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Chapter I

Résumé en français

Cette thèse porte sur le développement d’algorithmes massivement parallèle pour la physique des

ultra-hautes intensités, et sur l’étude de l’interaction laser-miroir plasma, dans le but de produire des

impulsions attosecondes isolées en régime relativiste.

La complexité des mécanismes physiques mis en jeu lors de l’interaction laser-plasma à ultra-haute

intensité nécessite de recourir à des simulations PIC particulièrement lourdes. Au cœur de ces codes

de calcul, la résolution numérique des équations de Maxwell à chaque pas de temps constitue une

étape très importante et conditionne fortement la qualité et la précision des résultats numériques

obtenus. Dans beaucoup de cas de figure d’intérêt en physique des hautes intensités, les algorithmes

numériques standards, de type différence finie, peuvent induire diverses erreurs liées à la dispersion et

à l’anisotropie numérique inhérentes à ce type d’approche. Ce qui peut compromettre la robustesse

de la modélisation.

Des les solveurs de Maxwell pseudo-spectraux d’ordre élevé présentent de nombreux avantages en

termes de précision numérique par rapport aux approches standard. Néanmoins, ces solveurs ont un

coût élevé en termes de temps de temps et de ressources de calcul nécessaires. En effet, les tech-

niques de parallélisation existant pour ces solveurs sont peu performantes au-delà de quelques milliers

de coeurs, ou induisent un important usage mémoire, ce qui limite leur scalabilité à large échelle.

Dans cette thèse, nous avons développé une toute nouvelle approche de parallélisation hiérarchique

qui combine les avantages des méthodes existantes. Cette méthode a été testée à très large échelle et

montre un scaling significativement meilleur que les précédentes techniques, tout en garantissant une

occupation mémoire réduite.

En complément à ce travail numérique, j’ai développé un nouvel outil de diagnostic numérique

massivement parallèle basé sur des changements référentiels Lorentziens. Le changement de référentiel

relativiste présente de multiples intérêts en physique UHI. En effet, il s’agit d’un outil de modélisation

théorique important qui permet de décrire plus naturellement les processus physiques en jeu lors de

l’interaction laser-miroir plasma en incidence oblique, en découplant les couplages spatio-temporels

sous-jacents à l’incidence oblique. C’est aussi un outil algorithmique important qui permet de ré-

duire les temps de simulation de plusieurs ordres de grandeur dans le cadre des études portant sur

1



Chapter I. Résumé en français

l’accélération par sillage laser dans les plasmas sous denses.

En capitalisant sur ce travail numérique et algorithmique, nous avons réalisé une étude numérique

et théorique approfondie dans le cadre de la génération d’harmoniques d’ordre élevé sur cible solide.

Lorsqu’une impulsion laser ultra-intense (I > 1016Wcm−2) et ultra-courtes (de quelques dizaines de

femtosecondes) est focalisée sur une cible solide, elle génère un plasma sur-dense, appelé miroir plasma,

qui réfléchit non linéairement le laser incident. La réflexion de l’impulsion laser est accompagnée par

l’émission cohérente d’harmoniques d’ordre élevée, sous forme d’impulsions X-UV attosecondes (1

10−18s). Pour des intensités laser relativiste (I > 1019Wcm−2), la surface du plasma est incurvée sous

l’effet de la pression de radiation du laser. De ce fait, les harmoniques rayonnées par la surface du

plasma sont focalisées. Dans cette thèse, j’ai étudié la possibilité de produire des impulsions attosecon-

des isolées en régime relativiste sur miroir plasma, grâce au mécanisme de phare attoseconde. Celui-ci

consiste à introduire une rotation des fronts d’onde du laser incident de façon à séparer angulairement

les différentes impulsions attosecondes produites à chaque cycle optique. En régime relativiste, la cour-

bure du miroir plasma augmente considérablement la divergence du faisceau harmonique, ce qui rend

le mécanisme phare attoseconde inefficace. Pour y remédier, j’ai développé deux techniques de réduc-

tion de divergence harmonique afin de mitiger l’effet de focalisation induit par la courbure du miroir

plasma et permettre de générer des impulsions attosecondes isolées à partir d’harmoniques Doppler.

Ces deux techniques sont basés sur la mise en forme en amplitude et en phase du faisceau laser. Par

ailleurs, j’ai développé un modèle théorique pour déterminer les régimes optimaux d’interaction afin

de maximiser la séparation angulaire des impulsions attosecondes. Ce modèle a été validé par des

simulations numériques PIC en géométries 2D et 3D et sur une large gamme de paramètres laser et

plasma. Finalement, on montre qu’en ajustant des paramètres laser et plasma réalistes, il est possible

de séparer efficacement les impulsions attosecondes en régime relativiste.

Ce manuscrit est structuré comme suit:

La première partie donne une vue d’ensemble des mécanismes d’interaction laser ultra-intense et

ultra-court avec de la matière et des outils numériques utilisés durant cette thèse. Le premier chapitre

passe en revue les différents mécanismes de génération d’harmoniques sur plasma sur-dense, et intro-

duit la théorie des couplages spatio-temporels des lasers ultra-courts. Nous détaillons ensuite l’état

de l’art de la technique phare attosecond développée il y a quelques années en vue de produire des

impulsions attosecondes isolées spatialement. Cette technique se base sur l’introduction de rotation

de fronts d’onde du laser incident. Ainsi, les impulsions attosecondes successives générées à la surface

du miroir plasma à chaque cycle optique se propagent selon des directions légèrement différentes. Si

ses impulsions sont suffisamment bien collimatées, elles seront séparées angulairement loin de la cible.

Le deuxième chapitre introduit la méthode Particle-In-Cell, utilisée pour réaliser des simulations

d’interaction laser-plasma. Nous discutons des limites des solveurs standards pour les équations de

Maxwell et introduisons l’algorithme de résolution pseudo-spectral (PSATD) ainsi que la méthode de

parallélisation la plus efficace proposée dans la littérature. Nous présentons par ailleurs un formalisme

2
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pour rendre cet algorithme compatible avec des conditions de bord absorbante.

La deuxième partie est consacrée aux développements algorithmiques et numériques réalisés au

cours de cette thèse. Dans le premier chapitre, nous discutons des limites des méthodes de parallélisa-

tion existant pour les solveurs de Maxwell pseudo-spectraux et introduisons notre nouvelle approchée,

dit hybride. Un modèle de scalabilité à très large échelle, prenant en compte les performances du

réseau de la machine de calcul, est dérivé. Nous montrons via une série de hêtre-marks réalisés à

très large échelle que cette approche apporte un gain important en matière de temps de calcul et

d’occupation mémoire.

Le deuxième chapitre de cette partie présente la stratégie d’implémentation massivement parallèle de

l’outil de diagnostic basé sur le changement de référentiel Lorentzien. On montre, via des simulations,

que les propriétés spatiales des harmoniques issues du miroir plasma dans différents régimes sont na-

turellement mieux décrites dans ce référentiel.

La troisième partie est consacrée à l’étude de l’effet phare attoseconde en régime relativiste. Nous

discutons tout d’abord les limites de cette technique en régime relativiste. Nous présentons ensuite

deux techniques de réduction de divergences harmoniques, basé sur un contrôle réaliste en phase et

en intensité du laser incident pour permettre une séparation angulaire efficace des impulsions attosec-

ondes loin de la cible. Ces deux techniques sont étudiés numériquement à travers des simulations

massivement parallèles en géométrie 2D et 3 d. Les résultats des simulations montrent que des im-

pulsions attosecondes uniques peuvent être obtenues avec des paramètres laser et plasma réalistes en

régime Peta Watt.

Finalement, des perspectives générales sur la portée des travaux réalisés durant cette thèse sont

donnés en conclusion.
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Chapter II

Introduction

II.1 Context

The emergence and subsequent formidable development of light amplification technologies dur-

ing the second half of the twentieth century made coherent light sources available for a wide panel

of scientific and societal uses. With the invention of chirped pulse amplification techniques (CPA)

[1, 2], modern laser systems are capable of delivering extremely energetic (10−3− 1000 J) light pulses,

within ultra-short time scales (4 femtoseconds - 1 picoseconds). The use of these systems for scientific

purposes has opened up a new and vastly unexplored research branch commonly called ultra-high

intensity (UHI) physics. When focused on matter, the electromagnetic field intensities produced by

these lasers, reaching up to 1022W.cm−2, turn matter into out of equilibrium plasmas, predominantly

governed by non-linear and relativistic effects [3]. UHI physics concentrates on the study of laser

and matter interactions under extreme irradiation conditions and within ultra-short time scales for

fundamental and applicative perspectives.

In recent years, a lot of the research effort is driven towards the perspective of developing fu-

ture high energy particles and/or photons sources based on laser-matter interaction schemes. In this

context, the so-called laser wakefield acceleration technique [4] for example, is aiming at developing

laser-based electron accelerators. An ultra-intense laser pulse is used to excite large amplitude plasma

waves (up to 100 GV.m−1) inside an underdense plasma resulting from the ionization of a gaseous

medium. These plasma waves act as accelerating structures that can boost electrons to multi-Gev

energy ranges within few centimeters length scales [5, 6, 7, 8]. This acceleration setup may have a

wide variety of applications, including compact particle colliders and high energy x-ray sources [9].

Another hot topic in the context of UHI physics is the study of solid target, ultra-intense laser

interaction. In this case, the laser instantly turns the solid target surface into a fully ionized overdense

plasma medium, commonly called a plasma mirror (PM). Plasma mirrors reflect off the incident laser

pulse. This reflection implies highly non-linear mechanisms that may result in the coherent emission of

high order laser harmonics in the form of sub-femtosecond (ie. attosecond) X-UV light pulses [10, 11]

[12, 13, 14, 15, 16]. Laser interaction with solid media can also be leveraged to produce multi-Mev

sources of electrons [17] and ions [18].
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Chapter II. Introduction

The use of plasma mirrors as a source of bright X-UV radiation may constitute a potential

alternative to standard attosecond light sources for pump-probe experiments and ultra-fast spec-

troscopy. Indeed, in contrast with standard attosecond pulses generation techniques in gaseous media

[19, 20, 21, 22], which are intrinsically limited to medium-low laser intensities, high order harmonic

generation (HHG) on plasma mirrors can exploit the full capabilities of ultra-high intense lasers to

achieve unmatched harmonic brightness.

However, many difficulties still need to be addressed before achieving this goal. Those limitations

include the currently low repetition rates of TeraWatt and PetaWatt class lasers (0.01-10 Hz) and

the difficulty of achieving a strong control degree in HHG mechanisms on PMs in order to produce

unique or isolated attosecond light pulses, naturally more suited for applications. The latter milestone

is the subject of an in-depth theoretical and numerical study in this thesis, where we identify optimal

interaction regimes to produce isolated attosecond pulses from plasma mirror harmonics.

With the advent of scientific computing, ultra-high intensity physics heavily relies on numerical

simulations to corroborate theoretical predictions, complete experimental studies or investigate and

imagine unexplored interaction regimes.

UHI physics essentially exploits Particle-In-Cell (PIC) codes to conduct ab initio simulations of

laser-plasma interactions. The PIC algorithm is a particle-mesh kinetic approach to simulate plasma

dynamics by self-consistently modelling the evolution of electromagnetic fields and free particles dy-

namics.

Laser-plasma interaction scenarios often involve complex and multi-scale mechanisms, implying

ultra-energetic particles and extremely short electromagnetic wavelengths. Quantitatively reproducing

all relevant mechanisms taking place in laser-plasma problems with PIC algorithms usually mandates

very fine mesh samplings due to the presence of rapidly varying electromagnetic fields and a huge

number of numerical particles to finely describe statistical effects at play. For instance, a realistic

simulation of HHG on plasma mirrors for example in a 3D geometry can require hundreds of billions

of particles and an equivalent amount of mesh cells. Therefore, numerical simulations in UHI physics

pose two mutually interdependent numerical difficulties.

First, such simulations mandate huge computational resources, both in terms of memory occu-

pancy and computing power, and can only be performed on massively parallel super-computers. After

nearly half a century of extensive development and optimization, the most advanced computers avail-

able today can achieve hundreds of Petaflops 1 (1015 floating-point operations per second), while the

Exaflop barrier is expected to be reached in the next few years. These incredible performances were

made possible by implementing increasingly complex hardware architectures. Modern parallel com-

puting paradigms favor hierarchical parallelisms to achieve cost-effective computations. State-of-art

1https://www.top500.org/system/179397
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massively parallel platforms are based on a distributed memory setup, where multiple compute nodes

are connected with a high bandwidth network. Individual compute nodes enable additional shared

memory multiple-instructions-multiple-data parallel capabilities by leveraging many-core or multi-

core architectures, and where each computing core is made of multiple vector units to execute shared

instructions on multiple data items (SIMD). Compute node may be complemented by accelerating

coprocessing devices (such as a GP-GPU or FPGA ...) in heterogeneous systems. Efficient PIC codes

should be well adapted to these computing architectures. In this regard, when developing a PIC code,

great care should be given to scalability performances and parallelization strategies in use in order to

access the full capacities of computing resources.

The second milestone is related to the accuracy of the numerical methods employed within the

PIC algorithm. Those methods are expected to robustly solve the dynamics of such multi-scale and

complex systems as plasma irradiated by lasers. Indeed, identifying and inhibiting spurious numeri-

cal artifacts is of critical importance for PIC simulations. Various purely numerical instabilities that

severely hinder the accuracy of PIC simulations for UHI laser-plasma simulations result from the

unphysical numerical dispersion relations associated with standard discretized Maxwell’s equations

solvers. Such instabilities include the well known numerical Cherenkov effect [23] in the context of

laser wakefield acceleration simulations or the recently identified unphysical refraction of high order

harmonics emitted by plasma mirrors [24].

Simultaneously meeting the scalability and the accuracy challenges mandate the development of

sophisticated numerical methods along with optimized parallelization strategies. In the context of

PIC simulations, this often implies a trade-off between numerical accuracy and computational perfor-

mance. Indeed, scaling standard Finite Difference Time Domain (FDTD) Maxwell’s equations solvers

up to millions of cores is relatively straightforward as it would only require a regular Cartesian domain

decomposition to evenly split the workload between different compute nodes and limited inter-node

data communications. However, PIC simulations employing finite difference Maxwell solvers remain

prone to various numerical instabilities due to the important numerical dispersion of FDTD methods.

More robust numerical approaches encompass the use of high order stencils or FFT-based pseudo-

spectral solvers to mitigate numerical errors. However, those methods mandate important inter-node

communications, which often result in significant network saturation, limiting their scalability to mod-

erate scales only. Therefore, designing highly scalable parallelization strategies for this type of solvers

is of significant importance to enable their use in the context of massively parallel PIC-UHI simulations.

II.2 Objectives and Outline

This thesis lies between the fields of computational physics and High Performance Computing.

At the start of my PhD, an innovative FFT-based, massively parallel, Maxwell solver algorithm had

recently been proposed and benchmarked at Lawrence Berkeley National Laboratory [25, 24]. This

6
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algorithm may, however, suffer from an important memory footprint and a scalability loss at very

large scales. I first was involved in porting this algorithm into the SMILEI2 PIC code developed

at Maison De La Simulation at CEA. Then, I implemented a novel parallelization strategy that re-

sults in a substantial speed-up, while decreasing the memory footprint by one order of magnitude.

This novel parallelization approach was implemented in the PICSAR3 library, and can be used with

WARP4 framework. I also actively contributed to various optimizations and implementations in the

WARP+PICSAR framework. In this context, I developed a novel massively parallel numerical diag-

nostic tool for PIC simulation, which relies on Lorentz transformation to better describe the physics

at play in the context of UHI simulations.

By leveraging those novel high scalable numerical tools to perform large scales and massively par-

allel PIC simulations, I conducted an extensive numerical and theoretical study in the context of

high order harmonic generation on plasma mirrors. In particular, I was interested in the generation

of isolated attosecond light pulses from plasma mirrors in the relativistic regime. In this regard, an

innovative scheme to angularly separate attosecond light pulses has been proposed at CEA [26] a few

years ago. However, this approach cannot be directly transposed to the relativistic regime, because

the optimal setup that maximizes the harmonic generation efficiency increases the harmonic beam

divergence. My work involved identifying and characterizing optimal interaction conditions to enable

the angular isolation of attosecond light pulses. For this matter, I developed an analytical toy model

to predict the angular separation of attosecond light pulses based on the laser and plasma parameters,

and in the presence of spatio-temporal couplings. This model was validated with an extensive numeri-

cal parametric study in 2D and 3D geometries, over a broad range of laser and plasma parameters. In

the end, we designed two efficient all-optical schemes for generating isolated attosecond pulses, both

involving specific control of the driving laser phase.

The second chapter presents some basic notions of laser-plasma interaction physics and details

the essential aspects of high order harmonic generation on plasma mirrors, with a focus of Doppler

harmonics generation.

The third chapter introduces the Particle-In-Cell codes that I used during my PhD. It also intro-

duces the FFT-based Maxwell solver algorithm that is the heart of the development made in the third

chapter.

The fourth chapter discusses the limitations of this Maxwell solver in terms of scalability and

introduces the novel parallelization strategy developed during this thesis.

The fifth chapter presents the new massively parallel numerical diagnostics for PIC UHI simula-

tions, also implemented in the WARP+PICSAR code. This versatile tool enables us to reconstruct

2http://www.maisondelasimulation.fr/smilei/
3https://picsar.net/
4https://blast.lbl.gov/blast-codes-warp/
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simulations observables in a Lorentz boosted frame where data interpretation can be more easily car-

ried out. This implementation has been benchmarked on different scenarios of high order harmonic

generation on plasma mirrors. It shows that the physical pictures underlying the harmonic emission on

plasma mirrors are better captured with this tool, compared to standard laboratory frame diagnostics.

The sixth chapter is dedicated to the generation of isolated attosecond light pulses in the relativistic

regime. First, I highlight the limitations of the attosecond lighthouse techniques in this regime and

identify the physical obstacles that hinder its applicability. I then conduct a numerical and theoretical

study to identify optimal setups where attosecond pulses separation can be achieved. I propose two

efficient schemes to generate angularly separated attosecond light pulses in the relativistic regime.

Those techniques are extensively validated with PIC simulations in 2D and 3D geometries.
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Chapter III. Physics of high order harmonics generation on plasma mirrors

When an ultra-intense, ultra-short laser pulse, with a high temporal contrast is focused over a

solid target, matter is quasi-instantly ionized, giving rise to a plasma mirror. Plasma mirrors act as

non-linear optical systems for electromagnetic waves and simultaneously reflect and temporally distort

incident laser light. These non-linearities give rise to remarkable X-UV light and relativistic electron

sources that may find promising scientific, industrial and societal applications.

The first section of this chapter introduces some of the basic principles of plasma interaction with

light. We show how the non-linear response of a plasma medium can give rise to a high order harmonic

generation (HHG) in the form of attosecond pulses. The second part of this chapter is dedicated

to spatio-temporal couplings (STC) in ultra-fast laser pulses and their potential applications in the

context of high order harmonic generations on plasma mirrors.

III.1 The plasma state

The plasma state is usually referred to as the fourth fundamental state of matter, after the solid,

liquid and gaseous phases. Unlike other matter states, which are constituted of atoms or molecules,

plasmas are a collection of positively and negatively charged particles that exhibit a collective behavior

through electromagnetic fields induced by free charged particles. Put together, two charged particles

interact with one another through Coulomb potentials as isolated individual particles. However, in

the presence of a large collection of particles, each one of them simultaneously interacts with many

nearby particles. In this case, the Coulomb potential associated with a given particle is shielded out

collectively by neighboring particles over a characteristic scale length called Debye length. Hence, each

particle interacts individually with particles laying inside a Debye sphere. On larger spatial scales, the

plasma dynamics is governed by collective charged particles behaviors.

III.1.1 Langmuir frequency

We consider an electrically neutral, homogeneous plasma initially at equilibrium that verifies the

global neutrality for t < 0: ne = Zni with ne and ni are the electronic and ionic densities respectively,

and Z is the ions charge number. At t = 0, the electrons located between x = 0 and x = ξ are slightly

displaced by a distance of ξ. An electrostatic force resulting from the charge separation emerges

and tends to restore the initial equilibrium. The electrostatic field originating from this force can be

computed by solving the Maxwell-Gauss equation and reads:

E(ξ(t), t) =
ne
eε0

ξ(t) (III.1)

where e is the electron charge and ε0 the vacuum permittivity.

The equation of motion of the displaced electrons is:

d2ξ(t)

dt2
= − e

me
E(ξ(t), t) = − nee

2

meε0
ξ(t) (III.2)

where me the electronic mass. The solution of this equation is

ξ(t) = ξ(0)cos(ωpet) (III.3)
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where ωpe =
√

nee2

meε0
is the so-called Langmuir frequency. This physical quantity is fundamental in

plasma physics as it also plays an important role in plasma interaction with electromagnetic waves.

III.1.2 Electromagnetic wave propagation in a plasma

Let us consider monochromatic wave propagation in unmagnetized plasmas. The propagation is

governed by Maxwell’s equations:

~∇. ~E =
ρ

ε0
~∇. ~B = 0

~∇∧ ~E = −d ~B

dt

~∇∧ ~B = µ0 ~J +
d ~E

c2dt

(III.4)

In Fourier space (k, ω), Maxwell’s equations write:

i~k.Ẽ =
ρ̃

ε0

i~k.B̃ = 0

i~k ∧ Ẽ = iω0B̃

i~k ∧ B̃ = µ0J̃ − iω0Ẽ

c2

(III.5)

As ions are much more massive than electrons, we assume immobile ions and only consider the currents

induced by the electronic motions.

J̃ = −neeṼe (III.6)

Neglecting the magnetic force on electrons (assuming that
∥∥∥~Ve
∥∥∥ ≪ c) and assuming that the plasma

is non collisional and cold, we have:

Ṽe = − e

imeω
Ẽ (III.7)

Finally, the electric current is:

J̃ = −
ω2
pe

ω
ε0Ẽ (III.8)

Injecting the current expression into Maxwell’s equations, we get:

(~k.Ẽ)~k − ~k.Ẽ =
(ω2

pe − ω2

c2

)
Ẽ (III.9)

This is the propagation equation of an electromagnetic field in a medium with a refractive index:

N(ω) =

√

1−
ω2
pe

ω2
(III.10)

Equation III.9 admits two kinds of solutions:

• Electrostatic longitudinal solution (i.e. Ẽ//~k). Longitudinal waves oscillate at ω = ωpe and are

called plasma waves
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• Electromagnetic transverse solutions: (i.e. ~k.Ẽ = 0). In this case, the dispersion relation in the

plasma reads:

|~k|2 =
ω2 − ω2

pe

c2
(III.11)

If ω > ωpe, the electromagnetic wave propagates in the plasma with a wave vector

|k| =

√
ω2 − ω2

pe

c2

On the other hand, if ω < ωpe, the electromagnetic wave is evanescent within a scale length of the

plasma skin depth ls ≃ c
ωpe

.

We can define the critical plasma density nc associated to an electromagnetic wave frequency ω

such as ωpe(nc) = ω.

nc(ω) =
meε0ω

2

e2
(III.12)

A plasma medium is said to be overcritical if ne > nc. Otherwise, if ne < nc the plasma is considered

underdense.

When an electromagnetic wave, say a laser field, impinges on a plasma medium at normal incidence,

it reflects off the plasma if the plasma density exceeds the laser critical density ne > nc, creating an

evanescent wave at the plasma vacuum interface. At oblique incidence however, the reflection may

occur even when the plasma density is below the critical density. Indeed, the Snell-Descartes law at

the plasma vacuum interface reads:

sin(θ0) = N(ω)sin(θ1) (III.13)

where θ0 and θ1 are the propagation angles of the electromagnetic field in the vacuum and the plasma

respectively with respect to the plasma normal. Since N(ω) < 1, the electromagnetic wave is deviated

at the plasma surface such that θ1 > θ0. The maximum incidence angle θ0 for which light still

propagates inside the plasma is given by Snell-Descartes laws:

sin(θ0) = N(ω)

=

√

1−
ω2
pe

ω2

=

√
1− ne

nc

⇔ ne = nccos
2(θ0)

(III.14)

Therefore, the reflective density at oblique incidence reads:

nref = nc cos
2(θ0)
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III.2 Gaussian laser formalism

Modelling intense laser pulses with plane waves is not satisfactory for HHG on plasma mirrors.

Indeed, laser pulses are usually extremely focused on the PM surface and have an ultra-short temporal

duration. For this matter, Gaussian beam formalism [27] constitutes a simplified analytical description

of beams propagation, which is useful to develop models of laser-plasma interactions.

An electromagnetic laser field can be completely characterized by its transverse electric component

E(x, y, z, t) (assuming a transverse electromagnetic mode). This field verifies the scalar propagation

equation:

∆E − 1

c2
∂2

∂t2
E = 0 (III.15)

We assume that the laser pulse propagates along the z direction with a frequency ω0 and we look

for solutions of the form:

E(x, y, z, t) = E0(x, y, z, t) exp
(
ik0z − iω0t

)

k0 =
ω0

c

(III.16)

Expanding the propagation equation, we find that E0 verifies the following PDE:

∆E0 − k20E0 + 2ik0
∂E0

∂z
− 1

c2
[∂2E0

∂2t
− ω2

0E0 − 2iω0
∂E0

∂t

]
= 0 (III.17)

Under the slowly varying envelope approximation, it is assumed that the electric field envelope

amplitude E0 slowly varies with respect to z and t variables. Formally, this approximation reads:

∣∣∣∣
∂2E0

∂2z

∣∣∣∣≪
∣∣∣∣k0

∂E0

∂z

∣∣∣∣
∣∣∣∣
∂2E0

∂2t

∣∣∣∣≪
∣∣∣∣ω0

∂E0

∂t

∣∣∣∣
(III.18)

Therefore, the expanded propagation III.17 equation could be simplified to obtain the parabolic

wave equation:

k0

(∂E0

∂z
+
∂E0

c∂t

)
− i

2
∆⊥E0 = 0 (III.19)

with ∆⊥ = ∂2

∂2x
+ ∂2

∂2y
the transverse Laplace operator. To resolve equation III.19, we look for solutions

that can be expressed in the form:

E0(x, y, z, t) = u(x, y, z)× v(z, t)

k0

(
u′v + uv′ +

1

c
uv̇
)
− v

i

2
∆⊥u = 0

⇔ v(k0u
′ − i

2
∆⊥u) + k0u(v

′ +
1

c
v̇) = 0

(III.20)
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where the coma and upper dot operators denote the differentiation over the z and t variables respec-

tively. u(x, y, z) models the transverse spatial envelope of the electric field, while v(z, t) models its

temporal envelope. An admissible solution of equation III.20 is such that:

k0u
′ − i

2
∆⊥u = 0

(III.21)

and

v′ +
1

c
v̇ = 0

(III.22)

The first equation III.21 represents the Helmoltz equation under the paraxial approximation. Ad-

missible solutions of this equation include Gaussian beam solutions [27] (cf figure III.1).

u(x, y, z) =
w0

w(z)
exp

[
− x2 + y2

w2(z)

]
exp

[
− ik0

x2 + y2

2R(z)

]
(III.23)

We define the terms involved in this equation as following:

• w0 is called the laser waist. Under the slowly varying envelope approximation, the waist needs

to be larger than the laser wavelength w0 > λ0 =
2π
k0
.

• w(z) = w0

√
1 + (z/Zr)2 is the laser radius at which the laser intensity falls to 1/e2.

• R(z) = z[1 + (Zr/z)
2] the laser radius of curvature.

• with Zr =
πw2

0

λ0
the laser Rayleigh length. At z = Zr, the laser radius grows by a factor of

√
2

and its radius of curvature is minimal.

We can also define the laser beam divergence:

tanθ = lim
z→+∞

w(z)

z

θ ≃ λ0
πw0

(under the paraxial approximation)

(III.24)

The divergence of a Gaussian beam represents the angle covered by the laser cone of light far from

the laser focus.

Equation III.22 is simply a homogeneous transport equation whose solution can be obtained by

scattering the initial condition v(., t = 0) over the characteristic lines (z − ct = constant). Thus, the

solution of III.22 reads:

v(z, t) = v(z − ct, t = 0) (III.25)

The slowly varying envelope approximation requires the envelope width to be larger than the laser

variation characteristic length (i.e. the laser wavelength in the space). A Gaussian temporal envelope

is often employed to model v (but other representations are possible):

v(z, t) = Emax exp
(
−
[
t− z/c

τ

]2 )
(III.26)

15



Chapter III. Physics of high order harmonics generation on plasma mirrors

where τ is the temporal laser duration, with (τ ≫ 2π
ω0

= T0) to respect the slowly varying envelope

approximation. We can also define the laser intensity full-width at half maximum:

FWHM =
√

2ln(2)τ ≃ 1.177τ

This quantity is more often used to characterize the temporal durations of ultra-short lasers.

The laser maximum amplitude Emax is an important parameter in laser-plasma interactions. We

can define the laser normalized amplitude:

a0 =
eEmax

meω0c
= λ0[µm]

√
I0[W.cm−2]/(1.37e18) (III.27)

The critical value a0 ≃ 1 is generally considered as the threshold around which a laser pulse can drive

relativistic electronic dynamics. In the context of laser-plasma interaction processes, the normalized

laser amplitude is a key parameter that determines the relativistic or classical nature of the interaction.

Figure III.1: Spatial profile of a Gaussian laser pulse (transverse electric field).

III.3 High harmonic generation on plasma mirrors

III.3.1 Plasma mirror Formation

A plasma mirror consists in an overdense plasma slab, created by irradiating an initially solid

target with an intense laser pulse (I > 1012Wcm−2). In these conditions, atoms are partially or

totally ionized, giving rise to an overdense warm plasma ne ≫ nc. After the ionization process took

place, and assuming that the plasma is isothermal, it undertakes thermal expansion in vacuum [28, 29]

where the electrons thermal energy is transferred to ions. This expansion leads to the formation of an

exponential plasma density gradient at the plasma vacuum interface as shown by figure III.2:

ni(x, t) = n0 exp

(
x

cst

)
(III.28)

where cs is the ion sound velocity given by:

cs =

√
ZkBTe
mi

(III.29)
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where kB is the Boltzmann constant and Te the electrons temperature.

The plasma density gradient characteristic length L = cst is commonly called the plasma density

scale length. For a 800 nm wavelength and a laser intensity of I = 1016W.cm−2, the plasma expands at

a velocity of ∼ 50 nanometers per picosecond. To guarantee a good plasma mirror optical quality, the

PM density scale length should be much smaller than the laser wavelength L ≪ λ0 so that the laser

interacts with a near-flat mirror before being reflected. This constraint shows that creating plasma

mirrors requires lasers with a very high contrast. Indeed, typical UHI laser pulses are usually accom-

panied by a powerful laser pedestal (I > 1012W.cm−2) that impinges on the target tens of picoseconds

before the main laser peak. This energy flux triggers a plasma vacuum expansion much more than

a micrometer scale length before the main laser pulse reaches the target. To address this issue, a

contrast improvement device, called DPM (for double-plasma mirror), is used to separate the main

laser pulse from its pedestal, which results in improving the temporal contrast more than ten orders

of magnitude but at the cost of an important loss of energy in the main pulse.

In practical HHG experiments, a plasma mirror is created by picking off a small fraction of the laser

main pulse and focusing it before the laser main pulse. This way, the laser main pulse impinges on an

already formed plasma mirror and the plasma density scale length can be controlled experimentally

by adjusting the time delay between the main laser pulse and the prepulse [30, 31, 32, 33]. The plasma

density scale length parameter has a strong impact over the physical mechanisms underlying the har-

monic emission [34, 35, 36] and significantly affects the high order harmonic generation efficiency.

In the context of this thesis, we are mainly interested in the interaction between an ultra-intense,

ultra-short laser pulse (i.e. the main laser pulse) with intermediate plasma expansion scale lengths

(around L ∼ λ0

10 ). This regime of interaction maximizes the harmonic generation efficiency in the

ultra-relativistic regime (a0 ≫ 1) [37].

− ✷ − 1 0 1

x(μm)

n
/n
c

− 2 − 1 0 1

x(μm)

Laser

L(a) (b)

Figure III.2: Schematic representation of plasma expansion into vacuum. Panel (a): initial solid target
density profile. Panel(b): The formed plasma expands into vacuum to form an exponential plasma
density gradient (the plasma expansion is exaggerated).

17



Chapter III. Physics of high order harmonics generation on plasma mirrors

III.3.2 Harmonic generation mechanisms

The plasma mirror response to an ultra-intense laser illumination is governed by highly non-linear

processes. For illustration, figure III.3 sketches the transverse electric field reflected by a plasma

mirror irradiated by a p-polarized laser field for a0 = 10,λ0 = 800 nm, θ = 55◦ and L = λ0

8 obtained

from a 1D PIC simulation. The reflected field is periodically distorted with the same period as the

incident laser field T0 (panel (a)). The Fourier spectrum of the reflected field (panel (b)) exhibits a

sequence of the spectral components ωn = nω0 with n ∈ N∗. These components are called high order

harmonics. One can note that the high order harmonics span over tens of harmonic orders, reaching

the X-UV emission regime (3nm < λ < 100nm). In panel (c), we filtered the harmonic signal between

the 30th and 50th order. In the time domain, they form a train of extremely short light pulses, with a

sub-femtosecond characteristic temporal duration each. This structure is called the train of attosecond

light pulses.

f

ω(ω0)

(a)

(b)

(c)

Figure III.3: Spectral and temporal response of a PM to an ultra-intense laser pulse obtained from a
1D PIC simulation (a0 = 10, L = λ0

8 , θ0 = 55◦). Panel (a): Temporal evolution of the reflected field
(Transverse magnetic field component). Panel (b): harmonic spectrum of the reflected field. Panel
(c): filtered and normalized reflected fields associated to the laser frequency (red dashed curve) and
harmonics between orders 30 and 50.

III.3.3 Attosecond pulses emission

This paragraph shows how a periodic spectrum in the Fourier space maps into a periodic train of

extremely short light pulses in the temporal domain [38]. Let us consider a spectral profile S̃(ω) given

by:

S̃(ω) = Ã(ω)× [H̃(ω)⊗ Ẽ(ω)] (III.30)
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where Ã(ω) is the spectrum envelope, H̃(ω) is a periodic Dirac comb with a period of ω0 and Ẽ(ω)

is the individual harmonic spectral profile. × is the product operator ⊗ is the convolution operator.

The inverse Fourier transform of S̃(ω) reads:

S(t) = A(t)⊗ [H(t)× E(t)] (III.31)

The temporal and spectral profiles of S, H and E are represented in figure III.4.

A(t) = FT−1(Ã(ω)) is an individual ultra-short (say attosecond) pulse with a duration of ∆T ∝ 1
∆ω

and where ∆ω is the spectral bandwidth of Ã. The inverse Fourier transform of the Dirac comb H̃(ω)

is a periodic Dirac comb with a period of T0 =
2π
ω0
. The resulting temporal signal S(t) is a periodic train

(with a period of T0 ) of attosecond light pulses, having a temporal envelope of E(t) = FT−1(Ẽ(ω)).

Therefore, for a flat spectral phase, the total duration of the attosecond pulses train is associated

to the individual harmonic profiles, while the temporal duration of an individual attosecond pulse is

pertaining to the spectral width of the whole harmonic spectrum.

Figure III.4: Harmonic spectrum pertaining to an attosecond pulses train. Upper and lower panels
are related by Fourier transforms.

It is important to mention that deducing the temporal durations of the attosecond pulses train or

of the individual pulses from the harmonic spectrum requires a known spectral phase φ(ω) = arg(S̃(ω).

Obtaining a perfectly periodic attosecond pulses train with the shortest attosecond pulses durations

(i.e. Fourier limited durations) is achieved with constant phase across all harmonic orders.
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Femtosecond chirp

An example of the potential impact of a non-constant spectral phase is discussed in this paragraph.

Consider a harmonic signal S(t) with a Gaussian temporal envelope E(t) = exp
(
−t2

τ2

)
. In this case,

S(t) = E(t)
∑

n

An exp[inω0t]

We now introduce a temporal phase φ(t) = nαt2 to each harmonic order:

S(t) = E(t)
∑

n

An exp[intω0 + iφn(t)]

S(t) = E(t)
∑

n

An exp[int(ω0 + αt)]
(III.32)

In the presence of non-constant harmonic phase, the train periodicity is distorted (the temporal

delay between successive attosecond pulses is no longer equal to T0) as shown by figure III.5.

Figure III.5: Attosecond pulses train with (panel (b)) and without (panel (a)) femtosecond chirp.
Panels (c) and (d) sketch the evolution of the temporal phases of three harmonic orders (50,70 and
90) for both cases.

III.4 Models for HHG on plasma mirrors

III.4.1 Bourdier boosted frame

Analytically modelling HHG on plasma mirrors can be extremely complicated, especially when

taking into account the full dimensionality of the problem. Although, if the incident laser pulse is

approximated by a plane-wave, Bourdier [39] showed that it is possible to reduce this problem dimen-

sionality to 1D via Lorentz frame transformation. This operation is illustrated in figure III.6.

We consider a plasma mirror occupying the half space x < 0 in the laboratory frame L. A laser

beam impinges the plasma with an angle of incidence θ in the (x, z) plane. The laser wave vector
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reads:

~kL0 = sin(θ)~ez − cos(θ)~ex

The Lorentz Bourdier boosted frame L′ moves with a velocity v = −csin(θ)~ez with respect to

the laboratory frame L. The relativistic factors of this Lorentz transformation are β0 = sin(θ) and

γ0 =
1√
1−β2

0

= 1
cos(θ) . The laser wave vector is:

~kL
′

0 = −||~kL0 ||
γ0

~ex = −||~kL0 ||cos(θ)~ez

In the Bourdier frame the laser is normal to the target and the laser frequency is decreased by a factor

γ0:

ωL′

0 =
ω0

γ0
On the other hand, the plasma is no longer at rest. Instead, it drifts along the z-axis with a velocity

of sin(θ)c~ez. Due to the length contraction induced by the Lorentz transformation along the z-axis

(δzL
′

= δzL

γ0
) ,the plasma density is increased by a factor of γ0:

nL
′

= γ0n
L

The Lorentz transformation over the transverse electric and magnetic fields, assuming a p-polarized

laser pulse (i.e. the magnetic field is orthogonal to the incidence plane) reads:

~EL′

t =
E0

γ0
(~ez)

~BL′

t =
E0

cγ0
(cos(θ)~ey)

(III.33)

The laser field amplitude is reduced by a factor of γ0 due to the Lorentz transform. However, the

laser normalized amplitude a0 remains unchanged.

The Bourdier boosted frame is a powerful tool that enables both simpler analytical and numerical

modellings of laser-plasma interaction at oblique incidence. In chapter VI, we also show how to employ

Lorentz transforms as an efficient diagnostic tool of laser-plasma interaction simulations for arbitrary

electromagnetic laser waves (and not just plane waves).

Figure III.6: Illustrative scheme for laser-plasma interaction in the laboratory frame (left) and the
Bourdier boosted frame (right).
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III.4.2 Wave equation with sources in Bourdier frame

In this subsection, we derive the field radiated by the plasma currents in the Bourdier frame. We

get rid of the L′ specifying the Bourdier frame. We describe the electromagnetic fields using scalar

and vector potentials (V, ~A) under the Coulomb gauge:

~E = −~∇V − ∂ ~A

∂t
~B = ~∇∧ ~A

~∇. ~A = 0

(III.34)

The radiated fields are determined by the vector potential ~A satisfying [40]:

∆ ~A− ∂2 ~A

∂t2
= µ0 ~J⊥ (III.35)

where ~J⊥ = (0, Jy, Jz) is the transverse current. This system is invariant along both transverse

directions y and z, so the Laplacian operator can be simplified to a second order derivative along

x-axis ∆ = ∂
∂x . To integrate equation III.35 under these symmetry conditions, we employ the Green

function G(x, t) defined by:

G(x, t) = Θ
(
t− |x|

c

)
(III.36)

solution of: ( ∂2
∂z2

− 1

c2
∂2

∂t2

)
G(x, x′, t, t′) = −µ0δ0(x− x′)δ0(t− t′) (III.37)

where Θ and δ0 respectively denote the Heaviside function and the Dirac pulse.

The radiated field by the plasma is:

~Ar(x0, t0) = −cµ0
∫ ∞

−∞

∫ ∞

−∞
G(x0 − x, t0 − t) ~J⊥(x, t)dtdx

~Ar(x0, t0) = −cµ0
∫ ∞

−∞

∫ t0−|x0−x|/c

−∞

~J⊥(x, t)dtdx

(III.38)

Note that the total electromagnetic field (radiated + incident) is:

~A(x0, t0) = ~Ar(x0, t0) + ~A0(x0, t0) (III.39)

where ~A0(x0, t0) is the incident laser field which verifies equation III.35 without the right hand side.

Therefore, the transverse electric field radiated by the plasma is determined by:

~Er
⊥(x0, t0) = −∂

~Ar

∂t
= −cµ0

∫ ∞

−∞

~J⊥(x, t0 − |x0 − x|/c)dx (III.40)

Equation III.38 shows that the radiated electromagnetic field can be rigorously determined provided

the transverse currents in the plasma.
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III.4.3 Transverse currents expression

We now derive the transverse currents expression in the Bourdier frame. Considering the plasma

medium as a fluid of electrons and ions, the transverse current is:

~J⊥ = −ene~ve,⊥ + Zeni~vi,⊥ (III.41)

where ~ve,⊥ and ~vi,⊥ are the electronic and ionic transverse velocities. Assuming immobile ions on the

laser duration time scale (due to their much higher mass), their velocity in the Bourdier frame remains

equal to the plasma drift velocity ~vi,⊥ = csin(θ)~ez.

On the other hand, electron contribution to the current is obtained by using the conservation of

the transverse canonical momentum, which results from the translational invariance of the system

along transverse direction y and z.

d(~p⊥ − e ~A)

dt
= 0

⇔ ~p⊥ = ~p⊥(t = 0) + e ~A

(III.42)

where

~p⊥(t = 0) = −mec tan(θ)~ez

is the electron momentum before the arrival of the laser.

Finally, the total transverse current in Bourdier frame reads:

~J⊥(x, t) = −e
2ne(x, t) ~A(x, t)

meγ(x, t)
− ec tan(θ)

(
Zni(x, t)cos(θ)−

ne(x, t)

γ(x, t)

)
~ez

γ(x, t) =

√
1 + ||e ~A/(cme)− tan(θ)~ez||2

1− (vex/c)
2

(III.43)

The first equation of III.43 shows that the transverse electric current in the plasma is constituted

of two terms. The first term, which is ∝ ne

γ
~A, corresponds to the current driven by the radiation field

~A. The second term only appears whenever the electronic and ionic drift currents do not compensate

one another and vanishes at normal incidence. This can happen if the electronic and ionic densities

(ne 6= ni) are no longer equal, or if the electrons get accelerated by the laser field(γ 6= 1
cos(θ)). This

current is always oriented along z-axis, and is independent from the laser polarization. This shows

that a p-polarized harmonic signal can be emitted by the PM even if the laser is s-polarized (i.e, if the

laser electric field is normal to the plane of incidence).

According to equation III.43, additional frequencies in the transverse electric current could emerge

from electronic density distribution or Lorentz factor modulations. Density fluctuations play a crucial

role in HHG through the coherent wake emission process (CWE) [16, 41, 42].

This analysis is however not to determine the spectrum of the radiated light, which is also sensitive

to the spatial variation of the transverse current ~J⊥ through the integral equation III.40. In particular,
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in the relativistic regime, the plasma mirror surface longitudinal oscillation can result in a harmonic

radiation through Doppler effect [12, 43].

III.4.4 Coherent wake emission regime

For laser intensities not exceeding the relativistic threshold a0 ≤ 1 (see equation III.27), and very

steep plasma density scale lengths L ≤ λ0

20 , harmonic generation on plasma mirrors is dominated by

the coherent wake emission mechanism [16].

This mechanism is illustrated in figure III.7. It results from the excitation of plasma waves in

the plasma density gradient by Brunel electrons [44], sent back in the overdense part of the plasma

gradient under the combined effects of the charge separation forces and the laser electric field. When

traveling inside the plasma gradient, these electrons trajectories cross each other (because the kinetic

energy differs from one electron to another), forming a density electrons peak that excites plasma

waves at the local plasma frequencies. Hence, all the plasma frequencies between ω0 and ωpe are

excited, resulting in a coherent emission (because the plasma density scale length is very short com-

pared to λ0) of harmonic radiations along the specular direction through linear mode conversion [45].

This mechanism takes place at each laser optical cycle, resulting in a train of attosecond light pulses

associated to a periodic harmonic spectrum.
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Figure III.7: Illustration of the CWE mechanism. The blue-white-red colormap in panel (a) sketches
the longitudinal plasma waves (Ex field) at the surface of the plasma mirror obtained from a 1D CWE
PIC simulation (with a0 = 0.6, L = λ0

20 , θ0 = 55◦, nmax = 340nc) The purple curves represent the
Brunel electrons trajectories, intersecting inside the plasma. Panel (b) illustrates the initial plasma
density in units of nc. Panel (c) is the Fourier transform over time of the plasma waves excited inside
the plasma. Note that the frequencies at each depth match the plasma frequencies associated to the
local plasma densities.

Note that the highest excited plasma frequency is the frequency of the plasma bulk ωmax
pe . Conse-
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quently, the CWE mechanism is characterized by a harmonic cutoff given by:

ωmax
cwe = ωmax

pe =

√
nmax

nc
ω0

The laser envelope spatial or temporal variations critically affects the electronic peak velocity inside

the plasma gradient. Indeed, for a stronger laser electric field, the Brunel electrons gain more kinetic

energy from the laser before traveling inside the plasma. Therefore, the trajectories intersections,

as well as the harmonic emission, occur earlier at each laser optical cycle. Thus, CWE attosecond

pulses train is not perfectly periodic (i.e. femtosecond chirp) because of the laser envelope temporal

variation. In the same way, CWE harmonics wavefronts are concave because of the laser intensity

variation across the focal spot [42].

III.4.5 Harmonic generation in the relativistic regime

For ultra-high intensity lasers (I > 1019Wcm−2), corresponding to a normalized vector potential

amplitude a0 > 1, the PM surface acts as a relativistic oscillating mirror that simultaneously reflects

and compresses the incoming laser field, giving rise to additional high order harmonics. This effect

has been studied, both theoretically and experimentally, for decades [12, 43, 46, 15]. It constitutes a

promising path towards achieving extremely short (attosecond), intense XUV sources. In this section,

we first review the principle of the Doppler effect induced by a mirror at a constant speed and present

the Lichters analytical approach to explain the Doppler harmonic generation process.

III.4.6 Doppler effect

Before describing the Doppler effect induced by an oscillating mirror, we first recall the frequency

shift induced by a perfectly reflective mirror following a uniform motion with a velocity v0~ex .

Consider a monochromatic wave with a frequency of ω that is specularly reflected by the moving

mirror (cf figure III.8). A receiver, at rest in the laboratory frame observes a reflected wave with a

frequency [47]:

ωr = (1 + β)2γ2ω

where β = v0/c and γ = 1√
1−β2

. The frequency of the reflected field increases when the reflective

mirror moves towards the observer (v0 > 0). This frequency shift is called the relativistic Doppler

effect. This shift increases with the mirror velocity. When the mirror motion is ultra-relativistic

(γ ≫ 1), the Doppler shift reaches ≃ 4γ2.
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Figure III.8: Doppler shift induced by a reflective mirror moving at constant speed in the specular
direction.

III.4.7 The Relativistic Oscillating Mirror (ROM) model

In 1996, R. Lichters et al [12] presented a theoretical model (the ROM model) to account for the

high order harmonic generation occurring in the relativistic regime.

The radiated electric field is related to the transverse electric current by equation III.40. Lichters et

al assume that the radiative electrons are located within the skin depth at the plasma mirror surface.

Moreover, they assume that these electrons undergo a fast longitudinal oscillations under the effect of

the laser electric field component normal to the plasma surface. As the plasma skin depth is very small

compared to the laser wavelength (ls =
c

ωpe
≪ λ0), it is reasonable to model the radiative electrons as

a punctual source at a position Z(t) that varies as:

Z(t) =
c

ω0

2A0(x, t)sin(θ)

1 + 2A0(x, t)sin(θ)
cos(ω0 t) (III.44)

where A0 is the temporal envelope of the laser vector potential ~Ai. The electric current is determined

by equation III.43. It is supposed to vanish over a scale length of ls beyond Z(t). Consequently,

equation III.40 simplifies to:

Er(z, t) ≃ lscµ0J⊥(Z(tret, tret)) (III.45)

where tret is the retarded time at which the signal observed by an observer located at position z and

time t has been emitted by the PM. This means that:

tret = t− (Z(tret)− z)

c
(III.46)

In case of a p-polarized laser field, the radiated electric field reads:

~Er(z, t) = ~Er(z, t) =
ωp

2ω0

[ √
1− (Z(tret)/c)2(A0(Z(tret), tret)− tan(θ))√

1 +A2
0(Z(tret), tret)cos

2(θ)− sin(2θ)A0(Z(tret), tret)

+ tan(θ)
(
1 + Z(tret)/ls

)]
~ex

(III.47)
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To determine tret and therefore Z(tret), Lichters et al propose to use a fixed point iterative method:

Z0 = Z(t)

Zn+1 = Z(t− Zn − z

c
)

(III.48)

The Zn sequence numerically convergences to Z(tret) and tret = t− Z(tret)−z
c .

Figure III.9 illustrates numerical results obtained from the ROM model in the case of an obliquely

incident laser pulse at 55 degrees and a0 = 6. The laser temporal envelope is Gaussian with a duration

of τ = 2T0. Panel (a) sketches the laser electric field impinging on the PM. Panel (b) illustrates the

plasma mirror surface dynamics Z(t) (blue curve) and the retarded dynamic Z(tret) (red curve). One

can note that Z(tret) clearly differs from a pure trigonometric function. This gives rise to a strongly

distorted reflected field (panel(c)). This temporal distortion is associated with the presence of high

order laser harmonics in the spectral domain and attosecond light pulses in the temporal domain.
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Figure III.9: High order harmonic generation with the ROM model. Panel(a): Incident laser profile.
Panel(b): plasma surface dynamic (retarded: red, unretarded: blue). Panel (c): Reflected field (red)
and attosecond pulses associated to harmonic orders between 20 and 60 (blue). Panel (d): Spectral
profile of the reflected field in log scale.
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The ROM model is a simple and intuitive approach to qualitatively understand the high order

harmonic generation process on overdense plasmas in the relativistic regime. However, it largely omits

the physics at play at the PM surface and therefore lacks of predictive power regarding harmonic

generation scaling laws and generation efficiency. Moreover, imposing a predefined dynamics to the

PM surface is not satisfactory. Figure III.10 sketches the PM dynamics and the HHG emission obtained

from 1D PIC simulation (in the Bourdier frame) in the relativistic regime (a0 = 10, L = λ0

8 , θ = 55◦).

Even though a single high order harmonic bunch (in the form of an attosecond light pulse) is emitted

at each laser optical cycle, the PM dynamics is more unpredictable and does not follow a single order

harmonic motion.

Figure III.10: Plasma mirror dynamics and HHG for a0 = 10 at 55◦ incidence angle from 1D PIC
simulation (in the Bourdier frame). In gray, the electronic density at the plasma-vacuum edge. In red,
high order harmonics in the range 20-30

Moreover, this modelling completely omitted multiple aspects that can only be apprehended in

higher dimensions, such as the spatial properties of Doppler harmonics. In the next section, we

present a comprehensive model developed in H.Vincenti’s thesis [48] [49] to account for the spatial

properties of Doppler harmonics. This model investigates the plasma mirror surface denting in the

presence of a plasma density ramp. Based on this dynamic, it is then possible to derive an accurate

predictive model for Doppler harmonic spatial properties.

III.4.8 Plasma denting model and spatial properties of Doppler harmonics

In the relativistic regime, the mean positions of both ions and electrons from the surface are pushed

inwards due to the strong laser radiation pressure, resulting in a plasma mirror surface denting. This

process can be described with a three-steps quasi-static model. First, assuming immobile ions, the

maximum electrons excursion of the PM surface is modelled by determining the balance between the
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pushing force exerted by the incident and reflected laser field, and the restoring force due to the space-

charge separation. Second, the ion motion induced by the laser radiation pressure is computed using

the momentum conservation. Finally, this ion dynamics is taken into account to update electrons

excursion. This model assumes that the electronic motion can be computed for a fixed ion background

each laser optical cycle, which is valid as long as the ion motion can be neglected during a single

optical cycle.

Electrons excursion

We suppose an immobile ions background within the time scale of one laser period. In Bourdier

frame (the plasma initially occupies the domain x > 0 and drifts along the z-axis), the laser transverse

magnetic field By gives rise to a longitudinal force exerted on the transversally drifting electrons. As a

result, the surface electrons are pilled up to form a dense electronic spike that undergoes an excursion

inside the plasma. We denote by xe(t) the longitudinal position of the electronic spike. The space

charge separation simultaneously gives rise to two additional forces exerted on the electrons spike.

First, the electrostatic space-charge separation forces associated to the longitudinal field that reads:

Ex(xe(t)) =

∫ xe(t)

−∞
Zeni(x)dx

On the other hand, the transversally drifting ions induce an uncompensated electric current Jz(x) =

−Zni(x)csin(θ) that gives rise to a magnetic field Bd
y = −µ0

∫ xe(t)
−∞ Jz(x)dx.

When the maximum electronic excursion xm is reached at a time te , we assume that an equilibrium

between the three forces exerted on the electronic spike is achieved. Therefore, we have:

vx
[
Blaser

y (zm) +Bd
y(zm)

]
+ Ez(zm) = 0 (III.49)

In the relativistic regime, we can assume that vx ≃ c during the pushing phase. For an exponential

plasma density ramp with a scale length L, we get a maximum plasma excursion.

xm = Lln
[
1 +

2a0(1 + sin(θ)

2πL/λ0

nc
ne(xi)

]
(III.50)

The maximum electronic excursion increases with both the laser amplitude or the plasma density

scale length: an increase in the laser intensity directly increases the laser force pushing the electronic

spike. On the other hand, increasing the plasma density scale length reduces the space charge separa-

tion forces due to the decrease in the density in the plasma ramp.

Ions excursion

Under the effect of space-charge separation forces, ions start to slowly travel towards the electronic

spike inside the plasma. Applying momentum/energy conservation, one can be shown that the ions

excursion in the plasma can be expressed as:

xi(t) = 2Lln
[
1 +

cΠ0

2Lcos(θ)

∫ t

0
aL(t0)dt0

]
(III.51)
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where Π0 =
√

RZmecos(θ)
2Amp

with R the laser reflexion coefficient, A the ions mass number, and aL(t)

the laser vector potential normalized temporal envelope. Similarly to electrons, the ions excursion

increases with the laser intensity and the plasma density scale length.

Plasma mirror excursion

The total plasma excursion is simply given by:

xT (t) = xi(t) + xe(t) (III.52)

In the expression of xe(t) (equation III.50), the term nc

ne(xi)
is equal to exp(−xi/L):

xe(t) = Lln

[
1 +

2aL(t)(1− sin(θ)

2πL/λ0
exp[−xi(t)/L]

]
(III.53)

Therefore, III.52 reads:

xT (t) = xi(t) + Lln

[
1 +

2aL(t)(1− sin(θ)

2πL/λ0
exp[−xi(t)/L]

]
(III.54)

In the relativistic regime, the laser radiation pressure tends to dent the PM surface. In return,

the deformation of the plasma surface affects the spatio-temporal properties of the radiated harmonic

beam. As the density spikes responsible for the HHG undergo a deeper inward excursion from one

laser optical cycle to another, the spacing between consecutive attosecond light pulses is expected to

increase over time, which results in a femtosecond chirp of the harmonic signal. The impact of the

plasma mirror deformation on the spatial properties of the harmonic signal is detailed in the next

paragraph.

III.4.9 Plasma mirror excursion in three dimensions:

In higher dimensions (2D or 3D), the laser intensity variation along its cross section induces an

inhomogeneous denting over the PM surface Note that the Lorentz transform from/to the Bourdier

frame only modifies the scale lengths along the transformed axis. Thus, the plasma excursion in

the Bourdier and the lab frames are equal. Therefore, at each position (z, y) of the plasma surface

(considering that the z-y plane is transverse to the target) , the total denting reads:

XT (t, z, y) = xi(t, z, y) + Lln

[
1 +

2aL(x, y, t)(1 + sin(θ))

2πL/λ0

nc
n0 exp[−xi(t)/L]

]

xi(t, z, y) = 2Lln
[
1 +

cΠ0

2Lcos(θ)

∫ t

0
aL(z, y, t0)dt0

]

aL(z, y, t) = a0 exp

[
− t2

τ2

]
exp[−(z cos(θ))2 + y2)

w2
0

]

(III.55)

For x, y ≪ w0, we can use Taylor expansion to simplify equation III.55:

XT (t, z, y) = X0 −
z2cos2(θ) + y2

4fp(t)
+ o(x2) + o(y2) (III.56)
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were X0 is a constant, and:

fp(t) =
w2
0

4L

ǫ(t) + (1 + µ(t)ǫ(t))2

ǫ(t) + 2µ(t)ǫ(t)(1 + µ(t)ǫ(t))

ǫ(t) =
2λ0a(t)

2πL(1− sin(θ)

µ(t) =
ω0(1− sin(θ))Π0

4

∫ t

0

a(t0)

a0
dt0

(III.57)

Equation III.56 describes a paraboloid (cf a parabola in 3D) with focal distances
fp

cos2(θ)
and fp in

the (x-z) and (x-y) planes respectively.

ǫ(t) and µ(t) are associated with the electronic and ionic excursions respectively. fp is called the

PM focal distance. We will show later that this physical quantity is of fundamental importance to

determine the spatial properties of high order harmonics.

At the beginning of the laser-plasma interaction (the first laser optical cycles), the ionic contribution

to the total plasma denting can be neglected (µ(t) ≪ 1) compared to the electronic motion. For ultra-

relativistic laser intensities (a0 ≫ 1), the total plasma mirror dynamic is dominated by the electronic

motion (ǫ(t) ≫ 1). Therefore III.57 simplifies to:

fp ≃
w2
0

4L
(III.58)

Note that for very long laser pulses (τ ≫ T0), and t≫ T0 (after many optical cycles), the plasma

mirror dynamics becomes more and more dominated by the ionic excursion and we have:

fp ≃
w2
0

8L
(III.59)

We can also define the plasma mirror denting parameter by the difference between the plasma

denting at the center of the interaction region and at a distance of
√
2w0 in the incidence plane.

δp =
2w2

0cos
2(θ)

fp
(III.60)

This quantity relates the PM maximum denting to its focal distance fp. Due to the spatial

variations of the laser amplitude at focus, equation III.56 shows that the plasma target gets curved,

therefore focusing the high order harmonics. In the following, we derive the spatial properties of these

harmonics as a function of the PM curvature.

III.4.10 Spatial properties of high order harmonics

The plasma mirror denting takes the form of a parabolic curved surface, described by equation

III.56. It can be shown that the focal distance of the PM slowly varies from one optical cycle to

another [48]. During the first laser optical cycles, we assume that the focal distance of the PM is

constant and is given by III.58. Therefore, the harmonic beam is emitted along the specular direction

given by −~kr = k0cos(θ)~ex + k0sin(θ)~ez by a parabolic surface. We neglect the high order optical

aberrations (e.g. coma aberration) induced by an off-axis reflection on a parabolic surface [50]. In the
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reflection plane (see figure III.11), the plasma mirror parabolic curvature induces a quadratic spatial

phase on the emitted harmonic beam. This quadratic phase originates from the cumulated optical

path difference of different light rays emitted by the curved surface and it varies as:

φp(x
′, y′) = −2kncos(θ)Z(x

′, y′) (III.61)

where kn is the wave vector of the nth harmonic order and (x′, y′) is the coordinate system of the

emission plane:

x′ = xcos(θ)

y′ = y
(III.62)

Therefore, the spatial phase III.61:

φp(x
′, y′) = −kn

x′2 + y′2

2fp/cos(θ)
(III.63)

where kn is the wave vector of the nth harmonic order and (x′, y′) is the coordinate system of the

emission plane. This equation describes a curved wavefront. The plasma mirror acts as a focusing

optics on both the incident laser and the high order harmonics. Note that despite the oblique incidence

in the (x, z) plane, the plasma mirror induces no astigmatism into the reflected field: the wavefronts

are equivalently curved along the x′ and y′ directions. Therefore, the harmonic beam focuses at a

distance d =
fp

cos(θ) along the specular direction from the PM. This particular behavior suggests that

the PM could be used as a focusing optics in order to reach extremely high electromagnetic intensities

[37]. In this thesis, we will also show a configuration where the harmonic beam is astigmatic due to

different wave-front curvatures along the two transverse directions.

In order to establish equation III.61, we assumed that the laser spatial phase is constant over

the laser-plasma interaction region. This assumption holds true if the laser focus coincides with the

PM surface. However, it might be very beneficial to use an incident laser out of focus (with curved

wavefronts on PM) in various application experiments employing Doppler HHG. The general harmonic

phase formula for an arbitrary laser wavefront curvature writes:

φn(x
′, y′) = φp + φL

φn(x
′, y′) = −kn(

x′2 + y′2

2fp/cos(θ)
− x2

2Rz
)

(III.64)

with Rz the laser radius of curvature at the PM emission plane.

Figure III.11: Schematic representation of the plasma mirror denting inducing harmonic focusing.
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Harmonic divergence

The divergence of the harmonic beam can be computed from the harmonic spatial phase given by

equation III.63. It reads:

θn = lim
z→+∞

wn(z)

z
(III.65)

where z represents the distance from the PM mirror along the specular reflection direction and wn(z)

is the harmonic beam size at a distance z from the PM focus. Assuming that each individual harmonic

can be modelled as a Gaussian pulse, we can use the Gaussian beam theory to determine wn(z). First,

we can define the complex harmonic beam parameter qn at the PM surface:

qn(z − zrn) = (z − zrn) + iZn
r (III.66)

where zrn is the distance between the PM emission plane and the focus of the nth harmonic, and Zn
r

is the Rayleigh length of the same harmonic order, which writes :

Zn
r =

nπw2
n

λ0
(III.67)

Based on Gaussian beam theory, the complex harmonic beam parameter qn also verifies:

1

qn(z − zrn)
=

1

Rn(z − zrn)
− i

λ0
nπw2

n(z − zrn)
(III.68)

Based on equation III.63, the harmonic radius of curvature at the emission plane reads:

R(−zrn) = fp/cos(θ) (III.69)

The harmonic waist wn = wn(0) and z
r
n can be deduced using equations III.64,III.68,III.67,III.66

and the relationship
1

2Rn(−zrn)
=

1

2fp/ cos(θ)
− 1

2Rz

Assuming a constant laser spatial phase (i.e. 1
Rz

= 0), we have:

zrn =
nπw2

n

λ0

nΨ

1 + (nΨ)2

wn =
wn(−zrn)√
1 + (nΨ)2

Ψ =
2π

cos(θ)

w2
n(z

r
n)

w2
0

2L cos2(θ)

λ0

(III.70)

From equations III.65 and III.70 one can show that:

θn = θ0n
√

1 + (nΨ)2 (III.71)

where θ0n is the harmonic free divergence (i.e. the harmonic divergence in the absence of a PM

curvature):

θ0n =
λ0

nπwn(−zrn)
(III.72)

In conclusion, when an ultra-intense laser pulse irradiates a solid target, a train of attosecond pulses

of light, associated with Doppler harmonics in the frequency domain is generated by the relativistically
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oscillating PM. One of the possible future applications of plasma mirrors resides in exploiting these

ultra-fast light pulses in pump-probe like experiments. However, one of the main difficulties that still

need to be addressed in order to develop a reliable source of X-UV attosecond light pulses from PMs

is the difficulty of producing unique attosecond light pulses from those harmonics. One possible path

towards this goal is the so-called attosecond lighthouse effect proposed a few years ago [26]. This

scheme relies on laser spatio-temporal couplings to angularly separate attosecond light pulses in the

far-field.

III.5 The attosecond lighthouse effect

The basic principle of the attosecond lighthouse effect is sketched in figure III.12. Panel (a) rep-

resents the typical setup used for a HHG experiment employing a standard Gaussian laser beam. In

this case, the plasma mirror emits X-UV radiations in the form of a collimated train of attosecond

light pulses along the specular direction. Panel (b) represents a HHG process with the so-called at-

tosecond lighthouse effect. In this case, the incident laser field is distorted such that its wavefronts

are continuously rotating in the incidence plane. When the laser-plasma interaction is taking place,

a single attosecond light pulse is emitted at each laser optical cycle, whose propagation direction is

given by the instantaneous laser wave vector (that has a propagation direction varying over time). If

the laser wavefront rotation (WFR) velocity is high enough, then the emitted attosecond pulses are

sufficiently angularly separated and a unique attosecond light pulse can be spatially filtered in the

far-field by placing a slit along its path. This scheme is very general and is not restricted to HHG on

plasma mirrors. For instance, it has already been applied to produce angularly separated attosecond

light pulses from PM in the CWE regime [51] and on gaseous medias [52].

Figure III.12: Schematic representation of the lighthouse principle. In the presence of WFR, attosec-
ond light pulses are emitted with slightly different directions. A unique attosecond light pulses can
then be spatially filtered in the far-field

The attosecond lighthouse effect is based on a controlled distortion of the spatio-temporal profile of

the laser pulse. This particular spatio-temporal coupling is called wavefront rotation. In this section,

we formally introduce the notion of spatio-temporal couplings of light fields and show how to obtain,
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in practice, wavefront rotation at laser focus. Finally, we review the necessary conditions to angularly

split an attosecond pulses train into isolated attosecond pulses through the lighthouse effect.

III.5.1 Characterization of ultra-short laser pulses

We consider a laser electromagnetic wave, propagating along the z direction, with a wave vector

~k0. This wave can be fully characterized, given its electric field spatio-temporal profile E(x, z = z0, t)

at a fixed position z = z0. The electric field can be characterized by its spatio-temporal phase ϕ(x, t)

and amplitude A(x, t). Equivalently, this field admits three additional representations in different dual

domains: (x, ω), (kx, t), (kx, ω).

Space-frequency domain The space-frequency representation obtained by the Fourier transform

of the spatio-temporal field over the time variable. Omitting the longitudinal position notation z = z0,

this representation can be expressed as:

Ê(x, ω) = A(x, ω)eiϕ(x,ω)

=

∫ +∞

−∞
E(x, z = z0, t)e

−iωtdt
(III.73)

A(x, ω) denotes the spatio-spectral amplitude of the electromagnetic field while ϕ(x, z = z0, ω)

stands for its spatio-spectral phase. This representation gives an insight about the spectral distribution

of field at different transverse positions x.

Spatial frequency-time domain The electromagnetic field may as well be expressed in the (k, ω)

space. This representation is given by the Fourier transform of the spatio-temporal field over the

transverse spatial variable.

Ê(k, t) = A(k, t)eiϕ(k,t)

=

∫ +∞

−∞
E(x, t)e−ikxdx

(III.74)

This representation is particularly interesting as it allows to express the electromagnetic field at

the focal spot of an optics of focal length f based on Fraunhofer diffraction. For a narrow spectral

bandwidth ∆k
kL

≪ 1, the field after focusing reads:

E(xf , t) ∝ Ê(
kLxf
f

, t) (III.75)

Spatial frequency-temporal frequency domain Finally, it is possible to express the electromag-

netic fields in the (k, ω) space, given by the spatio-temporal Fourier transform of the field:

Ê(k, ω) = A(k, ω)eiϕ(k,ω)

=

∫ +∞

−∞

∫ +∞

−∞
E(x, t)e−iωt−ikxdxdt

(III.76)

This representation informs on the angular spectral distribution with respect to the propagation

direction z. In fact, the propagation angle θ can be expressed as θ(kx, ω) = arcsin
(
ckx
ω

)
. Thus, the

(k, ω) representation informs on the angular intensity distribution of the laser pulse far from the laser

waist:

I(θ, ω) ≃
∣∣∣Ê(k/kL, ω)

∣∣∣
2
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III.5.2 First order spatio-temporal couplings in ultra short lasers

In section III.2, the laser spatial and temporal dependencies have been expressed separately. This

does not always hold true and mutual dependencies between spatial and temporal laser characteristics

actually arises in typical ultra-short laser systems. An ultra-short laser pulse is said to exhibit spatio-

temporal couplings when:

E(x, z, t) 6= A1(x) exp (ϕ1(x))A2(t)) exp (ϕ2(t)) (III.77)

Spatio-temporal couplings can affect the laser amplitude and/or phase profiles.

ϕ(x, t) 6= ϕ1(x)ϕ2(t)

A(x, t) 6= A1(x)A2(t)
(III.78)

As the field admits in total four different representations in four different spaces, one could define

8 spatio-temporal couplings, each affecting the field phase or amplitude in one of these four spaces. As

the different field representations are related via Fourier transforms, the underlying spatio-temporal

couplings are interdependent. In this thesis, we restrict our study to Gaussian pulses exhibiting first

order spatio-temporal couplings following the work of Aktürk et al [53]. In this case, the spatio-

temporal field profile can be expressed as:

E(x, t) = E0 exp
[
− (

1

w2
0

+ i
k0
2R

)x2
]
×

exp[(ξ + iζ)xt]︸ ︷︷ ︸
first order coupling

×

exp
[
− (

1

τ2
+ iβ)t2

]
exp[iω0t]

(III.79)

with {w0, R, τ, β, ξ, ζ} ⊂ R. The spatio-temporal coupling is said to be of first order because the

second order derivatives of the coupling term (ξ + iζ)xt are equal to zero:

∂2t

(
(ξ + iζ)xt

)
= ∂2x

(
(ξ + iζ)xt

)
= 0

The parameters involved in equation III.79 are defined as follows:

• β is called temporal chirp. It induces a varying instantaneous laser frequency.

• ξ and ζ are spatio-temporal coupling parameters, respectively affecting the amplitude and the

phase of an ultra-short laser pulse.

– ξ, is associated to the so-called pulse-front tilt (PFT) coupling (cf left panel figure III.13).

It results in delayed arrival times of the laser amplitude peak across the transverse direction

x. Consequently, the laser wave-fronts and pulse-fronts are tilted. Note that the pulse-front

is defined as the variation of the time delay t(x0) of the maximum laser intensity for each

transverse position x0.

Pulse-Front = {(x, t), ∀x, t = argmaxt0(|E(x, t0)|)}
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– ζ leads to a spatio-temporal coupling affecting the phase. In this case, the laser wavefronts

rotate over time. This coupling is called wave front rotation (WFR) (cf right panel figure

III.13). It is the basic mechanism responsible for the attosecond lighthouse effect.

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
T(T0)

−4
−3
−2
−1

0
1
2
3
4

x(
λ 0

)

Pulse
-fro

nt
Wavefront

Pulse-front tilt

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
T(T0)

−4
−3
−2
−1

0
1
2
3
4

x(
λ 0

)

Wavefront

Wavefront rotation

Figure III.13: Pulse-front tilt (left panel) and wavefront rotation (right panel) in the (x, t) space

Equation III.79 can be rewritten in a more general form:

E(x, t) = E0 exp
[
axxx

2 + attt
2 + axtxt

]
(III.80)

with {axx, att, axt} ⊂ C and:

• Re(axx) = − 1
w2

0

⇔ beam waist.

• Im(axx) = − ik
2R ⇔ wavefront curvature (WFC).

• Re(att) = − 1
τ2

⇔ laser pulse duration.

• Im(att) = β ⇔ temporal chirp.

• Re(axt) = ξ ⇔ pulse-front tilt.

• Im(axt) = ζ ⇔ wave-front rotation.

III.5.3 Different representations of spatio-temporal couplings

In the other representation spaces, the electric component of the laser field can be expressed with

the same form as equation III.80:

Ê(x, ω) ∝ E0 exp
[
bxxx

2 + bωωω
2 + bxωxω

]

Ê(k, ω) ∝ E0 exp
[
ckkx

2 + cωωω
2 + ckωkω

]

Ê(k, t) ∝ E0 exp
[
dkkk

2 + dttt
2 + dktkt

]
(III.81)
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The spatio-temporal couplings are determined in each representation space by the coefficients bxω,

ckω, dkt. The next table III.1 summarizes the relationships between different coupling parameters:

(x, t) (x, ω) (k, ω) (k, t)

axt = axt
i
2
bxω
bωω

1
4

ckω
ckkcωω+c2kω

− i
2
dkt
dkk

bxω = i
2
axt
att

bxω
i
2
ckω
ckk

1
4

dkt
dkkdtt+d2kt

ckω = 1
4

axt
axxatt+a2xt

i
2
bxω
bxx

ckω − i
2
dkt
dtt

dkt =
i
2
axt
axx

1
4

bxω
bxxbωω+b2xω

i
2
ckω
cωω

dkt

Table III.1: Relationship between spatio-temporal couplings in different domains

The relationships between other parameters (axx, att, bxx, bωω, ckk, cωω, dkk, dtt) are given in ap-

pendix B.

Analyzing spatio-temporal couplings coefficients in different representation spaces brings additional

insights to the physical origin of each coupling mechanism.

Let us consider a Gaussian beam at focus (i.e. with flat wavefronts Im(axx) = 0), free from tempo-

ral chirp (Im(att) = 0). In this case, the WFR coupling (Im(axt) 6= 0) implies an amplitude coupling

in the (x, ω) space (Re(bxω) 6= 0). The central laser frequency ω varies as a function of the transverse

position x. This is the definition of the spatial chirp (i.e. a space-frequency coupling). Moreover,

WFR translates into an amplitude spectro-temporal coupling in the (k, t) space (i.e. Re(dkt) 6= 0).

This means that the laser wave vector is time-dependent. WFR is actually associated to the rotation

of the laser wave vector over time: different laser wavefronts propagate along different directions.

On the other hand, a pulse-front tilt coupling in the spatio-temporal domain Re(axt) 6= 0 gives

rise to an amplitude coupling in the (k, ω) space ( Re(ckω) 6= 0). As already mentioned, the (k, ω)

space representation illustrates the angular spectral distribution of the laser field. A non null Re(ckω)

means that different frequencies constituting the laser wave packet propagate along different angular

directions θ ≃ ckx
ω . This spatio-temporal coupling is commonly called angular dispersion (AGD) [54].

Note also that angular dispersion (⇔ Re(ckω) 6= 0 ) could emerge even in the absence of pulse-front

tilt (Re(axt) = 0). Indeed, as shown by table III.5.3, the presence of wavefront curvature (Im(axx) 6= 0)

and wavefront rotation (Im(axt) 6= 0) may induce angular dispersion through the relationship:

ckω =
1

4

axt
axxatt + a2xt
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This case is illustrated by figure III.14. The left panel represents the spatio-temporal profile of a laser

beam exhibiting WFR and wavefront curvature. The amplitude the spectrum of this field in the (k, ω)

space is sketched in the left panel. The spatio-temporal couplings translate into a tilted spectrum

amplitude in the (k, ω) space (i.e. an amplitude coupling in this space) associated to AGD.

It is important to mention that the wavefront curvature resulting from propagation in vacuum of

a laser pulse, exhibiting wavefront rotation only (no initial PFT, no temporal chirp and no wavefront

curvature) at focus does not induce angular dispersion. Indeed, assuming a short laser bandwidth, and

under the paraxial approximation, free propagation in vacuum can be approximated by the Huygens-

Fresnel method:

Ê(kx, ω, z = z0) = Ê(kx, ω, z = 0) exp

(
−iz0

k2x
2k0

)
(III.82)

where k0 =
ω0

c is the laser wave vector. Hence, when the pulse propagates in vacuum, the coupling pa-

rameter in the (k, ω) space ckω is not modified. Therefore, the angular dispersion remains unchanged.

In appendix A, we show how free propagation in vacuum simultaneously gives rise to PFT, wavefront

curvature and temporal chirps such that the AGD is kept null.

However, inducing angular dispersion by curving the wavefronts of a rotating laser pulse is still

possible if the wavefront curvature results from an external distortion of the laser wavefront. Such a

distortion may be the result of the plasma mirror curvature in the case of Doppler HHG, or the laser

intensity spatial variations in the case of CWE harmonics.
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Figure III.14: Left panel: Spatio-temporal profile of an ultra-short laser pulse exhibiting WFR and
wavefront curvature. The spectro-spectral representation of the same pulse. The tilt in the (k, ω)
space is associated to AGD.

III.5.4 Practical realization of the attosecond lighthouse effect

The attosecond lighthouse effect relies on driving a HHG process using a laser pulse with WFR.

As we detail now, inducing wavefront rotation into ultra-short laser pulses can be easily achieved in
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CPA-based lasers.

The spectro-temporal representation in the (k, t) space of a laser pulse under the paraxial ap-

proximation can be interpreted as the spatio-temporal profile of the same pulse at the focal plane

of a focusing optics. Therefore, spatio-temporal coupling parameter pertaining to the pulse at focus

expressed in the (x, t) space is proportional to the spatio-temporal coupling before focusing when

expressed in the (k, t) space (with a real proportionality coefficient) :

aAF
xt ∝ dBF

kt (III.83)

where the acronyms AF and BF stand for at focus and before focusing respectively.

Consequently, if the initial pulse (before focusing) exhibits pulse-front tilt coupling (Re(axt) 6= 0,

Im(axt) = 0), in the absence of wavefront curvature (Im(axx) = 0), we have dBF
kt ∈ iR. Hence, the

spatio-temporal coupling parameter at focus aAF
xt is pure imaginary, so the initial pulse-front tilt is

converted into wave-front rotation at focus. Figure III.15 physically illustrates how a PFT may induce

a WFR at focus [55]. Panel (a) represents the focusing of a laser pulse in the presence of PFT. Due to

the spatio-temporal coupling in the initial pulse, different laser wavefronts across the laser pulse reach

different spots of the focusing lens surface. Therefore, the laser wavefronts, not reaching the lens at its

center are tilted at focus which results in the apparent rotation of the laser wavefronts. Equivalently,

panel (b), shows how the coupling conversion can be explained by interpreting the PFT as angular

dispersion. In this case, different colors constituting the initial pulse impinge the lens with different

angles (due to AGD). Therefore, each wavelength is focused on a different transverse position of the

lens focal plane. At focus, the resulting field exhibits a spatial chirp (frequency dependence to the

transverse position) which is equivalent to a wavefront rotation. This behavior suggests that WFR

can be triggered by focusing a laser pulse with PFT. So the question is, how to induce and control the

pulse-front tilt before the focus?
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Figure III.15: Focusing a laser pulse in the presence of PFT/AGD. Panel (a), in the presence of PFT,
the laser wavefronts are tilted with respect to the pulse-front. At the focus of the lens, the initially
parallel wavefronts become tilted with respect to each other, giving rise to WFR. Panel (b): in the
presence of AGD, each wavelength constituting the laser wave packet impinges the lens surface with a
different angle. Hence, each frequency is focused on a different position of the lens focal plane, giving
rise to angular dispersion.

III.5.5 Inducing pulse-front tilt

The real challenge to control laser wavefront rotation velocity mostly resides in inducing and

manipulating the amount of pulse-front tilt before focusing. Figure III.16 schematically illustrates

how an ultra-short regular laser pulse refraction inside a dispersive optical prism gives rise to PFT.

Inside the prism, the laser pulse-front travels at the group velocity, while the laser wavefront travels

at the phase velocity. Due to the dispersive nature of the prism, the group and phase velocities of

light inside the prism are not equal. Therefore, pulse-front (which travels at the group velocity) and

the wavefront (which travels at the phase velocity) are tilted with respect to each other by the prism.
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Figure III.16: Pulse-front tilt induced by a dispersive prism.

In reference [54], the author derived a general relationship between the angular dispersion and the

pulse-front tilt induced by the propagation of an ultra-short laser pulse in any dispersive medium.

This relationship reads:

tan(cξ) = −λ0
dΓ(λ)

dλ

ξ = arctan(λ0
dΓ(λ)

dλ
)/c

(III.84)

where Γ(λ) is the propagation angle gap between the spectral component of wavelength λ and the

central laser spectral component (with wavelength λ0) of the resulting pulse. The quantity dΓ(λ)
dλ char-

acterizes the angular dispersion effect of the dispersive media.

In practice, introducing a pulse-front tilt into an ultra-intense ultra-short laser pulse relies on

misaligning the last grating of a laser system. This grating is usually used to recombine different

spectral components of the pulse in typical CPA-based chains [1]. Figure III.17 schematically illustrates

the light diffraction in such a setup.
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Figure III.17: Diffraction on a misaligned double-grating.

Equation III.84 suggests that the pulse-front tilt induced by this setup can be deduced from its

angular dispersion. We assume that the two gratings have the same step denoted a. We only consider

first order diffractions on both gratings. The diffraction grating formulas read:

sin(i) + sin(r) =
λ

a

sin(i−Θ) + sin(Γ) =
λ

a

(III.85)

Differentiating both equations with respect to λ gives:

dr

dλ
=

1

acos(r)

dΓ

dλ
=

1

a
− cos(r −Θ)

dr

dλ

(III.86)

after few manipulations we get:

dΓ

dλ
=

1− cos(r −Θ)/cos(r)

a
√
1− (λ/a− sin(r −Θ))2

(III.87)

under the paraxial approximation, and using the relationship of equation III.84, we get:

tan(cξ) = −λ0
a

tan(r)

cos(i)
Θ (III.88)

Concretely, pulse-front tilt can be controlled at will by slightly misaligning a double-gratings in a

CPA laser chain via the relationship III.88.

III.5.6 From PFT to WFR

In this section, we characterize a Gaussian laser with wavefront rotation resulting from the focusing

of an ultra-short laser with PFT. Let f be the focal distance of the focusing optics.

Before focus, the pulse-front tilted electric field expression reads:

E(xi, t) = E0 exp
(
−
( t− ξxi

τi

)2
−
( xi
wi

)2
− iω0t

)
(III.89)
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in the (k, t) space, this expression becomes:

Ê(kx, t) =

∫ ∞

−∞
E(xi, t) exp(−ikxxi)dxi

Ê(kx, t) = E0 exp
(
− w2

i

k2x
1 + (wiξ/τi)2

− t2

τ2i (1 + (wiξ/τi)2)

)
×

exp(iωt+ ikxt
ξw2

i

τ2i (1 + (wiξ/τi)2)

(III.90)

The field expression at focus can be computed by the Fraunhofer diffraction:

EAF (xf , t) ∝ Ê(kx =
xfk0
f

, t) (III.91)

using III.90, we get:

E(xf , t) = Ef
0 exp

(
−

x2f
w2
f (1 + (ξwi/τi)2)

)
×

exp
(
− t2

τ2f (1 + (ξwi/τi)2)

)
×

exp(iω0t+ iζtx)

(III.92)

with

wf = w0

√
(1 + (ξwi/τi)2)

and

w0 =
λ0f

πwi

wf is the effective beam waist at focus while w0 is the usual laser waist at focus in the absence of

PFT. Moreover, we have:

τf = τi
√
(1 + (ξwi/τi)2)

the laser temporal duration at focus and:

ζ =
2ξwi

w0τ2i (1 + (ξwi/τi)2)

is the laser wavefront rotation parameter.

The PFT before focus increases the pulse duration and waist at focus by a factor of
√
(1 + (ξwi/τi)2).

Assuming that the laser energy is conserved, the laser amplitude at focus |Ef
0 | reads:

|Ef
0 |

|E0| =
√
wi

w0

1√
(1 + (ξwi/τi)2)

We now compute the laser wavefront rotation velocity at focus. We first define the instantaneous

laser direction of propagation as β ≃ k⊥
k0

with k⊥(t) = kx
d(ζtx)
dx . Finally, we define the laser wavefront

rotation velocity Vr as the temporal derivative of its instantaneous direction of propagation.

Vr(ξ) =
dβ

dt

Vr(ξ) =
ζ

k0

Vr(ξ) =
w2
i ξ

fτ2i (1 + (ξwi/τi)2)

(III.93)
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Figure III.18, shows the evolution of the laser WFR velocity as a function of the PFT parameter before

focusing ξ. The wavefront rotation reaches a peak at ξ = ξmax = τi
wi

before slowly decreasing. The

maximum WFR velocity reads:

V max
r =

wi

2τif

τf =
√
2τi

wf =
√
2w0

|Ef
0 |

|E0| =
1√
2

√
wi

w0

(III.94)
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Figure III.18: Wavefront rotation velocity as a function of the pulse-front tilt before focus.

Maximizing the laser wavefront rotation velocity at focus induces a temporal and spatial beam

sizes increase by a factor of
√
2 and a laser intensity decrease by 50%. Note also that the wavefront

rotation velocity is inversely proportional to the laser temporal duration before focus τi. Therefore,

longer laser pulses would sustain lower maximum wavefront velocities.

III.5.7 Separation condition of attosecond light pulses

Figure III.19 illustrates under which conditions the use of a rotating laser pulse leads to angular

separation of attosecond light pulses in the far-field.

Assuming that the emission direction of attosecond light pulses follows the instantaneous driving

laser wave-vector direction, the angular separation between two successive attosecond light pulses is

∆θ = ∆TVr where ∆T is the delay between the emission times of two successive attosecond light

pulses. In the context of Doppler HHG, a single attosecond light pulse is emitted at each laser optical

cycle. Therefore we have

∆θ = T0Vr
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As the train of attosecond light pulses diffracts in vacuum, spatially filtering a single attosecond

pulse in the far-field with a slit is only possible when ∆θ is larger than the angular spread of individual

attosecond pulses. Otherwise, the filtered signal will be made of two (or more) undesired parasite spikes

coming from attosecond pulses close to the targeted pulse before the slit. The higher the temporal

contrast of the filtered signal, the better the angular separation is. Additionally, the smaller the slit is,

the higher is the contrast between the central pulse and its satellite pulses. However, this also lowers

the total energy in the central pulse. Assuming that harmonic beam divergences constitute a good

measurement of their angular spread, we consider that a good separation is achieved when:

∆θ

θn
& 1 (III.95)

where θn is the divergence of a single attosecond pulse. This separation criterion is arbitrary, and

depending on the potential applications and use of attosecond light pulses, a higher separation ratio

∆θ
θn

might be required to increase the temporal contrast of the filtered signal.

Figure III.19: Attosecond pulses separation with the lighthouse scheme. The separation is only
possible when the angular divergence θn of a single attosecond light pulse is smaller than the angular
separation between successive pulses ∆θ.

Successful experimental demonstrations of attosecond lighthouse effect, whether on gaseous media

or on plasma mirrors in the non-relativistic regime were performed using extremely short laser pulses

(FWHM = 5fs) in order to induce a high laser WFR velocity. Nevertheless, this scheme has never been

transposed to the relativistic regime to produce isolated attosecond light pulses. The main difficulty

arising in the context of Doppler HHG results from the important divergence of high order harmonics in

this regime. Therefore, the required WFR velocity is only achievable when using extremely short laser

pulses (of one or two cycles only). Unfortunately, amplifying laser pulses with such broad bandwidths

to reach relativistic intensities remains a hard challenge to solve for current laser technologies.
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IV.1 Numerical modelling in plasma physics

The plasma state describes a broad range of physical systems with wide variety of parameters

(temperature, density, pressure, ionization degree ...), thus various theoretical descriptions of plasma

states are possible, depending on the physical mechanisms at play.

In this context, we can identify three possible modelling approaches to describe plasma systems:

• Microscopic description: where each particle constituting the plasma medium is modelled indi-

vidually. This modelling is equivalent to an N-body problem where each particle dynamics is

governed by external forces induced by all other particles.

• Statistical (or kinetic) description: where plasma is described via the density distribution func-

tion of each of its species in the phase space (t, ~r, ~p). In this case, a statistical description of

the plasma medium is employed. Depending on the importance of binary collisions, this ap-

proach gives rise to the Boltzmann equation (for collisional plasmas) or Vlasov equation (for

collision-less plasmas).

• Fluid description: when the plasma is near equilibrium, the plasma can be described via its

density, mean velocity, temperature and pressure following a fluid approximation.

In the context of high order harmonic generation on solid targets, kinetic effects are dominant

as plasmas are out of equilibrium. However, collisional effects can be neglected as the electrons-

ions collisions period is much larger than the total laser-plasma interaction duration. Therefore, the

Vlasov equations, coupled with the Maxwell’s equations, is a satisfying approach to describe both the

electromagnetic fields and the plasma dynamics.

IV.2 Maxwell-Vlasov equations

The Maxwell-Vlasov equations are a PDE system that describe the evolution of the density distri-

bution functions of each plasma species in the 6D phase space (x, y, z, px, py, pz) in the collision-less

regime. Let us consider a species s of mass ms and charge qs associated with a density distribution

function fs. It can be shown that under the collision-less hypothesis, the density distribution function

is solution of the Vlasov equation [29]:

∂fs
∂t

+
d~r

dt
∇~rfs +

d~p

dt
∇~pfs = 0 (IV.1)

Assuming that the plasma is only prone to electromagnetic forces (neglecting gravity), the Vlasov

equation is simply an advection equation whose characteristic lines (~r, ~p) are solutions to the following

equations:

d~p

dt
= qs

(
~E + ~v ∧ ~B

)

d~r

dt
= ~v =

~p√
m2

s + |~p|2/c2
(IV.2)

On the other hand, the electromagnetic fields are governed by the Maxwell’s equations that we

recall here:
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~∇. ~E =
ρ

ε0
~∇∧ ~E = −d ~B

dt
(IV.3)

~∇. ~B = 0 ~∇∧ ~B = µ0 ~J +
d ~E

c2dt
(IV.4)

Maxwell’s equations are coupled to the density distribution functions fs(~r, ~p, t) via the source terms

ρ and ~J , which are related to fs via the following relationship:

ρ =
∑

s

qs

∫
fsdpxdpydpz

~J =
∑

s

qs

∫
fs

~p

ms

√
1 + |~p|2

(msc)2

dpxdpydpz
(IV.5)

A Eulerian discretization of the Maxwell-Vlasov system given by equations IV.1 IV.4 and IV.5

mandates to discretize 6 computation axes (3 space dimensions and 3 momentum dimensions) and

would necessitate thousands of billions of cells even with a coarse grid sampling (say one hundred

grid point per axis). The use of the Particle-In-Cell method represents a good numerical strategy to

substantially reduce the computational complexity of the Maxwell-Vlasov system while still keeping

an accurate kinetic description of the physics at play. In this case, only the spatial domain is dis-

cretized, while the density distribution function variation with respect to momentums is inferred via

a Lagrangian formalism.

IV.3 The Particle-In-Cell (PIC) method

The PIC method [56, 57] is a particle-mesh approach to solve the Maxwell-Vlasov system. On the

one hand, the electromagnetic quantities, obeying to the Maxwell’s equations are discretized using a

Eulerian description on a fixed simulation grid.

On the other hand, the density distribution function is computed using a Lagrangian approach.

In this case, the distribution function is divided into N elementary distribution functions in the phase

space (~r, ~p):

fs(~r, ~p, t) =

N∑

i=1

f is(~r, ~p, t)

These elementary functions, commonly called macro-particles, are supposed to have a finite exten-

sion in space with a definite momentum ~p at all times:

f is(~r, ~p, t) = h(~r − ~ri(t))δ(~p− ~pi(t))

where h is a bounded-support function centered around 0, and (~ri(t), ~pi(t)) are the coordinates in

the phase space of the center of the ith macro-particle at time t. These macro-particles can be seen

as solid bodies driven by electromagnetic forces. Each macro-particle i, (~ri(t), ~pi(t)) follows a well

determined Vlasov characteristic line in the phase space, specified by equation IV.2 and the initial

conditions (~ri(t = 0), ~pi(t = 0)). Therefore, the macro-particles dynamics is simply governed by the
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relativistic momentum conservation principle. For this reason, macro-particles are seen as a collection

of physical particles which are close to each other in the phase space (both in momentum and position).

After initializing the plasma macro-particles and initial fields in the simulation domain, the PIC

algorithm is essentially composed of four main steps that are summarized here:

1. Maxwell solver: advance electromagnetic fields over one time step on the simulation grid, taking

into account the electric current and the charge densities.

2. Fields interpolation: interpolate electromagnetic fields on each particle position.

3. Particle pusher: use the interpolated fields to update the particles momentums and positions.

4. Current/charge deposition: use the updated particles velocities and positions to compute the

new currents and charge densities on the simulation grid.

The PIC algorithm is a simple, yet powerful numerical approach to tackle a large variety of plasma

physics problems. Note that this representation is not an exhaustive description of all the capabilities

of modern PIC codes which often include advanced physical modules for modelling additional physical

phenomena such as ionization processes, quantum electrodynamics effects, and collisions, but these

effects are out of the scope of this work and will not be further discussed.

A wide variety of numerical techniques can be used in order to perform each of the four PIC steps.

In practice, PIC simulations are very computationally expensive as they require billions of macro-

particles and grid cells for a full 3D geometry. In the following, we present the main numerical methods

and parallelization strategies used in the PIC framework WARP+PICSAR to which I contributed

during this thesis.

IV.3.1 WARP + PICSAR PIC framework

WARP+PICSAR software is a PIC code composed of two independent softwares, that are WARP1

and PICSAR 2. WARP is a PIC code written in Fortran and Python languages and developed at the

Lawrence Berkeley National Laboratory (LBNL), while PICSAR is a full Fortran library, co-developed

by CEA and LBNL, it includes highly optimized PIC computing kernels and supports multiple levels

of parallelisms. PICSAR is intended to be used as a PIC toolbox for other PIC codes, but it can also

work as a standalone simulation package (although with limited input/output features). Currently,

PICSAR can be used by SMILEI code [58] (to access to FFT based Maxwell solvers that will be

presented later) and WARPX [59] to boost specific computations.

When using the WARP+PICSAR framework, all the computationally demanding operations are

performed with the optimized PICSAR kernels, while the WARP code mainly serves to set the initial

simulation setup, carry out the numerical diagnostics, and schedule the PIC computations. It also

offers a user-friendly interface to design numerical experiments.

1https://blast.lbl.gov/blast-codes-warp/
2https://picsar.net/
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IV.3.2 Discretization of PIC quantities

The standard spatial/temporal discretization for field quantities (current/charge and electromag-

netic components) in most PIC codes relies on the Yee lattice [60]. This scheme defines two spatially-

staggered discretizations along each simulation axis. Each mesh grid quantity is discretized within

a specific grid along each direction. This setup allows for a spatio-temporal leap-frog integration of

Maxwell’s equations. Figure IV.1 represents the fields discretization over the Yee lattice as defined in

the WARP+PICSAR framework. Note that in the original Yee lattice, electric and magnetic fields are

defined on half-time step shifted times. This consideration is adjusted in the WARP+PICSAR PIC

code, depending on the Maxwell solver algorithm that is used (more details on that in the Maxwell

solvers section).

On the other hand, the discretization of macro-particles momentum/positions usually used in most

PIC codes relies on temporal staggering between position and momentum in order to enable a leap-frog

integration of macro-particles dynamics as well (cf table IV.1).

x

y

z

k✁z

(k+1)✁z

i✁x (i+1)✁x

(j+1)✁y

j✁y
Ex,Jx

Bx

Ez,Jz

By

Ey,Jy
Bz

Figure IV.1: Schematic representation of fields staggering on the Yee lattice.
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Fields x y z t

Ex (i+ 1
2)∆x j∆y k∆z n∆t

Ey i∆x (j + 1
2)∆y k∆z n∆t

Ez i∆x j∆y (k + 1
2)∆z n∆t

Bx i∆x (j + 1
2)∆y (k + 1

2)∆z (n+ 1
2)∆t

By (i+ 1
2)∆x j∆y (k + 1

2)∆z (n+ 1
2)∆t

Bz (i+ 1
2)∆x (j + 1

2)∆y k∆z (n+ 1
2)∆t

Jx (i+ 1
2)∆x j∆y k∆z (n+ 1

2)∆t
Jy i∆x (j + 1

2)∆y k∆z (n+ 1
2)∆t

Jz i∆x j∆y (k + 1
2)∆z (n+ 1

2)∆t
ρ i∆x j∆y k∆z (n+ 1)∆t

Particles - - - t

Position - - - (n+ 1)∆t
Momentum - - - (n+ 1

2)∆t

Table IV.1: Spatial and/or temporal positions of field quantities and macro-particles at the end of the
nth PIC iteration.

IV.3.3 Current/charge deposition

The current/charge deposition consists in retrieving the electromagnetic sources (ρ, ~J) from the

macro-particles distribution as shown by equation IV.5. Numerically, macro-particles are provided

finite but non-null spatial extent to interact with the grid. In a discretized approach, numerically

computing the charge density consists in computing ρni,j,k in the following way:

ρni,j,k =
1

∆x∆y∆z

∑

s

qs

Ns∑

l=1

W s
l .S(x

n
(l,s), y

n
(l,s), z

n
(l,s))(i,j,k) (IV.6)

with:

• (∆x,∆y,∆z) are the spatial cell sizes along x,y,z directions.

• Ns the number of macro-particles of the sth species.

• Wl is the weight of the lth macro-particle of the sth species. This quantity is equivalent to the

number of real particles that the macro-particles represents.

• (xnl,s, y
n
l,s, z

n
l,s) denote the spatial coordinates of one macro-particle at time step n.

• S(i, j, k) is the spatial shape function centered on the node i, j, k. The shape function reflects

the extent of macro-particles in space.

Depending on the spatial extent of shape functions S(i, j, k), each macro-particles inducts a charge

density on an arbitrary number of grid points. The shape functions used in the WARP+PICSAR

PIC code are those derived in [57], which guarantee a smooth evolution of the density distribution as

the macro-particles move on the grid, and a bounded support contribution of each macro-particle to

the total charge density. These shape functions are spline functions of arbitrary orders k, which are

recursively defined as follows:

Sk(x) = S1 ⊗ Sk−1(x) (IV.7)
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where S1 is the top-hat function defined as:

S1(x) =

{
1 if − ∆x

2 < x ≤ ∆x
2

0 otherwise
(IV.8)

The evolution of shape functions for k = 1..3 in 1D are depicted in figure IV.2. The number of

grid points involved in the charge deposition is equal to spline order k along each dimension, and its

integral over space is equal to one cell size.
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Figure IV.2: Shape functions for k = 1, k = 2, and k = 3.

The choice of the shape function order is a trade-off between the tolerated numerical noise and

the computational cost: higher orders guarantee a smoother charge density deposition while requiring

more computations.

The same computational method described to compute ρ can be used to compute J :

J
n+ 1

2
x
i+1

2
,j,k

=
1

∆x∆y∆z

∑

s

qs

Ns∑

l=1

W s
l v

x
l,s.S(x

n
(l,s), y

n
(l,s), z

n
(l,s))(i+ 1

2
,j,k) (IV.9)

However, this method does not guarantee that the continuity equation is verified:

∂ρ

∂t
+ ~∇. ~J = 0 (IV.10)

A modified version of the current deposition using arbitrary shape function is employed. This

method is known as the Esirkepov current deposition algorithm [61], it verifies the discretized conti-

nuity equation, considering second order derivatives spatial and temporal derivative operators:

ρn+1
i,j,k − ρni,j,k

∆t
+
J
n+ 1

2
x
i+1

2
,j,k

− J
n+ 1

2
x
i− 1

2
,j,k

∆x
+
J
n+ 1

2
y
i,j+1

2
,k
− J

n+ 1

2
y
i,j− 1

2
,k

∆y
+
J
n+ 1

2
z
i,j,k+1

2

− J
n+ 1

2
z
i,j,k− 1

2

∆z
= 0 (IV.11)

IV.3.4 Fields interpolation

To solve the macro-particles dynamics, the Lorentz forces acting on the macro-particles are re-

quired. For this, the electromagnetic fields, initially defined on the mesh grid are interpolated on
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the macro-particles positions employing shape functions, in the same fashion as the current/charge

deposition step:

En
x (xl, yl, zl) =

∑

i,j,k

S((i+
1

2
)∆x, j∆y, k∆z)(xl,yl,zl)E

n
x ((i+

1

2
)∆x, j∆y, k∆z)~ex (IV.12)

Note that the shape functions used for both the fields interpolation and the current/charge depo-

sition need to be the same to avoid unphysical self-exerted forces.[57].

IV.3.5 Particles pusher

Once both the electric and magnetic fields are known on each macro-particle, the macro-particles

dynamics is updated by solving equation IV.2. Several numerical approaches are possible to integrate

this equation of motion. The most commonly employed scheme in PIC codes is the well-known Boris

pusher [56]. The Boris pusher updates the macro-particles momentums pn−
1

2 and positions xn through

a leap-frog integration:

pn+
1

2 − pn−
1

2

∆t
= qs

[
En +

(pn+ 1

2 + pn−
1

2

2γnms

)
∧Bn

]

γn =

√

1 +
(pn− 1

2 + pn+
1

2

2msc

)2
(IV.13)

xn+1 − xn

∆t
=

pn+
1

2√
m2

s + ||pn+ 1

2 ||2/c2
(IV.14)

The right hand side of equation IV.13 involves the unknown momentum pn−
1

2 and would therefore

require an implicit integration. However, Boris showed that this integration can be performed explicitly

by splitting the Lorentz force as follows:

~FL = ~F1 + ~F2 + ~F3 =
1

2
~FE

︸︷︷︸
1

2
Electric force

+ ~FB︸︷︷︸
Magnetic force

+
1

2
~FE

︸︷︷︸
1

2
Electric force

and performing a three-steps integration of the equation of motion, using ~F1, ~F2, ~F3 successively.

IV.3.6 Maxwell Solver

While most modern Particle-In-Cell softwares rely on finite-different schemes to solve the Maxwell’s

equations, WARP+PICSAR offers the possibility to use more sophisticated, FFT-based, pseudo-

spectral solvers along with original efficient parallelization strategies. First, we present the Finite-

Different Time Domain solver employed by many PIC codes and discuss its limitations in the context

to HHG simulations. Then, we present the pseudo-spectral solver, implemented in WARP+PICSAR

code, along with the innovative parallelization approach initially proposed by J.L.Vay et al [25].
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Finite-Difference Time Domain

The Finite-Difference Time Domain (FDTD) technique [60, 62] is based on a finite-different scheme

to compute numerical differentiations in both time and space using a low order stencil. The FDTD

integration of Maxwell’s equations reads as follows:

1

c2
(DtEx

i+1
2
,j,k

)n+
1

2 = (DyB
n+ 1

2
z )i+ 1

2
,j,k − (DzB

n+ 1

2
y )i+ 1

2
,j,k − µ0J
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2
x
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2
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1

2 = (DxB
n+ 1

2
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where the derivative operators Dt, Dx, Dy, Dz on any given field quantity Fn
i,j,k are defined as follows:

(DtF )
n =

Fn+ 1

2 − Fn− 1

2

∆t

(DxF )i,j,k =
Fi+ 1

2
,j,k − Fi− 1

2
,j,k

∆x

(DyF )i,j,k =
Fi,j+ 1

2
,k − Fi,j− 1

2
,k

∆y

(DzF )i,j,k =
Fi,j,k+ 1

2

− Fi,j,k− 1

2

∆z

(IV.16)

By staggering the electric and magnetic fields both spatially and temporally as defined in the Yee

lattice, the numerical error induced by the spatial and temporal derivatives over a single time step is

of order two in both time and space:

ǫ = O(∆x)2 +O(∆y)2 +O(∆z)2 +O(∆t)2 (IV.17)

Using the FDTD scheme along with a charge conserving algorithm for the current deposition (such

as the Esirkepov algorithm) guarantees that the Maxwell-Gauss equation is verified at all time steps,

provided the initial electric field verifies the Maxwell-Gauss equation. Similarly, and under the same

condition, the Maxwell-Thomson ~∇. ~B = 0 is verified at all time steps:

(DxE
n
x ) + (DyE

n
y ) + (DzE

n
z ) =

ρn

ε0

(DxB
n+ 1

2
x ) + (DyB

n+ 1

2
y ) + (DzB

n+ 1

2
z ) = 0

(IV.18)

Parallelization of the PIC algorithm with the FDTD scheme

The FDTD method is a relatively simple and straightforward numerical approach for solving

Maxwell’s equations. Moreover, the FDTD scheme is well-suited to be parallelized at arbitrary scales

on distributed memory architectures. Indeed, parallelizing FDTD scheme can be achieved by employ-

ing a standard domain decomposition techniques (DD) on the simulation domain. This parallelization

55



Chapter IV. Basics of the PIC algorithm

strategy consists in dividing the simulation domain into small subdomains. Each subdomain is asso-

ciated to a different processing unit. Neighboring subdomains only overlap over a small region called

guard-region.

The computations underlying the FDTD scheme at each mesh grid point only involve data from

close neighboring mesh grid cells/nodes. Therefore, the computations within different subdomains

are performed independently by each processing unit. At each time step, data from the guard region

intervenes to update electromagnetic quantities near the subdomains borders as shown in figure IV.3.

This parallelization strategy can be used in PIC codes and extended to parallelize the whole PIC

algorithm (cf figure IV.3). Therefore, each processing unit also deals with the computations pertaining

to the macro-particles that lay within its subdomain at each time step (current deposition, particles

motion ...). Macro-particles are exchanged between neighboring subdomains when they cross the

subdomains boundaries. Note that when using extended shape functions (with large supports), the

macro-particles laying near subdomain boundaries may contribute to the current/charge of neighboring

subdomains. For this reason, a different current/charge densities data exchanges is performed in order

to take into account the contribution of macro-particles to external subdomains meshes (cf panel (c)).

Moreover, the number of guardcells (the number of cells inside the guard region) should take into

account the shape functions used in the PIC loop.

56



Chapter IV. Basics of the PIC algorithm

x

y

Figure IV.3: Parallelization of the PIC algorithm. The simulation domain is split into subdomains.
Guardcells are appended to each simulation domain. Macro-particles deposit current and charge
on the subdomain+guard region before Maxwell’s equations solve (panel a). Guardcells are filled
with data from neighboring subdomains (panel b). Particles that are initially close to a subdomain
boundary may deposit current on a neighboring subdomain. Maxwell’s equations are then solved on
each subdomain. Macro-particles are pushed (panel c). If a macro-particle enters the guard region, it
is sent to the corresponding subdomain. Each MPI task handles the computations associated with a
unique subdomain.

This parallelization strategy is used in many PIC softwares. In the WARP+PICSAR code, this

parallelization is handled by the Message-Passing-Interface library (MPI). Hence, each subdomain is

associated to one MPI task.

Besides, PICSAR enables an additional shared-memory parallelization level within each MPI task:

each subdomain is further subdivided into multiple smaller subdomains denoted by ‘tiles‘. The com-

putations pertaining to macro-particles (field interpolation, particles push, current/charge deposition)

are performed on the tile level before being merged on the MPI task mesh grid level to solve Maxwell’s

equations. The workload associated to tiles is distributed among different threads belonging to each

MPI task, using the shared memory parallelization API OpenMP. The size of data laying within

each tile is preferably set so that it fits into the fastest cache memory layer to enable efficient cache

reuse and fast computations. Finally, computations within each tile are boosted by using vectorized

implementations of different PIC steps via Single Instructions Multiple Data instruction set [63].

Numerical dispersion and stability condition for FDTD

The FDTD scheme has many advantages, among which its efficient parallelization over distributed

memory machines. Nevertheless, it has as well various numerical limitations that hinder its accuracy.
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These limitations are related to the unphysical electromagnetic field behavior when propagated via

the FDTD scheme. In the context of ultra-high intensity physics PIC simulations, these drawbacks

can sometimes strongly spoil the accuracy of the results obtained from PIC simulation when using the

FDTD method [23].

To highlight those limitations, we derive the numerical dispersion relation associated with the

FDTD scheme.

From equation IV.15, one can deduce the discretized numerical propagation equation that applies

to all the electromagnetic fields components in vacuum. Considering the Ex field component for

example, this leads to:

∆d
xE

n
x +∆d

yE
n
x +∆d

zE
n
x =

1

c2
∆d

tE
n
x (IV.19)

where, for a given field F, the discrete second order derivative operators ∆d
x, ∆

d
y, ∆

d
z and ∆d

t read:

∆d
xFi,j,k =

Fi+1,j,k − 2Fi,j,k + Fi−1,j,k

∆x2

∆d
yFi,j,k =

Fi,j+1,k − 2Fi,j,k + Fi,j−1,k

∆y2

∆d
zFi,j,k =

Fi,j,k+1 − 2Fi,j,k + Fi,j,k−1

∆z2

∆d
nF

t =
Fn+1 − 2Fn + Fn−1

∆t2

(IV.20)

The discrete second order derivatives operators correspond to a three point convolution in the real

space. Their dual operators in Fourier space write:

∆̂d
αFα =

2

∆α2
(cos(kα∆α)− 1)F̂α = − 4

∆α2
sin2(

kα∆α

2
)F̂α (IV.21)

where α stands for any dimension, both spatially or temporally. By Fourier transforming equation

IV.19 over time and space, we retrieve the relationship between the temporal frequency ω and spatial

frequencies (kx, ky, kz):

1

c2∆t2
sin2(

ω∆t

2
) =

1

∆x2
sin2(

kx∆x

2
) +

1

∆y2
sin2(

ky∆y

2
) +

1

∆z2
sin2(

kz∆z

2
) (IV.22)

Instead of the physical dispersion relation in vacuum ω2

c2
= k2x + k2y + k2z , the FDTD scheme verifies

a dispersion relation, given by equation IV.22. Note that when the spatio-temporal sampling goes to

zero (ω∆t, kx∆x, ky∆y, kz∆z) ≪ 1, the numerical dispersion relation converges to the physical one.

Another consequence of the numerical dispersion relation is the existence of a stability constraint on

the temporal time step ∆t, imposed by the spatial mesh sampling. For instance, when the Nyquist

wave vector ~KN = ± π
∆x~ex ± π

∆y~ey ± π
∆z~ez is injected into equation IV.22, we obtain:

sin2(
ω∆t

2
) = c2∆t2(

1

∆x2
+

1

∆y2
+

1

∆z2
) (IV.23)

which requires that:

c2∆t2(
1

∆x2
+

1

∆y2
+

1

∆z2
) ≤ 1 (IV.24)
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Otherwise, ω would be a complex number, resulting in an exponentially growing instability. This

condition is known as the Courant Friederichs-Lewy (CFL) and restricts the maximum time step

length in order to guarantee the stability of the scheme.

Figure IV.4, panel (a) depicts the electromagnetic phase velocity vφ as a function of the wave

vector (kx, ky) for a time step given by:

c2∆t2(
1

∆x2
+

1

∆y2
+

1

∆z2
) = 1

The phase velocity strongly deviates from its physical value c over a large portion of the spectral

domain. The amplitude of this deviation depends on the propagation angle θ in the grid. Note that the

numerical phase velocity remains accurate along the line kx = ky, corresponding to electromagnetic

waves propagating with a 45◦ angle with respect to the x-axis in the mesh grid, while it is strongly

dispersive for angles closer to 0 or π
2 (cf panel(b)).

Figure IV.4: Panel (a): Numerical phase velocity in 2D as a function of (kx, ky). Panel (b): Numerical

phase velocity for two different angles, θ = 45◦ and θ = 30◦ ( for c∆t

√(
1

∆x2 + 1
∆y2

)
= 1).

In many situations, the decrease in the phase velocity becomes highly detrimental to the accuracy

of simulation results. It can lead, for example, to the well-known numerical Cherenkov radiation in

the frame of plasma-based electron acceleration [23]. In this case, accelerated particles, traveling at a

velocity larger or equal to the numerical light phase velocity emit radiations that stay in phase with

the accelerated particles, leading to a resonant numerical instability.

On the other hand, in the context of high order harmonic generation on plasma mirrors, the ar-

tificial anisotropy of the FDTD scheme leads to spurious refraction of high order harmonics at the

plasma vacuum interface [24].

These numerical artifacts can be avoided by employing more accurate and more sophisticated

Maxwell solvers. One possible solution is to use FFT-based pseudo-spectral Maxwell solvers. This

method is detailed in the next section, along with the parallelization strategies proposed in the liter-

ature.
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IV.4 FFT-based Pseudo-spectral Maxwell solvers

As opposed to the FDTD scheme, which advances electromagnetic fields in the Yee lattice, pseudo-

spectral methods solve Maxwell’s equations in Fourier space. This type of solvers generally offers a

higher level of numerical accuracy as it can be based on error-free numerical derivative computations.

Nevertheless, due to the super-linear algorithmic complexity of Fast Fourier Transform (FFT) compu-

tations as well as their poor scalability efficiency on massively parallel architectures, pseudo-spectral

methods have been scarcely used in Particle-In-Cell codes for a long time, where scalability and per-

formance issues are often critical.

However, these numerical approaches have regained interest in the PIC community in recent years

as a novel parallelization approach has been proposed by J-L Vay et al [25] that enabled an efficient

weak scaling3 up to hundreds of thousands of cores [64] while overcoming numerous anomalous nu-

merical artifacts of the FDTD solver.

WARP+PICSAR code offers the possibility to use various formulations of pseudo-spectral FFT-

based Maxwell solvers along with different parallelization strategies, some of which have been developed

and implemented during this thesis.

In the following, we present the pseudo-spectral Maxwell solver formulation used for HHG simu-

lation in this thesis. Then we discuss the parallelization strategy proposed by J-L Vay et al and its

numerical accuracy.

IV.4.1 Pseudo-Spectral Analytical Time Domain

The Pseudo-Spectral Analytical Time Domain (PSATD) method [65] solves Maxwell’s equations in

the space (t, kx, ky, kz). It has the advantage of performing an analytical integration over the temporal

variable, provided realistic hypotheses regarding the current and charge variations. It is, therefore,

more robust than other pseudo-spectral schemes that rely on finite difference temporal integrations,

such as the Pseudo-Spectral Time Domain (PSTD) method [66].

To simplify the notations, we normalize the current Ĵ and the charge density ρ both by the vacuum

permittivity ε0. The Maxwell’s equations in the space (t, kx, ky, kz) read:

∂Ê

∂t
= ic2~k ∧ B̂ − Ĵ

∂B̂

∂t
= −i~k ∧ Ê

i~k.Ê = ρ̂

i~k.B̂ = 0

(IV.25)

3weak scaling consists in proportionally and simultaneously increasing the amount of work and the computational
ressources. Algorithms that maintain a roughly constant computation time, in this case, are said to have a good weak
scaling.
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We define the four quantities Ê± and B̂± as following:

Ê± =
Ê ± ck̃ ∧ B̂

2

B̂± =
B̂

±k̃
c ∧ Ê
2

(IV.26)

with

k̃ =
~k

|~k|
By differentiating Ê± and B̂± over time we get:

∂Ê±

∂t
= ±i|~k|Ê± − Ĵ

2
± icρ̂k̃

∂B̂±

∂t
= ±i|~k|B̂± ± k̃

c
∧ Ĵ

2

(IV.27)

This set of first order ordinary differential equations IV.27 can be integrated analytically using the

integrating factor method for example. The electromagnetic fields Ê and B̂ can be retrieved simply

by the relationships:

Ê = Ê+ + Ê−

B̂ = B̂+ + B̂−
(IV.28)

This analytical integration allows to get rid of the temporal staggering between the electric and

magnetic fields.

Assuming constant current and linear time dependence for the charge density over one time step,

the integration of IV.27 between t = n∆t and t = (n+ 1)∆t finally gives:

Ên+1 = CÊn + iSk̃ ∧ B̂n − S

|c~k|
Ĵn+ 1

2 + i
k̃

|~k|

[( S

c|~k|∆t
− 1
)
ρ̂n+1 +

(
C − S

c|~k|∆t

)
ρ̂n
]

B̂n+1 = CB̂n − iSk̃ ∧ Ên + i
1− C

c|~k|
k̃ ∧ Ĵn+ 1

2

(IV.29)

with

C = cos(c|~k|∆t)

S = sin(c|~k|∆t)

and where both the electric and magnetic fields are defined at integer time steps. Note also that the

PSATD method applies to both the staggered and centered grids meshes. The staggered Yee grid case

is handled by multiplying the spatial derivative operator in Fourier space i~k by an appropriate phase

factor that depends on the differentiated quantity staggering.

Thanks to the analytical integration over time and exact spatial differentiations in Fourier space,

employing the set of equations IV.29 to advance electromagnetic fields in vacuum rigorously preserves

the vacuum dispersion relation ω = c|~k|. Therefore, it is well suited for many numerical simulations

scenarios where the numerical dispersion of electromagnetic waves is critical. Figure IV.5 displays the

expansion of a Dirac pulse using both the FDTD scheme and the PSATD algorithm. One can note
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that the unphysical electromagnetic signal propagating with a phase velocity below the speed of light

in the FDTD case is completely absent when using the PSATD algorithm.

Figure IV.5: Propagation of a Dirac pulse with the PSATD solver (panel (a)) and FDTD (panel(b)).

Additionally, the PSATD method imposes no CFL condition on the time step size ∆t and is

unconditionally stable. However, in the frame of the PIC method, the condition:

∆t ≤ min(∆x,∆y,∆z)

c

is imposed so that ultra-relativistic macro-particles do not travel more than one mesh cell over a single

time step. This condition is necessary for the Esirkepov method.

Thus, PIC simulations employing the PSATD solver can be performed with larger time steps (and

less number of iterations) compared to a similar simulation employing FDTD.

Limitations of the PSATD algorithm

It is worth to mention that using the PSATD algorithm even with the Esirkepov current/charge

deposition algorithm does not conserve the Maxwell-Gauss equation. This is due to the fact that the

Esirkepov method verifies the numerical continuity equations with a second order spatial derivative

scheme, while Maxwell’s equations are solved using an exact spatial differentiation. For this reason,

divergence cleaning or current corrections methods should be used in some cases where preserving

Maxwell-Gauss equation is critical. WARP+PICSAR code features various numerical techniques for

stability/accuracy improvement, including divergence cleaning, current correction, and digital filtering

to mitigate various instabilities. Interested readers may refer to [67, 68, 69, 25, 56].

In the simulations presented in this thesis, these methods were not used as we have observed no

significant difference in the simulations results obtained with or without these correction techniques.

62



Chapter IV. Basics of the PIC algorithm

IV.4.2 Parallelization of the pseudo-spectral methods

For a long time, pseudo-spectral methods have not been adopted for PIC simulations. This is

due to the fact that these methods are not well suited for massively parallel super-computers based

on distributed memory architectures. Indeed, computing FFTs a distributed dataset between a large

number of processing units requires global communications between all of these processing units (and

not only between neighboring processes such as in FDTD). This type of operation exhibits poor scal-

ability passed few thousands of cores, even on modern architectures.

In 2013, J.L-Vay et at demonstrated that using a PSATD solver along with a standard domain

decomposition (such as the one used to parallelize the PIC loop when employing the FDTD scheme),

where FFT computations are performed serially over each subdomain (instead of global parallel FFTs),

efficiently suppresses numerical instabilities induced by the use of the FDTD scheme in typical laser-

plasma acceleration PIC simulations while still providing very accurate results (provided that relatively

large guard regions are used).

This result is rather surprising and counter intuitive as one would not expect the PSATD algorithm

to bring accurate results, while getting around its main computational bottleneck in such a simple

way. Hence, this robustness can be justified via physical/analytical considerations regarding Maxwell’s

equations, and Fourier transformation.

For instance, Maxwell’s equations are linear partial differential equations that impose a finite

propagation speed on electromagnetic waves. Therefore, as a result of the causality principle, the

standard domain decomposition method used to parallelize the PIC computations is theoretically

rigorously equivalent to a direct solving over the whole subdomain, provided that the guard regions

widths are larger or equal to the speed of light multiplied by the integration time. Note that this is only

true considering the continuous (and not the discretized) form of Maxwell’s equations. Nevertheless,

PIC simulations deal with discretized electromagnetic fields, and discrete Fourier transforms (instead of

continuous Fourier transforms). The discretization process renders the propagation of electromagnetic

quantities via PSATD method non causal as the computation of the spatial derivative in the Fourier

space corresponds to a non local operation in the real space, involving data from arbitrarily distant grid

points. Therefore, the computation of the spatial derivatives is altered by the domain decomposition.

This alteration is more important near the subdomains boundaries. Therefore one would expect

spurious Gibbs-like oscillations arising close to the subdomains edges. However, for sufficiently large

guard regions, this numerical artifact decreases as the computation of the spatial derivatives in Fourier

space becomes more accurate even near the subdomains boundaries.

IV.4.3 Truncation error and ultra-high order solvers

An extensive numerical investigation [70] rigorously quantified this noise, called truncation errors.

It showed that this numerical artifact remains localized near the subdomain boundaries, and that it

does not build up into large scale instabilities affecting the entire simulation domain. Moreover, the
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noise amplitude decays rapidly as the number of guardcells is increased. This paper also made another

important suggestion, which consists in employing ultra-high order derivative stencils instead of the

exact differentiation in Fourier space to compute spatial derivatives. The underlying idea is to make

the spatial derivative operators more local on the grid so that the truncation error is less important.

In practice, this consists in replacing the i~k × . derivative operator involved in the PSATD algorithm

by the Fourier transform of a high order finite-difference derivative operator in the real space. For

instance, as shown by Fornberg et al [71], the FDTD scheme can be generalized to any arbitrary order

in space by introducing additional terms associated to more distant mesh grid points in the calculation

of the spatial differentiation. The generalized derivative operator of order (p ∈ 2N) reads:

[Dp
x(F )](l) =

1

∆x

p

2∑

i=1

Ci
p

2

(
Fl+(i− 1

2
) − Fl−(i− 1

2
)

)
(IV.30)

where Ci
p

2

are called Fornberg coefficients and are defined in [72]. For a staggered grid, these

coefficients are given by:

Cj
p

2

=
(−1)j+1161−

p

2 ((p− 1)!)2

((2j − 1)!)2(p2 + j − 1)!(p2 − j)!((p2 − 1)!)2
(IV.31)

One can show via Taylor expansions, that for a sufficiently smooth function f we have:

df

dx
(l∆x) = [Dp

x(F )](l) + ǫp (IV.32)

with:

Fl = f((l +
1

2
)∆x)

ǫp = O(∆x)p
(IV.33)

Additionally, one can define the p-order wave vector kpx as the dual operator in Fourier space of Dp
x

i :

ikpx = D̂p
x = i

2

∆x

p

2∑

j=1

Cj
p

2

sin
(
(j − 1

2
)kx∆x

)
(IV.34)

This high order spatial differentiation method involves p
2 neighboring data points from each side.

Therefore, it is ’more local’ in the real domain than the exact operation i~k×. As a consequence, the

use of a finite yet high spatial derivative stencil significantly mitigates the truncation error, which

completely vanishes when the number of guardcells ng is equal to ng = p
2 . However, it is already

reasonably low even when ng ≪ p
2 (see [70]).

Employing the p-order stencil derivative alongside with the PSATD algorithm guarantees a very low

discretization error (cf equation IV.33) and ensures a physical numerical dispersion of electromagnetic

waves. For instance, the numerical dispersion relation of the p-order PSATD algorithm reads:

ω

c
=
√

(kpx)2 + (kpy)2 + (kpz)2 (IV.35)

Panel (a) of figure IV.6 sketches the ratio
vφ
c for an order 100 PSATD solver. The numerical

dispersion of the algorithm is very accurate over a large extent of the (kx, ky) space. It deviates from
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the exact vacuum dispersion relation only near the Nyquist frequency kNyquist =
π
∆x .

It is also important to mention that the truncation error has only a small effect on the numerical

dispersion relation accuracy. In panel (b), we sketched the phase velocity
vφ
c obtained from an order

100 PSATD solver when the Fornberg coefficients Cj
p

2
= 100

2

are forced to zero beyond the 10th coeffi-

cient Cj
p

2
= 100

2

∀j > 10). This situation corresponds to a modified order-100 PSATD solver with 10

guardcells surrounding subdomains on each side, and where only the contributions of the 10 nearest

grid points (from both sides) are taken into account in calculating the high order spatial derivatives.

In practice, we do not set the Fornberg coefficients beyond ng to zero in simulations. However, this

setup is the worst case scenario that would give rise to a stencil truncation error from all grid points

(even those far from the subdomains boundaries). Hopefully, even in this case, panels (b) and (c) of

figure IV.6 show that the solver dispersion relation remains very accurate.

Figure IV.6: Panel (a), numerical phase velocity of the PSATD solver with an order 100 stencil.
Panel (b), numerical phase velocity of the PSATD solver with an order 100 stencil but beyond the
10th coefficient. Panel (c), comparison between the phase velocities of the truncated and untruncated
PSATD solvers at 45◦ degree.

To illustrate the accuracy of this method, we performed a series of Dirac pulse propagation sim-

ulations, using the 100 order PSATD algorithm with different numbers of guardcells (cf panel (a) of

figure IV.7). We then compare the result of each test with the reference case employing 50 guardcells

(where there is no error due to the stencil truncation). In all the cases, the simulation domain is split

into 4× 416 subdomains. As shown by panel (b) of figure IV.7, the truncation error amplitude decays

exponentially with respect to the number of guardcells. And the error amplitude is already extremely

65



Chapter IV. Basics of the PIC algorithm

low for ng = 10 (error < 0.1%).
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Figure IV.7: Panel (a) Propagation of a Dirac pulse with the PSATD solver and order p=100 stencil
using 4× 4 subdomains and 10 guardcells in each direction. Panel (b): Relative L2 truncation errors
as a function of the number of guardcells.

With WARP+PICSAR, the PSATD Maxwell solver can be used along with a standard domain

decomposition for highly accurate and scalable PIC simulations. This implementation demonstrated

an excellent weak scaling up to hundreds of thousands of cores [63]. Nevertheless, by employing

relatively large guard regions, this standard parallelization strategy (called local PSATD later on)

induces important data redundancy due to multiple copies of fields values stored in the guardcells of

different processing units, which is detrimental to the strong scaling 4 efficiency at very large scales

as the workload pertaining to each processing unit is no longer inversely proportional to the total

processing units number. In chapter V we address this limitation by proposing a novel parallelization

strategy that significantly increases the scaling efficiency of the local PSATD algorithm at very large

scales while substantially reducing its memory footprint.

IV.5 Absorbing boundary conditions with PSATD

To emulate open boundary conditions for electromagnetic fields, we use the Berenger Perfectly

Matched Layers (PML) technique [73]. This method is based on introducing absorbing layers around

the simulation domain, where electromagnetic field components are split into two parts, corresponding

to different transverse electric and transverse magnetic modes along each direction (cf figure IV.8).

Inside each PML region, a modified version of Maxwell’s equations is solved, taking into account

4strong scaling consists in increasing the computational resources while keeping the amount of work constant. Al-
gorithms are said to have a good strong scaling if the computation time scales as the inverse of the computational
resources
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electromagnetic absorbing coefficients :

∂Ê
∂t

= c2iK × B̂ − σ̂ ⊗ Ê − Ĵ
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Êxz
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Êzy



, B̂ =




B̂xy

B̂xz

B̂yx

B̂yz

B̂zx

B̂zy



, Ĵ =
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Êxy + Êxz
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(IV.36)

where σx, σy, σz are electric conductivities, ⊗ is the tensor product operator, and × is matrix-

vector product. Note that when these coefficients are equal to zero, equation IV.36 yields to standard

Maxwell’s equations.

Besides, in order to avoid numerical instabilities inside the PML region, a null current and charge

are required. To enforce this condition, a macro-particles free buffer is placed between the simulation

domain and the PML zone. Macro-particles reaching this buffer zone are either reflected or deleted

(depending on macro-particles boundary conditions). The thickness of this buffer zone needs to be

equal or larger than the deposition shape functions support to avoid any spurious currents or charge

densities inside the PML region.

Figure IV.8: Disposition of the PML medium within the simulation box. The macro-particles free
zone reflects or deletes incoming macro-particles.

Equation IV.36 holds true in the simulation domain (where the absorbing coefficients are null)

and the PML zone. It can be numerically solved by employing an operator splitting methods [74] to
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decouple the propagation operator ∝ iK× .−Ĵ from the damping operator σ̂⊗ [75]. The propagation

operation consists in solving the next ordinary differential equations:

∂Ê
∂t

= c2iK × B̂ − Ĵ

∂B̂
∂t

= −iK × Ê

(IV.37)

This equation can be solved over the whole simulation domain (including PML regions) by employing

the PSATD algorithm similarly to the formulation given in IV.29.

The damping operation is carried out in the real space via exponential temporal integration:

∂E
∂t

= −σE ⇒ En+1 = exp[−∆tσ]En

∂B
∂t

= −σB ⇒ Bn+1 = exp[−∆tσ]Bn
(IV.38)

The exponential integration method has the advantage to be unconditionally stable for any spatial

time step (as exp[−∆tσ] ≤ 1 ∀∆t > 0 since σ ≥ 0). Therefore, the PSATD+PML is still uncondi-

tionally stable (no CFL condition).

In conclusion, the PML method can be used alongside with PSATD for an accurate solving of Maxwell’s

equations under open boundary conditions constraint.
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V.1 Introduction

FFT-based pseudo-spectral Maxwell solvers are robust numerical tools for modelling the evolutions

of electromagnetic fields in time and space with an excellent accuracy. These methods are of great

interest for 3D PIC UHI simulations as they induce no numerical dispersion that would hinder the

core physical phenomena at play.

Up until recently, these solvers have only been scarcely used to conduct massively parallel simula-

tions due to the poor scalability of this method, owing to global communications associated with global

FFTs computations on the entire simulation domain. Indeed, computing massively parallel FFTs on

distributed-memory machines is known to be an extremely challenging task to scale, as it requires

heavy and computationally expensive collective communications involving all processing units. For

this reason, up to now, the scaling of global FFTs has been limited to a few tens of thousands of

cores at best [76], which is not sufficient to take advantage of massively parallel super-computers full

capabilities, which can reach millions of cores.

To address this scalability barrier and enable massively parallel simulations using FFT-based

pseudo-spectral Maxwell solver, an important breakthrough has recently been made by J.L.Vay et

al [25] (c.f section IV.4.1). The authors show that pseudo-spectral Maxwell solvers can be used along

with a standard domain decomposition, provided that large guard regions are appended at subdo-

mains boundaries. This way, Maxwell’s equations are solved independently on each subdomain using

single-node FFT computations (instead of distributed-memory FFTs), and guardcells are exchanged

between adjacent subdomains at each time step. This technique, however, introduces a small numerical

truncation error at the level of subdomains boundaries. In practice, the truncation errors amplitude

can be efficiently mitigated either by employing a finite, yet arbitrarily high derivative stencil order,

or by increasing the number of guardcells [70].

By taking advantage of the standard domain decomposition method, this parallelization strategy

exhibits a very good scaling up to hundreds of thousands of cores [64] for a moderate number of

guardcells (ng = 8).

Nevertheless, when the number of guardcells is increased (to keep the truncation error small for

ultra-high orders p > 100), this parallelization approach may induce an important memory footprint

due to the significant data redundancy of grid arrays inside guard regions. This memory overhead

also grows considerably as the number of processing units. Consequently, the strong scaling of the

pseudo-spectral solver is severely impacted.

These limitations, both in terms of scaling efficiency and memory use call for a new arbitrary

scalable, robust parallelization strategy that preserves good scaling performances even at very large

scales and for large guardcells numbers.
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In this chapter, we expose a new parallelization strategy for the pseudo-spectral Maxwell solver

that outperforms previous parallelization techniques both in terms of memory footprint and scalability.

This approach introduces a coarse Cartesian domain decomposition, where each subdomain is as-

signed to multiple MPI tasks. Maxwell’s equations are solved within this new domain decomposition,

and FFTs are computed using distributed memory FFT kernels.

We first briefly describe the super-computing systems used to perform the scalability benchmarks

of this chapter. Then, we highlight in detail the limitations of the parallelization approaches in use so

far for the pseudo-spectral Maxwell solvers. After exposing the core ideas behind our novel approach,

we show that it brings a substantial speed-up and memory gain against both the local and global par-

allelization (based on global FFTs) strategies. A scaling toy model for our novel scheme is presented.

It allows fetching for the optimal decomposition setup that results in the best performances. We then

explain how to efficiently couple this new parallelization method within a standard PIC code.

Finally, we expose the scalability results of our new solver, obtained from large scale benchmark

tests performed on massively parallel ALCF computational resources, and compare them to the local

pseudo-spectral solver performances.

V.2 Brief description of HPC systems

The scalability benchmarks presented in this chapter were performed on two different HPC systems:

Theta-Cray XC40 1 and Mira-BlueGene/Q 2.

• The Theta cluster is an 11 Petaflops machine based on Intel Xeon Phi processors (codenamed

KNL). Theta is equipped with 4392 compute nodes, containing 64 cores each. Each core runs

at a clock speed of 1.3 GHz. In total, the system has 281088 cores and a memory of 912 TB (of

which 70 TB is high-bandwidth MCDRAM). The compute nodes are connected with an Aries

interconnect with a Dragonfly configuration designed by Cray.

• MIRA is a 10 Petaflops IBM Blue Gene/Q system. It consists of 49152 compute nodes distributed

between 48 racks. Each compute node contains 16 Power BQC 16C cores, running at a clock

speed of 1.6 GHz each. In aggregate, the total RAM on MIRA is 786432 GB (16 GB for each

compute node). This system is equipped with a 5D torus interconnect network.

1https://www.alcf.anl.gov/Theta
2https://www.alcf.anl.gov/Mira
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V.3 Scalability limits of existing parallelization techniques for pseudo-
spectral solvers

V.3.1 Scalability limits of the global method

As already mentioned, the global parallelization method is generally not suited for massively par-

allel simulations as it is limited by the poor scaling efficiency of distributed-memory FFT at large

scales. The next section presents the main parallelization strategies used by most modern high per-

formance computing FFT software packages and explains why these implementations usually exhibit

poor scalability performance and very large scales. This behavior has been assessed through a series

of benchmarks performed on MIRA cluster at ALCF using the PICSAR code.

Since our new parallelization method for the pseudo-spectral Maxwell solver heavily relies on

distributed-memory FFT, understanding FFT performance patterns and limitations will be essential

to fully take advantage of the new hybrid solver.

Overview of distributed-memory FFTs

Handling the collective communications underlying distributed-memory FFT computation can be

achieved using different approaches (refer to [77, 78] for more information). The most effective strategy

already in use in many high performance FFT libraries is the so-called ”the transpose transform”.

This algorithm applies to multidimensional FFTs and consists in successively alternating between

computing serial 1D FFTs along the dimensions where the data resides entirely in a single processor’s

memory and remapping the data to ”localize” the initially distributed axes. The transposition step is

essentially a global operation that involves all-to-all communication patterns. This type of operation is

usually poorly scalable at large core count due to the growing communication contention and network

saturation.

A schematic illustration of this algorithm is shown in figure V.1 and can be summarized as follows:

1. Grid array is decomposed into sub-arrays along one or multiple axes. Each processing unit stores

one sub-array.

2. Perform single node 1D FFT along each axis for which data resides entirely in each processor’s

memory. This computation is performed by each processor independently and can be achieved

fairly fast.

3. Select one of the remaining axes along which 1D FFT that has not been computed yet. Remap

the data array decomposition to ”localize” the data along the new axis on each processor and

enable step 1. This step is usually performed using MPI Alltoall routines.

4. Repeat step 1 and step 2 until all axes are processed.

5. Finally, rearrange the output array so that it has the same memory layout as the input array.

This step is usually optional and can be omitted to save computation time.
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This scheme is implemented by many FFT libraries [79, 80, 81] but it has only demonstrated -at

best- a good scaling up to a few tens of thousands of cores only. Historically, the first implementations

of distributed-memory FFTs using the transpose scheme relied on 1D domain decomposition. This

scheme is known as the ”slab decomposition” (see figure V.1). A multidimensional array is distributed

between different computing cores along a single axis.

x
y

Step 2

(a)
P1 P2 P3 P4

P1 P2 P3 P4

y
x

(b)
Step 1

Figure V.1: Schematic representation of parallel FFT computation using the slab decomposition. Each
processor stores one chunk of data corresponding to a ”slab” that is orthogonal to the y-axis. This
initial memory layout allows computing FFT along x-direction serially. The transposition permutes
x and y axes so that each slab is now parallel to the y-axis. This memory layout allows one last 1D
FFT computation along the y-axis.

In practice, the partitioned axis is usually chosen to be the axis along which data points are the

farthest in memory (first axis for C arrays, last axis for Fortran arrays).

This technique allows performing distributed memory-FFT with only one transposition. Due to

its simplicity, it is still in use by many distributed-FFT software packages, including the well-known

open-source FFTW library [82] as well as the Intel-provided MKL-FFT package. However, since the

data decomposition is only performed along one axis, this technique cannot be used whenever the

number of processes exceeds the number of data points along the split axis. This limitation is very

constraining especially when dealing with 3D data arrays on massively parallel machines (involving

hundreds of thousands of cores).

More flexible approaches have been developed to allow the use of a larger number of processing

units. Nowadays, many FFT libraries employ a 2D data decomposition to perform n-dimensional

FFTs (with n > 3D). This technique is known as the ”pencil decomposition” and is illustrated by

74





Chapter V. A generalized massively parallel scheme for FFT-based pseudo-spectral

Maxwell solvers

Scaling of the global pseudo-spectral Maxwell solver

The global parallelization approach of the pseudo-spectral solver is usually not an efficient strategy

to tackle massively parallel 3D UHI-PIC simulations on current and future super-computers that may

require millions of cores 4.

To assess the scalability limits of the global pseudo-spectral Maxwell solver, a series of strong

scaling benchmarks have been performed on MIRA BlueGene/Q cluster, using both P3DFFT and

FFTW-MPI. The benchmarks parameters are summarized in the table V.1 below:

FFT Library nx ny nz nthreads nproc min nproc max

FFTW-MPI 64 128 262144 1 213 218

P3DFFT 512 2048 2048 1 213 218

Table V.1: Benchmark parameters on the MIRA cluster.

As illustrated by figure V.3, these benchmarks show a scaling efficiency of only 45% between 512

and 16384 nodes when using P3DFFT and while FFTW-MPI does not scale at all, resulting in an

increase of the computation time as the number of processes is increased.
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Figure V.3: Strong scaling of the global pseudo-spectral Maxwell solver using P3DFFT(blue curve)
and FFTW-MPI(red curve) on the MIRA cluster. The black dashed curve represents a perfect scaling.

In conclusion, the global parallelization scheme brings an unmatched accuracy in solving Maxwell’s

equations as it introduces no spurious numerical noise from stencil truncation. Nevertheless, due to

poor scalability performances of distributed-memory FFT algorithms on massively parallel super-

computers, this parallelization scheme cannot be used for massively parallel 3D PIC-UHI simulations.

4www.top500.org
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V.3.2 Scalability limits of the local method

By employing relatively large guard regions, the local pseudo-spectral Maxwell solver induces

important data redundancy due to multiple copies of fields values stored in the guardcells of different

processing units. Thus, the memory footprint of the local solver may experience a significant growth

simply by increasing the number of processing units or the number of guardcells in the simulation.

Owing to the fact that FFT computations are performed on the sub-arrays formed by the fields values

on individual subdomains and guard regions, the scalability efficiency of the local solver is significantly

mitigated in the presence of an important data redundancy. To illustrate this, let us consider a fixed

simulation box of size Nd, where d is the dimension number, and for ng guardcells, the computation

time of FFTs performed within the local pseudo-spectral solver can be written as :

Tfft = O(2ng + n)dlog(2ng + n)

= O(2ng +
N

np
)dlog(2ng +

N

np
)

(V.1)

where np is the number of processes along each direction and n = N
np
. The scaling of equation V.1

is pictured in figure V.4: FFT computations successfully scale well until a certain threshold (around

24 MPI tasks per dimension), where they start losing performance for larger core counts. Indeed, the

total volume of data ((2ng +n)d =) on which the FFT is computed does not scale with the number of

processes since the number of guardcells is constant. When the volume of the guard regions becomes

significant compared to the total volume of the local subdomain without guardcells (i.e. when the

ratio
ng

n increases), the FFT computation time suffers from an important scalability loss.
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Figure V.4: Evolution of the FFT computation time as a function of the number of MPI tasks per
axis in 1D (Magenta curve), 2D (Blue curve) and 3D(Red curve). The problem size is Nd = 2048d

and ng = 16. The dashed line represents a perfect scaling.

To assess this behavior in a realistic case, a massively parallel benchmark has been performed on

the THETA cluster. This benchmark measures the strong scaling efficiency of the local solver at very

large scales for different numbers of guardcells. The results of this benchmark are presented in figure
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V.5. As expected, while the local solver succeeds in keeping a good strong scaling for a low number

of guardcells (red curves of panels (a-b)), it experiences an important scalability loss at high number

of guardcells as well as a substantial increase in memory volume occupied by fields quantities (panel

(c)).
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Figure V.5: Evolution of strong scaling and memory consumption (grid quantities) of the pseudo-
spectral PIC algorithm for different number of guardcells ng (ng = 8: red, 1ng = 16: blue, ng = 32:
green) on Cray XC40 THETA cluster at ALCF (using 32768-262144 cores) with one OpenMP thread
per MPI task. The FFTs are computed using the Intel MKL library which is more efficient on Intel
architectures than FFTW. The simulation box consists in a homogeneous plasma with one particle
per cell for both electrons and ions. The grid size is 240 x 6144 x 12288 grid cells. Panel (a) represents
the scaling of the full PIC loop. Panel (b) represents the scaling of the pseudo-spectral solver only,
including MPI-exchanges for grid quantities. Panel (c) represents the total memory consumption of
grid quantities (i.e. field quantities).

This shows that the local pseudo-spectral solver may not be suited for many simulations employing

extremely high spatial derivative orders and requiring very large guard regions to mitigate truncation

errors. In practice, multiple numerical PIC-UHI scenarios would require very large guard regions

(ng ∼ 20 − 40) in order to allow the use of dispersion free ultra high order stencils p ∼ 250. For ex-

ample, hindering numerical Cherenkov instabilities in Plasma acceleration simulations would require

a very high order stencil to ensure efficient mitigation of Numerical Cherenkov Instabilities [23] [84].

In conclusion, although local solvers are an important breakthrough towards realistic massively

parallel PIC-UHI simulations, two related issues may still need to be addressed. First, the important

memory overhead induced by the Cartesian domain decomposition when employing large guardcells

numbers. And second, the scalability performance loss of FFT computation at very large scales.

Both these limitations motivated the development of a new arbitrarily scalable parallelization strategy
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allowing the use of higher number of guardcells at a higher core counts while ensuring a good scaling

efficiency.

V.4 A generalized massively parallel FFT-based Maxwell solver

In this section I now present the new parallelization technique for the FFT-based Maxwell solver.

This new parallelization strategy (later called ”hybrid FFT-based solver”) is a more flexible approach

than the local solver as it allows the use of an arbitrarily high number of guardcells/processes while still

ensuring an extremely good strong/weak scaling and a substantially lower memory footprint compared

to the ”local” parallelization. This strategy has been benchmarked on super-computers at Argonne

Leadership Computing Facility. An important gain in terms of both memory (×8) and computation

time (×3) has been demonstrated in these benchmarks.

V.4.1 Principle of the technique

The general principle of the new strategy is inspired from both the ”local” and ”global” paralleliza-

tion strategies [85]: while the ”global” parallelization has a very low memory footprint as there is no

data redundancy due to the lack of guardcells (but scales poorly at moderate/large scales), the local

strategy keeps a good scaling as the ratio
ng

n stays small (but induces an important memory overhead

at very large scales).

Figure V.6 schematically illustrates the basics of our approach. In addition to the ”fine” domain

decomposition in which each subdomain is assigned to one MPI task, a coarser domain decomposition

is performed over the simulation domain. Each coarse subdomain (later called MPI group) gathers a

cluster of MPI tasks. Guardcells are now solely appended to the MPI group boundaries. At each time

step, Maxwell’s equations are solved with the pseudo-spectral solver using the new domain decom-

position and guardcells are exchanged between MPI groups. The FFT computations are performed

using a distributed-memory FFT along all the processing units assigned to each MPI group.

This technique reduces the ratio of guardcells volume to the simulation box size, which results in

an important memory gain compared to the standard local solver (based on single-node FFTs) and

ensures an unprecedented level of scaling efficiency at very large scales even when using large guard

regions.

The choice of the group sizes (i.e. the number of MPI tasks assigned to each group) is critical to

get the better performance out of this strategy: on the one hand, while very large groups would fall

to the poor performance of the distributed-memory FFT, very small groups on the other hand would

introduce an important memory redundancy which may as well result in a poor scaling.

The hybrid parallelization technique has been implemented in the WARP+PICSAR framework,

alongside the local parallelization technique already in use. The implementation relies on FFTW-MPI

or P3DFFT external libraries to perform distributed-memory FFTs computations inside each group,
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with a clear performance edge for the pencil decomposition.

With fairly optimal choices of group sizes, this technique allows for a significant memory saving

by reducing the data redundancy due to guardcells, and a much better strong scaling than both the

local and global solvers.
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Figure V.6: Parallelization strategies for pseudo-spectral Maxwell solvers. (a) is a sketch of the ’local’
approach where the simulation domain is split into multiple subdomains with guardcells appended at
each subdomain boundary. Guardcells hold copies of electromagnetic fields from adjacent subdomains.
Each subdomain is handled independently by each MPI process. At each time step: (i) Maxwell’s
equations are advanced independently on each MPI subdomain using shared-memory ’local’ FFTs
and (ii) guardcells are exchanged between adjacent MPI subdomains. Panel (b) shows a sketch of the
new ’hybrid’ approach presented in this thesis. It consists in grouping several MPI subdomains into
a larger MPI group and performing distributed FFTs over the MPI tasks of this group. Guardcells
are appended at the boundaries of each MPI group, leading to less memory redundancy and thus to
a significant memory saving. At each time step: (i) Maxwell’s equations are advanced independently
on a MPI group using a distributed FFT, (ii) guardcells are exchanged between MPI groups.

V.4.2 Advantages of the new parallelization strategy

Gain in terms of Memory footprint

This hybrid strategy allows for a significant saving of data sizes by reducing the surface to volume

ratio of each subdomain. To illustrate this, let us assume a cubic mesh of size nx×ny ×nz = N3 split

into np MPI subdomains in each direction x, y and z, ng guardcells are used for each MPI subdomain,

the total memory occupied by electromagnetic field arrays varies as :

M loc
tot = O

(
(np

3 × [
N

np
+ 2ng]

3)

)
(V.2)

The total memory occupied by field quantities strongly increases with the number of guardcells

and the number of processes. The maximum number of subdomains in each axis for this problem is

given by np =
N
ng
, for which the total memory volume of electromagnetic arrays culminates at :

M loc
tot = 27Mn
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where Mn would be the total memory occupied by fields arrays without any extra memory coming

from guardcells. This maximum is attained for a much lower number of processes when ng ≫ 1.

Let us assume that MPI domains are now grouped into MPI groups along d directions (with d ≤ 3).

Each MPI group contains nmpi MPI subdomains along each gathered direction. In this case, the total

memory occupied by electromagnetic field arrays reads :

Mhyb
tot = O np

3

nmpi
d

[N
np

+ 2ng

]3−d[
nmpi

N

np
+ 2ng

]d
(V.3)

for N
np

= ng, we obtain:

Mhyb
tot = 33−d

(2 + nmpi

nmpi

)d
×Mn

The memory gain of the hybrid solver compared to the local solver for the critical case where

np =
N
ng

reads:

G3
d = 3d

( nmpi

2 + nmpi

)d
(V.4)

In practice, the number d of axes along which MPI subdomains can be grouped depends on the

number of axes along which the distributed-memory FFT can be parallelized, with d = 1 for the slab

FFT distribution and d = 2 for the pencil FFT distribution. The larger d is, the more memory saving

can be achieved. The FFTW library allows 1D slab decomposition. Thus, MPI tasks can only be

grouped along z-direction (in Fortran). P3DFFT library [80], on the other hand, allows 2D pencil

grouping along y and z axes in Fortran. The gain G3
d as a function of nmpi is represented in fig V.7 for

different values of d. For relatively small values of nmpi ≃ 15, the memory gain can already approach

its maximum asymptotic value (G3
d = 3d) which can be achieved when using the global parallelization

technique (that can be emulated by setting the number of groups to one).
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Figure V.7: Memory gain G3
d of the hybrid solver compared to the local solver (corresponding to

nmpi = 1) as a function of the number of MPIs per group along each axis for different values of d, the
dashed lines represent the asymptotic gain in each case.

Gains in terms of guardcells data exchanges

By appending guardcells solely to groups of MPI, the volume of exchanged data between individual

MPI ranks will be reduced. The gain in terms of data exchanges can be calculated by:

Gd
guards =

M loc
tot −Mn

Mhyb
tot −Mn

For N
np

= ng, the previous formula becomes:

Gd
guards =

3d − 1
(
1 + 2/nmpi

)d
− 1

The maximum gain on the total volume of guardcells exchanges for d = 2 (pencil decomposition with

P3DFFT) and nmpi = 6 is more than 10.

Improved scaling of FFT

The main advantage of using the hybrid parallelization strategy emerges from the improved scaling

of FFT computations. In the following, we first estimate the time complexity of the distributed-

memory FFT algorithm. In the light of this estimate, the advantages of hybrid solver compared to

both the local and the global parallelization techniques are highlighted.
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Estimating distributed-memory FFTs computation time:

Assessing the time complexity of the distributed-memory FFT is essential to understand and fully

exploit the hybrid solver scaling performance at its full potential.

As explained in section V.3.1, distributed-memory FFTs is an alternation between the transposition

operation and the single-node FFT computation. Based on this reasoning, one can define the total

time required to perform a 3D FFT Tfft as the sum of the time required to perform each of the steps.

Tfft = Tc + Ttr (V.5)

where Tc and Ttr stand for the total single-node FFTs computing time and and the total transposition

time operation respectively.

The time complexity of the single-node FFT computations is given by:

Tc = αN3log(N3) (V.6)

where N is the array size along each direction, assuming a cubic array and α is a machine-dependent

parameter. Assuming a pencil decomposition with nproc = n2p, each processor will perform N3

nproc
1D

FFTs. Thus V.6 reads:

Tc = α
(N3log(N3)

nproc

)
(V.7)

On the other hand, data transposition complexity is very network dependent. The all-to-all com-

munications underlying the FFT computations involve each MPI task sending/receiving nproc − 1

messages of size N3

n2
proc

. Following the arguments presented in [80], the transposition time can be

approximated by:

Ttr = β
( N3

σbi(nnproc)

)
(V.8)

where σbi(nnproc) is the bisection bandwidth of the portion of the network containing nproc processes

and β is an architecture dependent parameter. From equations V.8 and V.7, equationV.5 can be

written as :

Tfft = α
(N3log(N3)

nproc

)
+ β

( N3

σbi(nnproc)

)
(V.9)

To have a good estimate of the bisection bandwidth as a function of nproc, one should refer to the

network architecture specifications. For a 5D torus interconnect such as the one equipping the IBM

BG-Q MIRA cluster at the ALCF, the bisection bandwidth scales as n
4/5
proc.

In the case of THETA cluster, although the dragonfly network is not an nd torus, numerical benchmarks

showed a similar asymptotic scaling for collective communication as on MIRA. As opposed to MIRA,

where compute nodes are allocated contiguously, THETA compute nodes can be allocated at remote

locations on the network, depending on the machine occupancy at a given time. Based on the bisection

bandwidth estimates, the following formula was used for both machines:

Tfft = α
(N3log(N3)

nproc

)
+ β

( N3

n
4/5
proc

)
(V.10)
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In the light of equation V.10, knowing the values of α and β is sufficient to properly assess the best

MPI groups configuration for a given problem (assuming fixed box size, computational resources and

guard region sizes).

Figure V.8 shows the behavior of the FFT computation time of the hybrid solver based on equation

V.10, depending on the total number of MPI groups. We assumed that β
α = 8 (which constitutes a

realistic estimation, comparable to that measured for a Dragonfly network), a box size of nx = ny =

nz = 4096 with ng = 16 and a total number of processes nproc = 1282. This figure shows, assuming

that the scaling model of distributed memory FFTs (equation V.10) is correct, that the hybrid solver

may perform better than both the local and the global solvers as it reduces the total volume of data

over which FFTs are computed while keeping the transposition time overhead in an acceptable range.
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Figure V.8: Theoretical FFT computation time as a function of the number of groups per direction
based on equation V.10. We supposed a pencil-like parallelization with the same number of groups
and processes along y and z. For the local parallelization case -corresponding to ngroups = 27, we have
omitted the transposition term as there is no transposition involved in this case.

The choice of groups configuration strongly affects the performance of the solver: for a large num-

ber of processes per group (i.e. the global solver), the relative cost of the transposition in equation

V.10 is dominant over the 1D FFT computation times, hence the distributed-memory FFT scaling

is proportional to n
4/5
proc. On the other hand, for a low number of processes per group, the 1D FFT

computation time is dominant, but FFTs are performed on larger volumes of data due to data redun-

dancy, which also hinders the total performance of the solver. If the values of β and α are known,

this toy model can be used to investigate the best MPI groups configuration for the hybrid solver by

minimizing the value of Tfft in equation V.10.

A series of benchmarks have been performed on THETA and MIRA clusters in order to assess the

accuracy of this scaling model and to investigate the best hybrid configurations on these machines.

The benchmarks consisted in solving Maxwell’s equations over few time steps using different numbers

of guardcells and MPI groups sizes at each run. The total number of processes is kept constant on
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each machine. The results of these benchmarks are sketched in figure V.9. Each panel corresponds

to one cluster: the dots represent the measured FFT computation time as a function of MPI groups

sizes. These sets of data are then used to estimate α and β of equation V.10 based on a least-square

fit. The fitting curves are sketched with dashed lines. This set of benchmarks shows that the scaling

model of distributed memory FFT accurately fits well with the measured FFT computation times: the

gap between the fitting curves and the actual data does not exceed 18% on both MIRA and THETA

clusters for the worst case. As expected, larger groups are more optimal when using large guard

regions while smaller groups (and even local solvers in some cases) are more suited for small guard

regions sizes.
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Figure V.9: FFT execution time on MIRA (right panel) and THETA (left panel) as a function of the
number of MPIs per group, using a pencil decomposition. The dashed lines represent the least square
fit, and the dots represent the measured data. The triangles on the left panel represent the scaling of
the local solver.

Benchmark on THETA:

The benchmark on THETA consisted in a 3D simulation box with the following parameters:

• nx × ny × nz = 512× 4096× 4096

• ng = 8, 16, 32

• nproc = 512× 64 = 32768 MPI ranks (On 512 KNL nodes).

• npx = 2 (2 processes along x)

• 16384 MPI ranks where split equally between y an z axes.
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The least square fit for α and β gave:
β

α
= 4

This ratio reflects the relative cost of collective communications over effective computations in-

volved in the FFT. On THETA, collective communications dominate the parallel FFT computation

time, which means that this architecture favors small MPI groups.

The left panel of figure V.9 shows that the estimated scaling correctly fits the simulation time mea-

sured from the benchmarks. From this test, we can note that the local solver performs better than all

hybrid parallelization for 8 guardcells (red curve), which did not came as a surprise given the value of
β
α ratio.

Benchmark on MIRA:

The benchmark on MIRA also consisted in a 3D simulation box with the following parameters:

• nx × ny × nz = 2048× 2048× 2048

• ng = 8, 16, 32, 64

• nproc= 8192× 8 = 65536 MPI ranks (On 8192 nodes with two OpenMP threads per MPI rank )

In this benchmark, the number of MPI ranks along the x-axis, npx is also varied at each run, such

that npx = ngroupy = ngroupz, where ngroupy and ngroupz are the number of groups along y and z

respectively.

The results from these tests are sketched on the right panel of figure V.9. The least square fit for α

and β gave :
β

α
= 1.67

.

This value reflects that MIRA BlueGene/Q cluster is more effective in handling collective com-

munications. Therefore, the transposition operation does not dominate that much the total FFT

computation time as it does on THETA system. This can be explained by a more stable network

interconnect and a processes mapping protocol that guarantees more MPI contiguity. On MIRA, opti-

mal parallelization configurations usually correspond to large groups covering hundreds to thousands

of compute nodes. Note also that it was not possible to benchmark the local parallelization scheme in

this test due to memory shortage. Indeed, MIRA has much less memory per core compared to Theta

(1GB per core on MIRA for 3.25 GB for Theta), and memory management is of critical importance

in order to perform large scale simulations on this machine, which highlights the advantage of using

our novel parallelization approach on this architecture.

V.4.3 Coupling of the hybrid solver with the full PIC algorithm: a dual grid
decomposition for efficient load balancing

All the challenge in coupling the hybrid parallelization scheme with the PIC algorithm lies in

the difficulty related to load balancing the particles and particles-mesh computations (particle push,
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current deposition, fields interpolation) on one hand and the hybrid Maxwell Solver on the other hand.

This is illustrated by panels (a) and (b) of figure V.10. Panel (a) shows the domain decomposition D1

used to efficiently load balance particles and particles /mesh computations (assuming a homogeneous

plasma distribution). Limits of MPI subdomains are highlighted using solid black lines. Guardcells

required for particle-mesh operations and of width equal to the order of deposition/gathering have

not been represented for more clarity. Panel (b) shows the domain decomposition D2 that would be

required to efficiently load balance the FFTs workload in the Maxwell solver step: Groups guardcells

are unequally distributed between processes forming each group. Each MPI task subdomain will be

shifted and/or extended due to the presence of guardcells appended at the MPI group boundaries and

needed in the computation of FFTs. One can see that in that case, the limits of MPI subdomains in

D1 do not coincide with the limits of MPI subdomains in D2.

P1 P2 P3

guard region

   MPI

group 1

P4 P5 P6

guard region

   MPI

group 2

P1 P2 P3

P4 P5 P6

(a)

(b)

Figure V.10: Dual grid decomposition used to load balance: particles and particles/mesh compu-
tations of the PIC loop (panel a) and the hybrid solver (panel b). Note the data shift induced by
the hybrid Maxwell grid. Panel (a) shows the domain decomposition D1 used to efficiently load bal-
ance particle and particle/mesh operations (plasma is assumed to be homogeneous). Limits of MPI
subdomains are highlighted using black solid lines. Guardcells required for particle-mesh operations
(deposition/gathering) and of width equal to the order of deposition/gathering have not been repre-
sented for more clarity. Panel (b) shows the domain decomposition D2 that would be required to load
balance the FFTs in the Maxwell solver step efficiently. One can see that in that case, the limits of
MPI subdomains in D1 do not coincide with the limits of MPI subdomains in D2 due to the presence
of Guardcells appended at the MPI group boundaries and needed in the computation of FFTs.
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Load balancing all steps of the PIC loop thus requires keeping two different grids :

1. The first grid G1 for particles and particles/mesh computations

2. The second grid G2 for Maxwell solver computations.

Before the PIC loop, each MPI task is assigned to two subdomains: the first one is pertained to G1

grid according to D1 decomposition (associated with particles and particles/mesh computations) and

the second one is pertained to G2 according to D2 (associated with the hybrid Maxwell solver). A

data exchange protocol is determined according to the two grids overlaps: Each MPI task is ”aware”

of data communications patterns required to copy the data back and forth between G1 and G2. This

is achieved by computing:

• The intersection between the subdomains in G1 (without guardcells) and the subdomains in G2

(with groups guardcells).

• The intersection between the subdomains in G2 (without guardcells) and the subdomains in G1

(without guardcells).

Then, at each PIC iteration:

1. Fields arrays are copied from grid G1 to grid G2 including groups guardcells of G2. Overlapping

grid regions pertaining to the same MPI domain on G1 and G2 are simply copied, while other

regions of G2 are updated using MPI communications.

2. Maxwell’s equations are solved on G2 grid.

3. Fields arrays are copied from grid G2 to grid G1 not including guardcells. Overlapping grid

regions pertaining to the same MPI domain on G2 and G1 are simply copied, while other regions

of G1 are updated using MPI communications.

4. Finally, guardcells required for particles-mesh computations are exchanged between neighboring

subdomains on D1.

The additional load balancing step, specific to the hybrid strategy, adds an extra cost to the hybrid

parallelization. In practice, the data exchange step is rather computationally cheap and only results

in a small overhead to the PIC loop as the majority of data exchanges are simple data copies within

the same MPI process, while the actual communications exchanges between different MPIs are done

through non blocking MPI send/receive calls in an efficient manner. As shown by the results of the

scalability benchmarks of the hybrid solver, this time overhead is largely compensated by the gain in

terms of regular MPI data exchanges previously discussed.
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V.4.4 Benchmarks of the hybrid solver on different architectures

The new solver has been benchmarked on both THETA and MIRA at very large scales. The goal of

these tests is to assess the strong scaling of the hybrid solver and compare it to the scaling of the local

solver. All the benchmarks considered the case of a 3D homogeneous plasma with 1 pseudo-particle

per cell for both ions and electrons.

Although the number of particles per cell may seem very low, it realistically describes the compu-

tational load of 3D plasma mirrors simulations where high spatial resolutions are required but with

only a few particles per cell.

These benchmarks show that the hybrid parallelization strategy performs better than the local

approach for large guard regions, and offers an equivalent performance for moderate guard regions.

Moreover, the hybrid solver does not suffer any significant scaling efficiency loss, while the local solver

showed an important decrease in scaling even for moderate guard regions. Both the pencil and slab

decomposition techniques outperformed the local strategy, while the best performances were obtained

with P3DFFT. Finally, the hybrid solver demonstrated an important memory gain compared to the

local solver, attaining a factor of ×8 when using the pencil decomposition.

Strong scaling on the MIRA cluster (BlueGene/Q)

On Mira the strong scaling of the hybrid solver was benchmarked using the pencil decomposition

as FFTW-MPI did not show great scaling performances (cf figure V.11). This test involved up to

32768 IBM BlueGENE/Q nodes. Further benchmark parameters are detailed bellow:

FFT Library nx ny nz nthreads nproc min nproc max nmpi per group

P3DFFT 256 2048 2048 4 213 219 256

One MPI task along x-axis (the non distributed axis in the FFT) is used in all runs. This benchmark

(cf fig V.11) shows a very good strong scaling of the hybrid solver and a very good parallel efficiency

at very large scales while the local solver suffers efficiency loss due to the increase in the total memory

occupied by the fields arrays. Moreover the hybrid solver performs particularly better than the local

solver for larger guardcells (central and right columns in V.11), attaining a factor of ×3. The memory

gain brought by the hybrid solver is also very important even for small guard regions and attains a

factor of ×8. Additionally, one can note that the hybrid solver involves less MPI exchanges than the

local solver. Indeed, the overhead of the two grids coupling is largely compensated by the reduction

in the regular MPI data exchanges costs.
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Figure V.11: Local vs Hybrid scaling on MIRA with pencil decomposition. Each column represents
the performances of a different number of guardcells. The blue curves represent the performances of
the hybrid solver while the red ones represent the performances of the local solver. The upper row
displays the memory gain brought by the hybrid solver compared to the local solver. The central row
represents the total MPI exchanges costs involved in the Maxwell solver (Fields exchanges plus the
two grids coupling for the hybrid solver). The lower row represents the strong scaling of the PIC loop.
The missing points in the panel pertaining to the 32 guardcells case correspond to cases where the
local domain sizes in each MPI task are smaller than the number of guardcells.

Strong scaling on the THETA cluster at ALCF (Intel KNL)

On THETA the strong scaling of the hybrid solver was benchmarked using both the pencil and

the slab decompositions. The PICSAR library as well as P3DFFT have been compiled using the

FFTW-MKL wrapper which allows the use of FFT-MKL instead of FFTW. In the tests performed

on THETA, using the MKL wrapper allows for ∼ 25% speed-up in FFT computations compared to

pure FFTW. This benchmark has been performed with the ”optimized”FFT setup where the optional

reordering transposition is not performed, which allowed for an additional ∼ 20% speed-up. In general,

we have noted that the hybrid solver performs better with smaller groups on THETA. This is due to
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the rapid performance loss of the distributed-memory FFT computations on this type of architectures.

Nevertheless, the memory and computation time gains of the hybrid solver on THETA cluster were

significant.

Slab decomposition strong scaling:

In this case, the simulation box was elongated along z-direction in order to support a large number

of MPI tasks along this axis, as the slab decomposition allows grouping MPI tasks only along z-axis.

The benchmark parameters are detailed bellow:

FFT Library nx ny nz nthreads nproc min nproc max nmpi per group

FFT MKL 160 160 393216 1 215 218 32
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Figure V.12: Local vs Hybrid scaling on THETA with slab decomposition. Each column represents
the performances of a different number of guardcells. The blue curves represent the performances of
the hybrid solver while the red ones represent the performances of the local solver. The upper row
displays the memory gain brought by the hybrid solver compared to the local solver. The lower row
represents the strong scaling of the PIC loop. The missing points in the panel pertaining to the 32
guardcells case correspond to cases where the local domain sizes in each MPI task are smaller than
the number of guardcells.

When increasing the number of processing units, only the number of MPI tasks along z-axis is

increased. This setup allows to directly assess the hybrid solver scalability as adding processing units

along other directions would result in a scalability behavior similar to that of the local solver. With
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this setup, the hybrid parallelization performs better than the local technique, with a strong scaling

efficiency of 87% between 512 and 3072 KNL nodes, while the local parallelization efficiency drops to

47% as shown by figure V.12. The maximum memory gain of the hybrid solver was ×2.5, which agrees

with the expected memory gain from V.7. In aggregate, the computational time of the PIC loop is

decreased by a factor of 2

Pencil decomposition strong scaling:

Finally, the last benchmark performed at massively parallel scale aimed at assessing the performance

of the hybrid solver with a pencil decomposition. A more important gain at both memory consumption

and computational time is expected, as the pencil decomposition allows for a better mitigation of data

redundancy as shown by equation V.4. The benchmark parameters were as follows:

FFT Library nx ny nz nthreads nproc min nproc max nmpi per group

P3DFFT 240 6144 12288 1 215 218 64

The number of MPI tasks per group is equal to the number of MPI ranks per KNL node. This

setup ensures that all MPI tasks forming each group are located at the same compute node of the

machine. While this configuration is not necessarily optimal in all cases, it was sufficient to perform

much better than that the local solver and to ensure a more important boost when compared to the

hybrid slab case. Figure V.13 shows the strong scaling behaviors of the hybrid and the local solvers

obtained from this benchmark.

This test proved that the hybrid solver ensures an excellent strong scaling in scenarios where the

local solver suffers from important efficiency loss at large scales. The hybrid solver strong scaling

efficiency attains at least ∼ 80% even for large guard regions, while the local solver poorly scales at

∼ 30% efficiency rate. At very large scales, the PIC loop is 400% faster with the hybrid solver, while

memory consumption is reduced by a factor of ∼ ×8.
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Figure V.13: Local vs Hybrid scaling on THETA with pencil decomposition. Each column represents
the performances of a different number of guardcells. The blue curves represent the performances of
the hybrid solver while the red ones represent the performances of the local solver. The upper row
displays the memory gain brought by the hybrid solver compared to the local solver. The lower row
represents the strong scaling of the PIC loop. The missing points in the panel pertaining to the 32
guardcells case correspond to cases where the local domain sizes in each MPI task are smaller than
the number of guardcells.

V.5 Conclusion and prospects

In this chapter, a new parallelization strategy of the pseudo-spectral, FFT-based Maxwell solver

has been presented. This technique has been fully implemented in WARP+PICSAR framework and

supports periodic and absorbing boundary conditions (through Perfectly Matched Layers). It ensures

an excellent strong scaling for an arbitrarily high number of guardcells and increases the maximum

number of MPI processes that can be used to parallelize computations. Moreover, by reducing data

redundancy, it also has huge benefits in terms of memory savings compared to the local parallelization

approach for a given problem size.

The parallelization pattern exposed in this chapter can be transposed to pseudo-spectral solvers

involving high order stencils and guardcells exchanges in numerical fluid dynamics, thermodynamics,

or quantum physics. This new parallelization strategy has been the subject of a scientific paper in
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Computer Physics Communication [85].
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VI.1 Context

With the advent of massively parallel supercomputers, multi-dimensional large scale numerical

simulations are playing a growing and critical role in UHI physics achievements. Indeed, first principle

numerical experiments, are not only essential to accurately identify and interpret the physical phe-

nomena at play whenever there is no direct experimental diagnostics to probe particular observables,

such as the ultra-fast plasma dynamics or the spatio-temporal electromagnetic fields profiles, but also

to design future experiments by assessing optimal regimes of interactions. In this context, disposing

of insightful and computationally efficient numerical diagnostics tools in PIC codes is of paramount

importance to fully leverage numerical simulations.

In this chapter, we detail the development, during this thesis, of a massively parallel diagnostic

tool to probe electromagnetic fields and macro-particles dynamics based on Lorentz transformation

for multi-dimensional PIC simulations. The first section of this chapter highlights some limitations of

standard numerical diagnostics in the context of UHI physics. Those limitations are associated with

the difficulty in interpreting and analyzing data obtained with standard numerical diagnostics from

PIC simulations. We then show how these limitations can be addressed by probing various numerical

observables in a Lorentz boosted frame where various physical phenomena at play are more easily

identified and understood.

VI.2 Need for an efficient visualization tool in UHI physics

VI.2.1 Limitations of HHG emission visualization in the laboratory frame

Driving high order harmonic generation on plasma mirrors is often performed with an obliquely

incident laser pulse in order to maximize HHG efficiency [10]. Modelling the laser-plasma interac-

tion at oblique incidence in a multi-dimensional setup poses a challenge in terms of interpreting and

understanding simulation results. We illustrate this with two 2D PIC simulations of HHG on PM

in two different regimes using WARP+PICSAR. The numerical/physical parameters used for both

simulations is summarized in the next table VI.1:

Physical parameters
Num params

Laser parameters Plasma parameters
a0 θ FWHM w0 L n0 dx ppcell

sim ROM 15 55◦ 15fs 4µm λ0

8 220nc
λ0

285 36

sim CWE 0.4 55◦ 15fs 4µm λ0

70 220nc
λ0

285 50

Table VI.1: Physical and numerical parameters for ROM (sim ROM) and CWE (sim CWE) harmonic
generation simulations.

In the first simulation (sim ROM), the laser intensity is sufficiently high to drive Doppler har-

monic emission from PM. As the plasma density scale length L is relatively large, the plasma mirror

is bent under the laser radiation pressure and acts as a focusing optics for the harmonic beam. On

the other hand, in the (sim CWE) case, harmonic emission is dominated by the CWE mechanism. In
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this case, the variation of the laser intensity across the plasma surface results in different harmonic

emission times along the laser-plasma interaction region, giving rise to divergent harmonic wavefronts

[42]. Consequently, the spatial phases of the harmonic beams from both regimes are different (concave

for CWE harmonics and convex for Doppler harmonics).

In order to observe the correlation between the plasma dynamics and the properties of the har-

monic beam, one needs to take a closer look at the plasma surface during the interaction. Figure VI.1

(panels a&b) sketches one snapshot from each simulation at T = 28T0. In the sim ROM simulation,

we observe that the high order harmonics are emitted by relativistic electron jets, pulled by the driving

laser field in vacuum. In contrast, the CWE harmonics originate from inside the plasma medium.

In both cases, however, it is difficult to relate the harmonic generation mechanisms taking place at

the plasma surface with spatial properties of high order harmonics from those pictures. In particular,

we cannot directly assess the difference in terms of wavefront shapes for both ROM harmonics (focused

beam) and CWE harmonics (divergent wavefronts, due to the laser intensity variation across the

interaction region). This is partially due to the fact that at each instant, multiple laser cycles interact

simultaneously with the plasma mirror, and it is not clear how to decouple both the spatial and

temporal effects induced by the plasma mirror dynamics on the harmonic beam.
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Figure VI.1: Snapshot of the harmonic emission by the plasma mirror in the laboratory frame (panels
a & b) and in Bourdier frame (panels c & d). The CWE regime is sketched on the left panels and the
ROM regime on the right panels;

To address this problematic, we propose to visualize the harmonic generation process in the Bour-

dier boosted frame where the laser is now normally incident to the plasma surface. Panels (c & d) of

figure VI.1 depict the harmonic emission as well as the electrons density in the boosted frame in the

CWE regime (left panel) and the ROM regime (right panel). In the relativistic case, we clearly identify

the plasma mirror curvature induced by the strong laser radiation pressure. Moreover, we can clearly

see that the PM curvature is directly responsible for the curvature of the wavefront of the reflected

field. In the CWE simulation, we can now identify the convex harmonic wavefronts from this snapshot.

Note also that, although the laser field is normally incident to the plasma in the Bourdier frame,

the Lorentz transformation naturally gives rise to a pulse-front tilt. For instance, assuming that the

laser field is Gaussian, an analytical calculation of the transverse electric field expression at focus in

the Bourdier frame shows that (z′ is the laser transverse coordinate in the Bourdier frame) :

E′(x′ = 0, z′, t′) ∝ exp

(
i
ω0t

′

γ
−
[z′ + t′c sin θ0

w0

]2
−
[ t′
γτ

]2)
(VI.1)

where we assumed that the laser Rayleigh length is much larger than the pulse length: Zr ≫ cτ in
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order to neglect the laser wavefront curvature near the laser focus. This expression shows that in the

Bourdier frame, the laser pulse-front is tilted with an angle φ given by:

φ = arcsin(sin θ0) ⇔ φ = θ0

Physically, one can associate the presence of the PFT to the necessity for the incident laser field

to irradiate the same portion of the drifting plasma in the Bourdier frame.

In this chapter, we propose a massively parallel data reconstruction strategy to retrieve multi-

dimensional observables in the Bourdier frame. Therefore, while the simulation is performed in the

’laboratory’, numerical diagnostics (particles trackers, fields snapshots ...) are captured in the Bourdier

frame, where data analysis and visualization is more insightful regarding the physical processes at play.

More generally, our technique can be employed in any framework where the data analysis is carried

out in a Lorentz boosted frame. In particular, it can also be employed in the context of laser-plasma

wakefield acceleration simulations relying on the Vay Boosted frame technique [86, 87] in order to

retrieve data into the laboratory frame, while the simulation is performed in Lorentz boosted frame.

This physical case is inverse from the PM case but relies on the same transformation. All the parallel

developments made here can thus also benefit to speed-up diagnostics of laser wakefield acceleration

simulations in the boosted frame.

VI.3 Boosted frame visualization for PIC-UHI simulations

In the following, we briefly recall the Lorentz transformation on simulation quantities (i.e elec-

tromagnetic fields, sources, and macro-particles properties), then we propose a massively parallel

implementation strategy in PIC codes.

VI.3.1 Lorentz transformation in PIC codes

We consider the same setup used in section III.4.1 to introduce the Bourdier boosted frame. The

simulation box in the laboratory frame is given by:

S = {(x, z) ∈ R2 \ x ∈ [xmin, xmax], z ∈ [zmin, zmax]}

The plasma occupies the domain xmin < x < 0 and the laser angle of incidence is θ0. The longitu-

dinal coordinate along the plasma surface is denoted z. The Bourdier frame drifts with respect to the

laboratory with a velocity ~v = c sin(θ0)~ez (see figure III.6). The Lorentz transformation parameters are

β = ||~v||
c = sin(θ0) and γ = 1√

1−β2
= 1

cos(θ0)
. In the Bourdier frame, the spatio-temporal coordinates

(x′, z′, t′) read:

x′ = x

z′ = γ(z − cβt)

t′ = γ(t− β
z

c
)

(VI.2)
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The antecedents in the Bourdier frame of the simulation box boundaries (x, z = zmax or z = zmin)

are the set of points (z′, t′) verifying:

zmin = γ(z′min + cβt′)

⇔ z′min =
zmin

γ
− cβt′

zmax = γ(z′max + cβt′)

⇔ z′max =
zmax

γ
− cβt′

(VI.3)

Therefore, in the Lorentz boosted frame, the simulation box layers are drifting with a velocity

−cβ~e′z. At a fixed time t′ in the Bourdier frame, the numerical simulation is taking place in a domain

comprised in {(x, z′) ∈ [xmin, xmax] × [ zmin

γ − cβt′, zmax

γ − cβt′]}. We therefore can define a moving

window in the Bourdier frame, drifting at the same velocity −cβ~e′z to keep track of the domain where

the simulation in the Laboratory frame is taking place. The coordinates conversion associated to this

transformation reads:

z′′ = z′ + cβt′ (VI.4)

Using equations VI.2, we can show that:

z′′ =
z

γ
(VI.5)

The simulation domain size along the transformed direction z is shrunk in the Bourdier frame by

a factor of γ. Meanwhile, due to the time dilatation associated with the Lorentz transformation, the

simulation duration is increased by a factor of γ. For instance, keeping track of a fixed simulation

point (X,Z) in the laboratory frame during the whole simulation [0, Tmax] consists in tracking the

image of this point given by (X ′, Z ′′) = (X,Z/γ) over a total duration in the boosted frame given by

δT ′ = |γTmax − γ × 0| = γTmax.

On the other hand, the electromagnetic fields transformation writes:

E′
z(x

′, z′′, t′) = Ez(x
′, z′′, t′)

E′
x(x

′, z′′, t′) = γ
(
Ex(x

′, z′′, t′)− cβBy(x
′, z′′, t′)

)

E′
y(x

′, z′′, t′) = γ
(
Ey(x

′, z′′, t′) + cβBx(x
′, z′′, t′)

)

B′
z(x

′, z′′, t′) = Bz(x
′, z′′, t′)

B′
x(x

′, z′′, t′) = γ
(
Bx(x

′, z′′, t′)− β

c
Ey(x

′, z′′, t′)
)

B′
y(x

′, z′′, t′) = γ
(
By(x

′, z′′, t′) +
β

c
Ex(x

′, z′′, t′)
)

(VI.6)

The current and charge density in the Bourdier frame are related to their laboratory counterparts
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by the following transformation:

ρ′(x′, z′′, t′) = γ
(
ρ(x′, z′′, t′)− β

c
Jz(x

′, z′′, t′)
)

J ′
x(x

′, z′′, t′) = Jx(x
′, z′′, t′)

J ′
y(x

′, z′′, t′) = Jy(x
′, z′′, t′)

J ′
z(x

′, z′′, t′) = γ
(
Jz(x

′, z′′, t′)− cβρ(x′, z′′, t′)
)

(VI.7)

We also recall the macro-particles momentums and Lorentz factors expressions in the boosted

frame:

p′x(t
′) = px(t

′)

p′y(t
′) = py(t

′)

p′z(t
′) = γ

(
pz(t

′)− βγmpc(γp(t
′)− 1)

)

γ′p(t
′) = γ

(
γp(t

′)− 1
)
+ 1− γβ

mpc
pz(t

′)

(VI.8)

where γp and γ′p denote the particle Lorentz factors in the laboratory frame and the Bourdier frame

respectively, and mp the particle mass at rest.

A straightforward approach to snapshot the simulation observables in the Bourdier frame may

consist in dumping large amounts of data from the simulation in the laboratory frame and then post-

processing the results following equations VI.6, VI.7 and VI.8 to reconstruct the required data for each

snapshot.

However, this approach is very computationally demanding both in terms of computation time

and data storage. Moreover, a large portion of the dumped data in the laboratory frame would not

be useful for the reconstruction step in the boosted frame.

To address those issues, we propose an efficient and massively parallel, on the fly implementation of

the Lorentz boosted frames diagnostics. The next section first highlights the subtleties underlying the

snapshots reconstructions in the boosted frame and details the massively parallel strategy to parallelize

these computations.

VI.4 High performance on the fly implementation of Lorentz trans-
formation

Reconstructing different data snapshots in the boosted frame on the fly requires an efficient filling

strategy to keep track of the time and space couplings resulting from the Lorentz transformation.

This is illustrated in figure VI.2. The grids colored in pink represent different snapshots in the lab

frame, while the ones colored in cyan represent snapshots in the boosted frame. The color opacities

vary with respect to the transformed axis z (or z′′) and denote the time evolution in the dual space in
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each case.

At each time step in the laboratory frame, each slice of data orthogonal to the z-axis corresponds

to different times in the boosted frame. Therefore, reconstructing a single snapshot on the fly requires

to compute the intersection line (if it exists) between the simulation domain and the snapshot domain

in the boosted frame at each time step. As the time evolves during the simulation, this intersection

line drifts to larger values of z (see black and blue dashed arrows linking the lab and the boosted

frames in the figure) until it covers all the simulation box in the lab frame.

The time interval (in the lab frame), during which the space time domain associated to a snapshot

in the boosted frame, defined at time T ′ = j∆T ′ intersects the simulation domain is given by:

tlab ∈
[
j∆T ′

γ
+
β

c
zmin,

j∆T ′

γ
+
β

c
zmax

]
(VI.9)

Figure VI.2: Schematic representation of the relationships between data in the boosted frame and
data in the lab frame.

Taking into account the intersection slices between the laboratory and the boosted frame domains,

one can perform an on the fly reconstruction of simulation observables in the boosted frame. For mesh

grid quantities, the following algorithm can be used:
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Algorithm 1 Boosted frame reconstruction

1: for all PIC time steps i∆t do
2: Perform PIC computations.
3: for all boosted frame snapshots j∆T ′ do
4: if simulation time i∆t is between lab times boundaries of the jth snapshot (equation VI.9)

then
5: Compute the intersection slice between the laboratory and boosted domains.
6: Extract field data along the intersection slice.
7: Perform the Lorentz transformation along the extracted data.
8: Write the transformed data in the file associated to jth snapshot.

In a similar way, it is possible to snapshot pseudo-particles quantities in the boosted frame. This

requires to compute at each time step i∆T the proper time for each pseudo-particle p in the boosted

frame. Whenever the boosted time of a pseudo-particle crosses a given boosted frame snapshot time,

i.e:

t′p(i∆T ) < j∆T ′ ≤ t′p((i+ 1)∆T )

it is captured by the diagnostic and its characteristics (x, z, ~p, ~Ep, ~Bp) at times i∆T and (i+ 1)∆T in

the Laboratory frame are Lorentz transformed using equations VI.8, VI.2 and VI.6 and smoothed to

the exact boosted frame snapshot time j∆T ′ before dumping.

Parallelization of the algorithm

As opposed to numerical diagnostics in the laboratory frame, massively parallel data reconstruc-

tion in the boosted frame is more intricate and requires a more elaborated strategy in order to be

computationally efficient and scalable.

In this paragraph, we detail the parallelization strategy developed and implemented in theWARP+PICSAR

framework to parallelize the boosted frame diagnostics. This parallelization relies on the HDF5-MPI

1 library to save data on disk in parallel and is consistent with the domain decomposition employed

in PIC codes.

During the PIC loop, each processing unit performs the Lorentz transformation on the data laying

in its subdomain, delimited by [zmin local, zmax local], and buffers the results associated to the desired

snapshots in the boosted frame. Data is dumped on disk periodically during the simulation using

HDF5-MPI library, preferably when the memory is full. The dumping periodicity may be adjusted

depending on the snapshot sizes and the available free memory on each processing unit. This algorithm

is schematically illustrated by figure VI.3 and detailed below:

1http://www.hdfgroup.org/HDF5/
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Algorithm 2 Massively parallel boosted frame reconstruction.

1: for all PIC time steps i∆t do
2: Perform PIC computations.
3: for all boosted frame snapshots j∆T ′ do
4: if j∆T ′

γ + β
c zmin local ≤ i∆t ≤ j∆T ′

γ + β
c zmax local then

5: Compute the intersection slice between the laboratory subdomain and boosted subdo-
main.

6: Extract field data along the intersection slice.
7: Perform the Lorentz transformation along the extracted data.
8: Save data in the buffer associated to jth snapshot.

9: if i% dum freq = 0 then
10: for all boosted frame snapshots j∆T ′ do
11: Build an MPI subcommunicator associated to the jth snapshot, containing all MPI

tasks whose jth buffer is not empty.

12: for all boosted frame snapshots j∆T ′ do
13: if Current MPI task belongs to the jth MPI subcommunicator then
14: Open the jth HDF5 file in parallel, using the corresponding MPI subcommuni-

cator.
15: for all boosted frame snapshots j∆T ′ do
16: if Current MPI task belongs to the jth MPI subcommunicator then
17: Dump data in the jth HDF5 file.
18: Free my jth buffer.

19: for all boosted frame snapshots j∆T ′ do
20: if Current MPI task belongs to the jth MPI subcommunicator then
21: Close jth HDF5 file.
22: Delete the jth MPI subcommunicator.

Note that the loop redundancy during the write-to-disk operation (lines 12, 15, and 19 in algorithm

2) is necessary to allow for a parallel data dumping on the disk. Indeed, the loops starting in lines 12

and 19 involve synchronized MPI-based operations (Subcommunicators creations and deleting, HDF5

files opening and closing). This synchronization needs to be broken in order to perform the data

dumping in parallel (loop starting at line 15). Otherwise, MPI tasks only involved in the writing of

certain snapshots would be waiting for the MPI tasks involved in the writing of other snapshots to

finish their job before starting to dump data in their turn.
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Figure VI.3: Schematic principle of the massively parallel boosted frame reconstruction algorithm.
During each simulation time step (buffering step), each MPI extracts, processes and buffers the data
slices corresponding to different snapshots in the boosted frame (T ′

3, T
′
2, T

′
1). During the dumping step,

each MPI task opens the HDF5 data files associated to the snapshots for which it has buffered data
during the simulation. Data is then written on disk in parallel on each file. The cells colored in gray
correspond to the boosted frame domains that have already been covered and dumped into disk during
the previous dumping operations.

We used this massively parallel boosted frame data reconstruction algorithm to retrieve the simu-

lation data presented in figure VI.1 (panels c and d). For information, we recorded 400 snapshots at

a rate of 20 frames per laser optical cycle (in the boosted frame). These simulations were performed

on the MIRA cluster at ALCF. Each simulation involved 8192 MPI tasks distributed over 2048 com-
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pute nodes. The Bourdier frame diagnostic multiplied the simulation time by a factor of ∼ 3, which

constitutes a reasonable cost given the huge amount of recorded data ( 400 gigabytes). Note that an

a-posteriori reconstruction using data from the simulation frame would have required more than 10000

snapshots and tens of Terabytes of memory storage, while increasing the computation time by many

orders of magnitude.
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VII.1 Introduction

When an ultra-intense ultra-short laser beam irradiates a solid or a gas target, a train of attosecond

light pulses associated with a high order X-UV spectrum is emitted collinearly to the driving laser

field. If properly controlled, these extremely short light bursts may have a huge impact science as they

can be used for ultra-fast spectroscopy to perform a wide variety of time-resolved experiments [88].

One of the main challenges facing the development of stable and reliable attosecond light sources

from plasma mirrors is the difficulty to produce single isolated pulses which are naturally more con-

venient for ultra-fast spectroscopy.

Many techniques have already been proposed to address this challenge, both for gas and overdense

plasma high order harmonics. Multiple schemes aim at inhibiting all but one attosecond pulse in the

train by confining the harmonic emission process to one laser optical cycle only. Such schemes include

polarization gating and intensity gating methods.

Both of these approaches have already been successfully experimented to produce isolated attosec-

ond pulses from gaseous media [89, 90] [91].

Nevertheless, transposing those methods to Doppler harmonics is very challenging as it would re-

quire strong control over the temporal duration, the ellipticity and the carrier-envelope phase (CEP)

of an extremely intense laser beam. Therefore, producing unique attosecond light pulses from PM still

remains an important issue. But thanks to the important development in laser technologies, many

advances have been achieved in this field in recent years.

Intensity gating techniques take advantage of the non-linear dependency between the laser inten-

sity and the harmonic generation efficiency. If the laser pulse is sufficiently short (one or two laser

cycles), harmonics whose orders are close to the harmonic cutoff are solely generated by the optical

cycle near the laser pulse maximum amplitude. As a result, the attosecond pulses train pertaining to

these harmonics is dominated by a unique attosecond pulse.

In 2018, D.Kormin et al [92] realized the first experimental demonstration of the intensity gating

technique for Doppler harmonics. This achievement was made possible by using a very short (5 fs

time duration FWHM), CEP-controlled driving laser beam focused on a ≃ 1µm focal spot to reach

ultra-relativistic intensities (a0 = 7). By properly controlling the laser CEP and the plasma density

scale length, the authors were able to produce a train constituted of only three attosecond light spikes

with an intensity contrast of at least 30.

The polarization gating method exploits the harmonic generation dependency on the driving laser

ellipticity. For a circularly polarized laser pulse impinging the plasma target at normal incidence, the
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laser vector potential normal to the target exhibits no fast oscillations at the laser frequency. There-

fore, the ponderomotive force acting on the plasma surface follows the laser temporal envelope and

does not drive any plasma surface oscillations, resulting in the absence of harmonic emission. The

basic idea of the polarization gating scheme consists in appropriately inducing a time-dependent laser

ellipticity, such that the high order harmonics generation process is confined to less than one laser

optical cycle. This way, a single attosecond light pulse can be generated with a multi-cycle laser pulse.

Although numerous theoretical and numerical studies have been performed during the last few

years [93, 94, 95], the polarization gating scheme has never been successfully implemented to produce

unique attosecond X-UV light pulses from plasma mirrors in the relativistic regime (despite a recent,

not fully convincing, experiment [96]).

In section III.5, we have introduced another approach, recently proposed by the LYDIL/PHI team

to isolate attosecond light beams. This approach, known as the attosecond lighthouse effect, relies

on introducing a spatio-temporal coupling on the driving laser field -called wavefront rotation [53]-,

which induces a rotation of the laser wavefronts over time. When an ultra-intense, ultra-short laser

beam, exhibiting wavefront rotation, drives a high order harmonic generation process, attosecond light

pulses are emitted along the instantaneous rotating laser wave vector and angularly separate while

propagating in vacuum in the far-field. The isolation of a unique attosecond pulse can be achieved

simply by placing a spatial filter in the path of a single pulse (see figure III.12) [26].

This method, has already been used to produce separated attosecond light pulses from plasma

mirrors in the non relativistic regime [51], and in gas media [52, 97]. These experiments exploited

extremely short (FWHM ∼ 5fs) laser beams that can sustain relatively high wavefront rotation ve-

locities. However, the attosecond lighthouse technique has never been successfully applied to Doppler

harmonics, generated on plasma mirrors in the relativistic regime.

To achieve a satisfactory angular separation of attosecond light pulses with this scheme, the ro-

tation angle of the laser wave vector over a single optical cycle should be larger than the angular

divergence of each individual attosecond light pulse. Otherwise, the attosecond pulses train do not

split into isolated spikes in the far-field. Unfortunately, high order harmonics emitted in the relativis-

tic regime are usually very divergent due to the focusing effect induced by the PM, which is curved

under the non-uniform laser radiation pressure at focus [98, 99, 48]. Besides, the maximum achiev-

able wavefront rotation velocity for a given laser beam is limited by its frequency bandwidth: for a

given laser divergence, a longer pulse implies a smaller wavefront rotation velocity and thus a smaller

angular separation between two successive attosecond pulses. For laser and plasma parameters opti-

mizing HHG efficiency in the relativistic regime, the harmonic divergence can reach up to the third

of the incident laser divergence. Consequently, obtaining angularly separated attosecond light pulses

with the lighthouse mechanism in the relativistic regime would require extremely short laser pulses

(of less than two laser cycles), which are very hard to produce and control for the extreme intensities

considered here. These limitations have set a major obstacle in the experimental realization of the
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lighthouse effect in the relativistic regime.

To break this barrier, we investigated feasible ways of strongly reducing harmonic beam divergence

to enable the attosecond lighthouse with a standard high-power, multi-cycle laser. By mitigating the

focusing effect exerted by the plasma mirror curvature on the harmonic beam in the relativistic regime,

we show that it is possible to significantly reduce the harmonic divergence and achieve a clear angular

separation of X-UV attosecond pulses. In this context, we have identified two realistic and feasible

schemes that both lead to a good separation of attosecond pulses.

The first technique consists in curving the laser wavefronts at the plasma surface: by appropriately

placing the plasma mirror out of the laser focus, we show that it is possible to produce diffraction-

limited, low divergence attosecond pulses. In the presence of wavefront rotation, different attosecond

pulses effectively separate in the far-field. We developed an analytical toy model that accurately pre-

dicts the best defocusing distance maximizing the separation efficiency between Doppler attosecond

pulses based on the laser and the plasma parameters. The effectiveness of this technique is extensively

investigated numerically using PIC simulations in 2D and 3D geometries.

The second divergence reduction technique investigated in this thesis consists in shaping the laser

cross section at focus in order to directly suppress the curvature of the PM responsible for the high

divergence levels of Doppler harmonics. This spatial shaping technique leverages the spatio-spectral

couplings responsible for the wavefront rotation of the driving laser beam and aims at homogenizing

the radiation pressure exerted by the laser on the plasma surface. By doing so, the PM is homoge-

neously dented over the laser-plasma interaction region, which in return, mitigates the focusing effect

of the PM and limits the divergence of the attosecond pulses.

In the following, we will first review the current limitations of the lighthouse effect for Doppler

harmonics and show how the PM denting is severely limiting the angular separation of attosecond

light pulses. Then we detail how we can overcome these limitations and obtain isolated attosecond

pulses by using novel techniques to reduce harmonic divergence.
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VII.2 Limitations of the attosecond lighthouse effect for Doppler
harmonics

In this section, we numerically investigate the limitations of the attosecond lighthouse effect to

angularly separate Doppler harmonics.

We first show that with a physical setup that optimizes the HHG efficiency in the relativistic

regime, the lighthouse scheme completely fails in angularly separating attosecond light pulses due to

the important harmonic divergence increase resulting from the PM curvature. Second, we show that

controlling the PM curvature by decreasing the plasma density scale length L in order to mitigate the

harmonic divergence is not a good strategy to achieve a clear angular separation of attosecond light

pulses as it significantly hinders the Doppler HHG efficiency.

VII.2.1 Physical setup

For this numerical experiment, we choose a physical setup that can be achieved with existing or

forthcoming Petawatt laser systems, like the Apollon laser in Saclay [100] or ELI-ALPS in Hungary

[101]. The laser pulse duration is 16 fs FWHM in intensity. The beam waist before introducing

spatio-temporal couplings is w0 = 3.2µm. The laser is p-polarized and has a normalized amplitude of

a0 = 30 (in the absence of PFT), it impinges the target with a 45◦ incidence angle. The pulse-front

tilt amount ξ before the focusing optics maximizes the laser wavefront rotation velocity at focus (i.e.

ξ = ξmax = τ0
R ). In this case, the laser wavefront rotation velocity reaches Vr = 2.926mrad.fs−1, and

the laser intensity is decreased by a factor of 2 (and the normalized laser amplitude by a factor of
√
2). The plasma target is composed of a plasma bulk with a density of n0 = 220nc and a preplasma

with an exponential density ramp n(x) ∝ exp(x/L) where L = λ0

8 . This plasma density scale length

maximizes the HHG efficiency in the relativistic regime for a 45◦ laser incidence angle [37]. The ions

have a mass of mi = 12× 1836me = 22, 032me (with me the electron mass). This setup emulates an

overdense plasma resulting from the full ionization of a carbon plastic target by the laser prepulse.

VII.2.2 Numerical parameters

Numerically modelling HHG on plasma mirrors with Particle-In-Cell codes in a full 3D geometry

is extremely computationally-intensive as it would require tens of billions of cells/pseudo-particles. To

reduce this computational cost, we first rely on PIC simulations in a 2D geometry: the simulation

domain corresponds to the plane of incidence of a p-polarized laser pulse (i.e. the magnetic field is

perpendicular to the simulation plane). In the presence of wavefront rotation, the laser wave vector

is rotating in the simulation plane. This type of simulation still requires the use of a very fine grid

sampling and a robust Maxwell equations solving algorithm. In this context, employing the ultra-high

order Pseudo-Spectral Analytical Time Domain (PSATD) Maxwell solver is appropriate as it ensures

a dispersion-less numerical Maxwell’s equations solving up over the whole Fourier spectrum.

Unless explicitly mentioned, all numerical results presented in this chapter use the PSATD Maxwell

solver with a stencil order of norder = 100 and 8 guard cells. For these parameters, we checked
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beforehand that the level of stencil truncations is sufficiently low and does not affect the physics at

play [70]. The cell size is dx = dz = λ0

285 and the time step is dt = dx
c . Besides, we employ the Esirkepov

-charge conserving- current deposition algorithm [61] with 3rd order B splines shape functions for both

current/charge deposition and field gathering. 6 particles per cell are used for both electrons and ions.

Table VII.1 summarizes all the numerical and physical parameters used for this first simulation:

Physical parameters
Numerical
parameters

Laser parameters
Plasma

parameters

a0 ⇔ I θ0 FWHM w0 ξ L n0 dx ppc

30 ⇔ 1.9× 1021Wcm−2 45◦ 16fs 3.2µm ξmax λ0/8 220nc λ0/285 6

Table VII.1: Numerical and physical setup for the lighthouse+ROM simulation.

The computational cost of each 2D simulation is around 10000 core hours on a KNL-based super-

computer.

A streaking probe is located 15λ0 away from the plasma surface and captures at each time step

the reflected transverse magnetic field that crosses the streaking plane (see figure VII.1).
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Figure VII.1: Schematic representation of a 2D attosecond ligthouse simulation. The incident laser
field is p-polarized, and the wavefront rotation occurs in the simulation plane (x-z). The streaking
probe is used to record the reflected electromagnetic field spatio-temporal profile.
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VII.2.3 Post-processings

From the reflected field recorded by the streaking probe, we can numerically compute the angularly

resolved harmonic spectrum Ih(θ, ω):

Ih(θx, ω) = |Ê(kx, ω)|2

kx = arcsin(θx)×
ω

c

(VII.1)

This spectrum can be experimentally measured on a microchannel plate detector (MCP) after

spectrally diffracting the harmonic beam on a diffraction grating. The angularly resolved harmonic

spectrum gives access to the spatio-spectral properties of the reflected beam at far-field and is essential

to investigate specific signatures of attosecond light pulse angular separation. In particular, it can be

used to perform a Fraunhofer diffraction on the attosecond pulses train associated to an arbitrary

harmonic range [nhmin, nhmax]. This operation is simply achieved by spectrally integrating Ih(θ, ω)

between ωmin = nhminω0 and ωmax = nhmaxω0.

I(θ, nhmin, nhmax) =

∫ ωmax

ωmin

Ih(θ, ω)dω

This profile corresponds to the spatial profile of the attosecond pulses train in the far-field. It

can be experimentally measured by imaging the spectrally integrated X-UV radiations. If a good

angular separation between attosecond pulses is achieved, the far-field spatial profile I(θ, ωmin, ωmax)

is constituted of a number of angularly spaced local maximums. In this case, both the angular

separation (∆θ) between subsequent pulses, and the divergence of each individual pulses θn, can be

retrieved from this angular profile as shown by panel (a) of figure VII.2. The divergence of a single

attosecond light pulses is defined as the half width at 1/e2 of an isolated spike and can be numerically

calculated by using a Gaussian fit method for example. Otherwise, if the attosecond pulses are not

sufficiently separated, then the harmonic radiation spans over a continuous angular range pertaining

to the rotating laser beam numerical aperture (cf figure panel b): in this case the angular separation

and the harmonic divergence cannot be deduced.

Figure VII.2: Far-field angular profiles constituted of three spikes. Panel (a): angularly separated
case. Panel (b): non separated case.
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Moreover, numerical simulations enable additional diagnostics that are hardly accessible in real

experiments. For example, the spatio-temporal profile of the attosecond pulses train is obtained by

filtering a specific harmonic range from the reflected beam, captured by the streaking probe. This

train can then be propagated at any arbitrary distance from the plasma target (to directly observe

the attosecond pulses separation at far-field) or to the plasma mirror emission plane (to assess the

attosecond light pulses spatial profiles following the HHG emission process), using the plane-wave

decomposition method [102]:

By(xf , t, z = ∆z) = FFT−1
kx,ω

[
FFTxf ,t

[
By(xf , t, z = 0)

]
× exp

(
i
ω

c
∆z − i∆z

√
(ω/c)2 − k2x

) ]
(VII.2)

VII.2.4 Results

Results of this first PIC simulation (cf table VII.1) are represented on figure VII.3 and VII.4.

[Panel (a) Figure VII.3] illustrates the spatio-temporal profile of the harmonic beam between orders

20 and 30, propagated to a distance of D = 100Zr ≃= 4000µm. As one can notice, the attosecond

pulses train does not split at far-field. Thus, it would not be possible to select a unique attosecond

light pulse. Panel (b) represents the angular profile of this harmonic train. The harmonic emission

spans over a continuous angular range. The absence of clear, isolated local maximum in this profile

emphasizes the absence of angular separation of attosecond light pulses. The black dashed line high-

lights the emission angle of the X-UV intensity peak. One can notice that the maximum harmonic

emission does not occur along the specular direction θ = 0. Instead, it takes place along the direction

given by θmax = 22 mrad. To explain this observation, we represent in panel (c) the temporal profiles

of the attosecond pulses train (blue curve) along with the temporal envelope of the reflected laser (red

dashed curve). From these temporal profiles, one can notice that the maximum laser amplitude does

not coincide with the maximum X-UV emission amplitude. This means that the HHG efficiency over

time drops even though the laser intensity continues to grow. This is the signature of the relativis-

tic gyromagnetic effect [103]. For ultra-relativistic laser intensities, the laser magnetic field strongly

bends the plasma surface electrons trajectories when they are pulled back by the laser field, reducing

the velocity of the plasma mirror surface oscillations responsible for the Doppler radiations, which

results in a drop of HHG efficiency. This effect grows in time as the laser amplitude increases and the

magnetic force becomes stronger. Therefore, the most intense attosecond pulse is usually not gener-

ated by the most intense laser optical cycle in the ultra-relativistic regime. Thanks to the wavefront

rotation mechanism, the temporal and angular harmonic profiles are mutually linked. In our case, the

harmonic emission amplitude maximum is reached three laser periods before the laser intensity peak,

as shown by panel (c). This temporal delay corresponds to an angular shift of δθ = 3× T0 × Vr ≃ 23

mrad (T0 is the laser period), which agrees well with the emission angle of the X-UV intensity peak

θmax.
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(a)

(b)

Figure VII.3: Panel (a): Attosecond pulses train propagated at a distance f (D = 100Zr ≃ 4000µm
) of the plasma target. Panel(b): angular profile of the attosecond pulse train. Panel (c): Temporal
profiles of the attosecond pulses train (blue curve) and the reflected laser field (red dashed curve)
taken at the plasma surface.

Panel (a) of figure VII.4 represents 3 attosecond pulses retro-propagated to the plasma surface.

The attosecond pulses wavefronts are strongly curved at the harmonic emission plane. This curvature

results from the PM denting induced by the inhomogeneous laser radiation pressure exerted on the

plasma surface [48, 99]. In these conditions, the emitted harmonics are focused by the curved PM

surface. This effect is associated with an increase in the harmonic divergence, which prevents a clear

angular separation of attosecond light pulses with the lighthouse effect.

It may be interesting to notice that the plasma mirror curvature is also encoded in the spatial profile

of the attosecond pulses train in far-field. Panel (b) of the same figure sketches the angularly resolved

harmonic spectrum for harmonic orders between 20 and 30. One can note that the harmonic rays are

tilted in the (θ, ω) space. This tilt is the signature of angular dispersion: different colors associated

to a single harmonic ray propagate along different directions. This spatio-temporal coupling cannot

solely result from the laser field spatio-temporal couplings. Indeed, as the laser beam is focused at the

plasma surface, its spatio-temporal coupling is a pure spatial chirp. However, as the plasma surface
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is strongly curved, the harmonic wavefronts are simultaneously rotating (due to the laser WFR) and

curved (due to the PM curvature). As discussed in the introductory chapter (paragraph III.5.3) these

two effects result in the angular dispersion of each high order harmonic (i.e ckω = 1
4

axt
axxatt+a2xt

)

a

(a) (b)

Figure VII.4: Panel (a): Temporal envelopes for of three attosecond light pulses pertaining the
harmonic orders between 20 and 30 at the plasma surface. Panel(b): Angularly resolved harmonic
spectrum for harmonic orders between 20 and 30.

VII.3 Effect of the plasma density scale length on the harmonic
beam divergence

The numerical experiment presented in the previous section shows that under realistic conditions,

Doppler harmonics are too divergent to be angularly separated by the lighthouse effect. This high

divergence results from the focusing effect exerted by the PM on the harmonic beam. To enable

attosecond pulses separation with the lighthouse scheme, a good control over the harmonic beam di-

vergence is thus required.

Such control can be achieved by tuning the plasma density scale length in experiments. Indeed, for

a steeper plasma density scale length, the laser field penetrating the PM surface interacts with denser

plasma regions. The recalling electrostatic force resulting from the ions-electrons separation, which

is proportional to the plasma density, is increased. Therefore, the maximum excursion of the plasma

surface electrons during the pushing phase is shorter, which results in a shallower plasma mirror dent-

ing. Consequently, the PM curvature is flatter, and the focusing effect on the high order harmonics

is mitigated. Hence, for shorter plasma density scale lengths, the attosecond pulses are less divergence.

Nevertheless, this divergence decrease comes with a drop of the HHG spectrum roll-off and cut-off

[104]. Indeed, as the restoring force increases for sharper density gradients, the outgoing electrons of

the PM surface responsible for the Doppler harmonic emission gain less energy from the driving laser
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field, which decreases the HHG efficiency.

In this section, we numerically investigate the relationship between the plasma scale length L the

angular separation of attosecond pulses with the lighthouse mechanism. To achieve this, we performed

a series of 2D PIC simulations where we varied the plasma scale length L between λ0

15 and λ0

200 . Other

numerical and physical parameters are the same as the ones of table VII.1.

Results from these simulations are represented in figure VII.5, each column corresponds to one

plasma density scale length case(left L = λ0

15 , center L = λ0

40 , right L = λ0

200). Panels (a,b,c) illustrate

the angularly resolved harmonic spectra for each case. As one can note, the HHG cut-off is strongly

affected by the plasma density scale length decrease. Panels (d,e,f) represent the angular profiles for

harmonic orders between 17 and 33. The attosecond pulses trains associated to these harmonics are

sketched in panels (g,h,i). Decreasing the plasma scale length results in the appearance of subsequent

local maximums in the angular profiles of the high order harmonic radiations (for L = λ0

40 and L = λ0

200 .

These angular profiles are associated to trains of successive, low divergence attosecond light pulses

(panels (h) and (i)), as opposed to the attosecond pulses train obtained from a relatively long plasma

density scale length (L = λ0

15 ), panel (g) which is composed of high divergent attosecond light pulses.

However, the decrease in the harmonic divergence is accompanied with a strong drop in the HHG

efficiency, as shown by the amplitude decrease of the angular profiles. Finally, by computing both the

harmonic divergence and the attosecond light pulses angular separation, we find that the separation

ratios ∆θ
θn

are 0.9 and 0.78 for L = λ0

40 and L = λ0

200 respectively, which is not sufficient to efficiently

separate attosecond light pulses.
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Figure VII.5: Angularly resolved harmonic spectra (first row), angular profiles for harmonic orders
between 17 and 33 (second row) and spatio-temporal profiles of attosecond light pulses of harmonic
orders between 17 and 33 propagated far from the plasma target (D = 100Zr ≃ 4000µm) for three
values of plasma scale lengths.
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VII.4 PM curvature compensation via laser wavefront curvature

VII.4.1 General principle

In this section, we detail the first harmonic divergence reduction technique explored in this thesis.

This technique is rather simple, and should be easily implemented within HHG experiments. It could

lead to a substantial drop in harmonics divergence.

This method consists in placing the PM out of the laser focus. This way, the laser wavefronts

impinging the PM are curved. This curvature brings an additional quadratic term φL to the harmonic

spatial phases at the PM surface (c.f paragraph III.4.10). This term can be used to decrease/control

the harmonic divergence, depending on which side of the laser focus the PM is placed.

If the driving laser beam is focused slightly before reaching the plasma surface (cf figure VII.6

panel (b)), φL is then of opposite sign than the harmonic spatial phase induced by the PM curvature

φp. In this case, the usual PM focusing effect exerted on high order harmonics is mitigated by the

laser wavefront curvature. Additionally, if the total harmonic quadratic phase completely vanishes

(i.e. φn = φL + φp = 0), then the harmonic divergence should be reduced to the diffraction-limited

divergence given by θ0 = λ0

nπwn
(where n is the harmonic order and wn is the harmonic beam size of

the nth harmonic order at the PM surface). Coupled with the wavefront rotation mechanism, this

technique could lead to a clear angular separation of attosecond light pulses in the relativistic regime.

To assess the effectiveness of this scheme, it might be interesting to visualize the high order har-

monic emission with a defocused laser beam in the Bourdier frame, using the visualization technique

developed in chapter VI. For this, we performed two 2D-PIC simulations using regular Gaussian laser

(i.e. without wavefront rotation). In the first simulation the laser is focused at the plasma surface (cf

figure VII.6 panel (a)), while in the second one, the laser focus is located −0.6Zr before the plasma

surface. This defocusing distance induces a laser wavefront curvature that matches the PM curvature.

Additional physical/numerical parameters are detailed in the following table VII.2:

Physical parameters
Num params

Laser parameters Plasm param

a0 θ FWHM w0 ξ(ξmax) ∆z(Zr) L n0 dx ppcell

10 45◦ 16fs 3.2µm 0 -0.6 λ0/15 220nc λ0/200 8

Table VII.2: Physical/numerical parameters for the Bourdier visualization.

Panels (c) and (d) of figure VII.6 sketch the emission of a single attosecond light pulse associated to

harmonic orders between 16 and 24 near the PM surface. In the first case, where the laser wavefronts

are flat, the attosecond light pulses are curved at the PM surface level. On the other hand, when the

laser is focused before the target, the wavefronts of the attosecond light pulses are flat, showing that

focusing effect induced by the PM curvature has effectively been suppressed.

120



Chapter VII. Generating isolated attosecond pulses in the relativistic regime

focused laser
beam

defocused
laser beam

100

101

102
0.15
0.10
0.05

0.00
0.05
0.10
0.15

100

101

102
0.15
0.10
0.05

0.00
0.05
0.10
0.15

100

101

102
0.15
0.10
0.05

0.00
0.05
0.10
0.15

100

101

102
0.15
0.10
0.05

0.00
0.05
0.10
0.15

(c) (d)

curved
atto-pulse

flat
atto-pulse

Figure VII.6: Attosecond pulses emission by the PM in Bourdier frame. Panels (a) and (b): schematic
representation of driving laser wavefronts. Panels (c) and (d): emission of a single attosecond light
pulse when the laser is focused at the PM surface and 0.6Zr before the PM surface respectively.

VII.4.2 Divergence of high order harmonics generated by a spatially chirped and
defocused laser pulse

In this section, we derive a theoretical model assessing the Doppler harmonic divergence θn as

a function of the defocusing distance and additional laser and plasma parameters in the presence of

wavefront rotation. Based on this model, it is then possible to compute the separation quality ratio

of Doppler harmonics ∆θ
θn

as a function of laser and plasma parameters and deduce optimal conditions

favoring attosecond pulses separation. The accuracy of this model is then validated by 2D and 3D

PIC simulations.

As detailed in paragraph III.4.10 and in reference [48], under the paraxial approximation, the spa-

tial phase of Doppler harmonics emitted by a PM illuminated by an ultra-intense defocused Gaussian
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laser beam is given by:

φn(x) =
2nπ

λ0

[ x2

2R(∆z)
+

x2

2cos(θ)fp(∆z)

]
(VII.3)

where x denotes the transverse position at the PM surface, ∆z the distance between the laser focus

and the PM surface, fp(∆z) is the PM radius of curvature under the laser radiation pressure, and

R(∆z) is the laser wavefronts radius of curvature. In this case, the harmonic divergence is given by

the following equation:

θn(∆z) = θ0n(∆z)

√
1 + (nψ(∆z))2

(
1 +

fp(∆z)cos(θ)

R(∆z)

)2

ψ(∆z) =
2π

cos(θ)

(wn(∆z)

w0(∆z)

)2
δp(∆z)

(VII.4)

where θ0n = λn

πwn(∆z) is the harmonic diffraction-free divergence, w0(∆z) and wn(∆z) are the laser and

harmonic beam sizes at the PM surface respectively, ψ is the PM dimensionless focusing parameter

and δp =
wL(∆z)
2fp(∆z) is the PM denting.

Equation VII.4 shows that the harmonic divergence θn is increased in the presence of a harmonic

quadratic spatial phase φn. If the quadratic spatial phase is null, (i.e. if fp(∆z)cos(θ) = −R(∆z)),
then the harmonic divergence is equal to the diffraction-free divergence θ0n, and the PM focusing effect

is completely inhibited. Note also that by defocusing the laser pulse, the laser beam size at the PM

surface w0(∆z) is larger. Therefore, the harmonic beam sizes at the emission plane wn(∆z) increase

too, and the harmonic diffraction-free divergence is further decreased.

The PM focal distance fp(∆z) varies as a function of time during the laser-plasma interaction

process. However, during the first laser optical cycles of the interaction, the ions motions contribution

to the PM denting can be neglected. In this case, the PM focal distance is given by:

fp(∆z) ≃
w2
0(∆z)

4Lcos2(θ)
(VII.5)

For relatively long laser-plasma interaction durations (tens of laser optical cycles), the PM denting

is increased, and the PM focal distance is reduced by up to a factor of two. However, unless explicitly

mentioned, we use the PM focal distance given by equation VII.5 in the remaining of this thesis, as

we will mainly observe attosecond pulses emitted by the PM during the first laser optical cycles of the

interaction.

On the other hand, the laser radius of curvature is given by:

R(∆z) = ∆z
[
∆z +

( Zr

∆z

)2]

Zr = π
w2
0

λ0

(VII.6)

where Zr is the Rayleigh length of the laser beam. The laser wavefront curvature (i.e, the amplitude of

the laser quadratic spatial phase, proportional to 1
R∆z ) increases with respect to the laser defocusing
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distance ∆z. It is maximum for ∆z±Zr. In this study, we are only interested in negative defocusing

distances that result in convex laser wavefronts (like the one in panel (b) of figure VII.6). For a regular

Gaussian laser beam, the spatial phase compensation may only occur in the range ∆z ∈ [−Zr, 0].

On the other hand, the PM focusing effect, which is inversely proportional to the PM focal distance

fpcos(θ), increases with respect to the plasma density scale length L. Moreover, efficient Doppler HHG

is triggered with relatively long plasma scale lengths, that induce a strong PM curvature. Therefore,

it might be interesting to calculate the maximum PM density scale length inducing the maximum PM

curvature that can be compensated by the laser wavefront curvature. Such a plasma density scale

length Lmax can be computed by equating the PM focal distance with the laser radius of curvature

for ∆z = −Zr.

−R(−Zr) = fp(−Zr)cos(θ)

⇔ 2Zr =
2w2

0

4Lmaxcos(θ)

⇔ 2πw2
0

λ0
=

2w2
0

4Lmaxcos(θ)

⇔ Lmax =
λ0

2πcos(θ)

(VII.7)

For an incidence angle of θ0 = 45◦, we find Lmax ≃ λ0

4.5 , which means that this technique is suited for

Doppler harmonics, as the plasma density scale lengths of interest do not exceed Lmax.

Figure VII.7 shows the evolution of θn(∆z) given by equation VII.4 for the 20th harmonic order for

different values of plasma density scale lengths (L = λ0

15 blue curve, L = λ0

30 red curve, L = λ0

100 magenta

curve). In each case, we assumed that the harmonic beam size at the plasma surface is wn = 0.8w0(∆z)

and that the laser incidence angle θ = 45◦. As the PM curvature is increased (by increasing the

plasma density scale length L), the laser curvature needs to be increased further to maintain a null

harmonic spatial phase at the plasma surface. Therefore, the optimal defocusing distance is larger

for larger plasma density scale lengths. Note also that the minimal harmonic divergence is relatively

independent of the PM density scale length L. As the PM focusing effect is completely suppressed, the

PM curvature no longer affects the harmonic divergence, which shows that this divergence reduction

technique allows manipulating the harmonic divergence without affecting the HHG efficiency.
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Figure VII.7: Evolution of harmonic divergence as a function of the laser defocusing length for three
values of plasma gradient.

In the presence of wavefront rotation, the harmonic divergence formula expressed by equation VII.4

is valid. However, different terms involved in this formula need to be recalculated in order to take into

account for the laser wavefront rotation (refer to appendix A for the full derivation of the following

quantities).

In the presence a wavefront rotation associated to a pulse-front tilt amount before focus ξ, the

laser waist out of focus reads:

weff (∆z, ξ) = weff (ξ)

√
1 +

( ∆z

Zeff
r

)2
(VII.8)

Zeff
r is the effective Rayleigh length given by:

Zeff
r =

πw2
eff

λ0
(VII.9)

and weff the effective laser waist at focus:

weff (ξ) = w0

√
1 +

( ξ

ξmax

)2

with ξmax the pulse-front tilt amount that maximizes the laser WFR velocity at focus:

ξmax =
τL
w0

Due to the increase in the laser beam size in the presence of a spatial chirp, the laser radius of

curvature reads:

R(∆z, ξ) = ∆z
[
1 +

(Zeff
r

∆z

)2]
(VII.10)
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The maximum laser curvature is reached for a defocusing distance of ∆z ± Zeff
r . Hence, in the

presence of wavefront rotation, the harmonic spatial phase compensation could be achieved for defo-

cusing distances beyond Zr (but below Zeff
r ) .

Moreover, it can be safely assumed, in the context of Doppler HHG, that the laser incidence angle

θ is roughly constant over time. Indeed, over the total laser temporal duration, the laser wave vector

total rotation does not exceed a few tens of mrad. For instance, assuming the physical parameters

given by table VII.1, and supposing that the laser beam is ten optical cycles long, the laser wave vector

rotates by:

10×∆θ = 10T0Vr ≃
π

40
≪ θ0 =

π

4

where Vr is the wavefront rotation velocity.

Finally, due to the increase in the laser beam size at the PM surface, the PM focal distance reads:

fp(∆z, ξ) =
weff (∆z, ξ)

2

4Lcos2(θ)
(VII.11)

By injecting equations VII.8, VII.10 and VII.11 into equation VII.4, the generalized harmonic

divergence θn(∆z, ξ) in the presence of wavefront rotation and a laser wavefront curvature is given by:

θn(∆z, ξ) = θ0n(∆z, ξ)

√
1 +

(
nψ(∆z, ξ)

)2(
1 +

fp(∆z, ξ)cos(θ)

R(∆z, ξ)

)2

ψ(∆z, ξ) =
2π

cos(θ)

(wn(∆z, ξ)

w0(∆z, ξ)

)2 δp
λ0

(VII.12)

On the other hand, the laser wavefront rotation velocity as a function of the defocusing distance

∆z is given by the following equation (see appendix A):

Vr(∆z, ξ) =
1

k0

ζ

1 +
(

∆z

Zeff
r

)2

ζf =
2ξ

τ02
[
1 +

( ξ
ξmax

)2]
(VII.13)

The angular separation between two successive attosecond light pulses is given by:

∆θ(∆z, ξ) = T0 × Vr (VII.14)

Figure VII.8 sketches the evolution of the laser wavefront rotation velocity as a function of the defo-

cusing distance ∆z for a pulse-front tilt amount that maximizes the laser wavefront rotation velocity

at focus ξ = ξmax. One can note that the laser wavefront rotation velocity loss out of focus is relatively

small. For instance, at a defocusing distance of ∆z = ±Zr, there is ”only” 20% drop and ≃ 50% at

∆z = ±2Zr. This drop should thus not affect the effectiveness of our divergence reduction technique

in improving the angular separation of attosecond light pulses by the lighthouse scheme.
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Figure VII.8: Laser wavefront rotation velocity as a function of the defocusing distance ∆z for ξ = ξmax

in arbitrary units.

Using equations VII.13, VII.12 and VII.14, the attosecond pulse separation ratio ∆θ(∆z,ξ)
θn(∆z,ξ) can be

calculated for any laser and plasma setup:

∆θ(∆z, ξ)

θn(∆z, ξ)
=

T0×ζf
k0

1

1+
(

∆z

Z
eff
r

)2

θ0n(∆z, ξ)

√
1 +

(
nψ(∆z, ξ)

)2(
1 +

fp(∆z,ξ)cos(θ)
R(∆z,ξ)

)2 (VII.15)

It is then possible to fetch optimal laser and plasma parameters to improve the attosecond pulses

separation. Note, however, that the harmonic beam sizes wn should be fed to this model. As there is

no known theoretical model to predict this quantity, we will extract it from PIC simulations and use

it later in our computations. Note also that this quantity only affects the separation ratio ∆θ
θn

, but not

the optimal defocusing distance.

Calculation of harmonic beam sizes

Assessing harmonic beam sizes at the PM surface is necessary in order to exploit our analytical

divergence model, given by equation VII.15. To compute these quantities, we performed a 2D PIC

simulation using a regular Gaussian laser field. The simulation parameters are summarized in the next

table VII.3:

Physical parameters
Num params

Laser parameters Plasm params

a0 θ FWHM w0 ξ(ξmax) ∆z(Zr) L n0 dx ppcell

20 45◦ 16fs 3.2µm 0 0 λ0/15 220nc λ0/285 6

Table VII.3: Physical/Simulation parameters to estimate the harmonic beam sizes.

The laser intensity at the plasma surface is roughly equivalent to that obtained with a spatially

chirped laser for ξ = ξmax and a0 = 30.
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The harmonic beam sizes for orders n ≤ 25 are sketched in figure VII.9. Due to the very large

laser amplitude (a0 = 20), the high order harmonics are generated on a relatively large part of the

laser beam size wn

w0
≃ 0.8. Moreover, we note that this ratio remains constant over a relatively large

harmonic range. In the remaining of this thesis, we will use this value and assume that it does not

depend on the harmonic order n.

1 3 5 7 9 11 13 15 17 19 21 23 25
Harmonic order

0.7

0.8

0.9

1.0

w
n/w

0

Figure VII.9: Harmonic beam sizes obtained from PIC simulation, normalized to the laser waist.

Optimal defocusing distance for attosecond pulses separation

We fix the laser incidence angle to 45◦ and the plasma density scale length L = λ0

15 . The pulse-front

tilt ξ = ξmax maximizes the laser wavefront rotation at focus.

As validated through PIC simulations, we can reasonably assume that the harmonic beam size is

wn = 0.8w0, and that it does not depend on harmonic order. The expected evolution of θn as well as

∆θ is sketched in figure VII.10 for 4 different harmonics orders. Panel (a) shows that the harmonic

divergences reach a minimum for ∆z ≃ −Zr. For this defocusing distance, the separation ratio ∆θ
θn

is maximized (cf panel c). This ratio is larger than 1 for all harmonic orders beyond 10 and is even

larger than 2 for n = 25, which suggests that an excellent separation can be reached by this technique.

Furthermore, we observe that the optimal defocusing distance is independent of the harmonic order.

This observation is important as it implies that minimizing the divergence of a single harmonic order

is equivalent to minimizing the divergence of individual attosecond light pulses comprising multiple

harmonics.
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Figure VII.10: Panel (a): Divergence of 4 harmonics orders as a function of ∆z. Panel (b): Angular
shift between successive laser wavefronts ∆θ. Panel (c): Evolution of the ratio ∆θ/θn as a function of
∆z.

VII.4.3 Numerical validation

In order to investigate the effectiveness of our harmonic divergence reduction technique in improv-

ing the angular separation of the lighthouse scheme, we carry out an extensive numerical study using

2D PIC simulations. This study is also intended to assess the validity of our analytical divergence

model for a broad range of laser and plasma parameters and prepare the ground for a more expensive

full 3D simulation.

Numerical validation of the laser defocusing technique in 2D

First, we perform a series of 2D PIC simulations in which we varied the laser defocusing distance

∆zr in the presence of wavefront rotation. This parameter scan is constituted of 8 simulations in

which the laser defocusing distance takes the following values :

∆z

Zr
= {0,−0.25,−0.5,−0.7,−0.85,−1,−1.25,−1.5} .

The plasma density scale length is fixed to L = λ0/15. Other physical and numerical parameters

are the same given by table VII.1 (45◦ incidence angle, a0 = 30).
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Figure VII.11 sketches the harmonic angular profiles for harmonic orders between 20 and 30 ob-

tained from each simulation (the defocusing distance in each case is specified in each panel). As we

keep increasing the defocusing distance (in absolute value), the harmonic angular profile moves from

a bell-shaped nearly concave curve (for ∆z = 0 for example) to a dented shape with multiple local

maximums. This shape is very obvious for the cases −1.25Zr 6 ∆z
Zr

6 −0.85Zr. It suggests that

in these particular cases, the harmonic divergence θn has decreased significantly to a point where

it dropped below the angular separation threshold ∆θ. By further increasing the laser defocusing

distance, the spatial phase matching between the PM curvature and the laser wavefront curvature is

no longer fulfilled, which gives rise to an increase in the harmonic divergence and a drop of in the

separation ratio.
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Figure VII.11: Integrated angularly resolved harmonic spectra obtained from 2D PIC simulations for
different values of defocusing lengths.
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In figure VII.12, the evolution of the ratio ∆θ
θn

extracted from these PIC simulations as a function of

the defocusing distance is represented in green line. In black dashed line we represent the theoretical

evolution of this ratio. There is a good agreement between our analytical calculations and the PIC

simulation results. The optimal separation ratio is attained for a defocusing distance of ∆z = −Zr,

in agreement with the theoretical predictions (of ∆z = −0.99Zr). In this case, the obtained angular

separation ratio ∆θ
θn

= 2.1 which represents a large enough contrast to produce well separated attosec-

ond light pulses. Note finally that the gap between the theoretical and numerical separation ratios on

both sides of the curve (for ∆z = −1.5Zr and ∆z = −0.5Zr ) is due to the fact that the fitting curve

method used to retrieve the standard deviations of the local spikes from the harmonic angular profiles

is not very robust when the separation ratio is too weak.
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Figure VII.12: Separation quality as a function of the laser defocusing length. In green: the data
obtained from simulations. In dashed black: the theoretical separation predicted by the toy model.

VII.4.4 Evolution of the optimal defocusing length with the gradient scale length

As discussed in section VII.3, the harmonic divergence is strongly correlated with the plasma den-

sity scale length L. Therefore, the optimal defocusing distance that maximizes the angular separation

ratio is also strongly dependent on L. For smoother plasma-vacuum interfaces (i.e. larger L), the

laser wavefronts need to be strongly curved in order to compensate for the important PM focusing.

On the other hand, for steep plasma-vacuum interfaces, the PM focusing effect is weak. Thus, the

optimal defocusing distance is also small. Figure VII.13 shows the evolution of the ratio ∆θ
θn

for the

20th harmonic order for different plasma density scale lengths as a function of the laser defocusing

distance. The optimal defocusing length is growing as L gets larger. Moreover, the best separation

quality ratio seems to be independent of the plasma density scale length. Indeed, as the PM focusing

is fully inhibited by the laser wavefront curvature, the plasma scale length L is irrelevant for the

harmonic divergence. This proves that this technique is well suited for Doppler HHG separation as it

does not require to trade off the HHG efficiency for the attosecond light pulses separation.
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Figure VII.13: Evolution of the ratio ∆θ/θn for the 20th harmonic order for three values of scale
lengths as a function of the laser defocusing length.

The dependency between the optimal laser defocusing distance and the plasma density scale length

is investigated numerically. We performed a 2D PIC parameter scan with respect to the plasma

scale length L and the defocusing distance ∆z. Given the cost of a single numerically-converged 2D

simulation, this numerical study only covers 5 plasma density scale lengths values

L ∈
{
λ0
8
,
λ0
15
,
λ0
20
,
λ0
30
,
λ0
50

}

In each case, we performed numerous (between 4 and 8) simulations with different laser defocusing

distances, usually near the theoretical optimum predicted by the toy model. In total, we performed

32 2D PIC simulations for a total cost of about half a million core hours on the THETA cluster.

For each simulation, we compute the harmonic angular profile for harmonic orders between 20 and

30. Whenever possible, (when the train is sufficiently separated), the separation ratio ∆θ
θn

is calculated

and the best separation distance that maximizes this ratio is deduced for each plasma density scale

length.

Figure VII.14 shows the variation of the angular separation quality with the laser defocusing

distance for different plasma density scale lengths. We clearly observe that the optimal defocusing

distance increases when the PM density scale length L is increased. We also note that the best

numerical separation ratio obtained for different plasma scale lengths does not depend on the value of

L and peaks at ∆θ
θn

≃ 2, in agreement with our theoretical predictions. This suggests that we generate

diffraction-free high order harmonics in all cases. The drop in the best separation ratio observed for

the case L = λ0

50 (red curve) may be explained by a decrease in the harmonic beam size at the PM in

this specific case, which increases the harmonic diffraction-free divergence.
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Figure VII.14: Evolution of the separation quality as a function of the defocusing length for different
plasma density scale lengths for a 45 degree incidence angle.

A comparison between the best defocusing lengths from the PIC simulations against the ones

obtained from the toy model is given in figure VII.15. One can note that our toy model successfully

predicts the optimal defocusing distances for every plasma density scale length.
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Figure VII.15: Theoretical vs numerical optimal defocusing lengths obtained from 2D PIC simula-
tions.

Figure VII.16 illustrates the angularly resolved harmonic spectra (upper panels), the spatio-

temporal profile of the attosecond pulses train far from the PM (or harmonic orders between 20 and

30) (middle panels), and the harmonic angular profiles (lower panels) obtained from PIC simulations

involving optimal separation ratios for three plasma scale lengths (L = λ0

8 ,L = λ0

15 ,L = λ0

20 ).
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Figure VII.16: Simulation results obtained with the best defocusing distances for different plasma
scale lengths. Panel (a): = λ0/8, ∆z = −1.5Zr. Panel (b): = λ0/15, ∆z = −Zr. Panel (c):
= λ0/20, ∆z = −0.7Zr. Upper row: angularly resolved harmonic spectra. Central row: attosecond
light pulses composed of harmonic orders between 20 and 30 propagated far from the target (D =
100Zr ≃ 4000µm. Lower row: angular profiles for the same harmonic range.

The angularly resolved harmonic spectra exhibit high HHG cut-offs in all cases, suggesting a strong

HHG efficiency. These profiles are spectrally integrated between harmonic orders 20 and 30 to retrieve

the harmonic angular profiles (lower panels). The shape of these angular profiles suggests that a good

separation is achieved in the far-field. In the middle panels, we represent the spatio-temporal profiles

of attosecond pulses train (for the same harmonic range) far from the PM. We clearly observe that

the pulses composing the attosecond train are effectively separated in the far-field, showing that our

harmonic divergence reduction technique enables the production of isolated attosecond pulses.

VII.4.5 Effect of the laser incidence angle

Another means to reduce the Doppler harmonic divergence (aside from reducing the plasma scale

length) is by increasing the laser incidence angle on target. For instance, by doing so, the laser-plasma

interaction region increases in size. Thus the plasma surface is dented on a larger transverse portion.

At the same time, the normal component of the laser radiation pressure responsible for the PM denting
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drops. Those two effects are schematically illustrated in figure VII.17. This results in a decrease of the

maximal PM denting δp and an increase in the dented region transverse size (parallel to the plasma

surface). Hence, the PM focal distance fpcos(θ) is increased for larger incidence angles and scales as

∝ 1
cos(θ) .

The increase in the PM focal distance mitigates the focusing effect on high order harmonics as the

maximum quadratic spatial phase φp (see equation III.63) induced by the PM curvature is reduced.

Hence, to compensate the focusing effect of the PM at larger incidence angles, a smaller defocusing

distance ∆z is required in this case.

Figure VII.17: Schematic representation of the effect of the laser angle of incidence on the PM cur-
vature. The red ellipses represent the driving laser beam. The yellow arrows sketch the radiation
pressure normal to the target that induces the PM denting. The arrow sizes schematically represent
the radiation pressure magnitude. For oblique incidence (panel (b)), the laser radiation pressure is
reduced due to the increase in the size of the interaction region, and the decrease in the normal compo-
nent of the electromagnetic force exerted on the plasma surface, resulting in a larger PM focal distance
(the green dot), and a flatter PM curvature.

To assess this phenomenon, we performed a set of 2D PIC simulations at 55◦ incidence angle with

different laser defocusing distances for two plasma density scale lengths (L = λ0/15 and L = λ0/20).

We want to compare the results obtained in this case with the ones obtained for θ0 = 45◦. All other

numerical and physical parameters are the same as those used in the previous simulations (see table

VII.1).

In figure VII.18, the red curves represent the evolution of the separation ratio ∆θ
θn

as a function of

the defocusing distance ∆z for L = λ0/15 (panel (a)) and L = λ0/20 panel (b). The blue curves in

each panel sketch the evolution of the separation ratio for a 45 degree angle of incidence (taken from

figure VII.14).
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Figure VII.18: Angular separation ratio as a function of the laser defocusing distance: panel (a):
L = λ0/15, panel (b): L = λ0/20. Red curves θ = 55◦. Blue curves θ = 45◦.

We observe the same dependency pattern between the optimal defocusing distances and the plasma

density scale length for both angles of incidence. Besides, by comparing the results obtained for a 55◦

angle of incidence and the ones for 45◦, one can clearly see that the optimal spatial phase compensation

is achieved for shorter defocusing distances when the laser incidence angle is larger, which agrees with

our analysis of the PM denting. However, this finding does not necessarily result in an improvement of

the separation ratio of attosecond light pulses as for both incidence angles, we produce diffraction-free

attosecond pulses with minimal divergence.

VII.4.6 Effect of the pulse-front tilt on the angular separation of attosecond light
pulses

Up to now, we fixed the laser pulse-front tilt value ξ so that the laser wavefront rotation velocity is

maximized at focus. However, counter-intuitively, we now show that this is not the PFT maximizing

angular separation.

In panel (a) of figure VII.19, we sketched the evolution of the laser wavefront rotation velocity as

a function of the laser defocusing length for 3 values of pulse-front tilt values: (ξ = 0.5ξmax in red,

ξ = ξmax in blue, and ξ = 2ξmax in magenta). The laser wavefront rotation velocity is maximum

at focus (for any value of pulse-front tilt). However, as the PFT is increased beyond ξmax, the drop

rate of WFR as a function of the defocusing distance is slower. This behavior is explained by the

increase in the effective laser Rayleigh length Zeff
r for larger pulse-front tilts (due to the increase in

the effective laser waist weff ).

Hence, for a fixed non-null defocusing distance ∆z, the maximum laser wavefront rotation velocity

is achieved by a pulse-front tilt ξ which is always superior to ξmax. This is shown in panel (b) were we

sketched the laser wavefront rotation velocity as a function of the pulse-front tilt at different distances

from focus (∆z = 0 in blue, ∆z = −Zr in red and ∆z = −2Zr in magenta). In each case, the wavefront

rotation velocity reaches its peak for a different pulse-front tilt value ξ. This value increases as the

defocusing distance is increased.
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Figure VII.19: Panel (a): Evolution of the laser wavefront rotation as a function of the laser defocusing
for multiple values of pulse-front tilts ξ. Panel (b): The wavefront rotation velocity as function of ξ
at different locations.

Therefore, choosing pulse-front tilt amounts beyond the critical value ξ = ξmax should result in

an increased wavefront rotation velocity at the plasma surface, which is beneficial for the angular

separation of attosecond light pulses.

On the other hand, tuning the PFT amount results in an increase of the effective laser waist.

Assuming that the harmonic beam sizes scale with the effective laser waist, the resulting harmonics

from this setup should be less divergent. Nevertheless, this effect can be mitigated by the drop in the

laser intensity on target as the divergence decreases when the laser intensity decreases.

We can use our toy model to assess the effect of the pulse-front tilt parameter on the separation

of attosecond light beams. However, our toy model cannot predict the harmonic beam sizes when the

laser intensity on target drops. Nevertheless, a qualitative analysis based on these analytical calcula-

tions could bring important insights to fetch optimal parameters for attosecond pulses separation.

In figure VII.20, panel (a) sketched the evolution of the angular separation ratio ∆θ
θn

computed

by our analytical model as a function of the laser defocusing length and the pulse-front tilt (for 55◦,

L = λ0

15 and n=20). We can note that the best achievable separation ratio is reached for very high

laser pulse-front tilt amounts (ξ ≃ 4.3ξmax in this case). We think that this behavior is not physical

since our toy model does not take into consideration the effect of the decrease in the laser intensity

at the surface of the PM as it is implicitly assumed that the relative harmonic beam sizes at the PM

surface is constant ( wn

w0(ξ,∆z) = 0.8)

In panel (b), we sketch the evolution of 1
θn

for the 20th harmonic order (in arbitrary units). The

dashed red line outlines each defocusing distance ∆z with the pulse-front tilt amount ξ that minimizes

the harmonic divergence θn through the spatial phase compensation process. We note that the optimal
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defocusing distance increases (in absolute value) with respect to the pulse front tilt amount ξ. Indeed,

the laser beam size increase induced by the spatial chirp results in an increase in the effective laser

Rayleigh length. Therefore, to attain the same wavefront curvature, the laser needs to be defocused

over a larger distance and the laser wavefront and PM curvatures matching occurs further from the

laser focus when the pulse-front tilt is increased. Moreover, when the spatial phase compensation is

achieved (along the green dashed line), the harmonic divergence is reduced for larger spatial chirps

amounts ξ due to the decrease in the harmonic diffraction-free divergence.

In panel (c), we represent the evolution of the laser wavefront rotation velocity Vr as a function

of ξ and ∆z in arbitrary units. The green dashed line outlines each defocusing distance ∆z with the

pulse-front tilt amount ξ that maximizes the laser wavefront rotation velocity. As discussed earlier,

the optimal pulse-front tilt amount increases with respect to the laser defocusing distance. However,

for each pulse-front tilt value, the laser wavefront rotation velocity peaks at focus (∆z = 0).
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Figure VII.20: Panel (a): Evolution the angular separation ratio ∆θ
θn

as a function of the laser
defocusing length and the pulse-front tilt ξ. Panel (b): the evolution of 1/θn (in arbitrary units) as a
function of the laser defocusing length ∆z and the pulse-front tilt ξ. The dashed red line highlights
the pulse-front tilt that minimizes the harmonic divergence at a given defocusing distance ∆z. Panel
(c): the evolution of the wavefront rotation velocity as a function of the pulse-front tilt amount and
the defocusing distance. The dashed green line highlights the pulse-front tilt amount that maximizes
the laser wavefront rotation velocity for a given defocusing distance ∆z. In all panels, we assumed a
laser incidence angle of 55◦ and a plasma density scale length of L = λ0/15.

In figure VII.21, we extracted the dashed red and green lines from panels (b) and (c) from the previ-

ous figure VII.20. The intersection of the two curves takes place at (ξint,∆zint) = (1.42ξmax,−1.14Zr).

For this value of the laser defocusing distance and pulse-front tilt, the PM focusing effect is fully com-

pensated, and at the same time, the laser wavefront rotation velocity reaches it peak with respect to

ξ. It might be very interesting to assess the separation efficiency of the lighthouse mechanism in the

setup given by (ξint,∆zint).
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Figure VII.21: Extracted dashed red and green curves from figure VII.20.

Direct observation of the effect of the pulse-front tilt amount on the separation of

attosecond light pulses

To study the effect of the pulse-front tilt on the attosecond pulses separation, we performed the

following numerical experiment. We fixed the laser defocusing distance to ∆z = −Zr. We ran a

series of 2D PIC simulations for multiple values of ξ between 0.8ξmax and 2ξmax and two angle of

incidence θ = 45◦ and θ = 55◦. Due to the increase in the laser beam size because of the pulse-

front tilt, the simulation box size should be scaled as ∼
√

1 + ( ξ
ξmax

)
22

in 2D. Consequently, these

simulations can be extremely expensive in terms of computational time. So we slightly reduced the

spatial-temporal resolution for these numerical runs in order to mitigate their total computational cost.

The numerical/physical setup used in this parametric scan is summarized in the following table

VII.4:

simulation
Laser params Plasma params Num params

a0 θ FWHM w0 ξ(ξmax) ∆z L n0 dx ppc

set 1 30. 45◦ 16fs 3.2µm 0.8..2. −Zr λ0/15 220nc λ0/190 6

set 2 30. 55◦ 16fs 3.2µm 0.8..2. −Zr λ0/15 220nc λ0/190 6

Table VII.4: Numerical/physical parameters for the parametric scan ξ vs θ0 for a constant defocusing
distance.

Figure VII.22 sketches the harmonic angular profiles for three values of pulse-front tilt for each

incidence angle between harmonics orders 15 and 20. The best angular separations are achieved with

pulse-front tilts values of ξ = ξmax and ξ = 1.5 × ξmax for θ = 45◦ and θ = 55◦ respectively. In the

first case, the laser defocusing distance ∆z = −Zr is optimal for a pulse-front tilt of ξ = ξmax. By

increasing ξ, the optimal defocusing distance is also increased, and the plasma mirror focusing effect is

no longer completely hindered. Despite the increase in the WFR velocity, the harmonic divergence is

increased, and attosecond light pulses are no longer separated. On the other hand, the same defocusing

distance of ∆z = −Zr is above the optimal defocusing distance for 55◦(which is −0.8× Zr according

to the analytical model). In this case, by increasing the pulse-front tilt, the laser wavefront rotation
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velocity is increased and the defocusing distance used in the simulation gets closer to the optimal

defocusing distance for attosecond pulses separation, improving the harmonic angular separation.
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Figure VII.22: Integrated angular spectrum as a function of ξ and the incidence angle θ for a fixed
defocusing distance of ∆z = −Zr.

Improving the angular separation by tuning the spatial chirp amount

We want to assess if the strategy consisting in simultaneously tuning the laser wavefront curvature

and the pulse-front tilt could improve the separation quality of attosecond light pulses.

We performed a 2D PIC simulation with a setup close to that given by figure VII.21. Namely,

in this particular case, the (ξ,∆z) parameters simultaneously compensate for the PM curvature and

maximize the laser wavefront rotation velocity where the laser-plasma interaction takes place. The

physical and numerical parameters for this simulation are summarized in the next table VII.5:

Physical parameters
Num params

Laser parameters Plasm params

a0 θ FWHM w0 ξ(ξmax) ∆z(Zr) L n0 dx ppcell

30 55◦ 16fs 3.2µm 1.45 -1.15 λ0/15 220nc λ0/285 6

Table VII.5: Numerical/physical parameters simultaneously achieving optimal defocusing distance ∆z
and laser wavefront rotation velocity.

Figure VII.23 sketches the results obtained from this simulation. In panel (a) we represent the

angularly resolved harmonic spectrum of the reflected field. The finger-like structures are clearly visi-

ble over the 15th harmonic order. In panel (b), we integrated this spectrum over the harmonic orders

H(20-30). The separation ratio is ∆θ
θn

= 2.26 which is slightly better than that obtained for 55◦ and

ξ = ξmax (∆θ
θn

= 1.9), which proves that tuning the pulse-front tilt along with the defocusing distance
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might be beneficial to increase the angular separation of attosecond light pulses.

Finally, in panel (c), we represented the attosecond pulses associated to these harmonic orders at

a distance of D = 4000µm ≃ 100Zr to observe the attosecond pulses separation in the far-field.
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Figure VII.23: Simulation results for an incidence angle θ0 = 55◦, ξ = 1.45ξmax and ∆z = −1.15Zr.

Attosecond pulses separation with a multi-terawatt laser

In the previous numerical studies, we showed that the attosecond lighthouse effect can be triggered

with PetaWatt lasers (a0 = 30). With such a powerful laser, the intensity of the driving laser field

at the plasma surface remains extremely high despite the intensity depletion due to the pulse-front

tilt/laser defocusing. Hence, in the previous simulations, the Doppler harmonic cutoff, as well as the

harmonic beam sizes at the plasma surface, were relatively high, which allows to select higher, and

naturally less divergent harmonics. In the ∼ 100 TeraWatt regime, the laser intensity is still sufficiently

high to drive a relativistic high order harmonic generation process, but with lower harmonic cut-offs

and roll-offs.

In this section, we show that our technique also leads to an acceptable separation ratio. To do this,

we performed a simulation with the same parameters as for VII.4.3 except that L = λ0

15 ,∆z = −Zr

and a normalized laser amplitude a0 = 10. The laser intensity reaches 7× 1019W.cm−2 at the plasma

surface. This setup can be achieved by a few hundreds TeraWatt laser.

The results of this simulation are presented in figure VII.24. Panel (a) illustrates the angularly

resolved harmonic spectrum of the reflected field. As one can note, the HHG has significantly dropped

compared to the same simulation performed with a higher laser intensity (see figure VII.16 pane (b)).

In panel (b), we represent the harmonic angular profile for harmonic orders between 20 and 26. In

this configuration, and due to the decrease in the laser intensity, the relativistic gyromagnetic effect

is significantly inhibited: multiple attosecond light pulses are emitted in the angular domain θ < 0,
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corresponding to the rear of the driving laser field. Furthermore, the most intense attosecond pulse is

emitted in the specular direction of the driving laser field (θ = 0 in the streaking probe). By computing

the separation ratio obtained by isolating the three central attosecond pulses, we find ∆θ
θn

= 1.3 > 1,

which shows that the separation criterion is still fulfilled, although it has decreased compared to the

case a0 = 30 where a separation ratio ∆θ
θn

= 2 was achieved. Note also that the central attosecond pulse

(emitted along the specular direction) is about two times more intense than its neighboring attosecond

pulses. The selected harmonic range is relatively close to the HHG cutoff (cf panel (a)). Hence, the

HHG dependency on the instantaneous laser intensity is highly non-linear, and harmonic generation

is driven more efficiently by the central laser optical cycle. This relatively high contrast should, in

principle, improve the temporal contrast of the isolated attosecond light pulse in the far-field (if the

specular attosecond pulse is selected).

The spatio-temporal of attosecond pulses train pertaining to harmonic order between 20 and 26

far from the PM is sketched in panel (c) to illustrate the angular separation of attosecond pulses in

the far-field.

Figure VII.24: Panel (a): Angularly resolved harmonic spectrum of the reflected field. Panel(b): Inte-
grated angular spectrum in the harmonic range between 20 and 26. Panel(c): Propagated attosecond
light beams formed by these harmonics over a distance of D = 4000µm ≃ 100Zr.

VII.4.7 Attosecond light pulses separation in 3D

So far, we heavily relied on 2D PIC simulations to investigate the effect of the laser wavefront

curvature on the harmonic divergence in the presence of wavefront rotation. In the light of these
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results, we were able to validate the accuracy of our harmonic divergence model for a broad range of

laser and plasma parameters (plasma scale length, incidence angle, pulse-front tilt, laser intensity).

The next step consists in studying the angular separation of attosecond pulses in a full 3D geome-

try. This study intends to completely validate the efficiency of our harmonic divergence reduction

with a 3D PIC simulation and investigate some aspects of the HHG emission that are not accessible

with 2D simulations. Such aspects include harmonic astigmatism and harmonic cross section ellipticity.

Physical/numerical setup

For this goal, we performed a single 3D PIC simulation of the lighthouse effect usingWARP+PICSAR

framework. The physical and numerical parameters are summarized in the next table VII.6:

Physical parameters
Num params

Laser parameters Plasm param

a0 θ FWHM w0 ξ(ξmax) ∆z(Zr) L n0 dx ppcell

40 45◦ 22fs 2.4µm 1 -1 λ0/15 220nc λ0/190 1

Table VII.6: Physical/numerical parameters for the 3D-PIC lighthouse simulation.

The laser duration is longer than for the previously presented results. We checked with the theo-

retical model and 2D PIC simulations that for a 22 fs laser, a good angular separation is achievable.

Additionally, the laser beam size has been reduced to 2.4µm in order to shrink the simulation box

and save computation time. One particle per cell was used for both electrons and ions. Note that

the numerical electric charge of each pseudo particle varies between ±130ē and ±28000ē (with ē the

elementary electron charge) when the plasma density varies between nc and n0 = 220nc.

Figure VII.25 is a schematic representation of the simulation box in 3D:
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Figure VII.25: Schematic representation of the simulation box for the 3D simulation. The laser antenna
(red rectangle) is used to input a laser beam with WFR. The streaking probe (purple rectangle)
captures the reflected field after the laser-plasma interaction. Note that the laser transverse profile is
elliptical, with a larger diameter along the chirped axis.

The PM surface is orthogonal to the x-axis. The laser is p-polarized (the transverse magnetic field

is along y-axis) and its wavefronts are rotating in the x-z plane (around the y axis). The reflected field

is captured by a streaking probe located at a position of ≃ 10λ0 from the target surface.

This simulation was run on 32,768 BLUE GENE-Q nodes of the MIRA supercomputer at ALCF for

20 hours and cost more than 10 millions core hours.

We perform the same post-processing operations on the reflected field as in 2D, namely:

1. Back propagate the reflected field from the streaking plane to the PM surface.

2. Compute the 3D angularly resolved harmonic spectrum of the harmonic field By(θx, θy, ω).

3. Compute the harmonic angular profile I(θx, θy, ωmin, ωmax).

Parallel post-processing implementation

Performing the 3D post-processings is very computationally demanding on its own. The reflected

field occupies hundreds of gigabytes of memory, which can easily exceed the total memory of a single

compute node. Therefore, to be able to perform the data analysis of this massive simulation, we de-

veloped specific parallel post-processing tools to parallelize all the computations involved in the data

analysis.

The field propagation and filtering require FFT computations and point-to-point multiplication of

3D arrays. If the data are distributed in memory, these two operations can be parallelized using the

adequate tools: namely a distributed-memory FFT library. We use mpi4py-FFT [105] library to per-

form distributed memory FFT computations with Python. This library supports both the pencil and

the slab decompositions detailed in V.3.1. The block multiplication in Fourier space can be performed
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serially on each compute node and involves no data communications.

The computation of the angularly resolved harmonic spectrum I(θx, θy, ω) is achieved by per-

forming a variable substitution in the harmonic field Fourier spectrum |By(kx, ky, ω)|2. This variable

substitution reads:

θx = arcsin(c
kx
ω
) ⇔ kx = sin(θx)

ω

c

θy = arcsin(c
ky
ω
) ⇔ ky = sin(θy)

ω

c

(VII.16)

Performing this computation in parallel requires a specific data layout that is represented in figure

VII.26. A slab decomposition is used to decompose the Fourier spectrum of the harmonic beam

along the frequency axis ω. With this setup, each processor is appended to a harmonic subdomain

ωmin, ωmax, while the kx and ky are locally stored in each processor’s memory. This way, the vari-

able substitution given by equation VII.16, which computationally translates into an interpolation in

the discretized Fourier space, is a local operation and does not require any communication between

processing units.

MP

Figure VII.26: Data layout used for parallelizing the computation of the angularly-resolved spectrum.

Angularly resolved harmonic spectrum

Figure VII.27 represents the far-field angular profile for 4 different harmonic ranges, specified in

the title of each panel.
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Figure VII.27: Angularly resolved harmonic spectrum integrated over 10 harmonic orders. Each panel
represents a different harmonic range. Each spectrum is normalized to its maximum value. The blue
curves next to each panel display the evolution of the angular spread along the chirped axis along
which the attosecond pulses separation is occurring, for θy = 0.

Discussion

First, one can note that attosecond light pulses are angularly separated for a very high harmonic

range (above the 20th harmonic order). This was expected as the laser duration in this simulation was

longer than the one used in the 2D parameter scans, thus the wavefront rotation velocity is slower.

Moreover, we can observe from panels (c) and (d) that the harmonic divergence is larger for the

y-axis than the x-axis. This is emphasized in figure VII.28 where we extracted the angular profile

of a unique attosecond light pulse from panel (d). This means that the attosecond light pulses are

elliptically shaped in the far-field, with a longer diameter (higher divergence) along the non chirped

y-axis. This was expected as the laser cross section is elliptically shaped at the PM surface, with a

long diameter along the chirped axis x, thus the cross section of attosecond light pulses is also elliptical

with the same ellipticity as the laser (cf figure VII.29 panel (c) ). The ellipticity of these pulses will

invert as they propagate far from the PM surface, and the shortest diameter (along y-axis) at the PM

surface will induce the largest divergence in far-field.

Nevertheless, the laser cross section ellipticity at the PM surface could only induce a maximum

harmonic divergence ellipticity ratio between x and y axes of
√
2. By performing a least square fit
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with Gaussian functions on the data of figure VII.28, we find

θnumy

θnumx

=
17.6

4.2
= 4.2 ≫

√
2

This can be explained by the fact that, the defocusing distance used in this simulation ∆z = −Zr

induces a laser wavefront curvature that matches the PM curvature in the x-z plane solely (the plane

where the laser wavefronts are rotating). Nevertheless, the laser curvature induced along the non

chirped y-axis over-matches the PM curvature in the y-z plane. Indeed, as shown by the simulation

specified by table VII.2 (cf figure VII.10), the optimal defocusing distance that exactly compensates

for the PM focusing effect in the absence of wavefront rotation and for a plasma density scale length

of L = λ0

15 and for an incidence angle of 45◦ is ∆z(ξ = 0, L = λ0/15, θ0 = 0) = −0.6Zr > −Zr.

Therefore, not only the PM focusing effect is fully inhibited along y axis, but also, they are emitted

with a non-null defocusing quadratic spatial phase. As a result, the high order harmonics produced

by this divergence reduction technique are astigmatic: while the attosecond pulses focal spot along

the chirped axis exactly coincides with the PM surface thanks to the spatial phase compensation

technique, the focal spot along y-axis is located somewhere in the PM bulk (cf panels (a) and (b)

of figure VII.29). We can use the harmonics divergence model (i.e equation VII.15) to compute the

divergence for the same harmonic range along the two transverse axes respectively. To compute θy,

we supposed an oblique incidence at 45◦ and no spatial chirp (ξ = 0). We obtain a divergence ratio

θmodel
y

θmodel
x

= 5.5

, which is in good agreement with the measured ratio of 4.2, which shows that our harmonic divergence

model is robust in 3D geometry.
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Figure VII.28: A zoomed image over one attosecond light pulse from panel(d) of figure VII.27. The
angular spread along y axis is larger than the angular spread along x axis.
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(a)

(b)

(c)

Figure VII.29: Different slices of the attosecond pulses train for harmonic orders between 20 and 30
at the PM surface. Panel (a): Slice in the x-z plane, in the middle of the y-axis The side panel zooms
over three successive attosecond pulses. As one can note, the wavefront of these pulses are flat, which
shows that the spatial phase compensation has been achieved. Panel (b): Slice in the y-z axis, in the
middle of the x-axis. The side panel zooms over the same three attosecond pulses as in Panel (a).
This time, the attosecond wavefronts are curved, this curvature corresponds to an over-compensated
PM curvature. Panel(c) : Transverse profile of an attosecond pulse at the PM surface, exhibiting an
elliptical shape.

Finally one can note that there is little to no attosecond light beams emitted in for θx > 0 due to
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the strong gyromagnetic effect induced by these ultra relativistic laser intensities. In figure VII.30, we

represented the evolution of the filtered laser field, and the attosecond pulses train for H-20-30 at the

central point of the field streaking. As one can notice, the harmonic emission efficiency significantly

drops before reaching the laser central optical cycle, suggesting that the plasma surface dynamics is

significantly distorted to a point where the PM no longer radiates high order harmonics.

0 5 10 15 20 25
T(T0)

−1.0

−0.5

0.0

0.5

1.0

H 20-30
Laser field

Figure VII.30: The blue curve represents the evolution of time envelops of the attosecond light beams
composed of H(20-30), emitted at center of the field streaking. The red curve is the filtered reflected
laser field, also from the center of the streaking.

VII.5 Laser pulse shaping

In this section, we propose another technique that can be combined with the lighthouse mecha-

nism to produce isolated attosecond light pulses. Just like the spatial phase compensation technique

presented in the previous section, this new approach aims at mitigating the divergence of individual

attosecond light pulses produced by a spatially chirped laser beam irradiating a plasma mirror surface.

VII.5.1 General principle

The technique presented in this section is based on a controlled distortion of the laser beam trans-

verse profile in order to appropriately manipulate the PM curvature and inhibit the focusing effect it

exerts on the emitted high order harmonics. The general principle of this technique is schematically

illustrated in figure VII.31. In the relativistic regime of interaction, the laser radiation pressure dents

the PM surface within the laser-plasma interaction region. The shape of the dented plasma depends

on the laser profile. For a Gaussian laser beam, the laser intensity variations induce a parabolic PM

curvature, represented in panel (a), which in return strongly focuses the high order harmonics (cf panel

(c)). On the other hand, if the laser transverse profile was flat (cf panel (b)), the radiation pressure

should homogeneously dent the PM surface. Therefore, the high order harmonics generated within

such a setup should be less divergent as they are less subject to the focusing effect induced by the

PM curvature (panel (d)). Coupled with the lighthouse mechanism, this technique could lead to the

emission of unfocused, and angularly separated attosecond light pulses.
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PM curvature for a Gaussian vs a flat laser profile.

harmonic focusing for a 
Gaussian vs a flat laser profile

Figure VII.31: Panel (a): Typical PM curvature under the effect of a Gaussian laser beam. Panel (b):
Plasma mirror denting for a flat or an hyper Gaussian laser transverse profile. Panel (c): harmonic
focusing by a curved plasma surface. Panel (d): harmonic propagation with a flat PM surface.

To investigate the effectiveness of this idea, we need to spatially manipulate the transverse profile

of the driving laser beam. In the following subsection, we show how to leverage the laser spatial chirp

to control its transverse profile.

VII.5.2 Flattening a laser pulse profile in the presence of spatial chirp

In the presence of spatial chirp, the laser central frequency ω0 varies as a function of the transverse

position at focus xf . This dependency is illustrated in figure VII.32. Panels (a) and (c) represent an

electromagnetic field at focus in the presence of wavefront rotation in the (xf , ω) and (xf , t) spaces

respectively. The laser frequency dependency on the transverse position is emphasized in panels (b)

and (d) where we represented three transverse slices of the electromagnetic fields from panels (a) and

(c) respectively: as one can note, due to the wavefront rotation, the temporal gap between two succes-

sive laser wavefronts is squeezed for xf > 0 and expanded for xf < 0 (pane d), resulting in a shorter

apparent laser wavelength for xf < 0 than for xf > 0.

This particular aspect of the wavefront rotation coupling suggests that the laser cross section

could be shaped by acting on the laser Fourier spectrum E(:, ω). In practice, such distortion can be

performed by using a Dazzler device (see references [106, 107] for more information). This device is

usually used to modify the laser temporal profile by acting on its Fourier spectrum. In the presence

of spatio-temporal couplings, it could also be used to shape the laser spatial profile.

149



Chapter VII. Generating isolated attosecond pulses in the relativistic regime

0.8 1.0 1.2

50

25

0

25

50

0.2

0.6

1.0

0.2

0.6

1.0

0.8 1.0 1.2

✁(✁0)

0.2

0.6

1.0

a b

-1

0

1

-1

0

1

10 0 10

T(T0)

-1

0

1

d

10

T (T0)

x
(✂

0
)

✁(✁0)

-10 0

-50

-25

0

25

50

x
(✂

0
)

c

Figure VII.32: Panel(a): Spatially chirped electromagnetic field in the spatio-spectral space (x, ω).
Panel(b): 3 slices of the field at different transverse positions. Panel(c): The same field in the spatio-
temporal space (x, t) with (panel(b)) three slices of the field at different transverse positions.

Concretely, homogenizing the laser beam cross section requires to damp the laser intensity at the

center of the focal spot (|xf/w0| ≪ 1). Such a distortion could be achieved by damping the laser

Fourier spectrum around the central laser frequency ω0. Due to the spatial-chirp, the laser intensity

is solely mitigated at the center of the focal spot, where the central laser frequency is focused, which

should eventually result in a more homogeneously distributed laser intensity across the focal spot.

Numerically, the damping process is emulated by applying a filter on the laser beam in the Fourier

space. In our simulations, we used a filter with a gain function G(ω) given by:

G(ω) = 1− c1 exp
[
−
(
(ω − ω0)×

τ0
c2

)2]
(VII.17)

c1 and c2 are tuning parameters that are used to control the amplitude as well as the standard devi-

ation of the filter gain function. After filtering, the laser energy loss is compensated to conserve the

total laser energy.

We tried different values of c1 and c2 with the aim of flattening the laser pulse shape. For a

pulse-front tilt ξ = ξmax we noted that there is no efficient set of parameters (c1, c2) that effectively

homogenizes the laser intensity. Indeed, for ξ = ξmax, the damping filter affects large portion of the

laser cross section profile, resulting in an inefficient shaping. We found out that an efficient laser cross
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section flattening is possible for larger pulse-front tilt amounts (ξ > ξmax). The reason behind this is

related to the spectral spread over the focal spot associated to the spatial chirp. In the (xf , ω) space,

the electromagnetic beam at focus is given by :

Ê(xf , ω) ∝ exp
[
−
( xf
weff

)2]
× exp

[
− (

τeff
2

)
2(
ω − ωc(xf , ξ)

)]
(VII.18)

where ωc(xf , ξ) is the laser central frequency as a function of the transverse position xf and is given

by:

ωc(xf , ξ) = ω0 +
2

τ0

ξ

ξmax

xf
weff

(VII.19)

We define the total spectral spread over the focal spot as the difference between the central fre-

quencies from both sides of the focal spot xf ± weff .

∆Ω(ξ) = |ωc(weff , ξ)− ωc(−weff , ξ)|

∆Ω(ξ) =
4

τ0
| ξ

ξmax
|

(VII.20)

This quantity grows as a function of the pulse-front tilt. Therefore, by increasing ξ, the spectral

content of the laser focal spot (between −weff and weff ) is stretched (i.e. more frequencies are focused

within this spatial extent). Consequently, the damping filter G(ω) given by equation VII.17, which

acts on the frequency range ω0 ± τ0
c2
ω0 would distort the laser transverse profile on a smaller fraction

of the total cross section size, leading to a more efficient shaping.

Figure VII.33 summarizes the effect of this filtering on the laser spatio-spectral and spatio-temporal

profiles. For this test, we used a spatial chirp associated to a pulse-front tilt of ξ = 1.5ξmax and a

waist of w0 = 3.2µm. The filter tuning parameters are c1 = 0.7, c2 = 1.3. These parameters will be

used later on for simulations. In panel (a), we represent the laser profile in the (xf , ω) space after the

spectral shaping. Because the laser profile is tilted, the filtering will only affect transverse positions

close to xf = 0. In panel (b), we sketched three slices of the field profile in the (xf , ω) from panel (a)

for 3 different transverse positions : xf = 0.75weff (blue curve), xf = 0 (green curve), xf = 0.75weff

(red curve). The black dashed line represents the filter gain function as a function of the frequency ω.

The central slide (in green) is significantly damped by the filter to a point where the laser amplitude

for the three transverse position is roughly the same. Panel (c) illustrates the spatio-temporal shape of

the filtered laser beam in (x, t) space. As one can note, the field spatio-temporal profile is significantly

disrupted at the rear and the front of the beam. However, at the center of the beam, the cross section

is well flatted, as one can see in panel (d) where we represented the laser intensity profile for t = 0 in

blue. In the red dashed line, we sketched the laser intensity profile without the pulse shaping process.

This pulse shaping process leads to a decrease in the maximum laser intensity at focus by about 30%

despite the total pulse energy conservation. This drop is however acceptable as the laser cross section

has been effectively flattened in the end. The parameters used in this test will be employed to conduct

2D PIC simulations in order to assess the effectiveness of this technique in producing low divergence

and separated attosecond light pulses.
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Figure VII.33: Panel (a): Laser profile in spatio-spectral space (x, ω) after filtering. Panel (b): Three
longitudinal slices of the field in the spatio spectral space for xf = 0 in green, xf = 0.75weff in blue
and xf = −0.75weff in red. Panel (c): spatio-temporal shape of the shaped laser beam. Panel (d):
the blue curve represents the laser intensity profile at the center of the laser pulse. The red curve is
the intensity profile obtained in the absence of the laser pulse shaping.

VII.5.3 PIC simulations of ROM harmonics generation with a shaped laser pulse

The laser pulse shaping process has been implemented in the WARP+PICSAR PIC code. The

laser is injected in the simulation by an electric current antenna that induces the desired laser spatio-

temporal profile. Given the laser parameters, (τ, w0, ξ, a0), the whole laser beam profile is computed

in the (x, t) space. Then, it is Fourier transformed to the (k, ω) space and multiplied by the filter gain

function G(ω) given by equation VII.17. Before going back to the spatio-temporal space, the field

is retro-propagated by a distance equal to the distance between the plasma surface and the antenna

location via a plane-wave decomposition and the electromagnetic energy loss is compensated. This

way, the shaped laser field is perfectly focused at the plasma target and it transports the same amount

of energy as a non shaped pulse. At each time step of the PIC loop, the laser antenna injects a slice

of the filtered field obtained by the procedure described here.

The effect of the laser cross section shaping on the separation of attosecond light pulses has been

investigated using 2D PIC simulations. Unfortunately, this technique has not been tested in a full
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3D geometry given the expensive computational cost of such simulations. Nevertheless, 2D PIC sim-

ulations are sufficient to test the new approach and compare it with the laser defocusing technique

presented previously.

For this matter, we performed three 2D PIC simulations whose parameters are summarized in the

following table VII.7:

sim
Laser parameters Plasm params Num params

a0 θ FWHM w0 ξ(ξmax) c1 c2
∆z
Zr

L n0 dx ppc

sim 1 30 55◦ 16fs 3.2µm 1.5 None None 0 λ0

20 220nc
λ0

285 6

sim 2 30 55◦ 16fs 3.2µm 1.5 None None −1 λ0

20 220nc
λ0

285 6

sim 3 30 55◦ 16fs 3.2µm 1.5 0.7 1.3 0 λ0

20 220nc
λ0

285 6

Table VII.7: Physical and numerical setups for simulations used to compare the laser pulse shaping
technique with the defocusing technique and the standard lighthouse scheme.

• sim 1 is the original lighthouse scheme. We performed this simulation to compare the original

basic separation quality of the lighthouse scheme with our newly developed divergence reduction

techniques.

• sim 2 exploits the laser wavefront curvature to compensate for the PM focusing effect. We will

use the data from this simulation to compare both separation techniques.

• Finally, sim 3 is the setup where the laser cross section is shaped and focused at the plasma

surface.

Figure VII.34 sketches the far-field angular profiles obtained from each of these simulations and per-

taining to the harmonic range (15-20). As expected, without any additional separation optimization,

the attosecond lighthouse effect by itself is not sufficient to produce angularly separated light pulses in

the relativistic regime (panel (a)). Panel (b) illustrates the angular separation achievable by the laser

defocusing technique. Panel (c) sketches the results obtained with the new pulse shaping scheme. As

one can note, a very good separation is also achieved in this case. By comparing sim 2 and sim 3, we

can notice that for θx > 50 mrad, no attosecond pulses separation is occurring, while multiple pulses

are already radiated separately in sim2. This is probably due to the distortion in the laser forefront

induced by our shaping. By comparing the attosecond pulses separation from sim2 and sim3, one can

note that the new method produces more angularly spaced but more divergent attosecond pulses. The

increase in the angular shift between successive pulses was anticipated: by focusing the laser pulse on

the PM surface, the laser wavefront rotation velocity is higher than that for a defocused laser (such as

in sim 2 ). The increase in the attosecond pulses divergence shows that the focusing effect of the PM

is not completely mitigated by the laser transverse shaping approach compared to the laser defocusing

technique.
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All in all, by computing the separation ratio obtained from the simulations sim 2 and sim3, we

find ∆θ
θn

= 1.72 for sim 2 and ∆θ
θn

≃ 1.89 for sim 3. Hence, a slightly better separation is achieved with

this new technique.
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Figure VII.34: Integrated angular spectrum for each simulation case from table VII.5.3.

In figure VII.35, we represent the attosecond pulses train associated to harmonic orders between

15 and 20 obtained from sim 3. We can see that during the first laser optical cycles, no separation is

occurring. However, multiple attosecond light pulses clearly separate few laser optical cycles later on.
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Figure VII.35: Attosecond pulses obtained from sim 3 propagated for 100 Zr away from the plasma
surface.
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VII.6 Conclusion

In this chapter, we have shown that it is possible to enable an efficient separation of ROM attosec-

ond light by combining the attosecond lighthouse effect with harmonic divergence reduction techniques.

We have identified two approaches to mitigate the divergence of attosecond light pulses in the

relativistic regime of interaction that both result in the splitting of the attosecond pulses train into

multiple isolated ultra-fast light bunches. The first technique exploits the laser wavefront curvature

to inhibit the focusing effect of the curved PM. We have shown that this scheme can be improved by

tuning the pulse-front tilt amount to increase the wavefront rotation velocity out of focus.

The second technique is probably more challenging to implement experimentally as it requires a

good control over the laser beam cross section shape. Nevertheless, we were able to develop an ef-

ficient strategy to spatially shape the laser pulse by taking advantage of the spectral aspects of the

spatio-temporal coupling responsible for the laser wavefront rotation mechanism.

By enabling a good separation of attosecond light pulses, the lighthouse mechanism provides a

natural angular mapping of the temporal dynamics of the PM. Hence, it can be used as an in-situ

measurement to probe the laser-plasma interaction process in the relativistic regime temporally. In

this context, by analyzing the divergence of single attosecond light pulses as well as the angular spac-

ing between successive light spikes constituting the attosecond pulses train, one could simultaneously

retrieve the PM denting velocity as well as the femtosecond chirp of the attosecond pulses train.

Finally, producing isolated attosecond light pulses in the ROM regime may pave the way to unprece-

dented capabilities in the field of ultra-fast spectroscopy and attosecond sciences, by providing a source

of extremely bright X-UV attosecond pulses.
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Conclusions and perspectives

The first part of this work is dedicated to the conception and development of a novel massively

parallel strategy for the pseudo-spectral FFT-based Maxwell’s equations solvers. This type of solvers

is necessary for a broad range of PIC-UHI simulations that require a dispersion-less electromagnetic

field description. However, such approaches usually come with limited scaling performances and im-

portant memory footprints at very large scales. The innovative parallelization strategy exposed in this

manuscript leverages the multi-level parallelism of modern super-computers to achieve unmatched

performances in terms of both strong scaling and memory use. This technique exploits the mod-

erate scalability of distributed memory FFT algorithms along with standard domain decomposition

techniques to minimize the total computation time of FFT-based Maxwell solvers while significantly

reducing the total memory occupancy of fields arrays. Coupled with the WARP+PICSAR PIC code,

this achievement is essential to tackle large scales 3D PIC simulations exploiting pseudo-spectral

Maxwell solvers.

Furthermore, I have implemented a unique parallel diagnostic tool for UHI physics. This tool

can be used to reconstruct simulation data in any Lorentz boosted frame on the fly. It has been

benchmarked on high order harmonic generation simulations in different regimes. With this tool, it is

possible to overcome the complexity underlying the oblique laser incidence in interpreting and analyz-

ing simulations results. In particular, these benchmarks show that the coupling between the plasma

dynamics and the high order harmonics properties is better described with this Lorentz boosted frame

diagnostic. This tool can also be used in the context of laser-plasma acceleration to reconstruct labo-

ratory frame data when performing the simulation in a Lorentz boosted frame.

This computational work enabled us to conduct an extensive numerical and theoretical study to

investigate the feasibility of generating isolated attosecond light pulses from relativistic plasma mir-

ror harmonics. In particular, we were interested in transposing the attosecond lighthouse effect to

Doppler harmonics. In this context, attosecond light pulses generated in this regime of interaction are

too divergent to be angularly separated with the lighthouse effect due to the strong plasma mirror

curvature resulting from the radiation pressure exerted by the driving laser pulse. For this matter,

we proposes two novel schemes to produce spatially separated attosecond light pulses from plasma
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mirrors in the relativistic regime.

Both techniques consist in tailoring the laser spatial phase or amplitude profile to reduce the natu-

ral divergence of Doppler harmonic beams. The first one consists in placing the PM out of laser focus

so that the laser wavefront curvature compensates for the spatial phase induced by the curvature of

the PM. The second one consists in tailoring the laser amplitude profile in order to homogenize the

laser intensity distribution across the laser focus. By doing so, the plasma mirror is homogeneously

dented across the laser-plasma interaction region, which substantially efficiently inhibits the harmonics

wavefronts curvatures.

By identifying optimal conditions, we show that it is possible to produce divergent-free high order

harmonics that result in separated attosecond light pulses in the far-field with both techniques. For

the first approach, we developed a semi-analytical toy model to predict the angular separation quality

of attosecond pulses train. This model was fully corroborated with PIC simulation results in 2D and

3D geometries under various interaction conditions.

The second technique can be achieved by employing a Dazzler device, usually employed to tempo-

rally shape the driving laser pulse. In the presence of spatio-temporal couplings, this operation also

impacts the laser transverse profile. We identified optimal shaping parameters to efficiently mitigate

the plasma mirror curvature, while maintaining optimal harmonic generation conditions. This ap-

proach was also corroborated by several 2D PIC simulations.

Perspectives

The novel parallelization strategy presented in this manuscript should render massively parallel 3D

PIC simulations for UHI physics considerably more affordable in terms of computational cost. This

approach could also be transposed to other numerical solvers used to address Cauchy-type problems

involving physical propagations of information at finite speed (e.g. heat equation, Shrödinger equa-

tion, Navier-Stokes equations...).

Furthermore, the Doppler attosecond pulses separation schemes proposed in this thesis can be

used in plasma-HHG experiments to generate isolated X-UV pulses, which may be useful for ultra-fast

spectroscopy experiments or as an in-situ probe for laser-plasma interaction in the relativistic regime.

While many important challenges still need to be addressed before enabling the use of high order

harmonics from solid targets as a source of ultra-short probing pulses for external applications (i.e

increase the laser stability and repetition rate ...), the spatial mapping of the temporal dynamics of

the plasma, enabled by the attosecond lighthouse scheme brings important insights about the physics

at play in the context of laser-plasma interaction (e.g gyrokinetic signature on the harmonic profile,

plasma mirror curvature over time ...).
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Appendix A

Derivation of laser parameters out of
focus in the presence of wavefront
rotation

In this appendix, we derive the laser parameters out of focus, in the presence of wavefront rota-

tion at focus. We relied on the symbolic computing software Mathematica [108] to carry out the

calculations involved in this appendix. In the focal plane, the transverse electric field E(x, t,∆z = 0)

writes:

E(x, t,∆z = 0) = E0 exp

[
− x2

w2
eff

]
exp

[
− t2

τ2eff

]
exp [i× t (ω0 + ζx)] (A.1)

with

τeff = τ

√
1 +

( ξ

ξmax

)2

weff = w0

√
1 +

( ξ

ξmax

)2

ζ =
2ξwi

w0τ2eff

(A.2)

where ξ is the pulse-front tilt amount converted into WFR by a focusing lens of focal length f . wi

and w0 are the pulse waists before focus and at focus in the absence of pulse-front tilt respectively.

We recall that w0 = λ0f
πwi

. Besides, τ is the pulse duration before focus. Finally, ξmax = τ
wi

is the

pulse-front tilt amount that maximizes the WFR velocity at focus.

In the space-frequency domain (x, ω), this field reads:

Ê(x, ω,∆z = 0) = TFt(E(x, t,∆z = 0))(ω)

=
1√
2π

∫ ∞

−∞
E(x, t,∆z = 0) exp

(
− iωt

)
dt

= E0τ
1√
2
exp

(
−
( x

weff

)2 −
τ2eff
4

(
ω0 + ζx− ω

)
) (A.3)

A second Fourier transform with respect to x gives:
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rotation

Ê(kx, ω,∆z = 0) =
1√
2π

∫ ∞

−∞
exp

(
− ikxx

)
Ê(x, ω,∆z = 0)dx

= E0 τeffweff√
4 + τ2effw

2
effζ

2

× exp


−

k2xw
2
eff + ωτ2eff

(
−2ω0 + ikxw

2
effζ

)
− ikxω0τ

2
effw

2
effζ + ω2τ2eff + ω2

0τ
2
eff

τ2effw
2
effζ

2 + 4




(A.4)

The propagation operation in the Fourier space is given by:

Ê(kx, ω,∆z = z) = Ê(kx, ω,∆z = 0) exp
[
ikz(ω, kx)z

]
(A.5)

where kz(ω, kx) is given by:

kz(ω, kx) =

√
ω2

c2
− k2x (A.6)

Under the slowly varying envelope approximation (in time and space), we have kx ≪ ω0

c and

ω ≪ ω0. Therefore, kz(ω, kx) reads:

kz(ω, kx) ≃
ω

c
− k2x

2k0
(A.7)

where k0 =
ω0

c . Therefore, A.6 becomes:

Ê(kx, ω,∆z = z) = Ê(kx, ω,∆z = 0)× exp

[
iz
(ω
c
− k2x

2k0

)]

(A.8)

The field in the spatio-temporal space is given by the inverse Fourier transform of equation A.8:

E(x, t′ = t− z/c,∆z = z) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
Ê(kx, ω,∆z = z)dkxdω

∝ exp



i
(
2ω0

(
t′τ2eff

(
w2
eff (ω0 + xζ) + 2icz

)
+ it′2w2

eff + iτ2effx
2
)
− ct′2z

(
τ2effw

2
effζ

2 + 4
))

4τ2effc
(
Zeff
r + iz

)




∝ exp

[
it′

(
ω +

ζx

1 + i z

Zeff
r

)]
× exp

[
− t′2

τ2eff
(
1 + i z

Zeff
r

)
]
× exp

[
− k0x

2

2
(
Zeff
r + iz

)
]

× exp

[
−
it′2zw2

effζ
2

4
(
Zeff
r + iz

)
]
× exp


−i t′2z

Zeff
r τ2eff

(
1 + i z

Zeff
r

)




∝ exp

[
it′

(
ω +

ζx

1 + i z

Zeff
r

)]
× exp

[
− k0x

2

2
(
Zeff
r + iz

)
]
× exp

[
− t′2

τ2eff

]

× exp

[
−
it′2zw2

effζ
2

4
(
Zeff
r + iz

)
]

(A.9)

159



Chapter A. Derivation of laser parameters out of focus in the presence of wavefront
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Using the relationships ζ = 2ξwi

w0τ2eff
, w2

eff = w2
0

(
1 +

( ξ
ξmax

)2)
and ξmax = τ

wi
, we have:

w2
effζ

2 = 4ξ2w2
i

(
1 +

( ξ

ξmax

)2
)
× 1

τ4
(
1 +

( ξ
ξmax

)2)2

=
4

τ2eff

(
ξ

ξmax

)2
(A.10)

Therefore:

exp

[
−
it′2zw2

effζ
2

4
(
Zeff
r + iz

)
]
= exp

[
−izt′2 ξ2

τ2effξ
2
max

(
Zeff
r + iz

)
]

= exp

[
−iZeff

r zt′2
ξ2

τ2effξ
2
max

(
(Zeff

r )2 + z2
)
]
× exp

[
−t′2 ξ2

ξ2maxτ
2
eff

z2

(Zeff
r )2 + z2

] (A.11)

Using equation A.11, we can factorize equation A.9 as follows:

E(x, t′ = t− z/c,∆z = z) ∝ exp



it′



ω +

ζx

1 + i z

Zeff
r︸ ︷︷ ︸

STC







× exp



− ik0x

2

2
(
iZeff

r − z
)

︸ ︷︷ ︸
Waist+WFC




× exp



− t′2

τ2eff


1 +

ξ2z2

ξ2max

[
(Zeff

r )2 + z2
]




︸ ︷︷ ︸
Temporal envelope




× exp



−it′2 ξ2

τ2effξ
2
max

(
Zeff
r

z + z

Zeff
r

)
︸ ︷︷ ︸

Temporal chirp




(A.12)

Expression A.12 shows that the laser complex parameter (i.e the term under-braced in blue) is

equal to that of a regular Gaussian pulse with a waist of weff . Hence, the laser beam size and radius

of curvature out of focus read respectively:

weff (∆z = z) = weff

√
1 +

(
z

Zeff
r

)2

(A.13)

and

R(∆z = z) = −z


1 +

(
Zeff
r

z

)2

 (A.14)
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On the other hand, the propagation of the laser pulse out of focus gives rise to a temporal chirp

(under-braced in magenta) that reads:

β(ξ,∆z = z) = − ξ2

τ2effξ
2
max

(
Zeff
r

z + z

Zeff
r

) (A.15)

Moreover, the laser temporal duration out of focus (under-braced in violet) reads:

τ2eff (∆z = z) = τ2eff

ξ2max

[
1 +

(
Zeff
r

z

)2]

ξ2 + ξ2max

[
1 +

(
Zeff
r

z

)2] (A.16)

Finally, the spatio-temporal coupling term (under-braced in red) reads:

axt =
iζ

1 + i z

Zeff
r

(A.17)

Equation A.12 also shows that the propagation in vacuum of a laser pulse exhibiting WFR induces

a pulse-front tilt coupling (Re(axt) 6= 0) out of focus:

PFT = Re(axt)

PFT =
ζ

Zeff
r

z + z

Zeff
r

(A.18)

Moreover, the WFR parameter out of focus reads:

ζ(∆z = z) = Im(axt)

ζ(∆z = z) =
ζ

1 +
(

z

Zeff
r

)2 (A.19)

The wavefront rotation velocity out of focus is given by:

Vr(∆z = z) =
d
(
kx
k

)

dt′
(A.20)

with kx(t
′,∆z = z) = ζ(∆z = z)t′ and k(t′, ξ,∆z = z) = ω0−t′β

c , the instantaneous laser wave-

vector. In this thesis, we consider laser pulses with spatial chirps associated with ξ ∼ ξmax. Moreover,

the laser defocusing distances of interest are not larger than the Rayleigh length |z| . Zeff
r . Under

these conditions, the temporal chirp out of focus is of the same order as the inverse square of the laser

temporal duration (see equation A.15):

β ∼ 1

τ2eff

Therefore, the laser frequency variation ∆ω due to the temporal chirp is of order:

∆ω ∼ τeff × β ∼ 1

τeff
≪ ω0

(under the slowly varying envelope approximation (i.e τeff ≫ T0 =
2π
ω0
))
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Consequently, the temporal chirp out of focus does not affect much the instantaneous laser fre-

quency :

k(ξ,∆z = z, t′) ≃ ω0

c
= k0

Finally, the laser wavefront rotation velocity out of focus reads:

Vr(∆z = z) =
cζ(∆z = z)

ω0
=

1

k0

ζ

1 +
(

z

Zeff
r

)2 (A.21)
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Appendix B

Relashionship between spatio-spectral
beam sizes

(x, t) (x, ω) (k, ω) (k, t)

axx = axx bxx − b2
xω

4bωω

1

4ckk−
c2

kω

cωω

1
4dkk

bxx = axx − a2
xt

4att
bxx

1
4ckk

1

4dkk−
d2

kt

d2
tt

ckk =
1

4axx−
a2
xt

a2
tt

1
4bxx

ckk dkk − d2
kt

4dtt

dkk =
1

4axx
1

4bxx− b2xω

b2ωω

ckk − c2
kω

4cωω

dkk

Table B.1: Relationship between spectro-spatial beam sizes different domains.

(x, t) (x, ω) (k, ω) (k, t)

att = att
1

4bωω

1

4cωω−
c2

kω

ckk

dtt − d2
kt

4dkk

bωω = 1
4att

bωω cωω − c2
kt

4ckk
1

4dtt−
d2

kt

d2

kk

cωω = 1

4att−
a2
xt

a2xx

bωω − b2
xω

4bxx
cωω

1
4dtt

dtt = att − a2
tx

4axx
1

4bωω− b2xω

b2xx

1
4cωω

dtt

Table B.2: Relationship between spectro-temporal beam sizes in different domains.
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[26] H. Vincenti and F. Quéré. Attosecond lighthouses: How to use spatiotemporally coupled light

fields to generate isolated attosecond pulses. Phys. Rev. Lett., 108:113904, Mar 2012.

[27] A.E. Siegman. Lasers. University Science Books, 1986.

[28] Patrick Mora and R. Pellat. Self-similar expansion of a plasma into a vacuum. The Physics of

Fluids, 22(12):2300–2304, 1979.

[29] William L. Kruer and John M. Dawson. The physics of laser plasma interactions. Physics Today,

42(8):69–70, August 1989.
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[33] Anna Lévy, Tiberio Ceccotti, Pascal D’Oliveira, Fabrice Réau, Michel Perdrix, Fabien Quéré,
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Martin, H. Vincenti, and F. Quéré. Identification of coupling mechanisms between ultraintense

laser light and dense plasmas. Phys. Rev. X, 9:011050, Mar 2019.
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Titre: Algorithmes massivements parallèles pour les simulations PIC réalistes de l’interaction

laser plasma à ultra-haute intensité, application à la séparation d’impulsions attosecondes

d’harmoniques Doppler

Mots clés: Solveurs pseudo-spectraux, FFT en mémoire distribuée, effet phare attoseconde,
miroir plasma

Résumé: La complexité des mécanismes
physiques mis en jeu lors de l’interaction laser-
plasma à ultra-haute intensité nécessite de re-
courir à des simulations PIC particulièrement
lourdes. Au cœur de ces codes de calcul, les
solveurs de Maxwell pseudo-spectraux d’ordre
élevé présentent de nombreux avantages en
termes de précision numérique. Néanmoins,
ces solveurs ont un coût élevé en termes de
ressources nécessaires. En effet, les techniques
de parallélisation existantes pour ces solveurs
sont peu performantes au-delà de quelques mil-
liers de coeurs, ou induisent un important usage
mémoire, ce qui limite leur scalabilité à large
échelle. Dans cette thèse, nous avons développé
une toute nouvelle approche de parallélisation
qui combine les avantages des méthodes exis-
tantes. Cette méthode a été testée à très large
échelle et montre un scaling significativement
meilleur que les précédentes techniques, tout en
garantissant un usage mémoire réduit.
En capitalisant sur ce travail numérique, nous
avons réalisé une étude numérique/théorique
approfondie dans le cadre de la généra-
tion d’harmoniques d’ordres élevés sur cible
solide. Lorsqu’une impulsion laser ultra-intense
(I > 10

16
W.cm

−2) et ultra-courte (de quelques
dizaines de femtosecondes) est focalisée sur
une cible solide, elle génère un plasma sur-
dense, appelé miroir plasma, qui réfléchit non-
linéairement le laser incident. La réflexion de
l’impulsion laser est accompagnée par l’émission
cohérente d’harmoniques d’ordres élevées, sous
forme d’impulsions X-UV attosecondes (1 at-
tosecond = 10

−18s). Pour des intensités laser

relativistes (I > 10
19
W.cm

−2), la surface du
plasma est incurvée sous l’effet de la pression
de radiation du laser. De ce fait, les har-
moniques rayonnées par la surface du plasma
sont focalisées. Dans cette thèse, j’ai étudié la
possibilité de produire des impulsions attosec-
ondes isolées en régime relativiste sur miroir
plasma, grâce au mécanisme de phare attosec-
onde. Celui-ci consiste à introduire une ro-
tation des fronts d’onde du laser incident de
façon à séparer angulairement les différentes im-
pulsions attosecondes produites à chaque cy-
cle optique. En régime relativiste, la cour-
bure du miroir plasma augmente considérable-
ment la divergence du faisceau harmonique, ce
qui rend le mécanisme phare attoseconde ineffi-
cace. Pour y remédier, j’ai développé deux tech-
niques de réduction de divergence harmonique
afin de mitiger l’effet de focalisation induit par
la courbure du miroir plasma et permettre de
générer des impulsions attosecondes isolées à
partir d’harmoniques Doppler. Ces deux tech-
niques sont basées sur la mise en forme en ampli-
tude et en phase du faisceau laser. Par ailleurs,
j’ai développé un modèle théorique pour déter-
miner les régimes optimaux d’interaction afin
de maximiser la séparation angulaire des impul-
sions attosecondes. Ce modèle a été validé par
des simulations numériques PIC en géométries
2D et 3D et sur une large gamme de paramètres
laser et plasma. Finalement, on montre qu’en
ajustant des paramètres laser et plasma réal-
istes, il est possible de séparer efficacement les
impulsions attosecondes en régime relativiste.
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Abstract: The complexity of the physical
mechanisms involved in ultra-high intensity
laser-plasma interaction requires the use of par-
ticularly heavy PIC simulations. At the heart of
these computational codes, high-order pseudo-
spectral Maxwell solvers have many advantages
in terms of numerical accuracy. This numerical
approach comes however with an expensive com-
putational cost. Indeed, existing parallelization
methods for pseudo-spectral solvers are only
scalable to few tens of thousands of cores, or in-
duce an important memory footprint, which also
hinders the scaling of the method at large scales.
In this thesis, we developed a novel, arbitrar-
ily scalable, parallelization strategy for pseudo-
spectral Maxwell’s equations solvers which com-
bines the advantages of existing parallelization
techniques. This method proved to be more
scalable than previously proposed approaches,
while ensuring a significant drop in the total
memory use.

By capitalizing on this computational work,
we conducted an extensive numerical and theo-
retical study in the field of high order harmon-
ics generation on solid targets. In this context,
when an ultra-intense (I > 10

16
W.cm

−2) ultra-
short (few tens of femtoseconds) laser pulse ir-
radiates a solid target, a reflective overdense
plasma mirror is formed at the target-vacuum
interface. The subsequent laser pulse non linear
reflection is accompanied with the emission of
coherent high order laser harmonics, in the form

of attosecond X-UV light pulses (1 attosecond
= 10

−18s). For relativistic laser intensities (I >

10
19
W.cm

−2), the plasma surface is curved un-
der the laser radiation pressure. And the plasma
mirror acts as a focusing optics for the radiated
harmonic beam. In this thesis, we investigated
feasible ways for producing isolated attosecond
light pulses from relativistic plasma-mirror har-
monics, with the so called attosecond lighthouse
effect. This effect relies introducing a wavefront
rotation on the driving laser pulse in order to
send attosecond pulses emitted during different
laser optical cycles along different directions. In
the case of high order harmonics generated in
the relativistic regime, the plasma mirror curva-
ture significantly increases the attosecond pulses
divergence and prevents their separation with
the attosecond lighthouse scheme. For this mat-
ter, we developed two harmonic divergence re-
duction techniques, based on tailoring the laser
pulse phase or amplitude profiles in order to sig-
nificantly inhibit the plasma mirror focusing ef-
fect and allow for a clear separation of attosec-
ond light pulses by reducing the harmonic beam
divergence. Furthermore, we developed an ana-
lytical model to predict optimal interaction con-
ditions favoring attosecond pulses separation.
This model was fully validated with 2D and 3D
PIC simulations over a broad range of laser and
plasma parameters. In the end, we show that
under realistic laser and plasma conditions, it is
possible to produce isolated attosecond pulses
from Doppler harmonics.
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