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“Life is a Sisyphean race, run ever faster toward a finish line that 

is merely the start of the next race”  

Matt Ridley, The Red Queen: Sex and the Evolution of Human Nature 

 

“Success is peace of mind, which is a direct result of self-
satisfaction in knowing you made the effort to become the best of 
which you are capable.” 

John Robert Wooden, 10 times NCAA Basketball Champion Coach 
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Abstract 

Germinal activity persists in the postnatal mammalian brain in specialized niches, namely the 

dentate gyrus of the hippocampus and the subventricular zone (SVZ) surrounding the lateral 

ventricle. Neural stem cells (NSCs) of the postnatal SVZ differentiate into transient amplifying 

progenitors that will generate neuroblasts migrating through the rostral migratory stream, into 

the olfactory bulb, where they differentiate into neurons. The SVZ additionally generates glial 

progenitors that invade the nearby parenchyma. Recent work to which I have participated, 

highlights the heterogeneous nature of the postnatal SVZ in respect to different microdomains 

generating distinct neural lineages. 

The objectives of my PhD work were twice: 1) to develop new means to explore the 

heterogeneity of the SVZ; and 2) to identify transcription factors expressed by subpopulations 

of NSCs of the SVZ and acting in their differential specification. 

 

Objective 1: The SVZ is a highly complex and irregular region of ongoing postnatal germinal 

activity. The heterogeneous character of the SVZ is evident and recent studies generated 

enormous datasets of transcripts, which are differentially expressed between divergent 

microdomains. However, an appropriate tool for fast analysis of the protein level along the full 

rostro-caudal and dorso-ventral extend of the SVZ is still missing. Therefore, I developed 

“FlashMap”, a semi-automatic software that allows rapid analysis of protein levels in the full 

SVZ, based on optical density measurements after immunohistochemistry. “FlashMap” 

generates easy readable heatmaps in two dimensions, which can be accurately superimposed 

on three-dimensional reconstructions of the ventricular system for rapid spatial visualization 

and analysis. This new approach will fasten research onto SVZ regionalization, by guiding the 

identification of markers, such as transcription factors expressed in specific SVZ 

microdomains.  

 

Objective 2: I used transcriptomic as well as fate mapping approaches to investigate the 

relation between regional expression of transcription factors by NSCs and their acquisition of 

distinct neural lineage fates. Our results support an early priming of NSCs to produce defined 



 
 

cell types depending of their spatial location in the SVZ and identify Hopx as a marker of a 

subpopulation biased to generate astrocytes. Interestingly, manipulation of Hopx expression 

showed minor effects on astrogenesis, but resulted in marked changes in the number of NSCs 

and of their progenies. Taken together, our results highlight transcriptional and spatial 

heterogeneity of postnatal NSCs, as well as their early priming toward specific lineages and 

suggest a role for Hopx in the evolution of SVZ germinal activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Résumé 

Une activité activité germinale persiste après la naissance dans des niches spécialisées du 

cerveau des mammifères, à savoir le gyrus denté de l'hippocampe et la zone sous-ventriculaire 

(SVZ) bordant le ventricule latéral. Les cellules souches neurales (NSC) de la SVZ postnatale 

se différencient en progéniteurs transitoires qui vont générer des neuroblastes migrant à travers 

la voie de migration rostrale vers le bulbe olfactif, où ils se différencient en neurones. La SVZ 

génère également des progéniteurs gliaux qui se dispersent dans le parenchyme voisin. Les 

travaux récents auxquels j'ai participé soulignent la nature hétérogène de la SVZ postnatale, 

composée de différents microdomaines générant des lignées neurales distinctes. 

Les objectifs de mon travail de thèse ont permis de : 1) développer de nouveaux moyens pour 

explorer l'hétérogénéité de la SVZ; et 2) d’identifier et d’étudier le rôle d’un facteur de 

transcription exprimé par une sous population des NSCs de la SVZ. 

 

Objectif 1: La SVZ est une région hautement complexe et irrégulière dans laquelle une forte 

activité germinale persiste après la naissance. Le caractère hétérogène de la SVZ est évident et 

des études récentes ont généré une très grande base de données de transcrits, qui sont 

différentiellement exprimés entre les microdomaines. Cependant, un outil approprié pour 

l'analyse rapide du niveau d’expression d’une protéine d’intérêt, le long des axes rostro-caudal 

et dorso-ventral de la SVZ est toujours manquant et nécessaire. Par conséquent, j’ai développé 

"FlashMap", un logiciel semi-automatique qui permet une analyse rapide des niveaux 

d’expression de protéines dans le SVZ, basé sur des mesures de densité optique après 

immunohistochimie. "FlashMap" génère des cartes thermiques facilement lisibles en deux 

dimensions, qui peuvent être superposées avec précision aux reconstructions 

tridimensionnelles du système ventriculaire pour une visualisation spatiale fine et rapide. Cette 

nouvelle approche accélérera la recherche sur la régionalisation de la SVZ, en permettant 

l'identification de marqueurs (e.g. facteurs de transcription) exprimés dans des régions 

discrètes de la SVZ. 

 



 
 

Objectif 2: J’ai utilisé des approches de transcriptomique et de « fate mapping » des NSCs 

pour étudier la relation entre l'expression régionale de facteurs de transcription et leur 

différenciation dans des lignées neurales distinctes. Mes résultats supportent un amorçage 

précoce des NSCs à produire différents types cellulaires en fonction de leur localisation 

spatiale dans la SVZ. Nos données identifient Hopx comme un marqueur d'une sous population 

de NSCs qui génère principalement des astrocytes. De façon intéressante, la manipulation de 

l'expression de Hopx montre des effets mineurs sur l'astrogénèse, mais entraîne des 

changements marqués quant au nombre de NSCs et de leur descendance. Dans son ensemble, 

Mes résultats mettent en évidence à la fois une hétérogénéité spatiale des NSCs postnatales 

ainsi que leur amorçage précoce à produire des types cellulaires distincts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

List of Abbreviations (Abbr.) 
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3D 3-dimensional 
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MAP2 microtubule-associated protein-2 
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NSCs Neural stem cells 
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qPCR quantitative polymerase chain reaction 
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ROI region of interest 
S100β s100 calcium-binding protein B 
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St striatum 
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Tam tamoxifen 
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1. Introduction – Technique Dependent Progression in the 

Field of Neuroscience 

The central nervous system (CNS) is a very complex, highly organized structure. It is 

composed of three major cell types, the neurons and the glia cells (i.e. astrocytes and the 

oligodendrocytes). It was originally proposed by Rudolf Virchow (1846) that glia had a 

mesenchymal origin, like other supporter cells in the body. This hypothesis was later dismissed 

by Wilhelm, who demonstrated a CNS origin for glial cells (summarized in Jacobson, 1991). 

It is now well accepted that both neurons and glial cells originate from so called “neural stem 

cells” (NSCs). It also became apparent that their production does not stop at birth, but that a 

germinal activity persists in the postnatal CNS. 

 

1.1. Nucleoside Analogs Shaped our Understanding of Germinal 

Regions 

In this first part of my introduction, I would like to focus on how the use of nucleoside analogs 

shaped our current understanding of a persistent germinal activity in the postnatal brain. Prior 

to the “nucleoside analog age”, the identification of mitotic activity relied on pure observations 

of cell morphology using ancient staining techniques (e.g. by the use of thionin followed by 

eosin or erythrosin). Using these approaches, mitotic features in the CNS of rats, were reported 

as early as in 1912,  by Ezra Allen (Allen, 1912). While many of those early observations have 

greatly influenced the emerging field of neurosciences, the introduction of nucleoside analogs 

to study proliferation represents a major step forward. Indeed, these new techniques allowed 

proving or rejecting early made hypotheses in a convincing manner and opened the era towards 

modern neuroscience.  

Nucleoside analogs shaped our understanding of niches with postnatally persisting germinal 

activity. In addition, because they allow fate mapping of cells that have proliferated at the time 

of nucleoside administration, they can give insights into embryonal and postnatal migration 

patterns. Further, they helped to make conclusions about the subventricular zone (SVZ) 

architecture when combined with immunohistochemistry and electron microscopy. While 

(especially in the 90’s) many researchers added significant knowledge to the field using more 
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advanced techniques (e.g. virus approaches), this part of my thesis introduction focuses mainly 

on results achieved using nucleoside analogs in combination with cell specific markers. Most 

of the results discussed below are achieved using the radiolabeled nucleoside analog 

[H3]thymidine and the halogen-based nucleoside analog 5-bromo-2’-deoxyuridin (BrdU). 

These nucleosides respectively can be visualized by autoradiography or 

immunohistochemistry using specific antibodies. 

 

1.1.1. Nucleoside Analogs 

A key challenge in the development of nucleoside analogs was to develop a detectable 

component, which is incorporated into DNA, but not into RNA. While the bases adenine, 

guanine and cytosine are found in DNA and RNA, thymine is only found in DNA and was 

therefore chosen. Thymine joins with deoxyribose to create the nucleoside deoxythymidine, 

which is also named thymidine (Figure 1A). Initial trials were made with N15 radiolabeled 

thymidine. [N15]thymidine was shown to be efficiently incorporated into the DNA in rat tissue 

and was confirmed to be absent from RNA (Reichard and Estborn, 1951). Later studies used 

radioactive C14 to confirm its efficient uptake into synthesized DNA of proliferating cells 

(Friedkin et al., 1956), as well as in  bacteria (Downing and Schweigert, 1956). However, the 

microscopic visualization by autoradiography (Pelc, 1956; Quastler and Sherman, 1959) 

appeared rather poor for [N15]thymidine and [C14]thymidine. This technical limitation was 

rapidly overcome by the use of [H3]thymidine. Tritium-labeled thymidine ([H3]thymidine) was 

used for the first time as a nucleoside analog in 1957 by Taylor, Woods and Hughes in broad 

beans. Briefly, root tips of the plant were placed into an [H3]thymidine containing medium, 

transferred into a nonradioactive colchicine containing medium (to prevent anaphase) and 

stained by the Feulgen reaction. Then radioactive versus native sister-chromatids could be 

quantified following autoradiographic visualization (Taylor et al., 1957) (Figure 1B). This 

innovative approach allowed them to make important conclusions about the fundamental rules 

of mitosis, and was therefore later used in other organisms. It should however be noted that 

although [H3]thymidine leaded to many hallmark findings, it is a time-consuming procedure 

and lacks spatial resolution due to its revelation by autoradiography. This is a particular issue 

in the central nervous system, where cells are densely organized. A later developed thymidine 
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analog, BrdU, had the potential to close this gap. It allows detection of newly synthetized DNA 

by immunohistochemistry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Nucleoside analogs as a tool to detect germinal activity in the central nervous 
system 
(A): Thymidine is identified as the nucleoside of choice for detection of DNA synthesis. 
(B): Tritiated thymidine harbors radioactive hydrogen isotopes. Cells incorporate it efficiently 
into their DNA during cell division and it can be readily detected by autoradiography. 
(C): BrdU is a halogen-based nucleoside analog harboring a bromine atom (blue) at the place 
of the methyl group. After incorporation into DNA it can be detected by 
immunohistochemistry using specific antibodies. Other halogen-based nucleoside analogs are 
IdU and CldU with iodine (orange) or chlorine (green) atoms replacing the methyl group. 
(D): EdU has an alkyne group replacing the methyl. After incorporation into the DNA the azide 
group of the dye (N3-dye) binds to it by “click it” chemistry catalyzed by Cu (I). 
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BrdU became popular by the development of antibodies having both high affinity and 

specificity. It overcomes the time-consuming procedure of autoradiography necessary for 

[H3]thymidine detection (Gratzner et al., 1975; Gratzner, 1982; Figure 1C). Finally, it allows 

concomitant immunodetection of cell type specific markers, allowing solid conclusions to be 

made regarding the identity and fate of BrdU+ cells. The increasing popularity of BrdU is 

reflected by the huge amount of scientific articles referenced on PubMed (24375 by end of 

2017; Figure 2). 

 

Figure 2. Timeline of BrdU publications 
The first scientific article concerning BrdU was published in 1958. After the development of 
the first specific BrdU antibody in 1975 it became increasingly used for observations of diverse 
aspects of DNA synthesis and mitosis. By the end of 2017, 24375 research articles had been 
published by the scientific community. 
 

Other halogen-based nucleoside analogs have appeared more lately, namely CldU and IdU 

(Figure 1C), as well as the “new generation” nucleoside analog EdU (Figure 1D), which can 

be chemically detected by the more advanced “click it” chemistry (for review Cavanagh et al., 

2011). Those can be administrated at different time points. Their detections allow to address 

the long-term proliferative behavior of a cell, i.e. if it reenter cell cycle and therefore 

incorporate the second administrated nucleoside. Although they allow multiplex 

administration, the antibodies used to detect them need to be carefully chosen. Indeed, IdU and 

CldU have been shown to be specifically detected by two separate antibodies initially 
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generated for BrdU detection (Yokochi and Gilbert, 2007). The development of EdU 

circumvent the use of an antibody and allows a faster detection of DNA synthesis by “click it” 

chemistry, which can be accomplished within a few hours. In addition, the reaction component 

(fluorescent azides) have a high penetration capacity allowing efficient labeling of thick 

sections and even whole-mount tissues or organisms (Salic and Mitchison, 2008; Figure 1D). 

A drawback of nucleoside analogs are their potential toxic effects, which have been widely 

analyzed and discussed. Administration of BrdU in neonates has been reported to shorten their 

life span in a dose dependent manner (Craddock, 1981). It induces mutations (Kaufman, 1988) 

resulting in alterations in differentiation (Tapscott et al., 1989) and proliferation (Weghorst et 

al., 1991). This adverse effects are explained by the preferential pairing of BrdU with guanine 

instead of adenine (Kaufman, 1988), which can cause problems in subsequent divisions. Thus, 

doses superior to 60 mg/kg have been suggested to induce such cytotoxic effects (for review 

Cavanagh et al., 2011). Similarly, EdU administration leads to long-term toxic effects, while 

no significant alterations in cell proliferation and survival were observed for short survival 

times (Ponti et al., 2013). 

 

1.1.2. Nucleoside Analogs Give Insight into Embryonic Germinal 

Activity by Interkinetic Nuclear Migration 

An important step in using [H3]thymidine for studies in neurosciences, was the finding that 

radioactivity can be found in the brain as early as 15 minutes after intravenous injection into 

the young adult mouse (Hughes et al., 1958). Although this study focused on the 

gastrointestinal tract and did not make a thoughtful analysis of the brain, it demonstrated that 

[H3]thymidine rapidly distributes throughout the mouse body, including the brain, following 

intravenous injection. It therefore opened the way to study proliferation in this tissue. Thus, 

[H3]thymidine administration in mouse at embryonic day 11 (E11) revealed that the external 

half of the primitive ependymal layer of the cerebral vesicles is a region of intense DNA 

synthesis (Figures 3A and 3B). A time course analysis further revealed that [H3]thymidine 

can be detected in the ventricular (inner) half of the primitive ependymal layer, 6 hours after 

its injection (Figure 3C). At 48 hours, some labeled cells were observed in regions located 

away from the ependymal layer (Figure 3D). Taken together, these observations demonstrate 
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that regions of DNA synthesis and cell division are distinct. They also suggest that newly 

generated cells migrate away from its region of origin (Sidman et al., 1959). Using the same 

method in the early chick neural tube, the cell cycle dependent movement of the cell body was 

described in more details and referred as interkinetic nuclear migration (Sauer and Walker, 

1959). Injections into pregnant female mice at different gestational time points (E11-E17) 

identified the primitive ependyma of the lateral ventricles (LV) as source of cortical cells along 

the entire embryonal period. This experiment also revealed the inside-out formation of the 

cortex, as described in more details below (Angevine and Sidman, 1961). 

 

 

Figure 3. Embryonic NSCs undergo interkinetic nuclear migration. 
(A): Representative coronal section from an early embryonal brain section (© 2008 Springer 
Science+Business Media, LLC) illustrates [H3]thymidine administration. 
(B-D): Micrographs highlight the position of labeled cells ( ) in the pallium at different time 
points after [H3]thymidine administration. One hour after administration the labeled cells were 
found in the external half of the primitive ependymal layer (B). After 6 hours they were located 
in the inner half (C) and after 48 hours in the surrounding parenchyma. 
Scale bars: A = 1 mm; D = 200 μm. 
 

1.1.3. Nucleoside Analogs reveal Two Sites of persisting Postnatal 

Germinal Activity  

[H3]thymidine experiments confirmed the original observations made years before by Ezra 

Allen (Allen, 1912). Indeed, proliferation was shown to persist postnatally in the SVZ at 

postnatal day 3 (P3), as well as in young adult and adult mice (Messier et al., 1958; Smart, 

1961; Smart and Leblond, 1961). This demonstrates that the potential to produce new cells 

does not abruptly stop after birth or after completing the development. Therefore, the SVZ is 

a niche of ongoing postnatal proliferation (Figures 4A and 4B). Subsequent [H3]thymidine 

studies identified the dentate gyrus (DG) of the hippocampus as a second niche of ongoing 
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postnatal proliferation in the mammalian forebrain (Figures 4A and 4C). Importantly, the 

germinal potential of both the DG and SVZ was shown to decrease substantially during aging 

(Altman, 1963; Altman and Das, 1965). Major observations were made by Altman and Das 

from 1965 on. While already proposed earlier (e.g. Smart, 1961), their studies suggested the 

persistence of neurogenesis in the postnatal brain. They indeed observed germinal activity in 

the DG and SVZ of postnatal rats and guinea pigs, and presented data suggesting that it 

contributed to the generation of new neurons (Altman and Das, 1965; Altman and Das, 1967). 

Their claims were however examined by the scientific community with skepticism. In 

particular, technical limitations prevented them to unambiguously demonstrate the neuronal 

nature of newborn cells. Therefore Kaplan and Hinds reassessed their conclusions by 

combining [H3]thymidine labeling and electron microscopy of ultrathin (1 μm) sections. The 

existence of neurogenesis in those two regions was confirmed in the adult rat brain, by 

identifying labeled cells for neuron specific traits like long microtubule filled processes and a 

smooth contoured cell body (Kaplan and Hinds, 1977). Evidences for postnatal neurogenesis 

in mammals accumulated rapidly. Beside adult mice (Smart, 1961) and rats, germinal activity 

was demonstrated in adult cats (Altman, 1963), guinea pigs (Altman and Das, 1967), and dogs 

up to an age of 17 years (Fischer, 1967). 

While those findings became widely accepted, postnatal mitotic activity in the primate brain 

remained controversial, and a number of conflicting findings were published. Noetzel and Rox 

analyzed adult mice and rhesus monkey brains in parallel. While they succeeded in detecting 

[H3]thymidine mitotic profiles in the mouse SVZ, they obtained negative results in rhesus 

monkeys. They concluded that the mitotic SVZ in mice is a leftover from the embryonic 

development and that “the absence of a SVZ” in rhesus monkeys is a sign of a higher 

developmental level and increased differentiation of the ape forebrain (Noetzel and Rox, 

1964). Meanwhile others reported mitotic activity in the young and adult primate SVZ by 

revealing mitotic features (Lewis, 1968) or by [H3]thymidine administration (Kaplan, 1983). 

The number of proliferative cells described by Kaplan appeared however anecdotic, as only 14 

labeled cells were observed within 48 analyzed sections. Pasko Rakic undertook a large-scale 

experiment to address this unresolved issue as well as of a possible postnatal cortical 

neurogenesis. His study included twelve rhesus monkeys of different ages treated with 

different doses of [H3]thymidine. While proliferation and some degree of neurogenesis was 
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confirmed in the DG during the first few postnatal months, [H3]thymidine+ cells in the cortex 

were identified as astrocytes and oligodendrocytes. Evidences for postnatal generated neurons 

in the cortex were not found (Rakic, 1985). Subsequent experiments by the Gould laboratory, 

confirmed germinal activity in the DG of old world monkeys (Macaca fascicularis and Macaca 

mulatta). They confirmed persisting granule cell neurogenesis by using mature and immature 

neuronal markers. They found a substantial number of cells being positive for NSE (neuron 

specific enolase), NeuN (neuronal nuclei), TOAD-64 (Turned-On-After-Division 64-kDa) and 

CalB (calbindin) in individuals of all ages with an age dependent reduction in neurogenesis 

(Gould et al., 1999). Another report from this group was far more controversial. They found 

evidences of neurogenesis in the adult SVZ (Macaca fasciculari), but also described migration 

of newborn neurons into the neocortex (prefrontal, inferior temporal and parietal cortex). 

While 2 hours after BrdU injection positive cells were located in the SVZ, they observed at 

longer time points cells with elongated nuclei in the white matter, classified as migrating cells, 

and in the neocortex. A fraction of these cells was confirmed to express the neuronal markers 

TOAD-64, NeuN, NSE and MAP2 (microtubule-associated protein-2), while others express 

the astrocytic marker GFAP (glial fibrillary acidic protein). Interestingly, survival of these 

adult born cells was found to decrease with age (Gould et al., 2001). 

In parallel to these studies in old world monkeys, germinal activity and neurogenesis was also 

investigated in new world monkeys. Studies in the common marmoset C.jacchus demonstrated 

substantial mitotic activity in the postnatal SVZ using both [H3]thymidine and  BrdU labeling. 

A high labeling index was observed at early postnatal time points, which dropped remarkably 

with progressing age to be very low by two years of age. The fate of the postnatal born cells 

was not analyzed (McDermott and Lantos, 1990). Similar observations were made in the 

dentate gyrus, were new born neurons acquired the morphological characteristics of granule 

neurons and expressed the neuronal marker NSE 3 weeks after BrdU injection (Gould et al., 

1998). I confirmed these findings in common marmosets during my master thesis project, by 

using the proliferation marker Ki67. We found a similar age-dependent decrease in 

proliferation. We observed a large number of doublecortin (DCX) expressing neuroblasts, 

supporting a persistent neurogenesis. Finally, we demonstrated the presence of progenitors of 

defined neuronal subtypes by immunodetection of the early GABAergic marker Dlx2 and the 

glutamatergic marker Tbr2. While Dlx2+ progenitors persisted until adulthood, the pool of 
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Tbr2 expressing glutamatergic progenitors in the SVZ was found to be depleted early after 

birth (Azim et al., 2013). 

A much-awaited study concerned the demonstration of such germinal activity and 

neurogenesis in humans. Eriksson et al., were the first to present evidences for neurogenesis in 

the aged human DG. They made use of postmortem brain biopsies from aged human patients 

that suffered from squamous cell carcinoma. These patients had been treated with BrdU at 

different time points during the course of their cancer for diagnostic purposes. Eriksson et al. 

described a persisting germinal activity in the human DG, as well as SVZ. First, they 

demonstrated a substantial germinal activity in the DG in all patients, although a large inter-

individual variability was observed for the number of BrdU+ cells in both the subgranular zone 

(SGZ) and the granule cell layer (GCL). This variability can be explained by the different ages 

of the patients, as well as by differences in the time span between BrdU treatment and death. 

Therefore, although not quantitative, these results concluded for a significant germinal activity 

in humans. They also provided evidence for neurogenesis, based on BrdU co-expression with 

the neuronal markers NeuN, CalB and NSE in the DG (Eriksson et al., 1998). Due to the 

sparsity of tissues from BrdU treated patients, other approaches had to be developed in order 

to more systematically quantify neurogenesis in humans. Thus, an elegant study introduced the 

method of radiolabeled C14 for retrospective birth dating of human cells. Analysis of biopsies 

issued from individuals of different ages confirmed the occurrence of an extensive 

hippocampal neurogenesis and neuronal turnover throughout life. Thus, every day, 700 new 

neurons are generated per hippocampus resulting in an impressive yearly turnover of ~2% of 

the dentate granule cells. An age dependent decline was observed, but was estimated to be less 

dramatic compared to mice (Spalding et al., 2013). Using the same method persistence of 

germinal activity in the adult human SVZ was confirmed (Ernst et al., 2014). Parallel 

histological studies revealed persistent neurogenesis during infancy (Sanai et al., 2011) but 

also adulthood (Ernst et al., 2014). 

Taken together nucleoside analogs reveal that germinal activity and neurogenesis is a landmark 

of the mammalian brain, including humans. These studies however highlight that variation in 

the intensity of this process, as well as in the fate and distribution of newborn neurons may 

exist.  
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Figure 4. Nucleoside analogs reveal two sites of persistent postnatal germinal activity. 
(A): Representative picture of a P10 mouse brain illustrates virtual cuts at the level of the DG 
and SVZ. 
(B): The DG (highlighted in red) of the hippocampus is a niche of ongoing postnatal activity 
(B’). Higher magnification micrograph shows the shape of the DG (B’’). 
(C): The SVZ (highlighted in red) surrounds the LVs (C’). The micrograph illustrates that it 
consists of 3 regionally distinct microdomains (lateral, dorsal, medial; C’’). The lateral 
microdomain is shown in higher magnification (C’’’). 
Scale bars: A = 5 mm; B’, C’ = 1 mm; B’’, C’’ = 500 μm; C’’’ = 100 μm. Abbreviations: DG, 
dentate gyrus; SVZ, subventricular zone; LV, lateral ventricle. 
 

1.1.4. Nucleoside Analogs Give Insights into the Migration Patterns 

of Cells Generated at Embryonic and Postnatal Times 

Cells generated at proximity of the ventricular system rapidly migrate away to invade the 

surrounding parenchyma. Their pattern of migration however substantially differs at 

embryonic and postnatal time points. Analysis of cell distribution 10 days after birth, following 

[H3]thymidine administration at various gestational days (E11, E13, E15 and E17), revealed 

migration of embryonal born cells into the cortex. Interestingly, they found evidences for an 

inside-out development, challenging the prevailing view that newborn cells peripherally 

displace older cells (Tilney, 1934). Thus, cells born at E11 reside in the deepest layer of the 

cortex. Cells born two days later (E13) were found in the middle third and cells born 4 days 

later (E15) in the outer third of the cortex. Finally, cells born at E17 were located in the most 

superficial cell layer at P10 (Angevine and Sidman, 1961; Figures 5A and 5B).  
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The mode of migration and therefore the final destination of newborn cells of the SVZ changes 

fundamentally during the transition from embryonal to postnatal development. Temporal 

analysis of newborn cells migration in the postnatal forebrain was first investigated by injecting 

a group of rats of the same age (P30) and sacrificing them from 1 hour to 180 days after 

injection. Systematic analysis of cell distribution, allowed to identify the olfactory bulb (OB) 

as the major final destination of cells originating from the postnatal SVZ. Up to 24 hours 

[H3]thymidine labeled cells were found close to the LVs, while the OB was largely free of 

positive cells at this early time point. After 3 days, labeled cells were observed in the middle 

caudo-rostral portion of the rostral migratory stream (RMS) and after 6 days they arrived in 

the OB, where they distributed into both the granule cell and glomerular layers (GCL and GL, 

respectively) thereafter (Altman, 1969; Figure 5A and 5C). 
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Figure 5. Migration pattern in the prenatal and postnatal rodent forebrain. 
(A): Representative picture of a P10 mouse brain illustrates virtual cuts at the level of the SVZ, 
RMS and OB.  
(B): The cortex develops in an inside-out fashion. Colored syringes in the timeline represent 
different [H3]thymidine injection time points into pregnant females at E11 (red), E13 (orange), 
E15 (green) or E17 (blue).  
Radiolabeled cells born at E11 reside in the deepest layer at P10. Cells born at E13 and E15 
were found in the middle and outer third of the cortex, respectively. Cells that were generated 
at E17 were located in the most superficial layer. 
(C): Postnatally born cells were found in the SVZ 1 day after injection, from where they invade 
the RMS after 3 days and arrive in the OB after 6 days. 
Scale bars: A = 5 mm; B, C = 1 mm. Abbreviations: OB, olfactory bulb; RMS, rostral migratory 
stream; SVZ, subventricular zone. 
 

In humans the migration pattern is suggested to be remarkably different from rodents and 

obtained results are subject of controversial discussions. While in young individuals (up to 6 

months) the RMS can be recognized by “broad streams” or chains of DCX and frequently co-

expressing PSA-NCAM cells (Sanai et al., 2011), there are also extensive arc shaped migration 

features in the frontal lobe of infants (Paredes et al., 2016; Figure 6A).  This situation changes 

dramatically in older individuals (from 2 years on). At these later stages, chains of migrating 

cells are not observed. Rather, rare single (or pairs of) migrating neuroblasts can be detected 

(Sanai et al., 2004; Sanai et al., 2011). A subsequent study, using retrospective C14 birth dating, 

supports these findings by concluding that neurogenesis in the adult human OB is negligible. 

On the other hand, the neuronal turnover in the adult hippocampus is evident (Bergmann et al., 

2012; Figure 6B). Interestingly, histological and C14 birth dating experiments rather suggest a 

dispersion of newborn neurons at proximity of their site of origin, i.e. they may participate to 

the cellular turnover in the striatum (Ernst et al., 2014; Figure 6C). The analysis of 

neurogenesis in the adult marmoset, which I performed during my Master, support these 

conclusions. I could indeed observe many DCX+ cells in the striatum, which increase 

proportionally with age. Thus, as much as 30% of DCX+ cells were found in the striatum of a 

56 months old marmoset (Azim et al., 2013). Together, these observations suggest a 

progressive disappearance of cues required for rostral neuroblast migration, which 

progressively disperse to nearest regions.  
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Figure 6. Migration pattern in the neonatal and adult human forebrain. 
(A): Illustration of the migration pattern in a neonatal human brain in 3D, as well as in a sagittal 
and a coronal section. Chains of migrating neuroblasts (green) leave the SVZ ventrally and 
enter the RMS. Dorsally of the SVZ there is an additional arc shaped region of extensive 
migration towards the cortex (modified from Paredes et al., 2016). 
(B+C): Graphs showing the measured C14 concentration as a function of the calendar year. Y-
axis represents the difference of the C14 concentration in the air compared to the natural level. 
The solid black line shows the concentration before, during and after the majority of the nuclear 
bomb tests. Represented data of hippocampus and OB illustrate and summarize the results from 
different studies (Bhardwaj et al., 2006; Bergmann et al., 2012; Spalding et al., 2013). Circles 
illustrate C14 values of hippocampal neurons obtained from individuals born before (blue) and 
after (red) the peak of nuclear bomb tests. C14 values at death of the individuals were increased 
and decreased compared to their concentration at birth, respectively. This suggests a postnatal 
neuronal turnover in the hippocampus. For neurons of the OB (triangle and square) no such 
correlation was observed (B). Post mortem C14 measurements in cells of the SVZ (black circle) 
and the striatum (white circle) show substantial differences to the C14 concentrations compared 
to the date of birth of the individuals (C; both graphs were obtained from Ernst et al., 2014). 
Abbreviations: LV, lateral ventricle; OB, olfactory bulb; RMS, rostral migratory stream; SVZ, 
subventricular zone. 
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1.1.5. The SVZ Has a Complex Cytoarchitecture and Consists of 

Different Cell Types with Distinct Cycling Behaviors  

The cytoarchitecture of the SVZ, as well as the identity of neural stem cells it harbors, remained 

elusive for several decades. This was changed in the 90s with a series of landmark publications 

from the group of Arturo Alvarez-Buylla at the Rockefeller University in New York. The SVZ 

is not a homogeneous pool of cells, it is rather a heterogeneous mix of different cell types and 

cells at different levels in their maturation process, which differ in their morphology, function 

and cycling behavior. NSCs in the SVZ of the postnatal and adult brain originate from radial 

glia (RG) cells of the embryonal and perinatal brain (for review Kriegstein and Alvarez-Buylla, 

2009). NSCs give sequentially rise to distinct cell types of divergent cycling behavior (Doetsch 

et al., 1997; Ponti et al., 2013). Doetsch and collaborators proposed in 1997 (Doetsch et al., 

1997) a revolutionary view on the cellular architecture of the SVZ. They were able to 

distinguish a number of unique cell types, as well as to provide a detailed description of their 

organization in the SVZ. They proposed a nomenclature, which is still in use (i.e. type A, B 

and C cells; see below for more details) as well as the term “neurogenic niche” to define their 

peculiar 3D organization. Further, they demonstrated the presence of an abundant population 

of ependymal cells in the SVZ (type E cells), which are ciliated, aligned to the ventricular 

lumen and non-cycling. These different cell types are readily distinguishable by electron 

microscopy, based on their diverse ultrastructural morphologies and marker expression. Type 

A cells express PSA-NCAM and correspond to chains of migrating neuroblasts previously 

described in the RMS (Rousselot et al., 1995; Lois et al., 1996). They cluster in the SVZ to 

form a complex network of chains before engaging rostral migration toward the OB (Doetsch 

and Alvarez-Buylla, 1996). Type B cells exhibit ultrastructural traits (Peters et al., 1991) and 

expression signature (GFAP, vimentin) of astrocytes (Bignami and Dahl, 1974; Schiffer et al., 

1986; Cohen et al., 1994). B cells can be further subdivided into two distinct subtypes, which 

are distinguishable by their ultrastructure and their position within the SVZ (B1: close to the 

ependymal layer; B2: at the SVZ-striatum border) and their proliferative behavior (B1 cells 

were not found to incorporate [H3]thymidine). Type C cells represent the transition between 

type B and type A cells. They appear in clusters, which are closely associated to type A chains. 

They contribute to half of the proliferating population, while being negative for type A and 

type B markers, which also incorporate [H3]thymidine, although to lesser extent. 
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[H3]thymidine positive type B and C cells are distributed along the entire dorso-ventral axis of 

the lateral SVZ, while cycling type A cells appear to be largely located in the dorsal and ventral 

aspects only (Doetsch et al., 1997; Figure 7). A more recent study investigated the cycling 

behaviors of type A, B and C cells in more details. They made use of dual labeling techniques 

using the nucleoside analogs CldU and EdU. This method revealed that the cell cycle length 

(TC) in adult mice progressively increases throughout differentiation (B1 cells: 17 hrs; C cells: 

18-25 hrs). Further, the time for DNA synthesis (TS) was found to be surprisingly short for 

type B1 cells compared to type C cells (B1 cells: 4.5 hrs; C cells: 12-17 hrs). When interpreting 

these data it needs to be considered that only actively cycling B1 cells, but not the quiescent 

fraction of the population, were included into the analysis (Ponti et al., 2013). Interestingly, 

the TC and TS of actively cycling NSCs appear almost identical to the one reported for RG cells 

during embryonic development at E16 (Takahashi et al., 1995). Further analysis showed that 

type B1 and type C cells cycle 3 times before generating type A cells, which make one or two 

additional divisions in the SVZ before entering the RMS (Ponti et al., 2013). Cells with a 

similar ultrastructure like the described type B cells can also be found in the RMS, where they 

enwrap the chains of migrating type A cells and separate them from the surrounding 

parenchyma (Lois et al., 1996). Similarly, type B1 and B2 cells appear to isolate migrating 

neuroblasts in the SVZ from the ependymal layer and the striatal parenchyma. Whereas 

neurogenesis has been the focus of most studies, it should however be mentioned that SVZ 

NSCs do not only generate neurons, but also produce astrocytes (Reynolds and Weiss, 1992) 

and oligodendrocytes (Kirschenbaum and Goldman, 1995) in vitro. The in vivo evidence for 

the generation of glia by the postnatal SVZ was given by retrovirus approaches (Levison et al., 

1993). 

Taken together, the SVZ harbors stem cells showing astrocytic traits (type B cells), which have 

the capacity to produce a glial and neuronal progeny. Type B cells can be further subdivided 

into an actively cycling and a quiescent subpopulation (Levison et al., 1993; Doetsch et al., 

1997; Doetsch et al., 1999). Recent findings, using more advanced technical approaches, which 

will be discussed in the general discussion of this thesis manuscript, suggest that most adult 

NSCs arise from a pool of radial glial cells, which enter quiescence between E13.5 and E15.5 

(Furutachi et al., 2015; Fuentealba et al., 2015) and gradually reactivates after birth. 
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Figure 7. The cytoarchitecture of the adult SVZ. 
(A+B): Representative micrographs of the SVZ (A) and the higher magnification of the lateral 
microdomain (B) show the zone of interest to illustrate the SVZ cytoarchitecture. 
(C+D): Ciliated ependymal cells (E; yellow) align the LV and isolate the lumen from the 
proliferative SVZ. NSC (type B1; blue) give rise to type C cells (green) which generate 
migrating neuroblasts (type A; red) (schemes were modified from Doetsch et al., 1997 and 
Tong and Alvarez-Buylla, 2014). 
Scale bars: A = 500 μm; B = 100 μm; C = 20 μm. Abbreviations: BV, blood vessel; LV, lateral 
ventricle; SVZ, subventricular zone. 
 

1.2. Transgenesis Revealed Early Regionalization of Germinal 

Regions  

Although nucleotide analogs represent a technical breakthrough in the study of germinal 

activity and have led to major advances in its understanding, they also present limitations. 

Indeed, they are incorporated in all cycling cells, thereby preventing the study of 

subpopulations of NSCs. Also, they don’t provide any information on the molecular 

mechanisms involved in NSCs biology. The emergence of advanced transgenic approaches 

have allowed circumventing these limitations, to shape our current understanding of postnatal 

germinal regions. These regions appear now highly heterogeneous, with NSCs located in 

different location generating distinct progenies. Here I will summarize the key methodological 

developments, which have led to these conclusions.  
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1.2.1. The Development of Transgenesis Approaches Represents a 

Further Milestone in the History of Neuroscience 

Domestication of animals and plants by selecting certain individuals for breeding, while 

excluding others from the line, can in the broader sense be defined as the slowest transgenic 

approach. The gene pool of a population gets artificially changed over many generations and 

new strains arise from the ancestor population. Spontaneous mutations might be kept in the 

population or rejected by excluding them from breeding. Approaches have been developed 

which allow direct genome editing. The first transgenic animals (fruit flys) were gained by 

random mutagenesis of the genome using different mutagens, e.g. by exposure to X-ray 

irradiation (Herman Joseph Muller, 20s) or mustard gas (Charlotte Auerbach, Alfred Joseph 

Clark, John Michael Robson, 40s). As insects have a segmental organized body plan 

(Lawrence, 1992), mutated larvae and flies were screened and those presenting identifiable 

phenotypes , such as the absence of certain segments, body parts or the poor development of 

them, were selected (for review McGinnis and Krumlauf, 1992). This method was used for 

early identification of key developmental regulator genes. Because it first identifies mutated 

phenotypes (induced or spontaneous), then the mutated gene, it is called forward genetic (for 

review St Johnston, 2002; Figure 8A). In Drosophila, segmental identity was found to depend 

on the segment position along the anterior-posterior axis. It led to the identification of 

homeobox genes, which expression follows a strict segmental code (for review McGinnis and 

Krumlauf, 1992). Many of the region specific transcription factors (homeobox and others) 

were discovered in Drosophila by spontaneous and induced mutagenesis approaches (forward 

genetic). Subsequently, their presence in mammals was confirmed by histological methods and 

their function resolved by transgenesis. 

Later, reverse genetic approaches opened a new era in the field of neuroscience. They allowed 

to target specific genes to perform loss and gain of function experiments. The development of 

these refined transgenic strategies represents a milestone in the history of neurosciences. The 

capability to precisely target specific genes and loci in the genome allowed a wide range of 

powerful transgenic approaches (Figure 8B). This “transgenic era” in neurodevelopmental 

research began with the creation of null mutants for regionalized transcription factors (TF), for 

loss of function approaches.  
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Figure 8. Illustration of the principles of forward and reverse genetics. 
(A): In forward genetic approaches mutations are induce or occur spontaneously. If a 
phenotype was observed, the DNA was analyzed to identify the mutated gene. 
(B): Reverse genetic approaches identify first the gene of interest. Targeted 
mutations/modifications are induced by diverse transgenic approaches and the phenotype 
analyzed thereafter. 
 

However, as many of these TFs are essential for the proper development, complete knock-out 

(KO) often leads to perinatal death (Qiu et al., 1995; Yoshida et al., 1997). Therefore, it is 

frequently not possible to investigate the function of these factors in a postnatal or adult 

context. The discovery of the Cre-Lox systems in combination with targeted knock-in (KI) 

strategies allowed to overcome this limitation. The Cre-Lox system can be defined as a 

technology for site-specific DNA recombination. Briefly, the gene of interest is flanked by Lox 

sites, which are recognized by a Cre-recombinase. This Cre-recombinase can be expressed by 

any cell type, based on its insertion into the genome, under the control of a well-chosen 

promoter. This allows controlling its spatial, and to a certain degree also its temporal 

expression (Sauer, 1998; Figure 9A). Newer generations of Cre-recombinases ensure a more 

advanced temporal control of recombination activity. By fusing genes coding for the Cre-

recombinase and a fragment of the estrogen receptor, researcher have engineered several 

generations of Cre-recombinase (i.e. CreERT; CreERT2) that are sequestered into the cell 

cytoplasm. Administration of the chemical tamoxifen allows the nuclear translocation of the 

fusion protein, and therefore its activation (Feil et al., 1996; Figure 9B). 

Taken together, the Cre-Lox systems allows conditional KO (cKO) experiments, which are 

crucial for investigating the function of certain genes at a given time of development and/or of 
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postnatal life. In addition, it allows the conditional expression of reporter genes for lineage fate 

mapping. In this context, several transgenic mouse lines have been generated over the years, 

which varies in the detectable marker they express (e.g. LacZ, GFP, tdTomato; Madisen et al., 

2010). These new developments offered a powerful tool box to advance our understanding of 

SVZ heterogeneity and regionalized populations greatly. 

 

 

 

Figure 9. Temporal and spatial genetic manipulations using the Cre-Lox system. 
(A): The Cre-recombinase (gray) is under the control of a promoter of interest to ensure the 
spatial and to a certain degree also temporal restricted expression. The gene of interest (green) 
is flanked by Lox sites (here LoxP; black), which are recognized by the Cre-recombinase. 
Expression of the Cre-recombinase leads automatically to recombination of the Lox sites and 
elimination of the gene of interest.  
(B): Additional temporal control can be achieved by fusion of the Cre-recombinase with a 
fragment of the estrogen receptor (here ERT2). CreERT2-recombinases (black) remain in the 
cytoplasm and therefore inactive until they are activated by tamoxifen (red) administration. 
Recombination of the Lox sites and elimination of the target gene occurs subsequently. 
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1.2.2. Expression Analyses and Fate Mapping Approaches Highlight 

the Regionalized Organization of the VZ/SVZ  

One of the most important feature of multicellular organisms is the existence of a clearly 

defined rostro-caudal and dorso-ventral axis. This organization arises during early embryonic 

development and depends greatly on the regional expression of combinations of genes. In 

general, all cells are identical during the first embryonic days. However, cell fates start to 

diverge from each other already during blastocyst formation around E3.5, long before 

organogenesis (for review Saiz and Plusa, 2013; Kojima et al., 2014). Heterogeneous 

expressed cues are major players during embryogenesis and into adulthood. Much of the 

knowledge we have about these early patterning of the body plan originates from studies in 

insects, which have a segmental organized body (Lawrence, 1992). Like in Drosophila, the 

development of the mouse central nervous system is orchestrated by regionally expressed 

genes. Further, the developing forebrain, hindbrain and spinal cord resemble such segmental 

structures (reviewed in Rubenstein et al., 1994; Philippidou and Dasen, 2013). Focusing on the 

developing forebrain, we gained insight in these processes by discovering differentially 

expressed genes by initial immunohistochemistry. Such genes were closer investigated 

regarding their functional importance in fate decision of regionalized populations by transgenic 

approaches. 

 

Regionalization is Observed During the Period of Neurogenesis 

Several transcription factors have a clear regionalized expression pattern during early forebrain 

development. This is particularly apparent for markers of the pallium and the subpallium (i.e. 

lateral and medial ganglionic eminences, LGE, MGE; septum), some regions which contribute 

to the formation of specific SVZ microdomains at postnatal stages (reviewed in Fiorelli et al., 

2015). 

Many markers of the ganglionic eminences, belong to the ANTP class of the homeobox genes, 

which is the largest class of homeobox genes (Zhong et al., 2008; Zhong and Holland, 2011). 

This includes members of the Dlx family (Distal-less), namely Dlx1, Dlx2 (Bulfone et al., 

1993), Dlx5 and Dlx6 (Simeone et al., 1994), which start to be highly expressed as early as 

E10. They are enriched in the ganglionic eminences and consistently absent from the pallial 
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domain. Other ventrally enriched genes of the homeobox familly are Nkx2.1 (also called 

TTF1), Nkx6.2, Gsx1 and Gsx2 (also called Gsh1 and Gsh2) of the Nk2.1, Nk6 and Gsx 

homeobox gene families (Zhong et al., 2008; Zhong and Holland, 2011). While Nkx2.1 was 

described to be partly overlapping to the Dlx genes (Price et al., 1992), Nkx6.2 was initially 

described as a ventral marker of the spinal cord and being largely absent of the developing 

forebrain (Qiu et al., 1998). However, later experiments revealed its restricted expression in a 

dorsal stripe of the MGE at E12.5 (Fogarty et al., 2007). Gsx1 and Gsx2 were both found to 

be expressed in the ganglionic eminences. While Gsx1 is restricted to the MGE (Valerius et 

al., 1995), Gsx2 is described to be expressed by both the LGE and MGE (Hsieh-Li et al., 1995; 

Figure 10, green). Lineage tracing approaches have shown that subpallial progenitors give 

rise to GABAergic interneurons. Different Cre reporter mouse lines were used to demonstrate 

that defined progenitor populations generate distinct lineages of interneurons, which invade 

the cortex tangentially (Fogarty et al., 2007). 

Other homeobox genes show restricted expression to the dorsal forebrain regions, i.e. the 

pallium. The most studied ones are  Emx1, Emx2 and Pax6 (Emx family of the ANTP class; 

Pax4/6 family of the PRD class; Zhong et al., 2008; Zhong and Holland, 2011). Emx1 and 

Emx2 start to be expressed in the mouse pallium at E9.5 and E8.5, respectively. While both 

genes are largely overlapping, Emx2 expression is more widespread than Emx1 (Simeone et 

al., 1992a). Similarly, the homeobox gene Pax6 is embryonal expressed in the pallium but 

absent from the ganglionic eminences (Stoykova and Gruss, 1994). Other transcription factors 

have been shown to act downstream of these homeobox genes, and as a result, keep a strict 

regional expression. Other highly specific pallial markers are the T-box transcription factors 

Tbr1 and Eomes (also referred as Tbr2; Bulfone et al., 1995; Bulfone et al., 1999), as well as 

the bHLH transcription factor Ngn2 (also referred as Neurog2; reviewed in Lee, 1997; Figure 

10, red). Lineage tracing of the Tbr2 (Pimeisl et al., 2013) and Neurog2 (Berger et al., 2004; 

Donega et al., 2018) lineages revealed their participation in producing cortical projection 

neurons (Mihalas et al., 2016). Expression of these TFs antagonize a subpallial expression of 

the bHLH transcription factor Mash1 (Casarosa et al., 1999).  

A third region of the developing forebrain known to participate to the formation of the postnatal 

SVZ, is the most medial part of the developing forebrain, the septum (for review Fiorelli et al., 

2015). Examples of medially enriched markers in the embryonal forebrain belong to the Zic 
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family of transcription factors (Aruga et al., 1994; Figure 10, blue). Zinc-finger TFs control 

various processes of animal development (for review Grinberg and Millen, 2005). In mammals, 

there are five Zic- related genes that share highly conserved zinc finger domains. In terms of 

neural development, Zic2 is particularly important for forebrain development. Thus, mice 

homozygous for the Zic2 hypomorphic allele (Zic2 kd/kd) show holoprosencephaly (HPE), in 

which the medial part of the forebrain is defective (Nagai et al., 2000). 

 

 

 

Figure 10. Illustration of regionalized TFs expression in the embryonic forebrain. 
Scheme of an E14 coronal section illustrates restricted expression in the pallium (red), the 
LGE and MGE (green) and the septum (blue). Restricted dorsal markers are Emx1, Emx2, 
Pax6, Ngn2, Tbr1 and Tbr2. The ganglionic eminences harbor some markers, which are 
expressed by both subdivisions (Dlx1, Dlx2, Dlx5, Dlx6 and Gsx2) and others that are 
restricted to the MGE (Nkx2.1 and Gsx2) or parts of it (Nkx6.2). Finally, markers showing 
restriction to the septum belong to the Zic family. 
Scale bar = 1 mm. Abbreviations: LV, lateral ventricle; LGE, lateral ganglionic eminence; 
MGE, medial ganglionic eminence; TF, transcription factor. 
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Regionalization is Observed During the Period of Gliogenesis 

Astrocytes are known to be produced at the end of the period of neurogenesis. It is classically 

accepted that RG cells switch fate and start to produce astrocytes that migrate to the cortex and 

associate with previously generated neurons in so called cortical columns (Magavi et al., 2012; 

for review Tabata, 2015). Recent studies indicate that their production is highly regionalized 

and newborn astrocyte precursors migrate radially away from their region of origin (Tsai et al., 

2012). It has been shown that the major source of the cortical astrocyte population are 

astrocytes that proliferate and differentiate in the parenchyma (Ge et al., 2012; Figure 11A). 

TFs associated with astrogenesis are rare. In the developing spinal cord the TF NFIA has been 

proposed to inhibit neurogenesis and to trigger gliogenesis. Within the glia population, NFIA 

expression leads to migration and differentiation of astrocyte precursors. This function was 

found to be antagonized by the expression of Olig2 in oligodendrocyte precursors (Deneen et 

al., 2006). Despite the description of diverse subtypes of astrocytes (for review Tabata, 2015) 

there are, to my best knowledge, no TFs described for its association with the specification to 

these subtypes. 

The other macroglia lineage, oligodendrocytes, are described to be produced in 3 different 

temporal and spatial waves. The first wave originates from the MGE and the medial part of the 

ventral forebrain, while the second is more laterally generated by the LGE. The final third 

wave appears postnatally in the dorsal SVZ microdomain. Ablation of a specific line does not 

result in a phenotype, as the missing “temporal lineage” is replaced by the remaining waves. 

However under physiological conditions, progenies of the first wave disappear postnatally 

(Kessaris et al., 2006; Figure 11B). While Olig1 and Olig2 are identified as general 

oligodendrocyte TFs (Zhou and Anderson, 2002), TFs specifying or differentiating 

oligodendrocytes from these three waves are still missing. 

All together, these observations indicate that a regionalization of neurogenesis appears early 

in the developing forebrain. This regionalization relies on the regional expression of defined 

TFs and translate into the generation of different neuron subtypes. Similar principles apply to 

gliogenesis, although the exact transcriptional mechanisms involved in their regional 

production and its functional importance remains to be fully explored. 
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Figure 11. Illustration of astrogenesis and oligodendrogenesis. 
(A): Astrocyte precursors that are generated in the SVZ, migrate radially away from their 
region of origin and amplify subsequently. Cortical and white matter astrocytes (green) 
originate in the dorsal SVZ (dSVZ; modified from Bayraktar et al., 2015). 
(B): Oligodendrogenesis occurs in 3 waves. The first wave (dark green) and the second wave 
(light green) originate from the MGE and LGE, respectively, and invade the cortex 
tangentially. The postnatal third wave (red) of oligodendrogenesis occurs in the dSVZ and 
invades the CC and cortex radially (template used from Bayraktar et al., 2015). 
Abbreviations: CC, corpus callosum; SVZ, subventricular zone; dSVZ, dorsal subventricular 
zone ; LGE, lateral ganglionic eminence ; MGE, medial ganglionic eminence.  
 

Regionalization of the SVZ is Retained After Birth 

Both neurogenesis and gliogenesis persist in the postnatal SVZ (Levison and Goldman, 1993). 

Interestingly, the transcriptional regionalization of the developing forebrain is retained 

postnatally. This is reflected by the restricted expression of the same TFs within defined 

microdomains of the postnatal SVZ (for review Fiorelli et al., 2015). As described above, these 

distinct embryonic regions (pallial vs. ganglionic eminences vs. septal domains) are all 

contributing to the generation of the postnatal SVZ (dorsal vs. lateral vs. medial SVZ 

microdomains; Figure 12). The transcriptional analogies of the embryonic and postnatal/adult 
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VZ/SVZ, also translate into similarities in the regional generation of defined cell lineages (for 

review Fiorelli et al., 2015). During my Master, we made use of the Mash1BAC-EGFP mouse line, 

to label postnatal forebrain progenitors. Interestingly, we could show that both Dlx2 and Tbr2 

are expressed by Mash1+ progenitor populations in the postnatal and adult SVZ. These two 

distinct populations of progenitors were non-overlapping, but also enriched in distinct SVZ 

microdomains. While Dlx2 positive progenitors were mainly restricted to the lateral SVZ, Tbr2 

expressing glutamatergic progenitors were exclusively located in the dorsal SVZ (Azim et al., 

2012a). Other studies demonstrated that these two populations give rise to different neuronal 

lineages. Studies using genetic fate mapping (Neurog2+/GFP; Neurog2iCreERT2) approaches 

showed sequential expression of Pax6, Ngn2, Tbr2 and Tbr1 by the cells in the dorsal SVZ at 

embryonal and perinatal ages (Figures 10, 12A and 12B). This lineage was demonstrated to 

generate glutamatergic OB neurons until adulthood (Brill et al., 2009; Winpenny et al., 2011). 

In line with the regional expression of Dlx2 (Azim et al., 2012a; Kohwi et al., 2007), Gsx1 and 

Gsx2 appear to be enriched in the adult lateral SVZ (López-Juárez et al., 2013). Interestingly, 

Gsx1 was expressed more ventrally, while Gsx2 was rather dorsally in the lateral SVZ (López-

Juárez et al., 2013). This highlights the developmental origin of postnatal lateral SVZ from the 

embryonic ganglionic eminences, where Gsx1 is restricted to the MGE (Valerius et al., 1995), 

while Gsx2 is more broadly expressed in the ganglionic eminences (Hsieh-Li et al., 1995). 

Similarly, Nkx6.2 is expressed by the ventral most region of the adult lateral SVZ, as well as 

by its medial aspect (Merkle et al., 2014). Interestingly Nkx2.1 is the only TF to date to not 

show such a strong correlation in its expression pattern, before and after birth (Figures 10 and 

12C). While it overlaps with Dlx genes in both the LGE and MGE (Price et al., 1992), it is 

restricted to the ventral tip of the SVZ at postnatal stages (Merkle et al., 2014). Lateral NSCs 

have been identified, by lineage tracing, to generate interneurons of the OB, in line with their 

contribution to cortical interneuron generation during development (Fogarty et al., 2007). 

Inducible fate mapping experiments revealed that Dlx1/Dlx2 expressing progenitors give rise 

to different OB interneuron subtypes at different embryonal and postnatal ages. These 

interneuron subtypes diverge in their destination in the OB and in the expression of specific 

subtype markers (Batista-Brito et al., 2008). 

Finally, TFs of the Zic family, which are expressed in the septum during embryonic 

development, appear to keep their regional expression postnatally. Thus, Zic TFs can be 
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observed in the septum of the adult forebrain (Aruga et al., 1994), including the medial 

microdomain of the adult SVZ (Figures 10 and 12C). Zic expressing progenitors have been 

shown to generate mainly calretinin (CalR) interneurons of the GL layer in the OB (Merkle et 

al., 2014; Tiveron et al., 2017). 

Taken together, the embryonic VZ as well as the postnatal SVZ, are highly regionalized 

germinal regions. This regionalization, which is reflected by the differential expression of 

defined transcription factors, is observed at both pre- and postnatal ages. This suggest that 

these embryonic and postnatal NSC niches are developmentally related. This was indeed 

directly demonstrated by using fate mapping approaches (Young et al., 2007). 

 

 

 

Figure 12. Embryonic regionalization is retained postnatally. 
(A+B): Illustrations of embryonal established transcriptional domains (pallium, ganglionic 
eminences and septum; A), which are retained into postnatal ages. This domains are 
transcriptionally correlated to their postnatal analogs in the SVZ (lateral, dorsal and medial 
SVZ; B).  
(C): 3D representation of the ventricular system highlights the postnatal expression pattern of 
some regionalized markers of the SVZ (modified from Fiorelli et al., 2015). 
Scale bar: B = 1mm. Abbreviations: LGE, lateral ganglionic eminence; MGE, medial 
ganglionic eminence; LV, lateral ventricle. 
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1.2.3. Function of Regionally Enriched TFs in Lineage Specification   

 

Null Mutants Reveal the Importance of Single Regionalized Genes 

in Forebrain Development 

Deletion of widely expressed TFs have a dramatic impact onto brain development, 

demonstrating the importance of single genes in brain formation. The brain factor 1 (BF1) is a 

global telencephalon marker (Shimamura et al., 1995). Null mutations of BF1 demonstrated 

the importance of single genes in maturation. While heterozygous animals appear normal, 

homozygous mutants suffer from severe developmental defects and die within 20 minutes after 

birth (Figure 13A). The cerebral hemispheres of these animals were found extremely reduced 

in size (by 95%), with subpallial regions appearing more affected than pallial ones. These 

defect results from a marked reduction of RG cells proliferation, as demonstrated by BrdU 

administration (Xuan et al., 1995). Even more severe are mutations of another widely 

expressed TF, i.e. Otx2 (Simeone et al., 1992b). Otx2 KO mice die embryonically and lack 

anterior regions of the neural tube. Beside severe abnormalities in gastrulation they fail to 

develop forebrain and midbrain regions (Acampora et al., 1995; Ang et al., 1996; Figure 13B). 

 

 

Figure 13. Severe developmental defects after deletion of widespread telencephalon 
factors. 
(A): Brains from P0 BF1 null mutants have markedly reduced cerebral hemispheres compared 
to WT controls (modified from Xuan et al., 1995). 
(B): KO of Otx2 leads to severe developmental malformations and a lack of the anterior 
regions of the neural tube (modified from Acampora et al., 1995). 
Scale bar: A = 1 mm; B = 100 μm. Abbreviations: KO, knock out; WT, wild type. 
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Ablation of ventral and dorsal markers usually have less severe consequences, due to their 

more restricted expression pattern, although they often result in death at birth. For example 

ablation of Dlx1 or Dlx2, which show uniform expression in the ganglionic eminences 

(Bulfone et al., 1993), leads to death before the age of one month or immediately at birth, 

respectively. However, neither Dlx1 nor Dlx2 mutants show any obvious morphological 

changes (Figure 14A). Closer investigation of Dlx2 null mutants exhibited no changes of 

regionalized expression of ventral (Dlx1, Dlx5, Nkx2.1; Price et al., 1992; Bulfone et al., 1993; 

Simeone et al., 1994) or dorsal (Emx1; Simeone et al., 1992a) markers. Only the absence of 

TH+ periglomerular interneurons in the OB was observed. In contrast, simultaneous ablations 

of both markers leaded to severe abnormalities, such as impaired expression of other ventral 

markers (Dlx5, Dlx6; Simeone et al., 1994), accumulation of neurons in the LGE, while the 

striatum is poorly developed (Qiu et al., 1995; Anderson et al., 1997b; Figure 14A). Further, 

the generation of ventral GABAergic interneurons (CalB+) destined for the cortex (Figure 

14B) and OB was severely disrupted (Anderson et al., 1997a; Bulfone et al., 1998). This results 

suggest that Dlx1 and Dlx2 seem to be able to compensate the lack of each other to some 

degree but not completely. 

 

Figure 14. Severe developmental defects by Dlx1 Dlx2 double KO. 
(A): Representative micrographs of P0 animals illustrate the compensatory roles of Dlx1 and 
Dlx2. Individuals with ablations of single Dlx genes show no obvious morphological changes. 
However, double mutants exhibit sever subpallial abnormalities. Cells accumulate in a LGE 
like area (LGE*) and the striatum is only poorly developed (St*; modified from Anderson et 
al., 1997b). 
(B): Representative micrographs of E14.5 show that double KO animals lack tangentially 
migrating CalB+ cells from the subpallium into the pallium (white arrow; modified from 
Anderson et al., 1997a). 
Scale bar: A = 500 μm; B = 100 μm. Abbreviations: LGE, lateral ganglionic eminence; St, 
striatum; WT, wild type. 
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In contrast, the pallial markers Emx1 and Emx2 (Simeone et al., 1992a) were shown to play 

more divergent roles. Viability seems to depend greatly of the background. While for Emx1 

null mutants different studies found normal viability to 50% neonatal death, lack of Emx2 leads 

to death within hours after birth. Morphologically, Emx1 ablation exhibits a lack of the CC 

connection between the two hemispheres (Figure 15A). Some degree of this defect appears 

also in Emx2 KO animals, besides the missing of a DG and a poorly developed hippocampus. 

Further, they reported a significant smaller cortex (poorly developed lateral and lacking of 

medial cortex; Figure 15B) and OB with a disorganized mitral cell layer (MCL; Qiu et al., 

1996; Yoshida et al., 1997). Also Tbr1, another dorsal marker (Bulfone et al., 1995), was found 

to be important in the development of the MCL. Animals lacking Tbr1 fail to generate most 

projection neurons and do not develop a MCL at all (Bulfone et al., 1998). 

 

Figure 15. Severe dorsal defects following Emx1 and Emx2 ablation. 
(A): Representative micrographs show the lack the CC connection (arrow) between the two 
hemispheres in young adult Emx1 null mutants (modified from Qiu et al., 1996) 
(B): Ablation of Emx2 leads to severe morphological changes and neonatal death. 
Representative micrographs of E19.5 animals show a reduced hippocampus and a lack of the 
DG (white arrow). Further, the lateral cortex is only poorly developed and the medial part is 
completely missing (black arrows; modified from Yoshida et al., 1997). 
Abbreviations: CC, corpus callosum; cx, cortex; st, striatum.  
 

Taken together, complete KO of single genes results often in reduced viabilities and in different 

degrees of developmental defects. These defects correlate to the regional appearance of the 

marker and the lineage-specific expression. However, cKO approaches might be necessary for 

investigations of their function postnatally. 
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Advanced Transgenic Approaches Allow more Specific Gene 

Manipulations 

As described above, many null mutations are lethal and results might be influenced by potential 

bystander effects. Therefore, it is hard to make conclusions of the proper function of a certain 

factor in one particular population, especially if focusing on postnatal processes. Advanced 

transgenic mouse lines, making use of the Cre-Lox system, allow spatial and temporal 

restricted loss of function experiments for more specific investigations. 

For example, early cKO of Tbr2 from the CNS, using Nestin-Cre and Sox1-Cre animals, leads 

to substantial defects in the OB morphogenesis (Kahoud et al., 2014), microcephaly and severe 

behavioral defects (Arnold et al., 2008). These cKO animals allow to confirm postnatally the 

results gained by null mutations. Mutant animals have a reduced number of SVZ progenitors 

and a disturbed upper cortical layer. While neurogenesis in the newborn DG is not affected, it 

is extremely reduced in adult animals. Otherwise, neurogenesis of the adult SVZ is reported to 

be not affected (Arnold et al., 2008). However, the OB appears generally disorganized and lack 

the MCL, including the virtual absence of Tbx21, a mitral cell marker (Faedo et al., 2002), 

from the OB. In addition, lack of Tbr2 leads to an abnormal enlargement of the SVZ-RMS 

system. Regarding Tbr1, a general marker of the glutamatergic lineage (Brill et al., 2009; 

Winpenny et al., 2011), it has been shown that migrating neuroblasts of the glutamatergic 

lineage (DCX+; Tbr1+) accumulate in the perinatal RMS. However, while Tbr2 seems to be 

nonessential for embryonic glutmatergic neuroblast generation (regardless their 

accumulation), adult ablation of Tbr2 leaded to a substantial decrease of Tbr1 positive cells 

(Kahoud et al., 2014). 

During embryonic development, Ngn2 is a marker of the pallium, while Mash1 is enriched in 

subpallial regions. It has been shown that Ngn2 is necessary for the existence of these two 

transcriptional regions, as the ventral marker Mash1 ectopically invades dorsal regions after 

Ngn2 KO (Fode et al., 2000). In elegant KI approaches KO mouse lines for Ngn2 and Mash1 

were generated by replacing Ngn2 with Mash1 (Ngn2KIMash1; Fode et al., 2000) or Mash1 with 

Ngn2 (Mash1KINgn2; Parras et al., 2002). It has been demonstrated that the Ngn2KIMash1 mutation 

leads to a ventralization of the pallium, by expression of ventral markers, similarly to Ngn2 

mutants (Fode et al., 2000). On the other hand, the forced ventral expression of Ngn2 
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(Mash1KINgn2) did not result in any obvious dorsalization of the subpallium (Parras et al., 2002). 

This suggests that Mash1 and Ngn2 have different functions in neuronal specification. While 

Ngn2 is necessary to develop a dorsal fate, Mash1 seems to be less important for the acquisition 

of a ventral fate.  

 

1.3. Advanced Approaches to Explore the Transcriptional 

Correlates of Postnatal Heterogeneity 

 

1.3.1. Electroporation Allows Efficient Targeting of Different SVZ 

Microdomains 

Beside the use transgenic modified animals, postnatal SVZ stem cells can also be manipulated 

using viruses and electroporation (EPO) approaches (for review Lacar et al., 2010). While the 

generation of transgenic animals is time-consuming, the two later approaches allow studying 

gene functions in a rather fast and straight forward way. The big advantage of EPO compared 

to viral approaches is the possibility to target specific SVZ microdomains. Indeed, injected 

plasmids move unidirectionaly towards the anode and therefore can be efficiently targeted to 

a chosen region of the brain (Saito and Nakatsuji, 2001). EPOs have been successfully 

performed in bacteria (Calvin and Hanawalt, 1988), cultured animal and plant cells (Neumann 

et al., 1982; Fromm et al., 1985), as well as in mouse embryos following their in vitro isolation 

(Itasaki et al., 1999). Subsequent studies have demonstrated its efficiency in vivo, into mouse 

muscle cells (Aihara and Miyazaki, 1998) and in the chick (Muramatsu et al., 1997). Finally, 

this method has been applied to in vivo approaches of the embryonic mouse brain (Saito and 

Nakatsuji, 2001) and spinal cord (Saba et al., 2003). 

Postnatally, EPO of RG cells, i.e. the NSCs of the early postnatal forebrain, can be done during 

a restricted time window, i.e. from P0 to P4. Transfected RGs keep proliferating and generate 

progenies harboring and expressing the electroporated gene (e.g. GFP; Figure 16). Their 

neuronal progenies can be detected along the whole RMS 4 days post EPO (dpe) migrating 

tangentially towards the OB. In the OB they start to migrate radially into the GL and GCL, 

where they develop characteristic neuronal morphologies (Boutin et al., 2008). Manipulation 
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of single genes by EPO has been shown to be sufficient to induce changes in the cell cycle and 

differentiation behaviors of postnatal NSCs (Boutin et al., 2008; Boutin et al., 2010; Azim et 

al., 2014a; Fischer et al., 2014). However, the real beauty of the EPO approach is the possibility 

to efficiently target specific, distinct regions of the postnatal SVZ. Therefore it allows to study 

SVZ heterogeneity between NSCs residing in defined microdomains. For instance, our team 

demonstrated that neuronal lineages generated in distinct microdomains differ remarkably in 

their fate and final destination in the OB. While lateral NSCs generate predominantly cells for 

the GCL, medial EPO targets NSCs producing progenies mainly destined for the GL. The 

dorsal originated population scatters from the outer part of the GCL, through the MCL and to 

the GL of the OB (Fernández et al., 2011). The majority of the interneurons residing in the GL 

can be subdivided into three non-overlapping populations by their expression of tyrosine 

hydroxylase (TH) or the calcium binding proteins CalR or CalB (Panzanelli et al., 2007). We 

showed that in the GL TH expressing interneurons preferentially originate from the dorsal 

microdomain, followed by the lateral microdomain. CR positive interneurons are generated by 

the medial and to a lesser extend the dorsal microdomain. The largest proportion of the CB 

lineage comes from the lateral microdomain. Similarly, a comparable fraction of the CR 

expressing interneurons in the GCL have a dorsal and medial origin, while just few are 

generated by lateral NSCs (Fernández et al., 2011). 

One major drawback of plasmid electroporation is the transient expression of the transgene. 

Indeed, because it does not integrate into the genome, it gets progressively diluted by 

successive cell cycles (for review Lacar et al., 2010; Mamber et al., 2010). Advances in plasmid 

engineering allow to overcome this limitation. For instance, Cre plasmids (constitutive or 

inducible) can be used in Cre reporter mice, such as the Rosa-EYFP mouse line (Srinivas et 

al., 2001; see Chapter 2). In the same way conditional gain and loss of function experiments 

of a gene of interest can be performed using an appropriate mouse line if already available. 

Another possibility of permanent labeling or genetic manipulation is the use of transposon 

systems (Akhtar et al., 2015). There is a number of transposon systems known including 

PiggyBac and Sleeping Beauty. Mammalian cell culture comparisons have demonstrated that 

the PiggyBac system is far the most efficient among them (Wu et al., 2006). 
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Figure 16. Illustration of the postnatal EPO approach. 
(A): Schematic illustration of the injection site for the plasmids in postnatal EPO. The injection 
site (red point) in P1-P2 mouse pubs lies on a virtual connectional line between lambda and 
the caudal half of the eye. The optimal location for injection depends on the age/size of the pup 
and is a little closer to lambda than to the eye. Additionally, schemes of a coronal and a sagittal 
section illustrate the injection site. The optimal injection depth varies as a function of the 
age/size of the pup. Highest success rate can be achieved by moving the Hamilton 34G syringe 
2 mm down and 0.5 mm up for small animals and 2.25 mm down and 0.75 mm up for larger 
animals, respectively. 
(B): For targeted electroporation the anode of the tweezer electrodes needs to be placed next 
to the region of interest (here the dorsal SVZ microdomain). Targeted transfection of NSCs is 
driven by 5 pulses of 95 V for 50 ms in 950 ms intervals.  
(C): Representative micrographs demonstrate efficient transfection of NSCs 8 hours after 
dorsal EPO. Note that the NSCs are exclusively located in the dorsal SVZ microdomain and 
have a RG like morphology. 
(D): Short-term EPO can be efficiently used to label NSCs (see Chapter 2). Long-term 
approaches can be used to investigate the fates of the progenies from the transfected NSCs. 
(E): A major drawback of this approach is the transient labeling, which is mainly due to 
plasmid dilution. NSCs lose their labeling within 4 dpe and also in neuroblasts the intensity of 
the labeling decreases over time. 
Scale bars: A, B = 2 mm; C (overview) = 200 μm; C (crop) = 100 μm. Abbreviations: EPO, 
electroporation; dpe, days post electroporation; hpe, hours post eletroporation; LV, lateral 
ventricle; NSC, neural stem cell; TAP, transient amplifying progenitor. 
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1.3.2. Large Scale Transcriptional Profiling Reveals the Full Extent 

of Postnatal SVZ Heterogeneity 

During my Master, we initiated a large scale study to explore further the transcriptional 

specificities of NSCs residing in defined domains of the postnatal SVZ. In order to probe 

heterogeneity of the postnatal SVZ, we microdissected its dorsal and lateral walls at different 

postnatal ages and isolated NSCs and their immediate progeny based on their expression of 

Hes5-EGFP/Prominin1 and Ascl1-EGFP, respectively. Whole genome comparative 

transcriptome analysis revealed transcriptional regulators as major hallmarks that sustain 

postnatal SVZ regionalization. We found an unexpected high amount of genes being 

differentially expressed between the dorsal and lateral SVZ (1948), NSCs (1224) and TAPs 

(1215). Interestingly, many of these genes were not just differentially expressed between those 

two regions, but also specific for SVZ (1461), NSCs (533) and TAPs (577) (Azim et al., 2015). 

This suggests a highly complex and specific transcriptional regulation of regionalized NSCs 

niches, the NSCs and the TAPs, their immediate progenies. These results leaded directly to my 

PhD project. 

 

1.4. Objectives of the PhD Thesis 

Objective 1: The SVZ is a highly complex and irregular region of ongoing postnatal germinal 

activity. The heterogeneous character of the SVZ is evident and recent studies generated 

enormous datasets of transcripts, which are differentially expressed between divergent 

microdomains. However, an appropriate tool for fast analysis of the protein level along the full 

rostro-caudal and dorso-ventral extend of the SVZ is still missing. Therefore, I developed 

“FlashMap”, a semi-automatic software that allows rapid analysis of protein levels in the full 

SVZ, based on optical density measurements after immunohistochemistry. “FlashMap” 

generates easy readable heatmaps in two dimensions, which can be accurately superimposed 

on three-dimensional reconstructions of the ventricular system for rapid spatial visualization 

and analysis. This new approach will fasten research onto SVZ regionalization, by guiding the 

identification of markers, such as TFs expressed in specific SVZ microdomains (Chapter 1).  
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Objective 2: I used transcriptomic as well as fate mapping approaches to investigate the 

relation between regional expression of transcription factors by NSCs and their acquisition of 

distinct neural lineage fates. Our results support an early priming of NSCs to produce defined 

cell types depending of their spatial location in the SVZ and identify Hopx as a marker of a 

subpopulation biased to generate astrocytes. Interestingly, manipulation of Hopx expression 

showed minor effects on astrogenesis, but resulted in marked changes in the number of NSCs 

and of their progenies. Taken together, our results highlight transcriptional and spatial 

heterogeneity of postnatal NSCs, as well as their early priming toward specific lineages and 

suggest a role for Hopx in the evolution of SVZ germinal activity (Chapter 2). 
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In preparation for submission 
 
In this chapter, I designed the study, performed all experiments and analyses and wrote the 
manuscript. Further, I supervised the coding from “FlashMap”, which was performed by Julie 
Buquet. 
 

2.1. Abstract 
The subventricular zone (SVZ) is a region of ongoing postnatal germinal activity that shows 

complex spatial heterogeneity. Thus, distinct SVZ microdomains contain neural stem cells 

(NSCs) that express distinct transcription factors and accordingly generate different glial and 

neuronal progenies. These unique characteristics call for the development of new methods to 

integrate a spatial dimension to analyses performed in the SVZ.   

We developed “FlashMap”, a semi-automatic software that allows the segmentation and rapid 

measurement of optical densities (ODs) throughout the SVZ rostro-caudal extent. “FlashMap” 

generates easily readable two-dimensional (2D) heatmaps that can be superimposed onto three-

dimensional (3D) reconstructions of the ventricular system for optimal spatial exploration. 

Accurate heatmaps can be obtained even following serial section subsampling thereby 

reducing the amount of tissue and time required for analysis. We illustrate the potential of this 

new tool by exploring the correlation of SVZ thickness and cellular density with the germinal 

activity observed along its full rostro-caudal extend. We finally used ‘FlashMap” to analyze 

the spatial expression of the transcription factors Dlx2, Tbr2 and Hopx, as well as of the 
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neuroblast marker DCX, to demonstrate the suitability of this approach to explore the regional 

production of cells of distinct lineages by defined SVZ microdomains.   

This newly developed approach, which is easily adaptable to the study of other germinal 

regions, will considerably fasten the spatial analysis of germinal activity and of the generation 

of neural lineage diversity. 

Key words: subventricular zone, germinal activity; spatial heterogeneity; segmentation; 

optical density measurements 

 

2.2. Introduction 
The SVZ is a germinal region surrounding the opened lateral ventricles (LV) along its full 

rostro-caudal extend. It is one of only two niches of the mammalian forebrain, where germinal 

activity persists throughout postnatal life (Smart, 1961; Altman and Das, 1965; McDermott 

and Lantos, 1990). At its apical border it lines the lateral ventricle and is restricted at its basal 

borders by defined brain regions: i.e. the corpus callosum (dorsal border), the striatum (lateral 

border), the septum and hippocampus (medial border). NSCs harbored by the postnatal SVZ 

generate neuroblasts, that migrate along the rostral migratory stream (RMS) into the olfactory 

bulb (OB), where they differentiate into various types of neurons and integrate into the pre-

existing network (Lois and Alvarez-Buylla, 1993; Lois and Alvarez-Buylla, 1994; Carleton et 

al., 2003). Further, NSCs of the postnatal mammalian SVZ give rise to astrocytes and 

oligodendrocytes (Levison and Goldman, 1993). Accumulating evidences highlight the 

heterogeneous nature of the SVZ. Thus, the SVZ appears to be populated by regionalized 

populations of NSCs  that are biased to generate diverse neuronal subtypes (Merkle et al., 

2007). For instance, most GABAergic (inhibitory) interneurons originate from the lateral 

microdomain of the SVZ (lSVZ), while glutamatergic (excitatory) projection neurons are 

exclusively generated by its dorsal counterpart (Brill et al., 2008; Brill et al., 2009; Azim et al., 

2012a). Oligodendrocytes are described to be produced in three separated waves. The third and 

last wave is produced postnatally and originates from the dorsal SVZ (dSVZ; Kessaris et al., 

2006). Similarly to these findings in rodents, dorsal restriction of glutamatergic progenitors 

and lateral enrichment of GABAergic progenitors was found in newborn marmosets (Azim et 
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al., 2013). This suggests that a certain degree of heterogeneity might be evolutionary 

conserved. 

Recent research, driven by the development of new technologies, led to an accumulation of a 

large amount of transcriptional datasets of various SVZ cell types. For instance, we recently 

described an unexpected level of transcriptional heterogeneity between the dSVZ and lSVZ, 

but also between NSCs and transient-amplifying progenitors of those two microdomains (Azim 

et al., 2015). While the list of regionally expressed genes continuously increases, an 

appropriate tool for rapid analysis of their expression in the SVZ is still missing. As accurate 

3-dimensional quantifications are very time-consuming in the SVZ, we aimed to develop a tool 

that allows rapid expression analysis along the full rostro-caudal and dorso-ventral extend of 

this germinal region. “FlashMap” is a software for semi-automatic protein expression 

measurements in the SVZ in the fastest possible way, based on OD measurements. “FlashMap” 

allows subsampling of serial sections, in order to further reduce the time for analysis. Data are 

exported as heatmaps that can be superimposed onto volumetric reconstructions of the lateral 

ventricle for optimal and intuitive visualization. “FlashMap” has the potential to be applied to 

a wide range of semi-automated analyses. The software is therefore of substantial interest for 

the field. 

 

2.3. Experimental Procedures 
 

2.3.1. Animals and Ethics 
All animal experimentation procedures were performed according to European requirements 

2010/63/UE and have been approved by the Animal Care and Use Committee CELYNE 

(APAFIS #187 & 188). OF1 mice (Charles River, France; n=3 for all markers) were sacrificed 

at postnatal day 10 (P10) by an intraperitoneal overdose of pentobarbital followed by 

transcardial perfusion with Ringer Lactate solution and 4% paraformaldehyde (PFA) dissolved 

in 0.1 M phosphate buffer (PB; pH 7.4). Tissues were postfixed for 48 hrs in 4% PFA at 4° C. 
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2.3.2. Tissue Processing and Immunohistochemistry 
Brains (Figure 1A) were cut into 50 μm thick sections using a vibratome (VT1000 S; Leica; 

Wetzlar; Germany) and LV containing sections were serially collected in series of 6. When 

necessary, antigen retrieval was performed by incubating sections for 20 minutes in citrate 

buffer (pH 6) at 80° C, cooling for 20 minutes at room temperature, followed by extensive 

washings in 0.1 M PB. Blocking was performed for 2 hrs in TNB buffer (0.05% Casein; 0.25% 

Bovine Serum Albumin; 0.25% TopBlock in 0.1 M PB) with 0.4% triton-X (TNB-Tx). 

Incubation with primary antibodies in TNB-Tx was done overnight at 4° C. The following 

primary antibodies were used: Rabbit anti-Ki67 (1:500; MM France Microm Microtech; RM-

9106-S1); Rabbit anti-Tbr2 (1:1000; Abcam; ab23345); Guinea pig anti-Dlx2 (1:5000; kind 

gift of Kazuaki Yoshikawa; Kuwajima et al., 2006); Rabbit anti-Hopx (1:400; Santa Cruz; sc-

30216); Goat anti-DCX (1:500; Santa Cruz; sc8066). Sections were extensively washed in 0.1 

M PB with 0.4% triton-X (PB-Tx) and incubated for 2 hrs at room temperature with suitable 

secondary antibodies (Alexafluor 488, 555 or 647; 1:500; Life Technologies). After washing 

(0.1 M PB) sections were counterstained with Dapi (1:500; Life Technologies; D1306) for 30 

minutes for optimal detection of SVZ borders by “FlashMap”. Ki67 staining was performed 

on a complete series of sections, while a subsampling of 1/3 was used for Tbr2, Dlx2, Hopx 

and DCX stainings, as well as for generating the 3D brain and ventricular system models. 

 

2.3.3. Image Acquisition and 3D Reconstruction 
Acquisition of images was performed with a Leica DM5500 epifluorescent microscope (Leica 

Microsystems GmbH, Wetzlar, Germany). Whole brain mosaics were acquired at 4x (HC PL 

FLUOTAR; N.A. 0.13) for representative overview pictures and 3D reconstruction, at 10x 

(HCX PL FLUOTAR; N.A. 0.30) for OD analysis and assembled using the LAS X software 

(Leica Microsystems GmbH, Wetzlar, Germany). For accurate OD analysis, settings were 

carefully chosen to avoid signal saturation and were maintained throughout the acquisition. 

Image mosaics were exported in TIFF format (.tif) for further analysis. 

A Dapi series of 1/3 sections was used for generating the 3D brain and ventricular system 

models. Acquired mosaics were orientated using Photoshop (CS4). Contours of the brain and 

the ventricular system were drawn on individual sections (series of 1/3) using Neurolucida 360 
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(MBF Bioscience) to generate a 3D mesh. Meshes were saved in “obj” format and exported to 

the open-source 3D computer graphics software Blender (www.blender.org) for further 

editing. For optimal superimposition of 2D heatmaps onto the 3D ventricular system model, 

the three SVZ walls (medial, dorsal, lateral) were defined for UV unwrapping. Individual 

heatmaps were then superimposed to the corresponding 2D UV projection to generate accurate 

3D representations (see Figure 2 for the workflow of the experimental design). 

 

2.3.4. Software Generation and Analysis 
“FlashMap” was coded using the commercial coding software MATLAB (R2017a; The 

MathWorks) and a stand-alone version was generated to facilitate distribution and use by other 

researchers. Description of the workflow for a complete “FlashMap” analysis is described in 

the current manuscript (see Figure 3 for a step by step walkthrough of the software). 

 

2.4. Results 
 

2.4.1. The Subventricular Zone is a Poorly Defined Region of the 

Postnatal Forebrain 
The SVZ of the mouse brain is a highly complex and irregular structure, well known for its 

persisting  germinal activity after birth (Smart, 1961; Lois and Alvarez-Buylla, 1993; Doetsch 

et al., 1997). It surrounds the lateral ventricles, which extend at P10 approximately 2.5 mm 

along the rostro-caudal axis. The SVZ is defined by its dense cellular organization compared 

to the surrounding tissue, i.e. striatum; corpus callosum, that respectively line its lateral, dorsal 

and medial aspects (Figures 1A to 1B).  

We first aimed at defining the SVZ from its rostral most aspect corresponding to the 

appearance of the LV (coordinate 0 in Figure 1C) to its more caudal aspect. Classically, the 

SVZ is subdivided into 3 microdomains (lateral, dorsal, medial) according to their location 

around the LV. While these 3 microdomains are well defined in the rostral most SVZ regions, 

their definition becomes more ambiguous in regions caudal to the 3rd ventricle. This applies 

particularly to the dSVZ which is not present in caudal sections. There, only the lateral and 
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medial walls were identified based on a dense Dapi counterstaining (Figure 1D), as well as 

the presence of numerous Ki67+ cells (see below).  It is noticeable that the density of cells 

(detectable by Dapi) declines from rostral to caudal sections. This is particularly apparent in 

the more caudal sections, where the ventricular walls develop into a thicker cell layer of lower 

cell density (Figure 1B). Those caudal sections were however included in our analysis in order 

to directly assess the presence of proliferative and/or progenitor markers (see below). 

 

 

Figure 1. Definition of SVZ microdomains.  
(A): Representative mosaics of P10 coronal sections counterstained with Dapi at various 
rostro-caudal coordinates (indicated in C).  
(B): Higher magnification micrographs showing the rostro-caudal extension of the open lateral 
ventricle from its first rostral appearance (arrow) to its more caudal coordinates.  
(C): Coordinates used in this study. The coordinate “0” is defined as the first appearance of 
the opened lateral ventricle.  
(D): Schematic representation of the opened lateral ventricle at various rostro-caudal 
coordinates. The dorsal (red), lateral (green) and medial (blue) microdomains are indicated.  
Scale bars: (A) = 1 mm; (B+C) = 500 μm. Abbreviations: SVZ, subventricular zone; LV, lateral 
ventricle. 
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2.4.2. “FlashMap” Allows Rapid Investigation of Gene Expression 

along the Full Extent of the SVZ 
We developed “FlashMap” to perform a rapid analysis of marker expression in the SVZ along 

its full rostro-caudal as well as dorso-ventral extents. “FlashMap” allows the generation of 2D 

heatmaps of relative OD in the least time and tissue-consuming way. The workflow of 

“FlashMap” is illustrated in Figure 2 and a more detailed, step by step description given in 

Figure 3. Brains of the species and age of interest (here, mouse and P10) are sectioned and 

collected in series. For 3D analysis of gene and protein expression in the SVZ, coronal sections 

are preferred. Sections are immunostained for markers of interest (Figures 2A and 2B). To 

reduce time and tissue consumption, series may be subsampled. The subsampling factor will 

depend on the abundance of the marker of interest, as well as of its distribution. Abundant 

markers showing a “widespread distribution” will allow higher frequency subsampling, as 

illustrated below.  After definition of the region of interest (ROI; here lSVZ in green; Figure 

2D), “FlashMap” defines automatically the thickness of the SVZ based on the OD of the Dapi 

counterstaining (as described later in more detail). The software automatically distributes 

probes of a defined width and adapt their height (thickness of the SVZ at the corresponding 

position). The OD of the markers of interest is then measured within each probe (Figure 2D). 

These ODs are then represented in a color code of relative OD (from 0 (0 OD = blue) to 1 

(highest value = red)). A 2D heatmap is generated, which represents the marker distribution 

along the region of interest. Analysis of multiple sections allows representing the full rostro-

caudal extend of the region of interest (Figure 2F). For 3D representation, the contours of a 

series of sections (Figure 2C) are used to generate a 3D mesh of the LV (Figure 2E) using 

Neurolucida 360 (MBF Bioscience). 2D heatmaps are then superimposed onto these 3D 

volumes by using the open access software Blender (www.blender.org; Figure 2G). 
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Figure 2. Schematic illustration of the workflow for sampling and analysis of the SVZ.  
(A): Picture of a P10 mouse brain prior to cutting.  
(B): Representative micrographs show a subsampled series of counterstained brain sections 
(Dapi) covering the full rostro-caudal extent of the LV. Sections are collected/subsampled in 
series according to the experimental question (here an example of series of 1 out of 12).  
(C+E): Schematic illustration of virtual contours of serial brain sections (C), which are used 
for generation of 3D reconstructions of the brain (bright gray) and ventricular system (black) 
(E). In the virtual contours the thickness of the SVZ is represented in dark gray (C).  
(D): Schematic illustration of the definition of the region of interest (here lSVZ in green) and 
the automatic calculation of the thickness of the SVZ and measurement and color coding of 
the OD of the investigated marker. The region of interest is subsampled into probes of a defined 
size.   
(F): The software generates automatically 2D heatmaps of the region of interest (here lSVZ) 
along the rostro-caudal axis of the marker of interest (here thickness of the SVZ). The values 
of the thickness are represented by a color code of the relative thickness (0 to 1).  
(G): Heatmaps can be presented in 3D, by superimposing them onto a 3D reconstruction of 
the ventricular system.  
Scale bars: (A) = 5 mm; (B+C) = 1 mm. Abbreviations: SVZ, subventricular zone; 2D, two-
dimensional; 3D, three-dimensional; OD, optical density.  
 

2.4.3. Step by Step Walkthrough for an Optimal Use of “FlashMap”  
After installing the software, a shortcut to “FlashMap” should be placed on the desktop (Figure 

3A1), as well as all the images which will be analyzed. After starting “FlashMap”, a window 

appears to define the settings of the analysis to be performed. For illustrative purposes, we 

chose to analyze one microdomain in one section (number of sections: 1; frequency of sections: 

1). The thickness of the sections (here 50 μm) and the μm/pixel ratio also need to be given 

(here 0.64 μm/pixel; Figure 3A2). Thereafter, images are loaded by selecting the “Load” 

button (Figure 3A3). The dimension of the probes (width) can be chosen, as well as the 

hemisphere (left; right) and the ROI (medial; lateral; dorsal) to be analyzed (here 50 μm; right; 

lateral; Figure 3B). The beginning and end of the ROI are defined by accepting the invitation 

and right clicking on the image at the appropriate position (1 and 2, 3 and 4, respectively in 

Figure 3C). A left click allows zooming into the image for better accuracy. The internal side 

of the ROI is traced for automatic positioning of the probes (Figure 3D). A “reference region” 

is placed within the parenchyma, immediately adjacent to the SVZ (here in the striatum, Figure 

3E), to enable “FlashMap” to automatically calculate the height of the probes. In order to 

define the optimal height of the probes, the Jensen-Shannon divergence (JSdiv; Lin, 1991) was 

used to accurately define the drop in OD between the SVZ and adjacent tissue (gray values in 
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the “probe region” (P) and “reference region” (R); Figures 3F1 and 3F2).  In the JSdiv the 

normalized values Pi and Ri represent the intensity versus the frequency of gray values in the 

“probe region” and the “reference region” for the height Ni and JSdiv measures the dissimilarity 

between the gray value distribution between them (Figures 3F2 and 3F3): 

 

With  

N0 and Nmax are empirically fixed values and “FlashMap” automatically estimates the optimal 

height (Nopt) for every single probe. Nopt is defined as the height at which the JSdiv value 

continuously drops as the gray value distributions of Pi and Ri become identical. Importantly, 

the estimation of Nopt starts at N0 larger than the real apical end of the probe (0 pixel) at 30 

pixels, as JSdiv exhibits spurious variations for very small values (Figures 3F4 and 3F5). We 

further tested if the calculated height of the probes differ by selection of divergent “reference 

regions”. While the values JSdiv were slightly different for divergent “reference regions”, the 

calculated positions Ni for Nopt turned out to be very consistent. Thus, a precise positioning of 

the “reference region” is not necessary, as it does not affect optimal detection of the SVZ 

thickness (Figure S1). Importantly, errors in estimations of probe heights can be corrected 

manually. First, the probe is selected by right-clicking close to its apical end. The new height 

is chosen by right-clicking at the right position in basal direction (Figure 3G). The analysis is 

finished by declining the invitation to analyze other SVZ walls (1) and other images (2). 

Measurements can then be exported as raw values in Excel files and/or as heatmaps (3). It is 

strongly recommended to always export raw values for accurate interpretation of heatmaps 

(Figure 3H). Indeed, heatmaps provide a spatial representation of marker expression, but does 

not give information on their level of expression (e.g. amplitude between high and low 

expression values). Heatmaps are exported in TIFF format by manually adding the “.tif” 

extension to the file name. The heatmaps we produced in this illustration are orientated with 

the dorsal end of the lSVZ at the top and the ventral end at the bottom (1). Here the thickness 

of the lSVZ is represented (2), as well as the density of cells along the lSVZ, based on OD 

measurements of Dapi (3). The heatmaps represent the relative thickness/OD, which are color 
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coded (here “jet”) from 0 (blue) to the maximal measured OD value (normalized to 1; red). 

Different options for color coding of OD values are available in “FlashMap” and can be chosen 

prior to the heatmap export (Figure 3I). 

A similar procedure will be used to analyze multiple sections. The total number of sections is 

defined at the start (step A2), before loading the first image (here corresponding to 43 

sections). Subsampling of the series could be done, as described below, and the degree of 

subsampling needs to be defined in the same window (“frequency of sections”; here 1; Figure 

3J). The full SVZ of the series can be analyzed as illustrated in (Figure 3K). Multiple LV 

walls can be sampled on the same series of images by choosing “continue with another wall” 

(Figure 3H1). After defining all walls in a section, the option “continue on another image” is 

clicked (Figure 3H2), to load the next image. After analysis of all the sections the heatmaps 

can be generated as described previously (Figure 3H3). This results in complete heatmaps 

(here thickness and cellular density of the 3 walls of the SVZ; Figure 3L). 
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Figure 3. Detailed “FlashMap” walkthrough.  
(A): Start “FlashMap” and load images (1-3). For illustration, we chose to analyze a single 
microdomain in a single section. Define the thickness of the sections and the μm/pixels ratio 
(2).  
(B): Define the dimension of the probes (in μm), the hemisphere (left; right) and the ROI 
(medial; dorsal; lateral), here: 50 μm; right; lateral.  
(C): Define ROI by placing a “starting point” (1, 2) and an “end point” (3, 4).  
(D): Draw the internal face of the ROI for automatic distribution of probes.  
(E): Define a reference area in the adjacent tissue (here striatum) by selecting two points in 
that region (1-3).  
(F): “FlashMap” calculates the height of the probes automatically using the Jensen-Shannon 
divergence (JSdiv) to estimate the optimal basal height of the probe (Nopt) between N0 and Nmax.  
(G): Probes can be adjusted manually.  
(H): Complete the analysis by declining the offer to define another ROI (1) and another section 
(2). Export values (Excel file) and/or heatmaps in TIFF format (3).   
(I): Heatmaps of the (single section) lSVZ analysis are orientated with its dorsal end at the top 
and ventral end at the bottom (1). Heatmaps of the SVZ thickness and cellular density (here 
Dapi) are color coded (here Jet-code) with a scale of relative height and OD, respectively (2, 
3).  
(J+K): Illustration of an analysis with a complete series of sections. The number of sections 
to be analyzed is defined at the start (step A2). Analysis of multiple walls is achieved by 
clicking “continue with another wall” (H1). Analysis of multiple sections is achieved by 
clicking “continue on another image” (H2) until the series is complete (K).  
(L): Full heatmaps are gained as described in (H3) with the same scale bars as described in (I). 
Orientation of full heatmaps is described in Figure 4B.  
Abbreviations: ROI, region of interest; JSdiv, Jensen-Shannon divergence; SVZ, subventricular 
zone; OD, optical density. 
 

2.4.4. “FlashMapping” of the Full SVZ Highlights Regions of 

Maximal Germinal Activity 
To test “FlashMap”, we first aimed at sampling the full extent of the SVZ for regions of 

maximal germinal activity. The thickness and cellular density, as well as the distribution of 

proliferative cells were mapped throughout the rostro-caudal extend of the three SVZ walls 

(Figure 4A). As a marker of proliferation, we chose Ki67, a marker of actively cycling cells 

(Gerdes et al., 1984) .  

For optimal heatmap orientation, we virtually opened the LV at its ventral tip along the full 

rostro-caudal extent, in order to “unfold” the ventricle and represent the medial, dorsal and 

lateral walls on top of each other (Figure 4B). We first generated heatmaps for the relative 

thickness and cellular density throughout the SVZ, based on the Dapi counterstaining (Figures 
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4C and 4D). Analysis revealed the existence of a “hotspot” at the junction between the lSVZ 

and the dSVZ. This region corresponds to the accumulation of neuroblasts before they engage 

into rostral migration through the RMS. In this region, the increased SVZ thickness correlates 

with an increased cell density (Figures 4C and 4D; gray dashed boxes). Heatmaps also reveal 

a gradual increase in SVZ thickness in more caudal regions of both the lSVZ and medial SVZ 

(mSVZ). Interestingly, this increase was however correlated with a decrease in cell density, 

suggesting a gradual cell dispersion in these more caudal regions, which may correlate with a 

loss of germinal activity. We then generated a heatmap for the density of proliferative cells 

(i.e. Ki67+ cells; Figure 4E). The highest germinal activity was detected in a “banana shaped 

area” along the rostro-caudal extent of the lSVZ, as well as in the most ventral and rostral 

regions of the mSVZ. Interestingly, comparison of the thickness of the walls and density of 

Ki67+ cells revealed that the regions with highest germinal activity also appear to be the 

thinnest (Figures 4C and 4E; white dashed boxes). In contrast, regions of lowest germinal 

activity were thicker and presented a low cellular density (Figures 4C and 4E; black dashed 

boxes). For a more intuitive representation, heatmaps were superimposed on 3D templates of 

the LVs (Figures 4F and 4H).  

 
 
 
 
Figure 4. FlashMap reveals major differences in SVZ thickness, cellular density and 
germinal activity throughout the SVZ.  
(A): Representative micrographs of the proliferation marker Ki67 (green) at distinct rostro-
caudal coordinates of the SVZ (Dapi, blue).  
(B): Schematic representation of the orientation of sections and heatmaps. The LV is cut open 
(scissors) at its most ventral tip between the mSVZ (blue) and the lSVZ (green). This allows 
unfolding the three SVZ walls for 2D heatmap representations (see C-E).  
(C-E): Heatmaps of the relative thickness of the SVZ (C) and of relative ODs of Dapi (D) and 
Ki67+ cells (E) along the full rostro-caudal extent of the LV. White dashed boxes underline 
regions of maximal germinal activity, while black dashed boxes underline regions of minimal 
germinal activity. Note the differences existing between these regions in term of SVZ thickness 
and cellular density. The location of the RMS is highlighted with a gray dashed box. The 
heatmap color code goes from 0 (blue) to maximal detected thickness/OD 1 (red).   
(F-H): Representations of 3D heatmaps of relative thickness (F) and relative ODs of Dapi (G) 
and Ki67+ cells (H). Scale bars: (A+E) = 500 μm. Abbreviations: SVZ, subventricular zone; 
lSVZ, lateral subventricular zone; dSVZ, dorsal subventricular zone; mSVZ, medial 
subventricular zone; LV, lateral ventricle; DM corner, dorso-medial corner; DL corner, dorso-
lateral corner. 
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2.4.5. Subsampling of the Region of Interest Results in a Minimal 

Loss of Spatial Information 
In order to reduce time and the amount of tissue required to perform an analysis, we equipped 

“FlashMap” with the ability to process subsampled series of sections (1 section out of “n”). 

The applied calculations for interpolating missing values, follows the concept of linear 

interpolation. Values between two analyzed sections (X; Y) were calculated by using the 

following formula (Figure 5A): 

 

N stands for the degree of subsampling and n for the intersection number between section X at 

the rostral and Y at the caudal end: 

 

 

The smoothening of the values interpolation is applied row by row. First, “base values” (vx; vy) 

of the two adjacent sections are calculated for every row. This is achieved by averaging the 

real values (X’’; Y’’) with its neighbors (X’, X’’’; Y’, Y’’’) for every row and section separately: 

 

 

For probes located at the border of the ROI, a single adjacent measured value was available 

and therefore used: 

 

 

All the necessary steps of a full interpolation of the SVZ thickness in the lSVZ are illustrated 

in Figures 5B to 5E. For illustrative purposes, we generated a complete heatmap (Figure 5B) 

and one by analyzing every 5th section (Figure 5C). We then interpolated missing values in 
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two steps. For the first step, the “intersection-interpolation”, the general formula is used as 

described above with: 

 

 

Its integration into the general formula reads as follow: 

 

 

Weighting of the influence of adjacent sections in the series to calculate values for the four 

missing sections (v1, v2, v3, v4) reads as follow:  

 

 

 

 

Comparison of the heatmaps generated following analysis of a complete series of sections or 

a subsampling of 1/5 (compare Figures 5B and 5D) highlight the accuracy of the 

“intersection-interpolation”. A second step of “intrasection-interpolation” allows a further 

refinement of the heatmap (Figure 5E), while preserving the accuracy of the mapping.  

 

 

 

 

Figure 5. Interpolation of heatmaps after subsampling by 5.  
(A): Formula for intersection-interpolation.  
(B): Heatmap representing the thickness of the lateral wall in a complete series of sections.  
(C-E): Heatmaps representing values obtained for a subsampling of 1/5, without interpolation 
(C), following intersection-interpolation (D) and intrasection-interpolation (E). Formula are 
presented on the left, as well as a cropping of a region of reference for all heatmaps.  
Scale bar: (B) = color coded relative thickness; (E) = 500 μm.  
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Next, we systematically assessed the maximal degree of subsampling allowing to produce a 

heatmap that accurate reflects the mapping obtained with a complete series of sections. We 

repeated all analysis with sub-samplings ranging from 1/2 to 1/6. Interestingly, all previously 

described regions (germinal regions, non-germinal regions, RMS; Figures 4C to 4E) could be 

identified in all heatmaps, regardless of the degree of subsampling or the section number with 

which the analyses were started (Figures S2 to S4).  

 

2.4.6. “FlashMap” Allows a Rapid Analysis of SVZ Transcriptional 

Heterogeneity 
Next, we used “FlashMap” to generate full heatmaps of selected markers known to be 

heterogeneous distributed. First, we choose the GABAergic and glutamatergic progenitor 

markers Dlx2 and Tbr2 (Figure 6A). Those two transcription factors show a preferential 

expression in the lSVZ and the dSVZ, respectively (Brill et al., 2008; Brill et al., 2009; Azim 
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et al., 2012a). Further, we analyzed the expression pattern of Hopx and DCX. Hopx is a 

heterogeneously distributed transcriptional regulator, which recently gains increasing attention 

as a marker for outer radial glia cells in humans (Pollen et al., 2015 ; Thomsen et al., 2016) 

and DCX, a marker for migrating neuroblasts, which is also described to be heterogeneously 

expressed in the SVZ (Yang et al., 2004) (Figure 6B).  

Remarkably, Dlx2 was found in the lSVZ and the mSVZ in the regions we identified previously 

as zones of high germinal activity (Figures 4C to 4E; white dashed boxes). Highest Dlx2 

expression was detected in the rostral parts of the lSVZ, as well as in the dorsal aspect of the 

lSVZ corresponding to the emerging RMS. Further, the ventral tip of the mSVZ showed also 

some enrichment in rostral sections. In contrast, Dlx2 was consistently absent from the dSVZ 

and more caudal regions of the lSVZ and mSVZ (Figures 6C and 6G). This expression pattern 

contrasts to the one obtained for Tbr2, which showed an exclusive expression in the dSVZ and 

was consistently absent from the lSVZ and mSVZ (Figures 6D and 6H). Those findings are 

in line with previous reports (Brill et al., 2008; Brill et al., 2009; Azim et al., 2012a) and further 

validate “FlashMap” as an rapid but accurate mapping method. 

“FlashMap” revealed a strikingly different pattern for Hopx expression. Hopx was found to be 

high in the dSVZ and in the caudal regions of the mSVZ. Some level of expression could also 

be detected in the caudal regions of the lSVZ, where only few Ki67+ cells are observed 

(Figures 6E and 6I). It is noticeable that this pattern of expression is the opposite of the one 

obtained for DCX. As revealed by the “FlashMap” analysis, this migrating neuroblast marker 

is enriched in the dorsal part of the lSVZ, where the RMS is located. A second smaller hotspot 

was also observed in the ventral parts of the lSVZ in rostral sections (Figures 6F and 6J). 
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Figure 6. Illustration of “FlashMap” analysis with four regionally expressed markers.  
(A+B): Representative micrographs of Dlx2, Tbr2 (A), Hopx and DCX (B) at a rostral 
(A1+B1), intermediate (A2+B2) and caudal level (A3+B3) along the rostro-caudal axis of the 
ventricular system.  
(C-F): Expression heatmaps obtained for Dlx2 (C), Tbr2 (D), Hopx (E) and DCX (F) along 
the full extent of the SVZ are represented in a color code of relative OD.  
(G-J): 2D heatmaps of Dlx2 (G), Tbr2 (H), Hopx (I) and DCX (J) are superimposed in 3D 
LVs.  
Scale bars: (B3+F) = 500 μm; Abbreviations: lSVZ, lateral subventricular zone; dSVZ, dorsal 
subventricular zone; mSVZ, medial subventricular zone.  
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2.5. Discussion 
Our results demonstrate, that “FlashMap” is a useful method to keep pace with the increasing 

amount of transcriptional datasets that reveal a regional marker expression in postnatal 

germinal regions of the forebrain (Azim et al., 2015). This semi-automatic mapping approach, 

allows a rapid screening of selected markers along both the rostro-caudal and dorso-ventral 

coordinates of the postnatal SVZ.  

The SVZ is an ill-defined region of the postnatal mouse forebrain. The SVZ is particularly thin 

and tortious, and our study further demonstrates that the cellular density greatly varies along 

its dorso-ventral and rostro-caudal dimensions. To perform this study, we first defined the 

dorsal, lateral and medial walls of the opened lateral ventricle along its full rostro-caudal 

coordinates. A more accurate subdivision of the three walls may be achieved by using tissues 

from transgenic mice expressing permanent markers in various brain regions (pallium, 

ganglionic eminences, septum; Young et al., 2007). Although the approach used in the current 

study is more arbitrary, it allowed detecting significant differences in the thickness, cell density 

and proliferation occurring in different regions of the postnatal SVZ.  Our results confirm 

previous results obtained for the distribution of proliferating cells (Ki67+) in the lSVZ (Falcão 

et al., 2012), and refine them significantly by providing a more complete and precise map. 

Concerning the rostro-caudal distribution of proliferative cells they found the same rostral 

enrichment like we did here, as well as in an earlier study in 10 to 12 weeks old mice (Azim et 

al., 2012a). In addition, we found a low germinal activity in the dorsal part of the lSVZ, where 

the RMS is located. We also provide a more detailed mapping of the density of proliferative 

cells in more caudal regions, where a large region of low germinal activity is clearly visible. 

The differences existing between our maps and those generated by Falcao et al., may be at least 

partially explained by differences in species (mice vs. rats) and age of the animals (P10 vs. 

P70).  A systematic mapping at different ages using “FlashMap” would be of interest to better 

describe potential spatial changes in germinal activity that occur over a lifetime. Such an 

analysis could also include embryonic time points to investigate in more details the spatial and 

temporal aspects of astrogenesis and oligodendrogenesis (reviewed by Reemst et al., 2016). 

This would be particularly interesting for oligodendrogenesis, as it occurs in different waves 

originating from different regions of the VZ and SVZ (Kessaris et al., 2006). 
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Interestingly, the regions of “lowest germinal activity” highlighted by “FlashMap” in the SVZ 

microdomains shared some key characteristics: i.e. a thick wall with a low cell density. These 

observations highlight the importance of the cellular microenvironment in the persistence of a 

germinal activity. This is in agreement with previous studies demonstrating the importance of 

a highly organized cellular niche (also named neurogenic niche) in the maintenance of both 

proliferation and neurogenesis (e.g. Ponti et al., 2010). Further, we demonstrated that the 

contribution of the ventral most part of the mSVZ might be underestimated in its participation 

to the germinal activity observed in the postnatal SVZ. While progenies from the dorsal 

proliferating cells most likely migrate through the RMS into the OB, some progenies of the 

ventral population of the lSVZ and mSVZ might migrate away in a more ventrally located 

stream as suggested elsewhere (Yang et al., 2004). This ventral migration might be a premise 

of the ventrally located RMS observed in primates, which we highlighted in an earlier study in 

common marmosets (Azim et al., 2013).  

In the last part of our study we confirmed the value and reliability of “FlashMap”, by analyzing 

markers known to be regionally expressed, i.e. the transcription factors Dlx2 and Tbr2. The 

produced heatmaps reflect accurately the prior description of their distribution (Brill et al., 

2008; Brill et al., 2009; Azim et al., 2012a). In addition, comparison of Hopx and DCX 

highlights the existence of two domains: one presenting a high germinal activity in which 

neuroblasts are numerous, one presenting a low level of germinal activity that are devoid of 

neuroblasts. It would be interesting to investigate if the Hopx+ regions preferentially give rise 

to non-neuronal cell types. This was the subject of the second project of my PhD. 

Several aspects of “FlashMap” have been optimized to make it both user friendly, accurate and 

rapid. First, we used the Jensen-Shannon divergence (JSdiv) to automatically adapt the probe to 

the height of the SVZ. JSdiv has been extensively used for multiple types of image processing 

and analysis, such as the analysis of edge detection (Gómez-Lopera et al., 2000), the 

characterization of the compositional complexity (Rigau et al., 2005), the tracking of moving 

root sections in a stack for tracing out the 3D root architecture (Mairhofer et al., 2012) and 

others. Second, we performed extensive subsampling testing to demonstrate that accurate maps 

can be obtained with an incomplete (but homogeneous) series of sections. This allows a 

reduction of both the time and tissue required to generate an expression heatmap. A series of 

one section out of five reduces the time required for performing the staining, mounting and 
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imaging to 20%. In other words, subsampling allows the parallel analysis of several markers 

in approximately the same time than required for a single marker in a full series. Other future 

improvement might be applied. For example, “FlashMap” could facilitate the analysis of tissue 

organization, proliferation, and apoptosis in various physiological and pathological conditions. 

It could also be applied to other brain regions (germinal or non-germinal). For example, it 

could be used to measure cortical thickness in microcephaly or following hypoxia. For such 

approaches, some small modifications in the detection mechanism of the probes height would 

be necessary. 

Altogether, this work underlines the need to develop new means to investigate the spatial 

organization of germinal region. It proposes “FlashMap” as an open source, user-friendly and 

flexible software to perform such, otherwise time-consuming analysis. 
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2.7. Supplementary Figures 
 

 

Figure S1. Optimal detection of the SVZ thickness with various “reference regions”.  
(A-C): Representative micrographs of Dapi staining for the three ROI: medial (A), dorsal (B), 
lateral walls (C). Colored boxes (R1, blue; R2, orange; R3, yellow) represent three different 
“reference regions”.  
(D, F, H): Graphs showing that the precision of the Jensen-Shannon divergence method to 
define the wall thickness and therefore the correct probe height is not affected by different 
“reference region” size and location.  
(E, G, I): Representative micrographs illustrating the precision of Nopt calculation, reflected 
by the optimal positioning of the probe heights.  
Scale bars: (C) = 500 μm; (I) = 100 μm. Abbreviations: ROI, region of interest; R1-3, 
“reference region” 1-3. 
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Figures S2 to S4. Validation of the subsampling approach up to series of 6.  
Heatmaps obtained with subsamplings ranging from 1/2 to 1/6 for analysis of SVZ thickness 
(Figure S2), cellular density (Figure S3) and Ki67+ cells density (Figure S4). Heatmaps of 
the first line represent full analyses, 2nd to 6th line show the outcome when a subsampling of 
1/2 to 1/6 is applied. Row numbers indicate with which section number the analysis was 
started. 
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3.1. Abstract 
The greatest diversity of neural lineages generated in the subventricular zone (SVZ) occurs 

early after birth, is regulated in a spatiotemporal manner and depends on the expression of 

specific transcriptional cues. We used transcriptomic as well as fate mapping approaches to 

investigate the relation between regional expression of transcription factors by neural stem 

cells (NSCs) and their acquisition of distinct neural lineage fates. Our results support an early 

priming of NSCs to produce defined cell types depending of their spatial location in the SVZ 

and identify Hopx as a marker of a subpopulation biased to generate astrocytes. Manipulation 

of Hopx expression showed however no effect on astrogenesis, but resulted in marked changes 

in the number of NSCs and of their progenies. Taken together, our results highlight 

transcriptional and spatial heterogeneity of postnatal NSCs as well as their early priming 

toward specific lineages and suggest a role for Hopx in the evolution of SVZ germinal activity.    

Key words: astrogenesis; neurogenesis; subventricular zone; neural stem cell subpopulations; 

regionalization; Hopx. 
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3.2. Introduction 
Germinal activity persists in the postnatal mammalian brain in specialized niches, namely the 

dentate gyrus (DG) of the hippocampus and the subventricular zone (SVZ) surrounding the 

lateral ventricle (LV). Neural stem cells (NSCs) of the postnatal SVZ differentiate into 

transient amplifying progenitors (TAPs) that will generate neuroblasts migrating through the 

rostral migratory stream (RMS), into the olfactory bulb (OB), where they differentiate into 

neurons (Lois and Alvarez-Buylla, 1994). The SVZ additionally generates glial progenitors 

that invade the nearby parenchyma (Reviewed in Azim et al., 2016; Bayraktar et al., 2015). 

Recently, accumulating evidences highlight the heterogeneous nature of the postnatal SVZ in 

respect to different microdomains generating distinct neural lineages. For example, progenitors 

of GABAergic neurons are predominantly generated along the lateral SVZ (lSVZ) wall, whilst 

the genesis of glutamatergic neuron progenitors are restricted to the dorsal SVZ (dSVZ; Brill 

et al., 2009; Azim et al., 2012a). Furthermore, postnatally-derived oligodendrocytes are 

generated from the dSVZ (Kessaris et al., 2006) under the control of different signaling 

mechanisms (Azim et al., 2012b; Azim et al., 2014a). This heterogeneity originates from early 

embryonic development (Fuentealba et al., 2015) and is intrinsically encoded by the expression 

of selected transcription factors (TFs). Therefore, TFs enriched in specific embryonic forebrain 

regions are persistent in their expression in corresponding domains of the postnatal SVZ. 

Examples of such TFs include Emx1 (pallium; dSVZ), Gsx1/2 (lateral and medial ganglionic 

eminence; lSVZ) and Zic1/3 (septum; medial SVZ; reviewed in Fiorelli et al., 2015). We 

recently resolved the transcriptional heterogeneities of different cell populations of the 

postnatal SVZ, in which an unexpected large number of transcripts (i.e. 1900) were 

differentially expressed in cells sorted from dorsal and lateral SVZ microdomains. Intriguingly, 

most of the transcriptional heterogeneity observed between the dorsal and lateral NSCs 

(dNSCs; lNSCs) populations were due to the expression of transcriptional cues. Notably, Hopx 

was identified with specific abundant expression to dNSCs, and its ectopic expression into 

lNSCs, revealed that it may have progliogenic functions (Azim et al. 2015). Hopx is a small 

(73 amino acids) atypical homeodomain protein that lacks DNA binding sites (Chen et al., 

2002; Shin et al., 2002), and is relatively conserved within vertebrates (Asanoma et al., 2003). 

Hopx expression is minimal at embryonic day 14.5 (E14.5) and peaks around E16.5 with a 

rostro-medial to caudo-lateral gradient (Mühlfriedel et al., 2005). Presence of Hopx has been 
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found in radial astrocytes of the adult DG, while it is described to be consistently absent from 

the adult SVZ (De Toni et al., 2008). Moreover, expression of Hopx has recently received 

increasing attention due to its expression in quiescent NSCs,  in mature astrocytes in the adult 

mouse DG (Li et al., 2015), as well as in  outer radial glia cells (oRG) of the developing human 

brain (Pollen et al., 2015; Thomsen et al., 2016). Here, we used various approaches to further 

investigate the regionalization of the postnatal SVZ and of the NSCs it contains. We 

characterized the spatiotemporal and lineage-specific pattern of Hopx expression in the 

postnatal SVZ and investigated its potential function in postnatal SVZ germinal activity. 

 

3.3. Experimental Procedures 
 

3.3.1. Animals and Ethics 
All animal experiments in Zurich were performed according to the Ethics Committee of the 

Veterinary Department of the Canton of Zurich (Approval ID 182/2011). Experiments in 

France were performed in accordance with European requirements 2010/63/UE and have been 

approved by the Animal Care and Use Committee CELYNE (APAFIS#187 & 188).  

Animals used in this study were: OF1 wild-type animals from Charles Rivers (France), 

Hes5::EGFP animals (Basak and Taylor, 2007), HopxCreERT2 (Takeda et al., 2011), HopxLacZ/WT 

knockin (Shin et al., 2002) and Rosa-EYFP mice (Srinivas et al., 2001). 

 

3.3.2. Plasmids Preparation and Electroporation 
The following plasmids were used in this study: pCX-GFP (kind gift of X Morin, ENS, Paris; 

France); pFloxpA-DsRed express (kind gift of Colette Dehay; INSERM U1208; Bron; 

France); pCAG-Cre (Addgene; 13775); pCMV-Hopx (Open Biosystems; MMM1013-

202767606). Plasmids were purified using the EndoFree Plasmid Kit according to the 

manufacturer’s protocol (Qiagen; 12362). Plasmids were re-suspended to a final concentration 

of 5 μg/μl. Dorsal electroporations were performed in P1 to P2 (postnatal day 1 to 2) pups as 

previously described (Boutin et al., 2008, Fernández et al., 2011). In HopxCreERT2 animals 
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subcutaneous tamoxifen (Tam; SIGMA-Aldrich; T5648) administration (1 mg per pup) was 

performed 2 to 3 hrs after electroporation.   

 

3.3.3. Immunohistochemistry 
Mice were sacrificed by an intraperitoneal overdose of pentobarbital followed by perfusion 

with Ringer Lactate solution and 4% paraformaldehyde (PFA) dissolved in 0.1 M phosphate 

buffer (PB; pH 7.4). Brains were removed and postfixed for 12-48 hrs at 4° C in 4% PFA and 

sectioned in 50 μm thick coronal serial sections. When necessary, antigen retrieval was 

performed for 20 minutes in citrate buffer (pH 6) at 80° C, then cooled for 20 minutes at room 

temperature and washed in 0.1 M PB. Blocking was done in TNB buffer (0.1 M PB; 0.05% 

Casein; 0.25% Bovine Serum Albumin; 0.25% TopBlock) with 0.4% triton-X (TNB-Tx). 

Sections were incubated over night at 4° C with the following primary antibodies in TNB-Tx: 

Rabbit anti-Hopx (1:400; Santa Cruz; sc-30216); Mouse anti-Hopx (1:400; Santa Cruz; sc-

398703); Goat anti-DCX (1:500; Santa Cruz; sc-8066); Mouse anti-Olig2 (1:1500; Millipore; 

MABN50); Mouse anti-GFAP (1:500; Millipore; MAB3402); Chicken anti-GFP (1:1000; 

AVES LABS; GFP-1020); Rabbit anti-RFP (1:1500; MBL; PM005); Rabbit anti-S100β 

(1:5000; SWANT); Chicken anti-βGal (1:4000; Abcam; ab9361); Goat anti-Mcm2 (1:300; 

Santa Cruz; sc-9839); Mouse anti-Sox2 (1:100; Santa Cruz; sc-365823). Following extensive 

washing in 0.1 M PB with 0.4% triton-X  (PB-Tx), sections were incubated with appropriate 

secondary antibodies conjugated with Alexafluor 488, 555 or 647 (1:500; Life Technologies) 

for 2 hrs at room temperature. Sections were washed and counterstained with Dapi (1:5000; 

Life Technologies; D1306). To increase the signal from βGal, a biotinylated secondary 

antibody (1:500; Jackson) was used in combination with a TSA amplification kit according to 

manufacturer’s protocol (Life Technologies; T-20932). 

 

3.3.4. FACsorting and qPCR 
Hes5::EGFP (with C57BL/6 background) of the age P2-P4 were used for sorting for NSCs as 

previously described and using the same parameters (Azim et al. 2015). 4 to 5 animals of one 

litter was used for 1 “n” number. Microdissection of SVZ domains (dorso-medial; dorso-lateral 

and lateral) was performed in RNase free, sterile conditions. Tissues were dissociated using a 
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trypsin-based Neural Dissociation Kit (Miltenyi Biotec, Bergisch Gladbach, Germany). For 

additional purification of the Hes5-EGFP population, an APC conjugated NSC antibody 

against the transmembrane-protein prominin-1 (1:100; ebiosciences) was applied for 15 mins 

at RT, before suspension was subjected to Fluorescence Activated Cell Sorting (FACS Aria 

III; BD Bioscience, Franklin Lakes, New Jersey, USA). Dead cells were excluded by forward 

and sideward scatter. Gating settings were gained using an EGFP- wildtype animal and a 

prominin-1 isotype control conjugated to APC (rat anti-IgG; 1:100, ebiosciences). Brightest 

30% of EGFP+ cells, which where prominin-1+ were collected directly into RNA lysis buffer 

and snap-frozen for further gene expression analysis. RNA extraction was performed using the 

RNeasy microkit (Qiagen; 74004) following manufacturer’s guidelines. RNA amplification of 

3 ng input material was done using the Nugene Pico Ovation WT kit (NuGen Technologies, 

Inc., San Carlos, CA) like described previously.  50 ng RNA per sample was used for cDNA 

synthesis (Superscript; Life Technologies; Carlsbad, CA, USA). qPCR was performed 

according to the procedures described elsewhere (Azim et al., 2012b, Azim et al., 2014b), with 

the LightCycler 480 (Roche, Basel, Switzerland). All reactions were performed in duplicates 

or triplicates and GAPDH was used as reference gene. Primers used were custom made by 

Qiagen (EGFP, Eomes, Hopx, Pcna, Sp8) or designed with the Primer Express 1.5 software 

and produced by Eurofins (Schönenwerd, Switzerland):  

GAPDH: fw_CGTCCCGTAGACAAAATGGT, rv_TTGATGGCAACAATCTCCAC; 

Aldh1l1: fw_CAGTAAACCTCCTGGCCAAA, rv_CCCTGTTTTCCCTACTTCCC; 

Aqp4: fw_TGAGCTCCACATCAGGACAG, rv_TCCAGCTCGATCTTTTGGAC; 

Dct: fw_GCATCTGTGGAAGGGTTGTT, rv_ACTCCTTCCTGAATGGGACC; 

DCX: fw_CTGACTCAGGTAACGACCAAGAC, rv_TTCCAGGGCTTGTGGGTGTAGA; 

Dlx2: fw_CTTCTTGAACTTGGATCGGC, rv_AGACCCAGTATCTGGCCCTG; 

Ebf1: fw_GGTGGAAGTCACACTGTCGTAC, rv_GTAACCTCTGGAAGCCGTAGTC; 

Fgfr3: fw_ACAGGTGGTCATGGCAGAAGCT, rv_CTCCATCTCAGATACCAGGTCC; 

Gli1: fw_CTCAAACTGCCCAGCTTAACCC, rv_TGCGGCTGACTGTGTAAGCAGA; 

Gli3: fw_CGAGAACAGATGTCAGCGAG, rv_TGAGGCTGCATAGTGATTGC; 
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Hes5: fw_GTAGTCCTGGTGCAGGCTCT, rv_AACTCCAAGCTGGAGAAGGC; 

Id3: fw_GCGTGTCATAGACTACATCCTCG, rv_GTCCTTGGAGATCACAAGTTCCG; 

Lef1: fw_CGTCACACATCCCGTCAGATGTC, rv_TGGGTGGGGTGATCTGTCCAACG; 

Olig1: fw_AGCAAGCTCAAACGTTGGTT, rv_GTTCTGTTTTTCAGGCTCGC; 

Olig2: fw_GACGATGGGCGACTAGACA, rv_CAGCGAGCACCTCAAATCTA; 

PDGFRα: fw_AGAAAATCCGATACCCGGAG, rv_AGAGGAGGAGCTTGAGGGAG; 

Plp1: fw_GGGCCCCTACCAGACATCTA, rv_TCCTTCCAGCTGAGCAAAGT; 

Tcf7: fw_TGCCTTCAATCTGCTCATGCC, rv_GTGTGGACTGCTGAAATGTTCG; 

Vax1: fw_CTCTACAGGCTGGAGATGGAGT, rv_GCTTAGTCCGCCGATTCTGGAA. 

 

3.3.5. Meta-analysis of Transcriptional Profiles 
To generate the lists of transcription factors and transcriptional regulators that are enriched in 

dNSCs and lNSCs, we made use of our recently published transcriptional datasets (Azim et 

al., 2015; GSE60905). We analysed the dataset on the “Gene Expression Omnibus” 

(https://www.ncbi.nlm.nih.gov/geo/) for transcripts that are differentially expressed between 

dNSCs and lNSCs ( ≥1.8 fold enrichment and p-values <5%). Finally, we selected transcripts 

for transcription factor activity and regulation of transcription using “DAVID Analysis 

Wizard” (https://david.ncifcrf.gov/). Lists of transcripts were analysed for enrichments in the 

neuronal, astrocytic or oligodendrocytic lineage using the transcriptional dataset of the Barres 

group (Cahoy et al., 2008; GSE9566). Heatmaps were produced using a self-made R script 

“Heatmap Generator”, which enables us to compare and generate heatmaps from different 

datasets available on the “Gene Expression Omnibus” (GEO).  

 

3.3.6. Quantifications and Statistics 
Images were acquired using a Leica DM5500 epifluorescent microscope, a Leica TCS SPE II 

and a TCS SP5 confocal microscope (Leica Microsystems GmbH, Wetzlar, Germany). Images 

were quantified using ImageJ-win64 or assembled as representative pictures with LAS X, 
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ImageJ and Photoshop (CS4). Statistical analysis was done with Microsoft Excel 2013 and 

GraphPad Prism 7. All data are showed as mean ± SEM and statistical significance was 

calculated using the unpaired t-test (<0.05=*, <0.01=**, <0.001=***, <0.0001=****). 

 

3.4. Results 
 

3.4.1. Hopx is Enriched in NSCs of the dSVZ, as well as in the 

Astrocytic Lineage 
In a previous study, the transcriptome of spatially distinct domains of the postnatal SVZ were 

deciphered to reveal the existence of different transcriptional networks in region-specific NSCs 

(Azim et al. 2015). This transcriptional heterogeneity was further examined here by analysis 

of transcription factors and transcriptional regulators (defined hereafter as TFs) as well as their 

association with defined neural lineages. Focusing on TFs only, 112 were differentially 

expressed between the subpopulations of NSCs (dNSCs: 61; lNSCs: 51; Figures 1A and S1A 

to S1C). Those enriched dorsally were confirmed by examining in situ databases 

(http://www.brain-map.org/), and by immunohistochemistry (Figures 1C and 1D). Among 

transcripts enriched in dNSCs (Figure 1B), 5 out of the top 10 (NeuroD6, Eomes, NeuroD1, 

Tbr1, Neurog2) were major determinants of the glutamatergic neuronal lineage (Schuurmans 

et al., 2004; Hevner et al., 2006; Brill et al., 2009; Winpenny et al., 2011). For further 

examining TFs association with defined neural lineages, we made use of previously published 

datasets to perform a meta-analysis (Cahoy et al., 2008). Interestingly, this analysis revealed 

that TF enriched in dNSCs formed at least 3 clusters defined as astroglial (18/61), neuronal 

(15/61) and oligodendroglial (11/61; Figure 1E). In contrast, clustering of lNSCs enriched TFs 

defined a single large neuronal cluster (42/51), while the oligodendroglial cluster was small 

(3/51) and the astroglial absent (Figure S1E). These observations support the greater diversity 

of lineages arising from the dSVZ compared to the lSVZ that generates almost exclusively 

interneurons (reviewed in Fiorelli et al., 2015 and Azim et al., 2016).  

We then focused our analysis on Hopx, an atypical homeodomain protein, which was 

interestingly enriched in both dNSCs (rank 7; 7 fold enriched in dNSCs) and the astrocytic 

lineage population (Figures 1A, 1B and 1E). Immunodetection of Hopx confirmed that it was 
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not expressed in migrating neuroblasts (DCX+) of the RMS and in oligodendrocytes (Olig2+) 

of the corpus callosum (CC; Figures 1F and 1G). In contrast, Hopx was expressed by 

astrocytes in the corpus callosum (GFAP+; Figure 1H), in agreement with the transcriptional 

meta-analysis (Figure 1E). This pattern of expression suggests that Hopx might play a role in 

regulating neural stemness and/or fate choice. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A meta-analysis of TF enrichment in dNSCs in highlighting their association 
with distinct neural lineages. 
(A): Heatmap showing enrichment of 61 TFs in dNSCs compared to their lateral counterparts 
(≥1,8 folds and p.Value<0,05).  
(B): Top 10 TFs enriched in dNSCs.  
(C, D): Dorsal enrichment of select transcripts was confirmed using Allen Brain Atlas for 
Eomes (C) and by immunohistochemistry (Hopx) (D).  
(E): Heatmap of dNSCs enriched TFs reveals 3 clusters corresponding to specific neural 
lineages: oligodendrocytes (purple, 11/61); astrocytes (yellow, 18/61); neurons (turquoise, 
15/61). Hopx is highlighted in bold and associates to the astrocytic lineage. 
(F-H): Confirmation of lineage-specific enrichment of Hopx by immunohistochemistry. Hopx 
is largely absent in neuroblasts in the RMS (DCX, F) and oligodendrocytes in the CC (Olig2, 
G), but is observed in astrocytes of the CC (GFAP, H).  
Scale bars: C, D = 500 μm; H = 25 μm. Abbreviations: CC, corpus callosum; dNSC, dorsal 
neural stem cell; lNSC, lateral neural stem cell; RMS, rostral migratory stream; OPC, 
oligodendrocyte precursor cell. 
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3.4.2. Hopx Expression Reveals Intraregional Heterogeneity within 

the dSVZ  
Using two distinct antibodies, we found Hopx expression to be restricted to the dSVZ, while 

it was consistently absent from its lateral counterpart (Figures 2A and S2; for quantifications 

the rabbit anti Hopx antibody was used), in agreement with our transcriptomic analysis (see 

above). A high Hopx expression was already detectable along the dorsal region of the VZ/SVZ 

at embryonic day 16 (E16). At early postnatal time points (P1) its expression remained high, 

but declined sharply thereafter in the young adult SVZ. Throughout its period of expression, a 

clear mediolateral gradient persisted, with the highest expression observed in the medial 

aspects of the dorsal wall and declining in the lateral aspects of the dorsal wall (i.e. high medial-

to-lateral expression), which has not yet been described for any other gene.  

We next investigated Hopx expression in postnatal dNSCs in the Hes5::EGFP mouse line, 

which efficiently labels NSCs, as characterized previously (Azim et al., 2015; Giachino et al., 

2014). Quantification of Hopx expression in the dSVZ of this mouse line, revealed that most, 

but not all (70.1±5.0%) Hes5::EGFP+ cells in the dSVZ expressed Hopx. Due to the 

unexpected mediolateral gradient in Hopx expression in the dSVZ, quantifications of 

EGFP+/Hopx+ cells were performed in the medial and lateral subdomains. There was a 

significantly higher overlap in the medial subdomain of the dSVZ (90.9±6.6%; dmSVZ) 

compared to the lateral subdomain (53.7±6.2%; dlSVZ; Figure 2B). These results were 

confirmed by performing GFP-electroporations (EPOs) of the dSVZ. Pups were sacrificed 8 

hrs following EPO labeling the cells in direct contact with the lumen of the ventricle, i.e. those 

with radial glia (RG) morphology, as previously described (Azim et al. 2015; Tiveron et al., 

2017). Similar results were obtained with 76.0±2.4% of the electroporated (GFP+) cells 

expressing Hopx, which were significantly larger in the dorso-medial subdomain, compared to 

its dorso-lateral counterpart (93.0±2.4% vs. 69.3±3.4%; Figure 2C). 

Taken together Hopx expression pattern in dNSCs suggests entirely novel functional 

differences in the dSVZ and implies for the first time intraregional heterogeneity of the dorsal 

wall. 
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Figure 2. Hopx shows a complex spatial and temporal expression pattern during 
forebrain development. 
(A): Representative micrographs of Hopx expression in coronal sections at E16, P1, P4, P21 
and P60 (top panels). Higher magnifications (lower panel) show high expression in the embryo 
(E16) and at early postnatal stages (P1, P4) and a decline thereafter (P21, P60).  
Embryonal and early postnatal ages (E16, P1, P4) show a clear expression gradient in the dorsal 
wall from medial high to lateral low. 
(B, C): Analysis of Hopx expression in dNSCs was performed in Hes5::EGFP mice (B) and 
after short-term (8 hrs) targeted electroporation of a pCX-GFP plasmid (C).  
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Quantifications were performed in rostral LV section (Dapi overviews; Bregma: 1,2-0) in the 
complete extent of the dorsal microdomain as well as in its medial and lateral subdomains 
(higher magnification). Crops show a high degree of overlap of Hopx with Hes5::EGFP and 
GFP positive cells, respectively. Degree of overlap was higher in the medial subdomain (Crops 
and Graphs). 
Animals: (B) n=3; (C) n=6. 
Scale bars: A (overview) = 1 mm; A (crops) = 500 μm; B+C (Dapi overview) = 200 μm; B+C 
(higher magnification) = 100 μm; B+C (crops) = 25 μm. 
Abbreviations: dSVZ, dorsal subventricular zone; lSVZ, lateral subventricular zone. 
 

3.4.3. Hopx Defines Dorsal SVZ Microdomains with Distinct Lineage 

Outputs 
Expression of Hopx by astrocytes and a regional enriched subpopulation of dNSCs suggests 

further transcriptional heterogeneity within the dSVZ microdomain. To further investigate 

these observations, we microdissected the medial and lateral parts of the dSVZ (dmSVZ and 

dlSVZ, respectively) and isolated NSCs (dmNSCs; dlNSCs) based on their expression of 

Hes5::EGFP, as previously described (Azim et al. 2015). We performed qPCR to compare the 

expression of lineage-specific markers in regional NSC populations (Figures 3B and 3C).  

We selected transcripts found to be enriched in NSCs, as well as in defined neural lineages 

(Azim et al., 2015; Cahoy et al., 2008) and compared their expression level by qPCR. 

Transcripts were all enriched in NSCs of all regions compared to the dSVZ, thereby validating 

our FACs strategy. In addition, there was no overall regional enrichment of stem cell markers 

(Hes5, EGFP; Basak and Taylor, 2007) and proliferation marker (Pcna; Yu et al., 1992) within 

the different NSC populations, although the neuroblast marker, Dcx was enriched in lNSCs, 

consistent with a greater number of neuroblasts generated by this SVZ microdomain (Yang et 

al., 2004; Figure 3A, top panel). Markers for the astrocytic, oligodendrocytic and neuronal 

lineages were confirmed using the transcriptional dataset from the Barres group (Cahoy et al., 

2008; Figure S3). Markers which were highly specific to astrocytes (Acq4, Aldh1l1, Fgf3, 

Id3), including Hopx, were expressed in dmNSCs including Hopx (Figure 3B, top panel). 

Markers for the oligodendrocyte lineage (PDGFRa, Plp1, Olig1, Olig2, Dct) showed a more 

homogeneous distribution along the dSVZ, but seem also to be biased to the dmNSCs 

population (Figure 3B, middle panel). Finally, proneuronal genes (Eomes, Sp8, Dlx2, Vax1, 

Ebf1) were generally enriched in dlNSCs or in lNSCs (Figure 3B, bottom panel), implying 
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spatial segregation of lineages in the dSVZ. Taken together, astroglial markers, including 

Hopx, exhibit a converse expression gradient in dNSCs compared to neuronal markers (Figure 

3C). Interestingly, target genes for patterning molecules, i.e. Wnt and Shh, showed that Wnt 

signaling is homogenously distributed throughout the dorsal wall (Tcf, Lef1) whereas, Gli1 is 

highly expressed in lNSCs (Figure 3A, bottom panel). Another signaling pathway target gene, 

Id3, used as a readout for Bmp signaling, showed very high enrichment in dmNSCs (Figure 

3B, top panel; Azim et al., 2014b; Ihrie et al., 2011; Hollnagel et al., 1999). 

To test if NSCs harbored by those two subdomains are biased to generate specific neural 

progenies, we performed targeted EPO of the dmSVZ and dlSVZ (Figure 3D). At a short time 

point (i.e. 12 hrs) electroporation of both microdomains resulted in efficient GFP expression 

in numerous radial glial cells (data not shown). At later time points (14 days post 

electroporation, dpe) the high efficiency of the targeted EPO was still evident, as assessed by 

analysis of the GFP optical density in the dSVZ (Figure S4). This was done using our recently 

developed software “FlashMap” (Chapter 1). Both regions had given rise to a large cohort of 

progenies whose distribution and fate appeared to be strikingly different (Figures 3C-F). Thus, 

in accordance to the transcriptional profile of dlNSCs, we found a large population of GFP+ 

neurons in the OB (93.3±11.1) following dorso-lateral EPO, while that derived from the dorso-

medial EPO remained small (11.1±1.8; Figures 3E to 3G). Contrary, the population of 

astrocytes around the LV, assessed by morphology and GFAP expression (Figures 3H and 

3I), was substantially larger after dorso-medial EPO than after dorso-lateral EPO (34.6.5±6.3 

vs. 16.5±4.1; Figure 3J). Taken together, dmNSCs are clearly biased to the generation of the 

astrocytic lineage (74.9±3.0% astrocytes vs. 25.1±3.0% neurons), while dlNSCs mainly 

produce neurons (15.2±3.8% astrocytes vs. 84.8±3.8% neurons; Figure 3K). 

 Altogether, these findings suggest a high degree of heterogeneity within the dSVZ, with 

subdomains containing NSCs biased towards either an astrocytic or a neuronal fate. 
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Figure 3. Lineage-specific markers highlight acquisition of divergent cell fates by NSCs 
located in different dSVZ subdomains. 
(A+B): Heatmaps show enrichment of transcripts in NSCs of distinct SVZ regions (dmNSCs, 
dlNSCs, lNSCs) against the dorsal environment (dSVZ). Transcripts of stem cell, proliferation 
and neurogenesis markers (A; top panel) and Wnt/Shh pathways specific markers were 
analysed (A; bottom panel). Selected markers of the astrocytic lineage and Hopx (B; top panel), 
oligodendrocytic lineage (B; middle panel) and the neuronal lineage (B; bottom panel) were 
analysed. Astrocytic and neuronal markers show regional enrichment (in dmNSCs and 
dlNSCs, respectively), while oligodendrocytic makers were more homogeneously distributed 
along the dSVZ. Note that Hopx transcripts were enriched in dmNSCs. 
(C): Scheme representing the counter gradients of the expression of Hopx (red) and astrocytic 
markers (yellow) versus the expression of neuronal markers (green) in dNSCs. 
Oligodendrocytic markers (blue) do not show such a clear spatial enrichment. 
(D): Dorso-medial and dorso-lateral targeted electroporations highlight divergent lineage 
outputs of the two dorsal subdomains. Scheme shows the orientation of the electrodes for the 
targeted electroporation at P2 and sacrificing of animals at 14 dpe. 
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(E-F): Representative micrographs of OB sections after dm and dlEPO (E+F). Cell counts of 
OB neurons indicate that neurogenesis of the dSVZ is mainly provided by dlNSCs (G).  
(H-J): Representative micrographs of LV containing sections after dm and dlEPO. Cells with 
astrocytic fates were identified according to their morphology and GFAP expression (H+I). 
Cell counts of astrocytes indicate that astrogenesis of the dSVZ is mainly provided by dmNSCs 
(J). 
(K): Graph of the fractions of astrocytic and neuronal progenies from NSCs of these two 
subdomains. It highlights that dmNSCs are biased to the production of astrocytes, while 
dlNSCs mainly produce neurons. 
Animals: (A) 4-5 per n; (B) dmEPO, n=4; (B) dlEPO, n=5. 
Scale Bars: F+I (overviews) = 200 μm; F+I (crops) = 25 μm. 
Abbreviations: dpe, days post electroporation; dSVZ, dorsal subventricular zone; dmNSCs, 
dorso-medial NSCs; dlNSCs, dorso-lateral NSCs; lNSCs, lateral NSCs; EPO, electroporation. 
 

3.4.4. Hopx Expressing NSCs are Biased to Acquire an Astroglial 

Fate 
To confirm a direct relationship between Hopx expression and the generation of distinct neural 

lineages, we fate-mapped Hopx expressing NSCs. We co-electroporated an inducible 

fluorescent plasmid (pFloxpA-DsRED express) with a GFP plasmid (pCX-GFP) in the dSVZ 

of P1 HopxCreERT2 mice and analyzed brain sections at 7 and 21 dpe (Figures 4A and 4B). 

Activation of the Cre-recombinase in Hopx+ NSCs led to DsRED/GFP expression (hereafter 

called DsRED) in electroporated cells and their progenies, while the Hopx- lineage expressed 

GFP only (Figure 4C). Electroporated cells distribution and cell fate were assessed at both 

time points on serial sections encompassing the LV and the OB (Figures 4D and 4E). Our 

results reveal the presence of DsRED+ and GFP+ cells at both 7 and 21 dpe (Figure 4F). 

Remarkably, while the majority of GFP+ cells were found in the OB (7 dpe: 66.2±2.1%; 21 

dpe: 77.7±2.5%), where they acquired the typical morphology of granule neurons, the majority 

of DsRED+ cells remained in close proximity to the dSVZ, i.e. in the corpus callosum (7 dpe: 

64.6±5.6%; 21 dpe: 63.8±6.8%) at both time points (Figure 4G). To confirm the early 

acquisition of distinct neural fates by Hopx+ and Hopx- NSCs, we investigated GFAP 

expression by DsRED+ and GFP+ in the periventricular regions at 21 dpe. This analysis 

confirmed that the fraction of GFAP+ astrocytes produced by Hopx+ NSCs was approximately 

twice as much as the fraction generated by Hopx- NSCs (59.2±7.1% vs. 32.8±4.3%, Figure 

4H).  
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Taken together, these findings validate for the first time that the dSVZ consists of two 

subdomains harboring specialized NSC populations biased to acquire distinct fates (medial: 

astrocytes; lateral: neurons). Furthermore, our results identify Hopx as a marker of a 

subpopulation of NSCs biased to generate astrocytes. 

 

 

 

 

 

 

 

 

 

 

 
Figure 4. Fate mapping of Hopx+ and Hopx- lineages by electroporation of an inducible 
fluorescence plasmid. 
(A-C): EPO of a pCX-GFP and an inducible pFloxpA-DsRed plasmid (1:2; A) allows lineage 
tracing of both populations at short- (7 dpe) and long-term (21 dpe; B). This approach results 
in GFP only progenies from Hopx- NSCs, whilst Hopx+ NSCs give rise to DsRED/GFP (or 
DsRED) progenies (C).  
(D+E): Representative micrographs at 21 dpe of a LV (D) and OB (E) section. Astrocytic fate 
was assessed according to morphology and GFAP expression (D, crops). 
(F): Graph of absolute numbers of recombined cells (red) and GFP+ (green) in LV and OB 
sections at 7 dpe and 21 dpe. 
(G): Graph showing the fractions of recombined and GFP+ cells harbored by LV and OB 
sections at 7 dpe and 21 dpe. 
(H): Graph showing the fractions of cells from the recombined and GFP population exhibiting 
astrocytic traits 7 dpe and 21 dpe.  
Animals: 7 dpe, n=5; 21 dpe, n=4. 
Scale bars: D (Dapi overview and fluorescence overview) = 100 μm; D (crops) = 25 μm; E 
(Dapi overview) = 500 μm; E (fluorescence overview) = 250 μm; E (crops) = 50 μm. 
Abbreviations: dEPO, dorsal electroporation; dpe, days post electroporation; dSVZ, dorsal 
subventricular zone; LV, lateral ventricle; NSCs, neural stem cells; OB, olfactory bulb; Tam, 
tamoxifen. 
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3.4.5. Expression of Hopx is Partly Dispensable During Astrogenesis 
To further explore the role of Hopx in regulating lineage specification in the postnatal dSVZ, 

we performed loss and gain of function (LoF; GoF) experiments and analysed the effects of 

these manipulations on the expression of the astrocytic markers, GFAP and S100β in the corpus 

callosum at P19 and 19 dpe, respectively (Figures 5A and 5B). First, the effect of Hopx loss 

in astrocytes was analysed by fate mapping the phenotypes of LacZ expressing astroglia in 
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both Hopx KO (HopxLacZ/LacZ) and Hopx heterozygous (HopxWT/LacZ) mice. Quantifications of 

S100β and/or GFAP in β-galactosidase (βGal) expressing cells revealed no significant 

differences in their numbers. The majority of βGal+ cells, in both backgrounds, maintained 

their astrocytic identity, shown by their expression of GFAP (Het: 86.0±2.3%; KO: 

86.7±3.7%). However these populations were nearly free of S100β expression, which labels a 

fraction of GFAP astrocytes (Figure 5C). These results are largely in agreement with those 

obtained by the GoF approach. Hopx overexpression only resulted in minor, non-significant 

changes in the fraction of S100β- GFAP+ cells following Hopx overexpression (increase from 

40.9±7.1% to 56.5±3.7%), while the other two groups (GFAP- S100β+; GFAP+ S100β+) were 

slightly decreased (Figure 5D). Interestingly, the number of cells expressing GFAP in the CC 

was however dramatically increased following Hopx GoF (Figure 5E). Together, these results 

suggest that Hopx is not a major determinant for astroglial specification of postnatal NSCs. 

The expansion of the cohort of GFAP expressing cells observed following Hopx GoF, rather 

suggests its role in amplifying the number of astrocytes being produced or their survival. 
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Figure 5. Hopx LoF and GoF approaches. 
(A): Hopx KO and heterozygous animals were used to analyse the βGal+ populations at P19.  
(B): GoF experiments were performed by dorsal electroporation of pCAG-Cre and pCMV-
Hopx plasmids (1:2) into RosaEYFP animals. Animals were sacrificed 19 dpe. Analysis of 
YFP+ cells was performed in the CC.  
(C-E): Quantifications of co-expression of S100β and GFAP in the βGal and YFP populations 
were performed in the CC. No differences in the fractions expressing S100β and/or GFAP were 
observed after Hopx KO or overexpression (C+D).  
However, the total size of the YFP expressing population was increased after Hopx 
overexpression, notably the GFAP+ fraction.  
Animals: (C) Hopx+/-, n=4; (C) Hopx-/-, n=4; (D) Ctrl., n=4; (D) GoF, n=4. 
Scale Bar: B = 50 μm. Abbreviations: dEPO, dorsal electroporation; dpe, days post 
electroporation; LV, lateral ventricle; Ctrl., control; GoF, gain of function; LoF, loss of 
function. 
 

3.4.6. Hopx Overexpression Regulates the Appearance of Outer 

Radial Glial Cells 
Driven by these observations as well as by recent reports of Hopx expression in outer radial 

glial cells in humans (Pollen et al., 2015 ; Thomsen et al., 2016), we next aimed at more directly 

assessing the effect of Hopx overexpression on NSCs behavior by  sacrificing the animals at 

an earlier time point, i.e. 4 dpe (Figure 6A). Interestingly, we found a 200% enrichment of 

YFP+ cells presenting a typical radial morphology, whilst non-RG like cells were less affected 

(Figures 6B and 6C). The fraction of RG cells and none-RG cells were uniformly increased 

along the medial to lateral aspects of the dSVZ (Figure S5). In line with these results 

quantifications confirmed an increased fraction of RG cells, expressing Mcm2 4 dpe in the 

dSVZ (Hopx GoF: 73.6±4.5%; Ctrl.: 60.6±3.7%; Figures. 6D and 6E). Remarkably, some of 

the RG cells observed following Hopx overexpression showed characteristics of oRG, a 

discrete population of ectopically located RG cells observed during corticogenesis in mice 

(Wang et al., 2011), which becomes predominant in humans. These oRG morphology 

exhibited a long basal process, no apical process, and were located away from the LV surface 

(most of them were found in the CC) where they maintained expression of NSC markers (i.e. 

Mcm2, Sox2; Figures 6F and 6G). To investigate the later consequences of the induction of 

this large population RG/oRG cells, the number of YFP+ cells in the dSVZ, RMS and OB 

(Figures 6H to 6L), were quantified at 19 dpe. At this late time point, an increased number of 

glial cells in the CC (Figure 5E) could be detected, as well as a significant increase in the 
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number of neurons in the OB (Figure 6L). However, no ectopic neurons were observed in the 

cortex after Hopx overexpression, indicating that the increased neurogenesis remains destined 

to the OB. 

Taken together, these observations indicate that Hopx overexpression increases RG cells 

number and induces the appearance of oRG shortly after electroporation, resulting in an 

increased germinal activity and a larger number of astrocytes and neurons being produced. 
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Figure 6. Hopx overexpression enlarges the pool of RG cells and results in an increased 
germinal activity. 
(A):  Quantifications were performed at 4 and at 19 dpe.  
(B-E): The YFP+ populations were analyzed for RG morphology (B+C) and proliferative 
potential (D+E) at 4 dpe. The population of RG cells, but also none-RG cells were increased 
following Hopx overexpression (C). A higher fraction of the YFP population was positive for 
the proliferation marker Mcm2 (E).  
(F+G): YFP+ cells with characteristics of oRG were observed 4 dpe, showing Sox2 (F) and 
Mcm2 (G) co-expression.  
(H-L): The enlarged population of RG cells after Hopx overexpression results in an increased 
overall population of YFP cells at 19 dpe. 
Animals: 4 dpe Ctrl., n=7; 4 dpe GoF, n=5; 19 dpe Ctrl., n=5; 19 dpe GoF, n=6. 
Scale bars: B (overviews) = 250 μm; B (crop) = 25 μm; E = 25 μm; G+H (Dapi overviews) = 
1 mm; G+H (fluorescence overview) = 500 μm; G+H (crops) = 25 μm; J+L = 500 μm. 
Abbreviations: dEPO, dorsal electroporation; dpe, days post electroporation; Ctrl., control; 
GoF, gain of function; CC, corpus callosum; dSVZ, dorsal subventricular zone; RMS, rostral 
migratory stream; LV, lateral ventricle. 
 

3.5. Discussion 
In this study, we show that TFs of specific neural lineages are enriched in specific regions of 

the postnatal SVZ in agreement with their capacity to produce defined neural cell types. By 

selecting one of these transcripts, we show that NSCs are spatially segregated and primed to 

differentiate towards specific neural fates. Our results further identify Hopx as a marker of 

NSCs heterogeneity and suggest its association with the emergence of germinal traits observed 

during primate corticogenesis.   

The diversity of neural subtypes generated by NSCs of the SVZ after birth is much larger than 

first believed. The concept of SVZ regionalisation in which the genesis of distinct neural 

lineages are spatially and temporally regulated is being increasingly investigated (reviewed in 

Fiorelli et al., 2015; Azim et al., 2016). NSCs located in SVZ microdomains originate from 

distinct regions of the developing forebrain (Fuentealba et al., 2015) and generate a large 

diversity of neural cells, including neuronal subtypes depending on the expression of specific 

transcriptional programmes (Merkle et al., 2007; Merkle et al., 2014; Fernández et al., 2011; 

Young et al., 2007). Consequently, expression of defined TFs is likely to directly correlate 

with the acquisition of specific neural fates, a concept that we have explored in the present 

study. We took advantage of the whole genome transcriptome of region-specific postnatal 

NSCs that we have recently resolved. Our analysis revealed that the major class of mRNA 
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transcripts differing in expression in region-specific NSCs, were transcriptional regulators, 

rather than the expression of receptors for signaling pathways, signaling ligands or metabolic 

processes (Azim et al., 2015). Additionally, meta-analysis of TFs expressed in dorsal and 

lateral NSCs with datasets of distinct neural lineages (Cahoy et al., 2008) highlighted 

transcriptional networks that correspond to the lineages derived from microdomain-specific 

NSCs. Together, our results suggest that NSCs are primed to acquire specific fates by the early 

expression of lineage-specific TFs. Such an early priming is supported by a recent single cell 

RNA-Seq characterization of SVZ NSCs (Llorens-Bobadilla et al., 2015), as well as by 

observations made in other tissues (Kim et al., 2016). 

Exploring the spatial heterogeneity and restricted nature of NSCs in generating specific neural 

lineages will be greatly facilitated by the identification of regionalized NSCs markers. In this 

study, we identified Hopx as such a marker. Using two separate approaches, we show that 

Hopx expression is confined to a subpopulation of dNSCs, while it is consistently absent from 

lNSCs. These observations do not support recent reports highlighting expression of Hopx in 

quiescent NSCs, as these cells can also be found in the lateral SVZ  (Codega et al., 2014). Our 

results rather suggest an association of Hopx with the astrocytic lineage, although they do not 

support a direct role of Hopx in specifying astrocytes. Indeed, Hopx loss of function and gain 

of function experiments revealed that it is redundant during initial astrogenesis from dNSCs, 

and suggest that it acts as a modulator of differentiation and acquisition of specific astrogenic 

traits such as GFAP expression, such as previously reported in other cell lineages (Obarzanek-

Fojt et al., 2011). Importantly, although Hopx expression is observed in a subpopulation of 

NSCs that rapidly loses its ability to produce neurons but instead produces astrocytes, it cannot 

be considered as a pan-astrocytic marker. Indeed, whereas astrogenesis can be observed 

throughout the brain, Hopx expression is restricted to a subdomain of the postnatal dSVZ, 

namely its dorso-medial most region and is therefore likely to be associated with the generation 

of a subpopulation of astrocytes. Astrocytes heterogeneity has been recently highlighted in a 

number of studies. Fate mapping studies revealed that astrocytes are allocated to spatial 

domains in accordance with their embryonic sites of origin in the ventricular zone (Tsai et al., 

2012). Further, transcriptomic analysis of astrocytes isolated from various brain regions reveal 

heterogeneous expression of several astrocytic markers, including Hopx (Morel et al., 2017). 

Interestingly, Hopx was reported to show a gradient, with higher expression levels in the dorsal 
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forebrain (cortex/hippocampus) compared to ventral subcortical (thalamus/hypothalamus) 

regions. Regional differences in astrocytes have been recently shown to influence neuronal 

synaptogenesis and maturation through secretion of several extracellular matrix proteins 

(Eroglu and Barres, 2010). In addition, density of astrocytes vary greatly between brain regions 

(Azevedo et al., 2009). The role of Hopx in influencing regional astrocytes properties and/or 

density remains to be explored. 

Remarkably, postnatal Hopx overexpression increased the number of RG cells and induced the 

appearance of ectopic located cells resembling oRG. While oRG cells are rare in embryonic 

mice (Wang et al., 2011), their number increases dramatically in primates to form a secondary 

germinal region (i.e. the outer SVZ, or oSVZ) that contributes to the expansion of upper 

cortical layers during embryogenesis (Lewitus et al., 2013, Smart, 2002). Recently, a number 

of studies have reported Hopx expression in human oRG (Pollen et al., 2015; Thomsen et al., 

2016). Furthermore, ectopic overexpression of the hominoid-specific gene Tbc1d3 into radial 

glia in rodents, induces Hopx positive oRGs that contributes to cortical folding (Ju et al., 2016). 

In line with these observations, our overexpression results propose a novel instructive role of 

Hopx in oRG cells formation. They further reveal that ectopically generated oRG cells 

generated after birth may result in an increased olfactory neuronal yields. Taken together, our 

results suggest differential outputs of Hopx overexpression in dorso-medial and dorso-lateral 

NSCs, which are respectively Hopx+ and Hopx-. Thus, Hopx overexpression results in 

consolidating astroglial fates, in gliogenic NSCs, whilst inducing an RG phenotype in those 

primed to produce neurons. Consequently, Hopx regulates uniquely the numbers of both 

astrocytes and neurons as revealed by our quantifications.  

The mechanisms by which Hopx mediates its functions remains largely unknown. Hopx is an 

atypical TF, which does not bind DNA per se. Therefore, it is likely modulating other TFs 

and/or effectors of signaling pathways at the post-transcriptional level. An interaction of Hopx 

with SRF has for example been demonstrated during cardiac development (Shin et al., 2002), 

but is unlikely to occur in the SVZ where SRF expression is remains low (data not shown). A 

more likely function of Hopx is the modulation of dorsally active signaling pathways. Our 

results show an activity of Bmp and Wnt pathways in dNSCs (see also Azim et al., 2014a; 

Azim et al., 2017), which have been demonstrated to link astrogenesis with neurogenesis 

during corticogenesis (Gross et al., 1996; Nakashima et al., 2001; Tiberi et al., 2012). 
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Reciprocal signaling between Bmp and Wnt has been reported in multiple progenitor 

populations (He et al., 2004; Kandyba et al., 2013; Plikus et al., 2008; Song et al., 2014; 

Genander et al., 2014). It is tempting to speculate that Hopx expression in the dorsal SVZ plays 

a role in the integration of these two signaling pathways as recently demonstrated in 

cardiomyoblasts (Jain et al., 2015). Future studies aimed at manipulating the activity of these 

two signaling pathways in Hopx KO animals may allow addressing these questions and 

investigate the role of extrinsic signals integration in lineage fate specification of neighbouring 

populations of NSCs. Other signaling pathways are likely to influence the pattern of Hopx 

expression and may have been involved in the evolution in the pattern of Hopx expression 

observed in primates. It is interesting to note that Hopx expression in the mouse SVZ follows 

the pattern of maturation of ependymal cells which might gradually restrict RG cells contact 

with the cerebrospinal fluid (Spassky et al., 2005). This combined with the expression of Hopx 

in oRG which lack apical processes in primates, suggest that an unknown cerebrospinal fluid 

derived signal may regulate Hopx expression. Such a signal might counteract or modulate Shh 

signaling which was recently identified in regulating oRG cell formation (Wang et al., 2016). 

Interestingly, Shh manipulation in mice results in oRG and gyri formation in the medial most 

aspect of the cortex, where high Hopx expression is evident. Expression of Hopx in primate 

oRG might have evolved from this original pattern of expression for the dual coupling of oRG 

cells and cortex expansion.  

In summary, our work identifies for the first time that the dSVZ is much more heterogeneous 

than previously thought in terms of spatial segregation and early-priming of NSCs in 

generating specific neural lineages. The abundant expression of the TF Hopx contributes to the 

intraregional heterogeneity of the dSVZ in rodents, while its overexpression suggests its 

association with changes observed in germinal regions throughout evolution.  
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3.7. Supplementary Figures 
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Figure S1. Analysis of TFs enriched in regionally separated NSC population.  
(A+B): Heatmaps confirming the enrichment of selected TF transcripts in dNSC (vs. lNSCs 
(A)) and lNSCs (vs. dNSCs (B)), including the transcriptional profile in TAPs and the 
environment (SVZ) of those two regions.  
(C): Heatmap of in P4 lNSCs enriched TFs compared to their dorsal counterparts (≥1,8 folds 
and p.Value<0,05).  
(D): List of the top ten TFs enriched in lNSCs.  
(E): Lineage-specific meta-analysis of lNSC TFs using the dataset from the Barres group: 
oligodendrocytes (purple, 3/51); astrocytes (yellow, 0/51); neurons (turquoise, 42/51).  
Abbreviations: transient amplifying progenitors, TAPs; neural stem cells, NSCs; 
subventricular zone, SVZ; oligodendrocytye precursor cells, OPCs. 
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Figure S2. Spatial heterogeneity of Hopx expression at P4.  
(A-C): Representative pictures demonstrate Hopx expression in a P4 animal along the rostro-
caudal axis. The top and middle panel show overviews (A) and higher magnification pictures 
(B) of tissue stained with the rabbit anti Hopx antibody. The bottom panel shows higher 
magnification pictures of tissue stained with the mouse anti Hopx antibody (C). Note that both 
antibodies exhibit the same spatial pattern of Hopx expression. 
Scale bars: A+B = 1 mm; C = 500 μm. 
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Figure S3. Confirmation of lineage specificity of selected transcripts using the dataset 
from the Barres group.  
5 transcripts of the oligodendrocytic lineage (PDGFRa, Dct, Plp1, Olig1, Olig2), 5 of the 
neuronal lineage (Ebf1, Dlx2, Eomes, Sp8, Vax1) and 5 of the astrocytic lineage (Id3, Aldh1l1, 
Hopx, Aqp4, Fgfr3) were selected.  
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Figure S4. Optical density measurements of GFP reveal the high efficiency of targeted 
dorso-medial and dorso-lateral EPO. 
(A+B): Heatmaps representing the relative optical density of GFP expression in the dorsal 
SVZ of different individuals following dorso-medial (A) or dorso-lateral EPO (14 dpe; B). 
Heatmaps are color coded (0 = dark blue; highest measured value = dark red) and generated 
with our recently developed software “FlashMap” (Chapter 1). Heatmap orientation is: left = 
rostral; right = caudal; top = medial; bottom = lateral. 
(C+D): Heatmaps representing the averaged values of 4 animals those received dorso-medial 
(C) or dorso-lateral EPO (D). 
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Animals: dmEPO, n=4; dlEPO, n=4. 
Scale bars: A-D = 500 μm 
Abbreviations: dpe, days post electroporation; EPO, electroporation; dmEPO, dorso-medial 
electroporation; dlEPO, dorso-lateral electroporation; SVZ, subventricular zone. 
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Figure S5. No difference in enlargement of the population after Hopx overexpression 
along the dSVZ. 
(A-C): Full population (A), none-RG cells (B) and RG (C) are increased 4 days following 
Hopx overexpression. No difference in the enlargement between the medial and the lateral 
subdomain of the dSVZ was observed. Graphs are presented in percentage of the change 
normalized for control. 
(D): The fractions of the RG population were equally increased in the medial and the lateral 
subdomain of the dSVZ following Hopx GoF. 
Animals: Ctrl., n=7; GoF, n=5. 
Abbreviations: Ctrl., control; dSVZ, dorsal subventricular zone; GoF, gain of function; RG, 
radial glia. 
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4. General Discussion 

4.1. Summary and Open Questions 
Germinal regions are not homogeneous, but highly heterogeneous. This heterogeneity relies 

on transcriptional differences, which underline the production of divergent cell lineages. New 

methods allow generating enormous transcriptional datasets to identify genes differentially 

expressed between distinct domains of germinal regions. Recently we demonstrated an 

unexpected level of transcriptional heterogeneity between the dorsal and lateral subventricular 

zone (SVZ), as well as in the neural stem cells (NSCs) and transient amplifying progenitors 

(TAPs) harbored by those microdomains. These findings underline the need to develop 

appropriate tools to integrate spatial information to the study of gene expression within the 

SVZ. To this end, we have developed a new tool, i.e. “FlashMap”, to analyze and map protein 

expression along the full rostro-caudal and dorso-ventral extent of the SVZ (Chapter 1). 

Germinal region heterogeneity does not stop at the mesoscopic scale (i.e. at the regional scale), 

but probably goes beyond. The second chapter of my thesis indeed suggests that previously 

described SVZ microdomains (Azim et al., 2015; for review Fiorelli et al., 2015) can be further 

subdivided. My results further support existence of a heterogeneity at the microscopic scale, 

i.e. at the cellular scale. Thus, neighboring NSCs appear to express different transcription 

factors that influence them respective behaviors and guide them through the acquisition of 

different fates. In the chapter 2 we described and discussed a new level of regional and lineage-

specific heterogeneity in the dorsal SVZ based on Hopx expression (Chapter 2). 

In the introduction of this thesis, I have discussed how advances in techniques have influenced 

our understanding of NSCs biology, from the macroscopic (i.e. the demonstration of persisting 

germinal regions in the postnatal brain) to the mesoscopic scale (the subdivision of these 

germinal regions in microdomains). It is likely that emerging techniques will now allow us to 

investigate this heterogeneity at the microscopic scale. The development of new approaches is 

a pre-requisite to perform these studies. Indeed, current approaches such as BrdU injection, 

regular electroporation (EPO), as well as most transgenesis approaches only allow studying 

NSCs at the population level. This does not allow concluding if neuron subtypes, astrocytes 

and oligodendrocytes arise from single NSCs, or if multiple subpopulations of unipotent NSCs 

co-exist. Here I will discuss current evidences, including my own results, supporting 
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heterogeneity at the cellular level. I will also discuss how single cell approaches in 

transcriptomic and histology are currently changing our understanding of NSCs identity.  

 

4.2. The Potency of Postnatal NSCs: From a Population of 

Multipotent NSCs to Populations of Restricted NSCs 
In vivo and in vitro evidences indicate that NSCs gradually lose their potency and get more 

and more restricted throughout central nervous system (CNS) development. 

 

4.2.1. Drosophila Neuroblasts as a Model of Progressive Restriction 
Drosophila neural precursors (i.e. neuroblasts) have been extensively studied, as a model to 

investigate the progressive fate restriction and plastic potential of NSCs. These precursors have 

been shown to sequentially express the transcription factors (TFs) Hunchback, Krüppel, Pdm 

and Castor. These transcription factors have been suggested (at least Hunchback and Krüppel) 

to be necessary and sufficient for the sequential generation of distinct neuronal subtypes. Thus, 

neuronal subtypes produced at different time points, inherit and maintain the expression of 

these TFs, while they are rapidly downregulated in neuroblasts (Figure 1A). This temporal 

expression defines the fate and spatial destination of the newborn neurons. For example, the 

expression of Hunchback and Krüppel in early born neurons defines their deep layer position 

as well as the development of long axons (Isshiki et al., 2001; Pearson and Doe, 2003). Such 

temporal cues are called temporal identity factors (Kohwi and Doe, 2013). A lack of 

Hunchback or Krüppel expression in neuroblasts leads to a lack of the corresponding progeny. 

On the other hand, forced expression of one of these early factors leads to a forced generation 

of the corresponding progeny. However, this effect is only observed until the fifth division 

(Isshiki et al., 2001; Figure 1B). Therefore, it has been suggested that there is a temporal 

competence window during which such manipulations can be successfully performed (Cleary 

and Doe, 2006; Kohwi and Doe, 2013). 

Taken together, Drosophila neuroblasts represent a relevant example for the sequential 

generation of distinct cell types, and support a progressive loss of their competence over time. 
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Figure 1. Drosophila neuroblasts as a model of progressive fate restriction. 
(A): Illustration of the sequential expression of Hunchback (HB), Krüppel (KR), Pdm and 
Castor (CAS) by Drosophila neuroblasts (NB). While this gene expression is transient in 
neuroblasts, progenies retain gene expression and acquire a gene specific fate. 
(B): Illustration of the effects resulting from a disturbance of this sequence. Ablation of HB or 
KR leads to a lack of the respective progenies. Forced expression of HB or KB leads to a forced 
generation of the corresponding progenies (modified from (Isshiki et al., 2001)). 
Abbreviations: NB, Neuroblast; HB, Hunchback; KR, Krüppel; Cas, Castor; LoF, loss of 
function; GoF, gain of function. 
 

4.2.2. In Vitro and In Vivo Evidences Suggest that Cortical 

Progenitors Progressively Lose Their Potency to Produce 

Early Born Neurons 
In vitro experiments suggest a similar situation in mammals. Time-lapse video microscopy in 

clonal cultures of cortical progenitors demonstrated their generation of distinct progenies 

following a strict sequence, i.e. first neurons then glial cells (Qian et al., 2000). Regarding the 

neurogenesis phase, another level of sequential lineage generation has been demonstrated. It 

has been shown that the order of neuron subtypes generation, destined to different cortical 

layers, is intrinsically programmed and preserved in vitro. Further, the competence of cortical 

progenitors appears to become increasingly restricted. Noticeably, mid-gestational progenitors 

can still be manipulated to generate early neuronal fates, while late-gestational progenitors 

have lost this competence (Shen et al., 2006). Interestingly, adult NSCs exhibit a lineage 

restriction and appear to be bipotent in vitro. Clones have been found to consist of neurons and 

astrocytes or oligodendrocytes and astrocytes. However, neurons and oligodendrocytes were 

never found within the same clone (Ortega et al., 2013). Taken together, this in vitro 
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experiments suggest not only a sequential fashion of embryonal lineage and subtype 

generation, but also a certain degree of potency restriction postnatally. 

This progressive loss of competence by progenitor cells has also been shown in vivo by 

transplantation experiments. Early heterochronic (temporal) transplantation approaches have 

found that the potential of different progenitor populations to generate distinct neuronal 

subtypes becomes gradually restricted over time (for review Gaiano and Fishell, 1998). For 

instance, cycling progenitors from late stages of the ferret corticogenesis, keep their intrinsic 

restriction, even if transplanted into an early stage environment. Indeed they keep generating 

upper layer neurons and fail to produce deep cortical layers, which are normally generated at 

this age (Frantz and McConnell, 1996). In contrast, early progenitors are able to adapt to the 

host environment to generate upper layer neurons, when transplanted into a late stage 

environment (Desai and McConnell, 2000). These original experiments support a gradual fate 

restriction of cortical progenitors, a model that is still accepted today. 

More recent observations question this fate restriction and suggest that postnatal and adult stem 

cells can give rise to a larger diversity of cell types than previously thought. Thus, ex vivo 

experiments showed that postnatal and adult SVZ explants have the capacity to generate 

pyramidal neurons. In this experiments, adult SVZ explants were exposed to an embryonic 

environment by juxtaposing them to organotypic slices of the pallium. Neurons were produced 

by the SVZ explants, which invaded the pallium. Their expression of Tbr1 suggested their 

acquisition of a glutamatergic phenotype, although their maturation could not be investigated 

at long term (Sequerra et al., 2010).  

These observations challenge the current model of a gradual fate restriction proposed by 

McConnell. They suggest that postnatal and adult NSCs, under specific experimental 

conditions, can generate cell types produced at earlier developmental time points. These 

discrepancies may be explained by the identity of the transplanted cells. While in the first two 

studies only cycling progenitors were transplanted, the third study used SVZ explants, which 

also contain quiescent NSCs. These quiescent NSCs have been recently suggested to have an 

embryonic origin. Thus, a subpopulation of radial glial cells would become quiescent between 

the embryonic day 13.5 (E13.5) and E15.5 (Furutachi et al., 2015; Fuentealba et al., 2015) and 

remain in the SVZ, to be “reactivated” at postnatal time points. It is tempting to speculate that 
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these cells may keep their competence to generate cortical neurons (for review Donega and 

Raineteau, 2017). 

Altogether, these observations suggest a complex cellular heterogeneity of the postnatal SVZ, 

with the presence of subpopulations of NSCs showing distinct competences juxtaposed. 

Addressing this complexity cannot be done at the population level, but requires the 

development of clonal approaches to follow the fate of individual NSCs. 

 

4.3. Clonal Approaches in Histology 
Original in vivo clonal approaches rely on the permanent but sparse labeling of NSCs within 

the germinal region of interest. This allows following the fates of single NSCs over extended 

periods. These approaches are, however, time-consuming, in particular when progenies 

distribute throughout large areas. Sparse labeling is suitable for clonal analyses in the adult 

dentate gyrus (DG), as clones stay relatively close to their region of origin (<150 μm within 2 

months; Bonaguidi et al., 2011). Sparse labeling can also be used for clonal analyses of 

embryonal NSCs. While these progenies migrate longer distances, they distribute along 

cortical columns regardless of the cell type (Gao et al., 2014). This allows to differentiate 

clones if the labeling is achieved sparsely. However, the situation in the postnatal SVZ is 

strikingly different. In addition to their migration of long distances, different lineages are 

destined for different destinations. Therefore, just one single NSCs should be labeled per 

animal. This is, however, very time-consuming and almost impossible to achieve, guarantee 

and control.  Later approaches have tried to circumvent this main limitation. They make use of 

multiple markers for a retrospective identification of single clones.  These techniques include 

bar coding of progenitors and multicolor approaches. 

 

4.3.1. Sparse Labeling as a First Approach for Clonal Analyses 
First attempts were made by infusing low titers of a retrovirus in the ventricular system of rat 

embryos. Postnatal analyses of multiple animals suggested neuronal- or glial-specific clones 

in the cortex and striatum. In addition, neuronal clones were often found to be restricted to 
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specific (deep or superficial) cortical layers. These results support the coexistence of fate 

restricted progenitors in the developing CNS (Krushel et al., 1993).  

Later studies made use of the Cre-Lox system to perform clonal analyses after inducing 

minimal recombination. The mouse line expressing Cre under the control of the Thy-1.2 

promoter can be used for achieving such “sparse recombination”. Their crossing with Z/EG 

mice leads to sparse labeling of radial glia (RG) cells in embryos, which give rise to cortical 

columns. Estimations of the diversity of lineages within single columns in adult mice, revealed 

that 95% contained both astrocytes and neurons. Interestingly, the astrocytes were found to be 

generated later than neurons. While columns are completely free of astrocytes at E18, cells 

with immature astrocytic morphologies appear at the postnatal day 1 at the apical end of the 

columns. The number of astrocytes observed in the columns increases substantially with age 

(Magavi et al., 2012). These results contrast with those obtained with the retroviral approach 

(see above), as they indicate that most RG cells are bipotent, i.e. are first generating neurons 

and then astrocytes at late embryonic stages. However, it is possible that these two approaches 

result in the labeling of distinct progenitor populations. 

Further clonal experiments were performed in adult mice. Bonaguidi et al. developed a single 

cell lineage tracing approach in the DG. This approach was based on the administration of low 

tamoxifen doses into nestin-CreERT2-Z/EG mice. Minimal recombination rates in the DG 

allow to distinguish clones with a high degree of confidence. Self-renewal of RG-like cells, 

the NSCs of the DG, and also multipotency of a significant fraction of clones was 

demonstrated. However, the fraction of multi-lineage clones (producing both neurons and 

astrocytes) was rather low compared to the single-lineage clones (1 month post injection: 

12.9% multi-lineage clones vs. 80.6% single-lineage clones vs. 6.5% undifferentiated clones; 

2 months post injection: 19.2% vs. 73.1% vs. 7.7%; Bonaguidi et al., 2011). One can conclude 

that there are indeed multipotent NSCs cells present in the adult DG, but they represent a minor 

fraction. Indeed, most NSCs appear to be committed to produce a single cell type, and are 

therefore unipotent. It is unlikely that these “unipotent” clones generate other cell types 

overtime. Thus, the germinal region of the adult hippocampus harbor a heterogeneous 

population of NSCs, with only a minority of them being multipotent.  
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The situation might be similar in the SVZ, which shows an even greater transcriptional 

heterogeneity than the subgranular zone of the dentate gyrus (Fiorelli et al., 2015). Performing 

such experiments in the SVZ is however more challenging. Indeed, cells produced by SVZ 

NSCs have the capability to migrate long distances to diverse forebrain regions (Fernández et 

al., 2011; Bayraktar et al., 2015). Performing a clonal analysis at long survival time points, 

therefore require the systematic sampling of a large region extending from the olfactory bulb 

(OB) to the lateral ventricle.  

To address this issue and to maximize the number of “clones” one can study in a single animal, 

multicolor approaches have been developed. The MADM (mosaic analysis with double 

markers) is such an approach. It is based on interchromosomal recombination driven by a Cre-

recombinase (Zong et al., 2005). It relies on the use of only two markers, which makes it 

suitable to investigate embryonic rather than postnatal SVZ NSCs potency. Sparse labeling of 

RGs by administration of low concentrations of tamoxifen allows to study individual clones 

during corticogenesis. Single clones were shown to give rise to both deep and superficial 

neurons if recombination was initiated between E10 and E13. Recombination at a later time 

point (i.e. E15) were mainly composed of superficial neurons only. This is in agreement with 

the inside-out sequence of neuron production during corticogenesis. Astrocytes and 

oligodendrocytes were also detected in clones. However, just 1 clone out of 6 harbored glia 

cells. This indicates that only a minor fraction of cortical RGs are truly multipotent and make 

the neurogenic to gliogenic switch (Gao et al., 2014). The discrepancy between the findings of 

Magavi (95% multi-lineage clones; Magavi et al., 2012) and Gao (17% multi-lineage clones; 

Gao et al., 2014) might be explained by differential induction of recombination. While Gao 

induced recombination not before E10, Magavi used the Thy-1.2 promoter to trigger Cre 

expression, which might be active already earlier. 

 

4.3.2. Bar Coding of Progenitors Exhibits a Subpopulation of 

Embryonal NSCs Entering Quiescence for Postnatal 

Preservation 
Another elegant, but also very challenging clonal approach, makes use of a QmGFP-OL 

retroviral library to integrate unique bar codes into different embryonic ventricular NSCs. 
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GFP+ progenies from embryonal infected NSCs can be detected postnatally in the OB, cortex, 

striatum, septum and hippocampus. The clonal relationship between cells is unraveled by 

examining the different bar codes across the entire population of GFP+ cells. This “tour de 

force” experiment allowed to demonstrate that postnatal OB interneurons and cortical, 

hippocampal, striatal or septal neurons are mostly unrelated. Further, it has been shown that 

most adult NSCs originate at E13.5-E15.5 by entering quiescence at this time. These NSCs 

keep their regional identity from E15.5 on, to generate distinct progenies in the adult OB 

(Fuentealba et al., 2015). These findings were corroborated by another group, which 

independently demonstrated that adult NSCs originate from embryonic stem cells that enter 

quiescence around E13.5-E15.5 (Furutachi et al., 2015). 

 

4.4. Development of Multicolor Approaches for High Throughput 

Clonal Analysis  
A solution for accurate and concomitant analysis of multiple clones in histology appears to be 

the development of multicolor approaches. A number of those approaches have been developed 

in the recent years, which remain to be fully exploited in the context of postnatal germinal 

activity. 

 

4.4.1. Brainbow Inaugurated the Era of Multicolor Clonal 

Approaches 
The Brainbow technique, is a powerful Cre mediated excision and/or inversion approach that 

stochastically labels multiple neighboring cells with cell specific color-codes. It has the power 

to label cells with approximately 89 distinct colors, which are different enough for 

discrimination (Livet et al., 2007). The beauty of this method is that the color coding is driven 

by Cre-recombinases. This allows the use of different Cre or CreERT2 reporter mice, which 

careful selection leads to a more accurate analysis. Further, the administration of minimal doses 

of tamoxifen may restrict the number of recombination to ensure the singularity of specific 

color codes. Cre-recombinases may also be electroporated into specific microdomains for 

spatial restriction and control of the number of recombination. Interestingly, the Brainbow 

technique is one of the rare techniques that was first developed in the mice CNS, then adapted 
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to other tissues and species (for review Weissman and Pan, 2015). For example another mouse 

line expressing the Brainbow-cassette under an ubiquitous promoter allowed investigations in 

the intestine (R26R-Confetti; Snippert et al., 2010). Further, the approach has been adapted to 

species like Drosophila melanogaster (Hampel et al., 2011) and zebrafish (Pan et al., 2011). 

Even a clonal deletion system in plants has been developed based on Brainbow (Wachsman et 

al., 2011). As a practical example of the applicability of the Brainbow-cassette, it has been 

used to demonstrate a limited self-renewal of adult SVZ NSCs (Calzolari et al., 2015). 

Further, the Brainbow-cassette has been integrated into plasmids for EPO approaches. The 

approach is called MAGIC (multiaddressable genome-integrative color) and consists of 

Brainbow-cassette transposon vectors, with specific expression in the cytoplasm (Cytbow), the 

cell membrane (Palmbow), the nuclei (Nucbow) or the mitochondria (Mitbow). The adaptation 

of Brainbow to the targeted EPO method does not only add a spatial component to the method, 

but also ensures its suitability for other species than mice, as illustrated in the chicken (Loulier 

et al., 2014). 

 

4.4.2. StarTrack Gives Insights into Restricted Potency of NSC 

Populations 
Another elegant multicolor approach, StarTrack, was developed by the Lόpez-Mascaraque 

laboratory. StarTrack consists of 6 fluorescence proteins (mT-Sapphire, mCerulean, EGFP, 

YFP, mKO, mCherry), each targeted to the cell nucleus (by human H2B histone fusion) or 

cytoplasm. The PiggyBac transposon system is used to stochastically integrate them into the 

genome, leading to unique color-codes of those 12 features in distinct NSCs. The inheritance 

of these color-codes by progenies ensures efficient clonal analysis. Fluorescent protein 

expression was initially driven by human GFAP promoters to investigate astrocyte 

heterogeneity. Briefly, in utero EPO experiments revealed that fibrous and protoplasmic clones 

are largely non-overlapping and emerge from separate lineages. In the case of pial clones, 

which reside in a region containing both protoplasmic and fibrous-like (pial) astrocytes, it has 

been shown that nearly 90% of the clones consist of one single astrocyte subtype. Clones 

showed mostly radial distribution and reside in a highly spatially restricted area in the corpus 

callosum, the cortex or cortical surface. Finally, single clones were constantly observed to be 
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associated with one specific blood vessel (García-Marqués and López-Mascaraque, 2013). 

These observations confirm the maintenance of an inherited spatial relationship of RG cells 

and their astrocytic progeny.  

Interestingly, this GFAP promoter driven plasmid mix also allowed the investigation of NG2 

glia, which are referred as oligodendrocyte progenitors (Zhu et al., 2008). This is due to the 

weak activity of the human GFAP promoter in the NG2 lineage, as described elsewhere 

(Matthias et al., 2003). Remarkably, these clones remained small during embryogenesis and 

early postnatal ages, but form the largest clones of the adult brain with an average of 170 cells 

extending up to 1.1 mm along the rostro-caudal axis (García-Marqués et al., 2014).  

The natural limitation of StarTrack for investigation of the NSCs potency is its selective 

expression in astrocytes (and NG2 glia), which is inherent to the use of the human GFAP 

promoter (García-Marqués and López-Mascaraque, 2013; García-Marqués et al., 2014). To 

circumvent this limitation, the Lόpez-Mascaraque lab developed a similar set of transposons 

under a ubiquitous promoter (UbC-StarTrack). In addition to the 12 fluorescence protein 

carriers and integration helper plasmid (CMV-hyPBase), a tamoxifen inducible Cre-Lox 

system was developed to further refine the method (Figure 2A). This allows a degradation of 

non-integrated transposons, and therefore preventing subsequent changes in color-codes. UbC-

StarTrack has already been tested in vitro (HEK cells), ex vivo (embryonic brain slices) and in 

vivo in utero. It has been shown to efficiently label cells of the neuronal, astroglial and 

oligodendroglial lineages (Figueres-Oñate et al., 2016). During the last year of my PhD, I 

attempted to establish this method in the lab to study the competence of individual postnatal 

NSCs to produce cells of distinct lineages (Figure 2B). 

 

Figure 2. The UbC-StarTrack technique is a powerful tool for clonal analysis of dorsal 
SVZ neural stem cells. 
(A): The UbC-StarTrack technique combines different transposon constructs that allow the 
random expression of combinations of fluorescent proteins. 12 constructs coding for 
cytoplasmic vs. nuclear (H2B) fluorescent proteins (mT-Sapphire: Ex. 399 – Em. 511; 
mCerulean: Ex. 433 – Em. 475; EGFP: Ex. 488 – Em. 507; YFP: Ex. 514 – Em. 527; mKO: 
Ex. 548 – Em. 559; mCherry: Ex. 587 – Em. 610) are used. The presence of the hyPBase 
transposase allows their random integration into the electroporated cells genome.  
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Non-integrated constructs are subsequently eliminated by activation of a co-electroporated 
Cre-recombinase, allowing unique combination of fluorescent proteins to be expressed by 
single neural stem cells and their progeny. 
(B): Preliminary results show successful implementation of this method, as demonstrated in 
the representative pictures of the SVZ following dorsal EPO.  
Note that expression of the fluorescence proteins is observed at different frequencies resulting 
in different color coding of single clones. Some constructs are integrated at a lower frequency 
(e.g. mCerulean; mKO) therefore facilitating the clonal quantitative analysis. 
Scale bar: B (overview) = 1 mm; B (crops) = 200 μm. Abbreviations: EPO, electroporation; 
SVZ, subventricular zone. 
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4.4.3. CLoNE – an Inducible Multicolor Approach 
The concomitant detection of 6 fluorochromes (and multiple combination of them) is often 

challenging, as it requires the use of a high-end confocal microscope equipped with a white 

laser.  Another multicolor EPO approach, CLoNe (Clonal Labeling of Neural progenies; 

García-Moreno et al., 2014), has been developed with a more limited number of fluorescence 

proteins (4 instead of 6, i.e. mT-Sapphire, EGFP, EYFP, mCherry; UbC-StarTrack contains in 

addition mCerulean and mKO). Each fluorophore plasmid however comes in 3 different 

variants for nuclear (human H2B histone sequence), cell membrane (palmitoylation sequence) 

or cytoplasmic (no specific localization sequence) expression. Thus although color codes are 

less numerous, the differential color distribution in the 3 cell compartments allows 

discrimination of a large number of clones. Another major difference to other methods, is the 

use of a Cre-recombinase to restrict expression to a specific cell type and/or stage of 

differentiation. The selective expression of the Cre-recombinase to NSCs population, and or 

to specific lineages, can then be achieved by the use of specific promoters (e.g. pEmx2-Cre; 

Tbr2Cre). 

Together, these multicolor approaches underline the need to develop methodologies to study 

NSCs heterogeneity and their lineage commitment in health and disease. It is likely that an 

ongoing development of such approaches will occur in the coming years. For example, it might 

be interesting to add a temporal aspect to color code induction by using tamoxifen inducible 

CreERT2-recombinases. This could be done by the use of transgenic mouse lines or by the use 

of integrable plasmids controlled by ubiquitous or restricted promoters. CreERT2-recombinases 

could also be the method of choice to achieve sparse recombination in order to guarantee the 

singularity of the color codes. 

 

4.5. Clonal Approaches in Transcriptomic 
Transcriptional profiling is classically performed on a population of cells (bulk analysis). 

Recently, methods have been developed to achieve transcriptional profiling of single cells. 

These approaches are very complementary. While bulk analyses give insights into 

transcriptional changes occurring during differentiation and lineage commitment, single cell 

analysis allows investigating the heterogeneity existing within a cell population. 
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4.5.1. Bulk Analysis Reveals Transcriptional Specificities of 

Postnatal Germinal Regions 
For bulk analysis, cell populations of interest are enriched by FACS, based on their expression 

of specific markers. Their mRNA is extracted then analyzed by microarrays, qPCR or RNA 

sequencing approaches.  

These methods gave us deeper insights into transcriptional differences that exist in distinct 

neural lineages (i.e. in maturing astrocytes, neurons and oligodendrocytes), between SVZ and 

DG NSCs and SVZ NSCs of different levels of activation. For example Aldh1l1 has been 

identified to be highly specific for the astrocytic lineage and subsequently became a widely 

used marker. Further, it has been found that the two macroglia lineages, i.e. astrocytes and 

oligodendrocytes, are transcriptionally as far apart from each other, as they are from neurons 

(Cahoy et al., 2008). Comparisons of transcriptional profiles of DG and SVZ NSCs identified 

IGF2 to be highly enriched in the DG. In this region, IGF2 was shown to control the NSCs 

proliferation through AKT-signaling (Bracko et al., 2012). In the SVZ the early expression of 

neuronal markers in NSCs has been demonstrated. This is in agreement with our findings 

suggesting an early priming of NSCs (Chapter 2; Figures 1 and S1). Further, the importance 

of cilia- and Ca-dependent pathways were emphasized (Beckervordersandforth et al., 2010). 

Thus, transcriptional profiling reveal specificities of both DG and SVZ NSCs. Another study 

investigated an additional level of heterogeneity within NSCs. Based on the expression of the 

EGF receptor in activated NSCs they were discriminated from their quiescent counterparts. 

This allowed to discover multiple markers for these two stages and uncovered signaling 

pathways that may be targeted by small bioactive molecules to regulate NSCs activity (Codega 

et al., 2014). Our own work added a spatial dimension to the transcriptional profiling of the 

postnatal SVZ. The dorsal and lateral SVZ microdomains were microdissected and their 

transcriptional profiles compared. This comparative analysis, which was also applied to the 

NSCs and TAPs they contain, demonstrated an unexpected high level of transcriptional 

heterogeneity (Azim et al., 2015). This study also revealed transcriptional regulators as major 

hallmarks that sustain postnatal SVZ regionalization. 

Accumulating datasets from various germinal regions and cell types can be combined to 

perform transcriptional meta-analysis. For example our datasets from regionalized NSCs 
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populations (Azim et al., 2015) were combined with a lineage-specific dataset (Cahoy et al., 

2008). Such meta-analysis reveal remarkable differences in the lineage priming of regionalized 

NSC populations (Azim et al., 2016). While the dorsal population expresses increased levels 

of diverse neural lineages (astrocytes, neurons, oligodendrocytes; Chapter 2; Figure 1), the 

lateral population seems to be particularly primed towards the neuronal lineage (Chapter 2; 

Figure S1), as suggested elsewhere (Beckervordersandforth et al., 2010). We demonstrated 

how such meta-analyses can expose previously ignored factors, as the dorsally enriched 

astrocyte marker Hopx, for further investigation (Chapter 2). It is likely that many other 

regionally expressed genes will be identified by such meta-analyses.  An accurate tool for rapid 

expression analyses of such markers along the full extent of the SVZ was long missing. We 

closed this gap by developing “FlashMap” (Chapter 1). 

 

4.5.2. Single Cells Analysis Refines Current Transcriptional 

Knowledge 
New approaches allow breaking down cell populations to investigate their transcriptional 

heterogeneity at the single cell level. Single cells are captured in micro-chambers and their 

mRNA isolated and sequenced. This allows comparing the transcriptome of multiple cells to 

highlight similarities (i.e. clusters of cells) and differences (i.e. separate clusters).  

Single cell RNA-sequencing was recently performed on adult NSCs from the SVZ. This 

allowed identifying several clusters of cells, which present different states of activation. 

Therefore, it demonstrated that NSC activation follows a sequence of transitions:  dormant 

cells (quiescent NSCs type 1) first enter a primed quiescent state (quiescent NSCs type 2) 

before becoming activated (activated NSCs type 1). This sequence is paralleled by a 

downregulation of the glycolytic metabolism and of Notch and Bmp signaling, while protein 

synthesis and lineage-specific TFs are upregulated (Llorens-Bobadilla et al., 2015). A similar 

study was performed in the DG. A pseudo-timed reconstruction of the NSCs activation process 

revealed  multiple new markers (Shin et al., 2015). 

Together, these published results strongly support our own results (Chapter 2). Indeed, distinct 

NSCs populations appear to be primed towards a certain lineage by expressing lineage-specific 

markers, which are absent in others. For instance, Llorens-Bobadilla et al. tested the expression 
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profile of lineage specific TFs. They showed that dorsal/glutamatergic markers (Emx1, Eomes, 

Neurod4, Neurog2), GABAergic markers (Dlx1, Dlx2, Gsx1, Gsx2), and oligodendroglial 

markers (Ascl1, Etv1, Olig2), assembled in separate clusters of cells. Therefore, their 

observations describe a new level of heterogeneity within the NSC population and suggest a 

fate-restriction of different populations to different lineages (Llorens-Bobadilla et al., 2015). 

Taken together, this supports the idea of lineage-restricted, regionally enriched populations of 

NSCs. The fate mapping of one of these populations, described in the Chapter 1 of this thesis, 

further supports this idea. 

 

4.6. Perspectives – Push Technical Advances Further 
This thesis manuscript focused on technical advances, which appear as the main driving force 

of new discoveries in research. Reciprocally, acquisition of new knowledge leads to the 

constant development of state of art techniques. The same logic may apply to “FlashMap” in 

order to increase its applicability and user friendliness. This will allow identifying other highly 

regionalized TFs. Ultimately, this will increase our knowledge of the mechanisms influencing 

activation of quiescent NSCs, pushing self-renewal and guiding lineage restriction with the 

ultimate goal to manipulate germinal activity in the injured or diseased brain. 

 

4.6.1.  “FlashMap” Evolves into “FlashMap 2.0” 
Several modifications could be done to further improve “FlashMap”. First, while it already 

allows a rapid spatial analysis of TFs expression pattern, it does not yet allow a systematic 

temporal analysis. In this context, a modified “FlashMap” version would allow to produce 

heatmaps at different embryonic and postnatal time points. Morphing of these maps, would 

then allow integrating temporal changes that may occur in the pattern of expression of selected 

TFs.  This would reveal their peak of expression, as well as possible changes in their expression 

pattern over time. Second, major improvements may be implemented to speed up the analysis 

process. Automation of region of interest positioning (dorsal, lateral and medial SVZ 

microdomains) by selection of their borders only (dorso-medial, dorso-lateral and ventral 

corners) would be of major interest. Further, it might be useful to automatically subdivide them 

(e.g. dorsal and ventral parts of the lateral SVZ). Third, another useful add-on would allow the 
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analysis to be repeated in multiple animals. In this context, “FlashMap 2.0” would include not 

only the capacity to generate heatmaps for single animals, but also to generate a heatmap 

representing the averaged data from a group of animals. Finally, future versions may allow the 

analyses presented in Chapter 1, to be performed in other regions than the SVZ. Indeed, other 

germinal regions such as the DG or the pallium of the developing forebrain, also present an 

easily recognizable cytoarchitecture, which could be probed in a similar way.  

 

4.6.2. Hopx as a First Marker of a Subpopulation of Committed 

NSCs 
We demonstrated that Hopx defines a temporal restricted and new level of spatial heterogeneity 

within the dorsal SVZ. Hopx appears to be expressed in NSCs biased to acquire an astrocytic 

fate. Although these results are suggestive of subpopulations of “committed” NSCs coexisting 

in the postnatal SVZ, they do not allow to fully study the competence of these cells. A clonal 

analysis of dorsal NSCs and of their progenies will be necessary to conclude on the existence 

of multiple subpopulations of unipotent NSCs. During the course of my thesis I made some 

first attempts to use the UbC-StarTrack approach. The goal of this experiments was to explore 

the potency of the dorsal NSC population. Following dorsal EPO (Figure 2B) the brain was 

analyzed for cortical astrocytes and their color code was identified (Figures 3A and 3B). It 

was planned to subsequently analyze the neurons in the entire OB for the same color and 

compartment combinations (Figure 3C). However, these experiments could not have been 

achieved due to time issues. 

I believe that a careful consideration of current protocols will be necessary to perform those 

experiments. It is probably that a mix between UbC-StarTrack (Figueres-Oñate et al., 2016), 

CLoNe (García-Moreno et al., 2014) and dorsal EPO into HopxCreERT2 mice (Takeda et al., 

2011) will be necessary to perform these complicated experiments. I would favor the 6 

fluorophores in 2 cellular compartments (UbC-StarTrack) over the 4 fluorophores in 3 cellular 

compartments approach (CLoNe). Indeed, the quantification with just two cellular 

compartments is already particularly challenging. Discriminating a third cellular compartment 

would require the acquisition of high resolution confocal images, at high magnification. 

Although this could be achieved in a small volume of tissue, it represents an unreasonable 
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amount of work if the entire forebrain is analyzed. I would also favor the use of the Cre-Lox 

system proposed by CLoNe (lox-stop-lox-fluorophore), as it would allow to restrict the 

analysis to a subpopulation of NSCs of interest, i.e. dorsal NSCs, or Hopx-expressing NSCs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Illustration of clonal analysis using UbC-StarTrack. 
(A+B): Representative micrographs show cortical astrocytes exhibiting unique color codes. 
Multicellular (A) and single cell astrocytic (B) clones were identified in the cortex and their 
color codes in the nucleus and the cytoplasm were analyzed. 
(C): Representative micrographs show differentially labeled neurons in the OB. It was initially 
planned to analyze the entire OB for color codes that were discovered in cortical astrocytic 
clones. Such an extensive and time-consuming analysis could allow to make clearer 
assumptions about the potency of postnatal NSCs. 
Scale bar: A+B = 50 μm; C (overview) = 1 mm; C (crops) = 100 μm. Abbreviations: OB, 
olfactory bulb; NSC, neural stem cell. 
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4.6.3. Exploring NSCs Heterogeneity Beyond Hopx 
Our transcriptional meta-analysis provides a list of enriched TFs in the dorsal NSCs and lateral 

NSCs, as well as their relation to selected neural lineages. This list may be screened for further 

TFs of interest. In addition, it is important to mention that such analysis should not be restricted 

to TFs. Indeed, other genes such as those coding for cell adhesion molecules might be powerful 

restrictors of NSCs potency. In embryonal brains, for example, striatal and cortical progenitors 

differ in their expression of cell adhesion molecules (Götz et al., 1996).  Such cell adhesion 

molecules have been suggested to restrict the potential of NSCs for heterotopic integration 

(Olsson, 1998) and therefore they might be candidates to investigate fate restriction in general. 

In conclusion, my study on Hopx adds a piece of knowledge to the puzzle of a full 

understanding of NSCs potency and restriction. This and other studies, which added additional 

pieces on their side, were driven by the continuous development and refinement of state of the 

art techniques. However, further investigations, the development of new key techniques and 

revolutionary ideas are absolutely necessary to decipher and understand NSCs biology in more 

details. This includes the decoding and understanding of the various signaling pathways, the 

expression of different TF combinations, the control of specific epigenetic mechanisms and 

much more. 

A broad understanding of NSCs biology may pave the way of the development of future 

therapeutic approaches in the diseased or damaged brain. 
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