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Abstract

The task of automatically extracting insights or building computational models from knowl-
edge on complex systems greatly relies on the choice of appropriate representation. This work
makes an effort towards building a framework suitable for representation of fragmented knowl-
edge on complex systems and its semi-automated curation—continuous collation, integration,
annotation and revision.

We propose a knowledge representation system based on hierarchies of graphs related with
graph homomorphisms. Individual graphs situated in such hierarchies represent distinct frag-
ments of knowledge and the homomorphisms allow relating these fragments. Their graphical
structure can be used efficiently to express entities and their relations. We focus on the design
of mathematical mechanisms, based on algebraic approaches to graph rewriting, for transfor-
mation of individual graphs in hierarchies that maintain consistent relations between them.
Such mechanisms provide a transparent audit trail, as well as an infrastructure for maintaining
multiple versions of knowledge.

We describe how the developed theory can be used for building schema-aware graph databases
that provide schema-data co-evolution capabilities. The proposed knowledge representation
framework is used to build the KAMI (Knowledge Aggregation and Model Instantiation) frame-
work for curation of cellular signalling knowledge. The framework allows for semi-automated
aggregation of individual facts on protein-protein interactions into knowledge corpora, reuse of
this knowledge for instantiation of signalling models in different cellular contexts and generation
of executable rule-based models.
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Résumé

L’extraction automatique des intuitions et la construction de modèles computationnels à par-
tir de connaissances sur des systèmes complexes repose largement sur le choix d’une représent-
ation appropriée. Ce travail s’efforce de construire un cadre adapté pour la représentation de
connaissances fragmentées sur des systèmes complexes et sa curation semi-automatisé.

Un système de représentation des connaissances basé sur des hiérarchies de graphes liés
à l’aide d’homomorphismes est proposé. Les graphes individuels représentent des fragments
de connaissances distincts et les homomorphismes permettent de relier ces fragments. Nous
nous concentrons sur la conception de mécanismes mathématiques, basés sur des approches
algébriques de la réécriture de graphes, pour la transformation de graphes individuels dans des
hiérarchies qui maintient des relations cohérentes entre eux. De tels mécanismes fournissent
une piste d’audit transparente, ainsi qu’une infrastructure pour maintenir plusieurs versions
des connaissances.

La théorie développée est appliquée à la conception des schémas pour les bases de données
orientée graphe qui fournissent des capacités de co-évolution schémas-données. Ensuite, cette
théorie est utilisée dans la construction du cadre KAMI, qui permet la curation des connais-
sances sur la signalisation dans les cellules. KAMI propose des mécanismes pour une agrégation
semi-automatisée de faits individuels sur les interactions protéine-protéine en corpus de con-
naissances, la réutilisation de ces connaissances pour l’instanciation de modèles de signalisation
dans différents contextes cellulaires et la génération de modèles exécutables basés sur des règles.
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Chapter 1

Introduction

Modern technologies allow us to generate and store virtually unlimited amounts of data con-
taining knowledge of different provenance, from records of human activity to high-throughput
experimental results. Extracting implicitly present knowledge from this data and reasoning
about it requires advanced processing and analysis techniques that go beyond the capacities
of a human brain and are required to be automatized. To understand the emergent dynamics
of complex systems, such as social or biological systems, extracting implicit knowledge often
means building computational models. In domains such as biology building accurate and re-
liable computational models is of crucial importance to the understanding of diseases or the
development of new drugs. In this abundance, however, even explicitly present knowledge is
often represented in a form not suitable for automated processing and analysis, e.g. natural
language, unstructured or semi-structured documents. Moreover, this knowledge is often frag-
mentary, dispersed over multiple sources and inconsistent, therefore, needs to be assembled and
curated.

This thesis makes an effort to build a knowledge representation framework particularly
suitable for representation of knowledge on complex systems and its semi-automated curation.
It is built upon three pivots: the first one consists in development of the mathematical theory
for knowledge representation and update using hierarchies of graphs, the second one focuses on
the application of the theory for building schema-aware graph databases, and, finally, the third
one treats the problem of curation of biological knowledge on cellular signalling. The rest of
this chapter provides a brief introduction to all three topics elaborating on their motivation and
context.

1.1 Knowledge representation

The field of knowledge representation (KR) studies the approaches to representation of knowl-
edge that facilitate building of intelligent systems [6, 30]. Such systems are often referred to as
knowledge-based systems. Typically, the represented knowledge consists in some domain-specific
description of the world and the intelligent systems help to perform inference of some not ex-
plicitly present knowledge. In the dicussion of what is a KR, Randall et al. [30] articulate five
roles played by a KR, which give a flavour of what we actually mean by a representation:

❼ Surrogate: a representation is always a substitute for the represented thing itself. The
correspondence between the surrogate and what it refers to gives the semantics for the
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1.1. KNOWLEDGE REPRESENTATION

representation. This implies that the representation is always an approximation and,
therefore, is inaccurate and may contain some representation artifacts.

❼ Set of ontological commitments: choosing a particular representation we choose a set of
ontological commitments that define the aspects of reality that we include and the ones
we ignore in our representation. This focuses our attention on aspects that we believe to
be relevant. Due to its overwhelming complexity, to be able to efficiently reason about
the world, we are obliged to make this choice.

❼ Fragmentary theory of intelligent reasoning: a representation implicitly provides a theory
of intelligent reasoning, it defines the set of inferences that the representation allows.
Therefore, the choice of a representation intrinsically involves the choice of the nature of
intelligent reasoning.

❼ Medium for efficient computation: reasoning using machines is a computational process,
therefore the representation of knowledge should offer computational efficiency of reason-
ing.

❼ Medium of human expression: a representation provides means for expressing and com-
municating knowledge about the world to the machine (or to other humans).

Application domains of KR include software engineering, natural language processing, data-
base management, etc. Basic KR tools include logic, frames, semantic networks, rules and
so on. Logic-based KR systems exploit the idea that the predicate calculus can be used to
capture knowledge about the world and verification of logical consequences—to reason using this
knowledge. Non-logic based systems (frames, semantic networks and rules) are often graphical,
they represent knowledge with some intuitive data structures and provide some specially tailored
ad hoc reasoning mechanisms [6].

In this work we focus on building a KR system that allows for representation of knowledge
about entities and their relationships on different abstraction levels. To elaborate, our KR
system should provide means to:

❼ express entities and their relationships (where entities could represent some kinds, objects,
agents, events);

❼ equip entities and relationships with key/value attributes (that can express, for example,
states, properties, qualities of entities and relations);

❼ divide a knowledge corpus into distinct fragments;

❼ relate entities (and potentially relationships) from different fragments of a knowledge
corpus (for example, to express relations ‘is the same as’ or ‘is an instance of’).

Therefore, the developed KR system, presented in Section 2.2, is structured as a hierarchy of
graphs related to each other with graph homomorphisms. In this work we focus mainly on the
update aspects of KR and almost do not treat the question of reasoning using the knowledge
represented with hierarchies of graphs. This is partially due to the fact that conceivable modes
of reasoning over such knowledge are highly application- and domain-specific. The structure
of the system makes it well-adapted for reasoning on hierarchical relations of entities (such
as subsumption) and reasoning based on graph theory techniques (such as search for specific
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1.1. KNOWLEDGE REPRESENTATION

graphical patterns and motifs, analysis of topological properties of the underlying graphs). For
example, the kind of ‘analytics’ that can be applied to such knowledge is tangential to the
querying capabilities of graph databases discussed in more details in Subsection 1.2.1.

1.1.1 Related work on knowledge representaion

In this subsection, to give the reader an idea of classical approaches developed in the KR domain,
we discuss some related representation models, try to compare and place our system in their
context when possible.

Semantic networks (nets). Semantic nets use network-like structures to represent knowl-
edge. Nodes and links usually represent concepts and relations among them [6, 74]. Nodes of
the same semantic net can be used to represent both classes of objects and individual objects
themselves. Moreover, nodes can be equipped with attributes describing properties of concepts
(for example the concept ‘bird’ can have properties ‘can fly’ and ‘has feathers’). Concepts can
be related with special ‘IS-A’ edges defining subclass-superclass relations, and properties of su-
perclasses are by default inherited by subclasses (for example, the concept ‘duck’ is connected
with an ‘IS-A’ edge to ‘bird’, therefore, ‘duck’ inherits the properties ‘can fly’ and ‘has feathers’,
and it can have its own properties, for example ‘is brown’). Both semantic nets and our KR
system use graphs as the main underlying data structure, however, the notions of hierarchy
and inheritance of properties differ substantially. First of all, the most reasonable translation
of ‘IS-A’ edges between concepts to our KR system would correspond to separation of concepts
on different abstraction levels into separate graphs providing homomorphisms between them
(which is not always possible). Then properties of concepts could be translated to attributes
of nodes in our graphs (for example, a property ‘can fly’ to an attribute ‘can fly: True’). Such
a translation would, however, still break down as in our system attributes of a superclass node
define a set of allowed attributes of a subclass node (a person can have a name, Bob is a person,
he can have a name), while properties in semantic nets define necessary properties (every person
has a name, Bob is a person, he has a name). This renders the correspondence of inheritance in
two systems invalid. Attributes of superclass nodes in our KR system provide a specification of
their instances by giving all possible attribute keys/values that the latter are allowed to have.

Frames. Developed in the seventies and greatly inspired by psychology and linguistics, frame-
based KR systems are based on the idea that whenever we find ourselves in a new situation
we retrieve a prototype situation from our memory and adapt it to fit the newly occurred one.
The main data structure of this KR system is called frame, represents a stereotypical situation
and contains some information on how to use the frame. A frame is presented by two levels:
the first one represents things that are always true in the respective situation and is fixed, the
second one contains empty ‘slots’ to be instantiated with new knowledge. Frames are related
into frame-systems that can be used to represent taxonomies, actions, cause-effect relations
or changes in the modellers view-point. Structural properties of these frame systems provide
means for various inferences [42, 69].

Description logic (DL). DL is a language that allows to represent knowledge about con-
cepts, individual objects, roles and their relationships. A DL knowledge base consists of two
kinds of statements: TBox and ABox. TBox statements provide a terminology and contain dec-
larations of properties of concepts. TBox statements allow performing subsumption reasoning,
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1.1. KNOWLEDGE REPRESENTATION

i.e. checking whether a subsumer concept is more general than a subsumee. ABox statements
define assertions about individuals and can be used to express membership and role assertions.
The main reasoning task in ABox is instance checking, i.e. whether an individual object is
an instance of some concept [6]. Similarly, to ‘IS-A’ edges of semantic nets, TBox statements
can be encoded into our KR system by separating concepts on different abstraction levels into
separate graphs and providing homomorphisms between them.

Ontologies. The general term ontology in computer science refers to a formalized repre-
sentation of a set of entities, processes, attributes and relations that constitute a particular
domain-specific world-view [82]. Ontologies usually include a vocabulary of terms and defini-
tions of these terms. Their main goal is to facilitate communication and inter-operability of
knowledge between different agents (both people and software systems). There exist a number
of ontology definition languages, among which the triad of Resource Description Framework
(RDF), RDF Schema (RDF Schema) [31] and Web Ontology Language (OWL) [67] are the
most well-known. RDF is a data model allowing representation of facts about entities and their
relations in the form of triples ‘subject-predicate-object’. RDF Schema defines a vocabulary
for describing properties and classes of entities represented with RDF triples as well as class
hierarchies. OWL allows to define a layer of semantics over RDF and RDFS, it allows to repre-
sent different relations between classes, cardinality, equality, etc. For example, OWL allows to
express statements such as ‘A is the same as B’, ‘the class A is disjoint from the class B’, ‘if A
is a friend of B, then B is a friend of A’. Our KR system can be used to define an ontology and
at the current stage of its development it does not provide a formalized OWL-like semantics
(however, some of its fragments can be still adapted, such as ‘A is the same as B’), therefore
can be directly compared only to the couple RDF and RDFS. Similarly, to the previous KR
approaches ‘IS-A’ relations between a subclass entity and a superclass entity can be encoded
with homomorphisms between different graphs of our system.

Other related models. Predominantly used in relational database design the entity-relash-
ionship model (ER) [16] provides a unified view on data as a set of entities and relationships.
Similarly Unified Modeling Language (UML) [76], widely used for object-oriented design of
software systems, represents various system components (activities, classes of objects, interfaces)
with nodes and their relations (interaction of components, their composition, inheritance) with
edges. These models are not usually considered as tools for KR, but rather specialized modelling
tools. However, implicitly they do represent expert knowledge on the design and architecture of
underlying databases and software systems. With respect to our KR system, the ‘instance-of’
relations in ER or UML intuitively constitute homomorphisms between different graphs (they
represent relations that cross from one abstraction level to another).

1.1.2 Knowledge curation

To formulate the principal motivation behind this thesis, we need to define the notion of knowl-
edge curation that will be central to all the following parts of the thesis. By curation we mean
the dynamical process of continuous collation, integration, annotation and revision of some
domain-specific knowledge.

Therefore, the main motivation for our work is to design a curation framework for knowledge
represented with hierarchies of graphs. Namely, we would like to design rigorous mechanisms for
the update of individual knowledge fragments that would preserve consistent relations between
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1.1. KNOWLEDGE REPRESENTATION

them. Accommodated knowledge is expected to be frequently updated by potentially different
curators, whose updates are not necessarily consistent. Therefore, our curation framework
should provide a traceable history of updates—an audit trail, as well as an infrastructure for
maintaining multiple versions of a knowledge corpus. A transparent audit trail would not only
provide an insight on the history of knowledge updates, but would also allow the curator to
rollback to an arbitrary point in this history, which is extremely useful, when, for example,
trying to fix an erroneous update or their sequence.

The update of a knowledge fragment corresponds to a transformation of the corresponding
graph in the hierarchy. The transformations are based on sesqui-pushout (SqPO) graph rewrit-
ing, an algebraic rewriting approach based on category theory [20]. Applied to a specific graph
in a hierarchy some transformations are required to be propagated to other graphs to preserve
the consistency of the hierarchy. The system is described in detail and formalized in Section
2.2.

We design an audit trail for updates in hierarchies of graphs based on the ideas underlying
modern version control (VC) systems. We exploit the reversibility and composition of SqPO
rewriting to adapt the main notions of VC to graph-like structures. Thus, the developed au-
dit trail allows to efficiently represent the history of updates for individual graphs and graph
hierarchies, revert the changes, maintain and semi-automatically merge diverged versions of
knowledge. Further discussion of the audit tail system designed as a part of our KR framework
can be found in Sections 2.1.4 and 2.2.10.

The Python library ReGraph1 developed in the frame of this thesis allows the user to build
arbitrary representations based on hierarchies of simple graphs with attributes, perform knowl-
edge updates and maintain an audit trail. A more detailed discussion on ReGraph is presented
in Section 2.3.

1.1.3 Related work on graph hierarchies and rewriting

In this subsection we provide a brief overview of the work related to the construction of graph
hierarchies, as well as the rewriting techniques used for their update and audit.

Slice categories and typed graphs. Slice categories (see the definition in Appendix A.2.6)
are often used to formulate the notion of typed graphs, i.e. graph objects typed by other graphs
via homomorphisms. Rewriting in such slice categories is typically formulated in terms of
transformations that respect the fixed typing object (called type graph), i.e. whose result is
guaranteed to be an object of the underlying slice category [19, 38]. For instance, a transfor-
mation G G′ of a typed graph G→ T results in G′ → T .

Our work generalizes such typing to a hierarchy, where every object is typed by all its
descendant objects and the typing by different descendants is required to be consistent (more
details on this account will follow in Section 2.2). Moreover, we formulate the rewriting in
hierarchies which does not only guarantee that the resulting object stays well-typed by its
descendants, but also allows for their dynamical transformation. For example, a transformation
G  G′ of a typed graph G → T may result in G′ → T ′, where T ′ represents the result of
such a dynamical transformation of the type graph T (or propagation to T ). This approach is
related to the change-of-base functor familiar from algebraic topology and to its right adjoint
whose existence characterizes pullback complements [33].

1https://github.com/Kappa-Dev/ReGraph
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Graph rewriting. Algebraic approaches to graph transformation provide a mathematical
framework allowing for simple proofs, not specifically tailored for graph structures, but working
for any objects satisfying some structural requirements. In addition, they provide some inter-
esting results on concurrency, parallelism and distribution analysis [21]. The most well-studied
algebraic graph rewriting approaches are the double-pushout (DPO, [37]), the single-pushout
(SPO, [64]) and the sesqui-pushout (SqPO, [20]) approaches. As is suggested by their names,
the three approaches are defined in terms of different categorical constructions (such as pushouts
or pullback complements, formally defined in Appendix A). These constructions provide us with
tools for propagation of rewriting in hierarchies and construction of transparent audit trails.

The choice of the SqPO approach as the main graph transformation technique is motivated
by the following two factors. First of all, unlike the SPO or the SqPO approach, DPO rewriting
does not allow for ‘deletion in unknown context’, i.e. it allows to delete a node only if all
of its incident edges are explicitly removed. The latter condition is often called the ‘dangling
condition’. Formally, a DPO rewrite consists in gluing two pushouts (therefore, the name
double-pushout), and the ‘dangling condition’, roughly speaking, guarantees that one of this
pushouts can be constructed. The SPO approach, on the other hand, allows to perform ‘deletion
in unknown context’. However, unlike the SqPO approach, it does not allow to clone graph
elements, while, in the applications of our interest, we would like to be able to perform both
‘deletion in unknown context’ and cloning of graph elements.

Propagation of transformation. As we have previously discussed, in the classical theory of
typed graph rewriting, the result of transformation stays well-typed by the fixed typing object.
In our work we propose an approach that allows for dynamical transformation of the typing
object. Moreover, our propagation framework allows to rewrite the typing object itself and
dynamically transform the typed object. For instance, for a typed graph G → T , a transfor-
mation T  T ′ may result into G′ → T ′, where G′ represents a dynamical transformation of
the typed object (or propagation to G). A coupled rewriting of both typed and type graphs
was proposed in [66] for the DPO approach. The propagation techniques proposed in this work
are canonical, i.e. are given by some categorical constructions having universal properties, such
as a pushout or a pullback. We generalize this approach to the SqPO rewriting and provide
an entire spectrum of possible coupled transformations: from strict (where the fixed type or
typed object are respected) to canonical (where the results of the coupled transformation has a
universal property). Subsections 2.2.2 and 2.2.3 describe the proposed propagation techniques
in more detail.

Audit trail. The designed audit trail system for individual graphs and graph hierarchies
provides features similar to VC systems used in software development. Such systems typically
provide a control over different versions of software’s source code distinguishing sets of updates
into atomic operations—commits. These commits are stored in the revision graph representing
the temporal (partial) order of commits. Storing a state of a software project at the time
of every commit can be extremely heavy and resource consuming. Therefore, a typical VC
system stores only the current state of a project, while the history of commits stores its states
at different times using delta compression, i.e. storing only the difference from a time step
to the next one—a delta [73]. We adapt the notion of a delta to the graphical structures by
representing graph transformations with rewriting rules and their matches (see more details in
Section 2.1). For this representation to be sound, the performed transformations are required
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to be reversible, i.e. the underlying rewriting rules and their matches should explicitly encode
these transformations. Reversibility of the SqPO rewriting was studied in [29] and is discussed
in more details in Subsection 2.1.2. We extend this work by formulating the notion of a rule
hierarchy that expresses reversible rewriting and propagation in a hierarchy of graphs.

In addition, the proposed audit trail allows to efficiently represent multiple diverged versions
of the underlying object. Such versions are represented using deltas, i.e. by maintaining only
the current version of the object, while representing the other versions with deltas from this
object. In order to express the divergence of versions (the transformations of the underlying
objects), we need to provide means for composing deltas. This is done by defining the compo-
sition of consecutively applied rewriting rules. The construction of such a composition for two
consecutive rule applications (often called concurrent synthesis) is closely related to the question
of concurrency of SqPO rewriting [21]. There exists an extensive general theory of concurrency
for different graph rewriting approaches [36, 21], including SqPO rewriting. However, in this
thesis we focus exclusively on its aspects related to the concrete question of composition of two
consecutive applications of SqPO rewriting rules. This question has been studied in [7] for linear
SqPO rules (rules that do not clone or merge elements). In this work we extend this approach to
any SqPO rules, where the application of the first rule is reversible (see the discussion presented
in Subsection 2.1.3). Moreover, we generalize the composition of rewriting to transformations
operating on hierarchies of graphs.

Finally, the developed audit trail allows merging two diverged versions of the object. Such
merging is performed by gluing the versions by their ‘common denominator’, either provided by
some canonical constrution or user-defined. The questions of versioning, merging and detection
of such ‘common denominator’ are closely related to the works presented in [80] and [34], which
study versioning based on the DPO approach.

1.2 Graph databases

In the previous section we have briefly discussed what is a knowledge representation (KR). While
designing and building a knowledge-based intelligent system it is not enough to just select an
appropriate KR, it is also necessary to choose a technology that would enable us to store the
knowledge base (KB). Usually such a technology is a database management system (DBMS)
that allows storing persistently and querying our knowledge.

Remark 1.2.1. What is the difference between a database and a knowledge base? Some databases
accommodate knowledge bases, but not all of them. At the same time, some knowledge bases
are stored in databases, but not all of them (for example, some of them are stored in collections
of unstructured documents). Databases usually refer to organized collections of data, which
can be modified and accessed by some DBMS, while knowledge bases often refer to collections
of highly interconnected data (usually representing knowledge of a higher level), they are often
equipped with some inference engine and are associated to some intelligent systems.

The property graph data model underlies most of the modern graph database technologies
[9]. Using this model has been initially envisaged for the development of knowledge bases built
upon our KR system. Interestingly, we have discovered that not only this data model can be
adequately used in our framework, but that the model itself can be enriched by the concepts
and techniques provided in our system. In this section we will briefly introduce the property
graph data model and discuss some languages designed to query graph databases. We will
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also introduce the notions of schemas for property graphs, schema validation and data/schema
co-evolution as an interesting application of our KR framework.

1.2.1 Property graphs

Property graphs (PGs) allow to represent data with sets of nodes and relationships. Relation-
ships are directed edges connecting at most two nodes, both nodes and relationships can be
equipped with key/value properties. Nodes and relationships can be assigned with sets of labels
(that can be used, for example, to group them into sets). Modern graph database technologies
(such as Neo4j, Oracle PGX, SAP HANAGraph, Redis Graph, etc.) are predominantly based
on the PG data model.

The querying functionality of graph databases exploits the ability to represent complex rela-
tions between entities. The most common queries include finding direct and indirect connections
between entities, finding various subgraph patterns and so on [9]. One of the most powerful
graph query languages is called Cypher (originally implemented as part of the Neo4j graph
database) and its open-source counterpart openCypher [43]. Cypher has an intuitive ASCII-art
syntax that allows to visually specify graph patterns for querying and modifying data. Figure
1.1 shows a small example of a Cypher query.

MATCH (p:Post)-[:HAS CREATOR]->(u:Person)<-[:HAS CREATOR]-(c:Comment)

WHERE (c)-[:REPLY OF]->(p)

RETURN u, p, c

Figure 1.1: Example of a Cypher query. This pattern matching query finds comments on posts
whose author is the same person.

A graph database is equipped with an engine that performs planning and execution of
queries. Query execution is decomposed into different elementary operators which together
form a tree structure called an execution plan2. Evaluation of an execution plan starts from the
leaves of the corresponding tree. Such leaves do not have input nodes and typically implement
some operations of direct access to the data storage (for example, scanning of nodes by a label).

1.2.2 Building a hierarchical knowledge base with PGs

In the previous section we have briefly introduced the main idea behind our KR system. Its
main representation units are graphs whose nodes and edges can be equipped with key/value
attributes. The system allows to fragment knowledge into multiple graphs and relate them with
graph homomorphisms creating a hierarchical structure. We would like to be able to ‘encode’
our system using the PG data model.

To find such an encoding we need to address a couple of challenges. The first challenge con-
sists in encoding the structure of graphs with attributes using PGs, which is fairly easy to solve
by establishing a one-to-one correspondence between nodes and nodes, edges and relationships,
attributes and properties of respectively our graphs and PGs.

The next challenge consists in finding the representation of a hierarchical structure of a
knowledge base (i.e. how to separate knowledge into multiple graphs and relate them with ho-
momorphisms). Most of the modern graph database technologies do not allow to store multiple
PGs at the same time. Therefore, we need to find a way to encode the entire knowledge base in

2https://neo4j.com/docs/cypher-manual/current/execution-plans/
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a single PG. To do this we use the capability of PGs’ node labels to separate nodes into different
sets. We can assign a unique identifier to every individual graph in our knowledge base and
label its nodes with this identifier.

We now need to find a way to encode graph homomorphisms using components of PGs. Here
two separate approaches should be applied for the cases when the graphs in our KR system
are simple (at most one edge from the same source node to the same target node is allowed)
or non-simple (multiple edges from the same source to the same target are allowed). The two
cases result in different mathematical definitions of graph homomorphisms, i.e. in the first case
a homomorphism is fully defined by a map of nodes, while in the second—by a pair of maps,
one for nodes and one for edges (see formal definitions in Appendix A.1). In the first case we
can simply use PG relationships (for example, of some reserved relationship type) to connect
nodes from different graphs representing maps of nodes. The second case, on the other hand, is
less trivial as the standard definition of the PG data model does not allow to have relationships
between relationships. Therefore, it requires the revision of the initial encoding of our graphs
with attributes: edges of graphs should be represented by, for example, nodes connected to their
source and target with special types of relationships.

Finally, the last two challenges to be tackled are related to the update of a knowledge
base. First of all, we need to be able to translate graph transformation approaches used in
our framework to PG update queries. Secondly, some of the transformations are applied across
different graphs. To make the transformations across different levels of hierarchy efficient we
incorporate an extra structure into our knowledge base encoding—a hierarchy skeleton whose
nodes represent graphs and whose edges represent homomorphisms. A more detailed description
and discussion of this encoding in given in Section 2.3.

1.2.3 Schemas for property graphs

The PG data model has been originally conceived as a schema-free model. However, with con-
stantly increasing popularity of graph databases, the requirement for developing schema-aware
PGs has matured. Some graph database technologies, such as Neo4j, provide first rudimentary
means for specifying schema-like constraints [10]. These constraints include the requirements
on the uniqueness and the existence of properties.

Working on the encoding of our knowledge base using PGs, we have realized that some of
the features of our framework provide sound and natural tools of designing schema-aware PG
data model. A PG schema can be seen as a PG itself whose nodes define types of data nodes
and whose relationships define types of allowed relationships between data nodes of different
types, while properties of schema nodes and relationships define sets of allowed properties (and
their values) for corresponding data elements. Seeing data and schema as a two graphs related
with a homomorphism, allows us to reduce the task of schema validation to checking whether
this homomorphism is mathematically valid (total, edge preserving, etc.)

Moreover, the approach to graph transformation that propagates across multiple graphs
in the hierarchy (discussed in detail in Section 2.2) can be used to tackle the problem of
data/schema co-evolution. It allows to perform updates according to the following two sce-
narios:

❼ Prescriptive updates: updates to the schema (such as removal of node and relationship
types, splitting of types) that propagates automatically to the underlying data.
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❼ Descriptive updates: updates to the data (such as addition of new graph elements, merge
of nodes and relationships) that propagated automatically to the schema.

1.2.4 Related work

In this subsection we make a brief overview of the related work regarding two different problems.
We discuss RDF and RDFS in the context of choice of encoding for our graphical knowledge
base. After we provide some ideas on the existing work that tackles the problem of schema
validation and co-evolution for graph databases.

Resource description framework and its schema (RDF and RDFS). We have pre-
viously discussed RDF and RDFS as standard representation tools for building ontologies.
However, in the graph database community they provide a data model alternative to PGs. We
have mentioned previously that RDF allows representing data with statements consisting of
‘subject-predicate-object’ triples. Statements and predicates are first-class citizens that can be
used as a subject or an object in other triples [31]. Interpreted graphically this would mean that
RDF enables us to add edges between edges, which could be extremely useful when encoding
our graph hierarchy consisting of non-simple graphs (recall that to represent homomorphisms
of non-simple graphs we need to represent maps of edges). However, this ‘first-class citizenship’
would apply for encoding of node/edge attributes as well. Notes and relations (predicates) in
RDF do not have an internal structure, e.g. if we would like to represent the attribute ‘name:
Bob’ of a node in RDF we would create a new node ‘Bob’ and relate it to this node with a
predicate ‘hasName’. This (on the first sight small) difference is one of the crucial arguments
behind the choice of the PG data model over RDF, as it provides more efficient querying and
storage capabilities.

Schemas for PGs. The problem of schema evolution is a classical and well-studied topic
in data management [75]. The research on this topic concerns mostly relational databases
[8]. There exists an extensive work on schema validation and co-evolution for XML and RDF
[54, 68]. On the other hand, the problem of schemas for graph databases stays under-studied.
While some recent attempts were made in PRISM [23], InVerDa [56], MoDEF [81], they mostly
treat a PG schema as prescriptive (fixed, prescribing sets of allowed node/relationship types,
etc.). Our approach, on the other hand, allows to achieve a spectrum of co-evolution capabilities
that range from totally prescriptive (from schema to data) to totally descriptive (from data to
schema), which enables great flexibility when modelling data on different stages of application’s
development.

1.3 Bio-curation for cellular signalling

In this section we address the challenges related to modelling biological systems and curating
biological knowledge, which constitutes the main use-case for our KR system. We give a brief
insight on what constitutes cellular signalling and how it can be modelled. We focus, in partic-
ular, on the rule-based modelling approach. We present the bio-curation framework KAMI—a
novel approach that allows to decouple knowledge curation from model building. Finally, we
present some related work that attempts to place KAMI in the context of existing curation and
modelling tools.
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1.3.1 Modelling cellular signalling

Cellular signalling emerges from thousands of individual interactions between proteins. Sig-
nalling allows a cell to adapt to a changing environment or to communicate with other cells
in, for example, a multicellular organism. The final goal of signalling is a change in a cell’s
behaviour, e.g. an alternation of protein functions, their synthesis, etc. Traditionally cellular
signalling is divided into intracellular (inside a single cell) and intercellular (between multiple
cells) [2]. In this thesis we mainly focus on modelling intracellular signalling. It underlies many
fundamental processes of living cells, from cell proliferation to their apoptosis (death). Its
abnormalities are responsible for common and serious diseases such as cancer and diabetes.

Actors of signalling—receptor proteins, GTP-binding proteins, protein kinases—are large
and complex molecules that can possess a number of ‘on/off’ states usually actualized by post-
translational modifications (PTMs, e.g. phoshorylation, methylation, etc.). Every combination
of such states alters a function of a protein, its catalytic activity, its ability to bind other proteins
and so on. Moreover, the surface of some proteins can contain multiple binding sites that can
be occupied by particular combinations of binding partners (ligands) at the same time. Every
such combination of ligands may alter protein function as well.

Signalling actors form a functional network in which proteins play different roles: some relay
the signal further in the network, some create conditions for interactions between other proteins
(scaffold proteins), some can amplify the original signal, modulate the activity of other proteins
[2], etc. This network is a highly redundant and enormously complex “spaghetti” of chemical
reactions, disentanglement of which is a great challenge.

One of the common ways to disentangle signalling networks consists in finding signalling
pathways—structures of interaction events leading to some event of interest (a change in a cell’s
behaviour, for example). Such signalling pathways do not exist physically, but are artifacts
emerging from concurrent interaction events underlying the dynamics of signalling systems [14].
Knowledge of pathways does not only give an insight on biological mechanisms behind changes
in a cell behaviour, it also allows to develop mechanisms for intervention into these changes
(some of these pathways, for example, are involved in various diseases such as cancer).

This immense complexity of cellular signalling systems makes them extremely hard to model
and analyse. Traditional approaches for modelling dynamical systems of reacting molecules
(such as modelling with ODEs, stochastic chemical kinetics) require explicit listing of interacting
agents in the system. In this contexts, every combination of protein states and bindings induces
a species of an interaction agent [27]. The number of agent species of a typical signalling
system becomes astronomical fairly quickly. Therefore, it becomes not only computationally
hard to simulate and analyse such systems, even writing down their models is in itself a highly
non-trivial problem.

Moreover, most of the classical and well-studied signalling pathways (e.g. MAPK/ERK
pathway [79], Wnt signalling pathway [59]) were discovered and built by manually examining a
set of what seemed to biologists relevant PPIs. Due to the complexity of signalling systems this
way of modelling introduces inevitable modelling bias which may result in misleading or inac-
curate models. Therefore, there is a need for tools allowing automated discovery and analysis
of signalling pathways from ‘models of nothing’, i.e. executable mechanistic models produced
from the aggregation of large knowledge corpora, collected without preconceived ideas on their
relevance.

The nature of knowledge that underlies signalling models raises another challenge that makes
our modelling task even more intricate. Knowledge on protein-protein interactions (PPIs) and
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their PTMs is often fragmentary, incomplete and even incoherent; it can result from experi-
mental data, an inference or a hypothesis. All these factors require from a feasible modelling
approach to be incremental and to provide transparent and reasonable mechanisms for updating
underlying knowledge on agents and their interactions (which is not the case when modelling
with ODEs, for example).

The rule-based modelling approach (proposed by Kappa [26] and BioNetGen [40]) allows
to overcome the described challenges. It solves the problem of explosion in the number of
agent species and allows incremental model building. Moreover, this approach provides a set
of tools for automated discovery of potential signalling pathways by constructing compressed
causal past of simulations. This automated pathway discovery proposes a promising solution
for the problem of modelling bias inherent to manual pathway building. On the other hand, the
KAMI framework, developed as a part of this thesis, proposes a system for representation and
curation of signalling knowledge that provides means for automated and reusable aggregation
of individual PPI knowledge, and allows for automated generation of executable rule-based
models. The following subsections present the rule-based modelling approach and the KAMI
framework in more details.

1.3.2 Rule-based modelling

Rule-based modelling approaches allow to build mechanistic models of biochemical interactions
in terms of agents equipped with states and sites (defining agent interfaces) and rules of their
interactions. Rules specify how local patterns of states and sites change as the result of interac-
tions between agents [26]. These local patterns represent necessary conditions for interactions
to appear, this is often referred to as the ‘do not care, do not write’ approach.

A system’s state is represented with a large graph structured in a particular way. Its
evolution (i.e. the result of biochemical events) is then mimicked using graph transformation
techniques. This frees the modeller from the necessity to enumerate all the molecular species
arising in the course of system’s evolution (allowing discovery of species as an artefact of system’s
dynamics) and provides means for building scalable and easily updatable models. Moreover, it
allows to employ a range of techniques for causal analysis that can be used to discover signalling
pathways [25].

In this subsection (for historical reasons) we will focus on the Kappa language and give a
brief overview of the set of tools constituting the Kappa platform—a set of software components
that allow to perform simulation and analysis of the dynamical systems [14].

Representation of knowledge in Kappa. The basic modelling units of Kappa are called
agents (in our context they represent proteins) possessing sites (used to represent interaction
sites and post-translational modifications). Using sites agents connect to each other into site
graphs, which implicitly represent molecular species. As it was previously mentioned, the sys-
tem’s state is represented with a mixture graph (comprising of multiple site graphs). The rules
consist of two site graphs L and R that can be seen as patterns representing necessary condi-
tions for the interaction to happen and its result respectively. A rule is applied to a mixture by
embedding L (finding a part of a site graph matching the necessary conditions described by L)
and replacing it with R. A Kappa model is then given by a set of rules together with an initial
mixture.
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Kappa simulator (KaSim). Simulation of the system dynamics is performed by the Kappa
simulator KaSim. The simulation techniques used are stochastic and are based on continuous
time Markov chains (more details can be found in [28, 44]). Simulations are optimized for
particular data structures used by the simulator with clever techniques from graph rewriting
[13]. Moreover, every simulation is interactive, i.e. it can be paused and system perturbations
can be introduced on the fly. During simulation KaSim is able to produce the dynamic influence
network (DIN) whose nodes represent rules and whose edges represent the influence of rules on
each other (such as activation and inhibition). Analysis of this network can produce useful
insights on the system dynamics, e. g. rule-fluxes over time, clusters of highly interrelated rules
(that may suggest potential emergence of pathways). The results of simulations can be uploaded
and DINs can be visualized on DIN-Viz server [14]. KaSim allows to convert rule-based models
into different representations amoung which are ODEs (when feasible) and SBML (a standard
model exchange language [58] widely used in the systems biology community).

Kappa static analyzer (KaSA). Some kinds of analysis of the model described with a rule
set can be performed without running simulations. Such analysis is therefore called static and
can be performed using the Kappa static analyzer KaSA [12, 41]. Among the questions that
can be answered statically are the following: reachability of a molecular species, identification
of ‘dead’ rules (whose necessary conditions cannot be satisfied in the current rule-set), detection
of invariants, static rule influence (i.e. which rules activate/inhibit each other ‘in principle’),
detection of unbounded polymers. Analysis provided in KaSA does not only give some useful
insights on the model, but also helps to debug it by detecting potential anomalies.

Kappa story extractor (KaSTOR). KaSim produces a sequence of events (basically ap-
plications of rules) that have occured during a simulation. This sequence is called a trace, and
can be arbitrary long. The main goal of the Kappa story extractor is, given a trace, to find
a relevant sequence of events that lead to some event of interest (EOI) specified by the user
(events that explain how the EOI happened) [25, 14]. These sequences are called stories and
the idea behind them corresponds to what biologists call pathways. First of all, KaSTOR re-
constructs a directed acyclic graph representing the precedence relations between events of the
trace (note that two events happening one after another does not imply the precedence relation,
i.e. some events are concurrent). However, such graphs can be quite large and they do not di-
rectly represent stories. To obtain stories this graph should be reduced to contain a minimal set
of events necessary to produce the EOI. The process producing stories from precedence graphs
in KaSTOR is called causal compression and is based on techniques employed from the graph
transformation community [25].

1.3.3 Bio-curation for cellular signalling with KAMI

As we have previously discussed, rule-based approaches allow to build incremental models and
overcome the problem of combinatorial explosion in the number of molecular species. However,
building and maintaining large signalling models using directly these approaches stays cumber-
some and cognitively heavy. Moreover, they are not particularly suitable for bio-curation, i.e.
for collation and maintenance of ever-growing corpora of signalling knowledge.

The first reason for that is the ‘update problem’ which originates from the fact that different
rules expressing PPIs are not necessarily independent and may represent instances of the same
interaction mechanisms. A large proportion of PPIs involved in cellular signalling are instances
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of generic interaction mechanisms of conserved protein domains (for example protein kinase,
phosphatase, SH2, PTB domains, etc.). These interaction mechanisms are generally well-studied
and appear in highly specific conditions (for example, presence of particular sequence motifs).
An update of knowledge on a particular interaction mechanism may require identification and
update of all the rules that express this mechanism, which is extremely difficult and error-prone
to perform manually.

Let us consider a simple example of the ‘update problem’ that can arise in the course of
modelling. Figure 1.2 presents a set of Kappa rules expressing phosphorylation of different
substrates by the protein kinase enzyme SRC. The three interactions correspond to the same
interaction mechanism, i.e. the phosphorylation mechanism of protein kinase region of SRC.

SRC, SHC1(p) -> SRC, SHC1(p{1}) // SRC phosphorylates SHC1
SRC, STAT3(p) -> SRC, STAT3(p{1}) // SRC phosphorylates STAT3
SRC, JAK2(p) -> SRC, JAK2(p{1}) // SRC phosphorylates JAK2

Figure 1.2: Example of Kappa rules expressing the same interaction mechanism of SRC (KaSim
4.0 compatible syntax). Rules are given in a monospaced font, comments—in italic.

Now, assume that the modeller would like to revise the knowledge expressed with the rules
in Figure 1.2. For example, she found out that SRC is required to be activated to acquire
its enzymatic activity (the ability to phosphorylate). To perform this revision all the rules
expressing the instances of the phosphorylation interaction of SRC should be identified and
updated (Figure 1.3 presents an example of updated rules). While performing such an update
in this simple example may seem trivial, in real-world signalling models consisting of thousands
of rules (that may involve other interaction mechanisms of SRC as well) it is often a bottleneck.

SRC(activity{1}), SHC1(p) -> SRC(activity{1}), SHC1(p{1})
// active SRC phosphorylates SHC1

SRC(activity{1}), STAT3(p) -> SRC(activity{1}), STAT3(p{1})
// active SRC phosphorylates STAT3

SRC(activity{1}), JAK2(p) -> SRC(activity{1}), JAK2(p{1})
// active SRC phosphorylates JAK2

Figure 1.3: Example of updated Kappa rules from the example in Figure 1.2.

The second issue that arises when using rule-based modelling languages for collation of
mechanistics knowledge about signalling-related PPIs is called the instantiation problem, i.e.
the re-use of knowledge in different contexts (such as different cell types, mutants). Depending
on the context, and more precisely on the anatomy of participating proteins, the same set of
PPIs can give a rise to different models (for example, some PPIs that depend on particular
functional domains of proteins do not take place in the contexts where these proteins lose the
necessary domains).

Consider another small example of Kappa rules presented in Figure 1.4. The rules represent
bindings of GRB2 to SHC1 and EGFR through its SH2 domain and to GAB2 through one
of its SH3 domains. For the first two binding interactions GRB2 is required to have the SH2
domain (a biochemically active ‘sticky’ surface of the SH2 domain allows GRB2 to bind to its
SHC1 and EGFR). The third interaction, on the other hand, does not depend on the presence
of SH2 (it requires another domain, one of GRB2’s SH3 domains to be present). Note that
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the illustrated rules do not make these requirements explicit (here the names SH2 and SH3 are
purely incidental). GRB2 has a natural isoform GRB3-3 (a splice variant) with the SH2 domain
removed. Imagine now that the modeller would like to include in the model the GRB3-3 variant
of GRB2 and to reuse already present PPI knowledge to infer a set of interactions for GRB3-3.
Clearly, GRB3-3 would inherit the binding interaction with GAB2, but not the ones with SHC1
and EGFR.

GRB2(SH2[.]), SHC1(p1, pY site[.]) -> GRB2(SH2[1]) SHC1(p1, pY site[1])

// GRB2 binds SHC1 through SH2 domain
GRB2(SH2[.]), EGFR(p1, pY site[.]) -> GRB2(SH2[1]) EGFR(p1, pY site[1])

// GRB2 binds EGFR through SH2 domain
GRB2(SH3[.]), GAB2(grb2 site[.]) -> GRB2(SH3[1]), GAB2(grb2 site[1])

// GRB2 binds GAB2 through SH3 domain

Figure 1.4: Example of Kappa rules expressing binding of GRB2 to different ligands through its
SH2 domain and SH3 domain.

The two presented issues illustrate that due to the complexity of signalling models and the
nature of knowledge there exists a need to separate the process of model building from collation,
analysis and update of underlying biological knowledge—bio-curation.

KAMI tackles the ‘update problem’ by conceptualizing the notion of interaction mechanism
and providing their explicit representation (which allows to identify the instances of interaction
mechanisms immediately). The instantiation problem is solved by de-contextualizing protein-
protein interactions. KAMI enables the collation of knowledge about potential individual PPIs
and their necessary conditions into a knowledge corpus. It allows then to instantiate this
knowledge into models consisting of concrete PPIs. Agents of potential interactions are called
protoforms and represent neighbourhoods in the sequence spaces of different genes. By asso-
ciating regions, residues and states to a specific protoform the modeller represents a feasible
neighbourhood of its variants. KAMI allows the re-use of the knowledge on potential interac-
tions for the automatic generation of models in different systems, by specifying which agents
are present in these systems, that determines which interaction mechanisms are realizable.

The bio-curation framework proposed by KAMI enables the collation of knowledge about
individual PPIs and the semi-automatic aggregation of this knowledge into a coherent corpus
identifying interaction agents and mechanisms according to some body of grounding knowledge.
It then allows to instantiate this knowledge into various signalling models and to automatically
generate executable models such as Kappa scripts. KAMI’s pipeline is summarized in Figure
1.5. The conceptual framework of KAMI is implemented in the Python library KAMI3 and
a graphical environment KAMIStudio4. More detailed discussion of KAMI and the related
software tools can be found in Chapter 4.

1.3.4 Sources of signalling knowledge

Before we can conclude this introductory section we need to discuss another important question.
This question concerns the sources of knowledge for building signalling models. Even the most
elaborated knowledge curation tool is virtually useless without relevant and reliable knowledge.

3https://github.com/Kappa-Dev/KAMI
4https://github.com/Kappa-Dev/KAMIStudio
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from B-A-C, whether the binding rate of A to B changes when A is already bound to C, etc.).
In the rest of this subsection we discuss the common formats in which different sources repre-

sent signalling knowledge. Such formats range from standard machine-readable representation
formats to natural language and manual input.

BioPAX. BioPAX (Biological Pathway Exchange) is a standard language for the represen-
tation of biological pathway data such as metabolic and signalling pathways, molecular and
genetic interactions and gene regulation networks [32]. Its main goal is to facilitate representa-
tion and exchange of pathway data from different sources. BioPAX uses syntax based on OWL
and provides a set of tools for validation and querying BioPAX documents.

Our project (at least in its current state) focuses exclusively on modelling of cellular sig-
nalling, therefore, it is clear that BioPAX targets the representation of a much broader spectrum
of knowledge. It includes mechanistic details of protein-DNA/RNA, protein-protein interactions
as well as interactions between small molecules and proteins. Moreover, BioPAX allows to rep-
resent knowledge that in our context (the context of KAMI) we consider as phenomenological.
It can directly represent activation and inhibition of enzyme molecules (with the possibility to
specify additional knowledge on whether their are competitive, allosteric, irreversable etc.). It
also allows for direct accommodation of knowledge on metabolic and signalling pathways, which
according to the rule-based modelling framework is exactly the knowledge to be discovered.

Another interesting point of dissimilarity to elaborate concerns the status of protein com-
plexes in the representation of rule-based models and BioPAX. A large number of PPI involve
protein complexes as their actors, i.e. large molecular aggregates consisting of multiple pro-
teins (i.e. homo- or heteropolymers). BioPAX provides means for representation of interactions
whose actors are such protein complexes. Some modification and binding interactions performed
by a specific protein are possible only if this protein is a part of a larger complex (for example,
allosteric control), while some of them are actually performed by multiple molecules bound to-
gether in a complex (for example, functional sites formed by surfaces of two adjacent proteins).
These subtleties can have a significant influence on the dynamics of the modelled signalling
system, while the knowledge that would allow to discriminate between these two cases cannot
be represented in BioPAX. Moreover, the event of complex assembly is usually a multi-step pro-
cedure involving a non-trivial temporal partial order. In BioPAX, complex assemblies (as well
as all other biochemical reactions) are represented with a left-hand side providing reactants and
a right-hand side providing reaction products. This kind of representation, viewed through the
lens of rule-based modelling, misses some mechanistic details (i.e. the exact binary interactions
involved in the complex assembly).

Concerning the status of BioPAX as a candidate knowledge input format to KAMI, the
main conceptual differences between the knowledge representation in KAMI and BioPAX can
be summarized and extended in the following points:

❼ BioPAX can represent broader range of knowledge, currently not supported by KAMI,
e.g. generic, metabolic interactions.

❼ BioPAX allows to accommodate knowledge on different abstraction levels, including phe-
nomenological interactions such as activation or inhibition as well as direct representation
of pathways.

❼ The representation level of BioPAX corresponds to the one of rule-based modelling and
does not solve the rule update problem, i.e. there is no notion of interaction mechanisms.
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However, at least a substantial subset of BioPAX can be used as an input format for knowl-
edge fed to KAMI’s aggregation engine. This would permit to automatically import from the
resources that use BioPAX for knowledge export (such as Reactome5, Biomodels6, Signaling
Gateway Molecule Pages7). For this purpose, we have implemented a prototype BioPAX im-
porter for KAMI that is able to import a signalling-related subset of BioPAX (discussed further
in Subsection 4.5.1).

PSI-MI. Similarly to BioPAX, the PSI-MI (Proteomics Standards Initiative Molecular Inter-
action) XML format [70, 60, 78] aims to provide a standard for exchange of data on protein in-
teractions. The basic atoms of PSI-MI are called entries and can group one or more interactions
together with annotations indicating the experimental methods used to determine interactions
and their agents. It relies on controlled vocabularies (rather than free text attributes) that
can be defined externally that allow to specify interaction/agent detection methods, interaction
types, agent features, etc. Among the databases allowing export in PSI-MI formats are In-
tAct8 [55], DIP9, MINT10. The implemented bio-cuation tool KAMI (discussed in Section 4.5)
provides an importer for PSI-MI 3.0 format.

Natural language. A wast amount of relevant knowledge is not present in machine-readable
formats, but expressed with natural language in scientific articles. Therefore, a question of
automated reading and understanding of natural language is being actively investigated (e.g.
automated readers TRIPS/DRUM, REACH, R3 [45, 15]). The language of biomedical articles
is technical, written by professional scientists and intended to be understood by such. It greatly
facilitates the task of natural language processing (NLP), however, does not completely solve it.
No formalized writing conventions whatsoever exist and the language of biomedical literature
stays ‘natural’. Challenges in understanding this natural language include [15, 45]:

❼ Entity recognition: for example, in text ‘RAS’ can refer to gene, protein or complex.

❼ Mismatch of abstraction levels of different texts (e.g. “A phosphorylates B” vs “A binds
B, A bound to B phosphorylates B, A unbinds B”). How to assemble such knowledge into
a single coherent model, how to relate different abstraction levels?

❼ Logically related knowledge is spread across the sentences and paragraphs. Obtaining a
complete description of a mechanism requires collecting and assembling pieces of knowl-
edge from different parts of the text, which is a non-trivial task.

❼ Some background knowledge is assumed to be known by the reader and therefore omitted
in the text.

Manual input. Finally, it worth mentioning that there is no more valuable input than an
input from a human expert. An expert is able to analyze, de-contextualize, disambiguate,
investigate and synthesize mechanistic details from different sources. Therefore, a curation tool

5https://reactome.org/
6http://www.ebi.ac.uk/biomodels/
7http://www.signaling-gateway.org/
8https://www.ebi.ac.uk/intact/
9https://dip.doe-mbi.ucla.edu/dip/Main.cgi

10https://mint.bio.uniroma2.it/
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should provide an intuitive and flexible format for manual input of signalling knowledge at an
arbitrary level of mechanistic detail. Moreover, this tool should provide means for validation
and verification of this manual knowledge (however beneficial this manual input is, it stays
prone to human error).

A graphical bio-curation environment KAMIStudio, developed as a part of this thesis, pro-
vides flexible intuitive forms for input of individual PPIs. It allows to represent various kinds of
modification and binding interactions, specify interaction proxies (such as functional domains
and sites of proteins), structural requirements (such as the presence of particular domains, sites,
key residues) and PTMs. Further discussion of this topic can be found in Section 4.6.

1.3.5 Related work

Originally KAMI was developed as a part of DARPA’s Big Mechanism Project [17]. The
main goal of this project was to develop tools for automatic machine reading of the biochemical
literature and assembly of the extracted knowledge into large causal models with special focus on
cancer signaling pathways. Such causal models could be then used for reasoning and explanation
of fundamental signalling phenomena underlying the living cell, development of new drugs and
automatic design of experimental protocols.

In this section we would like to discuss a set of tools related to KAMI (some of them being a
part of the Big Mechanism Project as well). Functionalities of these tools facilitate modelling of
cellular signalling systems and are either complementary or have some intersection with KAMI.
We conclude by connecting KAMI and the related tools in the same picture (see Figure 1.6)
that hopefully can give some broader context to our project.

MetaKappa. Presented in [27, 47], MetaKappa provides means for specifying a space of
concrete models derived from a set of rules and an associated hierarchy of agents. Such a
hierarchy of agents can be used to represent splice variants, mutated forms of the same genes,
families of proteins, etc. Arbitrary entities of this hierarchy can be used as agents in the rule
set, e.g. a protein family can be used to specify a generic rule for all proteins in this family.
Historically, MetaKappa can be considered as a conceptual predecessor of KAMI; it makes a
first step towards the de-contextualization of knowledge encoded in Kappa rules. However,
there exist some crucial conceptual differences between MetaKappa and KAMI:

❼ MetaKappa cannot be used to specify gain-of-function mutants, i.e. variants produced
from mutations that enable particular PPIs.

❼ Derived from Kappa, MetaKappa cannot represent fine-grained agent components sub-
jected to splicing and mutations, i.e. protein domains and residues.

❼ Mechanisms are implicit, therefore the problem of identification and update of non-
independent rules persists.

Essentially, MetaKappa facilitates writing already conceptualized Kappa rules in a more
“laconic” way, while KAMI, on the other hand allows discovery of these rules by contextualizing
mechanisms [49].

INDRA. INDRA (Integrated Network and Dynamical Reasoning Assembler) represents an-
other closely related tool. Similarly to KAMI, the goal of INDRA is to decouple the curation of
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knowledge from model implementation [45]. INDRA is integrated with various NLP tools (e.g.
REACH [83], DRUM [3], Sparser [15]) that allow to extract relevant knowledge directly from
texts of biochemical literature. The model-building framework proposed by INDRA consists of
three main steps: (1) text-to-model conversion, (2) generation of INDRA statements and (3)
assembly of statements into a model.

First of all, an input text is processed to some machine-interpretable intermediate represen-
tation which includes grounding of identities of proteins and genes in reference databases. Then,
this representation is converted to INDRA statements. Statements constitute the intermediate
knowledge representation used in INDRA. They can express different kinds of interactions such
as protein modifications as well as some phenomenological interactions such as complex assem-
bly, activity and amount regulation. This representation is further used to assembly models (e.g.
networks of differential equations, rule-based models or PPIs networks). As will be discussed
in more detail in Subsection 4.2.1, KAMI provides a set of classes similar to INDRA state-
ments called KAMI interactions that are used for the representation of PPIs. However, they
are used by KAMI as an intermediary representation that facilitates user input (through KAMI
programmatic API or interactive forms of KAMIStudio). They are further used to generate
“their true representation” used in KAMI, i.e. a collection of nugget graphs that are aggregated
into a corpus. The main differences in knowledge representation of KAMI and INDRA can be
summarized as follows:

❼ INDRA does not allow to represent protein regions and sites and use them as actors of
interactions.

❼ INDRA allows to represent phenomenological knowledge, e.g. activation, complex assem-
bly, regulation of amounts, assumed by KAMI as knowledge to be discovered.

❼ Agents of interactions expressed with INDRA statements are specific gene products and,
therefore, mutants are treated as distinct agents.

❼ INDRA does not conceptualize interaction mechanisms, therefore, does not solve the prob-
lem of non-independent rule update either.

Overall, KAMI and INDRA are aiming to solve (at least superficially) similar goals with
significantly different approaches. Similarly to KAMI, INDRA aims to separate curation of
mechanistic knowledge from model building [45]. However, KAMI provides a semantically rig-
orous framework for curation of de-contextualized knowledge about generic mechanisms of PPIs
at the last step of which resides the generation of concrete models. On the other hand, INDRA
allows extracting (contextualized) knowledge about concrete PPIs into a pool of independent
statements and employing various techniques (both systematic and ad hoc) to automatically
assemble these statements into models. The greatest asset of INDRA is its ability to extract
knowledge directly from biomedical texts. Therefore, combining INDRA and KAMI is certainly
of interest, and KAMI provides a small importer of INDRA statements into KAMI interactions.
Note, however, that due to some discontinuity between the knowledge representation of the two
tools some knowledge that can be extracted from the literature is lost when represented with
INDRA statements (e.g. functional sites and conserved protein domains). Moreover, it would
be very interesting to combine KAMI directly with NLP tools not only to prevent the loss of
relevant knowledge, but also to implement context-dependent “reading with a model” using
KAMI corpora as such models [15].
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Other related tools. A number of languages for modelling with pathway diagrams have
been developed together with tools for their visualization and analysis (e.g. SBG [24] and
eEPN [71]). However, these tools rely on explicit representation of molecular species (that may
lead to combinatorial explosion), do not conceptualize interaction mechanisms (therefore, do not
solve the ‘update problem’). Most importantly, they are designed to be used by biologists for
manual building of pathways, while one of our main claims (and motivations behind designing
KAMI) is that signalling pathways are not objects of modelling, but rather phenomena emerging
from the dynamics of modelled systems and that ought to be discovered.

The Python framework PySB [63] allows to build models of biochemical systems using
simple and intuitive domain-specific language and generate BioNetGen, Kappa and systems of
ODEs. LBS-κ represents an extension of Kappa-language [72] allowing the modeller to define
parameterized modules representing sets of generic PPIs (for example, phosphorylations) and to
instantiate these modules with particular agents and their sites. It also provides a solution for
representing compartmentalization of reactions (i.e. reactions that happen in particular cellular
locations and transport reactions). Although these tools provide some additional abstraction
level over rule-based models that aicilitates and simplifies writing of models, they do not solve
‘the update problem’ and, importantly, do not separate knowledge curation process from model
building.

All this makes KAMI a unique bio-curation tool that occupies its niche in the ensemble of
existing knowledge curation and modelling tools and is able to connect them into a coherent
pipeline (see Figure 1.6), at the beginning of which is automated reading of biomedical literature
and at the end of which are insights on the dynamics of signalling systems of a living cell.
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Chapter 2

Rewriting in graph hierarchies

Graphical structures and their transformations are widely used in various domains of computer
science, such as software engineering, databases and distributed systems. In this thesis we use
graphs predominantly for KR purposes and graph transformations for knowledge update and
audit. We start this chapter by Section 2.1, where we present the main building blocks of our
KR system, graphs and graph transformations.

We build a hierarchic structure consisting of individual graphs related by homomorphisms—a
hierachy of graphs. This structure can be used to represent fragmented knowledge of a graphical
nature and relate the fragments using homomorphisms. Using the designed structure, various
relations between knowledge fragments can be expressed, such as relation between knowledge on
different abstraction levels, typing, identification, etc. We further study the ways to transform
individual graphs inside such a structure that allow consistent co-evolution of its different layers.
In general, the mathematical theory provided in Section 2.2 can be used to build hierarchical
structures of any objects in categories satisfying certain structural requirements.

Recall that one of the main motivations behind the design and the implementation of our KR
system is to provide a flexible and mathematically rigorous framework for knowledge curation,
i.e. collation, organization and maintenance of knowledge. In this context, we design a system
for an audit of updates in graphs and graph hierarchies, called an audit trail. Audit trails
allow us to store and navigate the history of updates, maintain multiple versions of our objects
(therefore, multiple versions of knowledge) and rollback to specific object versions in the update
history. They are presented and discussed in Subsections 2.1.4 and 2.2.10.

As a part of this thesis, a software tool implementing the presented mathematical theory—
the Python library ReGraph—has been designed and implemented. Section 2.3 gives some
details on its architecture, specifications and example use-cases.

The contributions on hierarchies of graphs and their rewriting were communicated as a
conference paper in [52] and its journal version in [53]. The work on rule hierarchies, reversibility
and composition of rewriting in hierarchies was submitted to the 13th International Conference
on Graph Transformation (ICGT 2020) and its pre-print version can be found in [].

2.1 Graph rewriting

Graphs constitute natural mathematical objects for representation of sets of entities related
between each other in some particular ways. Sets of entities are modelled with sets of nodes
(often called vertices in the graph theory), while their relations are modelled with sets of edges.

33



2.1. GRAPH REWRITING

Edges can be undirected or directed representing symmetric or asymmetric relations between
entities. Nodes and edges of graphs can be equipped with some internal structure providing, for
example, a description of the entities and relations they represent. In this thesis, we will refer to
such internal data as attributes. Additionally, we will distinguish between simple and non-simple
graphs, i.e. graphs where at most one edge is allowed between any given pair of nodes and, on the
other hand, where multiple edges are allowed. This distinction is important when defining graph
homomorphisms. For simple graphs we will define a homomorphism of one graph to another as
a function that associates nodes of the first graph with the nodes of the second is such a way that
edges stay preserved. While in the case of non-simple graphs our homomorphisms will consist
of two maps, one for nodes and one for edges, satisfying some properties. Formal definitions
of graph objects, attributes, graph homomorphisms and categories they form can be found in
Appendix A.1. The objects of our interest are both simple and non-simple directed graphs with
dictionaries of attributes attached to their nodes and edges. Their categorical formulation is
necessary to apply graph transformation techniques of interest, namely algebraic approaches to
graph rewriting.

Algebraic approaches to graph rewriting define a transformation of a graph G with a graph
rewriting rule r : L  R, where L and R are often referred to as the left- and the right-hand
side of the rule respectively. Rule application is performed given a match l : L → G defining
an occurrence of rule’s left-hand side in G. This application performs a transformation G G′

by finding a match of the left-hand side and ‘replacing’ it with the right-hand side of the rule.
In the rest of this section we study the rewriting approach of our interest—the sesqui-pushout
(SqPO) approach—in more detail and show how it can be used as a powerful tool for the update
and audit of knowledge represented with graphs.

2.1.1 Sesqui-pushout rewriting

SqPO rewriting is an approach for abstract deterministic rewriting in any category with pushouts
and pullback complements over monomorphisms [20] (definition of monomorphisms, pushouts,
pullback complemens can be found in Appendix A). In the context of graphs with attributes,
SqPO allows to perform the operations of addition, deletion, cloning and merging of graph
elements, such as nodes, edges and attributes. Rewriting of a graph G is defined by a rule
r : L←r−−P−r+→R, its matching is given by a monomorphism m : L G (injective function
where at most one node/edge of L maps to a node/edge of G). The graphs L, P , R are referred
to as the left-hand side, the interface and the right-hand side respectively.

L P R

G G− G+

(1)m

r−

m−

r+

(2) m+

g− g+

(2.1)

Application of the rule r is performed in two phases:
(1) a graph G− is constructed as the final pullback com-
plement from P−r−→Lm→G (see the formal defini-
tion in Appendix A.5), it represents the intermediary
rewriting result obtained after removing and cloning
graph elements; (2) the final result of rewriting G+ is
constructed as the pushout from G−←m−

P−r+→R, it corresponds to addition and merge of
the graph elements specified by the rule. We often refer to the first rewriting phase as the
restrictive phase and to the second one as the expansive phase. Diagram 2.1 illustrates the
categorical constructions of the rule application corresponding to the two phases, while Figure
2.1 gives a small example of such rewriting.

The categorical constructions for concrete graph categories of interest are formulated in
Appendix A (in particular, A.4 for pushouts and A.5 for final pullback complements). While
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Figure 2.1: Example of SqPO rewriting. The span on the top represents a rewriting rule. In the
first phase this rule removes the node represented with the filled square and clones the circle,
in the second phase it merges the triangle with the square and adds the filled diamond together
with an edge to the merged node. The bottom span illustrates how this rule is applied inside the
input graph (the matched patterns corresponding to different phases of rewriting are highlighted
with red).

the notion of a pushout, used to apply SqPO rules, can be considered as a classical and widely-
used categorical notion, the final pullback complement is slightly less common. We collect a
set of useful lemmas and properties of final pullback complements in Appendix A.5. Note that
final pullback complements are unique up to unique isomorphism, which makes SqPO rewriting
deterministic [20].

To give the reader some intuition on how SqPO rewriting works for graphs with attributes,
informally, application of a rule r : L←r−−P−r+→R can be reformulated as the following
sequence of steps (in the canonical order):

1. Node deletion: for every node v ∈ VL of the left-hand side of the rule that is not in the
image of r− delete its match m(v) together with all its incident edges. The removal of
edges incident to the removed node is considered to be a side-effect of SqPO rewriting.

2. Node cloning: for every node v ∈ VL of the left-hand side of the rule that has more than
one pre-image in P , i.e. such that |(r−)−1(v)| ≥ 1, clone it |(r−)−1(v)| − 1 times.

3. Edge deletion: for every edge e ∈ EL of the left-hand side of the rule that is not in the
image of r− delete its match m(e). Recall that in the category of simple graphs (formally
defined in Appendix A.1) our edge e corresponds to some pair of nodes (u, v) ∈ VL × VL

and its matching edge corresponds to the edge (m(u),m(v)) ∈ EG.

4. Attribute deletion: for every graph element a ∈ VP ∪· EP of the interface, let attrs(a) be
the attribute dictionary of this element and attrs(r−(a)) be the attribute dictionary of
the element it maps to in the left-hand side of the rule. Remove the dictionary defined
by attrs(r−(a)) \ attrs(a) from the attributes of the element matched by a in the target
graph (the operation of dictionary difference is defined in Appendix A.1).

5. Node merging: for every node v ∈ VR of the right-hand side that has more than one
pre-image in P , i.e. such that |(r+)−1(v)| ≥ 1, merge all nodes from (r+)−1(v) into a
single node.
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6. Node addition: for every node v ∈ VR of the right-hand side that is not in the image of r+

add a new node. If v contains some attributes, add these attributes to the newly added
node.

7. Edge addition: for every edge e ∈ ER of the right-hand side of the rule that is not in the
image of r+, add an edge between the corresponding nodes in the input graph.

8. Attribute addition: for every graph element a ∈ VP ∪· EP of the interface, let attrs(a)
be the attribute dictionary of this element and attrs(r+(a)) be the attribute dictionary
of the element it maps to in the right-hand side of the rule. Add the dictionary defined
by attrs(r+(a)) \ attrs(a) to the attributes of the element matched by a in the target
graph (addition in this context corresponds to the operation of dictionary union defined
in Appendix A.1).

In this thesis we will often consider rules as simply arrows of a form r : L ← L− or
r : L → L+. We then refer to the first kind of rules as restrictive rules, call a mono
m : L  G a restrictive instance and apply them by constructing the pullback complement
L−
m

−→G−−g−→G− (as in Diagram 2.2). The second kind of rules are referred to as expan-
sive rules, a mono m : L G is called an expansive instance and their application is performed
by constructing the pushout G−g+→G+←m+

L+ (as in Diagram 2.3). An arbitrary SqPO rule
r : L←r−−P−r−→R can be seen as a composition of a restrictive rule given by r− : L ← P
and an expansive rule given by r+ : P → R.

L L−

G G−

m

r

m−

g−

(2.2)

L L+

G G+

m

r

m+

g+

(2.3)

2.1.2 Reversible sesqui-pushout rewriting

An SqPO rewrite of a graph may introduce some side-effects, i.e. graph transformations not
explicitly specified by the underlying rewriting rule. The nature of these side-effects depends
on the category in which we are working. For example, in both simple and non-simple graphs
some edges not matched by the left-hand side of the rule can be removed as a side-effect of
a node removal. For the category of simple graphs, for example, merging of nodes may cause
some edges incident to the merged nodes to be merged (simply because multiple edges between
the same nodes are not allowed by definition). These side-effects make graph transformations
irreversible. Having applied a rewriting rule and transformed the original object, we can no
longer restore this original object by simply looking at the applied rule. Here we formulate the
notion of the reversibility of SqPO rewriting, i.e. the absence of side-effects. The reversibility
of transformations is a desirable property in a lot of practical applications. For instance, if we
would like to record a history of transformations in an audit trail and be able to ‘undo’ these
transformations, rewriting side-effects become an important issue. Additionally, in the next
subsection we will see how the reversibility allows us to compose SqPO rules.

First introduced in [29], reversible SqPO rewriting formalizes the notion of side-effect free
rewriting and can be defined as follows:
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Definition 2.1.1. An SqPO rewriting corresponding to the application of r : L←r−−P−r+→R
through a matching m : L G is reversible, if the left square in the following diagram is also
a pushout and Pm−→G−−g+→G+ is the pullback complement of P−r+→Rm+→G+. We
call r−1 : R←r+−P−r−→L the reverse of r.

L P R

G G− G+

m

r− r+

m− m+

g− g+

(2.4)

Remark 2.1.2. Given a rewrite of an object G  G+ as in Diagram 2.5, the rewrite G+
 Ḡ

from diagram 2.6 produces an object Ḡ isomorphic to G.

L P R

G G− G+

m

r− r+

m− m+

g− g+

(2.5)

R P L

G+ Ḡ− Ḡ

m+

r− r+

m− m

ḡ+ ḡ−

(2.6)

Constructing reversible rules in SimpGrph

For our practical applications we would like to develop a constructive procedure that, given an
arbitrary SqPO rewriting rule and a matching, allows to compute its reversible version. We
refer to the resulting rule as the reversible rule refinement. In the following subsection we con-
sider an example of such a procedure for the category of simple graphs, where the operations
of node removal and merging potentially introduce side-effects. This procedure can be easily
extended to non-simple graphs and graphs with attributes. This subsection contains some te-
dious constructions used to obtain reversible rule refinements (in particular, implemented in the
ReGraph library, discussed in 2.3). It also provides concrete proofs manipulating directly with
graph structures and not categorical notions. Therefore, the reader not particularly interested
in the details of such constructions is invited to skip this subsection.

To formulate our procedure we will view rules as simply arrows r− : L ← L− and r+ :
L → L+ defining respectively restrictive and expansive rules. Then, formally, the goal of our
procedure can be formulated separately for restrictive and expansive rules.

Reversible rule refinement for restrictive rules. Recall that applications of restrictive
rules in the category of simple graphs correspond to the operations of node/edge removal and
node cloning. As we have previously mentioned, comparing the SqPO and the DPO rewrit-
ing approaches, the SqPO rewriting allows to perform ‘deletion in unknown context’. Such
deletion is precisely the cause of side-effects occurring when applying restrictive rules. Upon a
node removal, the rewriting implicitly removes all the edges incident to the removed node (by
constructing the final pullback complement), which effectively cleans up our graph of dangling
edges. Consider Figure 2.2a illustrating an example of such a side-effect. We are interested in
refining our rules in a way that would allow for all the graph transformations to be captured
explicitly by these rules. More concretely, in the category of simple graphs we want our rules to
define the removal of edges incident to removed nodes explicitly (see example in Figure 2.2b).
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L L−

G G−

(a) Original rule

L̄ L̄−

G G−

(b) Refined rule with no side-effects

Figure 2.2: Example of node removal side-effects and a rule refinement that removes these side-
effects. Graph elements affected with side-effects of rewriting are highlighted with red. Removing
a node results into the removal of all its incident edges.

More formally, for restrictive rules we are interested in finding arrows r̄− : L̄ ← L̄−, m̄ :
L̄ G and l : L L̄ such that

❼ m = m̄ ◦ l,

❼ arrows m̄− and g− define the final
pullback complement of r̄− and m̄,

❼ and arrows m̄ and g− define the
pushout from r̄− and m̄− (see Dia-
gram 2.7).

L L−

L̄ L̄−

G G−

m
l

r−

m−
l−

m̄ m̄−

r̄−

g−

(2.7)

First of all, let as define the set of nodes removed by the rule as

V − = {v ∈ VG | v ∈ img(m) and ∄w ∈ VL− : r−(w) = m−1(v)}.

Note that the homomorphism m is a mono, therefore for every v ∈ VG such that v ∈ img(m)
m−1(v) corresponds to a single node in L. The set of nodes to be added to the refined left-hand
side of the rule is then defined as

V + = {v ∈ VG | v /∈ im(m) and ∃w ∈ V − : (v, w) ∈ EG or (w, v) ∈ EG}.

This set corresponds to all the nodes, not matched by the original rule, that are adjacent to the
removed nodes. Then, the set of nodes of the refined left-hand side L̄ is given by VL̄ := VL∪V

+.
We can then compute the set of edges of L̄ as EL̄ := EL ∪ E+, where

E+ = {(u, v) ∈ VL̄ × VL̄ | (u, v) /∈ EL, (m̄(u), m̄(v)) ∈ EG and (u ∈ V − or v ∈ V −)}.

The set E+ captures all the edges incident to the removed nodes that were not present in the
original left-hand side. The homomorphism m̄ is defined as m̄(v) = v for all v ∈ V + and as
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m̄(v) = m(v) for all v ∈ V L, while l is simply defined as l(v) = v for all v ∈ V L. It is easy to
verify that, by construction, these homomorphisms satisfy m = m̄ ◦ l.

L L−

L̄ L̄−

G G−

l

r−

l−

m̄

r̄−

m̄−

g−

(2.8)

To construct L̄− and r̄− : L̄− → L̄ we will now find
the final pullback complement from r− and l correspond-
ing to the top square in Diagram 2.8. The application of
r̄− through m̄, i.e. the final pullback complement of these
arrows corresponding to the bottom square in the diagram,
produces the graph G− by the vertical pasting lemma (see
Lemma A.5.4).

Claim 2.1.3. The bottom square in Diagram 2.7 is a
pushout.

Proof. See Appendix B.

Reversible rule refinement for expansive rules. Applications of expansive rules in our
category SimpGrph perform the operations of node/edge addition and node merging. The
latter operation introduces side-effects related to the fact that, by definition of simple graphs,
there can be at most one edge between any ordered pair of nodes. As the result of node merging,
some of the edges incident to the merged nodes are merged implicitly (i.e. these edge merges
are not mentioned explicitly by the rule). Such side-effects make it impossible to reconnect
edges incident to the merged nodes upon reversal. Consider Figure 2.3a illustrating an example
of such a side-effect. Similarly to the case of restrictive rules, we are interested in refining our
rules in a way that would allow for all the graph transformations to be captured explicitly by
the underlying rules. More concretely, in the category of simple graphs we want our rules to
define the merge of edges incident to merged nodes explicitly (see example in Figure 2.3b).

L L+

G G+

(a) Original rule

L̄ L̄+

G G+

(b) Refined rule with no side-effects

Figure 2.3: Example of node merge side-effects and a rule refinement that removes these side-
effects. Graph elements affected by side-effects of rewriting are highlighted with red. Merging of
nodes results in the merge of their incident edges with the same sources/targets.

More formally, for expansive rules we are interested in finding arrows r̄+ : L̄ → L̄+, m̄ :
L̄ G and l : L L̄ such that
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❼ m = m̄ ◦ l,

❼ arrows g+ and m̄+ define the pushout
from m̄ and r̄+,

❼ and arrows m̄ and g+ define the fi-
nal pullback complement to the ar-
rows r̄+ and m̄+ (see Diagram 2.9).

L L+

L̄− L̄+

G G+

r+

m
l

m+
l+

m̄

r̄+

m̄+

g+

(2.9)

We define the set of nodes of G merged by the rule r+ as

V m = {v ∈ VG | ∃w ∈ VG : w 6= v and r+(m−1(v)) = r+(m−1(w))}

Note that the homomorphism m is a mono, therefore, for every v ∈ VG such that v ∈ img(m),
m−1(v) corresponds to a single node in L. The set of nodes to be added to the refined left-hand
side of the rule is then defined as

V + = {v ∈ VG | v /∈ im(m) and ∃w ∈ V m : (v, w) ∈ EG or (w, v) ∈ EG}.

This set corresponds to all the nodes, not matched by the original rule, that are adjacent to the
merged nodes. Then, the set of nodes of the refined left-hand side L̄ is given by VL̄ := VL ∪V

+.
We can then compute the set of edges of L̄ as EL̄ := EL ∪ E+, where

E+ = {(u, v) ∈ VL̄ × VL̄ | (u, v) /∈ EL, (m̄(u), m̄(v)) ∈ EG and (u ∈ V m or v ∈ V m)}.

The set E+ captures all the edges incident to the merged nodes that were not present in the
original left-hand side. The homomorphism m̄ is defined as m̄(v) = v, for all v ∈ V +, and as
m̄(v) = m(v), for all v ∈ V L, while l is simply defined as l(v) = v, for all v ∈ V L. It is easy to
verify that by construction these homomorphisms satisfy m = m̄ ◦ l.

L L+

L̄ L̄+

G G+

l

r+

l+

m̄

r̄+

m̄+

g+

(2.10)

To construct L̄+ and r̄+ : L̄ → L̄+ we will now find
the pushout from l and r+ corresponding to the top square
in Diagram 2.10. The application of r̄+ through m̄, i.e.
the pushout of these arrows corresponding to the bottom
square of the diagram, produces the graphG+ by the pasting
lemma for pushouts (see Lemma A.4.2).

Claim 2.1.4. The arrows m̄ and g+ in Diagram 2.9 define
the final pullback complement of r̄+ and m̄+.

Proof. See Appendix B.

2.1.3 Composition of sesqui-pushout rewriting

In this subsection we would like to study how consecutive applications of SqPO rules can
be composed into a single rewrite. Constructing such compositions of rules is important, for
example, when maintaining the history of updates of an object or multiple versions of this object
(diverged as the result of conflicting transformations), expressing the operation of ‘undoing’ a
sequence of transformations as a single rewriting rule, etc. Later in this chapter we will see how
the graph audit trail (discussed in Section 2.1.4) makes an extensive use of the rule composition
techniques presented in this subsection.
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Let r1 : L1←r−1 −P1−r+1→R1 be a rewriting rule applied to an object G1 through a match
m1 : L1 G1 and let G2 be the result of application of this rule (corresponding to the left-most
SqPO diagram in Diagram 2.11). Let r2 : L2←r−2 −P2−r+2→R2 be a rule applied to the resulting
object G2 through a match m2 : L2 G2 (as the right-most SqPO diagram in Diagram 2.11).

L1 P1 R1 L2 P2 R2

G1 G−
1 G2 G−

2 G3

m1 m−
1

r−1 r+1

m+
1

m2
m−

2

r−2 r+2

m+
2

g−1 g+1 g−2 g+2

(2.11)

L P R

G1 G⊖
1 G3

m m−

r+ r−

m+

g− g+

(2.12)

Given these two consecutive rule applications, we would
like to find a rule r : L←r−−P−r+→R and a matching
m : R  G1 that, applied to G1, directly produces
the object G3, i.e. such that Diagram 2.12 is an SqPO
diagram.

Apart from being well-structured for SqPO rewriting, construction of such a composed rule
will require from the category in wich we are working to be adhesive [61]. Moreover, we will
require the pushout factorizations of pullbacks along monos to be monic (see Definition A.4.8).
This is always the case in the adhesive categories (see Theorem 5.1 [62]).

First of all, we construct the pullback R1←xDy→L2 from R1m
+
1→G2←m2L2 as in Di-

agram 2.13. Note that arrows x and y are monos by Lemma A.3.4. We will call the span given
by this pullback the overlap of R1 and L2 given their matching inside G2, and we will denote
it with o. Intuitively this object indicates whether the two rule applications are sequentially
independent (see [21, 29] for more details on sequential independence of rewriting and its con-
sequences), i.e. whether the two rules operate on disjoint parts of G2. When D is non-empty,
for example, the first rule can produce elements that are ‘consumed’ by the second rule.

D

L1 P1 R1 L2 P2 R2

G2

x y

r−1 r+1

m+
1

m2

r−2 r+2

(2.13)

The pushout R1l
H
1→H←lH2L2 from R1←xDy→L2 (as in Diagram 2.14) constructs the

object H that intuitively represents the union of two patterns R1 and L2 given their overlap o.
By the universal property of pushouts, there exists a unique homomorphism mH : H → G2, the
pushout factorization of the pullback of m+

1 and m2, that renders the diagram commutative.
Because m+

1 and m2 are monos, the homomorphism mH is also a mono.
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D

L1 P1 R1 L2 P2 R2

H

G2

x y

r−1 r+1

rH1

m+
1

m2

lH2

r−2 r+2

mH

(2.14)

Using the object H we now construct two final pullback complements: P1p
H
1→PH

1 −h+
1→H

from P1−r+1→R1r
H
1→H and P2p

H
2→PH

2 −h−
2→H from P2−r−2→L2l

H
2→H as in Diagram

2.15.
D

L1 P1 R1 L2 P2 R2

PH
1 H PH

2

x y

pH1

r−1 r+1

rH1 lH2
pH2

r−2 r+2

h+
1 h−

2

(2.15)

How can we interpret these constructions? The second pullback complement applies the
rewrite specified by the arrow r−2 to H. Now, for the first pullback complement to be mean-
ingful, we need to make the assumption that the rewriting given by the rule r1 is reversible.
More specifically, we will assume that L1m1→G1←g−1 −G

−
1 from Diagram 2.11 is the pushout

from L1←r−1 −P1m
−
1→G−

1 and P1m
−
1→G−

1 −g+1→G2 is the final pullback complement from
P1−r+1→R1m

+
1→G2. Later, in the proof of Theorem 2.1.5, we will see a formal reason for

making this assumption. Having made this assumption, the object PH
1 can be interpreted as

the result of ‘undoing’ the rewrite specified by r+1 on H.
By the previously made assumption, P1m

−
1→G−

1 −g+1→G2 is the final pullback complement
from P1−r+1→R1m

+
1→G2. We would like to use the universal property of final pullback com-

plements and show that there exists a unique arrow mH
1 : PH

1 → G−
1 that renders Diagram 2.17

commutative. By Lemma A.3.5 a pullback square post-composed with a mono is a pullback,
therefore Diagram 2.16 is a pullback. This allows us to apply the above-mentioned universal
property and show the existence of the unique mH

1 that renders Diagram 2.17 commutative.

R1 P1

G2 H PH
1

rH1

r+1
pH1

mH h+
1

(2.16)

P1

R1 P1 PH
1

G2 G−
1

r+1

IdP1 pH1

m+
1

r+1
mH◦h+

1

mH
1

m−
1

g+1

(2.17)
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P1 R1

PH
1 H

G−
1 G2

(1)

m−
1

r+1

pH1 rH1

m+
1

(2)

h+
1

mH
1 mH

g+1

(2.18)

Observe Diagram 2.18, its outer square and the
square (1) are final pullback complements by construc-
tion. By vertical pasting lemma for pullback comple-
ments (Lemma A.5.4), the square (2) is also a final
pullback complement, and therefore a pullback. Recall
that pullbacks preserve monos, mH : H  G2 is a
mono, and therefore mH

1 is a mono as well.

Analogous arguments can be used to show that
there exists a unique mono mH

2 : PH
2  G−

2 such that
g−2 ◦m

H
2 = mH ◦ h−2 and mH

2 ◦ p
H
2 = m−

2 ◦ IdP2 .

Next, we construct two pushouts: L1l
H
1→L←h−

1 −PH
1 from r−1 and pH1 and R2r

H
2→

R←h+
2−PH

2 from r+2 and pH2 as in Diagram 2.19. These pushout give us two objects L and
R. Intuitively the first pushout ‘undoes’ the rewrite of PH

1 specified by r−1 , and the second
performs the rewrite of PH

2 using r+2 and pH2 .

D

L1 P1 R1 L2 P2 R2

L PH
1 H PH

2 R

x y

lH1
pH1

r−1 r+1

rH1 lH2
pH2

r−2 r+2

rH2

h−
1 h+

1 h−
2 h+

2

(2.19)

By the universal property of these pushouts there exist unique arrows m : L → G1 and
m+ : R→ G3 that render Diagrams 2.20 and 2.21 commutative. Moreover, by Corollary A.4.3,
G−

1 −g−1→G1←m−L is the pushout from mH
1 and h−1 ; and G−

2 −g+2→G3←m+−R is the pushout
from mH

2 and h+2 . Recall that pushouts in adhesive categories preserve monos (see Lemma
A.6.3), therefore m and m+ are monos.

The constructed object L can be seen as the result of reversing the transformation of the
union pattern H specified by r−1 and r+1 with the matching rH1 , which is possible because of the
reversibility of the rule given by r−1 and r+1 . The object R, on the other hand, corresponds to
the application of r−2 and r+2 to H through the matching lH2 .

P1 L1

PH
1 L

G−
1 G1

pH1

r−1

lH1
m1

mH
1

h−
1

m

g−1

(2.20)

P2 R2

PH
2 R

G−
2 G3

pH2

r+2

rH2 m+
2

mH
2

h+
2

m+

g+2

(2.21)

Finally, to construct the rule composition, we find the pullback PH
1 ←p′−P−p′′→PH

2 from
h+1 and h−2 . The resulting rule corresponds to the span L←h−

1 ◦p′−P−h+
2 ◦p′′→R. We will refer
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to it as the composed rule given the overlap o and write r = ⊗(r1, o, r2).

D

L1 P1 R1 L2 P2 R2

L PH
1 H PH

2 R

P

x y

lH1
pH1

r−1 r+1

rH1 lH2
pH2

r−2 r+2

rH2

h−
1 h+

1 h−
2 h+

2

p′ p′′

(2.22)

Theorem 2.1.5. In adhesive categories (see Appendix A.6.2), if rewriting given by r1 is re-
versible, application of the rule r given by ⊗(r1, o, r2) with the match m : L G1 results into
a rewrite G1  G3, i.e. the following diagram is an SqPO diagram:

L P R

G1 G⊖
1 G3

m m−

h−
1 ◦p′ h+

2 ◦p′′

m+

g− g+

(2.23)

Proof. See Appendix B.

Lemma 2.1.6. In adhesive categories, the composition of two reversible rewrites is a reversible
rewrite.

Proof. See Appendix B.

2.1.4 Audit trail for graph rewriting

As we have previously discussed in Subsection 1.1.2, we would like to design an audit trail
system for our KR framework. This audit trail should record a history of graph transformations,
provide means for rolling back to any previous state in this history and be able to maintain and
merge multiple diverged versions of the graph. In this subsection we describe how reversibility
and composition of rewriting can be used to construct the audit trail for transformations of
individual objects (e.g. graphs with attributes used as building blocks of our KR system). The
presented audit trail is implemented as part of the ReGraph library and discussed in more detail
in Section 2.3.4.

Let G0 be the starting object whose history of transformations we would like to maintain
and let 〈ri : L

i←r−i −P
i−r+i→Ri | i ∈ [1 . . . n]〉 be a sequence of rules consecutively applied to

G0 through the instances mi : L
i
 Gi−1, resulting in a sequence of objects 〈Gi | i ∈ [1 . . . n]〉

with m+
i : Ri

 Gi for 1 ≤ i ≤ n, i.e. such that for every 1 ≤ i ≤ n, Diagram 2.24 is a SqPO
diagram. To be able to build a sound audit trail, we additionally require such a sequence of
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rewrites to be reversible.

Li P i Ri

Gi−1 Ḡi−1 Gi

mi

r−i

m−
i

r+i

m+
i

ḡ−i ḡ+i

(2.24)

Definition 2.1.7. The audit trail for the resulting object Gn consists of the sequence of rules
〈ri | i ∈ [1 . . . n]〉 and the right-hand side instances m+

i : Ri
 Gi for 1 ≤ i ≤ n.

Rollback. Using such an audit trail we can rollback rewriting to any point in the history of
transformations corresponding to some intermediate object Gi for 0 ≤ i ≤ n−1 by applying the
sequence rules 〈r−1

j | j ∈ [n . . . i + 1]〉 with the corresponding instances m+
j : Rj

 Gj , where
i+ 1 ≤ j ≤ n.

Maintain diverged versions. To maintain multiple diverged versions of an object in the
audit trail, we use a technique known from VC systems as delta compression, i.e. only the
current version of the object is stored at any moment, while the other versions are encoded in
a delta, a representation of the ‘difference’ between versions.

Let v1 and v2 be two versions of the starting object G0 with v1 being the current version.
The initial delta ∆ from v1 to v2 is set to the identity rule (the rule that does not perform
any transformations) ∅←Id∅−∅−Id∅→∅ and the instance u : ∅  G0, where ∅ stands for the
initial object in C and u is the unique arrow from the initial object to G0 (see Appendix A.2
for the definition of initial objects). Every rewrite of the current version of the object induces
an update of the delta that consists of the composition of the previous delta and the reverse of
the applied rule (recall that we assume that every rewriting in the audit trail is reversible).

D

L L∆

G

x y

m m∆

(2.25)

As before, let v1 be the current version corresponding to some
object G (e.g. obtained as the result of transformation of the
initial object G0) and let r∆ : L∆←r−∆−P

∆−r+∆→R∆ and m∆ :
L∆
 G be respectively the rule and the instance given by ∆.

Let r : L←r−−P−r+→R be a rule applied to G through the
instance m : L  G and G′ be the result of application of r
given m. To update the delta, we compute the composition ⊗(r−1, o, r∆) with o being a span
L←xD−y→L∆ obtained as a PB in Diagram 2.25. The new delta is, thus, set to the rule and
the instance given by the composition ⊗(r−1, o, r∆).

Switch version. Switching between different versions of the object can be done by simply
applying the rule through the instance given by the delta. Namely, if v1 is the current version
corresponding to an object G with the delta to v2 given by ∆ = (r∆,m∆), switching to v2
is performed by applying r∆ to G through the instance m∆. If G′ is the result of the above-
mentioned rewriting and m+

∆ : R∆
 G′ is its right-hand side instance, then v2 becomes the

current version of the object and the new delta ∆ is set to (r−1
∆ ,m+

∆).
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P∆ R∆

L∆ M̂

Ḡ G′

G Ĝ

r−∆

r+∆

r̂−

m∆

r̂+

m̂

m−
∆

g−

g+

m+
∆

ĝ−

ĝ+

(2.26)

Merge versions. Let v1 be the current version
corresponding to an object G, v2 be another ver-
sion corresponding to an object G′ and the delta
between v1 and v2 be given by ∆ = (r∆,m∆). The
left and top faces of the cube in Diagram 2.26
correspond to the two phases of the application
of r∆ through m∆. The canonical merging rules
for v1 and v2 are given by two arrows r̂+ and r̂−

constructed by the pushout L∆−r̂+→M̂←r̂−−R∆

from r−∆ and r+∆ (see the back face of the cube in
the diagram). The merging rule for the current
object G is then applied by finding the pushout
G−ĝ+→Ĝ←m̂M̂ from m∆ and r̂+ as in the bot-
tom face of Diagram 2.26. By the universal property of pushouts there exists a unique arrow
ĝ− : G′ → Ĝ that renders the cube commutative. The object Ĝ is the result of the canonical
merging of G and G′.

Note that, because the application of r∆ is reversible, the left face is also a pushout, which
implies that the right face of the cube is also a pushout. Therefore, we can obtain the merged
object Ĝ by applying the merging rule r̂− to G′ through the instance m+

∆.

Non-canonical merging rules are given by two arrows r+M : L∆ → M and r−M : R∆ → M
such that r+M ◦ r

−
∆ = r−M ◦ r

+
∆. The merged object GM is, thus, obtained by applying the rule

r+M to G through the instance m∆ or the rule r−M to G′ through the instance m+
∆.

2.2 Hierarchies and rewriting in hierarchies

We have previously stated that our goal is to be able to divide knowledge into distinct fragments,
relate and update them using well-defined mechanisms that preserve consistent relations.

In the previous section we have introduced the main building blocks of our KR system:
graphs that can be used to represent fragments of knowledge, homomorphisms to relate these
fragments and SqPO rewriting to update them. In this section we define the notion of a
hierarchy of graphs, a directed acyclic structure consisting of graphs and homomorphisms. This
structure can be viewed as a diagram where all the triangles and squares formed by the edges
of the hierarchy are required to commute (we will call this the consistency requirement). Here
we describe mechanisms for transformation of individual graphs in a hierarchy, which may
require propagation to other graphs, in order to maintain the consistency of the hierarchy. The
constructions presented in this section are formulated abstractly and can be instantiated not
only for graphs, but, in general, any objects in categories with a certain structure (in particular,
that allows to perform sesqui-pushout rewriting).

Intuitively, from the point of view of KR, it is often useful to interpret an individual graph
homomorphism as specifying a relation between a more concrete and a more abstract represen-
tation of knowledge. Therefore, moving in a hierarchy along the direction of its edges would
mean moving away from more concrete to more abstract representations. The aforementioned
consistency condition of a graph hierarchy guarantees that the representation of knowledge from
some concrete graph obtained by moving along alternative paths leading to the same abstract
graph is consistent.
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A first elementary example of an application of such a KR system is a two-level hierarchy
that can be formulated using the database community nomenclature as a schema graph and a
data instance graph typed by the schema. Schema nodes specify types of enities allowed in the
system; its edges specify which edges between different types of nodes are allowed; attributes
on its nodes and edges define a set of allowed attributes for nodes and edges of respective types.
In this setting, we may be interested in performing an update of the instance graph, which can
either respect the schema or violate it. In the latter case we would like to either reject the
data update or perform a schema update in a way that would keep the typing in the system
valid. The same applies for updates of the schema graph—they can cause the instance graph
to not comply with the new version of the schema, in which case an update of the instance is
necessary.

Certainly, much more elaborate applications of such a system are conceivable. For example,
the bio-curation tool KAMI (discussed in Chapter 4) uses a representation based on a three-
level hierarchy to represent cellular signalling knowledge corpora. Its first level consists of the
meta-model graph—a small rigid domain-specific graph that represents the kinds of entities
that can exist in the system. The second level is given by a graph, called the action graph,
that represents knowledge about the actual entities that can exist in the system, e.g. particular
proteins, their known domains, interactions with other proteins. Finally, the third level consists
of a collection of small graphs, called nuggets, that encode knowledge about interactions that
can appear between different types of proteins. The action graph is typed by the meta-model,
and every nugget is typed by the action graph (and, indirectly, by the meta-model). The action
graph represents a non-trivial summary of knowledge contained in nuggets, and, together with
homomophisms from nuggets, it provides relations between entities and actions from different
nuggets and defines the way nuggets are interpreted by KAMI. The rewriting techniques pre-
sented in this paper are used in KAMI to achieve various goals, e.g. to incrementally build the
action graph from input nuggets, to perform bookkeeping updates and to reuse the knowledge
in various concrete biological contexts.

2.2.1 Hierarchies

We will define hierarchies of objects in two alternative ways. We will first define them as
superstructures, directed acyclic graphs (DAGs) whose nodes are associated with graphs and
edges are associated with homomorphisms, and which satisfy certain consistency conditions. We
will then illustrate how this definition can be reformulated, in an elegant way, using an abstract
hierarchy as a finite category and its instantiation in categories of graphs (simple, non-simple,
with or without attributes) as a functor. Note that, however cumbersome the first definition
may seem, it provides a good intuition behind graph hierarchies and reliably represents the
concrete data structures used in the ReGraph implementation of hierarchies discussed in Section
2.3.

Definition 2.2.1. For a fixed category C a hierarchy of objects in C is a tuple H = (V,E,O,F ,
α, β), where:

❼ V is the set of hierarchy nodes,

❼ E ⊆ V × V is the set of hierarchy edges,

❼ O is a set of objects from C,
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❼ F is a set of homomorphisms from C,

❼ α : V → O is a function that maps hierarchy nodes to hierarchy objects,

❼ β : E → F is a function that maps hierarchy edges to homomorphisms,

which satisfies the following properties:

1. dom(β(u, v)) = α(u) and codom(β(u, v)) = α(v) for all (u, v) ∈ E;

2. (acyclicity) graph induced by a tuple (V,E) does not contain directed cycles, we will refer
to this graph as the skeleton of the hierarchy;

3. (consistency) for any two paths π1 = (e1, e2, . . . , en) and π2 = (f1, f2, . . . , fm) from s to
t (where s, t ∈ V , ek, fl ∈ E, for all 1 ≤ k ≤ n and 1 ≤ l ≤ m), the homomorphisms
constructed by the composition of the respective homomorphisms along the paths are
equal, i.e. for the homomorphisms h1 = β(en) ◦ β(en−1) ◦ . . . ◦ β(e2) ◦ β(e1) and h2 =
β(fm) ◦ β(fm−1) ◦ . . . ◦ β(f2) ◦ β(f1) it holds that h1 = h2.

Therefore, a hierarchy is a DAG whose nodes and edges are respectively objects and ho-
momorphisms from C and such that any two composed homomorphisms from the same source
node to the same target node are equal. They can be thought of as commutative diagrams in
C. Let us now define few notions that will be useful in the rest of this section.

Definition 2.2.2. The skeleton of a hierarchy H is given by the DAG G = (V,E).

Definition 2.2.3. Let π = (e1, e2, . . . , en) be a path in a hierarchy H, a path homomorphism ◦π
is given by the composition of the homomorphisms along π, i.e. ◦π = β(en)◦β(en−1)◦. . .◦β(e1).

For any node u, v ∈ V in H, let us write u ≤H v if there exists a path from u to v.

Definition 2.2.4. For any vertex v ∈ V in a hierarchy H, the set of its ancestors is defined as
anc(u) = {v ∈ V : v ≤H u}.

Definition 2.2.5. For any vertex v ∈ V in a hierarchy H, the set of its descendants is defined
as desc(u) = {v ∈ V : u ≤H v}.

Remark 2.2.6. Due to the fact that the skeleton of a graph hierarchy is acyclic, for any vertex
u ∈ V it holds that anc(u) ∩ desc(u) = ∅.

Let us now reformulate the definition of a hierarchy of objects from some category C.

Definition 2.2.7. An abstract hierarchy is a finite category H freely generated from a DAG.

Definition 2.2.8. A hierarchy of objects in a category C is a functor H : H → C from an
abstract hierarchy H to C.

It is not hard to verify that by the definition of a functor Definition 2.2.1 coincides with
Definition 2.2.8. More precisely, the consistency condition in the first definition is encoded
within the definition of a functor. Now, the concrete graph hierarchies of interest include:

❼ hierarchies of simple graphs H : H→ SimpGrph,

❼ hierarchies of non-simple graphs H : H→ Grph,
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❼ hierarchies of simple graphs with attributes H : H→ SimpGrphattrs,

❼ hierarchies of non-simple graphs with attributes H : H→ Grphattrs.

Let us assume that we are working in a category C where SqPO rewriting is well-defined (a
category with pushouts and pullback complements along monos). In the rest of this section we
will describe the designed mechanisms for rewriting of a single object situated at a vertex of a
hierarchy H defined over C preserving the structure and the consistency of H.

We will first consider two objects G, T and their homomorphism h : G → T (or a simple
hierarchy consisting of two nodes and one edge corresponding to G, T and h). We will proceed
by studying two scenarios, the first one we call backward propagation and the second one we call
forward propagation. In the first scenario we would like to apply a restrictive rule to T , while
in the second we apply an expansive rule to G.

After this we will describe how, having applied a general SqPO rewriting rule to an individual
object situated in an arbitrary hierarchy, these two scenarios can be extrapolated to perform
an update of both hierarchy objects and homomorphisms, while maintaining the structure and
consistency of the original hierarchy.

2.2.2 Backward propagation

In the rest of this subsection we fix two objects G, T and a homomorphism h : G→ T , we will
apply a restrictive rule r : L ← L− to the object T through a mono m : L  T . Recall that
the application of a restrictive SqPO rule corresponds to the final pullback complement from
L−−r→Lm→T as in the diagram below. We can now construct the pullback of h and m and
compute a span G←m̂LG−ĥ→L. The object LG can be interpreted as the subobject of G
whose typing may be affected by the rewriting of T .

L L−

T T−

m m−

r

t

(2.27)
LG L

G T

m̂

ĥ

m

h

(2.28)

To restore the hierarchy edge that corresponds to h : G → T we would like to propagate a
rewrite T  T− to G using this subobject LG. This propagation is necessary as the application
of a restrictive rule to the typing graph T may result in the removal or cloning of its elements
(in this thesis we will use the term element to refer to any concrete constituent of an object
in a concrete category of interest to us, for example, a node or edge of a graph). The main
idea behind propagation can be formulated as follows. We decompose a rewrite T  T− into
two steps T (1) T ′

 (2) T−. In the first step we will specify some arrow LG → T ′ that would
allow us to ‘retype’ G by T ′, we refer to this step as the strict rewrite. In the second step we
propagate the transformation T ′

 T− to all the instances of the affected part of T ′ in G, we
refer to this step as the canonical backward propagation. To decompose our original rewrite
T  T+ we specify a backward factorization of the rule r defined as follows.

Definition 2.2.9. Given a rule r : L← L−, its backward factorization is given by an object L′
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and arrows r′ : L← L′, r− : L′ ← L− and ĥ′ : LG → L′ such that r = r′ ◦ r− and ĥ = r′ ◦ ĥ′.

L L−

LG L′

r

r−

ĥ′

ĥ r′ (2.29)

The strict rewrite of T is defined by taking the final pullback complement from r′ and m. By
the definition of backward factorization and the universal property of the final pullback comple-
ment 2.30 to the pullback in 2.28, we obtain a unique typing h′ : G→ T ′ that renders Diagram
2.31 below commutative. Therefore, given ĥ′, we are able to ‘retype’ G by the intermediary
result of rewriting T ′.

L L′

T T ′

m

r′

m′

t′

(2.30)

LG

G L L′

T T ′

m̂
ĥ

ĥ′

h′

h

(2.31)

The canonical rewrite of T is defined by taking the final pullback complement from r− and
m′ and the corresponding backward propagation by constructing the pullback from h′ and t−

as in the diagrams below. As the result of such propagation, we obtain an updated object G−

and its typing by the final result of rewriting T−.

L′ L−

T ′ T−

m′

r−

m−

t−

(2.32)

G G−

T ′ T−

h′

g−

h−

t−

(2.33)

Proposition 2.2.10 shows that splitting a rewrite into the strict and canonical propagation
phases produces the same result as direct application of the original rule.

Proposition 2.2.10. Given a rule r : L ← L− and its backward factorization specified by
L←r′−L′←r−−L− and ĥ′ : LG → L′, an application of r through m can be decomposed into
an application of r′ through m followed by an application of r− through m′, corresponding to
the final pullback complements, as in the diagram below.

L L′ L−

T T ′ T−

m

r′

m′

r−

m−

r

t′ t−

t

(2.34)
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Proof. The proof follows immediately from the horizontal pasting lemma for final pullback
complements (Lemma A.5.3).

An alternative way to propagate a rewrite specified by r− to G consists in constructing a
rule that applies directly to G. We refer to such a rule as a rule lifting.

Definition 2.2.11. The lifting r̂− : LG ← L−
G of r− is constructed as the pullback from ĥ′ and

r−.

LG L−
G

L′ L−

ĥ′

r̂−

ĥ−

r−

(2.35)

Theorem 2.2.12. The graph G− and the morphism g− : G → G− from 2.31 can be obtained
by constructing the final pullback complement to r̂− and m̂ as in the following diagram.

LG L−
G

G G−

m̂ m̂−

r̂−

g−

(2.36)

Proof. See Appendix B.

If we construct G− and g− as the final pullback complement to r̂− and m̂, the arrow
h− : G− → T− can be found by the universal property of the final pullback complement that
constructed T− as in the diagram below.

LG L−
G

G G−

L′ L−

T ′ T−

m̂ m̂−

r̂−

h′

g−

h−

ĥ′

m′

r−

m−

ĥ−

t−

(2.37)

Proposition 2.2.13. The two definitions of propagation coincide.

Proof. Consider the cube in Diagram 2.37. Let its front face define the canonical rewrite of
T using r− and m, its bottom face give the backward propagation to G and, finally, its top
face be the lifting of r−. We observe that the left, top and bottom faces of the cube are,
therefore, pullbacks. By the pasting lemma for pullbacks, the right face is also a pullback.
Finally, because the front face is a pullback complement, by Lemma A.5.5, the back face is a
pullback complement as well.
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Example 2.2.1. Figure 2.4 illustrates the presented constructions for sets (the reader may also
think of it as graphs with no edges). Note that a homomorphism h : G→ T in Set provides the
intentional representation of a multi-set. The rule factorization splits the rewriting of T into two
phases: in the first phase cloning of the square element (into the white and the black square) is
performed, while removal of the circle is postponed to the second phase. Now the arrow LG → L′

specifies that the instance of the square in G denoted with (1) is typed by the white square and
the instance (2) is typed by the black square. The strict phase of rewriting performs the cloning
and retypes G by the intermediary result T ′. The canonical backward propagation phase removes
the circle from T ′ and all its instances in G.

LG

1 2

L′

L L′ L−

T T ′ T−

LG

1 2

G

1 2

G−

1 2

Figure 2.4: Example of backward propagation

A scenario where typing elements are being cloned is often referred to as concept refinement,
i.e. splitting given concepts into some more fine-grained ones. The strict phase of our rewriting
allows us to ‘protect’ elements of G from being cloned; instead, it uses the information provided
in LG → L′ to retype those elements with the more refined types from T ′.

Alternatively, using the same rule factorization, we construct the lifting of L′ ← L− corre-
sponding to the arrow LG ← L−

G in Figure 2.5. This lifting corresponds to a rule that can be
directly applied to G and that, in this example, removes the instances of the circle node.

Example 2.2.2. In Figure 2.6 we apply the same rule as in Example 2.2.1, i.e. we clone the
square node and remove the circle from T . We also use the same rule factorization. In this
example, however, the graph G is slightly modified, i.e. it contains three instances of the square
node: (1), (2) and (3). We now would like to re-use the information from the previous example,
namely, that the instance (1) is retyped with the white square and (2) with the black square.
However, as we do not know how to retype the square (3), we cannot establish a homomorphism
LG → L′. This example motivates the following backward propagation phase, called the clean-up
phase.

The backward clean-up phase

Additionally, we can specify a clean-up phase of propagation to G−. We specify a mono r⊖ :
L−
G ← L⊖

G (and, clearly, to do so, we need to construct L−
G). The clean-up phase allows us

to remove undesired clones that were not specified during the strict phase of rewriting, e.g.
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LG

1 2

L′

L L′ L−

T T ′ T−

LG

1 2

L−

G

1 2

G

1 2

G−

1 2

Figure 2.5: Example of backward propagation using rule lifting

a partial concept refinement, where some instances of a cloned element cannot be assigned
a unique type in T . The arrow r− is required to be a mono to avoid creation of additional
clones in the clean-up phase (it will also serve us later, in the formal proofs of composability
of propagations in Subsection 2.2.6). Now, the application of the clean-up arrow r⊖ can be
achieved by constructing the final pullback complement to r⊖ and m̂− as in Diagram 2.38.
Alternatively, if we do not construct G− immediately, but just find the rule lifting r̂−, we
can apply the canonical propagation to G together with the clean-up as the final pullback
complement to r̂− ◦ r⊖ and m̂ as in Diagram 2.39. The two approaches are equivalent by the
horizontal pasting lemma for pullback complements (Lemma A.5.3).

L−
G L⊖

G

G G− G⊖

T ′ T−

m̂− m̂⊖

r⊖

h′

g−

h−

g⊖

t−

(2.38)

LG L−
G L⊖

G

G G⊖

m̂

r̂−

m̂⊖

r⊖

g−◦g⊖

(2.39)

Example 2.2.3. Similarly to Example 2.2.2, in Figure 2.7 we have three instances of the square
node in G. We now specify the rule factorization that performs both cloning and removal of the
circle in the second phase. As the result, cloning is propagated to G in the canonical propagation
phase to every instance of the square. We now encode the information on the instance (1) being
the white square and (2) being the black square into the clean-up arrow L⊖

G → L−
G.

Remark 2.2.14. So far, we have discussed how restrictive rewrites can be propagated ‘back-
wards’. But how do such rewrites behave in the case when the updated object is itself typed.
For example, consider an arrow i : T → U and a restrictive rewrite of T with r : L ← L−
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LG

1 2 3
?

L′

L L′ L−

T T ′ T−

LG

1 2 3

G

1 2 3

Figure 2.6: Example of failed backward propagation

through m : L T and let the object T− in the following diagram be the result of such rewrit-
ing. In the case of restrictive rewrite the result T− stays typed by U through the composed
arrow i ◦ t−. Therefore, no propagation to U is required.

L L−

T T−

U

m

r

m−

i

t−
i◦t−

(2.40)

2.2.3 Forward propagation

As in the case of backward propagation, we fix two objects G, T and a homomorphism h : G→
T . In this subsection we study the application of an expansive rule r : L→ L+ to the object G
through a mono m : L G. The application of the expansive rule corresponds to the pushout
from m and r+ illustrated in the diagram below.

L L+

G G+

m

r+

m+

g

(2.41)

To restore the edge of the hierarchy corresponding to h we would like to propagate a rewrite
G G+. Inversely to the application of a restrictive rule to T , the application of an expansive
rule to G may require propagation of changes to T , because some of the elements that are added
or merged by the rule do not have a proper type in T . The main idea behind this propagation
is similar: we decompose a rewrite G  G+ into two steps G (1) G′

 (2) G+. This time,
in the first step we specify some arrow G′ → T that would allow us to type some of the new
elements introduced by the rule by T , we refer to thus step as the strict rewrite. In the second

54



2.2. HIERARCHIES AND REWRITING IN HIERARCHIES

LG

1 2 3

L′

L⊖

G
L−

G

1 3

2 3

1 2 3

1 2 3

L L′ L−

T T ′ T−

LG

1 2 3

L−

G

1 2 3

1 2 3

L⊖

G

1 3

2 3

G

1 2 3

G−

1 2 3

1 2 3

G⊖

2 3

1 3

Figure 2.7: Example of backward propagation with the clean-up phase

step we propagate the transformation G′
 G+, i.e. perform some additions and merges in T

to retype G+, this step is called the canonical forward propagation. To decompose our original
rewrite G G+ we specify a forward factorization of the rule r defined as follows.

Definition 2.2.15. Given a rule r : L→ L+, its forward factorization is given by an object L′

and arrows r′ : L→ L′, r+ : L′ → L+ and x : L′ → T such that h ◦m = x ◦ r′ and r = r+ ◦ r′.

L L+

T L′

r′h◦m

r

x

r+
(2.42)

The strict rewrite of G is defined by constructing the pushout from m and r′. By definition
of forward factorization and the universal property of the pushout 2.43, we obtain a unique
typing h′ : G′ → T that renders Diagram 2.44 commutative. Therefore, we are able to type the
intermediary result of rewriting G′ by the original object T .

L L′

G G′

m

r′

m′

g′

(2.43)

L L′

G G′

T

m

r′

m′

x

h

g′

h′

(2.44)
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The canonical forward rewrite of G is defined by finding the pushout from m′ and r+ and
the corresponding propagation to T by constructing the pushout h′ and g+. As the result of
such a propagation, we obtain an updated T+ that types the final result of rewriting G+.

L′ L+

G′ G+

m′

r+

m+

g+

(2.45)
G′ G+

T T+

h′

g+

h+

t+

(2.46)

Proposition 2.2.16 shows that splitting a rewrite into the strict and canonical propagation
phases produces the same result as direct application of the original rule.

Proposition 2.2.16. Given a rule r : L → L+ and its forward factorization specified by
L−r′→L′−r+→L+ and x : L′ → T , an application of r through m can be decomposed into an
application of r′ through m followed by an application of r+ through m′, corresponding to the
pushouts as in the diagram below.

L L′ L+

T T ′ T+

m

r′

m′

r+

m+

t′ t+

(2.47)

Proof. The proof follows immediately from the pasting lemma for pushouts (Lemma A.4.2).

Similarly to the backward propagation, an alternative way to propagate a rewrite specified
by r+ to T consists in constructing a rule that applies directly to T , a rule projection. Its
construction is presented in the following definition.

Definition 2.2.17. The projection r̂+ : LT → L+
T of r+ is constructed as the image factorization

(defined in Appendix A.7) L′−ĥ′→LT ̂m
′→T of the arrow x and the pushout from ĥ′ and r+

as in the following diagram.

L′ L+

LT L+
T

T

x

ĥ′

r+

ĥ+

r̂+

m̂′

(2.48)

Theorem 2.2.18. The graph T+ and the morphism t+ : T → T+ from 2.47 can be obtained by
constructing the pushout from m̂′ and r̂+ as in the following diagram.

LT L+
T

T T+

r̂+

m̂′ m̂+

t+

(2.49)
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Proof. See Appendix B.

If we construct T+ and t+ as the pushout from m̂′ and r̂+, the arrow h+ : G+ → T+ can
be found by the universal property of the pushout that constructed G+.

Example 2.2.4. Figure 2.8 illustrates the presented constructions for multi-sets. The rule
factorization splits the rewriting of G into two phases: in the first phase the square node is
added, in the second phase the black and the white circles are merged. The arrow L′ → T
specifies that the square added to G by the rule is actually an instance of the square in T . The
strict phase performs the addition, types the intermediary result G′ by T . The canonical forward
propagation phase merges the circles selected by the rule in G and propagates this merge to their
types in T .

L′ TL L′ L+

G G′ G+

T T+

Figure 2.8: Example of forward propagation

Note that addition of new elements to G can be performed in the strict phase, given that all
these elements are typed by existing elements in T (using L′ → T ). However, merges can be
performed in the strict phase if and only if they merge elements of the same type.

Alternatively, as in the case of backward propagation, using the same rule factorization we
construct the projection of L′ → L+ corresponding to the arrow LT → L+

T in Figure 2.9. This
projection corresponds to a rule that can be directly applied to T and that, in this example,
merges the white and the black circle in T .

The forward clean-up phase

Additionally, we can specify a clean-up phase of propagation to G−. We provide a mono
r⊕ : L+

T ։ L⊕
T . The clean-up phase allows us to further merge some types in T , which is

necessary if we want to create multiple instances of the same new type (see Example 2.2.5).
The arrow r+ is required to be an epimorphism (see Definition A.2.3) to avoid addition of new
types not required by the original rewriting rule (the fact of r⊕ being an epi is also used in
some composability proofs presented in Subsection 2.2.6). Now, the application of the clean-up
arrow r⊕ can be done by constructing the pushout from m̂+ and r⊕ as in Diagram 2.50. Note
that, by Lemma A.4.4, the arrow t⊕ is also an epi. Alternatively, if we do not construct T+

immediately, but first find the rule projection r̂+ instead, we can apply the canonical propagation
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L′ TL L′ L+

G G′ G+

L+

T

T T+

LT

Figure 2.9: Example of forward propagation using rule projection

to T together with the clean-up and the pushout of m̂′ and r̂⊕ ◦ r̂+ as in Diagram 2.51. The
two approaches are equivalent by the pasting lemma for pushouts (Lemma A.4.2).

L+
T L⊕

T

T+ T⊕

m̂+

r⊕

m̂⊕

t⊕
(2.50)

LT L+
T L⊕

T

T T⊕

m̂′

r̂+ r⊕

m̂⊕

t⊕◦t+

(2.51)

Example 2.2.5. In this example we merge the circle nodes in G and add two black squares as
in Figure 2.10. Addition of the squares is performed in the second phase, because we want to
create new types for these elements in T . As the result of the canonical propagation the two
black squares are added to T . However, we would like the two squares from G+ to be instances
of the same type in T , therefore we merge their corresponding typing elements in the clean-up
phase specified by L+

T ։ L⊕
T .

2.2.4 Controlling propagation in SimpGrph

Previously in this section we have discussed the ways to specify propagations using rule factor-
izations and clean-up arrows. However, for our practical applications, e.g. implementation of
hierarchies of simple graphs in ReGraph, we would like to design a more concise way for specify-
ing strategies of propagation. More precisely, we would like to provide a set of techniques that
enables the user to control backward and propagation without constructing multiple complex
objects and homomorphisms defining rule factorizations and clean-up arrows. In the rest of this
section we focus on such techniques for the propagation of rewriting in the category SimpGrph.
They apply to SimpGrphattrs and can be easily extended to Grph and Grphattrs.
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L′ T

L+

T
L⊕

T

L L′ L+

G G′ G+

L+

T L⊕

T

T
T+

T⊕

LT

Figure 2.10: Example of forward propagation with the clean-up phase

Controlling backward propagation

Recall that the application of a restrictive rule to some simple graph T can be interpreted
in terms of node/edge deletions and node clones. Consider a graph G and a homomorphism
h : G→ T as before. For any backward propagation along h, deletion of some components from
T will always result in deletion of the respective components from G (of the nodes typed by the
removed nodes or edges implicitly typed by the removed edges, due to the edge-preservation
property of our homomorphisms). Meanwhile, node cloning leaves us some freedom of choice.
We have previously seen the interplay between different backward rule factorizations and clones
produced as the result of propagation. Moreover, we were able to remove some of the produced
clones using the clean-up phase.

LG L−
G

G

L L L−

T

m̂

ĥ ĥ

r̂−

ĥ−

h

m

IdL r

(2.52)

For a given rule r : L ← L− and a match m : L
T , instead of explicitly specifying a rule factorization
and a clean-up arrow, we can specify a binary relation
R ⊆ VG×VL− , which allows us to indicate which nodes
from G should ‘correspond’ to which nodes from L−

in the propagation. To perform the propagation con-
trolled by R we will construct the rule factorization
L′, r′ : L ← L′, r+ : L′ ← L− and ĥ′ : LG → L′ with
L′ = L, r′ = IdL, r

+ = r and ĥ′ = ĥ. We will also con-
struct the corresponding rule lifting r̂− by finding the
pullback from ĥ and r as in the diagram below. Appli-
cation of the lifting r̂− through m̂ results in the canonical backward propagation and performs
cloning of all the instances of cloned nodes in G.

Now, we use R to compute an object L⊖
G and a clean-up arrow r⊖ : L−

G L⊖
G that removes

unnecessary clones according to R. Let us denote with πG and πL− the projections of elements
in R to VG and VL− respectively. The set of nodes of L⊖

G is then defined as
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VL⊖
G
= {v ∈ VL−

G
| (m̂ ◦ r̂−(v) /∈ πG) or ((m̂ ◦ r̂

−(v), ĥ−(v)) ∈ R)}.

The homomorphism r⊖ is defined as r⊖(v) = v for all v ∈ VL⊖
G
. It is not hard to verify that, by

construction, r⊖ is a mono. Finally, the set of edges of L⊖
G is defined as

EL⊖
G
= {(u, v) ∈ EL−

G
| u ∈ VL⊖

G
and v ∈ VL⊖

G
}.

Example 2.2.6. Let us consider a small example of backward propagation controlled by a
relation R ⊆ VG × VL− in Figure 2.11. The original rule specifies two clone operations, one for
the circle and one for the square node in T . We construct a factorization in which L′ → L is the
identity and find the rule lifting LG ← L−

G. The application of this rule clones all the instances of
the circle and the square nodes. Our relation R specifies the following correspondences between
the nodes of G and L−: the black circle corresponds to the left semicircle, the white circle
corresponds to the right semicircle and the black square corresponds to the upper semisquare in
the figure. We construct the clean-up arrow that removes from G− unnecessary clones. Note
that R does not specify any correspondence to the white circle from G (i.e. the white node is not
in πG), therefore both clones of the white square are kept in the propagation (i.e. we propagate
cloning to the white square canonically).

R = {( , ), ( , ), ( , )}

L L′ L−

T T ′ T−

LG L⊖

G

G⊖

L−

G

G G−

Figure 2.11: Example of controlled backward propagation

Controlling forward propagation

As before, consider two graphs G, T and h : G→ T . The application of an expansive rule per-
forms node/edge addition and node merge. To design a way for controlling forward propagations
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we need to analyse the effect of these operations on h. For any forward propagation a merge of
two nodes from G typed by different elements in T results in a merge of these two elements in
T . Similarly addition of new edges to G+ results in addition of corresponding edges to T+ (due
to the edge-preservation property of homomorphisms). Meanwhile, addition of nodes leaves us
some degree of freedom. We have previously discussed the ways to use rule factorizations and
clean-up arrows to control the addition of new types. Similarly to backward propagation, here
we provide a more concise way to control forward propagations.

For a given rule r : L→ L+ and a match m : L G, instead of explicitly specifying a rule
factorization, we can specify a functional relation R ⊆ VL+ × VT . Recall that a binary relation
R ⊆ X × Y is functional, if for x ∈ X and y1, y2 ∈ Y , (x, y1) ∈ R and (x, y2) ∈ R implies
that y1 = y2 (functional relations are also referred to as partial maps). We use this relation to
partially type the newly added nodes in L+. For every element v ∈ VL+ we write R(v) = w if
(v, w) ∈ R, in this case we say v is typed in w in T .

Unlike in the case of backward propagation, we use R to construct a forward rule factor-
ization (and not a clean-up arrow). Namely, we construct L′, r′ : L → L′, r+ : L′ → L+ and
x : L′ → T as in Definition 2.2.15. Let us denote with πL+ and πT the projections of R to VL+

and VT respectively. The set of nodes and the set of edges of L′ are defined as follows

VL′ = {v ∈ VL} ∪· {v ∈ VL+ | v /∈ im(r+) and v ∈ πL+}

EL′ = {(u, v) ∈ EL}

Then, for all v ∈ VL, r
′(v) = v, while r+ and x are defined as follows.

r+(v) =

{

r(v), for v ∈ VL

v, for v ∈ VL+ such that v /∈ im(r+) and v ∈ πL+

x(v) =

{

h ◦m(v), for v ∈ VL

R(v), for v ∈ VL+ such that v /∈ im(r+) and v ∈ πL+

Note that, because we do not construct a clean-up arrow, we cannot express the entire
range of possible forward propagation strategies, namely, we cannot encode addition of multiple
instances of the same new type in T . This is due to the fact that R operates on VT , i.e. the set
of already existing elements of T .

Example 2.2.7. Consider a small example of forward propagation controlled by a relation
R ⊆ VL+ × VT in Figure 2.12. The original rule specifies a merge of two circular nodes and an
addition of two nodes, the square and the triangle. The relation specifies that the new square
node in L+ is typed by the already existing square node in T . We construct the rule factorization
encoding this information and propagate the addition of the triangle canonically.

2.2.5 Composability of propagation

We will now extend our theory of backward and forward propagation to triples of objects
and homomorphisms forming undirected cycles. We will study how the existence of a unique
homomorophism between the results of propagations can be guaranteed in the two scenarios:

1. for three objects G1, G2, T and homomorphisms as in Diagram 2.53, given a restrictive
rewrite of T and two backward propagations to G1 and G2;
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R = {( , )}

L′ TL L′ L+

G G′

G+

L+

T

T T+

LT

Figure 2.12: Example of controlled backward propagation

2. for objects G, T1, T2 and homomorphisms as in Diagram 2.54, given an expansive rewrite
of G and two forward propagations to T1 and T2.

G1

G2

T

h2

h12

h1

(2.53)

G

T1

T2

h1

h2

h12

(2.54)

In this section, we give the conditions, called composability conditions, under which the
above-mentioned homomorphism exists and is unique for the updated objects.

Backward composability

Definition 2.2.19. Given a restrictive rule r : L ← L−, a match m : L  T and two rule
factorizations as in Diagrams 2.55 and 2.56, defining a propagation of r toG1 andG2 respectively
(where Li is shorthand for LGi

as defined by the pullback in 2.28), the two propagations h−1 :
G−

1 → T− and h−2 : G−
2 → T− are composable if and only if there exists a unique h−12 : G

−
1 → G−

2

that renders Diagram 2.57 commutative.

L L−

L1 L′
1

r

r−1ĥ1

ĥ′
1

r′1 (2.55)

L L−

L2 L′
2

r

r−2ĥ2

ĥ′
2

r′2 (2.56)

62



2.2. HIERARCHIES AND REWRITING IN HIERARCHIES

G1 G−
1

G2 G−
2

T T−

h−
1

h−
12

h−
2

(2.57)

Remark 2.2.20. Note that we can interpret the requirement of the arrow h−12 in the previous
definition to be unique as the requirement for it to be unambiguously determined by the two
rule factorizations. If we think of it in terms of implementation (like it is done in ReGraph) it
means that we can compute such an arrow automatically.

Example 2.2.8. Figure 2.13 illustrates a pair of composable and a pair of not composable
propagations. The circle node in T is split into two semi-circles (the left semi-circle and the
right semi-circle). In Subfigure (a) the white circles in G1 and G2 are retyped by the left semi-
circle, while the black ones are retyped by the right semi-circle. In Subfigure (b) the white circle
from G1 is retyped with the left semi-circle while the white circle from G2 is retyped with the right
semi-circle (similarly for the black circles). In this case we cannot construct a homomorphism
G−

1 → G−
2 that renders the diagram in (b) commutative.

G1 G−

1

G2 G−

2

T T−

(a) Composable propagations

G1 G−

1

G2 G−

2

T T−

×

(b) Not composable propagations

Figure 2.13: Example of composability of backward propagations

G1 L1

G2 L2

T L

h12

ĥ12

m̂1

ĥ1h2

m̂2

ĥ1

m

(2.58)

First of all, we can easily show that the subgraphs
L1 and L2 of G1 and G2 affected by rewriting of T are
homomorphic. This can be done by using the universal
property of the pullback and showing that there exists a
unique homomorphism ĥ12 : L1 → L2 that renders the
following diagram commutative. Moreover, by Lemma
A.3.3, the square formed by h12 ◦ m̂1 and m̂2 ◦ ĥ12 is a
pullback.

Theorem 2.2.21. Given the backward rule factorizations as in Diagrams 2.55 and 2.56 and
a homomorphism l : L′

1 → L′
2 rendering Diagrams 2.59 and 2.60 commutative, there exists a

unique homomorphism h−12 : G−
1 → G−

2 rendering Diagram 2.57 commutative. In other words,
given such an l, the two propagations are composable.
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L′
1

L L−

L′
2

r′1

l

r−1

r−2
r′2

(2.59)

L′
1 L1

L′
2 L2

l

ĥ′
1

ĥ12

ĥ′
2

(2.60)

Proof. See Appendix B.

L1 L−
1

L2 L−
2

L′
2 L−

ĥ12

r̂−1

l−

r−1ĥ′
2

r̂−2

ĥ−
2

r−2

(2.61)

Theorem 2.2.21 states the conditions under which
backward rule factorizations produce composable prop-
agations. We now would like to state similar conditions
on the arrows specifying the further clean-up. Con-
sider the analogous setting: a hierarchy shaped as Dia-
gram 2.53, rewriting with a restrictive rule r : L← L−

and two rule factorizations from Diagrams 2.55 and
2.56 that, moreover, satisfy the composability condi-
tions stated in our previous theorem. Let r̂−1 : L1 ← L−

1

and r̂−2 : L2 ← L−
2 be two liftings of r−1 and r−2 respectively. Using the fact that r−2 = l ◦ r−1 ,

we can apply the universal property of the pullback that constructed L−
2 and show that there

exists a unique arrow l− : L−
1 → L−

2 that renders Diagram 2.61 commutative. Moreover, by

Lemma A.3.3 the square formed by ĥ12 ◦ r̂
−
1 and r̂−2 ◦ l

− is a pullback.
Let r⊖1 : L−

1  L⊖
1 and r⊖2 : L−

2  L⊖
2 be two clean-up arrows and G⊖

1 and G⊖
2 be

the results of the respective clean-up phase given by the final pullback complements in the
following diagrams. Note that, by Lemma A.5.2, arrows g⊖1 and g⊖2 in the diagram are also
monos.

L−
1 L⊖

1

G−
1 G⊖

1

m̂−
1

r⊖1

m̂⊖
1

g⊖1

(2.62)

L−
2 L⊖

2

G−
2 G⊖

2

m̂−
2

r⊖2

m̂⊖
2

g⊖2

(2.63)

Theorem 2.2.22. Given backward rule factorizations as in Diagrams 2.55 and 2.56 satifying
the composability conditions from Theorem 2.2.21, two clean-up arrows r⊖1 : L1  L⊖

1 and
r⊖2 : L2 L⊖

2 and a homomorphism l⊖ : L⊖
1 → L⊖

2 rendering Diagram 2.64 commutative, there
exists a unique h⊖12 : G

⊖
1 → G⊖

2 that renders Diagram 2.65 commutative.

L−
1 L⊖

1

L−
2 L⊖

2

l−

r⊖1

l⊖

r⊖1

(2.64)

G−
1 G⊖

1

G−
2 G⊖

2

h12

g⊖1

h⊖
12

g⊖1

(2.65)
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Proof. See Appendix B.

After obtaining the unique h⊖12 that satisfies g⊖2 ◦ h
⊖
12 = h−12 ◦ g

⊖
1 , we can now verify that h⊖12

also satisfies g−2 ◦ g
⊖
2 ◦ h

⊖
12 = h12 ◦ g

−
1 ◦ g

⊖
1 and h−2 ◦ g

⊖
2 ◦ h

⊖
12 = h−1 ◦ g

⊖
1 , i.e. all the squares and

triangles in the following diagram commute, and we can consistently compose the results of the
two clean-up phases.

G1 G⊖
1

G2 G⊖
2

T T−

h1

h12

g−1 ◦g⊖1

h−
1 ◦g⊖1

h⊖
12

h2

g−2 ◦g⊖2

h−
2 ◦g⊖2

t′◦t−

(2.66)

Forward composability

Definition 2.2.23. Given an expansive rule r : L → L+, a match m : L  G and two
rule factorizations as in Diagrams 2.70 and 2.71, defining the propagation of r to T1 and T2

respectively, the two propagations h+1 : G+ → T+
1 and h+2 : G+ → T+

2 are composable if and
only if there exists a unique h+12 : T

+
1 → T+

2 that renders Diagram 2.69 commutative.

L L+

T1 L′
1

r′1

r+

h1◦m r+1

x1

(2.67)

L L+

T2 L′
2

r′2

r+

h2◦m r+2

x2

(2.68)

G G+

T1 T+
1

T2 T+
2

h+
1

h+
2

h+
12

(2.69)

Remark 2.2.24. Note that, similarly to backward propagation, we can interpret the requirement
of the arrow h+12 in the previous definition to be unique as the requirement for it to be unam-
biguously determined by the two rule factorizations. It means that we can compute such an
arrow automatically.
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Example 2.2.9. Figure 2.14 illustrates a pair of composable and a pair of not composable
propagations. In Subfigure (a) the black square is added to G by a rule, the canonical propagation
to T1 is performed, which produces a new type corresponding to the black square in T+

1 . At the
same time, the new black square in G+ is retyped by the existing square node in T2, therefore
no canonical propagation is performed (we fall in the strict rewriting case with respect to T2).
There exists a unique homomorphism that maps two squares in T+

1 to the square node in T+
2

(denoted with split square). In Subfigure (a) the same rule is applied to G. Now, the newly
added square is retyped by the existing square in T1, and we fall in the strict rewriting phase.
On the other hand, the addition of the square is canonically propagated to T+

2 . In this case, we
cannot construct a homomorphism T+

1 → T+
2 that renders the diagram in (b) commutative.

G G+

T1 T+
1

T2 T+
2

(a) Composable propagations

G G+

T1 T+
1

T2 T+
2

×

(b) Not composable propagations

Figure 2.14: Example of composability of forward propagations

Theorem 2.2.25. Given forward rule factorizations as in Diagrams 2.70 and 2.71 and a ho-
momorphism l : L′

1 → L′
2 rendering Diagrams 2.70 and 2.71 commutative, there exists a unique

homomorphism h+12 : T+
1 → T+

2 rendering diagram 2.69 commutative. In other words, given
such an l, the two propagations are composable.

L′
1

L L+

L′
2

l

r+1r′1

r′2 r+2

(2.70)

L′
1 T1

L′
2 T2

l

x1

h12

x2

(2.71)

Proof. See Appendix B.

Theorem 2.2.25 states the conditions under which forward rule factorizations produce com-
posable propagations. We now would like to state similar conditions on the arrows specifying
the further clean-up. Consider the analogous setting: a hierarchy shaped as Diagram 2.54,
rewriting with an expansive rule r : L → L+ and two rule factorizations from Diagrams 2.70
and 2.71 that, moreover, satisfy the composability conditions stated in our previous theorem.
Let r̂+1 : L1 → L+

1 and r̂+2 : L2 → L+
2 be two projections of r+1 and r+2 respectively as in

Diagrams 2.72 and 2.73 (where Li is shorthand for LTi
). Recall that L1 and L2 are obtained as

image factorizations of h′1 ◦m
′
1 and h′2 ◦m

′
2. We use this fact to apply Lemma A.7.4 and show

that there exists a unique arrow ĥ12 : L1 → L2 that renders Diagram 2.74 commutative. This
further allows us to state that the outer square in Diagram 2.75 commutes, use the universal
property of the pushout that gives L+

1 and show that there exists a unique l+ : L+
1 → L+

2

that renders this diagram commutative. This means that the right-hand sides of the two rule
propagations are homomorphic.
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L′
1 L+

L1 L+
1

T

h′
1◦m

′
1

ĥ′
1

r+1

ĥ+
1

r̂+1
m̂′

1

(2.72)

L′
2 L+

L2 L+
2

T

h′
2◦m

′
2

ĥ′
2

r+2

ĥ+
2

r̂+2
m̂′

2

(2.73)

L′
1

L1

T1 L2

T2

ĥ′
1x1 ĥ′

2◦l

m̂′
1 ĥ12

h12 m̂′
2

(2.74)

L′
1 L+

L1 L+
1

L2 L+
2

ĥ′
1

r+1

ĥ+
1

ĥ+
2

ĥ12

r̂+1

l+

r̂+2

(2.75)

Let r⊕1 : L+
1 ։ L⊕

1 and r⊕2 : L+
2 ։ L⊕

2 be two clean-up arrows and T⊕
1 and T⊕

2 be the results
of the respective clean-up phases given by the pushouts in the following diagrams. Note that
arrows t⊕1 and t⊕2 in this diagram are also epis (by Lemma A.4.4).

L+
1 L⊕

1

T+
1 T⊕

1

m̂+
1

r⊕1

m̂⊕
1

t⊕1

(2.76)

L+
2 L⊕

2

T+
2 T⊕

2

m̂+
2

r⊕2

m̂⊕
2

t⊕2

(2.77)

Theorem 2.2.26. Given the forward rule factorizations as in Diagrams 2.70 and 2.71 satifying
composability conditions from Theorem 2.2.25, two clean-up arrows r⊕1 : L+

1 ։ L⊕
1 and r⊕2 :

L+
2 ։ L⊕

2 and a homomorphism l⊕ : L⊕
1 → L⊕

2 rendering Diagram 2.78 commutative, there
exists a unique h⊕12 : T

⊕
1 → T⊕

1 that renders Diagram 2.79 commutative.

L+
1 L⊕

1

L+
2 L⊕

2

l+

r⊕1

l⊕

r⊕2

(2.78)

T+
1 T⊕

1

T+
2 T⊕

2

t⊕1

h+
12 h⊕

12

t⊕2
(2.79)

Proof. See Appendix B.
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Having obtained such a unique h⊕12 that satisfies h⊕12 ◦ t
⊕
1 = t⊕2 ◦ h

+
12, it is not hard to verify

that h⊕12 also satisfies t⊕2 ◦h
+
2 = h⊕12 ◦ t

⊕
1 ◦h

+
1 and t⊕2 ◦ t

+
2 ◦h12 = h⊕12 ◦ t

⊕
1 ◦ t

+
1 , i.e. all the squares

and triangles in Diagram 2.80 commute and we can consistently compose the results of the two
clean-up phases.

G G+

T1 T⊕
1

T2 T⊕
2

h2
h1

g−◦g′

t⊕2 ◦h+
2

t⊕1 ◦h+
1

h12

t⊕1 ◦t+1

h⊕
12

t⊕2 ◦t+2

(2.80)

2.2.6 Hierarchy rewriting

Earlier in this section we have discussed the notions of backward and forward propagation,
and the conditions under which these propagations can be composed. In this subsection we
would like to describe how these notions can be used to perform the update of objects and
homomorphisms in a hierarchy induced by the application of a general SqPO rewriting rule
to one of its objects. Here, instead of considering pairs or triples of objects, we will consider
an arbitrary hierarchy of objects H given by a tuple (V,E,O,F , α, β). We are interested in
applying a general SqPO rewriting rule r : L←r+−P−r−→R (containing both the restrictive
and the expansive phases) to an object situated at a vertex v ∈ V of the hierarchy, called
the origin of rewriting, through a matching m : L  α(v). Then, given specifications for
forward and backward propagation of this rewrite (e.g. rule factorizations and clean-up arrows)
for all the ancestors and descendants of v, we would like to construct an updated hierarchy
H′ = (V,E,O′,F ′, α′, β′), whose structure is identical to H, but whose underlying objects and
homomorphisms correspond to the result of the specified rewriting and propagation. Note that
in this subsection we assume that the specifications for forward and backward propagation
produce pairwise composable propagations, i.e. locally satisfy the composability conditions
stated in Subsection 2.2.5.

Updating hierarchy objects

Given a rule r : L←r+−P−r−→R and a matching m : L  α(v), the update of the origin
simply corresponds to the application of the rule r through the matching m to α(v). Then,
for every ancestor node a ∈ anc(v), we proceed by finding a path π from a to the origin v
and by computing the homomorphism ◦π : α(a)→ α(v). This homomorphism allows us to use
the previously defined framework for backward propagation of changes specified by r− to the
ancestor a. We proceed in a similar way for all the descendants of v, i.e. for every d ∈ desc(v), we
compute the path π from α(v)−, the origin rewritten using r−, to d and find the homomorphism
◦π : α(v)− → α(d). We then are able to apply the framework for forward propagation of r+

to d. The rest of the objects in a hierarchy, i.e. the ones that do not correspond to neither
ancestors or descendants of the origin, stay unchanged.
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Updating hierarchy homomorphisms

First of all, the homomorphisms corresponding to the edges incident to the origin of rewriting
can be obtained immediately, as the result of backward and forward propagation. The unique
homomorphisms between objects corresponding to pairs of ancestors (or descendants) are given
by composability stated in Subsection 2.2.5.

L P R

G G− G+

m m−

r− r+

m+

g−

g+
(2.81)

Now, to understand how the homomorphisms cor-
responding to the edges from ancestors to descendants
of the origin can be obtained, let us consider the fol-
lowing scenario. Let r : L←r−−P−r+→R be a general
SqPO rule (containing both restrictive and expansive
updates) applied to the graph G through a matching
m : L  G, as in Diagram 2.81. If the graph G is situated in a hierarchy shaped according
to Diagram 2.82, we need to combine backward and forward propagations for r− and r+ re-
spectively to find H− and T+. We then need to reconstruct the edges of the hierarchy with
homomorphisms h+1 , h

+
2 and h′3 as in Diagram 2.83 (where G+ stands for the result of original

rewriting) in a way that makes this diagram commute.

H

G

T

h1
h3

h2

(2.82)

H−

G+

T+

h+
1

h′
3

h+
2

(2.83)

First of all, we perform a backward propagation of r− to H as in Diagram 2.84. Then, we
can perform a forward propagation of r+ to T using the composed arrow h2 ◦ g

− as in Diagram
2.85. We can then reconstruct the homomorphism h+1 : H− → G+ as the composition g+ ◦ h−1
and, finally, the arrow H− → T+ as simply the composition h+2 ◦ g

+ ◦ h−1 as in Diagram 2.86.

H H−

G G−

h1

h−

h−
1

g−

(2.84)

G− G+

T T+

g+

h2◦g
− h+

2

t+

(2.85)

H H−

G G− G+

T T+

h1

h3

h−

g+◦h−
1

h−
1

h2

h2◦g
−

g−

g+

h+
2

t+

h+
2 ◦g+◦h−

1

(2.86)
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Previously, we have stated that only the objects corresponding to the origin node, its an-
cestors and descendants are updated, while the rest of the objects stay unchanged. To be
able to update the homomorphisms associated to the in-/outgoing edges from the nodes whose
corresponding objects are unchanged, let us study the following two scenarios.

Consider a hierarchy consisting of three objects G, S, T and two homomorphisms h1 : G→ S
and h2 : G → T (as Diagram 2.87). Let T correspond to the origin of rewriting (with an
arbitrary SqPO rule) and let g− : G ← G− be the homomorphism obtained as the result of
backward propagation of this rewriting, i.e. its restrictive phase producing t− : T ← T−.
The node associated with S is neither an ancestor nor a descendant of the origin, therefore S
stays unchanged. However, we still need to update the hierarchy edge that was going from the
updated G to the unchanged S, which can be done simply by associating this edge with the
homomorphism h1 ◦ g

−.

On the other hand, let us consider a hierarchy consisting of three objects G, H, T and two
homomorphisms h1 : H → T and h2 : G→ T (as Diagram 2.88). Let G correspond to the origin
of rewriting (with an arbitrary SqPO rule) and the arrows g− : G → G− and g+ : G− → G+

be the results of the restrictive and expansive rewriting phases respectively. Let t+ : T → T+

be the homomorphism obtained as the result of forward propagation of this rewriting, i.e. its
expansive phase producing g+ : G− → G+. As before, the node associated with H is neither an
ancestor nor a descendant of the origin, therefore H stays unchanged. However, we still need
to update the hierarchy edge that was going from the unchanged H to the updated T , which
can be done simply by associating this edge with the homomorphism t+ ◦ h1.

G G−

S T T−

h1 h2

g−

h−
2

t−

(2.87)

H G G− G+

T T+
h1 h2

g− g+

h+
2

t+

(2.88)

Algorithm 1 presented in Appendix C provides a concrete algorithmic procedure that, given
a hierarchy H = (V,E,O, F , α, β), a rewrite of an object at some vertex v ∈ V corresponding
to a rule r and a match m; and a set of rule factorizations for all the ancestors and descendants
of v, outputs an updated hierarchy H′ = (V,E,O′,F ′, α′, β′). This procedure first computes
the homomorphisms corresponding to the paths to all the ancestors and descendants of the
origin of rewriting, propagates changes according to these homomorphisms and reconstructs the
hierarchy arrows between pairs of ancestors or descendants using subroutines, whose correctness
is guaranteed by the composability theorems (see a schematic example in Figure 2.15).

2.2.7 Rule hierarchies

Recall that, given two graphs G, T and a homomorphism h : G → T , we have described two
scenarios of: (1) backward propagation to G induced by a restrictive rewrite of T (Subsection
2.2.2), and (2) forward propagation to T induced by an expansive rewrite of G (Subsection
2.2.3). In Subsection 2.2.6 we have also discussed how an arbitrary SqPO rule defining both
restrictive and expansive updates can be applied in a general hierarchy combining the techniques
of backward and forward propagation. In this subsection we would like define how, given
a general hierarchy and a rewrite of an individual object situated in this hierarchy, we can
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πg : P2 → P3 and ρg : R2 → R3, the composition of f and g, denoted g ◦ f , is given by the
homomorphisms λg ◦ λf , πg ◦ πf and ρg ◦ ρf .

Definition 2.2.29. Two rule homomorphisms f : r1 → r2 and g : r2 → r3 with r1 : L1←r−1 −
P1−r+1→R1, r2 : L2←r−2 − P2−r+2→R2, r3 : L3←r−3 − P3−r+3→R3, f being defined by homo-
morphisms λf : L1 → L2, π

f : P1 → P2, ρ
f : R1 → R2 and g being defined by λg : L2 → L3

πg : P2 → P3 and ρg : R2 → R3 are equal, denoted f = g, if λf = λg, πf = πg and ρf = ρg.

It is easy to verify that, using rules as objects and rule homomorphisms as arrows, we obtain
the category of rules Rule[C] over the category C.

Definition 2.2.30. A rule hierarchy is a hierarchy of objects in the category of rules, i.e. a
functor R : H→ Rule[C].

Let H be a hierarchy of objects in C and R be a hierarchy of rules operating on objects in C
both defined over the same skeleton DAG G = (V,E ⊆ V ×V ). For the sake of simplicity, in the
rest of this subsection we will assume that we are working on a fixed pair (H,R) defined over
the same skeleton. As a short-hand, for every node v ∈ V we will denote the object associated
to v in H with Gv and the rule associated to v in R with rv : Lv←r−v −Pv−r+v→Rv. For every
edge (s, t) ∈ E we will denote the associated homomorphism in H as h(s,t) and the arrows
constituting the associated rule homomorphism in R as λ(s,t), π(s,t) and ρ(s,t).

Definition 2.2.31. An instance of R in H is given by a function I : V → Monos(C) that
associates every node of the skeleton to an instance of the corresponding rule from R in the
corresponding object from H, i.e. I(v) : Lv  Gv for all v ∈ V . For every node v ∈ V we will
denote the instance I(v) as mv.

Definition 2.2.32. R is applicable to H through an instance I if for any pair of nodes s, t ∈ V
such that (s, t) ∈ E:

❼ h(s,t) ◦ ms = mt ◦ λ(s,t), i.e. their instances
commute;

❼ if G−
s and G−

t are the results of the restrictive
phase of rewriting given by the final pullback
complement to r−s and ms, and the final pull-
back complement of r−t and mt respectively,
then there exists a unique h−(s,t) : G−

s → G−
t

that renders Diagram 2.90 commutative.

Ls Ps

Gs G−
s

Lt Pt

Gt G−
t

ms

r−s

m−
s π(s,t)

h(s,t)

s−

h−
(s,t)

λ(s,t)

mt

r−t

m−
t

t−

(2.90)

Applying a rule hierarchy

Here we would like to study how a rule hierarchy can be applied to the corresponding hierarchy
of objects, namely how given a hierarchy H, a rule hierarchy R defined over the same skeleton
G = (V,E) and applicable given a set of instances I, we can apply R through the instances I.

To rewrite H using R and I, for every node v ∈ V of the skeleton, we simply apply the
associated rule to the associated object through the instance specified by I as in Diagram 2.91.
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Lv Pv Rv

Gv G−
v G+

v

mv

r−v

r+v

m−
v m+

v

g−v

g+v

(2.91)

To restore the arrows of H, for every edge (s, t) ∈ E, we use the applicability condition and
the universal property of pushouts as follows. Let the back and the front faces of the cube in
Diagram 2.92 be two SqPO diagrams corresponding to the above-mentioned rewriting of the
objects Gs and Gt respectively. First of all, by the applicability of R given I, there exists a
unique arrow h−(s,t) such that h(s,t) ◦ s

− = t− ◦ h−(s,t) and h−(s,t) ◦m
−
s = m−

t ◦ π(s,t). This enables

us to use the universal property of the pushout G+
s and show that there exists a unique arrow

h+(s,t) that renders Diagram 2.92 commutative.

Ls Ps Rs

Gs G−
s G+

s

Lt Pt Rt

Gt G−
t G+

t

ms

r−s

m−
s

r+s

ρ(s,t)m+
s

h(s,t)

s−

h−
(s,t)

s+

h+
(s,t)

λ(s,t)

mT

π(s,t)

r−t

m−
t

r+t

m+
t

t−
t+

(2.92)

Therefore, to obtain the updated hierarchy, for every hierarchy object, we apply both phases
of rewriting and reconstruct the homomorphisms corresponding to hierarchy edges as described
above. Because, by definition, all pairs of paths from the same source rule to the same target
rule commute, application of the rule hierarchy to the original hierarchy can be seen as a large
commutative diagram and it guarantees the consistency of the updated hierarchy.

In the rest of this subsection we are interested in answering the following question: given
a hierarchy H, a rewrite of an object situated at the hierarchy node v ∈ V with a rule r :
L←r−−P−r+→R through an instance m : L  Gv, specification for backward and forward
propagation of this rewrite, how can we construct a rule hierarchy R and an instance I such
that the application of R to H through I performs the specified rewriting and propagation.

Recall that, upon rewriting of an object in a hierarchy, the objects associated to the ancestors
and descendants of the origin of rewriting are updated according to the framework of backward
and forward propagation. The objects whose associated hierarchy nodes are neither ancestors
nor descendants of the origin stay unaffected by propagation. We would like to construct a rule
hierarchy that is defined over the skeleton of H and, therefore, contains rules for both affected
and unaffected objects.
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Expressing backward propagations as rules

Let us recall how, given two homomorphic objects G−h→T , a restrictive rule r : L ← L−

applied to an object T though an instance m : L T , by specifying a backward factorization
L←r′−L′←r−−L− and ĥ′ : LG → L′ as in Diagram 2.29, we were able to construct the lifting
r̂− of r− along ĥ′ (see Definition 2.2.11). Such a lifting was defining a rule that, when applied to
G through an instance m̂, performs the canonical phase of backward propagation to G. In sub-
section 2.2.2, we have further described means for specifying the clean-up phase of propagation
by providing an arrow r⊖ (see Diagram 2.93 illustrating the rule projection and the clean-up
arrow). Recall that we can construct the result of the canonical propagation combined with the
clean-up phase by directly finding the final pullback complement L⊖

Ĝ
m−→G−−g−→G from

r̂− ◦ r⊖ and m̂ (as in Diagram 2.94), i.e. r̂− ◦ r⊖ defines a restrictive rule that, when applied to
G through the instance m̂ performs both the canonical backward propagation and a clean-up.

LG L−
G L⊖

G

G

L L′ L−

T

ĥ
ĥ′

m̂
ĥ−

r̂− r⊖

m

r′ r−

(2.93)

LG L⊖
G

G G−

m̂ m̂−

r̂−◦r⊖

g−

(2.94)

LG PG PG

G

L P R

T

λ

m̂

r−
G

IdPG

π r+◦π

m

r− r+

(2.95)

Let us imagine that we are given a general
SqPO rule L←r−−P−r+→R applied to T though
some m : L G. Let r−G : LG ← PG be a rule con-
structed according to the previously defined frame-
work of backward propagation of restrictive up-
dates that performs both the canonical propaga-
tion and a clean-up for G given m̂ : LG  G.
For example, such PG can be set to L⊖

G and r−G to
r̂− ◦ r⊖ from Diagram 2.93 above. Let λ : LG → L
and π : PG → P be two homomorphisms mapping
the left-hand side and the interface of the propa-
gation rule to the original rule. For example, in
Diagram 2.93, λ corresponds to ĥ and π corresponds to ĥ− ◦ r⊖. Setting the right-hand side of
the propagation rule to its interface PG we obtain a general SqPO rule that does not perform
any expansive updates, i.e. LG←r−

G−PG−IdPG→PG. The result of its application is equivalent
to the application of the propagation rule given by r−G. However, we are able to obtain a ho-
momorphism from the propagation rule to the original rewriting rule given by arrows λ, π and
r+ ◦ π as in Diagram 2.95.
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Expressing forward propagations as rules

Recall that given two homomorphic objects G−h→T , an expansive rule r : L → L+ ap-
plied to an object G though an instance m : L  G, by specifying a forward factorization
L−r′→L′−r+→L+ and x : L′ → T as in Diagram 2.42, we were able to construct a projec-
tion r̂+ of r+ along x (see Definition 2.2.17). This projection was defining a rule that, when
applied to T through an instance m̂′, performs a canonical phase of forward propagation to
T . In Subsection 2.2.3, we have further described means for specifying the clean-up phase of
propagation by providing an arrow r⊕ (see Diagram 2.96 illustrating the rule projection and a
clean-up arrow). Recall that we can construct the result of the canonical propagation combined
with the clean-up phase by finding the pushout T−t+→T+←m̂+

L⊕
T from m̂′ and r⊕ ◦ r̂+ (as

in Diagram 2.97), i.e. r⊕ ◦ r̂+ defines an expansive rule that, when applied to G through the
instance m̂′, performs both the canonical forward propagation and a clean-up.

L L′ L+

G

LT L+
T L⊕

T

T

m

r′

ĥ′

r+

ĥ+

h

m̂′

r̂+ r⊕

(2.96)

LT L⊕
G

T T+

m̂′

r⊕◦r̂+

m̂+

t+

(2.97)

Similarly to the case of backward propagation, let us imagine that we are given a general
SqPO rule L←r−−P−r+→R applied to G though some m : L  G. Let G− be the result of
the restrictive phase of rewriting as in Diagram 2.97. Recall that restrictive rewrites do not
affect the typing object T , i.e. we have a homomorphism h ◦ g− : G− → T . Let r+T : PT → RT

be a rule constructed according to the previously defined framework of forward propagation of
expansive updates that performs both the canonical propagation and a clean-up for T given
m̂− : PT  T . For example, using Diagram 2.97 above, we can set PT to LT , RT to L⊕

T , r
+
T to

r⊕ ◦ r̂+ and m̂+ to m̂′. Let π : P → PT and ρ : R → RT be two homomorphisms mapping the
interface and the right-hand side of the propagation rule to the respective parts of the original
rule. For example, in Diagram 2.97, π corresponds to ĥ′ and ρ corresponds to r⊕ ◦ ĥ+.

L P R

G G−

PT RT

T

m m−

r− r+

ρ

h

g−

π

m̂−

r+
T

(2.98)

Let us observe Diagram 2.98 presenting
the objects and arrows described above. Sim-
ilarly to the previous case, we would like to
construct a rule homomorphism from the orig-
inal rule to the propagation rule. This propa-
gation rule is given by r+T and the match m̂−

that was constructed according to some spec-
ifications for forward propagation to T (e.g.
some backward rule factorization and a clean-
up arrow). However, during the construction
of this rule we have taken into account only
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the typing of G−, and not G. For example, if
the application of r− removes some elements of G whose typing is not present in the subgraph of
T given by PT , we are not able to find a homomorphism from the left-hand side of the original
rule to PT .

To fix this issue, we first construct the image factorization L−λ→LT ̂m→T of h ◦m. The
object LT represents the suboject of T that types the subobject of G affected by the original
rewriting. Next, we find the pushout LT −λ′→P ′

T←π′−PT from λ ◦ r− and π as in Diagram
2.99. The constructed object P ′

T can be interpreted as the union of LT and PT given the
original interface P . By the universal property of pushouts, there exists a unique m̂′ : P ′

T → T
that renders Diagram 2.99 commutative. Moreover, as can be easily shown, m̂′ is a mono.
This P ′

T can be also interpreted as a refinement of PT that takes into account the typing of
elements removed from the original graph G. Having constructed such a refinement, we can
find the pushout P ′

T −r′T→R′
T←ρ′−RT from π′ and r+T as in Diagram 2.100. R′

T can be seen
as a refinement of RT that, again, takes into account the typing of elements removed from the
original graph G.

L P

LT PT

P ′
T

T

λ

r−

π

m̂

λ′ π′

m̂−

m̂′

(2.99)

PT RT

P ′
T R′

T

π′

r+
T

ρ′

r′T
(2.100)

L P R

G

P ′
T P ′

T R′
T

T

λ′◦λ

m

π′◦π

r− r+

ρ′◦ρ
h

m̂′

IdP ′
T

r′T

(2.101)

Now, we can construct a general SqPO
rule given by the span P ′

T←IdP ′
T
−P ′

T −r′T→R′
T .

It is not hard to illustrate (using the past-
ing lemmas for pullback complements and
pushouts) that the result of its application is
equivalent to the application of the original
propagation rule given by r+T . Moreover, we
are able to obtain a homomorphism from the
original rewriting rule to the propagation rule
given by arrows λ′ ◦ λ, π′ ◦ π and ρ′ ◦ ρ as in
Diagram 2.101.

Expressing identity transformations

As previously discussed in Subsection 2.2.6, the objects corresponding to hierarchy nodes that
are neither ancestors nor descendants for the origin of rewriting stay unchanged. However, to
produce the hierarchy of rules over the same skeleton as the original hierarchy of objects, we
still need to construct the rules corresponding to the identity transformations of the unchanged
objects. To understand how such rules can be constructed, consider the following two scenarios.
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∅ ∅ ∅

G

P P R

T

h

m

IdP r+

(2.102)

Let T be the object corresponding to a descen-
dant of the origin, let P←IdP−P−r+→R be a forward
propagation rule constructed for this descendant and
m : P  T be its instance (recall that forward propa-
gation rules do not perform restrictive updates, there-
fore, their left-hand side and interface are given by the
same object). For any predecessor of this descendant
corresponding to the object G and the respective homo-
morphism h : G → T , we construct the ‘identity’ rule
∅ ← ∅ → ∅, where ∅ corresponds to the initial object
of our category C (see Appendix A.2 for the definition of initial objects). In the categories
of graphs, for example, such an object corresponds to an empty graph with no vertices and
edges. We then set the instance of this rule to be the unique homomorphism ∅  G as in
Diagram 2.102. Note that in this diagram all the unlabeled arrows correspond to the unique
homomorphisms from the initial object. We get a rule homomorphism from this identity rule to
the specified forward propagation rule given by three unique homomorphisms from the initial
object (for example, empty node/edge maps for the categories of graphs).

L P P

G

LT LT LT

T

m

λ

r− IdP

λ◦r− λ◦r−

h

mT

IdLT
IdLT

(2.103)

To study the second case in which iden-
tity transformations are applied, consider the
object G corresponding to an ancestor of the
origin, let L←r−−P−IdP→P be a backward
propagation rule constructed for this ances-
tor and m : L  G be its instance (recall
that backward propagation rules do not per-
form expansive updates, therefore, their in-
terface and right-hand side are given by the
same object). For any successor of this an-
cestor corresponding to the object T and the
respective homomorphism h : G → T , we construct the ‘identity’ rule in the following way.
First, we find the image factorization L−λ→LTmT→ of h ◦m. Then we set the rule to the
span LT←IdLT−LT −IdLT→LT and its instance to the arrow mT as in Diagram 2.103. We get
a rule homomorphism from the specified backward propagation rule to this identity rule given
by the homomorphisms λ, λ ◦ r− and λ ◦ r−.

Combining rules into a hierarchy

So far we have described how to construct rules corresponding to backward and forward prop-
agations as well as identity rules for the unchanged hierarchy objects. We have also seen how
to construct the following rule homomorphisms:

❼ from a backward propagation rule to the original rewriting rule,

❼ from the original rewriting rule to a forward propagation rule,

❼ from an identity rule to a forward propagation rule,

❼ from a backward propagation rule to an identity rule.
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In this section we will discuss how, using the previously presented composability results,
we can find homomorphisms between pairs of backward or forward propagation rules, as well
as how to find homomorphisms from a backward propagation rule to a forward propagation
rule. This will allow us to construct the complete rule hierarchy corresponding to a rewrite and
propagation from a single object in a given hierarchy.

In Subsection 2.2.5 we have described the conditions under which the two backward propa-
gations to objects forming an undirected cycle in a hierarchy are composable. Namely, we have
seen that, given a commutative triangle formed by G1−h1→T , G2−h2→T and G1−h12→G2, a
restrictive rewrite of T with a rule r : L ← L− through a match m : L  T , two backward
factorizations for G1 and G2 as in Diagrams 2.55 and 2.56 respectively, and two clean-up arrows
r⊖1 : L−

1 ← L⊖
1 and r⊖2 : L−

2 ← L⊖
2 such that there exists a unique l⊖ : L⊖

1 → L⊖
2 as in Diagram

2.64, produce composable backward propagations. First of all, we have seen that there always
exists a unique arrow ĥ12 : L1 → L2 mapping the subobject of G1 affected by the rewriting to
such a subobject of G2 (recall here Li is a shorthand for LGi

) that makes Diagram 2.58 com-
mute. We have also seen that, for two composable propagations, there exists a unique arrow
l− : L−

1 → L−
2 that renders Diagram 2.61 commutative. Finally, the existence of a unique arrow

l⊖ : L⊖
1 → L⊖

2 as in Diagram 2.64 has guaranteed that the result of the clean-up phase of the
two backward propagations is composable.

Therefore, having applied the rule given by r̂−1 ◦ r
⊖
1 through m̂1 to G1 and the one given by

r̂−2 ◦ r
⊖
2 through m̂2 to G2 we were able to obtain composable propagations. Moreover, we have

obtained the arrows ĥ12, l
− and l⊖ that render Diagram 2.104 commutative.

L1 L−
1 L⊖

1

L2 L−
2 L⊖

2

L L−

ĥ12

ĥ1

ĥ−
1

r̂−1

l− l⊖

r⊖1

ĥ2 ĥ−
2

r̂−2 r⊖2

r

(2.104)

As before, let us imagine that instead of applying a restrictive rule to T in our undirected
cycle formed by G1, G2 and T , we have applied a general SqPO rule r : L←r−−P−r+→R
through a matching m : L T . Let r−1 : L1 ← P1 and r−2 : L2 ← P2 be two rules constructed
according to our backward propagation framework, performing both the canonical propagation
and a clean-up for G1 and G2 respectively and in such a way that the resulting propagations
are composable. For example, we can set P1 to L⊖

1 , r
−
1 to r̂−1 ◦ r

⊖
1 , P2 to L⊖

2 and r−2 to r̂−2 ◦ r
⊖
2

from Diagram 2.104. Recall that, according to our framework, we can obtain the following
homomorphisms: λ1 : L1 → L, λ2 : L2 → L (λ1 corresponds to ĥ1 and λ2 to ĥ2 from the
previous diagram) π1 : P1 → P and π2 : P2 → P (similarly, π1 corresponds to ĥ−1 ◦ r

⊖
1 and

π2 to ĥ−2 ◦ r
⊖
2 ). Moreover, because the two propagations are composable we can construct two

homomorphism λ12 : L1 → L2 and π12 : P1 → P2 (corresponding to ĥ12 and l⊖ in the previous
diagram). Setting the right-hand side of the propagation rules to their interfaces we can obtain
two general SqPO rules that do not perform expansive updates, i.e. L1←r−1 −P1−IdP1→P1 and
L2←r−2 −P2−IdP2→P2. This allows us to obtain three rule homomorphisms: (1) a homomor-
phism f1 from the propagation rule for G1 to the original rule, given by λ1, π1 and r+ ◦ π1; (2)
f2 from the propagation rule for G2 to the original rule, given by λ2, π2 and r+ ◦π2; and, finally,
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(3) f12 between the propagation rules for G1 and G2, given by λ12, π12 and π12 (see Diagram
2.105). Moreover, we can check that f1 = f2 ◦ f12, i.e. the following diagram commutes.

L1 P1 P1

L2 P2 P2

L P R

λ12

λ1

π1
π12

r−1 IdP1

r+◦π1

pi12

λ2
π2

r−2
IdP2

r+◦π2

r−
r+

(2.105)

Thus, given a general SqPO rewriting rule, applied in a hierarchy, and specifications for
backward propagation of this rule, we can reconstruct a subhierarchy of rules performing the
original rewrite and the specified backward propagations, given that these propagations are
composable.

In Subsection 2.2.5 we have described the conditions under which the two forward propaga-
tions to objects forming an undirected cycle in a hierarchy are composable. Namely, we have
seen that, given a commutative triangle formed by G−h1→T1, G−h2→T2 and T1−h12→T2, an
expansive rewrite of G with a rule r : L → L+ through a match m : L  G, two forward
factorizations for T1 and T2 as in Diagrams 2.70 and 2.71 respectively, and two clean-up arrows
r⊕1 : L+

1 → L⊕
1 and r⊕2 : L+

2 → L⊕
2 such that there exists a unique l⊕ : L⊕

1 → L⊕
2 as in Diagram

2.78, produce composable forward propagations. First of all, we have seen that there exists a
unique arrow ĥ12 : L1 → L2 mapping the subobject of T1 typing the affected subobject of G
to such subobject of T2 (recall here Li is a shorthand for LTi

) that makes Diagram 2.74 com-
mute. We have also seen that, for two composable propagations, there exists a unique arrow
l+ : L+

1 → L+
2 that renders Diagram 2.74 commutative. Finally, the existence of a unique arrow

l⊕ : L⊕
1 → L⊕

2 as in Diagram 2.78 has guaranteed that the result of the clean-up phases of the
two forward propagations are composable.

Therefore, having applied the rule given by r⊕1 ◦ r̂
+
1 through m̂′

1 to T1 and the one given by
r⊕2 ◦ r̂

+
2 through m̂′

2 to T2 we were able to obtain composable propagations. Moreover, we have

obtained the arrows ĥ12, l
+ and l⊕ that render Diagram 2.106 commutative.

L L+

L1 L+
1 L⊕

1

L2 L+
2 L⊕

2

ĥ′
1◦r

′
1

r

ĥ′
2◦r

′
2 ĥ+

2

ĥ+
1

ĥ12

r̂+1

l+

r⊕1

l⊕

r̂+2 r⊕2

(2.106)

As before, let us imagine that instead of applying an expansive rule to G in our undirected
cycle formed by G, T1 and T2, we have applied a general SqPO rule r : L←r−−P−r+→R
through a matching m : L G. Let r+1 : P1 → R1 and r+2 : P2 → R2 be two propagation rules
constructed according to our forward propagation framework, performing both the canonical
propagation and a clean-up for T1 and T2 respectively, and in such a way that the resulting
propagations are composable. For example, using Diagram 2.106, we can set P1 to L1, R1 to L⊕

1 ,
r+1 to r⊕1 ◦ r̂

+
1 , P2 to L2, R2 to L⊕

2 and r+2 to r⊕2 ◦ r̂
+
2 . Recall that, according to our framework,
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we can obtain the following homomorphisms: π1 : P → P1, π2 : P → P2 (π1 corresponds to
r′1 ◦ ĥ

′
1 and π2 to r′2 ◦ ĥ

′
2 from the previous diagram), ρ1 : R → R1 and ρ2 : R → R2 (similarly,

ρ1 corresponds to r⊕1 ◦ ĥ
+
1 and ρ2 to r⊕2 ◦ ĥ

+
2 ). Moreover, because the two propagations are

composable we can construct the two unique homomorphism π12 : P1 → P2 and ρ12 : R1 → R2

(corresponding to ĥ12 and l⊕ in the previous diagram).

As we have previously described, to construct general SqPO rules from our forward prop-
agation rules, we find two image factorizations: the factorization L−λ1→L1̂m1→T1 of h1 ◦m
and L−λ2→L2̂m2→T2 of h2 ◦m as in Diagram 2.107. By Lemma A.7.4 there exists a unique
arrow λ12 : L1 → L2 rendering this diagram commutative.

L T1

L1

L T2

L2

λ1

IdL

h1◦m

h12

m̂1

λ2

h2◦m
λ12

m̂2

(2.107)

To refine the interface of the propagation rules, we construct two pushouts: L1−λ′
1→

P ′
1←π′

1−P1 from λ1 ◦ r
− and π1, and the pushout L2−λ′

2→P ′
2←π′

2−P2 from λ2 ◦ r
− and π2.

We can apply the universal property of pushouts and find the unique arrow π′
12 : P

′
1 → P ′

2 that
renders Diagram 2.108 commutative. Finally, to find the refined right-hand side of the propa-
gation rules, we construct another two pushouts: P ′

1−r′1→R′
1←ρ′1−R1 from π′

1 and r+1 , and the
pushout P ′

2−r′2→R′
2←ρ′2−R2 from π′

2 and r+2 . As before, we use their universal property to find
the unique arrow ρ′12 : R

′
1 → R′

2 that makes Diagram 2.109 commutative.

P P1

L1 P ′
1

L2 P ′
2

λ1◦r
−

π1

π′
1

π′
2◦π12

λ12

λ′
1

π′
12

λ′
2

(2.108)

P1 R1

P ′
1 R′

1

P ′
2 R′

2

π′
1

r+1

ρ′1

ρ′2◦ρ12

π′
12

r′1

ρ′12

r′2

(2.109)

Setting the left-hand side of the propagation rules to their interfaces we can obtain two
general SqPO rules that do not perform restrictive updates, i.e. P ′

1←IdP1−P
′
1−r′1→R′

1 and
P ′
2←IdP2−P

′
2−r′2→R′

2. This allows us to obtain three rule homomorphisms: (1) a homomor-
phism f1 from the original rewriting rule to the propagation rule for T1, given by λ′

1 ◦λ1, π
′
1 ◦π1

and ρ′1 ◦ ρ1; (2) f2 from the original rule to the propagation rule for T2, given by λ′
2 ◦λ2, π

′
2 ◦π2

and ρ′2 ◦ ρ2; and, finally, (3) f12 between the propagation rules for T1 and T2, given by π′
12,

π′
12 and ρ′12 (see Diagram 2.110). Moreover, we can check that f2 = f12 ◦ f1, i.e. the following
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diagram commutes.

L P R

P ′
1 P ′

1 R′
1

P ′
2 P ′

2 R′
2

λ′
2◦λ2

λ′
1◦λ1 π′

1◦π1
π′
2◦π2

r− r+

ρ′1◦ρ1
ρ′2◦ρ2

π′
12 π′

12

IdP ′
1

r′1

ρ′12

IdP ′
2

r′2

(2.110)

Therefore, given a general SqPO rewriting rule applied in a hierarchy and specifications
for forward propagation of this rule, we can reconstruct a subhierarchy of rules performing
the original rewrite and the specified forward propagations, given that these propagations are
composable.

Finally, what is left to do is to describe how to obtain the rule homomorphism from a
backward propagation rule to a specified forward propagation rule. Consider a diagram below.
Let L←r−−P−r+→R be the original rewriting rule applied to an object in a given hierarchy.
Let H be the object corresponding to an ancestor of the origin and LH←r−

H−PH−r+
H→RH be a

backward propagation rule constructed for this ancestor. Let λH , πH and ρH be three homomor-
phisms defining a rule homomorphism from this propagation rule to the original one. Similarly,
let T be the object corresponding to a descendant of the origin and LT←r−

T−PT −r+
T→RT be

a forward propagation rule constructed for this descendant. Let λT , πT and ρT be three ho-
momorphisms defining a rule homomorphism from the original rule to this propagation rule.
The homomorphism from the propagation rule applied to H to the propagation rule applied to
T can be constructed by simply composing the rule homomorphisms in the diagram, i.e. by
taking the homomorphisms λT ◦ λH , πT ◦ πH and ρT ◦ ρH .

LH PH RH

L P R

LT PT RT

λH

r−
H

r+
H

πH ρH

λT

r− r+

πT ρT

r−
T

r+
T

(2.111)

Applicability of constructed rule hierarchies

Here we would like to discuss how a rule hierarchy obtained using the previously described
constructions can be applied to the initial hierarchy of objects to produce the result of rewriting
and propagation.

Proposition 2.2.33. Given a hierarchy H, a rewrite of an object situated at the node v ∈ V
with a rule r : L←r−−P−r+→R through an instance m : L  Gv, and a specification for
backward and forward propagation of this rewrite, let R and I be the rule hierarchy and its
instances constructed using the framework described above. Then R is applicable to H given
I.
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Proof. See Appendix B.

Therefore, using the described constructions, we can obtain an applicable rule hierarchy
that, when applied to the original hierarchy of objects, performs the specified rewriting and
propagation.

2.2.8 Reversible rule hierarchies

In this subsection we would like to study the side-effects introduced by the application of a
rule hierarchy. As in the case of individual SqPO rewriting rules, these side-effects are graph
transformations not explicitly specified by the underlying rules. Moreover, these side-effects
can represent some implicit changes to the homomorphisms representing hierarchy edges. Due
to such implicit changes, having applied a rule hierarchy, we may not be able to restore the
original hierarchy of objects by simply looking at the applied rule hierarchy. The side-effects of
SqPO rewriting on individual objects have already been discussed in Subsection 2.1.2. Here we
will study the second kind of side-effect, namely implicit changes to the homomorphisms in a
hierarchy.

In general, the second kind of side-effect introduced by the application of a rule hierarchy
makes the rewriting produced by reversing the original rule hierarchy not applicable. To un-
derstand the nature of the side-effects affecting hierarchy homomorphisms, let us consider the
following example.

Example 2.2.10. Let G and T in Subfigure 2.16a be two homomorphic objects and let the
arrows PG → RG and PT → RT specify expansive phases of two homomorphic rules applied to
these objects. For example, G and T can represent the result of the restrictive rewriting phase
given some rule hierarchy, while PG → RG and PT → RT are the second arrows of the rules
applied to G and T . The object G has two instances of the white circle and the rule PG → RG

selects one of these instances and merges it with an instance of the black square. The rule
PT → RT selects the white and the black circle and merges them. The unique arrow G+ → T+

is obtained by the universal property of the pushout that constructed G+. As a side-effect of
such a merge, after the application of the rules, the first instance of the white circle in G is
also typed by the merged node in T+. As a consequence, we ‘forget’ that it was an instance of
the white circle in T . In Subfigure 2.16b we reverse our rules and apply them to the resulting
objects G+ and T+. We select the merged node in T+ and we clone it into two circle nodes: the
white circle and the black circle. In G+ we select one instance of the merged node and clone it.
As a result, we recover the object G, however, we are no longer able to type this object by the
original T . This happens precisely because, as a side-effect of our hierarchy transformation, we
‘forgot’ how the circle denoted with gray in Subfigure 2.16b was typed in T . From the formal
point of view, this happens, because, while finding a unique arrow G to T , we fail to use the
universal property of the final pullback complement that constructed T .

Definition 2.2.34. The reverse R−1 of R is the rule hierarchy whose nodes correspond
to the rules r−1

v for all v ∈ V , and whose edges correspond to the rule homomorphisms
(ρ(s,t), π(s,t), λ(s,t)) for all edges (s, t) ∈ E.

Definition 2.2.35. Rewriting of H with R, applicable through an instance I, is reversible, if
rewriting of every individual object is reversible and the reverse R−1 is applicable, i.e. for any
pair of nodes s, t ∈ V such that (s, t) ∈ E corresponding to objects and rules as in Diagram
2.92, if G−

s is given as the final pullback complement of r+s and m+
s and G−

t as the final pullback
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PG
RG

G G+

RT

T T+

PT

(a) Application of the original rules

PG
RG

GG+

RT

TT+

×

PT

(b) Application of the reversed rules

Figure 2.16: Example of side-effects affecting hierarchy homomorphisms

complement of r+t and m+
t , there exists a unique homomorphism h−(s,t) : G

−
s → G−

t that makes
the cube in Diagram 2.112 commute.

Ps Rs

G−
s G+

s

Pt Rt

G−
t G+

t

m−
s

r+s

m+
s

ρ(s,t)

h−
(s,t)

s+

h+
(s,t)

π(s,t)

m−
t

r+t

m+
t

t+

(2.112)

Constructing reversible rule hierarchies

Similarly to simple SqPO rewriting, for the practical applications of our interest we would like
to develop a constructive procedure that, given an arbitrary rule hierarchy and its instance
inside some initial hierarchy of objects, allows us to obtain its reversible version. We refer to
the resulting rule hierarchy as the reversible rule hierarchy refinement.

According to Definition 2.2.35, to make a rule hierarchy reversible given specified rule in-
stances, we need to make sure that: (1) application of every rule in the hierarchy is reversible,
and (2) the reverse of the hierarchy is applicable. To satisfy the first condition, we need to find
the reversible rule refinement for every individual rule in the hierarchy. As we have discussed
in Subsection 2.1.2, the procedure for finding such refinements is determined by the category in
which we are working (for example, in 2.1.2 we have described such procedure for SimpGrph).
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From now on, we will assume that we are working with a fixed instance I, individual rewrites
given this instance are reversible and the rule hierarchy is applicable given I. On the other hand,
to satisfy the second condition, we can design an abstract category-independent procedure, and
to do so, we need to recall the rule constructions presented in Subsection 2.2.7.

Because the reversibility condition that we call ‘applicability of the reverse’ concerns the
second phase of rule hierarchy application, we need to have a closer look at the rules that
perform expansive updates. These are the rules that introduce the side-effects of the second
kind mentioned previously. As before, consider two homomorphic objects G−h→T and let
rG : LG←r−

G−PG−r+
G→RG and rT : LT←r−

T−PT −r+
T→RT be two rules corresponding to these

objects such that rT specifies an expansive update. Let mG : LG  G and mT : LT  T
be two instances of the above mentioned rules. To refine the rule hierarchy containing these
objects given the specified instances we perform the following sequence of steps.

First of all, we construct the pullback G←m̄L̄G−λ̄→LT from h and mT . By the universal
property of this pullback there exists a unique arrow l̄ : LG → L̄G that renders Diagram
2.113 commutative, and this arrow is a mono. Then, we find the final pullback complement
PḠp→P̄G−r̄−→L̄G to r−G and l̄, followed by the pushout P̄G−r̄+→R̄G←r̄RG from r+G and p̄,
as in Diagram 2.114.

LG

G L̄G

T LT

l̄

mG

λ
h

m̄

λ̄

mT

(2.113)

LG PG RG

L̄G P̄G R̄G

l̄

r−
G

r+
G

p̄ r̄

r̄− r̄+
(2.114)

Because the rule hierarchy is applicable, by definition, there exists a unique homomorphism
h− : G− → T−, i.e. the results of the restrictive rewriting phases of G and T are homomorphic.
Using the universal properties of final pullback complements and pullbacks, it can be shown
that there exists a unique arrow π̄ : P̄G → PT that renders Diagram 2.115 commutative. We
now find the arrow ρ̄ that makes Diagram 2.115 commute by applying the universal property of
the pushout that constructed R̄G (we can show that there exists a unique arrow ρ̄ that makes
Diagram 2.116 commute).

L̄G P̄G R̄G

G G−

LT PT RT

T T−

m̄ m̄−

π̄

r̄− r̄+

ρ̄

h

g−

h−

λ̄

r−
T

r+
T

t−

(2.115)

PG RG

P̄G R̄G

PT RT

r+
G

p̄ r̄
ρ

r̄−◦λ̄

r̄+

ρ̄

r+
T

(2.116)
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The following proposition shows that, given the above-constructed refinement of rG specified
by r̄G : L̄G←r̄−−P̄G−r̄+→R̄G, the reverse of the application of the pair of rules r̄G and rT is
applicable.

Proposition 2.2.36. In Diagram 2.117, let G+−h+→T+ be the result of the rewrite of G−h→T
with the pair of rules r̄G and rT , their homomorphism given by the arrows λ̄, r̄− ◦ λ̄ and ρ̄,
and the respective instances m̄ and mT . The right-most face of the cube in the diagram is a
pullback, i.e. G+←m̄+

R′
G−ρ̄→RT is the pullback from G+−h+→T+←m+

TRT .

L̄G P̄G R̄G

G G− G+

LT PT RT

T T− T+

m̄

r̄− r̄+

m̄− ρ̄m̄+

h h−

g−

g+

h+

λ̄

mT

r̄−◦λ̄

m−
T

r−
T

r+
T

m+
T

t− t+

(2.117)

Proof. See Appendix B.

Note that we perform the previously described refinement for any rule rT : LT←r−
T−

PT −r+
T→RT that performs an expansive update, independently of the nature of the rule rG :

LG←r−
G− PG−r+

G→RG homomorphic to it. If r+T = IdPT
, i.e. our rule is of the form rT :

LT←r−
T−PT −IdPT→PT , it does not perform an expansive update. Then, the results of the first

and the second rewriting phases are isomorphic. In this case the reverse is always applicable.
Namely, if g+ : G− → G+ and t+ : T− → T+ are the results of the second rewriting phase
for rG and rT and h+ : G+ → T+ is their homomorphism (whose existence and uniqueness
is guaranteed by the applicability of our hierarchy), then the unique h− : G− → T− can be
obtained by a simple composition h+ ◦ g+.

2.2.9 Composition of rule hierarchies

In this subsection we would like to study how consecutive applications of rule hierarchies can be
composed into a single application. Similarly to such composition for individual SqPO rewrites,
discussed in Subsection 2.1.3, composition of rule hierarchies is useful when maintaining the
history of hierarchy updates or multiple versions of the hierarchy. Moreover, it is extensively
used in the hierarchy audit trail discussed in Subsection 2.2.10. To construct rule composition,
as before, we require (1) the category in wich we are working to be adhesive and (2) the pushout
factorizations of pullbacks along monos to be monic. Recall that this is always the case in the
concrete categories of interest (e.g. sets, graphs).

LetH1 be a hierarchy corresponding to two homomorphic objectsG1−h1→T1 and letR1 be a
rule hierarchy corresponding to rules pG : LG

1 ←p−
G−P

G
1 −p+

G→RG
1 and pT : LT

1 ←p−
T−P

T
1 −p+

T→RT
1 ,

whose homomorphism fp : pG → pT is given by arrows λ1, π1 and ρ1 as in Diagram 2.118. Let
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G2−h2→T2 correspond to the hierarchy H2, the result of the application of R1 through the
instances mG and mT to H1 (we assume that R1 is applicable given mG and mT ). Let R2 be
another rule hierarchy given by a homomorphic pair of rules qG : LG

2 ←q−
G−P

G
2 −q+

G→RG
2 and

qT : LT
2 ←q−

T−P
T
2 −q+

T→RT
2 as in Diagram 2.119. Their homomorphism f q : qG → qT is given

by arrows λ2, π2 and ρ2. Let G3−h3→T3 correspond to the hierarchy H3, the result of the
application of R2 through the instances nG and nT to H2, as in the diagram (similarly, we
assume that R2 is applicable given the instances).

LG
1 PG

1 RG
1

G1 G−
1 G2

LT
1 P T

1 RT
1

T1 T−
1 T2

mG m−
G

p−
G

p+
G

ρ1m+
G

h1 h−
1

g−1

g+1

h2

λ1

mT

π1

m−
T

p−
T

p+
T

m+
T

t−1 t+1

(2.118)

LG
2 PG

2 RG
2

G2 G−
2 G3

LT
2 P T

2 RT
2

T2 T−
2 T3

nG n−
G

q−
G

q+
G

ρ2n+
G

h2 h−
2

g−2

g+2

h3

λ2

nT

π2

n−
T

q−
T

q+
T

n+
T

t−2 t+2

(2.119)
We can compose these pairs of rewrites using the constructions presented in Subsection 2.1.3.

Namely, if the rules pG and pT are reversible, we can find a pair of rules rG : LG←r−
G−PG−r+

G→RG

and rT : LT←r−
T−PT −r+

T→RT , together with a pair of instances lG : LG  G1 and lT : LT 

T1, such that, applying rG to G1 and rT to T1 through lG and lT respectively (as in Diagrams
2.120 and 2.121), we directly obtain G3 and T3 from Diagram 2.119.

LG PG RG

G1 G⊖
1 G3

lG

r−
G

r+
G

l−
G l+

G

g− g+

(2.120)

LT PT RT

T1 T⊖
1 T3

lT

r−
T

r+
T

l−
T l+

T

t− t+

(2.121)

To be able to construct a rule homomorphism f : rG → rT , we need to make an assumption
that the rewriting specified by R1 given mG and mT is reversible, i.e. for G−

1 being the final
pullback complement of p+G and m+

G, and T−
1 to p+T and m+

T , there always exists a unique arrow
h−1 that renders the right-most cube in Diagram 2.118 commutative.

Let DG, xG, yG, DT , xT and yT from Diagram 2.122 be the overlaps of respectively RG
1

with LG
2 and RT

1 with LT
2 , constructed as described in Subsection 2.1.3 and denoted with oG

and oT . By the universal property of pullbacks, there exists a unique arrow d : DG → DT that
renders Diagram 2.122 commutative. Using DG−d→DT we can construct a hierarchy of such
overlaps defined over the same skeleton as H1, and together with arrows xG, yG, xT and yT ,
such a hierarchy gives us the hierarchy overlap O.
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RG
1 DG

G2 LG
2

RT
1 DT

T2 LT
2

ρ1 m+
G

xG

yG

h2

nG

λ1

m+
T

xT

yT

d

nT

(2.122)

Let RG
1 ̄r

G
1→HG←l̄G2LG

2 be the pushout from xG and yG, and RT
1 ̄r

T
1→HT←l̄T2LT

2 be
the pushout from xT and yT , as in Diagram 2.124. We can use the universal property of the
pushout that constructed HG to show that there exists a unique arrow h : HG → HT that
renders our diagram commutative. Now, let the object P̄G

1 be constructed as the final pullback
complement of p+G and r̄G1 , and P̄ T

1 of p+T and r̄T1 , as in Diagram 2.123. We would like to show
that there exists a unique arrow π̄1 : P̄

G
1 → P̄ T

1 that renders this diagram commutative.

RG
1 PG

1

HG P̄G
1

RT
1 P T

1

HT P̄ T
1

ρ1 r̄G1

p+
G

p̄G1

h

h+
G

π̄1

r̄T1

p+
T

p̄T1

π1

h+
T

(2.123)

RG
1 DG

HG LG
2

RT
1 DT

HT LT
2

ρ1 r̄G1

xG

yG

h

l̄G2

λ1

r̄T1

xT

yT

d

l̄T2

(2.124)

First of all, let us recall that, by our assumption, the rule pT is reversible, therefore, T−
1

can be obtained as the final pullback complement of p+T and m+
T . As have been described

in Subsection 2.1.3 (see Diagrams 2.14 and 2.17), we can find arrows m̄T : HT
 T2 and

m̄−
T : P̄−

1  T−
1 as in Diagram 2.125. Moreover, by the vertical pasting lemma for final pullback

complements, it is not hard to show that P̄ T
1 ̄m

−
T→T−

1 −t+1→T2 is the final pullback complement
of h+T and m̄T . Recall also that, by the applicability of the reverse for the homomorphic pair
of rules pG and pT , having constructed G−

1 as the final pullback complements of p+G and m+
G,

and T−
1 of p+T and m+

T , there exists a unique arrow h−1 that renders Diagram 2.119 commutaive.
This allows us to apply the universal property of the pullback P̄ T

1 and show that there exists a
unique arrow π̄1 : P̄G

1 → P̄ T
1 such that Diagram 2.126 commutes. Moreover, it is not hard to

further verify that π̄1 is also the unique arrow that renders Diagram 2.123 commutative.

87



2.2. HIERARCHIES AND REWRITING IN HIERARCHIES

RT
1 P T

1

HT P̄ T
1

T2 T−
1

m+
T

r̄T1

p+
T

p̄T1

m−
T

m̄T

h+
T

m̄−
T

t+1

(2.125)

HG P̄G
1

HT P̄ T
1 G−

1

T2 T−
1

h

π̄1

h+
G

m̄−
G

m̄T

h+
T

m̄−
T

h−
1

t+1

(2.126)

LG
2 PG

2

HG P̄G
2

LT
2 P T

2

HT P̄ T
2

λ2 l̄G2

q−
G

p̄G2

h

g−
G

π̄2

l̄T2

q−
T

p̄T2

π2

g−
T

(2.127)

For P̄G
2 being the final pullback complement of

q−G and l̄G2 , and P̄ T
2 of q−T and l̄T2 , as in Diagram

2.127, we can show that there exists a unique arrow
π̄2 : P̄G

2 → P̄ T
2 that renders this diagram commu-

tative in a similar way, by simply using the appli-
cability of the homomorphic pair of rules qG and
qT .

To find the left-hand side of the composed
rules for G1 and T1 we construct the pushout
LG
1 ̄l

G
1→LG←h−

G−P̄
G
1 from p−G and p̄G1 and the

pushout LT
1 ̄l

T
1→LT←h−

T−P̄
T
1 from p−T and p̄T1 as

in Diagram 2.128. By the universal property of
pushouts there exists a unique arrow λ : LG → LT

that renders this diagram commutative. In a sim-
ilar way we construct the right-hand side of the composed rules by finding the pushout
P̄G
2 −g+

G→RG←h−
GRG

2 from p̄G2 and q+G and the pushout P̄ T
2 −g+

T→RT←h−
TRT

2 from p̄T2 and
q+T as in Diagram 2.129. By the universal property of pushouts, there exists a unique arrow
ρ : RG → RT that renders this diagram commutative.

LG
1 PG

1

LG P̄G
1

LT
1 P T

1

LT P̄ T
1

λ1 l̄G1

p−
G

p̄G1

λ

h−
G

π̄1

l̄T1

π1

p−
T

p̄G1

h−
T

(2.128)

PG
2 RG

2

P̄G
2 RG

P T
2 RT

2

P̄ T
2 RT

p̄G2

q+
G

r̄G2

π̄2

g+
G

ρ

π2

p̄T1

q+
T

ρ2

r̄T1

g+
T

(2.129)
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P̄G
1 PG

HG P̄G
2

P̄ T
1 PT

HT P̄ T
2

π̄1 h+
G

p′G

p′′G

h

h−
G

π̄2

h+
T

π

p′T

p′′T

h+
T

(2.130)

Finally, we find the interface of the composed
pair of rules by finding the pullback P̄G

1 ←p′G−
PG−p′′G→P̄G

2 from h+G and h−G and the pullback
P̄ T
1 ←p′T−PT −p′′T→P̄ T

2 from h+T and h−T as in Di-
agram 2.129. By the universal property of pull-
backs there exists a unique arrow π : PG → PT

that renders this diagram commutative.

Using the previously presented constructions,
the composed rules correspond to the pair of
spans rG : LG←h−

G
◦p′G−PG−g+

G
◦p′′G→RG and rT :

LT←h−
T
◦p′T−PT −g+

T
◦p′′T→RT . The homomorphism

f : rG → rT is given by the arrows λ, π and ρ.
Therefore, the homomorphic rules rG−f→rT con-
stitute a rule hierarchyR that we call the composed
rule hierarchy given the hierarchy overlap O and we write R = ⊗(R1,O,R2). In Subsection
2.1.3 we have described how an arrow lG : LG  G1 can be found (see Diagram 2.20). This
arrow defines the matching of the left-hand side of the composed rule into G1. Similarly, we
can construct the matching lT : LT  T1 of the left-hand side of the composed rule in T1.
Therefore, lG and lT give us an instance of R in H1.

Theorem 2.2.37. In adhesive categories, if rewriting specified by R1 is reversible, R is appli-
cable given the instances lG and lT , and its application results into G3−h3→T3.

Proof. See Appendix B.

Lemma 2.2.38. In adhesive categories, the composition of two reversible hierarchy rewrites is
a reversible rewrite.

Proof. The proof can be obtained by combining Lemma 2.1.6 and Theorem 2.2.37, where the
rule hierarchy is given by R−1 and is applied to G3−h3→T3 through o+G : RG  G3 and
o+T : RT  T3.

2.2.10 Audit trail for rewriting in hierarchies

In this subsection we describe how reversibility and composition of rewriting can be used to
construct an audit trail for transformations in hierarchies (e.g. hierarchies of graphs with
attributes representing our KR system). The described audit trail system is implemented as
part of the ReGraph library and discussed in more detail in Section 2.3.4.

Li
v P i

v Ri
v

Gi−1
v Ḡi−1

v Gi
v

mi

r−i

m−
i

r+i

m+
i

ḡ−i ḡ+i

(2.131)

Let H0 be the starting hierarchy of objects, de-
fined over a skeleton DAG G = (V,E), whose his-
tory of transformations we would like to maintain.
Let 〈Ri | i ∈ [1 . . . n]〉 be a sequence of rule hi-
erarchies consecutively applied to H0 through the
corresponding instances Ii, resulting in a sequence
of hierarchies 〈Hi | i ∈ [1 . . . n]〉 with the right-hand side instances given by I+i for 1 ≤ i ≤ n,
i.e. for every v ∈ V and 1 ≤ i ≤ n, I+i (v) : Ri

v  Gi
v and Diagram 2.131 is a SqPO diagram.

As in the case of individual objects, to be able to build a sound audit trail, we require each
rewrite in the sequene to be reversible.

89



2.2. HIERARCHIES AND REWRITING IN HIERARCHIES

Definition 2.2.39. The audit trail for the resulting hierarchy Hn consists of the sequence of
rule hierarchies 〈Ri | i ∈ [1 . . . n]〉 and the right-hand side instances I+i for 1 ≤ i ≤ n.

Rollback. Using the audit trail we can rollback rewriting to any point in the history of
transformation corresponding to some intermediate hierarchy Hi for 0 ≤ i ≤ n− 1. This can be
done by applying the rule hierarchies 〈R−1

j | j ∈ [n . . . i+ 1]〉 with the corresponding instances

I+j , where I+j (v) : Rj
v  Gj

v for every v ∈ V and j ∈ [n . . . i+ 1].

Maintain diverged versions. To be able to accommodate multiple versions of a hierarchy,
we use delta compression, as in the case of individual objects. Let v1 and v2 be two versions of
the starting hierarchy H0 with v1 being the current version. The initial delta ∆ from v1 to v2
is set to the identity rule hierarchy with the rule ∅←Id∅−∅−Id∅→∅ corresponding to every node
v ∈ V . We set the instance I(v) for every v ∈ V to be the unique homomorphism uv : ∅ G0

v.
Every rewrite of the current version of the hierarchy induces an update of the delta that consists
of the composition of the previous delta and the reverse of the applied rule hierarchy.

Ds

Ls L∆
s

Dt

Lt L∆
t

Gt

d(s,t)

xs ys

λ(s,t) λ∆
(s,t)

xt

yt

mt m∆
t

(2.132)

Let v1 be the current version corresponding to some
hierarchyH (e.g. obtained as the result of transformation
of the initial hierarchy H0). Let R∆ and I∆ be respec-
tively the rule hierarchy and the instance given by ∆,
where r∆v : L∆

v ←r−
v,∆−P

∆
v −r+

v,∆→R∆
v and m∆

v : L∆
v  Gv

are the rule and the instance corresponding to a node
v ∈ V . Let R be a rule hierarchy applied to H through
the instance I and H′ be the result of the corresponding
rewriting. The new delta is given by the rule hierarchy
and the instance obtained by constructing the composi-
tion ⊗(R−1,O,R∆) with O being the hierarchy overlap
computed by finding the overlaps between Lv and L∆

v for every node v ∈ V and the homomor-
phisms between overlap objects found by the universal property of final pullback complements,
as in Diagram 2.132, for every edge (s, t) ∈ E.

Switch version. Switching between different versions of the hierarchy is performed by ap-
plying the rule hierarchy though the instance given by the delta. If v1 is the current version
corresponding to a hierarchy H with the delta given by ∆ = (R∆, I∆), switching to v2 is per-
formed by applying R∆ to H through I∆. If H

′ is the result of the above-mentioned rewriting
and I+∆ is its right-hand side instance (where for every v ∈ V , I+∆(v) : R∆

v  G′
v ), then v2

becomes the current version of the object and the new delta ∆ is set to (R−1
∆ , I+∆).

Merge versions. Let v1 be the current version corresponding to a hierarchy H, v2 be an-
other version corresponding to a hierarchy H′ and the delta between v1 and v2 be given by
∆ = (R∆, I∆). The canonical merging rule hierarchy can be constructed in the following way.
For every individual hierarchy node we construct the canonical merging rule according to the
framework described in Subsection 2.1.4. Let the back and front faces of the cube in Diagram
2.133 correspond to the pushouts defining pairs of merging rules corresponding to nodes s, t ∈ V
such that (s, t) ∈ E. We can apply the universal property of the pushouts and show that there
exists a unique arrow m(s,t) : M̂s → M̂t that makes the diagram commute. The merging rule

hierarchy R̂+ for H is, thus, given by rules Lv←IdLv−Lv−r̂+v→M̂v, for all v ∈ V , and rule
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homomorphisms defined by arrows (λ(s,t), λ(s,t),m(s,t)), for all (s, t) ∈ E. On the other hand,

the merging rule hierarchy for H′ is given by rules Rv←IdRv−Rv−r̂−v→M̂v, for all v ∈ V , and
rule homomorphisms defined by arrows (ρ(s,t), ρ(s,t),m(s,t)), for all (s, t) ∈ E. Let Ĝs and Ĝt be
the result of merging corresponding to the nodes s and t. By the universal property of pushouts
there exists a unique arrow ĥ(s,t) that renders Diagram 2.134 commutative. Therefore, using

such objects Ĝv for every v ∈ V and homomorphisms h(s,t) for every (s, t) ∈ E, we can construct

the hierarchy Ĥ corresponding to the result of canonical merging of H and H′.
Non-canonical merging can be specified using a hierarchy of objectsM defined over the same

skeleton as H, and a pair of arrows r̄+v : Lv →Mv and r̄−v : Rv →Mv such that r̄+v ◦r
−
v = r̄−v ◦r

+
v

for every v ∈ V .

Ps Rs

Ls M̂s

Pt Rt

Lt M̂t

r−s

r+s

r̂−s

λ(s,t)

r̂+s

m(s,t)

π(s,t)

r−t

r+t

ρ(s,t)

r̂−t

r̂+t

(2.133)
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ĝ+s

ĥ(s,t)
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r+t

m(s,t)

m̂t
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(2.134)

2.3 The ReGraph library

ReGraph1 is a Python library implementing the mathematical theory, presented in the two
previous sections, instantiated in the category of simple graphs with attributes SimpGrphattrs.
It allows the user to create and manipulate graph objects equipped with dictionary attributes,
create rewriting rules, apply them to graphs, construct graph hierarchies and perform rewriting
and propagation in these hierarchies. Moreover, it provides tools for audit of updates performed
in individual graph objects as well as hierarchies of graphs.

ReGraph provides the above-mentioned functionality based on two graph backends: in-
memory graph objects provided by the NetworkX2 library and persistent graphs provided by
the Neo4j3 graph database. Moreover, it is designed in a way that facilitates the addition of
a new backend (for example, another graph database technology such as RDF-based Apache
Jena4, Blazegraph5, Virtuoso6 and so on).

1https://github.com/Kappa-Dev/ReGraph
2https://networkx.github.io/
3https://neo4j.com/
4https://jena.apache.org
5https://blazegraph.com/
6https://virtuoso.openlinksw.com/
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ReGraph consists of the following principal components:

❼ Module regraph.graphs contains data structures for graphs. In particular, provides the
abstract class Graph defining the interface for graph objects in ReGraph and implementing
the graph transformation primitives of interest.

❼ Module regraph.hierarchies contains data structures for hierarchies. In particular, pro-
vides the abstract class Hierarchy defining the interface for hierarchy objects in ReGraph

and implementing rewriting and propagation in hierarchies.

❼ Package regraph.backends.networkx provides a set of utilities for working with the
NetworkX’s graph objects. It contains the NXGraph and NXHierarchy classes for in-
memory representation of simple graphs with attributes and their hierarchies.

❼ Package regraph.backends.neo4j provides a set of utilities for working with the Neo4j

graph database. It implements the Neo4jGraph class for persistent representation of
simple graphs with attributes and the Neo4jHierarchy class for persistent representation
of hierarchies of simple graphs.

❼ Module rules implements the Rule class for representation of SqPO rewriting rules in
ReGraph.

❼ Module audit contains a set of data structures for audit of updates in simple graphs and
graph hierarchies.

Dependencies of these components are schematically illustrated in Figure 2.17. To add a
new backend for representation of graphs to ReGraph, one needs to implement corresponding
concrete classes for graph and hierarchy objects that would inherit the abstract Graph and
Hierarchy classes. The design of ReGraph ensures that the functionality required to implement
such concrete classes is reduced to a relatively small set of basic primitive operations on graphs
and graph hierarchies, while the high-level logic of rewriting, propagation and audit stays generic
and is implemented by the existing ReGraph modules.

Package backends.networkx

NXGraph NXHierarchy Neo4jGraph Neo4jHierarchy

Package backends.neo4j

Graph
(abstract class)

Hierarchy
(abstract class)

Module auditModule rules

Figure 2.17: Dependencies between the main components of ReGraph.

The rest of this subsection provides some implementation and design details for different
data structures and modules implemented in ReGraph.
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2.3.1 Graphs and graph transformation in ReGraph

As we have previously mentioned, ReGraph allows us to create and manipulate simple graphs
with attributes based on two graph backends: in-memory graphs provided by NetworkX and
persistent Neo4j property graphs. Graph nodes possess unique identifiers that can be used to
access them, create and manipulate edges defined by pairs of nodes, specify graph homomor-
phisms using maps of node identifiers. Any hashable Python object can be used as a node
identifier.

In-memory graphs in ReGraph are instances of the NXGraph class. This class provides a set
of methods for basic graph operations, e.g. addition, removal of nodes and edges, cloning and
merging of nodes, etc. It also allows to store built-in attribute dictionary objects.

Similarly, the Neo4jGraph class provides a set of methods for basic graph operations on
property graphs stored in an instance of the Neo4j database. To access the underlying database
ReGraph uses the Python driver for Neo4j, namely the class neo4j.GraphDatabase. Every
object of the Neo4jGraph class is equipped with the attribute Neo4jGraph. driver providing
an ‘access point’ to the database. The current Neo4j implementation does not allow to store
different graphs in a single database, therefore, every database instance is a single PG. This
means that two different Neo4jGraph objects accessing the same database instance operate on
the same property graph. However, it is essential for us to be able to accommodate multiple
graphs, and to do so, we exploit the PG data model. Recall that this model allows the storing
of data as a collection of nodes and relationships. Nodes of PGs can be assigned with labels
(allowing, for example, to group nodes into different sets) and every relationship in a prop-
erty graph is assigned with exactly one type (more detailed discussion of PGs can be found
in Chapter 3). ReGraph uses PG node labels for defining disjoint namespaces for identifiers
of graph elements, i.e. every graph object has two attributes, Neo4jGraph. node label and
Neo4jGraph. edge label, defining a subset of nodes and edges considered as nodes and edges
of the current graph object. All the interface methods execute respective Cypher queries on the
database instance accessed by the Neo4jGraph. driver attribute.

Example 2.3.1. The following two listings illustrate how simple graphs can be created in
ReGraph. The code on the left creates an empty in-memory graph object, adds some nodes
and edges to it and performs cloning of a node. The code on the right shows how the same
thing can be done using persistent graph objects implemented in the Neo4jGraph class. The
graph created in the corresponding Neo4j database manipulates nodes with the label graphNode
and relationships of the type graphEdge.

1 from regraph import NXGraph

2
3 graph = NXGraph()

4 graph.add nodes from(

5 ["a", "b", "c"])

6 graph.add edges from([

7 ("a", "b"),

8 ("b", "c")])

9 graph.clone node("a", "a clone")

1 from regraph import Neo4jGraph

2
3 graph = Neo4jGraph(

4 uri="bolt://localhost:7687",

5 user="neo4j", password="neo4j",

6 node label="graphNode",

7 edge label="graphEdge")

8 graph.add nodes from(["a", "b", "c"])

9 graph.add edges from([

10 ("a", "b"), ("b", "c")])

11 graph.clone node("a", "a clone")
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Encoding attribute sets

We would like to equip both our in-memory and persistent graphs with node/edge attributes.
By definition, the attributes are structured as dictionaries (formally defined in A.1), i.e. key-
value pairs with set-like values. The module regraph.attribute sets provides a set of classes
implementing attribute values. The AttributeSet class represents an interface for any such
class of attribute values. It specifies a collection of elementary set-theoretic operations that
can be performed on sets, e.g. union, intersection, difference, inclusion and equality tests, etc.
It also manages the export of attribute values from their JSON-representation. The package
contains the following structures for attribute sets inheriting the AttributeSet class:

❼ FiniteSet, a wrapper around the standard Python set datatype;

❼ RegexSet, a class implementing a set of strings recognized by an encapsulated regular
expression;

❼ IntegerSet a class implementing a possibly infinite set of integers defined by a sequence
of integer intervals;

❼ EmptySet, a class representing an empty set;

❼ UniversalSet, a class representing the universal set, any instance of AttributeSet is a
subset of the universal set.

As we have previously mentioned NetworkX allows us to store arbitrary objects on the
nodes or edges of a graph object. Therefore, our in-memory graphs with attributes (instances
of NXGraph) are simple wrappers around NetworkX.DiGraph with Python dictionaries attached
to the nodes and edges; the values of these dictionaries are instances of AttributeSet.

Implementation of set attributes for persistent graphs, on the other hand, requires an en-
coding effort. According to the property graph data model, both nodes and relationships can
be equipped with properties, an internal structure allowing to represent a set of key-value pairs.
Neo4j graphs allow to store as property values numbers (integers, floats), strings, booleans
as well as some specialized types for storing spacial and temporal data (Point, Date, Time).
Moreover, homogeneous lists of simple types can be accommodated on nodes and relationships
of property graphs. We use these lists to represent sets of values of our dictionary attributes
This, of course, constraints our Neo4j-based implementation to the use of homogeneous sets of
values, therefore, if heterogeneous values are encountered in a given set, ReGraph automatically
casts all the values of the set into strings. We also reserve some string literals as key-words that
symbolically represent some infinite sets, e.g. IntegerSet for the set of all integers, StringSet
for the set of all strings, UniversalSet, etc. Currently, the Neo4j-backend of ReGraph does not
allow one to create regex-defined sets of strings or integer sets defined by intervals.

Example 2.3.2. The following listing illustrates how the interface of NXGraph and Neo4jGraph

can be used to add attributes to nodes and edges in ReGraph. Observe that the attribute with
the key age of the node a is a symbolic set representing an interval from 18 to infinity. Adding
attributes to elements of Neo4jGraph objects can be performed in a similar way. Note, however,
that interval-defined sets of integers are not implemented for Neo4jGraph.
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1 import regraph.attribute sets as

2 ats

3 from math import inf

4 from regraph import NXGraph

5
6 graph = NXGraph()

7 graph.add node(

8 "a", {
9 "name": {"Bob"},
10 "age": ats.IntegerSet(

11 {(18, inf)})
12 })
13 graph.add node("b")

14 graph.add node attrs(

15 "b", {
16 "name": {"Alice"},
17 "age": {19}
18 })
19 graph.add edge(

20 "a", "b",

21 {"type": {"friends"}})

1 from math import inf

2 from regraph import primitives

3 from regraph import Neo4jGraph

4
5 graph = Neo4jGraph(

6 uri="bolt://localhost:7687",

7 user="neo4j",

8 password="neo4j")

9 graph.add node(

10 "a", {
11 "name": {"Bob"},
12 "age": {18})
13 })
14 graph.add node("b")

15 graph.add node attrs(

16 "b", {
17 "name": {"Alice"},
18 "age": {19}
19 })
20 graph.add edge(

21 "a", "b",

22 {"type": {"friends"}})

2.3.2 Rewriting rules in ReGraph

SqPO rewriting rules in ReGraph can be expressed declaratively, similarly to their mathematical
definition presented previously in this section, using the class regraph.Rule (in the rest of the
section—Rule). Essentially, Rule encapsulates three small instances of NXGraph: Rule.lhs

representing the left-hand side L, Rule.p—the interface P and Rule.rhs—the right-hand side

R of a rule L
r−
← P

r+
→ R. The two homomorphisms r− and r+ are represented with the attributes

Rule.p lhs and Rule.p rhs respectively.

Example 2.3.3. The following listing illustrates how SqPO rewriting rules can be created in
ReGraph. The created rule clones the node 1 from the left-hand side (the node 1 clone corre-
sponds to the created clone in the interface), removes the edge from 2 to 3, adds a new node
(identified by new node in the right-hand side) and connects it with an edge to the node 1.

1 from regraph import Rule, NXGraph

2
3 # Define the left−hand side of the rule
4 lhs = NXGraph()

5 lhs.add nodes from([1, 2, 3])

6 lhs.add edges from([(1, 2), (2, 3)])

7 # Define the interface of the rule

8 p = NXGraph()
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9 p.add nodes from([1, "1 clone", 2, 3])

10 p.add edges from([(1, 2), ("1 clone", 2)])

11 # Define the right−hand side of the rule
12 rhs = NXGraph()

13 rhs.add nodes from([1, "1 clone", 2, 3, "new node"])

14 rhs.add edges from([(1, 2), ("1 clone", 2), ("new node", 1)])

15 # Define rule homomorphisms

16 p lhs = {1: 1, "1 clone": 1, 2: 2, 3: 3}
17 p rhs = {1: 1, "1 clone": "1 clone", 2: 2, 3: 3}
18
19 rule = Rule(p, lhs, rhs, p lhs)

Rules in ReGraph can also be created using the Rule.from transform method. This method
allows the initialization of an identity rule from a pattern (a rule that does not specify any
changes). Such an identity rule can be then modified procedurally, i.e. by specifying a sequence
of primitive graph operations on the left-hand side of the rule (see Example 2.3.4).

Example 2.3.4. The following listing illustrates how the rule from Example 2.3.3 can be created
by initializing a rule object from a pattern and injecting a set of primitive operations.

1 pattern = NXGraph()

2 pattern.add nodes from([1, 2, 3])

3 pattern.add edges from([(1, 2), (2, 3)])

4
5 rule = Rule.from transform(pattern)

6 rule.inject clone node(1)

7 rule.inject remove edge(2, 3)

8 rule.inject add node("new node")

9 rule.inject add edge("new node", 1)

ReGraph provides means for finding matches of a pattern in a graph using the find matching

method of NXGraph and Neo4jGraph. As input, this function takes a graph object and a pattern
graph. Optionally, the user can provide a collection of nodes specifying the subgraph of the
original graph, where the search should be performed. ReGraph finds all matches of the pattern
by solving the subgraph matching problem. The function returns a list of all such matches defined
by maps from the nodes of the pattern to the nodes of the input graph such that (1) edges are
preserved and (2) the attribute dictionary of a pattern node is a subdictionary of its image in
the graph. For in-memory graphs ReGraph uses the networkx.isomorphism.DiGraphMatcher

class, which provides a method for finding subgraph isomorphisms based on the VF2 algorithm
[18]. In the case of persistent graphs such a pattern matching task corresponds to an ordinary
match query on the respective database. Note that, in our setting, a matching is always given
by an injective map of nodes which means that the nodes and edges of our patterns are always
distinct graph objects. Such semantics is also known as isomorphism-based semantics in the
literature of graph query languages [4], where both node and edge variables must be mapped
one-to-one.

An instance of the Rule class can be applied to a graph using the rewrite method of
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NXGraph and Neo4jGraph. This method takes as input a rule object and a dictionary specifying
a match of the left-hand side of the rule in the graph object.

Example 2.3.5. The following code illustrates the use of primitives.find matching com-
bined with the Rule.apply to method for performing graph rewriting. We assume here that
the objects rule and graph have been initialized as above, and that the list of matches of the
left-hand side of the rule given by the variable instances is non-empty.

1 instances = graph.find matching(rule.lhs)

2 rhs instance = graph.rewrite(rule, instances[0])

ReGraph also provides the method Rule.refine that allows the refinement of an arbitrary
SqPO rewriting rule to its reversible version, given some graph and an instance of the rule in
this graph. This method implements the procedure described in 2.1.2.

2.3.3 Hierarchies in ReGraph

ReGraph provides two data structures for working with hierarchies of simple graphs with at-
tributes: NXHierarchy based on in-memory graphs and Neo4jHierarchy based on persistent
Neo4j PGs; both inheriting the generic Hierarchy class.

Graph nodes of hierarchies possess unique identifiers (as before, any hashable Python ob-
jects) and encapsulate graph objects. Moreover, they can be equipped with attribute dictio-
naries (useful when associating some meta-data with a graph in a hierarchy). Several methods
for adding new graph objects to the hierarchy are available in the hierarchy interface, e.g.
add graph adds to the hierarchy the graph object received as input, add graph from data

adds a graph with provided nodes and edges, add graph from json adds the graph from its
JSON-representation, add empty graph creates a new empty graph object and adds it. New
graph homomorphisms can be added using the method add typing, which verifies that the
addition of the edge between the source and the target does not create a cycle or produce paths
that do not commute with some already existing paths, i.e. that acyclicity and the consistency
properties of graph hierarchies are preserved.

Example 2.3.6. The following listing illustrates how in-memory graph hierarchies can be cre-
ated in ReGraph. The created hierarchy consists of two graphs G and T related by a homomor-
phism.

1 from regraph import NXGraph, NXHierarchy

2
3 # Create graph objects

4 t = NXGraph()

5 t.add nodes from(["Person", "City"])

6 t.add edges from(

7 [("Person", "City"),

8 ("Person", "Person")])

9 g = NXGraph()

10 g.add nodes from(

11 ["Alice", "Bob", "Lyon", "Paris"])

12 g.add edges from(
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13 [("Alice", "Bob"),

14 ("Alice", "Lyon"),

15 ("Bob", "Paris")])

16
17 # Create a graph hierarchy

18 hierarchy = NXHierarchy()

19 hierarchy.add graph(

20 "T", t, attrs={
21 "desc": "Meta−model"
22 })
23 hierarchy.add graph(

24 "G", g, attrs={
25 "desc": "People living in cities database"

26 })
27 hierarchy.add typing(

28 "G", "T", {
29 "Alice": "Person",

30 "Bob": "Person",

31 "Lyon": "City",

32 "Paris": "City"

33 },
34 attrs={
35 "desc": "Typing of entities in the meta−model"
36 })

A set of methods of the Hierarchy class provides means for rewriting and propagation in
the hierarchy. The method find matching allows to find matches of a pattern in a graph of the
hierarchy. The method rewrite applies a rule through the specified instance in a graph of the
hierarchy. It takes as input two additional parameters p typing and rhs typing corresponding
to the binary relations for controlling propagation from 2.2.4 and performs all the necessary
propagations. These parameters are optional and, if not specified, the rewriting is propagated
canonically to all the ancestors and descendants of the rewritten graph, i.e. all the instances of
the cloned nodes are cloned and all the newly added nodes acquire new typing nodes.

Example 2.3.7. The following listing illustrates how in-memory graph hierarchies can be
rewritten in ReGraph. We create a rewriting rule that adds a new node Eric and connects
it with an edge to Alice in G in the hierarchy previously defined in Example 2.3.6. The propa-
gation of this rewriting is controlled by the parameter rhs typing that specifies that the type of
the newly added node Eric in T is Person.

1 from regraph import Rule, NXGraph

2
3 # Create a rewriting rule

4 pattern = NXGraph()

5 pattern.add nodes from(["x", "y"])

6 pattern.add edges from([("x", "y")])

7
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8 rule = Rule.from transform(pattern)

9 rule.inject add node("Eric")

10 rule.inject add edge("Eric", "x")

11
12 # Apply the rule to the graph G

13 instance = {"x": "Alice", "y": "Bob"}
14 hierarchy.rewrite(

15 "G", rule, instance,

16 rhs typing={"T": {"Eric": "Person"}})

The method get rule hierarchy allows the user to find a rule hierarchy corresponding to
the application of a rule to a particular graph in the hierarchy (recall the discussion on rule
hierarchies in 2.2.7) together with the instances of the rules in this hierarchy. Rule hierarchies
are represented with Python dictionaries containing two keys, rules and rule homomorphisms.
The value of rules is a dictionary with identifiers of the hierarchy graphs as keys and computed
propagation rules as values (for the origin of rewriting this values is the initial rewriting rule).
The value of rule homomorphisms is a dictionary with hierarchy edges as keys and a triple of
homomorphisms as values. These triples represent homomorphisms for the left-hand side, the
interface and the right-hand side of the respective rules in the rule hierarchy. A rule hierarchy
can be applied to the hierarchy using the apply rule hierarchy method. We can also refine
rule hierarchies to their reversible versions using refine rule hierarchy method.

Example 2.3.8. The following listing illustrates how, instead of directly applying a rule in a
hierarchy and performing all the necessary propagations, we can first compute the rule hierarchy
corresponding to the rewriting and propagations and then apply it. This is useful if we need to
examine the rule hierarchy before applying it, for example, when using audit trails.

1 from regraph import Rule, NXGraph

2
3 # Create a rewriting rule

4 pattern = NXGraph()

5 pattern.add nodes from(

6 ["x", "y"])

7 pattern.add edges from(

8 [("x", "y")])

9 rule = Rule.from transform(pattern)

10 rule.inject add node("Eric")

11 rule.inject add edge("Eric", "x")

12
13 # Get the rule hierarchy

14 instance = {"x": "Alice", "y": "Bob"}
15 rule hierarchy = hierarchy.get rule hierarchy(

16 "G", rule, instance,

17 rhs typing={"T": {"Eric": "Person"}})
18 # Apply the rule hierarchy

19 hierarchy.apply rule hierarchy(rule hierarchy, instances)
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Relations as undirected edges in a hierarchy

As well as graph homomorphisms, our library is able to represent binary relations on graphs
in a hierarchy. This functionality of ReGraph goes slightly beyond the theory described in this
section; however, the idea behind it is very simple. We accommodate relations between graphs
as separate undirected edges of the hierarchy. We do not impose any conditions on these edges,
except that only one relation between a given pair of nodes is allowed.

Given two graphs G and H, a binary relation between G and H is defined as a set of pairs
of nodes R ⊆ VG × VH . Let πG and πH be two projection functions that project elements in R
into VG and VH respectively. It is useful to see a relation R as a graph with no edges. Then we
can construct a span G←πG−R−πH→H in the category SimpGrphattrs.

Our question is now how do we propagate the updates made to the objects G and H to the
relation R? Seeing relations between graphs as spans allows us to apply the previously presented
propagation framework without any modifications. In the current implementation of ReGraph,
we cannot control propagation to such objects R, therefore the propagation is always performed
canonically. For example, if a graph G is transformed with a restrictive update g− : G ← G−

(as the origin of rewriting or as the result of a propagation) we can construct the pullback from
g− and πG and obtain the span G−←π−

G−R
−−r−→R as in Diagram 2.135. Then we can set our

relation R to the set of pairs defined by the nodes of R− with the projection functions π−
G and

πH ◦ r
− projecting onto the nodes of G− and H respectively (denoted with red in the diagram).

R− R

G− G H

r−

π−
G

πG πH

g−

(2.135)

In the case when both G and H were updated with restrictive updates g− : G ← G− and
h− : H ← H− respectively, we perform a similar procedure. We first find the pullbacks from
the pair of g− and πG, and the pair of h− and πH and obtain two spans G−←π−

G−R
−
H−r−

G→→R

and H−←π−
H−R

−
H

r−
H→ R respectively, as in Diagram 2.136. We then construct the pullback from

r−G and r−H , and obtain the span R−
G←x−R̂

y
→ R−

H . The updated relation corresponds to the set

of pairs defined by the nodes of R̂ with the projection functions π−
G ◦ x and π−

H ◦ y, projecting
onto the nodes of G− and H− respectively (denoted with red in the diagram).

R̂

R−
G R R−

H

G− G H H ′

x

y

r−
G

π−
G

πHπG

r−
H

π−
H

g−

h−

(2.136)

Finally, if a graph G is updated with an expansive update g+ : G→ G+, we can modify R
according to the updated projection onto G+ given by g+ ◦ πG (denoted in Diagram 2.137 with
red).
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R

G+ G H

πG πH

g+

(2.137)

ReGraph stores graph relations as a separate type of edges and provides a basic interface for
access and modification of these edges. Similarly to homomorphism edges, relation edges can
be equipped with attributes.

Example 2.3.9. The following listing illustrates how relations between graphs can be added in
ReGraph. In this example we use the hierarchy defined in Example 2.3.6. We first add another
graph H that contains knowledge of some online accounts and, second, relate its nodes with the
nodes of G containing knowledge of people living in cities.

1 # Add a new graph H to the hierarchy

2 h = NXGraph()

3 h.add nodes from(

4 [

5 "alice93@gmail.com",

6 "a.dubuffet",

7 "bob.evans" ])

8 hierarchy.add graph("H", h)

9
10 # Add relation between G and H

11 hierarchy.add relation(

12 "G", "H", {
13 "Alice": {"alice93@gmail.com", "a.dubuffet"},
14 "Bob": {"bob.evans"}
15 },
16 attrs={
17 "desc": "Relation between people and their accounts"})

In-memory graph hierarchies

The class NXHierarchy implements in-memory hierarchies in ReGraph. Apart from the generic
Hierarchy class, it also inherits the NXGraph class, i.e. every instance of such a graph hierarchy
is a graph and has the interface of directed graphs implemented in NXGraph. Hierarchy nodes
are represented with Python dictionaries of a fixed shape, i.e. they have two records: the graph
object is associated to the key graph and the attributes of the node with the key attrs. Edges of
the hierarchy encapsulate maps of nodes encoding graph homomorphisms and some associated
attributes. Similarly to hierarchy nodes, edges are dictionaries with two records: mapping is
associated to a Python dictionary encoding a mapping of nodes from the source graph to the
target’s nodes attrs dictionary containing attributes of the new edge.

Another additional feature of ReGraph, not described in the theoretical part of this chapter
and implemented for in-memory NXHierarchy objects, allows the user to add rewriting rules
to the hierarchy. Similarly to graphs, rules are stored as nodes of the hierarchy and can be
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equipped with attributes. Accommodation of rewriting rules in hierarchies is handy when the
co-evolution of these rules and the graphs that type them is desirable.

Rule nodes in ReGraph can be equipped only with out-going edges and target nodes of these
edges are required to represent graphs, i.e. we can only type rules by some graphs in our
hierarchy. The rule typing edges encapsulate two homomorphisms: typing of the left-hand side
and the right-hand side of the source rule by the target graph of the edge (typing of the interface
is implicitly given by the two above-mentioned homomorphisms). Propagation of rewriting to
rules is performed according to our backward propagation framework described in the previous
parts of this chapter.

Example 2.3.10. The following listing illustrates how rules can be added to ReGraph hierar-
chies.

1 # Create a rewriting rule

2 pattern = NXGraph()

3 pattern.add nodes from(

4 ["x", "y"])

5 pattern.add edges from(

6 [("x", "y")])

7 rule = Rule.from transform(pattern)

8 rule.inject add edge("y", "x")

9
10 # Add the rule to the hierarchy and type it by T

11 hierarchy.add rule(

12 "R", rule,

13 {"desc": "Make a friendship bidirectional"})
14 hierarchy.add rule typing(

15 "R", "T", {
16 "lhs typing": {"x": "Person", "y": "Person"},
17 "rhs typing": {"x": "Person", "y": "Person"}
18 })

Persistent graph hierarchies

Persistent graph hierarchies are implemented in the Neo4jHierarchy class. Because both
NXHierarchy and Neo4jHierarchy inherit the same abstract class Hierarchy, their interfaces
are mostly shared (currently, the functionality related to the accommodation of rewriting rules
is not implemented for persistent graphs). However, interesting points of dissimilarity between
the persistent and the in-memory implementation of hierarchies in ReGraph consists in the way
the skeleton of a hierarchy is accommodated within the underlying graph database together
with the content of the hierarchy.

As we have previously mentioned, Neo4j does not allow to store multiple property graphs
in the same database, therefore ReGraph implements a mechanism that stores both hierarchy
skeleton, its graphs, homomorphisms and relations within a single property graph. There-
fore, apart from the credentials necessary to connect to the database, the constructor of the
Neo4jHierarchy class takes as the input the following arguments:
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❼ graph label defines the label used to denote the nodes representing the nodes of the
hierarchy skeleton;

❼ typing label defines the relationship type used to denote the relationships representing
the homomorphism (typing) edges of the hierarchy skeleton;

❼ relation label—the relationship type representing the binary relation edges of the hi-
erarchy skeleton;

❼ graph edge label—the relationship type representing the edges inside of the graphs be-
longing to the hierarchy;

❼ graph typing label—the relationship type for edges encoding maps of nodes that define
homomorphisms in the hierarchy;

❼ graph relation label—the relationship type for edges encoding relations between nodes
that define binary relations in the hierarchy;

Then, the skeleton graph of the hierarchy is given by the set of nodes labeled with the value
of graph label and the set of relationships with the types typing label and relation label

in the graph database. Every individual graph G is then defined by the set of nodes la-
beled with the identifier of this graph in the hierarchy, while the edges are defined by all
the database relationships with the label given by the value of graph edge label that connect
nodes from the corresponding set of graph nodes VG. A homomorphisms h : G → T situated
in such a graph hierarchy is then defined by all the database relationships labeled by the value
graph typing label and whose source node is labeled with the identifier of G and target the
identifier of T . The same applies for binary graph relations accommodated in the hierarchy:
they are obtained by the set of relationships labeled with graph relation label.

This encoding (see schematic example in Figure 2.18) does not only allow to store persis-
tently the structure of the hierarchy, the hierarchy’s homomorphisms and its relations, it also
allows to exploit the querying capabilities of the graph database for performing propagation
in such hierarchies. Having accommodated homomorphisms and binary relations with native
relationships in the database allows us to design concise and intuitive queries performing prop-
agation of rewriting. A more detailed discussion of these queries can be found in [10].

2.3.4 Audit trails in ReGraph

To design and implement an audit trail for the presented KR system we have adopted an
approach similar to modern VC systems and adapted the main notions of VC to our formalism
of graphs with attributes and hierarchies of graphs.

VC views an update of the controlled object as an atomic operation called commit. Commits
are stored in a structure usually called a revision graph, whose nodes are commits and whose
edges connect successive commits. The states of the object at the times of different commits
are stored using delta compression. A delta is a symbolic representation of the change in the
object state from one commit to its successor. Delta compression allows the system to store
only the current version of the object, while all previous versions can be computed using the
deltas encapsulated within the revision graph. The commit that has produced the current state
of the object is usually called the head commit. Parallel versions of an object are maintained
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side instances of this rule. The instances are represented with simple Python dictionaries, whose
keys are node identifiers for the nodes of the corresponding patterns and whose values are node
identifiers of the target graphs at the time of rewriting. Values of these dictionaries are used to
compute overlaps between consecutively applied rules (as in Subsection 2.1.3).

SqPO rewriting in a hierarchy encapsulated in an instance of VersionedHierarchy is ex-
pressed as a delta that consists of the applied rule hierarchy together with the left-hand side and
the right-hand side instances of this hierarchy. The instances are represented with Python dic-
tionaries whose keys are identifiers of graphs in the hierarchy and whose values are dictionaries
representing instances of individual rules in the corresponding graphs. Values of these dictio-
naries are used to compute hierarchy overlaps between consecutively applied rule hierarchies
(as in Subsection 2.2.9).

The Versioning class implements the methods corresponding to typical VC operations: it
provides methods for the operations of commit (commit), branch switching (switch branch),
branching (branch), merge of branches (merge) and rollback (rollback). It also allows the
user to access to the list of branches (branches) and to the current branch (current branch)
corresponding to the current version of the audited object. The VC operations are implemented
as follows:

Commit. A commit operation corresponding to some transformation adds a new node to the
revision graph, connects it with an edge to the current head, adds a delta corresponding to a
transformation to the newly created edge. Example of a commit operation is given in Figure
2.19.

(a)

c1 c2

c3 c4

c5
t1

t2

t3

t4

(b)

c1 c2

c3 c4

c5 c6
t1

t2

t3

t4 t5

Figure 2.19: Example of an audit trail before (a) and after (b) the commit operation correspond-
ing to some transformation whose delta is denoted with t5. Head commits are represented with
grey nodes, the current head is highlighted with a bold node.

Switch branch. The operation of branch switching applies the delta specifying the transfor-
mation of the current version of the object to the branched version (to which the switching is
performed). Then the value of the current head is updated accordingly. Figure 2.20 presents a
small example of branch switching.

Branch. To branch from the current head we need to perform a commit of the identity
transformation specified by some delta and add this commit to the set of heads while preserving
the current head. An example of this operation can be found in Figure 2.21.

Merge. Merging of the branch defined by some head (distinct from the current head) into the
current branch can be performed by specifying two merging deltas: one that defines a merging
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(a)
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(b)
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t4 t5

Figure 2.20: Example of audit trails before (a) and after (b) branch switching. Head commits are
depicted with gray nodes and current heads are highlighted with a bold node. Different parallel
branches are denoted by red and blue edge colors.

(a)

c1 c2 c3
t1 t2

(b)

c1 c2 c3

c4

t1 t2

t3

Figure 2.21: Example of audit trails before (a) and after (b) branching. Head commits are
depicted with gray nodes and current heads are highlighted with a bold node. The newly added
delta correpospodning to the identity tranformation of the underlying object is denoted by t3.

transformation for the current version of the object and one that defines such a transformation
for the other branch. This operation adds a new commit to the revision graph, connects it with
edges to the current and the other head and associates the two merging deltas to these edges.
Figure 2.22 presents a small example of branch merging.

Rollback. The operation of rollback computes the composition of deltas along the path from
the current head to the rollback commit in the revision graph. Then, the update of the revision
graph and the set of heads is performed as follows. Let c be a rollback commit and P(c,H) be
the set of all paths from the commit c to every head commit h ∈ H. These paths define the set of
nodes and edges to remove from the revision graph. Any head whose commit is associated with
a removed node is, thus, removed. Then, all the commits whose successor nodes are removed
become new heads. Let us consider a small example of a rollback operation in Figure 2.23

The implemented VC operations described above rely on a set of abstract methods that,
therefore, make our class abstract and that must be implemented in every concrete audit trail.
These methods include:

❼ invert delta, a static method that inverts the input delta;

❼ apply delta applies the input delta to the current object;

❼ compose deltas, a static method that finds the delta corresponding to the composition
of the two input deltas;
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Figure 2.22: Example of an audit trail before (a) and after (b) the merge of branches defined by
heads c4 and c6. Head commits are depicted with gray nodes and current heads are highlighted
with bold node lines. The two merging deltas are denoted by t6 and t7.
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Figure 2.23: Example of an audit trail before (a) and after (b) a rollback operation. Head
commits are represented with grey nodes, the rollback commit is denoted by a light red node, the
removed nodes and edges of the revision graph are highlighted with red.

❼ merge into current branch computes merging deltas for the current head and the head
of the input branch, then applies this delta to the current object;

❼ delta to json, a static method that converts the input delta to its JSON representation;

❼ delta from json, a static method that converts the input JSON representation to the
corresponding delta object.

Example 2.3.11. The following listing illustrates how a graph audit trail can be created in
ReGraph. This example also illustrates how we can branch, rewrite objects through the interfaces
of the audit trail and switch branches.

1 from regraph import NXGraph, VersionedGraph

2
3 # Create a graph object

4 graph = NXGraph()

5 graph.add nodes from(["circle", "square"])

6 graph.add edge("circle", "square")
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7
8 # Create an audit trail for this object, initial branch

9 # is called "master"

10 g = VersionedGraph(graph, init branch="master")

11
12 # Create the new branch "test"

13 g.branch("test")

14
15 # Create a rewriting rule

16 pattern = NXGraph()

17 pattern.add node("square")

18 rule = Rule.from transform(pattern)

19 rule.inject clone node("square")

20
21 # Apply this rule through the interface of VersionedGraph

22 g.rewrite(

23 rule,

24 instance={"square": "square"},
25 message="Clone the square node")

26
27 # Switch back to "master", after switching we obtain

28 # the version of the graph before cloning of the square

29 g.switch branch("master")

Finally, note that our audit trail objects are not persistent, but in-memory. Versioning

provides two methods, to json and from json, that can be used for the (de-)serialization of
audit trails in the JSON format.

2.4 Discussion and conclusion

In this chapter, we have presented a KR system based on hierarchies of graphs and their
homomorphisms. The described hierarchical structure can be, in general, instantiated in any
category with appropriate structure (with pushouts and pullback complements over monos).
We have developed a framework which provides means for updating individual objects situated
in a hierarchy and propagating necessary changes to other objects.

In particular, we have described the frameworks for backward and forward propagation that
apply in the situation when one of the two homomorphic objects in G−h→T is updated. Re-
strictive updates of T (given by removal and cloning of elements) induce backward propagation
that may result in an update of G. Inversely, expansive updates of G (given by addition and
merging) induce forward propagation that may perform an update of T . Such propagation varies
over a range of updates that make it possible to unambiguously restore the homomorphism be-
tween the two updated objects. These updates are controlled by means of rule factorizations
and clean-up arrows. Interestingly, rule factorizations allow controlling propagation by splitting
the original rewriting into two phases, the first of which is called strict phase and performs a
portion of updates that does not ‘break’ the original homomorphism. The second phase is called
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canonical propagation and performs necessary propagation updates in some canonical fashion,
i.e. using categorical constructions with universal properties.

The type respecting rewriting and canonical coupled transformations presented in the in-
troductory chapter (Section 1.1) fall into the range of updates specified by our propagation
framework. For example, given some forward rule factorization L → L′ → L+ for G, L′ ∼= L+

gives us a type respecting rewriting G  G′ with G′ → T as in [19]. On the other hand, in a
backward factorization L ← L′ ← L− or a forward factorization L → L′ → L+, L ∼= L′ gives
us a canonical coupled transformation of G and T similar to the one described in [66] for the
DPO approach.

We have further used our backward and forward propagation framework to derive a pro-
cedure that allows rewriting individual objects in a general hierarchy with an arbitrary SqPO
rule in a way that preserves hierarchy’s structure and consistency. We have also introduced the
notion of a rule hierarchy that generalizes SqPO rewriting to hierarchies of objects and studied
the conditions under which an arbitrary rule hierarchy can be applied to the corresponding
hierarchy of objects. We have presented the construction of a rule hierarchy that performs
rewriting and propagation in hierarchies given by the above-mentioned procedure.

In this thesis, we have presented a model of an audit trail for updates in individual objects
and hierarchies. Such a trail allows maintaining the history of transformations and provides
means for reverting sequences of transformations. Moreover, it enables accommodation of mul-
tiple versions of the same object diverged as the result of conflicting rewrites. To design this
model we have investigated the questions of reversibility and composition of SqPO rewriting
for individual objects and hierarchies. In particular, we have introduced the construction that
allows composing consecutive SqPO rewrites, where the first rewrite is reversible. We have also
described the conditions for rewriting in hierarchies to be reversible and the construction for
composing consecutive applications of two rule hierarchies.

The presented framework is implemented in the Python library ReGraph for the category of
simple graphs with attributes. The library allows creating and transforming individual graphs
and hierarchies using two backends: in-memory graphs and persistent graphs stored in the
Neo4j database.

The presented KR framework provides means for expressing corpora of fragmented knowl-
edge on different abstraction levels and relating them with homomorphisms. It supports updates
of individual fragments that can be dynamically propagated to other parts of the corpus. Such
propagation guarantees the consistency of knowledge at all times. The system can be used for
modelling and curation of knowledge on entities and their relations in any domain. The two
large use-cases of the presented system are discussed in the chapters that follow, namely a model
for schema-aware property graphs and a bio-curation system for cellular signalling knowledge.

2.4.1 Future work

The presented generalization of SqPO rewriting to hierarchies of objects gives rise to a number
of interesting questions. Many classical topics in graph transformation can be investigated with
respect to rewriting in hierarchies, such as concurrency and parallelism of such rewriting [36],
negative [46] or even nested application conditions [35] and so on. In the rest of this section,
however, we will focus on some concrete future directions relevant to the KR and curation.

The first such direction could consist in adding the undo operation to the audit trail for
individual objects and hierarchies. For this to be done, we need to investigate how an arbitrary
transformation in a sequence of rewrites can be undone. For instance, in the case of rewriting
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performed on individual objects, this question can be formulated as follows. For two conecutive
rule applications, how the rewriting specified by the first rule can be ‘undone’ in a way that
makes the application of the second rule (or its modified version) possible.

This question is directly related to the notions of sequential independence of two consecutive
SqPO rewrites studied in [29], as well as enablement and prevention from [22]. We can inves-
tigate the sequential independence of the rewrites by constructing witnesses of independence
as described in [29]. Roughly speaking, the existence of a witness of independence indicates
that the transformations specified by first rule can be performed before the application of the
second rule. In case when the two rewrites are not sequentially independent, we can try to
find a ‘subrule’ of the second rule that can be applied even when the first rule was not applied.
A similar question can be asked for rewriting and propagation in hierarchies of objects or, in
general, for consecutive applications of rule hierarchies.

Another interesting feature of a KR system based on hierarchies of graphs would be to incor-
porate some calculus for expressing structural constraints on nodes and edges. Such constraints
could, for example, restrict the number of outgoing edges from a node, i.e. for a homomorphic
pair of graphs G → T we could state ‘all the nodes in G that map to some node in T can
have at most one outgoing edge’. Then, the interplay between rewriting, backward/forward
propagation and such constraints could be investigated.

Some future work remains to be done in the ReGraph library. For example, some features
of in-memory graphs and hierarchies are not implemented for the Noe4j-based backend due to
limitations of the underlying database technologies, e.g. accommodation of rules as hierarchy
nodes, the implementation of sets of attributes defined by regular expressions or integer intervals.
Moreover, at the current stage of ReGraph’s development, audit trails are represented as in-
memory objects whose lifetime is limited by the lifetime of the application. Therefore, it would
be interesting to implement persistent encoding of audit trails using, for example, the Neo4j
database.
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Chapter 3

Schema validation and evolution for

graph databases

Property graph (PG) databases are widely used to represent complex data stored as a collection
of nodes, edges and their properties. Various database management technologies based on PGs
have emerged in the recent decade, e.g. Neo4j, Oracle Spatial and Graph, SAP HANA, Redis
Graph, TigerGraph and so on. Alongside these technologies a number of query and graph
traversal languages have been developed including Cypher, GraphQL, Gremlin, etc. However,
due to the fact that the PG data model has been originally conceived as schema-free, these
technologies lack the support for PG schemas, i.e. schema specification and schema modification
capabilities.

Node labels and relationship types in PG data model are often used to represent types of
entities and relations that exist in a given database. Looking at the set of node labels and
relationship types can, therefore, be seen as the first step towards what could be a schema
for the underlying property graph. Moreover, the Neo4j database, for example, provides some
primitive aspects of schemas via the use of constraints. These constraints include property
uniqueness and existence constraints for nodes and relations. Neo4j also allows to create node
keys: the user can specify that a node with particular label has a set of properties and their
combined value is required to be unique. However, the use of node labels, relationship types
and constraints does not allow for more advanced schema-related features, such as specifying
a set of allowed relationship types between different node labels or a set of allowed properties
and their types for a given node label or relationship type. Currently, no standardized data
definition language (DDL) for PGs exists, therefore schemas seen as sets of node labels and
relationship types stay descriptive in the sense that they only reflect the data, but do not define
data specification in a prescriptive way. Moreover, there exist no tools that would allow PGs
schema modification or provide mechanisms for data/schema co-evolution.

This chapter provides a proposal for a PG schema model that allows for a full range of
schema-related functionality: prescriptive schema definition, schema validation and schema
evolution. More precisely, the contributions as a part of this thesis include:

❼ a schema model specifying labels and properties for nodes and edges together with a
concise schema DDL following intuitive ASCII-art syntax inspired by Cypher;

❼ a mathematical framework for schema validation allowing us to construct both data graph
and schema as PGs and to enforce schema validation through a homomorphism from data
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to schema;

❼ application of the mathematical framework presented in Chapter 2 that allows to define
data and schema updates using SqPO rewriting approach and provide mechanisms for
data/schema co-evolution;

❼ a prototype implementation of schema-aware Neo4j-based PGs equipped with capabilities
for data/schema co-evolution (implemented as a part of the ReGraph library).

The contributions on schemas for property graphs presented in this chapter were communi-
cated as a conference paper in [11] and as a longer version in [10].

3.1 Schemas for property graphs

Let us start this section by providing a traditional formal definition of property graphs [9], i.e.
the definition of labeled property graphs. First of all, let us fix the following sets: a set of objects
O, a finite set of labels L, a set of property keys K and a set of values V.

Definition 3.1.1. A property graph (PG) is given by a tuple (N,E, η, λ, P, ν), where:

❼ N ⊆ O is a finite set of nodes;

❼ E ⊆ O is a finite set of relationships (or edges);

❼ η : E → N ×N is a function that assigns an ordered pair of nodes to every relationship;

❼ λ : N ∪ E → P(L) is a function that assigns a finite set of labels to every node and
relationship (here P(L) denotes the power set of L);

❼ P ⊆ (N ∪ E)×K is a finite set of properties;

❼ ν : P → V is a partial function that assigns property values to properties.

such that N and E are disjoint.

Remark 3.1.2. Note that in the graph database community the edges of underlying graphs are
called both edges and relationships interchangeably.

Remark 3.1.3. Note also that Definition 3.1.1 treats previously mentioned relationship types as
labels assigned to relationships and allows for a single relationship to have multiple such labels.
However, some database management technologies (among which is Neo4j used as the main DB
technology in this thesis) only allow each relationship to have exactly one type. In the rest of
this section we assume that relationships can have multiple such labels and will call them labels
rather than types.

An example of a PG is illustrated in Figure 3.1. As we have previously mentioned, sets of
node and relationship labels can be used to group nodes and relations and represent types of
entities and relations that exist in the database. Therefore, we can say that the node n1 from
Figure 3.1 is typed as Person and n2 as Message.

To define PG schemas and to make an analogy to graphs with attributes (defined in Ap-
pendix A.1), in this thesis we will use a slightly modified definition of PGs given in Definition
3.1.4 (similarly to [10]). Such a modified definition, in particular, allows us to interpret the
DDL specification that we design as a PG.
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n1
firstName: Jane

lastName: Murray
n2

creationDate: 2010-10-30

browserUsed: Firefox

type: post

LIKES

HAS AUTHOR

:Person :Message

Figure 3.1: Example of a PG. Node labels are represented with small text labels starting with a
column and situated above the nodes. Relationship labels correspond to text labels attached to
arrows. Finally, properties are given in gray boxes attached to nodes or relationships.

Definition 3.1.4. A property graph (PG) is given by a tuple (N,E, η, P, ν), where:

❼ N ⊆ O is a finite set of nodes;

❼ E ⊆ O is a finite set of relationships (or edges);

❼ η : E → N ×N is a function that assigns an ordered pair of nodes to every relationship;

❼ P ⊆ (N ∪ E)×K is a finite set of properties;

❼ ν ⊆ P × V is a finite relation that that assigns sets of values to properties;

such that N and E are disjoint.

Remark 3.1.5. First of all, we have removed labels from the definition of property graph above.
Later in this section we will see how, for a given PG, node and relationship labels can be brought
back by establishing a homomorphism to a schema PG (label sets can be seen as nodes and
relationships of this schema PG).

Remark 3.1.6. Contrary to the previous definition of PGs, properties are associated with sets
of values and not single values from V. This allows us to easily translate Definition 3.1.4 in
terms of graphs with attributes (where labels can be encoded with special types of attributes).
In particular, it allows us to define the constructions of pullback, pushout and final pullback
complement on property graphs similarly to the ones for graphs with attributes.

We first provide a DDL for specifying PG schemas and then show how the schema defined
using this DDL can be seen as a PG from Definition 3.1.4.

3.1.1 Data definition language for property graphs

Traditional schema definitions, for example, in relational databases, allow defining not only sets
of attributes (columns) constituting our data, but also the data types for the values of these
data attributes. Therefore, before we can give any adequate proposal for a PG DDL, we need
to discuss the question of data types and mechanisms through which these data types interact
with property values.

Data types as property values. Let T be a finite set of data types (for instance, in Neo4j
such data types include STRING, INTEGER, DATETIME etc.). Let us assume that every data type
t ∈ T defines a subset of values from V, i.e. t ⊆ V . For example, we will say that the
data type INTEGER in Neo4j defines the set of all integer numbers and the data type STRING

defines the set of all strings, etc. Let us also assume that the set of data types T itself is a
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subset of V, i.e. T ⊆ V . Having defined data types in such a way, the task of testing if a
given value v ∈ V is of a specific type t ∈ T reduces to the testing if v ∈ t, i.e. if v is in
the set of values defined by the data type t. In the sections on schema evolution that follow
we will perform different set-theoretic operations on subsets of V. For instance, as part of
the construction of final pullback complements and pushouts, we will perform set difference
and union. However, put in a practical implementation context, the results of some of these
differences and unions should be clarified. For example, in the Neo4j type system, we would need
to clarify what is the result of INTEGER minus {1, 3}, INTEGER minus (−∞,−1] or even STRING

minus INTEGER. For example, the library ReGraph (discussed in Section 2.3), provides a module
regraph.attribute sets that handles the data types and mixed operations between data types
and values of these data types. This allows to symbolically represent sets of integers defined by a
sequence of intervals or sets of strings recognized by a regular expression. It handles operations
like “INTEGER minus {1, 3}” (by constructing the corresponding set of integer intervals) and
“STRING minus INTEGER” (by performing the casting of integers to strings and constructing a
regular expression that discards all the string representation of integers). In this chapter we
will omit these implementation details and assume that for any two sets of values V1, V2 ⊆ V,
we can construct V1 \ V2, V1 ∪ V2 ⊆ V, etc.

To define our DDL we will use node and relationship labels as type identifiers. The basic
components of a schema definition include:

❼ Property type, a pair (k, t) ∈ K × T , where k is the property key and t is its data type.
For example, “content: STRING” declares the property type (content, STRING).

❼ Element type b ∈ BT is a tuple (l, P,B), where l ∈ L is a label, P is a set of prop-
erty types, and B ⊆ BT is the set of element types that b inherits. An element type
can inherit multiple other element types, but must not inherit itself either directly or
indirectly. For example, “Message {content: STRING?, length: INTEGER}” is a declara-
tion of the element type m = (Message, {pt1, pt2}, ∅), where pt1 = (content, STRING) and
p2 = (length, INTEGER). On the other hand “Post :: Message {language: STRING?}” de-
clares the element type p = (Post, {pt3 = (language, STRING)} , {m}). In this example, the
element type associated to the label Post inherits the one associated to Message. The set of
property types of an element type b = (l, P, E) is defined as prop(b) := P ∪

⋃

b′∈B prop(b′),
i.e. all the property types that b possesses, either directly or through inheritance. Sim-
ilarly, we define labels(b) to be the set of labels of b. For instance, for element type p,
prop(p) = {pt1, pt2, pt3} and labels(p) = {Post, Message}. From now on, for the sake of
conciseness, we will often refer to element types by their associated labels.

❼ Node type nt ∈ NT is a 1-tuple (b) where b ∈ BT is an element type, for example, “(Post)”
declares the node type p′ = (Post). For a node type nt = (b), we define prop(nt) = prop(b)
and labels(nt) = labels(b). In the rest of this section we will refer to node types by the
labels associated to their element types.

❼ Relationship type et ∈ ET is a triple (s, b, t), where s, b, and t are element types. For
instance, “(Comment)-[REPLY_OF]->(Message)” declares the edge type (Comment, REPLY_OF,
Message). Note that s and t need not be node types. This allows defining a single edge
type between multiple pairs of node types inheriting s and t. In the rest of this section
we will refer to relationship types by the labels associated to their element types.
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❼ Property graph type, a triple (BT ,NT , ET ), where BT is a set of element types, NT is a
set of node types and ET is a set of relationship types. A property graph type provides
the schema for a PG.

Remark 3.1.7. For an element type b ∈ BT to be valid, prop(b) can have exactly one property
type with the same key, i.e. all property types of an element type are uniquely determined by
their key.

Example 3.1.1. The following example of the proposed PG schema DDL creates a property
graph type that captures a fragment of the LDBC SNB[39] schema.

CREATE GRAPH TYPE snb (

// element types

Person {

firstName : STRING, lastName : STRING

},

Message {

creationDate : TIMESTAMP, browserUsed : STRING

},

Comment <: Message {},

Post <: Message {

imageFile : STRING

},

KNOWS {creationDate : TIMESTAMP},

LIKES {creationDate : TIMESTAMP},

HAS_CREATOR {creationDate : TIMESTAMP},

REPLY_OF {},

// node types

(Person), (Post), (Comment),

// edge types

(Person)-[KNOWS]->(Person),

(Person)-[LIKES]->(Message),

(Message)-[HAS_CREATOR]->(Person),

(Comment)-[REPLY_OF]->(Message)

)

3.1.2 Schema validation

Definition 3.1.8. Given a property graph type (BT ,NT , ET ). The corresponding schema PG
S is given by a tuple (NS , ES , ηS , PS , νS), where:

❼ NS is given by the set of node types NT ;

❼ ES is given by the set of relationship types ET ;

❼ ηS associates the elements from ET to pairs of elements from NT in such a way that
ηS(e) = (n1, n2) for every e ∈ ET if and only if e = (n1, b, n2) for some element type
b ∈ BT and node types n1, n2 ∈ NT ;

❼ PS ⊆ (NT ∪ET )×K is the set of properties defined in such a way that for all e ∈ NT ∪ET
and k ∈ K, (e, k) ∈ PS if and only if k ∈ {k′ ∈ K | (k′, t) ∈ props(e)};
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❼ νS : PS → T is a function that assigns properties from PS to data types defined in the
way that ν(p) = t for some p = (e, k) ∈ PS , e ∈ NT ∪ ET , k ∈ K and t ∈ T if and only if
there exists b ∈ BT such that (k, t) ∈ props(b).

Example 3.1.2. Figure 3.2 illustrates a PG constructed from the property graph type snb

defined in Example 3.1.1.

Person

firstName: STRING

lastName: STRING

Post

imageFile: STRING?

creationDate: TIMESTAMP

browserUsed: STRING

Comment

creationDate: TIMESTAMP

browserUsed: STRING

LI
KE
S

HA
S
AU
TH
OR

HAS
AUTHOR

K
N
O
W
S

LIKES

R
E
P
L
Y
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R
E
P
L
Y
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Figure 3.2: Example of a schema PG

Definition 3.1.9. LetG and S be two property graphs withNG∪EG andNS∪ES being disjoint.
A homomorphism h : G → S is given by two functions hN : NG → NS and hE : EG → ES ,
mapping the nodes and edges of G to nodes and edges of S, such that

❼ ηS ◦ hE = (hN × hN ) ◦ ηG

❼ and for h := hN ∪ hE

– if (e, k) ∈ PG, then (h(e), k) ∈ PS ;

– if ((e, k), v) ∈ νG and ((h(e), k), t) ∈ νS , then v ∈ t.

Remark 3.1.10. The definition above states that a homomorphism h : G→ S maps nodes and
relationships of G to nodes and relationships of S is such a way that: (1) each relationship of
G with source and target nodes n1 and n2 is mapped to a relationship in S with source and
target nodes hN (n1) and hN (n2), (2) all properties in G are instances of properties in S, and
(3) each property in G is associated with a subset of the values whose elements are of the data
type associated to the corresponding property in S.

Remark 3.1.11. A PG homomorphism h = (hN , hE) is monic if both hN and hE are injective.

We can now view a homomorphism h : G → S as a formalization of the notion of schema
validation, where G is a data PG and S is a schema PG. In other words, G respects the schema
S when
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❼ each node/relationship e in G is an instance of the schema node/relationship h(e);

❼ edges in S define the set of allowed edges in G between different types of nodes;

❼ each node/relationship e in G is associated with a subset of properties corresponding to
the element h(e) in S;

❼ values of the properties in G are of the data types associated to the respective properties
in S.

The described approach represents a fairly simple notion of schema validation, e.g. it does
not allow specifying the number of in-/outgoing edges, impose uniqueness constraints.

Example 3.1.3. Figure 3.3 illustrates an example of a PG that complies with the schema
defined in Example 3.1.1. The depicted PG is homomorphic to the PG from Figure 3.2, the
respective homomorphism is colour-coded, i.e. all green nodes in Figure 3.3 map to the Post

node in Figure 3.2, etc.

n1

firstName: Bryn

lastName: Davies

n2

imageFile: photo33711.jpg

creationDate: 2010-10-16

browserUsed: Firefox

n3

firstName: Jose

lastName: Alonso

n4

creationDate: 2010-10-30

browserUsed: Firefox

n5

firstName: Jane

lastName: Murray

n6

creationDate: 2010-10-30

browserUsed: Safari

n7

creationDate: 2010-10-30

browserUsed: Safari
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Figure 3.3: Example of a PG complying with the schema PG from Figure 3.2

Remark 3.1.12. Recall that in the previously presented DDL every element type was associated
to a unique label. It means that we can encode a homomorphism h : G → S using node/re-
lationship labels attached to the elements of G, where G is a PG from Definition 3.1.1. And,
vice versa, having a property graph from Definition 3.1.4 and a homomorphism h, for every
element e from G we can construct its label set by looking at the corresponding element h(e) in
S. Every such element in S is associated to an element type in the underlying property graph
type providing the corresponding set of labels.

3.2 Data and schema co-evolution

As we have mentioned before, sets of labels on nodes and edges of traditional PGs can be
seen as descriptive schemas that reflect the shape of data. At the same time, in the previous
section we have seen how prescriptive schemas for PGs can be specified and validated through
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a homomorphism from data instances. While in the first setting a schema does not impose
any constraints on a data instance (but simply reflects it), in the later one the data instance
is required to comply with the schema, i.e. the schema imposes constrains on properties and
relationships allowed between different types of nodes.

In the first scenario evolution of the instance is implicitly reflected in the schema, and in the
second case such evolution is required to always respect the schema. On the other hand, because
schemas of the first kind do not exist explicitly (for example, specified using a DDL or as a PG),
we do not have any means for specifying their evolution. Having explicit prescriptive schemas
(for example, as schema PGs from the presented data model) allows us to design mechanisms
for their evolution. In this section we will study how the SqPO rewriting approach described
in Section 2.1 can be used as an update semantics for performing the evolution of both data
instance and schema PGs.

Moreover, what we would like to design here is a way to combine different evolution scenarios,
we would like to provide means for:

1. performing schema evolution and specifying co-evolution of its instance to perform pre-
scriptive updates propagated from the schema to the data;

2. reflecting the evolution of an instance in its schema to perform what we call descriptive
updates propagated from the data to the schema.

We have previously advocated the necessity and benefits of prescriptive schemas for the PG
data model, e.g. explicit prescriptive schemas can be modified when an application undergoes
a change. In this context, the first scenario of prescriptive updates is a classical data-schema
co-evolution problem which consists in adjusting the data instance to a modified version of its
schema. However, assuming that a ‘perfect’ prescriptive schema can be designed and maintained
throughout the entire life-cycle of an application is not realistic as data undergoes constant
changes. Therefore, providing means for handling the second kind of co-evolution scenarios, the
one of descriptive updates propagated from the data to the schema, is indispensable to make
the development process of our application (at least on in its early stages) rigorous yet flexible.
In this section, we provide mechanisms for realizing both update scenarios while keeping our
data compliant with the schema at all times. We will apply the mathematical framework for
rewriting and propagation from Section 2.2 in the hierarchy consisting of two PGs, the data
graph G and the schema graph S, and the homomorphism h : G → S, through which schema
validation is performed.

3.2.1 SqPO rewriting and propagation for PGs

To describe the effect of SqPO rewriting applied to PGs let us first define the constructions of
a final pullback complement and a pushout for PGs.

Proposition 3.2.1. Given three PGs A = (NA, EA, ηA, PA, νA), B = (NB, EB, ηB, PB, νB) and
D = (ND, ED, ηD, PD, νD) and two homomorphisms f = (fN : NA → NB, fE : EA → EB) and
h = (hN : NB → ND, hE : EB → ED) with h being a mono. The final pullback complement to

A
f
→ B

h
 D is given by the PG C = (NC , EC , ηC , PC , νC) and two homomorphisms g : A→ C

and i : C → D, where:

❼ NC , EC , g and i are given by constructing the respective final pullback complements to

NA
fN→ NB

hN
 ND and EA

fE→ EB

hE
 ED in the category Set (see Appendix A.5.2);
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❼ ηC is the unique homomorphism determined by the universal property of the final pullback
complement that constructed EC as in the following diagram:

NB ×NB NA ×NA

ND ×ND NC ×NC

EB EA

ED EC

ηB hN×hN

fN×fN

gN×gN

ηD

iN×iN

ηC

hE

ηA

fE

gE

iE

(3.1)

❼ PC ⊆ (NC ∪ EC)×K is defined in a way that

– for every e ∈ NA ∪ EA and k ∈ K, (g(e), k) ∈ PC if (e, k) ∈ PA;

– for every e ∈ ND∪ED and k ∈ K, (i−1(e), k) ⊆ PC if there does not exist e′ ∈ NB×EB

such that h(e′) = e and (e′, k) ∈ PB;

❼ νC is given by the final pullback complement in Setfin (see Appendix A.5.1);

Proposition 3.2.2. Given three PGs A = (NA, EA, ηA, PA, νA), B = (NB, EB, ηB, PB, νB) and
C = (NC , EC , ηC , PC , νC) and two homomorphisms f = (fN : NA → NB, fE : EA → EB) and

g = (gN : NA → NC , gE : EA → EC), the pushout from B
f
← A

g
→ C is given by the PG

D = (ND, ED, ηD, PD, νD) and two homomorphisms h : B → D and i : C → D, where:

❼ ND, ED, h and i are given by constructing the respective pushouts from NB
fN← NA

gN→ NC

and EB
fE← EA

gE
 EC in the category Set (see Appendix A.4.2);

❼ ηD is the unique homomorphism determined by the universal property of the pushout that
constructed ED as in the following diagram:

EA EC

EB ED

NC ×NC

NB ×NB ND ×ND

fE

gE

iE

ηC

ηB

hE

ηD

iN×iN

hN×hN

(3.2)

❼ PD ⊆ (ND ∪ ED)×K is defined is a way that
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– for every e ∈ NB ∪ EB and k ∈ K, (h(e), k) ∈ PD if (e, k) ∈ PB;

– for every e ∈ NC ∪ EC and k ∈ K, (i(e), k) ∈ PD if (e, k) ∈ PC ;

❼ νD is given by the pushout in Setfin (see Appendix A.4.1)

Now an update of an arbitrary PG following Definition 3.1.4 can be performed according to
the semantics of the SqPO rewriting.

Given a data graph G complying with a schema graph S through a homomorphism f : G→
S, the objects G, S, f form a hierarchy from Section 2.2 with two hierarchy nodes corresponding
to G and S and one hierarchy edge corresponding to f . To describe schema/data co-evolution
mechanisms, we can use backward and forward propagation of SqPO rewriting. Before we can
do that, we need to define the constructions of a pullback and image factorization for PGs.

Proposition 3.2.3. Given three PGs B = (NB, EB, ηB, PB, νB), C = (NC , EC , ηC , PC , νC)
and D = (ND, ED, ηD, PD, νD) and two homomorphisms h = (hN : NB → ND, hE : EB → ED)

and i = (iN : NC → ND, iE : EC → ED). The pullback from B
h
→ D

i
← C is given by the PG

A = (NA, EA, ηA, PA, νA) and two homomorphisms f : A→ B and g : A→ C, where:

❼ NA, EA, f and g are given by constructing the respective pullbacks from NB
hN→ ND

iN← NC

and EB
hE→ ED

iE← EC in the category Set (see Appendix A.3.2);

❼ ηA is the unique homomorphism determined by the universal property of the pullback
that constructed NA ×NA as in the following diagram:

EB EA

EC

NB ×NB NA ×NA

ND ×ND NC ×NC

ηB

fE

gE

ηA

ηC

hN×hN

fN×fN

gN×gN

iN×iN

(3.3)

❼ PA ⊆ (NA∪EA)×K is defined in a way that, for every e ∈ NA∪EA and k ∈ K, (e, k) ∈ PA

if (f(e), k) ∈ PB and (g(e), k) ∈ PC .

❼ νA is given by the pullback in Setfin (see Appendix A.3.1);

Proposition 3.2.4. Given two PGs A = (NA, EA, ηA, PA, νA), B = (NB, EB, ηB, PB, νB) and

a homomorphism f = (fN : NA → NB, fE : EA → EB), the image factorization of A
f
→ B is

given by the PG C = (NC , EC , ηC , PC , νC) and two homomorphisms e : A→ C and m : C → B,
where:

❼ NC , EC , e and m are given by constructing the respective image factorizations of NA
fN→

NB and EA
fE→ EB in the category Set (see Appendix A.7.2);

120



3.2. DATA AND SCHEMA CO-EVOLUTION

❼ ηC is the unique homomorphism that can be constructed applying Lemma A.7.4 to the
following diagram:

EA EB

NA ×NA EC NB ×NB

NC ×NC

eE

fE

ηA ηB

eN×eN

ηC

mE

mN×mN

(3.4)

❼ PC ⊆ (NC ∪ EC) × K is defined in a way that for every x ∈ NA ∪ EA and k ∈ K,
(e(x), k) ∈ PC ;

❼ νC is given by the image factorization in Setfin (see Appendix A.7.1);

3.2.2 Rewriting and propagation scenarios

We are now able to formulate SqPO rewriting and propagation in the graph hierarchy consisting
of the data graph G, the schema graph S and the schema-validating homomorphism f exactly
the way they were formulated in Section 2.2. What we would like to do in the rest of this
section, however, is to elaborate a couple of database application-driven scenarios, mentioned in
the introduction to this section, in which such rewriting and propagation can be useful. These
scenarios describe situations when an update of a given PG graph (the schema or the data
graph) requires the co-evolution of its counterpart. Namely, we distinguish two such scenarios:
a prescriptive update of the schema that propagates to the data instance and a descriptive
update of the data that propagates to the schema.

Prescriptive updates through backward propagation. Prescriptive updates correspond
to transformations of the schema PG that should be propagated to the instance for it to stay
compliant. From Section 2.2 we know that such transformations correspond to restrictive up-
dates (removes and clones of graph elements or properties), i.e. given a data-schema hierarchy
composed of G, S and f : G → S, restrictive updates of S induce backward propagation to
G described in Section 2.2.2. In the context of schema evolution, removal of schema elements
(or properties) models the removal of concepts (or properties of concepts) from the universe of
discourse. Such removal induces the ‘clean-up’ of all the instances of these removed concepts
(or properties). The operation of cloning of schema elements corresponds to concept refinement,
i.e. as the result of cloning the original coarse-grained concept is split into more fine-grained
concepts. As we know from Section 2.2.2, cloning of S can have a range of effects on the data
instance G, i.e. instances of the cloned elements can be canonically cloned or retyped preserving
the consistency of the hierarchy. Example 3.2.1 provides an example of such concept refinement
and a prescriptive update it triggers.

Example 3.2.1. Consider Figure 3.4 illustrating an example of a restrictive rule L ← L−

applied to a schema PG S. Application of this rule matches the schema node Message in the
original schema S and clones it into two nodes, Post and Comment, producing a new schema PG
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In the context of data evolution, the merge of data elements that correspond to different schema
elements (that are instances of different schema concepts) induces the merge of these schema
elements (join of the corresponding concepts). On the other hand, addition of new data elements
can have a range of effects on the schema S, e.g. the newly added elements can be typed
by already existing schema nodes or the new typing elements can be created. Example 3.2.2
provides an example of a descriptive update in which addition of new data elements is propagated
to the schema.

Example 3.2.2. Consider Figure 3.7 illustrating an example of an expansive rule L → L+

applied to a PG instance G. The rule matches the pattern highlighted with orange in G, adds a
new node (corresponding to the node z in L+), connects it with edges to the matched nodes and,
finally, adds a new property city: Lyon to the node corresponding to y in the rule instance (the
node n6). Now, Figure 3.8 depicts a schema PG S typing G (as before, node colors represent
the schema-validating homomorphism f : G → S). To be able to perform a schema-respecting
(strict) rewrite of G we need to provide a homomorphism L+ → S, i.e. we need to type the
right-hand side of our rule by the schema. In this example, taking into account the initial
matching of L into G, we obtain a map of two nodes in L+ to S, namely the node x is typed as
Person and the node y as Message. To type the node z, however, we will create a new schema
element Checkin that introduces a new concept into the universe of our discourse, namely a
check-in that can be related to persons and messages in the specified by L+ way. Moreover,
even though y is mapped to Message, this map cannot be used for constructing a homomorphism
L+ → S as it does not preserve properties. Therefore, using forward propagation induced by the
original rewriting of G we would also like to add a new attribute city: STRING to the schema
node Message. Figure 3.9 illustrates the updated instance G+ and the new schema S+ typing
this instance.

3.2.3 Expressing schema rewriting with schema modification operations

We have described how the update semantics given by the SqPO rewriting can be used to
perform both data and schema rewriting. Recall how in Section 2.1 we interpreted the effect of
an SqPO rewrite in terms of primitive graph transformations, i.e. deletions, clones, additions
and merges of graph elements. Such transformations of the data PG are fully supported by the
update semantics of modern PG query languages (addition and deletion are supported natively,
while cloning and merging can be performed formulating slightly more complex queries as in
Appendices D.1 and D.2). We would like to design a set of schema modification operations
(SMOs) that allow to express an arbitrary SqPO rewrite of a schema PG. Similarly, to reflect
the evolution of our schema PG S = (N,E, η, P, ν), we will interpret an arbitrary rewriting as
a sequence of the following SMOs.

❼ Split a schema element x ∈ N ∪E into elements x1, x2, . . . , xk (note that we assume that
x1, x2, . . . , xk /∈ N ∪E). For example, “SPLIT (Message) INTO (Post), (Comment)” clones
the schema node (Message) into two nodes (Post) and (Comment).

❼ Drop a schema node n ∈ N . For example “DROP (Message)” deletes the node (Message)
from the schema. Note that as a side-effect of the drop operation all the schema edges
incident to the removed node are removed.

❼ Drop a schema relationship e ∈ E. For example “DROP (Person)-[KNOWS] ->(Person)”
deletes the loop relationship KNOWS of the node (Person) from the schema.
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S
+

G
+

n1

n2

n3

n8

n9

n5

n6

city: Lyon

Checkin

Person Message

creationDate: STRING

browserUsed: STRING

type: {post, comment}
city: STRING

Figure 3.9: The result of rewriting G G+ from Figure 3.7 and the updated schema S+ after
forward propagation of the rewrite.
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❼ Drop a property p from x ∈ N∪E. For example, “DROP PROPERTY browserUsed FROM Message”
removes the property browserUsed from the schema node Message.

❼ Join schema elements x1, x2, . . . , xn ∈ N ∪ E into x. For example “MERGE Post, Comment

INTO Message” merges the schema nodes Post and Comment into a new schema node Message.
Note that elements x1, x2, . . . , xn are required to be of the same type, i.e. all elements are
either nodes or edges of the schema. In addition, if the merged elements are edges they
are all required to have the same source and target nodes.

❼ Create a new schema node n with the possibility to specify its properties and inher-
ited element types. For example, “CREATE (Checkin)” adds a new node Checkin to the
schema, “CREATE (Checkin) WITH { location: STRING, creationDate: TIMESTAMP }” adds
a new node Checkin and associates the specified properties to this node. The SMO
“CREATE (Story) WITH {timeout: INTEGER} INHERIT Message” adds a new node Story to
the schema which inherits the existing element type Message and extends it with the
specified properties.

❼ Create a new schema relationship e from a schema node s ∈ N to a schema node t ∈ N
with the possibility to specify its properties and inherited element types. For example,
“CREATE RELATIONSHIP HAS_LOCATION FROM Message TO Checkin WITH { type: STRING }”
adds a new relationship HAS_LOCATION from the node Message to the node Checkin and
associates the specified properties to this relationship.

❼ Create property p for a schema element x ∈ N∪E. For example, “CREATE PROPERTY device :

STRING for Message” adds the specified property and its value datatype to the node
Message of the schema.

3.2.4 Reflecting schema evolution in PG types

In this subsection we would like to discuss how a rewritten schema can be translated back to a
PG type expressed in the DDL presented in Subsection 3.1.1. Let (BT ,NT , ET ) be the initial
PG type corresponding to a schema graph S = (N,E, η, P, ν). Given a schema transformation
S  S′ we would like to compute the updated PG type that corresponds to the updated
schema graph S′. Recall that, by construction of S, N := NT and E := ET . Recall also that
an arbitrary SqPO rewrite of the schema can be seen as a sequence of SMOs. Therefore, to
construct the updated PG type it is enough to describe how every individual SMO defined in
the previous subsection updates the original PG type. Let the tuple (BT ′,NT ′, ET ′) define the
PG type after performing an SMO. For the respective operations the updated sets of element
types BT ′, node types NT ′ and edge types ET ′ are defined as follows.

Split. Consider an operation of splitting an element e ∈ N ∪ E into elements e1, e2, . . . , ek.
Let e be associated with an element type b = (l, P,B) ∈ BT and let l1, l2, . . . , lk be a sequence of
new labels corresponding to the elements e1, e2, . . . , ek respectively (for example, specified by the
user or generated automatically). We create a new element type bi = (li, ∅, {b}) inheriting the
original element type b for every i ∈ [1 . . . k]. The new set of element types is then constructed
as follows BT ′ := BT ∪ {b1, b2, . . . , bk}..

If our original element is a node, i.e. e ∈ N , we obtain the updated set of node types
as NT ′ := NT ∪ {(b1), (b2), . . . , (bk)} and keep the set of relationship types unchanged, i.e
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ET ′ := ET . On the other hand, if e ∈ E, we set NT ′ := NT and obtain the set of updated
relationship types as ET ′ := ET ∪ {(s, b1, t), (s, b2, t), . . . , (s, bk, t)}, where s and t are element
types corresponding to the source and the target node of the original relationship e.

Drop type. The operation of dropping a schema element operates exclusively on the set of
node and relationship types and does not affect the set of element types BT . More precisely, if we
drop a node type n ∈ N corresponding to an element type b ∈ BT we construct the updated node
and relationship type sets as NT ′ := NT \{n} and ET ′ := ET \{(s, b, t) ∈ ET | s = b or t = b}
respectively. If we drop a schema relationship e ∈ E, we update only the set of relationship
types and set ET ′ := ET \ {e}.

Drop property. The operation of dropping a property from a node or a relationship type in
slightly more elaborated due to the fact that this operation needs to be propagated to the set
of all inherited element types associated to the corresponding affected element type. In general,
the operation of dropping a property p from some element type b = (l, P,B) ∈ BT constructs
the following sets of updated properties P ′ := P \ {p}.

However, apart from the element type b itself, the property p needs to be dropped from
the set of all (directly and indirectly) inherited element types, i.e. from all the elements of the
following set:

B̂ := {b̂ ∈ BT | b̂ 6= b and the label defining b̂ is in labels(b)}.

We further observe that having dropped p from all the elements in {b} ∪ B̂ we have also
dropped p from every element type that inherits one of the elements in {b} ∪ B̂ as a side-effect,
i.e. we have inadvertently dropped p from the elements of the following set:

B̌ := {b̌ = (ľ, P̌ , B̌) ∈ BT | b̌ /∈ {b} ∪ B̂ and ∃b̂ ∈ B̌ such that b̂ ∈ {b} ∪ B̂}.

To fix this undesirable side-effect, for every element b̌ ∈ B̌, we need to add the property p to the
set of its properties. Therefore, to obtain the updated set BT ′, we need to update the properties
of the element types from BT in the following way:

❼ we drop p from all the elements in {b} ∪ B̂ and

❼ we add p to all the elements in B̌.

We then update our node/relationship types from NT ∪ET by associating the corresponding
updated element types.

Join. Consider the operation of joining schema elements e1, e2, . . . , ek ∈ N ∪ E into a new
element e. Let b1, b2, . . . , bk ∈ BT be the element types associated to the schema elements
e1, e2, . . . , ek and let l be a new label for the element e resulting from the merge operation.
The new element type b′ corresponding to e simply inherits the element types b1, b2, . . . , bk, i.e.
b′ is given by a tuple (l, ∅, ∅, {b1, b2, . . . , bk}). The updated set of element types is defined as
BT ′ := BT ∪ {b′} and the new node/relationship type associated to b′ is added to NT or ET .
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Create type. Consider the operation of creating a new schema element e with property types
PT ⊆ K×T inheriting a set of existing element types B ⊆ BT . Let l be a new label associated
with e, then the updated set of element types is obtained by simply adding a new element type
b′ = (l, PT,B). The new node or relationship type associated to b′ is added to NT or ET
respectively.

Create property. Creation of a property type pt ∈ K × T for a schema element e ∈ N ∪ E
simply adds this property type to the element type b ∈ BT associated with e.

Example 3.2.3. Consider the property graph type given by the tuple (BT ,NT , ET ), where

BT := {

(Person, {(firstName, STRING), (lastName, STRING)}, ∅)

(Message, {(creationDate, TIMESTAMP), (browserUsed, STRING)}, ∅),

(KNOWS, {(creationDate, TIMESTAMP)}, ∅),

(LIKES, {(creationDate, TIMESTAMP)}, ∅),

(HAS_CREATOR, {(creationDate, TIMESTAMP)}, ∅),

(REPLY_OF, ∅, ∅)},

NT := {(Person), (Message)},

ET := {

(Person, KNOWS, Person),

(Person, LIKES, Message),

(Message, HAS_CREATOR, Person),

(Message, REPLY_OF, Message)},

defining the schema graph S from Figure 3.4. Let us apply the following split operation “SPLIT
(Message) INTO (Post), (Comment)”. As the result of this operation, we obtain the updated
property graph type given by the tuple (BT ′,NT ′, ET ′), where

BT ′ := BT ∪ {(Post, ∅, {Message}), (Comment, ∅, {Message})},

NT ′ := {(Person), (Post), (Comment)},

ET ′ := ET .

The types Post and Comment are added to the set of element types together with the corresponding
node types.

Now, let us perform another schema update given by the following SMO “DROP PROPERTY

browserUsed FROM Comment”. The updated property graph type is given by the tuple (BT ′′,NT ′′,
ET ′′), where
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BT ′′ := {

(Person, {(firstName, STRING), (lastName, STRING)}, ∅)

(Message, {(creationDate, TIMESTAMP)}, ∅),

(Post, {(browserUsed, STRING)}, {Message}),

(Comment, ∅, {Message}),

(KNOWS, {(creationDate, TIMESTAMP)}, ∅),

(LIKES, {(creationDate, TIMESTAMP)}, ∅),

(HAS_CREATOR, {(creationDate, TIMESTAMP)}, ∅),

(REPLY_OF, ∅, ∅)},

NT ′′ := NT ′,

ET ′′ := ET .}

This operation removes the property browserUsed from the node type Comment. As a result, this
property is also dropped from the element type Message. In order to preserve this property for
the element type Post, it is explicitly added to the set of its properties.

3.3 Discussions and conclusions

In this chapter we have formulated the notion of a prescriptive schema for the PG data model.
Such a schema allows defining types for nodes and relationships of a PG. Moreover, it allows
specifying sets of allowed properties for different graph elements. Schemas for PGs are formu-
lated as PG and are related to instance graphs by homomorphisms that preserve edges and
properties.

We have also shown how both data and schema PGs can be updated using the SqPO
rewriting approach, and illustrated how the techniques of backward and forward propagation
in hierarchies of graphs can be used for data/schema co-evolution.

In addition, we have proposed a concise DDL that can be used to define PG schema and a
syntax for various SMO operations, such as creation of new element types, joining or splitting
of element types, etc.

The two database management scenarios have been described, for performing prescriptive
and descriptive updates. The first scenario arises when the user is interested in performing a
schema evolution that would automatically propagate to the data instances, while the second
one—when the user performs some update of the data that should be reflected in the underlying
schema.

The prototype system for creating and manipulating schema-aware PGs based on the Neo4j
database is implemented as a part of the ReGraph Python library (its API is provided by the
TypedNeo4jGraph data structure).

3.3.1 Future work

The current definition a PG schema and schema validation allows us to express only optional
properties of graph elements. However, in a lot of traditional data modelling scenarios it is de-
sirable to define mandatory properties. The possible future directions for this line of work could,
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therefore, include incorporating the notion of such mandatory properties into PG schemas. This
would allow us to fix a set of properties that various graph elements are required to have.

Moreover, it would be interesting to combine graph constraints provided in, for example,
Neo4j with the designed notion of the schema and the mechanisms for schema validation, as
well as integrate the respective language for their definition into the presented DDL.

Another interesting direction for future work could consist in using three-level hierarchies of
the form G→ V → S for representing modifiable graph views, virtual database objects defined
by queries and used for summarizing data, combining and formulating complex queries.

Due to the fact that PGs were originally designed to be schema-free, a great number of
datasets have been collected and stored in a schema-less representation. Therefore, automated
schema inference techniques could be an indispensable tool for rendering such datasets schema-
aware. One possible approach to such inference would be to start from a trivial schema consisting
of a single node type together with a loop edge connected to this node, and evolve this schema
by consecutively splitting its nodes and edges into more and more refined concepts. Another
possible orthogonal solution would be to start from a schema that trivially reflects the data (i.e.
is isomorphic to it) and gradually identify and join the concepts of the same kind.

Finally, even though a prototype system for schema-aware PG has been implemented, native
support for schemas, SMO and schema-data co/evolution remains to be implemented in the PG
database technologies, such as Neo4j.
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Chapter 4

The bio-curation framework KAMI

The bio-curation framework KAMI, developed as part of this thesis, aims to decouple the process
of knowledge curation from model building. Such decoupling has proven itself indispensable for
building models of complex systems of cellular signalling. The framework provides means for
semi-automatic aggregation of knowledge corpora from individual PPIs, reuse of these corpora
in different cellular contexts (such as different cell types, mutant cells, etc.) and automated
generation of executable dynamic rule-based models.

In Section 4.1 we first present the developed de-contextualized KR given by an instance of
a fixed hierarchy of simple graphs with attributes discussed in Chapter 2. We then describe,
in Section 4.2, the mechanism of knowledge aggregation that assembles individual PPIs into
coherent knowledge corpora which exploits the technique of forward propagation in graph hi-
erarchies. Next, in Section 4.3 we discuss the question of knowledge instantiation, i.e. how
aggregated knowledge can be reused for building different signalling models, based on back-
ward propagation. Finally, in Section 4.4, we present the technique for generation of executable
rule-based models incorporated as a part of KAMI.

The described framework is implemented in the KAMI Python library (see Section 4.5) and
a standalone bio-curation environment KAMIStudio (see Section 4.6).

The bio-curation framework KAMI described in this chapter was presented as a conference
paper in [50] and as a longer journal paper in [49]. Moreover, the bio-curation environment
KAMIStudio was communicated as a separate tool paper in [51].

4.1 Knowledge representation

The KR provided by KAMI makes an attempt to de-contextualize knowledge about PPIs taking
part in cellular signalling. Such de-contextualization consists in seeking to represent not the
actual interactions occurring between different concrete molecules, but rather the minimal re-
quirements for various interaction mechanisms to be realized. Such minimal requirements vary
from purely structural, such as presence or absence of specific protein domains or key residues,
to phenomenological, such as activation of proteins or their functional sites.

This de-contextualization can be achieved by abstracting from the notion of a protein to
the notion of a protoform as the agent of a PPI. A protoform does not represent a concrete
molecule, but a set of all product molecules that can be realized from a particular gene (as
the result of translation and various PTMs). Therefore, an agent of interaction in KAMI
represents constraints on a neighbourhood in the sequence space of a gene (e.g. splice variants
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and mutants) together with all the combinations of PTMs (e.g. phosphorylation of residues)
and phenomenological states (e.g. activity). This implies that KAMI represents knowledge on
potential individual PPIs that can be realized (or not) in different cellular contexts and allows
KAMI to reuse the same knowledge corpus for generation of models for these different contexts.
The question of such reuse, or instantiation, is addressed in Section 4.3.

Thus, KAMI distinguishes two types of knowledge bodies: a knowledge corpus and a model.
Corpora contain de-contextualized knowledge: agents of interactions are protoforms and the
regions, residues and states associated to protoforms define their feasible sets of variants. In-
teractions in a corpus represent potential interactions and the necessary conditions for them to
occur. Models, on the other hand, contain knowledge instantiated in given contexts: agents are
concrete proteins and interactions describe rules for concrete PPIs.

A knowledge corpus in KAMI is defined as a hierarchy of graphs with attributes that has
the shape of the following diagram, where graph homomorphisms are represented with arrows
and graph relations (discussioned in 2.3.3) with dashes:

~N ~NS

~T

A AS

M

~RN~i

~SN

~iS
~RS

tA

S

tS

~tT
(4.1)

Objects and arrows of this hierarchy represent the following knowledge components:

❼ Built-in components that include:

– The meta-model graph M defines the kinds of entities that can exist in a system.

– The collection of graphs ~T represents interaction templates, their nodes define the
roles of entities and actions in PPIs, e.g. enzymes, substrates, binding sites. Nodes
of a template graph are typed by nodes in the meta-model M through the homo-
morphisms ~tT : ~T →M .

❼ User-defined components that include:

– The graphA, called action graph, represents a global roadmap containing the ‘anatomy’
of protoforms, their states, PTMs and all potential interactions present in the knowl-
edge corpus. Every node of the action graph is typed by a node in the meta-model
M through the homomorphism tA : A→M .

– The collection of graphs ~N , called nuggets, encodes rules for PPIs, it specifies the
necessary conditions for interactions between different protoforms. All the nugget
graphs are mapped to the action graph through the collection of homomorphisms
~i : ~N → A. These homomorphisms identify entities and actions represented in
different nuggets with entities and interactions in the action graph. The collection of
relations ~RN between nuggets and templates assigns the roles of entities and actions
in the PPIs expressed with nuggets.
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❼ Background knowledge components inluding:

– The graph AS , called semantic action graph, represents a roadmap containing back-
ground knowledge on kinds of conserved protein domains and their generic interaction
mechanisms. As in the case of the action graph, every node of AS is typed by the
meta-model through the homomorphism tS : AS →M . The relation between A and
AS given by S associates entities and actions present in the action graph with their
semantics in AS .

– The collection of graphs ~NS , called semantic nuggets, encodes individual semantic
PPI mechanisms of conserved protein regions. The associated collection of arrows
~iS : ~NS → AS identifies entities and actions from different semantic nuggets inside
the semantic action graph. Moreover, every node and action of a semantic nugget is
assigned with a role in a PPI with the set of relations ~RS . Finally, the collection of
relations ~SN associates entities and actions in nuggets to their semantics.

KAMI allows the curator to accommodate knowledge about different variants of proteins
(for instance, slice variants or mutants)—protein definitions. Such protein definitions can be
used to specify the ‘anatomy’ of variants, for example the loss of functional sites or amino acid
replacements. Protein definitions are used in the process of instantiation of concrete signalling
models from a knowledge corpus. As the result of such instantiation, some of the potential
PPIs present in the corpus are not realized. An instantiated KAMI model is a graph hierarchy
I[ ~N ]−I[~i]→I[A]−I[t]→I[M ], where I[M ] is the instantiated meta-model, I[A] is the instantiated
action graph and I[ ~N ] is the collection of instantiated nuggets.

In the rest of this section we discuss in more detail the presented components of KAMI’s
corpora and protein definitions. The main constituents of instantiated models in KAMI, i.e.
instantiated action graph and instantiated nuggets, are discussed in Section 4.3.

4.1.1 Meta-model

The meta-model defines the kinds of entities and actions that can be represented in KAMI’s
corpora (Figure 4.1). It is designed in a way that allows the expression of a wide spectrum of
mechanistic details on PPIs and the conceptualization of the notion of an interaction mechanism.
The meta-model defines a domain-specific ‘syntax’ for graphs representing knowledge in KAMI,
i.e. all graphs are required to be homomorphic to the meta-model. Effectively, it defines the
set of all allowed relationships between different kinds of entities, as well as the attributes and
the attribute values for entities and relationships.

As we have previously discussed, protoform entities are meant for the representation of
molecules in neighbourhoods of the sequence spaces of different genes. Protoform nodes can be
equipped with attributes providing meta-data for the reference genes (such as UniProt Accession
numbers1, HGNC symbols2). Such meta-data helps to identify and disambiguate the agents of
PPIs during the aggregation process (see Section 4.2). KAMI further allows to associate various
structural and functional elements to protoforms, for example, regions, functional sites, residues
and states. Elements associated to a protoform define constraints on its sequence space or its
PTMs.

1https://www.uniprot.org/help/accession_numbers
2https://www.genenames.org/
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Region nodes in KAMI can be used to express requirements on the presence of particular
conserved protein domains of protoforms. Such nodes can be equipped with attributes express-
ing meta-data associated to the reference protein domain (e.g. name for the name of the domain,
interproid for the InterPro identifier3, etc.). The location of a region in the gene sequence of
the associated protoform can be encoded within the edge from the region to the protoform, i.e.
the modeller can specify the integer-valued attributes start and end of the sequence interval.
In a similar way, KAMI allows to represent requirements on the presence of small functional
sites using site nodes.

Protoform, region and site nodes can be equipped with key residue constraints expressed
with residue nodes connected with an edge. The attributes of residue nodes allow to set the
associated amino acid (the attribute aa taking values in the set of single-letter amino acid codes)
and the boolean-valued attribute test that specifies whether the residue constraint tests the
presence or absence of the key residue. The location of the residue in the gene sequence can be
specified using the corresponding edge attribute loc.

The state nodes in the meta-model allow to attach modifiable on/off states to protoforms
and their structural elements. Such states may represent, for example, physical states (PTMs
such as phosphorylation, methylation, etc.) or phenomenological states (such as activity). State
nodes are equipped with the attribute name that allows for identification of the state, and the
boolean-valued test indicating whether the associated constraint expressed by attaching the
state to the corresponding entity is required to be on or off. For example, we can express the
requirement for a structural element to be unphosphorylated by attaching a state node with
the attributes {name: phosphorylation, test: False}.

The meta-model of KAMI allows the accommodation of two kinds of action nodes: binding
(BND) and modification (MOD) nodes. These nodes are designed to represent explicitly and,
therefore, conceptualize the notion of an interaction mechanism (see a more detailed discussion
in Subsection 4.1.3). Actors of interactions are connected to the corresponding action nodes with
edges. For example, the meta-model allows for protoform, region and site nodes to be actors of
a binding interaction (see the edges from the protoform, region and site nodes to the BND node
in Figure 4.1). On the other hand, only protoform and region nodes are allowed to be used
as actors of a modification interaction. Moreover, MOD nodes are connected with an outgoing
edge to the target of modification—a state node they act upon (whose value they change).
Both interaction nodes can be equipped with the float-valued attribute rate representing the
interaction rate constant4.

BND nodes can be used to express both binding and unbinding interactions. Namely, the
boolean-valued attribute test specifies whether the node represents a binding or an unbinding.
Furthermore, BND nodes in KAMI can be used not only to represent an action performed by
some agent, they can also express a constraint on agents to be bound. The attribute type

can take the values do or be, representing an action and a constraint respectively. On the
other hand, MOD nodes always represent an action and are equipped with the boolean-valued
attribute value, which specifies the value of the modifiable state it targets.

3https://www.ebi.ac.uk/interpro/
4Rates in KAMI correspond to rate constants in the Kappa language [26], see P. Boutillier, J. Feret, J.

Krivine, and W. Fontana. The Kappa Language and Tools (version of November 27, 2019, kappalanguage.org)
for more discussion on how such rate constants are computed.
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protoform region

site

residue

state

MOD

BND

Figure 4.1: The meta-model of KAMI. Nodes representing actions are denoted with rectangles,
attributes on nodes and edges are omitted.

4.1.2 Interaction templates

Interaction templates represent small built-in graphs that define the roles of entities and actions
in PPIs. KAMI contains two interaction templates corresponding to binding (see Figure 4.2) and
modification (see Figure 4.3) interactions. The binding template is essentially symmetric and
specifies the roles of actors of a binding interaction. For example, a binding can be performed
directly by a protoform or through one of its regions or sites. The second KAMI template
specified the roles of actors in a modification interaction. An action can be performed directly by
a protoform or one of its enzymatic regions. The MOD node always targets a state node that can
belong to a protoform or any of its structural elements. Establishing relations between nuggets
(graphs representing PPIs) and the template graphs, KAMI assigns the above-mentioned roles
(see a more detailed discussion in the following subsection).

left

left
region

left
site

BND

right
site

right
region

right

Figure 4.2: The binding template. The mapping specifying the types of nodes in the meta-model
is encoded using node colors from Figure 4.1, e.g. regions are orange, residues are light-red.
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enzyme

enzyme
region

MOD
target
state

MOD
residue

substrate
site

substrate
region

substrate

Figure 4.3: The modification template. The mapping specifying the types of nodes in the meta-
model is encoded using node colors from Figure 4.1, e.g. regions are orange, residues are light-
red.

4.1.3 Nuggets and the action graph

Up until now we have seen two built-in components of KAMI: its meta-model and its interaction
templates. In this subsection we describe how nugget graphs and the action graph are used for
representation of user-provided knowledge in KAMI corpora and models.

As we have previously described, the action graph specifies a global roadmap of all actual
entities and actions that are present in a KAMI corpora (the same holds for the instantiated
action graph of a KAMI model). More precisely, it represents all the protoforms, components
and interaction mechanisms mentioned in a given corpora. The action graph is homomorphic to
the meta-model, i.e. every node represents an instance of an entity or an action defined by the
meta-model, all the edges and attributes in the action graph are preserved in the meta-model.

Example 4.1.1. Figure 4.4 illustrates an example of action graph. As before, the mapping
specifying the types of nodes in the meta-model is encoded using node colors from Figure 4.1.
Nodes are labeled for the sake of readability and the labels do not carry any semantics (semantics
is encoded within node and edge attributes). The underlying corpus contains knowledge about
three different protoforms corresponding to the genes EGFR, SHC1 and GRB2. The graph
contains the ‘anatomy’ of these protoforms, e.g. some of their conserved domains, sites and
residues, as well as some binding and modification actions that these protoforms can perform.

The actual rules for PPIs in KAMI are represented using nuggets, small graphs homomorphic
to the action graph. Essentially, the action graph specifies an evolvable schema for nuggets, while
the meta-model defines a fixed schema for all the graphs in a KAMI corpus or a model [49].
The homomorphisms mapping different nuggets to the action graph encode relations between
these nuggets. More precisely, if two different entities or actions from different (or the same)
nuggets map to the same node in the action graph, they are considered to represent “the same”
entity or action. It is important to note that two action nodes mapping to the same node in
the action graph are identified as the same interaction mechanism in KAMI. By allowing such
identification, KAMI conceptualizes interaction mechanisms. Then, PPIs representing instances
of the same interaction mechanism are considered to be conflicting, i.e. they cannot happen at
the same time as, supposedly, they use the same resource needed for the interaction mechanism
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Figure 4.4: Example of an action graph.

to be realized (such as presence of a free binding site or a conserved domain). Example 4.1.2
provides some nuggets and illustrates how they can be used to encode rules for PPIs and how
their homomorphisms to the action graph provide the identification relation between them.

Example 4.1.2. Consider graphs in Figures 4.5a, 4.5b and 4.5c. The mapping of nodes to
the meta-model (factoring through the action graph) is encoded using node colors from Figure
4.1. As in the previous example, nodes are labeled for the sake of readability. Moreover, in this
example, they encode the mapping to the nodes of the action graph from Figure 4.4 (nodes from
the nuggets map to the action graph nodes with the same label).

The illustrated nuggets represent the following three respective statements:

1. “A protein product of EGFR can phosphorylate residue Y1092 of another EGFR molecule
through its active kinase domain, when the two molecules are bound.”

2. “A protein product of SHC1 can bind to the SH2 domain of a GRB2 protein through its
site pY having the residue Y317 phosphorylated.”

3. “A protein product of EGFR can bind to the SH2 domain of a GRB2 protein through its
site pY having the residue Y1092 phosphorylated. This interaction happens when the SH2
domain of GRB2 has the key residue S90, but not D90.”

Mapping of the nugget nodes to the action graph allows us to identify the entities and actions
represented by nuggets. For example, the two protoforms taking part in the interaction described
in the first nugget are instances of the same reference protoform corresponding to the EGFR
gene. Likewise, one of the protoforms performing the binding described in the third nugget is
also an instance of the same reference EGFR protoform. Interestingly, the two residue nodes
attached to the SH2 domain in the third nugget map to the same action graph node representing
a key residue of GRB2 at the location 90, but have different values of amino acid and different
test semantics. The nugget represents knowledge on a positive requirement for the amino acid
S to be present at the location 90, i.e. we know that, if it is the case, the described interaction
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Figure 4.5: Example of nuggets.
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can appear. It also represents knowledge on a negative requirement for the amino acid D to
be present at this location, i.e. we know that, if it is the case, the interaction cannot appear.
As for the rest of the possible amino acids at this location, we do not know if they enable or
prevent this interaction from happening.

Note that the BND nodes in the second and the third nuggets map to the same node in
the action graph. This indicates that the two interactions described by these nuggets represent
instances of the same interaction mechanism. Namely, the binding mechanism of the SH2
domain of GRB2. This also implies that the two interactions are conflicting, i.e. when one of
the interactions appears, the second one cannot be realized as the resources needed (a free SH2
domain) for such an interaction are no longer available.

Every nugget in a KAMI corpus (or a model) is related to at least one of the interaction
templates, depending on the kind of interaction it represents. As we have previously mentioned,
such relations allow us to assign roles to nugget nodes in the interaction. For example, the
nugget in Figure 4.5a is related to both binding and modification interaction templates. The
two EGFR nodes are associated with the roles left and right in the binding template, then
the left EGFR node is also associated with the enzyme node in the modification template, while
the right EGFR—with the substrate node.

4.1.4 Semantic background knowledge

So far, in the examples we have presented, we have referred to some states as ‘phosphorylation’
or ‘activity’, their representation is purely syntactic and does not carry any semantics. It was
up to us to interpret the state node with the attributes {name: phos} or {name: activity}
as phosphorylation or activity respectively. Due to the fact that the main functional units of the
majority of PPIs are conserved protein domains, we can also ‘hard-wire’ background knowledge
on the semantics of generic interaction mechanisms of these domains. To assign semantics to the
represented knowledge, KAMI provides two built-in components to its corpora: the semantic
action graph (SAG) and semantic nuggets (SNs).

Similarly to the action graph, the SAG represents a roadmap of semantic entities and actions
that can exist in a KAMI corpora and is homomorphic to the meta-model (see Figure 4.6).
At the current stage KAMI is equipped with the interaction semantics corresponding to the
protein kinase, phosphatase and SH2 domains. The semantic entities encoded in the SAG
include the above-mentioned domains, pY-binding sites, activity and phosphorylation states.
The semantic actions described in the SAG from Figure 4.6 represent phosphorylation (PHOS),
dephosphorylation (DEPHOS) and SH2-pY binding (SH2/pY BND) interaction mechanisms.
KAMI assigns the described semantics to the entities and actions from the action graph by
establishing a relation between the nodes of the SAG and the action graph.

For (de-)phosphorylation semantics KAMI adopts the following two conventions reflected
in the SAG in Figure 4.6: (1) a (de-)phosphorylation is always performed by a protein kinase
(phosphatase) region, (2) to be able to exhibit its enzymatic activity the protein kinase (phos-
phatase) region is required to be activated and (3) there can be at most one (de-)phosphorylation
action associated with a single protein kinase (phosphatase) region in the action graph. The
last constraint represents the fact that there is a unique mechanism through which every protein
kinase (phosphatase) region performs (de-)phosphorylation, and it can be further interpreted
as a conflict between every two individual phosphorylation interactions performed by the same
region, i.e. in a real system a protein kinase region can perform only one phosphorylation at a
time.
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Figure 4.6: Semantic action graph

Similarly to the phosphorylation semantics we adopt some conventions concerning SH2/pY
binding semantics reflected in the SAG in Figure 4.6: (1) an SH2 domain always binds to a
small peptide motif, pY site, which contains a phosphorylated Y residue and (2) there can be
at most one binding action associated with a single SH2 region in the action graph. Again,
the last constraint represents the fact that there is a unique mechanism through which every
SH2 domain binds, and it can be further interpreted as a conflict between every two individual
bindings of the same SH2 domain to different pY sites, i.e. an SH2 domain binds to one pY
site at the time.

SNs represent minimal requirements on generic interaction mechanisms of semantic entities
to be realized (see Figure 4.7), e.g. phosphorylation of S, T or Y residues by a protein kinase
domain, binding of an SH2 domain to sites containing phosphorylated Y residues. The SNs in
KAMI are homomorphic to the SAG and are used to assign semantics to the potential PPIs
represented with nuggets.

Section 4.2 describes how KAMI establishes the above-mentioned semantic relations in an
automated fashion, and how this semantics helps to perform nugget autocompletion and iden-
tification of interaction mechanisms.

4.1.5 Protein definitions

As we have previously described, the agents of potential PPIs in KAMI corpora represent neigh-
bourhoods in the sequence spaces of different genes. KAMI allows to create protein definitions
that specify how the ‘anatomy’ of a given protoform gives rise to different protein products
(e.g. splice variants and mutants). Protein definitions in KAMI are represented with restrictive
SqPO rules (i.e. arrows of the form L← P ) and their instances in the action graph. An exam-
ple of a rule encoding the protein definitions for the protoform GRB2 is illustrated in Figure
4.8. A more detailed discussion on how such protein definitions can be used to perform model
instantiation in KAMI can be found in Section 4.3.
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Figure 4.8: Protein definition for GRB2. GRB2 gives rise to three proteins: the wild type of
GRB2 (Ash-L), the mutant with the key residue S90 replaced by D90 (S90D), the splice variant
with the knock-out of the SH2 domain (Grb3). The matching of the left-hand side of the rule in
the action graph is given by the correspondance between the node labels.
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4.2 Knowledge aggregation

In this section we describe the mechanism for automatic aggregation of individual PPIs used in
the KAMI framework. This mechanism exploits the techniques for rewriting and forward prop-
agation in hierarchies of graphs discussed in Section 2.2. In addition, it incorporates domain-
specific knowledge on generic mechanisms for PPIs that allows it to perform more sophisticated
and biologically meaningful aggregation.

KAMI proposes an intermediate representation language for the input of knowledge to the
aggregation process. This language provides means for representation of interactions and agents
of interactions in a user-friendly and concise manner. Moreover, it frees the user from the ne-
cessity to learn the graph-based knowledge representation syntax internal to KAMI, serves the
validation purpose and allows KAMI’s aggregation engine to perform identification of interac-
tions and entities on the fly during the nugget graph generation process.

Provided an individual PPI expressed in the intermediate representation language, the
adopted technique aggregates new knowledge into the underlying corpus in a context-dependent
fashion performing the following sequence of steps:

1. generation of a nugget graph;

2. identification of entities and actions already present in the action graph;

3. addition of the nugget to the corpus and propagation of new knowledge to the action
graph;

4. bookkeeping updates such as anatomization of new genes, reconnection of spatially nested
components;

5. updates specific to semantics of the provided PPI.

In the rest of this section we discuss KAMI’s intermediate representation language and the
aggregation steps in more detail.

4.2.1 Intermediate representation language

KAMI’s intermediate language allows the representation of PPIs, their actors and actors’ com-
ponents (such as regions, sites, residues etc). This language coincides with the Python syntax
for calls to the constructors of user-defined classes (i.e. see Section 4.5 for more details on the
implementation of the Python API for KAMI).

Entities from KAMI’s meta-model are represented with their corresponding classes
Protoform, Region, Site, Residue and State. The Protoform class allows encapsulating
collections of regions, sites, residues and states associated to the intended protoform definition.
Similarly, the Region class encapsulates sites, residues and states; Site, residues and states;
and Residue, one state. Consider the following example illustrating the use of the intermediate
language for representation of a protoform.

Example 4.2.1. The following listing represents the entity corresponding to the statement “The
protoform ABL1 that has active protein kinase domain”.
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1 abl1 = Protoform(

2 uniprotid="P00519",

3 hgnc symbol="ABL1",

4 regions=[

5 Region(

6 name="Protein kinase",

7 interproid="IPR000719",

8 start=242, end=493,

9 states=[State("activity", True)])])

According to KAMI’s meta-model, not only protoforms, but also their regions and sites, can
be the actors of PPIs. To express such region and site actors explicitly, the intermediate lan-
guage provides two constructions RegionActor and SiteActor. Consider the following example
defining a region actor.

Example 4.2.2. The following listing represents the actor corresponding to the statement “The
active protein kinase domain of the protoform ABL1”.

1 abl1 PK = RegionActor(

2 protoform=Protoform(

3 uniprotid="P00519",

4 hgnc symbol="ABL1"),

5 region=Region(name="Protein kinase",

6 interproid="IPR000719",

7 start=242, end=493,

8 states=[State("activity", True)]))

Let us compare Examples 4.2.1 and 4.2.2. On the first sight the statements expressed in the
two examples seem identical. However, there is a substantial difference in their interpretation.
When used in a PPI, the protoform from Example 4.2.1 directly takes part in the interaction,
and to be able to do that it is required to have the protein kinase region. There may be
several reasons (though unknown) why it is indeed required: (a) the region may actually be
performing the interaction itself, but it was unknown to the source of knowledge; (b) the region
may be required for an indirect reason for the interaction to appear (for example, its knock
out causes a conformational change that prevents the interaction). Meanwhile, the actor from
the Example 4.2.2 is known to directly perform the interaction. The region may have some
additional interaction semantics associated to it (known by the system) and this semantics can
influence further interpretation of the interaction (more details will follow in Subsection 4.2.4).
Moreover, if the same region is used as an actor of several distinct interactions, it may be an
evidence of a conflict between the interactions. Examples of such conflicts can be often seen
in the case of binding interactions, i.e. the same region has multiple binding partners, but we
know that in a particular protein molecule this region can bind to exactly one partner at a time.

As a part of its intermediate representation language KAMI provides a format for expressing
various types of interactions. As previously mentioned, actor entities play a role of building
blocks of interactions. The interaction classes include Modification, AnonymousModification,
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SelfModification, Binding and LigandModification. Every such interaction can be pro-
vided with an interaction rate (bi- or unimolecular).

Modification. A modification interaction in KAMI is a high-level PPI, where one protein
molecule (enzyme) modifies some state of another protein molecule (substrate). It is high-level
in the sense that it represents a sequence of several more basic biochemical reactions underlying
it, e.g. binding of the substrate to the enzyme, a biochemical reaction as a result of which
the substrate’s state changes, unbinding of the enzyme from the substrate. Knowledge about
a modification interaction in KAMI can be expressed by providing an enzyme, a substrate, a
modification target and a modification value. The enzyme and substrate are actor entities, a
modification target can be a state or a residue with a state, and finally the modification value
is the one assigned to the target state as the result of modification. Consider the following
example of a modification interaction.

Example 4.2.3. The following listing represents the interaction corresponding to the statement
“The active protein kinse domain of ABL1 phosphorylates the residue Y394 of PLCG1”, where
we reuse the actor abl1 PK defined in Example 4.2.2.

1 Modification(

2 enzyme=abl1 PK,

3 substrate=Protoform(

4 "P00533", hgnc symbol="EGFR"),

5 target=Residue("Y", 1173, State("phosphorylation", False)),

6 value=True,

7 rate=1.0E−4)

Self-modification. Self-modification in KAMI is a modification interaction where a single
molecule modifies its own state (it is at the same time the enzyme and the substrate). An
instance of such an interaction is defined by an enzyme actor, optionally its substrate region or
site (if it is known that the modification takes place in a particular region or site), modification
target and state. Consider the following example of a self-modification interaction expressed
with the intermediate language.

Example 4.2.4. The following listing represents the interaction corresponding to the statement
“FGFR1 phosphorylates its residue Y583 through the protein kinase region”.

1 SelfModification(

2 enzyme=RegionActor(

3 protoform=Protoform("P11362", hgnc symbol="FGFR1"),

4 region=Region(name="Protein kinase")),

5 target=Residue("Y", 583, State("phosphorylation", False)),

6 value=True,

7 rate=0.1)

8
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Anonymous modification. Anonymous modification in KAMI is a modification where a
substrate undergoes a state change without an explicitly known enzyme. An instance of such
an interaction is defined by a substrate actor, a target and a value of modification as before.
Anonymous modifications can be used to express more detailed mechanisms that underlie phe-
nomenological states, for example, that a protein becomes active if some particular residues
are phosrphorylated. Consider the following example of an anonymous modification interaction
expressed with the intermediate language.

Example 4.2.5. The following listing represents the interaction corresponding to the statement
“RAF1 is activated when its residues S621 and T268 are phosphorylated”.

1 AnonymousModification(

2 substrate=Protoform(

3 "P04049", hgnc symbol="RAF1",

4 residues=[

5 Residue("S", 621, State(name="phosphorylation", value=True)),

6 Residue("T", 268, State(name="phosphorylation", value=True))]),

7 target=State("activity", False),

8 value=True,

9 rate=1)

Binding. A binding interaction in KAMI is a PPI that arises from the formation of stable
non-covalent bonds between a protein molecule and its ligand. Combinations of such individual
bindings govern the assembly of large protein complexes. An instance of a binding can be
expressed by defining the two actor entities (called the ‘left’ and the ‘right’ binding partner
to ‘break the symmetry’ of the protein-ligand relation). Consider the following example of a
binding interaction expressed with the intermediate language.

Example 4.2.6. The following listing represents the interaction corresponding to the statement
“A protein product of AXL can bind to the SH2 domain of a GRB2 protein through its site pY
having the residue Y821 phosphorylated”.

1 axl pY = SiteActor(

2 protoform=Protoform("P30530", hgnc symbol="AXL"),

3 site=Site(

4 name="pY",

5 residues=[

6 Residue("Y", 821, State("phosphorylation", True)]))

7
8 grb2 sh2 = RegionActor(

9 protoform=Protoform("P62993", hgnc symbol="GRB2"),

10 region=Region("SH2"))

11
12 Binding(axl pY, grb2 sh2)
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Ligand modification. An interaction of ligand modification in KAMI is a modification that
requires the enzyme to be bound to the substrate in order for the interaction to happen. As in
the case of any modification interaction, ligand modification can be expressed by providing an
enzyme, a substrate, a modification target and a modification value. In addition, KAMI allows
the curator to specify the actors of binding necessary for the interaction to happen, i.e. regions
or sites of the enzyme and the substrate protoform. Consider the following example of a ligand
modification interaction.

Example 4.2.7. The following listing represents the interaction corresponding to the state-
ment “A protein product of EGFR can phosphorylate residue Y1092 of another EGFR molecule
through its active kinase domain, when the two molecules are bound” (corresponding to the
nugget graph in Figure 4.5a).

1 egfr = Gene("P00533", hgnc symbol="EGFR")

2
3 egfr pk = RegionActor(

4 gene=egfr,

5 region=Region(name="Kinase", start=712, end=979))

6
7 mod = LigandModification(

8 enzyme=egfr pk,

9 substrate=egfr,

10 target=Residue(

11 "Y", 1092, State("phosphorylation", False)),

12 rate=1)

4.2.2 Nugget generation

The nugget generation phase KAMI (1) converts the input interaction expressed with the
previously-described intermediary language to a nugget graph N ; (2) finds a typing of the
nugget by the meta-model tN : N → M ; (3) finds relations of the nugget with the interaction
templates, and (4) identifies the entities and actions already present in the action graph. While
the first three generation steps are rather straightforward (can be directly inferred from the
intermediary representation), the third one—the identification of nugget entities and actions in
the action graph—is slightly more intricate.

Identification of entities is done by querying the action graph and is performed according to
the following conventions we have adopted in KAMI:

1. Protoforms are identified by the UniProt accession numbers (AC) of the corresponding
genes. The aggregation engine traverses the protoforms nodes present in the action graph
and searches for the one with the same AC.

2. Regions and sites in KAMI can have specified name, InterPro identifier, sequence interval
start and end (all optional). In addition, their intermediate representation is always
encapsulated within a representation of the reference protoform. Therefore, identification
of a region/site is performed, if and only if its protoform has been identified in the action
graph. First of all, if a region to be identified has the sequence start and end specified, the
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engine looks for an existing region with the same (or significantly overlapping) interval;
if such a region was not found in the action graph, the engine tries to find it by resolving
the information given by the name, the InterPro identifier of the input region.

Moreover, the intermediate input language in KAMI allows the curator to specify an
integer-valued attribute called order. In the case when the protoform to be represented
has multiple domains with the same name (for example, two SH2 domains: N-terminal
and C-terminal), such an attribute allows us to identify the order of the domain in the
gene sequence. For example, let us suppose that some protoform in the action graph has
two regions, the region R1 called “SH2” in the interval 123–217 and the region R2 also
called “SH2” in the interval 560–644. Now, suppose that an actor of the input interaction
represents the same gene that has a region with the name “SH2”. This information alone
is not enough to decide whether it refers to the region R1 or R2 in the action graph, as
this gene has two SH2 domains. On the other hand, even if the user does not have the
information about the exact interval of the SH2 domain from the input interaction, but
knows, for example, that this is the N-terminal SH2 domain, then they can specify the
order of this region (in this case order being equal to 1).

3. Residues have specified amino acid codes and, optionally, locations. In interactions they
are always encapsulated inside physical entities, so the genes to which they belong are
always known at the identification stage. First of all, if the location of a residue is
provided, KAMI searches for a residue with this location belonging to the respective gene
in the action graph. If the location is unknown, the engine tries to find a residue from the
pool of residues with no location in the action graph that has the same amino acid value.

4. States in KAMI are identified by their name, i.e. two states with the same name belonging
to the same structural element (it can be gene, region, site or residue) are considered to
represent the same state.

Let N be the nugget graph generated from the input interaction. The output of the identi-
fication is a relation Ri ⊆ VN × VA, where VN is the set of nodes of the generated nugget graph
and VA is the set of nodes of the action graph.

To add the generated nugget N to the corpus, the aggregation engine first adds an empty
graph N∅ as the new nugget to the underlying hierarchy. It then creates a nugget generation rule
∅ → N , i.e. an expansive rule that adds all the generated nugget nodes and edges to an empty
graph (here denoted ∅). This rule is applied to the newly added empty graph through the trivial
instance m : ∅ N∅. The induced forward propagation to the action graph is controlled by the
relation Ri (see more details on controlled propagation in Subsection 2.2.4). On the other hand,
this rewriting is strict with respect to the meta-model, as the typing of the generated nugget by
the meta-model is given by the homomorphism tN . Thus, the application of the generation rule
transforms the empty graph N∅ into N , propagates the new bits of information (all unidentified
entities and new actions) to the action graph and keeps the meta-model unchanged. The
following example illustrates the nugget generation procedure.

Example 4.2.8. Consider the interaction illustrated in Example 4.2.6. The nugget graph N
generated from this interaction is presented in Figure 4.9. The typing of the nugget by the
meta-model tN is encoded using node colors from Figure 4.1.

The relation with the binding interaction template is defined as follows:
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Figure 4.9: Generated nugget.

RBND
N = {(AXL, left), (pY3, left site), (BND3, BND), (SH2, right region), (GRB2, right)}

Let the action graph be given in Figure 4.4. We identify the existing entities and actions
and obtain the following the identification relation Ri = {(SH2, SH2), (GRB2, GRB2)}. The updated
action graph (after forward propagation of the nugget generation rule) is illustrated in Figure
4.10.

4.2.3 Bookkeeping updates

After the update of the action graph performed in the previous aggregation stage, a series of
bookkeeping updates is performed. Such updates include gene anatomization and reconnection
of nested and transitive components. This subsection provides some details on the bookkeeping
updates and the scenarios in which they are performed.

Gene anatomization. For all new protoforms added to the action graph with its update,
KAMI retrieves some additional information about their reference genes. For a given gene this
information includes some meta-data (such as HGNC symbol, synonyms, references to other
databases) and the list of its known conserved domains and functional sites (together with their
names, intervals and InterPro identifiers). This information is obtained from various databases
including UniProt, InterPro and Ensembl5. We refer to this process as gene anatomization.
The information about the gene’s regions plays a significant role in our automated aggregation
process. More specifically, the InterPro identifiers (which are often not provided by the user,
but obtained at the anatomization stage) help the engine to perform semantic tagging, i.e. to
identify if a given region has some known interaction semantics (e.g. protein kinase or SH2
domain semantics).

Using the information retrieved at the anatomization stage, KAMI generates an anatomiza-
tion rule, i.e. an expansive rule, application of which augments the action graph with the new
information. The rule is constructed in the following way: (1) a node corresponding to the gene
is added to the left-hand side of the rule; (2) for every region found by the anatomization, if
the region is identified with some existing region in the action graph, the region from the action
graph is added to the left-hand side and is connected with an edge to the gene; otherwise, a

5https://www.ensembl.org/
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Figure 4.10: Updated action graph. New nodes and edges added to the action graph are high-
lighted with dark orange.

node corresponding to the region is added to the right-hand side. Example 4.2.9 illustrates an
anatomization rule generated by KAMI.

Example 4.2.9. Let us suppose that after the addition of a new nugget the protoform corre-
sponding to the gene ABL1 was added to the action graph together with its kinase region. Figure
4.11 illustrates the gene anatomization rule generated by KAMI. This rule adds new meta-data
fetched from available databases: it adds the new attribute Synonyms: {ABL, JTK7 } to the
protoform, adds the new attribute InterPro: IPR000719 to the existing kinase region and
attaches two other known conserved protein domains of ABL1.

Reconnection of nested and transitive components. This stage performs the following
updates of the action graph:

❼ For every new component added to the action graph (including all new regions, sites
and residues), if it is equipped with information about its location in the gene’s sequence
(location for residues and interval for regions and sites), the engine verifies if there exists
a component in the action graph which spatially includes it and, if it is the case, adds
an edge between them (with an appropriate direction specified by the meta-model). For
example, if the site with the interval [n,m] was added and there exists a region with the
interval [k, l] such that k ≤ n and m ≤ l, an edge between them will be added.
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Figure 4.11: Example of a gene anatomization rule for ABL1. Added node attributes are denoted
with dark orange.

❼ To facilitate the entity identification performed at various stages of PPI aggregation,
KAMI adds explicit edges between all the structural elements which are included transi-
tively (e.g. a residue that is included in a region of a protoform is transitively included
in the protoform as well). To reconnect such components, the engine finds all matchings
of specific patterns (see the figure 4.12) in the modified portion of the action graph and
applies the rule that reconstructs appropriate edges.

Protoform

Region

Site Protoform

Region

Residue

Protoform

Site

Residue
Region

Site

Residue

Figure 4.12: Patterns of transitively included components. The four graphs depict the patterns
of transitive component inclusion, the new edge added at the bookkeeping stage is highlighted
with dark orange.

4.2.4 Semantic updates

Semantic updates performed by the aggregation engine are based on generic interaction mech-
anisms of conserved protein domains. At the current stage of its development, KAMI is able to
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perform semantic updates related to the specific interaction mechanisms of three abundant do-
mains: the protein kinase domain, the phosphatase domain and the SH2 domain. This section
details the updates performed by KAMI, when PPIs involving these domains are encountered.
Namely, we present the semantic updates performed when a phosphorylation and an SH2/pY
binding interactions are added to the corpus. The dephosphorylation semantic update is prac-
tically identical to the phosphorylation one and, therefore, omitted in the discussion.

Phosphorylation semantic update. If KAMI has identified that the newly created nugget
represents a phosphorylation interaction, the corresponding semantic update of the corpus is
performed. This update consists of two steps: first, the nugget is autocompleted with missing bits
of knowledge induced by the known mechanism of phosphorylation and, if there exist multiple
phosphorylation actions associated with the given protein kinase region (the one that performs
the phosphorylation), these actions are merged. To perform the nugget autocompletion, KAMI
tests if the nugget has an enzyme region specified. Depending on the outcome of this test the
following updates are performed:

❼ If the enzyme region is specified : if it is typed by a node of the action graph that is
semantically tagged as a protein kinase region, then the engine simply checks if the re-
spective nugget node has the activity state node attached, and adds it if it is not the case;
otherwise, KAMI warns the user that the region performing the phosphorylation is not a
protein kinase region and halts the semantic update stage.

❼ If the enzyme region is not specified, KAMI searches for a unique protein kinase region
of the corresponding protoform in the action graph: if it is found, then the nugget is
autocompleted with a node representing this region and the requirement for this region
to be active; otherwise, KAMI warns the user and halts the update.

To perform the action merge, KAMI simply looks for all modification actions associated to the
protein kinase node of the action graph. If more than one action is found, all the actions are
merged into a single action.

SH2/pY binding semantic update. The semantic update triggered by an identified SH2/pY
binding interaction also consists of two steps: autocompletion and action merge. To perform the
nugget autocompletion, KAMI tests if the SH2 binding partner has a binding site specified. If it
is the case, this site is semantically tagged as a pY site, otherwise the nugget is autocompleted
with pY site node. Then, multiple binding actions associated with the given SH2 domain are
merged. Figure 4.13 illustrates the action graph from Figure 4.10 after the merge of the BND
actions of the SH2 domain of GRB2.

4.3 Knowledge instantiation

The mechanism of knowledge instantiation allows the curator to reuse a knowledge corpus in
different cellular contexts. Such contexts can be specified by a set of protein definitions that
describe how the ‘anatomy’ of a given protoform gives rise to different protein products. To
instantiate a concrete signalling model KAMI applies restrictive rules corresponding to different
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Figure 4.13: The action graph from Figure 4.10 after the semantic update. The action nodes
BND2 and BND3 from Figure 4.10 are merged into the node BND2/3.

protein definitions to the action graph of the corresponding corpus. As the result of such appli-
cation backward propagation to nuggets is performed. This backward propagation invalidates
some of the nuggets rendering some of the described PPIs non-realizable.

To distinguish de-contextualized and instantiated knowledge, KAMI changes the meta-model
(Figure 4.14 depicts the instantiated meta-model of KAMI I[M ]). Now the actors of PPIs are
considered to represent concrete proteins and not protoforms.

As the result of instantiation, given a set of protein defititions, we obtain a KAMI model
given by a hierarchy of a form I[ ~N ]−I→ [A]−I→ [M ]. To understand how instantiated models
are produced from knowledge corpora in KAMI, consider the following example.

Example 4.3.1. Consider the protein definition in Figure 4.8. Application of the restrictive
rule that constitutes this protein definition results in the action graph I[A] illustrated in Figure
4.15. The typing of nodes is encoded with colors from Figure 4.14. Note how the former
protoform nodes become typed by the protein node in I[M ]. The names of the three clones of the
protoform GRB2 produced as the result of instantiation are given in parentheses and correspond
to the wild type variant Ash-L, the S90D mutant and the splice variant Grb3.

The backward propagation to the nuggets performs cloning and removal, specified by the
protein definition, for every instance of GRB2 in the nuggets, thus, producing the instantiated
nuggets. Figure 4.16 illustrates some of the nuggets instantiated from our example knowledge
corpus.

The three interactions depicted in the nugget graphs are performed through the SH2 domain
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Figure 4.14: Instantiated meta-model of KAMI.

of GRB2, and are, therefore, not realizable for the splice variant Grb3 (the clones corresponding
to this variant become disconnected from the action node in the nuggets and are omitted in the
figure). Furthermore, note that, as a result of propagation, the attribute aa of the residue node
associated to the SH2 domain of the mutant S90D becomes empty. Because this node represents
a positive condition on the presence of the amino acid (i.e. test: +), this condition can
never be satisfied. Which implies that the described interaction mechanism is not realizable
for the mutant S90D. Intuitively, this means that the wild type variant satisfies the necessary
conditions (presence of the key residue S90) on the PPI to appear, while the mutant does not.
On the contrary, the mutant satisfies the negative conditions (presence of the key residue D90),
which means that we know that the binding does not happen.

Therefore, the three instantiated nuggets depicted in Figure 4.16 define five distinct rules for
binding interactions for: (1) products of SHC1 with Ash-L; (2) products of SHC1 with S90D;
(3) products of EGFR with Ash-L; (4) products of AXL with Ash-L; and (5) products of AXL
with S90D.
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Figure 4.15: Instantiated action graph from Figure 4.13.
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(b) Instantiated nugget from Figure 4.5c. The unsatisfiable condition is denoted with dark orange.
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Figure 4.16: Instantiated nuggets.
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4.4 Generation of executable models

In this section we briefly discuss how instantiated KAMI models can be used to generate scripts
written in the rule-based modelling language Kappa [26] (compatible with version 4 of the
Kappa language and its simulator KaSim4). Given an instantiated model, KAMI generates
Kappa scripts containing agent signatures, interaction rules and initial conditions. To be used
for stochastic simulations, such scripts should be further augmented with observables that
specify the patterns of interest (particular agents in some combination of states or bonds)
whose quantitative dynamics should be tracked by the Kappa simulator6.

Generation of agents. To generate Kappa agents, KAMI inspects the protein nodes of the
instantiated action graph and generates a distinct agent per reference protoform. It encodes
proteins derived from the same protoform with a dedicated Kappa-site called variant in order
to optimize the simulation performance of KaSim4 [13]. Then, for each agent, it explores
all the derived variants and creates a site per (not necessarily directly) adjacent state node.
Because the state nodes in KAMI represent binary on/off states, every such site is of the form
site name{on off}. After this, KAMI adds a site per adjacent KAMI-site node and a binding
node (in both cases the nodes are not required to be directly adjacent, but can be adjacent to
some components of the current variant). For example, the agent signatures generated using
the instantiated action graph from Figure 4.15 are given in the following listing:

%agent: EGFR(phos{on off}, activity{on off}, BND1_site, pY_site)

%agent: SHC1(phos{on off}, pY_site)

%agent: AXL(phos{on off}, pY_site)

%agent: GRB2(variant{AshL, S90D, Grb3}, AshL_SH2_site, S90D_SH2_site)

Generation of rules. To generate Kappa rules, KAMI examines instantiated nuggets to-
gether with their mapping to the instantiated action graph. As was previously mentioned, for a
given agent, every adjacent binding action (therefore every binding mechanism) gives a rise to
a separate Kappa site. This represents the main subtlety of the Kappa generation process, as
for every binding nugget in KAMI we need to identify the site corresponding to the interaction
mechanism of the binding. In KAMI’s knowledge representation framework interaction rates
are encoded in the interaction nodes of nuggets. However, KAMI does not enforce them to
be specified, as these rates for some interactions may be unknown or depend on the context.
Therefore, to generate valid Kappa, KAMI allows the user to specify default rates for binding,
unbinding and modification interactions in a model; these rates are used to generate Kappa rules
for nuggets whose rates are not available. The following listing illustrates the rules generated
from three nuggets depicted in Figure 4.16.

SHC1(phos{on}, pY_site[.]), GRB2(variant{AshL}, AshL_SH2_site[.]) ->

SHC1(phos{on}, pY_site[1]), GRB2(variant{AshL}, AshL_SH2_site[1]) @ 1.0E-4

SHC1(phos{on}, pY_site[.]), GRB2(variant{S90D}, S90D_SH2_site[.]) ->

SHC1(phos{on}, pY_site[1]), GRB2(variant{S90D}, S90D_SH2_site[1]) @ 1.0E-4

6For the documentation refer to P. Boutillier, J. Feret, J. Krivine, and W. Fontana. The Kappa Language

and Tools (version of November 27, 2019), kappalanguage.org.
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EGFR(phos{on}, pY_site[.]), GRB2(variant{AshL}, AshL_SH2_site[.]) ->

EGFR(phos{on}, pY_site[1]), GRB2(variant{AshL}, AshL_SH2_site[1]) @ 1.0E-4

AXL(phos{on}, pY_site[.]), GRB2(variant{AshL}, AshL_SH2_site[.]) ->

AXL(phos{on}, pY_site[1]), GRB2(variant{AshL}, AshL_SH2_site[1])

@ ’default_bnd_rate’

AXL(phos{on}, pY_site[.]), GRB2(variant{S90D}, S90D_SH2_site[.]) ->

AXL(phos{on}, pY_site[1]), GRB2(variant{S90D}, S90D_SH2_site[1])

@ ’default_bnd_rate’

// variables

%var: ’default_bnd_rate’ 0.001

Generation of initial conditions. To generate initial conditions for Kappa models, KAMI
allows the modeller to provide knowledge of molecular counts for different types of agents. Such
molecular counts can be specified for both canonical versions of protein molecules (with no
PTMs or bounds) and non-canonical ones (having a PTM, such as phosphorylation or being
bound to some other agent). Section 4.5.2 illustrates how such initial concentrations can be
specified using KAMI’s intermediate representation language for entities. The following listing
illustrates initial conditions for the previously defined Kappa agents.

%init: 150 EGFR() // canonical EGFR

%init: 75 EGFR(activity{on}) // active EGFR

%init: 30 EGFR(phos{on}) // phosphorylated EGFR

%init: 20 EGFR(BND1_site[BND1_site.EGFR]) // EGFR dimer

%init: 100 GRB2(variant{AshL}) // canonical Ash-L

%init: 100 GRB2(variant{S90D}) // canonical S90D

%init: 100 GRB2(variant{Grb3}) // canonical Grb3

%init: 100 SHC1() // canonical SHC1

%init: 100 AXL() // canonical AXL

4.5 The KAMI library

The Python library KAMI7 implements the bio-curation framework presented in this chapter. It
provides a programmatic API for input of individual PPIs, their aggregation into knowledge
corpora, definition of protein interactions, instantiation of concrete signalling models and their
export to executable Kappa scripts. It is based on the ReGraph library discussed in Section 2.3
and can be used with both NetworkX in-memory graphs and Neo4j persistent graphs. In this
section we will write KAMI referring to the library and simply KAMI for the framework.

KAMI consists of the following principal components:

❼ The package resources provides the definitions of the built-in knowledge components
of KAMI corpora and models: the meta-model, the interaction templates, the SAG and
semantic nuggets.

7https://github.com/Kappa-Dev/KAMI
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❼ The package data structures provides data structures for knowledge corpora and mod-
els (the modules corpora and models). Moreover, it provides structures for knowledge
input following the intermediate representation language discussed in 4.2.1 (the modules
entities and interactions), as well as the data structures for programmatic input of
protein definitions (the module definitions).

❼ The package importers provides a set of importers that convert knowledge represented
using common biological formats into KAMI’s intermediate representation objects (the
module biopax for the BioPAX format, indra for import from INDRA statements, intact
for import from the IntAct8 data following PSI-MI 3.0 format).

❼ The package aggregation provides a set of utilities for automated knowledge aggregation:
generation of nuggets, identification of entities and actions, bookkeeping and semantic
updates of knowledge corpora.

In the rest of this section we give some details on the implemented knowledge importers and
provide an example of the use of KAMI’s programmatic API.

4.5.1 Importers

The set of utilities implemented in the package kami.importers provides means for the input
of PPI knowledge from several common biological formats. In this subsection we will briefly
discuss the ideas behind the implemented import from BioPAX models and INDRA statement
objects.

BioPAX importer. KAMI is able to import PPIs stored whithin BioPAX models (provided
as files with the .owl extension). It uses the Paxtools Java utilities9 for reading and query-
ing BioPAX models. To collect modification interactions KAMI queries all the instances of the
Catalysis class (see [32] for more details on the BioPAX ontology). Such instances are de-
fined by the entity that controls the catalysis (controller) and a controlled reaction. For every
instance of catalysis, KAMI selects only the instances of the BiochemicalReaction class as the
controlled reaction (BioPAX allows the representation of other reactions such as transcription
or translation, which are currently outside the scope of KAMI). The controller of catalysis is
converted to an enzyme entity defining KAMI’s modification interaction. Then, KAMI examines
the left- and the right hand-sides of the controlled biochemical reaction to extract the substrate
entity and the target of modification. To collect binding interactions KAMI queries the instances
of the ComplexAssembly class, where the left-hand side of the corresponding reaction consists
of exactly two components and the right-hand side exactly one. This means that the importer
is able to convert only binary binding interactions from BioPAX (which are exactly the binding
interactions of interest). Currently, KAMI filters all the extracted interactions (both binding and
modification) whose entities are protein complexes or families of proteins. This allows us to
make sure that the imported PPIs contain knowledge on the appropriate level of mechanistic
details (see the discussion on the difference between the KR level of KAMI and BioPAX in
1.3.4).

8https://www.ebi.ac.uk/intact/
9https://www.biopax.org/Paxtools/

160



4.5. THE KAMI LIBRARY

INDRA importer. INDRA (Integrated Network and Dynamical Reasoning Assembler [45])
provides a set of tools for reading biological facts expressed with natural language and other com-
mon biological formats, and representing these facts with a set of computable statements. IN-
DRA provides data structures for various types of PPIs including different types of modification
and binding interactions10. The module kami.importers.indra implements a set of utilities
for converting INDRA statements into respective KAMI data structures. The importer allows to
extract modification interactions from Modification, SelfModification, RegulateActivity
and ActiveForm statements, and binding interactions from Complex statements consisting of
two agents (as in the case of the BioPAX importer, at the moment, KAMI focuses on binary
binding interactions). Even though KAMI’s interactions and entities share a lot of similarities
with INDRA’s agents and statements, they differ in a couple of crucial points. The first impor-
tant difference is that statements in INDRA cannot represent protein regions or sites involved
in the interactions, whereas in KAMI, they play an important role in the identification of inter-
action mechanisms and their interpretation. In addition, KAMI is focused on the specific level
of mechanistic details of PPIs, which, in some cases, does not coincide with the level of IN-
DRA’s knowledge representation. For example, Complex statements in INDRA can be used to
represent a formation of protein complexes with multiple entities, RegulateAmount—regulation
of the protein synthesis/degradation by another agent. Therefore, KAMI implements the import
of a selected subset of INDRA statements relevant to KAMI’s KR.

4.5.2 Programmatic API: example

In this subsection we provide a small example use-case for KAMI’s programmatic API. We il-
lustrate how knowledge on individual PPIs from different sources can be aggregated into a
knowledge corpus, how such a corpus can be instantiated into a concrete signalling model and
converted to a Kappa script.

Consider the Python listing below, it illustrates how the entity and interaction data struc-
tures provided by the KAMI library can be used for manual input of PPIs. In addition, it shows
how such objects can be serialized and de-serialized to/from the JSON format. The interaction
object created in the listing corresponds to the nugget from Figure 4.5a.

1 from kami.data structures.entities import ✯

2 from kami.data structures.interactions import ✯

3
4 # Create a protoform

5 egfr = Protoform("P00533")

6
7 # Create a region actor

8 egfr kinase = RegionActor(

9 protoform=egfr,

10 region=Region(name="Protein kinase", start=712, end=979,

11 states=[State("activity", True)]))

12
13 # Create a ligand modification interaction

14 interaction = LigandModification(

10The full list of INDRA statements can be found at https://indra.readthedocs.io/en/latest/modules/

statements.html.
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15 enzyme=egfr kinase, substrate=egfr,

16 target= Residue("Y", 1092, state=State("phosphorylation", False)), value=True,

17 rate=1, desc="Phosphorylation of EGFR homodimer")

18
19 # Convert interaction to JSON

20 int json = interaction.to json()

21
22 # Convert JSON back to interaction

23 copy interaction = Interaction.from json(int json)

The following listing shows how a KAMI corpus can be created. KAMI requires corpora to be
assigned an identifier (e.g. EGFR signalling in the listing below). An interaction object can
be added to the corpus using the add interaction method. As a result, a new nugget graph
is generated, added to the corpus and the new bits of knowledge are propagated to the action
graph (as described in Section 4.2). KAMI provides various tools for accessing the components of
the corpus, e.g. a nugget graph object, the action graph, identification of entities and actions in
the nugget by the action graph, typing of the action graph by the meta-model, etc. In addition,
KAMI implements a set of tools for manual addition of new entities and actions to the action
graph (independent from the aggregation process).

1 from kami import KamiCorpus

2
3 # Create an empty KAMI corpus based on in−memory graphs
4 corpus = KamiCorpus("EGFR signalling", backend="networkx")

5
6 # Add interaction to the corpus

7 new nugget id = corpus.add interaction(interaction)

8
9 # Access the newly created nugget graph

10 nugget = corpus.get nugget(new nugget id)

11 print(corpus.get nugget desc(new nugget id))

12 print(nugget.nodes())

13
14 # Access the action graph

15 ag = corpus.action graph

16 print(ag.nodes())

17
18 # Get the identification of nugget nodes in the action graph

19 print(corpus.get nugget typing(new nugget id))

20
21 # Get typing of the action graph by the meta−model
22 print(corpus.get action graph typing())

23
24 # Get all the protoforms in the corpus

25 print(corpus.protoforms())

26
27 # Find a protoform node by the UniProt AC of its gene
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28 egfr protoform node id = corpus.get protoform by uniprot("P00533")

29
30 # Manually add a new protoform and its site to the corpus

31 new protoform node = corpus.add protoform(Protoform("P62993"))

32 corpus.add site(Site("New site"), new protoform node)

33 print(corpus.get attached sites(new protoform node))

The following listing creates interaction objects corresponding to the nuggets from Figures
4.5b and 4.5c and adds them to the knowledge corpus.

1 grb2 = Protoform("P62993")

2 grb2 sh2 = RegionActor(

3 protoform=grb2,

4 region=Region(name="SH2"))

5
6 shc1 = Protoform("P29353")

7 shc1 pY = SiteActor(

8 protoform=shc1,

9 site=Site(

10 name="pY",

11 residues=[Residue("Y", 317, State("phosphorylation", True))]))

12 interaction1 = Binding(grb2 sh2, shc1 pY)

13
14 grb2 sh2 with residues = RegionActor(

15 protoform=grb2,

16 region=Region(

17 name="SH2",

18 residues=[

19 Residue("S", 90, test=True),

20 Residue("D", 90, test=False)]))

21
22 egfr pY = SiteActor(

23 protoform=egfr,

24 site=Site(

25 name="pY",

26 residues=[Residue("Y", 1092, State("phosphorylation", True))]))

27
28 interaction2 = Binding(grb2 sh2 with residues, egfr pY)

29
30 corpus.add interactions([interaction1, interaction2])

As we have previously mentioned, KAMI provides an importer for PPIs represented using the
BioPAX format. The following listing illustrates how KAMI interaction objects can be created
from a BioPAX model stored in a .owl file11.

11The dataset PathwayCommons11.pid.BIOPAX.owl from the listing can be found at https://www.

pathwaycommons.org/archives/PC2/v11/.
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1 from kami.importers.biopax import BioPaxImporter

2
3 # Convert BioPax model into KAMI interactions

4 bp importer = BioPaxImporter()

5 biopax interactions = bp importer.import model("PathwayCommons11.pid.BIOPAX.owl")

6
7 # Add interactions to the corpus

8 corpus.add interactions(biopax interactions)

Moreover, KAMI allows to convert INDRA statement objects into native entity and inter-
action objects. In the following listing a text containing a mechanistic description of PPIs is
proccessed using INDRA’s TRIPS processor [45] into statement objects. These objects are
further converted into interactions and added to the corpus.

1 from indra.sources import trips

2 from kami.importers.indra import IndraImporter

3
4
5 text = (

6 "MAP2K1 phosphorylates MAPK3 at Thr−202 and Tyr−204;"
7 "ABL1 phosphorylates PLCG1 at Y394.")

8
9 # Proccess text using INDRA✬s TPIS processor

10 trips processor = trips.process text(text)

11 # Get INDRA statements

12 statements = trips processor.statements

13
14 # Convert statements into KAMI interactions

15 indra importer = IndraImporter()

16 indra interactions = indra importer.import statements(statements)

17
18 # Add interactions to the corpus

19 corpus.add interactions(indra interactions)

KAMI provides the Definition data structure for creation of protein definitions. As input,
the constructor of Definition takes a protoform object and a list of Product objects. The latter
objects define which components are removed from the protoform and which amino acids are
set to its key residues in particular protein products. The following listing creates the protein
definition for GRB2 from Figure 4.8. Definition objects provide the generate rule method
that returns ReGraph’s rule object that corresponds to the representation of protein definitions
described in Section 4.1. The created protein definition can be further used to instantiate a
concrete signalling model.

1 # Create a protein definition for GRB2

2 protoform = Protoform(

3 "P62993",
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4 regions=[Region(

5 name="SH2",

6 residues=[

7 Residue("S", 90, test=True),

8 Residue("D", 90, test=False)])])

9
10 ashl = Product(name="Ash−L", residues=[Residue("S", 90)])
11 s90d = Product(name="S90D", residues=[Residue("D", 90)])

12 grb3 = Product(name="Grb3", removed components={"regions": [Region("SH2")]})
13
14 grb2 definition = Definition(protoform, products=[ashl, s90d, grb3])

15
16 # Generate the instantiation rule from the definition given the corpus

17 rule, instance = grb2 definition.generate rule(

18 corpus.action graph, corpus.get action graph typing())

19
20 # Instantiate a model for the corpus

21 grb variants model = corpus.instantiate("EGFR signalling GRB2", [grb2 definition])

The module kami.exporters.kappa provides a set of utilities for the generation of exe-
cutable Kappa scripts from both instantiated models and knowledge corpora (provided protein
definitions for the protoforms present in the corpora). Consider the listing below, it defines
initial conditions for protein products of EGFR, GRB2 and SHC1. Such conditions specify the
number of molecules for different states of the corresponding proteins in the initial mixture. For
example, the listing defines the following initial concentrations of the EGFR products in the
mixture:

❼ 150 molecules of the canonical EGFR protein (no PTMs, bounds or activity);

❼ 75 molecules of the EGFR protein with the active kinase domain;

❼ 30 molecules of the EGFR protein with the phosphorylated Y1092;

❼ 30 molecules of the EGFR protein with the phosphorylated Y1092 and bound to the SH2
domain of Ash-L through its pY site;

❼ 30 instances of the EGFR protein dimer (EGFR bound to another EGFR).

1 from kami.exporters.kappa import KappaInitialCondition

2
3
4 # Initial condition for EGFR

5 egfr initial = KappaInitialCondition(

6 canonical protein=Protein(Protoform("P00533")),

7 canonical count=150,

8 stateful components=[

9 (egfr kinase, 75),

10 (Residue("Y", 1092, state=State("phosphorylation", True)), 30),
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11 (Site(

12 name="pY",

13 residues=[Residue("Y", 1092,

14 state=State("phosphorylation", True))],

15 bound to=[

16 RegionActor(

17 protoform=grb2, region=Region(name="SH2"),

18 variant name="Ash−L")
19 ]), 30)

20 ],

21 bonds=[

22 (Protein(Protoform("P00533")), 30),

23 ])

24
25 # Initial condition for Ash−L
26 ashl initial = KappaInitialCondition(

27 canonical protein=Protein(Protoform("P62993"), "Ash−L"),
28 canonical count=200,

29 stateful components=[

30 (Region(name="SH2", bound to=[shc1 pY]), 40)])

31
32 # Initial condition for S90D

33 s90d initial = KappaInitialCondition(

34 canonical protein=Protein(Protoform("P62993"), "S90D"),

35 canonical count=20,

36 stateful components=[

37 (Region(name="SH2", bound to=[egfr pY]), 10)])

38
39 # Initial condition for Grb3

40 grb3 initial = KappaInitialCondition(

41 canonical protein=Protein(Protoform("P62993"), "Grb3"),

42 canonical count=70)

43
44 # Initial condition for SHC1

45 shc1 initial = KappaInitialCondition(

46 canonical protein=Protein(Protoform("P29353")),

47 canonical count=100,

48 stateful components=[

49 (Residue("Y", 317, state=State("phosphorylation", True)), 30)])

50
51 initial concentrations = [

52 egfr initial,

53 ashl initial,

54 s90d initial,

55 grb3 initial,

56 shc1 initial

57 ]

166



4.6. KAMISTUDIO

The two listings below illustrate how the ModelKappaGenerator and CorpusKappaGenerator
classes can be used to generate Kappa scripts from the previously defined model and corpus
respectively. The generation adds initial conditions corresponding to the concentrations de-
fined in the previous listing. The default concentation argument is used to assign default
concentration for canonical agents (with no PTMs and bounds) that are not mentioned in the
initial concentrations parameter.

1 from kami.exporters.kappa import

2 ModelKappaGenerator

3
4 # Create a Kappa generator from a model

5 generator = ModelKappaGenerator(

6 grb variants model)

7 # Generate Kappa with default agent

8 # concentration 75 molecules per agent

9 kappa str = generator.generate(

10 initial concentrations,

11 default concentation=75)

1 from kami.exporters.kappa import

2 CorpusKappaGenerator

3
4 # Create a Kappa generator from a corpus

5 generator = CorpusKappaGenerator(

6 corpus, [grb2 definition])

7 # Generate Kappa with default agent

8 # concentration 75 molecules per agent

9 kappa str = generator.generate(

10 initial concentrations,

11 default concentation=75)

4.6 KAMIStudio

KAMIStudio is an environment for biocuration of cellular signalling knowledge based on the
KAMI framework. It provides features for semi-automatic curation of large corpora of cellular
signalling knowledge including:

❼ interactive visualization of knowledge stored in corpora and models;

❼ input of individual PPIs to a corpus through intuitive forms as well as batch import from
JSON-formatted interactions resulting in the automatic aggregation of new knowledge to
the corpus;

❼ an interface for specifying protein variants; automatic instantiation of corpora into models
using protein variants;

❼ automatic generation of Kappa scripts from models.

Interactive visualization of corpora and models in KAMIStudio allows the user to interact
with graphs in various ways: click on graph elements to view (and modify) the attached meta-
data, zoom, pan, drag the nodes. Moreover, using the meta-data attached to the graph elements,
KAMIStudio provides cross-referencing to common databases such as UniProt and InterPro.
Such interactive capabilities may provide some additional insights to knowledge, e.g. on the
structure of the underlying PPI network, its connected components or its hub nodes and may
also suggest manual edits necessary to make the data consistent with the modeller’s viewpoint.
Moreover, KAMIStudio offers an intuitive interface for the creation of protein definitions and
their visualization.
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Intuitive forms for the PPI input implemented in KAMIStudio are based on the intermedi-
ate representation language presented in Subsection 4.2.1. They provide a graphical interface
through which the user can specify the type of interaction (e.g. modification, self-modification,
binding), its actors (e.g. enzyme, substrate, binding partners), create and nest various proto-
form components (e.g. regions, sites, residues) and set them as actors of interactions. Given an
input interaction, KAMIStudio generates a preview of the nugget graph which allows the user
to intervene in the automatic entity and action identification process. In addition, graphical
visualization of corpora provides means for manual intervention in the aggregation process and
allows the user to select different action nodes and merge them, effectively stating “I know that
these interactions are instances of the same mechanism”.

KAMIStudio is a web-based application: its server can be started locally and its func-
tionality can be used in a browser via the provided client. The knowledge represenation
and update-related backend is based on the Python libraries ReGraph and KAMI. To store
data, KAMIStudio uses two noSQL database technologies: Neo4j and MongoDB. The full
version can be installed from source and run locally (detailed installation instructions can
be found in the github repository12). In addition, a read-only demo is available online at
http://kamistudio.ens-lyon.fr/. The online demo contains three example corpora: EGFR
signalling built from a subset of individual PPIs involved in the EGFR signalling pathway,
pYNET 20 and pYNET 200 built from respectively 20 and 200 random PPIs involving tyro-
sine phosphorylations and bindings of SH2 domains to phosphotyrosine-containing sites. The
demo also contains three models that can be used to generate Kappa scripts. The first model
is an instantiation of the EGFR signalling corpus using splice variants and mutants of genes
EGFR and GRB2. The two other models represent instantiations of pYNET 20 and pYNET
200 using the wild-type variants. These models are built by aggregation of independent PPIs
without pre-conceived pathways in mind. A superficial look at the action graph of the pYNET
20 model reveals a number of disconnected components most of which correspond to individual
PPIs which suggests to the modeller some gaps in the collected knowledge. On the other hand,
the action graph of the pYNET 200 model starts exhibiting a large connected component, which
suggests the potential emergence of pathways.

4.7 Discussions and conclusions

The bio-curation framework KAMI described in this thesis represents a novel approach to
meta-modelling of cellular signalling that makes the first step towards decoupling the process
of knowledge curation from model building. It proposes a de-contextualized KR based on
hierarchies of graphs that is designed to accommodate both mechanistic and phenomenological
knowledge of mechanisms of PPIs. Such a KR allows for both meaningful semi-automated
aggregation of knowledge from various sources, as well as instantiation of this knowledge in
different contexts. Furthermore, this KR delivers a set of transparent curation tools based on a
rigorous mathematical theory for rewriting and propagation in hierarchies.

The semi-automatic knowledge aggregation mechanism of KAMI allows for ‘gluing’ frag-
ments of knowledge on individual PPI into coherent corpora that can be studied as is or further
reused to instantiate concrete signalling models in different contexts. This instantiation process
in based on the idea that, depending on the anatomy of concrete protein products arising in
different cellular contexts (mutants, splice variants, etc.), some PPI mechanisms described in

12https://github.com/Kappa-Dev/KAMIStudio
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a corpora are realized and some are muted. This allows the curator to automatically generate
multiple signalling models from the knowledge corpus. KAMI provides means for converting
such models into executable scripts that can be used for simulation of the dynamics and further
analysis of the underlying systems.

KAMI’s bio-curation approach makes knowledge collation and curation semi-automatic and
model building entirely automatic. This, however, does not make the human curator and
the human modeller superfluous in the meta-modelling process. It simply frees the human
expert from the cognitive burden of the manual collation of fragmentary knowledge and the
necessity to conceive and build large complex models. It directs the efforts of the human curator
towards finding high-quality pertinent knowledge sources, reviewing the aggregated corpora
and finding gaps and discrepancies in the represented knowledge (and potentially resolving
representation level mismatches). The expertise of the modeller, on the other hand, is necessary
to discover artifacts of the generated models, design pertinent questions and tools for automated
analysis of such models. Such an approach makes it possible to build ‘models of nothing’—
dynamical models built from seemingly unrelated observations without preconceived ideas on
the system they model—and discover emergent phenomena in their dynamics, for example,
signalling pathways.

4.7.1 Future work

Together with the KAMI library and the KAMIStudio environment, the framework is in an active
development phase. Therefore, a significant amount of work remains to be done to make it a
mature bio-curation tool. In the rest of this section we provide some ideas on possible features
that need to be designed and implemented.

First of all, incorporating richer semantic background knowledge and more elaborate mecha-
nisms for semantic tagging in KAMI would allow for better identification of action mechanisms,
nugget autocompletion and semantic updates. Such background knowledge could include, for
example, generic interaction mechanisms of PTB domains, ubiquitin ligases, etc.

Secondly, adapting a version control system based on the audit trail for hierarchies of graphs
(discussed in Subsection 2.2.10) to the domain-specific purposes of KAMI would allow the expert
to document the curation process, maintain different versions of knowledge corpora, merge them,
and rollback to specific points in the curation history. It could enable the accommodation of
different versions of individual nuggets (representing, for example, conflicting knowledge on
some PPI) or different action graphs (representing different interpretations of nuggets). This
version control system should go in hand with a sophisticated knowledge annotation system.
The curator should be able to assign provenance and epistemic status (e.g. experimentally
observed or inferred facts, phenomenological observations, hypotheses) to both accommodated
bits of knowledge and the curation actions themselves.

Moreover, KAMI requires a language for querying knowledge stored in its corpora. As a
corpus grows, manual reviewing and update of its knowledge becomes increasingly difficult. A
specialized language would allow the curator to formulate the queries of interest and make the
manual component of curation more efficient. Such queries could, for example, include finding
all the mechanisms of interaction between two given protoforms, finding all the nuggets where a
protoform binds through one of its conserved domains, finding all the protoforms phosphorylated
by some protein kinase domain, etc.

This language could also provide means for the static analysis of knowledge present in a
corpus: detection of ‘dead’ nuggets (nuggets that describe interactions whose mechanism cannot
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be realized given the knowledge already present in the corpus), identify various relations between
nuggets (positive or negative influence of the interactions they describe), test the reachability
of a particular molecular species (some polymers or large protein complexes).

Integration of KAMI with the Kappa simulator KaSim and the causal story extractor KaS-
TOR would consolidate a powerful rule-based modelling platform allowing for an interesting
modelling feedback : knowledge discovered from simulations and causal analysis of generated
models could be fed back into the knowledge corpus. Moreover, the previously mentioned query
language could be used to formulate assertions expressing, for example, ‘actions at a distance’,
e.g. activation of A eventually leads to the activation of B. Then static analysis and causal sto-
ries extracted from simulations could be combined to test whether a given assertion is validated
by the knowledge present in the corpus.

Another interesting feature of KAMI could include the accommodation of relations between
corpora with the possibility to transfer knowledge between them. For example, if different cor-
pora contain knowledge on PPIs taking part in cellular signalling of different species, the relation
between these corpora could designate the orthology relation between protoforms. Then, some
interaction mechanisms from one corpus could be transferred to another ‘by similarity’.

The KAMI framework can be used as a basis for building an open repository for knowledge
corpora on PPI mechanisms constituting cellular signalling, similarly to such repositories as Ge-
neOntology13 for functions of genes, UniProt14 for protein sequences and functions, InterPro15

for protein families, domains and functional sites, etc. Such a repository could be used to store
and curate reviewed high-quality knowledge corpora that would be accessible to the scientific
community for sharing and browsing known PPI mechanisms, as well as directly generating
executable models from the corpora and their fragments.

As proof of concept for the KAMI framework several small use-cases were developed (such as
the example from Subsection 4.5). In addition, the first attempt to use KAMI for building a large
‘model of nothing’ by aggregating knowledge on tyrosine phosphorylations and SH2/pY bindings
is currently under development. Nevertheless, to explore its capabilities and shortcomings
KAMI still requires some large use-cases to be implemented. Such use-cases could include well-
studied and reviewed models (for example, the Wnt signaling pathway, the activation of Raf,
as suggested in [48]) or large-scale ‘models of nothing’ that could be used to confirm already
known pathways or discover completely new ones.

13http://geneontology.org/
14https://www.uniprot.org/
15https://www.ebi.ac.uk/interpro/
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Chapter 5

Conclusions

In this thesis we have designed a knowledge representation and curation framework based on
hierarchies of graphs—a structure consisting of graphs related with homomorphisms. It is
particularly suitable for representing fragments of knowledge on complex systems and expressing
various relations between these fragments, such as instantiation, identification and so on.

We have presented a mathematical theory for rewriting in hierarchies. Transformations ex-
pressed with such rewriting can be used for updating accommodated knowledge and performing
an audit of updates. We have described the mechanism for rewriting individual objects situated
in hierarchies that propagates corresponding transformations to other objects and homomor-
phisms and maintains the structure and consistency of the hierarchy. The developed theory is
general and applies to hierarchies of any objects satisfying particular structural requirements
(that make the SqPO rewriting possible).

We have introduced the notion of a rule hierarchy—a hierarchy of SqPO rules that can be
used to rewrite entire hierarchies of objects. We have investigated the question of its applicability
given a fixed instance in a hierarchy, as well as the reversiblity of rewriting it induces. Finally,
we have presented a construction that allows to synthesize rule hierarchies corresponding to the
composition of two successive rewrites in a given hierarchy.

The described theory is further used to design an audit trail system that records the update
history of individual objects and their hierarchies. The system allows rolling back to any state
of this history, as well as maintaining multiple diverged versions of the same object and merging
these versions.

Two major use-cases of the introduced framework were described: the design of schemas
for graph databases and the development of a framework for the curation of cellular signalling
knowledge.

The first application of graph hierarchies allows us to design schemas for the property
graph data model, widely used in modern graph databases. Using graph homomorphisms, such
schemas constrain the shape of a database: the set of node types and allowed edge types between
different nodes, the sets of properties and their types for graph elements. We have described
how the developed framework for rewriting and propagation in hierarchies provides powerful
tools for co-evolution of a schema and its data instance.

The second application constitutes the basic knowledge representation and curation capabil-
ities of the bio-curation framework KAMI. This framework decouples the proccess of knowledge
curation from model building and allows the building of large signalling models from knowl-
edge. It provides tools for semi-automated aggregation of fragmented knowledge on individual
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protein-protein interactions into coherent corpora. These corpora can be used for automatic
generation of dynamical rule-based models of cellular signalling in different contexts.

The described theory and its applications have given rise to a set of open-source software
tools and prototypes, notably, the Python libraries ReGraph and KAMI and the web-based envi-
ronment KAMIStudio.

5.1 Future work

This work presents a powerful generalization of SqPO rewriting in hierarchies of objects. Many
classical questions in graph transformation remain to be studied with respect to this general-
ization, such as concurrency, parallelism, various application conditions and so on. Answering
these questions is important not only to provide a fully developed theory of rewriting in hier-
archies but also to provide theoretical tools for immediate concrete applications, among which
is equipping the hierarchy audit trails with the ‘undo’ operation.

Likewise, the two presented applications of graph hierarchies require some future devel-
opment. For example, possible future directions in the design of schemas for PGs include
incorporating the notion of mandatory properties to PG schemas (thus, integrating a notion
of mandatory attributes and their rewriting into the presented mathematical framework), ex-
ploiting three-level hierarchies for representing modifiable graph views, designing techniques for
automated schema inference, etc.

The KAMI framework requires the development of new features that would allow it to
become a mature bio-curation tool. Among others, such features include support for richer
semantic background knowledge, a version control system adapted to the domain-specific pur-
poses, a knowledge annotation system allowing the curator to assign provenance and epistemic
status to the newly added knowledge, new tools for static analysis of knowledge.

Finally, some future work remains to be done for making the software implemented as
part of this thesis full-fledged tools. The ReGraph Python library represents a rather complete
framework allowing the user to build arbitrary knowledge representations based on hierarchies
of graphs. It provides features for rewriting and audit trailing for both individual simple graphs
and their hierarchies and is available as part of the Python package index1. Additionally, the
library contains a prototype system for working with schema-aware PGs. The native support for
schemas, however, remains to be integrated into the PG database technologies, such as Neo4j.

The KAMI Python library together with the standalone bio-curation environment KAMIStudio
are in their earlier development stage. Apart from the implementation of new features of the
KAMI framework (e.g. annotation system, static analysis), they require integration with the
Kappa platform [14], which would give rise to a powerful rule-based modelling platform allowing
for a full spectrum of modelling features: from knowledge curation, its static analysis, to model
building, simulation and analysis.

1https://pypi.org/project/regraph/
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Appendix A

Mathematical background

In this appendix we provide some mathematical background for the rest of the thesis and, in
particular, Chapter 2. We start by introducing the notions of simple and non-simple graphs,
graph homomorphisms. We define the dictionary structure that can be used to assign attributes
to the nodes and edges of different graphs. These mathematical objects are used as the building
blocks for the KR system of our interest. We then introduce the basic notions from category
theory necessary to define the constructions that serve us as tools for knowledge update and
curation. Among such notions are those of pullback and pushout, well-known in the community
of graph rewriting and beyond. We also present the slighly less-known notions of pullback
complements and image factorizations, predominantly used in the context of the SqPO rewriting.
Additionally, this appendix assembles a set of useful lemmas collected from different literature
and used across this thesis.

A.1 Graphs

Definition A.1.1. A simple graph G is defined by a tuple (V,E), where V is a set of vertices,
E ⊆ V × V is a set of edges.

Definition A.1.2. A non-simple graph G is defined by a tuple (V,E, s, t), where V is a set of
vertices, E is a set of edges, s : E → V and t : E → V are two functions assigning to each edge
its source and target node respectively.

Remark A.1.3. In the definition of simple graphs, E being a set implies that at most one edge
is allowed from the same source vertex to the same target vertex. We can draw an analogy with
the definition of simple graphs for non-simple graphs, and say that edges of non-simple graphs
form a multiset of pairs of vertices (which precisely implies that more than one edge is allowed
from the same source to the same target vertex).

For the sake of conciseness, given a graph G, we will denote the set of its vertices (or
nodes) as VG and the set of its edges as EG, without specifically saying that G is defined by
a tuple (VG, EG). Moreover, for an edge e ∈ EG, we will often denote with source(e) and
target(e) the source and the target nodes of e respectively. For a simple graph G = (VG, EG)
and an edge e = (u, v) ∈ EG, source(e) = u and target(e) = v, while for a non-simple graph
H = (VH , EH , sH , tH) and an edge e ∈ EH , source(e) = sH(e) and target(e) = tH(e).
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Definition A.1.4. A path from a node s to a node t, denoted path(s, t), is defined by a
sequence of edges (e1, e2, . . . , en) in G such that source(e1) = s, target(en) = t and target(ei) =
source(ei+1) for all 1 ≤ i ≤ n− 1.

Definition A.1.5. A graph G = (V,E) is directed acyclic (or is a DAG), if for every node
v ∈ V there does not exists a non-empty path(v, v), called a cycle.

Definition A.1.6. A homomorphism of simple graphs G = (V G, EG) and H = (V H , EH)
is defined by a mapping h : V G → V H such that edges are preserved, i.e. if (u, v) ∈ EG,
(h(u), h(v)) ∈ EH .

Definition A.1.7. A homomorphism of non-simple graphs G = (V G, EG, sG, tG) and H =
(V H , EH , sH , tH) is defined by two mappings hv : V G → V H and he : EG → EH such that
s(he(e)) = hv(s(e)) and t(he(e)) = hv(t(e)) for all e ∈ E.

In our KR system we would like to equip graph nodes and edges with attributes that can be
used to express, for example, states, properties, qualities of entities and relations represented
with nodes and edges. Thus, attributes of a graph element are given by a dictionary .

Definition A.1.8. A dictionary is a function d : V → K that maps a finite set of values to a
finite set of keys, V and K here are the objects of the category Setsfin

Definition A.1.9. A dictionary d1 : V1 → K1 is a subdictionary of d2 : V2 → K2 (d1 ≤ d2), if
the following square commutes:

V1 K1

V2 K2

d1

f g

d2

where arrows f and g are injective maps. Intuitively, these injective maps can be seen as set
inclusions V1 ⊆ V2 andK1 ⊆ K2 up to renaming (of keys and values). This defines the dictionary
inclusion relation ≤.

We also define the operations of dictionary union and difference that are useful when per-
forming transformations of objects equipped with attributes.

Definition A.1.10. The union d1 ∪ d2 of two dictionaries d1 : V1 → K1 and d2 : V2 → K2 is a
dictionary d : V1 ∪ V2 → K1 ∪K2 such that for all v1 ∈ V1 d(v1) = d1(v1) and for all v2 ∈ V2

d(v2) = d2(v2).

Definition A.1.11. The difference d1 \ d2 of two dictionaries d1 : V1 → K1 and d2 : V2 → K2

is a dictionary d : V1 \ V2 → K1 such that d(v) = d1(v) for all v ∈ V1 such that v /∈ V2.

We define graphs with attributes adding to the respective definitions two sets AV and AE of
vertex and edge attributes respectively and two functions f : V → AV and g : E → AE mapping
an attribute dictionary for every vertex and edge. A homomorphism between two graphs with
attributes is then required to satisfy the following property: for every graph element (a vertex
or an edge) the attribute dictionary of the source graph element is a subdictionary of the target
graph element it maps to. We formalize it for simple and non-simple graphs in the following
definitions.
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Definition A.1.12. A simple graph with attributes G is defined by a tuple (V,E, AV , AE , f, g),
where V is a set of vertices, E ⊆ V × V is a set of edges, AV and AE are sets of dictionaries, a
function f : V → AV assigns a dictionary from AV to every vertex and g : E → AE assigns a
dictionary from AE to every edge of the graph.

Definition A.1.13. A homomorphism between simple graphs with attributes G = (VG, EG,
AV

G, A
E
G, fG, gG) and H = (VH , EH , AV

H , AE
H , fH , gH) is defined by a mapping h : VG → VH such

that

❼ if (u, v) ∈ EG, (h(u), h(v)) ∈ EH (edges are preserved),

❼ fG(u) ≤ fH(h(u)) for all u ∈ VG (node attributes are preserved),

❼ gG(u, v) ≤ gH(h(u), h(v)) for all (u, v) ∈ EG (edge attributes are preserved).

Definition A.1.14. A non-simple graph with attributes G is defined by a tuple (V,E, s, t, AV ,
AE , f, g), where V is a set of vertices, E ⊆ V × V is a set of edges, s : E → V and t : E → V
are two functions mapping edges to their source and target nodes respectively, AV and AE are
sets of dictionaries, a function f : V → AV assigns a dictionary from AV to every vertex and
g : E → AE assigns a dictionary from AE to every edge of the graph.

Definition A.1.15. A homomorphism between non-simple graphs with attributesG = (VG, EG,
sG, tG, A

V
G, A

E
G, fG, gG) and H = (VH , EH , sH , tH , AV

H , AE
H , fH , gH) is defined by two mappings

hv : VG → VH and he : EG → EH such that

❼ s(he(e)) = hv(s(e)) and t(he(e)) = hv(t(e)) for all e ∈ E,

❼ fG(u) ≤ fH(h(u)) for all u ∈ VG,

❼ gG(e) ≤ gH(he(e)) for all e ∈ E.

A.2 Categories

The following definition of what is a category can be found in [5]:

Definition A.2.1. A category is given by:

❼ objects: A,B,C,D, . . .

❼ arrows : f, g, h, . . .

❼ for each arrow f , two objects dom(f) and codom(f) are given, they are called the domain
and the codomain of f respectively; if dom(f) = A and codom(f) = B, we write f : A→
B;

❼ given a pair of arrows f : A → B and g : B → C (with codom(f) = dom(g)), there is an
arrow g ◦ f : A→ C called the composite of f and g;

❼ for every object A, an arrow 1A : A→ A is given, it is called the identity arrow of A.

such that the following properties hold:

❼ Associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f for all f : A→ B, g : B → C and h : C → D.

❼ Unit: f ◦ 1A = f = 1B ◦ f for all f : A→ B.
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Classical and well-known examples of categories include:

❼ the category of sets and functions Sets,

❼ the category of finite sets and set inclusions Setsfin,

❼ the category of posets and monotone functions Pos,

❼ the category of topological spaces and continuous maps Top.

Categories of our interest include

❼ the category of simple graphs and their homomorphisms SimpGrph,

❼ the category of non-simple graphs and their homomorphisms Grph,

❼ the category of dictionaries and dictionary inclusions Dict,

❼ the category of simple graphs with attributes and their homomorphisms SimpGrphattrs,

❼ the category of non-simple graphs with attributes and their homomorphisms Grphattrs.

Definition A.2.2. An arrow f : B → C is a monomorphism (or a mono) if for any object A
and any arrow g1, g2 : A→ B, f ◦ g1 = f ◦ g2 implies that g1 = g2. We will often denote monos
as f : B C.

Definition A.2.3. An arrow f : A→ B is an epimorphism (or an epi) if for any object C and
any arrow g1, g2 : B → C, g1 ◦ f = g2 ◦ f implies that g1 = g2. We will often denote epis as
f : B ։ C.

Definition A.2.4. An arrow f : A → B is an isomorphism (or an iso) if it is invertible, i.e.
there exists an inverse f− : B → A such that f ◦ f− = IdB and f− ◦ f = IdA.

Definition A.2.5. An initial object of a category C is an object I such that, for every other
object X, there exists a unique arrow f : I → X.

Definition A.2.6. The slice category C/T of a category C over an object T from C is the
category whose objects are all arrows f from C with codom(f) = T , and whose arrows h from
an object f : A→ T to an object g : B → T are given by arrows h : A→ B from C that make
the following diagram commute.

A B

T
f

h

g
(A.1)

Example A.2.1. For a fixed simple or non-simple graph T the slice category SimpGrph/T
or Grph/T respectively defines the category of graphs typed by T .
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A.3 Pullbacks

Definition A.3.1. The pullback of a co-span B−h→D←i−C is given by a span B←f−A−g→C
for which h ◦ f = i ◦ g and which has the following universal property: for all B←u−Z−v→C
such that h ◦ u = i ◦ v there exists a unique w : Z → A such that u = f ◦ w and v = g ◦ w.

Z

B A

D C

u

w

v
h

f

g

i

(A.2)

Example A.3.1. In the category Setfin of finite sets and set inclusions, given three sets B, C
and D such that B ⊆ D and C ⊆ D, the pullback is given by the set A := B ∩ C.

Example A.3.2. In the category Set of sets and functions, given three sets B, C and D and
two functions f : B → D and g : C → D, the pullback is given by the set A defined as

A := {(b, c) ∈ B × C | f(b) = g(c)}

and two homomorphisms g′ : A → B and f ′ : A → C defined as the projections of B × C into
B and C, i.e. for all (b, c) ∈ B × C g′(b, c) = b and f ′(b, c) = c.

Example A.3.3. In the category Dict of dictionaries and dictionary inclusions, given three
dictionaries dB : VB → KB, dC : VC → KC and dD : VD → KD, the pullback is defined by
a dictionary dA : VB ∩ VC → KB ∩KC , where ∀v ∈ VB ∩ VC dA(v) := dB(v) (or equivalently
dA(v) := dC(v)). It is easy to verify that such a dA exists and is unique by the universal property
of KB∩KC as the pullback in the category Set illustrated in the following commutative diagram:

VB VB ∩ VC

VD VC

KB KB ∩KC

KD KC

dB

dD dC

dA

(A.3)

Example A.3.4. For the categories SimpGrph, Grph, as well as SimpGrphattrs and
Grphattrs, the pullback can be constructed separately using pullbacks in Set for nodes and edges,
and in Dict for attributes. The source and target functions in the definitions of objects from
Grph, as well as the attribute-assigning ones from SimpGrphattrs and Grphattrs, are uniquely
determined by the universal properties of pullbacks constructed in Set. For instance, source
functions can be obtained in the following way. Let B = (VB, EB, sB, tB), C = (VC , EC , sC , tC)
and D = (VD, ED, sD, tD) be three graphs and h : B → D and i : C → D be two homomorphisms
defined by the pairs (hv : VB → VD, he : EB → ED) and (iv : VC → VD, ie : EC → ED). Having
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constructed VA, EA, fv : VA → VB, fe : EA → EB, gv : VA → VC and ge : EA → EC using
pullback constructions in Set, we can obtain the unique homomorphism sA : EA → VA applying
the universal property of the pullback that constructs VA as in the following diagram.

EB EA

VB VA EC

VD VC

sB sA

fe

ge

hv

fv

gv
sC

iv

(A.4)

The homomorphism tA : EA → VA can be found in the analogous way.

In the categories of simple graphs, to construct the pullback object we need to handle a
subtlety which arises due to the fact that graph homomorphims defined by maps of nodes, while
maps of edges are given implicitly and are more similar to set inclusions in Setfin. Therefore,
we cannot construct our set EA in the same way as in Example A.3.2. Having constructed the
set of nodes VA of the pullback object A and the homomorphisms g′ : VA → VB and f ′ : VA → VC ,
the set of edges is defined as follows:

EA := {(u, v) ∈ VA × VA | (g
′(u), g′(v)) ∈ EB and (f ′(u), f ′(v)) ∈ EC}.

Lemma A.3.2. (Pasting lemma for pullbacks) In the diagram below, let B←f−A−g→C be
the pullback from h and i. B←f◦j−E−k→F is the pullback from h and i ◦ l if and only if
A←j−E−k→F is the pullback from g and l. In other words, if the left square in the diagram is
a pullbacks, then the outer square is also one, if and only if the right square is also a pullback.

B A E

D C F

h g

f j

k

i l

(A.5)

Corollary A.3.3. Let n = i◦l, B←f−A−g→C be the pullback from h and i andB←m−E−k→F )—
the pullback from h and n, then there exists a unique j : E → A such that m = f ◦ j and
g ◦ j = l ◦ k, and, moreover, the square formed by g ◦ j and l ◦ k, (right inner square in the
following diagram) is a pullback.

B A E

D C F

h
g

f j

k

m

i l

n

(A.6)
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Lemma A.3.4. (Pullbacks reflect monos) In the diagram below, let B←f−A−g→C be the
pullback from h and i. If h is a monomorphism, g is also a monomorphism.

B A

D C

h

f

g

i

(A.7)

Lemma A.3.5. (Pullback post-composed with a mono) In the diagram below, letB←f−A−g→C
be the pullback from h and i and m : D E be a mono, then B←f−A−g→C is also the pull-
back from m ◦ h and m ◦ i.

B A

E D C

h

f

g

m i

(A.8)

Proof. To prove this lemma we need to demonstrate two things: first, that the square formed by
m ◦h ◦ f and m ◦ i ◦ g commutes, which is immediate; second, that this square has the universal
property of a pullback. Let B←u−Z−v→C be a span such that m ◦ h ◦ u = m ◦ i ◦ v (as in the
diagram below). The homomorphism m being a mono implies that h ◦ u = i ◦ v, which allows
us to use the universal property of the pullback square from the diagram and show that there
exists a unique arrow w : Z → A such that all the triangles in the following diagram commute.
This concludes our proof.

Z

B A

E D C

u

v

w
=

=

h

f

g

m i

(A.9)

Lemma A.3.6. (Pullback triangle from a mono) The square in the following diagram is a
pullback, if g ◦ f = h and g is a mono.

B A

C A

g

f

IdA

h

(A.10)
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Proof. Because g ◦ f = h, for any object Z and two homomorphisms x : Z → B and y : Z → A
such that g ◦ x = h ◦ y, g ◦ x = g ◦ f ◦ y, and g being a mono implies that x = f ◦ y. Trivially y
is the unique homomorphism for which y = IdA ◦ y.

Z

B A

C A

y

x

y
g

f

IdA

h

(A.11)

A.4 Pushouts

Definition A.4.1. The pushout of a span B←f−A−g→C is given by a co-span B−h→D←i−C
for which h ◦ f = i ◦ g and which has the following universal property: for all B−u→Z←v−C
such that u ◦ f = v ◦ g there exists a unique w : D → Z such that u = w ◦ h and v = w ◦ i.

A C

B D

Z

f

g

i
v

u

h

w
(A.12)

Example A.4.1. In the category Setfin of finite sets and set inclusions, given three sets A, B
and C such that A ⊆ B and A ⊆ C, the pushout is given by the set D := B ∪ C.

Example A.4.2. In the category Set of sets and functions, given three sets A, B and C and
two functions f : A → B and g : A → C, the pushout is given by the set D := (B ∪· C)≈, i.e.
the quotient set of the disjoint union of B and C, modulo the equivalence relation ≈, where
≈:= {(b, c) ∈ B × C | ∃a ∈ A : f(a) = b and g(a) = c}. The two homomorphisms g′ : B → D
and f ′ : C → D are then defined in such a way that they map elements from B and C to the
corresponding equivalence classes [21].

Example A.4.3. In the category Dict of dictionaries and dictionary inclusions, given three
dictionaries dA : VA → KA, dB : VB → KB and dC : VC → KC , the pushout is defined
by a dictionary dD : VB ∪ VC → KB ∪ KC , where ∀v ∈ VB dD(v) := dB(v) and ∀v ∈ VC

dD(v) := dC(v). It is easy to verify that such a dD exists and is unique by the universal
property of VB ∪VC as the pullback in the category Set illustrated in the following commutative
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diagram:

VA VC

VB VB ∪ VC

KA KC

KB KB ∪KC

dC

dB dD

dA

(A.13)

Example A.4.4. Similarly to pullbacks, for the categories SimpGrph, Grph, SimpGrphattrs

and Grphattrs, a pushout can be constructed separately using pushouts in Set for nodes and
edges, and in Dict for attributes. The source and target functions in the definitions of ob-
jects from Grph, as well as the attribute-assigning ones from SimpGrphattrs and Grphattrs,
are uniquely determined by the universal properties of pushouts constructed in Set. For in-
stance, source functions can be obtained in the following way. Let A = (VA, EA, sA, tA),
B = (VB, EB, sB, tB) and C = (VC , EC , sC , tC) be three graphs and f : A→ B and g : A→ C be
two homomorphisms defined by the pairs (fv : VA → VB, fe : EA → EB) and (gv : VA → VC , ge :
EA → EC). Having constructed VD, ED, hv : VB → VD, he : EB → ED, ie : VC → VD and
ie : EC → ED using pushout constructions in Set, we can obtain the unique homomorphism
sD : ED → VD applying the universal property of the pushout that constructs ED as in the
following diagram.

EA EC

EB ED VC

VB VD

ge

fe
sC

ie

sB

he

sD
iv

hv

(A.14)

The homomorphism tD : ED → VD can be found in the analogous way.

As in the case of pullbacks, a subtlety arises due to the fact that graph homomorphims in
SimpGrph are defined by maps of nodes, while maps of edges are given implicitly. We cannot
define the equivalence relation ≈ in the same way as in Example A.4.2. Having constructed the
set of nodes VD of the pushout object D and the homomorphisms g′ : VB → VD and f ′ : VC →
VD, the set of edges is defined as follows:

ED := {(u, v) ∈ VD × VD |

(∃(u′, v′) ∈ EB : g′(u′) = u and g′(v′) = v)

or (∃(u′, v′) ∈ EC : f ′(u′) = u and f ′(v′) = v)}.
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Lemma A.4.2. (Pasting lemma for pushouts) In the diagram below, let B−h→D←i−C be
the pushout from f and g, then B−k◦h→F←l−E is the pushout from f and j ◦ g, if and only if
D−k→F←l−E is the pushout from i and j. In other words, if the left square in the following
diagram is the pushout, the outer square is also one if and only if the right square is the pushout.

A C E

B D F

f

g

i

j

l

h k
(A.15)

Corollary A.4.3. In the diagram below, let m = j ◦ g, B−h→D←i−C be the pushout from f
and g and B−n→F←l−E—the pushout from f and m, then there exists a unique k : D → F
such that n = k ◦ i and k ◦ h = l ◦ j, and, moreover, the square formed by k ◦ h and l ◦ j, (right
inner square in the following diagram) is a pushout.

A C E

B D F

m

f

g

i

j

l

n

h k
(A.16)

Lemma A.4.4. (Pushouts reflect epis) Let B−h→D←i−C be the pushout from f and g. If f
is a epimorphism, i is also an epimorphism.

A C

B D

f

g

i

h

(A.17)

Lemma A.4.5. (Pushout pre-composed with an epi) In the following diagram, letB−h→D←i−C
be the pushout from f and g and e : E ։ A be an epi, then B−h→D←i−C is also the pushout
from f ◦ e and g ◦ e.

E A C

B D

e

f

g

i

h

(A.18)

Proof. The proof is similar to the one for Lemma A.3.5 using the definition of epi and the
universal property of pushouts.

Definition A.4.6. (Stable pushouts) Let B−h→D←i−C be the pushout from f and g, this
pushout is stable if for every commutative cube as in the diagram below, the back face is a
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pushout, if the left, top, right and bottom faces are pullbacks.

A′ C ′

B′ D′

A C

B D

f ′

g′

i′

h′

f

g

i

h

(A.19)

Lemma A.4.7. (Pushout splitting) Let B←f−A−g→C be the pullback from h and i and
D←i−C−j→E be the pullback from k and l (i.e. the two inner squares in the following
diagram are pullbacks), B−k◦h→F←l−E be the pushout from f and j ◦ g that is stable (i.e.
the outer square is a pushout) and the homomorphism k be a mono, then B−h→D←i−C is
also the pushout from f and g and D−k→F←l−E is the pushout from i and j (i.e. the two
inner squares are also pushouts, see Lemma 4, [29]).

A C E

B D F

f

g

i

j

l

h k

(A.20)

Definition A.4.8 (Pushout factorization of a pullback). Let f : A → C and g : B → C be
two arrows, A←h−D−i→B be the pullback from f and g and A−j→E←k−B be the pushout
from h and i. The unique arrow x : E → C that renders the following diagram commutative
obtained by the universal property of the pushout is called pushout factorization of the pullback
of f and g.

A D

E B

C

f
j

h

i

x

k

g

(A.21)

A.5 Pullback complements

In this appendix we define the notion of a final pullback complement and some of its useful
properties. The interested reader can find more details in [65].

183



A.5. PULLBACK COMPLEMENTS

Definition A.5.1. The final pullback complement of a pair of composable arrowsA−f→B−h→D
is another pair of composable arrows A−g→C−i→D for which h◦f = i◦g, forming a square that
is a pullback, and which has the following universal property: for all B←f ′−A′−u→Z−v→D,
for which h ◦ f ′ = v ◦ u and the formed square is a pullback, and for every arrow a : A′ → A
such that f ′ = f ◦ a there exists a unique w : Z → C such that g ◦ a = w ◦ u and v = i ◦ w.

A′

B A Z

D C

f ′

a
u

h

f v

w
g

i

(A.22)

In the categories of our interest the final pullback complement always exists if h is a
monomorphism, then by the fact that pullbacks preserve monos g is always a mono.

Example A.5.1. In the category Setfin of finite sets and set inclusions, given three sets A, B
and D such that A ⊆ B ⊆ D, the final pullback complement is given by the set C := D\ (B \A).

Example A.5.2. In the category Set of sets and functions, given three sets A, B and D and
two functions f : A → B and g : B  D, the final pullback complement is given by the set C
defined as

C := A ∪· {d ∈ D | ∄b ∈ B : g(b) = d}.

The homomorphism g′ : A → C is induced by the identity morphism IdA, and f ′ : C → D is
defined as f ′(a) = g ◦f(a) for all a ∈ A and f ′(d) = d for all d ∈ D such that ∄b ∈ B : g(b) = d.

Example A.5.3. In the category Dict of dictionaries and dictionary inclusions, given three
dictionaries dA : VA → KA, dB : VB → KB and dD : VD → KD, the final pullback complement
is defined by a dictionary dC : VC → KC , where VC := VD \ (VB \ VA), KC := KD \ (KB \KA),
∀v ∈ VA dC(v) := dA(v) and ∀v ∈ VD \ VB dC(v) := dD(v). It is easy to verify that such
a dC exists and is unique by the universal property of KD \ (KB \ KA) as the final pullback
complement in the category Set illustrated in the following commutative diagram:

VB VA

VD VC

KB KA

KD KC

dB

dD dC

dA

(A.23)
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Example A.5.4. For the categories SimpGrph, Grph, as well as SimpGrphattrs and
Grphattrs, the final pullback complement can be constructed separately using final pullbacks
complements in Set for nodes and edges, and in Dict for attributes. The source and tar-
get functions in the definitions of objects from Grph, as well as the attribute assigning ones
from SimpGrphattrs and Grphattrs, are uniquely determined by the universal properties of
constructed final pullback complements. For instance, source functions can be obtained in the
following way. Let A = (VA, EA, sA, tA), B = (VB, EB, sB, tB) and D = (VD, ED, sD, tD) be
three graphs and f : A → B and h : B → C be two homomorphisms defined by the pairs
(fv : VA → VB, fe : EA → EB) and (hv : VB → VC , he : EB → EC). Having constructed VC ,
EC , gv : VA → VC , ge : EA → EC , iv : VC → VD and ie : EC → ED using final pullback comple-
ment constructions in Set, we can obtain the unique homomorphism sC : EC → VC applying
the universal property of the final pullback complement that constructs VC as in the following
diagram.

EB EA

ED EC

VB VA

VD VC

sB he

fe

ge

sD

ie

sC

hv

sA

fv

gv

iv

(A.24)

The homomorphism tC : EC → VC can be found in the analogous way.
Similarly to pullbacks and pushouts, we need to additionally define the set of edges of the

final pullback complement object C in SimpGrph. Having constructed the set of nodes VC and
the homomorphisms g′ : VA → VC and f ′ : VC → VD, the set of edges is defined as follows:

EC := EA ∪ {(u, v) ∈ VC × VC |

((f ′(u), f ′(v)) ∈ ED and (f ′(u) /∈ img(g) or f ′(v) /∈ img(g)))

or (g−1(f ′(u)), g−1(f ′(v))) /∈ EB}.

Lemma A.5.2. (Pullback complement preserve monos) Let Ag→C−i→D be the final pull-
back complement of f and h (as in the diagram below), and f be monomorphisms, then i is
also a monomorphism.

B A

D C

h

f

g

i

(A.25)

Proof. To prove this lemma we would like to show that for any object C ′ and two homomor-
phisms h1 : C ′ → C and h2 : C ′ → C such that i ◦ h1 = i ◦ h2, it holds that h1 = h2.
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First, construct the pullback B←x−A′−y→C ′ from h and i ◦ h1. By the universal property of
the pullback (corresponding to the inner square in the diagram below) there exists a unique
u1 : A′ → A such that f ◦ u1 = x and g ◦ u1 = y ◦ h1. Now, we can use the universal property
of the final pullback complement that constructed C, i.e. from the fact that the outer square
is a pullback, and that f ◦ ui = x follows that there exists a unique homomorphism v : C ′ → C
such that g ◦ u1 = v ◦ y and i ◦ v = i ◦ h1.

A′

B A C ′

D C

x

u1

y

h

f

v

h2

h1

g

i

(A.26)

Clearly h1 satisfies both equations, which implies that v = h1. Meanwhile our second homo-
morphism h2 satisfies only (b).

Now, let us construct the pullback B←x′−A′′−y′→C ′ from h and i ◦ h2. By its universal
property there exists a unique u2 : A′′ → A such that f ◦ u2 = x and g ◦ u2 = y′ ◦ h2. Since
i◦h2 = i◦h1 we have that x = x′, and therefore f ◦u2 = f ◦u1. Recall that f is a monomorphism,
which implies that u1 = u2, and makes h2 also satisfy (a). Therefore h2 = v = h1, which
completes our proof.

Lemma A.5.3 (Horizontal pasting lemma for final pullback complements). In the following
diagram, let Ag→C−i→D be the final pullback complement of f and h, then Ek→F−i◦l→D
is the final pullback complement of f ◦j and h, if and only if Ek→F−l→C is the final pullback
complement of j and g.

B A E

D C F

(1)h (2)g

f j

k

i l

(A.27)

Proof. ( =⇒ ) By the pasting lemma for pullbacks the outer square in Diagram A.27 is a
pullback (the square obtained from the composition of the squares denoted with (1) and (2)).
Now we need to prove that this outer square has the universal property of a final pullback
complement, i.e. that for any X, Y , u : X → B, v : X → Y , w : Y → D such that the
outer square in Diagram A.28 is the pullback and the homomorphism x : X → E such that
u = f ◦ j ◦ x, there exists a unique homomorphism y : Y → F such that y ◦ v = k ◦ x and
i ◦ l ◦ y = w.

First of all, by the universal property of the pullback given by the square (1) and the fact
that u = f ◦ j ◦ x and h ◦ f = i ◦ g, there exists a unique homomorphism s : X → A such that
u = f ◦s and g ◦j ◦x = g ◦s (as in the diagram below). This also implies that s = j ◦x (as g is a
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mono). We can also use the universal property of the final pullback complement Ag→C−i→D
and show that there exists a unique homomorphism t : Y → C such that g◦s = t◦v and w = i◦t.
Now we need to show that the square formed by g ◦ s and t ◦ v is a pullback, which follows
immediately from the corollary A.3.3 and the fact that w = i ◦ t.

Finally, by the the universal property of the final pullback complement that gives Ek→F−l→C
there exists a unique homomorphism y : Y → F such that k◦x = y◦v and t = l◦y. The unique-
ness of y implies that there cannot exist another homomorphism y 6= y′ such that i ◦ l ◦ y′ = w,
which concludes this part of the proof.

X

B A E

D C F

Y

u

x

v

s

(1)h (2)g

f j

k

i l

w

t
y

(A.28)

(⇐= ) To prove the converse, knowing that the outer square in Diagram A.27, the composi-
tion of (1) and (2), is the final pullback complement, we need to show that (2) has the universal
property of a final pullback complement, i.e. that for any X, Y , u : X → A, v : X → Y ,
w : Y → C such that the square formed by g ◦ u and w ◦ v is the pullback and the homomor-
phism x : X → E such that u = j ◦ x, there exists a unique homomorphism y : Y → F such
that y ◦ v = k ◦ x and l ◦ y = w.

X

B A E

D C F

Y

x

v

u

(1)h (2)g

f j

k

i l

w
y

(A.29)

The square (1) and the one formed by g ◦u and w ◦v are pullbacks, therefore pasting lemma
for pullbacks tells us that the composition of these square is a pullback. This allows us to apply
the universal property of the final pullback complement Ek→F−i◦l→D and show that there
exists a unique homomorphism y : Y → F such that k ◦ x = y ◦ v and i ◦ w = i ◦ l ◦ y. To
finalize the prove we notice that the uniqueness of y implies that, moreover, y is the unique
homomorphism for which w = l ◦ y.
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Lemma A.5.4 (Vertical pasting lemma for final pullback complements). Let Ag→C−i→D
be the final pullback complement of f and h, then:

(a) if Cj→E−l→F is the final pullback complement of i and k, then Aj◦g→E−l→F is
also the final pullback complement of f and k ◦ h;

(b) if Aj◦g→E−l→F is the final pullback complement of f and k ◦ h and the square de-
noted with (2) in Diagram A.30 is a pullback, then Cj→E−l→F is the final pullback
complement of i and k.

B A

D C

F E

(1)h g

f

(2)k j

i

l

(A.30)

Proof. (a) As in the previous lemma we know that the outer square in diagram A.30 is the
pullback. Now, as before, we need to prove the universal property, i.e. that for any X, Y ,
u : X → A, v : X → Y , w : Y → E such that the outer square in diagram A.31 is the pullback
and the homomorphism x : X → C such that u = f ◦ x, there exists a unique homomorphism
y : Y → F such that y ◦ v = j ◦ g ◦ x and w = l ◦ y.

This proof is more straightforward than its horizontal counterpart. Performing a simple
diagram chase we can verify that all the conditions to directly apply the universal property of
the final pullback complement Cj→E−l→F are satisfied and we obtained the desired unique
arrow y.

X

B A

D C

F E

Y

u

v

x

(1)h g

f

(2)k j

i

l

w

y

(A.31)

(b) Now, knowing that the square (2) in A.30 is a pullback, we need to prove that Cj→
E−l→F is the final pullback complement of i and k. We need to show that the square (2) has
the universal property of the final pullback complement as in the diagram below, i.e. for any
D←u−X−u→Y −w→F , for which k ◦ u = w ◦ v and the formed square is a pullback, and for
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A.5. PULLBACK COMPLEMENTS

any arrow x : X → C such that u = i ◦ x there exists a unique y : Y → E such that w = l ◦ y
and y ◦ v = j ◦ x.

X

D C Y

F E

u

x v

k

i
w

y
j

l

(A.32)

First of all, we can find the pullback B←w′−Y ′−y′→Y from k ◦ h and w (Diagram A.33).
We can now apply the universal property of the pullback D←u−X−v→Y and show that there
exists a unique v′ : Y ′ → X such that h ◦ w′ = u ◦ v′ and y′ = v ◦ v′ as in Diagram A.34. At
this step, we again apply the universal property of the pullback square (1) (Diagram A.35) and
obtain a unique arrow x′ : Y ′ → A such that w′ = f ◦ x′ and x ◦ v′ = g ◦ x′.

B Y ′

F Y
k◦h y′

w′

w

(A.33)

Y ′

D X

F Y

y′

h◦w′

v′

k
u

v

w

(A.34)

Y ′

B A

D C

x◦v′

w′

x′

h (1)

f

g

i

(A.35)

The square in A.33 is a pullback by construction and w′ = f ◦ x′, therefore we can use the
universal property of the final pullback complement given by the composition of squares (1)
and (2) as in Diagram A.36. It states that there exists a unique y : Y → E such that w = l ◦ y
and j ◦ g ◦ x′ = y ◦ y′. For any homomorphism z such that z ◦ v = j ◦ x by a chase of Diagram
A.37 it would also hold z ◦ v ◦ v′ = j ◦ x ◦ v′ = j ◦ g ◦ x′ = z ◦ y′, which implies that z = y by
the uniqueness of y, which concludes our proof.

Y ′

B A Y

F E

w′

x′
y′

k◦h

f
w

y
j◦g

l

(A.36)

Y ′

A X

C Y

E

x′

v′

y′

g
x

v

j
y

z

(A.37)
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A.6. ADHESIVE CATEGORIES

Lemma A.5.5 (Stability of final pullback complement). If all the faces of a commutative cube
as in Diagram A.38 are pullbacks and the front face is a final pullback complement (Ag→C →
iD is the final pullback complement to f and h), then the back face is also a final pullback
complement (see Lemma 1, [29]).

B′ A′

D′ C ′

B A

D C

h′

f ′

g′

i′

h

f

g

i

(A.38)

Lemma A.5.6. If D←i−Cj→E is the pullback from k and l, Aj◦g→E−l→F is the final
pullback complement of f and k ◦h and the arrow k is a mono, then Ag→C−i→D is the final
pullback complement of f and h and Cj→E−l→F is the final pullback complement of i and
k.

B A

D C

F E

(1)h g

f

(2)k j

i

l

(A.39)

Proof. See the proof of Lemma 38 in [65].

A.6 Adhesive categories

In this section we define the notion of adhesive categories. These are the categories where
pushouts along monomorphisms ‘behave well’. Formalized in [61], adhesivity is characteristic
of many categories of interest to us, such as SimpGrph, Grph, as well as SimpGrphattrs and
Grphattrs. We first define the notion of a van Kampen square, which defines the notion of a
‘well-behaved’ pushout.

Definition A.6.1 (van Kampen square). A van Kampen square (VK-square) is a pushout such
that given a commutative cube as in Diagram A.40, where this pushout forms the front face and
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A.7. FACTORIZATIONS

the left and the top faces are pullbacks, the right and bottom faces of the cube are pullbacks if
and only if the back face is a pushout.

A′ C ′

B′ D′

A C

B D

f ′

g′

i′

h′

f

g

i

h

(A.40)

Definition A.6.2 (Adhesive category [61]). A category C is adhesive if:

❼ C has all pushouts along monos;

❼ C has all pullbacks;

❼ pushouts along monos are VK-squares.

Lemma A.6.3 (Pushouts preserve monos). In the diagram below, let B−h→D←[−i]C be the
pushout from f and g. If f is a monomorphism, so is i.

A C

B D

f

g

i

h

(A.41)

Lemma A.6.4. In adhesive categories pushouts along monomorphisms are also pullbacks.

A.7 Factorizations

Definition A.7.1. Given a homomorphism f : A→ B in a category C the image factorization
of f is given by the object C and the monomorphism m : C → B satisfying the following
universal property:

(a) there exists a homomorphism e : A→ C such that f = m ◦ e;

(b) for any object C ′ with a homomorphism e′ : A → C ′ and a monomorphism m′ : C ′ → B
such that f = m′ ◦e′, there exists a unique homomorphism u : C → C ′ such that e′ = u◦e
and u ◦m′ = m.
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A B

C

C ′

f

e

e′

m

u m′
(A.42)

Remark A.7.2. The homomorphism v is a monomorphism.

Proposition A.7.3. If C has all equalizers then the homomorphism e in the factorization
f = m ◦ e is an epimorphism.

Lemma A.7.4. Given a commutative square as the square formed by h◦f and m′ ◦e′ ◦g in the
diagram below withm′ being a mono, and the image factorization of f given by A−e→Cm→B,
there exists a unique homomorphism u : C → F such that u ◦ e = e′ ◦ g and m′ ◦ u = h ◦m.

A B

D C E

F

g
e

f

h

e′

m

u

m′

(A.43)

Proof. We first proceed by constructing the pullback B←m′′
C ′−h′→F from h and m′ as in

Diagram A.44. We can show that by the universal property of this pullback there exists a unique
arrow x : A → C ′ that renders our diagram commutative. We also note that in the categories
of our interest pullbacks preserve monos, which means that the constructed m′′ : C ′ → B is a
mono. This allows us to use the universal property of the image factorization C as in Diagram
A.45 and show that there exists a unique u′ : C → C ′ that renders this diagram commutative.
We can construct a homomorphism u : C → F as a composition h′ ◦ u′ and by a diagram chase
we can show that u ◦ e = e′ ◦ g and m′ ◦ u = h ◦m. Now, we still need to prove that u is a
unique homomorphism that satisfies these properties.

A

B C ′ D

E F

f

g
x

h

m′′

h′

e′

m′

(A.44)

C A

B C ′ D

E F

m
u′

e

x
g

h

m′′

h′

e′

m′

(A.45)
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First, suppose that there exists ū 6= u such that ū ◦ e = e′ ◦ g. By the statement of our
lemma h ◦ f = m′ ◦ e′ ◦ g, therefore h ◦ f = m′ ◦ e′ ◦ g = m′ ◦ ū ◦ e = m′ ◦ u ◦ e, and m′ being
a mono implies that u = ū, which leads us to a contradiction. Now, let us suppose that there
exists ū 6= u such that m′ ◦ ū = h ◦m. Again, by the statement of our lemma h ◦ f = m′ ◦ e′ ◦ g
and f = m ◦ e. Therefore, m′ ◦ e′ ◦ g = h ◦ m ◦ e = m′ ◦ ū ◦ e = m′ ◦ u ◦ e, and e being an
epi implies that u = ū, which again leads us to a contradiction. This concludes our proof and
shows the uniqueness of such u.

Example A.7.1. In the category Setfin of finite sets and set inclusions, given two sets A and
B such that A ⊆ B, the image factorization is simply given by the set C := A.

Example A.7.2. In the category Set of sets and functions, given two sets A and B and a
function f : A → B, the image factorization is given by the usual epi-mono factorization, i.e.
the set C defined as

C := {b ∈ B | ∃a ∈ A : f(a) = b}.

For all a ∈ A, the homomorphism e : A → C is defined as e(a) = f(a) and for all b ∈ B such
that b ∈ C, m(b) = b.

Example A.7.3. In the category Dict of dictionaries and dictionary inclusions, given two
dictionaries dA : VA → KA and dB : VB → KB such that dA ⊆ dB, the image factorization is
given by the dictionary dC : VC → KC , where VC := VA, KC := KA and dC := dA.

Example A.7.4. For the categories SimpGrph, Grph, as well as SimpGrphattrs and
Grphattrs, the image factorization can be constructed separately using image factorizations
in Set for nodes and edges, and in Dict for attributes. In the case of Grph and Grphattrs we
can reconstruct the source and target functions in the following way. Let A = (VA, EA, sA, tA)
and B = (VB, EB, sB, sB) be two graphs and f : A → B be a homomorphism given by a pair
fv : VA → VB and fe : EA → EB. Using image factorization in Set we construct VC , EC

and homomorphisms ev : VA → VC , ee : EA → EC , mv : VC  VB and me : EC  EB. It
is not hard to verify that the outer square in the following diagram commutes, therefore, we
can use Lemma A.7.4 to show that there exists a unique homomorphism sC : EC → VC that
renders the diagram commutative. The same argument can be applied to show the existence
and the uniqueness of tC : EC → VC . Thus, we can construct the image factorization object
C = (VC , EC , sC , tC).

EA EB

VA EC EB

VC

sA ee

fe

sB

ev

me

sC

mv

(A.46)
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Appendix B

Proofs

Proof of Claim 2.1.3. To prove this claim we need to recall the definition of pushouts in the
category of simple graphs from Example A.4.4 and final pullback complements from A.5.4.
Let us first construct the object G− = (VG− , EG−) corresponding to the pullback complement
L−
m

−→G−−g−→G to r− and m. Its sets of nodes and edges are defined as follows:

VG− := VL− ∪· {v ∈ VG | ∄w ∈ VL : m(w) = v}

EG− := EL− ∪· {(u, v) ∈ VG− × VG− |

((g−(u), g−(v)) ∈ EG and (g−(u) /∈ img(m) or g−(v) /∈ img(m)))

or (m−1(g−(u)),m−1(g−(v))) /∈ EL}

The sets of nodes and edges of the object L̄− given by the final pullback complement
L−
l

−→L̄−−r̄−→L̄ of r− and l are defined as follows:

VL̄− := VL− ∪· {v ∈ VL̄ | ∄w ∈ VL : l(w) = v} = VL− ∪· V +.

EL̄− := EL− ∪· {(u, v) ∈ VL̄− × VL̄− |

r−(u) /∈ img(l) or r−(v) /∈ img(l)

or (l−1(r̄−(u)), l−1(r̄−(v))) /∈ EL}.

Now, we would like to construct the object Ḡ given by the pushout from barr− and m̄−.
The set of its nodes VḠ is defined as (VL̄ ∪· VG−)≈ = (VL ∪· V

+ ∪· VG−)≈, where

≈ = {(u, v) ∈ (VL ∪· V
+)× VG− | ∃w ∈ VL̄− : r̄−(w) = u and m̄−(w) = v}

= {(u, v) ∈ (VL ∪· V
+)× VG− | ∃w ∈ VL− : r−(w) = u and m−(w) = v}

∪ {(u, v) ∈ (VL ∪· V
+)× VG− | ∃w ∈ V + : w = u and w = v}

= {(u, v) ∈ (VL ∪· V
+)× VG− | ∃w ∈ VL− : r−(w) = u and m−(w) = v}

∪ {(u, v) ∈ V + × VG− | ∃w ∈ V + : w = u and w = v}.

The first term of the union in the definition of ≈ adds pairs of cloned nodes to the equivalence
relation and the second term identifies the same nodes from the set of nodes added to the refined
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rule V + and VG− . It is not hard to verify that the set (VL ∪· V
+ ∪· VG−)≈ is isomorphic to the

set of nodes VG. The set of edges of the pushout object VḠ is defined as follows:

EḠ : = {(u, v) ∈ VG × VG |

(∃(u′, v′) ∈ EL ∪· E
+ : m̄(u′) = u and m̄(v′) = v)

or (∃(u′, v′) ∈ EG− : g−(u′) = u and g−(v′) = v)}

= {(u, v) ∈ VG × VG | ∃(u
′, v′) ∈ EL : m(u′) = u and m(v′) = v}

∪ {(u, v) ∈ VG × VG | ∃(u
′, v′) ∈ E+ : m̄(u′) = u and m̄(v′) = v}

∪ {(u, v) ∈ VG × VG | ∃(u
′, v′) ∈ EG− : g−(u′) = u and g−(v′) = v}

In the definition of EḠ, the first term of the union is isomorphic to the set of edges from G
matched by the original left hand-side of the rule. The second term is isomorphic to the set of
edges incident to the removed nodes and added to the refined left-hand side. Finally, the third
term is isomorphic to the set of edges that stayed preserved as the result of rewriting, i.e. these
are edges that where not removed by the rule neither explicitly nor implicitly as a side-effect.
Thus, the union of these three sets is isomorphic to the original set of edges of G.

Proof of Claim 2.1.4. To prove this claim, as before, we will use the definition of pushouts and
final pullback complements for simple graphs. The set of nodes of G+ corresponding to the
pushout from m and r+ is defined as VG+ := (VG ∪· VL+)≈, where

≈:= {(u, v) ∈ VG × VL+ | ∃w ∈ L : m(w) = u and r+(w) = v}.

The set of its edges EG+ is defined as follows:

EG+ := {(u, v) ∈ VG+ × VG+ |

(∃(u′, v′) ∈ EG : g+(u′) = u and g+(v′) = v)

or (∃(u′, v′) ∈ EL+ : m+(u′) = u and m+(v′) = v)}.

The set of nodes of the pushout object L̄+ from l and r+ (i.e. the right-hand side of the
refined rule) is defined as VL̄+ := (VL̄ ∪· VL+)≈′ , where

≈′:= {(u, v) ∈ VL̄ × VL+ | ∃w ∈ L : l(w) = u and r+(w) = v};

We also observe that VL̄+
∼= VL+ ∪· V +. On the other hand, its edges are given by the following

set:

EL̄+ := {(u, v) ∈ VL̄+ × VL̄+ |

(∃(u′, v′) ∈ EL̄ : r̄+(u′) = u and r̄+(v′) = v)

or (∃(u′, v′) ∈ EL+ : l+(u′) = u and l+(v′) = v)}.

Now, we would like to construct the object Ḡ corresponding to the final pullback complement
r̄+ and m̄+. The set of its nodes VḠ is defined as

VḠ : = VL̄ ∪· {v ∈ VG+ | ∄w ∈ VL̄+ : m̄+(w) = v}

= VL ∪· V
+ ∪· {v ∈ VG+ | ∄w ∈ VL+ ∪· V + : m̄+(w) = v}.
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Thus, the set of nodes VḠ is given by the union of three sets: nodes from G matched by the
original left-hand side, nodes added to the refined left-hand side, and the rest of the nodes in
G. Therefore the set VḠ is isomorphic to the original set of nodes VG.

The set of edges of the final pullback complement object Ḡ is defined as follows:

EḠ : = EL̄ ∪· {(u, v) ∈ VḠ × VḠ |

((g+(u), g+(v)) ∈ EG+ and (g+(u) /∈ img(m̄+) or g+(v) /∈ img(m̄+)))

or ((m̄+)−1(g+(u)), (m̄+)−1(g+(v)))) /∈ EL̄+}.

The first term of the union is isomorphic to the set of edges from G matched by the refined
left-hand side of the rule (i.e. edges matched by the original left-hand side and the edges added
as the result of refinement). The second term represents precisely the edges from G that where
not matched in L̄ (i.e. either their source/target were not matched in L̄ or their source and
target were matched, but no edge between the corresponding nodes was present in L̄). Thus,
the union of these two sets is isomorphic to he original set of edges of G.

Proof of Theorem 2.1.5. To prove our theorem let us first construct the pullback G−
1 ←ḡ−2 −G

−
12

−ḡ+1→G−
2 from G−

1 −g+1→G2←g−2 −G
−
2 corresponding to the front face of the cube in Diagram

B.1. We observe that the back face of the cube is a pullback by construction. Its bottom face is

PH
1 P

H PH
2

G−
1 G−

12

G2 G−
2

h+
1mH

1

p′

p′′

mH mH
2

h−
2

g+1

ḡ−2

ḡ+1

u

g−2

(B.1)

a pullback by the vertical pasting lemma for pullback complements. Therefore, by the pasting
lemma for pullbacks, the composition of the back
and bottom squares is also a pullback. The front
face being a pullback and the left face a commuta-
tive square, allows us to apply Corollary A.3.3 and
show that there exists a unique arrow u : P → G−

12

that makes the top and right faces of the cube com-
mute. Moreover, by this corollary, the top face is
also a pullback. As the arrow mH

1 : PH
1  G−

1 is a
mono, the latter observation implies that the arrow
u is also a mono (by Lemma A.3.4).

Let us consider Diagram B.2. To prove that ap-
plying the rule L←h−

1 ◦p′−P−h+
2 ◦p′′→R through the

instance m : L G1 gives us an object isomorphic
to the original object G3, we need to show that the
squares in the following diagram have the following
properties: (a) and (b) are final pullback complement squares (i.e. G−

1 is a final pullback com-
plement of h−1 and m, and G−

12 of p′ and mH
1 ), while (c) and (d) are pushouts. This will allow

us to apply the respective pasting lemmas (Lemma A.5.3 for pullback complements (a) and (b)
and Lemma A.4.2 for pushouts (c) and (d)).

L PH
1 P PH

2 R

G1 G−
1 G−

12 G−
2 G3

(a)m (b)mH
1

h−
1

(c)u

p′ p′′

(d)mH
2

h+
2

m+

g−1 ḡ+2 ḡ−1 g+2

(B.2)
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It is easy to verify that the square (b) is a final pullback complement by the vertical pasting
lemma (Lemma A.5.4), while the square (d) is a pushout by the pasting lemma for pushouts.
Now, to show that the squares (a) and (c) have the desired properties, we need to study the
cube in Diagram B.1 further.

To show that (a) is a final pullback complement we will use the adhesivity of our categories
from the statement. Consider the cube in Diagram B.3: its front face is a pushout by the
reversibility of the rule r1 and its back face is a pushout by construction. Moreover, its left and
top faces are pullbacks by Lemma A.3.6. We know that, by definition, in adhesive categories
pushouts along monos are VK-squares. This implies that the right and bottom faces are pull-
backs. Let us now consider Diagram B.4. Its outer square is a final pullback complement by
construction and its bottom inner square is exactly the right face of the cube from Diagram B.3
and, therefore, is a pullback. Because m is a mono, we can use Lemma A.5.6 and show that
both inner squares are final pullback complements. The bottom inner square from Diagram B.4
is exactly the square (a) from B.2.

P1 PH
1

L1 L

P1 G−
1

L1 G1

IdP1

pH1

r−1 h−
1

IdL1

lH1

m

m−
1

r−1 g−1

mH
1

m1

(B.3)

L1 P1

L PH
1

G1 G−
1

m1

lH1

r−1
pH1

m−
1

m

h−
1

mH
1

g−1

(B.4)

This implies that the square composed of (a) and (b) is a final pullback complement square
and, therefore G−

12 constructed as a pullback from g+1 and g−2 is isomorphic to G⊖
1 from the

statement of our lemma.
Finally, the proof that square (c) is a pushout consists of a couple of intermediate steps.

First of all, we need to prove that the left face in Diagram B.1 is a pushout. Let us recall
Diagram 2.18, its outer square is a pushout by construction and we have already shown that
square (2) is a pullback. We also observe that arrow mH : H  G2 in the diagram is a mono.
Recall that, by assumption, we are working in an adhesive category. In such a category, by
definition, pushouts are stable under pullbacks (see Definition A.4.6). This allows us to use
Lemma A.4.7 and show that both inner squares in this diagram are pushouts. Therefore, the
left face of the cube is a pushout square.

We have previously shown that the top, front, bottom and back faces of the cube in the
diagram are pullbacks. By the stability of pushouts, because the left face is a pushout, the right
face is also a pushout. This is precisely the last ingredient of our proof corresponding to square
(c) in Diagram B.2, which concludes the proof of our theorem.

Proof of Lemma 2.1.6. To prove this lemma we will use Diagram B.2 from the proof of Theorem
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2.1.5. Namely, we will show that the squares (a) and (b) are pushout squares and the squares
(c) and (d) are final pullback complement squares (i.e. G−

2 is the final pullback complement of
h+2 and m+, and G−

12 of p′′ and mH
2 ).

To show that the square (a) is a pushout we can simply use the inverse of the pasting lemma
for pushouts. To prove that the square (b) is a pushout, a couple of intermediate steps is further
required.

L2 P2

H PH
2

G2 G−
2

m2

lH2

r−2

pH2

m−
2

mH

h−
2

mH
2

g−2

(B.5)

First of all, let us consider Diagram B.5. Its outer square is a final pullback complement by
construction (P2m

−
2→G−

2 −g−2→G2 is the final pullback
complement of r−2 and m2). The upper inner square in
this diagram is also a final pullback complement, i.e.
P2p

H
2→PH

2 −h−
2→H is the final pullback complement

of r−2 and lH2 . By the inverse of the vertical pasting
lemma, the bottom inner square is also a final pullback
complement, and therefore, a pullback square. Recall
that the outer square in the diagram is also a pushout
by the reversibility of the second rewriting rule (given by
r−2 and r+2 ). This allows us to apply Lemma A.4.7 and
show that the bottom square is a pushout. Now, recall the commutative cube from Diagram
B.1. Its left, back, right and front faces are pullbacks, and, as we have just shown, its bottom
face is a pushout. By the stability of pushouts in the categories of our interest, it implies that
the top face is also a pushout (this face corresponds exactly to the square (b) from Diagram
B.2).

To show that the square (c) is a final pullback complement, we observe the following. By
the vertical pasting lemma, the left face of the cube from Diagram B.1 is a final pullback
complement. Moreover, in the proof of Theorem 2.1.5 it has been shown that all the faces of
the cube are pullbacks. Therefore, by the stability of pullback complements (Lemma A.5.5),
the right face, which is exactly the square (c), is also a final pullback complement.

P2 R2

PH
2 R

G−
2 G3

m−
2

pH2

r+2

rH2

m+
2

mH
2

h+
2

m+

g+2

(B.6)

Finally, to show that the square (d) is a final pullback complement square consider Diagram
B.6. Its outer and inner top squares are pushouts by
construction. By the pasting lemma for pushouts, its
inner bottom square is also a pushout. By Lemma A.6.4,
pushouts along monos in adhesive categories are also
pullbacks, therefore, the inner bottom square is also a
pullback. Because the outer square is a final pullback
complement (by the reversibility of the second rewriting)
and the arrow m+ is a mono, the bottom square is also
a final pullback complement. This square is exactly the
square (d).

Proof of Theorem 2.2.12. First of all, observe that by the pasting lemma for pullbacks (Lemma
A.3.2) m− ◦ ĥ− and r̂− form the pullback from t− and m′ ◦ ĥ′, i.e. because the two inner squares
in Diagram B.7 are pullbacks, the outer square is also a pullback.

Now, observing Diagram B.8 below, we note that h− and g− form the pullback by construc-
tion. Knowing that the outer square is also a pullback allows us to apply Corollary A.3.3 and
show that there exists a unique arrow m̂− : L−

G → G− that renders the diagram commutative.
Moreover, by this corollary, m̂− and r̂− give the pullback from g− and m̂. Because pullbacks
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preserve monos and m̂ is one, m̂− is a mono as well (by Lemma A.3.4).

T− L− L−
G

T ′ L′ LG

t− r−

m−

r̂−

ĥ−

m′
ĥ′

(B.7)

T− G− L−
G

T ′ G LG

t−

h−

g−
m̂−

m−◦ĥ−

r̂−

h′ m̂

m′◦ĥ′

(B.8)

Observe the cube in Diagram B.9. Its front, top and bottom faces are pullbacks by con-
struction. We have also previously shown that its back face is a pullback. Now, if we observe
Diagrams B.10 and B.11, we note that their outer squares and left inner squares are pullbacks,
by the pasting lemma for pullbacks, the right inner squares are pullbacks as well. These pull-
backs form the left and the right faces of the cube in B.9. Moreover, the front face of the cube
is a final pullback complement by construction. By stability of pullback complements (Lemma
A.5.5), the back face is also a final pullback complement square, i.e. m̂− and g− form the final
pullback complement of r̂− and m̂, which concludes our proof.

LG L−
G

G G−

L′ L−

T ′ T−

m̂

ĥ−

m̂−

r̂−

h′

g−

h−

ĥ′

m′ m−

r−

t−

(B.9)

L L′ LG

T T ′ G

m

r′

m′

ĥ′

ĥ

m̂

t′ h′

h

(B.10)

G G− L−
G

T ′ T− L−

h′

g−

h−

m̂−

m̂◦r̂−

ĥ−

t− m−

m′◦r−

(B.11)

Proof of Theorem 2.2.18. The proof of this theorem consists in applying the pasting lemma for
pushouts twice. First, we consider Diagram B.12, where two inner squares are pushouts by
construction. This implies that the outer square (formed by the composition of the two inner
squares) is also a pushout, i.e. t+ and m̂+ ◦ ĥ+ is the pushout from m̂′ ◦ ĥ′ and r+. Now,
observing Diagram B.13, we note that its outer square is precisely the previous outer square
that we have proven to be a pushout and its upper inner square is a pushout by construction.
By the pasting lemma, it implies that the bottom square is also a pushout, which concludes our
proof.
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L′ L+

G′ G+

T T+

r+

m′ m+

g+

h′ h+

t+

(B.12)

L′ L+

LT L+
T

T T+

r+

ĥ′ ĥ+

m̂′

r̂+

m̂+

t+

(B.13)

Proof of Theorem 2.2.21. Let T ′ and T ′′ be the result of the strict phase of rewriting for the
factorizations corresponding to L′

1 and L′
2 respectively, constructed as the final pullback com-

plements corresponding to the back and the front faces of Diagram B.14. By the statement of
the theorem, ĥ1 = r′2 ◦ l, which allows us to use the universal property of the final pullback
complement and show that there exists a unique h′12 : T ′ → T ′′ (that renders the diagram
commutative).

By the universal property of the same final pullback complement square and the fact that
r′1 = r′2 ◦ l and ĥ1 = r′1 ◦ ĥ

′
1 (by the statement), there exists a unique x : G1 → T ′′ such that (1)

t′2 ◦ x = h1 and (2) x ◦ m̂1 = m′
2 ◦ l ◦ ĥ

′
1, i.e. that renders Diagram B.15 commutative.

L′
1

L L′
2 T ′

T T ′′

r′1

m′
1

l

m

r′2
t′1

t12
m′

2

t′2

(B.14)

L1

L L′
2 G1

T T ′′

ĥ1

m̂1
l◦ĥ′

1

m

r′2
h1

x
m′

2

t′2

(B.15)

We would like show that the two composed homomorphisms h′2 ◦ h12 and t12 ◦ h
′
1 satisfy (1)

and (2), which will imply that x = h′2 ◦ h12 = t12 ◦ h
′
1. To do so, let us first observe the four

commuting diagrams below. Using the diagram chase we can verify that t′2 ◦ t12 ◦ h
′
1 = h1,

t′2 ◦ h
′
2 ◦ h12 = h1, m

′
2 ◦ l ◦ ĥ

′
1 = t12 ◦ h

′
1 ◦ m̂

′
1 and m′

2 ◦ ĥ
′
2 ◦ ĥ12 = h′2 ◦ h12 ◦ m̂1, i.e. t12 ◦ h

′
1 and

h′2 ◦ h12 satisfy (1) and (2), which implies that x = t12 ◦ h
′
1 = h′2 ◦ h12.

G1

T T ′

T ′′

h1 h′
1

t12

t′1

t′2

(B.16)

G1

T G2

T ′′

h1 h12

h′
2

h2

t′2

(B.17)

L1 L′
1 L′

2

G1 T ′ T ′′

ĥ′
1

m̂1

l

m′
1 m′

2

h′
1

t12

(B.18)

L1 L2 L′
2

G1 G2 T ′′

ĥ12

m̂1 m̂2

ĥ′
2

m′
2

h12 h′
2

(B.19)
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Consider Diagram B.20, all its inner squares commute, which implies that its outer square
commutes. This allows us to apply the universal property of the pullback that constructed G−

2 ,
as in Diagram B.21, and show that there exists a unique arrow h−12 that renders this diagram
commutative. This concludes the proof and shows that the two propagations are composable.

G1 G−
1

G2 T ′ T−

T ′′

h12
h′
1

g−1

h−
1

h′
2 t12

t−2

t−1

(B.20)

G1 G−
1

G2 G−
2

T ′′ T−

h12

g−1

h−
1

h−
12

h′
2

g−2

h−
2

t−2

(B.21)

Proof of Theorem 2.2.22. Consider the cube in Diagram B.22. Its back and left faces are pull-

L−
1 L⊖

1

G−
1 G⊖

1

L−
2 L⊖

2

G−
2 G⊖

2

l−

m̂⊖
1

h−
12

g⊖1

h⊖
12m̂⊖

2

l⊖

g⊖2

(B.22)

backs, therefore, by the pasting lemma, their com-
position is also a pullback. Moreover, the top face is
a commutative square by the statement of the theo-
rem. This allows us to apply the universal property
of the final pullback complement that gives G⊖

2 and
show that there exists a unique h⊖12 that renders
the right and the bottom faces of the square com-
mutative, i.e. h⊖12 is such that m̂⊖

2 ◦ l
⊖ = h⊖12 ◦ m̂

⊖
1

and g⊖2 ◦ h
⊖
12 = h−12 ◦ g

⊖
1 . We also know that g⊖2

is a mono, it implies that for any homomorphism
z : G⊖

1 → G⊖
2 such that g⊖2 ◦z = h−12 ◦g

⊖
1 = g⊖2 ◦h

⊖
12,

it holds that z = h⊖12. Therefore, h⊖12 is the unique
homomorphism that renders the bottom face of the
cube commutative.

Proof of Theorem 2.2.25. Let G′ and G′′ be the result of the strict phase of rewriting given
the factorizations L′

1 and L′
2 respectively, constructed as the pushouts corresponding to the

back and the front phases of Diagram B.23. We know by the statement of the theorem that
l◦r′1 = r′2. This allows us to state that the outer square in the diagram commutes. Therefore, we
can apply the universal property of the pushout that constructed G′ and show that there exists
a unique homomorphism g12 : G′ → G′′ that renders our diagram commutative. Similarly, by
the statement, h2 ◦m = x2 ◦ r

′
2 and r′2 = l ◦ r′1, which implies that the outer square in Diagram

B.24 commutes. This allows us to apply the same universal property of G′ and show that there
exists a unique homomorphism x : G′ → T2 that renders the following diagram commutative,
i.e. that satisfies (1) h2 = x ◦ g′1 and (2) x ◦m′

1 = x2 ◦ l.
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L L′
1

G G′ L′
2

G′′

r′1

m
m′

1 l

g′1

g′2

g12
m′

2

r′2

(B.23)

L L′
1

G G′ L′
2

T2

r′1

m
m′

1 l

g′1

h2

x
x2

r′2

(B.24)

We would like to show that the two composed homomorphisms h′2◦g12 and h12◦h
′
1 satisfy (1)

and (2), which will imply that x = h′2 ◦g12 = h12 ◦h
′
1. First of all, observe that all four diagrams

below commute. Using the diagram chase we can verify that h′2 ◦g12 ◦g
′
1 = h2, h2 = h12 ◦h

′
1 ◦g

′
1,

h′2 ◦ g12 ◦m
′
1 = x2 ◦ l and h12 ◦ h

′
1 ◦m

′
1 = x2 ◦ l, i.e. h′2 ◦ g12 and h12 ◦ h

′
1 satisfy (1) and (2),

which implies that x = h′2 ◦ g12 = h12 ◦ h
′
1.

G′

G G′′

T2

g12g′1

h2

g′2

h′
2

(B.25)

G′

G T1

T2

h′
1

h1

h2

g′1

h12

(B.26)

L′
1 L′

2

G′ G′′ T2

m′
1

l

m′
2

x2

g12 h′
2

(B.27)

L′
1 L′

2

G′ T1 T2

l
m′

1

x1 x2

h′
1

h12

(B.28)

Consider Diagram B.29, all its inner squares commute, which implies that its outer square
commutes. This allows us to apply the universal property of the pushout that constructed T+

1 ,
as in Diagram B.30, and show that there exists a unique arrow h+12 that renders this diagram
commutative. This concludes our proof and shows that the two propagations are composable.

G′

T1 G′′ G+

T2 T+
2

g12
h′
1

g+

h12

h′
2

h+
2

h+
2

t+2

(B.29)

G′ G+

T1 T+
1

T2 T+
2

h′
1

g+

h+
1

h+
2

h12

t+1

h+
12

t+2

(B.30)

203



Proof of Theorem 2.2.26. Consider the cube in Diagram B.31. Its back, left and top faces are

L+
1 L⊕

1

T+
1 T⊕

1

L+
2 L⊕

2

T+
2 T⊕

2

l+

m̂+
1

r⊕1

m̂⊕
1

h+
12

t⊕1

h⊕
12m̂+

2

r⊕2

m̂⊕
2

l⊕

t⊕2

(B.31)

commutative squares, which allows us to apply the
universal property of the pushout that gives T⊕

1 and
show that there exists a unique h⊕12 : T

⊕
1 → T⊕

2 that
renders all the right and the bottom faces of the
square commutative, i.e. h⊕ is such that h⊕12 ◦ t

⊕
1 =

t⊕2 ◦h
+
12 and h⊕12 ◦m̂

⊕
1 = m̂⊕

2 ◦ l
⊕. We also know that

t⊕1 is an epi, it implies that for any homomorphism
z : T⊕

1 → T⊕
2 such that z ◦ t⊕1 = t⊕2 ◦ h

+
12 = h⊕12 ◦ t

⊕
1

it holds that z = h⊕12. Therefore, h⊕12 is the unique
homomorphism that renders the bottom face of the
cube commutative.

Proof of Proposition 2.2.33. Consider Diagram B.32 representing the result of the first phase
of rewriting of two objects corresponding to the skeleton nodes s, t ∈ V such that (s, t) ∈ E.
We need to show that there exists a unique arrow h−(s,t) rendering the cube in the diagram
commutative.

Ls Ps

Gs G−
s

Lt Pt

Gt G−
t

ms

r−s

m−
s π(s,t)

h(s,t)

s−

h−
(s,t)

λ(s,t)

mt

r−t

m−
t

t−

(B.32)

Recall that, by construction of our rule hierarchy, if the object Gt was not affected by back-
wards propagation, the rule r−t is an identity rule.
If r−t is an identity arrow, i.e. r−t = IdLt , then t− is
also an identity, i.e. t− = IdGt , and, therefore, the
object Gt stays unchanged as the result of rewrit-
ing. It implies that the desired homomorphism is
precisely h(s,t) ◦ s

−.

On the other hand, if r−t is not an identity, i.e.
we have performed a restrictive rewrite (for exam-
ple, backward propagation) toGt, then we have per-
formed backward propagation to Gs. This implies
that, by construction, the left face of the cube in
Diagram B.32 is a pullback. Therefore, we can ap-
ply the universal property of the final pullback complement that constructed G−

t and find the
unique homomorphism h−(s,t) : G

−
s → G−

t that renders our diagram commutative.

Proof of Proposition 2.2.36. Let us start our proof by showing that G−←m̄−
P̄G−r̄◦λ̄→PT is

the pullback from h− and m−
T . Consider the cube in Diagram B.33. Its left, back and front

faces are pullbacks by construction, while its top and bottom faces are commuting squares. By
the inverse of the pasting lemma, its right face is also a pullback.

Now, let us construct the pullback G+←m+
R′

G−ρ′→RT from h+ and m+
T . By the universal

property of this pullback, there exists a unique arrow r′ : RG → R′
G that makes Diagram B.34

commute. Moreover, it is not hard to verify that this arrow is a mono (as the top triangle is a
pullback and pullbacks preserve monos). Let R′

G←r+−P ′
G

m−→ be a pullback from m+ and
g+ as in Diagram B.35.
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L̄G P̄G

G G−

LT PT

T T−

m̄

r̄−

m̄−

h h−

g−

λ̄

mT

r̄−◦λ̄

m−
T

r−
T

t−

(B.33)

RG

G+ R′
G

T+ RT

r′

m+
G

ρ
h+

ρ′

m+

m+
T

(B.34)

R′
G P ′

G

G+ G−

m+

r+

m−

g+

(B.35)

Observe the cube in Diagram B.36. Because, by assumption, our rules are reversible, its
front face is a pullback, and there exists a unique arrow λ′ : P ′

G → PT that makes our cube
commute. By construction, the back face is also a pullback and previously we have shown that
the right face is a pullback. Because all the faces of the cube commute, by the inverse of the
pasting lemma, the left face is also a pullback. This implies that P ′

G
∼= P̄G.

Consider Diagram B.37, we know that its outer square is a pullback (because the rule is
reversible), while the bottom square is a pullback by construction. We also know that the outer
square is a pushout by construction and that m+ is a mono. This allows us to apply Lemma
A.4.7 and show that the two inner squares are also pushouts. Therefore, R′

G
∼= R̄G, which

concludes our proof.

P ′
G R′

G

G− G+

PT RT

T− T+

m−

r+

m+
ρ′

g+

h−

h+

λ′

m−
T

r+
T

m+
T

t+

(B.36)

PG RG

P ′
G
∼= P̄G R′

G

G− G+

m−
G

p′

r+
G

r′

m+
G

r+

m− m+

r+
G

(B.37)

Proof of Theorem 2.2.37. Consider Diagram B.38, in the proof of Theorem 2.1.5 we have shown
thatG−

1 is also the final pullback complement of h−G and oG. In a similar way, T−
1 can be obtained

as the final pullback complement of h−T and oT . Recall that, because the rule hierarchy R1 is
applicable given mG and mT , there exists a unique homomorphism h−1 : G−

1 → T−
1 that renders

the diagram commutative. Let G⊖
1 and T⊖

1 in Diagram B.38 be constructed as the final pullback
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complements of the pair p′G and m̄−
G and the pair p′T and m̄−

T respectively. By the horizontal
pasting lemma G⊖

1 and T⊖
1 are also the final pullback complements of the pair h−G ◦ p

′
G and oG

and the pair h−T ◦ p
′
T and oT (i.e. we can obtain G⊖

1 and T⊖
1 by applying the restrictive rules

given by h−G ◦ p
′
G and h−T ◦ p

′
T through the respective instances oG and oT ). We need to show

that there exists a unique h⊖1 : G⊖
1 → T⊖

1 that renders this diagram commutative.

In the proof of Theorem 2.1.5 we have shown that the objects G⊖
1 and T⊖

1 correspond to
the pullbacks from G−

1 −g+1→ G2←g−2 −G
−
2 and T−

1 −t+1→T2←t−2 −T
−
2 respectively (see the front

and back faces of Diagram B.39). This fact allows us to use the universal property of pullbacks
and show that there exists a unique h⊖1 that renders the cube in Diagram B.39 commutative.

LG P̄G
1 PG

G1 G−
1 G⊖

1

LT P̄ T
1 PT

T1 T−
1 T⊖

1

λ oG

h−
G

m̄−
G

p′G

o−
G

h1

g−1

h−
1

g⊖1

h⊖
1

oT

π̄1

h−
T

m̄−
T

p′T

o−
T

π

t−1 t⊖1

(B.38)

G−
1 G⊖

1

G2 G−
2

T−
1 T⊖

1

T2 T−
2

h−
1

g+1

g⊖1

g⊖1

h2

g−2

h−
2

t+1

h⊖
1

t⊖1

t⊕1

t−2

(B.39)

P̄G
1 PG

T−
1 T⊖

1 P̄G
2

T2 T−
2

m̄−
T
◦π̄1

p′G

u
p′′G

t+1

t⊖1

t⊕1
h−
2 ◦n̄−

G

t−2

(B.40)

First of all, let us prove that such homomorphism h⊖1 makes the right face of the cube from
Diagram B.38 commute. To do so, we will use the
universal property of pullbacks in the following way.
Let n̄−

G : P̄G
2  G−

2 and n̄−
T : P̄ T

2  T−
2 be two ho-

momorphisms given by the universal property of the
final pullback complements that constructed G−

2

and T−
2 (see the construction presented in Diagram

2.17). We will show that there exists a unique
u : PG → T⊖

1 such that (a) t⊖1 ◦u = m̄−
T ◦ π̄1◦p

′
G and

(b) t⊕1 ◦u = h−2 ◦ n̄
−
G ◦p

′′
G, i.e. that renders Diagram

B.40 commutative. It is easy to verify that both
o−T ◦π and h⊖1 ◦ o

−
G satisfy (a) and (b). This implies

that o−T ◦ π = h⊖1 ◦ o
−
G.

Finally, to prove that h⊖1 is indeed the unique homomorphism that renders the right face
of the cube from Diagram B.38 commutative, we assume that there exists another such homo-
morphism v : G⊖

1 → T⊖
1 (and v 6= h⊖1 ). Then, we apply the universal property of pushouts and

show that given such v, there exists a unique w : G−
2 → T−

2 that makes Diagram B.41 commute.
Clearly, w = h−2 and therefore t⊖1 ◦ v = h−2 ◦ g

⊕
1 , which implies that v = h⊖1 (by the universal

property in Diagram B.39).

Consider Diagram B.42, in the proof of Theorem 2.1.5 we have shown that G−
2 is also the

pushout from p′′G and o−G. Similarly, T−
1 can be obtained as the pushout from p′′T and o−T .

Recall that, because the homomorphic pair of rules qG and qT is applicable, there exists a
unique homomorphism h−2 : G−

2 → T−
2 that renders the diagram commutative. In the proof of

Theorem 2.1.5 we have also seen that G3 and T3 be constructed as the pushouts from the pair
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g+G and n̄−
G and the pair g+T and n̄−

T respectively. By the pasting lemma for pushouts G3 and T3

are also the pushouts from the pair g+G ◦p
′′
G and o−G and the pair g+T ◦p

′′
T and o−T (i.e. they can be

obtained by applying the expansive rules given by g+G ◦p
′′
G and g+T ◦p

′′
T through the instances o−G

and o−T ). We need to show that there exists a unique h⊕2 : G3 → T3 that renders this diagram
commutative and that h⊕2 = h3 from Diagram 2.119.

First of all, by the universal property of pushouts, there exists a unique arrow h⊕2 that
renders the right-most cube in Diagram B.42 commutative. It can be easily verified that h⊕2
satisfies (a) g+2 ◦ h

⊕
2 = t+2 ◦ h

−
2 and (b) n+

G ◦ h
⊕
2 = n+

T ◦ ρ2. This implies that h⊕2 = h3 by the
universal property of pushouts that guarantees the existence and the uniqueness of h3.

PG P̄G
2

G⊖
1 G−

2 P̄ T
2

T⊖
1 T−

2

o−
G

p′′G

n̄−
G

π̄2

g⊕1

v
w

n̄−
T

t⊕1

(B.41)

PG P̄G
2 RG

G⊖
1 G−

2 G3

PT P̄ T
2 RT

T⊖
1 T−

2 T3

o−
G

p′′G g+
G

n̄−
G o+

G

h⊖
1

g⊕1 g+2

h−
2

h⊕
2

π

o−
T

p′′T g+
T

π̄2

n̄−
T o+

T

ρ

t⊕1 t+2

(B.42)
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Appendix C

Algorithms

C.1 Propagation algorithms

The following pseudocode illustrates the algorithm of rewriting and propagation in hierar-
chies. Note that it assumes that the input rule factorizations and clean-up arrows satisfy
consistency conditions given in Theorem 2.2.21 and 2.2.25. The algorithm uses subroutines
propagate backward, propagate forward and restore edges given in Algorithm 2, 3 and 4
respectively.

Algorithm 1: Hierarchy rewriting algorithm

Data: H = (V,E,O,H, α, β), v ∈ V , a rule r = L
r−
← P

r+
→ R, a match m : L α(v),

sets B and F defining composable rule factorizations and clean-up arrows for
ancestors and descendants of v respectively, a function f associating nodes of
the hierarchy with elements from B ∪ F .

Result: H ′ = (V,E,O′,H′, α′, β′), m+ : R α′(v).

O′ := ∅; H′ := ∅;
// set the origin of rewriting

G := α(v);

// rewrite G and obtain G
g−

← G− g+

→ G+ and m+ : R→ G+

G−, G+, g−, g+,m+ := rewrite α(v) with r through the match m;
// backward propagation to all the ancestors of v
Oanc,H

A,HO
anc, a, oanc := propagate backward(H, v,G−, g−,B, α′);

// forward propagation to all the descendants of v
Odesc,H

D,HO
desc, d, odesc := propagate forward(

H, v,G−, G+, g−, g+,F , α′);
O′ := {G+} ∪ Oanc ∪ Odesc; α

′(v) = G+;
// restore edges preserving the consistency condition

H′, β′ := restore edges(H, v, g+, a, oanc, d, odesc);
H ′ = (V,E,O′,H′, α′, β′)

209



C.1. PROPAGATION ALGORITHMS

Algorithm 2: propagate backward

Data: H, v, T−, t−,B, f, α′

Result: a set Oanc of the updated ancestors, a set HA of homomorphisms from the
updated ancestors to the original ancestors, a set HO of homomorphisms from
the updated ancestors to the updated origin, respective functions a and o that
map nodes of the hierarchy to the homomorphisms from HA and HO

// set T to be the origin of rewriting

T := α(v);
HA := ∅;
HO = ∅;
Oanc := ∅;
// breadth-first traversal with backward propagation

visited := ∅;
current predecessors := predecessors of v in H;
while current predecessors 6= ∅ do

next predecessors := ∅;
for p ∈ current predecessors do

if p /∈ visited then
visited := visited ∪ {p};
G := α(p);
h := composition of homomorphisms along path(p, v); // find G−,

g− : G− → G and h− : G− → T−

G−, g−, h− := propagate using T, T−, t− and
the data from f(p);

HA := HA ∪ {g−};
a(p) := g−;
HO := HO ∪ {h−};
o(p) := h−;
Oanc := Oanc ∪ {G

−};
α′(p) := G−;
next predecessors := next predecessors ∪ {p′ ∈

predecessors of p in H | p′ /∈ visited};

end

end
current predecessors := next predecessors;

end
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Algorithm 3: propagate forward

Data: H, v,G−, G+, g−, g+,F , f, α′

Result: a set Odesc of the updated descendants, a set HD of homomorphisms from the
original descendants to the updated descendants, a set HO of homomorphisms
from the updated origin to the updated descendants, respective functions d
and o that map nodes of the hierarchy to the homomorphisms from and HD

and HO

// set G to be the origin of rewriting

G := α(v);
Odesc := ∅;
HD := ∅;
HO = ∅;
// breadth-first traversal with forward propagation

visited := ∅;
current successors := successors of v in H;
while current successors 6= ∅ do

next successors := ∅;
for s ∈ current successors do

if s /∈ visited then
visited := visited ∪ {s};
T := α(s);
h := composition of homomorphisms along path(v, s); // find T+,

t+ : T → T+ and h+ : G+ → T+

T+, t+, h+ := propagate using G,G−, G+, g−, g+ and
the data from f(s);

HD := HD ∪ {t+};
d(s) := t+;
HO := HO ∪ {h+};
o(s) := h+;
Odesc := Odesc ∪ {T

+};
α′(s) := T+;
next successors := next successors ∪ {s′ ∈

successors of s in H | s′ /∈ visited};

end

end
current successors := next successors;

end
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Algorithm 4: restore edges

Data: H, v, g+, a, oanc, d, odesc
Result: a set of homomorphisms H′ and a function β′ that associates homomorphisms

from H′ with the edges of the hierarchy

for (s, t) ∈ the set of edges of H do
if s ∈ ancestors of v then

if t ∈ ancestors of v then
hs,t := find the homomorphism from the backward composability theorems
(2.2.21 and 2.2.22), uniquely determined by a(s), a(t), β(s, t), oanc(s) and
oanc(t);

else if t = v then
hs,t := g+ ◦ oanc(s);

else if t ∈ descendants of v then
hs,t := odesc(t) ◦ g

+ ◦ oanc(s);
else

hs,t := β(s, t) ◦ a(s);
end

else if s = v then
hs,t := odesc(t);

else if s ∈ descendants of v then
if t ∈ descendants of v then

hs,t := find the homomorphism from the forward composability theorems
(2.2.25 and 2.2.26), uniquely determined by d(s), d(t), β(s, t), odesc(s) and
odesc(t);

else
if t ∈ descendants of v then

hs,t := d(t) ◦ β(s, t);
else

hs,t := β(s, t);
end

end
H′ := H′ ∪ {hs,t};
β′(s, t) := hs,t;

end
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Cypher queries

D.1 Example clone query

// Query performing clone of a node

MATCH (a { id : ✬a✬ })

// create a node corresponding to the clone

CREATE (a1)

WITH a, a1

SET a1 = a

WITH a, a1

// match successors and out-edges

OPTIONAL MATCH (a)-[out_edge:edge]->(suc)

WITH a, a1, filter(

el IN collect(

{neighbor: suc, edge: out_edge})

WHERE NOT el.neighbor IS NULL) as suc_maps

// match predecessors and in-edges

OPTIONAL MATCH (pred)-[in_edge:edge]->(a)

WITH a, a1, suc_maps, filter(

el IN collect(

{neighbor: pred, edge: in_edge})

WHERE NOT el.neighbor IS NULL) as pred_maps

// copy all incident edges of the original node

FOREACH (suc_map IN suc_maps |

FOREACH(suc IN [suc_map.neighbor] |

CREATE (a1)-[new_edge:edge]->(suc)

SET new_edge = suc_map.edge))

FOREACH (pred_map IN pred_maps |

FOREACH(pred in [pred_map.neighbor] |

CREATE (pred)-[new_edge:edge]->(a1)

SET new_edge = pred_map.edge))

// copy self loop

FOREACH (suc_map IN suc_maps |

FOREACH (self_loop IN
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CASE WHEN suc_map.neighbor=a

THEN [suc_map.edge] ELSE [] END |

CREATE (a1)-[new_edge:edge]->(a1)

SET new_edge = self_loop))

WITH a, a1

RETURN a1

D.2 Example merge query

// As the following is not allowed by Cypher

// ❵SET a[key] = b[key]❵, so we use APOC instead:

// ❵SET a = apoc.map.setKey(a, key, b[key])❵

MATCH (a { id : ✬a✬}), (b { id : ✬b✬})

// Add properties of ✬b✬ to ✬a✬

FOREACH(key in keys(b) |

FOREACH(dummy IN

CASE WHEN key IN keys(a)

THEN [] ELSE [NULL] END |

// SET a[key] = b[key]

SET a = apoc.map.setKey(

a, key, b[key]))

FOREACH(dummy IN

CASE WHEN key IN keys(a)

THEN [NULL] ELSE [] END |

SET a = apoc.map.setKey(

a, key, a[key] + filter(

el IN b[key] WHERE NOT el in a[key]))))

// list with ids of merged nodes to track self loops

WITH a as merged_node, b,

[id(a), id(b)] as merged_nodes

// match successors of ✬b✬

OPTIONAL MATCH (b)-[out_edge:edge]->(suc)

WITH merged_node, b, merged_nodes, filter(

el IN collect({neighbor: suc, edge: out_edge})

WHERE NOT el.neighbor IS NULL) AS all_suc_maps

WITH merged_node, b, merged_nodes,

filter(

el in all_suc_maps

WHERE NOT id(el.neighbor) IN merged_nodes)

AS new_suc_maps,

filter(

el in all_suc_maps

WHERE id(el.neighbor) IN merged_nodes)

AS loop_suc_maps

// match predecessors of ✬b✬

OPTIONAL MATCH (pred)-[in_edge:edge]->(b)

WITH merged_node, b, merged_nodes, new_suc_maps,

loop_suc_maps, filter(
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el IN collect({neighbor: pred, edge: in_edge})

WHERE NOT el.neighbor IS NULL) AS all_pred_maps

WITH merged_node, b, merged_nodes, new_suc_maps,

loop_suc_maps, filter(

el IN all_pred_maps

WHERE NOT id(el.neighbor) IN merged_nodes)

AS new_pred_maps,

filter(

el IN all_pred_maps

WHERE id(el.neighbor) IN merged_nodes)

AS loop_pred_maps

// create edges for sucs/preds that

// didn✬t exist before and/or merge

// their attributes into existing edges

FOREACH (suc_map IN new_suc_maps |

FOREACH(suc IN [suc_map.neighbor] |

MERGE (merged_node)-[edge:edge]->(suc)

// Merge dicts

FOREACH(key in keys(suc_map.edge) |

FOREACH(dummy IN

CASE WHEN key IN keys(edge)

THEN [] ELSE [NULL] END |

// SET edge[key] = suc_map.edge[key]

SET edge = apoc.map.setKey(

edge, key, suc_map.edge[key])

)

FOREACH(dummy IN

CASE WHEN key IN keys(edge)

THEN [NULL] ELSE [] END |

SET edge = apoc.map.setKey(

edge, key, edge[key] + filter(

el IN suc_map.edge[key]

WHERE NOT el in edge[key]))))))

FOREACH (pred_map IN new_pred_maps |

FOREACH(pred in [pred_map.neighbor] |

MERGE (pred)-[edge:edge]->(merged_node)

FOREACH(key in keys(pred_map.edge) |

FOREACH(dummy IN

CASE WHEN key IN keys(edge)

THEN []

ELSE [NULL] END |

SET edge = apoc.map.setKey(

edge, key, pred_map.edge[key])

)

FOREACH(dummy IN

CASE WHEN key IN keys(edge)

THEN [NULL] ELSE [] END |

SET edge = apoc.map.setKey(

edge, key, edge[key] + filter(

el IN pred_map.edge[key]

WHERE NOT el in edge[key]))))))
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// handle self loops

WITH merged_node, b, loop_suc_maps, loop_pred_maps

OPTIONAL MATCH (merged_node)-[old_loop:edge]->(merged_node)

FOREACH(dummy IN

CASE WHEN NOT old_loop IS NULL OR

length(loop_suc_maps) > 0 OR

length(loop_pred_maps) > 0

THEN [NULL] ELSE [] END |

MERGE (merged_node)-[

old_loop:edge]->(merged_node)

FOREACH (map IN loop_suc_maps + loop_pred_maps |

FOREACH(key in keys(map.edge) |

FOREACH(dummy IN

CASE WHEN key IN keys(old_loop)

THEN [] ELSE [NULL] END |

SET old_loop = apoc.map.setKey(

old_loop, key, map.edge[key])

)

FOREACH(dummy IN

CASE WHEN key IN keys(old_loop)

THEN [NULL] ELSE [] END |

SET old_loop = apoc.map.setKey(

old_loop, key, old_loop[key] + filter(

el IN map.edge[key]

WHERE NOT el in old_loop[key]))))))

DETACH DELETE b

RETURN merged_node

216



Index

adhesive category, 190
applicability, 72
attributes, 174
audit, 15, 16, 44, 89
audit trail, 15, 16, 44, 89

backward clean-up, 52
backward composability, 62
backward factorization, 49
backward propagation, 49
Big Mechanism, 29
bio-curation, 20, 133
BioPAX, 27

category, 175
cellular signalling, 21
clean-up, 52, 57
composability, 61
composition, 40
composition of rule hierarchies, 85
controlled propagation, 58
curation, 14
Cypher, 18

DAG, 174
description logic, 13
dictionary, 174
dictionary inclusion, 174
DL, 13
double-pushout rewriting, 16
DPO, 16

epi, 176
epimorphism, 176
ER, 14
expansive instance, 36
expansive rule, 36

final pullback complement, 184

forward clean-up, 57
forward composability, 65
forward factorization, 55
forward propagation, 54
frame, 12

graph, 33
graph database, 17
graph hierarchy, 12, 46
graph rewriting, 16
graph with attributes, 174

hierarchy of graphs, 12, 46
homomorphism, 174
horizontal pasting lemma, 186

image factorization, 191
INDRA, 29
initial object, 176
iso, 176
isomorphism, 176

KAMI, 20, 23, 133
KAMI library, 159
KAMIStudio, 167
Kappa, 22
KaSA, 23
KaSim, 23
KaSTOR, 23
KR, 11

MetaKappa, 29
mono, 176
monomorphism, 176

natural language processing, 28
non-simple graph, 173

ontology, 14

217



INDEX

OWL, 14

pasting lemma, 178, 182, 186, 188
path, 174
pathway, 21, 23
PG, 111
post-translational modification, 21
PPI, 21
propagation, 15, 16, 46
property graph, 18, 111
property graph data model, 17, 111
protein-protein interaction, 21
PSI-MI, 28
PTM, 21
pullback, 177
pullback complement, 184
pushout, 180

RDF, 14, 20
restrictive instance, 36
restrictive rule, 36
reversibility, 17, 36, 82
rewriting, 15, 16, 33
rule, 34
rule factorization, 49, 55
rule hierarchy, 70, 72
rule homomorphism, 71
rule lifting, 51
rule projection, 56
rule-based modelling, 22

schema, 19, 112
semantic nets, 12
sesqui-pushout rewriting, 15, 16
simple graph, 173
single pushout rewriting, 16
slice category, 15, 176
SPO, 16
SqPO, 15, 16
static analysis, 23
stories, 23

typed graph, 15

UML, 14

VC, 15
verical pasting lemma, 188
version control, 15

218



Bibliography

[1] R. Aebersold and M. Mann. Mass-spectrometric exploration of proteome structure and
function. Nature, 537(7620):347, 2016.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular biology
of the cell 4th edn (new york: Garland science). Ann Bot, 91:401, 2002.

[3] J. Allen, W. de Beaumont, L. Galescu, and C. M. Teng. Complex event extraction using
drum. Technical report, Florida Institute for Human and Machine Cognition Pensacola
United States, 2015.
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