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Abstract

Mobile crowdsensing is a powerful mechanism to contribute to the ubiquitous sensing of
data at a relatively low cost. With mobile crowdsensing, people provide valuable observa-
tions across time and space using sensors embedded in/connected to their smart devices,
e.g., smartphones. Particularly, opportunistic crowdsensing empowers citizens to sense ob-
jective phenomena at an urban and fine-grained scale, leveraging an application running in
the background. Still, crowdsensing faces challenges: The relevance of the provided mea-
surements depends on the adequacy of the sensing context with respect to the phenomenon
that is analyzed; The uncontrolled collection of massive data leads to low sensing quality
and high resource consumption on devices; Crowdsensing at scale also involves significant
communication, computation, and financial costs due to the dependence on the cloud for
the post-processing of raw sensing data.

This thesis aims to establish opportunistic crowdsensing as a reliable means of envi-
ronmental monitoring. We advocate enforcing the cost-effective collection of high-quality
data and inference of the physical phenomena at the end device. To this end, our research
focuses on defining a set of protocols that together implement collaborative crowdsensing
at the edge, combining:

• Inference of the crowdsensor’s physical context characterizing the gathered data: We
assess the context beyond geographical position. We introduce an online learning
approach running on the device to overcome the diversity of the classification per-
formance due to the heterogeneity of the crowdsensors. We specifically introduce a
hierarchical algorithm for context inference that requires little feedback from users,
while increasing the inference accuracy per user.

• Context-aware grouping of crowdsensors to share the workload and support selective
sensing: We introduce an ad hoc collaboration strategy, which groups co-located
crowdsensors together, and assigns them various roles according to their respective
contexts. Evaluation results show that the overall resource consumption due to
crowdsensing is reduced, and the data quality is enhanced, compared to the cloud-
centric architecture.

• Data aggregation on the move to enhance the knowledge transferred to the cloud:
We introduce a distributed interpolation-mediated aggregation approach running
on the end device. We model interpolation as a tensor completion problem and
propose tensor-wise aggregation, which is performed when crowdsensors encounter.
Evaluation results show significant savings in terms of cellular communication, cloud
computing, and, therefore, financial costs, while the overall data accuracy remains
comparable to the cloud-centric approach.

In summary, the proposed collaborative crowdsensing approach reduces the costs at
both the end device and the cloud, while increasing the overall data quality.

Key Words Context Inference, Crowdsensing, Middleware, Mobile Sensing, Context
Awareness, Environmental Monitoring, Ubiquitous Sensing, Pervasive Computing, Data
Aggregation, Opportunistic Relay.



Résumé

Le crowdsensing mobile permet d’obtenir des données sur l’environnement à un coût re-
lativement faible. De fait, les personnes peuvent collecter et partager des observations
spatio-temporelles au moyen de capteurs intégrés dans les appareils intelligents comme
les smartphones. En particulier, le crowdsensing opportuniste permet aux citoyens de dé-
tecter des phénomènes environnementaux à l’échelle urbaine grâce à une application dédiée
s’exécutant en arrière plan. Cependant, le crowdsensing est confronté à différents défis :
la pertinence des mesures fournies dépend de l’adéquation entre le contexte de détection
et le phénomène analysé ; la collecte incontrôlée de données entraîne une faible qualité
de détection ainsi qu’une forte consommation des ressources au niveau des appareils ; le
crowdsensing à large échelle induit des coûts importants de communication, de calcul et
financiers en raison de la dépendance au cloud pour le traitement des données brutes.

Notre thèse vise à rendre le crowdsensing opportuniste comme un moyen fiable d’obser-
vation de l’environnement urbain. Pour ce faire, nous préconisons de favoriser la collecte
et l’inférence du phénomène physique au plus proche de la source. À cet effet, notre
recherche se concentre sur la définition d’un ensemble de protocoles complémentaires, qui
mettent en œuvre un crowdsensing collaboratif entre les noœuds mobiles en combinant :
• L’inférence du contexte physique du crowdsensor, qui caractérise les données re-

cueillies. Nous évaluons un contexte qui ne se limite par à une simple position
géographique et nous introduisons une technique d’apprentissage du contexte qui
s’effectue au niveau de l’appareil afin de pallier l’impact de l’hétérogénéité des crowd-
sensors sur la classification. Nous introduisons spécifiquement un algorithme hiérar-
chique pour l’inférence du contexte qui limite les interactions avec l’usager, tout en
augmentant la précision de l’inférence.

• Le groupement contextuel des crowdsensors de manière à partager la charge et ef-
fectuer une captation sélective. Nous introduisons une stratégie de collaboration ad
hoc qui vise à affecter différents rôles aux crowdsensors, afin de répartir la charge
entre les crowdsensors proches en fonction de leur contexte respectif. L’évaluation
de notre solution montre une réduction de la consommation globale des ressources
et une meilleure qualité des données, comparée à celle basée sur une architecture
cloud.

• L’agrégation nomade de données pour améliorer les connaissances transférées au
cloud. Nous introduisons une solution à l’agrégation des données observées qui
distribue l’interpolation sur les crowdsensors. Les résultats de son évaluation mon-
trent des gains importants en termes de communication cellulaire, de calcul sur le
cloud et donc de coûts financiers, tandis que la précision globale des données reste
comparable à une approche centralisée.

En résumé, l’approche collaborative proposée pour le crowdsensing réduit les coûts à
la fois sur le terminal et sur le cloud, tout en augmentant la qualité globale des données.

Mots clés Inférence de contexte, Contexte de détection, Crowdsensing, Middleware,
Détection mobile, Surveillance de l’environnement, Détection omniprésente, Calcul ubiq-
uitaire, Agrégation de données, Relais opportuniste.
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Chapter 1
Introduction

Contents
1.1 Crowdsensing: A Ubiquitous Data Source . . . . . . . . 1

1.1.1 Why is Crowdsensing not as Efficient as Expected? . . . . 4
1.2 From Cloud to Edge: Powerful Crowdsensors . . . . . . 6
1.3 Thesis Contribution and Outline . . . . . . . . . . . . . . 8

1.3.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 Crowdsensing: A Ubiquitous Data Source
Mobile crowdsensing [67] is a sensing paradigm that empowers ordinary people to
contribute with data sensed from or generated by their sensor-enhanced mobile de-
vices. In other words, crowdsensing introduces a new shift in the way we collect
data by permitting to acquire local knowledge through the smart devices attached
to people [100], such as smartphones, tablets, smartwatches [72]. As we all know,
sensing is an essential method for acquiring information or data about the phenom-
ena. Recently, both academia and industry have witnessed the rise of AI (Artificial
Intelligence), including machine learning, deep learning, and reinforcement learning
techniques. One of the key enabling bases of such an AI (r)evolution is the big data
because data is the raw input of AI, and the intelligence results from the processed
data; namely, most AI learns from the data and works on data. The demand of
meaningful data is always a necessity to support the increasing AI development and
application. Although the rapid growth of IoT (Internet of Things) devices has gen-
erated a huge amount of data around the world, it is still costly because many of them
require manual deployment in local-scope and are based on short-range networks,
e.g., smart home, smart parking, smart building solutions. Alternatively, mobile
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crowdsensing is a very competitive technique because it is naturally a mobile data
source for big data [114]. Furthermore, crowdsensing supports pervasive computing
over observations, because it is not only a simple "Thing" as in the general definition
of IoT; the device can be equipped with multiple network interfaces, computing ca-
pability, and even linked to human intelligence. In short, mobile crowdsensing does
not only stand as a ubiquitous data source but is also a ubiquitous mini-computer.

The widespread availability of smartphones/tablets/smartwatches and the ever-
increasing number of their embedded sensors have greatly participated in the adop-
tion of mobile crowdsensing solutions. The crowdsensing device does not only in-
clude conventional sensors like motion sensors, position sensors, environment sen-
sors, but also multimedia sensors like cameras, microphones, and even virtual sensors
like social networks. There has been an outstanding growth of mobile crowdsensing
proposals from both academia and industry in the decade [216]. Crowdsensing has
numerous practical applications [141], such as monitoring the public service (e.g.,
time attendance to services, delivery tracking, traffic conditions, and roads, safety
perception), monitoring the environment (e.g., noise and ambiance, atmospheric
conditions, garbage, air quality, classify galaxy pictures), and enrichment of social
media, just to name a few. Various types of applications have been developed to
realize the potential of mobile crowdsensing.

In general, four aspects should be considered in the design of a mobile crowdsens-
ing solution: the task (e.g., type, data, scale), the participation (e.g., involvement,
location, knowledge), the data collection (e.g., routing, transmission, networking)
and the processing (e.g., recruitment, workflow, analysis). At the same time, nu-
merous options are available inside each [157]. For instance, the noise monitoring
of a city block is a sensing task; the participants are ordinary citizens in that block;
the sensing data is sent to a cloud, and the server generates a city noise map. De-
pending on the type of phenomenon being measured or mapped, the application of
mobile crowdsensing can be divided into three categories [126]: (a) environmental,
(b) infrastructural, and (c) social.

We illustrate in Figure 1.1.1 the high-level architecture of a typical mobile crowd-
sensing system. At the base layer, the contributor corresponds to ordinary people,
e.g., citizens contributing to the city, as part of their daily life. People may have
smart devices on-hand or in-pocket, they may stay inside buildings or in open space,
and they may take subways or walk on the street. At the middle layer, mobile de-
vices like smartphones/tablets are multimedia carriers that generate the sensing
data and act as a proxy providing people access to the Internet. Mobile devices are
usually belongings bound to people; these mobile devices and people are together
called "crowdsensors". The crowdsensing application is deployed on crowdsensors
that embed sensors (or connected to personal devices that can be used to sense) or
has access to multimedia data. At the top layer of the system, there is the cloud,
where a server with a database is responsible for the processing, analysis, and stor-
age of the resulting sensing data. It can also be a cloud service such as e.g., Google
Cloud Platform, Microsoft Azure, or Amazon Web Services. Crowdsensors are con-
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Cloud Server

Mobile Device

Ordinary Citizens 

Figure 1.1.1: Crowdsensing system architecture

nected to the Internet via cellular networks or Wi-Fi access points such that they
can transmit their sensing data to the cloud server.

In general, a mobile crowdsensing system implements a five-phases workflow
[219], as described below:

1. Service registration - each crowdsensor needs to register its available services
and location periodically to the cloud server such that it can be recruited to
perform a crowdsensing task as needed.

2. Task creation - a crowdsensing task is defined at the cloud explicitly (i.e., by
the client) or implicitly (i.e., automatically) to indicate the topic of interest
and the attributes (e.g., sensing duration, location, and sensor types).

3. Task assignment - the cloud server selects the crowdsensors that should per-
form the crowdsensing task and sends the related requests. Thus, crowdsensors
can be activated for given sensing works.

4. Individual task execution - the active crowdsensors that have been recruited
carry out the sensing data collection (in a participatory or opportunistic man-
ner), temporarily cache the sensing data and upload the data to the cloud
server periodically.

5. Data integration - the cloud server processes and aggregates the received sens-
ing data, and the (raw and/or analyzed) data is stored in the database for
future queries by clients.

In short, mobile crowdsensing appears to be an effective way of observing a large-
scale phenomenon based on the sensing data provided by people that are distributed
ubiquitously.
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1.1.1 Why is Crowdsensing not as Efficient as Expected?
Originally, the concept of crowdsensing was viewed as a specific type of crowdsourc-
ing tasks [98], in which people were recruited and paid to perform some work. It
was initially named as "participatory sensing" and participants were awarded money
or virtual benefits. For example, if someone reports on Google Maps the traffic con-
dition that she/he experienced, she/he may get traffic conditions of the entire city.
In such participatory sensing, people need to actively engage in sensing activities
by manually determining how, when, what, and where to sense. Obviously, getting
enough participants on-board is the key to the ubiquitous sensing, and a critical
aspect is the proactive efforts required from people. In order to get participatory
sensing work effectively, a supporting incentive/recruitment mechanism is needed.
Plenty of research works have been conducted to improve the participatory sens-
ing approach, with the introduction of novel incentives [165, 60, 87], recruitment
strategies [71, 118, 123, 14, 117, 213, 188], recruitment optimization [206, 189, 198],
as well as security and privacy-preserving mechanisms [130]. The approaches men-
tioned above neutralize the burden put on participants by encouraging them.

What if people are not willing to be disturbed by crowdsensing even with altru-
ism? Here comes a question: is it possible to lower or even eliminate the crowd-
sensing burden on people? In such a case, people would be less/not involved and
thereby unaware of the sensing, and crowdsensing would become opportunistic. The
answer to this question is affirmative. In practice, considering the user involvement,
mobile crowdsensing supports two sensing strategies: participatory crowdsensing
[68, 98, 157] and opportunistic crowdsensing [59, 135, 38]. The difference between
these two schemes is intuitive [111]:

• Participatory crowdsensing requires the proactive involvement of individuals
who consciously contribute with sensing data, by, e.g., taking a picture, re-
porting a road closure, noting a place, answering a questionnaire.

• Opportunistic crowdsensing collects sensing data in the background and does
not necessitate any explicit action from the user, by, e.g., sampling noise
continuously, capturing a photo randomly, tracking location, recording signal
strength.

Since opportunistic crowdsensing does not require user actions, what it senses is
usually a physical phenomenon (rather than a subjective view), and the application
is also widely deployed [133, 105, 143, 172, 26, 38]. We believe that opportunistic
crowdsensing is the best option to support ubiquitous sensing that can be running
anytime and anywhere because it does not disturb the user. Meanwhile, the em-
bedded sensors like temperature, pressure, humidity, proximity, and ambient light,
as well as other more conventional components such as accelerometer, gyroscope,
microphone, compass, and GPS (Global Positioning System) can be all used op-
portunistically to get measurement data [113]. Each new measurement can be up-
loaded with both spatial (e.g., location coordinates) and temporal information (e.g.,
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timestamps). Especially, opportunistic crowdsensing appears to be a scalable and
cost-effective alternative to the deployment of static WSN (Wireless Sensor Net-
work) for the dense coverage of large areas, which is ideal for monitoring the urban
environment.

However, every technique comes with a trade-off; the same applies to the compar-
ison between participatory and opportunistic crowdsensing. Opportunistic crowd-
sensing shifts the burden of gathering high-quality data from people to the appli-
cation and cloud server. The critical aspect is that opportunistic crowdsensing is
uncontrolled: sensing activities are fully automated, usually running in the back-
ground, and do not involve the user. Thus, the system needs to be autonomous and
intelligent because the user should be almost unaware of the crowdsensing proce-
dure. How to effectively collect and process data that is sensed opportunistically
is the most critical problem. In our opinion, opportunistic crowdsensing faces two
major challenges: (i) the low data quality due to the diversity and accuracy of mo-
bile sensors, and the uncontrolled sensing in the background; (ii) the high resource
-including financial- cost due to the massively collected raw data from crowdsensors,
and the reliance on cloud for post-processing. In particular, we elaborate on these
two challenges as:

• Low data quality - First, an opportunistic crowdsensing system provides
wide availability but is also characterized by low data accuracy [166]. Unlike
a WSN, which has a specific function and is regularly calibrated by experts,
heterogeneous crowdsensors often introduce high bias in sensor measurements.
Obviously, one reason is the variety and heterogeneity of crowdsensing devices.
However, the bias is not only due to the low accuracy/lack of calibration of
the contributing sensors, but also due to the diversity of the sensing contexts.
For instance, noise measurements collected from a device placed in a pocket do
not correlate with the one collected out of pocket; temperature measurements
collected out-door differ from the ones collected in-door (at the same location).
Significant errors can be introduced when uncorrelated crowdsensing data are
aggregated. Combining uncorrelated crowdsensing data introduces significant
errors in the resulting knowledge.
In short, the lack of crucial context information, about both accuracy assess-
ment and device placement, may introduce significant errors in the aggregation
of the crowdsensed measurements. In order to properly analyze the heteroge-
neous sensing data coming from crowdsensors, context information is necessary
for understanding the contributed observations.

• High sensing cost - The second critical issue arising with opportunistic
crowdsensing relates to its cost for both the individual crowdsensor, especially
in terms of battery consumption and network traffic fees, and also for the
infrastructure, regarding the uploading to – and further processing on – the
cloud of massive raw data. Moreover, such a cost includes the one associated
with the useless gathering of low-quality data. On the user side, crowdsensing
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devices are typically battery-operated with limited access to energy, and they
are occasionally plugged to power. We note that the device positioning using
GPS and data uploading over cellular networks are the two main sources of
power consumption for a crowdsensing task. At the same time, the one asso-
ciated with the operation of the embedded environmental sensors is relatively
negligible [29]. The continuous positioning and data transmission to the cloud
leads to a dramatic usage of the energy and communication radio. In addition
to power consumption, sensing data uploaded to the cloud is often charged
by the operator according to the traffic amount. Even if users do not need to
take action proactively, they do not like to be disrupted by the crowdsensing
task, and the sensing cost significantly discourages users from contributing.
On the infrastructure side, processing, analysis, and storage of sensing data
on the server are charged as cloud services, according to the usage of resources
depending on computational complexity and data amount. The cloud service
provider also charges the connection and network flow for crowdsensing.
Overall, providing low-quality and a massive amount of raw measurements
does not improve the crowdsensing utility but notably increases the sensing
costs.

This thesis addresses the efficiency of opportunistic mobile crowdsensing with
respect to these two criteria: data quality and sensing cost.

1.2 From Cloud to Edge: Powerful Crowdsensors
As aforementioned, opportunistic crowdsensing may continuously generate a massive
amount of sensing data, which consumes many resources (e.g., bandwidth, energy,
and cache) on end devices and may provide worthless information. There may be
significant redundancy in the content of the sensing data gathered ultimately on the
cloud [126]. In order to extract useful information from opportunistic crowdsensing,
the traditional cloud-based crowdsensing system post-processes the vast amount
of raw sensing data (through, e.g., filter, aggregation, data mining) received from
ubiquitous crowdsensors [82]. Cloud-based crowdsensing often suffers from the high
resource consumption on the crowdsensing device due to raw data collection and
high operational cost on the centralized server due to data post-processing, hence
the poor overall efficiency and scalability.

In recent years, the proliferation of IoT and the success of cloud computing and
services have pushed forward the edge computing [174, 169], which is to process the
data closer to end devices. In the IoT context, it has been shown that edge com-
puting enhances mobile computing from the standpoint of scalability, battery life
constraint, bandwidth cost-saving, as well as data safety and privacy [18]. The ben-
efit of edge computing results in its adoption in, e.g., cloud offloading, smart home,
smart city. Although the "Edge Computing" terminology refers to the deployment of
edges server at the network border, we believe that the computing can be offloaded
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to the very edge, that is, the end devices (crowdsensors). Nowadays, smartphones
can perform many complex computing tasks such as activity recognition, photo en-
hancement, augmented reality, 3D online games, and even machine learning. Since
the power of mobile devices like smartphones is significantly increasing, it is our
perspective that in the future, any end device can play the role of an edge server. In
such a situation, the edge computing can refer to collaboration among several end
devices [91, 46]. We consider this type of in-network collaboration as a branch of
edge computing.

Inspired by the rise of edge computing, we argue that combining the power of
mobile edge computing and the large-scale opportunistic crowdsensing can realize
higher efficiency and better coverage for the sensing of smart cities. Promoting
collaboration at the very edge with opportunistic crowdsensing is beneficial with
regards to three aspects:

• Computing perspective: The cloud-computing resource consumption can
be offloaded to the edge. The smartphone’s computing power has evolved
at a very high speed, thanks to the semiconductor technology. For example,
activity recognition using traditional machine learning [2, 66], and even deep
learning (e.g., TensorFlow Lite), can run on smartphones [112, 81]. Future
trends show that more energy, processing, and storage will be given to mobile
smartphones that will deal with complex analysis. Thus, collaboration among
mobile devices would be more contributory to the future mobile system. The
collaboration will lead to very early data processing before uploading it to the
cloud.

• Networking perspective: The data transmission to and reception on the
cloud can be reduced. With the evolution of high-performance multi-network
smartphones (e.g., Bluetooth, Wi-Fi, 5G interfaces), it has been shown that
cellular networks can benefit from D2D (Device-to-Device) communications
between smartphones [12, 13, 122]. Meanwhile, the MANET (Mobile Ad hoc
NETwork) [1] has been studied for decades and has already been partly im-
plemented in industry. It allows a decentralized type of wireless network does
not rely on a pre-existing infrastructure, such as routers in wired networks or
access points in managed wireless networks. For instance, Wi-Fi Direct [7] is a
protocol that standardizes the direct communication between Wi-Fi-enabled
mobile devices. D2D communication is an enabling technology to support ad
hoc collaboration at the edge.

• Human perspective: The behavior and social interaction among people can
be studied and leveraged. Citizens have habits, and their activities and in-
teractions follow some patterns [56, 167, 180]. In reality, human mobility is
not at all random, and the dynamics of citizen interactions mostly depend on
social ties [40, 41]. The property of human mobility primarily supports col-
laboration among crowdsensors via D2D communication. For instance, in the
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crowd computing [31], when an application is willing to perform a D2D task,
it chooses the best peer with which to collaborate and sends the task to the
latter. The collaboration requires discovering the nearby devices and evaluat-
ing the goodness of collaborative peers, based on the device and human/device
holder capabilities.

We believe that the optimal method to achieve opportunistic crowdsensing effi-
ciency is by enforcing low cost and – at the same time – high-quality data collection
at the very edge. That is, maximizing the effectiveness of opportunistic crowd-
sensing rather than gathering massive raw sensing data at the cloud server (which
requires costly post-processing to produce meaningful knowledge). The above leads
us to argue that "collaborative crowdsensing at the edge" [46], which leverages D2D
communication and human interactions, may significantly contribute to enabling
cost-effective, high-quality opportunistic crowdsensing by moving part of the pro-
cessing of the sensing data closer to the end devices.

1.3 Thesis Contribution and Outline
This thesis aims to raise opportunistic mobile crowdsensing to a reliable means of
observing phenomena, focusing on urban environmental monitoring. That is, we
address the challenges associated with opportunistic crowdsensing in the context
of urban environmental monitoring. The mobile crowdsensors contribute measure-
ments related to the physical environment (e.g., ambient temperature, air pressure,
ambient humidity, ambient light, sound level, magnetic field.) using the embed-
ded/connected sensors on smart devices.

For the purpose of increasing crowdsensing data quality while decreasing the
crowdsensing cost both at end devices and on the cloud – thereby enhancing the
overall efficiency of opportunistic mobile crowdsensing – we specifically promote
the context-aware collaboration among crowdsensors. To this end, this thesis con-
tributes to defining a set of protocols – from design to prototype implementation and
evaluation – that together support "context-aware collaborative mobile crowdsensing
at the edge" [46], by combining three complementary features:

• ContextSense: personalized context inference - The inference of physi-
cal context is essential to characterize the gathered crowdsensing data. Indeed,
users may contribute valuable observations across time and space using sensors
embedded in their smart devices. However, the relevance of the provided mea-
surements depends on the adequacy of the sensing context with respect to the
analyzed phenomena. While the meaning of context is broad, we concentrate
more specifically on assessing the sensing context when gathering observations
about the physical environment beyond its geographical position in the Eu-
clidean space, that is, whether the sensor is in-/out-pocket, in-/out-door and
upper-/under-ground.
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The challenge is to devise a classifier that accounts for the diversity in the
characteristics of contributing devices, the behaviors of contributing users,
and even the usage scenarios. For instance, the inference needs to cope with
the availability of features depending on the device and user preference. For
this purpose, we personalize the classifier to overcome the disparity of the
classification performance. We introduce an online learning approach to sup-
port the local inference of the sensing context that can evolve according to the
environment in which it takes place. While the personalized inference of the
sensing context is running on the device, feedback is requested to the end user
to assess the correctness of the inference result and update the current classi-
fier accordingly. Our approach features a hierarchical algorithm explicitly for
the inference that limits the number of opportunistic feedback required to the
user, while increasing the accuracy of the context inference for each user.

• BeTogether: group-based crowdsensing - The objective of the collabora-
tive group is to leverage D2D communication so that co-located crowdsensors
cooperate (e.g., filter/aggregate sensing data) and share the available resources
(e.g., Internet access, location). Traditional cloud-based crowdsensing requires
that each crowdsensor provides the spatio-temporal sensing data to the cloud
server, which processes it. D2D wireless networks such as Bluetooth and Wi-Fi
Direct have brought the ability to collaborate using short-range communica-
tion.

In order to support cooperation among crowdsensors, we introduce a context-
aware and cloud-less collaboration strategy in which crowdsensor groups are
maintained in an autonomous and distributed way to monitor a physical phe-
nomenon of interest. It divides a crowdsensing task into sub-tasks following
the principle of teamwork. The context such as user activity (e.g., static vs
mobile) and the physical environment (e.g., in-door vs out-door) are used to
create homogeneous groups constituted of crowdsensors that tend to stay to-
gether. Indeed, grouping together the crowdsensors that are co-located and
that behave alike facilitates the collection of measurements that relate to a
shared physical phenomenon and that henceforth can be aggregated locally. In
order to optimize the task assignment and to ensure that only relevant group
members perform sensing, the crowdsensor contexts such as in-/out-pocket,
the sensor accuracy, and remaining power are used to estimate the utility of
the crowdsensor, which defines to which extent a member can provide the
service. Overall, our group-based strategy introduces a context-aware clus-
tering strategy and task allocation scheme that enhances the local and global
crowdsensing efficiency. We provide an evaluation of the proposed solution
using analytic evaluation, implementation, and simulation on dataset. The
results support the adoption of context-aware collaboration for opportunistic
crowdsensing by achieving quality/cost-efficiency compared to the cloud-based
architecture.
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• IAM : data processing at the edge - The collaborative data processing at
the edge leverages smartphones’ computing power to enhance the knowledge
before transmitting to the cloud. The final step of this thesis is focused on
the pre-processing of the crowdsensing data to reduce the data uploading and
resource consumption on the cloud. Indeed, large-scale crowdsensing usually
involves significant communication, computation, and financial costs due to
the dependence on the cloud for the collection and post-processing (i.e., fusion,
interpolation, and aggregation) of a vast amount of raw sensing data.
As an alternative, we investigate a distributed data processing approach to
pre-process the sensing data at the very edge, thereby reducing the resource
consumption and enhancing the relevance of the knowledge collected on the
cloud. As a result, part of the work that is traditionally carried out by the
cloud server is transferred to the ubiquitous crowdsensors. We introduce a dis-
tributed interpolation-mediated aggregation approach running on the crowd-
sensors. To achieve so efficiently, we model interpolation as a tensor com-
pletion problem on each crowdsensor and propose a tensor-wise aggregation
following an opportunistic relay process. The aggregation is based on oppor-
tunistic meetings, and the relay decision is made based on the quality of the
inferred data. The solution results in shifting the cloud-centric approach to
a distributed interpolation and aggregation on the move based on crowdsen-
sor P2P (Peer-to-Peer) meetings. Not only the cloud resource is saved but
also D2D relays significantly replace the crowdsensor uploading. The evalu-
ation using real-world crowdsensing datasets shows that our solution allows
significant savings in terms of cellular communication and cloud computing,
and therefore financial costs. Furthermore, the overall data accuracy remains
comparable to that of the cloud-centric approach.

This thesis follows the following structure: Chapter 2 surveys the background
and existing work of efforts on increasing the quality and decreasing the cost, while
only few work have proposed collaborative crowdsensing; Chapter 3 presents our
contribution to user-centric context inference for crowdsensing and shows the accu-
racy enhancement; Chapter 4 introduces our work on context-aware collaborative
crowdsensing group and shows the quality/resource benefits of such collaboration;
Chapter 5 illustrates our proposal on collaborative interpolation and aggregation at
the edge. It shows the benefits for the crowdsensor and the cloud; finally, Chapter 6
concludes this thesis, points out remaining challenges, and outlooks the future work.

1.3.1 Publications
The contributions of this thesis are published in the following papers:

• User-Centric Context Inference for Mobile Crowdsensing. Yifan Du, Valerie
Issarny, and Francoise Sailhan. In Proceedings of the ACM/IEEE Interna-
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tional Conference on Internet of Things Design and Implementation (IoTDI
2019).

• When the Power of the Crowd Meets the Intelligence of the Middleware: The
Mobile Phone Sensing Case. Yifan Du, Valerie Issarny, and Francoise Sail-
han. ACM SIGOPS Operating System Review (OSR), July 2019 Issue.

• Let Opportunistic Crowdsensors Work Together for Resource-efficient, Quality-
aware Observations. Yifan Du, Francoise Sailhan, and Valerie Issarny. In
Proceedings of the IEEE International Conference on Pervasive Computing
and Communications (PerCom 2020).

• In-network Collaborative Mobile Crowdsensing. Yifan Du. In Proceedings of
the IEEE International Conference on Pervasive Computing and Communica-
tions Ph.D. Forum (PerCom 2020).

Furthermore, the following paper is under submission:

• IAM: Interpolation and Aggregation on the Move - A Collaborative Crowdsens-
ing Approach for Spatio-temporal Phenomena. Yifan Du, Francoise Sailhan,
and Valerie Issarny.

Chapter 3 User-Centric Context Inference for Mobile Crowdsens-
ing; When the Power of the Crowd Meets the Intelligence
of the Middleware: The Mobile Phone Sensing Case

Chapter 4 Let Opportunistic Crowdsensors Work Together for
Resource-efficient, Quality-aware Observations

Chapter 5 IAM: Interpolation and Aggregation on the Move - A Col-
laborative Crowdsensing Approach for Spatio-temporal
Phenomena

Overall thesis In-network Collaborative Mobile Crowdsensing

Table 1.1: Thesis chapters and related papers

We note that Chapters 3 to 5 may be read independently, presenting the related
work and from design to prototype implementation and evaluation of the specific
contributions. As such and as shown in Table 1.1, the contributions presented in
Chapters 3 to 5 are also available through the originally published/submitted papers
mentioned above.
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2.1 What does Crowdsensing Sense?
What crowdsensing can sense is the key factor that determines its added value. We
classify the sensing data gathered from crowdsensors into two types: (i) the subjec-
tive knowledge requested from the people, e.g., their views, opinions, and observa-
tions; (ii) the objective phenomena existing around the device, e.g., sensor readings,
device status, and user contexts. Sensing both people and things is essential for the
development of smart cities.
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2.1.1 Knowledge from the Crowd
This type of crowdsensing scheme requires people to give their own opinions and
to report some information about their observations, as the sensing data. Typical
applications include [25]:

• Prevention of emergencies, which requires the volunteers to provide a sum-
mary of the situation. For example, the volunteer may take some pictures
of waterways and report the amount of water in the riverbed to aid water
management programs [104].

• E-commerce, which requires the clients to look up the products and share the
product information. For instance, people can take a picture, report the fuel
price, and receive a live-comparison among gas stations in turn [23].

• Well-being improvement, which needs people to exchange their suggestions or
views about life. For example, people can record and share their experiences
with diets and fitness [164].

• Social networks recommendation that extracts information from what people
post on the Internet. For instance, the objective may be to share experiences
and media (e.g., photo and video) among users with similar interests [16].

• Public safety evaluation, which requires volunteers to assess and report the
safety situation. For example, citizens can check and share the level of crimes
for their residential area [15].

• City waste management that requires citizens to monitor and help waste-
recycling operations. For instance, gathering real citizen needs (e.g., amount
of trash) for waste collection routing [19].

Although some of the applications mentioned above can be recognized as no bur-
den for the people, they still need to take some actions, e.g., people post on Twitter
at their will. People are involved in this kind of sensory. Obviously, participatory
crowdsensing is a suitable way to collect knowledge from the crowd. People con-
tribute to these sensing data through some incentive mechanism or because they are
willing to share information or just altruism. The pros of this kind of sensing scheme
are that the intelligence of people is leveraged. The cons are that the sensing at a
large scale can be a challenging burden since people should be rewarded to ensure
active participation.

2.1.2 Phenomena around the Crowd
This type of crowdsensing scheme automatically collects the data generated by the
sensors embedded in the mobile devices attached to people. The collected data are
further processed on the cloud without involving the user. Unlike the knowledge
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from the crowd, the burden is usually put on the platform (application and server)
rather than on people to mine the data. Typical applications include [25]:

• Post-disaster management, which leverages the embedded sensors on mobile
devices to report and infer the situation. For example, the motion sensors of
many people reporting the same vibration indicate an earthquake [58].

• Monitoring environmental conditions, using the sensor embedded in or at-
tached to mobile phones. For instance, air pollution requires an external sensor
and the noise pollution uses the microphone only [74].

• Health care systems, which infer the physical conditions of people based on
their embedded sensors readings. For example, human activity recognition
and monitoring are useful for remote feedback and diagnosis [76].

• Indoor localization and navigation using location-dependent fingerprints in en-
vironments lacking GPS. For instance, leveraging the received signal strength
of Wi-Fi, magnetic strength, or luminous conditions [208].

• Intelligent transportation systems, using features extracted from mobile phone
sensors, locations, and available network status. For example, estimating tra-
jectory and travel time along the route as a public transport service [175].

• Interaction with unmanned vehicles, which requires the help of ubiquitous
sensors from the crowd. For instance, the collection of sensing or location
data from mobile devices for driver-less aerial vehicles [223].

• Experience-based decisions for urban planning that leverages embedded sen-
sors on mobile devices. For example, monitoring the bridge vibrations using
some smartphones’ accelerometer on the move [140].

• Urban network characterization, which is based on the network property of
mobile devices. For instance, Wi-Fi coverage mapping leverages interference
power, wireless spectrum, and received signal strength [57].

In general, people are unconscious of this sensing, which is autonomously running
in the background. The device observes autonomously without requiring any actions
from people. Sensing data is provided by the device readings rather than human and
is thereby objective. Even the behaviors of people can be considered as phenomena.
This method leads to better scalability for ubiquitous sensing because it does not
put a burden on the end users; thus, more people are expected to participate. The
pros of this kind of sensing scheme are that people do not need to be requested or
disrupted. The cons are that the raw sensing data requires analysis or mining; thus,
post-processing is the key to extract valuable information.
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2.1.3 Contribution to Smart City
It has been shown in the previous section that most of the phenomena that are
observed by the crowd are relevant to smart cities. Particularly, we believe that
crowdsensing, especially opportunistic crowdsensing, is the right way to support a
variety of application domains, such as, e.g., environmental monitoring, healthcare,
urban transportation, location services, social recommendation [216].

Ubiquitous sensing service is an essential enabler of the smart city concept.
Nowadays, smart city development requires the involvement of citizens to enhance
the transport and services delivered to the community as well as the health and
well-being of citizens [89]. The sensing service has become a crucial part of smart
city development. The IoT paradigm has been generating a lot of sensed informa-
tion to support the city’s administration and services for the citizens [217, 155].
Smart cities should be equipped with numerous kinds of sensors and actuators to
monitor various aspect (e.g., the structural health of buildings, air quality, noise,
traffic congestion, city energy consumption), detect and manage waste, enable smart
parking, smart lighting as well as automation and salubrity of public buildings, just
to name a few. Some of these sensing applications require deploying specific and
professional IoT devices (sensors and gateways), while the rest can be performed
through crowdsensing, especially those phenomena associated with people. Ubiq-
uitous sensing enabled by WSN and crowdsensing technologies together offers the
ability to measure, infer, and understand environmental and urban phenomena [65].

The urban environment is an essential characteristic of the smart city. Oppor-
tunistic crowdsensing naturally supports such monitoring as the target is an ob-
jective phenomenon. The urban environment knowledge informs actions regarding
issues as diverse as, e.g., public health, city planning, intelligent transport sys-
tem. Environmental monitoring benefits from the concept of crowdsensing, since
it produces a huge amount of sensing data on an urban scale pervasively [145]. In
practice, opportunistic crowdsensing is a scalable and cost-effective alternative to
deploying static WSN for dense sensing coverage across large areas [178]. With the
increasing variety of sensors embedded in smart devices, crowdsensing also becomes
a convenient platform that enables a broad range of environmental monitoring. For
example, (small) external sensors connected to smartphones are useful to monitor
air pollution [51, 74, 176]. Similarly, specific external equipment supports low-level
radiation detection [204]. Meanwhile, the smartphone’s sensors may also enable a
variety of applications. For instance, the smartphone’s camera and its flash provide
valuable information to particulate matter dosimeter [22]. The quality of the GPS
signal that penetrates the ionosphere permits tomographic analysis of the global
ionosphere [150].

Unlike temperature or air quality sensor, the microphone is available on all mobile
phones. Thus, a body of research work has focused on leveraging crowdsensing for
monitoring noise pollution over large-scale urban areas [221]. In order to act as
a sound level meter, the microphone records a short sound clip, and A-weighting
is usually applied so as to provide a sound level pressure expressed in dB(A). For
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instance, the work in [82] introduces a mobile crowdsensing application that monitors
urban noise and reports on the empirical analysis of this crowdsensing application
from both technical and social perspectives face of a large and highly heterogeneous
population of participants. Other efforts propose to monitor the city noise using
crowdsensing smartphones [210, 64, 159, 170, 162, 177, 137]. Notably, we note that
opportunistic crowdsensing enables (i) the monitoring of the noise pollution, and,
(ii) the generation of the noise maps of the city. The work in [132] goes one step
further; it exploits an audio event classification system to label the sounds that are
known and discover novel types of sound.

In summary, mobile crowdsensing has many potential applications in various
domains. The different features of participatory vs opportunistic crowdsensing de-
termine their respective targets, which lay in collecting people’s opinion vs sensing
the objective phenomena. Opportunistic crowdsensing does not put a burden on the
people as it often senses the phenomenon using the device readings. Opportunistic
crowdsensing is a scalable and pervasive sensing mechanism that supports environ-
mental monitoring, which is an essential service to be delivered within smart cities.
In this thesis, we mainly focus on the environmental monitoring scenario to support
smart city development.

2.2 The Way to Efficient Crowdsensing
The efforts undertaken to develop participatory and opportunistic crowdsensing
applications focus mainly on three aspects: context-awareness to provide meta-
information for more insight about the sensing data (Section 2.2.1); the efficient
management of crowdsensors, such as participants recruitment (Section 2.2.2); the
processing of the crowdsensed data, such as relay-based uploading (Section 2.2.3).

2.2.1 Context-awareness
Context-awareness for mobile devices relates to applications like localization, move-
ment and activity tracking, and environmental sensing [27]. Context-awareness is
essential for mobile crowdsensing because it provides the capability of being con-
scious of physical environments or situations around the crowdsensor. Thus, it allows
the crowdsensors to work proactively and intelligently based on such awareness. For
instance, the context can be used to predict a crowdsensor’s responsiveness to no-
tifications for greater worker engagement [95]. As an example of context, activity
recognition is the most studied topic for crowdsensing [215, 218]. First of all, the
context must be defined, and it depends on the application that is the target of
crowdsensing. Then, the context of crowdsensing needs to be extracted, usually
conducted using data mining techniques. Finally, the context information needs to
be leveraged in some way to enhance crowdsensing efficiency.

Formally, the various contexts of mobile crowdsensors include:
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Temporal contexts Day, week, month, season, year, etc.
Spatial contexts Area of interest, cell ID, latitude, longitude, alti-

tude, etc.
Physical contexts Placement, temperature, noise level, light intensity,

traffic conditions, etc.
User contexts Profile, activity, behavior, neighbors, social net-

work, etc.
Device contexts Internet connectivity, sensor accuracy, battery, com-

munication cost, computing power, etc.

Table 2.1: Contexts of mobile crowdsensors

Among the content of Table 2.1, the first two contexts are usually essential as
parts of the sensing data. In environmental monitoring, the physical context is
the sensed phenomenon. The other contexts are often used to support the decision
making of sensory: crowdsensors are naturally associated with heterogeneous devices
and diverse people; knowing these contexts does not only gives more insight to
classify the observations but also helps to allocate the resource. The same applies to
IoT systems for which the sensor selection is a critical requirement [154]. Generally
speaking, selective sensing holds when there is access to a large number of sensors
with overlapping and redundant functionalities.

By leveraging context information, the crowdsensing application can be enhanced
in terms of both the quality of the delivered data and the cost of sensing:

• Context-awareness to improve the data quality. The paper [161] classifies
the sensing contexts of crowdsensors into two groups: on-hand and in-pocket
(or bag), such that the crowdsensor senses only when the device is on-hand.
The work in [128] trains a context-data quality classifier, which estimates the
data quality from the context (e.g., user activity), such that only high-quality
crowdsensors are recruited. The paper [50] also considers contexts (e.g., prox-
imity and phone call state of the crowdsensor) to decide whether the environ-
mental measurement (noise) is inaccurate and should be discarded. In general,
device placement is the aspect considered to filter out inaccurate crowdsensing
measurements.

• Context-awareness to reduce the sensing cost. The work in [28] considers con-
text like geographical, temporal, demographics, and user activity for task as-
signment, that is, to allocate the right tasks to the right users in the right
circumstances to preserve mobile device resources. The on-demand and se-
lective sensing in [153] allows clients to combine queries for their interests,
leveraging contexts like location and user activity, to reduce the energy con-
sumption, network communication, and storage requirements. The paper [75]
considers more contextual parameters, including the spatio-temporal aspect
(e.g., location and time), user information (e.g., gender, age, and activity) and



Chapter 2. Background 19

device characteristics (e.g., battery level, built-in sensors). It smartly recruits
crowdsensors and subsequently allocates tasks to improve energy efficiency.
Furthermore, the work in [190] defines a semantic context model for query to
select appropriate crowdsensors, not only to help task creator to define recruit-
ment constraints but also to select labors more likely undertake a crowdsensing
task. The key fact is that context-awareness allows performing crowdsensing
tasks in an explicit and selective manner.

This thesis is inspired by previous work, and we believe that context-awareness
should be delivered to collaborative crowdsensing as well. The reason is that the
context information beyond location and timestamp does not only give more in-
sight into the crowdsensing data but also is useful to determine which crowdsensors
should collaborate and how crowdsensors can collaborate with others. In participa-
tory crowdsensing, context is mostly used to support semantic querying and quan-
titative reasoning [98], i.e., contextual information related to each sensor is used to
select suitable participants. Similarly, in opportunistic crowdsensing, the context
plays a crucial role in achieving efficient collection, including sensor selection and
task assignment. In particular, context-awareness is important for opportunistic
crowdsensing because the sensing data collection is fully autonomous and is done
without (or with minimal) active user interaction. While it goes with collaboration,
context can determine how the collaboration should be further performed.

The term "context" is very general, and the context categorization may include
many factors. The impact of context depends on the application scenarios and the
selection of it as well. Unlike previous work that uses context for a semantic query,
we aim to support the context-aware and opportunistic crowdsensing of the urban
environment. Precisely, we take into account three types of context: the device at-
tribute (e.g., network connectivity, communication cost, and computing resources),
the user characteristic (e.g., neighbors, activities, behaviors), and the physical envi-
ronment (e.g., in-pocket, in-door, under-ground). Some context information comes
from machine learning inference, and we specifically deal with the quality/accuracy
of context inference (see Chapter 3). Then, the context is leveraged for determining
the collaboration behaviors among several crowdsensors at the very edge.

2.2.2 Crowdsensing Management
One reason why crowdsensing is very challenging is that it is not the same as an
infrastructural IoT system, where wireless sensors are manually deployed and con-
trolled by a server/host, and sensors are professional quality. Instead, crowdsensing
end devices are naturally heterogeneous and uncontrolled. Crowdsensing manage-
ment involves three aspects: user recruitment, task allocation, and incentive mech-
anism. The objective is to perform a sensing campaign while minimizing the cost,
which necessitates ensuring a spatio-temporal sensing coverage and accomplishment
of the related crowdsensing tasks under (minimal) budget constraints, while ef-
fectively incentivizing the crowdsensor participation (in the case of participatory
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crowdsensing). In the following, we detail crowdsensing management:

• User recruitment selects crowdsensors according to the sensing tasks. By
leveraging the probabilistic mobility model that estimates the displacement
of crowdsensors, the work in [71] limits the participation of redundant crowd-
sensors depending on the required service. The paper [213] predicts the users’
mobility so as to select a subset of participants that should visit some points
of interest. Based on predicting call probability, the work in [118] recruits
the minimal number of participants necessary to get a certain level of cov-
erage and support real-time, spatio-temporal crowdsensing tasks. The paper
[123] also selects crowdsensors based on the desired quality of information
(that quantifies the data granularity) as well as the number of tasks that are
necessary while achieving energy efficiency by selecting minimal participants.
The recruitment model [14] can also select once the most appropriate group
of participants using criteria related to the user’s area-of-interest and device
characteristics. While the crowdsensing tasks are heterogeneous and dynami-
cally performed, the recruitment method [117] proposes both offline and online
algorithms based on the prediction of call probability, to minimize the number
of participating crowdsensors and maintain a satisfying level of coverage. The
work in [188] selects a subset of users on the social network as initial seeds
and allocate crowdsensing tasks to them. Then, influenced users should accept
and propagate it to friends, and the ultimate goal (which is to maximize the
coverage) will be met.

• Task allocation aims at assigning the tasks that are executed on crowdsensors.
Although the existing work of participatory crowdsensing often addresses the
task allocation and participant recruitment problems together (i.e., they re-
cruit users to perform tasks), task allocation can still be handled as a separate
problem. A task allocation framework may aim at maximizing the overall
system utility in a centralized way by coordinating the allocation of multiple
heterogeneous tasks while considering crowdsensor-side factors, including user
bandwidth, user availability, devices’ sensor configuration, task completion
likelihood, and mobility pattern [189]. When crowdsensors move over time
and tasks arrive in a stochastic way, the location-based task allocation be-
comes dynamic. Fairness is required to maintain system stability and achieve
a sensing utility close to the optimum [198]. For the piggyback crowdsensing
approach, which is power-saving, the crowdsensing task allocation for partici-
pants also introduces an optimization problem subject to incentive budget and
spatio-temporal coverage constraints [206].

• Incentive mechanism controls the trade-off between contributing crowdsensors
and their rewards. There are diverse strategies that have been proposed to
provide incentives for stimulating users to participate in mobile crowdsensing
applications [220]. The work in [152] estimates the quality of sensing data and
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pay the participants a reward based on their useful contribution, to motivate
the rational participants to perform data sensing efficiently. Leveraging the
game-theoretical reverse auction mechanism, the paper [165] designs a frame-
work that encourages the crowdsensing user participation with uncertain mo-
bility. Based on reverse combinatorial auctions from game theory, the work
in [87] incorporates the quality of information on crowdsensors as metric and
builds an incentive framework for mobile crowdsensing systems. The paper
[60] randomly recruits crowdsensing participants and uses a quality-aware in-
centive mechanism to maximize the amount of high-quality sensing data under
a limited task budget.

Incentive mechanism is particularly important in participatory crowdsensing
since people need to take action and to should be involved in the sensing. Par-
ticipants can be paid with money (payments for their contributions), with a form of
entertainment (sensing tasks are turned into playable games to attract participants),
or by a service given in exchange (for mutual benefits). In order to encourage crowd-
sensors to contribute and limit the budget, most incentive approaches are based on
game theory. The incentive mechanism is the key to achieve the effectiveness of
participatory crowdsensing, especially with regards to the budget.

User recruitment and task allocation attract comparatively more attention in op-
portunistic crowdsensing, where participants are self-motivated and altruistic. Since
opportunistic crowdsensing shifts the burden of collecting sensing data from users
to the application, we especially need to deal with the crowdsensor selection and
task assignment more effectively. Generally speaking, depending on the mathemat-
ical model devised for the system, tasks assignment to (recruited) users is usually
an NP-hard optimization problem, in which a cost function associated with the
crowdsensing tasks is minimized, subject to some constraints. Overall, the proposed
solutions differ in terms of cost functions and constraints, while assuming that the
cloud maintains a global knowledge about each crowdsensor to select appropriate
crowdsensors and assign them some crowdsensing tasks.

This thesis addresses the opportunistic crowdsensing efficiency challenge. Al-
though the similar principles of crowdsensor selection (user recruitment) and task
allocation may apply, they need to be adapted. We propose to perform crowdsensing
management at the edge, rather than on the cloud. It is worth mentioning that our
collaborative crowdsensing management will be fully distributed (see Chapter 4). In
our case, the crowdsensor selection is essential to determine who will collaborate with
whom. The task allocation determines the task(s) that every crowdsensor should
conduct as a collaborative member. The collaboration requires an efficient resource
negotiation during the sensing and reporting phases, considering various criteria
such as, e.g., sensor accuracy, network occupancy, computational capabilities.
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2.2.3 Data Processing
Following crowdsensing management, sensing data processing is also a pivotal aspect
of effective opportunistic crowdsensing, as it aims to extract valuable information
from the raw data. In practice, ubiquitous crowdsensors generate a massive amount
of raw data, and the cloud is usually responsible for gathering and analyzing the
data using, e.g., data mining techniques.

Efficient crowdsensing data processing often focuses on three aspects: data col-
lection, data forwarding, and data analysis. The aim is to collect sensing data while
minimizing the cost of crowdsensors, to upload the data to the cloud in the cheapest
way, and to analyze the data for knowledge extraction. We detail the efficient data
processing below:

• Data collection targets minimizing the sensing cost of the crowdsensor: For this
purpose, the work in [133] applies sensors admission control and on-demand
processing on the device to trade-off the performance need of application and
the resource demand of continuous sensing on the opportunistic crowdsen-
sors. The idea is to adapt the sensor pipeline, which judiciously triggers
power-consuming stages, taking into account the user’s mobility and behav-
ioral patterns to reduce energy costs. Considering data collection utility and
smartphones’ potential sensors to gather information, the cloud-based mobile
crowdsensing system presented in [26] minimizes the cost of both sensing and
reporting, while maximizing the quality of contributed information. The well-
known publish/subscribe model is also introduced in cloud-based crowdsensing
that continuously selects the k-best sensors for a sensing task [139]. It con-
trols the collection by eliminating redundant sensor activities while satisfying
sensing coverage requirements and sensing quality, thus consequently reduces
the overall energy consumption.

• Data forwarding aims to reduce the Internet communication cost for the crowd-
sensor. The work in [110] performs piggyback crowdsensing to save the energy
consumption. It uploads sensing data to the cloud by exploiting and pre-
dicting those times when the crowdsensor uses mobile applications or makes
phone calls. Then, to save the energy and budget associated with the data
uploading, the paper [196] adapts the uploading scheme, considering different
network types and predicting the future user’s position. It chooses the ap-
propriate condition to either offload data to Bluetooth/Wi-Fi gateways, or to
unlimited data plan users. The work in [33] only uses a Wi-Fi network for up-
loading, which requires to forecast when the Wi-Fi network is available, and
when no front-end applications are using it, to minimize the overall energy
consumption and mobile data cost. To reduce the mobile data fee, the pa-
per [195] distinguishes pay-as-you-go and unlimited mobile data plan to take
(delay-tolerant) uploading and forwarding decisions. It predicts the mobility
pattern of crowdsensors and estimates the size of the sensed data to partition
the users into the two types.
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• Data analysis extracts out useful information from raw sensing data: The
work in [105] collects large-scale continuous crowdsensing data about human
behaviors in a non-intrusive manner. It uses multiple embedded sensors to
analyze modalities, such as social interaction and spatial behaviors, which
is a productive means to study location attributes. The paper [143] uses
continuous crowdsensing data to determine "what is going on" around the
user in real-time, by exploiting multiple sensor readings. Thus, it explores
living points of interest of the city by determining real-time hot-spots from
sensor data, and automatically estimates user’s points of interest. The work
in [38] exploits opportunistically captured locations, user trajectories, images,
and audio clips together from crowdsensors to classify visited places within
place categories, for automatic and scalable semantics of places. The paper
[172] even runs real-time data stream mining like a lightweight classification
algorithm running on mobile devices. It correlates sensing data with social
media and provides accuracy comparable to those on the cloud while reducing
the amount of data uploaded and energy usage.

Overall, a majority of work adapts the data collection and forwarding for oppor-
tunistic crowdsensing. So far, the proposed collection approaches tune the sampling
frequency, allocate multiple sensing tasks, and even filter data according to the
sensor type. The forwarding scheme is mostly delay-tolerant and thereby relies on
caches to temporarily store the sensing data. In contrast, for real-time uploading,
the sensing data needs to be transmitted immediately. These sensing mechanisms
are application-specific; they should apply customized parameters depending on the
sensing target. For instance, the sensing resolution in both time and space needs to
be carefully defined for environmental monitoring. Also, data collection and data
forwarding should be controlled by the crowdsensing platform, which allocates the
sensing tasks and dynamically adapts the uploading strategy.

Most importantly, the data analysis mentioned above consists of applying data
mining methods to the sensing data collected to extract various information related
to, e.g., citizen behaviors and points of interest, or even social networks. Such
data analysis is typically performed on the mobile device and on the cloud, which
processes a vast amount of raw crowdsensing data. In particular, the application
determines the sensors that are enabled on mobile devices as well as the computing
resource allocated on devices and clouds. Since we focus on environmental moni-
toring, the ultimate aim is to create a spatio-temporal map of the city environment
based on the observations provided by crowdsensors. The map requires storing the
spatio-temporal crowdsensing data and analyze the data on the cloud server peri-
odically.

This thesis focuses on opportunistic crowdsensing for environmental monitoring,
which shifts the burden from people to the middleware/application and requires data
analysis afterward. Traditional opportunistic crowdsensing relies on the cloud server
to process the ubiquitous and raw sensing data. We promote to process the data
at a very early phase before the cloud, i.e., on the end devices together, not only to
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control the collection, to determine the forwarding but also to perform data analysis
among multiple crowdsensors as in a collaborative manner (see Chapter 5). To the
best of our knowledge, distributed data processing for opportunistic crowdsensing is
an open research question. In particular, we need to address the collaborative data
analysis at the very edge.

2.3 Collaborative Crowdsensing
Most efforts on the development of crowdsensing systems assume that a cloud server
monitors and, in some cases, controls every crowdsensor. Every crowdsensor relies
on the cloud server for registration, sensing and uploading. The crowdsensor may
collaborate with, e.g., a cloud server, an edge server, an intelligent gateway, or with
other crowdsensing devices. We classify the collaborative crowdsensing approaches
into two types: (i) infrastructure-based (Section 2.3.1) or (ii) crowdsensor-centric
(Section 2.3.2). Furthermore, the collaboration can be managed either by the cloud
or can be totally cloudless. In this thesis (Section 2.3.3), our solution refers to
performing the collaboration with other crowdsensors via D2D communication, while
assuming the cloud only provides essential backend support if needed.

2.3.1 With the Infrastructure

The collaboration with an infrastructure still assumes that each crowdsensor works
individually for sensing, location tracking and data uploading, but is managed by
and reports to the infrastructure. Such a collaboration necessitates a local gate-
way/access point connected to the crowdsensors that may provide access to an
edge/fog server.

Collaboration with the edge requires the local server/gateway to be available.
For the collaborative uploading, the mobile device senses and caches the sensing
data, which is opportunistically transmitted when the device gets into the com-
munication range with a nearby Wi-Fi access point. Such a crowdsensing solution
supports delay-tolerant reporting of the sensed data [136]. The uploading can be
scheduled in advance by forecasting the Wi-Fi access points that may be encoun-
tered by the crowdsensor, to avoid using cellular networks [33]. Besides, an edge/fog
server can be deployed to assist mobile crowdsensors. Such a server then recruits
local/nearby crowdsensors, collects and filters the duplicated sensing data, and be-
sides pre-processes the data [148]. In the work [158, 11, 10], an edge server manages
the crowdsensor resources and acts as a broker of the publish/subscribe system. The
broker at the edge filters and aggregates the sensing data published by the nearby
crowdsensors and forwards the aggregated data to a back-end subscriber (i.e., server
on the cloud). Brokers can be organized into a hierarchy constituted of nano-, local-,
and public-cloud servers. The hierarchy allows the crowdsensors to collaborate with
the mobile broker that aggregates the information from local region [168].
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Overall, such collaboration involves gateway/access point and an edge/fog server
that uploads and pre-processes the data, which are provided by the crowdsensors
that work individually (i.e., sense, keep track of the context and report). The
primary advantage of leveraging edge/fog servers is to provide low latency and fast
response to end devices while offloading cloud resource consumption. Most edge
computing proposals support a collaboration with the edge infrastructure but very
few promote a direct and autonomous collaboration among crowdsensors without
e.g. edge/fog server, which is referred as edge computing in a distributed and ad
hoc manner.

2.3.2 With other Crowdsensors
Collaboration with other crowdsensors finds two different implementations, depend-
ing on whether it is managed (i) by the cloud, or (ii) in a Device-to-Device way:

• Cloud-based Collaboration: This kind of collaboration among multiple crowd-
sensors assumes that the cloud controls/manages/assists every crowdsensor.
Typically, collaboration occurs between people who are geographically close
to each other or who hold a close relationship and thereby belong to the
same community/organization. If the moving trajectory of each crowdsensor
is known in advance, the cloud server can arrange the sensing scheduling of
multiple crowdsensors, to avoid duplicate sensing in the same area of inter-
est and reduce the overall sensing energy consumption [171]. The work in
[109] detects the people associated with a social network to form crowdsensing
communities, which are composed of people sharing similar tastes, preferences
and making the same choices, and which are henceforth likely to cooperate.
The existence of nearby crowdsensors can even be leveraged to analyze the
phenomenon. In the work [201], probe smartphones scan neighboring smart-
phones and report the result to the cloud, which estimates the crowd density
using several features (e.g., number of scanned neighbors, Bluetooth signal
strength). Another work [39] uses the microphone of the smartphone to de-
termine the acoustic context of several adjacent crowdsensors. Then, data
mining algorithms running on the cloud identify groups of people that speak
and interact.

• D2D-based Collaboration: This kind of collaboration is distributed and works
at the very edge. Most D2D collaborations among crowdsensors involve a
delay-tolerant data relay and/or a D2D network. Collaboration requires a
physical proximity (i.e., crowdsensors should be within D2D communication
range). Proposed approaches are opportunistic: pedestrians walk together,
opportunistically form a D2D network and start the collaboration. In order to
reduce the upload rate of each pedestrian, the work in [182] proposes to elect a
leader that acts as manager and as a network proxy that uploads crowdsensing
data. Groups of pedestrians are detected in [78] based on the history of radio
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connectivity between the mobile devices, and, clusters of nearby members are
maintained for efficient information diffusion. By leveraging the predictability
of encounters and mobility of people, the papers [194, 196] propose an adaptive
uploading scheme that makes the D2D forwarding decision following fixed
data uploading cycles. Crowdsensors and other mobile devices from a local
community may share network access and transfer data for each other [44], by
selecting and exploiting multiple mobile hot-spots in the vicinity. The work in
[187] estimates the probability distribution of user arrival at points of interest
and the inter-user contact probability to recruit mobile crowdsensors that will
relay the data of others, for the purpose of minimizing the uploading cost.
Crowdsensors can even collaborate with wireless sensor networks. The paper
[181] alleviates the load of the most queried WSN nodes by offloading a portion
of the traffic to nearby related crowdsensors to save energy. The positioning
can also be shared collaboratively. The work in [108] aims to minimize the
total number of location measurements for a given fairness criterion to finally
reduce the average power consumption of mobile devices. In the P2P-based
crowdsensing architecture proposed in [86], the sensing data is locally stored in
and processed by mobile devices and is shared among users in a quality-aware
data sharing market, to avoid high operational cost on the centralized server for
storing and processing massively. Collaborative crowdsensing framework may
capture and share sensed data between multiple distributed applications and
users, to facilitate the development and deployment of opportunistic sensing
applications [84].

The collaboration via the cloud requires tracking all users and updating in real-
time the related information while people move. Such a cloud-based management
of collaboration provides a global view on the crowdsensors anytime, anywhere, to
support an optimal but resource-intensive control of the crowdsensors.

The D2D (or P2P) collaboration, which is naturally in-network and at the edge,
is more distributed and scalable. Still, collaboration strategies have to be adapted to
the specific application and framework. For example, the D2D sensing data offload
has already been widely studied in WSN. Differently, in the case of crowdsensing,
human factors, e.g., human encounters, device heterogeneity, and incentive mecha-
nism, must be accounted for. While more factors should be considering and lever-
aged, some functionalities are missing: internet traffic offloading, location-sharing
and data processing are needed. We should address them together, considering the
characteristics of crowdsensors, especially the increasing computing power of mobile
devices.

2.3.3 Our Solution at the Very Edge
We have stated that opportunistic crowdsensing is an effective way to achieve ubiq-
uitous sensing for phenomena around the people, such as environmental monitor-
ing of smart cities. We have shown that efforts have been made to improve the
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crowdsensing efficiency in three aspects, including context-awareness, crowdsens-
ing management, and data processing. We have found that although collaborative
crowdsensing has been proposed to enhance the crowdsensing efficiency, it remains
constrained since most works are still centralized or semi-distributed and focus on
energy fairness.

Individual Crowdsensing

In-network Collaboration

Figure 2.3.1: From cloud-centric to collaborative crowdsensing at the edge

In this thesis, we propose a collaborative crowdsensing system that opportunisti-
cally operates at the very edge (Figure 2.3.1). Such collaboration takes place among
mobile crowdsensors leveraging opportunistic encounters. From the management
standpoint, the architecture is ad hoc, fully distributed, and cloudless (in particu-
lar, the cloud does not allocate tasks). It neither requires the additional deployment
of edge/fog servers to monitor and manage the local areas.

We address the challenge of efficient opportunistic crowdsensing through such
a collaboration, for which our solution distinguishes from the state of the art on
crowdsensing for environmental monitoring by featuring three complementary con-
tributions:

• On-device context-awareness - The context beyond the temporal and spatial
information of each crowdsensor is useful to 1) explicitly describe the sens-
ing data, 2) manage the collaborative group and 3) support task assignment,
among several nearby crowdsensors. Meanwhile, the heterogeneous context in-
ference accuracy of each crowdsensor is taken into account. ContextSense pro-
vides such crowdsensing context.

• Context-aware and distributed crowdsensing management - The collaboration
mechanism is: 1) based on context-awareness, and 2) autonomous and dis-
tributed among multiple crowdsensors that opportunistically interact with
each other. The collaboration is cloudless and independent of the infrastruc-
ture, with no involvement of any edge server. BeTogether establishes such ad
hoc collaborative groups.
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• Server-less sensing data processing for spatio-temporal analysis - Rather than
only performing sensing, forwarding and uploading to the cloud, more com-
plex collaborative processing is performed among crowdsensors during oppor-
tunistic encounters. More data analysis is shifted from the cloud onto many
crowdsensors, allowing the cloud to execute only simple functions. IAM deals
with such collaborative data processing.

In summary, this thesis investigates a set of collaboration mechanisms among
crowdsensors that interact opportunistically, with the aim of increasing data quality
while reducing the overall computation and communication cost of crowdsensing.
The initial concern of this research is addressed by the multi-party and multi-hop
calibration in [166], which introduces an opportunistic group calibration system
that pervasively compensates the reading error of un-calibrated crowdsensors. This
method of calibration is automated and operates in the background. Having taken
inspiration from this work, we now propose our context-aware collaborative crowd-
sensing at the very edge.

Contribution
\Target

End device
data quality

End device
sensing cost

Cloud data
quality

Cloud sens-
ing cost

ContextSense X - - -
BeTogether - X X -
IAM - - X X

Table 2.2: The problems addressed in three contributions

As shown in Table 2.2, each contribution provides solutions to the corresponding
problems of opportunistic crowdsensing, and together they support distributed col-
laborative crowdsensing at the end devices level. ContextSense provides contextual
information that enhances the knowledge on sensing data at end devices. BeTo-
gether distributes the workload among several crowdsensors to save resources at
end devices and performs selective sensing to improve the knowledge gathered on
the cloud. IAM offloads the data analysis from cloud to many end devices, thus
reducing the cloud’s resource demand and enhancing knowledge on end devices.

It is worth mentioning that BeTogether and IAM are utilized in different scenar-
ios. Our collaborative crowdsensing at the edge builds upon short-range communi-
cation and human interactions. We classify user interactions as either group-wise or
pair-wise. During daily life, people typically encounter others following two types
of patterns. Some people stay near each others for an extended period of time;
this is the case when e.g., several people work in the same building area during
working days. Other encounters may occur very briefly, e.g., someone passes by
another person walking on the street. A robust collaboration solution must take
into consideration both situations. In order to deal with the two user behaviors,
the collaboration schemes in BeTogether and IAM differ in terms of three following
aspects:
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• Crowdsensing phase: When several crowdsensors stay close together for a
while, they sense and monitor the same phenomenon. In such a case, we apply
group-wise collaboration among the co-located crowdsensors during the data
collection phase (i.e., as part of the sensing process) so as to keep to a minimum
the resources involved by the group members to e.g. sense, aggregate and
upload the measurements. If two crowdsensors make only momentary contact,
we may assume that the two crowdsensors have been sensing and monitoring
different urban areas until they meet. Thus, we apply pair-wise collaboration
during the data processing phase so as to support a post-analysis of the data
that have been gathered during the (previous) data collection phase.

• Crowdsensing functionalities: The above perspective leads to the application
of different crowdsensing functionalities. Collaboration during the data collec-
tion phase involves frequent reporting/uploading to the cloud, while collabo-
ration during the data processing phase requires temporarily data caching for
a subsequent analysis.

• Crowdsensing scale: Group-wise collaboration is utilized for sensing a dense
and community-scale area, i.e., a group of crowdsensors are located in the same
area of interest and monitor the same phenomenon. Pair-wise collaboration
copes with sensing a sparse, urban scale area, i.e., crowdsensors are traveling
across the city following different trajectories and continue monitoring.

In short, BeTogether benefits the overall end-device efficiency when operating
with a dense crowd on a community scale. In other words, it is suitable for scenarios
in which many crowdsensors are co-located simultaneously. IAM reduces the cloud
cost of the crowdsensing platform which operates with a sparse crowd at an urban
scale. Meaning that it is suitable for scenarios where crowdsensors only encounter
each other very infrequently.

ContextSense:
Context inference
on device

IAM:
Collaboration for 
data analysis

BeTogether:
Collboration for 
data collection

Figure 2.3.2: The three contributions complement each other
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Before presenting the details of each contribution, we have illustrated in Fig-
ure 2.3.2 how the three contributions complement each other in terms of overall
design and implementation: ContextSense is integrated as a component of the Be-
Together middleware layer solution to provide parts of the necessary contextual
information. In BeTogether, the aggregation of sensing data is a simple task, and
each aggregation is followed by the uploading of data. On the other hand, more
complex aggregations are addressed by IAM through the analysis of cached data.
Note that while IAM still builds upon the framework of BeTogether in order to dis-
cover and exchange data, the management (group-wise vs pair-wise) and aggregation
component need to be adapted.
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3.1 Context Inference
We argue that opportunistic crowdsensing empowers ordinary citizens to contribute
to the environmental monitoring of smart cities [67, 126] because: (i) it allows ac-
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quiring hyperlocal knowledge at scale, thanks to the proliferation of smartphones
and the ubiquity of wireless connections, and (ii) numerous sensor types embed-
ded in today’s smart devices can provide quantitative observations about the ur-
ban environment (e.g., sound level, temperature, atmospheric pressure, humidity,
illuminance). The observations further come with the related spatial and tempo-
ral information, which supports the analysis of overall environmental knowledge.
Nonetheless, the major challenge facing effective crowdsensing is undoubtedly being
able to collect data of sufficient quality, starting with the ability to characterize the
provided observations. The quality of the contributed measurements challenges the
aggregation of environmental knowledge.

The data quality depends on both the accuracy [116] of the contributing sensors
and the adequacy of the sensing context [215]. Addressing the former requires cali-
bration [166], and the latter requires a supporting inference mechanism, which is the
focus of this chapter. We posit the need for developing an intelligent middleware-
layer solution to support context-aware crowdsensing. The collection of sensing data
on the device must act beyond merely interfacing with the embedded/connected sen-
sors to transfer the data to the cloud. As far as possible, the solution must enhance
the quality of the observations locally, from calibration to contextualization. While
calibration may be achieved through regression analysis [166], contextualization re-
quires inference. The intelligent solution must implement soft/virtual sensors (as
opposed to hardware/physical sensors) that run on the end device to analyze and
mine the data provided by the ever-growing set of cheap embedded sensors.

The accurate monitoring of the physical environment through crowdsensing re-
quires knowing the location of the contributed observations, but such contextual-
ization is not sufficient. The user’s activity impacts the quality of the quantitative
observations that mobile crowdsensing gathers [128], which may be inferred from
machine learning over motion sensor data [53]. The location must not be limited to
the geographical coordinates in the Euclidean space. Indeed, the "user behavior at
the location" has a significant impact on the quality of the quantitative observations
contributed through mobile crowdsensing [128]. Knowing whether the smartphone
(sensing device) is in-/out-pocket, in-/out-door, and under-/upper-ground is partic-
ularly important because the regular sensor needs to be in a position that enables
–yet does not interfere with– sensing the physical characteristics of the surrounding
[185]. The sensing context must distinguish between in-pocket and out-pocket ob-
servations. The former leads to a quite significant deviation from the ground truth
and is thus not readily usable [161]. The same applies to in-door versus out-door
measurements since aggregating them together to analyze environmental phenom-
ena leads to unreliable results [138]. Similarly, under-ground and upper-ground
scenarios contribute observations that must be distinguished.

Figure 3.1.1 illustrates the impact (i.e., significant bias) of the above elements
of the "sensing context" on physical measurements that are collected at the "same"
geographical location. The context information allows keeping more observations
–and even correcting them– for aggregating environmental knowledge, rather than
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filtering out drastically the crowdsensed data [82].
The current work on the inference of the smartphone context focuses on a single

context element. At the same time, it is essential to characterize the sensing contexts
accurately, that is, to identify whether a contributed observation is sensed with the
device: in-/out-pocket, in-/out-door or under-/upper-ground. Machine learning is
a candidate to systematize such a characterization. However, there is no single
solution for the inference. The set of embedded sensors differs from one smartphone
to another, and the characteristic of the user behavior impacts the inference on the
observations. The challenge is then to ensure that the classifier accounts for the
diversity of the crowd contributors. Indeed, there is a significant variation in the
characteristics of contributing devices, the behavior of contributing users, and even
the usage scenarios. A robust inference system must be able to evolve automatically
depending on the sensor availability and the environment dynamics [200]. As a
result, the classifier for context inference must be adaptive to each participating
user, considering the user’s behavior, device model, and contribution scenarios.

This chapter introduces our self-adaptive intelligent solution ContextSense for
crowdsensing, which implements soft sensors that contextualize locally the collected
observations. ContextSense leverages supervised and online machine learning so
that inferring the context of the observations adapts to the available sensors and
the sensing environment. ContextSense allows customizing the classifier on each
user’s device while minimizing the user’s involvement, which is essential to motivate
the engagement of a sufficiently large crowd. Our contribution is as follows:

• Starting from the sensors available on today’s smartphones, we assess the
particular relevance of the candidate features to characterize the three elements
of the sensing context, to derive the best features that serve to classify each
of them (Section 3.3.1).

• We then analyze the performance of candidate updatable learning algorithms
to initialize the three resulting classifiers, taking into account their accuracy
as well as their runtime and memory efficiency (Section 3.3.2).

• The personalization approach follows, which includes the hierarchical inference
of all three context elements (in-/out-pocket, in-/out-door, and under-/upper-
ground) that are relevant to environmental monitoring using crowdsensing,
and the opportunistic update requiring very few feedback from the user (Sec-
tion 3.3.3).

• We validate the effectiveness of the solution using a ContextSense implemen-
tation (Section 3.4) and simulation to assess the accuracy of the context infer-
ence with respect to the negative user feedback. We confront our hierarchical
approach with a multi-class classifier, and we assess the energy and runtime
efficiency (Section 3.5).
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To the best of our knowledge and as surveyed in the next section, no other work
on the inference of the sensing context addresses the classification of the three con-
text elements simultaneously. They neither deal with the effective personalization
of the classifier on the crowdsensing device.

3.2 Related Work

Inferring the sensing context related to the physical environment under scrutiny has
deserved little attention, while related solutions focus on a single context element
and consider different eligible features.

3.2.1 Features for Context Inference

Detecting whether a smartphone is in-pocket/bag or out-pocket/bag may be inferred
using various embedded sensors. The work in [211] leverages features from embed-
ded proximity and light sensor signals, while another work in [161] uses additional
data from a 3-axis accelerometer. Inferring whether an observation is made in-door
or out-door may also rely on various sensors. For instance, previous work in [161, 32]
simply utilizes the GPS signal. Alternatively, the sensing service in [119] leverages
three onboard sensing resources, including light sensors, magnetic sensors, and cell
tower signals. A similar solution is adopted in [131], although using the proximity
instead of the magnetic sensor. Another detection system in [120] uses two features,
which are the received signals of Wi-Fi and the light density. The solution in [6]
leverages these two features as well as the user’s activity. At the same time, the ap-
proach in [197] exclusively uses radio signals and requires the signal strength of four
neighboring GSM base stations. Comparatively, under-/upper-ground classification
has deserved much less attention. Monitoring a quick change of the barometric pres-
sure is suitable for detecting indoor floor transition [134] or an underground scenario
because the air pressure allows estimating the altitude [80].

As outlined above, diverse combinations of embedded sensors may serve to char-
acterize the context of crowdsensing, while the resulting inferences differ in their
accuracy and energy-efficiency. The state of the art analysis further shows that the
most relevant observations are related to the physical and communication environ-
ment. Still, it is critical to account for the variation in the availability of features
across the contributing devices. Our approach addresses this requirement by being
self-adaptive to the diversity of users (and devices). The user-centric classification
on the user’s device may be performed on any subset of the above features to ac-
count for the diversity of devices and related embedded sensors. The feature set
may further be customized and freely recomposed to tradeoff energy efficiency and
accuracy, thus also offers adaptiveness.
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3.2.2 General Methods of Context Inference
Various algorithms have been considered for the inference of the mobile sensing
context, among which rule-based solutions. A classifier based on the non-linearity
of the sensor readings is presented in [211] for the in-pocket/out-pocket classification.
Rule-based classifiers are also introduced for the in-door/out-door case but differ in
the number of sub-detectors and their approach to aggregation. The algorithm in
[119] uses three sub-detectors while the one in [120] uses two sub-detectors. The
approach in [6] is also rule-based but hierarchical and switches among three rule-
based modules to distinguish the contributing scenarios at fine-grain. Independent
of the rule-based approach’s specifics, adequate thresholds for the classifier must
be set, which is done empirically [134, 131, 32]. An alternative to the rule-based
approach for the context inference is to leverage machine learning algorithms. For
instance, the work in [161] uses the KNN (K-Nearest Neighbor) algorithm with
the trained classifier being evaluated using cross-validation. A range of machine
learning algorithms for the classification of in-door vs out-door is investigated in
[197], including the Decision Tree, Random Forest, Support Vector Machine, KNN,
Logistic Regression, Naive Bayesian, and Neural Network; they conclude that KNN
performs the best in terms of average accuracy.

The literature investigates the inference of each of these context elements sepa-
rately, but they are all equally important. Moreover, the proposed solutions do not
account for the diversity of the contributing devices. Further, they train and test
the learning model using a single dataset. None of them addresses the classifiers’
personalization to cope with the diversity of the devices, users, and scenarios. Differ-
ently, our solution solves three classification problems together and is implemented
as an on-device service providing the sensing context to crowdsensing applications.
We emphasize the customization of the context inference per user, which requires
an online learning algorithm to keep the classifier evolving on each crowdsensor.

3.2.3 Towards Personalized Methods of Inference
Supervised learning for one analyzed environment does not always translate to an-
other environment. Transfer learning [101] has been proposed to solve the problem,
but it requires complete datasets, and deep learning is still too heavy for end de-
vices. Otherwise, the baseline learning model needs to evolve according to the
environment in which it is used. For instance, the user-specific touch input model in
[199] is updated using calibration input requested to the users. The method for in-
door/out-door detection in [160] employs semi-supervised machine learning without
user involvement to learn new information. It uses co-training classifiers requiring
two Naive Bayes models, resulting in a double computational cost on the device.
Although the estimation of the class of a new instance does not involve the user, it
is not the ground truth. Rather than excluding user involvement, we believe that
the opportunistic participation of the user to gather the ground truth allows a more
effective personalization of the classifiers.
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We introduce three classifiers, aka, machine learning models, to comprehensively
characterize the crowdsensor’s context, that is, whether the sensing device is: in-
pocket/out-pocket, in-door/out-door, and under-ground/upper-ground. We denote
the corresponding classifiers Mpocket, Mdoor, and Mground. We particularly leverage
an online learning approach to deal with the diversity of the contributing devices,
users, and usage scenarios, while offering a resource-efficient solution that minimizes
the required user participation.

3.3 Online Personalization
Our ContextSense solution includes three phases: the feature selection, the classifier
selection followed by the initial training, and the online-learning update algorithm.

3.3.1 Feature Selection
Today’s smartphones embed an increasing number of sensors that may serve to
contextualize the observations that the crowdsensors gather. Although the list of
relevant sensors varies from one smartphone to another, high-end smartphones may
provide the following features: Light density; Abstract proximity (the distance from
an object to the screen of the device); Magnetic strength; Temperature of the ambient
air; Pressure; Humidity; GPS accuracy; GSM RSSI value; Wi-Fi raw RSSI ; and
Abstract RSSI level (i.e., the overall signal quality). We specifically focus on eliciting
the features that best contribute to classify the observation context with respect to:
in-/out-pocket (Mpocket), in-/out-door (Mdoor), and under-/upper-ground (Mground).

Following the state-of-the-art analysis and taking into account the sensors em-
bedded in today’s smartphones, we find the most relevant feature set for each of our
three classifications using a dataset. We leverage the DATASET 1, which provides
us with the supporting ground truth for the feature selection.

DATASET 1 assembles labeled sensor data from a Crosscall Trekker-X3
smartphone, covering all the scenarios to be classified. All the environ-
mental sensors and network modules were active during the data collection.
DATASET 1 contains 20k labeled entries contributed by a single user; it in-
cludes all the candidate features and covers uniformly the three contexts to
be classified. Each instance has three user-encoded labels, which represent
the ground truth result for the three classifications.

We assess the significance of each candidate feature using the following scor-
ing metrics [43]: Information gain is the expected amount of gained information,
aka, reduction of entropy. Gain ratio is a ratio of the information gain and the at-
tribute’s essential information, which reduces the bias towards multi-valued features
that occur in information gain. Gini is the inequality among values of a frequency
distribution. Chi2 (χ2) is the dependency between the feature and the class as mea-
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sured by the chi-square statistic. Finally, ReliefF is the ability of an attribute to
distinguish between classes on similar data instances.

Table 3.1 provides the significance of the features forMpocket, Mdoor, andMground

within DATASET 1. As illustrated in the table, not all the features are relevant to
each of the three classifications Mpocket, Mdoor and Mground.

Figure 3.3.1: The features selected for classification

We note that the features that show a higher information gain and gain ratio,
also show higher Gini and ReliefF. We then select the features that induce both
high information gain and high gain ratio, while we set the required threshold value
to 0.1 for both. The metrics lead to the selection depicted in Figure 3.3.1 for each
of the three classifiers.

Feature set for Mpocket: The top three features for the Mpocket classification are
proximity, temperature, and light density. Proximity is widely used for in-pocket
detection. Light density remains obvious, although less significant, candidate. While
temperature is an additional relevant feature, not all devices can provide it.

Feature set forMdoor: TheMdoor classification uses GPS accuracy, abstract RSSI,
GSM RSSI, Wi-Fi RSSI, light density, and temperature. Although GPS is the
most important feature to distinguish in- and out-door scenarios, it is also the most
power-consuming feature. Rather than totally disabling it, it can be occasionally
used depending on the preference of the user. Wireless RSSI shows a lower but
still significant contribution to classification because, in an indoor environment,
the wireless signal is non-line-of-sight as it reflects on walls and is obstructed by
obstacles.

Feature set for Mground: Even though the under-ground scenario is considered
a sub-case of the in-door scenario, it requires abstract RSSI, GPS accuracy, tem-
perature, GSM RSSI, pressure, Wi-Fi RSSI, and humidity. Pressure and humidity
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Feature/Metric Info. Gain Gain Ratio Gini χ2 ReliefF
In-/Out-Pocket classification Mpocket

Light density 0.310 0.155 0.169 3758.434 0.034
Proximity 0.931 0.720 0.478 17776.819 0.329
Magnetic
strength

0.024 0.012 0.016 405.081 0.011

Temperature 0.344 0.172 0.213 273.650 0.097
Pressure 0.063 0.032 0.042 298.334 0.036
Humidity 0.096 0.048 0.064 1276.633 0.076
GPS accuracy 0.057 0.042 0.037 165.818 0.001
GSM RSSI value 0.017 0.008 0.011 256.149 0.034
Wi-Fi raw RSSI 0.073 0.069 0.040 682.765 0.030
Abstract RSSI
level

0.027 0.017 0.017 382.020 0.058

In-/Out-Door classification Mdoor

Light density 0.255 0.127 0.157 5041.293 0.050
Proximity 0.098 0.076 0.063 1427.619 0.038
Magnetic
strength

0.167 0.084 0.093 2633.329 0.008

Temperature 0.228 0.114 0.125 50.212 0.070
Pressure 0.127 0.064 0.077 341.875 0.127
Humidity 0.045 0.022 0.029 0.343 0.094
GPS accuracy 0.974 0.715 0.482 9085.097 0.996
GSM RSSI value 0.738 0.370 0.384 11211.066 0.157
Wi-Fi raw RSSI 0.320 0.180 0.148 437.694 0.133
Abstract RSSI
level

0.794 0.493 0.416 15416.226 0.293

Under-/On-Ground classification Mground

Light density 0.102 0.050 0.061 1662.044 0.009
Proximity 0.078 0.060 0.051 1599.679 0.007
Magnetic
strength

0.017 0.008 0.011 297.901 0.006

Temperature 0.485 0.243 0.255 1905.520 0.255
Pressure 0.376 0.188 0.202 6136.352 0.224
Humidity 0.276 0.138 0.142 2475.257 0.161
GPS accuracy 0.434 0.318 0.222 4182.467 0.528
GSM RSSI value 0.463 0.232 0.262 8031.071 0.143
Wi-Fi raw RSSI 0.181 0.170 0.086 5594.195 0.103
Abstract RSSI
level

0.547 0.340 0.296 11586.949 0.250

Table 3.1: The significance of features for the classifications
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are decisive as long as the device can provide them. The wireless RSSI contributes
because the network connectivity is usually weak in an under-ground compared to
an on-ground environment.

3.3.2 Classifier Initialization

Proximity

(a) 1 device contribution
Proximity

(b) 3 devices contribution

Figure 3.3.2: A feature distribution wrt in-pocket(1)/out-pocket(0) classification

We may now train the three classifiers –Mpocket,Mdoor, andMground. Using mixed
training sources causes the risk of weakening the ability of classification due to the
diversity of the feature values across devices and user behavior. As an illustration,
Figure 3.3.2 shows the distribution of the proximity feature in the in/out-pocket
scenarios in the case of a single training set (3.3.2a: single user device) and a mixed
training set (3.3.2b: three user devices), respectively. We observe that involving
more devices and users in the training set creates interference between the distri-
bution of the individual’s features and results in blurring the features. The same
phenomenon for light density has been observed in [119, 120]. Crucially, the single
user-specific model outperforms the model trained on data pooled from several users
[199]. Similarly, a machine learning model for each smartphone/sensor brand would
provide a better classification performance. Nevertheless, in practice, this is hardly
feasible given the diversity of smartphones/sensors as it would require performing
training for each smartphone/sensor brand. Thus, we initialize our three classi-
fiers, i.e., machine learning models, with DATASET 1 that we used for the feature
selection.

We need to select the best machine learning algorithm for the Mpocket, Mdoor,
Mground classifiers using the most significant features associated with each of them.
The classifiers must be efficient in terms of both classification accuracy and time/space
cost, especially with respect to their local inference/update running on the device.
There are various algorithms eligible to address the classification problem [151],
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although fewer are updatable. We have specifically compared six candidate up-
datable algorithms [203]: Hoeffding Tree (Very Fast Decision Tree), IBk (Instance
Based K-nearest neighbors classifier), KStar (Instance-based Learner), LWL (Lo-
cally Weighted Learning), updatable Naive Bayes (NaiveBayes for short), and SGD
(Stochastic Gradient Descent).

Using DATASET 1 again, we have assessed the candidate algorithms forMpocket,
Mdoor and Mground according to the following metrics: Size is the serialized model
size of the initial classifier, which is an important metric due to the (relative) re-
source constraint of the mobile device and the fact that the size may increase as
the model gets updated locally. CVCA (10-fold Cross-Validation Classification Ac-
curacy) characterizes the cross-validation split of the data into 10 folds, where the
machine learning model is tested by holding out examples from 1 fold at a time.
The model is then induced from the other 9 folds, and examples from 1 fold are
classified. The procedure is repeated for all 10 folds. The classification accuracy
is the proportion of correctly classified examples. OLR (Online Learning Runtime)
indicates the time taken for updating a machine learning model with a fresh instance
(i.e., user feedback). Finally, IR (Inference Runtime) indicates the time taken for
carrying out an inference using an incoming feature vector.

Table 3.2 compares the candidate algorithms according to the same four metrics
for our three classifications: Mpocket, Mdoor and Mground. The result for Mpocket in
Table 3.2 shows that all the classifiers can provide a similar high CVCA of about 99%.
However, a significant difference appears among the sterilized sizes: IBk, KStar, and
LWL are storing training instances inside the model, which makes the size of the
classifier proportional to the size of the training dataset. Instead, Hoeffding Tree,
NaiveBayes and SGD require a much lower Size. IBk and LWL have an OLR
greater than 3ms, while it is less than 1ms for the other four algorithms. IBk,
KStar and LWL all have much longer IR than Hoeffding Tree, NaiveBayes and
SGD. A better CVAC result is discovered for Mdoor: All the algorithms provide the
maximum classification accuracy in cross-validation of 100%. However, although
the dataset is unchanged compared to Mpocket, the serialized size of IBk, KStar and
LWL increases due to the number of selected features. Besides, the OLRs do not
change significantly and are less than 1ms except for IBk and LWL. IBk, KStar and
LWL still have a longer IR than the other three algorithms. Result forMground shows
that LWL and NaiveBayes give lower classification accuracy in cross validation than
other algorithms but still over 95%. The high storage cost remains for IBk, KStar
and LWL as they require storing historical data. They further cost a much longer
IR than the other three algorithms. As for Hoeffding Tree, NaiveBayes and SGD,
both their OLR and IR remain below 1ms, with the negligible exception of the IR
of NaiveBayes at 1.223. Overall, IBk, KStar and LWL show the highest space and
time costs, and we discard them.

In particular, all the algorithms provide a high CVCA. Depending on the al-
gorithm, the sterilized size significantly differs because IBk, KStar, and LWL are
storing the training instances in the model. Hence, the size of the classifier gets
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Metric /
Model

Hoeffding
Tree

IBk KStar LWL Naive
Bayes

SGD

Mpocket

Size
(kB)

16 1158 1157 1158 3 5

CVCA
(%)

99.1538 99.469 99.350 99.149 98.999 99.180

OLR
(ms)

0.020 3.809 0.081 4.344 0.012 0.123

IR (ms) 0.057 10.545 165.844 91.325 1.635 0.018
Mdoor

Size
(kB)

9 1612 1791 1764 4 6

CVCA
(%)

100 100 100 100 100 100

OLR
(ms)

0.036 5.150 0.062 5.813 0.011 0.172

IR (ms) 0.071 11.823 364.790 109.644 1.610 0.047
Mground

Size
(kB)

13 1763 1763 1763 4 6

CVCA
(%)

100 100 100 98.060 97.105 100

OLR
(ms)

0.024 4.628 0.062 6.720 0.009 0.111

IR (ms) 0.061 15.160 238.916 128.149 1.223 0.018

Table 3.2: Evaluation of the learning algorithms
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proportional to the size of the training dataset. IBk and LWL have a greater OLR
compared to others. IBk, KStar, and LWL all have much longer IR than Hoeffd-
ing Tree, Naive Bayes, and SGD. The OLR and IR remain low for Hoeffding Tree,
Naive Bayes, and SGD. We finally selected the Hoeffding Tree as a training algo-
rithm because it is characterized by the highest accuracy and lowest space/time
costs.

3.3.3 Inference and Update
The classifiers for the sensing context need to be personalized. They should be
deployed on smartphones to evolve according to the specifics of the device, user,
and even scenario contributing to the crowdsensed observations. In particular, online
learning for classifiers update copes with the following aspects:

1. Biases in the feature value across diverse device models: The values collected
for the same feature on different devices can show significant biases due to the
diversity of hardware models.

2. Availability of features depending on the device and user preference: The fea-
ture availability depends on both the device’s capability and the configura-
tion set by the owner, who decides which embedded components are switched
on/off.

3. Classification on new scenarios not covered during the initial training: The
classification may not work in, e.g., a new physical region, another season,
a different city. The initial classifier may not cover scenarios that will be
encountered across time and space.

Initial Model

Online Model 2Online Model 1

Feedback

In-Door

In-Pocket

On-Ground Under-Ground

Out-Pocket

Out-Door

Figure 3.3.3: Online learning for personalization - the initial model is deployed on
the participating devices, and becomes a local user-centric model on each device,
which is evolving through feedback; the feedback is collected only following some
inference results and the inferences are hierarchical
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Figure 3.3.3 summarizes the design rationale of our online learning solution em-
bedded in ContextSense: the initially trained classifier is deployed on the partic-
ipating devices at the time of installation of the integrated crowdsensing middle-
ware/application, e.g., Ambiciti [82]. While the inference of the sensing context is
running on devices, feedback is requested to users for assessing the correctness of
the inference result. The opportunistically collected feedback is then converted to
a labeled training instance that updates the current machine learning models. We
boost online learning by creating a new instance from the feedback and using it
multiple times for the model update.

Algorithm 1 Hierarchical inference and update
Input: A feature vector ~f with a feedback u ∈ U (options)
Output: The integrated inference result c shown to the user

u ∈ ∅ ⊂ U possible if the user does not give feedback
1: c← null
2: if Mpocket(~f) = inpocket then
3: c← inpocket and U ← {outpocket}
4: if u = outpocket ∈ U then
5: update Mpocket using instance (~f, u)
6: end if
7: else if Mdoor(~f) = outdoor then
8: c← outdoor + outpocket and U ← {indoor}
9: if u = indoor ∈ U then

10: update Mdoor using instance (~f, u)
11: end if
12: else if Mground(~f) = underground then
13: c← underground+ indoor + outpocket and ...

U ← {onground}
14: if u = onground ∈ U then
15: update Mground using instance (~f, u)
16: end if
17: else
18: c← onground+ indoor + outpocket and ...

U ← {underground, outdoor}
19: if u = underground ∈ U then
20: update Mground using instance (~f, u)
21: else if u = outdoor ∈ U then
22: update Mdoor using instance (~f, u)
23: end if
24: end if
25: return c and run from line 1 for next loop

The feedback requirement should be limited as much as possible to minimize the
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burden on users, while still enhancing the accuracy of our three classifiers Mpocket,
Mdoor and Mground over time. We achieve this by applying a hierarchical inference
and by updating the three classifiers conditionally (See Algorithm 1). The hierarchy
follows the in-pocket classifier’s predominant role over the two others and the in-door
classifier over the under-ground one when sensing the physical environment. In more
detail, a crowdsensed measurement is relevant for the analysis of most environmental
phenomena if it is out-pocket; in-pocket devices have less opportunity to contribute
to the crowdsensing, as shown in [185]. The in-door/out-door detection is meaningful
only when the device is out-pocket and ready for sensing. Furthermore, the under-
ground/upper-ground case is a sub-scenario of the in-door situation. Also, while
requesting the user’s feedback about a single inference may be acceptable, requesting
the feedback about three inferences is too much to ask.

3.4 Prototype Implementation
We have implemented the proposed personalization solution ContextSense as an
Android application prototype. Our ContextSense solution for crowdsensing is also
available at GitHub1. We outline below the integration of our online learning ap-
proach to the contextualization of the contributed observations (see Figure 3.4.1).

Figure 3.4.1: The ContextSense middleware solution

The initial classifiers are trained only once on a computer and are deployed at
the time of installation of ContextSense. They are serialized and imported into the
Android application to be loaded at runtime and updated locally. The application
collects features from sensor readings, infers the current sensing context, collects

1https://https://github.com/sensetogether/ContextSense

https://https://github.com/sensetogether/ContextSense
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opportunistic feedback, and updates the classifiers accordingly. The application
also implements a feature extractor for using the feedback and a user interface for
requesting feedback. The ContextSense solution relies on the Hoeffding Tree and uses
only negative feedback hierarchically to keep the amount of feedback to a minimum,
thus limits the burden put on the end user. We rely on the WEKA library [203]
that implements the Hoeffding Tree algorithm.

While the inference of the sensing context is running on devices, ContextSense needs
to collect the user feedback to assess the correctness of the inference result. The
feedback is then converted to a labeled training instance that updates the current
machine learning models. Practically, the opportunistic feedback from the user is
collected using a permanent notification. The notification provides the user with in-
formation about the inferred context. Then, the user decides if and when to provide
feedback upon incorrect inferences.

Figure 3.4.2: Example of ContextSense notification UI - the notification includes at
the top the inferred context and at the bottom some button(s) that can be pressed
to provide a (Boolean) feedback

An example of such a notification is illustrated in Figure 3.4.2. The information
about the context is brief, and the user can acknowledge any incorrectness with re-
spect to the inferred context. This feedback then serves to improve the performance
of the classifier. The hierarchical inference has four genres of results: "in-pocket",
"out-door, out-pocket", "under-ground, in-door, out-pocket", "on-ground, in-door,
out-pocket". For the first three types of results, the user has only one feedback
option to select each time; for the last result, the user has two options to make a
selection.

3.5 Performance Evaluation

We evaluate the ContextSense solution considering the inference accuracy and num-
ber of feedback as metrics. We also compare our solution with the alternative
non-hierarchical approach. Finally, we show the resource cost of ContextSense for
the end device.
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3.5.1 Accuracy and Number of Feedback

Recall that the initial models are trained using DATASET 1. We evaluate our per-
sonalization approach using a totally new DATASET 2 as the test dataset.

DATASET 2 contains 20k instances, with each embedding three labels
representing the ground truth, and covers all the relevant scenarios (i.e.,
in/out-pocket, in/out-door and under/upper-ground) uniformly. Different
to DATASET 1, the environmental sensors, including temperature, humid-
ity, pressure, are not available on the contributing device Xiaomi Redmi
Note 4, and the available sensors come from a distinct manufacturer. Be-
sides, the user switches off the Wi-Fi and the GPS modules from time to
time. Furthermore, the data gathered for DATASET 1 and DATASET 2
correspond to two different physical environments. They were collected in
two different city areas and different months.

We assess our hierarchical algorithm’s accuracy according to the number of neg-
ative user feedback (i.e., when the inference is wrong). We performed 500 runs of
the experiment where, at each run, we randomly select 30 entries from DATASET 2
to perform inference and request for feedback. While the entire DATASET 2 ground
truth serves to assess the accuracy of classifications. Over the 500 runs, at most
9 inferences were wrong for Mpocket, 12 for Mdoor, and 13 for Mground, respectively.
Also, as depicted in Figure 3.5.1, the classification accuracy gets better 99%, 86%
and 71% of the time over the 500 runs for Mpocket, Mdoor and Mground, respectively.
The enhanced accuracy forMpocket andMground is high compared to the initial accu-
racy, and is less significant for Mdoor. While the accuracy for Mpocket remains stable,
the classification accuracy for Mdoor and Mground slightly varies before reaching 91%
and 90%, respectively. In summary, our hierarchical algorithm enhances the clas-
sification accuracy most of the time while limiting the amount of feedback (overall
best 12) requested to the end user.

The F1 score is another measure of test accuracy, considering both the precision
and the recall of the test. The F1 score ranges from 1 (best) to 0 (worst). We assess
the F1 score of the hierarchical algorithm according to the number of negative user
feedback occurrences. We also performed 500 experiments where the initial classifiers
are trained with DATASET 1 and are evaluated by simulating negative feedback that
leveraging DATASET 2. Figure 3.5.2 provides the F1 score according to the number
of (negative and hierarchical) feedback occurrences. Among the 15 occurrences, at
most 4 are related to Mpocket, 12 to Mdoor and 15 to Mground. The F1 score gets
an enhancement 100%, 90% and 71% of the time for Mpocket, Mdoor and Mground,
respectively. The enhancement of the F1 score is the most significant forMpocket and
the least significant for Mdoor. Overall, 8 hierarchical feedback occurrences provide
a high F1 score for all three classifiers.
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(a) 99% enhancement of Mpocket
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(b) 86% enhancement of Mdoor
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(c) 71% enhancement of Mground

Figure 3.5.1: Enhancement of classification accuracy - box plots showing the im-
provement of the hierarchical classification accuracy wrt the number of feedback
compared to the original accuracy obtained without feedback (dashed line)
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(c) Mground

Figure 3.5.2: Enhancement of classification F1 score - box plots showing the im-
provement of the hierarchical classification F1 score wrt the number of feedback
compared to the original F1 score obtained without feedback (dashed line)
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3.5.2 Hierarchical vs Multi-class Classifier
An alternative to our approach lies in performing a single and multi-class clas-
sification, which distinguishes 8 combinations of in/out-pocket, in/out-door, and
under/upper-ground. To compare the multi-class classifier with our hierarchical
classifiers, we performed 100 runs of experiments using the same settings of Sec-
tion 3.5.1.
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Figure 3.5.3: Multi-class classification accuracy box plot according to the number
of feedback

As illustrated in Figure 3.5.3, the mean of enhanced classification accuracy (trian-
gles in the plot) of the multi-class classification always remains below 45%. Also, the
initial and enhanced accuracy of a multi-class classifier is 1/2 time lower compared
to the hierarchical classifiers (See Figure 3.5.1). Besides, the multi-class classifier
requires more feedback compared to the hierarchical classifiers: up to 28 feedback is
required. Also, with the multi-class classifier, the user must make a selection among
7 options instead of one or two options.

0.0 0.2 0.4 0.6 0.8
Runt im e (m s)

Hierarchical Classifiers 
Inference

Mult i-class classifier 
Inference

Hierarchical Classifiers 
Update

Mult i-class classifier 
Update

Figure 3.5.4: Comparison of classification execution time - single multi-class Hoeffd-
ing Tree vs hierarchical binary-class Hoeffding Trees

As illustrated in Figure 3.5.4, our hierarchical classifier involves a much shorter
update execution time and a slightly shorter inference execution time compared to
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the multi-class classifier, because the hierarchical classifiers do not always perform
all the classifications.

Overall, using hierarchical classifiers offers many advantages: (1) using a specific
classifier for each context element implies that the classification accuracy remains
high for each of them; (2) each classifier only relies on the most relevant features,
which reduces the inference and update execution time; (3) a classifier is easily
added/removed/replaced when a new context element is handled for the benefit of
the crowdsensing application; (4) hierarchical classifiers limit the number of infer-
ences that are triggered; (5) the user feedback required for the personalization of
hierarchical classifiers is little and straightforward.

3.5.3 Energy and Resource Efficiency
The components on the smartphone have different power consumption. The power
consumed by the GPS module, proximity sensor, and Wi-Fi component is relatively
high (e.g., 50 mA, 3 mA, and 2 mA, respectively) compared to the one consumed
by the light/magnetic/pressure/humidity sensor, which remains below 1.2 mA.
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Figure 3.5.5: Classification accuracy under different power modes

DATASET 3 includes 20k entries obtained when the GPS module, prox-
imity sensor and Wi-Fi components are disabled. The other properties of
instances are as same as DATASET 1.

In Figure 3.5.5, we evaluate the impact of disabling these three power-consuming
components for which we rely on another DATASET 3. When the GPS, proximity
and Wi-Fi are disabled, the classification accuracy drops down with a decrease
of 50%, 40% and 20% for Mpocket, Mdoor and Mground respectively. While providing
feedback, the mean classification accuracy increases by 10%, 8% and 1% respectively,
and the maximum classification accuracy after feedback reaches 74%, 99% and 98%
for Mpocket, Mdoor and Mground respectively. Indeed, our approach personalizes the
classifiers and deals with (power-consuming) features that may be disabled by the
user.
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Our ContextSense prototype requires around 100MB of memory on the smart-
phone, and it leads to an increase of 5% of the CPU (Qualcomm Snapdragon 636).
The inference and update of contexts necessitate around 3MB of memory. The
inference execution time is on average 0.2ms, 0.1ms and 0.1ms for Mpocket, Mdoor

and Mground respectively, while the execution time necessary to update the model is
7.3ms, 7.5ms and 10.0ms on average, respectively.

Figure 3.5.6: ContextSense performance on Android smartphone - red dots represent
user feedback actions

Figure 3.5.6 shows the CPU, memory, and energy consumption of running Con-
textSense performing hierarchical inference every second and opportunistic update
according to the user feedback. When receiving feedback from the user, the CPU
usage slightly increases due to the update of the models. The memory contains the
amount consumed by essential Android application components, and the computing
does not affect the memory. There is no impact on the network consumption, and
the level of energy consumption remains stable and light.

In summary, our ContextSense solution allows adapting the tradeoffs between
power consumption and accuracy while inducing limited resource consumption on
the smartphone.

3.6 Discussion
Although opportunistic crowdsensing is a practical way to achieve ubiquitous sensing
for urban environmental monitoring, heterogeneous crowdsensing devices and users
introduce inaccurate measurements due to the lack of contextualization. Indeed,
context-awareness is essential to the development of mobile crowdsensing applica-
tions that can be informed when a suitable sensing context is detected to maximize
the effectiveness of the crowdsensing application without requesting the end user to
provide contextual details explicitly.

This chapter introduced the ContextSense solution to classify the context under
which crowdsensors operate and infer whether the smartphone is in-/out-pocket, in-
/out-door, and under-/upper-ground. To do so, we leverage online machine learning
to contextualize the gathered observation in a resource-efficient way, while account-
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ing for the specifics of the crowdsensors that span the device characteristics, the
end users’ behavior, and the scenarios. We compared six online learning algorithms
to select the one achieving the best efficiency, expressed in terms of classification
accuracy, execution time, and memory consumption. We further introduced a hi-
erarchical algorithm that requests very few feedback and hence reduces the burden
put on the user. Implementation and experiment results show that despite very
few feedback, there is a high probability of getting a good/enhanced classification
accuracy. Compared to a single multi-class classifier, our hierarchical approach of
context inference and update is more efficient in terms of execution time and feed-
back collection. Our approach is also flexible because the sensing context can be
inferred even when some sensor(s) or communication module(s) are unavailable or
switched off.

In the next chapter, we leverage the context information of the device, including
the inferred physical environment from ContextSense, to establish efficient collabo-
rative groups among crowdsensors that are close to each other.
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4.1 Opportunistic Collaboration
Traditional crowdsensing relies on the cloud/infrastructure server to achieve efficient
management. The cloud server may recruit the most useful set of crowdsensors or
plan the path of multiple participants to enhance the efficiency of participatory
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crowdsensing [88, 99], but this results in a limited amount of data and sensing
coverage. Alternatively, opportunistic crowdsensing creates the potential to provide
fine-grained observations that cover urban areas 27/7, provided the engagement of a
sufficiently large and diverse crowd [113, 157], but at the cost of high redundancy and
resource waste. The cloud server then needs to filter out abnormal contributions and
perform post-processing on observations, which leverages the context information to,
e.g., eliminate in-pocket measurements and aggregate out-door measurements for an
area of interest. The burden to ensure the gathering of relevant data/knowledge is
thus shifted from the user to the end device and the server.

For illustration, we refer to the experience with the Ambiciti (formerly SoundC-
ity) solution1, which comes from a partner start-up company of our research team.
Ambiciti features an opportunistic crowdsensing application and cloud-based plat-
form for monitoring the individual and cumulative exposure to environmental pollu-
tion, and particularly noise [69]. Opportunistic crowdsensors gather the sound level
using the smartphone’s microphone along the user’s journeys. The development of
Ambiciti started in 2014, resulting in the first launch of the application in summer
20152. It has then shown that the assimilation of crowdsensed observations allows
generating street-level noise pollution maps that enhance traditional simulated maps
[184], provided the calibration of the application [185]. However, the analysis of noise
data collected in Paris over the years 2015 - 2017 have highlighted that only less
than 10% of the crowdsensed observations contribute to the assimilation of relevant
knowledge [82, 115]. Of course, one may consider that 10% of massive data is still a
valuable source. Still, low-quality and redundant sensing incurs a significant waste
of resources from end devices to cloud server, which is not sustainable. Moreover,
in the –not so exceptional– cases where the crowdsensing application attracts a few
committed users, then the knowledge from the collected observations is not worth
the spending.

An efficient crowdsensing mainly requires the application to not deplete crowd-
sensors’ resources. We thus aim at increasing the data quality while reducing the
resource cost on the end device to support opportunistic crowdsensing at scale.
Group-based collaboration is a way to achieve efficiency, by sharing the workload
among several workers. However, collaboration in opportunistic crowdsensing differs
from the one in participatory crowdsensing, and, thus requires a specific solution. In-
deed, participatory crowdsensing campaigns may request a group of people to sense,
exchange information, and share their findings, to improve the quality of the col-
lected data [171, 8, 17, 224, 88]. With opportunistic crowdsensing, the collaboration
must be opportunistic: the potential groups of crowdsensors that may collaborate
must be found/detected in a proactive and autonomous way.

Still, the fact remains that crowdsensors tend to group together naturally. In-
deed, crowdsensors are "social sensors" that outfit people, as opposed to mere phys-
ical equipment that senses the environment and transmits data. When the crowd-

1http://ambiciti.io/
2https://project.inria.fr/siliconvalley/2015/08/19/soundcity/

http://ambiciti.io/
https://project.inria.fr/siliconvalley/2015/08/19/soundcity/
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Figure 4.1.1: Distribution of crowdsensor activities - observation on one-year crowd-
sensing dataset, 92.61% out-pocket and 89.40% in-pocket smartphones perform
crowdsensing when people are still

sensing is opportunistic, users follow their daily routine without being directly in-
volved in the sensing task [38]. Thus, at the micro-level, behavioral signatures (i.e.,
routines) as well as recurrent meeting patterns reflect the underlying relational dy-
namics of organizations or communities to which the user is affiliated [129]. In
particular, a fact that further supports a group-based collaboration strategy for op-
portunistic crowdsensing, is that people tend to cluster/stay with others at small
scale, as part of their social activities [41, 167], following a daily/weekly routines
[56, 45]. For example, many employees work together in the same building area;
friends and families usually meet and, e.g., sit together on the grass of a park for
leisure time. Meanwhile, as illustrated in Figure 4.1.1 and also pointed out in [82],
time-related to commuting is low comparing to the time during which people are
mostly still.

ad hoc

Figure 4.1.2: Collaborative crowdsensing groups

Leveraging the social nature of crowdsensors, we introduce the BeTogether mid-
dleware that enacts collaborative crowdsensing groups (Figure 4.1.2). The design
rationale of BeTogether takes advantage of the location- and time-dependence of the
crowdsensing: co-located crowdsensors contribute related observations [122], and
may thus collaborate to improve the provided measurements and avoid unnecessary
duplication of work. More precisely, the crowdsensing tasks that need to be per-
formed on the end devices encompass: environment sensing, location provisioning,
data processing, and uploading to the cloud. Then, while the replication of physical
sensing within a group potentially allows the gathering of more accurate knowledge,
any of the other tasks only needs to be performed by the most cost-effective group
member(s).
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Nevertheless, a primary challenge for the BeTogether solution is to cope with the
dynamics and heterogeneity of the crowdsensors [82]: the user activity, the resources
available on the device, and the position of the sensors (smartphones) are all criteria
that characterize the crowdsensor’s contribution to the upper layer application. The
combination of these criteria defines the context of the grouping, which enriches the
sensing context defined in the previous Chapter 3.

BeTogether thus creates context-aware collaborative groups of opportunistic
crowdsensors in an ad hoc way, which follows three principles: the members within
any collaborative group (i) stay together for a long enough time to prevent constant
changes and unnecessary grouping reconfiguration; (ii) operate within the same
physical environment (e.g., in-door vs. out-door) and hence sense related physical
phenomena; and (iii) perform the same activity so that they behave alike –e.g.,
it is preferable that all the crowdsensors that collaborate either move together or
stay still. Then, upon creating a group, BeTogether distributes the crowdsensing
tasks to the adequate group members according to the crowdsensor’s context, e.g.,
a smartphone located in the pocket cannot adequately sense the surrounding sound
level. Overall, the BeTogether solution promotes opportunistic crowdsensing that
imposes a minimal burden on end-users, while increasing the accuracy and resource
efficiency of the crowdsensing system.

After positioning the BeTogether solution with respect to the related work in
the next section, this chapter details the following contributions to the field of op-
portunistic crowdsensing:

• Introducing opportunistic, context-aware crowdsensing groups, so that any
group delivers more accurate knowledge and enhances –both local and global–
resource-efficiency compared to the gathering of the individual contributions
of its member on the cloud (Section 4.3). Such a grouping mechanism relies
on:

1. User-specific context inference including the solution in Chapter 3 that
accounts for the specifics of end devices and user behaviors (Section 4.3.1);

2. A set of utility functions that drive the distribution of the crowdsens-
ing tasks among the group members so that any crowdsensing group
does meet the objectives of improved data quality and resource-efficiency
(Section 4.3.2);

3. An algorithm for the context-aware discovery of co-located crowdsensors,
grouping configuration, and further task assignment (Section 4.3.3).

• A prototype implementation of the BeTogether solution for the Android plat-
form, which paves the way for experimental evaluation but also the implemen-
tation of crowdsensing applications by third parties (Section 4.4).

• Evaluation of the BeTogether solution. We leverage a one-year dataset of
nearly one million entries, which comes from the Ambiciti crowdsensing appli-
cation. Results show that the collaborative crowdsensing group improves data
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quality, while its behavior adapts according to the context of the crowdsensors
for the sake of resource-efficiency (Section 4.5).

4.2 Related Work
In Chapter 2, we reviewed and positioned our contributions with respect to collab-
orative crowdsensing strategies that aim at guaranteeing the quality of observations
at low sensing cost. In this chapter, we focus specifically on enacting groups of co-
located crowdsensors in an ad hoc way, that is, without relying on any infrastructure.
While not being exhaustive, we review below the most representative related work.

4.2.1 Group-based Collaboration
So far, most collaboration strategies among co-located crowdsensors applies central-
ized management: data flows directly from each crowdsensor to a cloud/edge server
that optimizes the collection and analyzes the data [70, 110, 83]. The drawback
of these solutions is that they require every crowdsensor to be connected to the
same access point/server in advance, which limits the applicability of the mobile
crowdsensing. Instead, a fully distributed collaboration that promotes in-network
management without the involvement of an edge/cloud server for controlling and
planning the task allocation would be more scalable and less failure-prone by design.

There exist few collaborative crowdsensing solutions that neither rely on an edge
server nor require end devices to be connected to the same WLAN. We refer to this
kind of strategy as "ad hoc collaboration". In practice, nearby crowdsensors may
elect a single node that acts as proxy, gathers the local observations provided by
other crowdsensors and forwards them to the cloud [78]. This election is repeated
to deal with the ad hoc nature of the network. Several criteria have been used to
determine which crowdsensor should operate as proxy, among which the physical
proximity, the remaining energy level [50], the number of neighbors, the connection
quality, the stability of the connection [146, 147].

The work mentioned above mostly concentrates on selecting a network proxy
providing an access to the cloud, using various selection criteria. Very limited work
promotes an opportunistic and ad hoc collaboration among crowdsensors, beyond
the data forwarding/uploading. A fully distributed collaboration is proposed in [166]
to support an opportunistic macro calibration, which operates in the background
and in an automated manner. Precisely, crowdsensors that are within the relevant
sensing and D2D communication range coordinate so that the observations of the
previously calibrated crowdsensors are used to calibrate the other participants. As
a result, such collaboration is particularly well suited to encounters between people
as, for example, in public spaces.

Through this specific work on distributed calibration, we have noticed that dis-
tributed collaboration goes beyond the simple relaying of sensing data [195, 187, 181].
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There is a need for leveraging the increasing functionalities of smart devices to sup-
port additional functionalities (e.g., selective sensing, location sharing, and data
processing). Furthermore, additional context factors (e.g., human mobility, device
heterogeneity, and people relationship) should be considered to support effective
collaboration among opportunistic crowdsensors.

In our work, we consider collaboration with respect to the various crowdsensing
tasks/roles, which are not restricted to the proxy role. We then deal with the
distribution of these tasks according to the context of the co-located nodes so as to
enhance both resource utilization and data quality, locally and globally. We further
group co-located crowdsensors that behave alike and observe compatible physical
phenomena because they are likely to collaborate for a long time, which increases
the group stability.

4.2.2 Collaboration via D2D Networking
The opportunistic networking of crowdsensors within a group requires special care.
In particular, the opportunistic grouping of nodes has been extensively studied in the
early 2000s as part of the emergence of MANET (e.g., see [125]). Nowadays, D2D
communication, which is growing in popularity, offers a convenient base ground
to opportunistically form a transient network, discover the nearby devices along
with the services they can offer, and exchange data through the established D2D
connections [214]. More recently, the variety of low-level D2D technologies (includ-
ing Bluetooth Low Power, Wi-Fi Direct, and the very recent Wi-Fi Aware) have
been integrated and used jointly to support multi-technology networking [93, 92].
Building on this trend, we leverage innovation in D2D networking for the creation
of the opportunistic crowdsensing groups. In particular, the BeTogether design
builds explicitly upon Wi-Fi Direct [7, 127], although alternative D2D communica-
tion technologies could be considered. Then, we customize the creation of ad hoc
groups/networks according to the specifics of opportunistic crowdsensing; that is,
the groups are created according to the context, spanning the user behavior, physical
environment, device attributes, and the expected lifespan of the given context.

4.3 Context-aware Collaborative Groups
Our strategy to collaborative crowdsensing revolves around the opportunistic cre-
ation of groups of co-located crowdsensors, such that any given group fills the manda-
tory crowdsensing tasks: Location tracking, Internet connection, Sensors measuring
for the target observations, and Data processing (over observations). The objective is
further to ensure that the collaboration results in reducing resource consumption due
to crowdsensing, both locally and globally, compared to a cloud-centric solution. In
particular, we leverage the relatively cheap cost – in terms of energy consumption –
of D2D communication compared to the costs associated with location management
and cellular connection to the cloud.
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4.3.1 Context Awareness
The context of a crowdsensor serves to assess the relevance of its peers/neighbors
that are within D2D communication range for the sake of enhanced efficiency, that
is, the ability to improve the gathered knowledge before transferring it to the cloud
in a way that reduces resource-consumption.

Context Metadata

The contexts characterizing the crowdsensor’s collaboration profile are subdivided
into:

• UA (User Activity) refers to the mobility (or non-mobility) of the end user,
which comes from the activity recognition module of the operating system.
The module leverages machine learning [53] and relies on the sensors embedded
in the smart device to determine if the user is, e.g., still, walking, cycling, or
in a vehicle.

• PE (Physical Environment) reflects the position/placement of the sensing de-
vice, which influences the given observations of physical phenomena. It detects
whether the crowdsensor is: in-/out-pocket, in-/out-door, and under-/upper-
ground. We leverage ContextSense in Chapter 3 that applies online learning
for such a user-centric inference, which learns the user behavior incrementally
on the device [47, 48].

• DA (Device Attribute) characterizes the ability of the device to contribute
to the various crowdsensing tasks. The attributes include the available net-
working (e.g., type of Internet access, uploading bandwidth) and computing
capabilities (e.g., remaining battery, CPU frequency, memory size), the type
of embedded sensors (e.g., {"Temperature", "Light", "Pressure", "Humidity",
"Sound level"}) together with the related power consumption and accuracy.

In Table 4.1, we illustrate explicitly the context list of UA, PE and DA that we
consider in the solution.

Context Duration

The effectiveness of the collaboration strategy depends not solely on the ability of
grouping together crowdsensors that have compatible context [3, 4], but also on
creating groups that last long enough. Indeed, the latter is critical to ensure that
the benefit of the collaborative crowdsensing at the edge outperforms the overhead
due to the group management/configuration.

Building upon the fact that human activity is predictable and follows a periodic
behavior [55, 56, 45], we leverage online machine learning in a way similar to the
inference of PE [47, 48], to predict how long the current UA and PE are going to
last. That is, the predictor is continuously updated on the end device so that it
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Key Value (Type, value, metric)
"User Activity" String, {"Vehicle", "Bicycle",

"Foot", "Still", "Unknown"}
"User Activity Duration" Float, value in minutes
"In-Pocket" Boolean, {True, False, Null}
"In-Door" Boolean, {True, False, Null}
"Under-Ground" Boolean, {True, False, Null}
"<Physical Environment> Dura-
tion"

Float, value in minutes

"Location Type" String, {"GPS", "Network", Null}
"Location Accuracy" Float, value in m unit
"Location Power" Float, value in mA unit
"Internet Connection" String, {"Wi-Fi", "Cellular", Null}
"Internet Up-link Bandwidth" Float, value in Kbps
"Internet Power" Float, value in mA unit
"Remaining Battery" Float, value in mAh unit
"CPU Frequency" Float, value in MHz unit
"Memory Size" Float, value in MB unit
"<Sensor> Accuracy" Float %, set by calibration
"<Sensor> Power" Float, value in mA unit

Table 4.1: Context attributes for collaboration corresponds to < Key, V alue > pairs
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keeps evolving according to the specifics of the user. Each time the user changes
UA, the following new data instance is provided as input to the machine learning
model:

{tprev_UA, UAprev, tcur_UA − tprev_UA}

where: tprev_UA is the starting time of the previous UA, UAprev is the previous value
for UA, and tcur_UA is the time at which the current UA started. The current time
is defined as a tuple of {day of week, hour of day, minute of hour} because people
tend to have repeated behavior at the week level, and the minute unit is fine-grained
enough. The same applies to the update of PE duration, with PE substituting to
UA in the above data instance definition.

Thanks to the online learning algorithm, we predict the duration of the current
UA (respectively PE) according to the current time and UA (respectively PE). The
prediction of the UA/PE duration is a regression problem, rather than a classi-
fication problem. Many online learning algorithms may address the classification
problem, but very few deals with numerical regression. We have investigated three
eligible algorithms: IBk (Instance Based k-nearest neighbor algorithm), KStar (an
instance-based learner), and LWL (Locally Weighted Learning) [203]. Ultimately,
we selected LWL as the online learning algorithm because it provides the lowest
RMSE (Root Mean Square Error) and execution latency.

Neighbors with Matching Context

Contexts Matching Rules (i, j)
PE (except pocket) Consistent for crowdsensors i and j
PE duration Greater than Dmin for both i and j
UA Consistent for crowdsensors i and j
UA duration Greater than Dmin for both i and j
RSSI value Greater than RSSImin for both i and j
Bearing (of moving) Consistent for crowdsensors i and j

Table 4.2: Neighbor matching rules

We set several constraints to find the peers that may be collaborative neighbors.
Table 4.2 lists the resulting rules that determine the grouping of crowdsensors where
the minimum duration is set according to the specific application. PE and UA are
the two primary contexts that need to be matched. In practice, the RSSI is used
to estimate the distance between two crowdsensors (i.e., transmitter and receiver)
[20, 122] and determine whether the two crowdsensors are close enough, i.e., RSSI >
RSSImin, with respect to the problem at hand [77]. We also consider the RSSI-based
distance for assessing the relevance of grouping crowdsensors, which we enrich with
the closeness of their respective context that should last for long enough (as predicted
using machine learning).
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Given the crowdsensors set in the D2D communication range of smartphone i,
we define neighbors Ni of i as the nearby crowdsensors that match all the rules.
The grouping and the assignment of crowdsensing tasks to a set of neighbors then
depend on their utilities to carry out the tasks.

4.3.2 Assessing the Crowdsensor Utilities

We introduce a set of utility functions to evaluate to which extent each crowdsensor
is eligible to carry out some crowdsensing tasks. We rely on a classical squashing
function to normalize the values used in the computation and render comparable
the utilities. The squashing function f corresponds to a shifted and scaled logistic
function (see Figure 4.3.1):
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Figure 4.3.1: Squashing function for normalization

f(x, k, x0) = 1
1 + ek(x0−x)

where: the range of f lays into (0, 1), k is the logistic growth rate or steepness of
the curve, and x0 is the x-value of the midpoint of sigmoid, while x is the variable
to be normalized. The values of k and x0 are set according to the domain of the
specific x. In the following, we denote kf and xf the values of k and x0 for a given
function f , while we define the actual values used in our prototype for the various
parameters in Section 4.4.

The following tasks must be implemented within any collaborative group: Co-
ordinator (implementing the D2D network access point for the group and assigning
the crowdsensing tasks to the connected group members, i.e., neighbors); Location
provider (supplying geographical coordinates); Internet proxy (providing Internet ac-
cess and thus transmitting data to the cloud); Data aggregator (analyzing together
the collected data locally before sending to the cloud to, e.g., calibrate the sensors
[166], aggregate the data [184]); and, of course, regular Sensors.
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Coordinator

The selection of the coordinator is based on the following criteria:

• The number of neighbors has a significant impact on the overall performance
because increasing the number of collaborators enables analyzing more data
locally and reducing the transmission of data to the cloud. In contrast, there is
no benefit in creating groups with too few crowdsensors for which the minimum
value δ depends on the application. Given a crowdsensor i and the set Ni of
its neighbors, we define:

∆i = f(max{0, |Ni| − δ}, k∆, x∆)

• The occurrences of collaboration between a crowdsensor i and its neighbors is
another important parameter:

hi = f(
∑
j∈Ni

tcollab(i, j)
|Ni|

, kh, xh)

where: tcollab(i, j) is a numeric parameter indicating the number of times i and
j have collaborated before, as recorded in the history cache of i.

• The UA and PE (except in-/out-pocket) of the crowdsensor should last suffi-
ciently long. Given the predicted duration(UA) (respectively duration(PE))
of the current UA (respectively PE) for i, we define:

di = f(min{duration(UA), duration(PE)}, kd, xd)

• The remaining battery capacity of the crowdsensor should be taken into ac-
count. Its normalized value from its original value bati is denoted as:

bi = f(bati, kb, xb)

Next, provided the weights w∆, wh, wd, wb (all ∈ [0, 1]) set for the above criteria,
we define the utility uc(i) ∈ (0, w∆ + wh + wd + wb) of the crowdsensor i associated
with acting as a coordinator, as the weighted sum of the above functions:

uc(i) = w∆.∆i + wh.hi + wd.di + wb.bi
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Location Provider

While the GPS location brings higher accuracy out-door, it also comes with higher
energy consumption and latency than network-based positioning. This leads us to
introduce the following normalized value li to the support of the positioning by i:

li =


f(accl, kl, xl)− f(powgps, klp, xlp) , GPS
f(accl, kl, xl)− f(pownet, klp, xlp) , Network
−∞ , Null

where: we assume that any crowdsensor i advertises a single location service among
(GPS, Network, Null), accl is the accuracy of the advertised location service, and
powgps (respectively pownet) is the power consumed by the GPS (respectively net-
work) location service.

The utility function for crowdsensor i of being a location provider is thus defined
as ul(i) ∈ (−∞, 1+wd+wb), which accounts for the location service source, location
accuracy and remaining battery capacity:

ul(i) = li + wd.di + wb.bi

Internet Proxy

The Internet proxy transmits the (aggregated) data provided by the group of crowd-
sensors to the cloud server. This service may be provided using either long-range
cellular or short-range Wi-Fi transmission, while we assume that a node supporting
both networks will offer the Wi-Fi-based transmission by default. Then we define:

ni =


f(bwup, kn, xn)− f(powwifi, knp, xnp) , Wi-Fi
f(bwup, kn, xn)− f(powcell, knp, xnp) , Cellular
−∞ , Null

where: bwup is the upstream bandwidth for the Internet interface; powwifi (respec-
tively powcell) is the power consumption of Wi-Fi (respectively cellular Internet)
transmission.

The utility function for crowdsensor i acting as Internet proxy is then defined
as up(i) ∈ (−∞, 1 +wd +wb), and it accounts for the Internet connection interface,
up-link network bandwidth, and remaining battery capacity:

up(i) = ni + wd.di + wb.bi

Data Aggregator

The data aggregator takes in charge the analysis of the sensing data collected lo-
cally. While lightweight data processing can be performed by the coordinator or
by the proxy, complex data analysis may be delegated to a dedicated device with
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the necessary processing capabilities (spanning available memory, CPU frequency,
and remaining battery capacity). This results in the following definition for the
supporting utility function ua(i) ∈ (−wc, wc + wr + wd + wb):

ua(i) = wc.[f(cpui, kc, xc)−f(powc, kcp, xcp)]+wr.f(memi, kr, xr)+wd.di+wb.bi

where: cpui is the CPU frequency, powc is the power consumption of the CPU,memi

is the available memory, and coefficients wc, wr are the weights set for the metrics.

Sensors

The utility of a crowdsensor to carry out the sensing task depends on the accu-
racy of the contributed observations and their power consumption. In particular, a
crowdsensor within a pocket/bag is ignored, which we filter out using the duration
of the crowdsensor being out of the pocket (as defined by the PEout value of PE):

d′i = f(duration(PEout), kd, xd)
which leads to the following utility function, us(i) ∈ (−1, 1 + wd):

us(i) = d′i.[f(accsi , ka, xa)− f(powsi , ksp, xsp) + wd.di]
where: accsi (respectively powsi ) is the accuracy (respectively power consumption) of
the sensor of type s on crowdsensor i.

Group Utility

Given the above set of utility functions, the utility of a group with coordinator i is
then defined as:

UG(i) = uc(i) + ul(l) + up(p) + ua(a) +
∑
s∈S

∑
n∈NSi

us(n)

where:

• l ∈ Ni is the node with the highest utility to act as the location provider
among i’s neighbors.

• p ∈ Ni is the node with the highest utility to act as the Internet proxy among
i’s neighbors.

• a ∈ Ni is the node with the highest utility to act as the data aggregator among
i’s neighbors.

• S is the set of sensor types requested by the upper layer crowdsensing appli-
cation and the set n ∈ NS i that defines the nodes with the highest utility to
act as sensors s within Ni.



Chapter 4. BeTogether : Let Opportunistic Crowdsensors Collaborate 68

Overall, the coordinator tries to find the best set of crowdsensor neighbors to al-
locate the tasks to maximize the utility function. Note that there might be neighbors
in IDLE state, which only stay in the group but do nothing. During the selection,
the following constraints are met:

• Each crowdsensor should be in a group; otherwise, it works alone for all tasks.

• There is no better coordinator than the one elected inside each collaborative
group.

• Each collaborative group should have at least one role for each task.

Note that global optimal is not possible because of the lack of global view. What
the group achieves is the best effort from the local scope view.

4.3.3 Grouping Algorithm
Provided the utility functions, the grouping algorithm leverages the communication
and discovery protocols implemented at the link layer by the state of the art D2D
communication technologies. Without loss of generality, our grouping algorithm
builds upon the Wi-Fi Direct technology [7]. In short, Wi-Fi Direct establishes a
P2P opportunistic network through the discovery of nearby nodes followed by the
election of the node acting as the network’s access point according to the criteria
provided by the upper layer [102, 103] (i.e., in our case, the coordinator utility value
provided by the BeTogether). The election of such an access point for Wi-Fi Direct
is equivalent to a cluster-head election problem [21].

Then, the grouping algorithm runs on every crowdsensor i, either on-demand
or periodically, according to the network’s dynamics. The algorithm decomposes
into the following steps with the duration of each step being set by the upper layer
application (see Algorithms 2 and 3 for detail):

1. Advertise presence with context metadata (UAi, PE i, DAi) and their respec-
tive duration, so as to discover nearby peers and know their contexts. Create
a list of neighbors that matches the context rules.

2. Compute and advertise the utilities including uc(i), ul(i), up(i), ua(i), us1(i),
..., us|S|(i), simultaneously receiving the utilities metadata from neighbors fol-
lowing the advertisement of nearby peers.

3. Self-elect as coordinator if ∀j ∈ Ni : uc(i) ≥ uc(j) and ∀k ∈ Ni : (uc(i) =
uc(k))∧(ID(i) > ID(k)) with the crowdsensor’s ID being unique and assigned
by the middleware to break the tie.

4. Create the Wi-Fi Direct network if self-elected as coordinator and advertise
the network to the neighbors that will ultimately join if they have not joined
another Wi-Fi Direct network since the beginning of the period.
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Algorithm 2 Group Configuration
Require: i: crowdsensor
Input: T : set of tasks that should be allocated
Input: ci: context of crowdsensors i
Input: ut(i): utility that crowdsensor i implements task t
Local variable: Ni: neighbors of i sharing the same context
Local variable: Ci: set of contexts provided by neighbors
Local variable: Ui: set of utilities provided by neighbors
1: Ni ← ∅, Ci ← ∅, Ui ← ∅
2: Register service (BeTogether, ci)
3: Nearby Services Discovery to get Ci and Ni

4: for each task t ∈ T do
5: Compute ut(i)
6: Register service (t, ut(i))
7: end for
8: Nearby Services Discovery to get Ui
9: if uc(i) is the highest value in Ui then
10: Create a Wi-Fi Direct group as group owner
11: for each task t ∈ T do
12: Find crowdsensor k with highest utility ut(k) ∈ Ui
13: Invite crowdsensor k to implement t
14: end for
15: else
16: Find crowdsensor k with highest utility uc(k) ∈ Ui
17: Accept invitation and join group of k
18: end if
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Algorithm 3 Nearby Service Discovery
Require: i: crowdsensor
Input: T : set of tasks that should be implemented
Output: Ni: neighbors of i sharing same context
Output: Ci: set of contexts provided by the neighbors
Output: Ui: set of contexts provided by the neighbors
1: Discover Wi-Fi Direct Service

2: Upon reception of advertisement (BeTogether, cj) from j
3: if Rules matched (cj, ci) then
4: Ni ← Ni

⋃{j}, Ci ← Ci
⋃{cj}

5: end if
6: return Ci and Ni

7: Upon reception of advertisement (t, ut(j)) from j
8: if j ∈ Ni then
9: Ui ← Ui

⋃{ut(j)},∀t ∈ T
10: end if
11: return Ui

5. Assign the crowdsensing tasks to the best suited group members, as defined
by the highest respective utilities.

Once a group is created, the arrival/departure of members is detected at the link
layer by the underlying Wi-Fi Direct protocol. The dynamic enables two approaches
for the reconfiguration of the group: (i) periodically, or (ii) on-demand upon the
detection of the departure/arrival of a node. The latter performs efficiently and
induces almost no cost when very few topology changes occur and when the context
evolves slowly. On the other hand, it may lead to unnecessarily high control traffic
and constant re-assignment in a highly dynamic environment. Keeping in mind
that, in practice, users are most of the time still (and hence evolving in the same
context), we adopt an on-demand approach (based on the context change) by default.
Nevertheless, the middleware switches to periodic re-assignment when the context
gets highly dynamic.

4.4 Prototype Implementation
We implement the BeTogether prototype on the end device. Figure 4.4.1 depicts
the architecture of the BeTogether prototype: the (mobile) crowdsensor components
run on Android 6.0+ smartphones or tablets; the server part on the cloud archives
the data that is collected using a no-SQL database provided by Cloud Firestore3.

3https://firebase.google.com

https://firebase.google.com
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Figure 4.4.1: The BeTogether prototype architecture

The BeTogether prototype implementation is available at GitHub4. In short, the
application running on the crowdsensor features the following components:

• Crowdsensing manager: It controls the workflow of the collaborative crowd-
sensing according to Algorithm 2, which includes the orchestration of the ser-
vice discovery, context inference, computation of utility functions, communi-
cation management, and the assignment of tasks. When a task(s) is assigned
to a device, the manager further instantiates the corresponding functionality/
and starts a separate thread to execute the related task.

• Context inference module: It extracts the crowdsensor context (UA, PE and
DA). It infers the UA value using the Google Activity Recognition API5. It
also infers the PE values using our user-centric inference module available at
GitHub6. The inference is performed using Hoeffding Tree, which provides
incremental decision tree induction and is included in the WEKA library7. It
further predicts the time during which the PE and UA will remain unchanged,
using the LWL algorithm also supported by the WEKA library.

• Utility estimator and task assignment module: The inferred/predicted contexts
are further used to estimate/compute the utilities that assess to which extent
the crowdsensor should carry out among the parallel tasks, i.e., coordinator,
location provider, Internet proxy, data aggregator and environmental sensors.

4https://github.com/sensetogether/BeTogether
5https://developers.google.com/location-context/activity-recognition
6https://github.com/sensetogether/ContextSense
7https://www.cs.waikato.ac.nz/ml/weka

https://github.com/sensetogether/BeTogether
https://developers.google.com/location-context/activity-recognition
https://github.com/sensetogether/ContextSense
https://www.cs.waikato.ac.nz/ml/weka
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• Service discovery: It leveragesWi-Fi Direct [7], which provides both D2D/P2P
communication and service discovery at the data-link layer. Note that Wi-Fi
Direct supports several service discovery protocols, such as Bonjour or UPnP,
while our prototype uses the default Bonjour. A Wi-Fi Direct client plays the
(logical) role of AP (Access Point) while other Wi-Fi Direct clients join the
network that is governed by the AP. Such a network is equivalent to a classical
Wi-Fi network.

Normalization Parameters Values
k∆, x∆, kh, xh, kd, xd 1, 1, 1, 1, 0.1, 10mins
kl, xl, klp, xlp 0.1, 10m, 0.1, 30mA
kn, xn, knp, xnp 10−5, 105kbps, 0.01, 100mA
kb, xb, kcp, xcp 10−3, 103mAh, 0.01, 100mA
kc, xc, kr, xr 10−3, 103MHz, 10−3, 103MB
ka, xa, ksp, xsp 0.1, 10%, 1, 0.1mA
Collaboration Parameters Values
w∆, wh, wd, wb, wc, wr 1, 1, 1, 1, 1, 1

Table 4.3: Parameters configuration and scenario variables

The BeTogether prototype implementation and test-bed experiment detailed
next, use the parameters defined in Table 4.3. These parameters are set to smooth
the normalization curve (Figure 4.3.1) considering nowadays’ smartphone hardware
as a baseline. As for the weights wx of the utilities, we consider equality with no
preference. The key parameters δ and Dmin that determine the willingness to col-
laborate are application-dependent: (i) the minimum size of the group, as defined
by δ, relates to the density of the contributing users, and (ii) the required stability of
the group depends on the frequency of the measurements. We set both parameters
according to the Ambiciti application’s behavior that supports the crowdsensing of
urban noise measurements. Precisely, as the dataset is sparse, we set δ to 4, i.e.,
handling groups starting at 5 members, and noise measurements are by default taken
every 5 minutes leading to set Dmin to 5 minutes.

4.5 Performance Evaluation
We evaluate the performance of our solution by assessing: (i) the impact on the
power consumption of the device running BeTogether in the background, (ii) the
performance of the context-aware grouping, and (iii) the potential benefit of the
collaborative crowdsensing at the edge from the standpoint of data quality and
communication cost. Notably, our empirical experiment is based on a one-year
dataset obtained from the Ambiciti application for urban pollution monitoring.
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4.5.1 Power Consumption

Wi-Fi TX Wi-Fi Scan Cellular TX Light Sensor GPS RX
173 mA 2 mA 186 mA 0.2 mA 60 mA

Table 4.4: Active power of components for Nexus 5X

We estimate the power consumption on a single crowdsensor theoretically. Ta-
ble 4.4 shows the power of the main components used in our crowdsensing middle-
ware solution. The reference values come from the Google Nexus 5X smartphone,
as accessible by the Android OS8 according to the power profile provided by the
manufacturer. Herein, we select the light sensor to represent a regular sensor, which
involves a power consumption comparable to that of most sensors [47, 48]. Note
that the power consumption associated with the communication depends on the
transmission duration, which increases linearly with the packet size. We assume
that cellular and Wi-Fi Direct communications have the same transmission speed.
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Figure 4.5.1: Power consumption of individual crowdsensing - varying frequencies

Figure 4.5.1 shows the power consumption of a crowdsensor working individually
at various sensing and uploading frequencies. The uploading is the most energy-
demanding, and energy consumption can be reduced by lowering the uploading
frequency. As a comparison, Figure 4.5.2 provides the power consumption of the
various crowdsensors contributing to collaborative crowdsensing with regards to a
high sensing frequency (every 1 minute) and uploading frequency (every 10 minutes)
for the individual case. Results show that the proxy always consumes the most
energy due to the cellular transmission that occurs with the cloud, followed by
the coordinator that communicates with the nearby devices to distribute the tasks.
Other group participants consume much less energy than the individual case, even
though this consumption includes the cost related to neighbor discovery and D2D
transmission to the coordinator. Our prototype implementation running on several
smartphones shows a similar performance.

8https://source.android.com/devices/tech/power/values

https://source.android.com/devices/tech/power/values
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Figure 4.5.2: Power consumption of collaborative crowdsensing

4.5.2 Grouping Evaluation
We apply both theoretical analysis and simulation based on the real world crowd-
sensing dataset to assess the grouping strategy.

Scalability Analysis

First, we assess the scalability of our grouping algorithm, considering the number
of discovery messages exchanged. Such control messages allow to discover neigh-
bors, exchange context information as well as utility information, and assign tasks.
This "discovery" leads to the generation of D2D messages (by Wi-Fi Direct and by
BeTogether together).
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Figure 4.5.3: Amount of D2D traffic generated by BeTogether

In Figure 4.5.3, we show the overall control traffic (i.e., number of discovery
messages). When the number of crowdsensors is given, the message amount remains
relatively flat when the group size increases. More small groups do not introduce
more control traffics because the message mainly depends on the number of nodes.
When the group size is fixed, the message amount increases linearly along with
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the number of crowdsensors. Overall, the control traffic used to discover services
increases with the number of crowdsensors while it remains relatively flat when the
group size increases.

Analyzing the Crowdsensor Behavior

We leverage a dataset extracted from the database of Ambiciti, which is a cloud-
based crowdsensing application available on Google Play9 and on Apple AppStore10.
Ambiciti monitors the noise pollution using the smartphone’s microphone [185].

Ambiciti DATASET contains 946,573 observations gathered both in-door
and out-door in Paris over the year 2017 from 550 crowdsensors. The av-
erage data uploading duty cycle is around 5 minutes. Each entry provides
the upload time-stamp, the location, the (anonymized) ID of crowdsensor,
the noise level, and its measurement bias, a description of the user activity
(still, on foot, on the bicycle, in-vehicle, unknown), and whether the device
is in-/out-pocket (based on proximity).

Note that due to privacy and commercial concerns, the Ambiciti company shares
the data with us in the framework of a collaboration agreement while data cannot be
released openly. With 550 crowdsensors for the whole Paris city, the dataset seems
sparse. Hence, it does not provide the most suited case for opportunistic collabora-
tion at the edge. Still, this allows us to assess the effectiveness of BeTogether even
with a sparse deployment.

Based on the dataset, we analyze the stability of the crowdsensors’ context, which
is used for the grouping configuration, and we consider only the User Activity (UA).
Indeed, the Physical Environment (PE) value is limited to in-/out-pocket cases
in the dataset, which influences only the sensor utility us. The context-awareness
is assessed on each day of the year. Starting with the initial location l of any
crowdsensor i within the dataset, we consider that i changes the group when it
reaches another location l′ that is more than the D2D communication range away
from l, and repeatedly so with l′ as the new reference location.

Figure 4.5.4 then shows the distribution of the duration of the crowdsensor stay-
ing within the estimated group above for all the crowdsensors in our dataset accord-
ing to the device’s location: the duration varies from 5 minutes to 55 minutes where
we recall that we set Dmin = 5 minutes as the minimum duration of the group.
Hence, many crowdsensors remain at the same location long enough to group.

Figure 4.5.5 further compares the three following grouping strategies in terms
of the average number of messages sent per crowdsensor every day for discovering
nearby crowdsensors. Periodic (after every uploading), which is the approach found
in related work, on-demand (detected by Wi-Fi Direct protocol), which is the de-

9https://play.google.com/store/apps/details?id=fr.inria.mimove.quantifiedself&
hl=fr

10https://itunes.apple.com/us/app/ambiciti/id1080606926?mt=8

https://play.google.com/store/apps/details?id=fr.inria.mimove.quantifiedself&hl=fr
https://play.google.com/store/apps/details?id=fr.inria.mimove.quantifiedself&hl=fr
https://itunes.apple.com/us/app/ambiciti/id1080606926?mt=8
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Figure 4.5.4: Distribution of the still duration
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Figure 4.5.5: Comparison of grouping strategies
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fault, and context-aware (triggered by context change), which accounts for the users’
activities. On average, the amount of traffic generated by the on-demand strategy is
80.810% lower than the periodic approach. The traffic amount of our context-aware
grouping is 21.844% lower than the on-demand approach.

4.5.3 Efficiency Enhancement
The enhanced efficiency of opportunistic crowdsensing is also evaluated empirically
based on the Ambiciti DATASET.

Analyzing the Efficiency Gain of Grouping
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Figure 4.5.6: Distribution of group sizes

To detect the clusters of crowdsensors that are within D2D communication range
(at 10m away, re-scaled) from each other, we rely on the DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm [54], which handles clus-
ters that are arbitrarily shaped and that are of varying density. According to our
parameter δ = 4 that configures groups of size 5 and more, Figure 4.5.6 shows the
distribution of the resulting group sizes in Ambiciti dataset, with 79% of the groups
being still.

Figure 4.5.7 further compares the average duration of the identified groups de-
pending on whether the context is accounted for or not. Interestingly, results show
that even in real-life scenarios (including both still and mobile groups, not only
considering still grouping as in Figure 4.5.4), our context-aware grouping strategy
finds groups of longer duration, which is up to 3.256 times of the non-context-aware
grouping. As the group size grows, the difference between a context-aware and
non-context-aware approaches becomes little. The likelihood of grouping co-located
crowdsensors having the same context gets high. A decrease of the lifetime is ob-
served for groups of 12 members and more members, partly due to the sparsity of
our dataset and the higher probability of members moving away from the group.
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Figure 4.5.7: Lifetimes of collaborative groups

Although the crowdsensing data of the Ambiciti dataset is very sparse in time
and space, the context-aware collaborative crowdsensing at the edge still brings
benefits in terms of data quality and global resource consumption. It is particularly
efficient as the size of the group is large. We compare our context-aware collaboration
approach with the collaborative crowdsensing without context-awareness and with
the baseline individual crowdsensing.
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Figure 4.5.8: Impact of BeTogether on collected data quality

Figure 4.5.8 shows that our context-aware collaboration approach delivers the
best data quality: the collected measurement bias is reduced by up to 615% (re-
spectively 407%) compared to the individual (respectively non-context-aware col-
laborative) crowdsensing approach. The better quality is because of the selective
sensing performed within each BeTogether group, leading to the collection of the
most accurate observations rather than a simple average of the observations (non-
context-aware collaborative crowdsensing) or all the raw sensing data (individual
crowdsensing).

As shown in Figure 4.5.9, the amount of sensing data that our context-aware
collaboration approach uploads to the cloud are reduced by up to 197% compared
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Figure 4.5.9: Impact of BeTogether on uploaded data traffic

to both the individual and non-context-aware collaborative crowdsensing approach.
There are two reasons for this: (i) collaborative crowdsensing uploads only the
aggregated data (e.g., concatenated hash tables) via the group proxy rather than
uploading the raw data supplied by each crowdsensor as in the individual crowd-
sensing; (ii) our context-aware collaboration also filters out the sensing data of low
quality and collected in-pocket, which further reduces the amount of data aggregated
and uploaded to the cloud.
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Figure 4.5.10: Impact of BeTogether on overall battery consumption

Finally, Figure 4.5.10 focuses on the power consumption for one hour (in mhA),
which is associated with both Wi-Fi Direct transmission (assuming that all the tasks
are distributed, which is the most expensive) and cellular transmission. Our BeTo-
gether solution reduces the energy consumed by up to 181% (respectively 183%)
compared to the individual (respectively non-context-aware collaborative) crowd-
sensing approach.

Overall, evaluation results show that the context-aware collaboration among
crowdsensors achieves a better data quality at lower sensing and transmission cost.
When the group size is large, the tasks can be assigned to more devices, which
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results in less task duplication and more filtering and aggregation.

4.6 Discussion
Opportunistic crowdsensing shows excellent potential for monitoring the physical
environment easily and flexibly by empowering people to contribute as part of their
daily life. While the growing participation of citizens helps to cover urban-scale
areas, it also necessitates to ensure the quality of the knowledge gathered from
crowdsensors and to keep to a minimum the resource consumed by the end de-
vices. Research has shown that the efficiency can be enhanced at the very edge by
leveraging ad hoc collaboration among co-located end devices.

In this chapter, we introduced the BeTogether middleware-layer solution that
implements a context-aware collaborative group for the crowdsensors to enhance
the quality of the data transmitted to the cloud while reducing the on-device com-
munication cost and power consumption. For this purpose, we integrate the context
inference including ContextSense presented in Chapter 3 and apply a set of util-
ity functions that assess to which extent a crowdsensor should carry out a given
crowdsensing task to achieve a balance between the benefit for all (the group) and
the related cost for the crowdsensor. We also presented the implementation of the
BeTogether prototype, which builds upon the Wi-Fi Direct D2D communication
technology for the creation and management of the ad hoc collaborative group. The
evaluation of the BeTogether solution using a large crowdsensing dataset from Am-
biciti shows that our context-aware collaboration strategy improves the quality of
the sensing data transmitted to the cloud as well as reduces the on-device resource
consumption, both locally and globally. One reason for the success of BeTogether is
that it avoids redundant work across co-located crowdsensors, which includes, e.g.,
uploading and positioning as well as inaccurate sensing.

The group-wise strategy of BeTogether is particularly well-suited for crowdsens-
ing within crowded/dense areas where people are clustered on a community scale,
for instance, within public spaces. However, human behavior is highly varied and
many do not stay near each other for an extended period of time. During the inves-
tigation on the Ambiciti dataset, we have found that there exist many crowdsensor
pairs that encounter each other very briefly. Such brief encounters typically occur
when people are traveling and moving quickly across urban spaces. Clearly, BeTo-
gether cannot be applied to crowdsensors pairs of this kind, since their interactions
are too brief to be detected as a collaborative group. Therefore, these crowdsensors
require a different collaboration strategy. Presumably, crowdsensors of this kind
have been sensing from different urban areas until the moment of their encounter.
This new case led us to introducing, in the following chapter, a collaborative data
analysis suitable for sensing at a sparse and urban scale.
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5.1 Distributed Data Analysis

D2D collaboration enhances mobile computing by enabling the sharing of het-
erogeneous computing and communication resources among powerful end devices
[205, 34]. This is in particular the case of the BeTogether solution presented in
Chapter 4, which enhances the crowdsensing efficiency in the phase of data col-
lection. BeTogether has shown that collaboration among clustered crowdsensors
improves the overall system efficiency (including both infrastructures and end de-
vices) in terms of data quality and resource consumption [49]. BeTogether also
allows end users to share knowledge effortlessly and with little or even no cost. In
practice, BeTogether leverages the co-located crowdsensors that stay together while
observing/sensing the same phenomenon.

Nevertheless, a robust collaborative crowdsensing procedure must take into con-
sideration the alternative cases where crowdsensors make only momentary contact,
i.e., when users only encounter each other very infrequently. In such cases, collab-
oration can only occur within a short window of time, hence why we introduce the
pair-wise collaboration system. At the very least, the risk of losing anonymity is
lowered [90], meaning that end users are more likely to be willing to share their
information/data during these brief encounters. We assume that these crowdsen-
sors have been sensing different urban areas and that they maintain complementary
observations when they meet, i.e., each crowdsensor that is moving across the city
monitors the phenomenon through its own trajectory. Collaboration may then take
place during the data processing phase rather than the data collection phase, such a
collaboration also requires the temporary caching of data for analysis. In fact, one
of the challenges of sensing data analysis comes from the uneven distribution of ob-
servations [193]. Also, the sensing coverage over a city is limited by spatio-temporal
behavior of the user [159, 97, 210, 37].

State-of-the-art crowdsensing systems address the shortcoming of sparse data
through the centralized analysis –covering aggregation and interpolation– of ob-
servations provided to cloud infrastructure servers [106, 142, 62, 61, 184]. The
centralized solution implemented then severely limits the adoption of crowdsensing
for environmental monitoring due to the resulting resource and financial costs, and
also introduces user privacy leak (e.g., mobility extraction) [173]. We argue that
enabling fully decentralized collaboration, including the underlying large-scale data
analysis, is key to the democratization of environmental monitoring using crowdsen-
sors. In this chapter, we focus on the collaborative data analysis and introduces the
IAM (Interpolation and Aggregation on the Move) solution. Concretely, IAM al-
lows a pair-wise collaboration for crowdsensing: crowdsensors interpolate data, and
aggregate their respective contributions to the observations of the phenomenon in
a collaborative way. The intent is to overcome the spatio-temporal sparsity and to
limit –or even avoid– the use of a centralized infrastructure server.

There are many interpolation methods for inferring spatio-temporal phenomena,
and the smartphone is becoming increasingly powerful to perform such advanced



Chapter 5. IAM : Interpolation and Aggregation on the Move 83

tasks. In particular, we have introduced BeTogether that enables the discovery
of nearby crowdsensors and the exchange of data between peers, making the col-
laboration feasible [49]. Some crowdsensing systems already exploit the pair-wise
collaboration of crowdsensors as they meet [196, 195, 44]. However, the collabo-
ration primarily deals with handling the relay of data, while deployed static edge
servers are in charge of the distributed data aggregation. Our approach leverages the
advantage of the former and overcomes the disadvantage of the latter: it implements
an opportunistic data relay and analysis on the move, across the crowdsensors on
the move.

In summary, this chapter makes the following contributions to enable collabora-
tive data processing, which covers more scenarios in the collaborative crowdsensing
at the edge:

1. A fully distributed approach to the aggregation and interpolation of crowdsens-
ing data on the move (Section 5.3), which exploits the smartphone’s capability
to perform 3D tensor completion. In particular, we thoroughly analyze and
compare available state-of-the-art interpolation methods, which leads us to
leverage the Gaussian Process Regression that produces the most cost-effective
inference for spatio-temporal phenomena along with an estimation of the infer-
ence uncertainty (Section 5.3.1). Another advantage compared to alternative
interpolation approaches (i.e., ordinary kriging & tensor decomposition) is
that all the parameters that are specified can be learned, and the most rele-
vant kernel may be selected. Finally, only a small portion of the interpolation
is running on each crowdsensor.

2. A distributed lightweight and quality-aware aggregation strategy based only on
linear operations (Section 5.3.2) that combines the tensors that each crowd-
sensor establishes autonomously. Such a linear aggregation takes place op-
portunistically across the end devices, and possibly at the server if the D2D
communication does not allow covering all the end devices over the given time
window. That is, when crowdsensor peers get in a shared D2D communication
range, our algorithm selects one of them to aggregate their interpolated ten-
sors and further relay the new tensor. At the end of a predefined time window,
the crowdsensor uploads its tensor to the server unless it has previously met
a peer that takes care of the relay. A key aspect of the proposed approach is
that the aggregation is much less resource consuming (in time and space) than
the interpolation, and the server performs only the aggregation needed to fill
the gap between the network islets that the contributing crowd forms through
D2D communication.

3. A prototype implementation (Section 5.4) of the IAM solution and its perfor-
mance evaluation using a one-year crowdsensing dataset (Section 5.5). The
evaluation shows that IAM aggregates a global knowledge that is both robust
and accurate compared to the centralized approach. Based on our empiri-
cal evaluation, we select the best kernel, which is characterized by a fairly
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good balance between accuracy and resource consumption. Most importantly,
compared to the centralized approach and baseline relay-based aggregation
mechanisms, IAM significantly lowers the communication, computation and
financial costs of crowdsensing-based environmental monitoring.

Following, we first surveyed the background work regarding the baseline inter-
polation and aggregation methods. Then we motivated enabling distributed and
pair-wise collaborative analysis, as opposed to the state-of-the-art solutions relying
on cloud/edge servers.

5.2 Related Work
Sensing data fusion deals with the combination of observations so as to enhance the
quality of the knowledge we gather from the sensors. In the specific case of fusing
data from mobile crowdsensors and assuming that all the crowdsensors are trusted
to provide equally accurate measurements, the supporting algorithms serve the two
following functions: (i) aggregating together the measurements associated with re-
lated observations, and (ii) interpolating the missing measurements to overcome the
sparse contribution coverage.

5.2.1 Data Aggregation
Related crowdsensing observations are usually aggregated using an average [173, 107]
or a weighted average [192, 88] function, although more complex functions may be
found in the literature depending on the observed phenomenon [85]. The aggregation
may be executed either on the cloud, or in a distributed way –at least partially– for
which most crowdsensors provide the necessary computing resources. We undertake
the latter decentralized approach in our work so as to benefit from ubiquitous com-
puting and in particular limit the dependence on –and related resource and financial
costs due to the usage of– a cloud/edge infrastructure. The challenge is therefore to
perform a distributed aggregation in a way that both (i) delivers an overall accurate
knowledge, and (ii) incurs bearable resource consumption for the end devices. To
achieve so, we use the Average aggregate function that is duplicate-sensitive and
decomposable; in particular, a batch aggregation is equivalent to several pairwise
aggregations.

The distributed aggregation protocol may rely on either a structured (e.g., hier-
archical, ring-based.) or unstructured (e.g., flooding, random walk, gossip.) routing;
it may even implement a combination of the two. Our solution is based on the un-
structured random-walk routing that matches the mobility behavior of opportunistic
crowdsensors. That is, a crowdsensor exchanges its observations with another crowd-
sensor as they get in the D2D communication range of each other, so that one of
them aggregates the two sets of observations, and in turn repeats the process as it
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meets a new crowdsensor. The protocol stops when reaching a predefined criterion,
which is a given time-window in our case (see Section 5.4).

The distributed aggregation of sensing data based on random walk routing usu-
ally relies on probabilistic methods to select the aggregation node, due to the
stochastic nature of the process [85]. Instead, at each meeting, we select the ag-
gregation/relay node according to the data quality (see Section 5.3.2), which is a
relevant selection criterion to achieve an accurate aggregation and to promote as
far as possible a more significant number of P2P aggregations. Still, the distributed
aggregation protocol that deals with the truth discovery [121] must complement the
interpolation of missing values [191].

5.2.2 Data Interpolation

There exist various eligible approaches to the interpolation of crowdsensed observa-
tions, wherein the challenge is to overcome both the related data sparsity and com-
puting complexity. In statistical geography, multivariate interpolation and spatial in-
terpolation play an important role as they enable modeling a large-scale phenomenon
(and producing a digital elevation model) provided a set of observations/points.
Many interpolation techniques may be applied, depending on the characteristics of
the observed data points [30].

Ordinary kriging [186, 142, 61] is one of the methods that is widely applied as
it supports a fine-grained interpolation at each location over a 2D space. Ordinary
kriging aims at estimating the value ŷ(x) at an unobserved and arbitrary location
x based on known observation values y(x1), · · · , y(xn). The objective lies in finding
the weights w1(x), · · · , wk(x) at any location xk so that the prediction variance
V ar(y(x)− ŷ(x)) is minimal. Ordinary kriging introduces an estimation technique
where the phenomenon under study is assumed to be a realization of a random
function characterized by a specific spatial covariance. It performs well as long as
the observation is uniformly distributed. In particular, the performance dramatically
degrades for large amounts of missing data [5], and the computational cost gets
prohibitively high [52]: the time complexity is O(n3) with n denotes the number of
observations.

Compressive sensing is a recent alternative approach to the interpolation of data
for the production of phenomena maps, while dealing with sparse observations [52].
Compressive sensing requires very few sample values by leveraging spatial and tem-
poral correlations among the data sensed in several sub-areas to infer the data for
the uncovered area [193]. It has been used to infer urban-scale physical phenomena
from crowdsensed observations stored in a 2D matrix [207, 192, 61]. Modeling the
observations into a 2D matrix then involves representing the geographical location in
one dimension and the time in the other to deal with spatio-temporal interpolation.
However, physical phenomena often have more than two modes of variation and
are therefore best represented as multi-dimensions observations, which leads to ad-
dress compressive sensing using 3D tensors [5, 222, 159, 96]. The tensor completion
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problem is usually solved by tensor decomposition to perform the approximation
[222, 159, 96, 63]. The computational cost of most existing algorithms for tensor
decomposition increases exponentially with the tensor order. For instance, the com-
putationally cheapest algorithm [156] associated with a 3-order I×J×K tensor that
based on ALS (Alternating Least Square) has a computational cost of O(RIJK),
with R being the estimated rank. In addition to the high cost associated with inter-
polating 3D tensors, one major drawback is that it trades uncertainty for efficiency,
as there is no confidence interval associated with the inference.

Multiple regression [73, 202, 149] is another approach to infer missing values,
which transforms the interpolation problem into multiple regressions. For instance,
the geographically weighted regression has coefficients that are not fixed but depend
on the observations’ geographical coordinates. The hypothesis is that the closer ge-
ographically two observations are, the more similar the influence of the explanatory
variables on the dependent variable, i.e., the closer the coefficients of the critical pa-
rameters of the regression. OLS (Ordinary Least Squares) can be used for estimating
the unknown parameters in the regression model. The idea of regression inspired
us to use the GPR (Gaussian Process Regression) to solve the tensor completion
problem. GPR is a well-known, and general approach applied in data science [124],
which supports a non-parametric and interpretable Bayesian model. GPR naturally
supports multi-dimension, and it is efficient. Compared to ordinary kriging and ten-
sor decomposition, GPR gives more insight into the data by offering many choices
of non-stationary covariance functions characterized by different smoothness, which
can be tested and evaluated. GPR further enables estimating the level of uncer-
tainty associated with the produced model. We compare the three interpolation
approaches in the evaluation (Section 5.5), where we show that GPR is the best
suited to support distributed interpolation across mobile crowdsensors.

5.2.3 Centralized vs Distributed Data Fusion

The great majority of crowdsensing platforms applies centralized analysis to the
sensing data: the cloud/edge server first aggregates the raw crowdsensing measure-
ments and then interpolates the missing observations. Existing platforms adopt var-
ious interpolation and aggregation methods, while considering different sensor types
(static vs. mobile). For instance, one of the solutions leverages ordinary kriging on
the cloud to generate a map from the measurements contributed by a combination
of static sensors and mobile crowdsensors [62, 61]. Some platforms [96, 97, 159, 210]
exploit additional urban data sources (e.g., road networks, check-in data) to infer
the phenomenon, which is represented as a 3D tensor completion using centralized
tensor decomposition. Rather than integrating more data sources, the crowdsensing
application may leverage historical data to improve the accuracy of the generated
map. In the case of deployment downscale, supervised learning is used to select the
best historical map [36]. Then, a multi-Output Gaussian Process serves as a unified
map generation model, which takes multiple instances (a current sparse instance
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and an appropriate historical dense instance) to generate an improved air quality
map.

The distributed interpolation and aggregation of sensing data have deserved less
attention than the centralized counterparts, with most solutions targeting WSN.
A localized, distributed interpolation & aggregation scheme based on kriging is
introduced in [183] for a tree-structured WSN; it allows inferring a phenomenon
over the holes that the static WSN does not cover. In [209], a hierarchical WSN is
organized such that sensors send the measurements to their respective cluster heads,
which in turn encode the sparse measurements and use compressive sensing (matrix
decomposition) to interpolate the overall phenomenon.

The work that is the most related to ours is the edge-mediated spatial-temporal
crowdsensing proposed in [212]. The solution relies on a trusted edge server (e.g., a
deployed cloudlet) that coordinates a few crowdsensors. In practice, crowdsensors
independently perform a part of matrix decomposition using stochastic gradient
descent, and they exchange factor vectors with the crowdsensors that are in the
same WLAN (Wireless Local Area Network). Each edge server is responsible for a
batch of crowdsensors that are fully connected to perform iterative optimization and
ultimately recovers an interpolated map for the sub-area. The set of crowdsensors
and the edge server must remain connected and communicate over multiple rounds
to establish a single interpolation. Furthermore, as stated previously, the tensor
decomposition that applied is less accurate than GPR, which we leverage within
IAM.

Different from previous work, the IAM solution: (1) leverages 3D tensors that
embed more information than the 2D matrix data model, and efficient Gaussian
Process Regression for interpolation, (2) supports both interpolation and aggrega-
tion at the end device in a resource-efficient way, so as to limit the dependence on
the infrastructure (edge/cloud server) at a bearable additional resource (including
energy) cost for the users’ crowdsensing devices, and (3) implements opportunistic
P2P aggregations, which benefit from the encounter with other crowdsensors and is
hence not constrained by any hierarchical/tree network structure.

5.3 Lightweight Decentralized Crowdsensing Data
Fusion

The IAM solution for decentralized crowdsensing takes benefit of today’s smart-
phones capability, while limiting the resulting additional resource consumption on
devices. That is, IAM implements lightweight collaborative sensing data fusion
across the participating crowdsensors as they are in the D2D communication range.
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Problem Statement
Let IAM be deployed over m mobile crowdsensors (e.g., smartphones) embedding
(built-in or connected) sensors providing measurements related to the physical phe-
nomenon P . We further assume that the m crowdsensors are all trustworthy and
provide equally accurate measurements (i.e., they underwent appropriate calibration
[166] prior to contribute measurements). IAM supports the periodic monitoring of
P over (a possibly large) area A and a given period D using the contributions of
the m crowdsensors.

We represent the data that each crowdsensor collects as a concise 3D tensor.
The first two dimensions refer to the spatial space (i.e., latitude and longitude), and
the third one refers to the temporal domain (time). In particular, we discretize the
target region A into a I × J areas, which are cells of equal spatial sizes. We also
discretize D into K time slots of equal durations. Then we denote Ys ∈ RI×J×K

the tensor that crowdsensor s (1 ≤ s ≤ m) maintains. The entry ys(x) ∈ R at
position x := (i, j, k) ∈ R3 is the average of the measurements collected by s over
the area cell indexed by (i, j) during the time interval indexed by k. The value ys(x)
is null if s does not sense/observe at position x. In other words, any crowdsensor s
contributes a tensor Ys that provides a sparse/incomplete observation of the physical
phenomenon according to its behavior.

IAM promotes the opportunistic combination of various tensors Ys from multi-
ple contributing crowdsensors s. It combines interpolation and aggregation, so as
to compute an overall Y for a spatio-temporal characterization of phenomenon P
over area A and duration D. It further achieves so in a way that limits the re-
source consumption on end devices and is, in particular, energy-efficient. As a base
design principle, crowdsensors first apply interpolation over their local tensor Ys be-
fore engaging in the collaborative aggregation, which is key to the –both local and
global– resource-efficiency of the IAM solution, while supporting the computation
of a globally accurate knowledge.

5.3.1 Spatio-temporal Interpolation
Given a sparse tensor Ys resulting from the averaging of the local measurements
collected at crowdsensor s over area A and duration D, the interpolation allows
completing the tensor by estimating missing cells. The resulting (denser) tensor
is denoted as Ŷs. The quality of the estimation can be established based on the
approximation error (i.e., residuals). The overall residual is then given by E =
‖Y − Ŷ‖.

Let Ω be the set of observed cells on a given crowdsensor, that is, the cells to
which the crowdsensor contributed observations. The Boolean mask tensor M ∈
BI×J×K is defined such that m(x) = 1 if there is a corresponding value at point
x ∈ Ω, and m(x) = 0 otherwise. Thus, M ∗ Y provides a tensor resulting from
actual observations (i.e., ground truth as sensed). When estimating Ŷ based on
a sparse tensor Y with mask M, we seek to minimize the following loss function,



Chapter 5. IAM : Interpolation and Aggregation on the Move 89

which is associated with the approximation Ŷ :

J(Y , Ŷ) := 1
2
∑
x∈Ω

e(x)2 = 1
2‖M ∗ (Ŷ − Y)‖2

where: e(x) is the residual at point x, ‖ · ‖ denotes the Euclidean norm of a tensor,
and ∗ represents the element-wise multiplication.

Recall that the function y : R3 7→ R maps an arbitrary point x := (i, j, k) to
its cell value y(x). Following the assessment of the eligible interpolation methods
summarized in Section 5.2.2, we leverage the Gaussian Process Regression [124] to
compute Ŷ out of Y . That is, we assume that y follows a Gaussian Process (Gaussian
distribution over functions), namely:

y(x) ∼ GP(µ(x), k(x, x′))
where: µ(x) = E[y(x)] refers to the mean function, and k(x, x′) is the covariance
matrix, i.e., the kernel of the GPR, which verifies k(x, x′) = E[(y(x)−µ(x))(y(x′)−
µ(x′))].

The kernel is a crucial ingredient of GPR as it encodes the notion of similarity
between two nearby data points x and x′, on the basis that observations that are
closer to each other (on Euclidean distance) are likely to have a higher correlation.
Thereby, the actual measurements that are close to an approximated observation are
assumed to be highly informative for the inference at that point. Various families of
kernels exist (see [163] for an overview). In our case, the Matérn [144] induced the
lowest error and execution time compared to alternative kernels (see Section 5.5).
We detail below the computation of GPR with Matérn kernel.

The Matérn class of kernel determines to which extent two points x and x′ are
correlated:

k(x, x′) = σ2 21−ν

Γ(ν)

√2ν ‖x− x
′‖

l

νKν

√2ν ‖x− x
′‖

l


where: Γ is the Gamma function, Kν is the modified Bessel function of the second
kind, and l and ν are non-negative parameters of the covariance. These hyper-
parameters are optimized during the regression process.

Considering a regression that aims at establishing y = y(x) + ε where the func-
tion y(x) follows a Gaussian Process (y(x) ∼ GP(µ, k)), and the noise ε is additive,
independent and corresponds to an identical Gaussian distribution: ε ∼ N (0, σ2

e).
Following, given n observed points at locations X = [x1, · · · , xn]> and the cor-
responding observed values Y = [y1, · · · , yn]>, the joint distribution of y(X) =
[y(x1), · · · , y(xn)]> follows:

[y(x1), · · · , y(xn)]> ∼ N (µ(X),K(X,X))
where: the mean vector µ(X) = [µ(x1), · · · , µ(xn)]>, and K(X,X) is a n × n co-
variance matrix with Kij = k(xi, xj).
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Given m unobserved points at locations X∗ = [x∗1, · · · , x∗m]>, our interpolation
consists in inferring the missing values Y ∗ = y(X∗). The observed values Y and the
unobserved/inferred values Y ∗ together follow:[

Y
Y ∗

]
∼ N

([
µ(X)
µ(X∗)

]
,

[
K(X,X) + σ2

eI K(X,X∗)
K(X,X∗)> K(X∗, X∗)

])

where: µ(X∗) = [µ(x∗1), · · · , µ(x∗m)]>. K(X∗, X∗) is a m×m matrix and K(X,X∗)
is a n × m matrix wherein K(X,X∗)ij = k(xi, x∗j). The n × n identity matrix
corresponds to I.

According to the Bayes theorem and based on the known prior distribution p(Y )
and the above joint probability distribution p(Y, Y ∗), we can deduce the posterior
probability:

p(Y ∗|Y ) = p(Y |Y ∗)p(Y ∗)
p(Y ) = p(Y, Y ∗)

p(Y )
Then, knowing X and Y from observations, the inference Y ∗ on X∗ also follows

a Gaussian distribution:

p(Y ∗|X∗, X, Y ) = N (µ̂, σ̂2 + σ2
eI)

According to the marginalization and conditional distribution theorem [79], the
mean and variance of Y ∗ are respectively estimated as:

µ̂ = K(X,X∗)>[K(X,X) + σ2
eI]−1Y

σ̂2 = K(X∗, X∗)−K(X,X∗)>[K(X,X) + σ2
eI]−1K(X,X∗)

where: the mean vector µ̂ and variance vector σ̂2 are computed using the Cholesky
decomposition [163].

Ys Sensing data tensor, equaling to Ŷs after the interpolation
Ms Mask tensor, indicating observed/inferred elements in Ys
Σ2
s Variance tensor, recording the σ̂(x) of each element in Ys

ns Merge count, recording how many times Ys has been updated

Table 5.1: Variables maintained at a crowdsensor s

In summary, once a GPR model is trained, the inferred mean value µ̂(x) and
its variance σ̂(x) of any input point x are generated (as regression process). The
complete approximation tensor Ŷ is produced using µ̂(x) as ŷ(x) cell value, while
a variance tensor Σ̂2 ∈ RI×J×K is also maintained, in which each element σ̂2(x)
refers to the variance of corresponding ŷ(x). Table 5.1 summarizes all the necessary
variables maintained at each crowdsensor s.
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GPR is computationally demanding as the training scales in O(n3) with n be-
ing the number of observed cells. Thus, applying such a regression over the over-
all dataset on the cloud incurs significant computation costs. As an alternative,
IAM distributes the training and inference load over the crowdsensors, which fur-
ther results in a limited computational cost on the device due to the relatively low
number of contributed cells (see Section 5.5).

5.3.2 Opportunistic Collaborative Aggregation
Upon the P2P meeting (i.e., discovery through D2D communication) of two crowd-
sensors s and s′, IAM selects one of them to aggregate their respective tensors Ŷs
and Ŷs′ . Assuming the selected crowdsensor is s, then Ŷs is updated as the aggre-
gation result of Ŷs and Ŷs′ , and Ŷs′ is set to null. Then, s may relay Ŷs when it
meets another crowdsensor, or till the current time window T+D expires.

The P2P meetings that IAM fosters correspond to a stochastic process since
crowdsensors meet each other in an opportunistic way based on their own mobil-
ity. Upon such a meeting, a straightforward aggregation approach would consist of
randomly selecting one of the two crowdsensors to take in charge of the aggregation
and relay the tensors. We assume that all the crowdsensors have equal resource
budgets. However, the crowdsensor that is the best suited to act as the relay node
is the one that will meet more crowdsensors in the future. Indeed, we hypothesize
that such a crowdsensor will produce a denser aggregated data tensor and thus a
better inference quality. Still, we do not rely on the costly monitoring of the mobility
profiles of the contributing users to select the relay crowdsensor [66, 35]. Instead,
we use the respective quality of inference of the crowdsensor tensors for the relay
selection. The evaluation results confirm the relevance of the criterion, and suggest
it is an indicator of future meeting occurrences (see § 5.5). Precisely, we leverage the
inference quality as defined by the following asymmetric and positive loss function:

D(Ŷs, Ŷs′) := ‖(Ms′ ∗ ¬Ms) ∗ (Ŷs′ − Ŷs)‖2

2‖Ms′ ∗ ¬Ms‖2

where: ¬ corresponds to the NOT Boolean operation; andMs andMs′ correspond
to the mask tensors of s and s′ respectively.

Algorithm 4 introduces the aggregation procedure that crowdsensor s runs upon
meeting with crowdsensor s′ (with s′ running the same algorithm). Only one of the
two should perform the actual aggregation (merge the tensors) and act as the relay
node, which we call the mainstay. The crowdsensor with the lowest loss function
selects itself (Lines 1-2) as the mainstay. The other crowdsensor no longer maintains
its local data (Lines 3-4) so that there is no duplicated uploading. We highlight that
the selection of the mainstay aims at optimizing the quality of the data delivered
by the distributed aggregation process for which we consider the inference quality
as criterion. It is area for future work to increase the overall robustness of the
opportunistic aggregation protocol by taking into account additional criteria (e.g.,
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Algorithm 4 Asymmetric P2P aggregation at s
Require: local data tensor Ys, local mask tensor Ms, local variance tensor Σ2

s,
local merge count ns

Input: remote data tensor Ys′ , remote mask tensor Ms′ , remote variance tensor
Σ2
s′ , remote merge count ns′

1: if D(Ys,Ys′) < D(Ys′ ,Ys) then
2: Ys,Ms, ns,Σ2

s ← Crowdsensing data tensors merger (s, s′) – see Algorithm 5
3: else
4: Ys,Ms, ns,Σ2

s ← null
5: end if

mobility behavior, available resource, and fault tolerance). We may leverage state
of the art algorithms [196, 195], while still keeping the process energy-efficient.

Algorithm 5 Crowdsensing data tensors merger (s, s′) at the mainstay s
Input: data tensor Ys, mask tensorMs, variance tensor Σ2

s, merge count ns
Input: data tensor Ys′ , mask tensorMs′ , variance tensor Σ2

s′ , merge count ns′
Output: aggregated data tensor Yss′ , mask tensorMss′ , variance tensor Σ2

ss′ , merge
count nss′

1: Yss′ ← 0I×J×K
2: Yss′+ = nsYs+ns′Ys′

ns+ns′
∗ (Ms ∗Ms′)

3: Yss′+ = Ys ∗ (Ms ∗ ¬Ms′)
4: Yss′+ = Ys′ ∗ (Ms′ ∗ ¬Ms)
5: Yss′+ = (βsYs/Σ2

s + βs′Ys′/Σ2
s′)/(βsΣ−2

s + βs′Σ−2
s′ ) ∗ (¬Ms ∗ ¬Ms′)

6: Σ2
ss′ ← (βsΣ−2

s + βs′Σ−2
s′ )−1

7: nss′ ← ns + ns′
8: Mss′ ←Ms ∨Ms′

9: return Yss′ ,Mss′ , nss′ , Σ2
ss′

Algorithm 5 details the data merge function that the mainstay s runs, provided
the tensor Ys′ from s′, to compute the new tensor Yss′ . The algorithm distinguishes
whether the values from ys(x) and y′s(x) at x result from actual sensor measurements
or from interpolation, as known from the masksMs andMs′ :

• Line 2 – The two values result from actual sensor measurements: let y(x)i be
the value for a given point x at the i-th averaging step; the incremental average
up to the m-th averaging step is defined as: ym(x) = 1

m

∑m
i=0 y

i(x). Assuming
that crowdsensor s (respectively s′) has collected and averaged m (respectively
n) measurements, the aggregated observation is: yms (x) = 1

m

∑m
i=1 y

i
s(x) (re-

spectively yns′(x) = 1
n

∑n
i=1 y

i
s′(x)). Starting with y0

ss′(x) = 0 and deduced from
the incremental average definition, the merged average of two averages yms (x)
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at step m and yns′(x) at step n is:

yss′(x) = myms (x) + nyns′(x)
m+ n

Note that the above merged average is built upon a simple algebraic expression
of addition, which works well to fuse the measurements provided by scalar
values, e.g., temperature sensors. Such a merged average should be tailored to
deal with observations that do not follow an algebraic expression. For example,
this is the case when merging the average sound levels provided by mobile
crowdsensors, which is the focus of the experiment presented in Section 5.5.

• Lines 3 & 4 – One value results from actual sensor measurements, and the
other is inferred: the actual sensor measurement is considered to be the ground
truth. Thus it is selected over the inferred value.

• Line 5 – The two values result from two inferences: the aggregated value is
then computed using the Generalized Product-of-Expert of GPR, as detailed
in the following section.

5.3.3 Aggregating Multiple Inferences
The Generalized Product-of-Expert is a method that allows combining estimated
results that have been inferred by several experts (e.g., inferences on several crowd-
sensors). In particular, it enables weighting the respective importance of the experts
according to the reliability of their inference. Let ps(y∗|x∗, Xs, Ys) denote the dis-
tribution of the measurements for point x∗, which is inferred by the crowdsensor s,
knowing the observed cell values Ys at points Xs. Assuming that m crowdsensors
aggregate their inference results, the Product-of-Expert for a GPR estimates a value
y∗ at point x∗ according to the following joint distribution [42]:

p(y∗|x∗, X, Y ) =
m∏
s=1

pβs(x∗)
s (y∗|x∗, Xs, Ys)

where βs is a weighting parameter that allows tuning the relative importance of
crowdsensor s according to the reliability of its inference.

The aggregation of multiple GPR inferences is a generalized Product-of-Expert,
which accounts for multiple inference distributions ps of an arbitrary point x∗. Ac-
cording to [24], it combines many Gaussian distributions with mean µ̂s(x∗) and
variance σ̂2

s(x∗) from any crowdsensor s, and the aggregation result is defined as:

µ̂(x∗) = σ̂2(x∗)
m∑
s=1

βs(x∗)σ̂−2
s (x∗)µ̂s(x∗)

σ̂2(x∗) = [
m∑
s=1

βs(x∗)σ̂−2
s (x∗)]−1
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The generalized Product-of-Expert of a GPR allows merging several inferences
(i.e., m = 2 inferences in our P2P case) in a cost-effective way, as it is characterized
by only a O(n) time complexity with n being the number of merged points. Our
opportunistic aggregation on the move is asymmetric, as captured by the loss func-
tion D. The evaluation (see Section 5.5) shows that assigning a greater β to the
crowdsensor acting as the mainstay (i.e., resulting in the lesser loss function) leads
to a higher aggregation accuracy.

5.4 System Design and Prototype Implementa-
tion

The IAM solution allows mapping quantitative spatio-temporal physical phenomena
through opportunistic data interpolation and aggregation across the participating
mobile crowdsensors. Any mobile crowdsensing application dealing with urban en-
vironmental monitoring (e.g., noise level, air quality, temperature.) may build upon
IAM to produce such knowledge in a fully decentralized way. Still, the actual D2D
meeting of the contributing crowdsensors within the area under monitoring depends
on the size of the target area and the density of the contributing crowd. In practice,
the monitoring of large areas requires running an ultimate aggregation process at a
server to connect the islets that the crowd cover.

A DCB

Relaying
Aggregation
Uploading

Aggregation
Storage
Visualization

Sensing
Preprocessing
Interpolation

E HGF

Figure 5.4.1: A IAM -based crowdsensing system

Figure 5.4.1 illustrates the resulting operation of a IAM -based crowdsensing
system. Crowdsensors sense, pre-process and interpolate the data. They relay and
aggregate the sensing data in a P2P way using wireless D2D communication (e.g.,
Wi-Fi Direct or Bluetooth technologies), so as to favor ubiquitous computing and
thereby limit the dependence on the server infrastructure. At the end of the mon-
itoring period D, the remaining mainstays send their tensors to the server, which
fairly composes the tensors using the generalized Product-of-Expert. Focusing on
the illustrative figure: C aggregates data from B and D and then uploads to the



Chapter 5. IAM : Interpolation and Aggregation on the Move 95

server the results of the three aggregations across A, B, D, and itself. Similarly, the
distant mainstay E, which aggregates its contributions with the ones of H, G, and
F, provides the resulting tensor to the server.

5.4.1 Aggregation Process at Crowdsensors

Algorithm 6 Crowdsensing process at crowdsensor s
Require: previous time window T , current time window T+D
Require: data tensor Ys(T ) related to previous time window,

current data tensor Ys(T+D)
1: while true do
2: while Within T+D do
3: Collect sensing data and fill Ys(T+D) //
4: Aggregate Ys(T ) upon P2P meeting till Ys(T ) sets to null
5: end while
6: Interpolate Ys(T+D) //
7: if Ys(T ) has not been relayed yet then
8: Upload Ys(T ) to the server
9: end if
10: end while

Algorithm 6 outlines the periodic process that IAM runs on every participating
crowdsensor s to compute and relay/upload Ys. The process iterates over the time
windows of duration D (Lines 1 and 2). Within a given time window T+D, two
processes run in parallel: (i) the collection of the measurements provided by the
embedded sensors to update the tensor Ys(T+D) of the current time window (Line
3), and (ii) the opportunistic aggregation of the local tensor of the previous time
window T with one of the peers that s meets (Line 4 – See detail in Section 5.3.2).

At the end of the current time window, the spatio-temporal interpolation is
applied to the associated local tensor to infer missing values (Line 6 – See detail in
Section 5.3.1). We highlight that the interpolation runs on the end device, only once
and before the aggregation process running over the next time window. The one-
time interpolation allows: (i) minimizing the number of interpolation occurrences
and thereby the resource cost on the device, and (ii) leveraging the locally completed
tensor to assess the quality of the local measurements against the ones of the peers
that the crowdsensor meets, which determines the mainstay.

Finally, still at the end of the current time window T+D, the crowdsensor sends
its local tensor to the server, unless it has aggregated and relayed to another crowd-
sensor (Lines 7-9).
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5.4.2 Prototype on the Smartphone
Our IAM solution assumes an ad hoc framework supporting the opportunistic meet-
ing and collaboration among crowdsensors using D2D discovery and communication,
which may be our BeTogether1 solution presented in Chapter 4 [49], or other solu-
tions in [78]. The IAM prototype is thus explicitly focused on the implementation
of the distributed, collaborative interpolation and aggregation, further targeting
Android smartphones/tablets as crowdsensors.

The IAM prototype is available at GitHub2. It requires a Python 3 environ-
ment as well as the following third-party packages for data analytics: NumPy3

handling multi-dimensional arrays (tensors); Scikit-learn4 implementing various ma-
chine learning algorithms that are used for GPR training and inference; and PyKrige5

implementing the 3D ordinary kriging interpolation with various standard variogram
models. The key components of our prototype implementation are:

• Pre-processing reads the crowdsensed data that is stored in a local file, and
creates the corresponding tensors Y andM. The tensor size is an application-
specific parameter that is configured to map the target physical phenomenon
P over the chosen A and D. Precisely, the tensor size depends on the required
sensing resolution, the geographical space that needs to be covered, and the
time window. Overall, the parsing is characterized by a O(n) time complexity,
where n denotes the number of observed cells.

• Interpolation creates a GPR model, trains the model based on the M ∗ Y
observed cells, and uses the trained model to infer and produce the approxi-
mation tensor Ŷ along with the variance tensor Σ2. The interpolation has a
O(n3) time complexity with n being the number of observed cells.

• Aggregation computes the loss function of two tensors from a pair of crowdsen-
sors, makes the aggregation decision, then merges the two tensors into one,and
updates the current data, mask and variance tensors Ŷ , M and Σ2 respec-
tively, following Algorithm 4 and Algorithm 5. The aggregation process on
each crowdsensor has a O(p) time complexity, where p represents the number
of P2P meetings.

IAM supports the opportunistic aggregation of the sensing data along with the
interpolation of a physical phenomenon provided relevant measurements from the
crowdsensors. Observation values may relate to various physical phenomena (e.g.,
air temperature, sound level, illuminance, humidity, air pressure.).

1https://github.com/sensetogether/BeTogether
2https://github.com/sensetogether/IAM
3https://numpy.org
4https://scikit-learn.org
5https://pykrige.readthedocs.io

https://github.com/sensetogether/BeTogether
https://github.com/sensetogether/IAM
https://numpy.org
https://scikit-learn.org
https://pykrige.readthedocs.io
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5.5 Performance Evaluation
We first introduce the experiment background and then show the evaluation results.
We assess the effectiveness of the IAM distributed approach using a dataset.

Experiment Setup and Dataset
The experiment supporting our evaluation is focused on urban noise monitoring us-
ing crowdsensing. The dataset contains the measurements collected by the Ambiciti
application in an opportunistic way [82]. Recall that a partner company Ambiciti
provided us the dataset used for evaluation.

Ambiciti DATASET specifically relates to the contributions gathered in
Paris over year 2017 and includes about 950k entries from 550 crowdsensors.
Each entry is a tuple of the form <latitude index, longitude index, timestamp
index, observation value> with the observation value being the averaged
sound level expressed in dB(A).

Note that a sound level in dB(A) is a logarithmic quantity, and hence sound levels
cannot be simply averaged for aggregation. Instead, the sound levels in dB(A)
are first converted into their energy equivalents. Then the energy equivalents are
averaged algebraically, and finally, the resulted energy equivalent is converted back
to its dB(A) value.

In the above context, IAM manages tensors that deal with the monitoring of the
noise level over the whole area A of the city during D = 24 hours. We decompose
the city area into a 100× 100 grid, and the sensing data that are collected during 1
hour are stored in the dedicated cell. Over 1 day, this results in a 100 × 100 × 24
tensor, which contains at most 240k of data entries.

1. Preprocess 2. Interpolate 3. Aggregate

Figure 5.5.1: Producing a city noise map using IAM (at a zoomed scale)

Figure 5.5.1 illustrates the data analysis procedure for the computation of the
urban noise map, using the IAM prototype. The figure zooms on the 5 × 5 ×
1 snapshot for which the crowdsensors provide sensor measurements. The figure
highlights that the dataset is very sparse, which is the case with most crowdsensing
applications and our reference application in particular.

In the following evaluation, the experiments are run either on a DELL Precision
7520 workstation, used both as the centralized server (Section 5.5.1) and for sim-
ulation (Section 5.5.2), or on an Android 6.0+ smartphone as end device test-bed
(Section 5.5.2).
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Accuracy Metrics
We consider the MAPE (Mean Absolute Percentage Error) and RMSE (Root Mean
Square Error) to evaluate the accuracy of the interpolated and aggregated tensors.
Given the observation data tensor Y , the approximation data tensor Ŷ and the
ground truth mask tensorM (indexing useful values), MAPE is defined as:

MAPE(Y , Ŷ ,M) := 100%
‖M‖2

∑M∗ |Y − Ŷ|
M ∗ Y

While RMSE is defined as:

RMSE(Y , Ŷ ,M) :=

√√√√‖M ∗ (Y − Ŷ)‖2

‖M‖2

For cross-validation, we run 100 rounds of training followed by tests. At each
round, both the training and evaluation sets are randomly shuffled, that is, for
interpolation, 70% of the dataset is used for training (i.e., as actual observations to
complete the tensor) and 30% to test (i.e., to assess the estimated values against
the ground truth). Regarding aggregation, the entire approximation tensor is used
for the evaluation.

5.5.1 Evaluation of the Interpolation Methods
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Figure 5.5.2: Interpolation accuracy comparison - MAPE

Figures 5.5.2 and 5.5.3 compare the robustness of the three inference strategies
that are commonly used to interpolate physical phenomena (see Section 5.2.2): Or-
dinary kriging with Gaussian variogram model (OK-Gaussian), CP decomposition
with Alternating Least Square (CP-ALS), and Gaussian Process Regression with
Matern kernel (GPR-Matern). The interpolation is performed at the server (with-
out involving any aggregation), using the dataset from which we selected the day
during which the enormous amount of crowdsensing data was collected. The same
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Figure 5.5.3: Interpolation accuracy comparison - RMSE

experiments were run using the whole dataset, and the same trends were observed.
On the figures, the box corresponds to the interquartile range, the orange line is the
median, and the green triangle is the mean. At first sight, OK-Gaussian seems to
be accurate and hence promising, given the low MAPE and low RMSE interquar-
tile range and median. However, some wrong inferences lead to abnormal values,
as illustrated by high MAPE and RMSE mean values of 16% and 47, respectively.
Similarly, but to a lower extent, CP-ALS shows some abnormal RMSE. Instead,
GPR-Matern provides both an accurate and robust inference: stable MAPE and
RMSE without outliers –hence characterized by the lowest variance– is observed.
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Figure 5.5.4: Comparison of interpolation execution time

Figure 5.5.4 shows the execution time of the three interpolation approaches.
We run the experiments over the 365 days of our dataset, where the number of
observed cells varies every day. The execution time of CP-ALS (R = 1) is constant in
O(RIJK) regardless of the number of available observed cells since the computation
applies on the entire fixed-size tensor. Both OK-Gaussian and GPR-Matern have
a time complexity in O(n3) with n being the number of observed cells used to fit
the model. The execution time of GPR-Matern is lower than OK-Gaussian, and
below CP-ALS when the number of observed cells is less than 2800. Note that in
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our dataset, the number of observed cells collected by crowdsensors per day remains
lower than 1500. Overall, GPR-Matern is the most efficient in terms of accuracy
and robustness, while its execution time is also relatively lower.

We further evaluated the efficiency of the three interpolation methods in terms of
memory consumption. GPR-Matern consumes the least memory: around 3.114MB,
with a variance of 1.718. Meanwhile, the memory consumption associated with
CP-ALS (respectively OK-Gaussian) is of 3.258MB with a variance of 0.422 (re-
spectively 4.644MB with a variance of 1.437). Note that the memory consumption
is stable and does not depend on the number of observed cells since our approach
always uses a fixed-size tensor that is filled with zeros in the absence of observations.
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Figure 5.5.5: Kernel accuracy comparison - MAPE
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Figure 5.5.6: Kernel accuracy comparison - RMSE

Focusing on GPR, we assessed the accuracy (Figures 5.5.5 and 5.5.6) and asso-
ciated execution time (Figure 5.5.7) of the following kernels: constant, RBF (Ra-
dial Basis Function), rational quadratic, and Matérn. The rational quadratic and
Matérn kernels are the most accurate, while the former slightly outperforms the
latter. However, the execution time of the quadratic kernel is twice as much as that
of the Matérn kernel. We, therefore, leverage GPR with Matern kernel within IAM.
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Figure 5.5.7: Comparison of Kernel execution time

5.5.2 Evaluation of the Distributed Aggregation
We perform both simulations based on the dataset and test-bed experiments.

Simulation-based Evaluation of the Aggregation

We compare the overall performance of the distributed vs centralized interpolation-
mediated aggregation using our 1-year dataset. In the centralized aggregation
case, the server collects all the sensing data and performs the aggregation and in-
terpolation based on the whole dataset. As for the distributed aggregation (see
Figure 5.5.1), we consider the following methods:

• Ideal iterative aggregation is a theoretical and sequential case in which
the aggregation starts at the first crowdsensor that aggregates its tensor with
the next crowdsensor and the aggregation process repeats with the following
crowdsensors until the last crowdsensor is reached. This is the ideal case for
which we ignore the actual locations of the crowdsensors.

• Base stochastic aggregation represents the real-life scenario: an aggrega-
tion occurs when at least two crowdsensors meet, as detected using the actual
location and time proximity available from the dataset. The aggregation pro-
cess thus depends on the mobility of the contributing users. Upon a meeting,
the mainstay is selected randomly and β = β′ = 1 for the generalized Product-
of-Expert (see Algorithm 5). Ultimately, all the tensors are uploaded to and
merged at the server, either directly or via a relay depending on the crowd-
sensors’ P2P meetings.

• IAM opportunistic aggregation is similar to the above stochastic aggre-
gation with the exception of the selection of the mainstay and the chosen β
values. It follows our Algorithms 4 & 5, and we set βs = 1.5 (resp. βs′ = 0.5)
for crowdsensor s with lower D (resp. s′ with higher D).
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The above three methods are also compared with the Centralized aggregation
where the server (DELL workstation in our experiment) collects the sensing data
and performs the interpolation based on the whole dataset.
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Figure 5.5.8: Aggregation accuracy comparison - MAPE

Figure 5.5.8 provides the MAPE of the above distributed and centralized ag-
gregation approaches. As expected, the centralized approach is providing the most
accurate inference as a baseline. The MAPE mean equals to 8.5%, and the MAPE
median is 8.1%. The accuracy of distributed aggregations is quite similar: the
MAPE is around 12.5%, with a median of 12.5%. In particular, our opportunis-
tic aggregation is comparable to the centralized approach (e.g., the MAPE value is
only 4 points higher than the centralized approach). It has MAPE mean and median
of 12.0%. Overall, our approach is characterized by a slight decrease in accuracy
compared to centralized aggregation.
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Figure 5.5.9: Aggregation accuracy comparison - RMSE

Figure 5.5.9 provides the RMSE of the three distributed aggregations compared
to the centralized approach that serves as reference. Although the ideal iterative
aggregation avoids the processing of interpolation and aggregation on the cloud, the
RMSE mean equals 2.213 and the RMSE median equals 2.345. The accuracy of the
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stochastic aggregation is quite similar, with a RMSE mean of 2.212, and a RMSE
median of 2.341. Our opportunistic aggregation performs better than the other
distributed approaches with a RMSE mean of 2.102 and a RMSE median of 2.225.
Still, as expected, the decentralization impacts on the overall aggregation result,
which is to be compared to the resulting resource gains. It is part of our future
work to investigate further enhancement of the distributed interpolation-mediated
aggregation by, e.g., accounting for the significance of the measurements gathered
at a node when interpolating.
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Figure 5.5.10: Impact of β setting on aggregation - MAPE
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Figure 5.5.11: Impact of β setting on aggregation - RMSE

Figures 5.5.10 and 5.5.11 compare different weighting configurations (βs, βs′) for
the two crowdsensors s and s′ that aggregate. For three of the pairs, we manually
set their values depending on the loss function D, i.e., the lower loss has a higher
weight. For the fourth one, we set βs = 2 ns

ns+ns′
using the ratio depending on the

number of aggregations n that each crowdsensor previously has performed. The
results show that assigning a higher weight to the crowdsensor with the lower loss
function increases slightly the overall accuracy aggregated ultimately at the server.

Figure 5.5.12 shows the execution time associated with the entire procedure,
including data pre-processing, interpolation, and aggregation, with the simulation
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Figure 5.5.12: Comparison of Accumulated execution time
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Figure 5.5.13: Comparison of server-only execution time
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being performed at the server. By design, the centralized aggregation execution
time is lower than the accumulated execution time of the distributed aggregation
schemes. However, as illustrated in Figure 5.5.13, the execution time associated
with the centralized aggregation (and interpolation) at the server significantly in-
creases when the number of crowdsensors gets high. Instead, when the interpolation
and aggregation are mainly performed by crowdsensors, the server execution time
is almost negligible regardless of the number of crowdsensors. In addition, the stor-
age requirement is minimized on the server because the data tensor size is always
unchanged when aggregating new incoming data (via linear operations).
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Figure 5.5.14: Comparison of directly uploaded messages
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Figure 5.5.15: Comparison of P2P forwarded messages

Figures 5.5.14 and 5.5.15 compare the amount of traffic uploaded to the server
and relayed among the crowdsensors respectively, in the centralized vs distributed
cases. The traffic is evaluated based on the number of actual P2P aggregations
(within relays). As expected, the distributed aggregation reduces the amount of
traffic uploaded to the server, and hence the cellular network occupancy is kept to a
minimum. Notably, the IAM opportunistic aggregation drastically reduces the up-
loading to the server by 54.2% compared to the stochastic aggregation. A portion
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of the traffic sent to the server is replaced by the D2D forwarding among crowd-
sensors; there are more aggregations and thus more P2P traffics generated when
the number of crowdsensors increases. This result supports our mainstay selection:
crowdsensors with better inference quality tend to have more relays/aggregations.

Testbed-based Evaluation of the Aggregation

We now focus on the resource consumption of IAM on the end device, for which
we analyze the execution time (depending on the number of observed cells and of
aggregations) and power consumption (depending on the execution time and D2D
protocol). We empirically assess the performance associated with the IAM prototype
in terms of execution time and energy consumption, using Android smartphones.
We conduct the experiment using our one-year dataset as data input.
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Figure 5.5.16: On-device execution time of computing

Then, we run experiments on a SAMSUNG GALAXY S7 smartphone embed-
ding a 3000 mAh battery capacity. Figure 5.5.16 shows the interpolation execution
time depending on the number of cells (i.e., area at the target scale) covered by the
crowdsensor, and the aggregation execution time depending on the number of ag-
gregations. Note that the figure shows no more than 500 entries, which is in practice
a very high number of cells contributed/visited by one crowdsensor per day. As ex-
pected, the interpolation is computationally intensive compared to the aggregation,
whose execution time is comparatively negligible: the interpolation takes a couple
of minutes when the number of observed cells is greater than 500, while the aggre-
gation takes less than 100 seconds for a number of aggregations below 500 and for
a number of observed cells per crowdsensor varying from 1 to 500. The aggregation
shows a linear time complexity.

Recall that each crowdsensor executes the interpolation only once, which is the
most computation-intensive operation. Assuming the crowdsensor has 500 observed
cells, an interpolation consumes the most energy with 88mAh, and an aggregation
consumes only 2mAh. Figure 5.5.17 estimates the energy consumed by a smart-
phone that implements the interpolation and opportunistic aggregation when the
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Figure 5.5.17: On-device energy consumed by computing

P2P meeting frequency varies: the more frequent is the aggregation, the more en-
ergy is consumed. Nevertheless, the related energy consumption remains under
control because in practice the crowdsensor usually has already relayed/aggregated
its data before encountering around 8 crowdsensors for a single day. In summary,
the interpolation of 500 observed cells and 8 aggregations for a day cost only 2.88%
of the battery capacity. With respect to communications, based on the power as-
sessment in [94], uploading via cellular network consumes 8.9 (resp. 4) times of the
D2D relay energy via Bluetooth (resp. Wi-Fi).
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Figure 5.5.18: Energy consumed by network communication

To evaluate the power consumption due to communication, we rely on the power
profile of an LG NEXUS 5X smartphone provided by the manufacturer. Assuming
the bandwidth is constant, the Wi-Fi transmission consumes 1.72mAh while the
cellular transmission consumes 1.85mAh power for a packet. We estimate the energy
consumption associated with all the crowdsensors. Figure 5.5.18 shows the energy
consumption associated with the local P2P traffic as well as cellular Internet traffic.
The energy is reduced by replacing uploading with P2P relays. When the P2P
bandwidth is higher than the cellular bandwidth (e.g., two times in figure), the
energy-saving is more significant. Furthermore, the local P2P traffic is not only less
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costly in terms of energy aspects but also in terms of budget.

5.5.3 Impact on the Financial Cost
We here assess the benefit of the decentralized IAM approach to crowdsensing from
a financial perspective. We specifically compare the IAM solution with the more
classical centralized one, which often relies on a cloud platform for data analysis
and storage. This is in particular the configuration of the crowdsensing system of
the Ambiciti company that provided us the dataset: the system initially used the
Google Cloud Platform (GCP, https://cloud.google.com/products/), which we
consider as an illustrative candidate for estimating the budget associated with a
cloud-based configuration.

GCP provides the following vital services: Cloud IoT Core is responsible for
connecting the cloud to the IoT devices and establishing two-way communication.
Upon the reception of a packet, the Cloud Pub/Sub service creates and delivers
an event notification to Cloud Functions that implements basic operations (e.g.,
average, maximum, minimum) needed to pre-process the data. BigQuery is used
to store the pre-processed data temporarily during aggregation and interpolation.
Compute Engine runs a virtual machine that performs the advanced computation
(e.g., interpolation and aggregation). Cloud Bigtable is a NoSQL database that
stores the resulting aggregated and interpolated sensing data. The usage of each of
the above services is priced. For a detailed description, one may refer to the list6

online. In short, the price depends on the amount of network traffic received/sent,
the amount of storage needed, and the load associated with the computation (e.g.,
number of pre-processing functions invoked, and execution time associated with the
interpolation and aggregation).
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Figure 5.5.19: Monthly financial cost of a cloud-based deployment

Figure 5.5.19 estimates the monthly financial cost associated with running cen-
tralized vs distributed crowdsensing while using the GCP platform as the server
and assuming that each crowdsensor sends a 2MB packet every day. The cost

6https://cloud.google.com/pricing/list

https://cloud.google.com/products/
https://cloud.google.com/pricing/list
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associated with the centralized approach increases linearly because the number of
uploads and the computation involved to interpolate the phenomena are both high.
Instead, the costs of the stochastic and opportunistic approaches remain low be-
cause communication toward the cloud is reduced and only lightweight aggregation
is performed on the cloud. Our IAM opportunistic aggregation outperforms the
stochastic approach because we further reduce the computing load on the cloud.
In general, the IAM decentralized solution significantly alleviates the dependence
on the server infrastructure, thereby enabling the wider adoption of crowdsensing
systems by communities of users concerned with environmental monitoring.

5.6 Discussion
To the best of our knowledge, our work is the first to investigate and design a fully
distributed interpolation and aggregation based on the opportunistic encounters of
crowdsensors. Our key hypothesis is that the number of encounters –both past and
future– is correlated to the number of observations and thus the inference quality.
Other common criteria such as device resource/status may be further considered
when selecting the mainstay. Still, our evaluation does not analyze the power con-
sumption due to D2D communication, as we rely on the results of previous studies
that show that D2D networking is cheaper than cellular networking [195, 44, 34]. It
is part of our future work to further investigate the overall effectiveness of IAM in
terms of resource efficiency vs data accuracy, compared to the centralized approach.
In addition to the required energy efficiency and accuracy for any crowdsensing sys-
tem, ensuring privacy is another key concerns for the end-users. Here, we claim
that the fully decentralized approach of IAM outperforms the centralized approach
in terms of privacy, further considering the opportunistic, impromptu encounters
of the crowdsensors, which subsequently share aggregated & interpolated tensors
about environmental phenomena. The opportunistic approach then raises the po-
tential issue of un-trustworthy crowdsensors that may contribute malicious data.
While the IAM solution presented in the paper assumes trustworthy crowdsensors
providing equally accurate measurements, our aim in the near future is to investigate
mechanisms that filter anomalous data (e.g., outliers) to deal with untrustworthy
contributors.

We argue the collaborative crowdsensing at the edge must handle different in-
teraction behaviors of users. While group-wise collaboration promoted by BeTo-
gether improves the data collection, pair-wise collaboration in IAM enhances the
data processing. In practice, the people’s mobility makes the crowdsensing con-
tribution unevenly distributed over space and time, which requires the analysis of
the contributed observations that is in general performed at a central, often cloud-
based, server. However, as the number of contributors grows, the increasing num-
ber of observations that the crowdsensing systems must process gets challenging:
the high network and financial cost associated to a cloud-centric system hinders
the widespread deployment of crowdsensing, and the high computational cost due
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to the large amount of data makes intractable the modeling of the environmental
phenomenon. Furthermore, the increasing –and relevant– concerns of the citizens
about the privacy invasion of a centralized platform is challenging the participation
of crowdsensing campaigns.

We tackle the above issues by exploiting the increasing computing capacity of
today’s smartphones, that is, we distribute the interpolation and aggregation asso-
ciated with the sensing data at the powerful end devices. To do so, we introduce
IAM that runs on the smartphone to capture complex relationships among the col-
lected observations across both space and time by relying on Gaussian Process Re-
gression and 3D tensors. Then, the resulting tensors are opportunistically combined
together following a stochastic process based on the physical encounters of people.
The benefit of our approach is threefold: (i) each crowdsensor (i.e., expert) inde-
pendently establishes an interpolation of the region it covered; (ii) the aggregation
resulting from the Product-of-Experts is sharper than any of the individual tensor
and renders much more tractable the establishment of the overall tensor; and (iii)
the computation achieved on the device is limited, and thus not energy-exhausting.
Indeed, the evaluation using a real-world dataset shows that our approach signifi-
cantly reduces the transmission to, and the computing resource consumed on, the
infrastructure server, compared to the centralized approach.
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6.1 Summary of the Thesis
The data gluttony of AI is well known: data fuels artificial intelligence. Technologies
that help to gather the necessary data are therefore essential, among which IoT is
contributory. However, the deployment of IoT solutions raises significant challenges,
especially with respect to resource and budget costs. It is our view that mobile
crowdsensing, aka mobile phone sensing, has a significant role to play because it can
potentially contribute massive amounts of data at a relatively low cost.

Notably, we believe opportunistic crowdsensing is the best way to support ubiq-
uitous sensing and pervasive computing. It empowers citizens to sense objective
phenomena, running autonomously, at a large and fine-grained scale. Nevertheless,
crowdsensing would be unproductive, and even harmful, if the contributed data
are not adequately processed. Especially opportunistic crowdsensing shifts the bur-
den from users to the application and platform to extract valuable information. In
short, the challenge lies in achieving efficiency, that is, simultaneously enhancing the
quality of the data and reducing the cost of sensing.

People may provide valuable observations across time and space using their smart
devices, e.g., smartphones, which are characterized by sensing capabilities along with
powerful computing capabilities and are usually equipped with multiple short-range
D2D network interfaces, e.g., Wi-Fi, Bluetooth. Furthermore, smart devices do
not only embed physical sensors along with networking and computing components;
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they also hold social properties associated with the people that e.g., encounter each
others. Considering these characteristics, this thesis promotes collaborative crowd-
sensing at the end-device level, and, aims at making opportunistic crowdsensing a
reliable means of urban environmental monitoring, for which we advocate enforc-
ing the cost-effective collection of high-quality data. Our research introduces three
contributions (presented in Chapters 3, 4, and 5) that implement the collaborative
crowdsensing at the edge by supporting the three complementary functionalities:

1. Context-awareness: We start from the premise that the quality of the pro-
vided measurements depends on the adequacy of the sensing context with
respect to the analyzed phenomenon. Chapter 3 concentrates more specif-
ically on assessing the sensing context beyond its geographical position in
the Euclidean space, when gathering observations about the physical environ-
ment, i.e., whether the smartphone is in-/out-pocket, in-/out-door and upper-
/under-ground. We introduced ContextSense to leverage online learning for
the local inference of the sensing context, in order to overcome the dispar-
ity of the classification performance due to the heterogeneity of the sensing
devices as well as the diversity of user behavior and novel usage scenarios.
ContextSense specifically features a hierarchical algorithm for the inference
that requires few opportunistic feedback from the user. Evaluation results
considering different users, show that ContextSense increases the accuracy of
the context inference per user while generating a low resource consumption.

2. Group-wise collaboration: In crowded/dense areas wherein many crowd-
sensors remain close together and upload data, the uncontrolled collection
of massive amounts of raw sensing data incurs significant resource consump-
tion for both the end device and the server, and also negatively affects the
quality of the aggregated observations. Chapter 4 tackles both challenges
raised by opportunistic crowdsensing, enabling the resource-efficient gather-
ing of high-quality observations. To achieve this, we introduce BeTogether to
foster context-aware and collaborative groups constituted of co-located crowd-
sensors that operate in the same context and share the workload in a cost-
and quality-effective way. We evaluate BeTogether using an implementation-
driven evaluation that leverages the Ambiciti dataset, containing nearly one
million entries contributed by 550 crowdsensors over one year. Compared to
the cloud-centric approach, BeTogether increases the quality of the collected
data while reducing the overall resource cost.

3. Pair-wise collaboration: As for uncrowded/sparse areas wherein crowd-
sensors encounter briefly and data is cached, crowdsensing at scale involves
significant communication, computation, and financial costs due to the depen-
dence on cloud/edge infrastructure for the processing of the spatio-temporal
data. Although sorely needed to inform our knowledge of the environment,
this steep cost limits the adoption of crowdsensing by activists. As an al-
ternative to the centralized analysis of crowdsensed observations, Chapter 5
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introduces IAM : a distributed collaboration for data analysis running on the
smartphones. To do so efficiently, we model the interpolation as a tensor
completion problem. We introduce an opportunistic lightweight aggregation
method that anticipates future encounters according to the quality of the con-
tributed data. Thus, depending on the pair-wise encounters of crowdsensors,
IAM may shift from centralized processing to a distributed, on the move pro-
cessing of crowdsensed data. The evaluation of IAM using part of quantitative
environmental measurements contained in the Ambiciti dataset, shows that it
significantly reduces –and may even remove– the dependence on the central-
ized infrastructure. At the same time, it incurs a limited resource cost on the
crowdsensors, while the overall data accuracy remains comparable to that of
the centralized approach.

In summary, ContextSense, BeTogether, and IAM jointly construct our solution
of collaborative crowdsensing at the edge. They enhance the efficiency of opportunis-
tic crowdsensing, on both the end device level and the cloud level. The inference
accuracy and sensing data quality are improved on the crowdsensor and the cloud,
respectively. At the same time, the network and computing resource consumption
on the crowdsensor and the cloud are reduced.In other words, we propose a set of
collaborative crowdsensing mechanisms among end devices that reduce the costs for
both the end device and the cloud/server, while increasing the overall data quality.

6.2 Perspective and Future Work
Mobile crowdsensing is a feasible method for gathering massive amounts of data from
ubiquitous smartphone users. Not only is this system capable of gathering data, but
it can also carry out data analysis on the devices. For instance, crowdsensing has
made significant contributions to the monitoring of the epidemic. People threatened
by the COVID-19 virus can be tracked using their smartphone application; their
movement is analyzed to alert them and prevent further spreading of the virus.
Nonetheless, crowdsensing has its share of issues. The application crowdsensing
analyzes the data available on the device, which have been generated by the physical
sensors. We could possibly utilize more data related to e.g. application usage, user
profile, and user involvement in social networks. However, the usage of such data
may cause privacy concerns, therefore requiring full prior authorization by the users.
This may in turn limit the system’s wider application. Thus, the question returns
to the issue of incentive: why should a user authorize opportunistic crowdsensing
on their device? Regarding this issue, for now we have chosen to assume altruism
as the primary motivation for participation. In this thesis we have decided to focus
on addressing the issue of efficiency.

Following, we investigate the possible improvements of each contribution, and
further explore future challenges.
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Threat to validity: The main limitation of this thesis is related to the evalua-
tion of ContextSense, BeTogether and IAM. Each of these evaluations is constrained
by the datasets that were used during the assessment. Regarding the personalized
context inference, a larger dataset containing information from a greater number
of users would permit a better assessment of the robustness of our approach. Cur-
rently, we have selected three datasets containing only several days of information.
In the Ambiciti dataset, users are distributed sparsely, and the contextual infor-
mation is limited to user activity and in-/out-pocket status. For the context-aware
collaborative grouping, a dataset containing more contextual information from a
denser group of users, would enhance the evaluation of the proposed approach. A
single dataset was used to validate the effectiveness of the interpolation and aggre-
gation approaches. While interpolation alleviates the issue of sparsity, having more
datasets holding other quantitative measurements may support a better validation
process. Overall, our research aims at analyzing urban phenomena using informa-
tion gathered from people. The construction of larger and richer datasets would
require the involvement of many participants and the deployment of experiments at
a massive scale. Unfortunately, unlike certain companies, we do not have access to
massive amounts of personal data. Instead, we have tried our best to leverage the
dataset in our collection, although it is not perfect. A public dataset following the
FAIR (Findability, Accessibility, Interoperability, and Reusability) principles would
be helpful.

Improvement: Our joint contributions can be described as a distributed ad hoc
system combined with on-device machine learning. It is a cross-discipline solution
built upon the network, system and data science fields. As such, it can be potentially
extended in multiple aspects: Its capability to infer personalized contexts could be
enhanced. We applied a online learning approach that requires user feedback. Active
learning and transfer learning may be combined together to amplify the impact
of the user’s feedback. Consequently, the gradually more intelligent notifications
will imply that less feedback are needed. Meanwhile, federated learning might be
leveraged to deploy a pre-trained learning model on the same device models, which
will speed up the on-device evolution of learning models. The pursued goal is to
further reduce the burden on crowdsensing users and the financial cost associated
with the gathering and processing of the data. A distributed crowdsensing system
could also be improved. In particular, D2D communication among multiple mobile
devices deserves an adapted protocol. Although the mobile ad hoc network has been
studied during decades, the evolution of 5G introduces more ubiquitous networks:
the D2D is always a trend with cellular network that should connect every thing
[179, 9]. Our collaborative group is dynamic; as a result, its stability may be a
concern. Without a properly centralized view, our solutions may not find the global
optimal. Thus, the shift from a approximate and distributed tasks allocation to
centralized optimization remains a problem to be solved leveraging 5G ubiquity.



Future work: We have partly investigated distributed machine learning. Mo-
bile machine learning is the current trend, especially given the actual development
of artificial intelligence of things. Our life will gradually be accompanied by, e.g.,
smartphones, smart homes, smart vehicles. Artificial intelligence, either in its classic
form based on statistic/probability or in its emerging form based on neural networks,
will be deployed on machines and other things. Distributed and ubiquitous learning
would seem necessary in such a context. One variety of distributed machine learning
is federated learning, which combines various models created by numerous experts.
Although many end devices are now capable of running complex inferences (e.g.,
TensorFlow Lite), deep learning training remains too demanding for the mobile de-
vice. The question of how to effectively distribute computation load is still a point of
interest. Edge devices designed specifically for neural networks have been developed
recently. In the future, we are interested in context-aware smart sensing, which is
in some ways an extension of crowdsensing and artificial intelligence of things. For
example, the smart vehicle system requires such sensing to detect abnormalities and
recommend services to the user. It is related to the user; it is a sensing service, and
it requires intelligence.

Ultimately, distributed and collaborative crowdsensing demonstrates the poten-
tial and advantages of ubiquitous computing. We believe that the ad hoc collabora-
tion among end devices via instant and short-range communication is an essential
part of pervasive computing, especially from the machine learning standpoint.
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