to a
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=
√
Q

Figure 3.3: Graphical interpretation of the Temperley Lieb algebra e2
i =
√
Qei. Multi-

plying Temperley Lieb operators corresponds to stacking tiles vertically. Stacking the
tiles in the left-hand part of the figure corresponds to the following string of Temperley
Lieb operators: eiIi−1Ii+1ei = eiei =

√
Qei.

=

Figure 3.4: Graphical interpretation of the Temperley Lieb algebra eiei−1ei = ei. Stack-
ing the tiles in the left-hand part of the figure corresponds to the following string of
Temperley Lieb operators: eiIi+1ei−1ei = eiei−1ei

tile of type (a) in Figure 3.1, while the second term corresponds to a tile of type (c).
Similarly, in the factors of the form (1 + x2e2k) the first term corresponds to a tile of
type (d), while the second term corresponds to a tile of type (b). In other words, the
former factors add a row of vertical edges between the Potts spins, while the latter ones
add a row of horizontal edges. The action of the transfer matrix can then be seen to
build all of the possible configurations of loops, with the appropriate factors of x1 and
x2. To ensure that the transfer matrix (3.14) correctly assigns the Boltzmann weight√
Q to each loop, one imposes that the ei satisfy the defining relations of the Temperely

Lieb algebra [21]:

e2
i =

√
Qei ,

eiei±1ei = ei ,

eiej = ejei for |i− j| ≥ 2 .

(3.15)

In the loop language, we can interpret the TL relations graphically by associating a tile
with the loop configurations shown in Figure 3.1(d) to the identity operator, and the
tile in Figure 3.1(c) to the TL operator ei. The corresponding tiles (a) and (b) have
the same interpretation, except that they include the factors x1,2 in order to account
for the weighting of the lines in the expansion.

Multiplying TL generators then corresponds to stacking tiles vertically. The graphical
interpretation of the relation e2

i =
√
Qei is shown in Figure 3.3. We see that stacking an

ei tile on top of another ei tile creates a loop, and this loop gets the Boltzmann weight√
Q. Similarly, the relation eiei−1ei is illustrated in Figure 3.4.
While the particular graphical description of the TL generators in Figures 3.1, 3.3
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e1 =
,

e2 =
,

e3 =
,
I =

Figure 3.5: The graphical interpretation of the Temperley-Lieb loop representation.

e2
1 = =

√
Q =

√
Qe1

Figure 3.6: Graphical interpretation of e2
i =
√
Qei.

and 3.4 is convenient to illustrate the connection to the Potts model on the square
lattice in Figure 3.2, slightly different notation should be used if the full power of the
algebra representation theory is to be utilised. Consider the action of ei on N = 2L = 4
strands. The graphical description of each of the generators for N = 4 is displayed
in Figure 3.5. Then the graphical interpretation of the algebraic relations in (3.15)
are shown in Figures 3.6 and 3.7. We can consider the transfer matrix to act on the
representation spaces defined in Figure 3.8. The full space is divided into sectors W0,
W1 and W2 where Wj is the sector with 2j through lines.

3.1.3 The vertex representation

The loop model can be reformulated as a vertex model by assigning an orientation
to each of the loops. An example of a configuration of such an oriented loop model
is shown in Figure 3.9. Observe that each of the tiles on the lattice now take the
form of one of the vertices in Figure 3.10 instead of one of the tiles in Figure 3.1 (c)
and (d). The Boltzmann weights of a vertex on a tile corresponding to a horizontal
coupling of Potts spins are displayed below the vertices, and the Boltzmann weights
for vertical couplings are displayed above the vertices. These weights ensure that loops
oriented in an anti-clockwise direction get a Boltzmann weight of e−iγ , and that loops
oriented in a clockwise direction get a Boltzmann weight of eiγ , hence their sum gives√
Q = 2 cos γ = eiγ + e−iγ . The factors of x in Figure 3.10 then ensure that the

corresponding partition function of the vertex model is equal to that of the loop model
in equation (3.13). The vertex representation of the Tempereley Lieb algebra is given
by:

e1e2e1 = = = e1

Figure 3.7: Graphical interpretation of e1e2e1 = e1.
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W0 = { , }

W1 = { , , }

W2 = { }

Figure 3.8: The representation spaces of the Temperley-Lieb algebra acting on N = 4
strands.

Figure 3.9: A configuration of oriented loops. The oriented loop model becomes a vertex
model.

x x 1 1 x+ e−iγ x+ eiγ

1 1 x x 1 + xe−iγ 1 + xeiγ

Figure 3.10: The vertices and their Boltzmann weights
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en = I⊗n−1 ⊗


0 0 0 0
0 e−iγ 1 0
0 1 eiγ 0
0 0 0 0

⊗ I⊗2L−n−1 . (3.16)

The operator en can also be written in terms of Pauli matrices

en =
1

2

[
σxnσ

x
n+1 + σynσ

y
n+1 − cos γ(σznσ

z
n+1 − I)− i sin γ(σzn − σzn+1)

]
. (3.17)

This vertex model was studied with periodic boundary conditions in [54] where one can
describe it using a transfer matrix written in terms of R-matrices which at the isotropic
point x1 = x2 = x are written as:

Ri,i+1 = (x+ e2i)(1 + xe2i−1)(1 + xe2i+1)(x+ e2i) (3.18)

Then the transfer matrix of the periodic model is given by:

T = Tra(Ra1...RaL) (3.19)

It was in this representation of the Potts model that the continuum limit was found to
be given by the Euclidean Black Hole CFT, discussed in section 3.3.

3.1.4 The blob algebra

The only open boundary conditions that we have so far considered are “free” boundary
conditions and the corresponding transfer matrix was written in equation (3.14). Free
boundary conditions turn out to be conformally invariant in the continuum limit for
both the ferromagnetic and antiferromagnetic models, as will be discussed below. The
ferromagnetic model admits another type of conformally invariant boundary conditions
referred to as “blob” boundary conditions for reasons that will now be discussed.

Consider the open Q-state Potts model where the Potts spins on one of the bound-
aries (say the left boundary for now) are restricted to take values in {1, 2, . . . , Q1} with
Q1 ≤ Q. By carrying out the mapping from the Potts model to the loop model outlined
in section 3.1.1, but this time with the new restricted boundary conditions, one arrives
at the following loop model partition function:

Zblob = Q
|V |
2

∑
loops

x|G|Q
`
2

(
Q1

Q

)l1
(3.20)

where l1 is the number of loops that touch the left boundary, l is still the total number
of loops and we have set x1 = x2 = x. By setting:

y =
Q1√
Q

(3.21)

we can rewrite equation (3.20) as:

Zblob = Q
|V |
2

∑
loops

x|G|(
√
Q)l−l1yl1 (3.22)

where we see that the “blob" partition function is a sum over loop configurations where,
as in the periodic and free case, loops in the bulk get a Boltzmann weight

√
Q but now
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Figure 3.11: The blobbed loop model where loops that touch the left boundary at least
once (blobbed loops) get a modified Boltzmann weight.

loops that touch the left boundary at least once get a Boltzmann weight y = Q1

Q . We
mark these boundary loops with a “blob”, as is shown in a typical configuration of loops
with these boundary conditions in Figure 3.11. Note that for the original Q-state Potts
model where Q must be an integer, this boundary condition only makes sense if Q1 ≤ Q
is also integer. However, once the definition of the model has been extended to all real
values of Q in the loop model, it is no longer necessary to impose this restriction on
Q1, which can hence take arbitrary real values as well. The blobbed loop Boltzmann
weight y is normally parameterised in the following way:

y =
sin((r + 1)γ)

sin(rγ)
(3.23)

While the Temperley Lieb algebra was used to describe free boundary conditions,
we will turn to an extension of this algebra, the blob algebra [55, 56, 57], to describe the
“blobbed” boundary conditions. The blob algebra is defined by supplementing (3.15)
by an extra generator b subject to the new relations:

e1be1 = ye1 ,

b2 = b ,

eib = bei for i > 1 .

(3.24)

The graphical interpretation of the first of these relations is illustrated in Figure 3.12.
The blob operator b adds a “blob” to the left most loop strand and closed “blobbed
loops” then get the modified Boltzmann weight y. The relation b2 = b describes the
property that loops which touch the left boundary more than once get the same weight
as loops that touch the left boundary exactly once. Note that the general blob boundary
conditions include the case of free boundary conditions (Q1 = Q), as well as, for Q ∈
{1, 2, 3, 4} integer, the case of fixed (Q1 = 1) or “mixed” (1 < Q1 < Q integer) boundary
conditions [58]. Just as in Figure 3.5 we introduced an explicit representation of each
Temperley Lieb algebra generator, we will do the same for the blob algebra - its graphical
representation when acting on N = 4 strands is shown in Figure 3.13. Staying with this
notation, the first identity in equation (3.24) is depicted graphically in Figure 3.14.

Now consider the representation spaces that the blob algebra acts on. We must
distinguish between spacesWb

j andWu
j corresponding to sectors with 2j “through lines”
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= y

Figure 3.12: Graphical interpretation of the blob algebra relation e1be1 = ye1

b =

Figure 3.13: The graphical interpretation of the blob generator b.

e1be1 = = y = ye1

Figure 3.14: Graphical interpretation of e1be1 = ye1

W0 = { , }

Wb
1 = { , , }Wb
1 =

Wu
1 = { }

Wb
2 = { }

Figure 3.15: The representation spaces of the blob algebra acting on N = 4 strands.
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where the leftmost through line is “blobbed” and “unblobbed" respectively. The spaces
for N = 4 are shown in Figure 3.15. Clearly there is no notion of “blobbed” and
“unblobbed” sectors when j = 0 since there is no line to blob in that case. Similarly,
when 2j = N we do not consider the “unblobbed” sector since we are imposing that
loops that touch the left boundary must take a blob. Both of these points are illustrated
in Figure 3.15.

3.1.5 RSOS models

RSOS models are defined by assigning integer heights both to the vertices where the
Potts spins lie and to their duals. More precisely, the RSOS heights live on all of the
vertices of the tilted square lattice shown in Figure 3.2. In the models of interest here,
the heights are constrained such that nearest neighbours must differ by ±1. More gen-
erally however, RSOS models can be built from a Dynkin diagram [59, 60, 61] and obey
the more general constraint that nearest neighbour heights on the lattice must also
be nearest neighbours in the Dynkin diagram. We are considering here the “A-series"
RSOS models, hence the particular constraint that the heights differ by ±1.

We should also clarify here that the RSOS models of interest are not the same models as
the RSOS models introduced by Andrews, Baxter and Forrester (ABF) [62]. The RSOS
models that we are interested in, henceforth referred to as the AF Potts RSOS models,
have Boltzmann weights assigned to each tile, and these weights are “staggered”, i.e.,
even and odd numbered tiles will have different Boltzmann weights. These staggered
weights ultimately stem from the alternating local weights x1 and x2 defined in (3.13).

To understand this in detail, consider the lattice in Figure 3.16. The degrees
of freedom which live on the vertices of the lattice are integer heights from the set
{1, 2, . . . , k − 1}—i.e., the Dynkin diagram Ak−1—where the parameter k will be re-
lated to the loop weight ` = 2 cos γ via the relation γ = π

k . Boltzmann weights are
then associated to each tile and depend on the heights at each of the tile’s vertices; see
Figure 3.17. Each tile in the lattice is labelled by an integer giving its position along
the horizontal axis, as shown in Figure 3.16. The staggering comes about by allowing
the Boltzmann weights to depend on the parity of the tile label. Specifically, to tiles
with an even label we give the weight

W (a, b, c, d) = δ(a, c) + x2

√
SaSc√
SbSd

δ(b, d) , (3.25)

whereas tiles with an odd label get the weight

W (a, b, c, d) = x1δ(a, c) +

√
SaSc√
SbSd

δ(b, d) . (3.26)

In these expressions, the height values a, b, c, d are associated with the vertices bordering
the tile as shown in Figure 3.17, and we have defined

Sa =
sin(aπk )

sin(πk )
. (3.27)

It is easy to see that the weights x1 and x2 are analogous to those appearing in Figure 3.1.
Moreover, the Kronecker deltas are related with the line expansion in Figure 3.2.

We can describe the AF Potts RSOS model using the transfer matrix defined in
(3.14), but using a new “RSOS representation" of the Temperley Lieb generators ei
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1 3 5

2 4

1 3 5

2 4

1 3 5

2 4

1 3 5

h1

h1

h1

h1

hN+1

hN+1

hN+1

hN+1

Figure 3.16: The staggered RSOS model. An integer heights lives on each vertex, here
shown for a lattice of width N = 2L = 6. The numbers on the centre of the tiles are
labels; in the staggered model, even and odd numbered tiles get different Boltzmann
weights. When we fix the boundary heights h1 and hN+1, the model corresponds to
“free” boundary conditions in the original formulation of the Q-state Potts model.

a

b

c

d

Figure 3.17: Four heights around a tile in the RSOS model

[59], given explicitly by

ei |h1, . . . , hi−1, hi, hi+1, . . . , hN+1〉 = δ(hi−1, hi+1)
∑
h′i

√
ShiSh′i

Shi−1

∣∣h1, . . . , hi−1, h
′
i, hi+1, . . . , hN+1

〉
,

(3.28)
where |h1, . . . , hi−1, hi, hi+1, . . . , hN+1〉 is a state specifying the heights on the N + 1
consecutive sites along one row of the lattice (see Figure 3.18). This representation of
ei recovers the Boltzmann weights defined in equations (3.25) and (3.26).

h1

h2

h3

h4

h5

h6

h7

Figure 3.18: The state |h1h2h3h4h5h6h7〉.

Note that the transfer matrix in (3.14) corresponds to “free” boundary conditions in
the Q-state Potts model but in the RSOS formulation of the model that we have just
described we must fix the heights at the two boundaries. Section 3.1.6 will discuss in
more detail the mapping between the Potts/loop version of the model with the RSOS
version, and in particular, the interpretation of blobbed boundary conditions in the
RSOS model.



36 CHAPTER 3. THE POTTS MODEL

b

b

b

b

c

c

c

c

c

a

a

a

a

Figure 3.19: The RSOS model: heights live on the all vertices. In the ferromagnetic
model, fixing the heights at a,b and c is a conformal boundary condition.

3.1.6 Blobbed boundary conditions in the RSOS model

In section 3.1.5 it was shown that the RSOS model with the outermost heights fixed to
constant values could be described by the same transfer matrix (3.14) as the loop model
with free boundary conditions, but with the loop representation of ei replaced with the
RSOS representation written in equation (3.28). To understand how we can interpret
the blobbed boundary conditions of section 3.1.4 we will briefly review the link between
the loop and RSOS versions of the model. In particular, we will show that the partition
functions of the two models can be identified.

Consider again the transfer matrix of the RSOS model (equations (3.14) and (3.28))
and decorate each tile with either a vertical line or a horizontal line corresponding to
the identity operator and the Temperley Lieb operator respectively. We also need to
include a factor of x = eK−1√

Q
on the vertical lines for odd numbered tiles, and on the

horizontal lines for even numbered tiles, (corresponding to the position of the factors
of x in (3.47)). Due to the presence of the delta function on the right hand side of
equation (3.28), these lines form configurations of clusters that join equal heights. To
each of these cluster configurations we can associate a loop configuration by decorating
each tile as in Figure 3.20.

The Boltzmann weights defined in equations (3.26) and (3.25) of the RSOS model
result in the same partition function as the loop model defined by the transfer matrix
in equation (3.47). (This statement is true only when one is careful with the boundary
conditions in both models; as emphasised previously, free boundary conditions in the
loop model are mapped to a boundary condition in the RSOS model where the outermost
heights are fixed). There is a long discussion of this identity of loop model/RSOS
model partition functions in [57]. The main idea of the mapping is that since heights
in the RSOS model must differ by ±1, once we fix a particular height to be b say,
each neighbouring interaction contributes Sb+1

Sb
+

Sb−1

Sb
to the partition function. From
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Figure 3.20: The RSOS and loop models: the lines join vertices with equal heights.
Vertical lines correspond to the identity operator and horizontal lines correspond to the
Temperley Lieb operator. Periodic boundary conditions in the vertical direction are
imposed.

equation (3.27) then we have:

Sb+1 + Sb−1

Sb
=

sin( (b+1)π
k ) + sin( (b−1)π

k )

sin
(
bπ
k

) = 2 cos
(π
k

)
=
√
Q. (3.29)

where we recall that
√
Q is the Boltzmann weight of a loop in the loop model. Equation

(3.29) is the crucial relationship that leads to the identification of the loop model and
RSOS partition function in [57]. Consider then the RSOS boundary conditions in Figure
3.19 where the outermost heights have been fixed to b and a and the the second height
from the left has been fixed to c = b ± 1. The analogy to equation (3.29) for the
boundary then is

Sb+1

Sb
=

sin( (b+1)π
k )

sin
(
bπ
k

) = y (3.30)

if c is fixed to c = b + 1 and if we take r = b in equation (3.23). Therefore, the
interpretation of blobbed boundary conditions defined in section 3.1.4 in the RSOS
model is those defined in Figure 3.19 with c = b+ 1.

3.2 The critical ferromagnetic Potts model

There are two well-known critical lines of physical interest for the Q-state Potts model
on the square lattice. The ferromagnetic self-dual line is obtained for x1x2 = 1, with
xi > 0. The isotropic case corresponds to x1 = x2 = 1 and thus

eK1 = eK2 = 1 +
√
Q (3.31)

The continuum limit of the ferromagnetic loop model is reviewed in many places (see e.g.
[32, 33]). The isotropic ferromagnetic model with free boundary conditions is described
by the transfer matrix:

T = (1 + e1) · · · (1 + e2L−1)(1 + e2) · · · (1 + e2L−2) (3.32)
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When we take the continuum limit, the space that the transfer matrix acts on should
become the Hilbert space of the corresponding CFT. We will be interested in calculating
the CFT generating function, which is defined by the trace of the operator qL0−c/24 over
the CFT Hilbert space. We will study separately the action of the transfer matrix on
the modules Wj and each of these modules will produce a different CFT generating
function. Note that taking each Wj separately only makes sense when we impose that
ei acting on two “defect lines” at positions i and i + 1 gives zero - otherwise the space
Wj would interact with Wj−1 under the action of ei. We will then use the notation
TrWj to mean the trace over the modules of the Temperely-Lieb algebra in the sector
with 2j through lines and this trace should become a CFT generating function when
we take the continuum limit. In particular, we will write TrWjq

L0−c/24 to mean the
CFT generating function obtained in the continuum limit by acting on the TL module
Wj . One then obtains these generating functions by studying the finite size scaling
behaviour of the free energy density fL:

fL = f0 +
fs
L
−
π( c

24 − h)

L2
+ o

(
1

L2

)
, (3.33)

where fL is related to the leading transfer matrix eigenvalue λ0 by 1

fL =
log λ0

2L
. (3.34)

We compute fL explicitly by exact numerical diagonalisation methods, then extract h
and c by studying the scaling of fL and comparing with (3.33). We find the remaining
exponents in the model by extrapolating to the limit 1

L → 0 the quantities

h(L) = −L
π

log

∣∣∣∣λiλ0

∣∣∣∣ , (3.35)

where λi denotes the i-th leading transfer matrix eigenvalue. It is found that, by
applying this procedure to the transfer matrix in equation (3.32), one arrives at the
generating function Zj of levels corresponding to a Kac module:

Zj = TrWjq
L0−c/24 = q−

c
24
qh1,1+2j − qh1,−1−2j

∞∏
n=1

(1− qn)

(3.36)

where

hr,s =
(kr − (k − 1)s)2 − 1

4k(k − 1)
(3.37)

and
c = 1− 6

k(k − 1)
. (3.38)

where we have used the parametrisation
√
Q = 2 cos γ, with γ = π

k and k ≥ 2.

The ferromagnetic loop model with blobbed boundary conditions is described by the
transfer matrix:

1The factor of 2 appearing here comes from the fact that (3.47) is a double-row transfer matrix. We
will later consider an example of a four-row transfer matrix—see eq. (3.68)—where this factor of 2 will
be replaced by 4 when computing the exponents.
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T = b(1 + e1) · · · (1 + e2L−1)(1 + e2) · · · (1 + e2L−2) , (3.39)

When the blob transfer matrix in equation (3.39) acts on theWb
j module, the generating

function of levels in the continuum limit is that of a Verma module:

Zbj = TrWb
j
qL0−c/24 = q−

c
24

qhr,r+2j

∞∏
n=1

(1− qn)

(3.40)

where r is the parameter appearing in the weights of the blobbed loops, defined in
(3.23). Similarly, when the transfer matrix in (3.39) acts on the Wu

j module the Verma
module generating function that we get in the continuum limit is:

Zuj = TrWu
j
qL0−c/24 = q−

c
24

qhr,r−2j

∞∏
n=1

(1− qn)

(3.41)

We see then that the representation spaces of the Temperley Lieb algebra and the blob
algebra become, in the continuum limit, representation spaces of the Virasoro algebra.
In the case of the Temperley Lieb transfer matrix in equation (3.32), we get a Kac mod-
ule and for the blob transfer matrix in (3.39) we get a full Verma module. However,
when the parameters k, r and s take integer values, it is well known that the Verma
modules are reducible. As we will now see, this property of reducibility in the contin-
uum limit can actually be seen in finite size by studying the representation theory of
the blob algebra.

Let’s first consider how this works for the Temperley Lieb algebra and the corresponding
Kac module in the continuum limit (see equation (3.36)). Consider the representation
spaces of the Temperley Lieb algebra with N = 4 strands as in Figure (3.8), and
let’s take the simple case of

√
Q = 1. In this case, the space shown in Figure 3.21 is

annihilated by e1, e2 and e3. The space W2 in Figure (3.8) is also annihilated by e1,

−

Figure 3.21: A state in W0 with N = 4 strands that is annihilated under the action of
the Temperley Lieb algebra for

√
Q = 1 and is isomorphic to W2.

e2 and e3 since, as before, we impose that ei acting on two through lines at sites i and
i+ 1 gives zero. Hence, the spaceW2 is isomorphic to the space inW0 that is displayed
in Figure 3.21. The fact that W0 contains an invariant subspace at all means that it is
a reducible representation, but we can make an irreducible representation by taking the
quotient of W0 with respect to its invariant subspace - that which is isomorphic to W2.
We write this quotient as W0

W2
. One can perform the same calculation for N = 6 (see e.g.

appendix A of [63]) to find the exact sequence shown in Figure 3.22, (and in fact, Figure
3.22 is an example of a short exact sequence). Setting, as before,

√
Q = 2 cos γ and

γ = π
k , the exact sequence for general N and k is shown in Figure 3.23. Moving now

to the blob algebra, we recall from Figure 3.15 that representations come in two forms,
Wb
j and Wu

j . Performing the same calculation as for the Temperley Lieb algebra leads
to an exact sequence in terms of quotients ofWb

j andWu
j . The details of the calculation

can be found in the appendix of [63] and the result is presented in Figure 3.24. There
is a more intricate structure to the representation theory of the blob algebra than is
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0 W0 W2 W3 0

Figure 3.22: A short exact sequence of Temperley Lieb algebra representations forN = 6
and
√
Q=1.

Wj Wk−1−j Wk+j W2k−1−j . . .

Figure 3.23: An exact sequence of Temperley Lieb algebra representations for general
N and k.

captured by Figure 3.24. In particular, it is known (see e.g. [64]) that for r and k integer
the module Wb

k−r−j is an invariant subspace (under the action of the blob algebra) of
Wb
j . To create an irreducible representation of the blob algebra on the lattice, and

indeed an irreducible representation of the Virasoro algebra in the continuum limit one
should consider the full diagram of inclusions of the blob algebra which is shown in
Figure 3.25. In this case an arrow from one space to another means that the first space
is isomorphic to an invariant subspace of the second. For example, Wb

j ←Wu
r+j means

that Wu
r+j is an invariant subspace of Wb

j .
As before, to create an irreducible representation one must quotient out all of the

invariant subspaces. Using the diagram in Figure 3.25, the irreducible representation is
formally obtained via

X br,j =
∞⊕
n=0

Wb
j+nk/Wu

j+r+nk

Wb
k−j−r+nk/Wu

k−j+nk
(3.42)

The quantity X br,j is the irreducible module. Calculating then the corresponding gener-
ating function in the continuum limit of the irreducible representation, one arrives at
the infinite alternating sum:

TrX br,j
qL0−c/24 =

∞∑
n=0

(Zbj+nk − Zbk−r−j+nk)−
∞∑
n=0

(Zuj+r+nk − Zuk−j+nk) (3.43)

This irreducible representation of the lattice algebra in fact corresponds to the RSOS
representation and predicts that the expression in (3.43) is the generating function of
the RSOS model with blobbed boundary conditions as defined in 3.1.6. Recall now the
well studied (see e.g. [4]) method to construct an irreducible representation starting
from a Verma module, i.e. the construction of CFT minimal models. One starts with a
Verma module Vr,s, that is a highest weight representation of the Virasoro algebra and
quotients out the singular vectors to build an irreducible representation. The inclusion
diagram for the Verma module is shown in Figure 3.26. One observes that it is in exact
correspondence with the inclusion diagram of the blob algebra in Figure 3.25 when the
following correspondences are made:

Wb
j ↔ Vr,r+2j

Wu
j ↔ Vr,r−2j

(3.44)

The character of the minimal models is then given by an infinite alternating sum of
Verma module characters, and this expression must then coincide with the expression
in (3.43).
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Wb
j

Wu
j+r

Wb
k−r−j
Wu
k−j

Wb
k+j

Wu
k+r+j

Wb
2k−r−j
Wu

2k−j
. . .

Figure 3.24: An exact sequence of blob algebra representations for general N and k.

Wb
j Wb

k−r−j Wb
k+j Wb

2k−r−j Wb
2k+j

. . .

. . .

. . .

. . .

Wu
r+j Wu

k−j Wu
k+r+j Wu

2k−j

Figure 3.25: The inclusion diagram of the blob algebra module Wb
j

While the expression in (3.43) relating the generating function of minimal models to
an infinite alternating sum of Verma module generating functions was known before the
representation theory of the blob algebra was worked out, the above analysis provides
us with some useful insights for how to understand the Virasoro algebra on the lattice.
In particular, later sections will apply the same techniques from the above analysis
to the antiferromagnetic model and in so doing will derive a new identity relating the
generating functions of the parafermion CFT (so-called “string functions”) to the discrete
character of the Euclidean Black Hole CFT.

3.3 The critical antiferromagnetic Potts model

The antiferromagnetic (AF) critical line is given by(
eK1 + 1

) (
eK2 + 1

)
= 4−Q (3.45)

and at the isotropic point corresponds to

eK1 = eK2 = −1 +
√

4−Q . (3.46)

Note that the corresponding loop model has weights that depend also on |G|, the num-
ber of lines in the graphical expansion. Free boundary conditions are known to be
conformally invariant for the antiferromagnetic Potts model, just like they were for the
ferromagnetic one. The transfer matrix is given by equation (3.14), which reads in the
isotropic case

T = (x+ e1) · · · (x+ e2L−1)(1 + xe2) · · · (1 + xe2L−2) , (3.47)

but now with the AF choice (3.46) of the coupling constants:

x =
eK − 1√

Q
=
−2 +

√
4−Q√
Q

(3.48)

This corresponds, in the six-vertex model representation of the TL algebra, to a stag-
gered six-vertex model (see Figure 3.10) with full Uqsl(2) symmetry: the transfer matrix
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Vr,r+2j Vr,2k−r−2j Vr,2k+r+2j Vr,4k−r−2j Vr,4k+r+2j . . .

. . .

. . .

. . .

Vr,−r−2j Vr,r−2k+2j Vr,−r−2j−2k Vr,r−4k+2j

Figure 3.26: The inclusion diagram of the Verma module Vr,r+2j

(3.47) commutes with the generators of the quantum group [22]. The central charge
along the AF line is well established to be [32, 37]

cPF = 2− 6

k
, (3.49)

where the subscript PF abbreviates “parafermion” for reasons that will be exposed in
detail below. This can be observed by studying the finite size scaling behaviour of
the largest eigenvalue of the transfer matrix using (3.33). The full CFT describing the
continuum limit of the AF Potts model with these boundary conditions was elucidated
as early as [32], and further studied and confirmed in [65, 66, 37]. In the sector with
l = 2j through lines the leading critical exponent is given by:

∆l =
l(l + 2)

4k
, (3.50)

which can be identified [32, 37] as one of a more general family of exponents for the
SU(2)k−2/U(1) compact parafermion theory

∆m
l =

l(l + 2)

4k
− m2

4(k − 2)
. (3.51)

In particular, we have ∆l = ∆0
l . The full generating function of conformal levels was

proposed to be [32]

Kl = TrWj=l/2
qL0−c/24 =

q(l+1)2/4k

η(q)2

[
1 + 2

∞∑
n=1

(−1)nqn(n+l+1)/2

]
, (3.52)

where we have parameterised
√
Q = q + q−1, with q ≡ eiγ ≡ eiπ/k. While the initial

identification of the Kl generating functions was restricted to a few levels in [32], we
have carefully checked the validity of the expansion (3.52) for a large number of levels.
For K0 for instance we have

K0 = q−
cPF
24 (1 + q2 + 2q3 + 4q4 + 6q5 + 11q6 + · · · ) . (3.53)

This has been observed on the lattice by the analysis of the first 40 eigenvalues of
the transfer matrix (3.47). By considering sizes up to N = 24 we can see the first six
levels (with multiplicities) of the spectrum generating function, as is written in equation
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(3.53). For concreteness, we have focussed on the case k = 4.2, but other values confirm
this result. Similarly, we have observed the following levels for j = 1:

K2 = q∆2−
cPF
24 (1 + 2q + 3q2 + 6q3 + 10q4 + · · · ) . (3.54)

The continuum limit is also closely related [54, 67, 68, 69] with the SL(2,R)k/U(1)
coset model [41, 40], henceforth simply referred to as the black-hole (BH) theory because
of its string-theory origins. Recall that this CFT has central charge:

cBH = 2 +
6

k − 2
, (3.55)

and conformal weights:

hBH = −J(J − 1)

k − 2
+

(n± wk)2

4k
(3.56)

where n and w are integers. There is a continuous series of conformal weights with
J = 1

2 + is with s ∈ R+ and a discrete set with 1
2 < J < k−1

2 , 2J ∈ N. The generating
function of the descendants of the discrete set is given by [70, 71]:

λdJ,M = η(q)−2q
(J+M)2

k q−
(J−1/2)2

k−2 SM , M ≥ 0 (3.57)

with M ∈ Z and where

SM =
∞∑
n=0

(−1)nq
n2

2
+n

2
(2M+1) (3.58)

The discrete character λdJ,M pertains naturally to a theory with the central charge cBH

given by (3.55) and a particular subset of the conformal weights in (3.56):

hJ,M =
(J +M)2

k
− J(J − 1)

k − 2
. (3.59)

Nonetheless it is also possible to interpret it formally within a theory with central charge
cPF given by (3.49). Consider that, from equation (3.33), we only observe the central
charge and conformal dimensions in the combination c

24−h. In other words, we can only
directly observe the effective central charge ceff = c− 24h. Using the correspondences:

J =
m+ 1

2

M =
l −m

2

(3.60)

we can see that cPF − 24∆m
l = cBH − 24hJ,M . In the following we shall maintain this

distinction, by denoting always the weights pertaining to the black-hole theory by h,
and those related the parafermionic interpretation of the AF Potts model by ∆.

The vertex representation of the AF Potts model was studied with periodic boundary
conditions in [54] where both the discrete and continuous series of exponents hBH were
observed on the lattice. It was also observed in [32] that in the RSOS representation
of the AF Potts model with boundary conditions such that the heights h1 and hN+1 in
Figure 3.16 are set to 1 and l + 1 respectively (see [72]), the exponents are again given
by 3.50 and the full generating function of the model is given by:

c0
l =

∞∑
n=0

(
Kl+2nk −K2(n+1)k−l−2

)
= Kl −K2k−l−2 +Kl+2k −K4k−l−2 + . . . , (3.61)
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This expression exactly coincides with the string function of the Zk−2 parafermion CFT.
The string function c0

l in (3.61) is a special case of the more general object [73]:

cml =
1

η(q)2

∑
n1,n2∈Z/2
n1−n2∈Z

n1≥|n2|,−n1>|n2|

(−1)2n1sign(n1)q
(l+1+2n1k)2

4k
− (m+2n2(k−2))2

4(k−2) . (3.62)

It should be clear then from the above discussion that the AF Potts model is closely
related to the Euclidean Black Hole CFT as well as the Zk parafermion CFT. Previous
studies showed that the vertex version of the model produced the exponents of the
Black Hole Theory whereas the RSOS version, defined for k integer, produced a subset
of the exponents of the parafermionic CFT. This suggests that there should exist open
boundary conditions in the AF Potts model, other than free boundary conditions, that
produce the full set of parafermion exponents (3.51) and the full set of string functions
(3.62). Section 3.4 will introduce new boundary conditions that achieves this. Using the
same techniques discussed in section 3.2, the representation theory of the lattice algebra
that describes these new boundary conditions will be utilised to derive a new identity
relating the string functions (3.62) to the discrete character generating functions (3.57),
shedding further light on the relationship between the Zk parafermion CFT and the
Black Hole Theory.

3.4 New boundary conditions in the antiferromagnetic Potts
model

We start with the observation that the usual “blobbed” boundary conditions from section
3.1.4 (which, we recall, correspond to fixing the values of the spin in the Q-state Potts
model to a subset {1, 2, ..., Q1} on the boundary) do not seem, in general to be confor-
mally invariant in the critical antiferromagnetic case.2 We have identified a whole new
family of boundary conditions which are conformally invariant in the AF Potts model,
but are not in the ferromagnetic one. We refer to these boundary conditions as “alt”,
for reasons which will become clear below.

3.4.1 The alt boundary conditions in the loop model

Instead of taking the usual blobbed boundary conditions by fixing the spins to a sub-
set on one of the boundaries—by convention the left one—, we now fix them to two
complementary, alternating subsets. In other words, we decide that Potts spins on even
(say) boundary sites can only take a particular set of Q1 ≤ Q values, while spins on odd
boundary sites can only take values in the complementary set of Q2 = Q −Q1 values.
No spin can be in both sets. As before, we can make sense of this definition for all real
values of Q, Q1 by going to the loop or vertex representation. In particular, we no longer
require 0 ≤ Q1 ≤ Q. Using the same methods as section 3.1.4, the partition function
of the model in the loop representation with these alternating boundary conditions is:

ZAlt
Potts = Q

V
2

∑
loops

x|G|Q
`
2

(
Q1

Q

)`1 (Q2

Q

)`2
, (3.63)

2What is observed is simply that the scaled gaps, while converging to fixed (real) values for large
systems as they should in a scaling theory, do not reproduce any of the features expected from a CFT.
Most noticeably, they do not form conformal towers with integer-spaced scaling levels characteristic of
descendent states.
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where the sum is over all loops that do not touch the boundary at both even and odd
sites, and `1 and `2 are the number of loops that touch the boundary at exclusively even
and exclusively odd sites, respectively. This describes what we may call the partition
function of an alternating boundary loop model. We eliminate the overall multiplicative
factor and define:

ZAlt
Loop =

∑
loops

x|G|Q
`−`1−`2

2 y`11 y
`2
2 , (3.64)

where y1 and y2 are the Boltzmann weights of loops that touch the boundary at ex-
clusively even and exclusively odd sites respectively, and we define n0 ≡

√
Q to be the

weight of each of the ` − `1 − `2 loops in the bulk (i.e. loops that do not touch any
site on the left boundary). Once again the sum is over loops that do not touch the
boundary at both even and odd sites. We can rewrite the foregoing expression as

ZAlt
Loop =

∑
loops

x|G|Q
`
2

(
y1

n0

)`1 ( y2

n0

)`2
. (3.65)

We can in fact use the blob algebra from section 3.1.4 to study these boundary condi-
tions, but as we will see below, the transfer matrix is now a new function of blob algebra
generators. We have y1 = Q1/

√
Q, which we parameterise as

y1 =
Q1√
Q
≡ sin(r + 1)γ

sin rγ
, (3.66)

while
y2 =

Q−Q1√
Q

=
√
Q− y1 =

sin(r − 1)γ

sin rγ
, (3.67)

where we recall that we have n0 =
√
Q = 2 cos γ. The transfer matrix T is written in

terms of blob algebra generators:
T = t1t2 , (3.68)

where

t1 = b(e1)(x+ e3)(x+ e5) · · · (x+ e2L−1)(1 + xe2)(1 + xe4) · · · (1 + xe2L−2) (3.69)

t2 = (1− b)(e1)(x+ e3)(x+ e5) · · · (x+ e2L−1)(1 +xe2)(1 +xe4) · · · (1 +xe2L−2) (3.70)

We stress that the new boundary condition—which we shall call “alt” in the following—is
for the time being imposed on only one side of the system. Note also that under r → −r,
y1 and y2 are swapped, which corresponds simply to swapping the odd and even sites
(or odd and even loops), and does not change any of the properties of the system. In
what follows, we can therefore assume without loss of generality that r ≥ 0. We can
furthermore define the operator u ≡ 1− b such that b, u are orthogonal projectors:

b2 = b

u2 = u

bu = ub = 0

b+ u = 1

(3.71)

and we can rewrite eq. (3.70) as

t2 = u(e1)(x+ e3)(x+ e5) · · · (x+ e2L−1)(1 + xe2)(1 + xe4) · · · (1 + xe2L−2) . (3.72)
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Figure 3.27: The “alternating loop model”: The “blobs" correspond to the operator b
and the squares correspond to the operator u = 1− b.

Figure 3.28: The critical exponent ∆r/2,j from equation (3.79) plotted vs k, using the
values r = 2.5 and j = 0. It can be seen that the finite-size values for the critical
exponents converge (slowly) to the exact value.
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Figure 3.29: The criti-
cal exponent ∆r/2,j from
equation (3.79) plotted vs
k, using the values r = 2.1
and j = 1 in the blob sec-
tor.

Figure 3.30: The criti-
cal exponent ∆r/2,j from
equation (3.79) plotted vs
k, using the values r = 2.1
and j = 1 in the unblob
sector.

We shall represent the operator u as a square; closed loops with a square then get the
modified Boltzmann weight y2. A configuration of the alternating loop model is shown
in Figure 3.27.

Since we are dealing with a transfer matrix that is written entirely in terms of blob
algebra generators, we should once again consider the blob algebra representation spaces
from section 3.1.4 and in particular from Figure 3.15. Numerical studies, and the use
of equations (3.33) and (3.35), show that the alt transfer matrix produces the following
generating functions:

TrWb
j
qL0−c/24 7→ λr,j (3.73)

TrWu
j
qL0−c/24 7→ λk−r,j (3.74)

where r parameterises the blob parameter according to equations (3.66) and (3.67). The
quantities λr,j entering equations (3.73)–(3.74) are defined as

λr,j =
1

η(q)2
q

(r+2j)2

4k
− (r−1)2

4(k−2)Sj , (3.75)

where Sj was defined in (3.58) and η(q) = q1/24
∏∞
n=1(1−qn) is Dedekind’s eta function.

See table 3.1) for some explicit numerical results. Note that the result (3.74) follows
from (3.73), since r → k − r exchanges y1 and y2 (using also periodicity of y1, y2 under
r → r+k), while exchanging y1 and y2 obviously also exchanges the roles of b and u. The
quantities λr,j are formally identical with the discrete characters of the Euclidean Black
Hole theory defined in equation (3.57) when we use the correspondences in equation
(3.60), which in the present notation corresponds to:

r = m+ 1

l = r − 1 + 2j
(3.76)

and hence
J =

r

2
M = j

(3.77)
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The correspondences in (3.77) ensure that the observed character on the lattice matches
the discrete character in (3.57). In particular, we have:

λr,j = λdJ,M (3.78)

Assuming M ≥ 0, we then have that the leading exponent is given by:

∆r/2,j =
(r − 1 + 2j)(r + 1 + 2j)

4k
− (r − 1)2

4(k − 2)
(3.79)

which can be matched with the parafermion exponents ∆m
l defined in equation (3.50)

using (3.76).

Note that since we deal with systems of even length, j is integer and thus so is M .
Of course the parameter r in the lattice model does not have to be integer; but since
2J ∈ N, it is only this case that lends itself to an interpretation in terms of discrete
representations. Note, however, that even when r is an integer, k − r is not an integer
for k generic. The generating function in the unblobbed sector can nevertheless be
interpreted in terms of SL(2,R) as well. Indeed, for M ≤ −1, the discrete characters
are usually expressed slightly differently: [70]. 3

λdJ,M = η(q)−2q
(J−|M|)2

k q−
(J−1/2)2

k−2 q|M |S|M | , for M ≤ −1 , (3.80)

and we find correspondingly

J =
r

2
,

M = −j ,
λk−r,j = λdJ,M . (3.81)

which should be compared with (3.77).

In Table 3.1 we compare the generating functions of the alternating loop model observed
on the lattice with the quantites defined in equations (3.73) and (3.74). In Figures 3.28,
3.29 and 3.30 we plot the critical exponent as a function of k, and three different spin
sectors: j = 0, j = 1 in the blob sector, and j = 1 in the unblob sector.

Since M = ±j depending on the sector, we see that all allowed values of M in the
discrete characters are observed in the lattice model. We will discuss the values of J in
section 3.5. Note that the characters Kl from section 3.3 can also be expressed in terms
of discrete characters. We find indeed the simple identities

Kl = λd1
2
, l
2

− λd1
2
,− l+2

2

. (3.82)

It is interesting to consider the limit r → 1. In the ferromagnetic case, the “usual”
blobbed boundary conditions reduced to free boundary conditions in this limit, since
both bulk and boundary loops are given the same Boltzmann weights in this case.
However, we note that with the alt boundary conditions there is no way to go from
them to free boundary conditions in the antiferromagnetic model by sending r → 1. It
turns out that sending r → 1 leads to a complete change of thermodynamic properties,
and is connected with normalisability issues we discuss in section 3.5.

3For comparison with [70] we have λdJ,M = χd−J,M+J . In other words, the labels j, l in this reference
are given by j = −J, l =M .
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k Sector r Exponent Generating function
4.5 j = 0 2 0.0667 1 + q + 3q2 + 6q3 + ...

4.5 j = 1 blob 2 0.733 1 + 2q + 4q2 + 8q3 + ...

4.5 j = 1 unblob 2 0.844 1 + 2q + 4q2 + 8q3 + ...

4.5 j = 2 unblob 2 2.067 1 + 2q + 5q2 + ...

4.5 j = 2 blob 2 1.844 1 + 2q + 5q2 + ...

5.1 j = 0 2.2 0.0664 1 + q + 3q2 + 6q3 + ...

5.1 j = 1 blob 2.2 0.655 1 + 2q + 4q2 + 8q3 + ...

5.1 j = 1 unblob 2.2 0.837 1 + 2q + 4q2 + 8q3 + ...

5.1 j = 2 unblob 2.2 2.066 1 + 2q + 5q2 + ...

5.1 j = 2 blob 2.2 1.635 1 + 2q + 5q2 + ...

Table 3.1: Some examples of the generating functions and critical exponents observed
numerically on the lattice for two different values of k and r, in both the blobbed and
the unblobbed sectors. The generating functions are written to the order to which
they can be clearly observed on the lattice by diagonalising the transfer matrix for
the alternating loop model. Up to this order they agree with the generating functions
defined in eqs. (3.73)–(3.74).

3.4.2 The alt boundary conditions in the RSOS model

We saw in section 3.2 that the blobbed boundary conditions, described by the transfer
matrix in equation (3.32), produced the generating functions of Verma modules in the
continuum limit (see equations (3.40) and (3.41)). Furthermore, it was found that by
going to the RSOS representation of the model, or equivalently, by constructing an ir-
reducible representation of the blob algebra using equation (3.42) and Figure 3.25, one
could derive the generating function of CFT minimal models in terms of the generating
function of the Verma module. The key takeaway was that all of the properties of the
representation theory of the CFT module could be observed on the finite lattice via the
representation theory of the blob algebra.

In the AF model we have a new “alt" boundary condition that can also be described
by the blob algebra. We can therefore perform the same analysis as the ferromagnetic
model and derive an analogous expression to equation (3.43) for the AF model, this time
relating the generating function obtained from the “alt version” of the RSOS model to
the discrete characters in equation (3.80), the generating function obtained from the alt
boundary conditions in the loop model.

The discussion in section 3.3 provides us with a hint as to what this new identity
should look like, and what should be the generating function obtained from the alt
boundary conditions in the RSOS model. First of all consider the form of the leading
critical exponent (equation (3.50) ) with free boundary conditions in the sector with
l = 2j through lines, and the expression in (3.51) showing that these exponents are a
subset of the compact parafermion theory. Furthermore, the discussion from equation
(3.59) to equation (3.60) showed that all of the parafermion critical exponents were
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“contained" inside the Euclidean Black Hole discrete character when this theory was
considered as one with central charge cPF. All of this suggests that we should be able
to obtain all of these parafermion critical exponents via the alt boundary conditions in
the RSOS model, and that we should be able to recover the string functions cml defined
in equation (3.62) from the RSOS model also. Section 3.4.3 will present the relevant
results and discuss this in more detail.

3.4.3 Missing string functions and alt boundary conditions

Consider the expressions in equations (3.73). Since the generating functions of the loop
model on the RHS are obtained by acting with a transfer matrix written in terms of
blob algebra generators, we can obtain the corresponding generating function of the
RSOS model for k and r integer by finding the corresponding irreducible representation
of the blob algebra, exactly as in section 3.2. For clarity, the form of the irreducible
representation of the blob algebra is written again here:

X br,j =
∞⊕
n=0

Wb
j+nk/Wu

j+r+nk

Wb
k−j−r+nk/Wu

k−j+nk
(3.83)

The corresponding generating function of levels for the alt boundary conditions is then

TrX br,jq
L0−c/24 =

∞∑
n=0

[
λm+1, l−m

2
+nk − λk−m−1, l+m+2

2
+nk − λm+1, 2k−l−m−2

2
+nk + λk−m−1, 2k−l+m

2
+nk

]
=

∞∑
p=−∞

[
λdm+1

2
, l−m

2
+pk
− λdm+1

2
,− l+m+2

2
+pk

]
(3.84)

where we have used the correspondences in equation (3.77). One can verify that this is
precisely the form of the string functions cml . That is:

TrX br,jq
L0−c/24 = cml , for m ≤ l (3.85)

with the correspondence (3.77). As the notation indicates, this expression coincides
with the string function for the Zk−2 parafermion theory 4 Note that since j is integer, l
and m have the same parity, as required. Note also that the string functions c−ml = cml
are invariant under m→ −m.

We can now study the range of values of the parameters. For q = eiπ/k, the simplest
case is r = 1, for which we have to consider in fact only the TL algebra. The possible
values of j are given by j = 0, . . . , k2 − 1, so

l = 2j = 0, . . . , k − 2 . (3.86)

For r = 2, . . . k − 2, we see first, from m = r − 1, that

m = 1, . . . , k − 3 . (3.87)

As far as l is concerned, we have to invoke the representation theory of the blob algebra.
For a given value of r, we have now the allowed values of j in the blobbed sector,
j = 0, . . . , k−1−r

2 , which correspond to

l = r − 1 + 2j = m, . . . , k − 2 (3.88)
4Sometimes string functions are defined with an extra factor η(q), so what we denote cml is referred

to as η(q)cml .



3.4. NEW BOUNDARY CONDITIONS IN THE ANTIFERROMAGNETIC POTTS MODEL51

b

b

b

b

b− 1

b+ 1

b− 1

b+ 1

b− 1

a

a

a

a

Figure 3.31: Alternating boundary conditions in the antiferromagnetic RSOS model.
We will write this boundary condition as b±, . . . , a.

To get the missing values of l we need to consider the unblobbed sector. We have first
the equivalent of (3.83)

X ur,j =
∞⊕
n=0

Wu
j+nk/Wu

r−j+nk

Wb
k−r+j+nk/Wb

k−j+nk
= cm2m−l , for m ≤ l . (3.89)

Indeed, straightforward calculation first leads to an identity similar to (3.85) but with
ck−2−m
k−2+l−2m, following from the transformation r → k − r. Using a standard identity for
string functions cml = ck−2−m

k−2−l in Zk−2 theories [74], gives instead the string function
cm2m−l. For the unblobbed sector, the allowed values of j are j = 0, . . . , r−1

2 , so l =
r − 1 + 2j = r − 1, . . . , 2(r − 1) = m, . . . , 2m. It follows that 2m − l = 0, . . .m,
recovering what was missing in (3.88) to cover the whole set5

l = 0, . . . , k − 2 (3.90)

as in (3.86). Equations (3.84) and (3.85) tell us that the alt boundary conditions in the
AF Potts RSOS model should produce the string functions cml in the continuum limit.
We now describe what precisely “alt” means for the RSOS model.

Consider the RSOS boundary conditions on the lattice in Figure 3.31. Heights are
fixed to hN+1 = a on the right boundary, to h1 = b on the left boundary, and heights h2

next to the left boundary alternate between b±1 as shown. We will write this boundary
condition as b±, . . . , a. It is found that the boundary condition:

(m+ 1)±, ..., (l + 1) (3.91)

produces the string function cml in the continuum limit (m 6= 0). Similarly, we will write
1+, . . . , (l + 1) to denote the boundary condition in Figure 3.16—i.e., with a constant,
non-alternating value of h2—that produces the string function c0

l .
6 Using this notation,

5Note that l = m is common to both sets, since it corresponds to j = 0 for which there is no
distinction between blobbed and unblobbed.

6Note that since heights are restricted to be between 1 and k− 1 we cannot have an “alt” condition
on a boundary where the boundary height is fixed as h1 = 1. The superscript in 1+, . . . is actually
redundant, since h2 = 2 then follows from the RSOS constraint alone.
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Boundary condition Exponent Generating function
1+, ..., 1 0 cm=0

l=0 = qh−
c
24 (1 + q2 + 2q3 + . . .)

1+, ..., 3 1
3 cm=0

l=2 = qh−
c
24 (1 + 2q + 3q2 + 5q3 + . . .)

1+, ..., 5 1 cm=0
l=4 = qh−

c
24 (1 + q + 3q2 + 3q3 + . . .)

2±,...,2 1
16 cm=1

l=1 = qh−
c
24 (1 + q + 2q2 + 4q3 + . . .)

2±,...,4 9
16 cm=1

l=3 = qh−
c
24 (1 + 2q + 3q2 + 5q3 + . . .)

3±,...,1 3
4 cm=2

l=0 = qh−
c
24 (1 + q + 2q2 + 3q3 + . . .)

3±,...,3 1
12 cm=2

l=2 = qh−
c
24 (1 + q + 3q2 + 4q3 + . . .)

3±,...,5 3
4 cm=2

l=4 = qh−
c
24 (1 + q + 2q2 + 3q3 + . . .)

4±,...,2 9
16 cm=3

l=1 = qh−
c
24 (1 + 2q + 3q2 + 5q3 + . . .)

4±,...,4 1
16 cm=3

l=3 = qh−
c
24 (1 + q + 2q2 + 4q3 + . . .)

Table 3.2: String functions in the k = 6 antiferromagnetic RSOS model. The string
functions are expanded up to the terms we can clearly observe on the lattice.

Table 3.2 shows the exact correspondence between string functions and RSOS boundary
conditions for the case k = 6. The generating functions (i.e., the string functions) are
written up to the number of terms that we have observed by the numerical study of the
lattice model.

3.5 Normalisability issues

The inequality 1
2 < J < k−1

2 , where 2J ∈ N, for normalisable states in the CFT
suggests that the identification of the generating function of levels in the lattice model
with discrete characters must break down at some point for r < 1 or r > k − 1. Where
exactly it breaks down is not so clear, since 2J in the CFT is necessarily integer while our
variable r is continuous. We find in fact that the identification breaks down for r < rc
where 1 < rc < 2 is some critical value of r dependent on k. The same phenomenon
must then happen for r > k − rc, because of the r → k − r symmetry.

We find numerically that the analytical continuation of the levels contributing to
the discrete character within the interval [rc, k−rc] correspond, outside this interval, to
highly excited states. In other words, there are numerous level crossings at rc and k−rc.
Outside this interval, the true ground state of the theory does not follow analytically
from the ground state within the interval. This is related to the behaviour of the
boundary energy in equation (3.33) as will now be discussed.

Recall that to calculate the leading critical exponent from the finite-size scaling of
the lattice model we use eq. (3.33), while to find the descendant states within a given
sector we use eq. (3.35). It is found, however, that there are in fact two different types
of states in the spectrum, with two different boundary free energies fs in eq. (3.33). We
can see from (3.33) that only states with the lower value of fs will contribute to the
low-energy spectrum in the thermodynamic limit. The values of these two boundary
free energies, f1

s and f2
s , however depend on r, and it is found that there exists a critical

value 1 < rc < 2 such that they cross. Accordingly, when r < rc (or r > k − rc) the
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Figure 3.32: The two
boundary energies f1

s and
f2
s plotted vs r, for k =

5 in the j = 0 sector.
The critical values of rc
are the points of intersec-
tion of the two curves.

Figure 3.33: The two
boundary energies f1

s and
f2
s plotted vs r, for k =

7 in the j = 0 sector.
The critical values of rc
are the points of intersec-
tion of the two curves.

low-energy part of the spectrum in the thermodynamic limit is no longer described by
the generating functions in (3.73).

We can see this phenomenon illustrated quite clearly in Figures 3.32–3.33. When the
green line is below the purple line, the r ∈ [rc, k− rc] regime, the spectrum is described
by equation (3.73). When the green line is above the purple line, the r /∈ [rc, k − rc]
regime, the states corresponding to the green line no longer affect the low-energy part
of the spectrum in the thermodynamic limit.

Certainly the states whose boundary energy is the continuation of the boundary
energy within the interval do not contribute, outside the interval, to partition functions
in the scaling limit. This is because the BCFT is obtained after subtracting the non-
universal ground state energy fs associated with a given boundary condition:7 states
with a higher ground-state energy are exponentially suppressed as e−L(f ′s−fs) in the par-
tition function. It is not clear what these states possibly encode from a field theoretic
point of view—that is, how the low-lying excitations above the “wrong” ground state
might scale. We are not sure in particular whether or not we would find the continua-
tion of the generating functions observed for r ∈ [rc, k−rc]. It seems nevertheless worth
pointing out that there is a known case [75] of a bulk model possessing a continuous pa-
rameter, which can be adjusted so as to make two different bulk free energies cross; and
on either side of this transition both the true ground state and the “wrong” ground state
obtained by analytic continuation from the other side of the transition—each together
with their low-energy excitations—behave as two different fully-fledged conformal field
theories. We do not wish to rule out that the present model might provide a boundary
analogue of this scenario.

Note that in Figures 3.34–3.35 we see the same crossing phenomenon occurring when
7It is important to recall here that fs does in general depend on the boundary condition (while it is

always set equal to zero in the BCFT). The point is that, in this particular case, we have two families
of states, with the same boundary conditions, and with different values of fs.
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Figure 3.34: The two
boundary energies f1

s and
f2
s plotted vs r, for k = 5
in the j = 3 blob sector.
The critical values of rc
are the points of intersec-
tion of the two curves.

Figure 3.35: The two
boundary energies f1

s and
f2
s plotted vs r, for k = 5
in the j = 3 unblob sec-
tor. The critical values of
rc are the points of inter-
section of the two curves.

there are defect lines present in the system. In particular, Figures 3.34—3.35 illustrate
this for j = 3. This is the scenario that we would expect from the connection between
level-crossing and normalisability; the inequality 1

2 < J < k−1
2 with 2J ∈ N—recall

the associations made in (3.81)—for normalisable states suggests that the breakdown of
the correspondence between the continuum limit of the lattice model and the discrete
character is independent of j and therefore should also occur for j 6= 0. Figures 3.34–
3.35 show that this indeed the case.

3.5.1 A first-order boundary phase transition

The level crossing observed at rc and k−rc can be interpreted as a first-order boundary
phase transition, since it corresponds to a discontinuity of the derivative of the boundary
free energy. Defining fs = − logZ

M whereM is the number of sites in the vertical direction
of the lattice and Z is the partition function defined in (3.65), an easy calculation shows
that

∂fs
∂r

=
γ sin γ

M sin(rγ)

[
〈`1〉

sin((r + 1)γ)
− 〈`2〉

sin((r − 1)γ)

]
, (3.92)

where 〈`1〉 and 〈`2〉 are the expectation values of the number of contractible blobbed
and contractible unblobbed loops respectively. We believe that, as we cross the critical
value rc (or k − rc), we go from a situation where the ground state is dominated by
entropic considerations and 〈`2〉 is finite to a situation where the ground state is domi-
nated by energy considerations and `2 is zero in the ground state.
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3.6 Combining alt boundary conditions in the loop model

We now wish to consider the case where alt boundary conditions are imposed on both
sides of the strip. The general situation is characterised by more parameters than
previously. The parametrisation (3.66) of the alternatingly restricted number of Potts
states on the boundary has to be made independently for both boundaries. Instead of
r, we thus have r1 for the left boundary and r2 for the right boundary. The algebraic
framework must be extended, so as to have blob and unblob operators—denoted b1, b2
and u1 = 1−b1, u2 = 1−b2 respectively—for each side. The proper algebraic framework
for this situation is called the two-boundary Temperley-Lieb (2BTL) algebra [76, 56, 77].
We need to be careful with 2j > 0 through-lines, since in this case we need to define four
different sectors—denoted bb, ub, bu and uu—where the left (resp. right) label specifies
whether the leftmost (resp. rightmost) through-line carries the blob or unblob operator,
b1 or u1 (resp. b2 or u2).

Note that even though the lattice model allows continuous values of r1 and r2, the
discrete character in equation (3.80) (which played the role of the generating function
when “alt” was imposed on only one side of the system) is only defined for 2J ∈ N.
From the correspondences in (3.77) and (3.81) we have then that r ∈ N also. As we
shall now see, the discrete character also arises when “alt" is placed on both sides. We
hence consider only the case r1 and r2 integer. Note that when j = 0 the lattice model
is more subtle since loops can touch both boundaries. In what follows we instead focus
only on j > 0.

Interestingly, in this framework there are two distinct ways to implement alt bound-
ary conditions on both sides of the system. In Figure 3.36 the blob operator on both the
left and right boundaries acts on odd-numbered rows, while the unblob operator acts
on even-numbered rows on both boundaries. We call this setup “correlated boundary
conditions”. The alternative to this is shown in Figure 3.37. Here the blob operator acts
on odd rows on the left, and on even rows on the right (and vice versa for the unblob
operators). We call this setup “anti-correlated boundary conditions”. In order to make
sense of the continuum limit in terms of conformal field theory, we must consider cor-
related boundary conditions when the width of the lattice L is even and anti-correlated
boundary conditions when L is odd, or anti-correlated boundary conditions when the
width of the lattice L is even and correlated boundary conditions when the width of the
lattice L is odd. (Note that in Figures 3.36–3.37 our conventions are such that L = 4).

These two ways of implementing the alt boundary conditions on both sides give
rise to two different generating functions in the continuum limit. The continuum limit
must include the two generating functions found, as we have explained, by treating
seperately the correlated and anti-correlated boundary conditions. Redefining now r =
min(r1, r2),8 extensive numerical studies lead to the following conjectures in the case

8That is, r here has a different meaning than in the one-boundary case.
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Figure 3.36: Alt on both sides: correlated boundary conditions in the bu sector with
j = 1.

Figure 3.37: Alt on both sides: anti-correlated boundary conditions in the bu sector
with j = 1.

r1, r2 integer and j 6= 0:

TrWbb
j
7→

∞∑
n=0

λr1+r2−1−2nr,j+nr + λ|r2−r1|+1−2nr,j+(n+1)r−1 , (3.93)

TrWub
j
7→

∞∑
n=0

λ−r1+r2−1−2nr,j+nr + λ−r1+r2+1−2r(n+1),j+(n+1)r−1 , (3.94)

TrWbu
j
7→

∞∑
n=0

λr1−r2−1−2nr,j+nr + λr1−r2+1−2r(n+1),j+(n+1)r−1 , (3.95)

TrWuu
j
7→

∞∑
n=0

λ−r1−r2−1−2nr,j+nr + λ−r1−r2+1−2r(n+1),j+(n+1)r−1 . (3.96)
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Figure 3.38: Alternating boundary conditions on both sides. We will write this bound-
ary condition b±, ...,±a and refer to it as “correlated” boundary conditions.

3.7 Combining alt boundary conditions in the RSOS model

We have found that the continuum limit of the AF Potts RSOS model coincides with
that of the Zk−2 parafermion theory and we have found an “alt” boundary condition
corresponding to each of the string functions in these models. This prescription, how-
ever, was restricted to the case where the alt boundary condition is on one side only
with the other side having free boundary conditions. We would expect that putting
the alt boundary conditions on both sides of the lattice would correspond to the fusion
of fields in the Zk−2 parafermion theory. As will be shown below from our numerical
results, this is indeed the case.

We can however recover this result from knowledge of the generating functions pro-
duced in the continuum limit of the loop model with the alt conditions on both sides;
see eqs. (3.93)–(3.96). Section 3.4.3 used the representation theory of the blob algebra
to move between the AF loop model and the AF RSOS model (similarly, section 3.2
used the same procedure to move between the two ferromagnetic models). It was found
that the generating function of the irreducible representation of the blob algebra created
by the infinite sum in equation (3.84) produced the RSOS representation. We can use
the same method for the case with the alt condition on both sides, i.e., when there are
two blob operators, to calculate the generating functions in the RSOS model produced
by putting the alt condition on both sides. The relevant algebra in this case is the
two-boundary Temperley-Lieb (2BTL) algebra [76, 56, 77].

Section 3.7.1 will present the numerical results of the RSOS model with the alter-
nating boundary condition on both sides. These results will be interpreted in terms
of the fusion of fields in the Zk−2 parafermion theory. Section 3.7.2 will recover these
results by studying the representation theory of the 2BTL algebra.

3.7.1 Numerics

As was the case in the loop model (see section 3.6) there are two ways to put the alt
boundary condition on both sides and these two ways will give two different continuum
limits. Consider the boundary conditions in Figures 3.38 and 3.39. The heights at the
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Figure 3.39: Alternating boundary conditions on both sides. We will write this bound-
ary condition b±, ...,∓a and refer to it as “anti-correlated” boundary conditions.

boundaries are fixed to the same, constant values in the two Figures, namely h1 = b on
the left boundary and hN+1 = a on the right boundary. However, in Figure 3.38 the
lattice sites with heights hN = a−1 just next to the right boundary appear on the same
rows as lattice sites with heights h2 = b− 1 just next the left boundary. Conversely, in
Figure 3.39 the heights a − 1 appear on the same row as b + 1. We will refer to these
two situations as “correlated” and “anticorrelated” (alternating) boundary conditions
respectively.

We will write a generic correlated boundary condition as b±, . . . ,±a and a generic
anti-correlated boundary condition as b±, . . . ,∓a. We find that one can obtain two
different conformally invariant continuum limits from these boundary conditions. In
the first case, we must consider correlated boundary conditions when the width of the
lattice L is even and anti-correlated boundary conditions when the width L is odd. The
second case works the other way around: we take anti-correlated boundary conditions
for L even and correlated boundary conditions for L odd. (Note that in our conventions
N = 2L = 6 in Figures 3.38 and 3.39). The two different choices correspond to two
different continuum limits. The string functions obtained from this prescription for the
case k = 6 are shown in Table 3.3. The boundary conditions reported in the table are
the boundary conditions we take for L even. The number of terms we have written
in the expansion of the string function correspond to the number of terms that we
can clearly observe on the lattice. We have the general result that for the correlated
boundary condition:

(m1 + 1)±...±(m2 + 1) (3.97)

in even sizes (and hence anti-correlated in odd sizes) the continuum limit is given by
the string function cm1+m2

0 . Similarly, the anti-correlated boundary condition

(m1 + 1)±...∓(m2 + 1) (3.98)

in even sizes (and hence correlated in odd sizes) gives the string function cm1−m2
0 .

Compare this with the parafermion fusion rules [74] for fields of the form φml=0:

φm1
l=0 × φ

m2
l=0 = φm1+m2

l=0 (3.99)
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Boundary condition Exponent Generating function
2±,...,±2 3

4 cm=2
l=0 = qh−

c
24 (1 + q + 2q2 + 3q3...)

2±,...,∓2 0 cm=0
l=0 = qh−

c
24 (1 + q2 + 2q3...)

3±,...,±3 1 cm=4
l=0 = qh−

c
24 (1 + q + 3q2 + 3q4...)

3±,...,∓3 0 cm=0
l=0 = qh−

c
24 (1 + q2 + 2q3...)

2±,...,±4 1 cm=4
l=0 = qh−

c
24 (1 + q + 3q2 + 3q3...)

2±,...,∓4 3
4 cm=2

l=0 = qh−
c
24 (1 + q + 2q2 + 3q3...)

4±,...,±4 3
4 cm=2

l=0 = qh−
c
24 (1 + q + 2q2 + 3q3...)

4±,...,∓4 0 cm=0
l=0 = qh−

c
24 (1 + q2 + 2q3...)

Table 3.3: String functions in the k = 6 antiferromagnetic RSOS model with the al-
ternating boundary condition on both sides. Note that the boundary condition written
in the table corresponds to the boundary condition when L is even. When the left
and right boundary conditions are “correlated” for L even then we take “anticorrelated”
boundary conditions for L odd, and vice versa. The string functions are expanded up
to the terms we can clearly observe on the lattice.

Clearly then, the boundary condition for L even in (3.97) corresponds to the fusion of
the fields in equation (3.99) and the boundary condition in (3.98) for L even corresponds
to the fusion of the fields

φm1
0 × φ−m2

0 = φm1−m2
0 (3.100)

Finally, let us notice that when we put correlated and anti-correlated boundary
conditions together on the same lattice (i.e., we sum the correlated and anti-correlated
configurations) we will clearly get the sum of the two string functions in the continuum
limit cm1+m2

0 + cm1−m2
0 . We can interpret this as the result of the fusion product:

1√
2

(φm1
l=0 + φ−m1

l=0 )× 1√
2

(φm2
l=0 + φ−m2

l=0 ) (3.101)

3.7.2 2BTL representation theory

The representation theory of the 2BTL algebra [76, 56, 77] was further studied from a
conformal perspective in [63]. As was discussed in section 3.6, when there is a blob on
both sides of the system there are four sectors to consider, labelled by bb, ub, bu and
uu. It was found in [63] that (when q = eiπ/k is a primitive root of unity) the following
infinite sum corresponds to the generating function of an irreducible representation:

X bbj =
∑
n1=0

Wbb
j+n1k −

∑
n1=0

Wbb
k−(r1+r2)+1−j+n1k

−
∑
n1=0

Wub
j+r1+n1k +

∑
n1=0

Wub
k−(r2−1)−j+n1k

−
∑
n1=0

Wbu
j+r2+n1k +

∑
n1=0

Wbu
k−(r1−1)−j+n1k

+
∑
n1=0

Wuu
r1+r2+j+n1k −

∑
n1=0

Wuu
k+1−j+n1k .

(3.102)
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We find results in agreement with equation (3.102), but we also find that the diagram
of inclusions from which this infinite sum can be derived requires modification, i.e.,
the known 2BTL inclusion diagram does not in fact lead to equation (3.102) as was
previously thought [63]. When we impose r1 + r2 − 1 + 2j ≤ k − 1 and j > 0 we find
that the inclusion diagram should instead be given by Figure 3.40. The only difference
here to the diagram published in [63] is that we do not have an arrow from Wbb

k+j to
Wbb
k−(r1+r2−1)−j .

Wbb
j Wbb

k−(r1+r2−1)−j Wbb
k+j Wbb

2k−(r1+r2−1)−j Wbb
2k+j

. . .

. . .

. . .

. . .

Wub
r1+j Wub

k−(r1−1)−j Wub
k+r1+j Wub

2k−(r1−1)−j

Wbu
r2+j Wbu

k−(r2−1)−j Wbu
k+r2+j Wbu

2k−(r2−1)−j

Wuu
r1+r2+j Wuu

k+1−j Wuu
k+r1+r2+j

Figure 3.40: The corrected 2BTL inclusion diagram, replacing the one published in [63].
The repeated part of the diagram is such that all standard modules beyond those in the
first three columns each have three out-going arrows.

We will use the expressions in eqs. (3.93)–(3.96) to calculate X bbj , and we will show that
the resulting generating function is that corresponding to the fusion of parafermion
fields. We have from expressions (3.93) to (3.96):

Wbb
j+n1k →

∞∑
n2=0

λr1+r2−1−2n2r,j+n2r+n1k + λ|r2−r1|+1−2n2r,j+(n2+1)r−1+n1k (3.103)

Wbb
k−(r1+r2)+1−j+n1k

→
∞∑

n2=0

λr1+r2−1−2n2r,k−(r1+r2)+1−j+n2r+n1k+λ|r2−r1|+1−2n2r,k−(r1+r2)−j+(n2+1)r+n1k

(3.104)

Wub
j+r1+n1k →

∞∑
n2=0

λ−r1+r2−1−2n2r,j+r1+n2r+n1k + λ−r1+r2+1−2r(n2+1),j+r1+(n2+1)r−1+n1k

(3.105)

Wub
k−(r2−1)−j+n1k

→
∞∑

n2=0

λ−r1+r2−1−2n2r,k−(r2−1)−j+n2r+n1k+λ−r1+r2+1−2r(n2+1),k−r2−j+(n2+1)r+n1k

(3.106)

Wbu
j+r2+n1k →

∞∑
n2=0

λr1−r2−1−2n2r,j+r2+n2r+n1k + λr1−r2+1−2r(n2+1),j+r2+(n2+1)r−1+n1k

(3.107)

Wbu
k−(r1−1)−j+n1k

→
∞∑

n2=0

λr1−r2−1−2n2r,k−(r1−1)−j+n2r+n1k+λr1−r2+1−2r(n2+1),k−r1−j+(n2+1)r+n1k

(3.108)
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Wuu
r1+r2+j+n1k →

∞∑
n2=0

λ−r1−r2−1−2n2r,j+r1+r2+n2r+n1k+λ−r1−r2+1−2r(n2+1),j+r1+r2+(n2+1)r−1+n1k

(3.109)

Wuu
k+1−j+n1k →

∞∑
n2=0

λ−r1−r2−1−2n2r,k+1−j+n2r+n1k +λ−r1−r2+1−2r(n2+1),k−j+(n2+1)r+n1k

(3.110)
We will consider for now the case r1 ≤ r2, so that we have r = r1. After taking the sum
∞∑

n1=0
of the expression in (3.103), we can write it as:

∞∑
n1=0

λr1+r2−1,j+n1k + λ−r1+r2+1,j+r1−1+n1k

+

∞∑
n1=0

∞∑
n2=0

λ−r1+r2−1−2n2r1,j+r1+n2r1+n1k + λ−r1+r2+1−2(n2+1)r1,j+r1+(n2+1)r1−1+n1k ,

(3.111)
where we see that the second term cancels the expression in eq. (3.105) entirely. Simi-
larly, applying the same sum to the expression in (3.104) gives:
∞∑

n1=0

λr1+r2−1,k−(r1+r2)+1−j+n1k + λ−r1+r2+1,k−r2−j+n1k

+
∞∑

n1=0

∞∑
n2=0

λ−r1+r2−1−2n2r1,k−(r2−1)−j+n1k+n2r1 + λ−r1+r2+1−2(n2+1)r1,k−r2−j+n1k+(n2+1)r1 ,

(3.112)
where the second term now cancels the expression in (3.106) entirely. In a similar way,
we can make the same cancellations for the terms in (3.107) and (3.109) as well as
(3.108) and (3.110). In the end, we are left with the terms:

X bbj =
∞∑

n1=0

λr1+r2−1,j+n1k −
∞∑

n1=0

λk−r1−r2+1,j+r1+r2−1+n1k

−
∞∑

n1=0

λr1+r2−1,k−r1−r2+1−j+n1k +
∞∑

n1=0

λk−r1−r2+1,k−j+n1k

+

∞∑
n1=0

λ−r1+r2+1,j+r1−1+n1k −
∞∑

n1=0

λk+r1−r2−1,j+r2+n1k

−
∞∑

n1=0

λ−r1+r2+1,k−r2−j+n1k +
∞∑

n1=0

λk+r1−r2−1,k−r1+1−j+n1k

(3.113)

where we have dealt with the negative values of r in λr,j by defining r modulo k. We
further have the relationship

2j = k − r2 − r1 (3.114)

when we want the loop model parameters to correspond to the RSOS model. Using
equations (3.85) and (3.42), equation (3.113) then becomes

X bbj = cm=r2−r1
l=k−2 + cm=r1+r2−2

l=k−2 , (3.115)

which, after using the identities r1 = m1 + 1 and r2 = m2 + 1, yields

X bbj = cm=m2−m1
l=k−2 + cm=m1+m2

l=k−2 . (3.116)
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But using the string function identities cml = c−ml and ck−2−m
k−2−l = cml , we can rewrite

this as
X bbj = cm=m1−m2

l=k−2 + cm=k−2−m1−m2
l=0 , (3.117)

which, when we compare with eq. (3.101), is nothing but the fusion product

1√
2

(φm1
l=0 + φ−m1

l=0 )× 1√
2

(φk−2−m2
l=0 + φ−k+2+m2

l=0 ) . (3.118)

In summary, then, we have recovered the numerical results found in section 3.7.1
from studying the representation theory of the 2BTL algebra.

3.8 Special cases: the two and three state Potts model

It is interesting to consider the results presented so far when we specialise to the well
studied cases of Q = 2 (the Ising model) and Q = 3. At these two points we can
consider the Potts model in its original formulation in equations (3.1) and (3.2), where
the partition function is written as a sum over configurations of Potts “spins”. In section
3.8.1 the alt boundary conditions will be interpreted in the language of Potts spins and
the concepts of “correlated” and “anti-correlated” boundary conditions introduced in
section 3.6 will be presented in the language of the Q = 3 state Potts model. The
CFT describing the continuum limit of the model at Q = 3 will be reviewed and some
known identities relating the string functions observed in section 3.4.2 to the generating
function of a compactified free boson will be recalled. These identities will then be
derived in section 3.8.2 from our lattice results; it will be shown that the Q = 3 AF
Potts model maps exactly to the well studied six vertex model, then by using the
known results pertaining to the continuum limit of the six vertex model we can write
the generating function of the Potts model in terms of the six vertex model. These
lattice identities become, in the continuum limit, the field theory identities relating the
Z4 parafermionic theory to the compactified free boson.

3.8.1 The alt boundary conditions in terms of Potts spins

It is well known that the ferromagnetic Q = 2 state Potts model (i.e. the Ising model)
is equivalent to an antiferromagnetic one in the bulk. Indeed, the mapping between
these models is easily obtained by switching the sign of the couplings and flipping the
spins on one sublattice at the same time. Consider the antiferromagnetic critical line:

eK = −1 +
√

4−Q . (3.119)

Under the transformation K → −K, equation (3.119) transforms in the following way
when Q = 2:

eK = −1 +
√

2→ e−K = −1 +
√

2 (3.120)

which gives:

eK = 1 +
√

2 (3.121)

which we observe corresponds to the ferromagnetic critical line from equation (3.31).
This mapping becomes more interesting in the presence of a boundary. While free

boundary conditions map onto free, fixed boundary conditions map onto alt boundary
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Figure 3.41: The Q-state Potts model on the square lattice. The spins live at all vertices.
When we specialise to the Ising model, i.e. Q = 4 cos2(π4 ) = 2, the antiferromagnetic
critical point can be mapped to the ferromagnetic critical point by changing the coupling
constant K → −K and reversing the sign of the spins at the sites on the lattice with
unfilled circles. This maps the ferromagnetic model with free boundary conditions
to the antiferromagnetic model with free boundary conditions, and the ferromagnetic
model with fixed boundary conditions to the antiferromagnetic model with alternating
boundary conditions.
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conditions (that is, alternating + and − spins on the boundary for Q = 2), see Figure
3.41. This suggests that the natural “equivalent” of fixed boundary conditions in the AF
case is alt. Coming now to the three-state critical AF Potts model, it is also well known
that it can be reformulated as a colouring problem (see the discussion in [32], for ex-
ample). We see from equation (3.119) that setting Q = 3 sends K → −∞. Considering
then the classical Potts Hamiltonian in equation (3.3), the only allowed configurations
of Potts spins are those where no two neighbouring spins can be identical. This is the
“colouring problem”; the partition function is given by the number of configurations
that allow Q = 3 possible colours on each site, but no two neighbouring sites can have
the same colour.

Consider now the conformal boundary conditions for the antiferromagnetic model pre-
sented in section 3.3. We discussed two types: free boundary conditions and alt bound-
ary conditions. Free boundary conditions in the Q = 3 state Potts model correspond
to imposing no extra constraint on the boundary spins. With alt boundary conditions,
even boundary sites can take two particular values, and odd boundary sites are fixed
to the remaining value (or vice versa). In the language of the colouring problem, we
can fix for example all odd boundary sites to have the colour labelled by 2, and even
boundary sites can take either the colours 1 or 3; see Figures 3.42 and 3.43. We see
that this boundary condition automatically satisfies the colouring constraint that no
neighbouring sites can have the same colour.

Note however that just as in the RSOS and loop models, there are different ways to
implement the alt condition when it is applied to both the left and right boundaries at
the same time. Once we fix, for example, odd boundary sites on the left to take only one
colour (in Figure 3.42 this colour is 2) we have a choice between fixing odd boundary
sites on the right to one specific colour or to allow odd boundary sites on the right to
take two colours. If we choose the former, (i.e. odd boundary sites on both the right
and left are fixed to take one colour) we refer to this as “correlated”. This is the case in
the right panel of Figure 3.42. If we choose the inverse, i.e., we say that odd boundary
sites on the left are fixed to one specific colour but odd boundary sites on the right are
allowed to take two colours (and hence even sites on the right boundary are fixed to
the one remaining colour), we refer to this as “anti-correlated”. This is the case in the
left panel of Figure 3.42.

But even after we have specified “correlated” or “anti-correlated” we still have an ad-
ditional choice in relation to which particular colours we choose. In Figure 3.42 the
boundary site that is fixed to one particular value is equal to 2 on both sides. In Figure
3.43, however, this is not the case; we again have “anti-correlated” boundary conditions
in the left image and correlated boundary conditions in the right image, but the fixed
height on the left boundary is equal to 2 whereas on the right boundary the fixed height
is equal to 3. Since everything in the colouring problem is defined modulo 3, there are
only four independent cases, corresponding to those in Figures 3.42 and 3.43. We will
denote these four cases by by C=, C 6=, A= and A 6=; C and A refer to “correlated” and
“anti-correlated” respectively, while the = and 6= signs refer to the cases where the left
boundary colour that is fixed is equal (resp. not equal) to the right boundary colour
that is fixed. (See Figures 3.42 and 3.43).

As we saw in sections 3.7.1 and 3.6 when considering the RSOS and loop models re-
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Figure 3.42: Left panel: Anti-correlated boundary condition A= . Right panel: Corre-
lated boundary condition C=.
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Figure 3.43: Left panel: Anti-correlated boundary condition A 6=. Right panel: Corre-
lated boundary condition C 6=.

spectively, making sense of the continuum limit of the alt condition on both sides of
the boundary requires much care. In particular one must consider the two different
scenarios:

1. Correlated boundary conditions when the lattice width L is even and anti-correlated
boundary conditions when the lattice width L is odd.

2. Anti-correlated boundary conditions when the lattice width L is even and corre-
lated boundary conditions when the lattice width L is odd.

(Note that in our notations L = 5 in Figures 3.42 and 3.43). These two scenarios give
two different continuum limits. The results are shown in Table 3.4.

The central charge for Q = 3 becomes simply cAF = 1, corresponding to a free
boson (see, e.g., [78]). It is well known that the AF Potts model at this point is in fact
equivalent to a compactified free boson, which is itself equivalent to the (diagonal) Z4

parafermionic theory. These identifications are encoded in the torus partition function

ZQ=3 =
1

η(q)η(q̄)

∑
e∈ Z

3
m∈3Z

q
1
4

(
√

3e+ m√
3

)2

q̄
1
4

(
√

3e− m√
3

)2

(3.122)

and the identity [74, 79]

ZQ=3 =
1

2

∑
l,m

|cml |2. (3.123)

The expansions of the string functions cml worked out in [79] are repeated here. (Our
notations for cml however differ from [79] by a factor of 1/η(q)). Define the objects:
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Boundary condition (for odd lattice size L) Generating function
Free/Free cm=0

l=0 + cm=0
l=4

Alt/Free cm=1
l=1 + cm=1

l=3

Alt/Alt: C= cm=0
l=0 + cm=4

l=0

Alt/Alt: A= 2cm=2
l=0

Alt/Alt: C 6= cm=0
l=2

Alt/Alt: A 6= cm=2
l=2

Table 3.4: Boundary conditions and their continuum limits. As explained in the text
there are four independent “alt/alt” boundary conditions. The precise meaning of the
labels of these four types are explained in Figures 3.42 and 3.43. The boundary con-
ditions written above are those taken for L odd. See the main text for a discussion on
the relevance of the parity of L.

W =
1

η(q)

∑
k∈Z

(−1)kqk
2
,

W± =
1

η(q)

∑
k∈Z

(±1)kq(k+ 1
4

)2
,

Yn(q) =
1

η(q)

∑
k∈Z

q3(k+n
6

)2
, for n = 0, 1, 2, 3 .

(3.124)

We then have:

cm=0
l=0 =

1

2
(Y0 +W ) , cm=2

l=0 =
1

2
Y3 , cm=4

l=0 =
1

2
(Y0 −W ) ,

cm=1
l=1 =

1

2
(W+ +W−) , cm=3

l=1 =
1

2
(W+ −W−) ,

cm=0
l=2 =Y2 , cm=2

l=2 =Y1 .

(3.125)

3.8.2 Relationship to the six-vertex model

The relationship with the free boson corresponds, on the lattice, to the fact that the
critical AF three-state Potts model is equivalent to the six-vertex model [80]. The idea
is the following: pick any lattice site and choose a particular nearest neighbour. We
will orient ourselves such that we are facing the nearest neighbour of interest. If this
nearest neighbour has a colour with a label succeding (modulo 3) that of the site we
are standing at, we will draw a left-pointing arrow between the two lattice sites.9 If
on the contrary this nearest neighbour has a colour with a label preceding (modulo 3)
that of the site we are standing at, then we will assign a right-pointing arrow. There
is then a one-to-one mapping between allowed configurations in the colouring problem
and allowed configurations in the six-vertex model. See Figure 3.44 for an application
of this mapping.

9Note that left and right are well-defined because we have chosen to stand facing a particular
direction
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Figure 3.44: The partition function of the three-state Potts model is equal to that of
the six-vertex model, where the six vertices all have the same Boltzmann weight. Each
of the circles can take one of three colours (represented by 1,2 and 3) in any given
configuration, and no two nearest neighbours can have the same colour. Each configu-
ration of the three-state Potts model is mapped to the six vertex model. An example
of this mapping with alt boundary conditions on both the left and right boundary is
shown in the image on the left. Alt boundary conditions can be seen to correspond to
reflecting boundary conditions in the six-vertex model. An example of the mapping for
alt boundary conditions on the left boundary and free boundary conditions on the right
boundary is shown in the Figure on the right. With free boundary conditions there
is no constraint on arrows, as illustrated on the right boundary (in the Figure on the
right).

We can see then that the alternating boundary conditions in the Potts model translate
into “reflecting” boundary conditions in the six vertex model: arrows on the boundary
are divided into pairs as shown in Figure 3.44 and each pair must include one left and
one right-pointing arrow, so any outgoing arrow is reflected back into the system. Free
boundary conditions for the AF Potts model correspond to free boundary conditions
for the six-vertex model, meaning that arrows can freely go into or emerge from the
boundary. Let us consider now the implications of this correspondence.

First recall that a vertex model can be described by a transfer matrix written as a
product of R-matrices as in equation (3.18) and (3.19). Note however that equation
(3.19) describes a periodic model whereas here we are interested in the open case. The
R-matrix that describes the six-vertex model can be written as a function of the “spectral
parameter” u which measures the anisotropy of the system, and is given by:

R(u) =


sinh(u+ iγ) 0 0 0

0 sinh(u) sinh(iγ) 0
0 sinh(iγ) sinh(u) 0
0 0 0 sinh(u+ iγ)

 (3.126)

(which is the same as that in [81] when we relate the parameter η appearing in [81] to
the parameter γ by η = iγ). Since we are dealing with open boundary conditions, we
need a so-called K-matrix to take account of the Boltzmann weights of the vertices on
the boundary. K matrices will be discussed in more detail in chapter 4 in the context
of integrability. For now we can just see the K-matrix as a convenient tool to capture
the Boltzmann weights of the boundary vertices. As discussed above and illustrated in
Figure 3.44, the alt boundary condition corresponds to “reflected” boundary conditions
in the six vertex model, with no extra Boltzmann weights needed. This corresponds
to a K-matrix equal to the identity on both the left and the right boundary. A set of
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K-matrices for the six vertex model have been previously discussed in [81], they are
given by:

K(u) =

(
sinh(u+ ξ) 0

0 − sinh(u− ξ)

)
. (3.127)

The connection between an open transfer matrix and a corresponding open Hamiltonian
will be discussed in detail in chapter 4, but for now we will just state the result of [81]
where it was shown that the Hamiltonian corresponding to the model with the K-
matrices in (3.127) is given by:

H = −
N−1∑
n=1

(σxj σ
x
j+1 + σyj σ

y
j+1 − cos γσzjσ

z
j+1) + sinh iγ(σ3

1 coth ξ + σ3
N coth ξ) , (3.128)

which is the XXZ Hamiltonian with some extra boundary terms. We have that for the
three-state AF Potts model γ = 2π

3 , and for the isotropic case that we are considering
u = − iπ

3 . Then setting the free parameter ξ = iπ
2 ensures that the K-matrix in (3.127)

becomes proportional to the identity, hence corresponding to the reflecting boundary
conditions of Figure 3.44. With these values of the parameters the boundary term in
(3.128) disappears and we are left with

H = −
N−1∑
n=1

(σxj σ
x
j+1 + σyj σ

y
j+1 +

1

2
σzjσ

z
j+1) . (3.129)

The continuum limit of this Hamiltonian has been studied in [82]; comparing this work
to our results in Table 3.4 allows us, as we will now show, to recover eqs. (3.125). In [82]
it was found that the generating function of the spectrum of the Hamiltonian (3.128)
(in the sector with spin Sz) in the continuum limit is given by

Z(Sz) =
qgS

2
z

η(q)
=
q
S2
z
3

η(q)
. (3.130)

The second equality comes from the definition of g: we have g = 1 − γ
π and γ =

2π
3 . Consider then the three-state AF Potts model with the boundary condition C=

(defined in Figure 3.42) in odd sizes. From the relationship with the six-vertex model
(Figure 3.44) we can see that this boundary condition corresponds to the spin sectors
Sz = 0,±3,±6,±9, . . . Then from (3.130) we have that the generating function of the
boundary condition C= should be given by∑

Sz∈Z
Z(3Sz) =

1

η(q)

∑
Sz∈Z

q3S2
z . (3.131)

However, by comparing this to Table 3.4 we also have that the generating function
arising from the boundary condition C= gives cm=0

l=0 +cm=4
l=0 . We can see from eqs. (3.125)

that this is indeed consistent and we have

1

η(q)

∑
Sz∈Z

q3S2
z = Y0 = cm=0

l=0 + cm=4
l=0 . (3.132)

Similarly, consider the the three-state AF Potts model with the boundary condition C 6=

(defined in Figure 3.43) in odd sizes. In this case the correspondence can be seen to
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Figure 3.45: Left panel: Anti-Correlated alt boundary conditions correspond to reflect-
ing boundary conditions in the six vertex model, but where the pairing of arrows on the
left and right boundary are anti-correlated. Right panel: The Hamiltonian/Transfer
Matrix that describes the vertex model acts on a chain with an extra spin that is de-
coupled from the rest of the system. This extra spin has the effect of adding ± to the
total spin.

be with the six-vertex spin sectors: Sz = . . . − 7,−4,−1, 2, 5, 8, ... . . . So according to
(3.130) we get for the generating function

1

η(q)

∑
k∈Z

q
1
3

(3k−2)2
, (3.133)

which when comparing with the result in table 3.4 for the generating function of this
boundary condition we find:

cm=0
l=2 = Y2 =

1

η(q)

∑
k∈Z

q
1
3

(3k−2)2
(3.134)

which is consistent with eqs. (3.125). Eqs. (3.125) can therefore be seen as the continuum
version of the equivalence between the XXZ chain with free boundary conditions and
the three-state AF Potts model with alt boundary conditions.

By considering the two remaining alt/alt boundary conditions in table 3.4 (i.e. A=

and A 6=) we can derive two more identities appearing in (3.125). They are

cm=2
l=0 =

1

2
Y3 =

1

2η(q)

∑
k∈Z

q3(k+1/2) (3.135)

and
c2

2 = Y1 =
1

η(q)

∑
k∈Z

q3(k+ 1
6

)2
. (3.136)

The two “anti-correlated” boundary conditions A= and A 6= correspond to half inte-
ger spin sectors of the XXZ chain. We can see this in two ways. The first way is to
recall that A= for L odd has the same continuum limit as C 6= for L even. We have seen
from the mapping from 3-state Potts to the XXZ chain that L even in the Potts model
corresponds to an XXZ chain of odd length, and hence necessarily with half integer spin.
In particular, one can see that A= produces the generating function associated with the
spin sectors Sz = . . .− 9

2 ,−
3
2 ,

3
2 ,

9
2 . . ., and A

6= to the sectors Sz = . . .− 7
2 ,−

1
2 ,

5
2 ,

11
2 . . .

We can recover the same result from a different point of view. We can see from Figure
3.45 that the “anti-correlated” boundary conditions correspond to reflecting boundary
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Figure 3.46: The loop model with and odd number of strands. There must be at least
one defect line running through the system when N is odd. We have N = 7 and j = 1

2
in this example. An odd number of strands in the loop model corresponds to wired
boundary conditions on one boundary in the Potts model: in this Figure the wired
boundary conditions are imposed on the right boundary: all Potts spins on the right
boundary are identified, since they cannot be separated by any loop.

conditions in the vertex model but where the pairs of arrows on the left and right
boundaries are not correlated to occur on the same rows of the lattice. We see from
the right panel in Figure 3.45 that this is equivalent to a situation where the Transfer
Matrix/Hamiltonian acts on a system with an extra spin that is decoupled from the
system. This extra spin contributes ±1

2 to the total spin of the system; we hence go
from a system with integer spin to a system with half integer spin.

3.9 Odd number of sites and disorder operators

This chapter has so far presented results relating properties of the parafermion and
black hole conformal field theories to their underlying lattice models. Section 3.4.3
showed that all of the string functions of parafermion theory could be obtained from
the alt boundary conditions together with free boundary conditions. Section 3.7 showed
that we could furthermore recover the fusion rules of the parafermionic conformal field
theory from the lattice results. There is another important object in the parafermionic
theory that we have not yet discussed in the context of these lattice studies; it was
argued in [83] that the parafermionic conformal field theory should admit a field that
is not accounted for by the string functions, so called C-disorder fields. We will find a
lattice interpretation for this field by turning to the RSOS representation with an odd
number of sites; this chapter has so far been restricted to spin chains where the number
of sites N = 2L was even.

The case N odd clearly requires a careful interpretation in terms of Potts spins.
The correct way to implement this in terms of the Potts model is to impose “wired”
boundary conditions on one side and free boundary conditions on the other. The idea
of wired boundary conditions is that all of the Potts spins on one side are contracted
to a single spin. This is illustrated in Figure 3.46.
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It is easier to describe wired boundary conditions in the loop and RSOS version of
the model. The transfer matrix now is given by:

T = (x+ e1) · · · (x+ e2L−1)(1 + xe2) · · · (1 + xe2L) , (3.137)

where the ei are generators of the Temperley Lieb algebra in either the loop or the
RSOS representation. One can then study the corresponding generating functions in
exactly the same way as for the cases studied in previous sections. In particular, we
make use once again of equations (3.33) and (3.35). We then find the analogous result
of equation (3.52), where now j is a half integer. We have for the generating function
of levels in the sector with 2j through lines:

K̃j = ZND ×
1

η(q)

qk[ 1
4
− (j+ 1

2 )

k

]2

− q
k

[
1
4

+
(j+ 1

2 )

k

]2
 . (3.138)

where
ZND =

1

η(q)

∑
n∈Z

q(n− 1
4

)2
. (3.139)

We can give a few examples to support this result. When we fix k = 4.2 and analyse
the first 40 eigenvalues of the loop model transfer matrix (3.137) up to size N = 25 we
find

K̃j= 1
2

= q∆− c
24 (1 + q

1
2 + q + 2q

3
2 + 3q2 + 4q

5
2 + 6q3 + . . .) , (3.140)

which is consistent with eq. (3.138) up to the level written. Similarly, we have

K̃j= 3
2

= q∆− c
24 (1 + q

1
2 + 2q + 3q

3
2 + 4q2 + 6q

5
2 + . . .) . (3.141)

Now consider the RSOS model with N odd. We consider the transfer matrix in (3.137)
where the ei now act in the RSOS representation defined in section 3.1.5. Note that
moving to the RSOS representation only makes sense when k is an integer. We define
the quantities:

Θl,2k(q) =
∑
n∈Z

qk(n+m
2k

)2
(3.142)

Then for the RSOS model with the left boundary height set to 1 and the right boundary
height set to r = 2j + 1, the generating functions is found to be:

ξl =
ZND
η(q)

[Θl,2k(q)−Θ2k−l,2k(q)] (3.143)

with l = k − 2r. It is easy to check then that

ξl =

∞∑
n=0

[
K̃j+nk − K̃k−1−j+nk

]
(3.144)

using r = 2j + 1 and hence l = k − 2 − 4j. The quantity ξl is in fact the full CFT
generating of the disorder field in the parafermion conformal field theory [84]. Equation
(3.144) is the analogue of the relationship between the string functions and the discrete
character of the black hole theory presented in section 3.4.3, where we recall that in
that case the identity also corresponded, on the lattice, to a relationship between the
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Boundary k Exponent Generating function
1,...,2 4 0 1 + q

1
2 + q

3
2 + q2 + q

5
2 + q3 + q

7
2 + 2q4 + 2q

5
2 + ...

1,...,2 5 1
40 1 + q

1
2 + q + q

3
2 + 2q2 + 2q

5
2 + 3q3 + 3q

7
2 + 4q4 + 5q

9
2 + 6q5 + 7q

11
2 + ...

1,...,4 5 1
8 1 + q + q

3
2 + q2 + q

5
2 + 2q3 + 2q

7
2 + 3q4 + 3q

9
2 + 4q5 + 4q

11
2 + ...

1,...,2 6 1
16 1 + q

1
2 + q + 2q

3
2 + 2q2 + 3q

5
2 + 4q3 + ...

1,...,4 6 1
16 1 + q

1
2 + q + 2q

3
2 + 2q2 + 3q

5
2 + 4q3 + ...

1,...,2 7 3
28 1 + q

1
2 + q + 2q

3
2 + 3q2 + 3q

5
2 + 5q3 + ...

1,...,4 7 1
28 1 + q

1
2 + 2q + 2q

3
2 + 3q2 + 4q

5
2 + 6q3 + ...

1,...,6 7 1
4 1 + q + q

3
2 + 2q2 + 2q

5
2 + 3q3 + ...

Table 3.5: Generating functions in the RSOS model with an odd numbers of sites. The
generating functions are written up to the number of terms that we have observed on
the lattice.

loop and RSOS models.

One can observe from the lowest order term of ξl that the dimensions of the C-
disorder fields in the Zk−2 theory are:

∆ =
k − 4 + (k − 2− 4j)2

16k
. (3.145)

We compare the numerical results obtained from the lattice model with the CFT quan-
tities defined in (3.144) in Table 3.5.

In conclusion, we see that the correspondence, for k integer, between RSOS restric-
tions of the critical antiferromagnetic Potts model and parafermions extends to the case
of disorder operators for odd numbers of sites.



Chapter 4

The Bethe Ansatz

In chapter 3, numerical methods were used to find the spectrum of transfer matrices and
Hamiltonians describing critical models with the goal of understanding the conformal
field theories describing their continuum limits. Finding the eigenvalues is a numeri-
cally intensive procedure and hence imposes upper limits on the system sizes that we
can study. Chapter 3 studied the conformal field theory describing the antiferromag-
netic Potts model by using system sizes up to N = 24, but this will not always be a
large enough lattice system for us to be able to observe certain aspects of the CFT on
the lattice. This is particularly apparent when we want to use the lattice to study the
non-compact aspects of a CFT for reasons that will now be outlined.

As was discussed in section 3.2, we can calculate CFT quantities (e.g. the central
charge and the conformal dimensions) from a finite lattice system using finite size scal-
ing, i.e. equations (3.33) to (3.35), leading to the observation of the corresponding CFT
generating function on the lattice such as (3.40) or (3.41). It was found that using
lattice sizes N ∼ 20 was enough to observe the first few terms in these CFT generating
functions. Ultimately, the reason we could do this was that, in equation (3.33), the
term after the 1

L2 term was small - more precisely, it was found to be of the order 1
L3 .

However, this will not always be the case when we are considering the non-compact
part of a CFT and we will need to study much larger systems in orde to calculate the
conformal dimensions.

Compare for instance figures 4.1 and 4.2. Figure 4.1 plots the finite size gaps ob-
tained from equation (3.35) versus 1

L , calculated from the transfer matrix for the anti-
ferromagnetic model with alternating boundary conditions defined in equation (3.68).
Using quite low systems sizes we can already see that these gaps converge towards inte-
gers. It was observed that the number of states converging towards each integer is equal
to what one would expect from the discrete character generating function, see equation
(3.73).

However now consider figure 4.2 where the same analysis is applied to a model with a
non-compact continuum limit (the data in this figure is generated from a non-compact
model that will be discussed in detail chapter 6). The non-compact CFT results in
the appearance of more and more states as the system size is increased, and the gaps
corresponding to these states converge logarithmically to zero. This was interpreted
in [54] as the appearance of a continuum of conformal dimensions on the lattice, as
one would expect from a non-compact model. In particular, what this means is that

73
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h hi 0-

Figure 4.1: The scaling behaviour of the gaps in equation (3.35). The gaps are plotted
versus 1

L and we notice their scaling behaviour can be extracted even with the low sizes
considered due to the compact continuum limit.
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Figure 4.2: The scaling behaviour of the gaps in a non-compact model. The logarithmic
corrections to the gaps necessitate the study of large systems.
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the term after the 1
L2 term in equation (3.33) is no longer O( 1

L3 ) but O( 1
L2 logL

) instead.

In practical terms this means that, when logarithms are present, we need to study
much larger systems in order to extract the CFT data. Directly diagonalising the trans-
fer matrix with numerical methods [85] is no longer a viable option due to computational
constraints, hence one should look for exact solutions. The goal of this chapter is to
introduce some basic aspects of the Bethe Ansatz method which will be used in later
chapters to find the exact solutions that we need in order to study the non-compact
boundary conformal field theory that interests us.

4.1 Some general properties

We will start with a brief overview of the Bethe Ansatz in the XXX model in order
to provide a general background to the topic before it is applied to more complicated
models in later chapters. See [86] for a historical overview, and [87, 88] for an in-depth
review. The XXX Hamiltonian with coupling J takes the following form:

H =
J

2

L∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1) (4.1)

where for now periodic boundary conditions are imposed. One can in principle find the
spectrum of the XXX Hamiltonian for any given size L by directly diagonalising the
Hamiltonian in (4.1). However, for large L this becomes difficult for practical reasons
and one would therefore hope to find a more efficient method. The Bethe Ansatz
provides such a method and essentially amounts to an educated guess as to the form of
the eigenstates |ψ〉 of (4.1), leading to a set constraints on the form of the eigenvalues.
Since the XXX Hamiltonian is written in terms of Pauli matrices, the Hilbert space is
spanned by the basis vectors |s1...sL〉 where the si can take the form of up spins ↑ or
down spins ↓, corresponding to the eigenstates of the σz operator. If we consider the
reference state |0〉 to be that with all up spins, then we define the state |x1x2〉 as the
basis state with all spins up except for the spins at positions x1 and x2 where the spins
are flipped. Note that the XXX Hamiltonian conserves the total spin, so we can study
each total spin sector separately. We will denote by n the number of spins that have
been flipped with respect to the state |0〉, the state |x1x2〉 referred to above therefore
corresponds to n = 2. In principle n can range between 0 and L but we only need to
consider n ≤ L

2 due to the Z2 symmetry of the Hamiltonian (4.1). Bethe’s Ansatz [89]
for the eigenstates of the XXX Hamiltonian in the sector with n flipped spins then takes
the form:

|ψ〉n =
∑

1≤x1≤...≤xn≤L
f(x1, ..., xn)|x1, ..., xn〉 (4.2)

with

f(x1, ..., xn) =
∑

(p1,...,pn)∈Sn

Ap1,...,pn

n∏
i=1

eikpixi (4.3)

where the sum runs over all elements of the permutation group Sn and the quantities
Ap1,...,pn and kpi are yet to be determined. This Ansatz allows us to derive the following
form of the energy eigenvalues:
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E =
JL

2
+ J

n∑
i=1

(2 cos ki − 2) (4.4)

where the momenta ki satisfy the Bethe Ansatz equations:

eikjL = (−1)n−1
n∏
l 6=j

sl,j
sj,l

(4.5)

and the sj,l are defined as:
sj,l = 1− 2eikl + eikj+ikl (4.6)

In the sector with n flipped spins we have n Bethe Ansatz equations of the form (4.5)
and n unknown variables kj . Whenever one arrives at a set of Bethe Ansatz equations,
an immediate question arises as to whether or not the equations are “complete”, i.e.
whether or not there are enough solutions to the Bethe Ansatz equations to recover
all of the eigenvectors and eigenvalues of the Hamiltonian. In the example presented
here one can in fact find more solutions to (4.5) than the number of eigenstates of the
Hamiltonian [90]. For example, there are solutions to the Bethe Ansatz equations with
coincidences of the ki but these solutions are not “admissible” - this is related to the
fact that, when ki = kj for i 6= j, we see from (4.3) that the wavefunction vanishes.
However the question of admissibility is a lot more subtle than is described here, see
for instance [91, 92], and is an area of ongoing research [93, 94, 95].

The construction described here is referred to as the coordinate Bethe Ansatz and
was the method that Bethe used in his original 1931 paper [89]. Subsequent develop-
ments [96, 97] used similar techniques to solve more complicated models and are given
names such as the Algebraic Bethe Ansatz and the Analytical Bethe Ansatz to distin-
guish them from Bethe’s original formulation. We will mainly be concerned here with
the Analytical Bethe Ansatz and this will be introduced below. The main idea however
remains the same: we start with a transfer matrix or a Hamiltonian and we want to
reduce the problem of finding the spectrum to solving a set of Bethe Ansatz equations
such as (4.5). The concept of “admissible” and “non-admissible” solutions mentioned
above will still apply.

4.2 Integrability: bulk and boundary

The key object in either the algebraic or the analytical Bethe Ansatz is the R-matrix.
The R-matrix is a function of the “spectral parameter" u and acts on the space V ⊗ V
where V is a d-dimensional space. Exactly solvable models can be constructed from
R-matrices that satisfy the Yang-Baxter equation [98]:

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3)R13(u1 − u3)R12(u1 − u2) (4.7)

The full expressions on the LHS and RHS in (4.7) act on the space V1 ⊗ V2 ⊗ V3 and
the notation Rij means that the R-matrix acts non-trivially on the spaces Vi and Vj
and acts as the identity on the remaining space. The Yang-Baxter equation is depicted
graphically in figure 4.3. We assign spectral parameters u1, u2 and u3 to the three
spaces depicted by the three lines and the R-matrix acts at each of the intersections
of the lines. The parameter of the R-matrix is given by the difference between the left
and the right spectral parameter when we consider time to be flowing upwards. When
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=

u1 u2 u3 u1 u2 u3

Figure 4.3: Graphical depiction of the Yang-Baxter equation. See text for explanation.

periodic boundary conditions are imposed, we can then construct a transfer matrix from
the R-matrix in the following way:

t(u) = Tra(Ra1(u)...RaL(u)) (4.8)

where a is an “auxiliary” space. Any transfer matrix of the form (4.8) with an R matrix
that satisfies the Yang-Baxter equation (4.7) is integrable since it commutes with a
transfer matrix with a different spectral parameter, i.e.:

[t(u), t(v)] = 0 (4.9)

for all spectral parameters u and v. To construct an integrable model with open bound-
ary conditions, however, in addition to the R-matrix that satisfies the Yang-Baxter
equation we need to consider a particular d × d matrix acting at the boundary: the
K-matrix. As a matter of fact, we shall need a K-matrix for both the left and right
boundaries which we will denote as K− and K+, respectively. We require that K−(u)
satisfy an analogue of the Yang-Baxter equation, the so-called boundary Yang-Baxter
equation [81]:

R12(u− v)K−1 (u)R21(u+ v)K−2 (v) = K−2 (u)R12(u+ v)K−1 (u)R21(u− v) (4.10)

so that the two-row transfer matrix

t(u) = TraK
+
a (u)RaL(u)...Ra1(u)K−a (u)R1a(u)...RLa(u) (4.11)

will be integrable, i.e., satisfy [t(u), t(v)] = 0 for all u, v. To ensure that the right
K-matrix, K+(u), satisfies the analogue of (4.10) on the right boundary we take

K+(λ) = K−t(−ρ− λ)M , (4.12)

where ρ and M are model dependent and t denotes usual matrix transposition.

4.3 The Analytical Bethe Ansatz

The idea behind the analytical Bethe Ansatz is to use the properties of the R-matrix to
constrain the form of the eigenvalues Λ(u) of the transfer matrix in (4.11). To see how
this works, consider the example of the six vertex model studied in [99]. The R matrix
can be written as:

R(u) =


sinh(u+ η) 0 0 0

0 sinh(u) eu sinh(η) 0
0 e−u sinh(η) sinh(u) 0
0 0 0 sinh(u+ η)

 (4.13)
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The six vertex model is sometimes written in terms of a parameter γ0, the parameter
η appearing in (4.13) is related to γ0 by η ≡ iγ0. One can consider the following
particularly simple K+ and K− matrices that satisfy (4.10):

K−(u) = Id, K+(u) = M (4.14)

where

M = −
[
eη 0
0 e−η

]
(4.15)

As is outlined in [99], one now proceeds to find the eigenvalues of the transfer matrix
(4.11) using the R matrix in (4.13) and theK matrices in (4.14), by appealing to various
properties that R(u) and t(u) must satisfy. In particular, one observes that R satisfies:

R12(u)R21(−u) = ξ(u)Id (4.16)

as well as the so-called “crossing property”:

R12(u) = V1R12(−u− ρ)t2V1 = V t2
2 R12(−u− ρ)t1V t2

2 (4.17)

where V is a “crossing matrix” that is model dependent, and in this case we have:

M = V tV (4.18)

with

V =

[
0 −ie−

η
2

ie
η
2 0

]
(4.19)

We furthermore have “regularity”

R12(0) = ξ(0)
1
2P12 (4.20)

as well as the commutativity property in (4.9). Combining these properties with the
fact that the transfer matrix commutes with the generators of the “quantum group”
Uq(sl(2)) leads [99] to the following form for the transfer matrix eigenvalues:

Λ(u) =
sinh(2u+ 2η)

sinh(2u+ η)
sinh2L(u+η)

Q(u− η)

Q(u)
+

sinh(2u)

sinh(2u+ η)
sinh2L(u)

Q(u+ η)

Q(u)
(4.21)

where

Q(u) =
m∏
k=1

sinh(u− λk +
η

2
) sinh(u+ λk +

η

2
) (4.22)

where m can take integer values between 0 and L
2 for L even and L−1

2 for L odd and
the λk are the “Bethe roots”. We can find the λk by the requirement that the residues
of the poles of (4.21) all vanish, leading to the Bethe Ansatz Equations (BAE):(

sinh(λj + η
2 )

sinh(λj − η
2 )

)2L

=

m∏
k 6=j

sinh(λj − λk + η)

sinh(λj − λk − η)

sinh(λj + λk + η)

sinh(λj + λk − η)
(4.23)

Just as was the case for the periodic XXX model presented in section 4.1, the problem
of finding the spectrum of the model of interest has been reduced to solving a set of
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coupled equations which one can do using numerical methods that are less computa-
tionally expensive than direct diagonalisation. Note that the analytical Bethe Ansatz
as presented here does not provide a method to calculate the eigenvectors of the transfer
matrix, we can only access the eigenvalues with this method. This however is all we will
need here since we will ultimately be interested in studying the CFT properties of the
lattice model from finite size scaling as discussed in the introduction to this chapter.
Integrable models with interesting continuum limits will be studied in later chapters
using methods similar to the present analysis. The goal will remain the same: calculate
the spectrum of the transfer matrix by solving a set of Bethe Ansatz equations instead
of by direct diagonalisation.

4.4 The Hamiltonian Limit

We will also however be interested in the quantum Hamiltonian corresponding to a given
transfer matrix. Following the construction in [81], one can define an open integrable
Hamiltonian from the transfer matrix in the following way:

t′(0) = 2H TrK+(0) + TrK+′(0) , (4.24)

which gives:

H =
L−1∑
n=1

Hn,n+1 +
1

2
K−

′

1 (0) +
Tr0K

+
0 (0)HL0

TrK+
0 (0)

, (4.25)

where Hn,n+1 = Pn,n+1
d

dλRn,n+1(λ)|λ=0; the subscripts indicate on which spaces there
is a non-trivial action. One can check that the Hamiltonian corresponding to the open
six vertex model defined by (4.13) and (4.14) is the open XXZ Hamiltonian:

H =
L−1∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1 + cosh ησzi σ

z
i+1)− sinh η(σz1 − σzL) (4.26)

which was studied in detail in [100]. One can furthermore check from (4.21) that the
energy eigenvalues are given by:

E =

m∑
i=1

4 sinh2 η

cosh(2λi)− cosh(η)
+ (L− 1) cosh η (4.27)

To study the CFT using the Hamiltonian instead of the transfer matrix one can once
again use the finite size scaling of the eigenvalues which have the following form:

E = f0L+ fs −
πvF( c

24 − h)

L
+ o

(
1

L

)
, (4.28)

where vF is the Fermi velocity which is a model dependent quantity. In the present case
of the XXZ model we have:

vF =
π sin γ0

γ0
(4.29)

where we recall η ≡ iγ0.
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4.5 The CFT limit: examples

The remainder of this thesis will use equation (4.28) extensively in order to extract the
CFT data from a lattice Hamiltonian in finite size. We briefly present here the well
studied results of this procedure when applied to the XXZ model with a number of
different boundary conditions. First of all, note that (4.28) is only valid for a model
with open boundary conditions, and in the periodic case must be modified to:

E = f0L−
πvF( c6 − 2∆φ)

L
+ o

(
1

L

)
, (4.30)

The CFT description of the periodic XXZ Hamiltonian, given by:

H =

L∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1 + cosh ησzi σ

z
i+1) (4.31)

was studied in [101]. The energy eigenvalues are once again given by (4.27) (but with
the L − 1 replaced by L since there is an additional interaction term in the periodic
model) and the Bethe Ansatz equations given by:(

sinh(λj − iγ0

2 )

sinh(λj + iγ0

2 )

)L
= −

m∏
k=1

sinh(λj − λk − iγ0)

sinh(λj − λk + iγ0)
(4.32)

By using (4.30), it is found [101] that, for all values of γ0 (recall that η = iγ0) the
central charge is given by c = 1. To find a central charge that depends on γ0, one must
introduce “twisted” boundary conditions:

H =
L−1∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1 + cosh ησzi σ

z
i+1) +

eiφ

2
σ+
Lσ
−
1 +

e−iφ

2
σ−Lσ

+
1 (4.33)

which were also studied in [101]. One can in fact calculate the thermodynamic form of
the energy of the periodic model, and hence the conformal properties via equation (4.30),
by using the thermodynamic Bethe Ansatz [102, 103] - also applied to the boundary
case in [104].



Chapter 5

Integrable boundary conditions in
the Potts model

In chapter 3 numerical methods were used to study the conformally invariant boundary
conditions in the antiferromagnetic Potts model. However, an exact solution of the
open model, even in the simplest case of free boundary conditions, was not considered.
Chapter 4 motivated the study of exact solutions of this model and introduced the
Bethe Ansatz which is the tool we will use in the present chapter to obtain the exact
solutions that we are looking for.

We will do this by first recalling from section 3.1.3 that the antiferromagnetic Potts
model can be reformulated as a staggered six vertex model, and that the latter model
with periodic boundary conditions can be described by an integrable transfer matrix
written in equation (3.19). We will then show that there is an exact mapping between
the staggered six vertex model and another previously studied integrable model con-
structed from the twisted affine D2

2 Lie algebra. This allows us to use some K-matrices
from the D2

2 model that satisfy the reflection equation in (4.10) to study integrable
boundary conditions in the antiferromagnetic Potts model.

This chapter is structured as follows: in section 5.1 the formulation of the antiferro-
magnetic Potts model as a staggered six-vertex model is recalled. It is shown that there
is an exact mapping between the staggered six-vertex model and the integrable model
constructed from the twisted affine D2

2 Lie algebra. In section 5.2 the model with open
boundary conditions is considered. A particular K-matrix from the D2

2 model [105, 106]
is interpreted in the context of the staggered six-vertex model. In particular, it is found
that the Hamiltonian of the model with the boundary conditions described by this K-
matrix has a very simple interpretation in terms of generators of the Temperley-Lieb
algebra. This integrable, open Hamiltonian is written in equation (5.46). The symme-
try group of the chain is discussed and the additional degeneracies of the D2

2 chain that
were previously observed in [105] and [106] are interpreted using a symmetry operator
written in terms of Temperley-Lieb algebra generators. In section 5.3 the Bethe Ansatz
solution of the model with these boundary conditions is presented, and the critical expo-
nents are derived analytically. Some numerical solutions to the Bethe Ansatz equations
are presented and are used to show that the scaling behaviour of the chain is the same
as that of the antiferromagnetic Potts model with free boundary conditions. Section
5.4 considers the model in two different representations of the Temperley-Lieb algebra
and numerical results confirms that we have indeed correctly identified the underlying

81
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sin(γ − u) sin(γ − u) sinu

sinu e−iu sin γ eiu sin γ

Figure 5.1: The six vertices and their Boltzmann weights.

boundary CFT.

5.1 The staggered six-vertex model and the D2
2 model

5.1.1 Background

We recall from chapter 3 the Hamiltonian of the isotropic two-dimensional Q-state Potts
model

H = −K
∑
〈ij〉

δσiσj , (5.1)

where σi = 1, 2, . . . , Q and 〈ij〉 denotes the set of nearest neighbours on the square lat-
tice. This model has been reviewed in many places [107, 32, 54]. It was shown in section
3.1 that the Potts model can be reformulated as a height, loop and vertex model where
the partition functions are identical to that of the original Potts model described in
terms of spins, but with different observables. It is another well-known result, reviewed
in chapter 3 that when the correspondence between the Potts and the vertex model is
carried out at the so-called “ferromagnetic critical point”, the resulting vertex model is
the celebrated “six-vertex model”. Carrying out this Potts/vertex mapping at the other
critical point of the Potts model, the “antiferromagnetic critical point”, one obtains the
“staggered six-vertex model” where the Boltzmann weights take particular values that
alternate with each row/column.

Here we will show that the staggered six-vertex model is identical to an integrable
model constructed from the D2

2 affine Lie algebra. This relationship between the D2
2

model and the staggered six vertex model was first alluded to in [108] where the spectra
of the two models were shown to be identical. Here we take this result further and
show that the transfer matrices of the two models can in fact be identified. This paves
the way in later sections to derive new results related to the antiferromagnetic Potts
model and its integrable boundary conditions. We will be particularly interested in
“free” boundary conditions in the Potts model which corresponds in (5.1) to imposing
no additional constraint on the Potts spins at the boundary so that the sum runs over
all nearest neighbours as usual but boundary spins have fewer nearest neighbours.

5.1.2 Review of the staggered six-vertex model

The six-vertex model with no staggering was briefly discussed in section 4.3. It is
defined by placing arrows on the edges of a square lattice subject to the constraint that
there must be two incoming and two outgoing arrows at every vertex. The six possible
vertices that satisfy this constraint are shown in Figure 5.1. Each of these vertices then
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u
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Figure 5.2: The spectral parameters on the lattice of the six-vertex model

takes a particular Boltzmann weight parameterised by the ‘spectral parameter’ u which
controls the amount of anisotropy. The Boltzmann weights are also functions of the
crossing parameter γ which appears in the Q-state Potts model as√

Q = eiγ + e−iγ . (5.2)

We can encode the Boltzmann weights in the Ř-matrix which acts on the space

{| ↑↑〉, | ↑↓〉, | ↓↑〉, | ↓↓〉} . (5.3)

The present analysis will define Ř in the following way

Ř(u) =


sin(γ − u) 0 0 0

0 e−iu sin γ sinu 0
0 sinu eiu sin γ 0
0 0 0 sin(γ − u)

 (5.4)

By considering Ř(u) to act in the North-East direction, we can see that (5.4) recovers
the Boltzmann weights of the vertices in (5.1). If we associate the spectral parameters
u1 and u2 to the left and right lines as one approaches a given vertex (along the NE
direction), the Ř-matrix takes the parameter u1 − u2. Note that we will henceforth
refer to both the R-matrix and the Ř-matrix, the latter being the former multiplied by
a permutation operator. Consider then a square lattice where the parameters u and 0
are associated to all horizontal and vertical lines, as in Figure 5.2.

The action of Ř on the lattice in Figure 5.2 recovers the correct Boltzmann weights
of the six-vertex model for all of the vertices on the lattice. With this formulation of
the six-vertex model we can now generalise to the staggered six-vertex model [54, 109].
Instead of associating u and 0 to all horizontal and vertical lines, respectively, as in
Figure 5.2, we will introduce a “staggering” of these parameters in both the horizontal
and the vertical direction as in Figure 5.3.

This model with periodic boundary conditions was studied in detail in [54]. The
staggering can be conveniently taken into account by introducing a block R-matrix as
in Figure 5.4.

This new R-matrix now acts on the larger space

{|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} ⊗ {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉} . (5.5)
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Figure 5.3: The spectral parameters on the lattice of the staggered six-vertex model .
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Figure 5.4: The block R-matrix.

As discussed in [54], it turns out that a convenient basis to consider is:

{|↑↑〉, |0〉, |0̄〉, |↓↓〉} ⊗ {|↑↑〉, |0〉, |0̄〉, |↓↓〉} , (5.6)

where

|0〉 =
1√

2 cos γ
(e

iγ
2 |↑↓〉 − e−

iγ
2 |↓↑〉) . (5.7a)

|0̄〉 =
1√

2 cos γ
(e−

iγ
2 |↑↓〉+ e

iγ
2 |↓↑〉) . (5.7b)

In this basis there are only 38 vertices with non-zero Boltzmann weights. At each vertex,
we will represent the |↑↑〉 state by an up or right-pointing arrow, the |↓↓〉 state by a
down or left-pointing arrow, the |0〉 state by a thin line and the |0̄〉 state by a thick
line (the lines associated with |0〉 and |0̄〉 carry no arrows). The 38 possible vertices are
drawn in Figure 5.6. It was discussed in [54] that the R-matrix of this 38-vertex model
satisfies the Yang-Baxter equation and the model was solved via Bethe Ansatz.

Sections 5.1.3 and 5.1.4 will show that the staggered six-vertex model, or equivalently
the 38-vertex model, is equivalent to the integrable model constructed from the twisted
affine D2

2 Lie algebra. What we mean by ‘equivalent’ is the following: there is a well-
defined procedure to start with a Lie algebra and find an R-matrix that satisfies the
Yang-Baxter equation, and this procedure has been carried out for D2

2 [110]. When we
write this R-matrix in a particular basis we find that there are only 38 non-zero matrix
components; the D2

2 R-matrix therefore describes a 38-vertex model. It turns out then
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that these matrix components are exactly those of the 38-vertex model arising from the
staggered six-vertex model. 1

5.1.3 Mapping between the two models: General strategy

Starting from a given Lie algebra, one can construct an R-matrix that satisfies the
Yang-Baxter equation. This has been carried out for the twisted affine D2

2 Lie algebra
in [110]. We will show here that when written in an appropriate basis, the D2

2 R-matrix
can be identified with that of the 38-vertex model arising from the staggered six-vertex
model.

The D2
2 R-matrix is a 16× 16 matrix acting on the states:

{|1〉, |2〉, |3〉, |4〉} ⊗ {|1〉, |2〉, |3〉, |4〉} (5.8)

where 1, 2, 3, 4 are just labels for the four possible states that each edge in the vertex
model can take. Now define

|2̃〉 =
1√
2

(|2〉+ |3〉) , (5.9a)

|3̃〉 =
1√
2

(|2〉 − |3〉) . (5.9b)

We are interested in calculating the D2
2 R-matrix in the basis

{|1〉, |2̃〉, |3̃〉, |4〉} ⊗ {|1〉, |2̃〉, |3̃〉, |4〉} . (5.10)

We will do this by calculating each matrix component in the new basis term by term.
The strategy is the following: first note that the D2

2 R-matrix is written in terms of the
matrices Eαβ ⊗Eγδ where Eαβ is a matrix with all components equal to zero except for
the component in the α-th row and β-th column which is equal to 1, i.e.,

(Eαβ)ij = δiαδjβ , (5.11)

with α,β,γ,δ taking labels 1, 2, 3 or 4. To calculate the matrix elements in the new basis
we need to expand the R-matrix in terms of matrices Eα̃β̃ ⊗ Eγ̃δ̃ where α̃, β̃, γ̃, δ̃ take
labels 1,2̃, 3̃ or 4 and we have

Eα̃2̃ =
1√
2

(Eα̃2 + Eα̃3) , (5.12a)

E2̃α̃ =
1√
2

(E2α̃ + E3α̃) , (5.12b)

Eα̃3̃ =
1√
2

(Eα̃2 − Eα̃3) , (5.12c)

E3̃α̃ =
1√
2

(E2α̃ − E3α̃) . (5.12d)

We have then, for example:

E12̃ ⊗ E12̃ =
1

2
(E12 ⊗ E12 + E12 ⊗ E13 + E13 ⊗ E12 + E13 ⊗ E13) , (5.13a)

E12̃ ⊗ E2̃3̃ =
1

2
√

2
(E12 ⊗ E22 + E12 ⊗ E32 − E12 ⊗ E23 − E12 ⊗ E33

+E13 ⊗ E22 + E13 ⊗ E32 − E13 ⊗ E23 − E13 ⊗ E33) .(5.13b)
1There is one subtlety that will be discussed in more detail later. Some of the matrix components

of the two R-matrices differ by a sign, but this turns out to be unimportant because the full transfer
matrix constructed from either R-matrix is the same.



86CHAPTER 5. INTEGRABLE BOUNDARY CONDITIONS IN THE POTTS MODEL
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Figure 5.5: Labelling around a vertex in the D2
2 model.

When we expand the D2
2 R-matrix in terms of the matrices Eα̃β̃ ⊗ Eγ̃δ̃, the coefficient

of each of these terms will give the Boltzmann weight of exactly one vertex. It will
turn out that, in this basis, there are exactly 38 non-zero coefficients and that these
coefficients are the Boltzmann weights of the 38-vertex model arising from staggered
six-vertex model. The coefficient in front of the term in (5.13) will correspond to the
Boltzmann weight of one of these 38 vertices, as we now discuss.

5.1.4 Deriving the Boltzmann weights

The D2
2 R-matrix is expanded in terms of the matrices Eαβ ⊗ Eγδ:

R =
∑
αβγδ

ωαβγδEαβ ⊗ Eγδ . (5.14)

We then interpret ωαβγδ as the Boltzmann weight of the vertex in Figure 5.5. In
particular, α is the label of the state of the right edge, β the label of the state on the
left edge, γ the label of the state on the top edge and δ the label of the state on the
bottom edge. We will represent these labels in the following way: associate a down or
left-pointing arrow to the label 1, an up or right-pointing arrow to the label 4, a thin
line to the label 2̃ and a thick line to the label 3̃. The coefficient ω1111 for example then
gives the Boltzmann weight of vertex (1) in Figure 5.6, and the coefficient ω43̃13̃ gives
the Boltzmann weight of vertex (13).

The explicit expression for the R-matrix of the D2
2 model can be found in equation

(3.7) of [110]. The important point for us is that this expression for the D2
2 R-matrix is

of the form (5.14) and that the weights ωαβγδ are written in terms of parameters x and
k. Meanwhile, the explicit expression for the 38-vertex model can be found in section
2.3.3 of [54] and this matrix is written in terms of parameters u0 and γ0. The latter
two parameters are related to those of the six-vertex model R-matrix (5.4) by [54]

u0 = −2u , (5.15a)
γ0 = π − 2γ . (5.15b)

It will turn out that the correct associations between the parameters of the two models
are

k = −e−iγ0 , (5.16a)
x = e−iu0 , (5.16b)

so that we have

k = e2iγ , (5.17a)
x = e2iu . (5.17b)

With this identification, our goal is then to write the R-matrix in a new basis:

R =
∑
α̃β̃γ̃δ̃

ω̃α̃β̃γ̃δ̃Eα̃β̃ ⊗ Eγ̃δ̃ , (5.18)
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Figure 5.6: The 38 vertices of the D2
2 model.

and to calculate the weights ω̃α̃β̃γ̃δ̃ in terms of the parameters u0 and γ0 by writing R
in the form (5.18). Consider all the vertices of the 38-vertex model in Figure 5.6. There
are three types of vertices to consider: vertices with four arrows (1 to 6), two arrows
(7 to 30) and no arrows (31 to 38). We will study each of these three types of vertices
individually.

Vertices 1 to 6

These vertices have four arrows (two in and two out). Since we associate arrows with
states |1〉 and |4〉 there will be no change to the Boltzmann weights of these vertices
when we change from the old basis |1〉,|2〉,|3〉,|4〉 to the new basis |1〉,|2̃〉,|3̃〉,|4〉, except
for the change in parameters from x and k to u0 and γ0. Consider for example vertices
1 and 2. These correspond to the terms ω4444E44 ⊗ E44 and ω1111E11 ⊗ E11 in the
expansion of the R-matrix. We have from [110]:

ω1111 = ω4444 = (x2 − k2)2 , (5.19)

and we know that ω1111 = ω̃1111 and ω4444 = ω̃4444. Using (5.16) we then find

ω1111 = ω4444 = −4k2x2 sin2(γ0 − u0) , (5.20)

which is equal to the weight of these vertices in the staggered six-vertex model, up to an
overall factor of 16k2x2 which will turn out to be present in all terms. We can perform
the same calculation for vertices 3 to 7, the results of which are shown in table 5.1.
We see that when we make the associations x = exp(−iu0) and k = − exp(−iγ0), as in
(5.16), all of these vertices have the same Boltzmann weight in the D2

2 model and the
staggered six-vertex model, again up to a factor of 16k2x2.
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Vertex D2
2 weight Staggered six-vertex weight

1 −4k2x2 sin2(γ0 − u0) −1
4 sin2(γ0 − u0)

2 −4k2x2 sin2(γ0 − u0) −1
4 sin2(γ0 − u0)

3 −4k2x2 sin2(u0) −1
4 sin2(u0)

4 −4k2x2 sin2(u0) −1
4 sin2(u0)

5 4k2x2e−2iu sin(γ0)(sin(u0)− sin(γ0 − u0)) 1
4e
−2iu sin(γ0)(sin(u0)− sin(γ0 − u0))

6 4k2x2e2iu sin(γ0)(sin(u0)− sin(γ0 − u0)) 1
4e

2iu sin(γ0)(sin(u0)− sin(γ0 − u0))

Table 5.1: Correspondence between the Boltzmann weights of the D2
2 model and the

staggered six-vertex model. Vertices 1 to 6.

Vertices 7 to 30

We will now show an example of a calculation of the D2
2 Boltzmann weight of a vertex

with two arrows. Consider vertices 8 and 10, which correspond to the terms E2̃1 ⊗E12̃

and E3̃1 ⊗ E13̃ in the expansion of the R-matrix. We will calculate the coefficients of
these terms when we change basis from |1〉, |2〉, |3〉, |4〉 to |1〉, |2̃〉, |3̃〉, |4〉. Consider the
following terms appearing in the expansion of the R-matrix in the old basis:

−1

2
(k2−1)(x2−k2)(x+1)x(E21⊗E12+E31⊗E13)−1

2
x(k2−1)(x2−k2)(x−1)(E21⊗E13+E31⊗E12) .

(5.21)
This can be reformulated as

−1

2
(k2−1)(x2−k2)x[x(E21+E31)⊗E12+(E21−E31)⊗E12+x(E21+E31)⊗E13−(E21−E31)⊗E13] ,

(5.22)
which we can see gives:

− (k2 − 1)(x2 − k2)x[xE2̃1 ⊗ E12̃ + E3̃1 ⊗ E13̃] . (5.23)

After making the associations (5.16) we finally obtain

−4k2x2e2iu sin(γ0−u0) sin(γ0)[E2̃1⊗E12̃]+4k2x2 sin(γ0−u0) sin(γ0)[E3̃1⊗E13̃] . (5.24)

The coefficients of the two terms in (5.24) give the Boltzmann weights of vertices 8
and 10 in Figure 5.6 and are compared with the Boltzmann weights of the staggered
six-vertex model in table 5.2. We observe that the Boltzmann weights in the two models
are equal, again up to the factor of 16k2x2. In the case of vertex 10, there is a difference
of sign between the two models. Vertices with a sign difference in the two models are
marked with an asterisk in the last column of the table. This sign difference will turn
out not to affect the transfer matrix built from the R-matrix and therefore not to have
any effect on the physics. This will be explained in more detail below.

Vertices 31 to 38

This section will present the calculation of the Boltzmann weights of vertices with no
arrows. These vertices are labelled 31 to 38 in Figure 5.6 and correspond to the terms
E3̃2̃⊗E3̃2̃, E2̃3̃⊗E2̃3̃, E2̃2̃⊗E3̃3̃, E3̃3̃⊗E2̃2̃, E3̃2̃⊗E2̃3̃, E2̃3̃⊗E3̃2̃, E2̃2̃⊗E2̃2̃, E3̃3̃⊗E3̃3̃.
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Vertex D2
2 weight Staggered six-vertex weight

7 −4k2x2e2iu sin(γ0 − u0) sin(γ0) −1
4e

2iu sin(γ0 − u0) sin(γ0)

8 −4k2x2e2iu sin(γ0 − u0) sin(γ0) −1
4e

2iu sin(γ0 − u0) sin(γ0)

9 4k2x2 sin(γ0 − u0) sin(γ0) −1
4 sin(γ0 − u0) sin(γ0) *

10 4k2x2 sin(γ0 − u0) sin(γ0) −1
4 sin(γ0 − u0) sin(γ0) *

11 4k2x2e−i(γ−2u) sin(u0) sin(γ0) 1
4e
−i(γ−2u) sin(u0) sin(γ0)

12 4k2x2e−i(γ−2u) sin(u0) sin(γ0) 1
4e
−i(γ−2u) sin(u0) sin(γ0)

13 4k2x2eiγ sin(u0) sin(γ0) −1
4e
iγ sin(u0) sin(γ0) *

14 4k2x2eiγ sin(u0) sin(γ0) −1
4e
iγ sin(u0) sin(γ0) *

15 −4k2x2e−2iu sin(γ0 − u0) sin(γ0) −1
4e
−2iu sin(γ0 − u0) sin(γ0)

16 −4k2x2e−2iu sin(γ0 − u0) sin(γ0) −1
4e
−2iu sin(γ0 − u0) sin(γ0)

17 4k2x2e−iγ sin(u0) sin(γ0) −1
4e
−iγ sin(u0) sin(γ0) *

18 4k2x2e−iγ sin(u0) sin(γ0) −1
4e
−iγ sin(u0) sin(γ0) *

19 −4k2x2 sin(γ0 − u0) sin(u0) −1
4 sin(γ0 − u0) sin(u0)

20 −4k2x2 sin(γ0 − u0) sin(u0) −1
4 sin(γ0 − u0) sin(u0)

21 −4k2x2 sin(γ0 − u0) sin(u0) −1
4 sin(γ0 − u0) sin(u0)

22 −4k2x2 sin(γ0 − u0) sin(u0) −1
4 sin(γ0 − u0) sin(u0)

23 −4k2x2 sin(γ0 − u0) sin(u0) −1
4 sin(γ0 − u0) sin(u0)

24 −4k2x2 sin(γ0 − u0) sin(u0) −1
4 sin(γ0 − u0) sin(u0)

25 −4k2x2 sin(γ0 − u0) sin(u0) −1
4 sin(γ0 − u0) sin(u0)

26 −4k2x2 sin(γ0 − u0) sin(u0) −1
4 sin(γ0 − u0) sin(u0)

27 4k2x2ei(γ−2u) sin(u0) sin(γ0) 1
4e
i(γ−2u) sin(u0) sin(γ0)

28 4k2x2ei(γ−2u) sin(u0) sin(γ0) 1
4e
i(γ−2u) sin(u0) sin(γ0)

29 4k2x2 sin(γ0 − u0) sin(γ0) −1
4 sin(γ0 − u0) sin(γ0) *

30 4k2x2 sin(γ0 − u0) sin(γ0) −1
4 sin(γ0 − u0) sin(γ0) *

Table 5.2: Correspondence between Boltzmann weights (continued). Vertices 7 to 30.
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Consider the terms in the expansion of the D2
2 R-matrix:

E22 ⊗ E22[k(x2 − 1)(x2 − k2)− 1

2
(k2 − 1)(k + 1)x(x+ 1)(x− k)]

+E33 ⊗ E33[k(x2 − 1)(x2 − k2)− 1

2
(k2 − 1)(k + 1)x(x+ 1)(x− k)]

+E22 ⊗ E33[k(x2 − 1)(x2 − k2) +
1

2
(k2 − 1)(k + 1)x(x− 1)(x+ k)]

+E33 ⊗ E22[k(x2 − 1)(x2 − k2) +
1

2
(k2 − 1)(k + 1)x(x− 1)(x+ k)]

+E32 ⊗ E23[
1

2
(k2 − 1)(k − 1)x(x+ 1)(x+ k)]

+E23 ⊗ E32[
1

2
(k2 − 1)(k − 1)x(x+ 1)(x+ k)]

+E32 ⊗ E32[−1

2
(k2 − 1)(k − 1)x(x− 1)(x− k)]

+E23 ⊗ E23[−1

2
(k2 − 1)(k − 1)x(x− 1)(x− k)] .

(5.25)

Now use the easily verified expressions:

E22 ⊗ E22 + E33 ⊗ E33 = 1
2 [E2̃2̃ ⊗ E2̃2̃ + E2̃3̃ ⊗ E2̃3̃ + E3̃2̃ ⊗ E3̃2̃ + E2̃3̃ ⊗ E3̃2̃ +

E3̃2̃ ⊗ E2̃3̃ + E2̃2̃ ⊗ E3̃3̃ + E3̃3̃ ⊗ E2̃2̃ + E3̃3̃ ⊗ E3̃3̃] (5.26a)
E22 ⊗ E33 + E33 ⊗ E22 = 1

2 [E2̃2̃ ⊗ E2̃2̃ − E2̃3̃ ⊗ E2̃3̃ − E3̃2̃ ⊗ E3̃2̃ − E2̃3̃ ⊗ E3̃2̃ −
E3̃2̃ ⊗ E2̃3̃ + E2̃2̃ ⊗ E3̃3̃ + E3̃3̃ ⊗ E2̃2̃ + E3̃3̃ ⊗ E3̃3̃] (5.26b)

E32 ⊗ E23 + E23 ⊗ E32 = 1
2 [E2̃2̃ ⊗ E2̃2̃ − E2̃3̃ ⊗ E2̃3̃ − E3̃2̃ ⊗ E3̃2̃ + E2̃3̃ ⊗ E3̃2̃ +

E3̃2̃ ⊗ E2̃3̃ − E2̃2̃ ⊗ E3̃3̃ − E3̃3̃ ⊗ E2̃2̃ + E3̃3̃ ⊗ E3̃3̃] (5.26c)
E32 ⊗ E32 + E23 ⊗ E23 = 1

2 [E2̃2̃ ⊗ E2̃2̃ + E2̃3̃ ⊗ E2̃3̃ + E3̃2̃ ⊗ E3̃2̃ − E2̃3̃ ⊗ E3̃2̃ −
E3̃2̃ ⊗ E2̃3̃ − E2̃2̃ ⊗ E3̃3̃ − E3̃3̃ ⊗ E2̃2̃ + E3̃3̃ ⊗ E3̃3̃] (5.26d)

to write the terms in (5.25) as

1

2

[
k(x2 − 1)(x2 − k2)− 1

2
(k2 − 1)(k + 1)x(x+ 1)(x− k)

]
×(

E2̃2̃ ⊗ E2̃2̃ + E2̃3̃ ⊗ E2̃3̃ + E3̃2̃ ⊗ E3̃2̃ + E2̃3̃ ⊗ E3̃2̃+

E3̃2̃ ⊗ E2̃3̃ + E2̃2̃ ⊗ E3̃3̃ + E3̃3̃ ⊗ E2̃2̃ + E3̃3̃ ⊗ E3̃3̃

)
+

1

2

[
k(x2 − 1)(x2 − k2) +

1

2
(k2 − 1)(k + 1)x(x− 1)(x+ k)

]
×(

E2̃2̃ ⊗ E2̃2̃ − E2̃3̃ ⊗ E2̃3̃ − E3̃2̃ ⊗ E3̃2̃ − E2̃3̃ ⊗ E3̃2̃−
E3̃2̃ ⊗ E2̃3̃ + E2̃2̃ ⊗ E3̃3̃ + E3̃3̃ ⊗ E2̃2̃ + E3̃3̃ ⊗ E3̃3̃

)
+

[
1

4
(k2 − 1)(k − 1)x(x+ 1)(x+ k)

]
×(

E2̃2̃ ⊗ E2̃2̃ − E2̃3̃ ⊗ E2̃3̃ − E3̃2̃ ⊗ E3̃2̃ + E2̃3̃ ⊗ E3̃2̃+

E3̃2̃ ⊗ E2̃3̃ − E2̃2̃ ⊗ E3̃3̃ − E3̃3̃ ⊗ E2̃2̃ + E3̃3̃ ⊗ E3̃3̃

)
−
[

1

4
(k2 − 1)(k − 1)x(x− 1)(x− k)

]
×(

E2̃2̃ ⊗ E2̃2̃ + E2̃3̃ ⊗ E2̃3̃ + E3̃2̃ ⊗ E3̃2̃ − E2̃3̃ ⊗ E3̃2̃−
E3̃2̃ ⊗ E2̃3̃ − E2̃2̃ ⊗ E3̃3̃ − E3̃3̃ ⊗ E2̃2̃ + E3̃3̃ ⊗ E3̃3̃

)
.

(5.27)
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Vertex D2
2 weight Staggered six-vertex weight

31 4k2x2 sin(u0) sin(γ0) −1
4 sin(u0) sin(γ0) *

32 4k2x2 sin(u0) sin(γ0) −1
4 sin(u0) sin(γ0) *

33 −4k2x2 sin(γ0 − u0) sin(u0) −1
4 sin(γ0 − u0) sin(u0)

34 −4k2x2 sin(γ0 − u0) sin(u0) −1
4 sin(γ0 − u0) sin(u0)

35 4k2x2 sin(γ0 − u0) sin(γ0) −1
4 sin(γ0 − u0) sin(γ0) *

36 4k2x2 sin(γ0 − u0) sin(γ0) −1
4 sin(γ0 − u0) sin(γ0) *

37 −4k2x2(sin2(γ0) + sin(γ0 − u0) sin(u0)) −1
4(sin2(γ0) + sin(γ0 − u0) sin(u0))

38 −4k2x2(sin2(γ0) + sin(γ0 − u0) sin(u0)) −1
4(sin2(γ0) + sin(γ0 − u0) sin(u0))

Table 5.3: Correspondence between Boltzmann weights (continued). Vertices 31 to 38.

Figure 5.7: A configuration of vertices in one row generated by the action of the transfer
matrix. The vertices on the far left and far right of the figure correspond to vertices
(9) and (35) in Figure 5.6. The Boltzmann weights of these two vertices can be found
in tables 5.1 and 5.3 respectively where we observe that both of them have a * beside
them, meaning that their signs are opposite to the signs of the corresponding vertices
of the staggered six vertex model. The two minus signs cancel each other out. More
generally, the periodic boundary conditions ensure that there are will always be an even
number of vertices with opposite signs in the two models.

We now collect coefficients of each of the terms. The coefficient of, for example, E2̃2̃ ⊗
E2̃2̃ reduces to k(x2 − 1)(x2 − k2) + x2(k2 − 1)2 which after applying (5.16) becomes
−4k2x2[sin2(γ0) − sin(γ0 − u0) sin(u0)], which is exactly the coefficient of vertex 37 in
Figure 5.6 in both the D2

2 model and the staggered six-vertex model. The results for
the other coefficients are summarised in table 5.3.

Sign differences

As was briefly touched upon, there are some Boltzmann weights in the D2
2 construction

of the model that differ by a sign from the Boltzmann weights in the staggered six-
vertex version of the model. These vertices have been highlighted by asterisks in the
right columns of tables 5.1–5.3. From Figure 5.6 we observe that all of these vertices
are such that there is one horizontal thick line and one vertical thick line. Observe then
that, as well as the conservation of the direction of arrows, all vertices conserve the
parity of the number of thick lines. In particular, if there is one incoming thick line
there must be one outgoing thick line, and if there are two incoming thick lines there
must be either two outgoing thick lines or no outgoing thick lines. A consequence of
this is that, when periodic boundary conditions are imposed, any given configuration of
vertices generated by a transfer matrix must contain an even number of these vertices
with asterisks, and hence the minus signs all cancel. This is highlighted in Figure 5.7.

Figure 5.7 resolves the sign problem when studying the model with periodic bound-
ary conditions. With open boundary conditions, however, it is not so clear that the
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transfer matrices of the two models will be equal since, for a general open boundary
condition, we are allowed to have odd numbers of vertices which differ by a sign in the
two models. It will turn out nonetheless that the boundary conditions we are interested
in also preserve the parity of the number of thick lines and the transfer matrix will en-
sure that we again only encounter configurations with an even number of these vertices
with asterisks. This preservation of the parity of thick and thin lines turns out to be a
result of a symmetry under a lattice operator denoted by C, which was first introduced
in [54]. This operator is most conveniently expressed as

C = C1C3 · · ·C2L−1 (5.28)

where
Ci = 1− 1

cos γ
ei , (5.29)

and ei is a generator of the Temperley-Lieb (TL) algebra [21], discussed in section 3.1.2.
Both the C operator and the TL algebra will play important roles in what follows. We
shall discuss this more fully below.

5.2 The open D2
2 model

The machinery required to tackle integrable models was introduced in section 4.3. We
have an Rmatrix that satisfies the Yang-Baxter equation (4.7) and with periodic bound-
ary conditions this is all we need to construct the integrable transfer matrix in (4.8).
For an open integrable model we need a K-matrix that satisfies the boundary version
of the Yang-Baxter equation (4.10) in addition to the R-matrix. We then construct an
integrable transfer matrix describing an open model using equation (4.11).

In the case that we are considering here, i.e., the D2
2 model, the parameters ρ and M

appearing in equation (4.12) are given by [105] ρ = − log k and

M = diag(k, 1, 1, k−1) (5.30)

Here we will consider a particular K-matrix that satisfies (4.10) [106]:

K−(λ) =


Y1(λ) 0 0 0

0 Y2(λ) Y5(λ) 0
0 Y6(λ) Y3(λ) 0
0 0 0 Y4(λ)

 , (5.31)

with

Y1(λ) = −e−λ(e2λ + k) , (5.32a)
Y4(λ) = −e3λ(e2λ + k) , (5.32b)

Y2(λ) = Y3(λ) = −1

2
(1 + e2λ)eλ(1 + k) , (5.32c)

Y5(λ) = Y6(λ) =
1

2
(e2λ − 1)(1− k)eλ , (5.32d)

and we recall that u and k satisfy the relations (5.16). Recall now the discussion
at the end of section 5.1.4 about the particular Boltzmann weights in tables 5.1–5.3
that differed by a sign when considering the D2

2 model and the staggered six-vertex
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Figure 5.8: Two rows of vertices constructed from the transfer matrix. The fact that
K becomes diagonal in the appropriate basis implies that the parity of the number of
thick lines is conserved. This ensures that there are an even number of vertices that
differ by a sign in the D2

2 model and the staggered six-vertex model.

model. This issue was resolved by noticing that, when periodic boundary conditions
are imposed, there is always an even number of these vertices and hence the transfer
matrix built from either R-matrix is the same.

Now that we are considering open boundary conditions we can no longer rely on
the same argument. Notice however, that in the basis defined in equation (5.6) the
K-matrix in equation (5.31) becomes diagonal:

K−(λ)→


Y1(λ) 0 0 0

0 Y2(λ) + Y5(λ) 0 0
0 0 Y2(λ)− Y6(λ) 0
0 0 0 Y4(λ)

 (5.33)

The K-matrix being diagonal ensures that we have conservation of both thick and
thin lines at the boundary and that in any given configuration we will again have an
even number of vertices that differ by a sign in the two models. See Figure 5.8 for an
illustration.

The fact that the K-matrix is diagonal in this basis comes from the fact that it
commutes with the C-operator defined in equation (5.29). The basis in (5.6) was in fact
chosen since each of the basis vectors are eigenvectors of the C operator. The K-matrix
then satisfies

[K,C] = 0 . (5.34)

This symmetry will be discussed in more detail in section 5.2.2 and it will turn out to
account for the extra degeneracies observed in the spectrum of the open D2

2 transfer
matrix/Hamiltonian.

5.2.1 Hamiltonian limit

The method of constructing an integrable Hamiltonian was outlined in section 4.3,
where the explicit expression of the integrable open Hamiltonian corresponding to the
transfer matrix of an open model was given in equation (4.25).

Recall that the transfer matrix for the periodic case is given by (4.8) and the corre-
sponding Hamiltonian is again obtained by taking the derivative with respect to the
spectral parameter. Up to overall normalisation terms, the periodic Hamiltonian can
be written [54, 111]:

H = 2 cos γ

2L−1∑
m=1

em − (emem+1 + em+1em) , (5.35)
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where the TL generators em satisfy (3.15). The open Hamiltonian in (4.25) can be
similarly written as

H = Aleft+Aright+cos γ(e1+e2L−1)+2 cos γ

2L−2∑
m=2

em−
2L−2∑
m=1

(emem+1+em+1em) , (5.36)

where Aleft and Aright are the boundary terms arising from the second and third terms
in equation (4.25) and can be written as

Aleft =


i sin 2γ 0 0 0

0 − sin2 γ
cos γ e

iγ sin2 γ
cos γ 0

0 sin2 γ
cos γ − sin2 γ

cos γ e
−iγ 0

0 0 0 −i sin 2γ

⊗ I⊗2L−2 (5.37)

and

Aright = I⊗2L−2 ⊗


−i sin 2γ 0 0 0

0 − sin2 γ
cos γ e

iγ sin2 γ
cos γ 0

0 sin2 γ
cos γ − sin2 γ

cos γ e
−iγ 0

0 0 0 i sin 2γ

 (5.38)

after subtracting terms proportional to the identity. The usual representation of the
TL generators ei in the vertex model are given by equation (3.16), repeated here for
clarity:

ei = I⊗i−1 ⊗


0 0 0 0
0 e−iγ 1 0
0 1 eiγ 0
0 0 0 0

⊗ I⊗2L−i−1 , (5.39)

but we shall need as well another representation of the TL algebra

ẽi = I⊗i−1 ⊗


0 0 0 0
0 eiγ −1 0
0 −1 e−iγ 0
0 0 0 0

⊗ I⊗2L−i−1 , (5.40)

which can also be checked to satisfy (3.15). We can now write

Aleft = −sin2 γ

cos γ
ẽ1 + i sin 2γ

(
1

2
σz1 +

1

2
σz2

)
(5.41)

and

Aright = −sin2 γ

cos γ
ẽ2L−1 − i sin 2γ

(
1

2
σz1 +

1

2
σz2

)
. (5.42)

By expanding the TL generators ei and ẽi in terms of Pauli matrices,

ei =
1

2

[
σxi σ

x
i+1 + σyi σ

y
i+1 − cos γσzi σ

z
i+1 + cos γ − i sin γ(σzi − σzi+1)

]
, (5.43a)

ẽi =
1

2

[
−σxi σxi+1 − σ

y
i σ

y
i+1 − cos γσzi σ

z
i+1 + cos γ + i sin γ(σzi − σzi+1)

]
,(5.43b)

we can see that the Hamiltonian (5.36) can be written entirely in terms of ẽi instead of
ei. The additional Pauli matrices in equations (5.41) and (5.42) disappear, and we get

H =

(
cos γ − sin2 γ

cos γ

)
(ẽ1 + ẽ2L−1)+2 cos γ

2L−2∑
m=2

ẽm−
2L−2∑
m=1

(ẽmẽm+1 + ẽm+1ẽm) , (5.44)
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which can be rewritten as

H = − 1

cos γ
(ẽ1 + ẽ2L−1) + 2 cos γ

2L−1∑
m=1

ẽm −
2L−2∑
m=1

(ẽmẽm+1 + ẽm+1ẽm) . (5.45)

Evidently, we can swap all of the ẽi → ei without changing the spectrum. Hence we get
finally

H = − 1

cos γ
(e1 + e2L−1) + 2 cos γ

2L−1∑
m=1

em −
2L−2∑
m=1

(emem+1 + em+1em) . (5.46)

Since the Hamiltonian in (5.46) arises from a Hamiltonian of the form (4.25), it is
integrable and solvable by Bethe Ansatz. We present its Bethe Ansatz solution in
section 5.3.

5.2.2 Additional symmetries

It was found in [105] and [106] that the transfer matrix (4.11)—or, equivalently, the
Hamiltonian (4.25)—has a particular pattern of degeneracies that suggests the open
chain is invariant under the action of generators of some quantum group. The observed
symmetry is very similar to what one would expect if the chain were invariant under
the action of the Uq(sl(2)) quantum group, but in fact we have even more degeneracies
than would be expected if the full symmetry group was Uq(sl(2)).

Consider the degeneracies of the D2
2 chain in table 5.4 compared with those of the

expected degeneracies from a chain with just Uq(sl(2)) symmetry. Let us first explain the
notation. On the Uq(sl(2)) side, [j] denotes the spin-(j−1)/2 representation dimension
j, and more generally [j] refers to a j-dimensional representation of the corresponding
symmetry. A decomposition like 2[1] ⊕ 3[3] ⊕ [5], for example, means that there are
two eigenvalues with degeneracy 1, three with degeneracy 3 and one with degeneracy
5, corresponding to a total dimension of 2× 1 + 3× 3 + 1× 5 = 16.

At size L = 2 we see that two of the 3 times degenerate eigenvalues in the Uq(sl(2))
chain “become” a 6 times degenerate eigenvalue in the D2

2 chain; the symmetry group
of the D2

2 chain is higher. At this point it is useful to recall that a D2
2 chain of length L

means that there are N = 2L sites with spin 1
2 , since L is the number of “Potts spins”

in one row of the classical Potts model defined by the Hamiltonian (5.1). The D2
2 chain

of length L therefore has a Hilbert space of dimension 22L.
We can understand the extra symmetries by studying the limit of the D2

2 chain
when γ → 0, where it will be shown in section 5.2.3 that the chain becomes that of two
decoupled open XXX chains, and that the extra symmetry comes from the permutation
of these two chains. The symmetry for finite γ will be discussed in section 5.2.4.

5.2.3 The γ → 0 limit

Consider the Hamiltonian in (5.46) in the limit γ → 0:

H = (e1 + e2L−1) + 2

2L−2∑
m=2

em −
2L−2∑
m=1

(emem+1 + em+1em) . (5.47)

Using the expression in (5.43), this becomes

H = −1

2

L−1∑
i=1

(σx2i−1σ
x
2i+1+σy2i−1σ

y
2i+1+σz2i−1σ

z
2i+1)−1

2

L−1∑
i=1

(σx2iσ
x
2i+2+σy2iσ

y
2i+2+σz2iσ

z
2i+2)

(5.48)
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L Uq(sl(2)) D2
2

2 2[1]⊕ 3[3]⊕ [5] 2[1]⊕ [3]⊕ [5]⊕ [6]

3 5[1]⊕ 9[3]⊕ 5[5]⊕ [7] 3[1]⊕ [2]⊕ 3[3]⊕ [5]⊕ 3[6]⊕ [7]⊕ 2[10]

4 14[1]⊕ 28[3]⊕ 20[5]⊕ 7[7]⊕ [9] 6[1]⊕ 4[3]⊕ 4[2]⊕ 4[5]⊕ 12[6]⊕ 1[7]⊕ [9]⊕ 8[10]⊕ 3[14]

Table 5.4: The degeneracies of the D2
2 spin chain of length N = 2L compared with

those of the Uq(sl(2)) chain.

Eigenvalue Eigenspace Decomposition Degeneracy

2λ1 |1〉 ⊗ |1〉 |1〉 1

2λ3 |3〉 ⊗ |3〉 |5〉 ⊕ |3〉 ⊕ |1〉 9

λ1 + λ3 |1〉 ⊗ |3〉 ⊕ |3〉 ⊗ |1〉 |6〉 6

Table 5.5: Analysis of the spectrum of the D2
2 chain for L = 2, in the limit γ → 0.

up to terms proportional to the identity. The Hamiltonian in (5.48) is the sum of two
decoupled open XXX chains of length L. (A similar observation was made for the
periodic model in [54].) Note that for the XXX chain, a chain of length L means that
the Hamiltonian acts on L spin 1

2 sites, unlike the D2
2 chain where a chain of length L

means that the Hamiltonian acts on 2L spin-1
2 sites. This is most easily understood when

considering equation (5.48), where we observed that the D2
2 chain becomes equivalent

to two XXX chains.
Consider first the case L = 2. The sl(2) symmetry of each individual XXX Hamil-

tonian is such that there are two eigenvalues, one non-degenerate and one three times
degenerate. The eigenvectors of each Hamiltonian are the so-called singlet and triplet
states which we will denote by |1〉 and |3〉 respectively. We will denote the correspond-
ing eigenvalues by λ1 and λ3. Now consider the Hamiltonian obtained by summing the
two XXX Hamiltonians. The situation is summarised in table 5.5. There are clearly
three distinct eigenvalues given by 2λ1, 2λ3 and λ1 + λ3 with the degeneracies 1, 9 and
6 respectively. The eigenvectors of the full Hamiltonian are the tensor products of the
eigenvectors of the two individual XXX Hamiltonians. The eigenspace of dimension 9
comes about from the tensor product of the two spaces of dimension 3. We can de-
compose this tensor product into a direct sum of spaces |5〉, |3〉 and |1〉. Note that
this is just the usual tensor product of two spin-1 spaces into the spaces with spin 2,
1 and 0. The eigenspace with dimension 6 is more subtle. The eigenvalue λ1 + λ3

corresponds to placing the eigenvector |1〉 on one XXX chain and the eigenvector |3〉 on
the other. Clearly, we can swap the two chains to obtain another eigenvector with the
same eigenvalue. This results then in an eigenspace of dimension 6.

5.2.4 Non-zero γ

In the γ → 0 limit the even-dimensional eigenspaces of the Hamiltonian were understood
to be the result of the permutation symmetry of the two XXX chains. This symmetry
exists on top of the sl(2) symmetry. When γ 6= 0, the sl(2) symmetry is replaced by
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Eigenvalue Eigenspace Decomposition Degeneracy

2λa1 |1a〉 ⊗ |1a〉 |1〉 1

λa1 + λb1 |1a〉 ⊗ |1b〉 ⊕ |1b〉 ⊗ |1a〉 |2〉 2

λa1 + λa3 |1a〉 ⊗ |3a〉 ⊕ |3a〉 ⊗ |1a〉 |6〉 6

λa1 + λb3 |1a〉 ⊗ |3b〉 ⊕ |3b〉 ⊗ |1a〉 |6〉 6

λa1 + λc3 |1a〉 ⊗ |3c〉 ⊕ |3c〉 ⊗ |1a〉 |6〉 6

λa1 + λ5 |1a〉 ⊗ |5〉 ⊕ |5〉 ⊗ |1a〉 |10〉 5

2λb1 |1b〉 ⊗ |1b〉 |1〉 1

λb1 + λa3 |1b〉 ⊗ |3a〉 ⊕ |3a〉 ⊗ |1b〉 |6〉 6

λb1 + λb3 |1b〉 ⊗ |3b〉 ⊕ |3b〉 ⊗ |1b〉 |6〉 6

λb1 + λc3 |1b〉 ⊗ |3c〉 ⊕ |3c〉 ⊗ |1b〉 |6〉 6

λb1 + λ5 |1b〉 ⊗ |5〉 ⊕ |5〉 ⊗ |1b〉 |10〉 5

2λa3 |3a〉 ⊗ |3a〉 |5〉 ⊕ |3〉 ⊕ |1〉 9

λa3 + λb3 |3a〉 ⊗ |3b〉 ⊕ |3b〉 ⊗ |3a〉 |10〉 ⊕ |6〉 ⊕ |2〉 18

λa3 + λc3 |3a〉 ⊗ |3c〉 ⊕ |3c〉 ⊗ |3a〉 |10〉 ⊕ |6〉 ⊕ |2〉 18

λa3 + λ5 |3a〉 ⊗ |5〉 ⊕ |5〉 ⊗ |3a〉 |14〉 ⊕ |10〉 ⊕ |6〉 30

2λb3 |3b〉 ⊗ |3b〉 |5〉 ⊕ |3〉 ⊕ |1〉 9

λb3 + λc3 |3b〉 ⊗ |3c〉 ⊕ |3c〉 ⊗ |3b〉 |10〉 ⊕ |6〉 ⊕ |2〉 18

λb3 + λ5 |3b〉 ⊗ |5〉 ⊕ |5〉 ⊗ |3b〉 |14〉 ⊕ |10〉 ⊕ |6〉 30

2λc3 |3c〉 ⊗ |3c〉 |5〉 ⊕ |3〉 ⊕ |1〉 9

λc3 + λ5 |3c〉 ⊗ |5〉 ⊕ |5〉 ⊗ |3c〉 |14〉 ⊕ |10〉 ⊕ |6〉 30

2λ5 |5〉 ⊗ |5〉 |9〉 ⊕ |7〉 ⊕ |5〉 ⊕ |3〉 ⊕ |1〉 25

Table 5.6: Spectrum of the D2
2 chain with L = 4, in the limit γ → 0.
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Uq(sl(2)) and the permutation symmetry is replaced by a symmetry under the action
of the operator C as will now be discussed.

First observe that the eigenvalues of C are all±1. Then, since [H,C] = 0, any eigenspace
of H is invariant under the action of C. The even degeneracies in the eigenvalues come
from the coupling of two eigenspaces of C, with eigenvalues ±1 respectively, under the
action of H. Consider for example two linearly independent eigenvectors of H, |ψ1〉
and |ψ2〉, with the same energy eigenvalue. We therefore have that |ψ3〉 ≡ |ψ1〉 + |ψ2〉
and |ψ4〉 ≡ |ψ1〉 − |ψ2〉 are eigenstates of H. If it is the case that |ψ1〉 has eigenvalue
1 under the action of C but |ψ2〉 has eigenvalue −1, then C|ψ3〉 = |ψ4〉 and C|ψ4〉 = |ψ3〉.

One can indeed check that the even degeneracies of H come from linear combinations of
eigenvectors of C with eigenvalues 1 and −1 and that all of the odd dimensional spaces
are linear combinations of eigenvectors of C with eigenvalues that are either 1 or −1.
We have checked this fact for sizes up to L = 4, and we conjecture it to hold true in
general.

5.3 The Bethe Ansatz solution

The advantage of having an open boundary condition that stems from a solution to the
boundary Yang-Baxter equation (4.10) is that the model should admit an exact solution.
In particular, the Bethe Ansatz equations corresponding to the K-matrix defined in
(5.31)–(5.32) have been found in [105] and [106], using the analytic Bethe Ansatz method
presented in section 4.3. When the additive and multiplicative normalisation constants
of the Hamiltonian are defined as in (5.46), the Bethe Ansatz solution tells us that the
energy eigenvalues are given by

ED2
2

=
m∑
j=1

2 sin2(2γ)

cosh 2λj − cos 2γ
, (5.49)

where the λj are solutions to the Bethe Ansatz equations (BAE)

[
sinh(λj + iγ)

sinh(λj − iγ)

]2L

=
m∏

k=1,k 6=j

sinh
(λj

2 −
λk
2 + iγ

)
sinh

(λj
2 −

λk
2 − iγ

) sinh
(λj

2 + λk
2 + iγ

)
sinh

(λj
2 + λk

2 − iγ
) . (5.50)

We once again study the finite size scaling of the energy eigenvalues using equation
(4.28), repeated here for clarity:

E = f0L+ fs −
πvF( c

24 − h)

L
+ o

(
1

L

)
, (5.51)

where L is the system size, c is the central charge, h is the conformal dimension of the
primary field corresponding to the eigenvalue under consideration, f0 is the bulk energy
density and fs is the surface energy. The Fermi velocity vF for the present model was
calculated in [54] and is given by

vF =
2π sin(π − 2γ)

π − 2γ
. (5.52)
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It is found that, in the continuum limit, the generating function of levels is

Z =
∞∑
m=0

(2m+ 1)Zm , (5.53)

where Zm is the generating function corresponding to the antiferromagnetic Potts model
with free boundary conditions, given in [32] as

Zm =
qhm−

c
24

η2(q)

1 + 2

 ∞∑
j=1

q2m2+m(2j+1) −
∞∑
j=0

q2(m+ 1
2

)2+(m+ 1
2

)(2j+1)

 , (5.54)

where
hm =

m(m+ 1)

k
, (5.55)

with m ∈ Z and γ = π
k . Moreover, η(q) is the Dedekind eta function, and q denotes the

modular parameter. The central charge c is given by

c = 2− 6

k
. (5.56)

These values for the central charge (5.56) and critical exponents (5.55) will be derived
analytically in section 5.3.1 by mapping some of the solutions to (5.50) to solutions of the
Bethe Ansatz equations of the open XXZ Hamiltonian with some particular boundary
conditions. Section 5.3.2 will then consider solutions to (5.50) that do not correspond to
solutions of any XXZ Bethe Ansatz equations. Some examples of these other solutions
to (5.50) will be presented and the scaling behaviour of the eigenvalues corresponding
to these solutions will be shown to reproduce the first few terms in (5.54). In section
5.4, the generating function defined in (5.54) will be observed by direct diagonalisation
of the Hamiltonian for a range of values of γ.

5.3.1 The XXZ subset

Even number of Bethe roots

Consider solutions to the BAE (5.50) of the form

λ0
j = α0

j + i
π

2
, (5.57a)

λ1
j = α1

j − i
π

2
, (5.57b)

so that (5.50) becomes[
cosh(α0

j + iγ)

cosh(α0
j − iγ)

]2L

=

m
2∏

k=1,k 6=j

sinh(
α0
j

2 −
α0
k

2 + iγ)

sinh(
α0
j

2 −
α0
k

2 − iγ)

cosh(
α0
j

2 +
α0
k

2 + iγ)

cosh(
α0
j

2 +
α0
k

2 − iγ)
m
2∏

k=1

cosh(
α0
j

2 −
α1
k

2 + iγ)

cosh(
α0
j

2 −
α1
k

2 − iγ)

sinh(
α0
j

2 +
α1
k

2 + iγ)

sinh(
α0
j

2 +
α1
k

2 − iγ)
,

(5.58)

while the α1
j can be seen to satisfy a similar equation. Taking the subset of solutions

where
α0
k = α1

k ≡ αk , (5.59)
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equation (5.58) becomes

[
cosh(αj + iγ)

cosh(αj − iγ)

]2L sinh(αj − iγ)

sinh(αj + iγ)
=

m
2∏

k=1,k 6=j

sinh(αj − αk + 2iγ)

sinh(αj − αk − 2iγ)

sinh(αj + αk + 2iγ)

sinh(αj + αk − 2iγ)
.

(5.60)
Consider now the open XXZ Hamiltonian with boundary fields H and H ′:

HXXZ = −1

2

[
L−1∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1 − cos γ0 σ

z
i σ

z
i+1) +Hσz1 +H ′σzL

]
. (5.61)

It was shown in [82] that the eigenvalues of HXXZ are given by

E = −
m′∑
k=1

2 sin2 γ0

cosh 2µk − cos γ0
+

1

2
(L− 1) cos γ0 + boundary terms . (5.62)

The second term and the boundary terms in (5.62) are not important here, since we are
interested in looking at the CFT properties in the thermodynamic limit which we can
calculate from the terms proportional to 1

N . The m′ Bethe roots µk in (5.62) are given
by the solutions to the BAE(

sinh(µj + iγ0

2 )

sinh(µj − iγ0

2 )

)2L
sinh(µj + iΛ)

sinh(µj − iΛ)

sinh(µj + iΛ′)

sinh(µj − iΛ′)
=

m′∏
k 6=j

sinh(µj − µk + iγ0)

sinh(µj − µk − iγ0)

sinh(µj + µk + iγ0)

sinh(µj + µk − iγ0)
,

(5.63)
where the parameters Λ,Λ′ are defined in terms of the boundary parameters H,H ′ as

e2iΛ =
H −∆− eiγ0

(H −∆)eiγ0 − 1
(5.64)

and similarly for Λ′. Compare the energies in equations (5.62) and (5.49) and set
γ0 = π − 2γ as in (5.15). We then have that

ED2
2

= −
m∑
k=1

2 sin2 γ0

cosh 2αk − cos γ0
, (5.65)

where the αk were defined in equation (5.57) and subject to (5.59). Observe that the
form of the energy in equation (5.65) is precisely the same as the energy of the XXZ
chain in equation (5.62) if we have αk = µk, up to the boundary and bulk terms that
will only contribute to the O(1) and O(N) terms which we are not interested in here.
We can ensure that αk = µk by comparing (5.63) with (5.60) and setting

m = 2m′ , (5.66a)

Λ =
π

2
− γ0

2
, (5.66b)

Λ′ = 0 , (5.66c)

which ensures that the solutions to (5.63) are identical with the solutions of (5.60) and
hence

ED2
2

= 2EXXZ . (5.67)
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Now we can use the known scaling behaviour of the open XXZ chain to study the
scaling behaviour of some states in the D2

2 chain, namely the subset of states satisfying
(5.59). We have from [82] that, for general Λ,Λ′, the effective central charge of the
lowest-energy state the XXZ chain (corresponding to the critical exponent h) with total
magnetisation S is given by

ceff = 1− 6

1− γ0

π

(
1−

γ0 + Λ + Λ′ − 2πS(1− γ0

π )

π

)2

. (5.68)

Using then the fact [112] that the Fermi veloctiy v0 of the XXZ model is given by vF
2

where vF is defined in (5.52), and using also (5.15), (5.66) and (5.67), and setting γ = π
k ,

we obtain that the effective central charge c̃eff of a state in the D2
2 model is

c̃eff = 2ceff = 2− 6

k
(1 + 4S)2 . (5.69)

From the bulk central charge of the staggered six-vertex model [32] given in (5.56) and
the relationship between the critical exponent h and the effective central charge

h =
c− c̃eff

24
, (5.70)

we can obtain

h = − 1

4k
+

1

4k
(1 + 4S)2 =

2S(2S + 1)

k
. (5.71)

Setting now l = 2S we have:

h = hl ≡
l(l + 1)

k
, (5.72)

with l an even integer. The critical exponents of the antiferromagnetic Potts model
with free boundary conditions are actually given by (5.72) for all l integer [107], but
the analysis here only recovered the exponents for l even, since we only considered an
even number of Bethe roots m. We will now consider solutions to the Bethe Ansatz
equations with an odd number of Bethe roots and will recover the exponents (5.72) for
l odd.

Odd number of Bethe roots

The analysis in the preceding section considered solutions with an even number of Bethe
roots and hence recovered the critical exponents of the antiferromagnetic Potts model in
equation (5.72) corresponding to even sectors of magnetisation. We will now consider an
odd number of Bethe roots and derive the critical exponents (5.72) for l odd. Consider
solutions to the Bethe Ansatz equations in (5.50) of the form in (5.57) but with one
additional root, λ0

0 = iπ2 . We now have one more root of the form λ0
j than roots of the

form λ1
j , and this additional root has vanishing real part. We can go through the same

analysis that led to (5.60) for the m even case, finding now

[
cosh(αj + iγ)

cosh(αj − iγ)

]2L sinh(αj − 2iγ)

sinh(αj + 2iγ)

sinh(α− iγ)

sinh(α+ iγ)
=

m−1
2∏

k=1,k 6=j

sinh(αj − αk + 2iγ)

sinh(αj − αk − 2iγ)

sinh(αj + αk + 2iγ)

sinh(αj + αk − 2iγ)

(5.73)
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when m is odd. Now compare the Bethe Ansatz equations in (5.73) to the XXZ Bethe
Ansatz equations in (5.63). When we set

m− 1 = 2m′ , (5.74a)

Λ =
π

2
− γ0

2
, (5.74b)

Λ′ = π − γ0 , (5.74c)

applying again (5.15), then the solutions αj to (5.73) will be the same as the solutions
to (5.63) and we will once again have that the energy of the D2

2 chain is equal to twice
that of the XXZ chain as in (5.67). Using (5.68) with the Λ,Λ′ taking values in (5.74)
we find

c̃eff = 2ceff = 2− 6

k
(4S − 1)2 . (5.75)

Now using (5.70) we finally obtain

h =
2S(2S − 1)

k
, (5.76)

which is equivalent to (5.72) for l = 2S − 1.

5.3.2 Other solutions of Bethe Ansatz equations

We have so far managed to use the Bethe Ansatz solution to derive the critical expo-
nents (5.72) and central charge (5.56) which provides a lot of evidence that the particular
boundary conditions under consideration are in the same universality class as the anti-
ferromagnetic Potts model with free boundary conditions. In order to be sure of this,
however, we need to check that the full spectrum of the model is consistent with the
generating function (5.54). In other words, we have so far only confirmed that the first
term in the expansion of Zm in (5.54) is consistent with the critical exponents (5.72)
derived in section 5.3.1, but we need to study the excited states in the chain to compare
with the other terms. We will do this by finding solutions to the Bethe Ansatz equations
(5.50) that are not of the form (5.57).

We shall present some solutions for the test case γ = π
5 and show that the results

are indeed consistent with (5.54). Section 5.4 will then show by direct diagonalisation
for a range of values of γ that (5.54) is indeed the correct generating function of levels
for the spin chain. We will consider separately the cases with total magnetisation n
equal to two, one and zero. Note that in our notation m is the number of Bethe roots
in any given solution to the Bethe Ansatz equations (5.50). Solutions with m = L
roots correspond to states in the zero magnetisation sector and more generally, when
we define:

m = L− n , (5.77)

the solutions with m Bethe roots correspond to states with magnetisation n.

The n = 2 sector

The Bethe Ansatz equations (5.50) are more easily handled when cast in logarithmic
form:

2L log

(
sinh(iγ + λj)

sinh(iγ − λj)

)
= 2iπIj+

m∑
k=1,k 6=j

[
log

(
sinh(iγ + 1

2(λj − λk)
sinh(iγ − 1

2(λj − λk)

)
+ log

(
sinh(iγ + 1

2(λj + λk))

sinh(iγ − 1
2(λj + λk))

)]
,

(5.78)
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where the Ij are integers introduced as a result of the periodicity of the logarithms.
Now consider solutions of the form (5.57). Equations (5.78) become

2L log

(
cosh(iγ + α0

j )

cosh(iγ − α0
j )

)
= 2iπI0

j +

m0∑
k=1,k 6=j

log

(
sinh(iγ + 1

2(α0
j − α0

k)

sinh(iγ − 1
2(α0

j − α0
k)

)

+
m0∑

k=1,k 6=j
log

(
cosh(iγ + 1

2(α0
j + α0

k)

cosh(iγ − 1
2(α0

j + α0
k)

)
+

m1∑
k=1

log

(
cosh(iγ + 1

2(α0
j − α1

k)

cosh(iγ − 1
2(α0

j − α1
k)

)

+
m1∑
k=1

log

(
sinh(iγ + 1

2(α0
j + α1

k)

sinh(iγ − 1
2(α0

j + α1
k)

)
,

(5.79)

where m0 and m1 are the number of roots of the form λ0
j and λ1

j respectively. Note
that the Bethe numbers I0

j now take half-integer values when m0 + m1 is even, and
integer values when m0 + m1 is odd. An equation similar to (5.79) holds for the α1

j

roots and the Bethe numbers in that case are written as I1
j . It is convenient to define

the functions

k(λ) = −i log

(
cosh(iγ + λ)

cosh(iγ − λ)

)
, (5.80a)

θ0(λ) = −i log

(
sinh(iγ + λ

2 )

sinh(iγ − λ
2 )

)
, (5.80b)

θ1(λ) = −i log

(
cosh(iγ + λ

2 )

cosh(iγ − λ
2 )

)
. (5.80c)

Equations (5.79) then become

2Lk(α0
j ) = 2πI0

j + θ0

(
1

2
(α0

j − α0
k)

)
+ θ1

(
1

2
(α0

j + α0
k)

)
+ θ1

(
1

2
(α0

j − α1
k)

)
+ θ0

(
1

2
(α0

j + α1
k)

) (5.81a)

and
2Lk(α1

j ) = 2πI1
j + θ1

(
1

2
(α1

j − α0
k)

)
+ θ0

(
1

2
(α1

j + α0
k)

)
+ θ0

(
1

2
(α1

j − α1
k)

)
+ θ1

(
1

2
(α1

j + α1
k)

)
.

(5.81b)

It is found that the following configuration of Bethe numbers

I0
j = j − 1

2
, (5.82a)

I1
j = j − 1

2
(5.82b)

leads to a unique solution of (5.81) corresponding to the lowest-energy state in the
particular magnetisation sector under investigation. These are the states that result in
the critical exponents (5.72).

This section will consider the magnetisation sector n = 2, so that there are a total
of m = L−2 Bethe roots, and the structure of the Bethe roots corresponding to excited
states that are presented here are valid for γ = π

5 . To create an excited state in this
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Figure 5.9: Bethe roots
for L = 32 corresponding
to the lowest-energy state
in the n = 2 sector with
γ = π

5 .
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Figure 5.10: Bethe roots
for L = 32 corresponding
to an excited state in the
n = 2 sector with γ =
π
5 . The Bethe numbers on
the two lines are shifted by
n0 = 3 and n1 = 1 respec-
tively.

sector and for this particular value of γ we can shift some of the Bethe numbers in (5.82)
to the right. In particular, if the lowest-energy state with the configuration in (5.82)
corresponds to a critical exponent h, then if we shift the largest n0 Bethe numbers in
the set I0

j by 1, and if we shift the largest n1 Bethe numbers in the set I1
j by 1, then we

will find a solution to the Bethe Ansatz equations in (5.81a) and (5.81b) that results in
a descendent state with critical exponent h+ n0 + n1.

Consider the following example: take L = 8 and the following configuration of Bethe
numbers:

I0
1 =

1

2
, I0

2 =
5

2
, I0

3 =
7

2
,

I1
1 =

1

2
, I0

2 =
3

2
, I0

3 =
7

2
.

(5.83)

These Bethe numbers correspond to a total shift of n0 +n1 = 2+1 = 3, hence we expect
that in the thermodynamic limit a state of this form corresponds to a critical exponent
h2 + 3 where h2 is the critical exponent in (5.72) with l = 2. Observe then that for a
given gap of n0 + n1 there are n0 + n1 + 1 ways to realise this gap, since after fixing
n0 + n1 there are n0 + n1 + 1 possible values of n0 which in turn fixes n1. Examples of
solutions of this form are shown in Figures 5.9–5.10.

There are solutions to (5.50), however, that do not have the form (5.57). An example
of a solution of this kind is shown in Figure 5.11, where there is one root with zero
imaginary part, one with zero real part, and all of the other roots have imaginary
parts that lie close to ±π

2 and are complex conjugates of each other. By studying the
scaling behaviour of the state in Figure 5.11 we observe that it corresponds to a critical
exponent hl + 2 with hl given by (5.72) with l = 2. Using the solutions presented, in
addition to the fact that we can always create a new solution to (5.50) by shifting all
Bethe roots by +iπ, we can reconstruct the first three terms of Z2 in (5.54) for γ = π

5 .

The n = 1 sector

We will now consider an example of solutions to (5.50) in the n = 1 sector, i.e. with
m = L − 1 Bethe roots, again at the particular point γ = π

5 . As is the case for all
sectors, the solution corresponding to the lowest-energy state is of the form (5.57). An
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Figure 5.11: Bethe roots
for L = 32. A solution to
the BAE in the n = 2 sec-
tor with γ = π

5 .
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Figure 5.12: Bethe roots
for L = 32. Lowest-energy
state in the n = 1 sector
with γ = π

5 .
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Figure 5.13: Bethe roots
for L = 32. First excited
state in the n = 1 sector
with γ = π

5 .
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Figure 5.14: Bethe roots
for L = 32. Ground state
in the n = 0 sector with
γ = π

5 .

example of such a solution is shown in Figure 5.12. Since there is an odd number of
Bethe roots in the n = 1 sector, the analysis of section 5.3.1 applies and the critical
exponent corresponding to the lowest-energy state is given by (5.72) with l = 1. The
solution corresponding to the first excited state in this sector is shown in Figure (5.13).
This solution has one Bethe root with zero imaginary part and all of the other roots
have imaginary parts that lie close to π

2 and are complex conjugates of each other. The
critical exponent corresponding to this state is given by h1+1 and is therefore consistent
with the form of Z1 in (5.54).

The n = 0 sector

There are m = L roots in the magnetisation n = 0 sector. The ground state is of
the form (5.57) and a solution for L = 32 and γ = π

5 is shown in Figure 5.14. In the
thermodynamic limit, a state of this form corresponds to a critical exponent h = 0,
corresponding to l = 0 in equation (5.72). The first excited state is of the form shown
in Figure 5.15, where we observe that all but two of the roots are on the lines with
imaginary part π

2 and the remaining two roots have imaginary parts 0 and π. All of the
roots come in pairs differing by ±iπ. This state results in a critical exponent h = 2 in
the continuum limit, corresponding to the first term of Z0 in (5.54). The next excited
state is of the form shown in Figure 5.16. There is one root with zero imaginary part,
one with imaginary part equal to π, and all of the other roots come in complex conjugate
pairs with imaginary parts very close to ±π

2 . This state results in a critical exponent



106CHAPTER 5. INTEGRABLE BOUNDARY CONDITIONS IN THE POTTS MODEL

0.5 1.0 1.5 2.0

-1

1

2

3

Figure 5.15: Bethe roots
for L = 32. First excited
state in the n = 0 sector
with γ = π

5 .
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Figure 5.16: Bethe roots
for L = 32. Second ex-
cited state in the n = 0
sector with γ = π

5 .

h = 3 and corresponds to the next term (5.54).

5.4 Other Temperley-Lieb representations

We have until now been considering the Hamiltonian in (5.46) with the em defined in
terms of Pauli matrices by (5.43). This is known as the vertex-model representation of
the TL algebra (3.15), but there are others representations that we can consider. We
will consider the loop representation of the TL algebra in section 5.4.1, and the RSOS
representation in section 5.4.2.

5.4.1 Loop representation

The loop representation of the TL algebra was introduced in section 3.1.2. We can
study the Hamiltonian in (5.46) with this loop representation of ei. By studying the
scaling behaviour of the eigenvalues of the Hamiltonian it is found that the generating
function in the continuum limit, in the sector with 2j through lines, is given by Zj ,
defined in (5.54). The full generating function is then given by

Z =
∞∑
m=0

Zm , (5.84)

which, when compared to (5.53), is seen to be the same as the generating function in
the vertex representation, except that there is a restriction to the highest-weight states
of the quantum group symmetry Uq(sl(2)). It is also worth pointing out that the Bethe
Ansatz has previously been applied to other loop models [113, 114].

5.4.2 RSOS representation

RSOS models were discussed in section 3.1.5 and the RSOS representation of the TL
algebra was defined in equation (3.28) and Figure 3.18. It was found in [32] that the
generating function of the antiferromagnetic Potts model with free boundary conditions
in the RSOS representation is given by the string functions c0

l , i.e. the generating
function of levels in the Zk−2 parafermion CFT. The general form of the string functions
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cml are given by [73]:

cml =
1

η(q)2

∑
n1,n2∈Z/2
n1−n2∈Z

n1≥|n2|,−n1>|n2|

(−1)2n1sign(n1)q
(l+1+2n1k)2

4k
− (m+2n2(k−2))2

4(k−2) , (5.85)

and l = |hN+1−h1| is the difference between the heights on the left and right boundaries.
We observe the same generating function in the continuum limit when we take the RSOS
representation of the TL algebra in the Hamiltonian (5.46), once again using finite size
scaling.





Chapter 6

A Non-Compact Boundary
Conformal Field Theory

Previous chapters have used a combination of techniques to study the open antiferro-
magnetic Potts model in its various formulations as a loop model, a vertex model and
an RSOS model. In particular, chapter 3 used a combination of algebraic and numerical
techniques to study the underlying boundary CFT of the model with the new boundary
conditions that were presented there. Chapter 5 found an exact mapping between the
vertex formulation of the antiferromagnetic Potts model and the integrable D2

2 model,
and hence used the Bethe Ansatz to study the continuum limit in that case. We recall
now the discussion from the introduction to chapter 4, and in particular Figures 4.1 and
4.2, where the use of Bethe Ansatz techniques was motivated by their potential to study
very large lattices and hence be used to understand models with a non-compact contin-
uum limit. However, the boundary conditions that were so far studied using the Bethe
Ansatz did not produce a non-compact continuum limit and were instead described by
the generating function in equation (5.54) which clearly generates a discrete spectrum
- and therefore corresponds to a compact boundary CFT.

In this chapter we will consider a different D2
2 K-matrix that we will show produces

a non-compact continuum limit. We will start with the same strategy as was used in
chapter 5, i.e. take advantage of the mapping between the AF Potts model and the
D2

2 model by interpreting a D2
2 K matrix in the language of the Potts model and its

vertex formulation. We will show that the Hamiltonian of the model with this new
K-matrix also has a very convenient form in terms of the Temperley-Lieb algebra, see
equation (6.9). Furthermore, we show that this K-matrix has a simple interpretation
in the language of the transfer matrix, see equation (6.22).

The fact that the D2
2 K-matrix that we will consider here satisfies the boundary Yang-

Baxter equation introduced in section 4.3 means that the D2
2 model is integrable with

these boundary conditions. However, a complete Bethe Ansatz solution has, until now,
been lacking. We present here an exact solution of the model with these boundary
conditions which allows us to study the continuum limit and show that it is indeed
described by a non-compact boundary CFT.

This chapter is structured as follows: in section 6.1 the K-matrix under consideration
is introduced and its corresponding Hamiltonian in terms of Temperley-Lieb algebra
generators is derived. A construction to move between the geometry of integrable models

109
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and the geometry most natural in the context of AF Potts and of loop models is reviewed
and applied to the present case, allowing us to derive a loop model interpretation of the
new boundary conditions, this key result is given in equation (6.22). Section 6.2 derives
the complete exact solution of the model and section 6.3 studies the properties of the
CFT describing the continuum limit. Finally in section 6.4 it is shown that there is a
renormalisation group flow between the boundary conditions presented in this chapter
and those of chapter 5, giving rise to a renormalisation group flow from a non-compact
boundary CFT to a compact one.

6.1 New Boundary Conditions

Let us start by writing the K-matrix that was first presented in [115]. We have:

K−(λ) =
1

sinh(λ+ η)


− sinh(λ− η) 0 0 0

0 coshλ sinh η − sinhλ cosh η 0
0 − sinhλ cosh η coshλ sinh η 0
0 0 0 − sinh(λ− η)


(6.1)

where the correspondence with our previous notation (defined in section 5.1.4) is:

λ = 2iu

η = iγ
(6.2)

We take K− to act on the left boundary. As always, we also need a K+ matrix for the
right boundary and we take:

K+(λ) = K−(−λ+ 2η)tM (6.3)

where M is defined in equation (5.30).

6.1.1 The Hamiltonian limit

To calculate the Hamiltonian corresponding to the K-matrix in (6.1) we can no longer
use the usual definition in equations (4.24) and (4.25) because we have TrK+

0 (0) = 0.
We must therefore define the Hamiltonian as the second derivative of the transfer matrix
which gives [116]:

H =
t′′(0)

4(T + 2A)
=

L−1∑
j=1

Hj,j+1 +
1

2
K−

′
(0)

+
1

2(T + 2A)
(Tr0(K+

0 (0))GL0 + 2 Tr0(K+′

0 (0)HL0) + Tr(K+
0 (0)H2

L0))

(6.4)
where the quantities A, T and G are defined by:

Tr0K
+
0 (0)HL0 = A1

T = TrK+′(0)

Gj,j+1 = Pj,j+1
d2Rj,j+1(u = 0)

du2

(6.5)

The general form of the open Hamiltonian was written in (5.36) and is repeated here:
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H = Aleft +Aright +cos γ(e1 +e2L−1)+2 cos γ

2L−2∑
m=2

em−
2L−2∑
m=1

(emem+1 +em+1em) , (6.6)

The terms Aleft and Aright correspond to the second and third terms in (6.4). The
K-matrix in (6.1) is written in the basis in (5.8), but to understand its Temperley Lieb
interpretation we need to write it in the basis in (5.5). After this basis change, and up
to constants proportional to the identity we find for Aleft and Aright:

Aleft = cos γ


0 0 0 0
0 e−iγ 1 0
0 1 eiγ 0
0 0 0 0

⊗ I⊗2L−2 (6.7)

and

Aright = I⊗2L−2 ⊗ cos γ


0 0 0 0
0 e−iγ 1 0
0 1 eiγ 0
0 0 0 0

 (6.8)

So the total Hamiltonian in (6.6) becomes:

H = 2 cos γ
2L−1∑
j=1

ej −
2L−2∑
j=1

(ejej+1 + ej+1ej) (6.9)

We remark that (6.9) is an extraordinarily simple result - let us take a moment to
compare it to the periodic model. The Hamiltonian of the periodic model is defined as:

Hperiodic ≡
1

2
sin 2γ

L∑
n=1

dRn,n+1

du
=

2L∑
m=1

(2 cos γem − (emem+1 + em+1em)) (6.10)

We see then that (6.9) is in some sense a very natural open Hamiltonian since we
can obtain it just by changing the limits in the sum in the final expression in (6.10).
However, if we tried to do this by defining an open model in the following way:

Hopen ≡
1

2
sin 2γ

L−1∑
n=1

dRn,n+1

du
= cos γ(e1 +e2L−1 +2

2L−2∑
m=2

em)−
2L−2∑
m=1

(emem+1 +em+1em)

(6.11)
we see that the result is a Hamiltonian with different coefficients for the e1 and e2L−1

terms. This is the Hamiltonian we would get from setting the K matrices equal to
the identity, (however the identity operator does not satisfy the boundary Yang Baxter
equation and hence is not an integrable boundary condition). By comparing with 6.9,
we see that the K-matrix in (6.1) ensures that all the ei terms get the same coefficients.

6.1.2 Geometry change

The two open integrable models that we have so far considered are described by a
transfer matrix of the form in equation (4.11). The diagrammatic form of this transfer
matrix is shown in Figure (5.8), and similarly in Figure 6.1. Notice however that this
geometry is quite different from the open vertex model of Figure 3.9 and 3.10. In
particular, the vertices in Figure 3.10 are rotated by 45o with respect to the vertices in
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u− ω4u− ω3u− ω2u− ω1

u+ ω1 u+ ω2 u+ ω3 u+ ω4
K+(u)K−(u)

Figure 6.1: The geometrical interpretation of the transfer matrix in equation (6.12)

2u2u

2u 2u
K+(u)K−(u)

Figure 6.2: The geometrical interpretation of the transfer matrix in (6.12) when the
parameters ωj are given by equation (6.13).

Figure (6.1), which means that the way we implement the boundary condition in each
model must be quite different. From the discussion in section 3.1.1, it becomes clear
that the geometry of Figure 3.9 is the most natural one in which to study the Potts
model and its loop model formulation with open boundary conditions, since in this case
the conformal boundary conditions have a simple lattice interpretation. To study these
models using the tools of integrability however we require the model to be defined on the
lattice of Figure 6.1. Fortunately, it was discussed in [117, 118] that one can transform
an integrable model defined on the lattice in Figure 6.1 into one defined on the lattice
of Figure 3.9, where the boundary conditions have a more natural interpretation and
the model remains solvable by Bethe Ansatz. This procedure will be reviewed in the
next section, and the K-matrix in equation (6.1) will have a simple interpretation in
terms of a boundary condition on the lattice in Figure 3.10.

6.1.3 The Transfer Matrix

The open integrable transfer matrix of equation (4.11) can in fact be generalised to
include inhomogeneous spectral parameters on each line, meaning that the spectral
parameter is altered by parameters ωi at each vertex while leaving the model solvable
by Bethe Ansatz. The form of the transfer matrix of a model with these altered spectral

2u 2u

2u 2u

K−(u) Tr0(K0(u)+RN0(2u))

Figure 6.3: A rearrangement of the lattice in Figure 6.2 - the two lattices are topologi-
cally equivalent and correspond to the same transfer matrix.
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parameters is:

t(u) = TraK
+
a (u)RaL(u+ ωL)...Ra1(u+ ω1)K−a (u)R1a(u− ω1)...RLa(u− ωL) (6.12)

The graphical depiction of this transfer matrix is shown in Figure 6.1. Now the main
idea of this construction is to choose the parameters ωi in such a way as to make
the transfer matrix proportional to one describing the model on the rotated lattice of
interest. Consider the following choice of the parameters ωj :

ωj = (−1)j+1u (6.13)

Since the R-matrix is proportional to the permutation operator when its argument is
zero, (or equivalently, the Ř-matrix is proportional to the identity operator: Ř(0) = 1),
this choice of the ωi transforms Figure 6.1 into 6.2. It can be easily seen then that
Figure 6.2 can be redrawn as Figure 6.3, which is the vertex model defined on lattice
that we are interested in, i.e. the lattice of Figure 3.9. The Boltzmann weight of the
vertices in the bulk are now captured by the R-matrix with spectral parameter 2u,
the Boltzmann weights arising from interaction with the left boundary is captured by
K−(u), and Boltzmann weights from interactions with the right boundary are described
by Tr0(K0(u2 )+RN0(u)).

Let’s now see how this works for the present K-matrix under study, i.e. that of
equation (6.1). Firstly we must consider a technical point. Recall from chapter 5 that
the D2

2 R-matrix was equivalent to the block R-matrix from the staggered six vertex
model in Figure 5.4. If we apply the construction just outlined to this block R-matrix
and the corresponding K-matrix, the lattice that we end up with is shown in Figure
6.4, where the dotted lines are where the vertices live, and the full lines are the tiles
surrounding these vertices, just as in Figure 3.9. Recall now from equation (3.18) the
form of the block R-matrix in terms of Temperley-Lieb operators, repeated here for
clarity:

Ri,i+1 = (x+ e2i)(1 + xe2i−1)(1 + xe2i+1)(x+ e2i) (6.14)

The full lattice model and its Boltzmann weights then is that shown in Figure 6.5, where
each term of the form 1 + xei or x+ ei corresponds to one of the vertices comprised of
dotted lines in Figure 6.4.

Recall from section 3.1.1 that the isotropic point of the model is the point at which
the parameter x is the same on both even and odd tiles in Figure 6.5, corresponding
to the equality of horizontal and vertical couplings in the original formulation of the
classical Potts model (equation (3.1)). The general form of x in terms of the spectral
parameter u is given by [37]:

x(u) =
sinu

sin(γ − u)
(6.15)

It is easily verified [37] that the value of the spectral parameter u0 that corresponds to
the isotropic point is given by:

u0 =
γ

2
+
π

4
(6.16)

As can be seen from Figures 6.2, 6.3 and 6.5, we must consider the K-matrix on the
left boundary with half the spectral parameter of the bulk. The next task then is to
calculate K−

(
u0
2

)
and interpret it as a physical boundary condition. Equation (6.1)

gives:
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...

Figure 6.4: The lattice from Figure 6.3 but when with a block R-matrix such as that in
Figure 5.4. The dotted lines in the Figure are the edges of the vertex model. The full
lines in this Figure are just the tiles that surround these vertices.
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...

x+ e2

x+ e2

x+ e2

x+ e2

1 + xe1

1 + xe1

1 + xe3

1 + xe3

x+ e2L−2

x+ e2L−2

x+ e2L−2

x+ e2L−2

1 + xe2L−3

x+ e2L−3

1 + xe2L−1

1 + xe2L−1

K(u0
2 ) Tr0(K

+
0 (u0

2
)RN0(u0))

Figure 6.5: The lattice from Figure 6.4 with the action of the R-matrix and K-matrix
written in place of the vertices.
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K−
(u0

2

)
=



sin γ
2
−cos γ

2

sin 3γ
2

+cos 3γ
2

0 0 0

0
sin γ(cos γ

2
−sin γ

2
)

sin 3γ
2

+cos 3γ
2

− cos γ(sin γ
2

+cos γ
2

)

sin 3γ
2

+cos 3γ
2

0

0
− cos γ(sin γ

2
+cos γ

2
)

sin 3γ
2

+cos 3γ
2

sin γ(cos γ
2
−sin γ

2
)

sin 3γ
2

+cos 3γ
2

0

0 0 0
sin γ

2
−cos γ

2

sin 3γ
2

+cos 3γ
2


(6.17)

This K-matrix is written in the basis of (5.8) so to understand it in terms of the vertex
model we must write K−

(
u0
2

)
in the basis of (5.5). After doing so, we finally arrive at:

K−
(u0

2

)
∝
(

sin γ
2 − cos γ2

sin γ
2 + cos γ2

)
I + e1 (6.18)

We furthermore have from equation (6.15) and (6.16) that the isotropic value of x is
given by:

x(u0) =
sin γ

2 + cos γ2
sin γ

2 − cos γ2
(6.19)

and hence:
K−

(u0

2

)
∝ I + xe1 (6.20)

A similar calculation for the right boundary leads to:

Tr0(K+
0

(u0

2

)
RL0(u0)) ∝ I + xe2L−1 (6.21)

To arrive at the result in (6.21) one must be careful with the form of the R-matrix used.
Recall from section 5.1.4 that the R matrix of the D2

2 model differed from that of the
staggered six vertex model by some minus signs of certain matrix components. The
result in (6.21) is only valid for the D2

2 R-matrix.
These two results allow us to write the full transfer matrix corresponding to Figure

6.5 as:
T = (1 + xe1) · · · (1 + xe2L−1)(x+ e2) · · · (x+ e2L−2) , (6.22)

Compare this with the transfer matrix corresponding to free boundary conditions in
the AF Potts model considered in equation (3.47) in section 3.3. We observe that the
transfer matrix in 6.22 is obtained from (3.47) by the transformation x → 1

x , up to an
irrelevant overall constant term. The transformation x → 1

x is the duality transforma-
tion discussed in section 3.1. We have therefore shown that the boundary condition
defined by the K-matrix in equation (6.1) is equivalent to the dual of free boundary
conditions in the antiferromagnetic Potts model.

6.2 Finding an Exact Solution

The preceding sections have shown that the K-matrix in equation (6.1) has a very clean
and convenient interpretation in the Hamiltonian formulation - see equation (6.9) - as
well as the transfer matrix formuation - see equation (6.22). However an exact solu-
tion of the model with these boundary conditions has, until now, been lacking. (Note
that this is unlike the boundary conditions from equation (5.31) where the solutions
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to the Bethe Ansatz equations were studied in [119]). In [120] the authors presented a
set of Bethe Ansatz equations that successfully accounted for a significant part of the
spectrum of the model with the boundary conditions in (6.1), but many states in the
spectrum could not be accounted for by this Bethe Ansatz solution. We present here a
slight modification to the Bethe Ansatz solution of [120] which accounts for all of the
states in the spectrum.

We start with a brief review of the partial solution presented in [120], where the goal
was to calculate the eigenvalues Λ(u) of the transfer matrix of equation (4.11) with the
K-matrices given in (6.1). We have:

Λ(u) = φ(u)λ(u) (6.23)

where
φ(u) =

sinh(u) sinh(u− 2η)

sinh(u+ η) sinh(u− 3η)
(6.24)

and
λ(u) = Z1(u) + Z2(u) + Z3(u) + Z4(u) (6.25)

where Z1(u), Z2(u), Z3(u) and Z4(u) are defined as follows:

Z1(u) = a(u)
Q(u+ η)Q(u+ η + iπ)

Q(u− η)Q(u− η + iπ)

L∏
k=1

16 sinh4L(u− 2η) (6.26)

Z2(u) = b(u)
Q(u− 3η)Q(u+ η + iπ)

Q(u− η)Q(u− η + iπ)

L∏
k=1

16 sinh2L(u− 2η) sinh2L(u) (6.27)

Z3(u) = b(−u+ 2η)
Q(u+ η)Q(u− 3η + iπ)

Q(u− η)Q(u− η + iπ)

L∏
k=1

16 sinh2L(u− 2η) sinh2L(u) (6.28)

Z4(u) = a(−u+ 2η)
Q(u− 3η)Q(u− 3η + iπ)

Q(u− η)Q(u− η + iπ)

L∏
k=1

16 sinh4L(u) (6.29)

where we have:

a(u) =
cosh2(u− 2η)

cosh(u− η)
(6.30)

b(u) =
cosh(u) cosh(u− 2η)

cosh2(u− η)
(6.31)

Q(u) =

m∏
j=1

sinh(
1

2
(u− uj)) sinh(

1

2
(u+ uj)) (6.32)

where the uj are the Bethe roots that can be found in the usual way by requiring that
the residues of the poles of Λ(u) all cancel, leading to the following set of Bethe Ansatz
equations(

sinh(uj + η)

sinh(uj − η)

)2L

=
sinh(uj + η)

sinh(uj − η)

cosh(uj − η)

cosh(uj + η)

m∏
k 6=j

sinh(1
2(uj − uk) + η)

sinh(1
2(uj − uk)− η)

sinh(1
2(uj + uk) + η)

sinh(1
2(uj + uk)− η)

(6.33)
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As was discussed in detail in [120], this Bethe Ansatz solution is not complete. In fact it
is found that all eigenvalues with even degeneracy are not accounted for, but all of the
eigenvalues with odd degeneracy are. Furthermore, these states with odd degeneracies
correspond to an even number m of Bethe roots uj that come in pairs {uj , uj + iπ},
with j = 1, ..., m2 . The Bethe Ansatz equations for roots of this form are simplified to
the following set:

(
sinh(uj + η)

sinh(uj − η)

)2L

=
sinh(uj + η)

sinh(uj − η)

m
2∏

k 6=j

sinh(uj − uk + 2η)

sinh(uj − uk − 2η)

sinh(uj + uk + 2η)

sinh(uj + uk − 2η)
(6.34)

We will present in section (6.2.1) a new solution that accounts for the missing states
but whose set of Bethe Ansatz equations also reduces to (6.34) for states that come in
pairs {uj , uj + iπ}.

6.2.1 The complete solution

The complete solution can be obtained by turning to the McCoy method [121] - a pro-
cedure used to obtain the Bethe roots corresponding to a particular eigenvalue. Note
that to do this we normally need to know the general form of the eigenvalues in advance,
which notably we do not know here. However, as we will see this method will prove
fruitful regardless.

The first step of the McCoy method is to pick a particular value u0 of the spectral
parameter and to calculate numerically the eigenvectors of the transfer matrix at this
point. Now recall that an integrable transfer matrix satisfies [t(u), t(v)] = 0 for all
spectral parameters u and v, and hence the eigenvectors of the transfer matrix are in-
variant under a change of spectral parameter. Defining the variable x ≡ eu, one can
therefore now find a polynomial expression in x for any eigenvalue Λ(u), by acting with
the transfer matrix t(u) on the corresponding eigenvector. Next one returns to the gen-
eral expression of the eigenvalue in terms of the Q-function, in the case of interest this
expression is given by equations (6.23) to (6.32). Using the polynomial expression of Λ
in terms of x, one can solve equations (6.23) to (6.32) to obtain a polynomial expression
in x for Q. Finally, one finds the roots xj of the polynomial Q(x) which gives the Bethe
roots uj via xj ≡ euj .

Let us apply this procedure to the present case where a complete Bethe Ansatz solution
is missing. In terms of the variables x and xj (where we recall that x ≡ eu and xj ≡ euj ),
the quantity Q becomes:

Q(x) =

m∏
k=1

1

4
(x− x−1 − xk − x−1

k ) =

m∑
k=−m

akx
k (6.35)

for some coefficients ak that depend on the Bethe roots uj . The expression in (6.32)
clearly satisfies Q(u) = Q(−u), which now in polynomial form corresponds to Q(x) =
Q(x−1), meaning that ak = a−k. Applying the McCoy method to one of the states with
odd degeneracy that can be obtained by the previous incomplete solution, we find that
the corresponding Q-polynomial does indeed satisfy the property ak = a−k.

However, when we apply the McCoy method to one of the states that is not obtained by
the partial solution in equations (6.23) to (6.32), we find that Q is given by a polynomial
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with coefficients ak that satisfy ak = (−1)ka−k. One observes that the expression in
(6.32) cannot satisfy this property and must be modified to:

Q(u) =
m∏
j=1

sinh(
1

2
(u− uj)) cosh(

1

2
(u+ uj)) (6.36)

We find that changing the form of Q(u) from equation (6.32) to (6.36) while keeping
equations (6.23) to (6.31) leads to a complete Bethe Ansatz solution that accounts for
all of the eigenvalues. The new Bethe Ansatz equations, obtained by requiring that the
residues of the poles of Λ(u) all cancel, are now given by:(

sinh(uj + η)

sinh(uj − η)

)2L

=
m∏
k 6=j

sinh(1
2(uj − uk) + η)

sinh(1
2(uj − uk)− η)

cosh(1
2(uj + uk) + η)

cosh(1
2(uj + uk)− η)

(6.37)

There are a few important remarks to be made on this complete solution. Firstly, note
that the subset of equations that satisfy {uj , uj + iπ} still satisfy (6.34), since the equa-
tions in (6.37) reduce to (6.34) for Bethe roots uj of this form. Our redefinition of Q(u)
in (6.36) therefore leaves unaffected the states that had been previously accounted for
with the original partial solution in [120].

Secondly, observe that the new set of Bethe Ansatz equations do not obey the symmetry
uj → −uj but instead uj → π − uj . This appears to be related to the fact that, as we
will see in (6.2.2), the model with these boundary conditions maps to the XXX model
with periodic boundary conditions in the γ → 0 limit; the “admissible solutions” (recall
the discussion at the end of section 4.1) to the Bethe Ansatz equations of the periodic
XXX model allow for vanishing Bethe roots uj [94], whereas the open XXX model does
not [95].

Finally, recall from equation (6.4) that the Hamiltonian corresponding to the transfer
matrix is, in this case, given by the second derivative of the transfer matrix. From
equation (6.23) we observe then that the energy eigenvalues are given by:

E ∝ Λ′′(0) = φ′(0)λ′(0) (6.38)

which leads to

ED2
2

=
m∑
j=1

2 sin2(2γ)

cosh 2uj − cos 2γ
(6.39)

which we observe is exactly the same form as the eigenvalues in (5.49). Our exact
solution therefore tells us that the eigenvalues of the Hamiltonian defined in (6.9) are
given by (6.39) where the uj satisfy (6.37).

6.2.2 Correspondence with the XXX model

It is enlightening to study the present model in the limit γ → 0. Recall that the Hamil-
tonian in (5.46) was studied in this limit in section 5.2.3 where it was shown to be
equivalent to two decoupled open XXX chains. We will show here that the Hamiltonian
in (6.9) becomes equivalent to a periodic XXX Hamiltonian in the limit γ → 0.
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1

2

3

4

5

6

1

2

3

4

5

6
γ → 0

Figure 6.6: The graphical interpretation of the terms in the Hamiltonian in (6.40) for
a chain of length 2L = 6 are shown in the figure on the left. The nearest neighbour
interaction is represented by the dotted black line, the XXX next to nearest neighbour
interaction is represented by the solid blue line and the boundary interactions are repre-
sented by the dotted red line between sites 1 and 2 and between sites 5 and 6. The three
site interaction is not represented here. The figure on the right shows the interactions
in the limit γ → 0, where one observes that the Hamiltonian becomes equivalent to a
periodic XXX Hamiltonian.

Consider the Hamiltonian in (6.9) written in terms of Pauli matrices:

H =− 1

2

L−1∑
i=1

(σx2i−1σ
x
2i+1 + σy2i−1σ

y
2i+1 + σz2i−1σ

z
2i+1)− 1

2

L−1∑
i=1

(σx2iσ
x
2i+2 + σy2iσ

y
2i+2 + σz2iσ

z
2i+2)

− 1

2
i sin γ

2L∑
i=3

(σzi (σ
x
i−1σ

x
i−2 + σyi−1σ

y
i−2)− σzi−2(σxi−1σ

x
i + σyi−1σ

y
i ))

+
1

2
sin2 γ

2L−2∑
i=1

(σzi σ
z
i+1 + σzi+1σ

z
i+2)

− 1

2
i sin γ cos γ(σz1 + σz2 − σz2L−1 − σz2L) +

1

2
cos γ(σx1σ

x
2 + σy1σ

y
2 + σx2L−1σ

x
2L + σy2L−1σ

y
2L)

− 1

2
cos2 γ(σz1σ

z
2 + σz2L−1σ

z
2L)− i sin γ cos γ(σz1 − σz2L)

(6.40)
where we have used the identity in (5.43). We notice that there are four types of terms
in (6.40): the first line is an XXX interaction between next to nearest neighbours, the
second line is a three site interaction, the third line is a nearest neighbour interaction
and the last two lines are the boundary terms. All of these interactions, except for the
three site interaction, are represented graphically for a chain of length 2L = 6 in the
diagram on the left hand side of Figure 6.6. When we take the limit γ → 0, the only
non-vanishing terms are the next to nearest neighbour XXX interaction (the first line
of (6.40)) and a contribution from the boundary terms (the last two lines of (6.40)) so
that the Hamiltonian becomes:

H =− 1

2

L−1∑
i=1

(σx2iσ
x
2i+2 + σy2iσ

y
2i+2 + σz2iσ

z
2i+2 + σx2i−1σ

x
2i+1 + σy2i−1σ

y
2i+1 + σz2i−1σ

z
2i+1)

+
1

2
(σx1σ

x
2 + σy1σ

y
2 − σ

z
1σ

z
2)

+
1

2
(σx2L−1σ

x
2L + σy2L−1σ

y
2L − σ

z
2L−1σ

z
2L)

(6.41)
This Hamiltonian is represented graphically in the diagram on the right hand side of
Figure 6.6. The term on the first line of (6.41) corresponds to two decoupled open
XXX chains, the second term and third terms introduce an interaction between the two
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chains to make a periodic chain. We observe that the signs of the σxσx + σyσy terms
on the second and third lines of (6.41) are opposite to the signs of the corresponding
terms in the first line. However, it is easily verified that one can always change the
sign of an even number of σxσx + σyσy terms without changing the spectrum of the
XXX Hamiltonian. Doing so for the two boundary terms results in exactly the XXX
Hamiltonian. We have therefore shown that the spectrum of (6.9) as γ → 0 is identical
to that of the periodic XXX chain, as is illustrated in Figure 6.6.

Let us now consider this result in the context of the exact solution of the model
presented in section 6.2.1. Firstly, let’s write the periodic XXX Hamiltonian from
equation (6.41) in the much cleaner form:

H = −1

2

2L∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1 + σzi σ

z
i+1) (6.42)

The Bethe Ansatz solution of this Hamiltonian was already studied in section 4.1. We
will write this solution in a slightly different and more convenient form for our purposes.
The eigenvalues of (6.42) are given by:

E =
m∑
k=1

4

λ2
k + 1

(6.43)

where the Bethe roots λk satisfy the following set of Bethe Ansatz equations:(
λj + i

λj − i

)2L

=

m∏
k 6=j

(
λj − λk + 2i

λj − λk − 2i

)
(6.44)

and where m is the number of Bethe roots in any given solution. Now compare this
to the Bethe Ansatz solution of the D2

2 chain presented in section 6.2.1. Consider the
eigenvalues of theD2

2 chain in equation (6.39) when we rescale the Bethe roots uj → γuj .
The energies in (6.39) now become:

E =
m∑
k=1

4

u2
k + 1

(6.45)

in the limit γ → 0, which we see is identical to (6.43) for uk = λk. Now let’s consider
how the D2

2 Bethe Ansatz equations look in the limit γ → 0. Let us first consider
the simplest case of roots that come in pairs {uj , uj + iπ}, which we recall satisfy the
simplified Bethe Ansatz equations in (6.34). Recalling that η ≡ iγ, we have that the
equations in (6.34) become:

(
uj + i

uj − i

)2L

=

(
uj + i

uj − i

) m
2∏

k 6=j

(
(uj − uk + 2i)(uj + uk + 2i)

(uj − uk − 2i)(uj + uk − 2i)

)
(6.46)

as γ → 0. Now take a solution to the XXX BAE in (6.44) with Bethe roots λj that
are symmetric about 0, i.e. the roots come in pairs {λj ,−λj}. For roots of this form,
the equations in (6.44) are identical to (6.46) for uk = λk. This is consistent with the
discussion surrounding equation (6.40) and Figure 6.6 showing that the D2

2 chain in
(6.9) becomes a periodic XXX chain.
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Now let’s return to the original partial solution, with Bethe Ansatz equation in
(6.34), to see where it breaks down for states that do not come in pairs {uj , uj + iπ}.
The simplest example of roots that are not of this form are a set with an odd number
of roots with one vanishing root, say u1 = 0, with all of the other roots coming in pairs
{uj , uj + iπ}. The Bethe Ansatz equations in (6.33) for roots of this form become:(

sinh(uj + η)

sinh(uj − η)

)2L

=
sinh(uj + η)

sinh(uj − η)

 m
2∏

k 6=j

sinh(uj − uk + 2η)

sinh(uj − uk − 2η)

sinh(uj + uk + 2η)

sinh(uj + uk − 2η)


×

(
sinh(1

2uj + η)

sinh(1
2uj − η)

)2

(6.47)
which in the limit γ → 0 become:(

uj + i

uj − i

)2L

=

(
uj + i

uj − i

)(
uj + 2i

uj − 2i

)2
m
2∏

k 6=j

(
(uj − uk + 2i)(uj + uk + 2i)

(uj − uk − 2i)(uj + uk − 2i)

)
(6.48)

We would like to compare these Bethe Ansatz equations to the Bethe Ansatz equations
in (6.44) for the periodic XXX model. In analogy with the previous case, we should
consider solutions to (6.44) with one root λ1 = 0 and all other roots coming in pairs
{λj ,−λj}. For roots of this form, the equations in (6.44) become:(

λj + i

λj − i

)2L

=

(
λj + i

λj − i

)(
λj + 2i

λj − 2i

) m
2∏

k 6=j

(
(λj − λk + 2i)(λj + λk + 2i)

(λj − λk − 2i)(λj + λk − 2i)

)
(6.49)

Comparing (6.49) with (6.48) one observes that when λj = uj the two sets of equations
differ as a result of the square on the second factor on the right hand side of (6.48). One
can use this result to guess the form of the correct Bethe Ansatz equations in (6.37)
that were obtained in section 6.2.1 by turning to the McCoy method. One starts with
the observation that the square in the second factor in (6.48) comes from the two sinh
terms in the product in equation (6.33). To get rid of this square one changes one
of these sinh terms to a cosh, whose leading order term vanishes in the γ → 0 limit.
Then to ensure that the new equations still reduce to (6.34) for roots that come in pairs
{uj , uj + iπ}, one must remove the terms outside of the product in (6.33), and one is
left with the new Bethe Ansatz equations in (6.37).

6.3 The Continuum Limit

Previous sections in this chapter have presented various results relating to the boundary
conditions in (6.1) on a finite lattice. We will now consider the description of the model
in terms of boundary conformal field theory when we take the continuum limit. In
particular, we will be interested in calculating the generating function of scaling levels
corresponding to the transfer matrix in (6.22), or equivalently, the Hamiltonian in (6.9).
As usual, we will use finite size scaling to do this - equation (5.51) will be made use
of in the Hamiltonian formulation, whereas equation (3.33) will be made use of in the
transfer matrix formulation. Note that the Fermi velocity vF appearing in (5.51) is once
again given by (5.52) since it does not depend on the boundary conditions. Since the
Hamiltonian (6.9) and transfer matrix (6.22) are written entirely in terms of Temper-
ley Lieb algebra generators ei we can consider both the RSOS representation and the
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loop representation, as was done in sections 5.4.1 and 5.4.2 for the boundary conditions
presented in (5.31).

We will start with the loop representation in section 6.3.1 where we observe a con-
tinuous spectrum which, as discussed in the introduction to this chapter, corresponds
to a non-compact boundary CFT. It will be shown in section 6.3.5 that the states in
the loop model that form this continuum disappear when we restrict to the RSOS rep-
resentation, and that the generating function of scaling levels in this case is given by a
combination of string functions.

Section 6.4 will then consider a more general Hamiltonian that includes the Hamilto-
nians in (6.9) and (5.46) as special cases. It will be shown that there is a boundary
renormalisation group flow from the Hamiltonian (6.9) to (5.46), which in the language
of CFT corresponds to a renormalisation group flow from a non-compact theory to a
compact one.

6.3.1 The Loop model

We will consider here the transfer matrix in (6.22), or equivalently the Hamiltonian
in (6.9) but now with the ei in the loop representation defined in Figures 3.5 and 3.8.
The boundary CFT describing the continuum limit in the loop representation has some
quite fascinating properties - most notably the appearance of a continuum of critical
exponents, a phenomenon that had until now only been observed in the bulk spectrum.

We start with the observation that the central charge is observed to be given by:

c = 2− 6

k
(6.50)

but that, as we shall see below, for certain values of k the leading exponent h is negative,
leading to an effective central charge ceff = c − 24h that is greater than c. Using the
formalism introduced in section 3.1.2 and in particular Figure 3.5, we will consider
separately each of the sectors with 2j through lines. In each of these sectors we observe
both a discrete and a continuous set of critical exponents. Let’s first consider the
continuous set. We observe the continuum to begin at:

h =
l(l + 2)

4k
(6.51)

with l given by:
l = k − 2j − 2 (6.52)

Note that (6.52) means that for certain values of k the exponent in (6.51) can be
negative. In particular, when k is an odd integer we can have l = −1, corresponding
to 2j = k − 1. The appearance of a continuum on the lattice is identified by the
logarithmic convergence of exponents to the value in (6.51), as L → ∞ we observe an
infinite number of these states. This was briefly discussed in the introduction to chapter
4 and in particular the text surrounding Figure 4.2 which we repeat in Figure 6.7 for
clarity. Let’s consider these results in the context of the black hole theory discussed in
section 3.3. First, let’s recall the central charge cBH in (3.55) and the critical exponent
hBH in (3.56, repeated here:

hBH = −J(J − 1)

k − 2
+

(n± wk)2

4k
(6.53)
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Figure 6.7: The scaling behaviour of the gaps generated from the Hamiltonian in (6.9)
with γ = π

4 , in the sector 2j = 4. We observe that the gaps converge logarithmically
to h = 0 as we expect from equations (6.51) and (6.52), and that an infinite number of
such states appear in the limit L→∞ .

The continuous spectrum in the black hole theory is obtained by setting:

J =
1

2
+ is (6.54)

for s positive. In section 3.3 the parafermion CFT with central charge was related to
the black hole CFT by equating:

cPF − 24∆PF = cBH − 24hBH (6.55)

where ∆PF is a critical exponent in the parafermion theory and cPF is given in (6.50).
Combining equations (6.53), (6.54) and (6.55) we get:

∆PF =
(n± wk − 1)(n± wk + 1)

4k
+

s2

k − 2
≡ l(l + 2)

4k
+

s2

k − 2
(6.56)

where:
l = n± wk − 1 (6.57)

We see that (6.56) is consistent with our earlier observation that the loop model produces
a continuum of critical exponents beginning at (6.51) - combining equations (6.52) and
(6.57) leads to n = −1 and w = 1. We observe that the effective central charge
ceff = c− 24h is given by ceff = c = 2− 6

k for k an even integer and ceff = 2 for k an
odd integer. The general case is plotted in Figure 6.8 and is given by

ceff = 2− 24
(frac

(
k
2

)
− 1

2)2

k
(6.58)

which is consistent with (6.51) and (6.52).
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Figure 6.8: The effective central charge as a function of k. For k an odd integer we have
ceff = 2, for k and even integer we have ceff = 2− 6

k

6.3.2 Back to the Bethe Ansatz

It is worthwhile discussing in more detail the states on the lattice that lead to the
continuum in the field theory, particularly in the context of the Bethe Ansatz solution
from section 6.2.1. The appearance of a continuous spectrum in the periodic model,
studied in [54], could be understood in terms of a particular class of solutions to the
Bethe Ansatz equations:(

sinh(uj + η)

sinh(uj − η)

)L
= −

m∏
k 6=j

sinh(1
2(uj − uk) + η)

sinh(1
2(uj − uk)− η)

(6.59)

A subset of the solutions to these equations have the following form:

u0
j = α+

j + i
π

2

u1
j = α−j − i

π

2

(6.60)

with α±j real. States in the continuum arise from solutions of the form (6.60) with
different numbers of u0

j roots and u1
j roots. Let’s denote the number of u0

j roots as m+

and the number of u1
j roots as m−. Then define:

m+ =
L

2
− n+

m− =
L

2
− n−

(6.61)

In the bulk, the continuum states converge logarithmically to the “floor states” h0 as:

h = h0 +K(γ, L)(n+ − n−)2 (6.62)

where K(γ, L)→ 0 as L→∞. Figure 6.9 shows an example of a configuration of Bethe
roots with n+ 6= n−, therefore corresponding to a continuum state.

We saw in chapter 5 that we do not observe a continuum with the boundary condi-
tions studied in that case and we can understand this in the following way. The Bethe
Ansatz equations from chapter 5:
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Figure 6.9: An example of a solution to the bulk BAE that leads to a continuum state.
This example corresponds to L = 12, n+ = 0 and n− = 2.
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Figure 6.10: An example of a solution to the type 2 boundary BAE that does not lead
to a continuum state, unlike the bulk case. This example corresponds to L = 12, n+ = 0
and n− = 2.

(
sinh(uj + η)

sinh(uj − η)

)2L

=
m∏
k 6=j

sinh(1
2(uj − uk) + η)

sinh(1
2(uj − uk)− η)

sinh(1
2(uj + uk) + η)

sinh(1
2(uj + uk)− η)

(6.63)

also permit solutions of the form in (6.60), and one such solution is shown in figure 6.10.
This solution satisfies n+ 6= n− but does not correspond to a continuum state, unlike
the bulk case. The reason is that, with these boundary conditions, if we multiply any
number of Bethe roots uk by a sign then the equations in (6.63) will still be satisfied and
the energy will not change. By using this symmetry under uk → −uk we can therefore
transform any solution to (6.63) with n+ 6= n− into one with n+ = n− and hence the
K(γ, L) term in (6.62) will not play a role. More precisely, the symmetry uk → −uk
allows us to transform any u0

j root into a u1
j root, meaning that only n = n+ + n−

is a meaningful quantity for solutions to (6.63) whereas n+ and n− have no physical
meaning individually. Compare this to the Bethe Ansatz equations in (6.37) where
we no longer have the symmetry uk → −uk, but instead we have symmetry under
uk → −uk + iπ. The symmetry uk → −uk + iπ does not affect n+ or n− and therefore
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equation (6.62) can be applied to the Bethe Ansatz equations in (6.37), and we hence
observe a continuum of exponents.

6.3.3 Discrete States

There are states in the spectrum which do not correspond to the continuum states of
equations (6.51) and (6.52) but to discrete states. Let us first consider the case with k an
integer where we observe that the exponents are given by the parafermion exponents of
equation (3.51) with l and m integer. We conjecture that the full loop model generating
function of scaling levels in the sector with 2j = l defect lines is given by:

Zl =
k−2∑

m=−k+3

TrF̃lm q
L0− c

24 (6.64)

with

TrF̃lmq
L0−c/24 =

q
(l+1)2

4k
− m2

4(k−2)

η(q)2

[ ∞∑
n=0

(−1)nq
n2

2
+
n(l+1−m)

2 +

∞∑
n=1

(−1)nq
n2

2
+
n(l+1+m)

2

]
.(6.65)

for l and m with the same parity, and we define TrF̃lmq
L0−c/24 = 0 for l and m of

opposite parity. Consider now the case for k /∈ Z. There is no change to the discussion
of the continuous spectrum in section 6.3.1 for k /∈ Z. However, we must take care with
the discrete part, since it is not clear how (6.64) will “disintegrate" for k /∈ Z. It turns
out that there are two distinct parts to the discrete spectrum: a part with l integer and
independent of k and with m = 0, and a part where l and m depend continuously on
k. The exponents of the “k independent part" are given by (6.51) with l = 0, 2, 4, 6, ...
and the exponents of the “k dependent part" are given by:

h =
l(l + 2)

4k
− m2

4(k − 2)
(6.66)

with l = k − 2n and m = k − 2n′ with n, n′ positive integers and n, n′ ≤ k+1
2 . It is not

yet clear to us how to interpret the generating function of scaling levels in (6.64) for
k /∈ Z since k in that case is necessarily integer - we leave this as an open question for
now.

6.3.4 XXZ Subset

Recall from section 5.3.1 that there was a subset of solutions to the Bethe Ansatz
equations under consideration in that case that corresponded to the solution to a set of
Bethe Ansatz equations for the XXZ model with particular boundary conditions. The
XXZ boundary Bethe Ansatz equations from (5.63) are repeated here:(

sinh(λj + iγ0

2 )

sinh(λj − iγ0

2 )

)2L
sinh(λj + iΛ)

sinh(λj − iΛ)

sinh(λj + iΛ′)

sinh(λj − iΛ′)
=

m∏
k 6=j

sinh(λj − λk + iγ0)

sinh(λj − λk − iγ0)

sinh(λj + λk + iγ0)

sinh(λj + λk − iγ0)

(6.67)
Now consider the BAE in (6.34), corresponding to the BAE in (6.37) when the solutions
come in pairs {uj , uj + iπ}. Now as in section 5.3.1 we set γ0 = π − 2γ (where η = iγ)
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and consider solutions of the form uj = αj − iπ2 . The equations (6.34) become:

(
sinh(αj + iγ0

2 )

sinh(αj − iγ0

2 )

)2L sinh(αj − iγ0

2 )

sinh(αj + iγ0

2 )
= −

m∏
k 6=j

sinh(αj − αk + iγ0)

sinh(αj − αk − iγ0)

sinh(αj + αk + iγ0)

sinh(αj + αk − iγ0)

(6.68)
Setting Λ = −γ0

2 and Λ′ = 3π
2 we have that the solutions αj to (6.68) are also solutions

to (6.67), i.e. we have λj = αj . Now proceeding exactly as in section 5.3.1, we write
the energy in (6.39) in terms of αj and γ0 to find:

ED2
2

= −
m∑
j=1

2 sin2 γ0

cosh 2αj − cos γ0
(6.69)

which is the energy of the XXZ chain:

EXXZ =

m∑
j=1

−2 sin2 γ0

cosh 2λj − cos γ0
(6.70)

when αj = λj . Since the solutions to the D2
2 BAE admit twice as many roots as the

XXZ chain, the final result is in fact:

ED2
2

= 2EXXZ (6.71)

Recall from equation (6.8) that the effective central charge of the open XXZ chain for
generic Λ, Λ′ is given by:

ceff = 1− 6

1− γ0

π

(
1−

γ0 + Λ + Λ′ − 2πS(1− γ0

π )

π

)2

. (6.72)

where S is the total magnetisation of the chain in a given sector. We have γ0 = π− 2γ,
γ = π

k , Λ = −γ0

2 and Λ′ = 3π
2 , which gives us:

ceff = 1− 3

k
(1− k + 4S)2 (6.73)

When considering the D2
2 chain however, we must multiply the effective central charge

in (6.73) by 2 to get for the D2
2 chain:

ceff = 2− 6

k
(1− k + 4S)2 (6.74)

We must take a lot of care when using (6.74) however. Since the D2
2 chain contains a lot

more states than the XXZ chain, there is no guarantee that the state scaling with ceff
in equation (6.74) is the ground state of the D2

2 system. Consider for example the cases
k = 5 and k = 7. For k = 5 the ground state of the system occurs in the S = 1 sector
and we recover the numerical result ceff = 2, which in this case does indeed correspond
to equation (6.74). For k = 7 however, the ground state of the D2

2 system does not
correspond to a solution to the XXZ equations in (6.68). In this case then, the lowest
energy state that scales with (6.74) will be an excited state of the D2

2 chain. Note that
as we increase k, the first (i.e. lowest energy) state that scales like (6.74) appears in
higher and higher magnetisation sectors S.



6.3. THE CONTINUUM LIMIT 129

6.3.5 RSOS model

We first recall the discussion of the RSOS models from section 3.1.5. In particular, we
will take the RSOS representation of the Temperley Lieb algebra generators ei, written
explicitly in (3.28), and insert this expression into the Hamiltonian in (6.9). We will fix
the left most RSOS height to 1 and the right most height to l + 1. We will write this
boundary condition as:

1, ..., l + 1 (6.75)

We once again observe the parafermion central charge in equation (6.50) and the
parafermion exponents from equation (3.51). Furthermore, we find that the full generat-
ing function is given by particular combinations of the string functions, whose definition
was given in (5.85). More specifically, for k an odd integer (recall: γ = π

k ), it is found
that the boundary condition in (6.75) produces a generating function Z given by the
following combination of string functions:

Z = cm=0
l + 2

k−3∑
n=2
n even

cm=n
l (6.76)

while for k an even integer we get:

Z = cm=0
l + 2

k−4∑
n=2
n even

cm=n
l + cm=k−2

l (6.77)

Table 6.1 presents explicit examples of this correspondence for k = 4, 5, 6, 7. Recalling
the definition cml = 0 when m and l do not have the same parity, and the identity
c−ml = cml . Equations (6.76) and (6.77) can then be seen to reduce to:

Z =

k−2∑
m=−k+3

cml (6.78)

Now let’s recall the connection between the generating function of scaling levels in the
loop model and in the RSOS model. For the AF Potts model with free boundary
conditions, we had equation (3.61), repeated here:

c0
l =

∞∑
n=0

(
Kl+2nk −K2(n+1)k−l−2

)
= Kl −K2k−l−2 +Kl+2k −K4k−l−2 + . . . , (6.79)

where Kl is the generating function of the loop model - defined in (3.52) - and where
the correspondence with the loop model is l = 2j. For the states that correspond to
the continuum in the loop model to disappear in the RSOS model we need them to
appear in different sectors of l so that these states cancel in (6.79). From (6.79) we see
that a continuum state in the sector with 2j through lines in (6.51) must also appear in
the sector with 2k − 2j − 2 through lines. This is consistent with the discussion of the
critical exponents in section 6.3.1: from the right hand side of (6.52), we can see that
the exponent h in (6.51) is invariant under: 2j → 2k − 2j − 2 and we indeed observe
that these cancellations do in fact appear as degeneracies in the loop model spectrum.
The string functions, defined in (5.85), can in fact be written as:

cml =

∞∑
n=0

TrF̃l+2nk,m
qL0− c

24 − TrF̃2k−l−2+2nk,m
qL0− c

24 (6.80)
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where TrF̃l+2nk,m
was defined in (6.65). We must be able to relate the generating func-

tion of discrete scaling levels in (6.64) to the combination of string functions in (6.78)
observed in the RSOS model by summing the Zm in the same way that we sum the Kl

in (6.79). Indeed, from (6.80) we have:

k−2∑
m=−k+3

cml =
∞∑
n=0

(
Zl+2nk −Z2(n+1)k−l−2

)
(6.81)

which is precisely the relation one would expect to hold from considering the correspon-
dence between the loop and RSOS models.

Boundary Condition k Generating Function

1,...,1 4 cm=0
l=0 + cm=2

l=0

1,...,1 5 cm=0
l=0 + 2cm=2

l=0

1,...,1 6 cm=0
l=0 + 2cm=2

l=0 + cm=4
l=0

1,...,1 7 cm=0
l=0 + 2cm=2

l=0 + 2cm=4
l=0

1,...,3 4 cm=0
l=2 + cm=2

l=2

1,...,3 5 cm=0
l=2 + 2cm=2

l=2

1,...,3 6 cm=0
l=2 + 2cm=2

l=2 + cm=4
l=2

1,...,3 7 cm=0
l=2 + 2cm=2

l=2 + 2cm=4
l=2

1,...,5 6 cm=0
l=4 + 2cm=2

l=4 + cm=4
l=4

1,...,5 7 cm=0
l=4 + 2cm=2

l=4 + 2cm=4
l=4

Table 6.1: The continuum limit of the RSOS model.

6.4 A Boundary RG Flow

Let us now consider the following Hamiltonian:

H = α(e1 + e2L−1) + 2 cos γ
2L−1∑
m=1

em −
2L−2∑
m=1

(emem+1 + em+1em) (6.82)

where α is a free boundary parameter. Observe that by setting α = 0 we get back
the Hamiltonian in (6.9) and by setting α = − 1

cos γ we get back the Hamiltonian in
(5.46). Both of these cases admitted a Bethe Ansatz solution in sections 6.2.1 and 5.3
respectively. The continuum limit of the case α = 0 was found to be described by a
non-compact boundary CFT, discussed in section 6.3.1 and the case α = − 1

cos γ was
found to be described by a compact boundary CFT, discussed in section 5.4.1. It is
interesting then to consider the continuum limit when α varies continuously between
the two exactly solvable points α = 0 and α = − 1

cos γ .

The result of such an investigation is summarised in Figure 6.11. The points α = 0
and α = − 1

cos γ are found to be fixed points under RG, with α = 0 a repulsive fixed point
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and α = − 1
cos γ an attractive fixed point. Some numerical results show this RG flow

explicitly in Figures 6.12 and 6.13 for the loop model and RSOS model respectively.
To understand these figures one must first recall the discussion of finite size scaling
for models described by Hamiltonians in section 5.3 and in particular equation (5.51).
In both figures we have 1

L on the x-axis and on the y-axis we have the first gap, i.e.
h1−h0, where h1 and h0 are the numerical approximations to the conformal dimensions
appearing on the right hand side of (5.51) for the first excited state and the ground state
respectively of the Hamiltonian. In Figure (6.12) the black curve corresponds to α = 0
and, as expected from the discussion in section 6.3.1, the gap converges logarithmically
to zero. The red curve corresponds to α = − 1

cos γ and, as expected from the discussion
in section 5.4.1, this gap to converges nicely to 1. Now let’s take the blue curve which
corresponds to a slight perturbation away from α = 0. We observe that, for low sizes,
the numerical approximation to h1−h0 is very close to the result for α = 0, but that in
the limit 1

L → 0 the curve converges towards 1, thus showing that α = 0 is a repulsive
fixed point and that α = − 1

cos γ is an attractive fixed point - the interpretation is that of
a lattice realisation of an RG flow away from a non-compact boundary conformal field
theory towards a compact one. The same analysis for the RSOS model is presented in
Figure 6.13.

α = 0
Non-Compact spectrum

α = − 1
cos γ

Compact spectrum

Figure 6.11: RG flow from the Hamiltonian in (6.9) to the Hamiltonian in (5.46), which
result in a compact and a non-compact continuum limit respectively.
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Figure 6.12: The convergence of the first gap in the loop model in the sector with 2j = 2
through lines, with γ = π

4 . The black line corresponds to α = 0 in (6.82), the red line
corresponds to α = − 1

cos γ = −1.41, and the blue line corresponds to α = −0.46. From
section 5.4.1, we expect the first gap for α = − 1

cos γ = −1.41 to converge to 1, as
observed. Similarly, from section 6.3.1 we expect the first gap for α = 0 to converge
logarithmically to 0, as observed. Finally, we observe that when we perturb α slightly
away from 0 the model flows under RG to α = − 1

cos γ .
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Figure 6.13: The blue line corresponds to the case α = 0. As expected, we see that the
first gap over the ground state converges to h = 1

2 since in this case the full generating
function is given by the sum of the two string functions cm=0

l=0 + cm=2
l=0 . The orange line

corresponds to the case α = − 1
cos γ . As expected, we see that the first gap over the

ground state converges to h = 2 since the generating function in this case is given only
by the string function cm=0

l=0 . The yellow line corresponds to a perturbation of α away
from zero, (in the figure we take α = −0.364). We see that in this case the gap also
converges to 2, but it converges much more slowly than the case α = − 1

cos γ . We can
interpret this as an RG flow away from the non-compact theory with α = 0, to the
compact theory with α = − 1

cos γ .



Chapter 7

Discussion

There are a number of directions that the research presented in this thesis can be taken
in. Before discussing this, we briefly recall the original results that were presented in
each chapter.

In chapter 3 the open antiferromagnetic Potts model was considered. A previous
conjecture - equation (3.52) for the generating function of scaling levels for the model
with free boundary conditions was confirmed numerically - equations (3.53) and (3.54).
New conformally invariant boundary conditions for the AF Potts model were presented
in section 3.4 and it was shown that these boundary could be described in terms of the
blob algebra - equation (3.68), and that the generating function of scaling levels in this
case is given by the discrete character of the Black Hole CFT - equations (3.73) and
(3.74). The same boundary conditions were considered in the RSOS model and found
to produce the string functions from the parafermion CFT in the continuum limit. The
representation theory of the blob algebra - equation (3.83) - was then used to derive a
new identity between the string functions and the discrete character - equation (3.85).
Other aspects of the Black Hole and parafermion theories were then considered, such as
the issue of normalisable states (section 3.5) and fusion (section 3.6). In particular, the
parafermion fusion rules were derived analytically from the representation theory of the
Two Boundary Temperely Lieb algebra (section 3.7.2). The “alt” boundary conditions
were interpreted in the context of the three state Potts model in section 3.8 and used
to show that a set of previously found identities - equation (3.125) - could be seen as
the continuum version of the equivalence between the XXZ spin chain with free bound-
ary conditions and the three-state AF Potts model with “alt” boundary conditions. In
section 3.9 it was shown that the disorder operators arising in the parafermion theory
could be observed on the lattice.

Chapter 5 then used the tools from integrability to tackle related problems. It was
shown in section 5.1 that there is an exact mapping between the the vertex formula-
tion of the antiferromagnetic Potts model - the staggered six vertex model - and an
integrable model constructed from the twisted affine D2

2 Lie algebra. One of the known
K-matrices of the D2

2 model was then considered in section 5.2 and shown to result in a
Hamiltonian written entirely in terms of Temperely Lieb algebra generators - equation
(5.46) - and that this Hamiltonian becomes that of two decoupled XXX chains in a par-
ticular limit (section 5.2.3). The Bethe Ansatz solution of the model was then used to
study the continuum limit in section 5.3 and it was shown analytically that the critical
exponents of the model were precisely those of the AF Potts model with free boundary
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conditions. The loop and RSOS formulation of the model with these boundary condi-
tions were then considered in section 5.4 and the results confirmed that the boundary
conditions arising from the D2

2 K-matrix are indeed in the same universality class as
free boundary conditions in the AF Potts model.

Chapter 6 studied a different set of D2
2 boundary conditions, and showed that this

case also admitted a very simple interpretation in terms of Temperley Lieb algebra
generators - see equation (6.9). By assigning inhomogeneous values of the spectral pa-
rameter in a very specific way - see Figure 6.2 - it was shown that the model on the
rectangular geometry of Figure 6.1 could be transformed into the same model with a
“diagonal” geometry - see Figure 6.3 - and that the transfer matrix in this case is given
by the dual AF Potts model with free boundary conditions - see equation (6.22). A
complete Bethe Ansatz solution of the model was then presented in section 6.2, where
it was also shown that the open model becomes the periodic XXX model in a particular
limit. The Bethe Ansatz solution was used to show that the continuum limit is de-
scribed by a non-compact boundary CFT closely related to the continuous part of the
Black Hole theory. A conjecture for the discrete part was presented in equation (6.64)
and the generating function of scaling levels in the RSOS model was found in section
6.3.5. Finally, in section 6.4 it was shown that the boundary conditions of chapter 6
flow under RG to the boundary conditions of chapter 5, corresponding to an RG flow
from a non-compact boundary CFT to a compact one.

There are a number of questions raised by these results. Let’s first turn our atten-
tion to the RG flow observed in section 6.4. It would be interesting to find the operator
driving this flow. A previous study [122] also observed a boundary RG flow in a different
context, and used numerical methods to find the operator driving it. A detailed study
applying the same methods to the present case should shed light on this problem. In
[58], the ferromagnetic Q = 3 state Potts model was studied and the boundary RG
flows were classified. One of these flows was generated by a boundary magnetic field
operator and we tentatively note a close analogy with our case. More work is required
however to understand the case for general Q.

It was mentioned in section 6.3.3 that the conjecture (6.64) for the generating func-
tion of discrete states needs to be re-interpreted or modified for the case k /∈ Z. This
question will be addressed in an upcoming work.

In chapter 5 it was shown that the K-matrix in (5.31) corresponds to a boundary
condition in the same universality class as free boundary conditions in the AF Potts
model. However, we did not manage to show in finite size that the two boundary condi-
tions are equivalent. It would be interesting to find a geometrical interpretation of this
K-matrix, as was done successfully for the case considered in section 6.1, as this would
shed light on why we observe free boundary conditions in the continuum limit.

The two K-matrices considered in chapters 5 and 6 correspond to the two fixed
points in Figure 6.11. It is possible that there exist other fixed points along this line
that we have not yet found. Indeed, additional K-matrices for the D2

2 model were
found in [115] - it is conceivable that these correspond to additional fixed points along
the flow in Figure 6.11. Further study is required to find a complete classification of
the boundary phase diagram.
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Finally, returning to chapter 6, it would be interesting to interpret further the trans-
fer matrix found in equation (6.22). In its current form it is easily interpreted as “the
dual of free boundary conditions” but this analysis could be taken further; the dual
of free boundary conditions is fixed boundary conditions - where the Potts spins are
constrained to take only one value on the boundary - this suggests a return to “blobbed”
boundary conditions from section 3.1.4. It was remarked in section 3.4 that the general
blobbed boundary condition in the antiferromagnetic model seemed not to correspond
to a conformal boundary condition - but it remains possible that a specific blobbed
boundary condition, i.e. a particular value of r for each γ in (3.23), could yield a con-
formal boundary condition in the antiferromagnetic model. These observations warrant
further study.





Appendix A

Résumé

Il est bien connu depuis plusieurs décennies que les limites continues des mod-
èles sur réseau qui passent par une transition de phase du deuxième ordre sont
décrites par des théories des champs conformes (CFTs). Le modèle d’Ising à son
point critique est un exemple bien étudié - sa limite continue étant décrite par
des fermions libres. En outre, il existe des modèles sur réseau qui s’appellent les
modèles RSOS qui deviennent, dans la limite continue, les “modéles minimaux” de
CFT, y compris le modèle d’Ising. Tous ces exemples, et la plupart des exemples
qui ont déjà été étudiés, sont des exemples des modèles sur réseau “compacts”
car le nombre de degrés de liberté est fini. Il n’est donc pas surprenant que les
théories des champs conformes qui les décrivent sont aussi compactes - dont la
signification pour les CFTs est que leur spectres soient discrets.

Cependant, il existe certains CFTs dites “non-compactes” avec des spectres
continus - une propriété identifiée par l’observation d’un continuum d’exposants
critiques dans le formalisme de la mécanique statistique, et par l’observation d’un
continuum de dimensions conformes dans le formalisme de la CFT. Ces théories
sont parfois intéressantes, comme par exemple la CFT qui décrit le “Integer Quan-
tum Hall Effect” à son point critique, et aussi la “Théorie Conforme Euclidienne”
dont le nom vient de son origine en théorie des cordes. Il n’est pas difficile de
trouver des modèles sur réseau non-compacts qui deviennent ces CFTs dans la
limite continue, mais très difficiles de les étudier en pratique en raison de leur
nombre infini de degrés de liberté. Cependant, un résultat surprenant est qu’il
existe des modèles sur réseau compacts mais dont leurs limites continues sont
non-compactes - un fait qui nous permit d’étudier les CFTs non-compactes avec
les outils venant des études sur réseau.

On se concentre particulièrement sur le modèle de Potts au point critique an-
tiferromagnétique, dont le nom vient du signe devant la constante de couplage à
ce point critique. Il est bien connu que ce modèle peut être reformulé comme un
modèle de six vertex décalé - et que ce modèle de vertex avec des conditions aux
bords périodique est décrit par la Théorie Conforme Euclidienne. Le problème
cependant, est que jusqu’à présent on ne savait pas formuler cette CFT intéres-
sante sur un réseau avec des conditions aux bords ouvertes. Il serait utile de
savoir comment s’y prendre parce que les CFTs ouvertes sont manifestement plus
simple que des CFTs venant des modèles sur réseaux périodique. La raison est
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Figure A.1: L’interprétation graphique des conditions aux bords décrites par la matrice
de transfert de l’équation A.1.

que l’algèbre de la symétrie d’une CFT ouverte n’est donné que par une copie
de l’algèbre Virasoro, mais celle du cas périodique est donné par deux copies.
En termes plus concret: l’espace d’Hilbert d’une CFT ouverte n’est généré que
par une copie de l’algèbre Virasoro et parfois, si les conditions aux bords sont
suffisamment bien choisies, cette espace d’Hilbert n’est donné que par un état
primaire et tous ces descendants - un fait qui nous permettre d’isoler et d’étudier
une partie à la fois d’une CFT compliquée.

Donc, le but de cette thèse était de trouver des conditions aux bords pour le
modèle de Potts au point critique antiferromagnétique, telles que la limite con-
tinue soit décrite par une CFT ouverte non-compacte. Pour ce faire, on a utilisé
trois méthodes.

La premiére méthode utilise des algèbres sur réseau - l’algèbre Temperley-
Lieb et l’algèbre Blob - dont les résultats sont présentés au chapitre 3. Le point
de départ de cette analyse est la présentation des nouvelles conditions aux bords
conformes pour le modèle de Potts antiferromagnétique pour lesquelles la matrice
de transfert peut être écrite en termes des générateurs de l’algèbre blob. Cette
matrice de transfer est:

T = t1t2 , (A.1)

avec

t1 = b(e1)(x+ e3)(x+ e5) · · · (x+ e2L−1)(1 + xe2)(1 + xe4) · · · (1 + xe2L−2) (A.2)

t2 = (1−b)(e1)(x+e3)(x+e5) · · · (x+e2L−1)(1+xe2)(1+xe4) · · · (1+xe2L−2) (A.3)

où x est lié à la constante de couplage du modèle de Potts, définie au chapitre
3, et où ei et b sont les générateurs de l’algèbre Blob, aussi définie au chapitre 3.
L’interprétation graphique de ces conditions aux bords est illustrée dans la figure
A.1.
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Ces conditions aux bords produisent, dans la limite continue, le caractère dis-
cret de la “Théorie Conforme Euclidienne” - la partie compacte d’une CFT non-
compacte. En utilisant la théorie des représentations de l’algèbre Temperley-Lieb
et Blob, on a trouvé des relations entre ce caractère discret et des fonctions des
cordes d’une théorie conforme parafermionique. Même si ces résultats sont in-
téressants, ils ne nous fournissent pas un spectre continu qui indiquerait que la
CFT est non-compacte - qui nous motive d’essayer une autre méthode de trouver
une telle CFT.

Le deuxième méthode utilise des outils venant d’intégrabilité - l’Ansatz de
Bethe en particulier - dont les resultats sont présentés au chapitre 5. Motivé
par le potentiel d’appliquer ces outils, on montre qu’il existe une correspondence
exacte entre le modèle de Potts antiferromagnétique, et en particulier sa descrip-
tion comme modèle de vertex décalé, et une modèle integrable construit depuis
l’algèbre D2

2. Ce résultat nous permet d’utiliser les conditions aux bords inté-
grables pour ce modèle D2

2 et de les interpréter dans la formalisme du modèle de
Potts afin qu’on puisse étudier une autre CFT ouverte. Les premiers conditions
aux bords intégrable qu’on considère nous fournissent un Hamiltonian très simple
qu’on peut écrire en termes des générateurs de l’algèbre Temperley Lieb:

H = − 1

cos γ
(e1 + e2L−1) + 2 cos γ

2L−1∑
m=1

em −
2L−2∑
m=1

(emem+1 + em+1em) . (A.4)

Le fait que ces conditions aux bords sont intégrables nous permet de les étudier
avec la solution exacte venant de l’Ansatz de Bethe, qui rendent possible l’étude
de la limite continue. Cependant, la CFT en ce cas là est aussi compacte - on
observe un spectre discret. Ce spectre est celle du modèle de Potts antiferro-
magnétique avec des conditions aux bords libres - donc on a trouvé une solution
exacte de ce modèle mais des conditions aux bords qui produisent une limite
continue non-compacte nous manquent toujours.

Donc, on essaie une troisième méthode d’atteindre le but originale - de con-
struire des conditions aux bords ouvertes pour un modèle compact sur réseau
telles que la limite continue soit une CFT ouverte non-compacte. Ce méthode
utilise des outils d’intégrabilité encore, mais il se concentre sur les conditions
aux bords intégrables pour lequel une solution exacte n’existe pas. Les résultats
sont présentés au chapitre 6. En utilisant les outils de la première method, i.e.
l’algèbre sur réseau, on a réussi de trouver une solution exacte pour un de ces cas,
et d’écrire un Hamiltonian et une matrice de transfert en termes de générateurs
de l’algèbre Temperley Lieb qui permet une interprétation simple en termes des
modèles de boucles. Cette fois-ci, l’Hamiltonian est:

H = 2 cos γ
2L−1∑
j=1

ej −
2L−2∑
j=1

(ejej+1 + ej+1ej) (A.5)

La solution exacte nous permet d’étudier la limite continue et ce cas nous four-
nissent un spectre continue, et par conséquence, une CFT ouverte non-compacte.
En outre, ce spectre continu est interprété dans la formalisme de la Théorie Con-
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forme Euclidienne.

Finalement, le fait que les Hamiltonians qui ont été trouvés avec le deuxième
et le troisième méthode peuvent être écrits en termes des générateurs de l’algèbre
Temperley Lieb ouvre la voie pour des autres questions importantes. En par-
ticulier, ils nous suggèrent qu’un Hamiltonian plus général pourrait avoir des
propriétés intéressant en terme de la théorie du champ. En étudiant cet Hamil-
tonian, on trouve qu’il y a un flot de la group de renormalisation de la CFT
ouverte non-compacte de méthode 3 vers la CFT ouverte compacte de méthode
2, présentée au chapitre 5.
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Résumé: Il est bien connu depuis plusieurs décen-
nies que la limite continue des modèles sur réseau qui
passent par une transition de phase du deuxième or-
dre sont décrits par des théories des champs conformes
(CFTs). Cette thèse concerne des modèles sur réseau
avec des conditions aux bords ouvertes et leur descrip-
tions par les théories des champs conformes ouvertes. On
s’intéresse particulièrement aux modèles pour lesquels
la description en tant que CFT a des propriétés exo-
tiques, comme par exemple le fait d’être “non-compact” -
une propriété identifiée par l’observation d’un continuum
d’exposants critiques dans le formalisme de la mécanique
statistique, et par l’observation d’un continuum de di-
mensions conformes dans le formalisme de la CFT. On
utilise des outils venant de l’integrabilité et de l’Ansatz
de Bethe ainsi que des outils numériques comme la di-
agonalisation exacte afin de relier les descriptions des
modèles sur réseau avec des descriptions en termes de
théories des champs. On se concentre particulièrement
sur le modèle de Potts au point critique antiferromagné-

tique, dont le nom vient du signe devant la constante de
couplage à ce point critique. Le point de départ de cette
analyse est la présentation des nouvelles conditions aux
bords conformes qui produisent, dans la limite continue,
le caractère discret de la “Théorie conforme euclidienne”
sur le réseau. En étudiant la théorie des représenta-
tions des algèbres sur le réseau on trouve une identité re-
liant le caractère discret aux fonctions des cordes d’une
théorie conforme parafermionique. Motivé par la po-
tentiel d’appliquer les outils d’integrabilité, on montre
qu’il existe une correspondence exacte entre le modèle
de Potts antiferromagnétique, et en particulier sa de-
scription comme modele de vertex décalé, et un modèle
integrable construit depuis l’algèbre D2

2. Ce résultat ou-
vre la voie pour une solution exacte du modèle avec deux
conditions aux bords conformes et qui permet une inter-
prétation simple en termes des modèles de boucles. La
limite continue d’un de ces conditions à bord est non-
compacte, et on observe un flot du groupe de renormal-
isation de la CFT ouverte non-compacte vers la CFT
ouverte compacte.

Title: Non-compact conformal field theory and lattice models - the open case
Keywords: Conformal field theory, Bethe Ansatz, Potts model

Abstract: It is well known that lattice systems un-
dergoing second-order phase transitions are described
by Conformal Field Theories (CFTs) in the continuum
limit. This thesis revolves around the study of open crit-
ical lattice models and their descriptions in the contin-
uum limit by boundary CFTs, and is particularly con-
cerned with models whose CFT descriptions have certain
exotic properties such as being non-compact, a property
identified by the appearance of a continuum of critical
exponents in the language of statistical mechanics, and
by the appearance of a continuum of conformal dimen-
sions in the language of CFT. Tools from integrability
such as the Bethe Ansatz, as well as numerical tech-
niques such as exact diagonalisation are used to move
between the lattice and field theory descriptions of the
models under consideration. Particular focus is applied
to the Potts model at its antiferromagnetic critical point,
so-called due to the sign of the coupling constant at this
critical point. A starting point in the analysis presented

here is that new conformal boundary conditions in the
antiferromagnetic Potts model are found and are shown
to result in the appearance of the discrete character of
the Euclidean Black Hole CFT on the lattice. Further
study involving the lattice algebra representation theory
results in an identity relating this discrete character to
the string functions from the parafermion CFT. Moti-
vated by the potential to apply the tools of integrability,
the antiferromagnetic Potts model - and in particular
its description as a staggered vertex model - is shown to
map exactly to an integrable model constructed from the
so-called D2

2 algebra. This paves the way for an exact
solution of the antiferromagnetic Potts model with two
independent conformally invariant boundary conditions,
both of which have convenient interpretations when the
problem is formulated as a loop model. The continuum
limit of the model with one of these boundary conditions
is found to be non-compact, and a boundary renormali-
sation group flow is observed from a non-compact bound-
ary CFT to a compact one.
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