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Chapter I

Résumé en francais

Cette thése porte sur le développement d’algorithmes massivement paralléle pour la physique des
ultra-hautes intensités, et sur I’étude de 'interaction laser-miroir plasma, dans le but de produire des

impulsions attosecondes isolées en régime relativiste.

La complexité des mécanismes physiques mis en jeu lors de 'interaction laser-plasma a ultra-haute
intensité nécessite de recourir a des simulations PIC particulierement lourdes. Au coeur de ces codes
de calcul, la résolution numérique des équations de Maxwell & chaque pas de temps constitue une
étape tres importante et conditionne fortement la qualité et la précision des résultats numériques
obtenus. Dans beaucoup de cas de figure d’intérét en physique des hautes intensités, les algorithmes
numériques standards, de type différence finie, peuvent induire diverses erreurs liées a la dispersion et
a l'anisotropie numérique inhérentes a ce type d’approche. Ce qui peut compromettre la robustesse

de la modélisation.

Des les solveurs de Maxwell pseudo-spectraux d’ordre élevé présentent de nombreux avantages en
termes de précision numérique par rapport aux approches standard. Néanmoins, ces solveurs ont un
colt élevé en termes de temps de temps et de ressources de calcul nécessaires. En effet, les tech-
niques de parallélisation existant pour ces solveurs sont peu performantes au-dela de quelques milliers
de coeurs, ou induisent un important usage mémoire, ce qui limite leur scalabilité a large échelle.
Dans cette these, nous avons développé une toute nouvelle approche de parallélisation hiérarchique
qui combine les avantages des méthodes existantes. Cette méthode a été testée a tres large échelle et
montre un scaling significativement meilleur que les précédentes techniques, tout en garantissant une

occupation mémoire réduite.

En complément a ce travail numérique, j’ai développé un nouvel outil de diagnostic numérique
massivement parallele basé sur des changements référentiels Lorentziens. Le changement de référentiel
relativiste présente de multiples intéréts en physique UHI. En effet, il s’agit d’un outil de modélisation
théorique important qui permet de décrire plus naturellement les processus physiques en jeu lors de
I'interaction laser-miroir plasma en incidence oblique, en découplant les couplages spatio-temporels
sous-jacents a l'incidence oblique. C’est aussi un outil algorithmique important qui permet de ré-

duire les temps de simulation de plusieurs ordres de grandeur dans le cadre des études portant sur
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I’accélération par sillage laser dans les plasmas sous denses.

En capitalisant sur ce travail numérique et algorithmique, nous avons réalisé une étude numérique
et théorique approfondie dans le cadre de la génération d’harmoniques d’ordre élevé sur cible solide.
Lorsqu’une impulsion laser ultra-intense (I > 10'6Wem™2) et ultra-courtes (de quelques dizaines de
femtosecondes) est focalisée sur une cible solide, elle géneére un plasma sur-dense, appelé miroir plasma,
qui réfléchit non linéairement le laser incident. La réflexion de I'impulsion laser est accompagnée par
I’émission cohérente d’harmoniques d’ordre élevée, sous forme d’impulsions X-UV attosecondes (1
10718s). Pour des intensités laser relativiste (I > 1019Wem™2), la surface du plasma est incurvée sous
leffet de la pression de radiation du laser. De ce fait, les harmoniques rayonnées par la surface du
plasma sont focalisées. Dans cette these, j’ai étudié la possibilité de produire des impulsions attosecon-
des isolées en régime relativiste sur miroir plasma, grace au mécanisme de phare attoseconde. Celui-ci
consiste a introduire une rotation des fronts d’onde du laser incident de fagon a séparer angulairement
les différentes impulsions attosecondes produites a chaque cycle optique. En régime relativiste, la cour-
bure du miroir plasma augmente considérablement la divergence du faisceau harmonique, ce qui rend
le mécanisme phare attoseconde inefficace. Pour y remédier, j’ai développé deux techniques de réduc-
tion de divergence harmonique afin de mitiger 'effet de focalisation induit par la courbure du miroir
plasma et permettre de générer des impulsions attosecondes isolées a partir d’harmoniques Doppler.
Ces deux techniques sont basés sur la mise en forme en amplitude et en phase du faisceau laser. Par
ailleurs, j’ai développé un modele théorique pour déterminer les régimes optimaux d’interaction afin
de maximiser la séparation angulaire des impulsions attosecondes. Ce modele a été validé par des
simulations numériques PIC en géométries 2D et 3D et sur une large gamme de parametres laser et
plasma. Finalement, on montre qu’en ajustant des parametres laser et plasma réalistes, il est possible

de séparer efficacement les impulsions attosecondes en régime relativiste.
Ce manuscrit est structuré comme suit:

La premiere partie donne une vue d’ensemble des mécanismes d’interaction laser ultra-intense et
ultra-court avec de la matiere et des outils numériques utilisés durant cette these. Le premier chapitre
passe en revue les différents mécanismes de génération d’harmoniques sur plasma sur-dense, et intro-
duit la théorie des couplages spatio-temporels des lasers ultra-courts. Nous détaillons ensuite 1'état
de I'art de la technique phare attosecond développée il y a quelques années en vue de produire des
impulsions attosecondes isolées spatialement. Cette technique se base sur I'introduction de rotation
de fronts d’onde du laser incident. Ainsi, les impulsions attosecondes successives générées a la surface
du miroir plasma a chaque cycle optique se propagent selon des directions légerement différentes. Si
ses impulsions sont suffisamment bien collimatées, elles seront séparées angulairement loin de la cible.
Le deuxieme chapitre introduit la méthode Particle-In-Cell, utilisée pour réaliser des simulations
d’interaction laser-plasma. Nous discutons des limites des solveurs standards pour les équations de
Maxwell et introduisons 1’algorithme de résolution pseudo-spectral (PSATD) ainsi que la méthode de

parallélisation la plus efficace proposée dans la littérature. Nous présentons par ailleurs un formalisme
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pour rendre cet algorithme compatible avec des conditions de bord absorbante.

La deuxieme partie est consacrée aux développements algorithmiques et numériques réalisés au
cours de cette these. Dans le premier chapitre, nous discutons des limites des méthodes de parallélisa-
tion existant pour les solveurs de Maxwell pseudo-spectraux et introduisons notre nouvelle approchée,
dit hybride. Un modele de scalabilité a tres large échelle, prenant en compte les performances du
réseau de la machine de calcul, est dérivé. Nous montrons via une série de hétre-marks réalisés a
tres large échelle que cette approche apporte un gain important en matiere de temps de calcul et
d’occupation mémoire.

Le deuxieme chapitre de cette partie présente la stratégie d’implémentation massivement parallele de
I'outil de diagnostic basé sur le changement de référentiel Lorentzien. On montre, via des simulations,
que les propriétés spatiales des harmoniques issues du miroir plasma dans différents régimes sont na-

turellement mieux décrites dans ce référentiel.

La troisieme partie est consacrée a ’étude de I'effet phare attoseconde en régime relativiste. Nous
discutons tout d’abord les limites de cette technique en régime relativiste. Nous présentons ensuite
deux techniques de réduction de divergences harmoniques, basé sur un controle réaliste en phase et
en intensité du laser incident pour permettre une séparation angulaire efficace des impulsions attosec-
ondes loin de la cible. Ces deux techniques sont étudiés numériquement a travers des simulations
massivement paralleles en géométrie 2D et 3 d. Les résultats des simulations montrent que des im-
pulsions attosecondes uniques peuvent étre obtenues avec des parametres laser et plasma réalistes en

régime Peta Watt.

Finalement, des perspectives générales sur la portée des travaux réalisés durant cette these sont

donnés en conclusion.
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Introduction

II.1  Context

The emergence and subsequent formidable development of light amplification technologies dur-
ing the second half of the twentieth century made coherent light sources available for a wide panel
of scientific and societal uses. With the invention of chirped pulse amplification techniques (CPA)
[1, 2], modern laser systems are capable of delivering extremely energetic (10~ — 1000 J) light pulses,
within ultra-short time scales (4 femtoseconds - 1 picoseconds). The use of these systems for scientific
purposes has opened up a new and vastly unexplored research branch commonly called ultra-high
intensity (UHI) physics. When focused on matter, the electromagnetic field intensities produced by
these lasers, reaching up to 10?2W.cm ™2, turn matter into out of equilibrium plasmas, predominantly
governed by non-linear and relativistic effects [3]. UHI physics concentrates on the study of laser
and matter interactions under extreme irradiation conditions and within ultra-short time scales for

fundamental and applicative perspectives.

In recent years, a lot of the research effort is driven towards the perspective of developing fu-
ture high energy particles and/or photons sources based on laser-matter interaction schemes. In this
context, the so-called laser wakefield acceleration technique [4] for example, is aiming at developing
laser-based electron accelerators. An ultra-intense laser pulse is used to excite large amplitude plasma
waves (up to 100 GV.m™!) inside an underdense plasma resulting from the ionization of a gaseous
medium. These plasma waves act as accelerating structures that can boost electrons to multi-Gev
energy ranges within few centimeters length scales [5, 6, 7, 8]. This acceleration setup may have a

wide variety of applications, including compact particle colliders and high energy x-ray sources [9].

Another hot topic in the context of UHI physics is the study of solid target, ultra-intense laser
interaction. In this case, the laser instantly turns the solid target surface into a fully ionized overdense
plasma medium, commonly called a plasma mirror (PM). Plasma mirrors reflect off the incident laser
pulse. This reflection implies highly non-linear mechanisms that may result in the coherent emission of
high order laser harmonics in the form of sub-femtosecond (ie. attosecond) X-UV light pulses [10, 11]
[12, 13, 14, 15, 16]. Laser interaction with solid media can also be leveraged to produce multi-Mev

sources of electrons [17] and ions [18].
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The use of plasma mirrors as a source of bright X-UV radiation may constitute a potential
alternative to standard attosecond light sources for pump-probe experiments and ultra-fast spec-
troscopy. Indeed, in contrast with standard attosecond pulses generation techniques in gaseous media
[19, 20, 21, 22], which are intrinsically limited to medium-low laser intensities, high order harmonic
generation (HHG) on plasma mirrors can exploit the full capabilities of ultra-high intense lasers to

achieve unmatched harmonic brightness.

However, many difficulties still need to be addressed before achieving this goal. Those limitations
include the currently low repetition rates of TeraWatt and PetaWatt class lasers (0.01-10 Hz) and
the difficulty of achieving a strong control degree in HHG mechanisms on PMs in order to produce
unique or isolated attosecond light pulses, naturally more suited for applications. The latter milestone
is the subject of an in-depth theoretical and numerical study in this thesis, where we identify optimal

interaction regimes to produce isolated attosecond pulses from plasma mirror harmonics.

With the advent of scientific computing, ultra-high intensity physics heavily relies on numerical
simulations to corroborate theoretical predictions, complete experimental studies or investigate and

imagine unexplored interaction regimes.

UHI physics essentially exploits Particle-In-Cell (PIC) codes to conduct ab initio simulations of
laser-plasma interactions. The PIC algorithm is a particle-mesh kinetic approach to simulate plasma
dynamics by self-consistently modelling the evolution of electromagnetic fields and free particles dy-

namics.

Laser-plasma interaction scenarios often involve complex and multi-scale mechanisms, implying
ultra-energetic particles and extremely short electromagnetic wavelengths. Quantitatively reproducing
all relevant mechanisms taking place in laser-plasma problems with PIC algorithms usually mandates
very fine mesh samplings due to the presence of rapidly varying electromagnetic fields and a huge
number of numerical particles to finely describe statistical effects at play. For instance, a realistic
simulation of HHG on plasma mirrors for example in a 3D geometry can require hundreds of billions
of particles and an equivalent amount of mesh cells. Therefore, numerical simulations in UHI physics

pose two mutually interdependent numerical difficulties.

First, such simulations mandate huge computational resources, both in terms of memory occu-
pancy and computing power, and can only be performed on massively parallel super-computers. After
nearly half a century of extensive development and optimization, the most advanced computers avail-
able today can achieve hundreds of Petaflops ! (10'° floating-point operations per second), while the
Exaflop barrier is expected to be reached in the next few years. These incredible performances were
made possible by implementing increasingly complex hardware architectures. Modern parallel com-

puting paradigms favor hierarchical parallelisms to achieve cost-effective computations. State-of-art

https://www.top500.0rg/system /179397
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massively parallel platforms are based on a distributed memory setup, where multiple compute nodes
are connected with a high bandwidth network. Individual compute nodes enable additional shared
memory multiple-instructions-multiple-data parallel capabilities by leveraging many-core or multi-
core architectures, and where each computing core is made of multiple vector units to execute shared
instructions on multiple data items (SIMD). Compute node may be complemented by accelerating
coprocessing devices (such as a GP-GPU or FPGA ...) in heterogeneous systems. Efficient PIC codes
should be well adapted to these computing architectures. In this regard, when developing a PIC code,
great care should be given to scalability performances and parallelization strategies in use in order to

access the full capacities of computing resources.

The second milestone is related to the accuracy of the numerical methods employed within the
PIC algorithm. Those methods are expected to robustly solve the dynamics of such multi-scale and
complex systems as plasma irradiated by lasers. Indeed, identifying and inhibiting spurious numeri-
cal artifacts is of critical importance for PIC simulations. Various purely numerical instabilities that
severely hinder the accuracy of PIC simulations for UHI laser-plasma simulations result from the
unphysical numerical dispersion relations associated with standard discretized Maxwell’s equations
solvers. Such instabilities include the well known numerical Cherenkov effect [23] in the context of
laser wakefield acceleration simulations or the recently identified unphysical refraction of high order

harmonics emitted by plasma mirrors [24].

Simultaneously meeting the scalability and the accuracy challenges mandate the development of
sophisticated numerical methods along with optimized parallelization strategies. In the context of
PIC simulations, this often implies a trade-off between numerical accuracy and computational perfor-
mance. Indeed, scaling standard Finite Difference Time Domain (FDTD) Maxwell’s equations solvers
up to millions of cores is relatively straightforward as it would only require a regular Cartesian domain
decomposition to evenly split the workload between different compute nodes and limited inter-node
data communications. However, PIC simulations employing finite difference Maxwell solvers remain

prone to various numerical instabilities due to the important numerical dispersion of FDTD methods.

More robust numerical approaches encompass the use of high order stencils or FFT-based pseudo-
spectral solvers to mitigate numerical errors. However, those methods mandate important inter-node
communications, which often result in significant network saturation, limiting their scalability to mod-
erate scales only. Therefore, designing highly scalable parallelization strategies for this type of solvers

is of significant importance to enable their use in the context of massively parallel PIC-UHI simulations.

II.2 Objectives and Outline

This thesis lies between the fields of computational physics and High Performance Computing.
At the start of my PhD, an innovative FFT-based, massively parallel, Maxwell solver algorithm had
recently been proposed and benchmarked at Lawrence Berkeley National Laboratory [25, 24]. This
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algorithm may, however, suffer from an important memory footprint and a scalability loss at very
large scales. I first was involved in porting this algorithm into the SMILEI® PIC code developed
at Maison De La Simulation at CEA. Then, I implemented a novel parallelization strategy that re-
sults in a substantial speed-up, while decreasing the memory footprint by one order of magnitude.
This novel parallelization approach was implemented in the PICSAR? library, and can be used with
WARP? framework. I also actively contributed to various optimizations and implementations in the
WARP+PICSAR framework. In this context, I developed a novel massively parallel numerical diag-
nostic tool for PIC simulation, which relies on Lorentz transformation to better describe the physics

at play in the context of UHI simulations.

By leveraging those novel high scalable numerical tools to perform large scales and massively par-
allel PIC simulations, I conducted an extensive numerical and theoretical study in the context of
high order harmonic generation on plasma mirrors. In particular, I was interested in the generation
of isolated attosecond light pulses from plasma mirrors in the relativistic regime. In this regard, an
innovative scheme to angularly separate attosecond light pulses has been proposed at CEA [26] a few
years ago. However, this approach cannot be directly transposed to the relativistic regime, because
the optimal setup that maximizes the harmonic generation efficiency increases the harmonic beam
divergence. My work involved identifying and characterizing optimal interaction conditions to enable
the angular isolation of attosecond light pulses. For this matter, I developed an analytical toy model
to predict the angular separation of attosecond light pulses based on the laser and plasma parameters,
and in the presence of spatio-temporal couplings. This model was validated with an extensive numeri-
cal parametric study in 2D and 3D geometries, over a broad range of laser and plasma parameters. In
the end, we designed two efficient all-optical schemes for generating isolated attosecond pulses, both

involving specific control of the driving laser phase.

The second chapter presents some basic notions of laser-plasma interaction physics and details
the essential aspects of high order harmonic generation on plasma mirrors, with a focus of Doppler

harmonics generation.

The third chapter introduces the Particle-In-Cell codes that I used during my PhD. It also intro-
duces the FFT-based Maxwell solver algorithm that is the heart of the development made in the third
chapter.

The fourth chapter discusses the limitations of this Maxwell solver in terms of scalability and
introduces the novel parallelization strategy developed during this thesis.
The fifth chapter presents the new massively parallel numerical diagnostics for PIC UHI simula-

tions, also implemented in the WARP+PICSAR code. This versatile tool enables us to reconstruct

*http://www.maisondelasimulation.fr/smilei/
Shttps://picsar.net/
“https://blast.1bl.gov/blast-codes-warp/
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simulations observables in a Lorentz boosted frame where data interpretation can be more easily car-
ried out. This implementation has been benchmarked on different scenarios of high order harmonic
generation on plasma mirrors. It shows that the physical pictures underlying the harmonic emission on

plasma mirrors are better captured with this tool, compared to standard laboratory frame diagnostics.

The sixth chapter is dedicated to the generation of isolated attosecond light pulses in the relativistic
regime. First, I highlight the limitations of the attosecond lighthouse techniques in this regime and
identify the physical obstacles that hinder its applicability. I then conduct a numerical and theoretical
study to identify optimal setups where attosecond pulses separation can be achieved. I propose two
efficient schemes to generate angularly separated attosecond light pulses in the relativistic regime.

Those techniques are extensively validated with PIC simulations in 2D and 3D geometries.
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Chapter III. Physics of high order harmonics generation on plasma mirrors

When an ultra-intense, ultra-short laser pulse, with a high temporal contrast is focused over a
solid target, matter is quasi-instantly ionized, giving rise to a plasma mirror. Plasma mirrors act as
non-linear optical systems for electromagnetic waves and simultaneously reflect and temporally distort
incident laser light. These non-linearities give rise to remarkable X-UV light and relativistic electron

sources that may find promising scientific, industrial and societal applications.

The first section of this chapter introduces some of the basic principles of plasma interaction with
light. We show how the non-linear response of a plasma medium can give rise to a high order harmonic
generation (HHG) in the form of attosecond pulses. The second part of this chapter is dedicated
to spatio-temporal couplings (STC) in ultra-fast laser pulses and their potential applications in the

context of high order harmonic generations on plasma mirrors.

III.1 The plasma state

The plasma state is usually referred to as the fourth fundamental state of matter, after the solid,
liquid and gaseous phases. Unlike other matter states, which are constituted of atoms or molecules,
plasmas are a collection of positively and negatively charged particles that exhibit a collective behavior
through electromagnetic fields induced by free charged particles. Put together, two charged particles
interact with one another through Coulomb potentials as isolated individual particles. However, in
the presence of a large collection of particles, each one of them simultaneously interacts with many
nearby particles. In this case, the Coulomb potential associated with a given particle is shielded out
collectively by neighboring particles over a characteristic scale length called Debye length. Hence, each
particle interacts individually with particles laying inside a Debye sphere. On larger spatial scales, the

plasma dynamics is governed by collective charged particles behaviors.

I11.1.1 Langmuir frequency

We consider an electrically neutral, homogeneous plasma initially at equilibrium that verifies the
global neutrality for ¢t < 0: n, = Zn; with n. and n; are the electronic and ionic densities respectively,
and Z is the ions charge number. At ¢t = 0, the electrons located between x = 0 and x = £ are slightly
displaced by a distance of £. An electrostatic force resulting from the charge separation emerges
and tends to restore the initial equilibrium. The electrostatic field originating from this force can be

computed by solving the Maxwell-Gauss equation and reads:

B(E(),1) = 2 6(0) (ITL.1)

where e is the electron charge and ¢y the vacuum permittivity.

The equation of motion of the displaced electrons is:

T _ € e =g (1112)

dt? Me MeEo

where m, the electronic mass. The solution of this equation is
£(t) = £(0)cos(wpet) (I11.3)

11
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where wpe = w/% is the so-called Langmuir frequency. This physical quantity is fundamental in

plasma physics as it also plays an important role in plasma interaction with electromagnetic waves.

I11.1.2 Electromagnetic wave propagation in a plasma

Let us consider monochromatic wave propagation in unmagnetized plasmas. The propagation is

governed by Maxwell’s equations:

VE=L
€0
V.B=0
. . 4B 111.4
VAE=—— ( )
dt
= o - dE
V AB = pgJ
Hol + c2dt
In Fourier space (k,w), Maxwell’s equations write:
ikE=2
€0
ik.B =
L i (I1L.5)
itk ANE =iwyB
o - iwoE
iEAB = pod — 22
c

As ions are much more massive than electrons, we assume immobile ions and only consider the currents
induced by the electronic motions.

J = —n.eV, (I11.6)

—

Ve

Neglecting the magnetic force on electrons (assuming that ) < ¢) and assuming that the plasma

is non collisional and cold, we have:

V.———°F (111.7)
IMew
Finally, the electric current is:
~ w2 ~
J=_"Pc0E (IIL.8)
w

Injecting the current expression into Maxwell’s equations, we get:
2 2
s o Wi, — W ~
(FE)k —k.E = (%)E (IL.9)
c
This is the propagation equation of an electromagnetic field in a medium with a refractive index:

w2,
N(w)=1/1- -2 (I11.10)

Equation II1.9 admits two kinds of solutions:

e Electrostatic longitudinal solution (i.e. E//k). Longitudinal waves oscillate at w = wpe and are

called plasma waves

12
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e Electromagnetic transverse solutions: (i.e. kE = 0). In this case, the dispersion relation in the

plasma reads:

B2 = e (IIL.11)

If w > wpe, the electromagnetic wave propagates in the plasma with a wave vector

w2 — w2

Y —
i .

On the other hand, if w < wpe, the electromagnetic wave is evanescent within a scale length of the

plasma skin depth [ ~ W—Ze

We can define the critical plasma density n. associated to an electromagnetic wave frequency w
such as wpe(ne) = w.
B Megow?

ne(w) = 2 (II1.12)

A plasma medium is said to be overcritical if n. > n.. Otherwise, if n. < n. the plasma is considered

underdense.

When an electromagnetic wave, say a laser field, impinges on a plasma medium at normal incidence,
it reflects off the plasma if the plasma density exceeds the laser critical density n. > n., creating an
evanescent wave at the plasma vacuum interface. At oblique incidence however, the reflection may
occur even when the plasma density is below the critical density. Indeed, the Snell-Descartes law at

the plasma vacuum interface reads:
sin(fy) = N(w)sin(6y) (IT1.13)

where 6y and 6, are the propagation angles of the electromagnetic field in the vacuum and the plasma
respectively with respect to the plasma normal. Since N(w) < 1, the electromagnetic wave is deviated
at the plasma surface such that 6; > 63. The maximum incidence angle 6y for which light still

propagates inside the plasma is given by Snell-Descartes laws:

sin(fp) = N(w)

=4/1— 2
w2
(I11.14)
L
= o

S ne = nccos2(90)

Therefore, the reflective density at oblique incidence reads:

Tpef = TMe cos2(90)

13
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I11.2 Gaussian laser formalism

Modelling intense laser pulses with plane waves is not satisfactory for HHG on plasma mirrors.
Indeed, laser pulses are usually extremely focused on the PM surface and have an ultra-short temporal
duration. For this matter, Gaussian beam formalism [27] constitutes a simplified analytical description

of beams propagation, which is useful to develop models of laser-plasma interactions.

An electromagnetic laser field can be completely characterized by its transverse electric component
E(x,y,z,t) (assuming a transverse electromagnetic mode). This field verifies the scalar propagation
equation:

1 62

We assume that the laser pulse propagates along the z direction with a frequency wg and we look

for solutions of the form:

E(z,y,z,t) = Ey(x,y, z,t) exp (ikoz — iw0t>

(IT1.16)
[
c
Expanding the propagation equation, we find that Ey verifies the following PDE:
0FE 1 . 0%E, OF
2 . 0 0 2 . 07
AEO — koEU + 27;]@05 — 07 [W — WOEO — 2ZWOW:| = 0 (11117)

Under the slowly varying envelope approximation, it is assumed that the electric field envelope

amplitude FEjy slowly varies with respect to z and ¢ variables. Formally, this approximation reads:

E
k()@

I?E, <
0z

0%z
0%t

(I11.18)

Y
Therefore, the expanded propagation I11.17 equation could be simplified to obtain the parabolic

wave equation:

0Fy OFEy 7
I OB\ A B — 111.19
U( 0z + c@t) D 0 ( )

with A} = 8‘% + a‘% the transverse Laplace operator. To resolve equation I11.19, we look for solutions

that can be expressed in the form:

Eo(z,y, z,t) = u(z,y, 2) X v(z,1)

1 :
ko (u'v +uv 4+ fuz')> - vZALu =0

o 2 (I11.20)
< v(kou' — §AJ_U) + kou(v' + Ev) =0

14
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where the coma and upper dot operators denote the differentiation over the z and t variables respec-
tively. u(z,y,z) models the transverse spatial envelope of the electric field, while v(z,t) models its

temporal envelope. An admissible solution of equation II1.20 is such that:

ko' — “ALu =0
ot T oLt (I1.21)

and

'L o =0
v (I11.22)

The first equation I11.21 represents the Helmoltz equation under the paraxial approximation. Ad-

missible solutions of this equation include Gaussian beam solutions [27] (cf figure IIL.1).

2 4,2 2 4,2
wo Tty LTty
uy,z) = w(z) P [_ w?(z) } P [_ iko 2R(z) (T11.23)

We define the terms involved in this equation as following:

e wjy is called the laser waist. Under the slowly varying envelope approximation, the waist needs

to be larger than the laser wavelength wg > Ao = %'

o w(z) = wor/1+ (2/Z,)? is the laser radius at which the laser intensity falls to 1/e2.
e R(2) = z[1 + (Z,/2)? the laser radius of curvature.

e with Z, = W/\—uf the laser Rayleigh length. At z = Z,, the laser radius grows by a factor of v/2

and its radius of curvature is minimal.

We can also define the laser beam divergence:

tanf = lim w(z)
z—+oo 2

(I11.24)

A
g~ 20 (under the paraxial approximation)
W

The divergence of a Gaussian beam represents the angle covered by the laser cone of light far from
the laser focus.

Equation II1.22 is simply a homogeneous transport equation whose solution can be obtained by
scattering the initial condition v(.,t = 0) over the characteristic lines (z — ¢t = constant). Thus, the
solution of TI1.22 reads:

v(z,t) =v(z —ct,t =0) (IT1.25)

The slowly varying envelope approximation requires the envelope width to be larger than the laser
variation characteristic length (i.e. the laser wavelength in the space). A Gaussian temporal envelope

is often employed to model v (but other representations are possible):

v(z,t) = E™ exp ( - [t - Z/C] 2) (II1.26)

T
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where 7 is the temporal laser duration, with (7 > i—’g = Tp) to respect the slowly varying envelope

approximation. We can also define the laser intensity full-width at half maximum:

FWHM = /2In(2)7 ~ 1.1777

This quantity is more often used to characterize the temporal durations of ultra-short lasers.

The laser maximum amplitude E™%* is an important parameter in laser-plasma interactions. We

can define the laser normalized amplitude:

eEmax
MeWoC

ap = = No[um]\/Io[W.em=2]/(1.37¢18) (II1.27)

The critical value ag ~ 1 is generally considered as the threshold around which a laser pulse can drive
relativistic electronic dynamics. In the context of laser-plasma interaction processes, the normalized

laser amplitude is a key parameter that determines the relativistic or classical nature of the interaction.
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Figure I11.1:  Spatial profile of a Gaussian laser pulse (transverse electric field).

III.3 High harmonic generation on plasma mirrors
I11.3.1 Plasma mirror Formation

A plasma mirror consists in an overdense plasma slab, created by irradiating an initially solid
target with an intense laser pulse (I > 10'2Wem~2). In these conditions, atoms are partially or
totally ionized, giving rise to an overdense warm plasma n. > n.. After the ionization process took
place, and assuming that the plasma is isothermal, it undertakes thermal expansion in vacuum [28, 29]
where the electrons thermal energy is transferred to ions. This expansion leads to the formation of an

exponential plasma density gradient at the plasma vacuum interface as shown by figure I11.2:

ni(2,t) = ng exp <x) (ITL.28)

cst
where ¢ is the ion sound velocity given by:

ZkpTe

m;

(I11.29)
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where kp is the Boltzmann constant and T, the electrons temperature.

The plasma density gradient characteristic length L = ¢4t is commonly called the plasma density
scale length. For a 800 nm wavelength and a laser intensity of I = 10'6W.cm ™2, the plasma expands at
a velocity of ~ 50 nanometers per picosecond. To guarantee a good plasma mirror optical quality, the
PM density scale length should be much smaller than the laser wavelength L < \g so that the laser
interacts with a near-flat mirror before being reflected. This constraint shows that creating plasma
mirrors requires lasers with a very high contrast. Indeed, typical UHI laser pulses are usually accom-
panied by a powerful laser pedestal (I > 102W.cm™=2) that impinges on the target tens of picoseconds
before the main laser peak. This energy flux triggers a plasma vacuum expansion much more than
a micrometer scale length before the main laser pulse reaches the target. To address this issue, a
contrast improvement device, called DPM (for double-plasma mirror), is used to separate the main
laser pulse from its pedestal, which results in improving the temporal contrast more than ten orders

of magnitude but at the cost of an important loss of energy in the main pulse.

In practical HHG experiments, a plasma mirror is created by picking off a small fraction of the laser
main pulse and focusing it before the laser main pulse. This way, the laser main pulse impinges on an
already formed plasma mirror and the plasma density scale length can be controlled experimentally
by adjusting the time delay between the main laser pulse and the prepulse [30, 31, 32, 33]. The plasma
density scale length parameter has a strong impact over the physical mechanisms underlying the har-

monic emission [34, 35, 36] and significantly affects the high order harmonic generation efficiency.

In the context of this thesis, we are mainly interested in the interaction between an ultra-intense,

ultra-short laser pulse (i.e. the main laser pulse) with intermediate plasma expansion scale lengths

(around L ~ %) This regime of interaction maximizes the harmonic generation efficiency in the

ultra-relativistic regime (ag > 1) [37].

@)

Laser

n/ng

x(um) X(um)

Figure II1.2: Schematic representation of plasma expansion into vacuum. Panel (a): initial solid target
density profile. Panel(b): The formed plasma expands into vacuum to form an exponential plasma
density gradient (the plasma expansion is exaggerated).
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II1.3.2 Harmonic generation mechanisms

The plasma mirror response to an ultra-intense laser illumination is governed by highly non-linear
processes. For illustration, figure I11.3 sketches the transverse electric field reflected by a plasma
mirror irradiated by a p-polarized laser field for ag = 10,\g = 800 nm, 6§ = 55° and L = % obtained
from a 1D PIC simulation. The reflected field is periodically distorted with the same period as the
incident laser field T (panel (a)). The Fourier spectrum of the reflected field (panel (b)) exhibits a
sequence of the spectral components w, = nwgy with n € N*. These components are called high order
harmonics. One can note that the high order harmonics span over tens of harmonic orders, reaching
the X-UV emission regime (3nm < A < 100nm). In panel (c), we filtered the harmonic signal between
the 30" and 50t order. In the time domain, they form a train of extremely short light pulses, with a
sub-femtosecond characteristic temporal duration each. This structure is called the train of attosecond

lrght pulses.
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Figure II1.3: Spectral and temporal response of a PM to an ultra-intense laser pulse obtained from a
1D PIC simulation (ap = 10, L = %, 0y = 55°). Panel (a): Temporal evolution of the reflected field
(Transverse magnetic field component). Panel (b): harmonic spectrum of the reflected field. Panel
(c): filtered and normalized reflected fields associated to the laser frequency (red dashed curve) and
harmonics between orders 30 and 50.

I11.3.3 Attosecond pulses emission

This paragraph shows how a periodic spectrum in the Fourier space maps into a periodic train of
extremely short light pulses in the temporal domain [38]. Let us consider a spectral profile S(w) given

by:

S(w) = A(w) x [H(w) @ E(w)] (I11.30)
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where A(w) is the spectrum envelope, H(w) is a periodic Dirac comb with a period of wy and E(w)
is the individual harmonic spectral profile. x is the product operator ® is the convolution operator.

The inverse Fourier transform of S(w) reads:
S(t)=A(t) ® [H(t) x E(t)] (II1.31)

The temporal and spectral profiles of S, H and E are represented in figure I11.4.

A(t) = FT~'(A(w)) is an individual ultra-short (say attosecond) pulse with a duration of AT o =
and where Aw is the spectral bandwidth of A. The inverse Fourier transform of the Dirac comb H(w)
is a periodic Dirac comb with a period of Ty = i—g. The resulting temporal signal S(¢) is a periodic train
(with a period of Tp ) of attosecond light pulses, having a temporal envelope of E(t) = FT~Y(E(w)).
Therefore, for a flat spectral phase, the total duration of the attosecond pulses train is associated
to the individual harmonic profiles, while the temporal duration of an individual attosecond pulse is

pertaining to the spectral width of the whole harmonic spectrum.
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Figure II1.4: Harmonic spectrum pertaining to an attosecond pulses train. Upper and lower panels
are related by Fourier transforms.

It is important to mention that deducing the temporal durations of the attosecond pulses train or
of the individual pulses from the harmonic spectrum requires a known spectral phase ¢(w) = arg(S(w).
Obtaining a perfectly periodic attosecond pulses train with the shortest attosecond pulses durations

(i.e. Fourier limited durations) is achieved with constant phase across all harmonic orders.
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Femtosecond chirp

An example of the potential impact of a non-constant spectral phase is discussed in this paragraph.

Consider a harmonic signal S(¢) with a Gaussian temporal envelope E(t) = exp ( ) In this case,
S(t) = E(t) Y A, explinwyt]

We now introduce a temporal phase ¢(t) = nat? to each harmonic order:

S(t) = E(t) Y A explintwo + ign(t)]

(I11.32)
S(t) = E(t) Y A, explint(wo + ot)]

n

In the presence of non-constant harmonic phase, the train periodicity is distorted (the temporal

delay between successive attosecond pulses is no longer equal to Tp) as shown by figure II1.5.
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Figure II1.5:  Attosecond pulses train with (panel (b)) and without (panel (a)) femtosecond chirp.
Panels (c) and (d) sketch the evolution of the temporal phases of three harmonic orders (50,70 and
90) for both cases.

II1.4 Models for HHG on plasma mirrors
I11.4.1 Bourdier boosted frame

Analytically modelling HHG on plasma mirrors can be extremely complicated, especially when
taking into account the full dimensionality of the problem. Although, if the incident laser pulse is
approximated by a plane-wave, Bourdier [39] showed that it is possible to reduce this problem dimen-

sionality to 1D via Lorentz frame transformation. This operation is illustrated in figure I11.6.

We consider a plasma mirror occupying the half space < 0 in the laboratory frame £. A laser

beam impinges the plasma with an angle of incidence 6 in the (z,z) plane. The laser wave vector
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reads:

Eg = sin(f)e’, — cos(0)é,

The Lorentz Bourdier boosted frame £’ moves with a velocity v = —csin(f)é, with respect to

the laboratory frame £. The relativistic factors of this Lorentz transformation are Sy = sin(f) and

Yo = 1%53 = 0081(0). The laser wave vector is:
R || o
fe = 00l — [ cos(0)e

In the Bourdier frame the laser is normal to the target and the laser frequency is decreased by a factor

7o:
L wo

wy =
7o
On the other hand, the plasma is no longer at rest. Instead, it drifts along the z-axis with a velocity

of sin(f)ce,. Due to the length contraction induced by the Lorentz transformation along the z-axis

(621 = %L) ,the plasma density is increased by a factor of ~q:

/
nE = ~on”

The Lorentz transformation over the transverse electric and magnetic fields, assuming a p-polarized

laser pulse (i.e. the magnetic field is orthogonal to the incidence plane) reads:

L., Ey, .
Ef = =(&)
'g (I11.33)
BE = 2% (cos(h)é,
: C%( (0)ey)

The laser field amplitude is reduced by a factor of vy due to the Lorentz transform. However, the

laser normalized amplitude ag remains unchanged.

The Bourdier boosted frame is a powerful tool that enables both simpler analytical and numerical
modellings of laser-plasma interaction at oblique incidence. In chapter VI, we also show how to employ
Lorentz transforms as an efficient diagnostic tool of laser-plasma interaction simulations for arbitrary

electromagnetic laser waves (and not just plane waves).
Lab frame Bourdier frame
! . —
5 /L = csin(f) &,

__)

fé:,
2L
L Z‘c’ ’
<~ _ gL/

1L
ko

b

7L

Ug =

Figure II1.6: Illustrative scheme for laser-plasma interaction in the laboratory frame (left) and the
Bourdier boosted frame (right).
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Chapter III. Physics of high order harmonics generation on plasma mirrors

I11.4.2 Wave equation with sources in Bourdier frame

In this subsection, we derive the field radiated by the plasma currents in the Bourdier frame. We

get rid of the L specifying the Bourdier frame. We describe the electromagnetic fields using scalar

and vector potentials (V, A) under the Coulomb gauge:

q - 9A
E=-VV -2
\A% T
B=vAA (IT1.34)
VA=0

The radiated fields are determined by the vector potential A satisfying [40]:

9 7

L 024 .
AA — = = poJ (II1.35)

o2 Moo L
where J, = (0, Jy, J,) is the transverse current. This system is invariant along both transverse

directions y and z, so the Laplacian operator can be simplified to a second order derivative along

x-axis A = %. To integrate equation I11.35 under these symmetry conditions, we employ the Green

function G(x,t) defined by:

_ ||
G(z,t) = @(t - £ ) (I11.36)
solution of: 5 5
- _ i / AN A oy
(azz 2 3t2)G(~’Ca$ £, 1) = —podo(z — 2")do(t — 1) (I11.37)

where © and dg respectively denote the Heaviside function and the Dirac pulse.

The radiated field by the plasma is:

-

o o0 -
A" (z0,t0) = cpo/ / G(zo — x,to — t)J (z,t)dtdx

to—|zo— (II1.38)
. oo o—|zo—z|/c R
A" (z0,t0) = —CMO/ / Ji (z,t)dtdz
Note that the total electromagnetic field (radiated + incident) is:
Az, to) = AT (20, t0) + A°(x0, to) (I11.39)

where A° (zo,to) is the incident laser field which verifies equation I11.35 without the right hand side.

Therefore, the transverse electric field radiated by the plasma is determined by:

o0

- DA -
E' (20, t0) = — 5 = —CMO/ Ji(x,tg — |xg — 2| /c)dx (I11.40)

Equation I11.38 shows that the radiated electromagnetic field can be rigorously determined provided

the transverse currents in the plasma.
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II1.4.3 Transverse currents expression

We now derive the transverse currents expression in the Bourdier frame. Considering the plasma

medium as a fluid of electrons and ions, the transverse current is:
J_l_ = —enele, | + Zen;v | (I11.41)

where ¥, | and 7; | are the electronic and ionic transverse velocities. Assuming immobile ions on the
laser duration time scale (due to their much higher mass), their velocity in the Bourdier frame remains
equal to the plasma drift velocity 0; | = csin(6)ée’.

On the other hand, electron contribution to the current is obtained by using the conservation of

the transverse canonical momentum, which results from the translational invariance of the system

along transverse direction y and z.
dt (I11.42)

where

is the electron momentum before the arrival of the laser.

Finally, the total transverse current in Bourdier frame reads:

—

> ezne(l‘,t)A(l‘,t) ne(ZE?t) =
Ji(at) = - — ec tan(6) <Zni(1:,t)cos(9) - 22 )ez
S0 A1) -
_ 1+ lleA/(eme) — tan(0)é,||?
v 1= (v5/o)?

The first equation of 111.43 shows that the transverse electric current in the plasma is constituted
of two terms. The first term, which is %fi corresponds to the current driven by the radiation field
A. The second term only appears whenever the electronic and ionic drift currents do not compensate
one another and vanishes at normal incidence. This can happen if the electronic and ionic densities
(ne # n;) are no longer equal, or if the electrons get accelerated by the laser field(y # ﬁw)) This
current is always oriented along z-axis, and is independent from the laser polarization. This shows
that a p-polarized harmonic signal can be emitted by the PM even if the laser is s-polarized (i.e, if the

laser electric field is normal to the plane of incidence).

According to equation I11.43, additional frequencies in the transverse electric current could emerge
from electronic density distribution or Lorentz factor modulations. Density fluctuations play a crucial
role in HHG through the coherent wake emission process (CWE) [16, 41, 42].

This analysis is however not to determine the spectrum of the radiated light, which is also sensitive

to the spatial variation of the transverse current JL through the integral equation II1.40. In particular,
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Chapter III. Physics of high order harmonics generation on plasma mirrors

in the relativistic regime, the plasma mirror surface longitudinal oscillation can result in a harmonic

radiation through Doppler effect [12, 43].

I11.4.4 Coherent wake emission regime

For laser intensities not exceeding the relativistic threshold ag < 1 (see equation II1.27), and very

Ao

58, harmonic generation on plasma mirrors is dominated by

steep plasma density scale lengths L <

the coherent wake emission mechanism [16].

This mechanism is illustrated in figure II1.7. It results from the excitation of plasma waves in
the plasma density gradient by Brunel electrons [44], sent back in the overdense part of the plasma
gradient under the combined effects of the charge separation forces and the laser electric field. When
traveling inside the plasma gradient, these electrons trajectories cross each other (because the kinetic
energy differs from one electron to another), forming a density electrons peak that excites plasma
waves at the local plasma frequencies. Hence, all the plasma frequencies between wy and wp. are
excited, resulting in a coherent emission (because the plasma density scale length is very short com-
pared to \g) of harmonic radiations along the specular direction through linear mode conversion [45].
This mechanism takes place at each laser optical cycle, resulting in a train of attosecond light pulses

associated to a periodic harmonic spectrum.
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Figure II1.7: TIllustration of the CWE mechanism. The blue-white-red colormap in panel (a) sketches
the longitudinal plasma waves (E, field) at the surface of the plasma mirror obtained from a 1D CWE
PIC simulation (with ap = 0.6, L = ;‘—8,90 = 55% Nynae = 340n.) The purple curves represent the
Brunel electrons trajectories, intersecting inside the plasma. Panel (b) illustrates the initial plasma
density in units of n.. Panel (c) is the Fourier transform over time of the plasma waves excited inside
the plasma. Note that the frequencies at each depth match the plasma frequencies associated to the

local plasma densities.

max

e Conse-

Note that the highest excited plasma frequency is the frequency of the plasma bulk w
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quently, the CWE mechanism is characterized by a harmonic cutoff given by:

n
max __ , max __ max
cwe — Wpe T wo
Ne

The laser envelope spatial or temporal variations critically affects the electronic peak velocity inside
the plasma gradient. Indeed, for a stronger laser electric field, the Brunel electrons gain more kinetic
energy from the laser before traveling inside the plasma. Therefore, the trajectories intersections,
as well as the harmonic emission, occur earlier at each laser optical cycle. Thus, CWE attosecond
pulses train is not perfectly periodic (i.e. femtosecond chirp) because of the laser envelope temporal
variation. In the same way, CWE harmonics wavefronts are concave because of the laser intensity

variation across the focal spot [42].

I11.4.5 Harmonic generation in the relativistic regime

For ultra-high intensity lasers (I > 10YWem™2), corresponding to a normalized vector potential
amplitude ag > 1, the PM surface acts as a relativistic oscillating mirror that simultaneously reflects
and compresses the incoming laser field, giving rise to additional high order harmonics. This effect
has been studied, both theoretically and experimentally, for decades [12, 43, 46, 15]. It constitutes a
promising path towards achieving extremely short (attosecond), intense XUV sources. In this section,
we first review the principle of the Doppler effect induced by a mirror at a constant speed and present

the Lichters analytical approach to explain the Doppler harmonic generation process.

111.4.6 Doppler effect

Before describing the Doppler effect induced by an oscillating mirror, we first recall the frequency

shift induced by a perfectly reflective mirror following a uniform motion with a velocity vgé,, .

Consider a monochromatic wave with a frequency of w that is specularly reflected by the moving
mirror (cf figure II1.8). A receiver, at rest in the laboratory frame observes a reflected wave with a
frequency [47]:

wr=(1+ 5)2’72(4)
1
—32 :
mirror moves towards the observer (vg > 0). This frequency shift is called the relativistic Doppler

where f = vg/c and v = The frequency of the reflected field increases when the reflective

effect. This shift increases with the mirror velocity. When the mirror motion is ultra-relativistic

(7 > 1), the Doppler shift reaches ~ 4~2.

25



Chapter III. Physics of high order harmonics generation on plasma mirrors
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Figure II1.8: Doppler shift induced by a reflective mirror moving at constant speed in the specular
direction.

I11.4.7 The Relativistic Oscillating Mirror (ROM) model

In 1996, R. Lichters et al [12] presented a theoretical model (the ROM model) to account for the

high order harmonic generation occurring in the relativistic regime.

The radiated electric field is related to the transverse electric current by equation I11.40. Lichters et
al assume that the radiative electrons are located within the skin depth at the plasma mirror surface.
Moreover, they assume that these electrons undergo a fast longitudinal oscillations under the effect of
the laser electric field component normal to the plasma surface. As the plasma skin depth is very small
compared to the laser wavelength (I; = w—; < \p), it is reasonable to model the radiative electrons as

a punctual source at a position Z(t) that varies as:

¢ 2Ap(x,t)sin(0)

w0 1+ 24o(a, Dsin(@) 0 Y (I11.44)

Z(t) =

where Ay is the temporal envelope of the laser vector potential ffz The electric current is determined
by equation II1.43. Tt is supposed to vanish over a scale length of I3 beyond Z(t). Consequently,

equation II1.40 simplifies to:
E (z,t) = lscpod L (Z (trety tret)) (IT1.45)

where t,¢; is the retarded time at which the signal observed by an observer located at position z and
time ¢ has been emitted by the PM. This means that:

(Z(tret) — 2)

tret =t — (I11.46)

In case of a p-polarized laser field, the radiated electric field reads:

\/1 — (Z(tret)/c)*(Ao(Z(tret) tret) — tan(0))
V1 + AG(Z(tret), tret)cos®(0) — sin(20) Ao(Z (tret ), tret) (I11.47)
+ tan(9) (1 + Z(trer) /zs)] &,

- - w.
B (2,1) = Bo(2,1) = 2750[
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To determine t,¢; and therefore Z(t,¢;), Lichters et al propose to use a fixed point iterative method:

Zo = Z(t)
7. — 2 (I11.48)
Zn+l - Z(t - c )

The Z,, sequence numerically convergences to Z(t,et) and tpe =t — M
Figure I11.9 illustrates numerical results obtained from the ROM model in the case of an obliquely
incident laser pulse at 55 degrees and ag = 6. The laser temporal envelope is Gaussian with a duration
of 7 = 2Ty. Panel (a) sketches the laser electric field impinging on the PM. Panel (b) illustrates the
plasma mirror surface dynamics Z(t) (blue curve) and the retarded dynamic Z(t,¢) (red curve). One

can note that Z(t,¢) clearly differs from a pure trigonometric function. This gives rise to a strongly
This temporal distortion is associated with the presence of high

distorted reflected field (panel(c)).
order laser harmonics in the spectral domain and attosecond light pulses in the temporal domain.
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Figure I11.9: High order harmonic generation with the ROM model. Panel(a): Incident laser profile.
Panel(b): plasma surface dynamic (retarded: red, unretarded: blue). Panel (c): Reflected field (red)
and attosecond pulses associated to harmonic orders between 20 and 60 (blue). Panel (d): Spectral

profile of the reflected field in log scale.
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The ROM model is a simple and intuitive approach to qualitatively understand the high order
harmonic generation process on overdense plasmas in the relativistic regime. However, it largely omits
the physics at play at the PM surface and therefore lacks of predictive power regarding harmonic
generation scaling laws and generation efficiency. Moreover, imposing a predefined dynamics to the
PM surface is not satisfactory. Figure I11.10 sketches the PM dynamics and the HHG emission obtained
from 1D PIC simulation (in the Bourdier frame) in the relativistic regime (ap = 10, L = %, 6 = 55°).
Even though a single high order harmonic bunch (in the form of an attosecond light pulse) is emitted
at each laser optical cycle, the PM dynamics is more unpredictable and does not follow a single order

harmonic motion.

3.0 3.5 4.0 4.5 5.0 5.5 6.0
T(To)

Figure I11.10: Plasma mirror dynamics and HHG for ap = 10 at 55° incidence angle from 1D PIC
simulation (in the Bourdier frame). In gray, the electronic density at the plasma-vacuum edge. In red,
high order harmonics in the range 20-30

Moreover, this modelling completely omitted multiple aspects that can only be apprehended in
higher dimensions, such as the spatial properties of Doppler harmonics. In the next section, we
present a comprehensive model developed in H.Vincenti’s thesis [48] [49] to account for the spatial
properties of Doppler harmonics. This model investigates the plasma mirror surface denting in the
presence of a plasma density ramp. Based on this dynamic, it is then possible to derive an accurate

predictive model for Doppler harmonic spatial properties.

I11.4.8 Plasma denting model and spatial properties of Doppler harmonics

In the relativistic regime, the mean positions of both ions and electrons from the surface are pushed
inwards due to the strong laser radiation pressure, resulting in a plasma mirror surface denting. This
process can be described with a three-steps quasi-static model. First, assuming immobile ions, the

maximum electrons excursion of the PM surface is modelled by determining the balance between the
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pushing force exerted by the incident and reflected laser field, and the restoring force due to the space-
charge separation. Second, the ion motion induced by the laser radiation pressure is computed using
the momentum conservation. Finally, this ion dynamics is taken into account to update electrons
excursion. This model assumes that the electronic motion can be computed for a fixed ion background
each laser optical cycle, which is valid as long as the ion motion can be neglected during a single

optical cycle.

Electrons excursion

We suppose an immobile ions background within the time scale of one laser period. In Bourdier
frame (the plasma initially occupies the domain x > 0 and drifts along the z-axis), the laser transverse
magnetic field BY gives rise to a longitudinal force exerted on the transversally drifting electrons. As a
result, the surface electrons are pilled up to form a dense electronic spike that undergoes an excursion
inside the plasma. We denote by z.(t) the longitudinal position of the electronic spike. The space
charge separation simultaneously gives rise to two additional forces exerted on the electrons spike.

First, the electrostatic space-charge separation forces associated to the longitudinal field that reads:

ze(t)
By(xo(t)) = / Zeni(x)dz

—0o0

On the other hand, the transversally drifting ions induce an uncompensated electric current J,(x) =

—Zn;(x)csin(f) that gives rise to a magnetic field Bf = — g ff;(f) J.(z)dz.

When the maximum electronic excursion x,, is reached at a time t. , we assume that an equilibrium

between the three forces exerted on the electronic spike is achieved. Therefore, we have:
2 [BI (2) + By (2m)] + Ex(2m) = 0 (111.49)

In the relativistic regime, we can assume that v, ~ ¢ during the pushing phase. For an exponential
plasma density ramp with a scale length L, we get a maximum plasma excursion.

2a9(1 +sin(f) nc
27TL/)\0 ne(zi)

T = Lln[l + (II1.50)

The maximum electronic excursion increases with both the laser amplitude or the plasma density
scale length: an increase in the laser intensity directly increases the laser force pushing the electronic
spike. On the other hand, increasing the plasma density scale length reduces the space charge separa-

tion forces due to the decrease in the density in the plasma ramp.

TIons excursion

Under the effect of space-charge separation forces, ions start to slowly travel towards the electronic
spike inside the plasma. Applying momentum/energy conservation, one can be shown that the ions

excursion in the plasma can be expressed as:

CHO

0 /0 t aL(to)dto} (IIL51)

(1) = 2L1 [1 _0
zi(t) . +2Lcos
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RZmecos(0)

where Il = Am, with R the laser reflexion coefficient, A the ions mass number, and ar(t)

the laser vector potential normalized temporal envelope. Similarly to electrons, the ions excursion

increases with the laser intensity and the plasma density scale length.

Plasma mirror excursion

The total plasma excursion is simply given by:

xp(t) = zi(t) + xe(t) (IT1.52)
In the expression of x.(t) (equation I11.50), the term nﬁ?;i) is equal to exp(—x;/L):
B 2ar,(t)(1 — sin(0) '
ze(t) = Lln [1 + 2L h exp|—x;(t)/L] (II1.53)
Therefore, I111.52 reads:
. 2ar,(t)(1 — sin(6) ‘
xr(t) = z;i(t) + Lln [1 + 2L exp|—x;(t)/L] (IT1.54)

In the relativistic regime, the laser radiation pressure tends to dent the PM surface. In return,
the deformation of the plasma surface affects the spatio-temporal properties of the radiated harmonic
beam. As the density spikes responsible for the HHG undergo a deeper inward excursion from one
laser optical cycle to another, the spacing between consecutive attosecond light pulses is expected to
increase over time, which results in a femtosecond chirp of the harmonic signal. The impact of the
plasma mirror deformation on the spatial properties of the harmonic signal is detailed in the next

paragraph.

I11.4.9 Plasma mirror excursion in three dimensions:

In higher dimensions (2D or 3D), the laser intensity variation along its cross section induces an
inhomogeneous denting over the PM surface Note that the Lorentz transform from/to the Bourdier
frame only modifies the scale lengths along the transformed axis. Thus, the plasma excursion in
the Bourdier and the lab frames are equal. Therefore, at each position (z,y) of the plasma surface

(considering that the z-y plane is transverse to the target) , the total denting reads:

2ar,(z,y,t)(1 + sin(h)) Ne
Xr(t,z,y) = zi(t, z,y) + Lln [1 + 7L/ % o expl—z(8) /]
clly ¢
Atz y) = 20|14+ —0 Ly to)dt 11
ri(t,2,y) = 2LIn] +2Lcos(9)/0 a2,y to)dt (I1L55)

2 2 cos(0))2 + 2
aL(%y,t) = ap exXp [—;} exp[_( (i])g) Ty )]

For z,y < wg, we can use Taylor expansion to simplify equation I11.55:

22cos%(0) + y?

Xr(t,z,y) = Xo — 17,

+ o(x?) + o(y?) (II1.56)
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were X is a constant, and:

£ W)+ (1 ()

8 AL €(t) + 2p(t)e(t) (1 + pu(t)e(t))
. 2)\0a(t)

) = 5L — sin(0)

() = wo(1 —sin(9))IIp /Ot a(to)dto

4 a

(I11.57)

Equation IT1.56 describes a paraboloid (cf a parabola in 3D) with focal distances %2{)(9) and f, in

the (x-z) and (x-y) planes respectively.

€(t) and p(t) are associated with the electronic and ionic excursions respectively. f, is called the
PM focal distance. We will show later that this physical quantity is of fundamental importance to

determine the spatial properties of high order harmonics.

At the beginning of the laser-plasma interaction (the first laser optical cycles), the ionic contribution
to the total plasma denting can be neglected (u(t) < 1) compared to the electronic motion. For ultra-
relativistic laser intensities (ap > 1), the total plasma mirror dynamic is dominated by the electronic

motion (e(t) > 1). Therefore I11.57 simplifies to:

2
~ Yo (I11.58)
=1
Note that for very long laser pulses (7 > Tj), and ¢t > Tj (after many optical cycles), the plasma
mirror dynamics becomes more and more dominated by the ionic excursion and we have:
wi

~ I11.
fo o2 (111.59)

We can also define the plasma mirror denting parameter by the difference between the plasma

denting at the center of the interaction region and at a distance of v/2wy in the incidence plane.

2wicos?(0)
e
P

This quantity relates the PM maximum denting to its focal distance f,. Due to the spatial

(I11.60)

variations of the laser amplitude at focus, equation I11.56 shows that the plasma target gets curved,
therefore focusing the high order harmonics. In the following, we derive the spatial properties of these

harmonics as a function of the PM curvature.

II1.4.10 Spatial properties of high order harmonics

The plasma mirror denting takes the form of a parabolic curved surface, described by equation
I11.56. It can be shown that the focal distance of the PM slowly varies from one optical cycle to
another [48]. During the first laser optical cycles, we assume that the focal distance of the PM is
constant and is given by I11.58. Therefore, the harmonic beam is emitted along the specular direction
given by —ky = kocos(0)e, + kosin(f)e, by a parabolic surface. We neglect the high order optical

aberrations (e.g. coma aberration) induced by an off-axis reflection on a parabolic surface [50]. In the
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reflection plane (see figure I11.11), the plasma mirror parabolic curvature induces a quadratic spatial
phase on the emitted harmonic beam. This quadratic phase originates from the cumulated optical

path difference of different light rays emitted by the curved surface and it varies as:

op(2',y') = —2kpcos(0) Z (2!, y) (IT1.61)
where k,, is the wave vector of the n'" harmonic order and (2’,y’) is the coordinate system of the
emission plane:

(I11.62)

Therefore, the spatial phase I11.61:
_k: 1,/2 + y/2
"2, cos(9)

where k, is the wave vector of the n'" harmonic order and (z',%) is the coordinate system of the

op(a’y) = (IT1.63)

emission plane. This equation describes a curved wavefront. The plasma mirror acts as a focusing
optics on both the incident laser and the high order harmonics. Note that despite the oblique incidence
in the (z, z) plane, the plasma mirror induces no astigmatism into the reflected field: the wavefronts

are equivalently curved along the x’ and 3’ directions. Therefore, the harmonic beam focuses at a

o
cos(0)

the PM could be used as a focusing optics in order to reach extremely high electromagnetic intensities

distance d =

along the specular direction from the PM. This particular behavior suggests that

[37]. In this thesis, we will also show a configuration where the harmonic beam is astigmatic due to

different wave-front curvatures along the two transverse directions.

In order to establish equation II1.61, we assumed that the laser spatial phase is constant over
the laser-plasma interaction region. This assumption holds true if the laser focus coincides with the
PM surface. However, it might be very beneficial to use an incident laser out of focus (with curved
wavefronts on PM) in various application experiments employing Doppler HHG. The general harmonic
phase formula for an arbitrary laser wavefront curvature writes:

o2’ y) = ¢p + o1

N 2% +y? a2 (I11.64)
n(ry) = _kn(2fp/cos(9) B 2Rz)

with R, the laser radius of curvature at the PM emission plane.

Plasma mirror

Emission
plane

Figure III.11: Schematic representation of the plasma mirror denting inducing harmonic focusing.
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Harmonic divergence

The divergence of the harmonic beam can be computed from the harmonic spatial phase given by

equation IT1.63. It reads:
wy(2)

0, = lim
z— 00 z

(IT1.65)
where z represents the distance from the PM mirror along the specular reflection direction and wy,(z)
is the harmonic beam size at a distance z from the PM focus. Assuming that each individual harmonic
can be modelled as a Gaussian pulse, we can use the Gaussian beam theory to determine w,,(z). First,

we can define the complex harmonic beam parameter g, at the PM surface:
an(z — zrn) = (2 — 2pp) + 12" (I11.66)

where z,., is the distance between the PM emission plane and the focus of the nth harmonic, and Z
is the Rayleigh length of the same harmonic order, which writes :

2
_ nmw,

7z = II1.67
=" (11L.67)

Based on Gaussian beam theory, the complex harmonic beam parameter g, also verifies:

1 B 1 Ao

(I11.68)

qn(z—27)  Rp(z — zr) - lmrw%(z —2r)

Based on equation I11.63, the harmonic radius of curvature at the emission plane reads:
R(—2zm) = fp/cos(0) (II1.69)

The harmonic waist w,, = w,(0) and z] can be deduced using equations I11.64,I11.68,I11.67,I11.66

and the relationship
1 1 1

2R, (—=2r) - 2fp/ cos(0) 2R,

Assuming a constant laser spatial phase (i.e. R% = 0), we have:

nrw?  n¥

"o )\0 1+ (n\I/)2
wp(—2))

z

W, = — T II1.70
T /1T+ (nw)? ( )
21 wi(zh) 2L cos*(6)
~ cos(f)  w? Ao
From equations II1.65 and II1.70 one can show that:
0, = 09/1 + (n¥)2 (IT1.71)

where 60 is the harmonic free divergence (i.e. the harmonic divergence in the absence of a PM

curvature):
Ao

nwwy (—2z")

00 =

n

(I11.72)

In conclusion, when an ultra-intense laser pulse irradiates a solid target, a train of attosecond pulses

of light, associated with Doppler harmonics in the frequency domain is generated by the relativistically

33



Chapter III. Physics of high order harmonics generation on plasma mirrors

oscillating PM. One of the possible future applications of plasma mirrors resides in exploiting these
ultra-fast light pulses in pump-probe like experiments. However, one of the main difficulties that still
need to be addressed in order to develop a reliable source of X-UV attosecond light pulses from PMs
is the difficulty of producing unique attosecond light pulses from those harmonics. One possible path
towards this goal is the so-called attosecond lighthouse effect proposed a few years ago [26]. This
scheme relies on laser spatio-temporal couplings to angularly separate attosecond light pulses in the
far-field.

II1.5 The attosecond lighthouse effect

The basic principle of the attosecond lighthouse effect is sketched in figure I11.12. Panel (a) rep-
resents the typical setup used for a HHG experiment employing a standard Gaussian laser beam. In
this case, the plasma mirror emits X-UV radiations in the form of a collimated train of attosecond
light pulses along the specular direction. Panel (b) represents a HHG process with the so-called at-
tosecond lighthouse effect. In this case, the incident laser field is distorted such that its wavefronts
are continuously rotating in the incidence plane. When the laser-plasma interaction is taking place,
a single attosecond light pulse is emitted at each laser optical cycle, whose propagation direction is
given by the instantaneous laser wave vector (that has a propagation direction varying over time). If
the laser wavefront rotation (WFR) velocity is high enough, then the emitted attosecond pulses are
sufficiently angularly separated and a unique attosecond light pulse can be spatially filtered in the
far-field by placing a slit along its path. This scheme is very general and is not restricted to HHG on
plasma mirrors. For instance, it has already been applied to produce angularly separated attosecond

light pulses from PM in the CWE regime [51] and on gaseous medias [52].
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Figure I11.12: Schematic representation of the lighthouse principle. In the presence of WFR, attosec-
ond light pulses are emitted with slightly different directions. A unique attosecond light pulses can
then be spatially filtered in the far-field

The attosecond lighthouse effect is based on a controlled distortion of the spatio-temporal profile of
the laser pulse. This particular spatio-temporal coupling is called wavefront rotation. In this section,

we formally introduce the notion of spatio-temporal couplings of light fields and show how to obtain,
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in practice, wavefront rotation at laser focus. Finally, we review the necessary conditions to angularly

split an attosecond pulses train into isolated attosecond pulses through the lighthouse effect.

I11.5.1 Characterization of ultra-short laser pulses

We consider a laser electromagnetic wave, propagating along the z direction, with a wave vector
Eo. This wave can be fully characterized, given its electric field spatio-temporal profile E(x, z = 2, t)
at a fixed position z = zy. The electric field can be characterized by its spatio-temporal phase ¢(x,t)
and amplitude A(z,t). Equivalently, this field admits three additional representations in different dual
domains: (z,w), (kg,t), (kz,w).

Space-frequency domain The space-frequency representation obtained by the Fourier transform
of the spatio-temporal field over the time variable. Omitting the longitudinal position notation z = z,
this representation can be expressed as:

E(z,w) = Az, w)e@)

oo , (IIL.73)
= E(x,z = 2, t)e ™'dt

—00
A(z,w) denotes the spatio-spectral amplitude of the electromagnetic field while ¢(x,z = zp,w)
stands for its spatio-spectral phase. This representation gives an insight about the spectral distribution

of field at different transverse positions x.

Spatial frequency-time domain The electromagnetic field may as well be expressed in the (k,w)
space. This representation is given by the Fourier transform of the spatio-temporal field over the
transverse spatial variable.
E(k,t) = A(k, t)e’# k")
400 } (IT1.74)
= E(x,t)e %2 dy
—o0
This representation is particularly interesting as it allows to express the electromagnetic field at
the focal spot of an optics of focal length f based on Fraunhofer diffraction. For a narrow spectral

bandwidth %—Lk < 1, the field after focusing reads:

B(zs,1) E(kaxf

) (I11.75)

Spatial frequency-temporal frequency domain Finally, it is possible to express the electromag-
netic fields in the (k,w) space, given by the spatio-temporal Fourier transform of the field:
E(k,w) = Ak, w)e )
oo ptoo ik (IT1.76)
= / E(x,t)e """ dxdt
—oo J—0o0
This representation informs on the angular spectral distribution with respect to the propagation
direction z. In fact, the propagation angle 6 can be expressed as 0(k;,w) = arcsin(c%z). Thus, the
(k,w) representation informs on the angular intensity distribution of the laser pulse far from the laser
waist:

10,0) = [B(k k)|
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II1.5.2 First order spatio-temporal couplings in ultra short lasers

In section III.2, the laser spatial and temporal dependencies have been expressed separately. This
does not always hold true and mutual dependencies between spatial and temporal laser characteristics
actually arises in typical ultra-short laser systems. An ultra-short laser pulse is said to exhibit spatio-

temporal couplings when:

E(z,2,t) # A1 () exp (p1(x)) A2(t)) exp (p2(t)) (IL.77)
Spatio-temporal couplings can affect the laser amplitude and/or phase profiles.

o(x,t) # p1(x)pa(t)

(I11.78)
Az, t) # A1(z)As(t)

As the field admits in total four different representations in four different spaces, one could define
8 spatio-temporal couplings, each affecting the field phase or amplitude in one of these four spaces. As
the different field representations are related via Fourier transforms, the underlying spatio-temporal
couplings are interdependent. In this thesis, we restrict our study to Gaussian pulses exhibiting first
order spatio-temporal couplings following the work of Aktiirk et al [53]. In this case, the spatio-

temporal field profile can be expressed as:

E(z,t) = Eyexp [— (% + i%)xﬂ X
0
expl(€ +iQ)zt] (II1.79)

first order coupling
r . .
exp [— (ﬁ + zﬁ)tQ] exp|iwot]

with {wo, R, T,5,£,(} C R. The spatio-temporal coupling is said to be of first order because the

second order derivatives of the coupling term (£ + i¢)xt are equal to zero:
32 ((¢ +iQ)at) = A2((¢ +iQ)at) =0
The parameters involved in equation I11.79 are defined as follows:
e [ is called temporal chirp. It induces a varying instantaneous laser frequency.

e ¢ and ( are spatio-temporal coupling parameters, respectively affecting the amplitude and the

phase of an ultra-short laser pulse.

— &, is associated to the so-called pulse-front tilt (PFT) coupling (cf left panel figure I11.13).
It results in delayed arrival times of the laser amplitude peak across the transverse direction
x. Consequently, the laser wave-fronts and pulse-fronts are tilted. Note that the pulse-front
is defined as the variation of the time delay ¢(xp) of the maximum laser intensity for each

transverse position x.

Pulse-Front = {(x,t),Vx,t = argmax, (| E(z,t0)|)}
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— ( leads to a spatio-temporal coupling affecting the phase. In this case, the laser wavefronts
rotate over time. This coupling is called wave front rotation (WFR) (cf right panel figure

II1.13). It is the basic mechanism responsible for the attosecond lighthouse effect.
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Figure I11.13:  Pulse-front tilt (left panel) and wavefront rotation (right panel) in the (z,t) space

Equation I11.79 can be rewritten in a more general form:

E(x,t) = Eyexp [amx2 + ayt® + agat (IT1.80)
with {azs, ay, aze} C C and:
o Re(agy) = —wig & beam waist.
e Im(ay,) = —% & wavefront curvature (WFC).
e Re(ay) = —J; < laser pulse duration.

Im(ay) = < temporal chirp.

Re(ayt) = & < pulse-front tilt.
e Im(ay) = ¢ & wave-front rotation.

I11.5.3 Different representations of spatio-temporal couplings

In the other representation spaces, the electric component of the laser field can be expressed with

the same form as equation I11.80:
E’(x,w) o Egexp [bme + boow? + bmxw}
E(k,w) < Eyexp {ckkﬁ + Copw? + ckwk‘w} (II1.81)

E(k,t) « Egexp [dkka + dyt® + dktkt}
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The spatio-temporal couplings are determined in each representation space by the coefficients b,

Ckw, dit. The next table II1.1 summarizes the relationships between different coupling parameters:

@t | e | e | ()
i by 1 Ckw _idy
Aot = Aot 2 b 4 ChnCowt o 2 dyk
b — i Gt b i Chuw 1 dy
Tw 2 ag Tw 2 cpk 4 d/kkdtt‘i‘dit
— 1 aw i bow _idw
Ckw - 4 azzatt+a%t 2 bzz Ckw 2 dtt
dry = 1 Gt 1 bpy 1 Chw d
kt — 2 Gz 4 bynbow 02, 2 oo kt

Table III.1: Relationship between spatio-temporal couplings in different domains

The relationships between other parameters (ayq, @i, bra, buw, Ckks Cww, dik, dit) are given in ap-

pendix B.

Analyzing spatio-temporal couplings coefficients in different representation spaces brings additional

insights to the physical origin of each coupling mechanism.

Let us consider a Gaussian beam at focus (i.e. with flat wavefronts Im(a,,) = 0), free from tempo-
ral chirp (Im(ay) = 0). In this case, the WFR coupling (Im(az:) # 0) implies an amplitude coupling
in the (z,w) space (Re(bgzw) 7# 0). The central laser frequency w varies as a function of the transverse
position z. This is the definition of the spatial chirp (i.e. a space-frequency coupling). Moreover,
WFR translates into an amplitude spectro-temporal coupling in the (k,t) space (i.e. Re(dy) # 0).
This means that the laser wave vector is time-dependent. WFR is actually associated to the rotation

of the laser wave vector over time: different laser wavefronts propagate along different directions.

On the other hand, a pulse-front tilt coupling in the spatio-temporal domain Re(a,;) # 0 gives
rise to an amplitude coupling in the (k,w) space ( Re(ck,) # 0). As already mentioned, the (k,w)
space representation illustrates the angular spectral distribution of the laser field. A non null Re(cg,)
means that different frequencies constituting the laser wave packet propagate along different angular

directions 6 ~ % This spatio-temporal coupling is commonly called angular dispersion (AGD) [54].

Note also that angular dispersion (< Re(ck,) # 0 ) could emerge even in the absence of pulse-front
tilt (Re(azt) = 0). Indeed, as shown by table I11.5.3, the presence of wavefront curvature (Im(az,) # 0)

and wavefront rotation (Im(a,:) # 0) may induce angular dispersion through the relationship:

oy = 1 Qat
= ——————
4 agzan + G?Bt
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This case is illustrated by figure I11.14. The left panel represents the spatio-temporal profile of a laser
beam exhibiting WFR and wavefront curvature. The amplitude the spectrum of this field in the (k, w)
space is sketched in the left panel. The spatio-temporal couplings translate into a tilted spectrum

amplitude in the (k,w) space (i.e. an amplitude coupling in this space) associated to AGD.

It is important to mention that the wavefront curvature resulting from propagation in vacuum of
a laser pulse, exhibiting wavefront rotation only (no initial PF'T, no temporal chirp and no wavefront
curvature) at focus does not induce angular dispersion. Indeed, assuming a short laser bandwidth, and
under the paraxial approximation, free propagation in vacuum can be approximated by the Huygens-

Fresnel method:

. . k2
E(ky,w,z = z0) = E(kg,w,z =0)exp <—i202]j) (I11.82)
0
where kg = “2 is the laser wave vector. Hence, when the pulse propagates in vacuum, the coupling pa-

C

rameter in the (k,w) space ciyw is not modified. Therefore, the angular dispersion remains unchanged.
In appendix A, we show how free propagation in vacuum simultaneously gives rise to PFT, wavefront

curvature and temporal chirps such that the AGD is kept null.
However, inducing angular dispersion by curving the wavefronts of a rotating laser pulse is still
possible if the wavefront curvature results from an external distortion of the laser wavefront. Such a

distortion may be the result of the plasma mirror curvature in the case of Doppler HHG, or the laser

intensity spatial variations in the case of CWE harmonics.
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Figure II1.14: Left panel: Spatio-temporal profile of an ultra-short laser pulse exhibiting WFR and
wavefront curvature. The spectro-spectral representation of the same pulse. The tilt in the (k,w)
space is associated to AGD.

II1.5.4 Practical realization of the attosecond lighthouse effect

The attosecond lighthouse effect relies on driving a HHG process using a laser pulse with WFR.

As we detail now, inducing wavefront rotation into ultra-short laser pulses can be easily achieved in
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CPA-based lasers.

The spectro-temporal representation in the (k,t) space of a laser pulse under the paraxial ap-
proximation can be interpreted as the spatio-temporal profile of the same pulse at the focal plane
of a focusing optics. Therefore, spatio-temporal coupling parameter pertaining to the pulse at focus
expressed in the (z,t) space is proportional to the spatio-temporal coupling before focusing when

expressed in the (k,t) space (with a real proportionality coefficient) :
a2F o dBF (I11.83)

where the acronyms AF and BF stand for at focus and before focusing respectively.

Consequently, if the initial pulse (before focusing) exhibits pulse-front tilt coupling (Re(ay) # 0,

Im(ay) = 0), in the absence of wavefront curvature (Im(ay;) = 0), we have dBF € iR. Hence, the

AF

spatio-temporal coupling parameter at focus aZ;

is pure imaginary, so the initial pulse-front tilt is
converted into wave-front rotation at focus. Figure I11.15 physically illustrates how a PFT may induce
a WEFR at focus [55]. Panel (a) represents the focusing of a laser pulse in the presence of PFT. Due to
the spatio-temporal coupling in the initial pulse, different laser wavefronts across the laser pulse reach
different spots of the focusing lens surface. Therefore, the laser wavefronts, not reaching the lens at its
center are tilted at focus which results in the apparent rotation of the laser wavefronts. Equivalently,
panel (b), shows how the coupling conversion can be explained by interpreting the PFT as angular
dispersion. In this case, different colors constituting the initial pulse impinge the lens with different
angles (due to AGD). Therefore, each wavelength is focused on a different transverse position of the
lens focal plane. At focus, the resulting field exhibits a spatial chirp (frequency dependence to the
transverse position) which is equivalent to a wavefront rotation. This behavior suggests that WFR,

can be triggered by focusing a laser pulse with PFT. So the question is, how to induce and control the

pulse-front tilt before the focus?
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Figure II1.15: Focusing a laser pulse in the presence of PEFT/AGD. Panel (a), in the presence of PFT,
the laser wavefronts are tilted with respect to the pulse-front. At the focus of the lens, the initially
parallel wavefronts become tilted with respect to each other, giving rise to WFR. Panel (b): in the
presence of AGD, each wavelength constituting the laser wave packet impinges the lens surface with a
different angle. Hence, each frequency is focused on a different position of the lens focal plane, giving
rise to angular dispersion.

I11.5.5 Inducing pulse-front tilt

The real challenge to control laser wavefront rotation velocity mostly resides in inducing and
manipulating the amount of pulse-front tilt before focusing. Figure II1.16 schematically illustrates
how an ultra-short regular laser pulse refraction inside a dispersive optical prism gives rise to PFT.
Inside the prism, the laser pulse-front travels at the group velocity, while the laser wavefront travels
at the phase velocity. Due to the dispersive nature of the prism, the group and phase velocities of
light inside the prism are not equal. Therefore, pulse-front (which travels at the group velocity) and

the wavefront (which travels at the phase velocity) are tilted with respect to each other by the prism.
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Figure II1.16: Pulse-front tilt induced by a dispersive prism.

In reference [54], the author derived a general relationship between the angular dispersion and the
pulse-front tilt induced by the propagation of an ultra-short laser pulse in any dispersive medium.
This relationship reads:
dT'(X)
dX (I11.84)

& = arctan(\p dIC;(;\) )/c

tan(cf) = — o

where I'(\) is the propagation angle gap between the spectral component of wavelength A and the

central laser spectral component (with wavelength Ag) of the resulting pulse. The quantity dI;l()\)‘) char-

acterizes the angular dispersion effect of the dispersive media.

In practice, introducing a pulse-front tilt into an ultra-intense ultra-short laser pulse relies on
misaligning the last grating of a laser system. This grating is usually used to recombine different
spectral components of the pulse in typical CPA-based chains [1]. Figure I11.17 schematically illustrates
the light diffraction in such a setup.
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Figure II1.17: Diffraction on a misaligned double-grating.

Equation I11.84 suggests that the pulse-front tilt induced by this setup can be deduced from its
angular dispersion. We assume that the two gratings have the same step denoted a. We only consider

first order diffractions on both gratings. The diffraction grating formulas read:

sin(i) + sin(r) =
(IIL.85)
sin(i — ©) +sin(I") =

Q> >

Differentiating both equations with respect to A gives:

ar 1
d\  acos(r)
a1 dr

o a—cos(r—@)a

(I11.86)

after few manipulations we get:

ar 11— cos(r — ©)/cos(r)
D ay/T=(a—vinr — O

(I11.87)

under the paraxial approximation, and using the relationship of equation I11.84, we get:

~ Ap tan(r)
a cos(i)

tan(cf) = (IT1.88)

Concretely, pulse-front tilt can be controlled at will by slightly misaligning a double-gratings in a

CPA laser chain via the relationship I11.88.

I11.5.6 From PFT to WFR

In this section, we characterize a Gaussian laser with wavefront rotation resulting from the focusing

of an ultra-short laser with PFT. Let f be the focal distance of the focusing optics.

Before focus, the pulse-front tilted electric field expression reads:

E(z;,t) = Eyexp ( — (t — €mi)2 - <ﬁ)2 — iw0t> (II1.89)

Ti w;
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in the (k,t) space, this expression becomes:

E(ky, t) = / E(x;,t) exp(—ikgx;)dz;

. k2 t2
_ 0 a2 T o
E(ky,t) = E” exp ( Wi (we/n)? 20T (wzf/Tz)2)> X (I11.90)
fwi?

wt + ikt
expliuct i T2 (1 4 (wi/7:)?)

The field expression at focus can be computed by the Fraunhofer diffraction:

- k
EAF (24,1) o Bk, = % ) (I11.91)
using I11.90, we get:
E(xf,t):Egexp(— x? >><
wi(1+ (§wi/7:)?)
t2 (I11.92)
exp ( — X
< T)%(l + (fwz/rl)2)>
exp(iwot + iCtx)
with
wyp = woy/ (14 (§wi/7:)?)
and
_ Xof
i

wy is the effective beam waist at focus while wq is the usual laser waist at focus in the absence of

PFT. Moreover, we have:

7 =7V (L+ (§wi/7i)?)
the laser temporal duration at focus and:
B 2£wi
— worP (1 + (§wi/7)?)

is the laser wavefront rotation parameter.

The PFT before focus increases the pulse duration and waist at focus by a factor of /(1 + (§w;/7:)?).

Assuming that the laser energy is conserved, the laser amplitude at focus \E[J; | reads:

Ell  [wi 1

(BT Vowo \/(T+ (Swi/7:)?)
We now compute the laser wavefront rotation velocity at focus. We first define the instantaneous

laser direction of propagation as 3 ~ % with &, (t) = ks d(gix). Finally, we define the laser wavefront

rotation velocity V, as the temporal derivative of its instantaneous direction of propagation.

vie) =2

o kCO (IT1.93)
w2

V&) = T (ew/m))
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Figure I11.18, shows the evolution of the laser WFR velocity as a function of the PFT parameter before
focusing &. The wavefront rotation reaches a peak at & = &ar = ;—2 before slowly decreasing. The

maximum WFR velocity reads:

W;
Vma:c — 1
T 27 f
Tf = \@Ti
111.94
wf = \/§w0 ( )
Bl _ 1w
’EO| V2V wo
1.0
0.8 4
S 0.6
=
~ 0.4 -
0.2 4
0.0 +
0 2 4 6 8
&/€max

Figure II1.18: Wavefront rotation velocity as a function of the pulse-front tilt before focus.

Maximizing the laser wavefront rotation velocity at focus induces a temporal and spatial beam
sizes increase by a factor of v/2 and a laser intensity decrease by 50%. Note also that the wavefront
rotation velocity is inversely proportional to the laser temporal duration before focus 7;. Therefore,

longer laser pulses would sustain lower maximum wavefront velocities.

I11.5.7 Separation condition of attosecond light pulses

Figure II1.19 illustrates under which conditions the use of a rotating laser pulse leads to angular

separation of attosecond light pulses in the far-field.

Assuming that the emission direction of attosecond light pulses follows the instantaneous driving
laser wave-vector direction, the angular separation between two successive attosecond light pulses is
A0 = ATV, where AT is the delay between the emission times of two successive attosecond light
pulses. In the context of Doppler HHG, a single attosecond light pulse is emitted at each laser optical

cycle. Therefore we have

Al =TyV,
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As the train of attosecond light pulses diffracts in vacuum, spatially filtering a single attosecond
pulse in the far-field with a slit is only possible when A# is larger than the angular spread of individual
attosecond pulses. Otherwise, the filtered signal will be made of two (or more) undesired parasite spikes
coming from attosecond pulses close to the targeted pulse before the slit. The higher the temporal
contrast of the filtered signal, the better the angular separation is. Additionally, the smaller the slit is,
the higher is the contrast between the central pulse and its satellite pulses. However, this also lowers
the total energy in the central pulse. Assuming that harmonic beam divergences constitute a good

measurement of their angular spread, we consider that a good separation is achieved when:

% >1 (I11.95)

where 6, is the divergence of a single attosecond pulse. This separation criterion is arbitrary, and

depending on the potential applications and use of attosecond light pulses, a higher separation ratio

?—f might be required to increase the temporal contrast of the filtered signal.

\

4\
"\
K

Figure I11.19:  Attosecond pulses separation with the lighthouse scheme. The separation is only
possible when the angular divergence 6,, of a single attosecond light pulse is smaller than the angular
separation between successive pulses A6.

Successful experimental demonstrations of attosecond lighthouse effect, whether on gaseous media
or on plasma mirrors in the non-relativistic regime were performed using extremely short laser pulses
(FWHM = 5fs) in order to induce a high laser WER velocity. Nevertheless, this scheme has never been
transposed to the relativistic regime to produce isolated attosecond light pulses. The main difficulty
arising in the context of Doppler HHG results from the important divergence of high order harmonics in
this regime. Therefore, the required WFR velocity is only achievable when using extremely short laser
pulses (of one or two cycles only). Unfortunately, amplifying laser pulses with such broad bandwidths

to reach relativistic intensities remains a hard challenge to solve for current laser technologies.
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IV.1 Numerical modelling in plasma physics

The plasma state describes a broad range of physical systems with wide variety of parameters
(temperature, density, pressure, ionization degree ...), thus various theoretical descriptions of plasma
states are possible, depending on the physical mechanisms at play.

In this context, we can identify three possible modelling approaches to describe plasma systems:

e Microscopic description: where each particle constituting the plasma medium is modelled indi-
vidually. This modelling is equivalent to an N-body problem where each particle dynamics is

governed by external forces induced by all other particles.

e Statistical (or kinetic) description: where plasma is described via the density distribution func-
tion of each of its species in the phase space (t,7,p). In this case, a statistical description of
the plasma medium is employed. Depending on the importance of binary collisions, this ap-
proach gives rise to the Boltzmann equation (for collisional plasmas) or Vlasov equation (for

collision-less plasmas).

e Fluid description: when the plasma is near equilibrium, the plasma can be described via its

density, mean velocity, temperature and pressure following a fluid approximation.

In the context of high order harmonic generation on solid targets, kinetic effects are dominant
as plasmas are out of equilibrium. However, collisional effects can be neglected as the electrons-
ions collisions period is much larger than the total laser-plasma interaction duration. Therefore, the
Vlasov equations, coupled with the Maxwell’s equations, is a satisfying approach to describe both the

electromagnetic fields and the plasma dynamics.

IV.2 Maxwell-Vlasov equations

The Maxwell-Vlasov equations are a PDE system that describe the evolution of the density distri-
bution functions of each plasma species in the 6D phase space (z,y, 2, Pz, Py, P-) in the collision-less
regime. Let us consider a species s of mass mgs and charge g5 associated with a density distribution
function fs. It can be shown that under the collision-less hypothesis, the density distribution function
is solution of the Vlasov equation [29]:

of. dr

B 47
o0 T g Vilst 3 Vil =0 (IV.1)

Assuming that the plasma is only prone to electromagnetic forces (neglecting gravity), the Vlasov

equation is simply an advection equation whose characteristic lines (7, p) are solutions to the following

equations:
dp . .
d—f — g, (E LA B)
aF 7 (Iv.2)
_— = =

dt Vm3g + |pl?/c

On the other hand, the electromagnetic fields are governed by the Maxwell’s equations that we

recall here:
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. . - dB
VE="L VAE=-" (IV.3)
€0 dt¢
.o . . dE
B = B= el V.4
V.B=0 VAB=uT + 5o (IV 4)

Maxwell’s equations are coupled to the density distribution functions f,(7, p, t) via the source terms

p and J_', which are related to fs via the following relationship:

P = Z ds / fsdpxdpydpz

= P
J = ZQS/fs FE dpmdpydpz
s mgy/1+

(msc)?

(IV.5)

A Eulerian discretization of the Maxwell-Vlasov system given by equations IV.1 IV.4 and IV.5
mandates to discretize 6 computation axes (3 space dimensions and 3 momentum dimensions) and
would necessitate thousands of billions of cells even with a coarse grid sampling (say one hundred
grid point per axis). The use of the Particle-In-Cell method represents a good numerical strategy to
substantially reduce the computational complexity of the Maxwell-Vlasov system while still keeping
an accurate kinetic description of the physics at play. In this case, only the spatial domain is dis-
cretized, while the density distribution function variation with respect to momentums is inferred via

a Lagrangian formalism.

IV.3 The Particle-In-Cell (PIC) method

The PIC method [56, 57] is a particle-mesh approach to solve the Maxwell-Vlasov system. On the
one hand, the electromagnetic quantities, obeying to the Maxwell’s equations are discretized using a

Eulerian description on a fixed simulation grid.

On the other hand, the density distribution function is computed using a Lagrangian approach.

In this case, the distribution function is divided into N elementary distribution functions in the phase

space (7, p):

These elementary functions, commonly called macro-particles, are supposed to have a finite exten-

sion in space with a definite momentum p’at all times:
F(7,5.8) = h(7 = 73())3(F — Fi(t))

where h is a bounded-support function centered around 0, and (7;(¢),p;(t)) are the coordinates in
the phase space of the center of the i*" macro-particle at time t. These macro-particles can be seen
as solid bodies driven by electromagnetic forces. Each macro-particle i, (7;(t), pi(t)) follows a well
determined Vlasov characteristic line in the phase space, specified by equation 1V.2 and the initial

conditions (75(t = 0),p;(t = 0)). Therefore, the macro-particles dynamics is simply governed by the

49



Chapter IV. Basics of the PIC algorithm

relativistic momentum conservation principle. For this reason, macro-particles are seen as a collection

of physical particles which are close to each other in the phase space (both in momentum and position).

After initializing the plasma macro-particles and initial fields in the simulation domain, the PIC

algorithm is essentially composed of four main steps that are summarized here:

1. Maxwell solver: advance electromagnetic fields over one time step on the simulation grid, taking

into account the electric current and the charge densities.
2. Fields interpolation: interpolate electromagnetic fields on each particle position.
3. Particle pusher: use the interpolated fields to update the particles momentums and positions.

4. Current/charge deposition: use the updated particles velocities and positions to compute the

new currents and charge densities on the simulation grid.

The PIC algorithm is a simple, yet powerful numerical approach to tackle a large variety of plasma
physics problems. Note that this representation is not an exhaustive description of all the capabilities
of modern PIC codes which often include advanced physical modules for modelling additional physical
phenomena such as ionization processes, quantum electrodynamics effects, and collisions, but these

effects are out of the scope of this work and will not be further discussed.

A wide variety of numerical techniques can be used in order to perform each of the four PIC steps.
In practice, PIC simulations are very computationally expensive as they require billions of macro-
particles and grid cells for a full 3D geometry. In the following, we present the main numerical methods
and parallelization strategies used in the PIC framework WARP+PICSAR to which I contributed
during this thesis.

IV.3.1 WARP + PICSAR PIC framework

WARP-+PICSAR software is a PIC code composed of two independent softwares, that are WARP!
and PICSAR 2. WARP is a PIC code written in Fortran and Python languages and developed at the
Lawrence Berkeley National Laboratory (LBNL), while PICSAR is a full Fortran library, co-developed
by CEA and LBNL, it includes highly optimized PIC computing kernels and supports multiple levels
of parallelisms. PICSAR is intended to be used as a PIC toolbox for other PIC codes, but it can also
work as a standalone simulation package (although with limited input/output features). Currently,
PICSAR can be used by SMILEI code [58] (to access to FFT based Maxwell solvers that will be
presented later) and WARPX [59] to boost specific computations.

When using the WARP+PICSAR framework, all the computationally demanding operations are
performed with the optimized PICSAR kernels, while the WARP code mainly serves to set the initial
simulation setup, carry out the numerical diagnostics, and schedule the PIC computations. It also

offers a user-friendly interface to design numerical experiments.

"https://blast.lbl.gov /blast-codes-warp/
https://picsar.net/
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IV.3.2 Discretization of PIC quantities

The standard spatial/temporal discretization for field quantities (current/charge and electromag-
netic components) in most PIC codes relies on the Yee lattice [60]. This scheme defines two spatially-
staggered discretizations along each simulation axis. Each mesh grid quantity is discretized within
a specific grid along each direction. This setup allows for a spatio-temporal leap-frog integration of
Maxwell’s equations. Figure IV.1 represents the fields discretization over the Yee lattice as defined in
the WARP+PICSAR framework. Note that in the original Yee lattice, electric and magnetic fields are
defined on half-time step shifted times. This consideration is adjusted in the WARP+PICSAR PIC
code, depending on the Maxwell solver algorithm that is used (more details on that in the Maxwell

solvers section).

On the other hand, the discretization of macro-particles momentum /positions usually used in most
PIC codes relies on temporal staggering between position and momentum in order to enable a leap-frog

integration of macro-particles dynamics as well (cf table IV.1).

i

p4
(+1)Ay ----
YA R ¥
T Bz
----- kAz
p o
Ez,Jz
jay ---- —————— - (k+1)Az
E Ex,Jx E
iAX (i+1)Ax

Figure IV.1: Schematic representation of fields staggering on the Yee lattice.
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Fields X y 7 t
E, (i+ 3)Az JAY kAz nAt
E, iAx (j+3)Ay kAz nAt
E, iAx JAy (k+ 1Az nAt
B, iAx (+3)Ay (k+ %)Az (n+ %)At
B, (i+3)Ax jAy (k+3)Az  (n+3)At
B, (i+3HAz  (j+1)Ay kAz (n+ 3)At
Jz (i+35)Ax JjAy kAz (n+ %)At
Jy iAx (j+ 3)Ay kAz (n+ 3)At
J. iAx jAY (k+3HAz  (n+d)At
p 1Az jAy kAz (n+1)At
Particles - - - t
Position - - - (n+1)At
Momentum - - - (n+ 3)At

Table IV.1: Spatial and/or temporal positions of field quantities and macro-particles at the end of the
n'® PIC iteration.

IV.3.3 Current/charge deposition

=

The current/charge deposition consists in retrieving the electromagnetic sources (p,J) from the
macro-particles distribution as shown by equation IV.5. Numerically, macro-particles are provided
finite but non-null spatial extent to interact with the grid. In a discretized approach, numerically

computing the charge density consists in computing p;'; , in the following way:

N,
1 S
Piik = AeAghs D s D WISVt i) ) (IV.6)
s =1
with:
o (Ax, Ay, Az) are the spatial cell sizes along x,y,z directions.

N, the number of macro-particles of the s species.

W, is the weight of the I*" macro-particle of the s species. This quantity is equivalent to the

number of real particles that the macro-particles represents.

(:c}fs, yl’fs, zl”s) denote the spatial coordinates of one macro-particle at time step n.

S(i,j,k) is the spatial shape function centered on the node 14,7, k. The shape function reflects

the extent of macro-particles in space.

Depending on the spatial extent of shape functions S(i, j, k), each macro-particles inducts a charge
density on an arbitrary number of grid points. The shape functions used in the WARP+PICSAR
PIC code are those derived in [57], which guarantee a smooth evolution of the density distribution as
the macro-particles move on the grid, and a bounded support contribution of each macro-particle to
the total charge density. These shape functions are spline functions of arbitrary orders k, which are

recursively defined as follows:
SF(z) = St @ S 1(x) (IV.7)
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where S' is the top-hat function defined as:

{

The evolution of shape functions for £ = 1..3 in 1D are depicted in figure IV.2. The number of

1
0

: Az Ax
if -5 <esF
otherwise

S (x) (IV.8)

grid points involved in the charge deposition is equal to spline order k along each dimension, and its

integral over space is equal to one cell size.

k=1 k=2 k=3
1.0 1.0 1.0
0.5 - 0.5 - 0.5 -
0.0 A T T T T T 0.0 A T T T T T 0.0 A T T T T T
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
X/AX X/AX X/AX

Figure IV.2: Shape functions for k =1, k = 2, and k = 3.

The choice of the shape function order is a trade-off between the tolerated numerical noise and
the computational cost: higher orders guarantee a smoother charge density deposition while requiring
more computations.

The same computational method described to compute p can be used to compute J:

N,
n+ 1 -

“i bk~ AuAyhe D4 D Wil S Yis) His)) 41k (1V.9)
s =1

However, this method does not guarantee that the continuity equation is verified:
op = =
—+V.J=0 V.10
2 T (IV.10)

A modified version of the current deposition using arbitrary shape function is employed. This
method is known as the Esirkepov current deposition algorithm [61], it verifies the discretized conti-

nuity equation, considering second order derivatives spatial and temporal derivative operators:

1 1 1 1 1 1
na1 " Jn+§ . Jn+§ n+§ . n+§ n+§ . Jn+§
Pijk — Pijk Tir Lk Lok Yij+ Lk Yij-L.k Zig k4l Figk-%
+ =0 (IV.11)
At Ax Ay Az

IV.3.4 Fields interpolation

To solve the macro-particles dynamics, the Lorentz forces acting on the macro-particles are re-

quired. For this, the electromagnetic fields, initially defined on the mesh grid are interpolated on
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the macro-particles positions employing shape functions, in the same fashion as the current/charge

deposition step:

1
EX(x1,y1, 21) Z S((@ + VAT, JAY, kAZ) (4 4,2 Er (( + g)Ax,jAy, kAz)e, (IV.12)
i,5,k
Note that the shape functions used for both the fields interpolation and the current/charge depo-

sition need to be the same to avoid unphysical self-exerted forces.[57].

IV.3.5 Particles pusher

Once both the electric and magnetic fields are known on each macro-particle, the macro-particles
dynamics is updated by solving equation IV.2. Several numerical approaches are possible to integrate
this equation of motion. The most commonly employed scheme in PIC codes is the well-known Boris
pusher [56]. The Boris pusher updates the macro-particles momentums pn_% and positions ™ through

a leap-frog integration:

-

n+dl  on-1 ntl n—L
P —p QZqS[EnJF(p 2 +p 2)ABn]

At 29y mg
V.13
n 1 prTE 4 pitaN2 ( )
T * ( 2msc )
anrl — " pn—i—%
At (IV.14)

- 1
Vmi 1l /e
The right hand side of equation V.13 involves the unknown momentum p”_% and would therefore

require an implicit integration. However, Boris showed that this integration can be performed explicitly

by splitting the Lorentz force as follows:

- — o — 1= o 1=
Fr,=F+F,+F3= §FE + Fp + §FE
~ Magnetic force ~
%Electric force %Electric force

and performing a three-steps integration of the equation of motion, using ﬁl, ﬁg, ﬁg successively.

IV.3.6 Maxwell Solver

While most modern Particle-In-Cell softwares rely on finite-different schemes to solve the Maxwell’s
equations, WARP+PICSAR offers the possibility to use more sophisticated, FFT-based, pseudo-
spectral solvers along with original efficient parallelization strategies. First, we present the Finite-
Different Time Domain solver employed by many PIC codes and discuss its limitations in the context
to HHG simulations. Then, we present the pseudo-spectral solver, implemented in WARP+PICSAR
code, along with the innovative parallelization approach initially proposed by J.L.Vay et al [25].
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Finite-Difference Time Domain

The Finite-Difference Time Domain (FDTD) technique [60, 62] is based on a finite-different scheme
to compute numerical differentiations in both time and space using a low order stencil. The FDTD

integration of Maxwell’s equations reads as follows:

1 1 n+ n+s n-‘,-f
+5 _
Cﬁ(DtExi-y-%,j’k)n 2 = (Dsz 2)i+l,j,k —_ (DZBy 2)i+%,jk MO!]&':ZJ’_ ik
1 1 n+ nJrl n+
+
2 (DtEylﬁl k)n —(DB: 2)z,j+%,k + (D. Bz Q)i,j-s-% k MOJyuil i
1 1 n+ n+s n—i—f
+5 _
072( 2 3T k+1 )n = (DxBy )l’]’k‘i'% B (DyBI ’ )ivj’k‘i'* ,U/O‘]Z’L N k+1 (IV15)
+1 __ +1 +1
(DB, %+l k+%)n = —(DyE? )i,j+%,k+% + (DzE; )i,j+%,k+%
+1 _ +1 +1
(DB Vil ,H?)n = (D, EY )i-}-%,j,k-s—% — (D Ey )i+%7j7k+%
+1 _ +1 +1
(DB Zidtd, A )z‘+é,j+§,k +(DyEy >i+%,j+é7k

where the derivative operators Dy, D, Dy, D, on any given field quantity Fi”j ;. are defined as follows:

Fn-l—% _ Fn—%
DF)t = —
(D¢ F) A7
E;+l ik szf k
D F L. — 2’.7? 7]
el Az (IV.16)
Fij—&—lk_Fij—lk ‘
(DyF)Z]k — ’ 2 ) PRI
2 Ay
F, o1 —F ., 1
7.]7k+7 17]»](:77
(DZF)lz.]vk = ZAZ ?

By staggering the electric and magnetic fields both spatially and temporally as defined in the Yee
lattice, the numerical error induced by the spatial and temporal derivatives over a single time step is
of order two in both time and space:

= O(Ax)? + O(Ay)* + O(Az2)? + O(At)? (IV.17)

Using the FDTD scheme along with a charge conserving algorithm for the current deposition (such
as the Esirkepov algorithm) guarantees that the Maxwell-Gauss equation is verified at all time steps,
provided the initial electric field verifies the Maxwell-Gauss equation. Similarly, and under the same
condition, the Maxwell-Thomson V.B = 0 is verified at all time steps:

'

(DLEP) + (D,ED) + (D, EP) = 2
1 1 € (IV.18)
(DyBy )+ (DyBy " ?) + (DB %) =0

Parallelization of the PIC algorithm with the FDTD scheme

The FDTD method is a relatively simple and straightforward numerical approach for solving
Maxwell’s equations. Moreover, the FDTD scheme is well-suited to be parallelized at arbitrary scales
on distributed memory architectures. Indeed, parallelizing FDTD scheme can be achieved by employ-

ing a standard domain decomposition techniques (DD) on the simulation domain. This parallelization
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strategy consists in dividing the simulation domain into small subdomains. Each subdomain is asso-
ciated to a different processing unit. Neighboring subdomains only overlap over a small region called

guard-region.

The computations underlying the FDTD scheme at each mesh grid point only involve data from
close neighboring mesh grid cells/nodes. Therefore, the computations within different subdomains
are performed independently by each processing unit. At each time step, data from the guard region

intervenes to update electromagnetic quantities near the subdomains borders as shown in figure 1V.3.

This parallelization strategy can be used in PIC codes and extended to parallelize the whole PIC
algorithm (cf figure IV.3). Therefore, each processing unit also deals with the computations pertaining
to the macro-particles that lay within its subdomain at each time step (current deposition, particles
motion ...). Macro-particles are exchanged between neighboring subdomains when they cross the
subdomains boundaries. Note that when using extended shape functions (with large supports), the
macro-particles laying near subdomain boundaries may contribute to the current/charge of neighboring
subdomains. For this reason, a different current/charge densities data exchanges is performed in order
to take into account the contribution of macro-particles to external subdomains meshes (cf panel (c)).
Moreover, the number of guardcells (the number of cells inside the guard region) should take into

account the shape functions used in the PIC loop.
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simulation domain
subdomain 1 subdomain 2

y f
Lx [ER  Macre
T ~ particles
' o
(a) = E () i__,i__ o
5 a
(‘@E = [ TT _I,A/
(b) (d) A=
0 \
¢ )
2 I

Figure IV.3: Parallelization of the PIC algorithm. The simulation domain is split into subdomains.
Guardcells are appended to each simulation domain. Macro-particles deposit current and charge
on the subdomain+guard region before Maxwell’s equations solve (panel a). Guardcells are filled
with data from neighboring subdomains (panel b). Particles that are initially close to a subdomain
boundary may deposit current on a neighboring subdomain. Maxwell’s equations are then solved on
each subdomain. Macro-particles are pushed (panel ¢). If a macro-particle enters the guard region, it
is sent to the corresponding subdomain. Each MPI task handles the computations associated with a
unique subdomain.

This parallelization strategy is used in many PIC softwares. In the WARP+PICSAR code, this
parallelization is handled by the Message-Passing-Interface library (MPI). Hence, each subdomain is

associated to one MPI task.

Besides, PICSAR enables an additional shared-memory parallelization level within each MPT task:
each subdomain is further subdivided into multiple smaller subdomains denoted by ‘tiles’. The com-
putations pertaining to macro-particles (field interpolation, particles push, current/charge deposition)
are performed on the tile level before being merged on the MPI task mesh grid level to solve Maxwell’s
equations. The workload associated to tiles is distributed among different threads belonging to each
MPI task, using the shared memory parallelization API OpenMP. The size of data laying within
each tile is preferably set so that it fits into the fastest cache memory layer to enable efficient cache
reuse and fast computations. Finally, computations within each tile are boosted by using vectorized

implementations of different PIC steps via Single Instructions Multiple Data instruction set [63].

Numerical dispersion and stability condition for FDTD

The FDTD scheme has many advantages, among which its efficient parallelization over distributed

memory machines. Nevertheless, it has as well various numerical limitations that hinder its accuracy.
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These limitations are related to the unphysical electromagnetic field behavior when propagated via
the FDTD scheme. In the context of ultra-high intensity physics PIC simulations, these drawbacks
can sometimes strongly spoil the accuracy of the results obtained from PIC simulation when using the

FDTD method [23].

To highlight those limitations, we derive the numerical dispersion relation associated with the

FDTD scheme.

From equation V.15, one can deduce the discretized numerical propagation equation that applies
to all the electromagnetic fields components in vacuum. Considering the F, field component for

example, this leads to:
1
ALE? + AIE} + AR = gAng (IV.19)

where, for a given field F, the discrete second order derivative operators A2, Ag, A? and A{ read:

_ F7/+17]7k B 2F;7.77k + E_17J7k

AgF- .

Lk = A
AR Fijiie—2Fjr+ Fij 1k
v Ay? (IV.20)
NI Fijr1 = 2F; jr + Fijr—1 '
S Az?
Fn+1 —2F™ ¢+ Fn—l
ARF = A2

The discrete second order derivatives operators correspond to a three point convolution in the real

space. Their dual operators in Fourier space write:

ALF, = @(cos(kaAa) - 1)F, = ~Agz St ( 5 VFy (IV.21)

where « stands for any dimension, both spatially or temporally. By Fourier transforming equation
IV.19 over time and space, we retrieve the relationship between the temporal frequency w and spatial
frequencies (kz, ky, k-):

1
2 At?

wAt 1

)= k.Ax 1
2 7 Az

)+ k Az
2 Ay?

2

ky, A 1
sin?( sin?( y2 y) + ALz sin?

(222 (IV.22)

sin?(

Instead of the physical dispersion relation in vacuum %22 = k2 + k; + k2, the FDTD scheme verifies
a dispersion relation, given by equation IV.22. Note that when the spatio-temporal sampling goes to
zero (wAt, ky Az, kyAy, k,Az) < 1, the numerical dispersion relation converges to the physical one.

Another consequence of the numerical dispersion relation is the existence of a stability constraint on
the temporal time step At, imposed by the spatial mesh sampling. For instance, when the Nyquist

nyd _ T = T = T = - . . . . s
wave vector Ky = +£x_€; + A% + €, is injected into equation V.22, we obtain:

YA N ST | 1 1
sin®(——) = ¢*At (Am2 + Ay + A22) (IV.23)
which requires that:
1 1 1
2 A 42
At <1 V.24
¢ (A:B2+Ay2 Azz)_ (1v.24)
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Otherwise, w would be a complex number, resulting in an exponentially growing instability. This
condition is known as the Courant Friederichs-Lewy (CFL) and restricts the maximum time step
length in order to guarantee the stability of the scheme.

Figure IV .4, panel (a) depicts the electromagnetic phase velocity vy as a function of the wave
vector (ky, ky) for a time step given by:

1 1 1
Ax? * Ay? * Az?

The phase velocity strongly deviates from its physical value ¢ over a large portion of the spectral

A )=1

domain. The amplitude of this deviation depends on the propagation angle 6 in the grid. Note that the
numerical phase velocity remains accurate along the line k; = k,, corresponding to electromagnetic
waves propagating with a 45° angle with respect to the x-axis in the mesh grid, while it is strongly

dispersive for angles closer to 0 or 5 (cf panel(b)).
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Figure IV.4: Panel (a): Numerical phase velocity in 2D as a function of (k, k,). Panel (b): Numerical
phase velocity for two different angles, # = 45° and 6 = 30° ( for cAt (ﬁ + ﬁ) =1).

In many situations, the decrease in the phase velocity becomes highly detrimental to the accuracy
of simulation results. It can lead, for example, to the well-known numerical Cherenkov radiation in
the frame of plasma-based electron acceleration [23]. In this case, accelerated particles, traveling at a
velocity larger or equal to the numerical light phase velocity emit radiations that stay in phase with

the accelerated particles, leading to a resonant numerical instability.

On the other hand, in the context of high order harmonic generation on plasma mirrors, the ar-
tificial anisotropy of the FDTD scheme leads to spurious refraction of high order harmonics at the

plasma vacuum interface [24].

These numerical artifacts can be avoided by employing more accurate and more sophisticated
Maxwell solvers. One possible solution is to use FFT-based pseudo-spectral Maxwell solvers. This
method is detailed in the next section, along with the parallelization strategies proposed in the liter-

ature.

99



Chapter IV. Basics of the PIC algorithm

IV.4 FFT-based Pseudo-spectral Maxwell solvers

As opposed to the FDTD scheme, which advances electromagnetic fields in the Yee lattice, pseudo-
spectral methods solve Maxwell’s equations in Fourier space. This type of solvers generally offers a
higher level of numerical accuracy as it can be based on error-free numerical derivative computations.
Nevertheless, due to the super-linear algorithmic complexity of Fast Fourier Transform (FFT) compu-
tations as well as their poor scalability efficiency on massively parallel architectures, pseudo-spectral
methods have been scarcely used in Particle-In-Cell codes for a long time, where scalability and per-

formance issues are often critical.

However, these numerical approaches have regained interest in the PIC community in recent years
as a novel parallelization approach has been proposed by J-L Vay et al [25] that enabled an efficient
weak scaling® up to hundreds of thousands of cores [64] while overcoming numerous anomalous nu-

merical artifacts of the FDTD solver.

WARP+PICSAR code offers the possibility to use various formulations of pseudo-spectral FFT-
based Maxwell solvers along with different parallelization strategies, some of which have been developed

and implemented during this thesis.

In the following, we present the pseudo-spectral Maxwell solver formulation used for HHG simu-
lation in this thesis. Then we discuss the parallelization strategy proposed by J-L Vay et al and its

numerical accuracy.

IV.4.1 Pseudo-Spectral Analytical Time Domain

The Pseudo-Spectral Analytical Time Domain (PSATD) method [65] solves Maxwell’s equations in
the space (t, ks, ky, k-). It has the advantage of performing an analytical integration over the temporal
variable, provided realistic hypotheses regarding the current and charge variations. It is, therefore,
more robust than other pseudo-spectral schemes that rely on finite difference temporal integrations,
such as the Pseudo-Spectral Time Domain (PSTD) method [66].

To simplify the notations, we normalize the current J and the charge density p both by the vacuum

permittivity eg. The Maxwell’s equations in the space (¢, ky, ky, k) read:

a—E —itkANB—J

ot

oB .

5 = tkAE (IV.25)
ik.E=p
ik.B=0

3weak scaling consists in proportionally and simultaneously increasing the amount of work and the computational
ressources. Algorithms that maintain a roughly constant computation time, in this case, are said to have a good weak
scaling.
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We define the four quantities E* and B as following:

pi_ BEcknD

2 (IV.26)
Bt — BF¥:ANE
2
with .
- K
k= —
I

E* - -
aa = +i|k|EF — S +icpk
8[;[ L (IV.27)
= +ilk|BEE A

ot ik c 2

This set of first order ordinary differential equations IV.27 can be integrated analytically using the
integrating factor method for example. The electromagnetic fields E and B can be retrieved simply
by the relationships:

E=E*+E
) ) ) (IV.28)
B=B"+B"
This analytical integration allows to get rid of the temporal staggering between the electric and

magnetic fields.

Assuming constant current and linear time dependence for the charge density over one time step,

the integration of IV.27 between ¢ = nAt and t = (n + 1)At finally gives:

E™H = CE" +iSk A B" — &jﬁ% + ZUIZ' [(C;;Tm -1t (0 3 )7

|
R . . 1-C- .
Bt :oB"z’SkAE"H‘E‘kAJ“%
C

with
C = cos(c|k|At)

S = sin(c|k|At)

and where both the electric and magnetic fields are defined at integer time steps. Note also that the
PSATD method applies to both the staggered and centered grids meshes. The staggered Yee grid case
is handled by multiplying the spatial derivative operator in Fourier space ik by an appropriate phase

factor that depends on the differentiated quantity staggering.

Thanks to the analytical integration over time and exact spatial differentiations in Fourier space,
employing the set of equations IV.29 to advance electromagnetic fields in vacuum rigorously preserves
the vacuum dispersion relation w = C|E |. Therefore, it is well suited for many numerical simulations
scenarios where the numerical dispersion of electromagnetic waves is critical. Figure IV.5 displays the

expansion of a Dirac pulse using both the FDTD scheme and the PSATD algorithm. One can note
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that the unphysical electromagnetic signal propagating with a phase velocity below the speed of light
in the FDTD case is completely absent when using the PSATD algorithm.

FDTD
PSATD 1.0
20 1.0
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Figure IV.5: Propagation of a Dirac pulse with the PSATD solver (panel (a)) and FDTD (panel(b)).

Additionally, the PSATD method imposes no CFL condition on the time step size At and is
unconditionally stable. However, in the frame of the PIC method, the condition:

min(Az, Ay, Az)
c

At <

is imposed so that ultra-relativistic macro-particles do not travel more than one mesh cell over a single

time step. This condition is necessary for the Esirkepov method.

Thus, PIC simulations employing the PSATD solver can be performed with larger time steps (and

less number of iterations) compared to a similar simulation employing FDTD.

Limitations of the PSATD algorithm

It is worth to mention that using the PSATD algorithm even with the Esirkepov current/charge
deposition algorithm does not conserve the Maxwell-Gauss equation. This is due to the fact that the
Esirkepov method verifies the numerical continuity equations with a second order spatial derivative
scheme, while Maxwell’s equations are solved using an exact spatial differentiation. For this reason,
divergence cleaning or current corrections methods should be used in some cases where preserving
Maxwell-Gauss equation is critical. WARP+PICSAR code features various numerical techniques for
stability /accuracy improvement, including divergence cleaning, current correction, and digital filtering
to mitigate various instabilities. Interested readers may refer to [67, 68, 69, 25, 56].

In the simulations presented in this thesis, these methods were not used as we have observed no

significant difference in the simulations results obtained with or without these correction techniques.

62



Chapter IV. Basics of the PIC algorithm

IV.4.2 Parallelization of the pseudo-spectral methods

For a long time, pseudo-spectral methods have not been adopted for PIC simulations. This is
due to the fact that these methods are not well suited for massively parallel super-computers based
on distributed memory architectures. Indeed, computing FFTs a distributed dataset between a large
number of processing units requires global communications between all of these processing units (and
not only between neighboring processes such as in FDTD). This type of operation exhibits poor scal-

ability passed few thousands of cores, even on modern architectures.

In 2013, J.L-Vay et at demonstrated that using a PSATD solver along with a standard domain
decomposition (such as the one used to parallelize the PIC loop when employing the FDTD scheme),
where FFT computations are performed serially over each subdomain (instead of global parallel FFTs),
efficiently suppresses numerical instabilities induced by the use of the FDTD scheme in typical laser-
plasma acceleration PIC simulations while still providing very accurate results (provided that relatively

large guard regions are used).

This result is rather surprising and counter intuitive as one would not expect the PSATD algorithm
to bring accurate results, while getting around its main computational bottleneck in such a simple
way. Hence, this robustness can be justified via physical/analytical considerations regarding Maxwell’s

equations, and Fourier transformation.

For instance, Maxwell’s equations are linear partial differential equations that impose a finite
propagation speed on electromagnetic waves. Therefore, as a result of the causality principle, the
standard domain decomposition method used to parallelize the PIC computations is theoretically
rigorously equivalent to a direct solving over the whole subdomain, provided that the guard regions
widths are larger or equal to the speed of light multiplied by the integration time. Note that this is only
true considering the continuous (and not the discretized) form of Maxwell’s equations. Nevertheless,
PIC simulations deal with discretized electromagnetic fields, and discrete Fourier transforms (instead of
continuous Fourier transforms). The discretization process renders the propagation of electromagnetic
quantities via PSATD method non causal as the computation of the spatial derivative in the Fourier
space corresponds to a non local operation in the real space, involving data from arbitrarily distant grid
points. Therefore, the computation of the spatial derivatives is altered by the domain decomposition.
This alteration is more important near the subdomains boundaries. Therefore one would expect
spurious Gibbs-like oscillations arising close to the subdomains edges. However, for sufficiently large
guard regions, this numerical artifact decreases as the computation of the spatial derivatives in Fourier

space becomes more accurate even near the subdomains boundaries.

IV.4.3 Truncation error and ultra-high order solvers

An extensive numerical investigation [70] rigorously quantified this noise, called truncation errors.
It showed that this numerical artifact remains localized near the subdomain boundaries, and that it

does not build up into large scale instabilities affecting the entire simulation domain. Moreover, the
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noise amplitude decays rapidly as the number of guardcells is increased. This paper also made another
important suggestion, which consists in employing ultra-high order derivative stencils instead of the
exact differentiation in Fourier space to compute spatial derivatives. The underlying idea is to make
the spatial derivative operators more local on the grid so that the truncation error is less important.
In practice, this consists in replacing the ik x . derivative operator involved in the PSATD algorithm
by the Fourier transform of a high order finite-difference derivative operator in the real space. For
instance, as shown by Fornberg et al [71], the FDTD scheme can be generalized to any arbitrary order
in space by introducing additional terms associated to more distant mesh grid points in the calculation

of the spatial differentiation. The generalized derivative operator of order (p € 2N) reads:

D
1 K
DEENW) = 5= D Ch (Fagesy — Py (IV.30)
i=1

where C% are called Fornberg coefficients and are defined in [72]. For a staggered grid, these
2

coefficients are given by:

(~1)71165 ((p — 1)1)?

Ch = : : V.31
F T DPB - D= UG- DI (V31
One can show via Taylor expansions, that for a sufficiently smooth function f we have:
daf
%(lAa:) = [DE(F)](1) + € (IV.32)
with:
Fi = (U + 3)Aa)
= —)Ax
! 2 (IV.33)
ep = O(Ax)?

Additionally, one can define the p-order wave vector kb as the dual operator in Fourier space of DT.g:

P

—~ 2 1
ik = DY = i7— > C}sin ((j - 5)kmmc) (IV.34)
j=1

This high order spatial differentiation method involves & neighboring data points from each side.
Therefore, it is 'more local’ in the real domain than the exact operation ikx. As a consequence, the
use of a finite yet high spatial derivative stencil significantly mitigates the truncation error, which
completely vanishes when the number of guardcells n, is equal to ny, = . However, it is already

reasonably low even when ny, < § (see [70]).

Employing the p-order stencil derivative alongside with the PSATD algorithm guarantees a very low
discretization error (cf equation IV.33) and ensures a physical numerical dispersion of electromagnetic

waves. For instance, the numerical dispersion relation of the p-order PSATD algorithm reads:

2= S+ 2+ (k22 (1v.35)
Panel (a) of figure IV.6 sketches the ratio %‘1’ for an order 100 PSATD solver. The numerical

dispersion of the algorithm is very accurate over a large extent of the (k;, k) space. It deviates from
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the exact vacuum dispersion relation only near the Nyquist frequency knyquist = A -
It is also important to mention that the truncation error has only a small effect on the numerical
dispersion relation accuracy. In panel (b), we sketched the phase velocity %"’ obtained from an order

100 PSATD solver when the Fornberg coefficients C’é oo are forced to zero beyond the 10" coeffi-
p—100

2

cient Cé,mo V4 > 10). This situation corresponds to a modified order-100 PSATD solver with 10
P

2
guardcells surrounding subdomains on each side, and where only the contributions of the 10 nearest

grid points (from both sides) are taken into account in calculating the high order spatial derivatives.
In practice, we do not set the Fornberg coefficients beyond n4 to zero in simulations. However, this
setup is the worst case scenario that would give rise to a stencil truncation error from all grid points
(even those far from the subdomains boundaries). Hopefully, even in this case, panels (b) and (c) of

figure IV.6 show that the solver dispersion relation remains very accurate.
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Figure IV.6: Panel (a), numerical phase velocity of the PSATD solver with an order 100 stencil.
Panel (b), numerical phase velocity of the PSATD solver with an order 100 stencil but beyond the
10* coefficient. Panel (c), comparison between the phase velocities of the truncated and untruncated
PSATD solvers at 45° degree.

To illustrate the accuracy of this method, we performed a series of Dirac pulse propagation sim-
ulations, using the 100 order PSATD algorithm with different numbers of guardcells (cf panel (a) of
figure IV.7). We then compare the result of each test with the reference case employing 50 guardcells
(where there is no error due to the stencil truncation). In all the cases, the simulation domain is split
into 4 x 416 subdomains. As shown by panel (b) of figure IV.7, the truncation error amplitude decays

exponentially with respect to the number of guardcells. And the error amplitude is already extremely

65



Chapter IV. Basics of the PIC algorithm

low for ny = 10 (error < 0.1%).

PSATD order = 100 Relative error
20 100
(b)
10—3 .
10
-
— o 10—6 .
E =
3 ]
T\l’ ﬂ 10—9 _
-10 10—12 .
-20 10715 T T T T
-20 -10 0 10 20 0 10 20 30 40
x(um) # of guardcells

Figure IV.7: Panel (a) Propagation of a Dirac pulse with the PSATD solver and order p=100 stencil
using 4 x 4 subdomains and 10 guardcells in each direction. Panel (b): Relative Ly truncation errors
as a function of the number of guardcells.

With WARP+PICSAR, the PSATD Maxwell solver can be used along with a standard domain
decomposition for highly accurate and scalable PIC simulations. This implementation demonstrated
an excellent weak scaling up to hundreds of thousands of cores [63]. Nevertheless, by employing
relatively large guard regions, this standard parallelization strategy (called local PSATD later on)
induces important data redundancy due to multiple copies of fields values stored in the guardcells of
different processing units, which is detrimental to the strong scaling * efficiency at very large scales
as the workload pertaining to each processing unit is no longer inversely proportional to the total
processing units number. In chapter V we address this limitation by proposing a novel parallelization
strategy that significantly increases the scaling efficiency of the local PSATD algorithm at very large

scales while substantially reducing its memory footprint.

IV.5 Absorbing boundary conditions with PSATD

To emulate open boundary conditions for electromagnetic fields, we use the Berenger Perfectly
Matched Layers (PML) technique [73]. This method is based on introducing absorbing layers around
the simulation domain, where electromagnetic field components are split into two parts, corresponding
to different transverse electric and transverse magnetic modes along each direction (cf figure IV.8).

Inside each PML region, a modified version of Maxwell’s equations is solved, taking into account

4strong scaling consists in increasing the computational resources while keeping the amount of work constant. Al-
gorithms are said to have a good strong scaling if the computation time scales as the inverse of the computational
resources
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where o,,0,,0, are electric conductivities, ® is the tensor product operator, and x is matrix-

vector product. Note that when these coefficients are equal to zero, equation V.36 yields to standard

Maxwell’s equations.

Besides, in order to avoid numerical instabilities inside the PML region, a null current and charge

are required. To enforce this condition, a macro-particles free buffer is placed between the simulation

domain and the PML zone. Macro-particles reaching this buffer zone are either reflected or deleted

(depending on macro-particles boundary conditions). The thickness of this buffer zone needs to be

equal or larger than the deposition shape functions support to avoid any spurious currents or charge

densities inside the PML region.

Figure IV.8:

Particles-free zone -—T

simulation domain
0, =0,0,=0

Disposition of the PML medium within the simulation box. The macro-particles free
zone reflects or deletes incoming macro-particles.

Equation IV.36 holds true in the simulation domain (where the absorbing coefficients are null)

and the PML zone. It can be numerically solved by employing an operator splitting methods [74] to
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decouple the propagation operator o< ¢/C X . — J from the damping operator 6® [75]. The propagation

operation consists in solving the next ordinary differential equations:

(Z—g:c2le><B—j

t (IV.37)
8—B——/CXE

ot

This equation can be solved over the whole simulation domain (including PML regions) by employing
the PSATD algorithm similarly to the formulation given in 1V.29.

The damping operation is carried out in the real space via exponential temporal integration:

o€
Frie —0c& = £V = exp[—Ato]E™
azg (IV.38)
i —oB = B""! = exp[-Ato|B"
The exponential integration method has the advantage to be unconditionally stable for any spatial
time step (as exp[—Ato] <1 VAt > 0 since 0 > 0). Therefore, the PSATD+PML is still uncondi-
tionally stable (no CFL condition).

In conclusion, the PML method can be used alongside with PSATD for an accurate solving of Maxwell’s

equations under open boundary conditions constraint.
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Chapter V. A generalized massively parallel scheme for FFT-based pseudo-spectral
Mazwell solvers

V.1 Introduction

FFT-based pseudo-spectral Maxwell solvers are robust numerical tools for modelling the evolutions
of electromagnetic fields in time and space with an excellent accuracy. These methods are of great
interest for 3D PIC UHI simulations as they induce no numerical dispersion that would hinder the

core physical phenomena at play.

Up until recently, these solvers have only been scarcely used to conduct massively parallel simula-
tions due to the poor scalability of this method, owing to global communications associated with global
FFTs computations on the entire simulation domain. Indeed, computing massively parallel FFTs on
distributed-memory machines is known to be an extremely challenging task to scale, as it requires
heavy and computationally expensive collective communications involving all processing units. For
this reason, up to now, the scaling of global FFTs has been limited to a few tens of thousands of
cores at best [76], which is not sufficient to take advantage of massively parallel super-computers full

capabilities, which can reach millions of cores.

To address this scalability barrier and enable massively parallel simulations using FFT-based
pseudo-spectral Maxwell solver, an important breakthrough has recently been made by J.L.Vay et
al [25] (c.f section IV.4.1). The authors show that pseudo-spectral Maxwell solvers can be used along
with a standard domain decomposition, provided that large guard regions are appended at subdo-
mains boundaries. This way, Maxwell’s equations are solved independently on each subdomain using
single-node FFT computations (instead of distributed-memory FFTs), and guardcells are exchanged
between adjacent subdomains at each time step. This technique, however, introduces a small numerical
truncation error at the level of subdomains boundaries. In practice, the truncation errors amplitude
can be efficiently mitigated either by employing a finite, yet arbitrarily high derivative stencil order,

or by increasing the number of guardcells [70].

By taking advantage of the standard domain decomposition method, this parallelization strategy
exhibits a very good scaling up to hundreds of thousands of cores [64] for a moderate number of

guardcells (ny = 8).

Nevertheless, when the number of guardcells is increased (to keep the truncation error small for
ultra-high orders p > 100), this parallelization approach may induce an important memory footprint
due to the significant data redundancy of grid arrays inside guard regions. This memory overhead
also grows considerably as the number of processing units. Consequently, the strong scaling of the

pseudo-spectral solver is severely impacted.
These limitations, both in terms of scaling efficiency and memory use call for a new arbitrary

scalable, robust parallelization strategy that preserves good scaling performances even at very large

scales and for large guardcells numbers.
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In this chapter, we expose a new parallelization strategy for the pseudo-spectral Maxwell solver

that outperforms previous parallelization techniques both in terms of memory footprint and scalability.

This approach introduces a coarse Cartesian domain decomposition, where each subdomain is as-
signed to multiple MPI tasks. Maxwell’s equations are solved within this new domain decomposition,

and FFTs are computed using distributed memory FFT kernels.

We first briefly describe the super-computing systems used to perform the scalability benchmarks
of this chapter. Then, we highlight in detail the limitations of the parallelization approaches in use so
far for the pseudo-spectral Maxwell solvers. After exposing the core ideas behind our novel approach,
we show that it brings a substantial speed-up and memory gain against both the local and global par-
allelization (based on global FFTs) strategies. A scaling toy model for our novel scheme is presented.
It allows fetching for the optimal decomposition setup that results in the best performances. We then

explain how to efficiently couple this new parallelization method within a standard PIC code.

Finally, we expose the scalability results of our new solver, obtained from large scale benchmark
tests performed on massively parallel ALCF computational resources, and compare them to the local

pseudo-spectral solver performances.

V.2 Brief description of HPC systems

The scalability benchmarks presented in this chapter were performed on two different HPC systems:
Theta-Cray XC40 ! and Mira-BlueGene/Q .

e The Theta cluster is an 11 Petaflops machine based on Intel Xeon Phi processors (codenamed
KNL). Theta is equipped with 4392 compute nodes, containing 64 cores each. Each core runs
at a clock speed of 1.3 GHz. In total, the system has 281088 cores and a memory of 912 TB (of
which 70 TB is high-bandwidth MCDRAM). The compute nodes are connected with an Aries

interconnect with a Dragonfly configuration designed by Cray.

e MIRA is a 10 Petaflops IBM Blue Gene/Q system. It consists of 49152 compute nodes distributed
between 48 racks. Each compute node contains 16 Power BQC 16C cores, running at a clock
speed of 1.6 GHz each. In aggregate, the total RAM on MIRA is 786432 GB (16 GB for each

compute node). This system is equipped with a 5D torus interconnect network.

"https://www.alcf.anl.gov/Theta
https://www.alcf.anl.gov/Mira
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V.3 Scalability limits of existing parallelization techniques for pseudo-
spectral solvers

V.3.1 Scalability limits of the global method

As already mentioned, the global parallelization method is generally not suited for massively par-
allel simulations as it is limited by the poor scaling efficiency of distributed-memory FFT at large
scales. The next section presents the main parallelization strategies used by most modern high per-
formance computing FFT software packages and explains why these implementations usually exhibit
poor scalability performance and very large scales. This behavior has been assessed through a series
of benchmarks performed on MIRA cluster at ALCF using the PICSAR code.

Since our new parallelization method for the pseudo-spectral Maxwell solver heavily relies on
distributed-memory FFT, understanding FFT performance patterns and limitations will be essential

to fully take advantage of the new hybrid solver.

Overview of distributed-memory FFTs

Handling the collective communications underlying distributed-memory FFT computation can be
achieved using different approaches (refer to [77, 78] for more information). The most effective strategy
already in use in many high performance FFT libraries is the so-called "the transpose transform”.
This algorithm applies to multidimensional FFTs and consists in successively alternating between
computing serial 1D FFTs along the dimensions where the data resides entirely in a single processor’s
memory and remapping the data to ”localize” the initially distributed axes. The transposition step is
essentially a global operation that involves all-to-all communication patterns. This type of operation is
usually poorly scalable at large core count due to the growing communication contention and network
saturation.

A schematic illustration of this algorithm is shown in figure V.1 and can be summarized as follows:

1. Grid array is decomposed into sub-arrays along one or multiple axes. Each processing unit stores

one sub-array.

2. Perform single node 1D FFT along each axis for which data resides entirely in each processor’s
memory. This computation is performed by each processor independently and can be achieved

fairly fast.

3. Select one of the remaining axes along which 1D FFT that has not been computed yet. Remap
the data array decomposition to ”localize” the data along the new axis on each processor and

enable step 1. This step is usually performed using MPI_Alltoall routines.
4. Repeat step 1 and step 2 until all axes are processed.

5. Finally, rearrange the output array so that it has the same memory layout as the input array.

This step is usually optional and can be omitted to save computation time.
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This scheme is implemented by many FFT libraries [79, 80, 81] but it has only demonstrated -at
best- a good scaling up to a few tens of thousands of cores only. Historically, the first implementations
of distributed-memory FFTs using the transpose scheme relied on 1D domain decomposition. This
scheme is known as the "slab decomposition” (see figure V.1). A multidimensional array is distributed

between different computing cores along a single axis.
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Figure V.1: Schematic representation of parallel FFT computation using the slab decomposition. Each
processor stores one chunk of data corresponding to a ”slab” that is orthogonal to the y-axis. This
initial memory layout allows computing FFT along x-direction serially. The transposition permutes
x and y axes so that each slab is now parallel to the y-axis. This memory layout allows one last 1D
FFT computation along the y-axis.

In practice, the partitioned axis is usually chosen to be the axis along which data points are the

farthest in memory (first axis for C arrays, last axis for Fortran arrays).

This technique allows performing distributed memory-FFT with only one transposition. Due to
its simplicity, it is still in use by many distributed-FFT software packages, including the well-known
open-source FFTW library [82] as well as the Intel-provided MKL-FFT package. However, since the
data decomposition is only performed along one axis, this technique cannot be used whenever the
number of processes exceeds the number of data points along the split axis. This limitation is very
constraining especially when dealing with 3D data arrays on massively parallel machines (involving

hundreds of thousands of cores).
More flexible approaches have been developed to allow the use of a larger number of processing
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