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A B S T R A C T

Advances in sequencing technologies have revolutionized the life
sciences. The explosion of genomic sequence data has prompted the
development of a wide variety of methods, at the interface between
bioinformatics, machine learning, and physics, which aim at gaining a
deeper understanding of biological systems from such data.

Pairwise coevolutionary methods, in particular Direct Coupling
Analysis (DCA), can extract a multitude of information from sequence
data alone, such as structural contacts or phenotypic effects of amino-
acid substitutions in proteins. While they have been mainly applied to
a number of single exemplary proteins, it is now time for a broader
application at the level of the whole genome.

In this thesis, we build upon and extend these models to address bi-
ological questions at the genome scale. In a first project, we investigate
the protein-protein interaction network by combining coevolutionary
signals at multiple but interconnected scales. In a subsequent project,
we discuss the possibility of including complementary information to
sequences, such as typical patterns of contacts, to improve the inter-
protein contact prediction. Finally, through an extensive genome-wide
study of E. coli strains, we show how the machinery of DCA can be
used to investigate the fitness landscape properties at the local and
global scales.
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R É S U M É

Les progrès des technologies de séquençage ont révolutionné les
sciences de la vie. L’explosion de données de séquences génomiques
a conduit au développement d’une grande variété de méthodes, à
l’interface entre la bioinformatique, l’apprentissage automatique et la
physique, qui visent à approfondir la compréhension des systèmes
biologiques à partir de telles données.

Les méthodes coévolutives, telles que l’analyse par couplage direct
(DCA), peuvent extraire une multitude d’informations à partir de
données de séquence uniquement, telles que des contacts structurels
ou des effets phénotypiques de substitutions d’acides aminés dans
des protéines. Bien qu’elles aient été principalement appliquées à un
certain nombre de protéines exemplaires, il est maintenant temps de
les appliquer au niveau du génome entier.

Dans cette thèse, nous nous appuions sur ces modèles et les dévelop-
pons pour traiter des questions biologiques à l’échelle du génome.
Dans un premier projet, nous avons étudié le réseau d’interactions
protéine-protéine en combinant des signaux coévolutifs à des échelles
multiples mais interconnectées. Dans un projet ultérieur, nous dis-
cutons de la possibilité d’inclure des informations complémentaires
aux séquences, telles que des schémas de contacts typiques, afin
d’améliorer la prédiction de contacts entre protéines. Enfin, à travers
une vaste étude portant sur l’ensemble du génome des souches d’E.
Coli, nous montrons comment les mécanismes de la DCA peuvent être
utilisés pour étudier les propriétés du paysage de la fitness à l’échelle
locale et globale.
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Part I

I N T R O D U C T I O N

The following chapters serve as an introduction to the re-
search field. Chapter 1 contains the fundamental biological
concepts that are needed to understand the methods, re-
sults, and discussions in the thesis. We focus on proteins
and protein databases which play an ever-increasing im-
portant role in modern biology. In Chapter 2, we present
the theoretical basis of the statistical-mechanics inspired
methods which are used in protein sequence analysis. We
then introduce Direct Coupling Analysis (DCA) together
with some of the most important applications, including
the prediction of intra- or inter- protein residue-residue
contacts or the prediction of mutational effects.





1
P R O T E I N S , M U LT I P L E S E Q U E N C E A L I G N M E N T S
A N D C O E V O L U T I O N

1.1 proteins

Virtually every property that characterizes a living organism is af-
fected by proteins. Proteins store and transport a variety of particles;
as hormones, they transmit information between cells and organs
in complex organism; as antibodies they recognize and latch onto
antigens in order to remove them from the body; they control gene
expression, thereby turning genes on and off, and many proteins are
simply used as structural elements.

Figure 1.1: When connected together by a series of peptide bonds, amino
acids form a polypeptide which then folds into a specific confor-
mation depending on the interactions between its amino acid side
chains. Source: [1].

Despite these diverse biological functions, all proteins consist of one
or more long polymers chains built from series of up to 20 different

3



4 proteins , multiple sequence alignments and coevolution

amino acid residues, linked to each other by a peptide bond. All the
20 amino acids ordinarily found in proteins contain amine (-NH2) and
carboxyl (-COOH) along with a side chain (R group) specific to each
amino acid (see Figure 1.1).

The secret of protein functional diversity lies partly in the physico-
chemical diversity of the amino acids - charge, size, hydrophobicity
(see Figure 1.2) - but primarily in the diversity of the three-dimensional
structures that they can form after folding. Because of side-chain
interactions, polymer chains bend, twist and flex into a very large
variety of three dimensional stable structures.

Figure 1.2: The 20 naturally-occurring amino acids clustered by their physico-
chemical properties. Source [2].

The linear amino acid sequence identifies a protein unambiguously.
It determines all its chemical and biological properties and indirectly
specifies the higher levels of protein structure (see Figure 1.3). The
structure can be described on four distinct levels:

• primary structure - the linear sequence of amino acids in the
polypeptide backbone1;

• secondary structure - folding patterns within a polypeptide re-
sulting from hydrogen bonds between atoms of the backbone,
mainly α-helices and β-sheets along with less structured loops 2;

• tertiary structure - the overall three dimensional shape of a
polypeptide chain determined by the interactions between the
side chains of the various amino acids;

1 The backbone just refers to the polypeptide chain apart from the R groups.
2 Only certain types of secondary structures are possible due to the planar nature of

the peptide bonds.
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• quaternary structure - combination of multiple polypeptide chains
assembled via intermolecular interactions.

Figure 1.3: The four distinct levels of protein structure. Source: [3].

1.2 protein databases

Anfinsen’s seminal studies [4] established that the sequence of a
protein determines its structure and function uniquely. The genotype
to the phenotype map (i.e. sequence to structure or to function) is
an experimentally formidable task. Experiments designed to provide
a manual annotation of a protein - such as the description of its
function, its structure or its interactions - are time-consuming and
expensive, thereby limiting the number of sequences that can be
studied. Experimental structures, obtained with methods such as X-
ray crystallography, NMR spectroscopy, and cryo-electron microscopy
are freely accessible in the Protein DataBank (PDB) [5][6].

In the last decades, the technological breakthroughs in high-throughput
sequencing followed by the rise of massive protein sequence databases,
opened the door to a plethora of new computational methods [7] which
aim at characterizing the phenotype of a protein from sequence data
alone. Today, one of the largest public repository of protein sequences
is UniProt Knowledgebase (UniProtKB) [8]. It consists of two sec-
tions: the UniProtKB/SwissProt database with high-quality manually-
annotated records and the UniProtKB/TrEMBL containing compu-
tationally analyzed records. As of June 2019, UniProtKB/TrEMBL
contains more than 150 million protein sequences compared with the
500.000 of the UniProtKB/SwissProt database. As shown in Figure 1.4,
the gap widens across the years.

1.3 protein family and multiple sequence alignment

It is natural to cluster sequences of the Uniprot database into groups
of evolutionarily-related proteins. Homologous proteins, that share
a common ancestor, are usually classified into protein families. These
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Figure 1.4: Number of entries in the UniProt database across the years. The
gap widens between TrEMBL (unreviewed automatically anno-
tated sequences) and SwissProt (manually annotated entries).
While the TrEMBL dataset is still exponentially growing, rela-
tively few new entries were added to the SwissProt database
since 2010. The research effort is indeed more directed at improv-
ing the quality of the annotations (structural or functional) rather
than their quantity. Source: [8].

homologs can be orthologs, that were separated by a speciation event,
or paralogs, that were separated by a duplication event inside one
species. Within a protein family, all members are subjected to compa-
rable evolutionary pressure and, as a result of that, they share similar
three-dimensional structure and function. Nevertheless, due to amino
acid substitutions, insertions and deletions across millions of years
of evolution, they can have a high variety in amino acid sequences:
the average sequence identity between two homologous proteins is
20− 30%.

To make data more amenable to statistical analysis, it is useful
to arrange homologous sequences into a data matrix: the Multiple
Sequence Alignment (MSA) (see Figure 1.5). Formally, an MSA is a
rectangular matrix A = {am

i |i = 1 . . . N, m = 1 . . . M} containing M
sequences belonging to the same family, which are aligned to be as
similar as possible. Each entry am

i of the matrix is either one of the 20

natural amino acids, or the alignment gap ′−′ which is employed to
encode the insertion or deletion of amino acids. Hereafter we consider
the gap as a 21st amino acid and we represent amino acids by numbers,
i.e. am

i = {1, . . . , 21}. The accuracy of MSA is of critical importance
to perform statistical analysis. A large number of tools have been
developed by bioinformaticians [9], to align thousands of sequences
and produce high-quality alignments and in a reasonable time.

The bottom part of Figure 1.5 shows the so-called sequence logo.
It provides a graphical representation of the conservation of amino
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Figure 1.5: Part of the MSA of homologous proteins of the human myoglobin
protein, an iron-and oxygen-binding protein. The sequence logo
provides a rich description of the MSA. For example position 15

shows high conservation of the amino acid tryptophan (W).

acids. In general, functional or structural important residues are highly
conserved within a protein family. At each position the relative sizes
of the letters indicate their frequency in the MSA sequences, Eq. (1.3).
The total height of the letters depicts the information content of the
position, in bits:

Ii = log2(21) +
21

∑
a=1

fi(a) log2 fi(a) (1.1)

where fi(a) is the relative frequency of the amino acid a at position
i. It is maximal (Ii = log2(21)) for a totally conserved site, i.e. fi(a) ∈
{0, 1} ∀a ∈ {1, . . . , 21}.

In the next subsections, we briefly describe Profile Hidden Markov
Model (HMM) which is one the most successful tool allowing the
detection of homologous proteins and the generation of high-quality
MSA.

1.3.1 Profile Hidden Markov Models

Profile Hidden Markov Models are probabilistic models underlying
bioinformatical programs such as HMMER [10] and HHBlits [11]. mainly adapted from

[9]HMMs are typically trained on a small, high-quality and usually
manually curated alignment; the so-called seed alignment. It consists
of . 200 sequences which are with high confidence members of the
protein family one aims to model (cf. Figure 1.6). The idea behind the
HMM is that the visible “symbols” composing a sequence (amino acids
or a gaps) are conditioned by internal factors - the hidden “states” -
which are not directly observable. The hidden states form a Markov
chain, i.e. the transition probability from a state si to the next state si+1

is conditionally independent of the states s1, . . . , si−2 given si−1. Once
a hidden state is reached, a symbol can be produced with an emission
probability. The transitions probabilities between hidden states, as well
as the emission probabilities are estimated from the frequencies in the
seed alignment.
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Three different hidden states are possible: the “match” state (yellow
boxes in Figure 1.6), emitting an amino acid symbol with position-
dependent probabilities; “delete” state (red circles in Figure 1.6) which
represents skipping the position (a gap symbol is emitted instead) and
the “insert” states (blue diamonds in Figure 1.6) allowing for addition
of excess residues.

Note that profile HMMs assume that the residue in a particular
position is independent of the residues in all other positions thus
neglecting any higher-order correlations. It is common to use reg-
ularization to avoid overfitting due to the limited size of the seed
alignments, and to give a high cost for opening a gap and a smaller
one to extend it [9].

To align a new sequence to a profile HMM corresponds to finding
the most likely sequence of hidden states. A dynamic programming
algorithm, the Viterbi algorithm [9], allows to get the most probable
path efficiently.

Figure 1.6: A profile HMM modelling a multiple sequence alignment. The
boxes in yellow are the match states (M). The diamonds are insert
states (I) which are used to model highly variable regions in the
alignment. The circular states are delete states (D). They make it
possible to jump over one or more columns in the alignment. The
emission and transitions probabilities are derived from the ob-
served occupancy of each position in the seed alignment. Source:
[12].

HMMER [10] [13] is a software package for sequence analysis. It
Includes:

• hmmbuild - build profile HMM from input multiple alignment

• hmmalign - align sequences to HMM and output the resulting
MSA

• hmmsearch - search profile against sequence database

• hmmscan - search sequence against profile database
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It defines various significance thresholds on the computed scores to
decide whether a sequence should be added to the MSA or not: the “log-
odds score” - the log ratio between the query sequence path probability
and the probability of the sequence in a null model (obtained using
only the background amino acid frequencies) - and the “E-value” - the
expected number of random sequences achieving an equal or higher
log-odds ratio than the query sequence.

HMMER can also build a profile from a single query sequence:

• phmmer - search sequence against a protein database. The pro-
file HMM model is build internally from the single query se-
quence, using a simple position-independent scoring system
(BLOSUM62 [14] scores converted to probabilities, plus a gap-
open and gapextend probability).

• jackhmmer - iteratively search sequence against a protein database.
The first iteration is identical to a phmmer search. For the next
iterations, a multiple alignment of the query together with all
target sequences satisfying inclusion thresholds is assembled, a
profile HMM is constructed from this alignment.

Iteratively searching through large sequence databases such as UniProt
can be time demanding. It requires to compare each sequence to the
profile HMM. An alternative is HHblits [11] which implements a profile-
profile comparison. It starts from the clustering of UniProtKB/TrEMBL
into groups of similar sequences alignable over at least 80% of their
length and down to 30% pairwise sequence identity. For each cluster,
an HMM is created. Given a query sequence, HHblits first converts it to
an HMM. Then it searches the query profile against the HMM database,
i.e. against sequence clusters instead of individual sequences. New
sequences from the clusters, below a defined E-value threshold, are
added to the query MSA. Due to the pre-clustering of the UniProt
database, HHblists is much faster than Jackhmmer while leading to
virtually identical MSAs.

1.3.2 Protein domains and the Pfam database

HMMER is the core utility of the protein family databases Pfam [15]
which contains annotations and MSA of proteins domains. A domain
is a part of the protein that can evolve, function, and exist almost
independently of the rest of the polypeptide chain. Many proteins
consist of several domains, and evolution uses domains as ’modules’
that may be recombined in different arrangements to create multi-
domains proteins which differ in function and structure. The Pfam
32.0 version (September 2018) contains 17929 protein domain families.
Each family is defined by a high-quality seed alignment from which
is built the profile HMM. In Pfam, the profile HMM is then searched
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against an extensive sequence collection, based on reference proteomes
extracted from UniProt, to produce the full alignment.

1.4 epistasis and coevolution

Profile-HMMs are some of the most successful tools for searching
and aligning homologous sequences. However, they treat each pro-
tein residue independently: being based on single-site conservation
patterns, they assume that a residue in a particular position is inde-
pendent of the rest of the chain. Models of this type are intrinsically
unable to take into account the fact that when two or more simultane-
ous mutations are present, the phenotypic effect can be different from
a function of the simple sum of individual amino acid changes. The
non-additivity of single mutation effects is called epistasis.

Epistasis between residues causes residues to constrain each other’s
evolution or, in other terms, to coevolve. For instance, the deleterious
effect of a mutation in one site can be reverted by a second-site in-
teracting residue. As a result of that, correlated mutations will be
observed between the corresponding columns of the MSA.

While a comprehensive explanation for epistasis is still lacking,
recent studies [16, 17] have found that epistatic pairs of residues tend to
be close in 3D structure. Studies such as [16, 17], made possible thanks
to recent advances in high-throughput sequencing technologies3, can
be seen as a proof-of-concept of the long-standing idea [19, 20] of using
correlated amino acid substitutions in the MSA to predict structural
contacts in a protein. We will describe it in the next section.

Figure 1.7: The conservation of the same structure or function within mem-
bers of a proteins family imposes constraints on the evolution
of a protein sequence, which, in turn, lead to statistical patterns
in an MSA. Functionally or structurally important residues are
usually higly conserved (blue sites). Correlated mutations be-
tween columns of the MSA (green sites) are signatures of epistasis
and, often, of residue-residue contacts. Therefore, one can use
the correlation patterns of the MSA to identify contacts in the 3d
structure.

3 Notably deep mutational scanning [18] which can assess the phenotypic effects of
thousands of mutations simultaneously.
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1.4.1 Protein-structure prediction using residue coevolution

The protein structure prediction problem asks the following question:
given a protein sequence - or the corresponding MSA of homologous
sequences - can we predict structural contacts in the 3d structure?
More than 20 years ago [19, 20], it was suggested that correlated
mutations between columns of the MSA could be used to predict
contacts, see Figure 1.7. The first applications of this idea used the
Mutual Information (MI), or related pairwise correlation measures,
between columns i and j of the MSA to identify co-evolving pairs of
residues [21–23]:

MIij =
21

∑
q1,q2=1

fij(q1, q2) log
fij(q1, q2)

fi(q1) f j(q2)
(1.2)

where fij(q1, q2) and fi(q1) are respectively the empirical one- and
two-point frequencies in the MSA:

fi(a) =
1
M

M

∑
m=1

δa,am
i

fij(a, b) =
1
M

M

∑
m=1

δa,am
i

δb,am
j

(1.3)

with M being the number of sequences in the alignment, and δa,b the
Kronecker symbol, which equals one if amino acids a and b are equal.

But this approach has had only limited success. Indeed, the true
covariation signal in the MSA is often masked by ancillary indirect-
correlations: residue i might be correlated to a residue j without
being in contact with it, because both are in contact with a third
residue k. As MI looks at pairs of columns independently - or, in other
words, is intrinsically local - it can not disentangle direct from indirect
correlations.

To overcome this problem, the global statistical model DCA [24, 25]
was introduced in 2009. We describe it in the following chapter.

1.4.2 Coevolution in a more general sense

Finally, note that coevolution does not happen only for residues within
proteins, but it is ubiquitous in nature. It occurs when two or more
related biological systems do not evolve independently. This means
that one exerts selective pressures on the other, thereby affecting each
other’s evolution. The initial ideas on the mutual influence between
species can be traced back to Darwin’s 1862 [26] work on orchids
and pollinators. At the molecular level, coevolutionary signatures be-
tween genes/proteins is a consequence of physical interactions and/or
functional relationships. In Chapter 3 we will combine different coevo-
lutionary scales, from correlated presence-absence patterns of proteins
across species, up to correlations in the amino-acid usage, to predict
currently unknown, but biologically sensible interactions.





2
S TAT I S T I C A L A N A LY S I S O F P R O T E I N S E Q U E N C E
D ATA

Recent technological advances in high-throughput sequencing have
generated vast amounts of genetic data. Consequently, a large variety
of statistical tools have been recently developed to extract information
on biological systems from these growing datasets. It became rapidly
manifest that so-called inverse problems from statistical physics offered
a powerful tool. In inverse problems, the usual procedure of statistical
physics is reversed: instead of calculating a set of observables from an
underlying model, one aims to infer the parameters of a model from
a set of observations. Models of this type have found applications in
different biological contexts, including the reconstruction of neural
networks [27–29], the prediction of contacts in protein structures [24,
25, 30], or the movement of flocks of birds [31, 32]. For a complete
review of inverse problems in statistical physics and applications to
biological systems we refer to [33].

In the case of protein sequences, the starting point for the statistical
modeling is a multiple sequence alignment A = {am

i |i = 1 . . . N, m =

1 . . . M} containing M aligned sequences of length N belonging to the
same protein family, cf. Section 1.3. Statistical patterns in the MSA are
signatures that mutations are not randomly selected. The conservation
of structure and function across protein families induces constraints on
the sequence variability. The aim of the Direct Coupling Analysis (DCA)
is to construct a probabilistic model to seize the sequence variability
in the MSA and to relate it to the biological structure and function of
the protein family.

To this end, one has first to determine the functional form of the
probability distribution, and second to infer the parameters of the
distribution.

This chapter is organized as follows. Section 2.1 presents the maxi-
mum entropy framework, which is typically used to justify the use of
Boltzmann distributions, together with some significant shortcomings
of this approach. Next, we focus on a specific class of probabilistic

distributions known as Potts models P(a|J, h) ∝ exp
(
− ∑ hi(ai) −

∑ Jij(ai, aj)
)

, where a = (a1, . . . , aN) is full-length protein sequence,
which is used by DCA to model the sequence variability of an MSA .
Section 2.2 contains a concise overview of the inference methods of
the DCA parameters J, h. Section 2.4 presents some results obtained on
proteins using DCA methods.

13



14 statistical analysis of protein sequence data

2.1 maximum entropy modelling

The Maximum-Entropy Principle (MaxEnt), introduced by Jaynes in
[34], can be seen as a principled way to obtain functional forms of
probability distributions P(a) in inference problems.

It starts from a set of arbitrarily chosen observables {Oµ}µ=1...p :
AN → R, with AN being the space of all possible sequences of length
N, which assign a real value to any amino-acid sequence. Next, we
require the MaxEnt model P(a) to reproduce the empirical mean of
each observable in the MSA:

∀µ = 1 . . . p : ∑
a∈AN

P(a)Oµ(a) =
1
M ∑

a∈A
Oµ(a), (2.1)

with the last sum running over all sequences of the MSA A. Besides this
consistency requirement, the MaxEnt principle states that, in absence
of any good reason to do otherwise, the model should be the least
constrained one. Its Shannon entropy has therefore to be maximized:

S = − ∑
a∈AN

P(a) log P(a)→ max. (2.2)

To solve this problem, we introduce a set of Lagrange multipliers
{λµ}, µ = 1 . . . p, one for each observable plus another one {ω} to
assure the normalization of probability distribution, and we maximize
the following Lagrange functional with respect to P(a):

F = − ∑
a∈AN

P(a) log P(a) + ω
(

∑
a∈AN

P(a)− 1)+

+
p

∑
µ=1

λµ

(
∑

a∈AN
P(a)Oµ(a)− 1

M ∑
a∈A

Oµ(a)
)

.
(2.3)

The solution is a Boltzmann-like distribution:

P(a|{λµ}) = arg max
P

(F) =
1

Z({λµ})
exp

( p

∑
µ=1

λµOµ(a)
)

(2.4)

where the partition function Z({λµ}) = exp(1− ω) guarantees the
normalization of P(a).

Note that the MaxEnt principle provides a way to determine the
functional form of the probability distribution, but it does not give any
rule how to choose the set of relevant observables Eq. (2.1) or even if
such a set exists for a specific problem under consideration. This choice
is, in a sense, arbitrary and different choices lead to different models.
Ideally one would like to select the minimal number of observables which
make the probability distribution P(a) generative: samples drawn from
the P(a) should be statistically indistinguishable from the data even
for observables whose consistency with the data was not imposed by
the inference procedure.
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2.1.1 Profile models

Amino acids that are highly conserved in a MSA frequently identify
functionally or structurally important sites in a protein. Profile models
encode this infomations into the modelling by considering as set
of observables Oia(a) = δai ,a for all positions i = 1, ..., N and all
amino-acid letters a ∈ {1, . . . , 21}. Their statistics in the MSA is thus
characterized by the fraction of sequences having amino acid a in
position i:

fi(a) =
1
M

M

∑
m=1

δa,am
i

δa,am
i
=

1, if a = am
i

0, otherwise.
(2.5)

The constrains on P(a) becomes:

∀i = 1 . . . N Pi(ai) = ∑
{Ak |k 6=i}

P(a1, . . . , aN) = fi(ai) (2.6)

so that the marginal single-site distributions of P(a) coincide with the
empirical frequencies of the data fi(ai). The result of MaxEnt maximiza-
tion is:

P(a|h) = 1
Z(h)

exp
( N

∑
i=1

hi(ai)
)
=

N

∏
i=1

exp(hi(ai))

∑
q
ai=1 exp(hi(ai))

(2.7)

where the local fields hi(ai) can be easily computed by inverting Eq.
(2.6), hi(ai) = log( fi(ai)) + const.

Profile models, and their generalization with hidden nodes profile
HMM, are among the most successful models in bioinformatics, and
they represent the state-of-the-art technique for homology detection
and construction of MSA, cf. Section 1.3.1. From the consistency Eq.
(2.6) it is clear that they are able to reproduce the conservation statistics
of an MSA, meaning to reproduce the heterogeneous usage of amino
acids in the different positions of the sequence. However they are not
generative models since they assume all positions to be statistically
independent. They neglect that residues do not evolve independently
in a protein sequence. The coevolution of residues, discussed in Section
1.4, which is visible via residue correlation, can not be captured by
profile models.

2.1.2 Direct coupling Analysis

DCA, introduced in 2009 [24, 25], overcomes this limitation by including
into the set of observables Oia,jb(a) = δai ,aδaj,b for all positions i, j =
1, ..., N and all amino-acid letters a, b ∈ {1, . . . , 21}. The statistical
model P(a) is required to reproduce not only the amino-acid usage of
single MSA columns, but also the fraction fij(a, b) of sequences having
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simultaneously amino acid a in position i, and amino acid b in position
j:

fi(a) =
1
M

M

∑
m=1

δa,am
i

fij(a, b) =
1
M

M

∑
m=1

δa,am
i

δb,am
j

. (2.8)

The consistency with the data implies:

Pi(ai) = ∑{Ak |k 6=i} P(a1, . . . , aN) = fi(ai) (2.9)

Pij(ai, aj) = ∑{Ak |k 6=i,j} P(a1, . . . , aN) = fij(ai, aj). (2.10)

The solution of the optimization problem Eq. (2.3) is the so-called
generalized Potts model :

P(a1, . . . , aL|J, h) =
1

Z(J, h)
exp(−H(a)) (2.11)

where the “energy function” or Hamiltonian H is:

H(a1, ..., aN) = −
N

∑
i=1

hi(ai)− ∑
1≤i<j≤N

Jij(ai, aj). (2.12)

Note that in this formulation each coupling Jij is a q× q matrix whose
entries are the couplings between a pair of Potts states a, b. They
are symmetric Jij(a, b) = Jji(b, a) since correlations are symmetric
fij(a, b) = f ji(b, a).

The DCA model Eq. (2.11) has been initially proposed in the context
of structural biology [24, 25]. It has been long recognized that coevolu-
tionary information contained in a protein family allows extracting
structural information [19, 20]. However, the true covariation signal
in the MSA is often masked by ancillary indirect-couplings: residue
i might be correlated to a residue j without being in contact with it
because both are in contact with a third residue k. Therefore, any local
correlation measure (like the MI, cf. Section 1.4.1) which looks at pairs
of columns independently from the other columns can not disentangle
direct from indirect interactions. On the contray, DCA relies on a global
model: the probability distribution P(a|J, h), Eq. (2.11), depends on
the full sequence a and cannot be factorized over columns or col-
umn pairs of the MSA. The pairwise couplings Jij(a, b), introduced
to capture epistasis between residues, have been observed to predict
residue-residue contacts accurately [24, 25].

Note that we still need to solve the inference problem, i.e. to tune
the values of the Lagrange multipliers, the local fields {hi(a)}a=1,...,q

with i = 1, ..., N and the pairwise couplings {Jij(a, b)}a,b=1,...,q with
i, j = 1, ..., N, to satisfy the respective consistency Eqs. (2.9,2.10). Many
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approximation methods are available to tackle this problem, and we
present three of them in the next section.

The consistency Eqs. (2.9,2.10) have two important consequences.
First, a precisely inferred DCA model reproduces conservation and co-
variation statistics of an MSA. Second, only the single and pairwise
statistics of the MSA are used for the inference. There is a priori no rea-
son for which the model should be able to reproduce any higher-order
statistics. Astonishingly, Figliuzzi and collaborators [35] demonstrated
that a precisely inferred model captures even statistical measures
which were not imposed by the inference procedure, like three-residue
correlations, the clustered structure of protein families in sequence
space or the Hamming distance between sequences, as shown in Fig-
ure 2.1. These findings suggest that the pairwise statistics are sufficient
to accurately capture the residue variability in the MSA, or, in other
terms, that the DCA model P(a|J, h) is a generative model.

2.1.3 Criticism to MaxEnt

Criticism, however, has been leveled against the MaxEnt from several
angles [36, 37]. First, MaxEnt modeling requires to select a set of rel-
evant observable which compress the information contained in the
whole multiple sequence alignment. Therefore, Eq. (2.4) is not the
most unbiased representation of the protein family, but it is the most
unbiased for the set of observable that one has arbitrarily chosen. In
the case of DCA, the choice of fi and fij is motivated by the fact that
they are easy to interpret in terms of conservation and coevolution.
Furthermore, the typical size of MSAs, usually hundreds or thousands
of sequences, often does not allow one to accurately compute higher
order moments of the data like the third-order frequencies fijk.

Second, MaxEnt models assume that the process sampled is at equi-
librium, which is certainly questionable for biological systems. Third,
as explained in the next section, the best current method for prediction
of residue contacts is pseudolikelihood, which requires as input the
full sequences of the MSA, not only frequencies and correlations, in
contrast with the MaxEnt principle.

In [38] Gao and collaborators suggested that the reason behind
the success of DCA is to be searched in population genetics. They
applied DCA to whole-genome population-wide sequencing data and
showed that DCA yields meaningful results only when a population
evolves with a sufficient amount of exchange of genetic material. In
this case, the population reaches a dynamic equilibrium, the so-called
quasi-linkage equilibrium (QLE), where the distribution of genotypes
assumes the form of a Potts model Eq. (2.11). On the contrary, for
population evolving with low recombination rate DCA can not be
expected to work. Note that in [38] they analysed recently diverged
sequences (about 3,000 genomes of the human pathogen Streptococcus
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Figure 2.1: Non-fitted statistical observables are captured by DCA: The projection
on the first two principal components of sequences belonging to
the MSA PF00072 (Panel A) or generated by Monte Carlo sampling
from the profile model (Panel B) and the DCA (Panel C). Three-
point correlations of Monte Carlo samples of the profile (D) and
DCA (E) models, as compared to the three-points correlations
in the natural sequences. Histograms of all pairwise Hamming
distances between natural or Monte Carlo sampled sequences,
for profile (F) and DCA (G) models. All model DCA were inferred
with the highly precise BML method, described in Section 2.2.1.
These findings suggest that accurately inferred DCA model can
capture the residue variability of the MSA. Source: [35].
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pneumoniae, cf. Section 2.4.5) therefore subject to evolutionary pressure
different from that of Pfam sequences. However, these findings suggest
that population genetics can provide a more rational basis for DCA, at
least for genome-scale analysis.

Finally, note that MaxEnt is not needed if we assume priori that
P(a|J, h) takes the form of a Potts model Eq. (2.11). As we will discuss
in the next section, the consistency Eqs. (2.9,2.10) directly follow from
the vanishing first derivatives of the log-likelihood Eq. (2.15) (see next
section).

2.2 inference methods for the inverse potts problem

The MaxEnt principle proposes an analytical form of the probability
distribution P(a|J, h); still, the values of the Lagrange multipliers need
to be tuned to satisfy the respective consistency Eqs. (2.9,2.10). Given
an MSA A, a commonly used strategy, using a Bayesian framework, is
to maximize the posterior:

P(J, h|A) ∝ P(A|J, h)·P(J, h) (2.13)

where the P(A|J, h) is the likelihood and P(J, h) is the prior distri-
bution which allows to encode prior beliefs about the parameters of
the model, before the data are observed. We will discuss prior and
regularization in Section 2.3.2.

Assuming, for the moment, uniform prior distribution, maximizing
the posterior is equivalent to maximize the likelihood L. In practice, it
is often more convenient to consider the average log-likelihood:

1
M

logL =
1
M

log P(A|J, h) (2.14)

with M being the number of sequences in the MSA. If we assume that
the sequences of the MSA are independent and identically distributed,
we obtain:

1
M

logL =
1
M

log
M

∏
i=1

P(am|J, h) =
1
M

M

∑
i=1

log P(am|J, h) =

L

∑
i=1

q

∑
a=1

hi(a) fi(a) + ∑
1≤i<j≤N

q

∑
a,b=1

Jij(a, b) fij(a, b)− log Z(h, J).
(2.15)

One can readily see that the parameters J, h maximizing Eq. (2.15)
are solutions of the consistency Eqs. (2.9,2.10).

By computing the Hessian, it can be easily checked that the log-
likelihood Eq. (2.15) is a concave function in the parameters h,J[33].
This means that a simple optimization scheme such as gradient ascent
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is guaranteed to find its maximum value. However, the exact com-
putation of the log-likelihood and of its gradient is computationally
unfeasible due to the last term containing the partition function:

Z(J, h) = ∑a exp
(
− H(a)

)
= ∑a exp

(
∑N

i=1 hi(ai) + ∑1≤i<j≤N Jij(ai, aj)
)

. (2.16)

The sum contains qN terms, with q = 21. This means that the direct
calculation of Z is impossible even for small proteins. As a reference,
the WW domain (PF00397), one of the shortest in the Pfam database,
contains 31 residues, and the partition function contains a sum with
∼ 1040 terms.

Approximation methods are required and three of them will be
described below:

1. Boltzmann Machine Learning (BML). It is able to achieve arbitrar-
ily accurate DCA models, but requires computationally expensive
Monte Carlo simulations.

2. The Mean-Field (MF) approximation. It is the computationally
most efficient approximative inference scheme but provides only
a rough estimate of the Potts parameters.

3. The Pseudo-Likelihood Maximization (PLM). Computationally
less demanding than BML while leading to virtually identical
perfomance for unsupervised contact prediction, but it fails in
accurately reproducing the empirical statistics.

2.2.1 Boltzmann Machine learning

Introduced in [39], the Boltzmann Machine Learning is the most
straightforward method to tackle the inverse problem. Starting from
an initial guess of fields and couplings, the model one- and two-
point marginals Pi(a), Pij(a, b) are estimated through Monte Carlo
simulations f MC

i (a), f MC
ij (a, b), thus avoiding the exact computation of

the partition function Z. The parameter values h, J are consequently
updated following the gradient of the log-likelihood:

hi(a)→ hi(a) + ηi(a)
(

f MC
i (a)− fi(a)

)
(2.17)

Jij(a, b)→ Jij(a, b) + ηij(a, b)
(

f MC
ij (a, b)− fij(a, b)

)
(2.18)

where {ηi, ηij} are small parameters (typical values for DCA, are
O(10−2) or O(10−3)), the so-called learning rates. Due to the convexity
of the log-likelihood, in the case of sufficiently precise Monte Carlo
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and small enough learning rate, the procedure is guaranteed to con-
verge with arbitrary precision to the exact solution. One can achieve
estimations of h and J which satisfy with high accuracy Eqs. (2.9,2.10),
as shown in Figure 2.2. However, each step of the learning process
requires an accurate Monte Carlo estimation of f MC

i (a), f MC
ij (a, b) ,

which can be computationally demanding for large systems. Even
with efficient implementation going beyond simple gradient descent
[40–42] the BML is applicable only to protein families smaller than
about L = 200. Large-scale studies for hundreds or thousands of
protein families are therefore out of reach.

2.2.2 Mean Field

First introduced in [25] for protein sequence, the approximation it is
essentially an high-temperature expansion of the Legendre transform
G of the free energy, i.e. the logarithm of the partition function Eq.
(2.16):

G := − log Z +
N

∑
i=1

q−1

∑
a=1

Pi(a)hi(a) (2.19)

where the sum over a of variable i runs only up to q− 1 because of
the lattice-gas gauge choice, see Section 2.3.1.

The above functional can be computed through a small-coupling
expansion, i.e., a Taylor expansion around zero coupling. Then, from
linear response theory, the following equations hold:

hi(a) =
∂G

∂Pi(a)

(C−1)ij(a, b) =
∂hi(a)
∂Pj(b)

(2.20)

where C is the connected correlation matrix:

Cij(a, b) = Pij(a, b)− Pi(a)Pj(b). (2.21)

The resulting MF equations are:

Pi(a) =
1
zi

exp
(

hi(a) + ∑
j 6=i

q−1

∑
b=1

Jij(a, b)Pj(b)
)

(2.22)

and

(C−1)ij(a, b) =

−Jij(ai, aj) for i 6= j
δa,b

Pi(a) +
1

Pi(q)
for i = j.

(2.23)

The inference problem is then solved, by plugging into Eq. (2.23)
the empirical version of the connected correlation matrix Cemp

ij (a, b) =
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fij(a, b)− fi(a) f j(b) computed directly from the MSA. The MF approxi-
mation is computationally very efficient since it just requires to invert
the empirical connected-correlation matrix.

Note that the connected correlation matrix C is surely rank deficient
as it displays N zeros nodes:

∑
b

Cij(a, b) = ∑
b

fij(a, b)− fi(a) = 0 (2.24)

and therefore it is not invertible. This is due to the over-parametrization
of the model, which can be solved by fixing the lattice-gas gauge (see
Section 2.3.1).

Unfortunately, in most cases the finite size of the MSA still makes
C rank deficient, as some states may never be observed in finite-
size samples. One common solution is to add a pseudocount to the
frequencies (see Section 2.3.2).

The MF approximation was the first efficient successful method for
contact prediction [25]. However, MF only provides a rough estimate of
Potts parameters and the model usually does not satisfy the constraints
Eqs. (2.9,2.10).

2.2.3 Pseudolikelihood Maximization

The Pseudolikelihood Maximization, first introduced in [43] and later
[44] in different contexts, was extended to Direct Coupling Analysis
in [45, 46]. Essentialy, the idea behind PLM is to avoid the computation
of the partition function, by replacing the P(am) with the conditional
probability of observing a variable ar given the rest of the sequence
a\r = (a1, . . . , ar−1, ar+1, . . . , aN):

P(ar|a\r) =
exp

(
hr(ar) + ∑j 6=r Jrj(ar, aj)

)
∑

q
b=1 exp

(
hr(b) + ∑j 6=r Jrj(b, aj)

) . (2.25)

The log-likelihood Eq. (2.15), is then replaced by a sum of site-dependent
terms called pseudo-likelihood:

1
M

M

∑
i=1

log P(am) 7→
N

∑
r=1
Lr(hr, Jr) =

N

∑
r=1

( 1
M

M

∑
m=1

log P(am
r |am
\r)
)

(2.26)

The inference problem can be solved by maximizing Eq. (2.26). This
approach, called symmetric pseudo-likelihood maximization, is slower than
the asymmetric pseudo-likelihood maximization while leading to a virtu-
ally identical performance [45, 46]. The latter consists in maximizing
independently each Lr(hr, Jr) since each term depends on a differ-
ent set of parameters hr and Jr = {Jrj}r 6=j. This method returns two
different values for the same coupling Jij(a, b) respectively from the
maximization of Li(hi, Ji) and Lj(hj, Jj). One simple way to overcome
this shortcoming [45, 46] is to replace them by their average.
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Figure 2.2: Fitting accuracy and contact prediction for PLM and BML in the PF00072
protein family: the DCA model inferred by PLM (panel A) fails to
reproduce the one- and two-residue frequencies (orange / blue)
and the connected two-point correlations (black). On the contrary
the BML (panel B) is very accurate. Despite these differences, the
contact predictions using the strongest 2L DCA couplings (with
|i− j| > 4) are close to identical. Source: [35].

Note that PLM is somehow in contrast with MaxEnt. Indeed, to com-
pute the Lr(hr, Jr) the full sequences a are needed while, according
to MaxEnt, the average value of the chosen observables - the one- and
two-point statistics for DCA - are the only information required for the
inference.

As shown in Figure 2.2 the distribution inferred by PLM typically
do not satisfy the constrains Eqs. (2.9,2.10). Despite this, the contact
prediction accuracies of PLM and BML are close to identical.

2.3 technical points

2.3.1 Gauge Transformation

The number of parameters of the DCA model Eq. (2.11) is Np = Nq +
N(N−1)

2 q2 but the constraints Eqs. (2.9,2.10) are not independent of
each other, in particular we have the linear dependencies:

q

∑
a=1

fi(a) = 1 and
q

∑
a=1

fij(a, b) = f j(b) (2.27)

Therefore, the number of independent observables is N(q − 1) +
N(N−1)

2 (q− 1)2. This means that the model is over-parametrized: there
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are more parameters then observables to fit. This condition leads to
a so-called gauge invariance: the probability distribution Eq. (2.11) is
invariant under a set of transformations of the Potts parameters h, J.
Indeed, for any arbitrary function Kij(a) and for arbitrary constants ci
and cij, one can easily verify that the following transformation leave
the probabilities of the model unchanged:

Jij(a, b)→Jij(a, b) + Kij(a) + Kij(b) + cij (2.28)

hi(a)→hi(a) + ci −
N

∑
j=1(j 6=i)

Kij(a) (2.29)

In DCA, especially for contact prediction, a common choice is the
so-called zero-sum gauge (also known as Ising gauge):

q

∑
b=1

Jij(a, b) =
q

∑
a=1

Jij(a, b) =
q

∑
a=1

hi(a) = 0. (2.30)

It is obtained by the transformation:

Jij(a, b)→Jij(a, b)− Jij(·, b)− Jij(a, ·) + Jij(·, ·) (2.31)

hi(a)→hi(a)− hi(·) +
N

∑
j=1(j 6=i)

(
Jij(a, ·)− Jij(·, ·)

)
(2.32)

where g(·) is average of the function g over all states g(·) =
1
q ∑

q
a=1 g(a).

Another common gauge is the lattice-gas gauge which removes the
trivial zero nodes of the connected correlation matrix C:

Jij(a, q) = Jij(q, b) = hi(q) = 0 (2.33)

obtained by the transformation:

Jij(a, b)→Jij(a, b)− Jij(q, b)− Jij(a, q) + Jij(q, q) (2.34)

hi(a)→hi(a)− hi(q) +
N

∑
j=1(j 6=i)

(
Jij(a, q)− Jij(q, q)

)
. (2.35)

2.3.2 Regularization

A Potts model describing a protein family usually contains between
50 to 500 residues. Therefore, the number of Potts parameters can
range from 105 to 108. Since typical MSAs have a limited number of
sequences (usually from 102 to 105) regularization is essential to avoid
overfitting. We refer to [47] for a complete study of regularization
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techniques. A common inference regularization for PLM or BML [25,
35] is the `2 regularization-scheme. In Eq. (2.13) it correspond to
imposing a Gaussian prior in our model, yielding a penalty term in
the likelihood, which forces a trade-off between optimizing the bare
likelihood (or pseudo-likelihood) and absolute values of parameters
being small:

`2(J, h) = λh

N

∑
i=1

q

∑
a=1

hi(a)2 + λJ

N

∑
i<j

q

∑
a,b=1

Jij(a, b)2. (2.36)

The two parameters λh and λJ define the strength of the `2-regularization
(typical values for DCA are λ = 10−2 or 10−3).

In inference problems, another common regularization-scheme is `1

`1(J, h) = λh

N

∑
i=1

q

∑
a=1
|hi(a)|+ λJ

N

∑
i<j

q

∑
a,b=1
|Jij(a, b)| (2.37)

which forces weak parameters to be set to 0, thereby favoring sparse
networks. It is less prevalent in the DCA context, at least for contact
prediction, where we are usually not interested in the full network but
only in large couplings.

Using the Dirichlet distribution as a prior on frequency counts we
get another regularization-scheme referred to as pseudocounts [9]:

fi(a)←(1− α) fi(a) +
α

q
(2.38)

fij(a, b)←(1− α) fij(a, b) +
α

q2 (2.39)

Adding pseudocounts is equivalent to adding random M · α/(1− α)

sequences to the data with amino acids sampled uniformly. It is fre-
quently used in the context of MF for contact prediction (typically with
α = 0.5) to assure invertibility of the connected-correlation matrix.

2.3.3 Sequence re-weighting

Sequences in MSAs do not represent independent samples of a protein
family for at least two reasons. First, sequences are evolutionarily-
related via phylogenetic trees, therefore they can have a complicated
dependence structure. Second, there is selection bias from sequencing
species of special medical or academic interest or sequencing closely
related species, thus leading to uneven sampling of a protein family
sequences. To reduce both bias a simple reweighting scheme was
introduced in [25]. Sequences too similar are considered to carry
almost the same information, and they should be down-weighted.
Formally, given an alignment with M sequences and N residues, for
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each sequence am we determine the number nm of similar sequences
via

nm = |
{

ak|1 ≤ k≤M, seqid(am, ak) ≥ θN)
}
| (2.40)

A weight wm = 1/nm is therefore associated to am which reflects its
importance in the MSA. Frequencies are changed accordingly:

fi(a) =
1

Meff

M

∑
m=1

wmδa,am
i

(2.41)

fij(a, b) =
1

Meff

M

∑
m=1

wmδa,am
i

δb,am
j

. (2.42)

The total weight Meff = ∑M
i=1 wm is considered the effective number

of independent sequences. In [25] the authors showed that contact
prediction results are consistently better than without any re-weighting
and that values of θ around 0.7-0.9 lead to very similar results (the
most commonly used one in DCA inferences is θ = 0.8).

2.3.4 Frobenius norm

The statistical modeling of proteins proposed by DCA was originally
developed to improve the prediction of the three-dimensional structure
of a folded protein [24, 25]. To this end, one needs a score for ranking
the N(N − 1) possible coupling matrices.

In [24, 25], the authors introduced the so-called Direct information
(DI). For each site i and j they define a new probability model:

Pdir
ij (a, b) =

1
Zij

exp
(

Jij(a, b) + h̃i(a) + h̃j(b)
)

(2.43)

where the new fields are tuned such that empirical single-frequencies
fi(a) and fi(b) are recovered. Zij is the partition function for the sys-
tem restricted to positions i and j where the sites are only directly
coupled via a single matrix Jij(a, b).

The DI can be understood as the amount of MI between columns i
and j, which results from DCA couplings:

DIij =
21

∑
a,b=1

Pdir
ij (a, b) log

Pdir
ij (a, b)

Pi(a)Pj(b)
(2.44)

DI is indepent of the selected gauge and can be considered a real
observable.

Nevertheless, increased accuracy in contact predictions [46] were
obtained using the Frobenius norm of the coupling matrix:

Fij =

√√√√ 21

∑
a,b=1

Jij(a, b)2 (2.45)
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Contrarily to the DI, Fij is gauge-dependent, therefore a gauge needs
to be fixed before computing it. A common choice is the zero-sum
gauge Eq. (2.30) since it minimizes the absolute values of the norm
Eq. (2.45) thereby explaining “as much as possible” of the distribution
with the fields.

2.3.5 Average Product Correction

The Average Product Correction (APC) correction was originally intro-
ducted in [23] as a correction for the MI. We here briefly review the
derivation of APC following the sketchy explanation of [48]. The idea of
the APC is that the mutual information between positions i and j is the
sum of the a real mutual influence MItrue

ij and single-site background
dependences BiBj -like phylogeny and site entropy- which one aims
to minimize:

MIij = MItrue
ij + BiBj. (2.46)

If we assume that the true average mutual informations are small,
MItrue

ij � BiBj, we find

MIi· 'BiB·
MI·· '(Bi)

2

from which:

MItrue
ij = MIij −

MIi·MI·j
MI··

. (2.47)

Even if it was originally introduced as a correction for the MI, the
previous argument is still valid for the Frobenius norm:

FAPC
ij = Fij −

Fi·F·j
F··

. (2.48)

This correction is common to all implementations of DCA that are
used for contact predictions

2.4 application of dca

DCA turned out to reach a substantial breakthrough in detecting
residue-residue contacts from sequence information alone [24, 25].
This success has encouraged its application in other contexts. In the
next section, we discuss some remarkable achievements obtained by
DCA with real protein sequence data. For a complete review we refer
to [49].
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Figure 2.3: Contact predictions for the Pfam family PF00014 (trypsin in-
hibitor) mapped onto the x-ray crystal structure PDB 5PTI. Panel
A shows the top 30 MI predicitons, and Panel B the top 30 DCA

shows predicitons. Trivial predictions with sequence separation
|i− j| ≤ 4 are removed. Each pair with distance between heavy
atoms< 8Å in the PDB, a true positive, is connected by a red link,
and the more distant pairs, false positives, are connected by green
links. Source:[49]

2.4.1 Contact prediction

De novo protein modeling attempts to find the tertiary structure of the
protein given only the amino acid sequence. Residue-residue contacts
predicted from the sequence - or the corresponding MSA of homol-
ogous sequences - can be used to build three-dimensional models
and consequently to predict protein folds from scratch. Here-after we
define in “contact” each pair of residues with distance between heavy
atoms below 8Å. The DCA contact prediction proceeds by ranking each
couple of residues i and j according to the APC-corrected Frobenius
norm. Sequentially close residue usually show a strong signal due to
gap-streches or their proximity in the secondary structure. Those con-
tacts are not informative about the tertiary structure. For this reason it
is common to exclude all pairs |i− j| ≤ 4 , a distance corresponding
to one turn in an α-helix.

DCA has been shown to significantly outperform local correlation
measures, such as the MI. Figure 2.3, taken from [49], displays the
top 30 predictions of the ranked MI score -directly computed from
the correlations in the MSA- and DCA-score -obtained after inferring
the coupling matrices with PLM approximation and computing the
corresponding Frobenius norms.

The currently best unsupervised DCA-based method for contact
prediction uses PLM. Note, however, that in order to obtain a good
performance it is sufficient to infer the correct ranking of the pairs of
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residue. This explains why all the three approximations BML, MF and
PLM have a similar accuracy for contact prediction despite the fact that
MF and PLM have a larger error in the inference of the exact parameter
values than BML.

The PLM approximation is fast enough to allow a large-scale appli-
cation. As a reference, in [50] Ovchinnikov et collaborators, applied
GREMLIN [51], which is equivalent to PLM, on more than 5000 Pfam
families with no structural information. By integrating sequence align-
ments with metagenome sequence data, they were able to successfully
predicted quality structural models for 614 protein families with pre-
viously unknown structures.

Note that DCA is pure sequence based, meaning that it is completely
blind with respect to any form of structure underlying the contact
prediction problem.

State-of-the-art methods for contact prediction rely on additional
sources beyond the MSA, such as solvent accessibility or predicted
secondary structure. In particular, deep learning approaches have
become increasingly popular in the last few years [52]. They can
be directly trained on large set of PDBs and they are currently the
most accurate methods for contact prediction (cf. Chapter 4). Their
architecture usually consists of many layers of Convolutional Neural
Network (CNN)s that can learn and collect features at different levels
during training, see Figure 2.4. In Chapter 4 we explain the generic
concepts behind CNNs.

2.4.2 Protein-protein interaction

The vast majority of proteins need to interact with others for proper bi-
ological activity. They form Protein-protein interaction (PPI) networks,
and unveiling the PPI organization is one of the most formidable tasks
in system biology. PPIs can be studied focusing on two major aspects,
(I) identification of interacting protein families, and (II) prediction of
the interaction interface within a protein complex. As we will show
shortly, DCA has been used to address both points.

2.4.2.1 Paralog matching

In order to perform a coevolutionary analysis of PPIs, DCA requires
a joint MSA, of homologous protein pairs which are supposed to
interact. The generation of such alignments is a complex computational
task on its own. Indeed, protein families often contain paralogs, and
we generally do not know which paralog from one family interacts
with a chosen paralog from the other family. The number of possible
matchings can be astronomically large if multiple paralogs are present.
As a reference, two MSAs with 250 species with precisely 4 paralogs
per species would have (4!)250 ∼ 10345 possible matchings.
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Figure 2.4: Pipeline of the deep learning CNN DESTINI [53]. Given an in-
put target protein, sequence genomic and structural features are
extracted. These features feed a convolutional neural network
composed of multiple identical residual blocks, whose architec-
ture is shown in the blue bubble. The final layer of the network
is a softmax activation layer, which outputs the probability score
for every pair of residues of the target sequence. The predicted
contacts are subsequently employed to derive the 3D model of the
target. As common in CNNs, it requires to be trained on a large
set of PDBs (7638 in the case of DESTINI). Source: [53].



2.4 application of dca 31

DCA can actually be used for solving the matching problem [54,
55]. In [54] two algorithms where proposed based on the idea that
the correct matching of interacting paralogs should maximize the
inter-domain coevolutionary signal. In more detail, for any matching
π, we can define the inter-protein log-likelihood:

Lπ
inter : = Lπ −Lπ

ind, (2.49)

where, from the likelihood of the joint model, we subtract the sum
of the likelihoods of the two independent protein models.

π is an additional latent variable, and we look for the maximum
likelihood solution:

π∗ = argmax
π

(
Lπ

inter

)
. (2.50)

This is computationally infeasible for realistic cases. First the space
search is huge (it grows faster than exponentially). Second Lπ

inter is
rather costly to compute. Last but not least, the landscape while
varying π is particularly rugged, and classic search strategies such as
Simulated Annealing are infeasible. In [54] two heuristic strategies are
introduced, that we sketch in Figure 2.5.

2.4.2.2 DCA for PPI

Once the joint MSA is constructed, we can define a new model P(a, b)
for sequence a = (a1, . . . , aL1) in MSA1 and sequence b = (b1, . . . , bL2)

in MSA2 in the same organism. If the members of the two protein
families interact in all or most organisms, we expect co-evolution
between residues between protein sequences a and b, i.e. P(a, b) 6=
P(a)P(b). An intuitive extension of Eq. (2.12) is:

H(a, b) = H1(a) + H2(b) + H12(a, b) (2.51)

where

H12(a, b) = −
L1

∑
i=1

L2

∑
j=1

Jij(ai, bj) (2.52)

models the coevolution between residues between proteins sequences.
The strength of these couplings can then be used:

(i) To estimate whether members of the two families are likely to
interact. A possible score, introduced in [56], is the average of the
n largest interprotein FAPC. It takes into account the strongest
signals, but averages over a few pairs to be less susceptible to
noise. In [56] the average over the largest 4 predictions was
used to predict with high accuracy interacting pairs of the small
ribosomal subunit (SRU) and the large ribosomal subunit (LRU).
Their results are largely robust with respect to the precise choice
of n: any value between n = 1 and n = 6 leads to virtually
identical performance [56].
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Figure 2.5: Paralog matching procedure of [54].
Panel A) For each species (depicted by different colors), each
paralog from one species (the one with the lower paralog number)
should be matched to a distinct sequence in the other species.
Panel B) The fast but inaccurate progressive paralog-matching
(PPM) algorithm. It starts from a seed MSA, constituted
of sequences that can by easily matched because they do
not have paralogs. Then the algorithm calculates the DCA

model, uses it to add and match a new species, and iter-
ates these two steps until all species are matched. It has
limited accuracy in identifying true interaction partners
since once a matching error is made, it is not corrected and,
furthermore, it influences all subsequently matched species.
Panel C) The slow but accurate iterative paralog-matching (IPM):
k random matchings are generated (in practical applications, k
was set to k = 256) and each one is independently refined using
hill climbing (discrete analog of gradient ascent) of the likelihood.
After refinement, pairs of matchings are merged using average
matching scores. Refinement and merging are iterated until only
a single refined matching is left. Source [54]
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(ii) To infer residue-residue contacts between proteins. Similarly to
the intraprotein case, large interprotein FAPC are predicted to be
residue-residue contacts in this interface. As shown by Uguzzoni
and collaborators [57] in a large-scale analysis of homo-dimers
interfaces, only large protein-protein interfaces are widely con-
served across species thereby showing reliable coevolutionary
signals. On the contray smaller interfaces or those being only
conserved in part of a protein family cannot be easily detected
by DCA.

In Chapter 3 we introduce PhyDCA which allows a large scale analysis
of protein-protein interaction networks. Our approach combines co-
evolutionary signal from different scales (correlated presence-absence
patterns of proteins across species, and correlations in the amino-
acid usage) to provide multi-scale evidence for direct but unknown
interaction between protein families.

In Chapter 4 we introduce FilterDCA, a simple and interpretable su-
pervised machine learning method, which increases the performance
of inter-domain contact prediction with respect to unsupervised DCA.

2.4.3 Mutational landscape

For a given protein sequence, a task of great biomedical interest is to
access the mutational landscape, i.e. to determine the effect of individ-
ual mutations on the gene activity. It can help to identify mutations
related to antibiotic resistance in bacteria or to the identification of
disease-causing mutations in humans. Experimental technologies like
deep mutational scanning [18] can yield insights about the mutational
landscape around the native sequence (the so-called wild-type). They
allow for the full mapping of the sequence space located one or two
mutations away from the native wild-type to the phenotype space.

How can the effect of an amino acid change on a protein be compu-
tationally inferred?

The simplest scoring system is to compare the difference of energies
of the Potts Hamiltonian Eq. (2.12) (or log-probabilities) between the
wild-type and the corresponding mutant:

∆Hmut = H(amut)− H(awt) (2.53)

Recent studies [58–62] have demonstrated that experimental mea-
surements of fitness differences are empirically correlated with the
change in Potts statistical energy ∆Hmut in a number of situations,
from viral over bacterial to human proteins. Also, it has been shown
[58, 61] that the epistatic DCA model constantly overcomes the Profile
model in predicting mutational effects. Indeed, DCA is able to capture
epistatic couplings between residues, and therefore to assess the de-
pendence of mutational effects on the sequence context where they
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appear. We will discuss the epistasis and context-dependency in more
details in Chapter 5.

2.4.4 Scoring of sequences

In the DCA framework, low energy sequences are more likely to be
statistically similar to the sequences of the MSA. It has been shown [49]
that the energy of a sequence in the DCA model is a good predictor of
its ability to fold.

In [63], Socolich and collaborators designed new artificial sequences
of the WW domain (Pfam PF00397, N = 33 residues), and experimen-
tally tested their ability to fold into the native WW structure.

They generated four groups of sequences:

1. Natural (NAT): natural WW sequences drawn from the original
MSA.

2. Random (R): random sequences, generated by random scram-
bling of the alignment, thus killing all existing statistical patterns.

3. Independent-site conservation (IC): artificial sequences gener-
ated by shuffling independently each column of the MSA, thus
having same single-site frequencies than the original MSA but no
correlations.

4. Coupled conservation (CC): artificial sequences with the same
single- and pairwise-frequencies than the original MSA. They are
generated using a simulated annealing procedure.

The NAT and CC sequences contains substantial fractions of folding
sequence ( respectively 67% and 28%), whereas none of the sequence
in the R or CC data set is a functional one [63].

As shown in Figure 2.6 the Potts energy can discriminate between
folding and non-folding sequences across the NAT, CC, IC and R
data sets. The results in Figure 2.6 were obtained using the ACE infer-
ence method [64, 65], but other inference techniques (MF, PLM, BML),
despite some quantitative differences, have comparable performance
in discriminating folding from non folding sequences. In fact the
model only needs to rank energies of sequences correctly, thus a more
precise inference of the parameters usually does not lead to a better
performance, due to the high rank-correlations between methods.

As shown in Figure 2.6, the DCA model can be potentially used for
the ambitious goal of generating new and functional protein sequences
by Monte Carlo sampling from the inferred model.

A key aspect of the Potts model in this application is its ability to
model epistasis, because of the collective effects of pairwise couplings.
The energy of a profile model fails both in discriminating folding and
non-folding sequences and generating functional sequences, as these
would be equivalent to IC sequences.
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Figure 2.6: Top: distribution of Potts energies (parameters inferred by the
ACE [64, 65] algorithm) of sequences, which are sampled, via
Monte Carlo simulations, from the Potts (blue) and the profile
(green) models. The red histogram corresponds to random se-
quences. Bottom: DCA energies for the WW sequences from [63]
generated by coupled conservation (CC), independent-site con-
servation (IC) and random scrambling (R). Each bar indicates a
sequence. The red bars are folding sequence while grey bars are
non-folding. Note the coherence between energy values for Potts-
model generated sequences in the top plot and natural sequences
(NAT) in the bottom plot. Source:[49]
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2.4.5 Genome-wide DCA

So far, DCA has been mainly applied to a number of single exemplary
proteins and systems of proteins with known interaction [49]. In this
case, the Potts models are inferred using MSAs containing sequences
of strongly divergent sequences of homologous proteins (typical se-
quence identities are from 20 to 30%). However, thanks to rapid ad-
vances in next-generation sequencing, whole-genome sequencing data
from densely sampled populations are starting to become available.
In this context, one is interested in analyzing the genome alignments
of different strains of the same species, to detect epistatic interactions
between polymorphic loci. It is natural to ask if DCA can be extended
to identify patterns of coevolution between single nucleotide poly-
morphisms (SNPs). This is not obvious. Even fast approximations,
like PLM, are not easily scalable to study 104 − 105 polymorphisms at
once (the amount of genomic variation observed in analyses of many
bacterial species [66]). New approximation methods are then required.

In [67], Skwark and collaborators introduced genomeDCA to study
a large population data sets of the human pathogen Streptococcus
pneumoniae (pneumococcus). The idea behind this method is first to use
a reduced alphabet with only q = 3 states1. Second, the pneumo-coccal
genome was split into about 1500 chunks, and a putative interaction
score was defined using an iterative procedure based on PLM [67].
Using genomeDCA the authors were able to identify 5,199 putative
epistatic interactions between 1,936 sites of the Streptococcus pneumoniae
genome [67]. Similarly, in [68] Schubert and collaborators used an
extend version of PLM to discovered 38 loci and 240 epistatic pairs
that influence the minimum inhibitory concentrations of 5 different
antibiotics in 1,102 isolates of Neisseria gonorrhoeae.

Another possibility is to reduce the dimensionality of the data
before the DCA inference. In [38] Gao and collaborators performed a
pre-filtering of the data based on empirical correlations, which can
be computed directly even for very large problems. This study was
performed on data from S. pneumoniae and it yields results very similar
to [67]. But their method allows for considerable computational speed-
up as the inference problem is smaller.

Note that genome wide scan for epistasis are seen as potentially
a very fruitful approach to better understand the genetics of these
diseases and to identify new therapeutic strategies, therefore it is not
surprising that in recent years, there has been an increasing interest in
this field. For example, in [69], Cui and collaborators studied strains
of Vibrio parahaemolyticus (a human gastrointestinal pathogen), finding
that the great majority of interactions (85%) were detect between acces-

1 each locus in one sequence can be a major allele (i.e. the most common allele for a
given SNP), a minor allele, or the locus can be missing.
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sory genes, many involved in carbohydrate transport and metabolism,
while only few interarctions involving the genes in the core genome.

In this thesis, we adopt a different point of view to extend the
coevolutionary analysis at the genome scale. In Chapter 3, we study
the PPI networks exploiting coevolutionary signals at multiple but
interconnected scales, ranging from the correlated presence or absence
of related proteins (or their genes) across genomes, down to the
correlated usage of amino-acids in residues, which are located in
different proteins but in contact across the interface.

In Chapter 5, through an extensive genome-wide study of E.coli
strains, we will be asking to what extent DCA models inferred from
divergent homologous, are informative about intra-genic epistasis and
context-dependency in recently diverged sequences.





Part II

P R O T E I N - P R O T E I N I N T E R A C T I O N S

Few proteins exert their function in isolation. Instead, the
vast majority of proteins interact with others for proper
biological activity, forming networks of protein-protein in-
teractions (PPI). PPI can be studied focusing on two major
aspects, (i) analysis of protein-protein interaction networks,
and (ii) identification of the interaction interfaces within
a protein complex. In this second part, we first present
PhyDCA (Chapter 3) which, by combining proteins coevo-
lution at multiple but interconnected scales, yields valu-
able insights about the protein interaction network. Second,
we introduce FilterDCA (Chapter 4), a simple and inter-
pretable supervised machine learning method, to improve
the inter-protein contact prediction. The idea behind our
approach is that residue-residue contacts follow typical
patterns that can be used for constraining the DCA predic-
tions. We demonstrate the effectiveness of FilterDCA in
terms of interpretability and prediction performance.





3
P H Y L E T I C D I R E C T C O U P L I N G A N A LY S I S

3.1 motivation

Protein-protein interactions (PPIs) play fundamental roles in the vast
majority of biological processes. Hence, unveiling the PPI network orga-
nization is one of the most formidable tasks in systems biology today.
High-throughput experimental technologies, such as large-scale yeast
two-hybrid [70] analysis and in protein affinity mass-spectrometry
studies [71] allowed to enhance our knowledge of protein interaction
networks. However, the reliability of these methods remains problem-
atic due to their high false-positive and false-negative rates [72].

To complement experimental approaches, we propose a genome-
wide coevolutionary method, called PhyDCA. It is based on the fact
that interacting proteins are required to coevolve across several scales,
from correlated presence-absence patterns of proteins across species
up to correlations in the amino-acid usage. PhyDCA bridges these
different scales within a common mathematical-statistical inference
framework.

At the genome level, we revisit a classical method called phyloge-
netic profiling [73, 74] which uses presence/absence correlations across
genomes to predict functionally related protein families. We introduce
the concept of phyletic couplings: by using a global statistical model,
we are able to disentangle direct and indirect correlations in the pres-
ence and absence of protein domains across more than 1000 fully
sequenced representative bacterial species. Phyletic couplings substan-
tially increase the capacity to find relations between domains beyond
correlations: while standard correlation measures used in phylogenetic
profiling only reach 30–50% of true positives between the first 1000

predictions, the positive predictive value of phylogenetic couplings
reaches about 80%. These relations can be physical interactions, but
also genomic co-localization (and thus likely functional relations).

To refine the results and predict physical interactions, we have added
a coevolutionary analysis on the scale of residue-residue covariation,
as provided by DCA, to identify currently unknown but biologically
sensible physical interactions between protein families. We find that
72% of the 500 phylogenetically most coupled pairs correspond to large
enough alignments to run DCA, and 12.5% of these have significant DCA

scores, meaning that these domain pairs are our strongest candidates
for predicted domain-domain physical interactions. Since they are not
co-localized in the same protein, they also provide predictions for new
protein-protein interactions.

41
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Similarly, negative phyletic couplings appear to be biologically
reasonable. They disfavor the joint presence of two domains within
the same genome. In our analysis of the pairs of the strongest negative
couplings we find many pairs having the same functionality, including
documented pairs of convergent evolution. Some pairs actually are of
unknown function, and our method might help to transfer functional
annotations from one domain to the other.

Supplementary information are provided in A.1.

3.2 article
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Abstract
Interacting proteins and protein domains coevolve on multiple scales, from their correlated

presence across species, to correlations in amino-acid usage. Genomic databases provide

rapidly growing data for variability in genomic protein content and in protein sequences, call-

ing for computational predictions of unknown interactions. We first introduce the concept of

direct phyletic couplings, based on global statistical models of phylogenetic profiles. They

strongly increase the accuracy of predicting pairs of related protein domains beyond simpler

correlation-based approaches like phylogenetic profiling (80% vs. 30–50% positives out of

the 1000 highest-scoring pairs). Combined with the direct coupling analysis of inter-protein

residue-residue coevolution, we provide multi-scale evidence for direct but unknown interac-

tion between protein families. An in-depth discussion shows these to be biologically sensible

and directly experimentally testable. Negative phyletic couplings highlight alternative solu-

tions for the same functionality, including documented cases of convergent evolution.

Thereby our work proves the strong potential of global statistical modeling approaches to

genome-wide coevolutionary analysis, far beyond the established use for individual protein

complexes and domain-domain interactions.

Author summary

Interactions between proteins and their domains are at the basis of almost all biological

processes. To complement labor intensive and error-prone experimental approaches to

the genome-scale characterization of such interactions, we propose a computational

approach based upon rapidly growing protein-sequence databases. To maintain interac-

tion in the course of evolution, proteins and their domains are required to coevolve: evo-

lutionary changes in the interaction partners appear correlated across several scales, from

correlated presence-absence patterns of proteins across species, up to correlations in the

amino-acid usage. Our approach combines these different scales within a common mathe-

matical-statistical inference framework, which is inspired by the so-called direct coupling

analysis. It is able to predict currently unknown, but biologically sensible interaction, and
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to identify cases of convergent evolution leading to alternative solutions for a common

biological task. Thereby our work illustrates the potential of global statistical inference for

the genome-scale coevolutionary analysis of interacting proteins and protein domains.

Introduction

Essential to life at the molecular level is the interplay of molecules and macromolecules. Inter-

actions contribute to diversity and coordination of reactions to accomplish feats that would be

impossible if all parts worked fully in isolation. Proteins are no exceptions and many of them

undergo concerted interactions to achieve their full potential. Many interactions have been

described in detail, including inter- and intra-protein domain-domain interactions, which will

be the focus of this work. However, many more meaningful interactions await to be discovered

and explored. An issue with the experimental description of such interactions is that many are

transient and that high-throughput technologies to identify such interactions are very error

prone [1]. Advances in sequencing technology and the subsequent accumulation of vast

sequence databases have fueled the generation of mathematical frameworks which aim to

identify protein-protein interactions [2, 3]. Some of these techniques rely on the correlated

evolution of interacting proteins [4–10]. Whenever interactions are conserved across many

organisms, sufficient sequence examples are now in principle available to computationally

identify novel interactions relying on sequences alone.

We suggest a statistical approach based on the coevolution of interacting protein domains.
Coevolution can be detected at very different scales, ranging from the correlated presence or

absence of related proteins (or their genes) across genomes, down to the correlated usage of

amino-acids in residues, which are located in different proteins but in contact across the inter-

face. Each scale contains valuable information for detecting and understanding interactions

between proteins and their domains, and adapted methods have been designed to unveil this

information from data. However, none of the scales contains exhaustive information. There-

fore, our work proposes a coherent mathematical-algorithmic framework bridging different

scales, thereby combining the information content of the different scales.

The first, largest scale concerns the correlated presence and absence of interacting proteins

in genomes. If a biological function depends on two proteins simultaneously (not necessarily

via their direct physical interaction, but via any functional relation), we will either observe

both proteins in a genome, i.e. the function is present, or none of them, i.e. the function is

absent. More rarely we may observe the presence of only one of the two proteins. This idea is

at the basis of a classical method called phylogenetic profiling [4, 5], which uses presence/

absence correlations across genomes to predict interactions. Its accuracy suffers, however,

from a number of shortcomings and confounding factors:

1. Phylogenetic relationships between considered genomes may introduce correlations unre-

lated to biological function; single evolutionary events may be statistically amplified when

closely related species are included in the data. Evolutionary models taking into account the

underlying species tree, have been proposed [11–13] to prune such correlations.

2. Correlations may result from direct couplings, e.g., when two domains or proteins interact

physically, but they may be caused by intermediate partners: If A co-occurs with B, and B

with C, also A and C will show correlations. Analyses based on partial correlations [14] and

spectral analysis [15] have been proposed to disentangle direct from indirect correlations.

Multi-scale coevolution of interacting protein domains
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3. Simple presence/absence patterns cannot discriminate physical interaction from more gen-
eral relationships, like co-occurrence in a biological pathway or genomic co-localization.

Here, using full amino-acid sequences instead of presence/absence patterns may help to

refine the analysis, e.g. via the comparison of protein-specific phylogenetic trees [6].

This last point actually suggests to change resolution, and to consider coevolution at the res-

idue scale to refine the analysis of phylogenetic profiles. The last decade has seen important

progress in this respect [16, 17], related to methods like Direct Coupling Analysis (DCA) [18,

19], Gremlin [20] or PsiCov [21]. DCA-type methods were initially developed to capture the

correlated amino-acid usage of residues in physical contact. Concerning interacting proteins,

they have triggered a breakthrough in using sequence covariation for inter-protein residue-

residue contact prediction [16, 17], which in turn is used to guide computational quaternary

structure prediction [22–25].

Beyond structure prediction, DCA was suggested for the identification of interacting pro-

teins [9, 10, 26, 27]. Such analysis requires the construction of a large joint multiple-sequence

alignment (MSA) of two protein families, with each line of the MSA containing two potentially

interacting proteins. However, when proteins possess numerous paralogs inside the same

genome, the matching of potentially interacting paralog pairs becomes computationally hard

[8, 28]. In some cases, genomic co-localization (e.g. bacterial operons) helps to identify the

interacting paralogs [18, 23, 24]. Residue-residue coevolution itself has recently been proposed

as a means to match paralogs, and to identify specific interaction partners [26, 27]. While

results for individual protein pairs are promising, the computational cost is prohibitive for

genome-wide analysis, i.e., for systematically investigating all pairs of present protein families

for signatures of coevolution and thus interaction.

Our work addresses this issue, together with Points 2 and 3 given above. We propose a

common statistical-modeling framework, which is applied successively to the genomic and the

residue scale (presence/absence patterns and amino-acid sequences) of coevolution. It is

intended to extract information from data, which cannot be extracted at each individual scale.

Performing the genome-wide analysis on the coarse scale of presence/absence patterns, we can

identify promising protein-domain pairs, which are subsequently analyzed using DCA at the

fine residue scale. A direct comparison of our genome-wide results with those obtained using

a phylogeny-aware method [29] unveils some interesting connections between Points 1 and 2

above.

Results

Phyletic couplings improve the prediction of domain-domain relationships

beyond correlations

The analysis starts with a fairly standard construction of phylogenetic profiles [5], as outlined

in Fig 1. Multiple-sequence alignments are needed at a later stage to perform inter-protein

DCA. Since Pfam MSA have been extensively used in this respect, the analysis is performed on

the domain level [30], using Pfam [31] as the input database. Pfam is based on reference

genomes and we use the 1041 bacterial ones. The bacterial model organism Escherichia coli is

used as a reference, i.e. only the 2682 domain families existing inside the K12 strain of E. coli
are considered (the Supplement S1 Text Fig K shows that the results are robust when expanded

beyond this choice). Since our method is based on covariation of presence and absence of

domains in genomes, only variable domains existing in at least 5% and at most 95% of the con-

sidered genomes are considered, leaving 2041 domains. Note that the upper limit removes

domains, which are omnipresent in the bacteria–mostly related to central life processes like
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replication, transcription and translation. However, being omnipresent, these domains cannot

give any covariation signal within phylogenetic profiling. They could be analyzed using the

finer residue-scale of coevolution, which might bring complementary evidence for interactions

between these domains, but this analysis is out of scope in the current paper. The final input

data are given by a binary phylogenetic profile matrix (PPM) of M = 1041 rows (species) and

N = 2041 columns (domains), with entries 1 if a domain is present at least once in a genome,

and zero if it is absent, cf. Methods and Fig 1.

An important breakthrough in coevolutionary analysis at the residue level was the step

from a local correlation analysis to global maximum-entropy models [16, 32], which are able

to disentangle indirect (i.e. collective) effects in correlations, and to explain them by a network

of direct couplings. Here we show that the same idea can be adapted to phylogenetic profiling,

and leads to a strongly increased accuracy in predicting relationships between domains. The

method, which we call Phyletic Direct Coupling Analysis (PhyDCA), infers a statistical model P
(n1, . . .,nN) for the phylogenetic profile of an entire species, i.e. for a binary vector (n1, . . .,nN)

signaling the presence or absence of all N considered domains in the considered species, cf.

Methods for details. The PhyDCA model resembles a lattice-gas model in statistical physics,

describing N coupled particles that can be present or absent. The phyletic coupling Jij between

particles / domains i and j can be positive–i.e. the presence of one domain favors the presence

of the other. In this case we expect a positive relationship between the two domains, corre-

sponding to biological processes requiring both domains. The coupling Jij can also be nega-

tive–i.e. the presence of one domain favors the absence of the other. We would expect that

these domains have overlapping functionalities, and one of the two is sufficient to guarantee

Fig 1. Schematic representation of the inference of phyletic couplings. –The composition of bacterial genomes in terms of protein families is extracted

from the Pfam database. The presence and absence of each family is coded into the binary phylogenetic profile matrix (PPM); note that this matrix does not

account for the presence of multiple paralogs of a domain. The statistics of the PPM is reproduced by a global statistical model P(n1, . . .,nN) for a full genomic

phylogenetic profile, the model corresponds to a lattice gas model in statistical physics. The strongest positive couplings (favored domain-domain co-

occurrence) are expected to stand for positive relationships between domains, like domain-domain interactions or genomic co-localization. Negative

couplings (avoided co-occurrence) is expected to indicate alternative solutions for the same biological function, like in cases of domain families in a common

Pfam clan, or for convergent evolution.

https://doi.org/10.1371/journal.pcbi.1006891.g001

Multi-scale coevolution of interacting protein domains

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006891 October 21, 2019 4 / 21



this functionality in a species. Fig 2A shows a histogram of the couplings found for the phylo-

genetic coupling matrix. We observe a clear bulk of small coupling values concentrated around

zero, with a broad tail for larger positive values, and a less pronounced tail for negative values.

The performance of PhyDCA can be assessed by comparing the domain pairs of strongest

phyletic couplings to a carefully compiled list of 8,091 known domain-domain relations. As is

explained in Methods, we have included genomic, functional and structural relationships:

domains may coexist inside a single protein, they may be co-localized in an operon, they may

be in contact in an experimental crystallographic structure or an interaction might be known

according to other experimental techniques, or they may belong to enzymes catalyzing related

reactions.

The PhyDCA couplings Jij are ordered by size, and the fraction of positive relations in

between the highest-scoring domain-domain pairs is calculated (PPV = positive predictive

value). Fig 2B shows the results: we observe a strong enrichment in known positive relations in

between strongly phyletically coupled domain-domain pairs. This enrichment is much stron-

ger than for local correlation measures like Hamming distance, Pearson correlation or p-value

of Fisher’s exact test applied individually to two domains (i.e. two columns of the PPM): E.g.,

for the first 1000 predictions we observed a PPV of about 0.8 for the phyletic couplings, and

only 0.3–0.5 for the different correlation measures. Interestingly, the difference between

Fig 2. Phylogenetic couplings predict domain-domain relationships. –Panel A shows histograms of couplings Jij as inferred using pseudo-likelihood maximization

(PLM), cf. Methods, for all domain-domain pairs (blue) and for the subset of known positive domain-domain relations (brown). The histogram shows a dominant

central peak around zero (note the logarithmic scale of the counts) with a pronounced fat tail for positive couplings. In contrast to the central peak, this tail is strongly

dominated by the known positive domain-domain relations. A small tail for negative couplings is visible, too, but much less pronounced. Panel B shows the PPV

(positive predictive value), defined as the fraction of known domain-domain relations in between the strongest couplings or correlations. A random prediction would

correspond to a flat line close to zero; a perfect prediction would follow the dashed black line. Note that the curves corresponding to phylogenetic couplings (inference

vis PLM (pseudo-likelihood maximization) or MF (mean field), cf. Methods) are substantially higher than those using correlation measures. Panel C shows, in bins of

100 domain pairs ordered by their phyletic couplings, the number of pairs belonging to the different parts of the positive-relation list (note that the categories are not

exclusive, so the sum of different categories may exceed 100). We find enrichment of co-localized and interacting domain pairs, but not of related enzymes.

https://doi.org/10.1371/journal.pcbi.1006891.g002
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applied PhyDCA approximations based on mean-field or pseudo-likelihood maximization is

much smaller than expected from experience with contact-prediction in standard DCA. As is

shown in the Supplement S1 Text, Fig C, couplings of both approximations are highly corre-

lated (Pearson correlation 93% for all domain pairs, 97.5% for the known positives), resulting

rather in a minor relative reranking of the two predictions than in a different accuracy. Simi-

larly, the effect of applying the average-product correction (cf. Methods) has only a limited

effect. As is shown in Fig 2C, interacting and co-localized domain pairs are enriched in the

predictions of large positive couplings, whereas enzymes from related metabolic reactions are

not. Interestingly, pairs with intra-protein co-localization are most enriched in between the

strongest PhyDCA couplings (the comparable iPfam enrichment can be traced back to intra-

chain co-crystals, i.e., to the same signal), which is confirming their evident functional rela-

tionship as compared to, e.g., pairs in distinct proteins coded in a joint operon. However, even

inside multi-domain proteins the coupling density remains low, which results from both the

sparsity of strong couplings in general, and the fact that the same domain may exist in very dif-

ferent protein architectures, thereby reducing correlation signals related to a specific multi-

domain architecture.

From an overlay of the Jij-histograms for all domain pairs and those with known relations

in Fig 2A, we immediately see that the fat tail is strongly dominated by the known relations.

This domination stops as we leave the tail and enter the bulk of the histogram, as a result we

can determine a threshold of 0.3–0.5 for couplings to be significant. This threshold is coherent

with the sharp drop in PPV in Fig 2B after about the first 1000 predictions.

Databases of genome-wide protein-protein or domain-domain interactions are currently

incomplete. We therefore expect the real PPV to be even higher than the one measured in Fig

2: strongly coupled domain-domain pairs not belonging to our list of positives may actually be

considered as predictions for new, currently unknown relations. According to the observations

in Fig 2C, these relations might be direct physical interactions, but also genomic co-localiza-

tion (frequently related to joint biological function). Before exploring these possibilities in

more detail and on the finer scale of the residue-residue coevolution, we compare the PhyDCA

results to phylogeny-aware correlation analysis and investigate the negative tail of the Jij
distribution.

Comparison of phyletic couplings to phylogeny-aware analysis of

correlated presence/absence patterns

Phyletic couplings are, like simpler correlation measures, based on counting co-presence and

co-absence of proteins or domains. However, due to the uneven phylogenetic distribution of

species in our dataset, single evolutionary event may be amplified when appearing in an ances-

tor of several closely related species. More importantly in the context of this study, phylogeny

may introduce spurious correlations in the presence and absence of domains, which are not

related to biological function.

To remove this bias, several methods have been proposed, cf. [11, 13], which use evolution-

ary models to decide, if observed correlations can be explained by phylogeny alone (i.e. by

independent evolution on a phylogenetic tree), or remain significant even when such phyloge-

netic effects are removed. Since this idea is complementary to the one behind PhyDCA, it is

important to compare the outcome of both approaches.

To this end, we have used the CoPAP (coevolution of presence-absence patterns) server

[29]. It uses the same type of binary input matrix of our approach, and is able to efficiently

treat matrices of more than 2,000 domains across more than 1,000 species. As an output,

CoPAP provides p-values measuring the significance of correlated domain presence and
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absence, as compared to independently evolving domains on the same phylogenetic tree. The

group of maximum significance (log10p< −7.9) contains 3,611 domain pairs, out of which

1,251 (34.6%) are true positives in our list of known domain-domain relationships.

Since a further sorting of these pairs using CoPAP results is not possible (p-values are calcu-

lated using finite simulations), we compare them to the first 3,611 domain pairs extracted by

PhyDCA, and to the 3,611 domain pairs of highest Pearson correlation. The Venn diagram in

Fig 3 and the numbers given in Table 1 allow for a number of interesting observations:

• While CoPAP and PhyDCA have similar global PPV, with an advantage for CoPAP (34.6%)

over PhyDCA (31.2%), Pearson correlation performs substantially worse (PPV 19.7%).

• Very small fractions of the correlated pairs, which are discarded by PhyDCA or CoPAP, are

TP: PhyDCA discards 2,890 pairs of PPV 6%; CoPAP discards only 1,998 pairs, but with

even lower PPV (1.2%).

• 74% of the 721 correlated pairs, which are retained by PhyDCA, are TP. Note that almost all

of them (719/721) show also a significant CoPAP signal.

• Only 43% of the correlated pairs, which are retained by CoPAP, are TP. PhyDCA divides

them into two groups of comparable size but distinct PPV. For the 719 pairs retained also by

PhyDCA, the PPV rises to 74%. The other 894 pairs have weak phyletic couplings, so their

significant correlation has to be interpreted as dominated by indirect effects. Actually only

18% are TP.

• When going to lower Pearson correlations, both CoPAP and PhyDCA decrease their accu-

racy. However, their intersection shows 613 pairs with a high PPV of 63%.

Fig 3. Comparison of simple correlations, phyletic couplings and phylogeny-corrected correlations. –Panel A shows a Venn diagram for the 3,611 first

predictions of each of the three coevolution measures as extracted by Pearson correlation (red), PhyDCA (blue) and CoPAP (green). Numbers are the size of

the corresponding intersection, and the PPV indicating the fraction of true positives according to our list of positive domain-domain interactions. Panel B

compares the first 3,611 CoPAP predictions of highest possible significance, with the most significant 1,000 PhyDCA predictions. Most of them (855) are

found to be significant by CoPAP, and of very high PPV (81%). However, not all CoPAP pairs are strongly coupled, and thus PPV is reduced (21%).

https://doi.org/10.1371/journal.pcbi.1006891.g003
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• The 2,277 pairs only identified by PhyDCA have a low PPV of only 9%. This is coherent with

Fig 2B, which shows a sharp PPV drop in PhyDCA after the first ca. 1,000 phyletic couplings.

We have therefore compared these 1,000 domain pairs separately to CoPAP. A vast majority

of 855 pairs have the highest possible significance in CoPAP, this intersection has a PPV of

81%. The other 15% have lower CoPAP scores and lower PPV (52%). Interestingly, only 21%

of the 2,756 strongest CoPAP without strong coupling are TP, illustrating again the capacity

of PhyDCA to–at least partially–disentangle direct couplings from indirect correlations.

In principle, CoPAP and PhyDCA treat very different confounding factors of coevolution-

ary analysis–phylogenetic biases and indirect correlations. So, it might appear astonishing that

almost none of the correlated pairs, which are strongly coupled in PhyDCA, are actually dis-

carded by CoPAP. The reason might be given by the spectral properties of the covariance

matrices of the input data, and their relation to phylogeny and direct couplings. As shown in

[33], the phylogenetic bias is most evident in the largest eigenvalues of the data-covariance

matrix. These correspond mostly to extended eigenmodes, which in turn give rise to a dense

network of small couplings [15, 34]. On the contrary, the strongest pairwise couplings are

related to small eigenvalues with more localized eigenmodes, which give rise to strong, sparse

couplings. Phylogenetic biases and strong direct couplings are thus related to different tails of

the eigenvalue spectrum of the covariance matrix, the strongest PhyDCA couplings are thus

robust with respect to phylogenetic biases.

On the other hand, we expect non-phylogenetic but indirect correlations to exist, related to

the observation that PhyDCA separates the CoPAP output into strongly coupled pairs of high

PPV, and weakly coupled pairs of reduced PPV. To further illuminate these indirect effects, we

have introduced Fig H into the Supplement S1 Text, which shows a scatter of phyletic cou-

plings vs. Pearson correlations for the CoPAP output. We find a clear triangular shape of this

Table 1. Comparison of the predictions of Pearson correlation, PhyDCA and CoPAP. –We analyze the different combinations between the 3611 highest scoring pre-

dictions according to each of the three scores. In the first three columns, “YES” means that predictions are retained for the concerned score, “NO” means that predictions

are discarded by the score, and “–” indicates, that the score is not taken into account.

Pearson PhyDCA CoPAP Elements TP PPV

– – YES 3611 1251 0.346

– YES – 3611 1126 0.312

– YES YES 1332 915 0.687

– YES NO 2279 211 0.093

– NO YES 2279 346 0.152

YES – – 3611 713 0.197

YES – YES 1613 689 0.427

YES – NO 1998 24 0.002

YES YES – 721 531 0.736

YES YES YES 719 530 0.737

YES YES NO 2 1 0.500

YES NO – 2890 182 0.063

YES NO YES 894 159 0.178

YES NO NO 1996 23 0.012

NO – YES 1998 572 0.286

NO YES – 2890 595 0.206

NO YES YES 613 385 0.628

NO YES NO 2277 210 0.092

NO NO YES 1385 187 0.135

https://doi.org/10.1371/journal.pcbi.1006891.t001
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scatter plot: large couplings imply large correlations, but large correlations exist also between

pairs of small coupling. The coupling network is thus sparser than the correlation network.

Since the PhyDCA model reproduces all correlations, at least some of them must be induced

indirectly. We have also taken the network of the before-mentioned 1,000 strongest phyletic

couplings, and studied the correlations as a function of the distance along this network. As is

shown again in the Supplement S1 Text, Fig I, the strongest correlations appear between

directly coupled pairs, and the correlations decay with distance until they saturate at a low but

non-zero level. This observation is coherent with the idea, that the empirical correlations

found in the data have at least three contributions–direct correlations induced by direct cou-

plings (at distance 1), indirect couplings induced by coupling chains, and a ground level of cor-

relations, which possibly result from phylogenetic correlations between the species. Taking

alternatively the network induced by the 1,613 domain pairs of high Pearson correlation and

CoPAP score, we find a slower decay of correlations along the network, cf. Fig J in S1 Text. At

same distance, pairs on the phyletic coupling network are less correlated than those on the cor-

relation/CoPAP network, demonstrating that the coupling network more parsimoniously

explains the connectivity patterns present in the data.

Negative phyletic couplings appear between alternative solutions for the

same biological function, including cases of convergent evolution

A smaller tail of negative phyletic couplings can be observed in Fig 2A. A negative coupling

disfavors the joint presence of two domains in the same genome, i.e., if one of the negatively

coupled domains is present in a genome, the other is less likely to be simultaneously present.

Intuitively this suggests similar functionalities, one of the two domains is sufficient, the joint

presence unnecessary or even costly for a bacterium. Such pairs, called anti-correlogs in [14]

were used in [35] to identify analogous enzymes replacing missing homologs in biochemical

pathways.

When using E. coli as a reference genome, the number of such negative couplings is limited,

since only domain pairs co-occurring in E. coli are analyzed. To better understand the mean-

ing of negative couplings, we have therefore extended the original analysis to all 9,358 families

containing bacterial protein domains. While results restricted a posteriori to E. coli are very

robust (96% correlation, cf. Supplement S1 Text, Fig K), the extended analysis leads to a sub-

stantially higher number of negative couplings.

To explore these in some detail, we analyzed the 20 domain pairs with the strongest nega-

tive couplings, cf. Table 2 (an extended list is given in Table C in Supplement S1 Text). From

their detailed analysis it is evident that protein pairs can be classified into three distinct groups.

First, we find several cases of convergent evolution as evidenced by proteins with the same or

similar activities but distinct protein structures (rankings 1, 2, 9, 14, 15, 16). Second, we find

domain pairs of the same fold and, where known, of similar activity. For various reasons these

are not described by the same Pfam HMM (rankings 3, 4, 6, 7,8, 10,11, 17,19), but typically

belong to the same Pfam clan indicating distant homology. Lastly, there are several cases of rel-

atively unknown activity, and some domains have no known structure (rankings 5, 12, 13, 18,

20).

Cases of convergent evolution include PF00303 and PF02511, which describe two different

thymidylate synthases, the former a 5,10-methylenetetrahydrofolate, the latter a flavin depen-

dent enzyme [36]. Interestingly, PF00186, dihydrofolate reductase is also strongly negatively

coupled with PF02511 (but positively to PF00303), since the former is not needed to regenerate

5,10-methylenetetrahydrofolate when the flavin-dependent enzyme is used. Other cases of

convergent evolution are PF01220 and PF01487 that describe two classes of dehydroquinases
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with similar activity but significantly different primary and secondary structure [37]. PF00311

and PF02436 describe proteins in oxaloacetate biogenesis, the former from phosphoenolpyr-

uvate, the later from pyruvate and ATP. PF00245 and PF05787 describe two classes of bacterial

alkaline phosphatases, termed PhoA and PhoX with distinct protein folds [38]. PF02502 and

PF02436 distinguish two classes of ribose- or phosphoribo-isomerases with differing enzyme

folds.

Structurally similar proteins that are identified by different Pfam families are of less interest

and will not be separately described. The fact that they are distinct enough in sequence to be

covered by separate Pfam families suggests a level of divergent evolution, i.e. one or the other

domain has distinct features such us additional interaction partner, distinct activity regulation

etc.

Of special interest are domain pairs with unknown function. Ideally, if the function of one

Pfam family becomes available one can infer the function of the other family as well. In addi-

tion, the evolutionary importance of a given protein family and its activity is often judged by

its conservation across different phyla and organisms. This however neglects cases of unknown

convergent evolution. Among the highest negatively coupled pairs, we did not find any, where

the function of one has been clearly identified and the function of the other has not. However,

there are several instances, where a potential role has been loosely associated with one or the

other domain. For instance, PF01205 and PF09186 have been suggested to be involved in

countering translation inhibition under starvation conditions [39]. These domains are strongly

negatively coupled with PF02594, suggesting that the latter might also serve a role in counter-

ing translation inhibition. PF01169 and PF02659 are both putative transporters, the former for

calcium [40], the latter for manganese ions [41]. Their coupling suggests overlapping specifici-

ties or roles. PF02677 and PF08331 describe two entirely unstudied bacterial proteins. The

later appears associated with iron-sulfur cluster domains, suggesting a potential role in redox

Table 2. The 20 domain pairs of top negative phyletic couplings.

Pfam 1 Pfam 2 JIJ Domain 1 description Domain 2 description

1 PF00303 PF02511 -0,9978 Thymidylate synthase Thymidylate synthase complementing protein

2 PF01220 PF01487 -0,9277 Dehydroquinase class II Type I 3-dehydroquinase

3 PF02834 PF13563 -0,9075 LigT like Phosphoesterase 2’-5’ RNA ligase superfamily

4 PF00406 PF13207 -0,8258 Adenylate kinase AAA domain

5 PF01205 PF02594 -0,7077 Uncharacterized protein family UPF0029 Uncharacterised ACR, YggU family COG1872

6 PF13623 PF13624 -0,7051 SurA N-terminal domain SurA N-terminal domain

7 PF04816 PF12847 -0,6316 tRNA (adenine(22)-N(1))-methyltransferase Methyltransferase domain

8 PF00636 PF14622 -0,6281 Ribonuclease III domain Ribonuclease-III-like

9 PF00186 PF02511 -0,6281 Dihydrofolate reductase Thymidylate synthase complementing protein

10 PF01227 PF02649 -0,6118 GTP cyclohydrolase I Type I GTP cyclohydrolase folE2

11 PF06745 PF13481 -0,5844 KaiC AAA domain

12 PF02677 PF08331 -0,581 Uncharacterized BCR, COG1636 Domain of unknown function (DUF1730)

13 PF02696 PF03190 -0,5651 Uncharacterized ACR, YdiU/UPF0061 family Protein of unknown function, DUF255

14 PF00311 PF02436 -0,5432 Phosphoenolpyruvate carboxylase Conserved carboxylase domain

15 PF02502 PF06026 -0,5371 Ribose/Galactose Isomerase Ribose 5-phosphate isomerase A (phosphoriboisomerase A)

16 PF00245 PF05787 -0,5333 Alkaline phosphatase Bacterial protein of unknown function (DUF839)

17 PF00075 PF13456 -0,5317 RNase H Reverse transcriptase-like

18 PF01169 PF02659 -0,5294 Uncharacterized protein family UPF0016 Putative manganese efflux pump

19 PF01321 PF05195 -0,5165 Creatinase/Prolidase N-terminal domain Aminopeptidase P, N-terminal domain

20 PF02594 PF09186 -0,5139 Uncharacterised ACR, YggU family COG1872 Domain of unknown function (DUF1949)

https://doi.org/10.1371/journal.pcbi.1006891.t002
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regulation. Lastly, we find a negative coupling between domains PF02696 and PF03190. Both

proteins are entirely unstudied in bacteria, but they are also common in Eukaryotes where the

latter is a proposed redox protein that has been implicated in fertility regulation in mammals

[42]. It would be interesting to unveil their function in the bacteria.

It might be interesting to study the context, in which these negative couplings appear in the

PhyDCA network. To this end we have taken all couplings of absolute value above 0.3, result-

ing in a sparse network of 82 negative, and 3173 positive links. We have now studied the trian-

gles in the resulting network, which have at least one negative coupling. From the fact, that

positive links are close to 40times more frequent than negative links, we would expect the

other two links of the triangle to be typically positive. On the contrary, we do find only trian-

gles with exactly two negative and one positive coupling; they contain 29 out of the 82 negative

phyletic couplings. No so-called “frustrated” triangles are found, where both supplementary

links in the triangle are positive. This indicates that more likely entire processes are realized by

alternative solutions, than single domains are exchanged against each other within an other-

wise positively correlated solution.

A residue-scale DCA analysis of phylogenetically coupled domain pairs

unveils directly coevolving pairs

As seen in Fig 2C, a large positive phyletic coupling is a strong signal for a positive relationship

between two domains, but not necessarily for a direct physical interaction of the two domains

within a protein complex. Furthermore, co-localization of two domains either inside the same

protein (i.e. an evolutionary conserved protein architecture) or inside the same operon may

lead to strong phyletic couplings.

Relying only on the coarse scale of coupled presence and absence in genomes, does not

reveal more detailed information. Since the number of domain-domain pairs under question is

limited as compared to all domain pairs existing in E. coli, we can afford computationally more

expensive approaches, which study coevolution of domain pairs at the individual residue scale. To

this effect, we use the procedure suggested in Gueudré et al. [27]: Two Pfam MSA for the two

domain families are matched using a variant of DCA such that (a) only sequences appearing

inside the same species are matched and (b) the inter-domain covariation as measurable by DCA

is maximized. In [27] it was shown that this idea allows to identify protein-protein interactions via

a large coevolutionary score between the two domains at a sufficiently large joint MSA. DCA

scores above 0.2 at an effective sequence-pair number of at least 200 (sequences below 80%

sequence identity, cf. Supplement) can be considered as a strong indicator for a potential interac-

tion [10, 27]. On the contrary, according to [43], a low DCA score is not necessarily a sign for the

absence of a physical interaction. A low score might also originate from a relatively small or struc-

turally not well-conserved interface, both resulting in a weak coevolutionary signal.

We have applied the progressive paralog matching procedure of [27] to the 500 most

strongly coupled domain pairs, which are not in our previously constructed test set of positive

domain-domain relations, i.e. to the first 500 predictions at the scale of phyletic couplings. The

results are presented in Fig 4A: 360 domain pairs have an Meff above 200, and DCA results can

thus be considered reliable. Of those 45 pairs have an inter-domain DCA score above 0.2 (24

out of the first 200 PhyDCA predictions). This number is significantly larger than for ran-

domly selected protein pairs, cf. Fig 4B: only 10 pairs have a score above 0.2 and Meff above

200, mostly related to short amino-acid sequences. This shows that the preselection by high

phylogenetic couplings leads to a subsequent enrichment of high DCA scores also at the resi-

due scale. For comparison, we have also applied the matching procedure to the 200 domain-

domain pairs, which are known to interact by iPfam [44], and which have high phylogenetic
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couplings, cf. Fig 4C. 29 have a significant DCA score at large enough sequence number. Inter-

estingly, the signal is only marginally stronger than for the newly predicted relations, which

are discussed in more detail below. In Fig G the Supplement S1 Text, we analyze also the 200

phyletically most positively coupled domain-domain pairs, which co-occur inside the same

protein in E. coli. In their case, the DCA score is found to be substantially larger. This is to be

expected, since due to the intra-protein co-localization no paralog-matching has to be applied,

and therefore the joint MSA of the two domain families are expected to be of higher quality.

However, also in this case, some pairs show a low DCA score despite a large sequence number.

This is to be expected, since not all domain-domain pairs inside a multi-domain protein have

physical interactions, and also small and structurally non-conserved interfaces may lack clear

DCA signals, cf. [43].

Many predictions of domain-domain interactions resulting from PhyDCA

and residue-level DCA are biologically interpretable

Domain pairs with both strong PhyDCA and residue-level DCA signals are our strongest can-

didates for predicted domain-domain interactions. Since they are not co-localized in the same

protein, they also provide predictions for new protein-protein interactions. We analyze here in

detail the 24 pairs with a DCA score larger than 0.2, which result from the first 200 PhyDCA

predictions.

Among these 24 pairs we find several examples of known interactions that have not yet

been structurally resolved. These include K+ transporter subunits KdpC (PF02669) and KdpA

(PF03814) [45], Sigma54 activator (PF00158) and Sigma54 activator interacting domain

(PF00309) [46] and exonuclease VII subunits domains PF02609, PF2601 and PF13742 [47].

Fig 4. DCA identifies strong residue-scale coevolution between phyletically coupled domain pairs. –Panel A shows the effective sequence number

(defined as the sequence number at 80% maximum sequence identity, cf. Supplement for the precise definition) and the DCA scores for the 500

domain pairs of strongest phyletic coupling not belonging to the positive-relation set (i.e. the 500 most significant predictions). The interesting region

is the red one, where sequence numbers are sufficient to provide reliable DCA results, and DCA scores are beyond 0.2 as established in [10]. Panel B

shows, as a comparison, the results for 500 randomly selected domain pairs. Only very few pairs show substantial scores, most of them related to very

short peptides. Panel C shows a positive control, the 200 pairs of highest phylogenetic couplings belonging to iPfam are analyzed analogously. The

fraction and the amplitude of high DCA scores is slightly increased with respect to Panel A, but the qualitative behavior is similar.

https://doi.org/10.1371/journal.pcbi.1006891.g004
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For several additional positively coupled pairs an interaction seems functionally very likely

but to our knowledge no interaction studies are available. These are all proteins involved in

pilus formation or maturation. Domain PF06750 is a putative methyl transferase domain in

the prepilin peptidase PppA, and proposed to interact with methylation motif domain

PF07963, found in numerous pilin proteins and with PF05157, a type II secretion system pro-

tein [48, 49]. PF05157 is also predicted to interact with domain PF05137 found in the PilN fim-

brial assembly protein required for mating in liquid culture [50].

Of interest, there are predicted interactions for several members of biosynthetic pathways

catalyzing either consecutive or closely following reactions. These include domains PF02542

and PF13288 of isoprenoid biosynthesis enzymes Dxr and IspF, domains PF00885 and

PF00926 of riboflavin biosynthesis enzymes RisB and RibB and domains PF01227 and

PF01288 of tetrahydrofolate biosynthesis enzymes Gch1 and HppK. A more complex connec-

tion is predicted between multiple domains of molybdenum cofactor biosynthesis enzyme

MoaC (PF01967), MoeA (PF03453 and PF03454) and MoaA (PF06463). Similarly, scores sug-

gest a protein-protein interaction between domains of hydrogenase maturation enzymes

HypF (PF07503) with HybG (PF01455) and HycI (PF01750).

Perhaps most intriguing are the observation of strongly coupled co-occurrence and poten-

tial protein-protein interactions of two proteins pairs. Ada (PF02805) and AlkA (PF06029) are

two enzymes involved in DNA repair in response to alkylation damage [51, 52]. One of the

proteins serves as demethylase of guanosyl residues whereas the other excises alkylated nucleo-

tides. These seemingly complementary functions suggest that an interaction is plausible. The

other pair is YoeB (PF06769) with HicA (PF07927). These two proteins constitute two toxins

of distinct toxin-antitoxin systems. Both proteins inhibit translation by distinct and comple-

mentary mechanisms and an interaction seems plausible. YoeB blocks the ribosome A site

leading to mRNA cleavage [53]. HicA interacts with mRNA directly and thus acts independent

of the translation apparatus [54].

Additional and perhaps plausible interactions are predicted between domains PF05930 and

PF13356 of prophage protein AlpA and several phage integrase proteins as well as between

domain PF13518 with PF13817, the former a HTH domain commonly associated with trans-

posase domains and the latter a transposase domain.

Insufficient information on the function of two domain pairs and their associated proteins

does not allow us to draw any conclusions on the plausibility of interaction. These are for

domains PF02021 and PF13335 of proteins YraN and YifB and domains PF01906 with

PF02796, the former a metal binding domain and the latter a domain found in site specific

recombinases.

Lastly, we find three proposed interactions between domains found in ribosomal proteins

RL36, RL34 and RL32 (PF00444, PF00468, PF01783) and also a protein of unknown function

YidD (PF01809). We consider these to be likely false positive predictions since we previously

observed spurious results for members of very large macromolecular complexes such as the

ribosome [10]. At least the interaction between YidD and RL36 seems plausible, as the former

has been suggested to play a role as membrane protein insertion factor [55].

In summary, we are able to recapitulate several known or plausible but structurally unre-

solved interactions and find several examples of interaction that should be of interest for future

experimental studies.

Discussion

In this work, we propose a coevolutionary analysis connecting signals at the phylogenetic level

(correlated presence of domain pairs across genomes) with the residue level (correlated
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occurrence of amino acids between proteins). At the phylogenetic level, we introduce the con-

cept of phyletic couplings: by using a global statistical model, we are able to disentangle direct

and indirect correlations in the presence and absence of protein domains across more than

1000 fully sequenced representative bacterial species. Couplings substantially increase the

capacity to find relations between domains beyond correlations; these relations can be physical

interactions, but also genomic co-localization (and thus likely functional relations). Standard

correlation measures used in phylogenetic profiling only reach 30–50% of true positives

between the first 1000 predictions. In contrast the positive predictive value of phylogenetic

couplings reaches about 80%. The results are very robust: when applying the same methodol-

ogy to all 9358 Pfam domains appearing in the bacteria, and selecting only later the couplings

between domains present in E. coli, couplings have 96% correlation with the couplings found

by the procedure described before.

The high accuracy of phyletic couplings in predicting domain-domain relations, along with

the robustness of these couplings when extensively changing the data set, allows us to hypothe-

size that large couplings not corresponding to known relations predict novel, unknown rela-

tions. A list of the 100 first predictions is provided in Tables A and B in Supplement S1 Text.

As mentioned, a large phyletic coupling does not automatically imply a direct physical

interaction. Two proteins may have a strong phyletic coupling because they belong to the same

multi-protein complex, without touching each other. They may have a strong phyletic cou-

pling, because they act within the same biological process or pathway, again without any direct

interaction. To refine the results and predict physical interactions, we have added a coevolu-

tionary analysis on the scale of residue-residue covariation, as provided by DCA, in the version

with paralog matching as recently proposed in [27]. We find that 72% of the 500 phylogeneti-

cally most coupled pairs correspond to large enough alignments to run DCA, and 12.5% of

these have significant DCA scores.

These domain pairs are our strongest candidates for predicted domain-domain interac-

tions. Since they are not co-localized in the same protein, they also provide predictions for

new protein-protein interactions. In a detailed discussion, we have shown that most of the 24

pairs with a DCA score larger than 0.2, which result from the first 200 PhyDCA predictions

have a sensible biological interpretation and, in principle, could be tested experimentally.

Similarly, negative phylogenetic couplings appear to be biologically reasonable. They disfa-

vor the joint presence of two domains within the same genome. In our analysis of the pairs of

the strongest negative couplings, presented above in Results, we actually find many pairs hav-

ing the same functionality, including documented pairs of convergent evolution. Some pairs

actually are of unknown function, and our method might help to transfer functional annota-

tions from one domain to the other.

An important extension would be the application of our approach beyond the bacteria. Bac-

teria, due to their compact genomes, are overrepresented in genomic databases, including the

Pfam database, which we used for our analysis. To test the applicability to higher organisms,

we have repeated the same procedure, concentrating on eukaryotic genomes and taking

humans as the reference species. Data get much less abundant; the phylogenetic profile matrix

now contains 5343 domains as compared to only 481 eukaryotic species. Still, phyletic cou-

plings, when compared to a positive list extracted from domain architectures of human pro-

teins (co-localization in one protein), from iPfam [44] and human entries in IntAct [56], show

a similar performance as the bacterial case, cf. Fig 5A: 75% of the first 1000 couplings corre-

spond to known domain-domain relations. Entries corresponding to protein-protein interac-

tions (iPfam, IntAct) are again significantly enriched, even if to a lesser extent than in the

bacterial case. The most important difference emerges, however, when using paralog matching

and DCA on the 200 most coupled predictions (i.e. pairs with strong phylogenetic coupling
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but not belonging to the positive list), cf. Fig 5B: Only 2–4 have sequence numbers that allow

for reliable DCA results. More eukaryotic genomes are urgently needed to carry out our full

procedure also in higher species.

To conclude, our work illustrates the potential of combining rapidly growing genomic data-

bases and statistical modeling: the increasing number of fully sequenced genomes allows for

extracting rich samples for the variability in protein content and protein sequences across hun-

dreds and thousands of species; their statistical analysis helps us to detect multiple scales of

coevolution between interacting or functionally related proteins.

The genomic scale explores the correlated presence or absence of proteins (in the sense of

homologous protein families) across species. This correlation has been used before within phy-

logenetic profiling to detect functional relations or direct interactions between proteins.

Within our work, we propose to infer direct phyletic couplings via global statistical models,

and prove that this concept strongly improves our capacity to detect protein relations over

local correlation measures.

However, phylogenetic couplings cannot distinguish between functional relations or direct

interactions between proteins. This problem can–at least partially–be resolved at the residue
scale of inter-protein coevolution. Interacting proteins show a correlated usage of amino acids

across their interface, and again global statistical modeling approaches like DCA have been

used to discriminate between interacting and non-interacting protein pairs.

Since the computational cost of the residue-scale analysis is high, it is possible to analyze all

pairings between 10–50 proteins, but not all pairs between thousands of proteins forming a

Fig 5. Performance of our multi-scale coevolutionary analysis for human protein domains. –Panel A shows the positive predictive value of the phyletic couplings

for predicting positive domain-domain relationships (including protein architecture, iPfam and human IntAct entries). While there is a clear overrepresentation of

intra-protein localization in between the highest-scoring domain pairs, also physical interactions as captured by iPfam and IntAct are enriched in particular in the first

ca. 103 phyletic couplings. The overall performance is coherent with the one found in the bacteria. Panel B shows the paralog-matching and DCA results for the 200

most coupled domain pairs, which are not in the positive-relation dataset. We observe that currently the joint MSA are too small (Meff< 200) to allow for a reliable

application of DCA to detect inter-protein residue-scale coevolution.

https://doi.org/10.1371/journal.pcbi.1006891.g005
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species’ proteome. It is the combination of both scales, which allows us to first explore the

genomic scale and then refine promising results at the residue scale. Doing so, we have pro-

vided a number of biologically sensible predictions for currently unknown protein-protein

interactions. We provide a list of these predictions, which in turn may be tested directly.

Last but not least, we want to mention that the analysis of both scales of coevolution is done

independently, i.e., in a modular way, even if using a common mathematical-statistical frame-

work. In principle it is therefore possible to improve each single component on its own. We

might, e.g., come up with a phylogenetically better-founded version of PhyDCA (i.e. combin-

ing the spirit of CoPAP and PhyDCA), to generate better candidates for novel domain-domain

interactions. Similarly, improvement in paralog matching and DCA-based interaction predic-

tion might lead to a more sensitive treatment of these candidates.

Methods

Phylogenetic profiles

Data are extracted from the Pfam 30.0 database [31]. For each of the 1,041 bacterial genomes

present in Pfam, we extract all appearing protein-domain families, accounting to a total of

9,358 Pfam families. A restriction to Escherichia coli as reference genome (i.e. counting only

domains contained in E. coli) reduces this to 2682 domain families. Since we are interested in

the correlated presence / absence of domains across species, we remove all domain families

with less than 5% or more than 95%, keeping only domains with at least 53 and at most 988

appearances. This removes in particular omnipresent domains related, e.g., to replication,

transcription and translation. The final phylogenetic profile matrix (PPM) is a binary matrix

containing M = 1,041 bacteria and N = 2,041 domains. Entries are one if a domain is present

in a species (at least once), and zero if it is absent. Note that a zero entry typically indicates a

true absence of the domain in a genome, since the profile matrix is entirely built on fully

sequenced genomes.

In standard phylogenetic profiling [5], correlations between domains are evaluated via the

Hamming distance, Pearson correlation or p-values of Fisher’s exact test, cf. the Supplement S1

Text for the definitions in the context of our work.

Phyletic couplings

In analogy to the direct-coupling analysis on the level of amino-acid sequences, we model the

phylogenetic profiles via the maximum-entropy principle by a global statistical model

P n1; . . . ; nNð Þ ¼
1

Z
exp
�
X

i<j

Jijninj þ
X

i

hini

�

with (n1, . . .,nN) being a binary vector characterizing the presence (ni = 1) or absence (ni = 0)

of domain i in a species, and Z is a normalization constant also known as partition function in

statistical physics. The phyletic couplings Jij and biases hi are to be determined such that the

model P reproduces the one- and two-column statistics of the PPM (ni
a)i = 1,. . .,N; a = 1,. . .,M:
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with fi being the fraction of genomes in the PPM carrying domain i, and fij the fraction of
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genomes containing both domains i and j simultaneously. While the exact determination of

the marginal distributions of P requires exponential-time computations, we apply the mean-

field (MF) and pseudo-likelihood maximization (PLM) approximations successfully used in

the context of DCA [19, 57]; cf. the Supplement S1 Text for technical details. Due to the high

dimensionality of the problems (N = 2041−9358), more precise methods based on Boltzmann

machine learning, cf. [32], become computationally prohibitive. Strong positive couplings

favor the joint presence or joint absence of two domains, signaling therefore a positive associa-

tion between the two (genomic colocalization, functional relation, domain-domain interac-

tion). Strong negative couplings favor the appearance of only one out of the two domains,

signaling domains of similar function (e.g. convergent evolution).Before analyzing the phyletic

couplings, we apply the so-called Average Product Correction (APC) [58], cf. Supplement S1

Text. APC is widely used to suppress spurious couplings resulting from the heterogeneous

conservation statistics domain families across genomes (cf. [59]) as compared to functional

couplings. In the case of PhyDCA, it has a limited effect, as is shown in Fig A of Supplement S1

Text.

Direct coupling analysis of inter-protein residue coevolution

To assess the coevolution on the finer scale of residue-residue coevolution, we have applied

exactly the progressive matching and analysis procedure recently published by part of us in

[27], details about the procedure are given in the Supplement S1 Text. It starts with two domain

alignments, containing only bacterial protein sequences. It matches sequences between the

domain families, such that (a) only sequences from the same species are matched and (b) the

total inter-family covariation signal is maximized. Results are considered positive if (i) the

effective number of matched sequences (at 80% seq ID) exceeds 200 and (ii) the covariation

score exceeds 0.2. It has been established in [10, 27] that larger scores are rarely obtained by

unrelated protein families. Note that a smaller score may be related to a functional relationship

rather than a physical protein-protein interaction, or also to a small or non-conserved interac-

tion interface [43].

Known domain-domain relationships

To assess the accuracy of our predictions, we have compiled a number of known relationships

(provided in Supplement S1 Text). They come from different databases, the same domain-

domain pair may appear multiple times, but it is counted only once in the final list of positives:

1. Intra-protein localization: From the Pfam database [31], we have extracted a list of domain

pairs, which co-occur inside single proteins in E. coli. Out of 3,116 proteins, 952 contained

multiple domains, giving rise to 799 distinct domain-domain relations.

2. Intra-operon localization: Proteins, which are co-localized inside operons, frequently share

at least part of their biological function. Using a list of operons from E. coli [60], we com-

piled a list of 4,087 colocalized domain pairs.

3. Protein-protein interaction: The IntAct database [56] contains 5,318 pairs of experimentally

found protein-protein interactions. At the domain level, we pair all domains in one protein

with all domains in the second protein (adding possibly unrelated domain pairs to those

interacting), obtaining 3,070 domain pairs.

4. Domain-domain contacts in 3D structures: The iPfam database [44] contains domain-

domain interactions extracted from structural domain-domain contacts in experimentally

determined complex structures in the PDB. We included intra- and inter-chain contacts,
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i.e. domain-domain contacts inside a protein or between two proteins. Note that this list

does not refer to E. coli as reference genome. In total, this accounts to 545 know

relationships.

5. Metabolic relationships between enzymes: Using the reconstruction iJR904 of E. coli’s meta-

bolic network [61] and filtering out “currency” metabolites involved in more than 50 reac-

tions (such as water, ATP etc.), we considered three relationships:

a. common substrate– pairs of enzymes catalyzing reactions with at least one common

substrate;

b. common product–pairs of enzymes catalyzing reactions with at least one common

product;

c. reaction chains–pairs of enzymes catalyzing subsequent reactions, i.e., one product of

one reaction is substrate of the second.

This lead to a total of 677 known relationships.

The total list contains 8,091 domain-domain pairs, as compared to the 2,081,820 possible

pairs, which can be formed out of the 2,041 domains in our PPM.

Supporting information

S1 Text. Supplementary information. This text contains technical details about the data, the

computational analysis tools, and supporting results and figures.

(PDF)
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4
F I LT E R D C A

While in the previous chapter we have investigated the PPI network
organization at the genome scale, here we shift our focus on the
problem of predicting inter-protein residue-residue contacts.

The extension of DCA to inter-protein contact prediction is in principle
straightforward (cf. Section 2.4.2). However, only moderate success [24,
30, 75, 76] has been achieved by DCA in this context. This is mainly
because residues that make contacts across protein interfaces usually
display a weak coevolutionary signal which cannot be easily detected
by a global statistical model [57].

In the light of the astonishing success of Convolutional Neural
Networks (CNNs) for intra-protein contact prediction (cf. Section 2.4.1
and Section 4.1), it is natural to ask if structure-based supervision
can be used to improve inter-protein contact prediction. This is a
challenging task since CNNs require to be trained on a large number
of PDB structures which are not available for protein complexes [77].
Furthermore, CNNs rely on a large number of parameters and layers,
making it difficult to comprehend what they are actually learning.

In this chapter, we introduce FilterDCA, a simple and interpretable
supervised machine learning method, which can achieve results com-
parable to much more complex, data-hungry and hardly interpretable
CNNs. Even if not out-performing these methods in applications, we
think that interpretability is important to understand how the contact
information is hidden in sequence data.

FilterDCA is based on the fact that the distribution of residue-residue
contacts found in the proximity of other contacts shows characteristic
patterns due to secondary structure, cf. Figure 4.2 and Section 4.2.3. In-
spired by this consideration, we develop and benchmark a supervised
classifier which allows incorporating patterns of secondary structures
with DCA predictions.

The chapter is organized as follow. Our method was partially in-
spired by CNNs, therefore in Section 4.1 we explain the generic con-
cepts behind them. In Section 4.2.1 we introduce the dataset we have
used to develop and benchmark FilterDCA. In Sections 4.2.3 and 4.2.4,
we explain how to compute typical patterns of contacts, and how to
integrate them with DCA predictions. The performances of our predic-
tor are presented in Section 4.3. Last, Section 4.4 contains discussion
and outlook for future work.
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4.1 introduction on cnn

As shown in Figure 4.1, the advent of coevolutionary methods - DCA

or similar - allowed to significantly improve the prediction of residue-
residue contacts. These methods are pure sequence-based, unsuper-
vised method. This means that they take an MSA as input and predict
residue-residue contacts by detecting coevolving residues. They never
use the PDBs of experimentally solved protein in the inference proce-
dure.

However, as in many other research fields, higher performance for
the intra-protein contact prediction have been achieved with Deep
Learning (DL) methods trained on proteins with experimentally solved
structures. In particular, Convolutional Neural Networks (CNNs) [78],
brought to impressive advancements in CASP12

1(cf. Figure 4.1). The
last CASP13 even made headlines when it was won by AlphaFold,
created by the industrial laboratory DeepMind [79].. Their approach
led to what CASP organisers have called “unprecedented progress
in the ability of computational methods to predict protein structure,”
but it is still built on two ideas developed in the academic community
during the preceding decade: (i) the use of coevolutionary analysis,
and (ii) structure-based supervision via CNNs [79, 80].

CNNs have been initially developed for object recognition tasks
[82], and later found applications in other domains, such as object
tracking, pose estimation, text detection and recognition [82]. They
broke into protein structure prediction by treating contact prediction
as pixel-wise classification problems. Indeed, if we consider a protein
contact map as an image, then protein contact prediction is similar to
pixel-level image labeling with classes “contact” or “not-contact”.

How does deep-learning improve the accuracy of contact predic-
tion? A comprehensive explanation is still lacking, due to the complex
architecture of CNN, and to the huge number of interdependent param-
eters. However, it is clear that protein contact maps are not random
matrices: distribution of contacts follows characteristic patterns due
to secondary structure. Residue–residue contacts are generally not
isolated and they display peculiar clusters (cf. Figure 4.2). In [83] and
later [53], it was suggested that CNNs can automatically learn the most
relevant patterns from the contact maps in the training set and later
use them for constraining new predictions. If coevolutionary methods
are capable of discovering some elements of the clusters, then CNNs
increase the coverage and coherence of predicted contacts within these
clusters [53], thus boosting the prediction accuracy.

1 CASP (Critical Assessment of protein Structure Prediction) is a competition for protein
structure prediction based solely on a protein’s amino acid sequence. Participants are
invited to submit models for a set of proteins for which the experimental structures
have been solved, but they are not yet public.
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Figure 4.1: On the top: Average PPV on L/5 (with L being the length of
the protein), normalized on 0-100 scale of long-range contacts in
CASP10 (red), CASP11 (green), and CASP12 (blue) sorted by rank.
One group (MetaPSICOV [81], based on coevolutionary methods)
showed a significantly better average precision than all the others
in CASP 11 compared to CASP10. In CASP12, 26 groups ( the
majority of which using coevolutionary analysis and deep learn-
ing techniques) showed an improved average precision compared
to the best performing group of CASP11. Source: [52]. On the
bottom: the architecture of the deep learning method RaptorX [78],
winner of CASP 12. It employs dozens of hidden layers. The input
features include protein sequence profile predicted 3-state sec-
ondary structure and 3-state solvent accessibility, coevolutionary
information, mutual information and pairwise potentials. In the
training set there are a total of 6767 protein structures.
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Figure 4.2: On the left: the contact map for the protein TT1751 from
T.thermophilus Hb8 (PDB code 1J3M). The contact map is a two-
dimensional binary matrix representing the distance between all
possible amino acid residue pairs. For two residues, i and j the
entry (i, j) is 1 if the two residues i and j are in contact - the min-
imum atomic distances is < 8Å - and 0 otherwise. All contacts
between two α-helix are displayed in blue, while the red points
are contacts between extended β-strand. Characteristic patterns
of contacts emerge due to secondary structure elements. On the
right: The PDB 1J3M, with secondary structure elements depicted
with different colors; red for β-strand, light blue for α-helix and
purple for all residues that do not have easily observable regular
patterns in their structure, referred to as “loops”.
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4.1.1 Deep learning for inter-protein residue-residue contacts

DL methods attained unprecedented accuracy levels in 3D structure
prediction of individual proteins. However, the learning procedure
is highly demanding on the number of PDB structures to learn from.
This limits the generalization of those methods to the assembly of
complexes of interacting proteins. Solving the 3D structure of a protein
complex by experimental techniques remains indeed very challenging
[77]. The resulting scarcity of co-crystallized structures poses an es-
sential problem to deep learning approaches and explains why much
fewer methods are dedicated to inter-protein contact prediction.

A possible solution, adopted by RaptorX Complex [77], is to do
“transfer-learning”, meaning to train a CNN with intra-protein contacts
and then apply it to inter-protein contact prediction .

4.2 filter dca : methods

Inspired by this discussion on CNNs, we aim at gaining understanding
on the properties of the typical contact patterns of inter-protein con-
tacts, and to employ the new insights to improve the DCA predictions.
To develop and benchmark our approach, we decided to focus on
interactions between domains in single multi-domain proteins. Pro-
tein domains are autonomous folding units, thereby domain-domain
interaction can be thought as a proxy for protein-protein interaction.

4.2.1 Dataset

A database of 3D interacting domains, called 3did, was realized by
Stein and collaborators [84]. They selected all proteins with a high-
resolution 3D structure which contains multiple PFAM domains. Then
they computed the number of residue-residue contacts between pairs
of contacting domains either within the same chain (intra-chain) or
between two different chains (inter-chain). We use the Aug 5, 2017

version which is based on Pfam v.30.0 and contains a total of 11.200

structurally resolved domain-domain interactions. To get the joint
MSA we exclude homodimeric cases, and match sequences of domains
co-localized on the same protein chain, i.e. we consider exclusively
intra-protein inter-domain interactions, see Figure 4.3. Finally, we map
each residue in the MSA to the corresponding positions in the PDB.
The mapping is done by aligning the PDB sequences to the profile
HMMs of the PFAM domain through hmmalign introduced in Section
1.3.1, and allows to associate residue-residue distances to any pair of
alignment columns.

In case the same residue-residue pair is associated with multiple
PDBs, we assign the minimum distance between all possible copies.
This assumes that any predicted contact, which is present in at least
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Figure 4.3: Construction of the domain-domain interaction datasets. We extract a
list of the interacting domains from 3did [84] and construct a joint
MSA by matching domains co-localized on the same protein chain
(upper left: domains inside the same protein chain are symbolized
by identical color, upper right: the joint MSA). We then map each
residue in the MSA to the corresponding positions in the PDB to
calculate the 3D distance between pairs of residues (minimum
distance between heavy atoms). In case multiple PDBs can be
associated with the same residue-residue pairs, we keep only the
minimum distance over all PDBs.

one PDB structure, is a true positive prediction. Often only a part of the
MSA can be mapped on the corresponding PDBs. We keep only MSAs
with domain mapping coverage greater than or equal to 40. We further
clean our dataset by requiring at least 10 and at most 2000 residue-
residue interactions and removing few cases of coiled-coil structures
which, due to repeated motifs, can lead to spurios coevolutionary
signal. At the end, we keep a total 2548 joint MSA of pairs of contacting
domains, on which we run PLM [45, 46].

4.2.2 DCA performance on data

In Section 2.3 we introduced Meff, which is defined as the effective
number of independent sequences. It is considered to be an indicator
of the accuracy of the DCA predictions - the higher the better (Figure
4.4). DCA predictions are comparable only for MSA having similar
Meff. Thereby, we decide to split the 2598 MSA of contacting domains
in 3 datasets according to Meff, see Table 4.1, and to analyze them
independently.

First, we study the performance of PLM on the three datasets by
computing the mean Positive Predictive Value (PPV), Figure 4.4. As
expected, a larger Meff leads to better predictions. The mean PPV of
cases with Meff < 50 is close to that of a random predictor, meaning
that almost no coevolutionary signal is contained in this dataset. This
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Meff > 200 50 < Meff ≤ 200 1 < Meff ≤ 50

Num joint MSA 842 758 998

Num contacts 274587 (1,7%) 193936 (1,3%) 204752 (1,1%)

Table 4.1: We split the 2598 MSAs of interacting domains in 3 datasets accord-
ing to the effective number of independent sequences, Meff. They
contain approximately the same number of MSAs (first row) and
inter-domain contacts (second row). In brackets, the percentage of
inter-domain contacts is given with respect to the total number of
inter-domain residue pairs.

becomes evident also from the distributions of the DCA scores for
contacts and non-contacts, cf. Figure 4.5. For cases with Meff > 50 the
two distributions are clearly different and dominated by contacting
pairs for DCA scores larger than 0.3. For MSAs with Meff < 50, the two
distributions completely overlap.

Figure 4.4: Mean PPV using only DCA score for the three datasets. For MSA with
Meff < 50, the mean PPV is close to the PPV of a random predictor,
meaning almost no coevolutionary signal is contained.

4.2.3 Secondary structure and contact patterns

Similarly to the intra-protein case, detailed in Section 4.1, the neigh-
borhood around an inter-domain contact is informative for contact
determination. Contacts between secondary structure elements form
characteristic patterns in inter-domains contact maps, which we aim
to identify and exploit to improve contact prediction. We use the DSSP
algorithm [85, 86] to assign secondary structure to each amino acids
in our dataset. DSSP identifies 7 possible types of secondary structure,
but in order to reduce the complexity of the problem we convert this
result into a 3-letter alphabet: H of all type of helices, E for all type of
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Figure 4.5: The distribution of DCA score for the three datasets. For MSA with
Meff > 200 (Panel A) and 50 < Meff ≤ 200 (Panel B). Note that
the enrichment of true positive predictions (contats) is very high
in the tail of large DCA score. In fact, the majority of the pairs
with DCA score larger than 0.3 corresponds to contacts. This is
not the case for MSA with Meff < 50 (Panel C) where the two
distributions completely overlap.
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β-strands and C for everything else. The conversion table is detailed
in Table 4.2.

H α-helix → H

B residue in isolated β-bridge → E

E extended strand, participates in β ladder → E

G 3-helix (310 helix) → H

I 5-helix (π-helix) → H

T hydrogen bonded turn → C

S bend → C

Table 4.2: The conversion table from the DSSP alphabet for secondary struc-
ture to our simplified alphabet three-letter alphabet.

H E C

H 40705 13046 41274

E 13046 13851 20971

C 41274 20971 62100

Table 4.3: The number of residue-residue inter-domain contacts in our full
dataset classified according the secondary structure.

As we consider 3 possible secondary structures for a residue; there
are 6 possible different states for an inter-domain contact: HH, HE,
HC, EE, EC, CC, see Table 4.3. Henceforward, we consider explicitly
only the HH and EE cases which give rise to the most characteristic
contact patterns. Figure 4.6 shows the mean contact matrix where the
central pair is an HH and EE contact, obtained by averaging over all
PDBs of our dataset and using a 7× 7 window.

Figure 4.6 shows that the distribution of neighborhood contacts
surrounding the central pair is not random: for instance if residue
iA and jB are in contact and both belong to α-helices, then residue
iA + 2 and jB + 2 most likely will not be in contact. The EE mean
contact map is apparently less informative. In fact, contacts between
two α-helix or two β-strand can both be parallel, anti-parallel or mixed.
To disentangle them, we perform a k-means clustering imposing 3

clusters. Let us call S the set of the 6 resulting centroids (3 for HH
and 3 for EE) - hereafter filters. Figure 4.7 shows an example using a
21× 21 window.

The DCA predictions show slightly similar patterns. For each pair
of interacting domains A and B of length n and m, we define a DCA

score-matrix D = (FiA jB) of size n × m, whose entries are the DCA
score, i.e. the APC corrected Frobenius norm Eq. (2.48) of amino acids
iA and jB belonging respectively to the first and second domain.
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Figure 4.6: Patterns of secondary structure in PDBs. The relative frequencies of
the number of contacts in a 7× 7 mean contact map around a HH
or EE contact. The average is done over the 40705 HH and 13851

EE contacts, cf. Table 4.3.

Figure 4.7: Set S of filters. The mean contact matrices are a combination
of parallel, anti-parallel or mixed HH and EE contacts (here
computed using a 21× 21 window). We disentangle them with
a k-means clustering with k = 3. The 6 resulting centroids, 3 for
a central HH inter-domain contact (upper figure) and 3 for a EE
contact (lower figure), are the set S of filters that we will be using
in the following.



4.2 filter dca : methods 75

Then, similarly to what we have done in Figure 4.6, we compute the
mean DCA score matrix with the central position being an inter-domain
contact in the PDB structure. They are displayed in Figure 4.8. By
considering the mean DCA matrix, we average out site-specificities and
noise and, as a result, only the most frequent local contact structures
are prominently displayed. On a single DCA matrix, the secondary
structure signal is usually lower and noisy. Our method is based on
the idea that we can compute typical patterns between secondary
structures from the PDB and subsequently apply them on the DCA

matrix for constraining the prediction of nearby contacts by coherency
with predictions in a local window around the residue pair of interest.

Figure 4.8: Patterns of secondary structure in DCA predictions. Patterns of sec-
ondary structure that arise from the mean DCA matrix. The av-
erage is done over the 2548 joint alignments contained in our
dataset.

4.2.4 Filter score

Inspired by this discussion, we define a new score by applying patterns
between secondary structures on DCA predictions, cf. Figure 4.9. Let
D = (Fij) be the matrix of size n × m of inter-domain DCA scores
and S the set of the 6 filters of size k. For each pair (i, j) of D, let
Dk be the DCA submatrix of size k centered in (i, j): Dk = (Fi′ j′) with
i′ ∈ [i− k−1

2 , i + k−1
2 ] and j′ ∈ [j− k−1

2 , j + k−1
2 ]. We always choose k to

be an odd number in order to get a square matrix centered around the
central pair.

For each of the 6 filters in S of size k× k, we compute the Pearson
correlation between Dk and the filter. The central pair is removed from
the calculation since, for the filters in S , it is a contact by construction
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and since the DCA score of the central pair (i, i) will be used directly.
The new score, hereafter Filter score, is the maximum between the 6

Pearson correlations.
A problem arises from pairs of residues closer than k−1

2 to the border
of the DCA matrix: the matrix Dk is smaller than the filter matrix, and
the procedure displayed in Figure 4.9 can not be applied. In this case
we compute the Pearson correlations only for pairs which are both
contained in Dk and in the filter matrix.

Figure 4.9: Pipeline to compute the Filter score: we first fix a window size k and
compute the set Sof 6 filters of size k. Then for each pair (i, j)
of D, we consider Dk the DCA submatrix of size k centered in
(i, j). We remove the central pair (i, i) and then we compute the
pearson correlation between each filter f in S and Dk. The Filter
Score is the largest of the 6 correlations.

4.2.5 Learning procedure

From Section 4.2.2 it is clear that MSAs with Meff < 50, do not show
reliable coevolutionary signal. Consequently, we exclude them from
the following analyisis. For each of the two remaining datasets, we
divide the data into training and test sets, with a 50− 50 split. We
first compute the local contact maps around a HH or EE contacts for
all PDBs belonging to the training set. We compute the 6 filters by
performing a k-means clustering with k = 3 (parallel, antiparallel, and
all the rest). An important parameter to fit is the filter matrix size.
Since we can not determine a priori the optimal size, we train different
models with filter sizes ranging from 5 to 69.

For each pair of residues (i, j), we consider two features: x1 the DCA
score of a residue pair (i, j), and x2 the Filter score of the DCA matrix
around (i, j), which we use to train a logistic regression classifier. The
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probabilities to belong to the class contact (⊕) or non-contact (	) are
given by:

P(⊕|x) = ewx+w0

1 + ewx+w0
and P(	|x)=

1
1 + ewx+w0

(4.1)

where bias w0 and the weights w = (w1, w2) are optimized using
the ’liblinear’ solver of the sklearn library [87].

Pairs of residues forming a contact are only a small fraction of
all possible pairs (see table 4.1). Thus, the training set is strongly
imbalanced: the incidence of class non-contact is dominant, being
found in 99% of cases. We found that the performance of our classifier
is improved when we restrict the training set on residues pairs with
DCA score larger than zero (see Figure A.13 in the Appendix). In such
a way, the classifier concentrates on cases which show a more reliable
coevolutionary signal. Another further slight improvement has been
achieved by scaling the Filter Scores, in both training and test set, with
the MinMaxScaler of the sklearn library [87]:

x2 →
x2 −min(x2)

max(x2)−min(x2)
(4.2)

where max(x2) [min(x2)] is the maximum [minimum] Filter Score
in the training set.

4.2.6 Filter size

To further analyze the importance of the filter size on the quality of
the prediction, in Figure 4.10 we plot the decision boundary of each
logistic regression. The decision boundary is the line wx + w0 = 0
- or, in other words, P(⊕|x) = P(	|x) = 1/2 - which partitions the
feature space into two sets, one for each class. The logistic regression
will classify all the points above decision boundary as contact and all
those on the other side as non-contact.

The lines of Figure 4.10 have slope −w2/w1. For small filters, such
as 5× 5, w2 is close to 0. This means that there is no performance
improvement adding the Filter Score: the DCA score is the only variable
used by the classifier for the predictions. Note that in this case the
classifier assigns P(⊕|x) > 0.5 for pairs with DCA. A score larger than
0.3, coherently with what observed in Figure 4.5. Small filters do not
show clear patterns between secondary structures, thereby they can
not be used for constraining the predictions.

Increasing the filter size, the weight w2 grows until a maximum is
reached at k = 45. Beyond this size, filters lead to spurious signal; the
Filter Score becomes less meaningful and, consequently, w2 decreases
again.
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Figure 4.10: Decision boundary of the logistic regressions. Panel A and B show
the decision boundary, the line wx+w0 = 0, for the two training
sets, Meff > 200 and 50 < Meff ≤ 200 respectively. In both cases
we see that the importance of the second feature - the Filter
Score - is increasing with the filter size. Small filters, like 5× 5,
do not show clear patterns of secondary structure. Therefore,
the Filters score is essentially neglected by the logistic regression
which classifies as “contact“ pairs with DCA score larger than
0.3, coherently with Figure 4.5. Filters bigger than 45× 45 lead
spurious signal, thus the classifier assigns a smaller weight to
the Filter score.
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4.3 results

To access the performance of our method we use the test sets. There
we sort pairs of residues according to the estimated probabilities for
each MSA. Figure 4.11 shows the mean PPV for cases with Meff > 200
and 50 < Meff ≤ 200.

FilterDCA is a supervised Machine Learning (ML) method which
uses two features - the DCA score and the Filter score. Hence, it is
important to compare its performance with at least two other methods.
First, PLM [45, 46], which is the reference algorithm. It is unsupervised
and sort pairs according to the DCA score, i.e. according to the first
of the features we used. Second, we use a DL algorithm, Pconsc4[88],
which is based on a far more complicated and thus less transparent
parameterization as compared to the logistic regression, Eq. (4.1).
We could not fairly compare our results with RaptorX Complex [77]
since the latter is trained on all single-chain proteins available on the
PDB, thereby making impossible to avoid overfitting when studying
intra-protein inter-domain contacts (we discuss this issue in Section
A.2).

Figure 4.11 shows that FilterDCA always outperforms PLM, proving
that the filters add useful information to the local value of the DCA

score Fij, Note that the performance of our predictor with small filters
(size 5× 5) is only slightly better than PLM, as expected in the light
of the above discussion. Larger filters lead to better performance, and
the classifier reaches the best performance - comparable to that of
PconsC4 - with astonishingly large filters 37× 37, i.e. looking a 13
positions before and after position i and j.

4.4 conclusion and discussion

Despite some success [24, 30, 75, 76], the accuracy of DCA for inter-
protein contact prediction remains limited, mainly because the inter-
face coevolutionary signal is weak and difficult to detect.

Supervision by structure could in principle be used to boost contact
prediction from weak coevolutionary signals. However, deep learning
algorithms are highly demanding on the number of structures to learn
from, and the scarcity of experimentally solved protein complexes
poses an essential problem. Furthermore, they rely on a large number
of parameters and layers, which makes it obscure to comprehend in
details what they are learning.

In this chapter, we proposed FilterDCA which at the same time does
not rely on an extensive training set, and it is easily interpretable since
it requires to fit only 3 parameters with respect to thousands or even
millions of parameters of deep learning methods.

The idea behind FilterDCA is, in some sense, opposite to the one
behind CNNs: instead of letting a CNN automatically learn the most
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Figure 4.11: Performance of FilterDCA on the test set. The mean positive pre-
dictive value for the tests sets with Meff > 200 (Panel A) and
50 < Meff ≤ 200 (Panel B) as a function of the number of
predictions. The average was performed over the 412 and 379

Pfam domains of the respective tests sets. For small filters, the
performances are comparable to unsupervised PLM. They pro-
gressively increase using larger and larger filters. The best per-
formance, comparable to that of PconsC4, is reached with filters
of size 37.
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relevant patterns from an extensive training set, we exploit our prior
biological knowledge about protein structure, and compute patterns
between HH and EE contacts directly from the PDB. Via the Filter score,
we incorporate them into the DCA predictions. More precisely, we
combine the DCA and Filter score with a logistic-regression, which is a
simple, easy to interpret model. Our results indicate that large patterns
between secondary structures enhance significantly the performance
of DCA for inter-domains contact prediction. Our classifier reaches
performance comparable to that of PconsC4 with filters 37× 37. Even
if not out-performing DL methods in applications, we think that simple
and interpretable models, like FilterDCA, can be useful to understand
how the contact information is hidden in sequence data.

So far, we considered exclusively intra-protein inter-domain contacs.
A natural extension would be to assess the performance of FilterDCA
for inter-protein contact prediction. We then plan to apply out method
on the dataset composed of 36 bacterial protein complexes of [30] for
which GREMLIN [51], which is equivalent to PLM, has previously been
shown to yield accurate predictions.

Also, we aim at understanding if FilterDCA can improve the accu-
racy of docking prediction, thereby be useful to assemble unknown
protein complexes. To this end, we need to find out if FilterDCA is
increasing the coverage of predicted contacts between secondary struc-
ture elements or if it is removing spurious isolated contacts relative to
DCA predictions.





Part III

F I T N E S S L A N D S C A P E

In this final chapter, we show how DCA can be used to
model the fitness landscape. Through an extensive genome-
wide study of E.coli strains, we investigate the fitness land-
scape properties at the local and global scale. First, we
quantify the strength of the epistatic interaction within
genes of E. coli strains. Second, we introduce the context-
dependent entropy to quantitatively and qualitatively char-
acterize how the variability of a residue is influenced by
the sequence context, i.e. the amino acids present in all
other positions of the protein.





5
L O C A L F I T N E S S L A N D S C A P E

In the very last chapter of this dissertation, we will introduce the topic
of fitness landscapes. We will show how the machinery of DCA can
be used to investigate the connection between global and local fitness
landscape. To this end, we performed a genome-wide analysis of a set
of 61160 E. coli strains to address two different questions:

(i) Do recently diverged strains exhibit intragenic epistatic interac-
tions between mutations, e.g. via the compensation of effects of
the single mutations?

(ii) Can we quantitatively and qualitatively characterize how the
variability of a residue is influenced by its context, i.e. by the
amino acids present in all other positions of the protein?

The chapter is organized as follow. Section 5.1 introduces the concept
of global and local sampling of the fitness landscape in a way suitable
to our presentation. In Section 5.2 we briefly described the findings of
[58, 89] which explored the connection between DCA and the fitness
landscape. We then introduce the dataset we used for our analysis
(Section 5.3) and the results we obtained on epistasis (Section 5.4) and
context-dependency (Section 5.5). Last, Section 5.6 contains discussion
and outlook for future work.

5.1 fitness landscape

In essence, the fitness landscape is a genotype-phenotype mapping,
which associates a quantitative phenotype Φ(a1, ..., aL) to each possible
amino-acid sequence (a1, . . . , aL). The fitness landscape was initially
proposed as “a metaphor” [90], a simplification that makes evolution
tractable and potentially predictable. The fitness landscape may not
always an appropriate descriptive tool for all biological systems (for
example, it is well known that coevolving ecosystems can be charac-
terized as multi-player games [91] and the fitness landscape model
would not be applicable).

However, within this framework, one can visualize evolution as
the process of sampling sequences in the fitness landscape. Natural
selection prunes dysfunctional sequences, while amplifying those that
have large fitness compared to other protein sequences, i.e. perform
their function efficiently. However, a characterization of the fitness
landscapes appeared infeasible for several reasons. First, the number
of possible genotypes is astronomically high making impossible an
exhaustive experimental measurement of the fitness for each variant.

85
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Second, the pervasiveness of epistasis - the phenomenon by which the
effect of a mutation depends on its genetic background - which may
lead to a rugged landscape with many local optima. The advent of
deep mutational scanning, i.e .the large-scale experimental determi-
nation of the fitness effects of mutations around the same wild-type
sequence, offers the opportunity to exhaustively experimentally ex-
plore a local region of the fitness landscape. The Wright’s idea of
genotype-fitness landscapes started to move from a metaphor to an
object of quantitative experimental studies.

To what extent DCA can yield insight about the fitness landscape?
To answer this question one needs to keep in mind that the proteins
in an MSA are the results of the evolutionary pathways, which are
constrained by the shape of the fitness landscape - its set of hills,
valleys, plains and ridges. If the DCA model can actually grasp the
evolutionary constraints contained in the MSA, it is not surprising that
is can be used to model the underlying fitness landscape.

Due to the high dimensionality of the genotype space, our knowl-
edge of the landscape is restricted to the subspace of sequences - either
naturally occurring or artificially generated - that have been sampled
and, in rare cases, phenotypically characterized. We can distinguish:

1. Global sampling of the landscape. It contains homologous sequences
present across different species. Being widely-distributed through-
out the sequence space, they are strongly divergent (typical se-
quence identities are from 20 to 30%). The exact value of their
fitness is usually unknown. However, being present in nature,
they are folded and functional proteins. We can therefore as-
sume that they are located near a local maximum of the fitness
landscape, cf. the blue dots in the schematic representation of
Figure 5.1.

2. Local sampling of the landscape. It contains orthologous sequences
belonging to different strains of the same species. The genomic
context is highly conserved. Indeed, they usually display very
low variability (> 90% sequence identity). As above, they are
folded and functional even if the exact value of their fitness is
usually unknown. We then expect strongly deleterious mutations
to be absent, cf. the green dots in Figure 5.1.

3. Exhaustive local quantification. Recently developed deep-sequencing
approaches, like deep mutational scanning [18], allow for an ex-
haustive quantification of a tiny region of the fitness landscape,
cf. the red line in Figure 5.1. A deep mutational scan proceeds
by identifying a reference sequence (the so-called wild type) and
then generating thousands of sequence variants which are one or
two mutations away from the wild type. Mutations that enhance
protein activity are enriched following an appropriate selection
or experimental screen, whereas deleterious mutations are de-
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pleted. The enrichment ratio for each sequence variant is a proxy
for the protein fitness.

Since few sequences of the space can be explored, there is a need of
statistical modeling of the fitness landscape. The strategy adopted
by DCA is to start from a global sampling (1.) of homologous proteins,
arrange them in the MSA, infer the parameters h and J of an epistatic
Potts model P(a1, . . . , aL) ∼ exp

(
− H(a1, . . . , aL)

)
, and use the sta-

tistical DCA energy H(a1, . . . , aL) = −∑i hi(ai) − ∑i<j Jij(ai, aj) as a
proxy for the mathematical form of the fitness function (low energy
sequences are considered more likely to be functional, and thus of
high fitness), see Figure 5.1. The underlying assumption of this ap-
proach is that the natural sequence variability between homologous
proteins can be used to model the fitness landscape. This is far from
obvious: homologous sequences are strongly divergent and sparsely
distributed throughout the sequence space, so it is unclear to what
extent such statistical model can be used to make predictions about
the observable sequence statistics in the local sampling (2.) or the fitness
in a deep mutational scan (3.). To be more specific, it is not obvious that
103 − 104 sequences at low average sequence identity of 20− 30% can
provide quantitative information about the effect of a single mutation
in any specific sequence belonging to the same protein family.

Figure 5.1: DCA models the fitness landscape via the statistical energy
H(a1, . . . , aL) = −∑i hi(ai) − ∑i<j Jij(ai, aj). The parameters h
and J, are inferred from a set homologous sequences (blue dots)
which are well-distributed throughout the sequence space. There-
fore, it is unclear to what degree DCA can accurately predict
the fitness values of orthologous sequences (green dots) or deep
mutational scan (red line).

5.2 dca and fitness landscape

A connection between the global sampling and exhaustive local quan-
tification was established by Figliuzzi et al. [58] by proving that the
predictions of a DCA model inferred from the homologous Pfam family
beta-lactamase TEM-1 (PF13354) are significantly correlated with the
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experimental results of a deep mutational scan. Further studies con-
firmed and expanded these results [58, 61, 62]. Sequences generated
by deep mutational scan are confined in a tiny region of the fitness
landscape, thereby scoring mutations can be thought of as a local
measurement of the fitness landscape. It has been shown (see Figure
5.2) that the negative log odds ratio:

∆Hmut = − log
(P(amut)

P(awt)

)
= H(amut)− H(awt) (5.1)

can successfully assess the experimental fitness of the variant amut with
respect to the wild-type sequence awt, when amut and awt differ by a
single substitution. Negative scores correspond to predicted beneficial
mutations, meaning that mutated sequences are more probable than
the reference one, whereas positive scores correspond to predicted
deleterious mutations.

In Couce et al. [89] DCA was used to investigate the connection
between global sampling and local sampling. They considered a set of E.
coli strains obtained from three different sources with distinct selec-
tive regimes: naturally occurring sequences (low mutation rate, high
selection pressure), mutation accumulation experiments (MAEs) (high
mutation rate, weak selection), and Long-Term Evolution Experiment
(LTEE) (high mutation rate, strong selection). It has been shown that
the DCA scores of single-point mutations observed in E. coli strains, Eq.
(5.3), can be used to discriminate different evolutionary scenarios, cf.
Figure 5.2.

It is important to point out that DCA constantly overcomes profile
models both in predicting mutational effects and in discriminating
selective regimes [58, 89]. The reason is to be searched in the epistatic
couplings J of the Potts model. It allows DCA, contrarily to the Profile
model, to assess the dependence of mutational effects on the sequence
context where they appear. As an example, a single-point mutations
substituting the wild-type amino acid ai at position i with amino acid
b, it is scored:

∆HProfile(ai → b|a1, . . . , ai−1, ai+1, aL) = hi(b)− hi(ai) (5.2)

∆HDCA(ai → b|a1, . . . , ai−1, ai+1, aL) = (5.3)

= hi(b)− hi(ai) +
L

∑
j 6=i

(
Jij(b, aj)− Jij(ai, aj)

)
.

In the profile model hi(ai) = log( fi(ai)) + const (see Section 2.1.1).
This implies that the mutational score depends only on the difference
between the logarithm of the frequencies of the original and the new
amino acid in the MSA.

On the contrary in the DCA model, the term ∑L
j 6=i

(
Jij(b, aj)− Jij(ai, aj)

)
of Eq. (5.3) explicitly connects the mutated site i to the rest of the se-
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Figure 5.2: Panel A) From global sampling to exhaustive local quantification. The
homologous Pfam family PF13354 is used to fit a DCA model
which, in turn, is used to score mutations between the mutant
and the wild-type amino acid sequence. A correlation of 74%
has been found between experimental large-scale mutagenesis
data and the prediction of the epistatic DCA model. Please note
that the statistical score ∆Φ of Panel A is defined with oppo-
site sign with respect to our definition Eq. (5.1). Source: [58].
Panel B) From global sampling to local sampling. A set of E. coli
strains was obtained from three different sources: Long-Term
Evolution Experiment (LTEE) where a strain of E. coli evolved
for more than 60,000 generations in a minimal glucose-limited
medium [92], mutation accumulation experiments (MAEs) , in
which bacteria are repeatedly propagated through single-cell bot-
tlenecks [93, 94], and naturally occuring variants. In [89], for
each E. coli protein, the domain architecture was extracted from
Pfam, and a DCA model was fitted using the corresponding Pfam
MSA. They compared the negative log odds ratio of single-point
mutations observed in strains (blue lines) with random single
point mutations (red lines). While the two histograms are clearly
different for naturally occurring sequences (low mutation rate,
high selection pressure), this is not the case for LTEE (high muta-
tion rate, strong selection) or MAEs strains (high mutation rate,
weak selection). These findings suggest that DCA can discriminate
between distinct selective regimes by analyzing the genome-wide
variability between different strains. Source: [89].
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quence, i.e. it incorporates its context-dependence via the epistatic
couplings J.

The evidence for epistatic interactions and condition-dependent
effects is abundant [95–98]. Yet, it still remains unclear to what extent
those interactions contribute in determining the phenotypic impact of
a mutation.

In the next section we analyze a set of 61160 E. coli strains (a local
sampling of the fitness landscape) to quantify the importance of in-
tragenic epistasis and of context dependency for recently diverged
sequences.

5.3 the dataset

Here we sketch the procedure we adopted to construct the dataset (cf.
Figure 5.2), while a detailed description of each step is given in the
next sections.

First, we choose as reference the strain GA4805AA. Being of medical
and biochemical interest, there is an interest in sequencing closely
related strains and a large number of genome sequences are available.
Second, for each of its proteins we construct an MSA of homologous
sequences (the global sampling) with which we train a DCA model. The
latter was used to investigate the corresponding MSA of orthologous
sequences (the local sampling) obtained from the other 61159 strains.
Due to the broad variability in size and gene content of the E. coli
genome, we decided to restrict our analysis only on highly conserved
genes.

Figure 5.3: For each gene of the reference strain, we obtain a global (MSA of
homologous sequences) and local sampling (MSA of orthologous
sequences). We train the DCA model on the first, which we use to
investigate the latter.

5.3.1 Local sampling

The 61160 considered E. coli strain are all naturally occurring strains,
therefore subject to comparable selective pressure. The reference strain
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GA4805AA contains a total of 5051 protein-coding genes and, for each
of the translated proteins, we aim to obtain an MSA of orthologous
sequences characterizing its sequence variability across strains. To this
end, we constructed a target dataset by concatenating all proteins of
all strains. Using phmmer [13], we searched each gene of the reference
strain against this target dataset keeping for each genome, only the best
hit (to avoid paralogs). Actually, this straightforward approach was
too time-consuming. We therefore included a intermediate step, where
we clustered the target database by grouping identical sequences, and
then run phmmer on this clustered dataset. This allowed to reduce
the size of the target dataset more than one order of magnitude, from
∼ 1, 27× 108 to ∼ 9× 106 sequences. To further clean the MSAs, we
removed sequences with sequence identity lower than 90% with the
reference, and contains more than 10 gaps. Sequences which do not
satisfy these conditions are usually fragments, which were aligned by
adding a large number of gaps.

5.3.2 Global sampling

For each of the 5051 proteins extracted from the reference strain, we
identified a set of homologous sequences in the UniProt database. A
first attempt was done using jackhmmer [13]. Jackhmmer iteratively
searches each query sequence - in our case, a protein of the reference
strain - against the UniProt database. We soon realized that this ap-
proach was computationally infeasible for large scale analysis since it
iteratively searches sequence against the protein database (cf. Section
1.3.1). We decided therefore to use HHblits [11]. The main advantage
of the latter is that the HHblits suite provides a pre-clustering of
UniProt (sequences alignable over at least 80% of their length and
down to 30% pairwise sequence identity) and an HMM for each cluster.
Given a query sequence, HHblits first converts it to an HMM. Second,
it searches the query profile against the HMM database. Sequences
from the clusters which are below a default E-value threshold 10−3 are
added to the query MSA. Thanks to the pre-clustering of the Uniprot
database, HHblists is much faster than Jackhmmer while leading to
virtually identical MSAs. For each MSA with more than 100 sequences
(4753 out of 5051 total genes) we learn a DCA model using the pseudo-
likelihood approximation. Importantly, DCA was performed without
including sequences from E. coli or with sequence identity higher than
90% to the reference strain. In such a way we avoid overfitting when
studying the fitness landscape around the reference sequence, or a
bias towards the specific E. coli strain present in Uniprot.
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5.3.3 Core genome

The E. coli genome shows a broad variability in size and gene content.
Even closely related strains are subject to repeated events of gene
acquisition and loss. In our case, only two genes are preserved in
all strains. To achieve statistically significant results, we decided to
restrict our analysis to the set of 1520 proteins which are found in
at least 61,000 strains (hereafter the core-genome). Note that, there is
no single universally accepted definition of core genome. A common
strategy [99] is to include only genes conserved in 95% of genomes
(in our case, ∼ 58000 strains). Here we use a more stringent cutoff of
∼ 99.7% to minimize erroneous core genes due to over-representation
of very similar genomes, which in turn provides a more stringent core.
Our results are largely robust with respect to the precise choice of the
cutoff.

5.4 epistasis

In this section, we study if DCA is able to detect epistatic signal in our
strain dataset. Before this, let us fix some notations. We denote the
amino acid sequence of the reference strain GA4805AA (the wild type)
by a =(a1, . . . , aL).

The cost of a single mutation at some position i is defined as

∆Hi := ∆H(ai → bi|a\i) = H(a1, . . . , ai−1, bi, ai+1, aL)−H(a1, . . . , aL)

(5.4)

where a\i = (a1, . . . , ai−1, ai+1, . . . , aL).
Similarly, we denote by

∆Hi1,...,iN := ∆H(ai1 → bi1 , . . . , aiN → biN |a\{i1,...,iN}) (5.5)

the cost of having N mutations in positions {i1, . . . , iN}.
Figure 5.4 shows the distribution ∆Hi1,...,iN between mutated se-

quences observed in our local sampling and the wild type. As a
comparison, we plot the ∆Hi1,...,iN distribution for sequences where we
inserted random mutations. While randomly mutated sequences lie
at very high and positive ∆Hi1,...,iN , the distribution of those observed
in the strains remains approximately centered close to zero even for
sequences that are 10 mutations away from the reference. Natural
variants are still considered “good” sequences by DCA. Substitutions
present in the strains are predicted to be close to neutral, while ran-
dom mutations would be predominantly deleterious. This is consistent
with what observed by Couce et al. [89]: DCA correctly detects that the
sequences of our dataset are under strong selection regime.

The total epistasis between positions {i1, . . . , iN} can be defined as

∆∆Hi1,...,iN := ∆Hi1,...,iN −
N

∑
k=1

∆Hik (5.6)
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Figure 5.4: Distributions of ∆Hi1,...,iN for sequences with random mutations
(orange) and of those observed in the E.coli strains (blue). Even
sequences that are 10 mutations away from the reference sequence
are considered as “good” sequences by DCA (distributions remains
approximately centered close to zero). On the contrary, randomly
mutated sequences have very high and positive ∆Hi1,...,iN (which
grows approximately with the number of mutations N), i.e. they
are “bad” sequences according to DCA.

i.e. the cost of having N mutations minus the sum of the costs of the
single-site mutations. Panel B of Figure 5.5 displays the distribution
of ∆∆Hi1,...,iN as a function of the number of mutation N. First, we
can note that epistasis is higly sparse and has surprisingly little effect.
Second, distributions are symmetric around zero, thereby showing
sign of neither positive nor negative epistasis 1.

In [16, 17] it was shown that epistatic residues pairs often are in
contact in the 3D structure. In Panel A of Figure 5.6 we checked
if sequentially close residues, which are usually in contact in 3D
structure due to their proximity in the secondary structures, display
higher epistasis. We plot the sum of the two single-residue mutations
∆Hi + ∆Hj versus the cost of a double mutation ∆Hi,j for all residues
i and j distinguishing those that are sequentially close (|i− j| ≤ 4, red
points) or far (blue points). Once again, no pairs shows significant
epistatic signal, i.e. it is far from the diagonal of the scatter plot. A
similar plot is shown in Panel B for three-point epistasis.

1 Positive [negative] epistasis occurs when the combined cost of carrying multiple mu-
tations is less [more] than what would be expected if the mutations had independent
and simple additive effects on fitness.
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Figure 5.5: Panel A) The distributions of the statistical scores ∆Hi1,...,iN as a
function of the number of mutations N. The number of observa-
tions for each group are displayed in the upper part. Panel B) The
distribution of the epistatic scores ∆∆Hi1,...,iN . Epistasis is highly
sparse and has little effect. Note in particular the scales of the
vertical axes. We observed that the orthologous alignments often
contain stretches of gaps which can lead to spurious epistatic
signal. Therefore, in our analysis we excluded ∆Hi1,...,iN which
display gaps in positions {i1, . . . , iN}. Also, we excluded residues
which mutate to unspecified or unknown amino acid (letter X in
the MSA).

Overall, Figures 5.5 and 5.6 indicate that intragenic epistasis is
virtually absent for recently diverged E. coli strains. This suggests that
there may be a nonobvious correlation between epistasis and genetic
distance from the reference strain. Therefore, it is natural to ask the
following questions: at which genomic distance from the reference
epistasis starts to become relevant? If we extended our analysis to E.
coli close-by species (e.g. Salmonella enterica or all Gammaproteobacteria),
could we observe epistatic signal? As a future work, we plan to tackle
these questions using the data in our possession.
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Figure 5.6: The cost of having multiple mutations versus the sum over single
mutation for double (Panel A) and triple mutants (Panel B). Red
dots are sequentially close residues, which are usually in contact
in 3D structure. No significative epistasis effect is observed.

The fact that epistasis remains rare even when up to 10 mutations
are observed, may indicate that the corresponding residues can mutate
almost independently from the sequence background. This calls for a
deeper understanding of how the context (i.e the amino acids present
in all other positions of the protein) influences the variability (i.e. the
propensity to mutate) of a residue.

5.5 quantifying context dependence

To quantify how the variability of a residue is influenced by its context,
we adopt the following strategy. First, for a residue in position i we
compute the context-independent site entropy:

si = −
21

∑
ai=1

fi(ai) log2 fi(ai) (5.7)

where the frequencies fi(ai) are directly computed from the MSAs
of diverged homologous. The problem with Eq. (5.7) is that a column
full of gaps may cause low entropy spurious signals. Therefore, we
decided to exclude gaps from the counting of the frequencies2.

Next, we define the context-dependent site entropy, using the DCA

models inferred from MSAs of diverged homologs. We fix as “context”
the sequence a =(a1, . . . , aL) of the reference strain GA4805AA. For
each position i of the MSA we can define the conditional probability

2 meaning that we compute fi as a 21-vector, then we remove the entry corresponding
to the gap-frequency, and re-normalize fi.
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of observing the amino-acid ai given the rest of the sequence a\i =
(a1, . . . , ai−1, ai+1, . . . , aL) :

P(ai|a\i) =
exp

(
hi(ai) + ∑j 6=i Jij(ai, aj)

)
∑

q
b=1 exp

(
hi(b) + ∑j 6=i Jij(b, aj)

) . (5.8)

From which we can define the context-dependent entropy si(a\i):

si(a\i) = −∑
ai

P(ai|a\i) log2 P(ai|a\i) (5.9)

As before, we remove the entry corresponding to the gap-conditional
probability P(ai = ”− ”|a\i) and then re-normalize P.

Note that the context-independent si and -dependent si(a\i) en-
tropies were both computed from MSAs of diverged homologous
(global sample).

Figure 5.7: Density plot of the context-independent versus context-dependent
entropy. Two sub-populations of residues are present: uncon-
strained sites which show high entropy in MSA, but small context
dependence and constrained sites which display restricted entropy
in MSA, but they are conserved in the GA4805AA context.

Figure 5.7 shows a density plot of the context-independent versus
context-dependent entropy. Two conclusions can be drawn from it.
First, the vast majority of sites are located in the upper triangular part,
meaning that there is an entropy reduction by fixing the sequence
context. Residues are in general constrained by their context. Amino
acids possible in the MSA may be excluded in a specific context. Second,
two sub-populations emerge:
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1. unconstrained sites (right corner) - which show high entropy in
the MSA, but small context dependence;

2. constrained sites (left part of the plot) – which display restricted
entropy in the MSA, but they are close to conserved given the
context.

Is there any relation between these quantities, both calculated from the
MSA of distant homologous, and the inter-strain sequence variability?
In this context, it seems natural to ask if the context-dependent entropy
si(a\i) can better catch up the variability that is observed in the MSAs
of E. coli strains (local sample). To answer this, we plot in Figure 5.8
the two entropies considering separately sites which do or do not
display polymorphisms in our dataset3.

The vast majority of strain-polymorphic sites (Panel A of Figure 5.8)
are unconstrained (located in the right corner). This may explain the
low level of observed epistasis in E. coli strains of Figure 5.5. Indeed,
unconstrained sites are not subjected to epistatic interactions since they
tend to mutate independently from the rest of the protein sequence.

On the contrary the distribution of strain-conserved sites (Panel B
of Figure 5.8) is bimodal. However, the pick in the right corner may be
interpreted as incomplete sampling of polymorphic sites in the 61160

E. coli strains.
Figure 5.9 shows that the context-dependent entropy si(a\i) can

be used to better predict which sites are more prone to mutations
in a given context as compared to the total entropy si. It displays
the distributions of the context -dependent (Panel A) -independent
(Panel B) entropies distinguishing between strain-polymorphic and
strain-conserved sites. Although neither of them can perfectly discrim-
inate between polymorphic and non-polymorphic sites, only the two
histograms of panel B are well-separated.

We can even quantify more precisely the importance of the context
for a residue in position i, by introducing the context dependent
information gain:

Ii = si − si(a\i) (5.10)

which measures the reduction in entropy by including the context. To
be more precise, the higher Ii the more the site i is constrained by
the context, i.e. less variable. As a reference, 1 bit of information gain
means that the effective number of amino acids is reduced by 2; 2 bits
indicate a reduction by 4 and so on.

Figure 5.10 shows that the enrichment in the positive tail is partic-
ularly pronounced for strain-conserved sites, thereby indicating that
sites which are mutable in diverged homologous can become highly
constrained in a specific context.

3 To minimize erroneous polymorphic sites due to sequencing errors, we removed from
the analysis sites that mutate just once.
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Figure 5.8: Density plot of the context-independent versus context-dependent
entropy, considering the 26077 strain-polymorphic position (Panel
A) and the 181958 site which are always conserved in the local
sample of strains (Panel B). The vast majority of polymorphic
residues are unconstrained sites, therefore non-epistatic. The pick
in the right corner of Panel B (strain-conserved residues) can be
interpreted as incomplete sampling of polymorphic sites in the E.
coli strains of our dataset.
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Figure 5.9: The distributions of the context-independent (Panel A) and
context-dependent (Panel B) entropies for strain-polymorphic
(red) and strain-conserved sites (blue). The separation between
the two is cleaner for the context-dependent entropy. This sug-
gests that it can be used to better predict which sites tend to be
more variable in a given context.

Figure 5.10: Distribution of the information gain from the context for strain-
conserved and strain-polymorphic sites. Both display positive
tails, thereby indicating that the context is informative about the
variability of a residue. In particular, strain-conserved residues
display a large enrichment in the positive tail. This indicates that
sites which are mutable in diverged homologous can become
highly constrained in a specific context.
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5.6 summary and outlook on future work

Observations and hypotheses presented in this chapter provide in-
triguing insights towards understanding to what extent DCA models
trained on distant homologous can be informative about the local
fitness landscape. Using 61160 E. coli naturally occurring strains, we
showed that intragenic epistasis remains rare even when up to ten
mutations were combined. This suggests that E. coli strains in our
dataset did not diverge enough to display a significative epistasis.

This result, maybe surprising at first sight, becomes more consistent
at the light of the analysis we have done on the context-dependent
entropy si(a\i) Eq. (5.9). It quantifies how the variability of a site (i.e. its
tendency to mutate) is influenced by the the amino acids present in all
other positions. We showed that the vast majority of polymorphic sites
observed in our dataset are unconstrained sites, meaning that they
tend to mutate independently from the rest of the protein sequence.
We can thus conclude that epistasis is very weak in the local landscape
explored by the polymorphisms between strains, but that the shape
of this local landscape is strongly dependent on the joint epistatic
couplings to the entire background sequence.

This may explain the low level of observed epistasis in E. coli strains
and propose at the same time a line of future research: there should
be a nonobvious correlation between epistasis and genetic distance
between sequences which is worth being investigated further.

Also, by introducing the information gain Eq. (5.10) we were able
to quantify the reduction in entropy by including the context. We
showed that the information gain is particularly pronounced for strain-
conserved sites, meaning that residues which are mutable in diverged
homologous can become highly constrained in a specific context.

5.6.1 Towards DCA as evolutionary model?

Usually, in models of protein sequence evolution, the details of the site-
specific selective constraints that governs sequence evolution are not
known a priori, making it challenging to create predictive evolutionary
models. If DCA can accurately model how the selective pressure at a
given site depends on the its context, there is hope that it may also
be used to more accurately understand - and eventually predict - the
evolutionary pathways of a protein.

Our dataset allows to explore in detail the short-term evolution
of natural E. coli strains and our long-term goal is to understand
if DCA could reproduce it. In the spirit of constructing an explicit
protein evolution model based on DCA, we can think of evolution as
a sampling process, where mutation are proposed randomly one by
one, and then selected according to their DCA score ∆Hi.
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Figure 5.11: (Left axis) The distribution of DCA score ∆H for single mutants ob-
served in strain (blue) and randomly generated (orange). While
naturally occurring variants are approximately symmetrically
distributed around zero, the vast majority of random mutations
have a positive score (deleterious mutation). This is a clear sig-
nature of natural selection. (Right axis) The ratio of the number
of observed single mutants to the number of random single
mutants (the acceptance rate of a mutation) which displays an
exponential decay.

In Figure 5.11 we compare the distribution of ∆Hi for observed mu-
tations with random mutations. Similarly to [89] the two histograms
are clearly different. The right red axis shows the acceptance rate of
a mutation as a function of ∆Hi: for each bin, we compute the ratio
between the number of observed single mutants and the number of
random single mutants. It displays an exponential decay (over almost
6 orders of magnitude).

This suggests that, for short-term evolution, the probability of ac-
cepting a substitution of a the wild-type amino acid ai at position i
with amino acid b is given by:

Pacc(ai → b|a1, . . . , ai−1, ai+1, aL) ∼

∼ exp
(
− βacc∆H(ai → b|a1, . . . , ai−1, ai+1, aL)

)
(5.11)

with βacc ' 0.7. Note that, the distribution of random single mutants
is slightly different from that of Couce et al. [89], Panel B of Figure 5.2.
It contains more neutral mutations. Indeed, we performed our analysis
on the entire protein sequence of the reference strain, while in [89]
only the Pfam domains contained in each sequence were considered.
Therefore we mutate also residues belonging to linking regions, which
usually do not have a considerable impact on fitness.

Next, we studied the relative multiplicity of single mutants within
the population of E. coli strain as a function of the ∆Hi. In Figure
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5.12 we compare the distribution of ∆Hi of single mutants with the
distribution of the same set of single mutants where we removed all
duplicates, i.e. considering every single mutation only once. It shows
that deleterious single mutations are present in the dataset, but they
are exponentially depressed in frequency (over almost 3 orders of
magnitude).

Figure 5.12: (Left axis) The distribution of DCA score ∆H for single mutants
observed in strain (blue) and the same set of single mutants
removing all duplicates (green). (Right axis) The ratio between
the distribution shows that the frequencies of single mutations
in strains depends exponentially by their DCA energies.

While these results are still preliminary, they support the idea that
DCA can be used to develop more accurate evolutionary models. In-
deed, models of protein sequence evolution usually neglect the details
of the site-specific selection, making it challenging to create predictive
evolutionary models. If DCA can accurately grasp how the selective
pressure at a given site depends on its context, this may open the door
to a data-driven evolutionary model.
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Direct-coupling analysis was originally proposed as a tool to help
contact prediction from sequence information alone. The basis of
DCA is a pairwise statistical model, taking the form of a generalized
Potts model, whose parameters are inferred from a set of phylogenet-
ically related biological sequences belonging to a multiple sequence
alignments. The great success of DCA for protein structure prediction,
encouraged its application in other contexts, from prediction of muta-
tional effects to modeling of fitness landscapes, which we presented
in the first part of this thesis.

In this second part, we have shown how the machinery of DCA can
help the prediction of protein–protein interactions. PPI can be studied
focusing on two major aspects, (i) large scale analysis of protein-
protein interaction networks, and (ii) identification of the interaction
interfaces within a protein complex.

The first was investigated in Chapter 3. The underlying idea of
our approach is that interacting proteins coevolve on multiple but
interconnected scales: from correlated presence/absence across species,
to correlations in amino-acid usage. Our approach combines these
different scales to predict currently unknown, but biologically sensible
interactions.

In Chapter 4, we focused on protein interaction surfaces. In prin-
ciple, contacts across the interface can be identified by analyzing the
coevolutionary signals between residues which are located on the
protein surface. However, the interface coevolutionary signal is weak
and difficult to detect with a global statistical modeling without using
structural supervision. We have shown that we can improve the pre-
dictive performance of DCA by integrating typical patterns of contacts
(due to secondary structure) into the DCA predictions. We demon-
strated the effectiveness of our approach in terms of interpretability
and prediction performance. It can achieve results comparable to much
more complex, data hungry and hardly interpretable, deep-learning
methods. Even if not out-performing these methods in applications,
we think that interpretability is important to understand how the
contact information is hidden in sequence data.

Finally, in the third part of this thesis (Chapter 5), we investigated
the fitness landscape properties at the local and global scale through
an extensive genome-wide study of E.coli strains. We have shown that
intragenic epistatic signal is virtually absent for recently diverged E.
coli strains. At the same time, via the context-dependent entropy, we
quantitatively and qualitatively characterized how the variability (i.e.
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tendency to mutate) of a residue is influenced by the amino acids
present in all other positions of the protein.

We may thus conclude that epistasis is very weak in the local
landscape explored by the polymorphisms between strains, but that
the shape of this local landscape is strongly dependent on the joint
epistatic couplings to the entire background sequence.

To conclude, two lines of future research are proposed following
the ideas presented in Chapter 5. First, there seems to be a non trivial
connection between genomic distance and epistasis, which is worth
investigating further. The ultimate goal would be to determine to what
extent the epistatic effects are related to genetic distances between
strains or species.

The second one concerns the exciting field of modeling protein
evolution. Usually, in models of protein sequence evolution, the details
of the site-specific selection that govern sequence evolution are not
known a priori, making it challenging to create predictive evolutionary
models. If DCA can accurately grasp how the selective pressure at a
given site depends on its context, it might also be used to gain insights
into the evolutionary pathways of a protein.

In analogy to the sequence-structure relationship, this might be a
field where the abundant genomic data can lead to a breakthrough in
our understanding, by the consequent use of data-driven modeling
techniques.



Part V

A P P E N D I X





A
A P P E N D I X

a.1 phydca : supplementary information

a.1.1 Input data

The starting point of our analysis is the phylogenetic profile matrix
(PPM): a binary matrix (na

i )
a=1,...,M
i=1,...,N whose entries capture the presence

(na
i = 1) or absence (na

i = 0) of a domain i in genome a, with a =

1, . . . , M (M being the number of genomes) and i = 1, . . . , N (N being
the number of domains). As discussed in chapter 3, the domains
(the columns of the PPM) are then compared with each other to
look for functionally related domains. The data we use are extracted
from the Pfam 30.0 database (version of July 2016), and assigned to
bacterial or eukaryotic species using the Uniprot species list available
on (http://www.uniprot.org/docs/speclist).

a.1.2 Similarity measures

In standard phylogenetic profiling the correlations between the columns
(ni, nj) describing a pair of domains are usually evaluated via the
Hamming distance, Pearson correlation or the p-value of the Fisher’s
exact test. We briefly describe each below.

1. Hamming distance: counts the number of bits which differ be-
tween two binary strings ni, nj divided by the total number of
domains, i.e. the number of species containing exactly one of the
two domains,

dH(ni, nj) = |{na
i 6= na

j , a = 1, . . . , M}|/M

2. Pearson Correlation: measures the linear dependence between two
domains ni, nj. It is defined as

r(ni, nj) =
∑M

a=1(n
a
i − n̄i)(nb

j − n̄j)√
∑M

a=1(na
i − n̄i)2

√
∑M

a=1(na
j − n̄j)2

3. p-value of Fisher Test: for each couple ni, nj we construct an auxil-
iary 2× 2 matrix:(

M1,1 M1,2

M2,1 M2,2

)
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Figure A.1: APC correction. The plots show the PPV curves with and without
APC correction for the PLM approximations.

with
M1,1: Number of species that do not have neither domain i nor j;
M1,2: Number of species that have i but not j;
M2,1: Number of species that do not have i but have j;
M2,2: Number of species that have both i and j.
We define Ri = ∑j Mi,j, Cj = ∑i Mi,j and we have M = ∑i,j Mi,j.
We calculate the conditional probability of getting the actual
matrix given the particular row and column sums:

Pcuto f f =
( R1

M11
)( R2

M21
)

(M
C1
)

=
R1!R2!C1!C2!

M!M1,1!M1,2!M2,1!M2,2!

which is a multivariate generalization of the hyper-geometric
distribution. Theoretically, we analyse all the matrices of non
negative integers consistent with the marginals Ri,Cj and M, and
for each of them we calculate the p-value. The p-value of the test
is the sum of all p-values which are P ≤ Pcuto f f . Small p-values
thus indicate atypical cases related to correlations between the
distributions of the two domains across species.

a.1.3 Average product correction

While for residue-level DCA , APC-corrected scores have a significantly
better prediction accuracy, an a posteriori analysis show that the effect
is small and almost negligible in PhyDCA (see Figure A.1).
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Figure A.2: Metrics summary. The plots show the distribution of the met-
rics (Hamming distance, Pearson correlation, the P-value of the
Fisher’s exact test mean-field and PLM phyletic couplings) for
all the couples of domains existing in the \textit{E. coli} K-12

MG1655 strain..

a.1.4 Results

Figure A.2 shows the histograms of the similarity measures (Hamming
distance, Pearson correlation, the P-value of the Fisher’s exact test
and phyletic couplings) for all the pairs of domains considered in the
main text. Related domains ought to have profiles of high phyletic
couplings, high correlations, low p-value of Fisher’s exact test or low
Hamming distances, since the first two are similarity, the second two
more dissimilarity measure

In Figure A.3 we plot the phyletic-couplings Jij found using the
MF and the PLM approximations. Predictions are done by sorting all
couplings in decreasing order. They are evidently highly similar, but
include a partial reordering. To extract Figure 2 of chapter 3, the blue
dots are interpreted as false positives. From Figure A.3 it is evident
that these false positives are - even for very large coupling values -
similarly distributed for the two approximations in between the true
positives (red points), therefore showing that none of the methods has
a clear advantage in precision.

In Figure A.4 we plot the PPV as a function of the couplings (not
the cumulative PPV, but PPV per bin of coupling values). It shows that
the enrichment of true positive predictions is very high in the tail of
large couplings (JPLM > 0.5 or JMF > 1.5), and remains very limited
for smaller couplings (JPLM < 0.3 or JMF < 0.5).

a.1.5 Paralog matching

To identify physical interactions we use the procedure introduced
in [54], which studies coevolution of domain pairs at the level of
the individual residues. The matched MSA is than used to identify
interacting protein families: an average of the four highest inter-protein
residue-residue PLM scores larger than 0.2 is a strong indicator for
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Figure A.3: Comparison PLM and MF approximations. The scatter-plot shows the
phyletic couplings found using the MF and the PLM approxima-
tions. The blue points are domains pairs are all domain pairs
while the red points are those belonging to the positive set of
known domain-domain relations (note that the red points form
a subset of the blue points). The plot shows that the advan-
tage of PLM over MF (or viceversa) is not visible in the case of
domain-domain co-occurrence.}

a potential interaction, at least of the joint MSA has an effective size
Me f f > 200.

Figure A.5 and Figure A.6 show the results of the matching proce-
dure for the domain pairs inside the E. coli K-12 MG1655 strain.

Figure A.7 shows the results of residue-level DCA for the 200 domain
pairs of strongest phyletic couplings, which are co-localized in one
protein in E. coli. Due to the co-localization, the generation of a joint
MSA is trivial in this case; the paralogs-matching can be avoided. Note
that domains can co-occur in the same protein without direct physical
interactions. Out of the 200 pairs, 144 of these domain pairs are also
listed in iPfam, meaning that a direct physical interaction is structurally
known.

a.1.6 Network analysis

As stated in the main text, CoPAP and PhyDCA treat very different
confounding factors of coevolutionary analysis – phylogenetic biases
and indirect correlations. Nevertheless from Figure 3 of the main text,
it appears that almost none of the correlated pairs strongly coupled in
PhyDCA, are actually discarded by CoPAP. But are the correlations
of pairs, which are retained by CoPAP as non phyletically coupled,
but discarded by PhyDCA, really an indirect network effect of the
PhyDCA couplings?

To answer this question, we first introduce in Figure A.8 two scat-
ter plots of the phyletic couplings vs. Pearson correlations between
domain pairs, in the first case for the 3611 domain pairs of highest
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Figure A.4: PPV as a function of couplings. The left figures show the sharp
drop of PPV from values close to one for Jplm > 0.5 with the
PLM approximation (or JMF > 1.5 in the MF approximation) to
very low PPV for Jplm < 0.3 (or JMF < 0.5). The right histograms
show the distribution of the phyletic couplings for all domains
pairs and for known domain-domain relations. The kink in the
histograms between the bulk of small Jij and the tail of large
Jij is observed to provide a good cutoff value for high-quality
predictions. Once again, it is located close to Jplm = 0.5 or (JMF =
1.5).
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Figure A.5: Matching procedure for E. coli. The panel on the left shows
the result of the matching procedure for the 500 most signif-
icant predictions for domain families existing inside the K12

strain of E. coli (the list can be found on the Github page at
results/ECOLI_matching_results.dat). On the right, as a com-
parison, a random matching for the same domain pairs

Figure A.6: Matching procedure for E. coli. domains in iPfam. The panel on
the left shows the result of the matching procedure for the
200 pairs of highest phyletic couplings belonging to the iPfam
database (the complete list can be found on the Github page at
results/ECOLI_matching_iPfam_results.dat) . On the right, as
a comparison, a random matching for the same domain pairs.
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Figure A.7: Results of residue-level DCA for domains co-localized in the same protein.
The panel shows the results of residue-level DCA for the 200

domain pairs of strongest phyletic couplings. Co-localization
does not necessarily imply physical interaction. However, out
of 200 pairs, 144 are also listed in iPfam database as being in
physical contact in experimentally resolved PDB structures. Due
to their co-localization, the generation of a joint MSA is trivial in
this case and the paralogs-matching can be avoided.

CoPAP score, in the second case for all domain pairs. In both cases,
we see a clear triangular shape, indicating that large couplings lead
to large correlations, but large correlations can exist between weakly
coupled pairs. Since our PhyDCA model reproduces correlations us-
ing couplings, the latter case must result from indirect correlations.
Also as a consequence, the phyletic coupling network is substantially
sparser than the correlation network.

To corroborate this, in Figure A.9 , we consider the network of
the 1000 strongest phyletic couplings and study the correlations as
a function of the shortest-path distance between domains along this
network. Correlations decrease with distance until they saturate at a
low but non-zero level. This is coherent with the idea that empirical
correlations found in the data have at least three contributions - di-
rect correlations induced by direct couplings (at distance 1), indirect
couplings induced by coupling chains, and a ground level of correla-
tions, which possibly result from phylogenetic correlations between
the species and other sampling effects.

If we take alternatively the network induced by the 1613 pairs,
which have large Pearson correlations and are preserved by CoPAP
(the intersection of the red and green circles in Figure 3A of chap-
ter 3), we also find a correlation decrease (as to be expected in any
sparsely connected graphical model), cf. Figure A.10. However, the
decay is slower than on the PhyDCA network, even if the network is
denser. Pairs in the PhyDCA network are thus less correlated than
pairs at the same distance in the correlation network, which shows
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Figure A.8: Couplings vs. correlations. The figure shows a scatter plot of Phy-
DCA couplings vs. Pearson correlations, for the 3611 domain
pairs of highest CoPAP score in the upper panel, and for all
domain pairs in the lower one.

Figure A.9: Correlation decay on PhyDCA network. The figure shows the decay
of empirical correlations between pairs of domain belonging to
the network of the first 1000 strongest phyletic couplings as a
function of their shortest-path distance on this network.
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Figure A.10: Correlation decay on CoPAP-Pearson network. The figure shows
the decay of empirical correlations between pairs of domain
belonging to the network of the 1613 domain pairs of strongest
CoPAP-preserved Pearson correlations (the intersection of the
red and green circles in Figure 3A of chapter 3) as a function of
their shortest-path distance on this network.

that the phyletic coupling network more parsimoniously explains the
connectivity patterns present in the data.

a.1.7 All bacteria

In the main text we use the model organism E. coli as reference genome
in order to have a large set of known domain-domain relationships. In
this section we consider a broader selection of genomes by applying
the same methodology to all 9,358 Pfam domains appearing in bacteria.
To access the accuracy of our prediction we compile a number of
known domain-domain relationships: intra-protein localization (out
of 2,972,104 proteins 866,591 contain multiple domains, giving rise
to 26,381 distinct domain-domain relations), domain-domain contacts
in 3d structures (from the iPfam database, for a total of 545 known
relationships), protein-protein interaction (from the IntAct database,
obtaining 67,409 domain pairs). This leads to a total of 92,428 known
relationship (cf. Figure A.11, Panel A).

We then select the couplings between domains which are only
present in E. coli genome (cf. Figure A.11, Panel B and C) finding96%
correlation with the couplings inferred in the main text, thus proving
the robustness of the results with respect to the selection of domains.

We have applied the paralog-matching analysis to the 200 most
coupled bacterial domain pairs (see Figure A.12). A list of the domain
pairs, their phylogenetic coupling and the DCA score can be found on
the Github page at results/ALLBACTERIA_matching_results.dat).
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Figure A.11: Phylogenetic couplings. Panel A shows the PPV of the phyletic cou-
plings of all bacterial domains for predicting domain-domain
relationships (including protein architecture, iPfam and IntAct
entries). Panel B shows a histogram of couplings Jij, as inferred
by PLM , for the domains present in all bacteria and for those
appearing only in E. coli. In Panel C we retain from the bacterial
phyletic couplings only the couplings between domains present
in E. coli. Then we compare them with the couplings found by
the procedure described in the main text, finding a correlation
of 96% between the two.

Figure A.12: Matching procedure for bacteria: Panel A shows the effective se-
quence number and the DCA scores for the 200 most significant
PhyDCA predictions. Panel B shows a random matching for the
same domain pairs.
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Figure A.13: Performance of FilterDCA on the test set using different learning
strategies. Training the logistic regression with residues pairs
with DCA score larger than zero (full lines) rather than using all
pairs of residues (dashed lines), leads to a slight improvement
in the performance. In such a way, the classifier concentrate on
cases which show more reliable DCA scores.

a.2 filterdca : supplementary information

a.2.1 Handling imbalanced datasets

In chapter 4 of the main text, it is mentioned that in the training set
the incidence of class non-contact is dominant, being found in ∼ 99%
of cases. We tried two different strategies for the learning: first using
all residue pairs for training, second restricting the training set on
residues pairs with DCA score larger than zero. Figure A.13 shows that
the second one leads to slight better results.

a.2.2 Comparison issues

To access the performance of FilterDCA it is important to compare it
with at least two methods: unsupervised DCA and a CNN.

To our knowledge the only deep-learning method devoted to inter-
protein contact prediction is RaptorX Complex [77] which uses the same
architecture of RaptorX [78] (see Figure 4.1) and then apply “transfer-
learning” (see Section 4.1.1). Unfortunately, it does not allows for a
fair comparison. Indeed, no code is publicly available, and we can
only submit our MSAs to a web server which is trained on all single-
chain proteins available on the PDB, thereby making impossible to
avoid overfitting when studying intra-protein inter-chain interactions.
Therefore, in the main text we have compared our performances with
the deep learning method Pconsc4[88]. PconsC4 has been developed
to predict intra-protein contacts. However, its training set (which
consists of 2891 proteins culled from PDB) contains 9% of multi-domain
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proteins (no overlap with our test sets). It adopts the U-net architecture
[100], designed for image segmentation, which is composed of a
series of CNNs with shortcut connections. 72 features are calculated
and fed into PconsC4: 68 one-dimensional sequential features and
four pairwise features, the GaussDCA score [101], APC-corrected
mutual information, normalized APC-corrected mutual information,
and cross-entropy.
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Sujet : Vers une analyse co-évolutive à l’échelle du génome

Résumé : Les progrès des technologies de séquençage ont révolutionné les sciences de la vie.
L’explosion de données de séquences génomiques a conduit au développement d’une grande
variété de méthodes, à l’interface entre la bioinformatique, l’apprentissage automatique et
la physique, qui visent à approfondir la compréhension des systèmes biologiques à partir
de telles données. Les méthodes co-évolutives par paires, telles que l’analyse par couplage
direct (DCA), peuvent extraire une multitude d’informations à partir de données de séquence
uniquement, telles que des contacts structurels ou des effets phénotypiques de substitutions
d’acides aminés dans des protéines. Bien qu’elles aient été principalement appliquées à un
certain nombre de protéines exemplaires, il est maintenant temps de les appliquer au niveau
du génome entier.
Dans cette thèse, nous nous appuions sur ces modèles et les développons pour traiter des
questions biologiques à l’échelle du génome. Dans un premier projet, nous avons étudié le
réseau d’interactions protéine-protéine en combinant des signaux co-évolutifs à des échelles
multiples mais interconnectées. Dans un projet ultérieur, nous discutons de la possibilité
d’inclure des informations complémentaires aux séquences, telles que des schémas de contacts
typiques, afin d’améliorer la prédiction de contacts entre protéines. Enfin, à travers une vaste
étude portant sur l’ensemble du génome des souches d’E. Coli, nous montrons comment les
mécanismes de la DCA peuvent être utilisés pour étudier les propriétés du paysage de la
fitness à l’échelle locale et globale.

Subject: Towards a genome-scale coevolutionary analysis

Abstract: Advances in sequencing technologies have revolutionized the life sciences. The
explosion of genomic sequence data has prompted the development of a wide variety of
methods, at the interface between bioinformatics, machine learning, and physics, which aim at
gaining a deeper understanding of biological systems from such data.Pairwise coevolutionary
methods, in particular Direct Coupling Analysis (DCA), can extract a multitude of information
from sequence data alone, such as structural contacts or phenotypic effects of amino-acid
substitutions in proteins. While they have been mainly applied to a number of single exemplary
proteins, it is now time for a broader application at the level of the whole genome.
In this thesis, we build upon and extend these models to address biological questions at
the genome scale. In a first project, we investigate the protein-protein interaction network
by combining coevolutionary signals at multiple but interconnected scales. In a subsequent
project, we discuss the possibility of including complementary information to sequences, such
as typical patterns of contacts, to improve the inter-protein contact prediction. Finally, through
an extensive genome-wide study of E. coli strains, we show how the machinery of DCA can
be used to investigate the fitness landscape properties at the local and global scales.
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