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ABSTRACT

Doctoral Thesis 

by Cinzia Spinato 

In the last decades, the application of carbon nanotubes (CNTs) in the biomedical field has been 

widely explored thanks to their physico-chemical properties and their biocompatibility. By the 

external and/or internal functionalization of CNTs it is possible to prepare novel conjugates and 

biomolecular hybrids tailoring different properties and applications. The external decoration of this 

material by preliminary chemical functionalization is essential to render them biocompatible, water-

dispersible and to allow further conjugation of biomolecules. In this research work, we have 

investigated the covalent derivatization of CNTs by different chemical strategies to achieve a suitable 

carrier for anticancer therapy. In one project, we have explored the possibility to convert the 

carboxylic groups of oxidized CNTs into amino groups, and the ability of these conjugates to 

complex genetic material, for gene delivery. In another project, CNTs have been functionalized with 

different linkers bearing or not a cleavable disulfide bond, and further conjugated to a therapeutic 

nanobody (a fragment of antibody), to achieve a controlled intracellular drug release. Ultimately, 

focusing on the targeted delivery of radiotherapy, we have investigated the reactivity of CNTs filled 

with radioactivable material (e.g. SmCl3, LuCl3) toward [2+1] cycloaddition reactions (namely 

Bingel and nitrene reactions). We have developed an optimized synthetic approach for the covalent 

functionalization of close-ended filled CNTs by nitrene reaction, and the conjugation of a targeting 

antibody, for the delivery of these nanocarriers to specific organs. By exploiting several 

characterization techniques (e.g. thermogravimetric analysis, gel electrophoresis, immunostaining) 

we have proved that the antibody is covalently grafted to the CNT-carrier and it still possesses its 

targeting ability. Further investigations on the biological profile of these conjugates (cytotoxicity, 

targeting, uptake, biodistribution) have been carried out in our laboratories and in collaboration with 

our partners. 
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RESUMÉ DE THÈSE

I. INTRODUCTION

Les nanotubes de carbone (CNTs) sont une nouvelle forme allotropique du carbone telle que le 

graphite, le diamant et les fullerènes. Ils ont été découverts dans les années 1950/1960,
[1,2]

 mais 

décrits pour la première fois à l’échelle atomique en 1991 par le chercheur japonais S. Iijima.
[3]

 Au 

niveau structurel, les CNTs peuvent être représentés comme un ou plusieurs feuillets de graphène 

enroulés pour former un cylindre fermé ou ouvert aux extrémités. Selon qu’ils soient arrangés en un 

seul cylindre de graphène ou plusieurs cylindres concentriques, ils dont définis comme nanotubes à 

paroi simple (SWCNTs pour Single-Walled Carbon Nanotubes) ou à parois multiples (MWCNTs 

pour Multi-Walled Carbon Nanotubes) (Figure I.I). Les SWCNTs ont un diamètre qui varie de 0,7 à 

3 nm et une longueur comprise entre quelques centaines de nanomètres et plusieurs micromètres, 

alors que les MWCNTs ont un diamètre qui peut atteindre 100 nm et une longueur qui peut varier 

jusqu’à quelque dizaines de micromètres. 

Figure I.I Représentation de nanotubes de carbone à simple paroi et à parois multiples. 

La combinaison des propriétés mécaniques, thermiques et électroniques des nanotubes de 

carbone a permis leur exploitation dans les domaines de la science des matériaux et des 

nanotechnologies. En 2004, il a été découvert que les CNTs ont la capacité de traverser la membrane 

cellulaire par un mécanisme énergétiquement indépendant appelé “nanoaiguille”.
[4]

 Depuis cette 

découverte, la possibilité d’utiliser les CNTs comme véhicules pour le transport de médicaments a 

attiré un grand intérêt dans le domaine de la nanomédecine.
[5–7]

 Il a été démontré que ces matériaux 

ont la capacité de former des complexes avec du matériel génétique comme l’ADN plasmidique ou 

les petits ARN interférents et de transfecter des cellules in vitro
[8]

 et in vivo.
[9]

 Des applications des 

nanotubes comme substrats pour le développement des cellules neuronales
[10]

 ou comme 

biosenseurs
[11]

 ont aussi été déjà largement exploitées. Le plus grand problème dans la manipulation 

des nanotubes, en particulier pour des applications biomédicales, est leur faible solubilité dans les 
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milieux aqueux. Cet obstacle peut être contourné par la fonctionnalisation de leur surface. Les 

approches de fonctionnalisation des CNTs à la surface peuvent être classées selon deux catégories:
[12]

- fonctionnalisation covalente avec différentes molécules organiques par des réactions sur la surface 

ou sur les extrémités des nanotubes (e.g. cycloadditions ou amidation) 

- fonctionnalisation non-covalente de la surface des nanotubes via des interactions faibles (i.e. forces 

de van der Waals, interactions hydrophobes, �-stacking). 

Une troisième méthode de fonctionnalisation des nanotubes consiste en le remplissage de leur 

cavité avec des molécules comme des métaux, sels, médicaments etc., aussi nommée 

fonctionnalisation endohédrale. 

Récemment, la multifonctionnalisation des nanotubes de carbone s’est avérée être une approche 

prometteuse pour lier des molécules avec des caractéristiques spécifiques. Par exemple, la 

conjugaison d’une molécule médicament et d’un agent de ciblage permet la délivrance du 

médicament seulement dans les cellules ou l’organe désiré, en empêchant d’éventuels effets 

indésirables in vivo dus à la présence du médicament dans les organes sains. Dans ce contexte, au 

cours de mes travaux de Thèse, j’ai focalisé mes recherches sur l’étude de la modification des 

nanotubes par voie covalente pour leur utilisation comme vecteurs de biomolécules. Pendant ma 

Thèse, j’ai travaillé sur trois projets: l’application de différentes approches pour la conversion des 

groupes acides carboxyliques de MWCNTs oxydés en amines, dans le but de préparer des conjugués 

capables de complexer du siRNA (petits ARN interférents). Dans un second projet, j’ai développé 

des conjugués à base de nanotubes de carbone couplés avec un fragment d’anticorps thérapeutique 

via une liaison clivable afin d’en étudier le potentiel antitumoral. Le dernier projet a été mené en 

collaboration avec plusieurs partenaires au sein d’un réseau Européen. Il concerne la 

fonctionnalisation de CNTs remplis avec des molécules radioactivables et fonctionnalisés en surface 

avec un anticorps de ciblage tumoral. Le but est d’utiliser les nanotubes comme vecteurs pour la 

délivrance de radioactivité à l'intérieur des cellules tumorales ciblées par l’anticorps. Dans les 

paragraphes suivants, les résultats de ces trois projets sont détaillés 

II. STRATEGIES CHIMIQUES D’AMINATION DE MWCNTS OXYDES POUR LA 

COMPLEXATION ET LA VECTORISATION DE SIRNA

Plusieurs études ont démontré des résultats prometteurs en exploitant des CNTs fonctionnalisés 

pour la vectorisation de matériel génétique in vitro and in vivo.
[9,13]

 Le but de ce projet était de 

comprendre plus en détail la relation entre la stratégie de fonctionnalisation de la surface des 

nanotubes et leur capacité à complexer des siRNA. Dans des études précédentes réalisées au 

laboratoire, il avait été observé que le type de fonctionnalisation chimique utilisée pour la 

modification de la surface de MWCNTs oxydés (oxMWCNTs) a une influence sur l’internalisation 

des CNTs dans les cellules, ainsi que sur leur capacité à libérer le siRNA.
[4,14,15]

 Dans ces études, les 

CNTs fonctionnalisés avec des fonctions amines via un bras espaceur avaient été obtenus par une 

réaction de cycloaddition 1,3-dipolaire. Dans mon projet de Thèse, je me suis concentrée sur la 

conversion des groupes carboxyliques présents à la surface des oxMWCNTs en fonctions amines. 

J’ai essayé plusieurs stratégies synthétiques permettant une transformation directe des groupements 

carboxyliques des CNTs en amines. 
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Afin d’envisager des applications dans le domaine biomédical, il est nécessaire de 

fonctionnaliser la surface des CNTs pour les rendre solubles dans les milieux aqueux, biocompatibles 

et moins toxiques.
[16,17]

 La première étape de la synthèse des conjugués repose sur l’oxydation des 

nanotubes en milieu acide sous l'effet des ultrasons. Ce procédé a pour conséquence de raccourcir les 

nanotubes (de plusieurs microns jusqu’à quelques centaines de nanomètres) et d’introduire des 

groupes carboxyliques sur les pointes des nanotubes et au niveau des défauts structurels de la paroi 

qui sont plus sensibles au traitement oxydant. Pour obtenir la conversion des groupes COOH en 

amines, j’ai étudié et mis en place six stratégies différentes (Schéma II.1), en combinant plusieurs 

étapes synthétiques ou en suivant des procédures déjà décrites dans la littérature : 

I. Réarrangement de Hofmann 

II. Réarrangement de Curtius 

III. Via une réaction de cyanation 

IV. Réaction de Hunsdiecker 

V. Via l’introduction d’un groupement phtalimide 

VI. Via une réaction de mésylation 

Les trois premières approches commencent par l’activation des groupes carboxyliques en 

chlorures d’acide, suivie de leur dérivatisation et conduisent aux fonctions amines soit via un 

réarrangement (I et II), soit via un intermédiaire cyanide. La quatrième stratégie repose sur une 

réaction de halodécarboxylation (réaction de Hunsdiecker) suivie par la substitution de l’halogène. 

Dans les deux dernières procédures, la réduction des fonctions carboxyliques est suivie d’une 

réaction d’amination via l’introduction d’un groupement phtalimide (V), ou par dérivatisation 

séquentielle (VI). La description des six stratégies ne sera pas détaillée dans ce résumé, toutefois le 

panorama de toutes les voies synthétiques est présenté dans le schéma ci-dessous. 

Les différents conjugués ont été caractérisés par différentes techniques complémentaires afin 

d’étudier les propriétés de surface des nanotubes. En particulier, la morphologie des nanotubes a été 

observée par microscopie à transmission électronique (MET). Leur structure après fonctionnalisation 

n’a pas subi de changements par rapport à celles des nanotubes oxydés. La spectroscopie infrarouge à 

transformée de Fourier et la spectroscopie photoélectronique par rayons X ont confirmé la présence 

de fonctions amines et ont permis de déterminer le taux d’azote. Par contre, parmi les conjugués, 

deux ont démontré une très faible dispersabilité dans l’eau. Cette caractéristique est évidement 

incompatible avec leur application comme vecteur de biomolécules, ces deux échantillons n’ont donc 

pas utilisés par la suite. Certains échantillons ont été évalués pour leur capacité à complexer 

efficacement du siRNA et à le transférer dans les cellules. Les études biologiques ont été effectuées 

en collaboration avec le groupe du Prof. K. Kostarelos à Manchester (Royaume Uni). Nous avons pu 

démontrer que parmi les échantillons testés, deux présentent une très bonne capacité de complexation 

du siRNA et sont capables de le transfecter dans une lignée de cellules tumorales (A549) sans 

générer d’effets toxiques. 
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Schéma II.1 Stratégies synthétiques pour la conversion de fonctions COOH en NH2.

III. FONCTIONNALISATION DE MWCNTS VIA UN PONT DISULFURE CLIVABLE 

POUR LA VECTORISATION D’UN FRAGMENT D’ANTICORPS THERAPEUTIQUE 

Dans ce deuxième projet, j’ai préparé des conjugués de nanotubes avec un fragment d’anticorps 

ayant des propriétés thérapeutiques et de ciblage de cellules tumorales. Les VHH (high-affinity single 

variable domain of heavy-chain antibodies) sont constitués du domaine variable des anticorps à 

chaîne lourde et ils sont considérés comme les plus petits fragments d’anticorps qui conservent la 

spécificité pour l’antigène.
[18]

 Ils ont attiré beaucoup d’intérêt dans le domaine de la nanomédicine 

grâce à leurs avantages par rapport aux anticorps, comme par exemple une grande affinité pour leur 

cible, une faible toxicité et une facilité de production. La société UCB (Royaume Uni), partenaire 

dans le cadre d’un projet Européen, a préparé un VHH thérapeutique capable de cibler sélectivement 

la �-caténine, une protéine dont la surexpression est associée à plusieurs cancers. Il nous a semblé 

intéressant de combiner le potentiel de ce VHH thérapeutique avec la capacité des nanotubes de 

pénétrer les membranes cellulaires et de vectoriser des molécules à l’intérieur des cellules. Afin de 

contrôler le relargage du VHH une fois le conjugué internalisé dans les cellules, j’ai introduit un pont 

disulfure entre les CNTs et le VHH. La liaison S-S est rapidement clivée par des agents réducteurs 

intracellulaires comme la glutathione (GSH). 

A partir de MWCNTs oxydés, j’ai synthétisé un nouveau conjugué (CNT-SS-mal-VHH) 

constitué de : 1) un bras espaceur à base de triéthylène glycol (TEG) (pour augmenter la solubilité 

dans l’eau et la biocompatibilité), 2) un lien contenant la liaison S-S et 3) une fonction maléimide 
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terminale. Ensuite, j’ai attaché le VHH aux CNTs via le maléimide qui est une fonction sélective vis-

à-vis des thiols tels que ceux qui sont présents dans les protéines (Schéma III.1). Les oxMWCNTs 

ont été d’abord dérivatisés par amidation avec une chaîne TEG terminée par une fonction amine, 

obtenant ainsi le dérivé 4. Le composé 13 a été synthétisé en plusieurs étapes à partir de la cystamine.  

Schéma III.1 Synthèse du conjugué CNT-SS-mal-VHH: a) 13, DIEA, HOBt, EDC, DMF, t.a., 56 h; b) VHH, EDTA/PBS 

pH 6.4, t.a., 6 h. 

J’ai ensuite synthétisé un deuxième conjugué constitué d’aucun bras espaceur entre le VHH et le 

site de clivage. Le conjugué 4 a été dérivatisé avec du PEG4-SPDP, qui est une molécule 

hétérobifonctionnelle permettant la conjugaison de protéines et qui contient une liaison disulfure 

clivable ainsi qu’une chaîne de polyéthylène glycol (PEG) à quatre unités oxoéthylènes. La liaison du 

VHH aux CNTs se fait par échange thiol-disulfure entre un thiol du VHH et la fonction pyridylthiol 

présentes sur les CNTs fonctionnalisés, conduisant ainsi au conjugué CNT-SS-VHH (Schéma III.2). 

Enfin, le dernier conjugué (CNT-VHH) ne contenant aucune liaison clivable a été synthétisé à partir 

des nanotubes fonctionnalisés avec les groupements ammonium 4. 

Schéma III.2 Représentation du conjugué avec une liaison disulfure entre les nanotubes et le VHH (CNT-SS-VHH) et du 

conjugué sans liaison disulfure. 

Tous les conjugués ont été caractérisés par différentes méthodes analytiques et la présence du 

VHH dans les conjugués finaux a été déterminée en utilisant trois techniques: l’analyse 

thermogravimétrique (ATG), le gel d’électrophorèse et la résonance plasmonique de surface. Par 

ATG, nous avons pu estimer la quantité de VHH conjuguée aux tubes. Cette technique est basée sur 

la décomposition thermique des groupes fonctionnels ancrés à la surface des tubes. Le gel 

d’électrophorèse a permis d’évaluer la nature de la liaison entre les tubes et le VHH (covalente ou 

non), et de déterminer si celui-ci était toujours intact. L’activité biologique du VHH a été évaluée par 

résonance plasmonique de surface. Cette technique a permis de montrer que la reconnaissance de 
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l’antigène par l’anticorps n’a pas été affectée par la conjugaison aux nanotubes. En collaboration 

avec l’équipe du Prof. K. Kostarelos, des études in vitro et in vivo ont été effectuées dans le but 

d’évaluer la capacité des conjugués à exercer leur effet antitumoral dans les cellules et dans des 

souris. Des études de viabilité cellulaire ont été réalisées sur des cellules du cancer colorectal qui 

surexpriment la �-catenine. Les trois conjugués sont capables d’induire un effet toxique sur les 

cellules après 48 heures, bloquant ainsi le chemin de survie des cellules (Figure III.I). Ces résultats 

suggèrent que le VHH lié aux nanotubes a préservé son effet thérapeutique.  

Figure III.I Viabilité cellulaire des cellules du cancer colorectal (HCT116) après (A) 24 h et (B) 48 h 

d’incubation avec les conjugués suivants : CNT, CNT-VHH, CNT-SS-VHH et CNT-SS-mal-VHH à 5 and 50 

µg/ml. DMSO (10%) est utilisé comme contrôle positif.

Les conjugués se sont avérés efficaces pour traiter la tumeur dans la souris. En effet, après 

injection des CNT-VHH dans des souris inoculées avec le carcinome HCT116, la taille de la tumeur 

a diminué sensiblement et la survie des souris a été rallongée. Nous n’avons cependant pas observé 

de différence substantielle entre les conjugués avec la liaison clivable et celui sans liaison S-S. Les 

résultats sont très encourageants et suggèrent que ces nouveaux conjugués peuvent représenter un 

outil prometteur pour la délivrance de fragments d’anticorps thérapeutiques.   

IV. FONCTIONNALISATION DE CNTS POUR LA VECTORISATION CIBLEE DE 

RADIOACTIVITE 

Ce projet de recherche fait partie du réseau Marie Curie RADDEL (DELivery of RADioactivity)

qui vise à la mise au point d’un système pour la délivrance ciblée de radioactivité. Le but général est 

le développement de nanocapsules de carbone remplies avec des isotopes radioactifs, fermées aux 

extrémités et décorées en surface avec un agent de ciblage et des groupements fonctionnels 

permettant d’augmenter la biocompatibilité de la nanocapsule.
[19]

 Les radioisotopes choisis pour ce 

projet sont le chlorure de samarium (SmCl3) et de lutétium (LuCl3), ainsi que l’iodure de sodium. Le 

remplissage des nanotubes (SWCNTs et MWCNTs) par les radioisotopes a été effectué par l’équipe 

du Dr. G. Tobias à Barcelone (Espagne). Au sein de ce réseau, notre groupe s’est focalisé sur le 

développement de méthodes pour la fonctionnalisation covalente de différents types de CNTs 

remplis, en particulier des réactions de cycloaddition [2+1] (réaction de Bingel et cycloaddition de 

nitrènes) qui conduisent à la formation de cycles à 3 chaînons sur la surface des CNTs (Schèma 
IV.1).

[20]
 Dans les deux cas, j’ai utilisé des précurseurs organiques constitués par une chaîne TEG 

pour augmenter la dispersabilité des tubes dans l’eau, et terminés par une fonction amine protégée 
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par un phtalimide. Ainsi, après clivage du groupement protecteur par traitement avec de l’hydrazine, 

les fonctions amines ont été quantifiées par le test de Kaiser test et dérivatisées avec des molécules 

d’intérêt.  

Schéma IV.1 Fonctionnalisation des nanotubes de carbone par réaction de Bingel et cycloaddition de 

nitrènes. 

La réaction de Bingel implique des malonates et conduit à la formation de cyclopropanes à la 

surface des CNTs.
[21,22]

 J’ai testé la réaction de Bingel sur des CNTs vides et remplis en utilisant 

différents types de précurseurs malonates dérivatisés avec des chaînes TEG et portant une fonction 

amine terminale. Plusieurs conditions de réaction ont été essayées en modifiant la température, le 

temps ou le solvant de réaction, ou en utilisant des micro-ondes. Toutefois, je n’ai pas réussi à obtenir 

des valeurs de fonctionnalisation satisfaisantes.  

Par contre, la fonctionnalisation des CNTs remplis par cycloaddition de nitrènes a conduit à des taux 

de fonctionnalisation satisfaisants. Cette réaction s’effectue en présence d’un azoture portant une 

chaîne TEG et induit la formation de cycles aziridines sur la paroi des nanotubes.
[23,24]

 En plus du test 

de Kaiser et de l’ATG, les CNTs fonctionnalisés ont été caractérisés par MET à haute résolution 

après dérivatisation des fonctions amines avec un groupement fonctionnel iodé. Nous avons ensuite 

optimisé un certain nombre de paramètres (e.g. température, solvant, temps de réaction, micro-ondes) 

afin de trouver les meilleures conditions de réaction donnant les plus hauts degrés de 

fonctionnalisation dans le temps le plus court. J’ai ensuite dérivatisé les CNTs portant les fonctions 

amines terminales avec un groupement maléimide pour pouvoir conjuguer un anticorps spécifique 

afin de cibler des cellules tumorales (Figure IV.I). Cette stratégie n’a cependant pas permis 

d’atteindre des taux de fonctionnalisation satisfaisants. 
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Figure IV.I Dérivatisation de CNTs remplis et fonctionnalisés par cycloaddition de nitrènes, avec une maléimide, suivi par 

la conjugaison de l’anticorps.

Nous avons utilisé une stratégie alternative en attachant l’anticorps directement aux nanotubes 

par une réaction d’amidation entre les amines présentes sur les CNTs et les groupes carboxyliques de 

l’anticorps (Figure IV.II). 

Figure IV.II Conjugaison de l’anticorps aux CNTs remplis et fonctionnalisés par cycloaddition de nitrènes. 

En plus de l’ATG et du gel d’électrophorèse, la présence de l’anticorps dans les conjugués a été 

déterminée par MET via une expérience d’immunomarquage en utilisant un antigène complémentaire 

marqué avec des billes d’or. Celles-ci sont bien visibles à la surface des nanotubes, confirmant la 

présence de l’anticorps, alors que pour les réactions de contrôle (mélange non-covalent de CNTs et 

d’anticorps) il n’y a presque pas de billes visibles (Figure IV.III). 
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Figure IV.III Images MET du conjugué covalent (19-Ab) et du conjugué obtenu par la réaction contrôle 

(19/Ab) après marquage avec un anticorps secondaire anti-humain relié à des billes d’or (anti-human IgG).

Les conjugués CNTs-anticorps ont ensuite été testés in vitro et in vivo afin d’en étudier le profil 

toxicologique et les propriétés biologiques. Les essais in vitro sur des macrophages murins 

RAW264.7 (Figure IV.IV) et des cellules humaines primaires du sang (PBMC) ont montré une 

bonne viabilité cellulaire. 

Figure IV.IV Viabilité cellulaire de macrophages RAW264.7 après 24 heures d’incubation avec 9-NH2

(précurseur aminé des nanotubes vides), 19-NH2 (précurseur aminé des nanotubes remplis), 19-Ab (conjugué 

covalent) et 19/Ab (conjugué contrôle) à différentes concentrations (1, 10, 25, 50 et 100 �g/ml). Les barres 

rouges représentent le contrôle positif (cellules non traitées) et négatif (DMSO 20%). 

De plus, aucune toxicité apparente, ni de réponse pro-inflammatoire n’ont été observées dans les 

études in vivo, soulignant une bonne biocompatibilité des conjugués. D’autres études biologiques sur 

la capacité des conjugués à cibler efficacement les cellules tumorales ont été effectuées dans notre 

laboratoire et en collaboration avec l’équipe du Prof. K. Al-Jamal (Londres). Deux lignées cellulaires

tumorales ont été incubées avec les conjugués de CNT-anticorps : une lignée qui surexprime le 

facteur EGFR (cellules U87) et l’autre qui ne l’exprime pas (cellules CHO). Nous avons observé que 

les CNT-anticorps reconnaissent bien leur cible et qu’ils sont internalisés par les cellules U87, alors 

qu’il n’y a pas d’interaction avec les cellules CHO (Figure IV.V). De plus, le conjugué précurseur 

(19-NH2) qui n’a pas d’anticorps n’est internalisé par aucune des deux lignées cellulaires, suggérant 

qu’il n’y a pas d’interactions non-spécifiques entre les nanotubes et les cellules. Nous avons tout de 
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même remarqué qu’il n’y a pas de différences substantielles entre le conjugué covalent et le conjugué 

contrôle. 

Figure IV.V Barres représentant le pourcentage de cellules positives à la cyanine 3 dans la lignée cellulaire 

CHO (à gauche) et U87 (à droite) après incubation pendant 1, 3 ou 24 heures avec les conjugués 19-NH2, 19-

Ab et 19/Ab à 10 �g/ml.

Des études d’internalisation et de ciblage ont été effectuées avec les nanotubes conjugués avec 

un anticorps marqué avec une sonde fluorescente (cyanine 5). Les résultats ont également montré que 

la capacité de ciblage de l’anticorps est préservée après sa conjugaison avec les nanotubes. 

La fonctionnalisation des nanotubes après radioactivation des isotopes, ainsi que les tests 

biologiques sur un modèle de souris tumorale ont été effectués très récemment. L’analyse des 

données est en cours d’évaluation. 

Nous pouvons tout de même conclure que cette stratégie de fonctionnalisation des nanotubes 

remplis basée sur la réaction de nitrènes suivie par la conjugaison direct de l’anticorps est efficace. 

Elle pourrait être de plus utilisée avec d’autres anticorps (pour cibler d’autres tumeurs) ou bien avec 

d’autres radioisotopes (pour varier le type de radiation). 
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Abstract – Carbon nanomaterials such as nanotubes and graphene arouse great research 
interest, by virtue of their outstanding properties for different applications. A major concern is 
the investigation of their behavior in a biological environment and beforehand of their 
functionalization and thorough characterization. For a better comprehension of the research 
strategies and experimental investigations that we have undertaken, in the following 
Introduction chapter we will provide a general description of carbon nanotubes structure, 
production and chemical modification, along with an overview of the state-of-art of their 
applications in the biomedical field. 

CHAPTER 1 

1 INTRO

INTRODUCTION
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1.1 STRUCTURE, SYNTHESIS AND PROPERTIES

Since immemorial time graphite and diamond have been the only known allotropic forms of carbon. 

It was only in the late 20
th
 century that the number of carbon allotropes started to increase, thanks to 

the discovery of many new carbon nanostructures (e.g. fullerene, carbon nanotubes, graphene, carbon 

nanohorns). Since then, these fascinating and unprecedented architectures generated a great research 

interest among the scientific community. Indeed, the fortunate discovery of fullerene C60 in 1985 was 

internationally recognized by the award of the Nobel Prize to Kroto, Curl and Smalley.
[1]

 Only few 

years after, in 1991, Iijima remarked the growth of layered microtubular structures made of carbon 

atoms organized in a honeycomb lattice.
[2]

 Despite observations of hollow carbon fibers in the 

nanometer scale were reported already in the 60’s-70’s,
[3–5]

 it was only after Iijima’s structural 

elucidation that scientists started to look at carbon nanotubes (CNTs) as a potential field of 

research.
[6]

 Since then, carbon nanotube popularity increased remarkably maybe overpassing that of 

their spherical brother. 

Figure 1.1 Structural representations of some recently discovered carbon allotropes: a) fullerene, b) 

nanodiamonds, c) carbon nanotubes and d) graphene. 

Carbon nanotubes can be described as hollow cylindrical tubes solely made of carbon atoms, with 

diameters ranging between 1 and 100 nm, and lengths up to the order of millimetres. The carbon 

atoms in a CNT have a sp
2
 hybridization and are arranged in a honeycomb lattice such as in graphite, 

endowing the whole molecule with extended aromaticity. A single carbon nanotube can be ideally 

formed by rolling up a sheet of graphene along its length with a certain degree of twist. The way the 

hexagonal rings are joined together defines the nanotube chirality (e.g. armchair, zigzag) and it 

uniquely determines the tube diameter, curvature and electronic properties, such as their metallic or 

semi-conducting character.
[7]

 The tips of the tubes can be either open, presenting reactive dangling 

bonds, or closed by dome-shaped half-fullerene molecules. Carbon nanotubes are generally classified 

by the number of concentric graphene layers. Single-walled carbon nanotubes (SWCNTs) are 

constituted by one single cylinder and have diameters ranging from 0.7 to 2 nm, whereas multi-

walled carbon nanotubes (MWCNTs) display from 2 to several concentric layers, and they are 

consequently larger, with external diameter from few to tens of nanometres.  

Despite the structural similarity of carbon nanotubes with graphite, which is also constituted of 

hexagons of sp
2
-hybridized carbon atoms, the physico-chemical properties of these two materials are 

substantially different. Indeed, CNTs possess extraordinary strength, thermal and electrical 

conduction efficiency, along with unique mechanical, optical and chemical properties.
[8]

 All these 

attractive features rapidly allowed to propose CNTs as valuable building blocks for the preparation of 

new materials which have already proved their applicability in different technological fields such as 

photovoltaics,
[9]

 molecular electronics,
[10,11]

 material science
[12]

 and nanomedicine.
[13]

 Nowadays, we 

can see that the initial interest of scientists toward carbon nanotubes is being rewarded by their 
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commercial outlet. In fact, CNTs are already incorporated in some commercial products for daily 

lives.
[14]

 For example, MWCNTs are used as electrically conductive additive to polymers for 

electrostatic painting, or integrated into water filters for the removal of bacteria and viruses, or even 

in sporting goods. Thanks to their electrical conductivity, nanotubes are also currently used in lithium 

ion batteries and field emission sources for displays, and for the preparation of gas detection 

transistors. Therefore, nowadays there is a strong need of multi-ton quantities of these compounds in 

a high purity degree, and lots of research is still dedicated to improving and scaling-up their synthesis 

and purification. In the following paragraph we will briefly introduce the main methods for the 

production and purification of CNTs. 

1.1.1 PRODUCTION AND PURIFICATION METHODS

CNT production has been largely investigated since their discovery, and several techniques have so 

far been developed, most of them involving gas phase processes.
[8,15,16]

 Among the most established 

techniques are arc discharge, laser ablation and chemical vapor deposition (CVD). In the first two 

methods, CNTs are formed by the rearrangement of carbon atoms vaporized from graphite, therefore 

very high temperatures are required to sublimate graphite (~3200 °C). In the CVD process instead, 

the carbon sources are hydrocarbons (like methane, ethane, ethanol, etc.) which are thermally 

decomposed at temperatures between 700 and 1000 °C in the presence of catalysts.
[8]

 The axial 

growth of nanotubes initiates from metal particles implanted in a porous substrate affording very long 

and vertically arranged nanotubes. In most production methods, metallic nanoparticles (e.g. Fe, Co, 

Ni) are employed to catalyse the nanotube growth, and this implies that a purification step is 

necessary to remove these impurities from the final batch. 

The arc discharge method allows the large-scale production of CNTs that generally display few 

structural defects and good electrical and mechanical properties; hence this technique is sometimes 

favored for certain material applications.
[17]

The synthesis of CNTs by laser ablation has the main 

advantages of affording nanotubes in a relatively high yield and with rather low content of metallic 

impurities, but this method is overall quite expensive because it encompasses the use of high-purity 

graphite and high-power lasers.
[15]

 Currently, the CVD technique has been substituting the high 

temperature methods to synthesize CNTs at the industrial level, since it allows a large-scale and low 

cost production of CNTs, together with better control of the nanotubes length, diameter, alignment 

and purity.
[16]

 The fact that by CVD the CNTs growth occurs on pre-designed lithographic surfaces is 

advantageous for some applications as it enables to produce ordered arrays of CNTs.
[16,18]

 Moreover, 

CNTs produced by CVD are usually preferred for their application in biological fields because of the 

lower content of residual catalyst. 

All these methods lead to mixtures of CNTs that exhibit different chiralities, diameters and lengths. 

In addition, variable amounts of impurities and undesired by-products are usually present in the final 

material, such as amorphous carbon, graphitic particles and metal catalysts (if employed). Hence, the 

purification and sorting of nanotubes are imperative before their usage, to obtain more homogenous 

and pure batches of pristine nanotubes. Depending on the production method, there are many 

different ways for nanotube purification; however it should be noted that the removal of by-

products/impurities is generally more costly than the production itself. Purification strategies can 

involve filtrations, solvent washings for the removal of catalysts and fullerenes, oxidation techniques 

to eliminate graphitic particles.
[19]

 Some other non-destructive methods for CNT separation include 
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size-exclusion chromatography, density-gradient ultracentrifugation or simply dispersion in colloidal 

suspension by use of surfactants, polymers or colloidal particles.
[16]

 Nevertheless, these techniques 

have been so far only applied on a small scale of CNTs and not at the industrial level. 

1.1.2 PROPERTIES OF CARBON NANOTUBES

Depending on the production method, the properties of CNTs can greatly vary. Carbon nanotubes are 

usually characterized by their diameter, chirality and degree of defects, which are important 

parameters as they determine their electronic properties, especially for SWCNTs. In fact, the 

behavior of SWCNTs can vary from metallic to semi-conducting. The electrical conductivity of 

CNTs is even higher than that of copper as electrons are conducted without dissipation of energy in 

the form of heat. Furthermore, CNT conductivity can be modulated by doping the carbon lattice with 

other atoms, such as boron and nitrogen.
[15]

 Compared to their allotropes, nanotubes show an 

incredibly high tensile strength (up to 100 GPa), which is due to the sp
2
 hybridization of the carbon 

atoms. Indeed, the C-C bond in CNTs is much stronger than the sp
3
 bond of diamond and it endows 

the nanotubes with very interesting mechanical properties. As a result of the bond strength, CNTs are 

very resistant to high temperatures (up to 750 °C at normal pressure) and are very good thermal 

conductors.
[16]

 CNTs do also exhibit remarkable elasticity, permitting their axial twist and bend 

without ruptures. All these properties can differ between single- and multi-walled CNTs. Generally, 

SWCNTs have a lower degree of defects, but MWCNTs present higher tensile strength due to the 

multiple layers. 

Because of their long fiber-shape and hollow cavity, CNTs are characterized by a very high aspect 

ratio and large surface area, which render them interesting for many applications. However, the 

extended aromatic surface of CNTs determines a high polarizability, propelling the formation of 

strong van der Waals inter-tube interactions and thus facilitating their aggregation into spaghetti-like 

bundles. This strong tendency toward aggregation severely depletes CNT solubility, hampering their 

manipulation and limiting their usage. Addition of chemical groups to the nanotube sidewalls, in 

either a covalent or non-covalent way, disrupts the bundles enhancing the dispersibility of the 

nanotubes in different solvents. The external modification of CNTs is therefore highly advantageous 

to their employment, although it can dramatically alter their functional properties, such as the 

electronic and optical ones, hence limiting their potential for material applications. 

1.2 FUNCTIONALIZATION

Understanding the properties of CNTs and developing their practical applications have been hindered 

for a long time by their extremely low solubility in all conventional solvents. Hence, the effort 

toward the functionalization of CNTs was driven both by the need to circumvent CNT insolubility 

and difficult manipulation, and by the possibility of modifying their functional properties in a 

controlled manner. In the past decades, a great slice of nanotube research has been devoted to the 

development of approaches for CNT functionalization, and much literature can be found on the 

subject.
[10,20–25]

 Essentially, the modification of CNTs can be achieved by covalent attachment of 

molecules at the defect sites or at the sidewalls, or by non-covalent interaction of organic or 
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inorganic molecules (Figure 1.2). A special case of non-covalent functionalization is the endohedral 

filling of CNTs with atoms or small molecules. By covalent functionalization, functional groups are 

grafted to the skeleton of CNTs through chemical reactions and this approach generally affords 

chemically stable conjugates. The non-covalent functionalization is instead based on weak 

interactions, such as van der Waals forces, charge interaction or �-� stacking, between a molecule 

and the nanotube surface (internal or external). The main advantages offered by this approach are the 

fact that it is non-destructive, thus it does not affect the nanotube lattice, and can allow the release of 

the adsorbed (or encapsulated) molecules. 

Figure 1.2 Functionalization possibilities for CNTs: A) defect�group functionalization, B) covalent sidewall 

functionalization, C) non-covalent exohedral functionalization with surfactants, D) non-covalent exohedral 

functionalization with polymers, and E) endohedral functionalization with, for example, C60. For methods B–

E, the tubes are drawn in idealized fashion, but defects are found in real situations. Image adapted from ref. 

[20]. 

A largely explored approach is the combination of both covalent and non-covalent functionalization, 

which consents to impart multimodalities to the CNTs extending the scope of their potential 

applications.
[26]

 It is now widely recognized that the external modification of carbon nanotubes is 

necessary for their employment for bioapplications, especially for drug delivery, as CNTs need to 

meet the basic requirements of water-dispersibility.
[27]

 Moreover, the functionalization of CNTs 

allows decreasing cytotoxicity and improving biocompatibility, besides giving the opportunity for the 

conjugation of drug molecules, proteins or genes, for the construction of advanced delivery 

systems.
[28,29]

 By immobilizing different types of bioactive molecules onto CNTs, in a covalent or 

non-covalent way, it is possible to impart them targeting, diagnostic and therapeutic abilities, which 

makes them very appealing as nanocarriers. 

It is worth mentioning that in some cases the word functionalization is employed to name also other 

types of CNT modifications, such as in-lattice doping or intercalation, however in this Thesis we will 

only refer to the conventional functionalization strategies partly portrayed in Figure 1.2. In the 

following sections we will introduce the main approaches for the covalent and non-covalent 

functionalization of CNTs, with a bigger emphasis on the covalent strategies. A brief paragraph will 

be also dedicated to the multi-functionalization of CNTs derived from the combination of covalent 
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and non-covalent methods, whereas the endohedral functionalization will be addressed in detail in a 

specific section in Chapter 4. 

1.2.1 COVALENT FUNCTIONALIZATION

In the context of chemical reactivity, CNTs can be considered either as extended �-conjugated 

systems or as electron deficient alkenes. Indeed, the highly aromatic hexagonal network is 

susceptible of a wide range of chemical reactions.
[20,24]

A fundamental role in the reactivity of CNTs 

toward covalent bonding is played by defects on the external surface. Defects introduced during the 

production method and post processes (i.e. purification, separation) are considered topological. They 

include pentagon–heptagon pairs and can reach around 1-3% of all carbon atoms present.
[30]

Alternatively, defects can also be created by the covalent attachment of reactive molecules on the 

nanotube lattice. As CNTs are ideally made of sole sp
2
-bonded carbon atoms, the covalent addition 

of an atom to the exterior of a nanotube would change the hybridization of one or more C atoms to 

sp
3
, engendering a new defect site. In general, these structural imperfections can increment the local 

reactivity of the CNTs, although they concomitantly compromise their electrical and mechanical 

properties.
[31,32]

 Furthermore, the presence of discrete amounts of defects destroys the straight shape 

of CNTs increasing their flexibility, which has an overall significant effect on their toxicological 

profile.
[33,34]

The covalent functionalization of CNTs is usually performed according to two main approaches: (i) 

derivatization of oxidized CNTs by amidation or esterification, and (ii) sidewall functionalization by 

addition reactions. The first approach is also known as ‘defect-site chemistry’, as the anchoring of 

functionalities to the tubes exploits preexisting, or intentionally created, defects on the CNT scaffold 

after their oxidation. On the other hand, the sidewall functionalization occurs by addition of a new 

atom (or molecule) on the �-system of the tubes triggering the rehybridization of the carbon atoms. 

The two approaches can also be simultaneously performed on the same CNTs (e.g. double or triple 

functionalization), to combine multiple functionalities and tailor different properties, as we will 

briefly discuss in the following paragraphs. 

1.2.1.1 Defect-site functionalization 
The defect-site functionalization of CNTs usually consists in amidation or esterification reactions 

performed at the carboxylic groups of oxidized nanotubes. Generally, oxidation of CNTs is carried 

out by treatment with oxidizing agents such as nitric/sulfuric acids mixtures,
[35,36]

 piranha solution 

(H2O2/sulfuric acid)
[37]

 or KMnO4,
[38]

 which are the most common methods to process pristine 

nanotubes. In fact, as received pristine CNTs can contain a discrete amount of impurities, such as 

catalyst particles and amorphous carbon, depending on the production method. The oxidative 

treatment is commonly performed as initial step in CNT defect-site functionalization, as it allows to 

remove these impurities and to obtain shorter open-ended tubes with many oxygenated functions. 

These groups are mainly carboxylic acids and they are mostly located at the tips of nanotubes, as it 

was visually demonstrated by Prato and co-workers with scanning tunneling microscopy (STM) 

images of oxidized CNTs functionalized with alkyl chains by amidation (Figure 1.3).
[39]
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Figure 1.3 STM image of oxidized SWCNTs functionalized with 1-octylamine, showing irregularities at the 

terminal parts, which were attributed to the functional chains. Image reproduced from ref. [39]. 

Following oxidation, CNTs become water-soluble and stable in solution, due to the shorter length 

and the hydrophilicity conveyed by the oxygen-containing groups. Oxidized CNTs are then optimal 

precursors for the further introduction of desired functionalities through amidation or esterification. 

Generally, the carboxylic groups are first converted into acyl chlorides by reaction with thionyl or 

oxalyl chloride, and then reacted with an amine or an alcohol to afford the respective amide or ester 

(Scheme 1.1). Alternatively, the activation of the carboxylic acid functions can be performed in 

milder conditions using carbodiimide-based coupling reagents (e.g. 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide), as described by Jiang et al., who employed this strategy to 

graft a protein onto the nanotubes.
[40]

Scheme 1.1 Oxidation of CNTs followed by activation and amidation (A) or esterification (B). For clarity, a 

SWCNT fragment is represented with only one single added functional group. 

Amidation and esterification have been extensively used to append several types of functionalities 

onto CNTs, like fullerene derivatives
[41]

 and porphyrins,
[10]

 for charge-transfer nanohybrids, or 

peptides, DNA and drugs, for delivery applications.
[25,42]

1.2.1.2 Sidewall functionalization 
The covalent functionalization of CNTs by addition chemistry is a very interesting strategy for the 

appendage of molecules to the nanotubes, especially because it allows their distribution all along the 

sidewalls. However, these addition reactions usually require very reactive species (e.g. carbenes, 

nitrenes, or halogens) and harsh conditions for the formation of the covalent bonds, so it is difficult to 

keep control over the chemo- and regioselectivity of the reaction. Two parameters that influence the 

sidewall reactivity are the degree of defects and the curvature. It has been reported that SWCNTs are 

generally more reactive than MWCNTs toward the same type of reaction: this accounts to the smaller 

diameter of SWCNTs and to the layered nature of MWCNTs, which renders the inner layers 

inaccessible.
[43]

Up to date, the fan of possibility for the sidewall functionalization of CNTs is very broad and vary, 

comprehending reactions such as cycloadditions (Diels-Alder, [2+1] and [3+2]), radical addition, 

halogenation, electrophilic or nucleophilic additions. Extensive descriptions of these reactions has 
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been reported in many reviews.
[25,44]

 The aim of the following discussion is to give a panoramic view 

of the different possibilities and introduce the most commonly used reactions. 

1.2.1.2.1 Halogenation 

One of the first proposed methods to attain the functionalization of nanotube sidewalls is 

fluorination, which leads to the attachment of single fluorine atoms to the carbon lattice. Fluorination 

usually involves elemental fluorine or CF2 and rather high temperatures (up to 600°C), and can afford 

high degrees of functionalization.
[45]

 The increased reactivity of fluorinated CNTs can be exploited 

for further derivatization by nucleophilic substitution of the fluorine atom using Grignard or 

organolithium reagents. In a similar way, CNTs can be brominated by using Br2, plasma-based 

bromine treatment or N-bromosuccinimide in milder conditions.
[46,47]

 Nanotube iodination was 

instead obtained by UV irradiation of oxidized CNTs in the presence of iodosobenzene diacetate by a 

modified Hunsdiecker reaction.
[48]

1.2.1.2.2 Cycloaddition Reactions 

Cycloaddition reactions are among the most used strategies for the direct functionalization of CNTs, 

as they allow to tether chains of variable nature and length onto the nanotube sidewalls, sensibly 

increasing their dispersibility. By properly selecting the functional groups of the appended chains it is 

possible to further derivatize the CNTs and possibly graft any type of molecule. The most common 

cycloaddition reactions performed on CNTs are: i) 1,3-dipolar cycloaddition, ii) Diels-Alder reaction, 

and iii) [2+1] cycloadditions of nitrenes or carbenes. 

The 1,3-dipolar cycloaddition, also known with the name of Prato’s reaction, is a [3+2] 

cycloaddition. It consists in the addition of an azomethine ylide generated in situ by the thermal 

condensation of an �-amino acid and an aldehyde derivative, and leads to the formation of a 

pyrrolidine ring fused to the C-C bond of CNTs (Scheme 1.2 -a). The reaction can also be 

performed under solvent-free microwave irradiation,
[49]

 or using different substrates such as aziridine 

derivatives
[49]

 or zwitterions resulting from the addition of pyridine to acetylene derivatives.
[50]

 The 

attractiveness of this reaction is represented by the fact that it works efficiently on most CNT types 

(pristine, oxidized, SW- or MWCNTs), and that a number of different conjugates can be prepared by 

simply varying the functional groups on the aldehyde or the side chain of the amino acid.
[51]

 1,3-

Dipolar cycloaddition has been widely exploited to covalently attach to nanotubes electron-donors, 

such as ferrocene,
[52]

 or biologically active molecules, such as peptides, antibodies and drugs.
[53]

The reactivity of CNTs toward Diels-Alder reaction is also broad, since the nanotubes can act either 

as dienophiles or dienes, depending on the reaction partner (Scheme 1.2 -b). In fact, CNTs can react 

with maleimide derivatives as dienophiles, or with furan as dienes.
[54]

 Fluorinated SWCNTs have 

shown to be very reactive toward a wide range of dienes due to the activating effect of the electron-

withdrawing fluorine atoms.
[55]

 Nevertheless, this [4+2] cycloaddition is not always a suitable 

method for CNT functionalization because of the reversibility of the reaction. 
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Scheme 1.2 Examples of cycloaddition reactions on CNTs: a) 1,3-dipolar cycloaddition, b) Diels-Alder 

reaction, c) nitrene and d) Bingel reaction. 

CNTs have been also functionalized by [2+1] cycloaddition of nitrenes and carbenes, which leads to 

the formation of 3-membered rings on the CNT sidewalls. Nitrene reaction is performed starting 

from azide derivatives, which can generate very reactive nitrene intermediates by thermolysis or 

photolysis. The electrophilic attack of the nitrene to the �-conjugated system of CNTs occurs with 

extrusion of N2 and engenders an aziridine ring involving a C-C bond from the nanotube (Scheme 
1.2 -c).

[56]
 In a similar way, in situ-generated carbenes can react with nanotubes forming 

cyclopronane rings.
[57]

 A more common cyclopropanation reaction is the Bingel reaction, which is 

operated by carbanionic species originated from malonate derivatives (Scheme 1.2 -d).
[58]

 A more 

detailed discussion about [2+1] reactions will be covered in Chapter 5. 

Cycloaddition reactions, but also amidations and esterifications, are often performed employing alkyl 

chains featuring a protected-amine as terminal group, such as phthalimide- or Boc-protected amines. 

After cleavage of the protecting group, the amine can be easily quantified by colorimetric tests (e.g.

Kaiser test), thus allowing the quantification of the degree of functionalization. By using a linker 

with a terminal alkyne or azide group, it is otherwise possible to further functionalize CNTs by click-

chemistry, forming triazole rings on the functional chain. This approach has been exploited to graft 

molecules that could be sensible to certain cycloaddition reaction conditions, such as polymers, 

chromophores and nanoparticles.
[59,60]

1.2.1.2.3 Radical Additions 

Another very common route to functionalize nanotubes and sensibly increase their solubility is the 

radical addition of aryl diazonium salts, which was first described by Tour’s group.
[61]

 On a first 

instance, they reported the arylation of SWCNTs using diazonium salts obtained via electrochemical 

reduction of aniline derivatives in the presence of NOBF4. The same group later affirmed that 

arylation of CNTs could be achieved also by direct treatment with aryl diazonium tetrafluoroborate 

salts in solution or with the corresponding amine, which, in the presence of isoamyl nitrite, is 

transformed in situ into the corresponding diazonium (Scheme 1.3).
[62]

 The reaction between aryl 

diazonium salts and CNTs probably proceeds via highly reactive aryl radical intermediates. Hudson 

et al. devised an interesting way to perform the arylation of SWCNTs in aqueous solution using 

aniline and triazene derivatives for the in situ formation of the diazonium intermediate.
[63]

 Some 

researchers exploited diazonium-based functionalization strategies to graft photoactive compounds to 
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CNTs, like phtalocyanines or porphyrins, affording conjugates that exhibit exceptional optical and 

electron transfer properties and are exploitable for the development of optoelectronic devices.
[64,65]

Scheme 1.3 Functionalization of CNTs using (a) preformed diazonium salts or (b) in situ generated 

diazonium salts. 

1.2.1.2.4 Electrophilic and Nucleophilic Additions 

Alkyl functions can also be introduced on nanotubes by electrophilic or nucleophilic addition 

reactions. For example, CNTs can undergo Friedel-Craft acylation, as reported by Balaban et al., 

who prepared polyacylated SWCNTs starting from an acyl chloride derivative and a Lewis acid 

(Scheme 1.4 -a).
[66]

 Tertiary amines have been introduced on MWCNTs by a deprotonation-

carbometalation reaction in the presence of butyl lithium, followed by an electrophilic substitution 

with bromo-derivatives. Direct alkylation of carbon nanotubes can be as well accomplished by 

nucleophilic addition of organometallic reagents such as nBuLi, EtLi, tBuMgCl (Scheme 1.4 -b).
[67]

This reaction is highly selective toward metallic SWCNTs, and the reactivity is influenced by the 

steric hindrance of the nucleophile and the nanotube diameter. 

Scheme 1.4 Functionalization of CNTs by (a) Friedel-Craft acylation and (b) nucleophilic addition of an 

organolithium compound. 

1.2.2 NON-COVALENT FUNCTIONALIZATION

Non-covalent functionalization of carbon nanotubes has been widely exploited as a non-destructive 

method to increase their dispersibility and to tailor specific applications by selecting the appropriate 

coating compound. Indeed, stable solutions of CNTs can be obtained by dispersing them with 

amphiphilic surfactants, polymers, polynuclear aromatic compounds or biomolecules. The driving 

forces for this supramolecular interaction are usually van der Waals forces, �-� stacking, charge-

transfer and hydrophobic interactions. Early investigations on CNT non-covalent functionalization 
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were driven by the need to bring them in solution and disentangle the bundles in order to obtain 

individualized nanotubes.
[68]

 Nowadays, very stable suspensions of individually dispersed nanotubes 

can be attained both in aqueous and organic solutions.
[69]

 Typically, the dispersion of nanotubes in 

solution is assisted by ultrasonication as this triggers the formation of gaps and spaces within the 

bundles. If these unstable gaps are accessible to the dispersing agent, this one will intercalate 

between the CNTs impeding their re-aggregation and ultimately separating them into isolate 

tubes.
[70,71]

 The solubilization of the nanotubes in water is generally based on the non-covalent 

interactions of amphiphilic molecules (surfactants) with the tube surfaces: while the hydrophilic part 

interacts with water, the hydrophobic one adsorbs onto the nanotube surface solubilizing them and 

preventing their aggregation. The structures of the hydrophilic groups of surfactants can be very 

diverse and their nature defines the efficiency of the CNT dispersion (Figure 1.4). For example, 

charged surfactants stabilize nanotube dispersions by electrostatic repulsion, while neutral surfactants 

create a large solvation shell by wrapping around the nanotube.
[72,73]

 Length and shape of the alkyl 

chains do also play an important role for the efficiency of the interaction between the surfactant and 

CNTs: longer and more branched chains are more solubilizing than linear and straight ones.
[74,75]

Nevertheless, many surfactants are stable only at high concentrations, due to their high critical 

micellar concentration, and this is a drawback when it comes to their employment for biological 

applications because an excess of surfactant can cause cell membrane lysis or protein denaturation.
[76]

  

Figure 1.4 (a) Schematic representation of the random adsorption of surfactant molecules onto the SWCNT 

sidewalls. (b) Chemical structures of some of the most used surfactants and polymers (SDS: sodium dodecyl 

sulfate; CTAB: hexadecyltrimethylammonium bromide). Figure adapted from ref. [73]. 

The presence of aromatic moieties within the surfactant can also be helpful due to the formation of �-

� stacking interactions with the graphitic nanotube surface. Compounds such as porphyrin and pyrene 

derivatives proved to efficiently adsorb onto CNTs with large degree of coverage.
[72,77]

 The group of 

Harada interestingly profited of this capacity to construct a water soluble hybrid conjugate of 

SWCNTs functionalized with �-cyclodextrins (�-CDs), previously anchored to a molecule of pyrene 

(Py).
[78]

 The aromatic moiety of pyrene permitted the interaction with the nanotubes, while 

cyclodextrins added polarity to the system. They then exploited the supramolecular host-guest 

potential of the appended cyclodextrins to prepare gel-sol switchable SWCNT hydrogels (Figure 
1.5). 
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Figure 1.5 Hydrogel of SWCNTs and �-CDs prepared by �−� interaction between pyrene (red) modified �-

CDs (yellow) and SWCNTs (center). Gel to sol transition upon addition of a competitive guest such as 

adamantane carboxylate (left) and �-CDs (right). Figure adapted from ref. [78].

Supramolecular conjugates of CNTs with polymers have been variously investigated with the aim of 

matching polymer applications with nanotube physical properties.
[79]

 CNT-polymer composites have 

been prepared with polystyrene, polypropylene, polyphenylene-vinylene (PPV) and many others, and 

have found application as lightweight reinforcing materials or optoelectronics. Some polymers can 

even wrap around CNTs with a helical arrangement to overcome the conformational strain imposed 

by the rigidity of the tubes.
[24]

Interestingly, many biological molecules have shown the capability to adsorb onto nanotubes, and 

this has broadened the range of CNT applications in the biological field. Immobilization of 

biomolecules onto CNTs has been reported for peptides, proteins, mono- and polysaccharides, 

phospholipids and nucleic acids.
[42,80]

 For instance, proteins work very well in dispersing nanotubes: 

the supramolecular interaction between the two is enhanced by the �-� stacking between the graphitic 

surface and the aromatic amino acid residues of the protein sequence. The adsorption of 

biomolecules onto CNTs allows the combination of the conducting properties of the latter with the 

recognition ability of the biomolecule, obtaining new bioelectronic systems exploitable as advanced 

biosensors.
[24]

 For example, a conjugate of CNT with glucose-oxidase, an enzyme that catalyses the 

oxidation of glucose, has been integrated into an electrode and this apparatus is now employed in 

clinical tests for the voltammetric detection of glucose.
[81,82]

  

1.2.3 MULTI-FUNCTIONALIZATION OF CARBON NANOTUBES

Multiple functionalization of carbon nanotubes has been extensively used as a powerful approach to 

attach two or more different functionalities and thus endow the final conjugate with multimodal 

properties. Multi-functionalization strategies relies on the combination of different covalent 

approaches (e.g. arylation and amidation), multiple non-covalent functionalization, or combination of 

covalent and non-covalent approaches (Figure 1.6). Moreover, up to three or four different 

functionalization strategies can be performed on the same conjugate, hence the range of possibilities 

is very broad and allows a great versatility. This synthetic strategy has been particularly exploited to 

prepare CNT constructs dedicated to bioapplications, as it consents to simultaneously conjugate them 

with a targeting molecule, a fluorescent probe and a therapeutic agent.
[26,42]
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Figure 1.6 Examples of multi-functionalization approaches: A) double covalent approach, B) double non-

covalent approach, C) mixed covalent and non-covalent approach, D) mixed triple functionalization. 

In 2006 our group reported one of the first examples of double functionalization of CNTs, which 

were covalently derivatized by 1,3-dipolar cycloaddition with two different functional chains. After 

selective cleavage of the two orthogonal protecting groups, the free amines were conjugated in one 

case with a fluorescent probe and in the other with an anticancer molecule.
[83]

 In another example, the 

anticancer drug doxorubicin (DOX) was adsorbed onto SWCNTs previously functionalized with a 

phospholipidic PEG (PL-PEG) either by amidation of the carboxylic groups or by non-covalent 

adsorption.
[84]

 In this report, Liu et al. proved that despite the PL-PEG wrapped around the tubes, 

these were still able to be loaded with a relevant amount of DOX. Many other groups have developed 

CNT-based nanocarriers for the delivery of different drugs, such as doxorubicin and paclitaxel, 

usually by loading the molecule onto CNTs previously functionalized with a polymeric chain (e.g.

polysaccharides, PEG, phospholipids) and/or a targeting agent (e.g. antibody, RGD [arginine–

glycine–aspartic acid] peptide, folic acid [FA]).
[42]

 An innovative example of multimodal CNT 

functionalization was reported by Lu et al. who developed a magnetic dual-targeted hybrid 

nanocarrier combining the advantages of MWCNTs and those of magnetic iron oxide nanoparticles 

(MIONP), and exploited it for drug delivery and chemotherapy (Figure 1.7).
[85]

 MWCNTs were first 

functionalized with poly(acrylic acid) (PAA) by free radical polymerization, and subsequently 

decorated with MIONP in a non-covalent way. The targeting ligand folic acid was then grafted by 

carbodiimide-mediated amidation between the COOH of PAA onto MWCNTs and the NH2 of FA. A 

fluorescent probe, fluorescein isothiocyanate (FITC), was also conjugated to the nanocarrier by 

spontaneous covalent bonds formation with the residual surface amino groups, while DOX was 

finally loaded via both �–� stacking and hydrogen bonding.  

Figure 1.7 Schematic representation of in vitro pH-triggered DOX delivery and release using FITC/FA-

PAA/MIONP/MWCNT nanohybrids. Adapted from ref. [85]. 



Introduction 

14 

This interesting multiple synthetic approach provides dual targeted delivery of the anticancer drug to 

cancer cells under the guidance of a magnetic field and through ligand–receptor interactions. In vitro

studies allowed to verify that this conjugate was efficiently taken up by U87 glioblastoma cells and 

the subsequent intracellular release of DOX caused enhanced cytotoxicity compared to the free drug.

1.3 CARBON NANOTUBE APPLICATIONS FOR THERAPY AND IMAGING

It is already consolidated that CNTs can have applications in different fields, spanning from materials 

science, such as optoelectronic, composites, sensors, to many bio-related areas, like biosensing, 

imaging, delivery and prosthetics. Because the research of this Thesis is related to the preparation of 

CNT carriers for cancer therapy, in this section we will give an overview of the major applications of 

CNTs in the biomedical field, with a particular focus on those destined to cancer therapy. To this 

purpose, CNT-based constructs have been used as vehicles to deliver drugs, genes, radiotherapy, or 

as direct tools for hyperthermia or photoacoustic therapy. These applications will be briefly outlined, 

joined with a few remarkable examples. 

1.3.1 CARRIERS FOR CANCER THERAPY

Why are CNTs good candidates as carriers?

Carbon nanotubes, along with many other nanoparticles, have started to be considered as potential 

entities exploitable for therapeutic uses thanks to their nanometer size and their tunable surface 

properties. Indeed, the pharmacokinetics and pharmacodynamics, and thus the efficacy of a 

therapeutic tool, are highly dependent on its morphological properties (size, shape, surface), together 

with its ability to induce cell death (into the tumor tissues). Nanoparticles are very attractive from the 

point of view of their size compared to classic molecular therapeutics or to bigger size particles (> 

several micrometers). On one hand, nanosized particles (> 10 nm) can escape a too rapid excretion by 

the blood stream, resulting in longer circulation times. On the other hand, too big particles are not 

suitable as delivery systems because they can be trapped inside the smallest capillaries before 

reaching the target, or be engulfed by the phagocytic cells triggering adverse effects for the body. In 

addition, the nanosize of these particles is suitable to achieve the so-called ‘passive targeting’. The 

vasculature in tumor tissues displays increased fenestration, resulting in an easier percolation and 

accumulation of these particles (< 500 nm) through the blood vessels by the so-called enhanced 

permeability and retention (EPR) effect.
[86]

 This phenomenon is in fact widely exploited in the design 

of drug delivery systems because it allows the selective accumulation of the nanoparticles within the 

tumor tissues with higher concentration than in the healthy ones.
[87]

 Furthermore, the high aspect ratio 

of CNTs is, for example, very advantageous for the construction of delivery systems, because high 

amounts of payloads can be attached to their surface and carried inside the body, thus increasing the 

drug bioavailability. However, due to this large surface area available, it is important to have a good 

control over the surface properties of the nanoparticles (surface charge, type and amount of 

functional groups, structure). Finally, specific targeting ligands can be attached to the nanoparticles, 

endowing them with site-selectivity and somehow enhancing the cellular uptake, thanks to the ligand 

interaction with cellular receptors. Overall, the possibility to tune a nanoparticle circulation time by 
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control of its size and shape, together with the targeting ability, greatly enlarges the potential of 

nanoparticles for therapeutic use.
[87–90]

The pioneer exploration of CNT applicability in the nanomedical field was certainly prompted by 

their belonging to the nanomaterial family. However, CNTs soon demonstrated to be very valuable 

candidates thanks to their ability to easily cross the cellular membrane and to vehicle inside the cells 

various payloads, from small drug molecules to bigger size pharmaceuticals (e.g. proteins, genetic 

material). In fact, upon functionalization, CNTs can be imparted with an amphiphilic character that 

allows them to be homogeneously dispersed in physiological media and at the same time interact 

with organic moieties such as the membrane phospholipidic bilayer or water-insoluble drugs. 

Moreover, the possibility to anchor different functionalities onto CNTs by their multi-

functionalization, further raised the interest toward their exploitation in the biomedical field. To this 

scope, many groups have dedicated intense efforts to design and build CNT-based constructs to be 

employed as therapeutic platforms, and at present a wide library of these construct has been 

reported.
[28,91–93]

1.3.1.1 CNTs for Drug Delivery 
The large surface area of carbon nanotubes offers a great possibility to reach high loading of drug 

molecules and consequently reduce the required therapeutic dosage. Thanks to their aromatic 

character, CNTs are an ideal platform to carry inside the cells hydrophobic drugs that are poorly 

soluble in water. The loading of a drug onto CNTs can be accomplished through several approaches, 

according to its chemical structure. By a fully covalent approach, the drug can be connected to the 

nanotube solely by covalent bonds, eventually via a spacing chain, elsewise, a drug molecule can be 

linked to a polymeric chain wrapping the CNTs. Alternatively, it can be directly adsorbed on the 

backbone by �-stacking or, finally, small size drugs can be encapsulated in the CNT cavity.
[26,28,42,93]

Up to now, CNTs have been decorated with small anticancer drugs, such as DOX, cisplatin, 

Paclitaxel (PTX), methotrexate (MTX),
[42,93]

 but also with therapeutic antibodies and antiviral or 

antibacterial drugs.
[42,94]

 For the efficacy of a drug delivery system, besides the conjugation of the 

drug to the carrier, it is important that the drug integrity is preserved until the final destination, and 

that its release and restoration occur in the desired location. For example, most of CNT/DOX 

constructs exploit the strong �-� interaction between the two moieties to carry DOX inside tumor 

cells, where the acidic pH triggers its release from the tube surface.
[42]

 Another valuable approach is 

to anchor the drug to the CNTs through a cleavable linker that can be selectively cleaved in certain 

environmental conditions (e.g. pH) or by specific enzymes (see Chapter 3).
[95–97]

 For example, Liu et 

al. covalently conjugated PTX, a widely used chemotherapeutic drug, to PEG chains on SWCNTs 

via a cleavable ester bond, obtaining a water-soluble SWCNT-PTX construct (Figure 1.8). They 

demonstrated that the conjugate accumulation into tumor tissues was ten times more than that of the 

free drug Taxol®, and ascribed this to the EPR effect. Moreover, the intracellular enzymatic cleavage 

of the ester bond induced the controlled release of the drug, ultimately leading to the successful 

suppression of the tumor growth in a murine model of 4T1 breast cancer (Figure 1.8 -b).
[95]
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Figure 1.8 Carbon nanotubes for paclitaxel delivery. a) Schematic representation of the SWNT-PTX 

conjugate. The PTX molecules were connected to PEG at the circled OH site, forming a cleavable ester bond. 

b) Suppression of tumor growth in 4T1 breast cancer mice model by treatment with different conjugates and 

control. P values (Taxol® vs SWNT-PTX): * p<0.05, ** p<0.01, *** p<0.001. Inset: photo of tumors coming 

from sacrificed mice untreated and treated with Taxol® or with SWNT-PTX. Figures adapted from ref. [95].

For the preparation of CNT-based drug delivery systems, most of the approaches feature the 

functionalization (covalent and non-covalent) of nanotubes with linear or branched PEG chains, or 

similar derivatives. This accounts for multiple reasons: first, PEGylation significantly improves CNT 

dispersibility and stability in physiological buffers and it offers the possibility to further derivatize 

the PEG terminal groups with suitable functionalities.
[98]

 Second, the presence of biocompatible PEG 

chains on the nanotube surface considerably increases the blood circulation time of the nanocarrier 

by lowering its immunogenicity and preventing its non-specific phagocytosis by the 

reticuloendothelial system (RES) (opsonization).
[99,100]

 Dai and co-workers coated SWCNTs with a 

PL-PEG chain, which was further derivatized with the RGD peptide and with the macrocyclic 

chelating agent DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid).
[101]

 The role of 

RGD was to target integrin �v�3 receptor, which is a marker of tumor angiogenesis and metastasis, 

while DOTA was used for chelating the positron-emitting radionuclide 
64

Cu. The  biodistribution of 

these radiolabeled SWCNTs was then investigated in mice by positron emission tomography (PET) 

and Raman spectroscopy. The so-functionalized SWCNTs were found to be surprisingly stable in 

vivo, exhibiting relatively long blood circulation times and low uptake by the RES. The conjugate 

showed efficient targeting of integrin-positive tumors in mice, with high tumor accumulation levels 

and allowed for the in vivo imaging of the tumor.

As alternative to the external functionalization, small-size drugs and prodrugs can also be 

encapsulated within the inner cavity of CNTs to guaranty their protection from external agents and 

possibly afford a slower and controlled release.
[93]

 In a report by Pastorin and co-workers, the 

anticancer drug cisplatin was encapsulated inside MWCNTs and the tube ends were capped with gold 

nanoparticles (AuNP), for a better protection of the drug. While the non-capped MWCNTs showed a 

rapid release of cisplatin (in less than 1 hour in PBS buffer), the AuNP-MWCNT conjugate allowed a 

slower release both in the buffer and in vitro.
[102]

  

Finally, to the aim of drug delivery, carbon nanotubes have been employed also in other ways than 

carriers; for instance, they were incorporated in a matrix as additive to improve its properties. 

Combining the electrical properties of MWCNTs with the electrosensitivity of poly(methylacrylic 

acid) (PMAA) gels, the group of Kostarelos developed an innovative electroresponsive hydrogel 

hybrid that showed good potential for in vivo pulsatile drug delivery (Figure 1.9).
[103]

 Radiolabeled 

sucrose was loaded into the MWCNT/PMAA hydrogel and its release upon electrical stimulation was 
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studied both in vitro and in vivo after subcutaneous implantation of the device in the mice. It was 

observed that the drug release profile in blood was slower compared to the free sucrose 

administration or to a CNT-free matrix, proving that the presence of the CNTs improved the 

responsiveness of the gel to stimulation, allowing the controlled delivery of the drug under short-time 

stimulation and low electric voltage.

Figure 1.9 (Top) Loading of 14C-sucrose into MWCNT/PMAA hydrogel hybrids and mechanism of drug 

release upon electrical field application. (Bottom) In vivo drug release in systemic circulation. A) 

Pharmacokinetic profiles of 14C� sucrose release following different routes of administration (subcutaneous 

gel implantation, intravenous and subcutaneous injection), without stimulation. B) Release profile of 14C�

sucrose from hybrid gel in systemic blood circulation: comparison between blank gels and 0.2 mg/mL 

MWNT hybrid gels upon electric stimulation. Gels were stimulated (10 V for 1 min) at 2 h intervals (vertical 

arrows). The first stimulation was performed following a 2 h equilibration period. Figure adapted from ref. 

[103].

1.3.1.2 CNTs for Gene Delivery 
Genes are segments of nucleic acids that can be employed for the treatment of genetic disorders and 

cancer by replacing/silencing the diseased gene responsible for the abnormal phenotype. Despite 

great advancements in the field of gene therapy, still some challenges needs to be faced, such as the 

safe and efficient delivery of sufficient amounts of genetic materials inside the cells up to the 

nucleus, without eliciting adverse immune responses in the host. The ability of CNTs to cross the 

cellular membranes sounded like an interesting strategy to attain gene transfection, and ultimately 

achieve cancer treatment. In 2004, our group reported the first successful CNT-assisted transfection 

of plasmid DNA in vitro,
[104]

 and thereafter studies in this field incredibly boosted.
[105]

 Nucleic acids 

can be tethered onto CNTs either by covalent attachment to a present functionality or through self-

assembly driven by charge interaction or by �-� stacking between the nucleobases and the tube 

sidewalls. Because of the overall negative charge of nucleic acids, the functionalization of CNTs with 

positively-charged groups is often preferred to favor the efficient complexation between the two 

components. So far, CNT ability in gene delivery has been tested with many different nucleic acid 

sequences from plasmid DNA and small-interfering RNA (siRNA), and also with DNA and RNA 

aptamers.
[105]

 The majority of these studies has been performed in vitro; however, in a recent work, a 

siRNA specific for the proto-oncogene Braf, was delivered topically to a mouse melanoma model 
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resulting in the successful attenuation of tumor growth.
[106]

 A further insight on the use of CNTs as 

vehicles for intracellular transfer of genetic material will be provided in Chapter 2. 

1.3.2 PHOTOTHERMAL THERAPY

The treatment of a malignant tumor consists in the killing of the diseased cells and tissues. This can 

be performed either by delivery of a therapeutic molecule or by altering the environmental conditions 

of the cells. One effective way to do this is by increasing the local temperature of the cancer cells, 

thus leading to their death by excessive temperature. This approach is at the basis of photothermal 

therapy (PTT). Because of the strong optical absorbance of CNTs and their propensity toward 

cellular uptake, they have become good candidates to accomplish the hyperthermic death of 

cancerous cells. Indeed, CNTs can absorb radiation in the NIR region and efficiently convert it into 

heat. Moreover, human tissues and biological fluids are relatively transparent to NIR light, which can 

reach deep penetration. To the aim of hyperthermia therapy, CNTs can either be directly injected into 

the tumor, if it is superficial or easily reachable, or they can be intravenously injected and actively 

addressed to cancerous cells by an appropriate targeting molecule. Dai’s group was the first to report 

the use of CNTs for hyperthermia therapy in 2005.
[107]

 SWCNTs functionalized with PL-PEG and 

folate as targeting agent were incubated with cervical carcinoma HeLa cells overexpressing the folate 

receptor. Irradiation of the cells with a 808 nm laser for 2 min induced extensive cell death, whereas 

HeLa cells that did not overexpress the folate receptor were not affected by the same treatment, as 

they did not internalize the CNTs. Later on, Moon and co-workers explored the ability of PEGylated 

SWCNTs to destroy solid malignant tumors in vivo after intratumoral injection of the nanotubes and 

NIR irradiation (Figure 1.10).
[108]

 They reported the complete destruction of the tumor in the treated 

mice, without recurrence for over six months, whereas the tumor in untreated mice continued to 

grow. Moreover, they observed that most of the nanotubes were excreted within 2 months, via the 

biliary or renal pathway, thus concluding that SWCNT-mediated photothermal therapy could be a 

very promising approach for cancer therapy. Finally, tumor photothermal ablation with CNTs is 

possible also by means of radiofrequencies, as it was demonstrated in vitro and in vivo by treating 

hepatic tumor-bearing mice.
[109]
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Figure 1.10 (a) Schematic representation of the procedure of photothermal treatment of tumors in mice with 

PEG-SWCNTs; (b) representative photographs of the mice treated in different ways at various time points 

after each treatment (I, PEG-SWNTs + NIR; II, untreated; III, PBS + NIR; IV, PEG-SWNTs). Figure adapted 

from ref. [108]. 

1.3.3 TISSUE ENGINEERING

The development of biocompatible materials for implants or supports is very important in the field of 

regenerative medicine to thwart neurodegenerative diseases or traumatic injuries. Tissue engineering 

refers to the practice of combining scaffolds, cells, and biologically active molecules into functional 

tissues with the goal of restoring, maintaining or improving damaged tissues or whole organs. 

Scaffolds for tissue regeneration require properties such as rigidity to resist external forces, 

biodegradability, ability to promote cell adhesion and proliferation, and ability to be sprayed by 

blood vessels and body fluids. The integration of CNTs with natural or synthetic polymers for the 

construction of new scaffolds has attracted great interest, since the CNTs can provide these materials

with additional strength and flexibility and with novel properties such as electrical 

conductivity.
[110,111]

 For example, incorporation of CNTs into collagen, which is the most commonly 

used scaffold material, significantly improves the mechanical strength of the composite, thus 

imparting structural support.
[112,113]

 Moreover, CNT-polymer nanocomposites display improved 

biocompatibility and favorable characteristics toward cell adhesion and proliferation.
[110,111]

 Da Silva 

et al. designed a 3D collagen/nanotube composite for bone regeneration, and beside featuring optimal 

mechanical rigidity, the composite proved to be bioresorbable and biodegradable, and induced 

mineralization of hydroxyapatite (the principal component of bones) crystals in vitro.
[114]

 In another 

example, the electrical stimulation of osteoblasts (the bone-forming cells) grown on a CNT-
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polylactic acid composite significantly increased bone cell proliferation and extracellular calcium 

production, demonstrating the potential application for accelerated bone repair.
[115]

 Besides being 

incorporated in a matrix as additive, CNTs can also act as substrates for cell growth providing the 

cells with a support to grasp on. So far, a variety of cell phenotypes were reported to have high 

binding affinity for CNT surfaces, being able to grow and proliferate on their surface (e.g. 

fibroblasts, neurons, stem cells, osteoblasts).
[116]

 In particular, the biocompatibility between CNTs 

and neurons, combined with CNT electrical conductivity, aroused interest toward their use for neural 

prosthesis and interfacing.
[117,118]

 The first study in this field was reported in 2000 by Mattson et al., 

who demonstrated that neurons were able to grow on CNTs coated with 4-hydroxynonenal exhibiting 

multiple neurites and extensive branching. Later on, Ballerini and Prato’s groups thoroughly 

investigated the ability of CNTs to sustain neuronal electrical activity establishing that CNTs can 

increase spontaneous synaptic activities and improve the responsiveness of neurons by forming 

entangled neuron-CNT networks.
[117,119,120]

 The majority of these findings are proof-of-principle 

studies, but some in vivo studies already showed that CNTs are very promising as promoter of 

neuroregeneration and neuroprotection in injured nervous system.
[121,122]

1.3.4 CANCER DIAGNOSIS AND IMAGING

1.3.4.1 CNTs for Imaging 
Due to their intrinsic chemico-physical properties, CNTs have started to be largely employed as tools 

for imaging applications. In fact, CNTs can give rise to unique optical, photoacoustic and Raman 

signals, thus allowing to exploit the corresponding imaging mode.
[123]

 As alternative, carbon 

nanotubes can be functionalized with imaging agents, such as quantum dots, metallic nanoparticles or 

radionuclides, to facilitate conventional imaging techniques such as magnetic resonance imaging 

(MRI), positron emission tomography (PET) or single photon emission computed tomography 

(SPECT). The possibility to detect CNTs in vitro and in vivo is highly interesting both from the point 

of view of their biodistribution assessment, in order to follow their fate within the cells and the body, 

and from a diagnostic perspective, since it allows to visualize specific organs or diseases within the 

body. 

After injecting mice with PEGylated SWCNTs, Welsher and co-workers demonstrated whole animal 

in vivo imaging by means of photoluminescence response, while in a following study they could even 

monitor the nanotube circulation through the mouse anatomy in real-time by dynamic contrast-

enhanced imaging in the second NIR window (from 1000 to 1400 nm) (Figure 1.11).
[124]

 Treatment 

of the acquired data by principal component analysis (PCA) allowed to greatly increase the 

anatomical resolution of the organs, permitting to visualize also small organs like the pancreas. This 

technique was later used by the same group and others to achieve the in vivo imaging of tumors, 

showing that CNTs could efficiently work as probes for cancer diagnosis. 
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Figure 1.11� Dynamic contrast-enhanced imaging with SWCNTs through PCA. PCA images taken over the 

first 130 s following injection. Major features observed belong to the lungs, liver, kidney, spleen and 

pancreas, in the interstitial space between the kidney and spleen. Image reproduced from ref. [124]. 

In the last few years, CNTs started to be employed as contrast agent also for photoacoustic imaging, 

a technique that generally offers a higher spatial resolution and deeper tissue penetration compared to 

other optical imaging techniques. An interesting example was reported by Kim et al., who firstly 

coated SWCNTs with a thin gold layer in order to enhance their NIR absorption, and then they 

conjugated it to an antibody targeting the lymphatic endothelial receptor.
[125]

 With this approach, they 

could reduce the required CNT concentration to the femtomolar range, and achieve the in vivo 

mapping of the lymphatic system by using CNTs as photoacoustic and photothermal contrast agent. 

Combined ultrasound imaging and drug delivery through CNTs was achieved by Wu and co-workers, 

who engineered a CNT multifunctional platform by covalently functionalizing MWCNTs with 

polyethyleneimine (PEI), FITC as fluorescent probe and a monoclonal antibody (mAb) specific 

toward prostate stem cell antigen (PSCA), which is overexpressed by prostate cancer cells.
[126]

 By 

ultrasound and confocal luminescence imaging, the researchers confirmed that the conjugate was 

able to specifically target PSCA-overexpressing cells, and upon loading with DOX it afforded good 

targeted drug delivery and suppression of tumor growth in mice. By decorating CNTs with contrast 

agents (exo- or endohedrically), other types of non-optical bioimaging have been accomplished. 

Carbon nanotubes have been variously functionalized with typical agents for T1 and T2 relaxation 

(e.g. Gd
3+

, Mn
2+

, magnetic and superparamagnetic iron oxide nanoparticles) for MRI, or with 

radioactive isotopes for nuclear medicine imaging, such as 
18

F and 
64

Cu for PET, and 
99

Tc for 

SPECT. For example, Liu et al. immobilized superparamagnetic iron oxide nanoparticles (SPION) 

modified with a targeting lactose–glycine adduct (Lac–Gly) onto oxidized MWCNTs previously 

coated with poly(diallyldimethylammonium chloride) (PDDA) by electrostatic interaction.
[127]

 These 

multifunctional magnetic MWCNTs showed low cytotoxicity in vitro, and increased T2 relaxivity 

compared to the free SPION, due to the ability of the tubes to complex a great extent of clustered 

NPs. The in vivo trials demonstrated the potential of CNT–PDDA–SPION@Lac–Gly as MRI 

contrast agent with good aqueous dispersibility, high T2 relaxation time and enhanced tumor/liver 

contrast ratio (277% enhancement). 

1.3.4.2 CNT-based Biosensors 
Traditional clinical cancer imaging methods, like X-ray, computed tomography (CT) and MRI, are 

often inadequate for a precise detection of early stage diseases and cancers, due to their initial 

asymptomaticity. However, many characteristic biomarkers are often overexpressed by cancer cells, 

thus providing an open gate for early diagnosis and prognosis. In the last years, the employment of 

carbon nanotubes for the development of sensors and biosensors has sensibly increased, motivated by 
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the good conducting properties of CNTs.
[128,129]

 The deposition of CNTs on an electrode increases the 

exposed surface and the conductivity, thus enhancing the sensitivity of the electrochemical sensor 

and lowering the detection limits. In addition, the use of suitably functionalized CNTs, or their in situ 

derivatization, can endow the electrode with sensing ability toward a given analyte. This approach 

has been exploited to probe biological molecules, peptides, enzymes, pollutants, cells and protons 

(pH sensors), and nowadays much effort is devoted toward the fabrication of CNT-devices for cancer 

diagnosis and detection. As an example, Shi et al. modified an indium tin oxide (ITO) microelectrode 

with oxidized CNTs, building a microfluidic electrochemical sensor to monitor the release of 

dopamine from single cells of living rat pheochromocytoma (a neuroendocrine tumor).
[130]

 Several 

CNT-based sensing devices have been reported for the detection of PSA, one of the most used 

biomarkers in diagnosis of prostate cancer, consenting detection limits of 4 pg/mL, far below those 

achieved by commercial immunoassays.
[16]

 At present, the adoption of carbon nanotubes for the 

preparation of biosensors constitutes a valid alternative to classic methods for cancer biomarkers 

diagnosis, and it looks like the most realistic, and rapidly implementable, application of CNTs in the 

biomedical field. 

1.4 WHAT ABOUT CARBON NANOTUBE TOXICITY? 

From the point of view of biomedical and pharmacological applications, CNTs have been regarded as 

a very controversial subject. Indeed, the literature is split between descriptions of their potential 

toxicity and praise of their paramount potential for bioapplications. Their structural resemblance with 

the well-known carcinogenic asbestos fibers has aroused a lot of toxicological concerns since early 

times,
[131,132]

 and a great number of investigations have been undertaken to reply to the question: are 

CNTs toxic?
[27,133–136]

 Unfortunately, the answer to this question is not easy and straightforward, since 

the toxicity of a compound is determined by a great number of parameters and, as with any 

therapeutic and diagnostic agent, the risk of toxic effects has to be evaluated concomitantly to the 

potential benefits. What emerges from the massive literature on CNT toxicity is that their 

toxicological profile is strictly dependent on the nanotube properties and characteristics (structure, 

length, aspect ratio, degree of defects, extent of aggregation, degree and type of functionalization, 

manufacturing method), as well as on the experimental setup of the biological tests (protocol, cellular 

models, administration route, concentration, doses, toxicity assay). As a result, contradictory 

opinions can be found on the matter of CNT toxicity, internalization mechanisms and biodistribution, 

so that caution should be taken in drawing any final conclusion. Nevertheless, it is now commonly 

recognized that some CNT characteristics have a great influence on their toxicity,
[116]

 and these will 

be briefly explained hereafter. 

Purity. The presence and amount of residual metallic particles (from the production process) in the 

CNT sample can contribute to originate adverse effects in the cellular environment by triggering the 

production of reactive oxygen species (ROS), responsible of inflammatory symptoms.
[137]

 High-

quality purified CNTs are thus overall preferred for bioapplications. 

Degree and type of functionalization. It is now established that the external chemical 

functionalization of CNTs can dramatically improve their biocompatibility and reduce the risk of 

acute inflammatory response.
[27]

 The amount and type of functionalities present on the nanotube 

surface do also affect their cytotoxicity as well as their biodistribution and fate within the 
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organism;
[138,139]

 notably, PEGylated CNTs display lower immunogenicity and higher blood 

circulation times.
[98]

 It is worthy to note that acid-oxidized CNTs have shown to trigger toxic effects 

and inflammatory response, which was ascribed to the oxygenated groups and the great amount of 

reactive defect sites.
[140,141]

Agglomeration state. Especially for in vivo applications, it is imperative to ensure having stable 

dispersions of CNTs and to individualize them. In fact, big agglomerates cannot be engulfed by 

macrophages or they can remain stuck in the smallest capillaries, ultimately engendering toxic 

effects. Extensive sonication and suitable functionalization are therefore important steps in the 

preparation process.

Length. Many studies have so far reported that long rigid CNTs should be avoided because, besides 

being unpractical for drug delivery scopes, they can generate severe adverse effects, in analogy with 

asbestos fibers. For example, CNTs exceeding 20 �m in length were found to be not completely 

engulfed by macrophages, leading to frustrated phagocytosis and impeded clearance.
[142]

All these parameters can determine a different impact on the in vitro and in vivo toxicity of CNTs, 

and this is why both aspects need to be evaluated in parallel. The in vitro assessment of toxicity 

consists in the evaluation of cell proliferation, apoptosis or necrosis, oxidative stress, DNA damage 

and expression of specific enzymes, which may arouse from the CNT interference. It has been 

variously demonstrated that pristine CNTs induce a higher cellular toxicity, inducing cell apoptosis 

and necrosis.
[27]

 Conversely, the external functionalization of CNTs renders them more 

biocompatible with physiological systems and reduces their toxicity.
[27]

 Some reports show that 

macrophages can actively ingest significant quantities of SWCNTs without showing toxic effects, 

and even that functionalized CNTs are not cytotoxic against cells regulating the immune system (e.g. 

lymphocytes).
[143,144]

In vivo toxicity regards both the pharmacokinetics of the administrated compound (e.g. blood 

circulation, drug release rate, retention, metabolism, excretion) and its toxicology (e.g. physiological 

and immunological response, biodistribution). One of the main concerns about CNT in vivo toxicity 

is the pulmonary toxicity determined by their inhalation in the occupational environment, and many 

toxicological studies have been carried out attempting to mimic the possible workplace exposure 

levels, mainly employing non-functionalized CNTs. In two pioneering studies, the groups of 

Donaldson and Kanno, have independently explored the carcinogenic risk of CNTs in vivo and 

reported that the abdominal delivery of nanotubes forms granulomas and can induce mesothelioma 

(cancer of the pleura) in mice, in a similar way of certain asbestos fibers.
[142,145]

 These studies 

suggested that lung exposure to long rigid non-functionalized CNTs may increase the risk of 

carcinogenesis, and Donaldson hypothesized that possibly macrophages cannot completely engulf 

long fibers.
[142]

 Later on, the same group instilled CNTs having different lengths into the pleural 

cavity of mice.
[146,147]

 They observed that only long CNTs failed to surpass the lung barriers and their 

retention in those tissues provoked inflammatory response and mesothelial cell damage leading to 

chronic inflammation and granuloma formation. Contemporaneously to these investigations, many 

others have been undertaken to study the potential toxic effects of CNTs after functionalization and 

intravenous injection, which are fundamental conditions for their therapeutic applications.
[139]

 Indeed, 

the type of functionalization and the administration route greatly influence the CNT biodistribution 

and clearance, and the overall physiological response. CNT biodistribution profiles have been 

investigated by different groups exploiting diverse methods. The most used strategy is to radiolabel 

the materials with radioactive isotopes in order to follow their fate in the body. This method allows 

for both CNT quantification through gamma scintigraphy and in vivo imaging by tomography 
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techniques such as SPECT or PET. CNT signatures in tissues can also be identified by Raman 

spectroscopy. As already mentioned, PEGylation is one of the most widely used strategies to increase 

the blood circulation of CNTs, while their functionalization with a targeting molecule allows to 

address them to a specific location, modifying the distribution profile. Generally, pristine/non-

covalently functionalized CNTs are mainly retained in the RES organs (liver, spleen) or in the lungs, 

while covalently functionalized CNTs showed a reduced accumulation in the RES organs and a better 

elimination trough the renal system, thus being more suitable for future biomedical applications.
[139]

The nanometer size of CNTs represents one of their major advantages for drug delivery (EPR effect), 

as well as one of the major drawbacks from the toxicological point of view. In fact, the often bundled 

state of CNTs increases their overall size, by far outstripping that of some organs vessels and the 

renal filtration cut-off (ca. 5 nm). As a result, phenomena of obstruction with consequent 

inflammation episodes, or incomplete metabolization and clearance by the specific organs, with 

consequent long-term toxicity, are likely to occur. The excretion of intravenously injected CNTs via

the renal clearance pathway is severely hampered by their length and agglomeration, which do not 

allow an efficient passage through the endothelium. The other metabolic pathway for the elimination 

of larger particles is by entering the liver and becoming part of bile and feces. Nevertheless, the 

biliary excretion is a very slow and less efficient process, which increases the chances of having the 

CNT trapped inside the liver and spleen and trigger adverse responses. The unfavorable excretion 

pathways, long retention time and long-term health concerns are to-date the main obstacles in the 

clinical application of carbon nanotubes. 

1.5 FUTURE OF CARBON NANOTUBES

Nowadays, CNTs have become a commercial good and they have entered in our daily lives as 

additive for a variety of products, from composites to aeronautics or sporting materials. Besides, 

thanks to their outstanding physical and electronic properties they have found a broad application in 

material science and nanotechnology, for the preparation of sensors, batteries, solar cells, capacitors 

etc. In this perspective, CNTs are in fact a promising and competitive alternative to the present 

technology. Their remarkable chemical and biological properties have instead fueled much research 

toward their application in the biological domain. Indeed, CNTs have already been integrated in 

sensors for the detection of biomolecules and have shown great efficiency also as tools for imaging 

and tissue engineering. In addition, the ability of CNTs to work as a biomedical carrier for imaging 

and therapy has been largely investigated, proving their great clinical potential. However, with regard 

to all the in vivo applications of CNTs, optimism should be tempered until thorough understanding of 

the issues related to their biodegradability and the long-term toxicity. The comprehension of the 

specific pharmacological and pharmacodynamic profiles of CNTs is in fact imperative for their 

regulatory compliance and clinical translation. The major concerns of regulatory authorities are 

typically addressed to the toxicological profile and risk associated with the biopersistence of these 

material. The latest investigations have been indeed moving in this direction and some reports 

demonstrated that CNTs can be degraded by intracellular oxidative enzymes (e.g. horseradish- and 

myelo-peroxidase)
[148,149]

 and by some type of leucocytes and granulocytes.
[150]

 Both pristine and 

oxidized SWCNTs have been shown to undergo degradation in vitro and in vivo,
[151]

 while the 

possibility to achieve the complete degradation of MWCNTs is currently being investigated.
[149,152,153]

This research area is greatly contributing to gain a deeper understanding of CNT fate after 



CHAPTER 1 

25 

administration and disclosing new possibilities for their biomedical employment. Therefore the hope 

toward the clinical application of CNTs should be maintained and the investigations in this direction 

are still of great interest. 

1.6 THESIS OBJECTIVES AND OUTLINE

The research described in this Thesis is aimed at exploring new methodologies and solutions to 

several problems associated to the manipulation and processing of multifunctional carbon 

nanomaterials, thereby expanding the current horizons in fundamental and applied science fields such 

as CNT chemical derivatization and CNT bioapplications, including drug delivery. As discussed in 

this Introduction, carbon nanotubes are potentially an optimal carrier for the targeted delivery of 

therapeutic and imaging probes with applicability in nanomedicine. The fact that CNTs can be 

decorated internally and externally with a variety of functionalities widens the range of applications 

and offers the possibility for multimodal therapy. The researches described in this Thesis have been 

focused toward the development of new chemical strategies for the preparation of novel CNT carriers 

for anticancer therapy. Specifically, the modification of pristine CNTs and the conjugation of the 

therapeutic biomolecule has been explored only by covalent approaches, in order to convey a higher 

in vivo stability to the carrier. The work of this Thesis is divided in three main research projects: 

- one was meant to study the possibility to convert carboxylic groups of oxidized CNTs into amino 

groups in order to prepare amino-functionalized CNT conjugates able to complex siRNA; 

- in a second project we have developed new CNT conjugates connected to a therapeutic nanobody (a 

fragment of antibody) via a disulfide cleavable linker; 

- finally, the last project has been developed within a Marie Curie network and is focused on the 

targeted delivery of radiotherapy by means of CNTs filled with radionuclides. In this framework, our 

group has investigated different synthetic strategies to achieve the functionalization of filled CNTs 

by [2+1] cycloaddition and the conjugation of a targeting antibody. 

This last project is the main one of this Thesis work and has been carried out in strong collaboration 

with many partners. For a better comprehension of the subject and of the project, its discussion will 

be preceded by a short introduction chapter. 

The Thesis is therefore composed of six Chapters, as outlined: 

Chapter 1 gives an overview on the main characteristics of carbon nanotubes, their 

production and applications in the biomedical field, with a main focus on anticancer therapies. 

Chapter 2 discusses different synthetic strategies performed to achieve the conversion of 

carboxylic groups of oxidized MWCNTs into amino groups, and the investigation of the ability of the 

obtained conjugates toward siRNA complexation, for gene delivery. 

Chapter 3 describes the design and synthesis of CNT-nanobody constructs featuring a 

cleavable disulfide linker, and reports the main studies to assess their therapeutic efficacy. 
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Chapter 4 introduces the basis of radiotherapy and reports the state-of-the-art on the use of 

CNTs for the delivery of radioactive molecules. It then outlines the goal and strategy of the Marie 

Curie program (named RADDEL), and the task of our group within the network. 

Chapter 5 describes the investigations we have carried out within the RADDEL project. 

Namely, the functionalization of filled and sealed CNTs by [2+1] cycloaddition and the conjugation 

with imaging and/or targeting molecules. 

Chapter 6 reports the conclusive remarks and perspectives of this research work. 

Each Chapter is followed by its own list of references, and each experimental Chapter is followed by 

its own experimental part. 
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Abstract � In the present chapter we will relate about the preparation of amino-functionalized 

MWCNTs as potential carriers for the delivery of siRNA. Several studies have shown promising 

results exploiting functionalized CNTs for the delivery of genomic material in vitro and in vivo. 

Our study was designed to elucidate further the possible relationship between the CNT surface 

functionalization strategy and the siRNA complexation ability. We had previously observed that 

the type of chemical functionalization used to surface-modify oxMWCNTs led to significant 

differences in nanotube cellular uptake and delivery ability. In those studies, amino-

functionalized CNTs were obtained by cycloaddition reactions. This time we focused on the 

direct conversion of the carboxylic groups present on oxMWCNTs into amines and we 

attempted different synthetic strategies in order to directly tether the amines to the CNTs, 

without extending the lateral chain. The prepared compounds were characterized by XPS, FT-

IR and TEM, and few of them were selected for siRNA complexation and cellular uptake, on 

the basis of their water dispersibility. 
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2.1 INTRODUCTION 
 

Small interfering RNA (siRNA) is a synthetic double-strand sequence of RNA which can interfere 

with the expression of specific genes within the mechanism of RNA interference (RNAi). Since the 

discovery of RNAi in mammalian cells, great interest has been devoted to the exploration of this 

pathway of gene silencing because the possibility to knock down a specific gene holds a high 

potential in the treatment of several diseases.
[1�3]

 So far, a number of clinical trials have investigated 

the mechanism of gene silencing by delivery of naked siRNA.
[4,5]

 However, unmodified siRNA is 

unstable in the bloodstream, can be immunogenic and does not readily cross cellular membranes. 

These problematics limit the broad potential of siRNA-based therapeutics, therefore chemical 

modifications and/or delivery carriers are required to bring siRNA to its site of action, protecting it 

from nuclease degradation along the way. A variety of materials have been already explored to 

achieve efficient in vivo delivery, including polymers, lipids, peptides, antibodies, aptamers
 
and small 

molecules.
[3]

 In most of these cases, the carrier was designed to display a positive charge, for a better 

interaction with the siRNA payload.  

 

CNT-mediated siRNA delivery 

The ability of carbon nanotubes to penetrate mammalian cells and deliver a cargo (e.g. proteins, 

small peptides, nucleic acids), has been widely demonstrated along the past decades.
[6�8]

 In 2004, our 

group has shown that covalently functionalized CNTs are able to translocate the plasma membrane 

and achieve the intracellular delivery of genomic material such as plasmid DNA.
[9]

 Soon after, the 

group of Hongjie Dai reported for the first time the CNT-mediated siRNA delivery by a novel 

strategy based on SWCNTs functionalized with siRNA via a cleavable bond.
[10]

 These first examples 

disclosed the promising potential of CNTs as a carrier for gene delivery and stimulated a lot of 

research in this direction. Since then, our and other groups, have reported several studies on the 

efficacy of CNTs as transfecting agents for siRNA, in vitro and in vivo.
[11�13]

 We have shown that 

CNTs functionalized with terminal amino groups can form stable complexes with siRNA, thanks to 

the electrostatic interaction between the positively charged ammonium groups and the negatively 

charged phosphate groups of the nucleic acids. Amino-functionalized MWCNTs (MWCNT-NH3
+
) 

were used to deliver a toxic siRNA sequence to a human lung tumor xenograph model by 

intratumoral injection, leading to tumor growth inhibition and prolonged animal survival.
[14]

 In 

another study from our group, the same type of amino-functionalized MWCNTs were able to achieve 

therapeutic gene silencing in neuronal tissues by delivery of siRNA in an induced stroke model, 

affording the functional rehabilitation of the rodent.
[12]

 The ability of these CNT-based cationic 

conjugates to silence cytotoxic genes suggests they could become promising tools for gene therapy. 

In light of the previous findings, we wanted to investigate more in detail the structure-delivery 

relationship, by preparing a novel type of amino-MWCNT carrier for siRNA. Specifically, our aim 

has been to achieve the direct conversion of the carboxylic groups of oxidized MWCNTs 

(oxMWCNTs) into amino groups, without extension of the alkyl chain (Scheme 2.1). In all our 

previous reports in fact, aminated CNTs were prepared either by cycloaddition or by amidation of the 

-COOH (or a combination of the two), these approaches foreseeing the attachment of an amine-

terminating linker and thus extending the distance between the amino groups and the CNT 

surface.
[9,12�17]
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Scheme 2.1 Direct conversion of carboxylic groups into amino groups.  

Moreover, in one of our recent studies, we observed that oxidized MWCNTs can trigger a sustained 

inflammatory response in brain tissues, whereas ammonium-functionalized MWCNTs are better 

tolerated.
[17]

 Therefore increasing the amount of positively charged groups (i.e. ammonium over 

carboxylic groups) on the nanotubes could remarkably modify and improve the toxicity profile of the 

carrier. It seemed interesting to explore further the relationship between surface chemistry, delivery 

and cellular uptake, and carry out investigations for the preparation of different CNT-based carriers 

for siRNA delivery. 

 

Amino-functionalized Carbon Nanotubes 

To date, reports concerning carbon nanotubes directly modified with amino groups are very few due 

to the relative difficulty of the modification. In contrast to the rather �rich� side-wall chemistry of 

CNTs, the chemistry at the tips of nanotubes has been limited only to few reactions, mainly based on 

derivatization of the carboxylic groups generated after oxidative treatment.
[18�20]

 Only few reports 

have so far investigated the possibility of directly tethering to the CNT ends heteroatoms different 

from oxygen.
[21�24]

 Previous attempts to directly convert carboxylic terminal groups into amines have 

been reported for SWCNTs by the group of Campbell.
[22]

 They applied for the first time in nanotube 

chemistry the Hofmann rearrangement of primary amides and the Curtius rearrangement of acyl 

azides, achieving in both ways the preparation of SWCNTs with amino groups directly attached to 

the tube structure. Brinson and co-workers described the transformation of carboxyl groups of 

SWCNTs into aminomethyl groups through a different multistep synthetic path, involving a 

phthalimide intermediate.
[21]

 However, the final step of their procedure suffers from an inappropriate 

protocol to remove the phthalimide protecting group, which requires hydrazine, and not 

trifluoroacetic acid as reported.
[21]

 All mentioned studies were performed only on SWCNTs, and 

similar experiments have so far not been carried out on MWCNTs, nor envisaging any 

bioapplication. Therefore, further investigations are undoubtedly needed and could help to achieve a 

better understanding of the surface chemistry of oxMWCNTs. This work aims at investigating the 

chemical conversion of carboxylic groups of MWCNTs into amino groups through different 

synthetic strategies. Amino-functionalized MWCNTs were characterized by X-ray photoelectron 

spectroscopy (XPS), transmission electron microscopy (TEM) and Fourier transform infra-red 

spectroscopy (FT-IR). In collaboration with the group of Kostas Kostarelos (University of 

Manchester), we have then investigated the behavior of these amino-functionalized MWCNTs 

toward siRNA complexation and evaluated the uptake of these complexes by lung cancer cells. 
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2.2 RESULTS AND DISCUSSION 
 

Herein we will first describe the different synthetic strategies attempted to achieve the conversion of 

carboxylic groups of oxMWCNTs into amino groups, and successively we will discuss the 

characterization of the final compounds altogether. Finally, the biological assays on siRNA 

complexation and cellular uptake will be presented and discussed. 

 

2.2.1 CHEMICAL MODIFICATIONS 
 

As outlined in the general introduction of this Thesis (Chapter 1), most approaches for covalent 

functionalization of CNTs depart from their preliminary oxidation through acid treatment. This 

process introduces a large number of carboxylic groups, mainly at the CNT tips, and concurrently 

increases their dispersibility. This treatment also shortens and introduces defects on the aromatic 

honeycomb structure. Based on a thorough literature research, we designed and explored different 

strategies to achieve the conversion of the �COOH groups of oxMWCNTs into �NH2 groups, 

without introducing any linker between the amines and the CNTs. Combining different synthetic 

steps, we selected six strategies (Scheme 2.2): 

I. Hofmann rearrangement 

II. Curtius rearrangement 

III. via cyanide 

IV. Hunsdiecker reaction 

V. via phthalimide coupling 

VI. via mesylation 

The first three approaches are based on the activation of the carboxyl group into acyl chloride. 

Hofmann and Curtius rearrangements (strategy I and II) occur via an isocyanate intermediate, which 

is afterward hydrolyzed into amine.
[25]

 Path III involves instead the decarbonylation of an acyl 

cyanide derivative and the subsequent reduction of the cyanide group. The fourth strategy (IV) 

features a halodecarboxylation (Hunsdiecker reaction), subsequent substitution of the halide by an 

azide and reduction into an amine. In the last two approaches instead, we proceeded first with the 

reduction of the carboxyl functions and continued towards the amination through introduction of 

phthalimide (V), or through sequential mesylation, azidation and reduction (VI). The overview of all 

synthetic routes is presented in Scheme 2.2, and they will be explained in detail in the following 

paragraphs. 

We proceeded with the complete characterization only for the final compounds and the relevant 

stable intermediates. All compounds in the schemes are named by intuitive acronyms (e.g. MWCNT-

COCN stands for acyl-cyanide-functionalized multi-walled carbon nanotubes). By this nomenclature 

we intend to highlight the functional group taking part in the reaction and the expected 

transformation. However, we do not assume that all functional groups of that type are converted upon 

reaction. 
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Scheme 2.2 Panoramic representation of the synthetic pathways performed to achieve the conversion of �COOH into �NH2. 

 

Oxidation of pristine MWCNTs and acylation 

Commercially available MWCNTs were firstly oxidized by acid treatment with a HNO3/H2SO4 (1:3) 

mixture under sonication (Scheme 2.3), following a common reported procedure.
[26]

 This oxidation 

method allows for the further purification of pristine nanotubes and yields shortened oxMWCNTs 

highly functionalized with oxygen-containing groups, like carboxylic acids, located mainly at the 

ending tips.
[27]

  

 

Scheme 2.3 Oxidation of pristine MWCNTs and activation with oxalyl chloride.  

The average length distribution of oxMWCNTs (1) assessed by TEM is 381 nm, and the amount of 

oxygen-containing groups estimated by thermogravimetric analysis (TGA) is 1.4 mmol/g. The 

atomic percentage of carbon assessed by elemental analysis varies from 97.1% for pristine CNTs to 

83.6% for the oxidized sample, while the percentage of hydrogen increases from 0 to 0.7%, 

accounting for the hydrogen atom of the �COOH groups. These values are in good agreement with 

the atomic percentage obtained by XPS analysis of oxMWCNTs 1: 84.2% of carbon and 15.8% of 

oxygen (Table 2.1 and Figure 2.7 in the Exp. Part). 
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 pMWCNTs oxMWCNTs 

 C H O C H O 

Elemental analysis 97.1 0 - 83.6 0.7 - 

XPS 96.9 - 2.9 84.2 - 15.8 

Table 2.1 Comparison between the atomic percentages of carbon, hydrogen and oxygen for pristine and 

oxidized MWCNTs, measured by elemental analysis and XPS.  

To proceed with the first three strategies, the carboxylic functions were converted into acyl chlorides 

by treating oxMWCNTs 1 with neat oxalyl chloride (Scheme 2.3).
[26]

 Because of the poor stability 

of acyl chlorides toward humidity, MWCNT-COCl were immediately used in the next step. 

 

Strategy I: Hoffman Rearrangement 

The Hofmann rearrangement is a well-known reaction that allows to convert an unsubstituted amide 

into a primary amine bearing one carbon atom less than the starting amide.
[25]

 By rearrangement of 

the alkyl/aryl moiety, an isocyanate is formed, which is usually hydrolyzed under normal reaction 

conditions, with extrusion of carbon dioxide (Scheme 2.4). 

 

Scheme 2.4 General representation of the Hofmann rearrangement.  

Gromov and co-workers have employed this rearrangement on SWCNTs to achieve the direct 

conversion of carboxyl into amino group.
[22]

 They first prepared amide-functionalized SWCNTs 

following two different pathways, and finally proceeded with the Hofmann reaction. We decided to 

repeat their approach on oxMWCNTs aiming to achieve similar conversion results; hence we 

reproduced their procedures starting from activated MWCNT-COCl. We prepared MWCNT-CONH2 

in two different ways: (a) by esterification of the acyl chloride and subsequent amidation with 

aqueous ammonia, and (b) by one-step amidation with ammonium carbonate (Scheme 2.5). 

 

Scheme 2.5 Preparation of amide-functionalized MWCNTs via esterification (a) and via amidation (b), and 

Hofmann rearrangement of the amide (strategy I). 

In the following step, the Hofmann rearrangement of MWCNT-CONH2 (2-a and 2-b) was carried out 

with bromine in basic and dry conditions. The hydrolysis of the isocyanate intermediate occurred in 

situ affording the primary amine (compounds 3a and 3-b). 
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Strategy II: Curtius Rearrangement 

The second strategy starting from MWCNT-COCl involves the derivatization of the acyl chloride 

into acyl azide, which gives an isocyanate intermediate by Curtius rearrangement.
[25]

 This is a general 

procedure that can be applied to almost any carboxylic acid. Gromov and co-workers already 

reported the application of Curtius rearrangement on oxidized SWCNTs, to prepare amino-

functionalized SWCNTs.
[22]

 The same procedure was employed by us for MWCNTs (Scheme 2.6). 

The formation of the acyl azide was carried out at room temperature. The temperature was then 

increased to allow the pyrolysis of the acyl azide and concomitant rearrangement. The so-formed 

isocyanate undergoes acid hydrolysis into primary amine (compound 4).  

 

Scheme 2.6 Amination of activated MWCNTs via Curtius rearrangement (strategy II). 

 

Strategy III: via cyanide 

Georgin et al. described a method for the 
14

C-labeling of oxMWCNTs which features the conversion 

of the carboxylic acid group into a labeled nitrile, finally hydrolyzed into labeled carboxylic acid.
[28]

 

Inspired by their approach, we designed a similar route for the functionalization oxMWCNTs with 

nitrile groups, to be then reduced into amines. Freshly prepared MWCNT-COCl were reacted with 

CuCN to form acyl cyanides, which were secondarily decarbonylated into nitrile groups by a Pd-

catalyzed reaction (Scheme 2.7).
[28]

 The following reduction of the nitrile group with lithium 

aluminium hydride yields a methylene amine. Hence, in this case, the amine functions of compound 

5 are linked to the aromatic nanotube structure through a methylene moiety, differently from the 

previous compounds. 

 

Scheme 2.7 Amination of activated MWCNTs via cyanide (strategy III). 

 

Strategy IV: Hunsdiecker reaction 

The Hunsdiecker reaction is a well-known method to form an alkyl or aryl halide starting from a 

carboxylic acid, decreasing the length of the alkyl chain by one carbon unit (Scheme 2.8Scheme 

2.8).
[29]

 Several variations and modifications of the original Hunsdiecker reaction have been so far 

investigated to avoid the employment of the very sensitive silver salts.
[30�32]

 Although bromine is the 

mostly used halogen, chlorine and iodine have also been employed. 

 

Scheme 2.8 General representation of the Hunsdiecker reaction.  
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One example of a modified Hunsdiecker reaction has been reported for the iodination of oxidized 

SWCNTs by Coleman and co-workers.
[24]

 In their procedure they achieved the iodo-decarboxylation 

of oxidized SWCNTs by reacting them with iodosobenzene diacetate under broadband UV 

irradiation. We decided to apply to MWCNTs a variation of the Hunsdiecker reaction, which was 

reported by Roy�s group to work efficiently with unsaturated carboxylic acids.
[31]

 oxMWCNTs 1 

were reacted with N-iodosuccinimide and a catalytic amount of LiOAc to afford iodinated MWCNTs 

6 (Scheme 2.9). Characterization of this compound by XPS proved that iodine was present, 

although in a very low percentage (see Figure 2.1 in the Exp. Part). The nucleophilic substitution of 

iodine into azide was followed by azide reduction with LiAlH4 to give amino-functionalized 

MWCNTs 7. 

 

Scheme 2.9 Conversion of carboxyl to amino group by Hunsdiecker reaction (strategy IV). 

 

Strategy V: via phthalimide coupling 

In this approach we reproduced a modified version of the strategy reported by Brinson and co-worker 

for the preparation of amino-functionalized SWCNTs.
[21]

 This consists of two main steps: first the 

reduction of the carboxyl group into hydroxyl, and second the derivatization of the hydroxyl with 

phthalimide followed by hydrazine-mediated deprotection to afford an aminomethyl group (Scheme 

2.10). The reduction of �COOH was carried out by treating oxMWCNTs 1 with lithium aluminium 

hydride, and the resulting compound 8 was characterized by XPS and IR (see Figure 2.10 in Exp. 

Part) and then submitted to the subsequent coupling with phthalimide. The phthalimide group was 

then cleaved by treating the CNTs with hydrazine, differently by what reported by Brinson.
[21]

 With 

this synthetic strategy, amino-functionalized MWCNTs 9 would finally feature the amine group 

detached from the aromatic nanotube structure by one carbon unity, the methylene group, in analogy 

with compound 5, which was obtained by reduction of the nitrile group. 

 

Scheme 2.10 (Step 1) reduction of oxMWCNTs; (step 2) derivatization of MWCNT-CH2OH with 

phthalimide and subsequent deprotection (strategy V). 
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Strategy VI: via mesylation 

The last strategy for the conversion of the carboxylic groups starts from hydroxyl-functionalized 

MWCNTs, as well as strategy V. Hence, the first step was the reduction of COOH, as described in 

the previous paragraph (step 1. of Scheme 2.10). The hydroxyl group of compound 8 was then 

converted into a mesylate by reaction with methanesulfonyl chloride, and further derivatized into 

azido group (Scheme 2.11). Reduction of the azide with LiAlH4 affords a methylene amine 

(compound 11). Also in this case, the amino groups are not directly tethered to the CNT structure, but 

interspaced from it by a methylene moiety. 

 

Scheme 2.11 Derivatization of compound 8 by successive mesylation, azidation and finally reduction of 

azide into amine (strategy VI). 

 

2.2.2 CHARACTERIZATION 
 

Rigorous characterization of the surface composition of modified carbon nanotubes is critical to their 

further employment, both for material and bio applications. To achieve a thorough characterization of 

CNTs after functionalization, it is essential to match different techniques, because of the intrinsic 

limitations presented by both the material and the instrumental techniques. For the characterization of 

the final amino-functionalized MWCNTs, we had to exclude thermogravimetric analysis because of 

minor weight loss difference with the starting oxMWCNTs. Generally, the quantification of primary 

amines on nanotubes is accomplished by Kaiser test, which is a colorimetric test based on the 

generation of a ninhydrin chromophore.
[33]

 For the surface characterization of carbon nanotubes, XPS 

and FT-IR represent powerful tools for the detection of nitrogen atoms and amine-containing groups, 

respectively. Below we will discuss both surface and morphological characterization of the final 

aminated compounds.  

 

2.2.2.1 Colorimetric tests 

Kaiser test is the most popular colorimetric assay for the quantification of primary aliphatic amines in 

solid-phase organic synthesis. This assay is based on the reaction of ninhydrin with amine groups, 

and the violet color of the solution (Ruhemann�s purple) is indicative of the presence of amines.
[33,34]

 

The color intensity measured at 570 nm by UV-Vis spectroscopy is correlated to the amount of 

amino groups, therefore allowing their quantification. The use of this assay in carbon nanomaterial 

characterization has been extensively reported.
[26]

 Because of the involved mechanism, Kaiser test 

represents a valid assay only for the quantification of primary aliphatic amines. In our final 

compounds, the direct bond between the amino group and the nanotube structure likely results in a 

high percentage of aromatic amines, except for the case of compounds 5, 9 and 11, which display 

aminomethylene groups. We carried out Kaiser test for all compounds, to investigate the possibility 
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of detecting the introduced amines, but results were very low or negligible for all compounds. This 

was in agreement with the expectations for aminated MWCNTs with directly bonded amines 

(compounds 3-a, 3-b, 4, 7 and 9), but in contrast with what was expected for MWCNT-CH2NH2 5, 9 

and 11. For this set of samples, we can speculate that either the proximity of the aromatic structure 

affects the amine reactivity, or the location of the amino groups next to the nanotubes hampers the 

reaction with ninhydrin.  

 

2.2.2.2 XPS analysis 

X-ray photoelectron analysis allows to investigate the surface chemical composition of carbon 

nanomaterials and to obtain information about the nature of the functional groups. In Table 2.2 are 

reported the atomic concentrations of C, O and N for the different samples, obtained from the 

averaged peak areas of two measurements. After the chemical modification to introduce amino 

groups, nitrogen was detected in all samples, and a concomitant variation in the atomic percentage of 

carbon was registered. This variation accounts for the different synthetic steps involved in the six 

approaches, which can modify the relative ratio between the different elements. In the samples of 

aminated MWCNTs, the concentration of nitrogen ranges between 1.1 and 2.1%, while the content of 

oxygen remains still high. We thus think that only a small amount of carboxylic groups were 

efficiently converted into amino groups. 

Compound Synthetic Strategy Atom % 

 
 C O N 

oxMWCNTs 1  84.6 15.4 - 
 MWCNTs � NH

2
 3-a I (Hofmann) 76.5  22.0 1.6 

MWCNTs � NH
2
 3-b I (Hofmann) 82.4 15.7 1.8 

 MWCNTs � NH
2
 4 II (Curtius) 76.1 21.7 2.1 

MWCNTs � CH2NH
2
 5 III (via cyanide) 81.9 16.9 1.1 

 MWCNTs � NH
2
 7 IV (Hunsdiecker) 77.4 21.2 1.4 

 MWCNTs � CH2NH
2
 9 V (Phthalimide) 84.8 13.9 1.3 

MWCNTs � CH2NH
2
 11 VI (mesylate) 76.1 22.6 1.3 

Table 2.2 Atomic percentages of carbon, oxygen and nitrogen in oxMWCNTs and aminated MWCNTs 

calculated from XPS experimental data.  

By deconvolution of the C1s experimental curve of oxidized MWCNTs 1 we could identify the 

contributions given by the different functional groups (Figure 2.1). Aside from the main peak at 

284.5 eV due to sp
2
 C-C bonds, additional features due to sp

3  
C, -C-O (alcohol) and O-C=O 

(carboxyl and ester) were present in all compounds (see example in Figure 2.1).
[35]

 Around 291.5 eV 

appears the �- �
*
 satellite band, which is typical of the aromatic structures of carbon nanotubes.

[36]
 

De-composing the C1s curves of the aminated compounds, a good fitting was possible only including 

the component of the C-N bond, which has energy between 284.9-285.9 eV, and whose intensity 

varies around 4-7% among the different samples. However, the peak attributed to COOH (at 288 eV) 

is still present after the reaction. The N1s spectra of the MWCNT-NH2 samples were also registered 

and display the respective nitrogen peak centred at 400 eV (see example in Figure 2.1), which is in 

agreement with the expected value for primary amines.
[21,37]

 To avoid data redundancy, the XPS 



CHAPTER 2 

43 
 

spectra of all MWCNT-NH2 compounds are not reported herein, however a representative example 

referred to compound 3-a is presented below. 

 

Figure 2.1 XPS spectra: C1s with fitting for oxMWCNTs 1 and aminated MWCNTs 3-a (left and center), 

N1s for MWCNTs 3-a  (right). 

 

2.2.2.3 Infra-red spectroscopy 

In the FT-IR spectrum of oxMWCNTs 1 (Figure 2.2) we can clearly recognize the typical features 

of oxidized nanotubes: the broad band at 3430 cm
-1

 and the peak at 1584 cm
-1

 are respectively 

determined by the stretching vibration of OH and C=O of the carboxylic groups, while the C-C 

bendings are originating bands between 1700 and 1500 cm
-1

.
[38�40]

 The C-O stretching is also 

responsible for the peak at 1205 cm
-1

. In the aminated MWCNTs 3-a (Hofmann strategy) the 

presence of amine groups is confirmed by the appearance of an intense band at 1365 cm
-1

, due to the 

C-N stretching, and smaller peaks at 841 and 701 cm
-1

, from the NH2 bending out-of-plane. The 

shoulder band at 1668 cm
-1

 can also be attributed to the scissoring of primary amines. For compound 

3-b instead, the absorption spectra does not present substantial changes compared to the starting 

material, which might be interpreted as a very low conversion. The FT-IR spectra of MWCNT-NH2 4 

(Curtius strategy) exhibits new bands at 1709 cm
-1

 from NH2 scissoring, and 1085 cm
-1

 from the C-N 

stretching vibrations. Compound 5 (via cyanide) displays an intense band between 1200 and 1000 

cm
-1

, which can be attributed to the C-N stretching vibrations. Concomitantly, the carbonyl peak 

(1580 cm
-1

) appears less intense than in oxMWCNTs. What is more remarkable is the appearance of 

two intense new bands at 2921 and 2848 cm
-1

: these are originated by the C-H stretching of the 

methylene moiety, which was introduced upon chemical conversion, and this is in accordance with 

previous reports.
[21]

 The IR absorption of MWCNT-NH2 7 (Hunsdiecker strategy) displays again 

changes in the range between 1250 and 950 cm
-1

, which are determined by the C-N stretching. The 

spectra of compound 9 (via phthalimide coupling) exhibits several bands associated with the C-N 

stretching vibrations (1588, 1423 and 1049 cm
-1

), while the peak at 2919 cm
-1

 accounts for the 

stretching of C-H, thus confirming the presence of the methylene moiety. Similarly, MWCNT-NH2 

11 (via mesylation) also presents a band at 2916 cm
-1

 associated with the methylene group, and 

relevant absorption at 1426 and 1110 cm
-1

 from the C-N vibration. A significant decrease in the 

intensity of the carbonyl band (1607 cm
-1

) is also to be remarked, and could be explained by the 

reducing action of LiAlH4. 
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Figure 2.2 FT-IR spectra of oxMWCNTs and aminated MWCNTs. 
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In general, by IR spectroscopy we could observe major changes in the spectra of many of the amine-

functionalized MWCNTs obtained by direct conversion of the COOH. The spectral features of the 

new compounds are relatively similar between each other, and those compounds featuring the 

aminomethylene group (5, 9, and 11) do display the expected corresponding absorbance in the 

spectra. The changes in the IR spectra of aminated compounds compared to oxMWCNTs are a proof 

of the structural modification that occurred upon reaction, and together with XPS data they evidence 

the covalent introduction of nitrogen-containing groups, which are likely to be amine groups. 

Nevertheless, the IR characterization of these materials is of difficult interpretation and certainly not 

straightforward, therefore we prefer not to enter in further speculations. 

 

2.2.2.4 Morphological characterization 

The average length distribution of oxMWCNTs was assessed by TEM and corresponds to 381 nm. 

By TEM we could also observe that oxMWCNTs are predominantly individualized and they 

generally display a curved shape, which is due to the defects present along the honeycomb structure. 

In Figure 2.3 are reported TEM pictures of some of the final amino-functionalized compounds as a 

proof that the nanotube morphology is unchanged after derivatization. 

 

Figure 2.3 TEM images of oxMWCNTs 1 (a) and aminated MWCNTs 3-a (b), 4 (c), 7 (d) and 9 (e). Scale 

bars correspond to 500 nm. 

For the employment of CNTs in bioapplications and for their further use as carriers, it is imperative 

that the CNT conjugates display good dispersibility in aqueous solutions. By the various synthetic 

strategies, no solubilizing functions have been added to the CNTs (e.g. polyethylene glycol chains), 

and moreover, oxMWCNTs have been subjected to several reactions, in some cases with strong 

reducing agents. By these treatments the surface properties of the starting material might have been 

severely modified and the good dispersibility of oxMWCNTs reduced. We tested the water 

dispersibility of the amino-functionalized MWCNTs by preparing 0.2 mg/mL dispersions of each 

compound in ddH2O, and compared it to that of oxMWCNTs 1 (Figure 2.4). 

 

Figure 2.4 Dispersibility of oxMWCNTs and aminated MWCNTs in ddH2O at a concentration of 0.2 mg/mL. 

Most of the amino-functionalized MWCNTs maintained a good water-dispersibility after 

derivatization, except for compounds 5 (via cyanide) and 11 (via mesylation). Both compounds 

feature the aminomethylene group, and underwent a synthetic step involving LiAlH4 reduction: this 

a) b) c) d) e)

1
3-a 7 943-b

5
11
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might have resulted in the concomitant reduction of some carboxylic groups and/or side-reactions 

with the graphenic walls. These compounds are therefore not be suitable for further applications, as it 

was not possible to obtain a good dispersion, also by extensive sonication. In the following table are 

listed the synthesized compounds and their key characterizations. 

Compound Synthetic Strategy N atomic % 1
 

Water dispersibility 

oxMWCNTs 1  - good 

MWCNTs � NH
2
 3-a I (Hofmann) 1.6 good 

MWCNTs � NH
2
 3-b I (Hofmann) 1.8 good 

MWCNTs � NH
2
 4 II (Curtius) 2.1 good 

MWCNTs � CH2NH
2
 5 III (via cyanide) 1.1 none 

MWCNTs � NH
2
 7 IV (Hunsdiecker) 1.4 good 

MWCNTs � CH2NH
2
 9 V (Phthalimide) 1.3 good 

MWCNTs � CH2NH
2
 11 VI (mesylate) 1.3 low 

Table 2.3 Summary of the key characterizations of the synthesized compounds. 1Atomic percentage 

estimated by XPS. 

 

2.2.3 BIOLOGICAL INVESTIGATIONS 
 

In collaboration with the group of Kostas Kostarelos, we studied the ability of these newly-

synthesized aminated MWCNT constructs to bind siRNA and transport it inside cells. These studies 

include gel electrophoresis analysis, to assess the complexation ability of aminated MWCNTs toward 

siRNA, and cellular uptake into lung cancer cells. The experiments showed hereafter were performed 

by our partner. 

 

2.2.3.1 Electrophoretic mobility of siRNA:MWCNT-NH2 complexes 

Electrophoresis in agarose gel is one of the mostly used techniques to assess the complexation 

between nucleic acids and nanoparticles. The principle is that if siRNA forms strong complexes with 

the nanoparticles, CNTs in our case, upon application of a potential, only unbound siRNA will 

migrate through the gel, while the complex will not move from the loading well (because CNTs 

cannot enter it and migrate). By incubating siRNA with CNTs at different mass ratios, it is then 

possible to evaluate the extent of the electrostatic complexation. 

To perform this experiment we selected only the sample that appeared more valuable from the 

characterization. We thus discarded those that did not fulfil the dispersibility requirement 

(compounds 5 and 11); and we also ruled out compound 3-b, whose FT-IR spectra did not show 

relevant changes compared to oxMWCNTs. The final pool of aminated MWCNTs for the 

complexation experiment consisted of MWCNT-NH2 3-a, 4 and 7, and MWCNT-CH2NH2 9. A fixed 

concentration (0.25 µg) of non-coding siRNA (siRNAneg) was mixed with increasing concentrations 

of aminated MWCNTs, and then allowed to electrostatically interact for 30 min at room temperature. 
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The siRNA:CNT complexes were then loaded into the wells of a pre-formed 1% agarose gel and an 

electrical current was applied. The bright spots visible at the bottom of the gel indicate the free 

(uncomplexed) siRNA that was free to migrate (Figure 2.5). For compounds 3-a and 7, we can 

notice that the intensity of the siRNA bands sensibly decreases for higher concentrations of CNTs. 

The less intense the band appears, the more siRNA was complexed by the CNTs, leaving only a 

small amount of unbound siRNA free to migrate. Therefore, MWCNTs 3-a and 7 show the best 

complexation ability toward siRNA, whith the highest complexation ratio being 1:16. In fact at 

higher ratios there are no more significant changes in the band intensities. MWCNTs 4 showed a 

limited capacity to bind siRNA, while MWCNTs 9 were not at all effective, since the band of siRNA 

appears as intense for the complexes as for the control (1:0 mass ratio). 

 

Figure 2.5 Electrophoretic mobility agarose gels obtained by loading non -coding siRNA:MWCNT 

complexes at increasing mass ratio of nanotubes. Mass ratio 1:0 corresponds to siRNA migrating alone 

(control). Decreasing of the intensity of the siRNA band in the gel indicates complexation with carbon 

nanotubes.  

 

2.2.3.2 Cellular uptake of siRNA:MWCNT complexes 

To evaluate whether the aminated MWCNTs were able to efficiently deliver the siRNA payloads into 

cells, we performed a cellular uptake experiment with compound 3-a, which is the conjugate that 

showed the best complexation capacity toward siRNA, by gel electrophoresis. Using confocal laser 

microscopy we investigated if a fluorescently labeled siRNA (siRNA-AF546, siRNA-

AlexaFluor546-labeled) was internalized by A549 lung cancer cells following complexation with 

aminated MWCNTs 3-a. To this purpose, the cells were incubated for 4 h and 24 h in the presence of 

pre-formed complexes of siRNA-AF546 with 3-a, at 1:16, 1:48 and 1:96 mass ratios. In the first raw 

of Scheme 2.5, we can see that the uptake of siRNA alone (uncomplexed) is very poor, even after 

24 hours of incubation. The siRNA-AF546:3-a complexes were instead substantially taken up by the 

A549 cells after 4 h, which is proved by the increased intensity of the red signal co-localized with the 

cytosolic compartments surrounding the nuclei (Figure 2.6). The accumulation of siRNA-AF546 

into the cytosol increased when cells were treated with increasing ratios of MWCNTs. The cellular 

uptake at 24 h shows that the delivery of siRNA can be sustained over time by using MWCNTs 3-a 

as vector, without leading to significant differences in the intensity of the signals, likely because after 

4 h the amount of internalized siRNA reached the maximum.  

 

MWCNTs 3-a

1:0 1:1 1:2 1:4 1:8 1:16 1:32 1:48 1:64 1:80 1:96 1:128

MWCNTs 4

1:0 1:1 1:2 1:4 1:8 1:16 1:32 1:48 1:64 1:80 1:96 1:128

MWCNTs 7

1:0 1:1 1:2 1:4 1:8 1:16 1:32 1:48 1:64 1:80 1:96 1:128

MWCNTs 9

1:0 1:1 1:2 1:4 1:8 1:16 1:32 1:48 1:64 1:80 1:96 1:1281:0 1:1 1:2 1:4 1:8 1:16 1:32 1:48 1:64 1:80 1:96 1:128

Mass Ratio

(0.25 �g) siRNA:CNTs
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Figure 2.6 Cellular uptake of siRNA-AF546 and siRNA-AF546:3-a complexes in A549 cells. Pictures were 

obtained by confocal microscopy after exposing A549 cells for 4h and 24 h to pre -formed siRNA-AF546:3-a 

complexes at a fixed concentration of siRNA-AF546 (0.25 µg) and at increasing concentrations of MWCNT 

3-a, as indicated by mass ratios in the figure. Cellular uptake can be visualized by the presence of red signal 

corresponding to AlexaFluor546-labeled siRNA entering the cytosol of the cells. Cell nuclei were stained by 

DAPI (blue). 
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Remarkably, the observed cellular uptake is rather relevant compared to the relatively low 

concentrations of the CNT complexes to which the cells were exposed to. In fact, mass ratios of 1:16, 

1:48 and 1:96 correspond to 4, 12 and 24 µg of nanotubes, respectively. In addition, the morphology 

of the cells was preserved after the uptake of the complexes and this can be considered a good 

indication of non toxicity. From these results we can affirm that the aminated MWCNT conjugate 3-a 

is able to efficiently deliver siRNA into this specific tumor cell line (A549), in an extent comparable 

to that of ammonium-functionalized nanotubes reported in our previous works.
[13�15]

 

 

2.3 CONCLUSIONS 
 

In this study we have designed and explored six different synthetic strategies to achieve the direct 

conversion of the carboxylic group of oxMWCNTs into amino groups, without extending the lateral 

chain. The surface and morphological characterization of all the final compounds was carried out by 

different techniques. The quantification of amino groups by the classical ninhydrin colorimetric assay 

was not possible, probably because of the aromatic character of the introduced amines. However, by 

XPS analysis we were able to detect the presence of nitrogen in all the samples, with a percentage 

between 1.1 and 2.1%. FT-IR spectroscopy allowed to identify the changes in the chemical bonding 

of the aminated MWCNTs compared to oxMWCNTs (except for compound 3-b), and the 

characteristic absorption bands of amino groups were recognizable. Furthermore, the compounds 

featuring aminomethyl groups (5, 9, and 11) displayed the typical absorbance of methylene around 

2900 cm
-1

, confirming the effectiveness of the synthetic strategy. The morphology of the samples 

was preserved after chemical modification, according to TEM imaging, whereas some of the 

compounds (5 and 11) presented a significantly reduced water-dispersibility, compared to 

oxMWCNTs. On the basis of the performed characterization it is clear that structural modifications 

have occurred for almost all samples (except maybe 3-b), and nitrogen has been introduced onto 

MWCNTs. However, the degree of conversion of  COOH into  NH2 is not very high, meaning that a 

consistent amount of carboxylic groups are still present. Furthermore, it was not possible to achieve 

the straightforward assessment of the amount and type of functionalities introduced, although it is 

reasonable to believe that they are amino groups. The ability of four of the aminated MWCNTs to 

complex siRNA has been assessed by gel electrophoresis using different mass ratios. MWCNTs 3-a 

and 7 have shown the best complexation ability, reaching the highest complexation at 1:16 ratio 

siRNA:MWCNTs. We then evaluated the efficacy of the siRNA:3-a complexes to transfect the 

genetic material inside a tumor cell line, and proved that the cells were able to uptake the complexes 

already after 4 hours, without showing any sign of toxicity.  

By this study we confirmed the importance of surface chemistry and its impact on the behavior of 

MWCNTs in a biological context. In fact, not all compounds displayed the necessary water-

dispersibility, and only two were able to efficiently complex siRNA. Clearly, the presence of 

positively charged groups on the surface plays a major role for the siRNA complexation/delivery, but 

further investigations are undoubtedly needed. In particular, we would like to stress on the 

importance of thorough characterization of the CNT conjugates, which is mandatory for their 

possible application as vectors of genetic material. 
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2.4 EXPERIMENTAL PART 
 

2.4.1 COMPOUNDS SYNTHESIS AND CHARACTERIZATION 
 

Materials and Methods 

The chemicals and solvents were obtained from commercial suppliers and used without further 

purification. MWCNTs were purchased from Nanostructured & Amorphous Materials Inc. (Stock 

# 1240 XH), and they were produced by catalytic carbon vapor deposition (CCVD). The solvents 

used for synthesis were analytical grade. When anhydrous conditions were required, high quality 

commercial dry solvents were used. Water was purified using a Millipore filter system MilliQ®. 

When stated, suspensions were sonicated in a water bath (20 W, 40 kHz). For CNTs filtration, 

PTFE membrane from Millipore were employed. Membranes for dialysis (MWCO 12000-14000 

Da) were purchased from Spectrum Laboratories, Inc. FT-IR spectra were measured on a Perkin 

Elmer Spectrum One ATR-FT-IR spectrometer. TGA was performed on a TGA1 (Mettler Toledo) 

apparatus from 30 °C to 900 °C with a ramp of 10 °C min-1 under N2 using a flow rate of 50 

mL/min and platinum pans. For the loading estimation, values of weight loss were picked at 500 

°C. XPS analyses were performed on one of the following spectrometers. A MULTILAB 2000 

(THERMO) spectrometer equipped with  an anode using Al K� radiation (h� = 1486.6 eV), with 

10 min of acquisition in order to achieve a good signal-to-noise ratio. A Thermo Scientific K-

Alpha X-ray photoelectron spectrometer equipped with a Al anode as the X-ray source (x-ray 

radiation of 1486 eV) and with a basic chamber pressure of ~10.8 � 10.9 mbar. Spot sizes of 400 

µm were used. Survey spectra are an average of 10 scans with a pass energy of 200.00 eV and a 

step size of 1eV. High-resolution spectra are an average of 10 scans with a pass energy of 50.00 

eV and a step size of 0.1 eV. TEM analysis was performed on a Hitachi H7500 microscope 

(Tokyo, Japan) with an accelerating voltage of 80 kV, equipped with a AMT Hamamatsu camera 

(Tokyo, Japan). The samples were dispersed in water/MeOH (1:1) at a concentration of 0.05 

mg/mL and the suspensions were sonicated for 15 min. Ten microliters of the suspensions were 

drop-casted onto carbon-coated copper grids (Formvar/Carbon 300 Mesh, Cu from Delta 

Microscopies) and left for evaporation under ambient conditions.  

 

Oxidation of MWCNTs 

500 mg of pristine MWCNTs were treated with a solution of H2SO4/HNO3 (75 mL, 3:1 v/v, 98% 

and 65% respectively) at 0 °C, and the mixture was sonicated for 24 h in a water bath (20 W, 40 

kHz). The mixture was then carefully diluted with distilled water (300 mL) and filtered through a 

PTFE membrane (0.45 µm). The black material on the filter membrane was re-suspended in water 

by sonicating for 15 min and filtered again, and this sequence was repeated until neutrality of the 

aqueous solution. The CNTs were then further purified by dialysis against deionized water for 48 

h and finally lyophilized.
[26]

 Shortened oxidized MWCNTs (oxMWCNTs 1) were obtained with a 

yield of 98% w/w. The average length distribution of oxMWCNTs was assessed to be 381 nm by 

TEM. The amount of carboxylic acids introduced corresponds to 1.4 mmol/g and was calculated 

on the base of the weight loss difference with the pristine MWCNTs obtained by TGA. 
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XPS: C1s (285.2 eV) 84.6%, O1s (532.5 eV) 15.4%; FT-IR (KBr, � /cm
-1

): 3430, 2345, 1584, 

1205. 

 

Figure 2.7 Thermogravimetric curves of pMWCNTs and oxMWCNTs 1 (left), and XPS spectrum of 

oxMWCNTs 1. 

 

Activation of oxMWCNTs 

oxMWCNTs 1 (160 mg) were dispersed in oxalyl chloride (80 mL) by shortly sonicating, and the 

mixture was then refluxed for 24 h stirring under argon.
[26]

 The solvent was removed under 

reduced pressure and the resulting activated nanotubes (MWCNT-COCl) were used straightaway 

for the following step (strategy I, II or III). 

 

Strategy I: Hoffmann reaction 

Synthesis of MWCNT-CONH2 2-a  via esterification (a) 

Activated ox-MWCNTs (160 mg) were dispersed in dry DMF (26 mL) by sonicating 5 min. A 

solution of BuOH/Py 1:2 (3 mL) was then slowly added to the dispersion at r.t. and the reaction 

mixture was stirred at 80 °C for 70 h, under argon. The mixture was filtered through a PTFE 

membrane (0.45 µm), and the CNTs were re-dispersed in EtOH by sonicating 10 min and filtered 

again. This washing sequence was repeated twice, finally affording MWCNT-COOBu. The molar 

loading of �COOBu estimated by TGA is of 135 !mol/g. 

MWCNTs-COOBu were dispersed in 25% aq. NH3 (250 mL) by sonicating for 10 min, and the 

reaction mixture was stirred at 40 °C for 100 h.
[22]

 CNTs were then recovered by filtration (0.1 

!m) and washed by dispersing them in water, sonicating for 10 min and filtrating. This sequence 

was repeated with H2O, EtOH (x 2) and the CNTs were dried, affording 131 mg of MWCNT-

CONH2 2-a (yield of 82% w/w). 

 

Synthesis of MWCNT-CONH2 2-b via amidation (b) 

20 mg of MWCNT-COCl were added to a dispersion of (NH4)2CO3 in dry DMF (10 mL), and 

gently sonicated for few minutes. Pyridine (10 mL) was then dropped on the mixture at r.t., and 
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this was stirred at 70 °C for 40h, under argon. CNTs were filtrated over a PTFE membrane (0.1 

�m), washed with H2O and EtOH and dried.
[22]

 

 

Synthesis of MWCNT-NH2  3-a and 3-b 

Br2 (2.7 mL, 53 mmol) was slowly added to a solution of CH3ONa (4.06 g, 75 mmol) in dry 

MeOH (150 mL) at 0 °C, while vigorously stirring under argon. After 5 min, MWCNT-CONH2 2-

a or 2-b (125 mg) were added to the solution, this was gently sonicated for few minutes and then 

refluxed (70 °C) overnight under argon. An additional aliquot of Br2 (1.2 mL) was further added, 

and the mixture was stirred at 70 °C for additional 20 h.
[22]

 The product was recovered by 

filtration, washed with sat. NaHCO3 (x 3), H2O, EtOH and acetone, and finally dried in vacuo, 

affording aminated MWCNTs 3-a (yield of 98% w/w) and 3-b (yield of 70% w/w). 

Compound 3-a: NH2 loading (by K.T.) = nil; XPS: C1s (285.3 eV) 76.5%, O1s (533.0 eV) 22.0%, 

N1s (400.4 eV) 1.6%; FT-IR (KBr, � /cm
-1

): 3440, 2916, 1668,1617, 1365, 841, 701. 

Compound 3-b: NH2 loading (by K.T.) = 11 �mol/g; XPS: C1s (284.7 eV) 82.5%, O1s (532.9 eV) 

15.7%, N1s (400.2 eV) 1.8%; FT-IR (KBr, � /cm
-1

): 3427, 2916, 1579, 1198, 1055. 

 

Figure 2.8 Thermogravimetric graph showing the weight loss of oxMWCNTs 1, MWCNT-COOBu and 

MWCNT-NH2 3-a. 

 

Strategy II: Curtius rearrangement 

Synthesis of MWCNT-NH2 4 

Sodium azide (26 mg) was added to a dispersion of MWCNT-COCl (10 mg) in dry DMF (10 

mL), and the mixture was stirred at r.t. for 45 h, and then at 100 °C for 20 h, under argon. The 

mixture was then filtered through a PTFE membrane (0.45 µm), and the CNTs were washed with 

DMF by sonication for 10 min and filtration, and successively treated with conc. HCl for 60 h.
[22]

 

Aminated CNTs were recovered by filtration, and washed by dispersing them in water, sonicating 

for 10 min and filtrating. This washing sequence was then repeated with MeOH (x 2) and acetone, 

and MWCNTs 4 were finally dried in vacuo.  
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NH2 loading (by K.T.) = 29 �mol/g; XPS: C1s (285.3 eV) 84.4%, O1s (533.9 eV) 13.9%, N1s 

(400.9 eV) 1.3%; FT-IR (KBr, � /cm
-1

):3430, 2346, 1709, 1585, 1198, 1085. 

 

Strategy III: via cyanide 

Synthesis of MWCNT-CH2NH2 5 

CuCN (14.4 mg) was added to a dispersion of MWCNT-COCl (16 mg) in dry MeCN (7.5 mL) 

and the mixture was stirred at r.t. for 24 h, under argon. The mixture was then diluted with 

acetone (10 mL) and centrifuged (5000 r/min, 5 min), the supernatant was removed and the CNTs 

were re-dispersed in fresh acetone. This sequence was repeated 4 times and the so-obtained 

MWCNTs were dried in vacuo. 

For the decarbonylation of acyl cyanide, nanotubes were suspended in dry toluene (7 mL) by 

sonicating for 10 min. Cesium fluoride (10.5 mg, 1 eq.) and Pd(PPh3)4 (7.5 mg, 0.1 eq.) were 

added to the mixture and this was stirred at 110 °C for 5 hours.
[28]

 The reaction was stopped by 

centrifuging the mixture (5000 r/min, 5 min) and removing the liquid phase. The CNTs were re-

dispersed in toluene by sonication (15 min), centrifuged and the solvent removed. This washing 

procedure was repeated with 0.1M KOH, aq. NH3 (20% v/v), 0.01 M HCl, EtOH and Et2O, and 

MWCNT-CN were finally dried under vacuum. 

In a flamed round-bottom flask, MWCNT-CN (7 mg) were dispersed in freshly dried THF (10 

mL) by sonicating for 20 min, under argon. A 2.2 M solution of LiAlH4 in freshly dried THF (0.8 

mL) was slowly added to the CNTs solution via syringe, and stirred vigorously at r.t. for 20 h. 

The mixture was quenched in a beaker with cold water, stirred for few minutes and filtrated. The 

black residue was treated with conc. HCl (3-4 mL) to dissolve the lithium salts, filtrated (0.1 �m), 

washed with H2O, EtOH and acetone, and MWCNT-CH2NH2 5 were recuperated by precipitation 

and dried.  

NH2 loading (by K.T.) = 10 �mol/g; XPS: C1s (284.7 eV) 81.9%, O1s (532.5 eV) 16.9%, N1s 

(400.3 eV) 1.1%; FT-IR (KBr, � /cm
-1

): 3430, 2921, 2848, 1580, 1417, 1152. 

 

Strategy IV: Hunsdiecker reaction 

Synthesis of MWCNT-I  6 

oxMWCNTs 1 (17 mg) were dispersed in MeCN/H2O 97:3 (8 mL) by sonicating for 15 min. 

LiOAc (6 mg) and N-iodosuccinimide (150 mg) were then added to the mixture and this was 

stirred at 60 °C for 24 h. The CNTs were recovered by filtration (0.1 �m), and washed with 

MeCN, MeOH, acetone (x 2), and finally dried in vacuo obtaining iodinated MWCNTs 6. 

XPS: C1s (285.3 eV) 83.3%, O1s (532.5 eV) 16.6%, I3d (620.5 eV) 0.06%; FT-IR (KBr, � /cm
-1

): 

3437, 1580, 785. 
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Figure 2.9 Characterization of compound 6. FT-IR (a) and XPS spectra: general survey (b), C1s (c), I3d 

(d). 

 

Synthesis of MWCNT-NH2  7 

MWCNTs 6 (13 mg) were sonicated in dry DMF (6 mL) for 10 min under argon. NaN3 (40 mg) 

was added to the dispersion and this was stirred at r.t. for 5 h and at 50 °C for 16 h. The CNTs 

were then recovered by filtration (0.1 �m) and washed with DMF (x 2), MeOH (x 2) and acetone 

(x 2), and finally dried in vacuo. Right afterwards, the so-obtained MWCNTs were dispersed in 

freshly dried THF (10 mL) inside a flamed vessel by sonicating for 20 min. A 2.2 M solution of 

LiAlH4 in dry THF (0.8 mL) was slowly added by syringe to the CNTs dispersion, and this was 

vigorously stirred overnight at r.t. The reaction was stopped by carefully pouring the mixture into 

a beaker with cold water (60 mL) while stirring. Few drops of conc. HCl were added to the 

mixture to dissolve the lithium salts, and the CNTs were recovered by filtration (0.1 �m), re-

dispersed in H2O and precipitated by centrifugation. The supernatant was removed away and 

CNTs were further washed once with EtOH and once with acetone recovering them by centrifugal 

precipitation. MWCNT-NH2 7 were finally dried in vacuo. 

NH2 loading (by K.T.) = 34 �mol/g; XPS: C1s (285.4 eV) 77.4%, O1s (533.3 eV) 21.2%, N1s 

(401.2 eV) 1.4%; FT-IR (KBr, � /cm
-1

): 3430, 2355, 1580, 1409, 1098. 

 

Synthesis of MWCNT-CH2OH 8 

oxMWCNTs 1 (19 mg) were dispersed in dry THF (10 mL) by sonicating for 30 min under argon. 

A 1 M solution of LiAlH4 in THF (0.4 mL) was carefully added by syringe to the dispersion and 
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this was stirred at r.t. for 1 h. The mixture was sonicated for 10 min and then slowly poured onto a 

2 M HCl solution (30 mL), while stirring vigorously. The CNTs were then recovered by filtration 

(0.1 �m), washed with H2O, EtOH, acetone and dried in vacuo, obtaining MWCNTs-CH2OH 8. 

XPS: C1s (285.2 eV) 84.8%, O1s (532.8 eV) 15.2%; FT-IR (KBr, � /cm
-1

): 3430, 2917, 631, 

1579, 1210, 1077, 798. 

 

Figure 2.10 Characterization of compound 8. FT-IR (a) and XPS spectra: general survey (b), C1s (c). 

 

Strategy V: via phthalimide coupling  

Synthesis of MWCNT-CH2NH2 9 

MWCNTs 8 (12 mg) were dispersed in THF (10 mL) by sonicating for 30 min under argon. 

Phthalimide (14 mg) and DEAD (2 mL) were then added, and the mixture was sonicated for 2 h 

and further stirred for 2.30 h. The mixture was then diluted with MeOH (50 mL), filtered (0.1 �m) 

and the recovered CNTs were re-dispersed in MeOH (20 mL) by sonication, filtered again and 

dried in vacuo. The so-obtained Pht-functionalized CNTs were suspended in a small volume of 

DCM (2 mL) by sonication, and the dispersion was then treated with trifluoroacetic acid (7 mL) 

and sonicated for 3 h. Aminated CNTs 9 were recovered by filtration, washed twice with DCM 

and dried. 

NH2 loading (by K.T.) = 16 �mol/g; XPS: C1s (285.2 eV) 84.8%, O1s (533.0 eV) 13.9%, N1s 

(401.1 eV) 1.3%; FT-IR (KBr, � /cm
-1

): 3430, 2919, 1633, 1588, 1423, 1049.  
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Strategy VI: via mesylation 

Synthesis of MWCNT-CH2N3  10 

MWCNT-CH2OH 8 (9 mg) were suspended in dry DCM by sonicating for 30 min under argon. 

Methanesulfonyl chloride (6.5 mL) and then Et3N (0.5 mL) were added to the mixture at 0 °C, 

and this was further sonicated at 0 °C for 30 min and stirred at r.t. overnight. The CNTs were 

recovered by filtration (0.1 �m), washed with DCM (x 2) and vacuum dried. The so-obtained 

CNTs were dispersed in dry DMF by sonicating 15 min under argon. Sodium azide (10 mg) and 

sodium iodide (catalytic amount) were added and the mixture was sonicated for additional 15 min 

and then left to react at 60 °C for 48 h, under argon. After filtration (0.1 �m), CNTs were washed 

with DMF, MeOH (x 2), acetone (x 2) and dried under vacuum, affording compound 10. 

FT-IR (KBr, � /cm
-1

): 3430, 2912, 1580, 1014. 

 

Figure 2.11 FT-IR spectrum of compounds 1, 8 and 10. 

 

Synthesis of MWCNT-CH2NH2  11 

In a flamed round-bottom flask, MWCNT-CH2N3 10 (6 mg) were dispersed in freshly dried THF 

(10 mL) by sonicating for 20 min, under argon. A 2.2 M solution of LiAlH4 in freshly dried THF 

(0.8 mL) was slowly added to the CNTs solution by syringe, and stirred vigorously at r.t. for 20 h. 

The reaction was quenched by carefully pouring the mixture in a beaker with cold water, and 

stirring stirred for few minutes. The slurry was then filtrated (0.1 �m) and the black residue was 

treated with conc. HCl (3-4 mL) to dissolve the lithium salts, filtrated, washed with H2O, EtOH 

and acetone, and MWCNT-CH2NH2 11 were finally recuperated by precipitation and dried.  

NH2 loading (by K.T.) = 26 �mol/g; XPS: C1s (284.7 eV) 76.1%, O1s (533.0 eV) 22.6%, N1s 

(400.4 eV) 1.3%; FT-IR (KBr, � /cm
-1

): 3430, 2916, 1607, 1426, 1110.  
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2.4.2  BIOLOGICAL INVESTIGATIONS 
 

Gel electrophoresis mobility assay 

Dilutions of non-coding siRNA (siRNAneg, Qiagen, MW= 14857 g/mol) in RNAse-free water 

(20 µM) were prepared according to the manufacturer protocols. Dilutions were prepared in milli-

Q water in order to have a final concentration of 0.25 µg of siRNAneg in 15 µL of solution. 

Dilutions of aminated MWCNTs were prepared according to each mass ratio required for the 

complexation with siRNAneg from a 1 mg/mL dispersion in milli-Q RNAase-free water after 

sonication for few minutes. Final volumes of MWCNT dilutions were set to be at 15 µL. The 

siRNA solution was added to the CNTs dispersion and the two were mixed by rapidly pipetting. 

After an incubation of 30 min at r.t., each siRNA:CNT dispersions was added with 8 µL of Green 

Orange DNA loading dye (Fermentas, Thermo Scientific) and then loaded into 1% agarose gel 

(final volume 38 µL). Gels were run for 45 min at 70 mV before visualization using the GeneSnap 

software under the UV light. Gel was prepared by using TBE buffer (Tris-Borate-EDTA) added 

of 1% agarose. Briefly, Trizma base (108 g), boric acid (55 g), EDTA (9.3 g) and NaOH (1 g) 

were dissolved in 1 L of distilled water by vigorously stirring. The buffer was diluted 20x with 

distilled water, and the same buffer used for the 1% agarose gel preparation (30 min) as well as 

running buffer. 

 

Cellular uptake in A459 cells 

A459 lung cancer cells were maintained in complete F12-Ham�s (Gibco, LifeTechnologies) 

media complemented with 10% FBS (foetal bovine serum) on non-coated Petri�s dishes, and 

media renewed every 3 days until cells were at confluence. The day before the experiment, the 

cells were seeded at 5x10
3
 cells/well density on a Millipore-microscope slide multi well support 

(Ezslides, Millipore) in the presence of complete media. Non-coding AlexaFluor546-labeled 

siRNAneg (siRNA-AF546) (5�-3�: UGCGCUACGAUCGACGAUG) (Eurogentec, UK) was used 

to complex with aminated MWCNTs, mixing equal volumes to obtain a mass ratio of 16:1, 48:1 

and 96:1. To obtain siRNA-AF546 at final concentration of 40 nM corresponding to 0.25 µg of 

siRNA on each well, 75 µL of siRNA-AF546 (20 µM) was diluted in of RNAse free sterile water. 

One hundred µL of this solution ware mixed with 100 µL of aminated MWCNTs diluted in 

sterile/RNAse free milli-Q water. These dilutions were thus mixed together by rapidly pipetting 

and let interact for 30 min prior being added to each well containing cells and 400 µL of FBS free 

complete media. Treatments at 4h were stopped by removing the media, washing several time 

with sterile water, fixing cells in 4% paraformaldehyde for 15 min, removing by washing and 

adding 5 µL of DAPI staining for the cell nuclei. The same procedure was repeated for the 24 h 

treatments, but after 4 h incubation in the presence of the complexes, the medium was 

complemented with 10% of FBS to preserve the cell growth. Cells were then visualized under 

confocal microscopy by mounting the coverslip to each microscopy slide. Images were acquired 

on a confocal laser scanning LSM 710 microscope (Carl Zeiss) or on a Mp-OPO SP8 (Leica) used 

in the confocal mode. 
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Abstract � In this Chapter, we will present the design and synthesis of novel CNT conjugates

for anticancer therapy, obtained by connecting a therapeutic nanobody to oxidized CNTs via

cleavable linkers. These particular nanobodies are antibody-derived therapeutic proteins from 

camel that display the typical antibody advantages, such as high affinity for the target and low 

inherent toxicity, and are easy to manufacture. The CNT constructs were designed to contain a 

hydrophilic chain (TEG) for water dispersibility, and a disulfide cleavable linker, to access the 

controlled release of the therapeutic intracellularly. The disulfide bond can in fact be cleaved by 

enzymes in lysosomal compartments or once exposed to the reducing environment (e.g. by 

glutathione) of the cytosol. The as-prepared nanobody-CNT conjugates have been 

characterized by several techniques, including TGA, gel electrophoresis and surface plasmon 

resonance, and their therapeutic efficiency was investigated on a carcinoma cell line, and on 

tumor-bearing mice. 

CHAPTER 3 

3 FUNCT

FUNCTIONALIZATION OF CNTS VIA A CLEAVABLE DISULFIDE 

BOND FOR DELIVERY OF A THERAPEUTIC NANOBODY
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3.1 INTRODUCTION

Antibodies are large Y-shaped proteins used by the immune system to identify and neutralize foreign 

objects like bacteria and viruses. Each antibody recognizes a specific antigen with high selectivity, 

and this has contributed to the large success of antibodies as tools for the analysis of biomolecules in 

research, diagnostics and therapy. The use of monoclonal antibodies has indeed revolutionized both 

cancer therapy and cancer imaging.
[1]

 Antibodies have been used to directly inhibit tumor cell 

proliferation or to target drugs to tumors. However, antibodies are big size biomolecules (150 kDa) 

and are not functional within a living cell due to the reducing environment of the cytoplasm. 

Furthermore, their distribution within tumors is hampered by their size, leading to insufficient 

efficacy of cancer treatment and irregular imaging.
[2]

 An attractive alternative to monoclonal 

antibodies are nanobodies. Nanobodies are constituted by the variable domain of heavy-chain 

antibodies (i.e. VHHs) and are considered the smallest naturally derived fragments retaining antigen-

binding specificity (Figure 3.1).
[3]

 Nanobodies were first discovered in 1993 in animals from the 

Camelidae family, which exhibit a high ratio of heavy-chain antibodies to conventional antibodies.
[4]

Because of their size in the nm range, the term �nanobody� was coined by the Belgian company 

Ablynx®. Nanobodies offer many advantages over full antibodies such as size reduction, high 

solubility and stability and very low immunogenicity in humans. Moreover, nanobodies are easy to 

clone and can efficiently enter into cells and specifically bind antigens that typically cannot be 

reached by conventional intact antibodies. All these desirable properties stimulated a lot of research 

around nanobodies for their application in biomedical imaging, as well as targeting and therapy of 

specific diseases.
[2,5]

  

Figure 3.1 Schematic representation of a conventional antibody, heavy-chain antibody and nanobody (VHH). 

Adapted from ref. [6].

Since it was demonstrated that VHHs can bind antigens on the surface of tumor cells and their 

immunogenicity is low, they are under intensive scrutiny as potential therapeutic tools, and among the 

most studied are VHHs with anti-cancer activity. To date, VHHs recognizing antigens that are 

expressed by cells of different cancers have been obtained, and many of them reveal prospective 

therapeutic values.
[3,7,8]

One of our collaborators, UCB (UK), modified a VHH scaffold to prepare a therapeutic nanobody 

able to selectively target �-catenin, a protein implicated in the endogenous Wnt signalling pathway. 

Mutations and overexpression of �-catenin are associated with many cancers, including hepatocellular 

carcinoma, colorectal carcinoma, lung cancer, malignant breast tumors, ovarian and endometrial 

cancer.
[9]

Due to its involvement in cancer development, inhibition of �-catenin continues to receive 

significant attention. The VHH synthesized by UCB is able to target and hinder the transcriptional 
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activity of the �-catenin, thus blocking the expression of tumor-associated genes. We found it 

interesting to match the potential of this therapeutic nanobody toward cancer treatment, with nanotube 

ability to cross cellular membranes and carry molecules inside the cells. Indeed, the aptitude of CNTs 

to work as intracellular transporters can be exploited in this case to facilitate the internalization of 

VHH. Furthermore, we decided to introduce a cleavable linker between the CNT structure and the 

biomolecule, in order to induce the release of the nanobody in the cytoplasm and to preserve its 

therapeutic activity. The use of cleavable linkers is quite common in the synthesis of drug delivery 

systems because it allows a controlled release of the drug, which is triggered only under specific 

conditions (pH, enzymes, oxidizing/reducing agents, etc.).
[10]

 Among cleavable bonds, disulfides are 

appealing because of their straightforward synthesis, relative stability in plasma and because they can 

be efficiently and rapidly cleaved by intracellular reducing agents, such as glutathione (GSH), 

thioredoxin, glutaredoxin, etc.
[11]

 However, there are only few reports describing the use of disulfides 

associated with carbon nanotubes. In 2005, the group of H. Dai firstly described the preparation of a 

CNT vector for gene delivery based on a disulfide linker.
[12]

 SWCNTs were non-covalently 

functionalized with phospholipidic chains featuring terminal amino groups, a disulfide linker was 

connected to the latter, and thiolated DNA or siRNA were finally conjugated to the CNTs via the 

linker. They proved that so-functionalized CNTs were able to transport their cargo inside mammalian 

cells and release it within the lysosomal compartment due to enzymatic reduction of the disulfide 

bond. Analogously, Delogu et al. functionalized PEGylated SWCNTs with the same disulfide linker 

in order to deliver antisense oligonucleotides inside immune cells (Figure 3.2). These nucleotide 

sequences can achieve the knockdown of protein tyrosine phosphatase N22, which is an important 

drug target for autoimmune diseases.
[13]

 Following a similar synthetic pathway, Chen et al. built a 

CNT construct employing a siRNA sequence inhibiting murine double minute clone 2 (MDM2), and 

they could efficiently transfect breast cancer cells with this construct, achieving inhibition of cell 

proliferation.
[14]

 All these examples are based on the non-covalent functionalization of CNTs with a 

solubilizing polymer, followed by the conjugation with the biomolecule. 

Figure 3.2 Schematic representation of oligonucleotide-S-S-CNT conjugates used in ref. [12] and [13]. 

You et al. were the first to report the covalent functionalization of CNTs with a disulfide linker.
[15,16]

They derivatized oxidized CNTs with pyridylthio functionalities and then attached to these a long-

chain polymer
[15]

 or BSA,
[16]

 through thiol-disulfide exchange. Later on, the group of I. Ojima 

prepared an interesting SWCNT-based drug delivery system consisting of tumor-targeting 

functionalities (biotin) and a cytotoxic drug warhead (i.e. taxoid) attached to the CNTs through a 

strategically designed cleavable linker.
[17]

 The biotin moieties enhanced the internalization of the 

conjugate by tumor cells, and once inside the cells, the reducing activity of endogenous thiols 

(glutathione and/or thioredoxin) triggered the cleavage of the disulfide bond, releasing the taxoid in 

its active form. 

The aim of our study was to design a novel VHH-CNT conjugate bearing a disulfide cleavable linker 

in order to control the release of the nanobody. To the best our knowledge, no example of 
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functionalization of CNTs with nanobodies has been so far reported, hence investigations on this area 

could open a new area of interest in the use of CNTs for cancer therapy. 

3.2 RESULTS AND DISCUSSION

For the preparation of the VHH-CNT conjugate we used oxidized multi-walled carbon nanotubes as 

starting material. As mentioned in Chapter 2, the oxidation of MWCNTs by acid treatment shortens 

and functionalizes the tubes with oxygen-containing groups, substantially increasing their water 

dispersibility. We studied a fully covalent approach to tether the VHH nanobody to the CNTs, in 

order to avoid the premature detachment of the nanobody from the nanotubes, which can likewise 

occur in case of non-covalent functionalization. We designed a linker constituted of a triethylene 

glycol (TEG) chain as solubilizing spacer, a disulfide-containing moiety, and a maleimide terminal 

group for the further conjugation of the nanobody. Maleimide is often used in the preparation of 

bioconjugates since proteins display a number of cysteine residues that can react very easily and in 

mild conditions with the maleimide double bond.
[18�20]

 The VHH provided by UCB displays in its 

structure free thiol groups that could be exploited to tether it onto CNTs via the maleimido group. The 

designed conjugate is presented in Scheme 3.1 and it features four main building blocks:  

1) the MWCNT 

2) the TEG spacer 

3) the linker containing the disulfide moiety 

4) the maleimide functionality 

Connection between these blocks can be easily achieved by amide bonds (Scheme 3.1). We decided 

to use cystamine as starting material for the disulfide linker and we designed our synthetic strategy 

accordingly.  

Scheme 3.1 Retrosynthetic analysis for the preparation of the CNT conjugate with a cleavable linker. 

Various synthetic solutions can be foreseen to bind the four blocks together and build the desired 

conjugate (Scheme 3.1). The attachment of amine-terminating chains to the CNTs is commonly one 

of the favored strategy for the preparation of CNT-functionalized compounds, as the degree of 

functionalization can be easily monitored by colorimetric Kaiser test. Therefore, we opted for the 

initial derivatization of oxMWCNTs with amine-terminating TEG. For the combination of the two 

remaining synthons, it is possible either to attach one after the other to the aminated-CNTs, or to 

combine them before, and then bind the whole linker to the CNTs. We chose this second strategy as it 
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appeared synthetically more practical. The final step is the conjugation with the nanobody through 

Michael addition to the double bond of the maleimide. In this conjugate, named CNT-SS-mal-VHH, 

the site of cleavage is detached from the nanobody by a short organic chain (ca. 10 atoms), which 

would remain with the nanobody when the disulfide bond is cleaved. As a consequence, the structure 

and efficacy of VHH could be affected by this pendant. For comparison, we therefore designed a 

second CNT-nanobody conjugate bearing no spacer between the nanobody and the cleavage site 

(Scheme 3.2). To ensure this direct connection, the disulfide bond has to involve a sulfur atom 

coming from the nanobody itself. This can be achieved by thiol-disulfide exchange between a thiol of 

VHH and a pyridylthio functionality on the CNTs, in similarity with the above-mentioned 

examples.
[15,16]

 We used a commercial linker containing a pyridyl disulfide and connected it to amino-

functionalized CNTs via an amide bond. After attachment of the VHH, the resulting compound was 

named CNT-SS-VHH, differently from the previous CNT-SS-mal-VHH, to mark the absence of 

spacer between the disulfide bond and the nanobody.

Scheme 3.2 Representation of the precursor for the second conjugate, featuring the pyridylthio group. 

Starting from amino-functionalized CNTs, we finally prepared a last conjugate (CNT-VHH), devoid 

of cleavable linker, to compare its biological behavior with the previous two. In the following 

paragraph, the synthesis and characterization of the three conjugates will be described in detail. First, 

we will illustrate the synthesis of amino-functionalized MWCNTs, which is the precursor of all three 

final conjugates. We will then describe the preparation of each conjugate, followed by its 

characterization. Finally, the biological investigation performed by us and our partners will be 

presented and discussed. 

3.2.1 SYNTHESIS OF AMINO-FUNCTIONALIZED MWCNTS

MWCNTs were first oxidized and then reacted with previously prepared Boc-mono-protected TEG 

amine. Commercially available MWCNTs were sonicated in a HNO3/H2SO4 (1:3) mixture for 24 

hours, obtaining oxidized MWCNTs 1 (cf. Chapter 2 for a detailed characterization).
[21]

 The 

functionalization of oxMWCNTs with the amine-terminating TEG chain was obtained by amidation 

between the carboxylic groups of CNTs and the free amine groups of the TEG spacer. Boc-mono-

protected TEG diamine 8 was previously synthesized by reacting triethylene glycol diamine with di-

tert-butyl dicarbonate (Boc2O) in 1,4-dioxane. For the amidation reaction, oxidized MWCNTs 1 were 

refluxed for 24 hours in neat oxalyl chloride under argon, to allow the formation of the acyl chloride 

intermediate (compound 2). As this compound is unstable, after evaporation of the reagent the CNTs 

were dispersed in dry THF and immediately subjected to the reaction with TEG amine 8 (Scheme 

3.3). The amidation was conducted for 48 hours at reflux, forming derivative 3, which displays a 

Boc-protected amine group as terminus of the TEG chain. The Boc protecting group was removed by 

treating the CNTs with HCl in 1,4-dioxane, affording amino-functionalized CNTs 4, which were used 

as precursors for the preparation of all nanobody-CNT conjugates. 
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Scheme 3.3 Synthesis of amino-functionalized MWCNTs 4. a) H2SO4/HNO3 (3:1), sonication, 24 h; b) 

(COCl)2, reflux, 24 h; c) 8, THF, reflux, 48 h; d) HCl in 1,4-dioxane, overnight. 

The loading achieved by amidation was estimated by TGA under inert atmosphere and by 

colorimetric Kaiser test. Thermogravimetric analysis is a technique widely used to quantify the degree 

of functionalization of CNTs and the thermal stability of the conjugates. This analytical technique 

allows to study the decomposition of the derivatives as a function of the temperature. Pristine CNTs 

are stable up to 700 °C, while organic functions start to degrade around 200-300 °C. Generally, 

between 350 °C and 500 °C all organic groups attached to carbon nanotubes are burnt. Above 500°C 

there is the possibility of a contribution of the oxidation of carbon nanotubes. For the loading 

calculation we chose to take weight loss values at 500 °C to be sure that all functional groups are 

removed and that the nanotubes are not degraded. In this way, by correlating the weight loss 

percentage of two different derivatives at 500 °C, it is possible to obtain the degree of 

functionalization of the material.  

Figure 3.3 TG curves of pMWCNTs (black), oxMWCNTs 1 (red) and MWCNTs 3 (blue). 

For oxidized MWCNTs, TGA showed a weight loss of 7.0% compared to pMWCNTs, corresponding 

to an amount of carboxylic groups of 1.4 mmol/g. By difference between the weight loss of 

compound 3 and oxMWCNTs, we estimated the loading of Boc-amine TEG to be 100 �mol/g 

(Figure 3.3). Moreover, after cleavage of the Boc protecting group, it is possible to estimate the 

amount of free amines (or ammonium) on CNTs by Kaiser test. For compound 4, the amine loading 

resulted 182 �mol/g. The discrepancy between the loadings obtained by TGA and Kaiser test 
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accounts for the intrinsic difference of the technique. Nevertheless, the calculated values are in the 

same order of magnitude and the estimated divergence is considered acceptable. 

3.2.2 SYNTHESIS OF CNT-SS-MAL-VHH 

Synthesis of the disulfide linker 

For the preparation of the first nanobody-CNT derivative (Scheme 3.1), we synthesized the 

disulfide-containing linker, which is the intermediate module between amino-functionalized CNTs 

and VHH. As previously explained, we selected cystamine as starting material because of its 

commercial availability and synthetic versatility. Cystamine is a symmetric molecule presenting a 

disulfide bridge and two terminal amino groups. According to our synthetic strategy, one amino group 

has to be derivatized with the maleimide moiety, which is the reactive site for the successive 

conjugation of VHH, while the other amino group needs to be modified into a carboxylic group, 

suitable for the amidation with amino-functionalized CNTs 4 (Scheme 3.5). A common protocol to 

introduce the maleimide group in a molecule is by reaction with compound 9, which is a hetero-

bifunctional cross-linker. This was prepared by coupling maleic anhydride with �-alanine and N-

hydroxysuccinimide in the presence of N,N'-dicyclohexylcarbodiimide (DCC) (Scheme 3.4).
[22]

  

Scheme 3.4 Synthesis of maleimide linker 9: DCC, DMF, r.t., 4 h. 

Before connecting maleimide linker 9 to cystamine, one amino group of cystamine needs to be  

protected. Following a reported procedure,
[23,24]

 we reacted cystamine dihydrochloride with Boc 

anhydride in the presence of Et3N, obtaining Boc-mono-protected cystamine 10 (Scheme 3.5). The 

remaining free amino group was then derivatized with maleimide linker 9, and the Boc protecting 

group was successively removed by treating 11 with TFA in DCM. 

Scheme 3.5 Synthesis of the disulfide linker 13: a) Boc2O, Et3N, MeOH r.t., 1 h; b) 9, Et3N, DCM, r.t., 3.5 h; 

c) TFA/DCM 2:8; d) i, DMAP, r.t. 24 h, 40 °C, 7 h. 
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Finally, as the disulfide linker is meant to be connected to amino-functionalized CNTs 4 via

amidation, a terminal carboxylic group on the linker is required. To this purpose, compound 12 was 

reacted with succinic anhydride and catalytic 4-dimethylaminopyridine (DMAP), slightly modifying a 

reported procedure.
[25]

 Flash-chromatography purification of the reaction mixture afforded compound 

13 (Scheme 3.5).As compounds 11, 12 and 13 were never reported in the literature, to confirm their 

identity we performed a thorough characterization by proton and carbon NMR, mass spectrometry 

and FT-IR (data reported in the Exp. Part).

Synthesis of the CNT-nanobody conjugate

Disulfide linker 13 was attached to amino-functionalized CNTs 4 by amidation reaction in the 

presence of coupling reagents such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and 

hydroxybenzotriazole (HOBt) (Scheme 3.6). The so-obtained compound 5 was extensively dialyzed 

against deionized water to remove non-reacted compounds, especially the linker which can possibly 

be absorbed onto the CNTs.  

Scheme 3.6 Synthesis of conjugate CNT-SS-mal-VHH: a) 13, DIEA, HOBt, EDC, DMF, r.t., 56 h; b)VHH, 

EDTA/PBS pH 6.4, r.t., 6 h. 

By Kaiser test it is possible to estimate the residual non-reacted ammonium functions on compound 5, 

and deduce the degree of functionalization by difference with the starting MWCNTs 4 (182 �mol/g). 

The free amine loading calculated by Kaiser test is 12 �mol/g, which corresponds to a degree of 

functionalization of 170 �mol/g. By TG analysis we obtained a loading value of 120 �mol/g, which is 

in good agreement with the Kaiser test (Figure 3.4). 

The coupling reaction between MWCNTs 5 and VHH was performed in EDTA/PBS buffer at slightly 

acidic pH (Scheme 3.6), monitoring the reaction by UV-Vis.
[26]

 Small aliquots of the reaction 

mixture were collected at different time points (0, 5 and 6 hours), centrifuged, and the absorbance of 

the supernatant was measured to follow the disappearance of the VHH peak. After 6 hours there was 

no more absorbance of the VHH in the supernatant, therefore we stopped the coupling by centrifuging 

the mixture and removing the supernatant. As VHH can adsorb onto nanotubes, CNT-SS-mal-VHH 

was thoroughly washed through repeated centrifugation/redispersion cycles in PBS buffer, and finally 

subjected to extensive dialysis. By thermogravimetric analysis, we observed a 10% increase of the 

weight loss compared to the CNT precursor, which corresponds to a loading of VHH of 9.9 �mol/g 

(Figure 3.4). 
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Figure 3.4 TG curves of oxMWCNT 1 (black), MWCNT 5 (red) and CNT-SS-mal-VHH (blue). 

3.2.3 SYNTHESIS OF CNT-SS-VHH 

For the preparation of the second CNT-nanobody conjugate displaying no organic spacer between the 

disulfide bridge and the nanobody, we employed a commercially available linker, 2-pyridylthiol-

tetraoxatetradecane-N-hydroxysuccinimide (PEG4-SPDP, compound 14 in Scheme 3.7). PEG4-

SPDP is a heterobifunctional cross-linker for protein conjugation that contains a cleavable disulfide 

bond and a 4-unit PEG group, which confers greater solubility to the cross-linker compared to those 

having only hydrocarbon spacers. SPDP-type reagents have an amine-reactive N-hydroxysuccinimide 

(NHS) ester at one end and a sulfhydryl-reactive 2-pyridyldithiol group at the opposite end. Amino-

functionalized MWCNTs 4 were mixed with the PEG4-SPDP linker 14 in the presence of a base to 

afford derivative 6 (Scheme 3.7). The amount of residual free amines calculated by Kaiser test is 61 

�mol/g, which corresponds to a degree of functionalization of 121 �mol/g, while the value obtained 

by TG analysis corresponds to 90 �mol/g. 

Scheme 3.7 Synthesis of conjugate CNT-SS-VHH: a) 14, DIEA, DMF, r.t., 48 h; b) VHH, EDTA, PBS, r.t., 6 

h. 

The terminal pyridylthiol group in MWCNTs 6 is reactive toward thiols and resulting in the 

displacement of pyridine-2-thione, with formation of a new disulfide linkage with the peptide. 

Following the above described protocol, we conjugated VHH to MWCNTs 6 affording compound 
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CNT-SS-VHH. The weight loss difference with the precursor is 9%, which corresponds to a loading 

of VHH of 5.3 �mol/g. 

Figure 3.5 TG curves of oxMWCNTs 1 (black), MWCNT 6 (red) and CNT-SS-VHH (blue). 

3.2.4 SYNTHESIS OF CNT-VHH 

Finally, we synthesized a CNT-nanobody conjugate devoid of any cleavable linker to compare its 

biological behavior with that of the two disulfide-containing conjugates. Amino-functionalized CNTs 

4 were derivatized with the previously synthesized maleimide linker 9 by amidation reaction 

(Scheme 3.1). By Kaiser test we estimated the amount of residual ammonium groups to be 65 

�mol/g, which by difference corresponds to a loading of 95 �mol/g. This value is in very good 

agreement with that obtained by thermal analysis, which is 92 �mol/g.  

Scheme 3.8 Synthesis of conjugate CNT-VHH: a) 9, DIEA, DMF, r.t., 48 h; b) VHH, EDTA, PBS, r.t., 6 h. 

MWCNTs 7 were reacted with VHH in PBS buffer for 6 hours and then extensively washed and 

dialyzed to eliminate the non-covalently attached nanobody. The loading of VHH estimated from the 

TG analysis amounts to 8.1 �mol/g (Figure 3.6). 
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Figure 3.6 TG curves of oxMWCNTs 1 (black), MWCNT 7 (red) and CNT-VHH (blue). 

3.2.5 CHARACTERIZATION

In addition to TG analysis, the three final CNT-nanobody conjugates were further characterized by 

transmission electron microscopy, gel electrophoresis (GE) and surface plasmon resonance (SPR). 

3.2.5.1 Electron microscopy 

As we stated in Chapter 2, the average length distribution of MWCNTs after the oxidative process 

corresponds to 381 nm, and the tubes are predominantly individualized and with a curved shape 

(Figure 3.7). From the TEM pictures of the final conjugates, we can observe that no significant 

morphological change occurred upon functionalization. 

Figure 3.7 TEM images of oxMWCNTs 1 (a), CNT-VHH (b), CNT-SS-VHH (c), and CNT-SS-mal-VHH (d). 

Scale bars correspond to 500 nm. 
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3.2.5.2 Gel electrophoresis 

Gel electrophoresis is a useful technique for the analysis of macromolecules such as DNA and 

proteins, since it allows their separation by charge and/or size. The migration of a protein within the 

gel is driven by its total charge, which is dependent on its size. Hence, it is possible to attest the 

presence of a certain protein in a sample and verify its integrity by knowing its size. CNTs cannot 

penetrate the agarose gel because of their big size, therefore they remain at the top of the loading well. 

When a protein is covalently bound to the CNTs, it will not be able to migrate through the gel, and no 

protein band will be seen in the lane. However, if a certain amount of protein is absorbed on the CNT 

sidewalls, it will migrate and the corresponding band will appear at the proper size. 

As previously mentioned, the adsorption of macromolecules on CNTs is a phenomenon that can 

likewise occur during bioconjugation. By extensively washing and dialysis of the CNT-nanobody 

conjugates, we expect to remove most of the adsorbed nanobody. Neveretheless, TG analysis does not 

allow to discriminate between covalently and non-covalently attached nanobody. To have an idea of 

the extent of adsorbed VHH, parallely to the covalent conjugation we performed a control reaction 

that excluded any possible covalent interaction between VHH and CNTs. To this purpose, we stirred 

together VHH and MWCNTs 3 (Boc-protected amino-functionalized MWCNTs), which are devoid of 

the maleimide function, therefore only non-covalent interactions can occur (Scheme 3.9). The 

reaction mixture was submitted to the same work-up as for the covalent conjugation (washings and 

dialysis), and the obtained material was analyzed by gel electrophoresis as well as the covalent CNT-

nanobody conjugates. 

3
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O
NHBoc

VHH
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Scheme 3.9 Schematic representation of the control reaction. 

The four samples and native VHH were analyzed by gel electrophoresis in non-reducing conditions 

and the gel was stained with Coomassie blue to visualize the bands. In the second lane of Figure 3.8

we can see an intense band at ~17 kDa, which accounts for the VHH nanobody (MW ca. 17 kDa), 

while the less intense bands at higher MW are attributed to VHH dimers.  

Figure 3.8 Gel electrophoresis run under non-reducing conditions at 150 kV. Gel stained with Coomassie 

blue. Protein size expressed in kDa. Left and right panels correspond to gels performed in different moments.
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We can notice that for the control reaction (lane 5), the intensity of the nanobody band is rather high, 

due to the presence of adsorbed VHH. In the lanes of the three covalent conjugates (CNT-SS-mal-

VHH, CNT-SS-VHH, CNT-VHH) low intense bands are visible in correspondence with VHH, 

meaning that a small amount of the nanobody is possibly still adsorbed onto the CNTs. We tried to 

further wash the conjugates and repeat the electrophoresis, but the outcome was similar. In other 

experiments with VHH previously carried out in our laboratory,
[26]

 we indeed experienced the same 

behavior concerning gel electrophoresis of CNT-VHH conjugates. Accounting for this reason, we 

decided to evaluate the stability of the conjugates in vitro and in vivo. 

3.2.5.3 Surface Plasmon Resonance 

The biological affinity of a coupled antibody towards its antigen can be assessed by surface plasmon 

resonance (SPR). SPR is a physical process that can occur when plane-polarized light hits a metal 

film under total internal reflection conditions. If the metal film is modified by chemical 

immobilization of molecules/biomolecules, its refractivity changes accordingly.
[27]

 By exploiting this 

technique in the field of biosensors, it is possible to measure the specific interaction between an 

antibody and its antigen in real time. The principle is to immobilize the antigen on a sensor chip 

surface while the antibody is allowed to continuously flow over this surface.
[28]

 As the 

antibody/antigen binding occurs, the reflection properties of the chip surface change, and the reflected 

light detected as a function of time originates a sensorgram. Because of the continuous flow, the 

interactions between the analytes are dynamic: there will be an initial association step, when the 

antibody binds to the antigen, followed by a dissociation and regeneration step, where the antibody 

dissociates from the antigen and is recovered in the liquid phase, while the antigens on the surface of 

the chip are again available (Figure 3.9). From the registered sensorgram it is possible to calculate 

the kinetic parameters of the antibody/antigen interaction, i.e. the association and dissociation rate 

constants (ka and kd, respectively).  

Figure 3.9 Sensorgram showing the interaction between an analyte in the flow and the ligand on the chip 

surface. Figure adapted from ref. [29]. 

In collaboration with Dr. Olivier Chaloin in our laboratory, we performed SPR analysis of the CNT-

nanobody conjugates to verify that the VHH affinity for �-catenin was not affected by the covalent 

conjugation with the CNTs. To immobilize the antigen on the chip surface, we exploited a bioaffinity 
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approach based on the streptavidin-biotin interaction. Streptavidin molecules were bound onto the 

pre-activated chip surface, while biotin was already present on the peptide sequence of the �-catenin 

antigen provided by UCB. Biotinylated-catenin was allowed to interact with streptavidin and was thus 

immobilized on the chip. Alternatively, for the immobilization of the antigen on the chip, �-catenin 

without biotin was directly linked to the activated chip surface by amidation. Afterwards, the three 

CNT conjugates and VHH alone were separately injected onto the sensor chip at different 

concentrations (6-100 �g/mL). 

As we can observe in Figure 3.10-a, the VHH nanobody recognizes the antigen in a concentration-

dependent manner. From the sensorgrams registered at different VHH concentrations, we determined 

the equilibrium dissociation constant KD (KD=kd/ka), which is a measure of the binding strength 

(affinity). The calculated value is 4.8 x 10
-10

 M, indicating a great affinity between VHH and the 

antigen. Graphs b), c) and d) of Figure 3.10 show the sensorgrams of the three CNT conjugates, and 

is evident that all conjugates display recognition ability towards the antigen on the chip and their 

response is concentration-dependent. Therefore, the nanobody�s recognition ability was preserved 

after conjugation with the different CNTs. However, the quantification of the dissociation constant 

cannot be pursued for CNT conjugates because of the limitations posed by the CNTs themselves. In 

fact, for the calculation of the KD it is necessary to know the precise molecular weight of the injected 

sample, which cannot be determined for CNTs due to their heterogeneous length distribution. 

Moreover, the antigen binding capacity might be affected by the uneven distribution of the nanobody 

along the CNTs. 

Figure 3.10 Sensorgrams showing the specific binding of: a) therapeutic nanobody (VHH), b) CNT-SS-mal-

VHH, c) CNT-SS-VHH and d) CNT-VHH to the antigen �-catenin at different concentrations. Sensorgrams a) 

and d) were performed with catenin immobilized via amidation on the chip, while b) and c) were registered 

with biotinylated-catenin immobilized via streptavidin.
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3.2.6 CLEAVAGE OF THE DISULFIDE BOND

As explained in the Introduction of this Chapter, the interest of inserting cleavable bonds between the 

drug and the carrier is justified by the possibility to induce a controlled release of the therapeutic 

agent. Among cleavable bonds, disulfide bonds are appealing because they can be thorn by reducing 

conditions, usually present inside the cells. The efficacy of such a stimuli-sensitive delivery system 

depends not only on its tumor-targeting specificity, but also on the efficiency of the cleavable linker 

to release the anticancer drug inside the cells. The main intracellular reducing agent is glutathione 

(GSH), a thiolated tripeptide. Concentrations of GSH are typically 1-2 �M in circulating human blood 

plasma and extracellular environment, but are in the range of 2-8 mM in tumor tissues.
[30,31]

 These 

intracellular concentrations are sufficient to break the disulfide bond, thereby releasing the biological 

molecules from the surface of the delivery vehicle; whereas, the lower glutathione concentration 

outside the cell has a minimal effect.
[32]

 Treating the CNT-nanobody conjugates with GSH, the 

cleavage of the disulfide bond should occur by disulfide exchange reaction.
[30]

 To identify the smart 

release property of our conjugates, CNT-SS-VHH and CNT-SS-mal-VHH (Conc. ~ 1 mg/mL) were 

separately treated with 20 mM GSH for 36 hours (Scheme 3.10). We observed that CNTs 

aggregated, leaving a rather clear solution, which may account for the detachment of the protein. 

Nevertheless, by measuring the UV-Vis absorbance of the supernatant of the CNT dispersion, it was 

not possible to assess the occurrence of the cleavage because glutathione absorbs in the same range of 

VHH (210-280 nm). We then tried to analyze both the supernatants and the precipitated CNTs by gel 

electrophoresis, along with the original conjugates, but this attempt was not successful, as no evident 

proof of the VHH cleavage was discernible (data not shown). Even by treating the CNT conjugates 

with higher GSH concentration (55 mM), we could not observe the band of cleaved VHH by gel 

electrophoresis. We therefore decided to verify the occurrence of the release by investigating the 

intracellular behavior of the three CNT-nanobody conjugates. 

Scheme 3.10 Representation of the mechanism of GSH-induced disulfide cleavage for the two conjugates 

featuring the cleavable S-S bond, CNT-SS-mal-VHH (a) and CNT-SS-VHH (b). 

3.2.7 BIOLOGICAL STUDIES

In order to study the potential of these conjugates as antitumoral therapeutics, we carried out in vitro

cellular uptake and in vivo experiments in tumor-bearing mice in collaboration with the group of Prof. 

K. Kostarelos in Manchester (UK) and the main results are reported below. 
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Cell Viability 

In order to check the efficacy of the CNT-VHH conjugates a cell viability experiment was carried out 

on colorectal cancer HCT116 cells, which overexpress �-catenin. The cells were incubated with CNT 

4, CNT-VHH, CNT-SS-VHH and CNT-SS-mal-VHH for 24 and 48 hours at two different CNT 

concentrations (5 and 50 �g/ml). We can observe that after 24 hours, the cells treated with the CNT 

conjugates show a good level of viability, compared to the positive control DMSO (Figure 3.11). 

After 48 hours, the viability of cells treated with the CNT-VHH conjugates is instead significantly 

reduced compared to the CNTs without nanobody. This suggests that the conjugates have been taken 

up by the cells and that the VHH is exerting its activity toward �-catenin blocking the corresponding 

survival pathway. A reduction in cell viability is only observed after 48 h, which can be explained by 

the fact that the sequestration of �-catenin and consequent cell death is induced only by a slow release 

of VHH from the conjugates. In addition, no significant difference in the cell viability can be revealed 

between the three different conjugates, although we could expect an enhanced efficacy for the 

conjugates with the cleavable linker. It seems also that increasing the concentration of the conjugates 

does not clearly lead to a higher cell mortality. These in vitro experiments were necessary to design 

the following tests using the tumor-bearing mouse model.  

Figure 3.11 Cell viability of colorectal cancer HCT116 cells after (A) 24 h and (B) 48 h incubation with 

MWCNT 4 (named CNT alone in the graphs), CNT-VHH, CNT-SS-VHH and CNT-SS-mal-VHH at 5 and 

50µg/ml. DMSO (10%) was used as a positive control.

In vivo experiments 

The therapeutic effect of the conjugates was then investigated in vivo on tumor-bearing mice 

previously inoculated with the HCT116 carcinoma. For this experiment, CNTs were injected 

intratumorally, to avoid their circulation and accumulation in other parts of the body, and to have a 

proof of principle of their efficacy. After injection, the tumor volume variation was monitored over 

time. We can observe that all the three VHH conjugates afford a reduction of the tumor size compared 

to the CNT precursor (without nanobody) and the non-treated mice (Figure 3.12). Looking at the 

mice survival rate after tumor implantation (Figure 3.12), it results that CNT-SS-VHH showed the 

longest survival compared to the other groups, followed by CNT-VHH and then CNT-SS-mal-VHH. 

Furthermore, in the case of CNT-SS-VHH and CNT-VHH the mice survival is significantly better 

than for untreated mice (naïve) or mice treated with CNT alone (compound 3), which is a very 

encouraging result. Like in vitro experiments, it seems that the presence of the linker is not really 

beneficial to the anticancer activity. 
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Figure 3.12 (Left) Change in tumour growth and (right) mice survival after intratumoral administration of 

MWCNT 4 (CNT alone in the graphs) and CNT-VHH conjugates in HCT116 xenograft (n= 5-8 mice; arrows 

indicate the days of injection).

We then performed a western blot, which is an analytical technique used to detect a specific protein in 

a sample of tissue homogenate. The proteins are separated by gel electrophoresis, transferred to a 

nitrocellulose membrane and then stained with a specific antibody. Our goal in doing this was to see 

whether there was a reduction of �-catenin in the tumors 48 hours after their treatment with the CNT 

conjugates. In the image of the gel (Figure 3.13), we can observe that the intensity of the band 

corresponding to �-catenin is decreased in the case of CNT-SS-VHH and CNT-SS-mal-VHH, while it 

does not vary for CNT-VHH and CNT alone. This proves that the constructs featuring the cleavable 

linker are more efficient in delivering the VHH nanobody against �-catenin.  

Figure 3.13 Western blot of HCT116 tumors 48 hours after treatment. GAPDH was used as internal reference 

gene (MWCNTs 4 are named �CNT� in the figure). 

The histology of the sectioned tumors evidenced that CNT alone do not trigger any toxicity in the 

tumor tissues, whereas extended necrosis in the areas around the nanotubes is revealed in the case of 

tumors treated with the CNT-VHH constructs (Figure 3.14). These results are in good correlation 

with the cell viability and western blot analyses.   

Figure 3.14 Haematoxylin and eosin tissue histology (MWCNTs 4 are named �CNT� in the figure). 
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The performed biological investigations suggest that the synthesized conjugates were effective in 

delivering VHH into tumor cells, and that toxic effects are only provoked by the presence of VHH 

and not by the nanotubes themselves. Among the three conjugates, CNT-SS-VHH seems to have the 

highest therapeutic effect, according to histology and mice survival. From the in vitro test and the 

evaluation of the tumor size and mice survival, the presence of the cleavable linker on the CNT 

conjugate does not seem to play a determinant role. However, by Western blot, CNT-SS-VHH and 

CNT-SS-mal-VHH appear to be the conjugates that induced the higher reduction of �-catenin in the 

tumor. 

3.3 CONCLUSIONS

In this Chapter we have described the preparation of three novel CNT conjugates functionalized with 

VHH, a therapeutic nanobody. Two of these conjugates were designed to feature a disulfide cleavable 

bond, in order to provide the conjugate with smart-release properties. For the synthesis of the first 

conjugate (CNT-SS-mal-VHH), we have derivatized TEG-amine functionalized CNTs with a 

previously synthesized disulfide linker, and further bound the VHH through a maleimide linker. The 

second conjugate (CNT-SS-VHH) has been prepared by derivatizing TEG-amine functionalized 

CNTs with PEG4-SPDP, a linker featuring a terminal pyridylthio group. In this case, the VHH was 

linked to the conjugate by disulfide exchange with the pyridylthio group, and was therefore directly 

attached to the cleavage site (the disulfide bond), without any spacing moiety, such as the maleimide. 

Finally, for comparison, we synthesized a CNT-VHH conjugate devoid of cleavable linker. All 

compounds were characterized by TGA to assess the degree of loading, by TEM and gel 

electrophoresis to verify their morphology and composition. The possibility to induce the cleavage of 

the disulfide bond and thus VHH release was investigated by treating CNT-SS-mal-VHH and CNT-

SS-VHH with GSH, but we could not draw any conclusion due to experimental limitations. For all the 

three constructs, surface plasmon resonance analysis proved that the nanobody affinity toward �-

catenin was still preserved after conjugation to the CNTs. The efficacy of conjugates was then 

evaluated through cell viability tests and in vivo experiments on tumor-bearing mice. The three 

conjugates were able to trigger toxic effect on a carcinoma cell line overexpressing �-catenin after 48 

hours. They were moreover effective in reducing the tumor size and prolonging survival of tumor 

mice, suggesting that the VHH on the CNTs is still able to exert its therapeutic effects, and that the 

CNTs alone do not display evident toxicity. The in vivo experiments did not provide a clear proof of 

the better efficacy of the conjugates presenting the disulfide linker. However, the obtained results 

showed the efficacy of our CNT-VHH constructs against tumors, both in vivo and in vivo. These 

results are overall encouraging and suggest that CNT-VHH conjugates could represent a promising 

tool for the delivery of therapeutic nanobodies. 
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3.4 EXPERIMENTAL PART

3.4.1 COMPOUNDS SYNTHESIS AND CHARACTERIZATION

Materials and Methods 

The chemicals and solvents were purchased from commercial suppliers and used without purification. 

MWCNTs were purchased from Nanostructured & Amorphous Materials Inc. (Stock # 1240 XH), 

and they were produced by catalytic carbon vapor deposition (CCVD). VHH was provided by UCB 

(UK). PEG4-SPDP linker 14 was purchased by Thermo Scientific Pierce. The solvents used for 

synthesis were analytical grade. When anhydrous conditions were required, high quality commercial 

dry solvents were used. Water was purified using a Millipore filter system MilliQ®. When stated, 

suspensions were sonicated in a water bath (20 W, 40 kHz). The filtration and dialysis membranes 

were purchased from Millipore and Spectrum Laboratories, Inc., respectively. If not differently 

specified, dialysis of CNT compounds was carried out employing membrane with MWCO 12000-

14000 Da. Thin layer chromatography (TLC) was conducted on pre-coated aluminum plates with 0.25 

mm Macherey-Nagel silica gel with fluorescent indicator UV254. Chromatographic purifications 

were carried out with silica gel (Merck Kieselgel 60, 40-60 �m, 230-400 mesh ASTM). 
1
H-NMR and 

13
C-NMR spectra were recorded in deuterated solvents using Bruker spectrometers (Avance III - 400 

MHz and Avance I - 500 MHz). Chemical shifts are reported in ppm using the residual signal of 

deuterated solvent as reference. The resonance multiplicity is described as s (singlet), t (triplet), qt 

(quintuplet), m (multiplet), bs (broad singlet), and bt (broad triplet). Coupling constants (J) are given 

in Hz. The UV�Vis analysis were performed on a Varian Cary 5000 spectrophotometer and the 

Kaiser test was performed according to reported procedures 
[21,33]

. FT-IR spectra were measured on a 

Perkin Elmer Spectrum One ATR-FT-IR spectrometer. MS experiments were performed on a Bruker 

Daltonics microTOF spectrometer (Bruker Daltonik GmgH, Bremen, Germany) equipped with an 

orthogonal electrospray (ESI) interface. Calibration was performed using Tunning mix (Agilent 

Technologies). Sample solutions were introduced into the spectrometer source with a syringe pump 

(Harvard type 55 1111: Harvard Apparatus Inc., South Natick, MA, USA) with a flow rate of 5 

�L/min. TGA was performed on a TGA1 (Mettler Toledo) apparatus from 100 °C to 900 °C with a 

ramp of 10 °C min
-1

 under N2 using a flow rate of 50 mL·min
-1

 and platinum pans. For TGA of the 

CNT-nanobody conjugates, an aliquot of the conjugate in PBS was previously dialyzed against 

deionized water to remove the buffer salts and lyophilized. TEM analysis was performed on a Hitachi 

H7500 microscope (Tokyo, Japan) with an accelerating voltage of 80 kV, equipped with a AMT 

Hamamatsu camera (Tokyo, Japan). oxMWCNT were dispersed in MeOH at a concentration of ~50 

µg·mL
-1

 and the suspension was sonicated for 15 min. Ten microliters of the suspension were drop-

casted onto a carbon-coated copper grids (Formvar/Carbon 300 Mesh, Cu from Delta Microscopies) 

and left for evaporation under ambient conditions. In the case of nanobody-CNT samples, 10 

microliters of the final PBS suspension were drop-cast on the TEM grid at a concentration of ~50 

µg·mL
-1

; after drying, the grid was washed 3 times with deionized water to remove the buffer salts. 

Surface Plasmon Resonance (SPR) 

The BIACORE 3000 system, sensor chip CM5, surfactant P20, amine coupling kit containing N-

hydroxysuccinimide and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, were from BIACORE 
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(Upsala, Sweden). All biosensor assays were performed with HEPES-buffered saline (HBS-P) as 

running buffer (10 mM HEPES, 150 mM sodium acetate, 3 mM magnesium acetate, 0.005% 

surfactant P20, pH 7.4). The different compounds were dissolved in the running buffer. The surface of 

a sensor chip CM5 was activated by EDC/NHS. Samples CNT-SS-mal-VHH and CNT-SS-VHH were 

passed on a sensor chip functionalized with biotynilated-catenin by streptavidin/biotin interaction. 

Immobilization of streptavidin (Sigma-Aldrich) was performed by injecting 40 �L of streptavidin 

(100 �g/ml in formate buffer, pH 4.3), which gave a signal of approximately 2000 RU, followed by 

20 �L of ethanolamine hydrochloride (pH 8.5), to saturate the free activated sites of the matrix. 

Biotinylated β-catenin (10 �M in formate buffer, pH 4.3) was allowed to interact with streptavidin 

until a response of 2000 RU was obtained. Analysis of pure VHH and CNT-VHH were carried out on 

a chip modified with β-catenin, without biotin, by amidation. Immobilization of β-catenin via the free 

amino groups was performed by injecting onto the activated surface of a sensorchip CM5, 35 �L of β-

catenin (50 �g/ml in acetate buffer buffer, pH 4.9) which gave a signal of 2000 RU, followed by 20 

�L of ethanolamine hydrochloride (pH 8.5). All the binding experiments were carried out at 25 °C 

with a constant flow rate of 20 �l/min. Different concentrations of the samples were injected for 3min, 

followed by a dissociation phase of 3 min. The sensor chip surface was regenerated after each 

experiment by injection of 10 �L of 10 mM HCl. The kinetic parameters were calculated using the 

BIAeval 4.1 software. Analysis was performed using the simple Langmuir binding model or separate 

ka/kd (kon/koff). The specific binding profiles were obtained after subtracting the response signal from 

the channel control (activated/deactivated) and from blank buffer injection. The fitting of each model 

was evaluated by the reduced chi square and randomness of residue distribution compared to the 

theoretical model. 

Synthesis of organic precursors 

Synthesis of 2-[2-(2-aminoethoxy)-ethoxy]ethyl}-carbamic acid tert-butyl ester 8

A solution of Boc2O (2.21g , 10.1 mmol) in 1,4-dioxane (45 mL) was dropped on a solution of 2,2�-

(ethylenedioxy)bis(ethylamine) (15 mL, 101 mmol) in 1,4-dioxane (75 mL) over 2 h, and the 

resulting mixture was stirred for 24 h. The solvent was then evaporated, the residue was diluted with 

DCM (40 mL), washed with water (60 mL x 3), dried over MgSO4 and the resulting oil was purified 

by FC (eluant DCM/MeOH 95:5 and then DCM/MeOH/Et3N 87:10:3), affording the mono-protected 

product as a yellow oil (1.66 g, 65% yield). 

1
H NMR (CDCl3, 300 MHz) � (ppm): 5.21 (1H, br s), 3.59-2.84 (12H, m), 2.03 (2H, s), 1.43 (9H, s). 

All structural assignments were in agreement with previously reported data.
[34]
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Synthesis of N-succinimidyl 3-meleimidopropionate 9

Maleic anhydride (3.36 g, 34 mmol) and �-alanine (3.0 g, 34 mmol) were dissolved in dry DMF (50 

mL) and the mixture was stirred for 1h under argon, until complete solubilization of �-alanine. N-

hydroxysuccinimide (4.92 g, 34 mmol) and DCC (14 g, 68 mmol) were then added to the mixture, at 

0 °C. After 10 min the ice bath was removed and the yellowish suspension was stirred for 4h at r.t., 

under argon. The mixture was then filtered with a Buchner to remove the precipitated 

dicyclohexylurea and the solution was diluted with 4-5 volumes of H2O, and extracted with DCM. 

The organic phases were washed with water, dried over MgSO4 and concentrated. The resulting solid 

was dissolved in few DCM and further precipitated from n-hexane. The organic layer was decanted 

away, and the solid was recrystallized twice from MeOH affording the product as white crystals (3.56 

g, 40% yield). 

1
H NMR (CDCl3, 400 MHz) � (ppm): 6.73 (2H, s), 3.93 (2H, t, J = 7.0 Hz), 3.01 (2H, t, J = 7.0 Hz), 

2.82 (4H, s). All structural assignments were in agreement with previously reported data.
[22]

  

Synthesis of N-(t-butyloxycarbonyl)cystamin 10

A solution of Boc2O (1.97 g, 9 mmol) in MeOH (20 mL) was added dropwise to a solution of 

cystamine dihydrochloride (2.03 g, 1 eq.) and Et3N (3.73 mL, 3 eq.) in MeOH (25 mL) and the 

mixture was then stirred for 1 h at r.t. The solvent was removed under reduced pressure and the 

resulting oil was treated with 1 M aq. NaHPO4 (20 mL) and extracted with Et2O (2 x 15 mL) to 

remove the di-protected by-product. The aqueous phase was treated with 1 M aq. NaOH until pH~9 

and extracted twice with EtOAc (20 mL). The combined organic phases were washed with H2O, dried 

over MgSO4 and concentrated, yielding compound 10 as colorless oil (1.11 g, 49% yield).  

1
H NMR (CDCl3, 400 MHz) � (ppm): 4.97 (1H, br s), 3.44-3.42 (2H, m), 3.00 (2H, t, J = 6.1 Hz), 

2.79-2.74 (4H, m), 1.43 (9H, s). All structural assignments were in agreement with the data available 

from the literature.
[23]

Synthesis of compound 11

N-succinimidyl-3-maleimidopropionate 9 (0.95 g, 3.56 mmol) and Boc-cystamine 10 (0.92 g, 3.60 

mmol) were dissolved in DCM (25 mL). Et3N (0.74 mL, 5.34 mmol) was then added and the solution 

was stirred for 3.30 h at r.t. The reaction crude was washed with 1M HCl (15 mL), H2O (2 x 20 mL), 
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and the organic layers were then separated, dried over MgSO4 and concentrated under reduced 

pressure, affording quantitatively 11 as white solid (1.41 g, 98% yield). 

1
H NMR (CDCl3, 500 MHz) � (ppm): 6.70 (2H, s), 6.60 (1H, br s), 4.95 (1H, br s), 3.85 (2h, t, J = 7.0 

Hz), 3.55 (2H, q, J = 5.9 Hz), 3.43 (2H, q, J = 6.0 Hz), 2.82 (2H, t, J = 5.8 Hz), 2.76 (2H, t, J = 6.9 

Hz), 2.57 (2H, t, J = 7.0 Hz), 1.44 (9H, s). 
13

C NMR (CDCl3, 125 MHz) � (ppm): 170.5, 170.5, 155.9, 

155.8, 134.2, 134.2, 79.8, 38.4, 37.9, 37.5, 34.7, 34.3, 34.3, 28.3. MS (ESI, m/z): 426.1 [M+Na]
+
, 

829.2 [2M+Na]
+
. HR-MS (ESI): m/z = 426.1157 [M+Na]

+
 (calcd for C16H25N3O5S2Na m/z = 

426.1128). FT-IR (neat, � /cm
-1

): 3312, 1696, 1638, 1527, 1408, 1274, 1173, 948, 839, 698. 

Synthesis of compound 12

Deprotection of compound 11 (1.41 g, 3.49 mmol) was achieved by treatment with a solution of 

TFA/DCM 2:8 (8 mL) for 7 h at r.t. The solvents were evaporated and the residual orange oil was 

dissolved in acidic water (20 mL), and the organic impurities were removed by extraction with 

cyclohexane (15 mL). The water phase was treated with NH3 and NaOH until pH ~8-9 and the 

organic compound was successively extracted with DCM (3 x 20 mL). The organic layers were dried 

over MgSO4 and concentrated to quantitatively  afford 12 as yellow oil, which was immediately used 

for the following step, due to its poor stability. NMR characterization was in agreement with the 

expected molecular structure. 
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1
H NMR (CD3OD, 500 MHz) � (ppm): 6.74 (2H, s), 3.70 (2h, t, J = 6.8 Hz), 3.38 (2H, t, J = 6.7 Hz), 

3.21 (2H, t, J = 6.8 Hz), 2.90 (2H, t, J = 6.8 Hz), 2.73 (2H, t, J = 6.6 Hz), 2.39 (2H, t, J = 6.8 Hz). 
13

C 

NMR (CD3OD, 125 MHz) � (ppm): 173.4, 172.3, 135.5, 39.5, 38.2, 35.8, 35.6, 35.5, 27.8. 

Synthesis of compound 13

Succinic anhydride (0.124 g, 1.23 mmol) and a catalytic amount of DMAP were added to a solution 

of 12 (0.68 g, 1.23 mmol) in DMF/DCM (1:6 v/v, 35 mL), and the mixture was stirred for 24 h at r.t. 

and 7 h at 40 °C. After 6, 12 and 24 hours additional aliquots of succinic anhydride (0.10 g) and 

DMAP were added. The crude mixture was concentrated by rotary evaporation and purified by FC 

(eluant DCM/MeOH in gradient from 95:5 to 80:20), affording 13 as pale yellow oil (0.37 mg, 73% 

yield). 

1
H NMR (CD3OD, 500 MHz) � (ppm): 6.81 (2H, s), 3.77 (2H, t, J = 6.8 Hz), 3.47 (2H, t, J = 6.8 Hz), 

3.44 (2h, t, J = 6.6 Hz), 2.80 (2H, t, J = 6.8 Hz), 2.78 (2H, t, J = 6.6 Hz), 2.60-2.57 (2H, m), 2.49-2.46 

(4H, m). 
13

C NMR (CD3OD, 125 MHz) � (ppm): 176.3, 176.2, 174.7, 173.3, 172.2, 135.5, 39.8, 39.5, 

38.4, 35.9, 35.5, 31.5, 30.3, 29.9. MS (ESI, m/z): 426.1 [M+Na]
+
. HR-MS (ESI): m/z = 426.0782 

[M+Na]
+
 (calcd for C15H21N3O6S2Na m/z = 426.0764). FT-IR (neat, � /cm

-1
): 2926, 1683, 1638, 1545, 

1408, 1193, 1108, 915, 796, 693. 
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Synthesis of CNT conjugates 

Oxidation of MWCNTs 

500 mg of pristine MWCNTs were treated with a solution of H2SO4/HNO3 (75 mL, 3:1 v/v, 98% and 

65% respectively) at 0 °C, and the mixture was sonicated for 24 h in a water bath (20 W, 40 kHz). 

The mixture was then carefully diluted with distilled water (300 mL) and filtered through a PTFE 

membrane (0.45 µm). The black material on the filter membrane was re-suspended in water by 

sonicating for 15 min and filtered again, and this sequence was repeated until neutrality of the 

aqueous solution. The CNTs were then further purified by dialysis against deionized water for 48 h 

and finally lyophilized. Shortened oxidized MWCNTs (oxMWCNTs 1) were obtained with a yield of 

98% w/w. The average length distribution of oxMWCNTs was assessed to be 381 nm by TEM. The 

amount of carboxylic acids introduced corresponds to 1.4 mmol/g and was calculated on the base of 

the weight loss highlighted by TGA graphs (see Figure 3.3). 

Activation of oxMWCNTs 

oxMWCNTs 1 (160 mg) were dispersed in oxalyl chloride (80 mL) by shortly sonicating, and the 

mixture was then refluxed for 24 h stirring under argon. The solvent was removed under reduced 

pressure and the resulting activated nanotubes (MWCNT-COCl) were used straightaway for the 

following step. 
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Synthesis of f-MWCNTs 3 

A dispersion of ox-MWCNTs 1 (20 mg) in oxalyl chloride (10 mL) was shortly sonicated (5 min) and 

then refluxed for 24 h under argon, stirring vigorously. Afterwards the solvent was removed under 

reduced pressure and the resulting activated MWCNTs 2 were immediately used for the amidation 

step. CNTs 2 were dispersed in a solution of Boc-mono-protected TEG-diamine 8 (240 mg) in dry 

THF (10 mL) and refluxed for 48 h, under argon. The crude mixture was filtered through a PTFE 

membrane (0.1 µm), and the CNTs recovered on the membrane were washed by dispersing them in 

DMF, sonicating for 10 min and filtrating. This washing sequence was further repeated with MeOH 

(x 2) and with acetone (x 2). The CNTs powder was finally dried under vacuum to give f-MWCNTs 

3. The degree of functionalization estimated from the weight loss comparison with oxMWCNTs 1 is 

2.7 %, corresponding to a loading of 100 �mol/g. 

Synthesis of f-MWCNTs 4

Amidated CNTs 3 (20 mg) were sonicated for 10 min in a 2 M solution of HCl in 1,4-dioxane (20 

mL), and the mixture was stirred overnight at r.t. The reaction mixture was then filtered (0.1 µm) and 

the CNTs were washed with DMF, MeOH (x 2) and acetone (x 2). Finally the CNTs were dialyzed 

against deionized water for 2 days, and lyophilized affording compound 4. From the Kaiser test, the 

amount of free amine results to be 182 µmol/g. 

Synthesis of f-MWCNTs 5

Aminated CNTs 4 (15 mg, 2.7 �mol of amine functions calculated by Kaiser test) were dispersed in 

dry DMF (8 mL) by sonicating for 10 min under argon. DIEA (47.7 �L, 100 eq.) was added and the 

mixture was further sonicated for 5 min. In parallel, disulfide linker 13 (55 mg, 50 eq.) was dissolved 

in a solution of HOBt (37 mg, 100 eq.) and EDC (43 mg, 100 eq.) in dry DMF (7 mL), and stirred for 

1 h under argon. This solution was then added to the CNTs dispersion, briefly sonicated and left to 

react for 56 h at r.t. The reaction mixture was filtered over a PTFE membrane (0.1 �m) and the CNTs 

were washed with DMF (x 2), MeOH (x 2) and DCM (x 1), dialyzed against deionized water and 

finally lyophilized. The free amine loading calculated by Kaiser test is 12 �mol/g, which corresponds 
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to a degree of functionalization of 170 �mol/g. The estimation of the degree of functionalization 

obtained from TG analysis corresponds to 120 �mol/g and is in good agreement with the Kaiser test 

value. 

Synthesis of CNT-SS-mal-VHH 
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Maleimide-functionalized CNTs 5 (7 mg) were dispersed in a VHH solution in 2 mM EDTA/PBS 

(150 �g/mL, 14 mL, pH 6.4), sonicated in cold water for 1 min, and shaken for 6 h at r.t. Conjugation 

of the nanobody 

 was checked at time points 0, 5 and 6 h by measuring the UV-Vis absorbance of the supernatant of 

the reaction mixture. After 6 h incubation, the CNT-VHH conjugate was recovered by centrifugation 

(4500 rpm, 4 °C, 5 min), supernatant was removed and the CNTs were re-dispersed in PBS buffer pH 

7.4 by sonicating 30 sec in cold water. Centrifugation and re-dispersion in fresh PBS were repeated 3 

times, and the final dispersion was dialyzed (MWCO 300000 Da) against PBS buffer pH 7.4 for 48 h 

at 4 °C. CNT-SS-mal-VHH were characterized by TGA, TEM and GE and stored at 4 °C in a PBS 

solution (5.5 mg/mL). The loading of VHH estimated from the TG analysis amounts to 9.9 �mol/g. 

Synthesis of f-MWCNTs 6

PEG4-SPDP 14 (15 mg) and DIEA (50 �L) were added to a dispersion of CNTs 4 (15 mg) in dry 

DMF (15 mL) under argon. The mixture was sonicated for 15 min and then stirred for 48 h at r.t. The 

functionalized CNTs were recovered by filtration (0.1 �m), washed with DMF (x 2), MeOH (x 2) and 

DCM (x 1), and further purified by dialysis against deionized water. The free amine loading 

calculated by Kaiser test is 61 �mol/g, which corresponds to a degree of functionalization of 121 

�mol/g. The estimation of the degree of functionalization obtained from TG analysis corresponds to 

90 �mol/g and is in good agreement with the Kaiser test value. 

Synthesis of CNT-SS-VHH 

Compound 6 (7 mg) was dispersed in a VHH solution in 2 mM EDTA/PBS (150 �g/mL, 14 mL, pH 

6.4), sonicated in cold water for 1 min, and shaken for 6h at r.t. Conjugation of the nanobody was 

checked at time point 0, 5 and 6 h by measuring the UV-Vis absorbance of the supernatant of the 
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reaction mixture. After 6 h incubation the CNT-VHH conjugate was recovered by centrifugation 

(4500 rpm, 4 °C, 5 min), supernatant was removed and the CNTs were re-dispersed in PBS buffer pH 

7.4 by sonicating 30 sec in cold water. Centrifugation and re-dispersion in fresh PBS were repeated 3 

times, and the final dispersion was dialyzed (MWCO 300000 Da) against PBS buffer pH 7.4 for 48 h 

at 4 °C. CNT-SS-VHH were characterized by TGA, TEM and GE and stored at 4 °C in PBS solution 

(4.2 mg/mL). The loading of VHH estimated from the TG analysis amounts to 5.3 �mol/g. 

Synthesis of f-MWCNTs 7 

Amidated CNTs 4 (13 mg) and N-succinimidyl-3-meleimidopropionate 9 (78 mg) were dispersed in 

dry DMF by sonicating for 15 min under argon. DIEA (0.7 mL) was then added by syringe and the 

mixture was left to react for 48 h at r.t. After filtration over a PTFE membrane (0.1 �m), the 

recovered CNTs were washed with DMF (x 2), MeOH (x 2) and acetone (x 1), and finally dried in 

vacuo. The free amine loading of meleimido-functionalized CNTs calculated by Kaiser test is 65 

�mol/g, which corresponds to a degree of functionalization of 95 �mol/g. The estimation of the 

degree of functionalization obtained from TG analysis corresponds to 92 �mol/g and is in good 

agreement with the Kaiser test value. 

Synthesis of CNT-VHH 

Compound 7 (7 mg) was dispersed in a VHH solution in 2 mM EDTA/PBS (150 �g/mL, 14 mL, pH 

6.4), sonicated in cold water for 1 min, and shaken for 6h at r.t. Conjugation of the nanobody was 

checked at time point 0, 5 and 6 h by measuring the UV-Vis absorbance of the supernatant of the 

reaction mixture. After 6 h incubation the CNT-VHH conjugate was recovered by centrifugation 

(4500 rpm, 4 °C, 5 min), supernatant was removed and the CNTs were re-dispersed in PBS buffer pH 

7.4 by sonicating 30 sec in cold water. Centrifugation and re-dispersion in fresh PBS were repeated 3 

times, and the final dispersion was dialyzed (MWCO 300000 Da) against PBS buffer pH 7.4 for 48 h 

at 4 °C. CNT-VHH were characterized by TGA, TEM and GE and stored at 4 °C in PBS solution (3.7 

mg/mL). The loading of VHH estimated from the TG analysis amounts to 8.1 �mol/g. 

3.4.2 BIOLOGICAL EVALUATIONS

Gel Electrophoresis 

Gel electrophoresis were performed on Mini-PROTEAN® TGX
TM

 4-15% Tris-glycine gels 

purchased from Bio-Rad Laboratories (Hercules, California). Tris-glycine buffer was used to fill the 
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tank. Prior to loading, the samples were added with Laemmli buffer for non-reducing conditions or 

reducing conditions (Laemmli buffer supplemented with 5% �-mercaptoehtanol). The first well was 

always loaded with a protein ladder. Loaded amounts of samples are ca. 7 �g for VHH (in left-side 

gel, Figure 3.8), ca. 25 �g for CNT-SS-mal-VHH and CNT-SS-VHH; ca. 20 �g for CNT-VHH and 

ca. 3 �g for VHH (in right-side panel). The amounts of VHH loaded in the gel (in the two cases) 

correspond to the amount of VHH on the CNT conjugates based on TGA. The gel was run at a 

voltage of 150 V for ca. 60 min and then stained overnight with Coomassie blue. Finally, the staining 

solution was removed and the gel extensively washed with distilled water to allow the visualization of 

the proteins bands. 

Cell Cultures 

Human colorectal carcinoma HCT116 were maintained in MCoys 5A media and supplemented with 

10% fetal bovine serum (FBS), 50 U/ml penicillin, 50 µg/ml streptomycin, 1% L-glutamine at 37°C 

in 5% CO2. Cells were passaged when they reached 80% confluence in order to maintain exponential 

growth. HCT116 cells used for tumor inoculation were passaged two times in antibiotic-free media to 

ensure the line was free of contaminants prior to implantation. 

Cellular Proliferation Studies 

HCT 116 Cells (7500 cells/well) were subcultured into 96-well plates. Twenty-four hours later, the 

cells were treated with 5 and 50 µg/ml of CNT alone, CNT-VHH, CNT-SS-VHH and CNT-SS-mal-

VHH conjugates. DMSO 10% was used as a positive control. After 24 and 48 h incubation at 37°C 

and 5% CO2, the modified lactate dehydrogenase (LDH) assay was performed. In brief, the Promega 

Cytotox 96® Non-radioactive cytotoxicity assay (Promega UK Ltd) was used according to the 

manufacturer instructions. The assay was modified to avoid interference with CNT in which the LDH 

of healthy cells that survived treatment was assessed by artificially lysing the cells instead of looking 

at the LDH released due to cytotoxicity. Cells were lyzed with 10 µl of lysis buffer (9% Triton X100 

in water) and 100 µl of serum free medium and left for 45-60 min at 37 °C. After centrifugation 

(13000 rpm, 5 min), 50 µL of cell lysate were mixed with 50 µl of the substrate mix in a microtiter 

plate and incubated for 15 min at room temperature. Absorbance was read at 490 nm using an 

FLUOstar Omega plate reader. The amount of LDH released was an indication of the number of cells 

that survived treatment. The percentage cell survival was expressed as:  
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Tumor Xenograft Implantation and Animal Survival Studies  

Five to six-weeks old male CD1 nude mice (Charles River Laboratories) were caged in individually 

vented cages in groups of four to five with free access to food and water. The mice were inoculated 

subcutaneously with 5x106 HCT116 human colorectal carcinoma cells in 50 �l on the left leg. 

Intratumoral injections were performed when the tumor volume reached 200 mm
3
. Anesthetized mice 

were injected with 50 µl of the dispersion (the CNT alone or the complex in 5% dextrose). Injections 
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were carried out on day 10 and 16 for all groups. Mice were sacrificed by cervical dislocation when 

tumor area reached 800-1000 mm
3
. 

Western Analysis of �-Catenin  

Tumors were homogenized using lysis buffer (50 mM Tris-Cl, pH 8.0, 150 mM NaCl, 0.1% SDS, 1% 

Nonidet P-40 and 0.5% sodium deoxycholate). The tumor homogenates were left on ice for 30 min 

and mixed by vortex in between. Samples were then cleared by centrifugation at 13000 rpm for 30 

min at 4 °C and the supernatants containing proteins were collected. Protein concentrations were 

examined using BCA assay kits (Pierce BCA protein assay kit, Thermal Scientific) and 20 µg of 

protein from each sample was resolved in 10% SDS-PAGE gels and transferred to Hybond ECL 

nitrocellulose membranes (GE Healthcare). After blocking in 3% BSA at room temperature for 1 h, 

the blots were incubated with rabbit monoclonal �-catenin antibody (Cell Signalling Technology) at 

1:1000 overnight as per the manufacturer instructions. The blots were then incubated with the 

secondary antibody, horseradish peroxidase linked anti-mouse antibody (Cell Signalling Technology) 

at 1:1000 dilution for 1 h at room temperature. The specific bands were detected using 

chemiluminescent kits (Immun-Star Chemiluminescent Kit, BioRad), imaged and quantitatively 

analysed using ChemiDoc MP imaging system and Image Lab software (BioRad). GAPDH was used 

as an internal reference (house-keeping) gene. 

Haematoxylin/Eosin Tissue Histology 

For histological analysis, tumors were fixed in 10% buffered formalin and processed for routine 

histology with haematoxylin and eosin stain by Human Biomaterials Resource Centre (College of 

Medical and Dental Sciences, University of Birmingham). Microscopic observation of tissues was 

carried out with Nikon Microphot-FXA microscope coupled with Infinity 2 digital camera. 
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Abstract – The Marie Curie ITN program RADDEL in which I have been involved, deals with 
the targeted delivery of radioactivity. The general purpose is the development of sealed carbon 
nano-capsules filled with radioactive material in their interior, and externally decorated with 
targeting biomolecules in order to specifically address radioactivity to carcinogenic organs. To 
this purpose carbon nanotubes (CNTs) are highly suitable because they can host small 
molecules (e.g. SmCl3, NaI) inside their hollow interior, and be externally functionalized with 
biologically active molecules in order to impart specific targeting properties and enhance their 
biocompatibility. 
In this chapter we will describe the fundamentals of radiotherapy and provide an overview on 
the use of nanoparticles, and in particular CNTs, for the delivery of radioisotopes for cancer 
treatment and diagnosis. We will then explain the overall goals of the researches developed
within the RADDEL program and the choice of the strategy. Because of the strong 
interconnection between the tasks of the numerous partners participating to the program, we 
will also outline the articulation of the project in order to provide an understanding of our work 
within the network. 

CHAPTER 4 

4 CNTS

CNTS FOR DELIVERY OF RADIOACTIVITY - 

INTRODUCTION TO THE RADDEL PROJECT
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4.1 GENERAL INTRODUCTION

The human kind has always been prompted toward the research of efficient solutions to health-

related complicacies, and among all diseases, the treatment of cancer has been always considered 

with great apprehension. Cancer is one of the most deadly diseases, and current treatment modalities 

suffer from many deficits such as the inability to completely destroy all cancerous cells as well as 

from severe toxic side effects. The most common treatment methodologies usually consist in surgical 

tumor ablation, chemotherapy or radiotherapy, or in a combination of multiple treatments. Besides, 

there still exists a great demand for imaging techniques that allow the detection and visualization of 

tumors at the different stages, especially at the early-stage. The exploitation of high-energy radiations 

is indeed valuable for both scopes, and many investigations are nowadays focusing on its 

development for cancer therapy and diagnosis. 

4.1.1 FUNDAMENTALS OF RADIATION THERAPY

Radiation therapy employs high-dose ionizing radiation to kill cancer cells and to prevent 

progression and recurrence of the tumor, and it is very effective especially for radiation-sensitive 

tumors.
[1]

 Radiotherapy can be applied to the patient in three ways: externally, internally or by 

systemic radiation. External radiation therapy consists in directing high-energy x-rays or electron or 

proton beams to a tumor from outside the body. This approach is very practical but has its main 

disadvantages in the destruction of healthy tissues along the beam path, and in the need of high 

radiation doses to achieve deep penetration and treat large volume tumors. By internal radiation 

therapy (or brachytherapy), a sealed radiation source is positioned within or near the tumor by means 

of an implant so that the radiation only affects the surrounding tissues. Systemic radiation therapy

instead, delivers the radiation energy by oral or intravenous administration of a formulation 

consisting of a radioisotope and a tumor-targeting carrier (e.g. antibodies, liposomes, nanoparticles). 

This method offers similar advantages of drug delivery systems, such as allowing a site-specific 

delivery and a reduction of the needed doses and the side effects. Furthermore, it consents tracking 

and quantification of the isotope by imaging techniques and tunability of the radioisotope/carrier pair. 

For these reasons, systemic radiotherapy is considered a promising approach for personalized 

oncology. However, to effectively employ this methodology it is essential to carefully select and 

combine the radioisotope (with suitable half-life), the carrier and the tumor biomarker.
[2,3]

4.1.1.1 Radioisotopes 
Almost all elements of the periodic table have at least one radioactive isotope, which can be naturally 

occurring or artificially produced. However, not all radioisotopes are suitable for bioapplications and 

for oncology in particular, as the type of emission and the time of decay are two fundamental 

parameters. Generally, radionuclides that are employed for therapeutic applications are those that 

emit radiation in the form of �, � or Auger particles (Figure 4.1). In addition, �-emitters and positron 

(�
+
) emitters are commonly employed in nuclear medicine for diagnostic purposes. �-emitters for 

instance, release �-ray photons with energy between 130 and 370 keV and allow tumor imaging by 

scintigraphy or single photon emission computed tomography/computed tomography (SPECT/CT).
[4]



CHAPTER 4 

95 

However, because of the long penetration range of �-radiation, these radionuclides can cause severe 

adverse effects on the cells and are therefore usually employed at very low doses. 

�-emitters deliver �-particles, which are positively charged helium nuclei (
4

2He
2+

) with high energies 

(5000-8000 keV) and a range of 50-80 �m. Their penetration depth is thus very short and cell death 

occurs only when �-particles reach the cell nucleus, which makes these particles suitable for the 

treatment of small-volume tumors, micrometastasis or residual tumors. Notable examples of �-

emitters used for therapeutic purposes are actinium-225 (
225

Ac) and bismuth-213 (
213

Bi).
[5]

�-emitters release electrons having a lower energy than �-particles, but because of their much lower 

mass, they have longer penetration ranges and can thus penetrate the tissues deeper. Generally, �-

particles are divided into low-energy particles (0.15 MeV) and high-energy particles (1.7 MeV). The 

first type has shorter ranges (0.4-0.9 mm) and is best suited for small tumors, whereas the second 

type can penetrate up to 5.0 mm and it is thus more indicated for large tumors.
[2] �-emitters are the 

most widely used radioisotopes in cancer therapy, and among the most known there are iodine-131 

(
131

I), yttrium-90 (
90

Y), copper-67 (
67

Cu) and lutetium-177 (
177

Lu).  

Auger emitters release low energy (< 1.6 keV) electrons derived from inner-shell electron 

transitioning. Most of these electrons have a very short range (< 1 �m) and are therefore effective 

when the radioisotope decay occurs inside the nucleus, or very close to it. This requirement has 

somehow limited the exploitation of Auger emitters for radiotherapy, however some of them such as 

indium-111 (
111

In) and iodine-125 (
125

I) have already shown promising effects against cancer.
[6]

Figure 4.1 Schematic representation of tissue penetration range by �-particles (0.1–2.2 �MeV, 1–10 �mm 

range), Auger electron (0.1–2 �keV, < 1 �m) and �-particles (5–8 �MeV, 50–80 �m range) emitters. Adapted 

from ref. [4].

Some of these radionuclides are not pure emitters and they concomitantly release �-radiation during 

the decay. This can be very advantageous to achieve simultaneous diagnosis and therapy. The choice 

of a radioisotope over another is determined by several parameters, such as physico-chemical 

properties, half-life, type of emission and radiation energy. As a general criterion, the half-life of the 

radionuclide should not be shorter than few hours to allow preparation and administration, but not 

longer than 2-3 weeks to avoid systemic side effects. In addition, nuclides that release a high 

abundance of secondary �-radiation are generally not suitable because this heavily contributes to the 
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whole-body dose and can dramatically enhance the overall toxicity of the radioconjugate. Not to 

forget are also the stability of any daughter nuclide formed and the radionuclide route of production 

and availability. The production methods do in fact play an important role in the achievable specific 

activity of the nuclide and in its radiochemical purity. The radioisotope characteristics have then to 

be matched to the cellular distribution of the carrier molecule, namely localization on the surface (�), 

in the cytoplasm (�/�) or in the nucleus (Auger). Overall, the selection of a good candidate for 

radiotherapy has to take into account the specific cancer type, characteristic of the tumor, toxicity and 

safety of the radioisotope, availability and production, and the chemistry involved in the preparation 

of the delivery system.

4.1.2 DELIVERY OF RADIOACTIVITY MEDIATED BY NANOPARTICLES

Among the main obstacles in the delivery of radioisotopes (free or chelated to small molecules), there

are their rapid elimination from the bloodstream and their widespread distribution in healthy organs 

and tissues. One common solution to the rapid elimination has been the administration of large doses 

of the radioactive agent to the patients, but this approach is rather expensive and often results in 

undesired toxic effects. The association of a radioisotope to a suitable carrier can instead enable its 

targeted delivery and avoid the free circulation of the radioisotope in the body and the related 

toxicity. Most of currently used radiopharmaceuticals involve monoclonal antibodies (mAb) and 

chelators labeled with radionuclides.
[5]

 However, the use of antibodies as carriers for radiotherapy has 

shown some limitations, such as inefficient targeting, low accumulation in the tumor site and 

irradiation of normal tissues caused by the long circulation of the antibody. In addition, mAbs have 

only few sites of anchoring for the radioisotope and they can trigger undesired immune responses, or 

undergo protease degradation. The use of nanomaterials for the delivery of radiotherapy showed 

instead good promises to overcome these limitations, besides offering the possibility for 

multimodality and multiple loading. Indeed, nanoparticle (NP) carriers represent an ideal theranostic 

tool with the radioisotope providing both therapeutic and imaging modalities, or combining its 

therapeutic effect with the imaging capability of the NP. Moreover, the intrinsic properties of the NP 

can provide additional therapeutic functionalities to the carrier, such as the ability to induce 

hyperthermia or increase the tumor retention by magnetization. Different examples of 

radiotherapeutic delivery systems based on nanoparticles have already been published, using 

materials such as micelles, SPION, polymers, dendrimers.
[7,8]

 Often, these delivery systems are built 

by conjugating the nanoparticle to a tumor-targeting antibody cross-linked with therapeutic 

radioisotopes or radioisotope chelates. The tumor therapeutic efficacy and diagnostic quality are 

determined by the targeting selectivity of the delivery system and by the characteristics of the 

radioisotope.
[7,9]

 Hence an optimal combination of the two is fundamental to its efficacy and possible 

future exploitation. 

4.1.3 STATE-OF-THE-ART OF CNTS FOR DELIVERY OF RADIO ISOTOPES

In contrast with the numerous and varied reports of CNT-conjugates for drug and gene delivery, only 

few studies exploring CNTs as carriers of radionuclides, either for imaging or therapeutic purposes, 

have been published. One of the first reports of a radiolabeled CNT construct to study in vivo
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biodistribution was developed by our group, who built a CNT radiotracer by attaching 
111

In (�-

emitter) to functionalized CNTs via the chelating agent DTPA (diethylenetriamine pentaacetic 

acid).
[10]

 Soon after, McDevitt and co-workers employed a similar approach to radiolabel a CNT-

antibody (CNT-Ab) conjugate for the targeting and treatment of a lymphoma.
[11]

 Specifically, 

SWCNTs functionalized by 1,3-dipolar cycloaddition were appended with the chelating agent DOTA 

(tetraazacyclododecane tetraacetic acid) and with the monoclonal antibody Rituximab, which targets 

the CD20 epitope on human Burkitt lymphoma cells. Indium-111 was then loaded by chelation with 

DOTA, and the ability of the CNT construct to deliver the radionuclide to the tumor was assessed 

both in vivo and in vitro. In a subsequent report, the group of McDevitt radiolabeled with 
225

Ac (�-

emitter) a similar CNT construct functionalized with an antibody targeting the tumor 

neovasculature.
[12]

 They employed this nanocarrier for targeted radioimmunotherapy in a murine 

xenograft model and achieved the reduction of the tumor volume and enhanced survival of the tumor 

mice compared to the control (Figure 4.2). The chelation of a different radionuclide to the construct, 

namely 
89

Zr (positron emitters), allowed to perform PET radioimaging of the tumor vessels and study 

the pharmacokinetic profile of the CNT radioimmuno-carrier in the mice, proving its specific 

accumulation into the tumor and rapid blood clearance.
[12] 

    

Figure 4.2 (Left) Schematic representation of the radiotherapeutic CNT construct reported by McDevitt et 

al. in ref. [12], featuring a targeting antibody and 225Ac attached to the CNT through the DOTA chelator. 

(Right) Images of xenograft mice 10 days after treatment with the CNT construct: a) a mouse treated with a 

high radioactive dose, b) mouse treated with low radioactive dose. Figure adapted from ref. [12]. 

Other investigations on CNT biodistribution and tumor targeting abilities by radioimaging have been 

carried out by decorating the nanotubes with other radionuclides such as 
86

Y, 
125

I, 
14

C, 
64

Cu or 
99m

Tc,
[13–17]

 generally by coordination with a chelating agent covalently attached to the CNTs. An 

interesting example was reported by Jain and co-workers, who designed a sophisticated multimodal 

labeled CNT platform for the targeted delivery of a theranostic prodrug.
[18]

 Oxidized MWCNTs were 

concomitantly decorated with a fluorochrome (Alexa-Fluor), a �-emitting radionuclide (
99m

Tc), a 

tumor-targeting module (folic acid) and the anticancer drug methotrexate (MTX). The latter was 

tethered to the nanotubes via a cleavable ester bond to afford a controlled intracellular release, while 

the fluorescent and radiolabeling of the construct was aimed at tracking its biodistribution and 

intracellular trafficking through combined optical and radioimaging. The conjugate showed a high 

traceability by both methods, and displayed elevate tumor binding affinity and augmented therapeutic 

efficacy compared to free MTX. Al-Jamal and co-workers recently reported the synthesis of 

magnetically decorated MWCNTs for dual MRI and SPECT imaging.
[17]

 The hybrids of SPION and 

MWCNTs were radiolabeled with technetium-99m through a functionalized bisphosphonate and 

enabled the quantitative analysis of the biodistribution in mice by SPECT/CT imaging and �-

scintigraphy. The most innovative example of a CNT-based radiotracers has been reported by our 

collaborators in 2010 in Nature Materials.
[19]

 Instead of using traditional chelation chemistry to 

obtain radiolabeled CNTs, Hong et al. engineered a totally new approach by exploiting the hollow 
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interior of the tubes to enclose the radionuclide.
[19]

 Sodium iodide-125, a Auger and �-emitter, was 

encapsulated inside SWCNTs by molten-phase capillary wetting at high temperature, and the tubes 

were sealed during the cooling step, affording a sealed cage with the metal halide trapped inside 

(Na
125

I@SWCNTs). The external surface of the nanotubes was then covalently functionalized by 1,3-

dipolar cycloaddition and appended with a biantennary glycoconjugate (GlcNAc
D
), which provided 

enhanced dispersibility and biocompatibility to the construct (Figure 4.3-a). Hong et al. investigated 

the fate and biodistribution of the glycosylated Na
125

I@SWCNT in vivo by SPECT/CT imaging of 

the whole animal. Whereas free Na
125

I rapidly accumulated in the thyroid as expected, the GlcNAc
D
-

Na
125

I@SWCNTs accumulated in the lung with no signal from the thyroid, stomach or bladder 

(Figure 4.3-b,c). Despite the consistent accumulation and retention of the conjugate in the lungs, 

tissue histology 30 days after administration indicated no particular necrosis or fibrosis of the 

corresponding tissues, revealing no acute toxic effect determined by the persistence of the CNTs. 

Moreover, the traceability of radioactivity in the lungs after 30 days was a proof of the excellent in 

vivo stability of the glycosylated Na
125

I@SWCNTs, with essentially no leakage of isotopes to other 

organs. Furthermore, the confinement of the radionuclide inside the carrier consented the localized 

and safe delivery of a high radioactive dose (800% ID/g; ionizing dose/gram), which is greater than 

the uptake achievable in the thyroid using 
125

I alone (70% ID/g) so far. 

The idea of this work was taken up by a network of several partners and constitutes the root of the 

Marie Curie ITN RADDEL, which will be detailed below. 

Figure 4.3 a) Schematic representation of GlcNAcD-Na125I@SWNTs, showing the radionuclide encapsulated 

within the nanotubes. b) Whole body SPECT/CT imaging at 4 h after i.v. injection of GlcNAcD-

Na125I@SWNTs (250 �g, 1.0 MBq) and Na125I (1.8 MBq); cross sections of the thyroid, lung, stomach, liver, 

kidney and bladder at equivalent time points (top to bottom). c) Tissue biodistribution of GlcNAcD-

Na125I@SWNTs and Na125I in mice at different time points after i.v. injection. Adapted from ref. [19].
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4.1.4 ENDOHEDRAL CNTS

The encapsulation of molecules inside CNTs has been receiving increasing attention in the 

biomedical field, since the inner cavity of the nanotubes can be filled with a therapeutic or imaging 

cargo, while the outer surface can be modified to convey dispersibility, biocompatibility and site-

selectivity.
[20]

 Although less explored than the external functionalization, the internal loading 

approach confers the possibility to confine the diagnostic or therapeutic agent, protecting it from 

degradation or inactivation and providing it with additional stability. After Pederson and Broughton 

first report on the filling of CNTs,
[21]

 a large variety of both organic and inorganic materials have 

been encapsulated inside single- and multi-walled CNTs.
[20]

 Typically, SWCNTs have diameters 

ranging from 0.7 to 2.0 nm, while MWCNTs can reach internal diameters of tens of nm: as a 

consequence, a wide variety of molecules can be located in the interior cavity of the nanotubes, going 

from small gas atoms like He to bigger molecules, such as Gd2@C92 (gadolinium 

metallofullerene).
[22,23]

Because of the deep potential well inside the tubes, molecules can in principle 

enter very easily inside nanotubes, provided that they have sufficient energy to move toward the tube 

open ends and overcome the small energy barrier for entrance.
[24]

 The filling process can be 

performed either during the CNT synthesis, or after synthesis, if CNTs are open-ended. The latter 

process is by far the most employed, especially for the inclusion of molecules that are temperature- 

or catalyst-sensitive. Methodologies for the post-synthesis filling of CNTs are generally classified in 

two categories: gas-route and liquid-route.
[25]

 In the former strategy, the CNTs are placed in a sealed 

ampoule under vacuum and the material to be enclosed enters into the CNTs in the gas phase, which 

is either its natural phase or is obtained by sublimation. By the liquid-route, the filling material is 

liquid, or is heated above its melting temperature, and the CNTs are filled by capillary wetting. For 

molecules in the liquid phase, the entry into the interior cavity has a small barrier and is quite 

spontaneous if the surface tension of the liquid is not too high.
[24]

 Techniques to achieve the CNT 

filling have been so-far widely explored, as endohedral CNTs can be exploited for a wide range of 

applications, spanning from molecular electronics,
[26]

 nanothermometry,
[27]

 nanoscale reaction 

vessels
[24]

 and biomedicine.
[20]

 In the biomedical field, compounds of interest are mainly organic 

molecules (small drugs, proteins, enzymes) and inorganic compounds, in quality of contrast agents. 

Many different constructs have been prepared for drug delivery, by encapsulating bioactive 

molecules such as DNA, RNA, peptides, or anticancer drugs (e.g. doxorubicin, gemcitabine, 

cisplatin). Imaging tools have instead been obtained by filling the tubes with iodine and metal salts 

(Na
125

I, 
211

AtCl, Bi2O3) for SPECT/CT, or with MRI contrast agents such as gadolinium salts and 

Fe3O4.
[20]

 The approach of confining the drug or imaging agent inside the carrier can certainly offer 

some advantages such as its concentration in one sole location, protection from the external 

environment and eventually controlled release, when the tube ends are left opened. On the other 

hand, sealing of the nanotube ends after filling can guarantee the complete isolation of the 

encapsulated material and its entrapment, which is advisable when the free circulation of the material 

is undesirable. 
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4.2 RADDEL – NANO-CAPSULES FOR TARGETED DELIVERY OF 

RADIOACTIVITY 

4.2.1 GENERAL PURPOSE

RADDEL (RADioactivity DELivery) is an inter-sectorial network of 11 partners that has been 

awarded with a Marie Curie Initial Training Network (ITN) grant by the European Commission. The 

research project is aimed at the development of novel nanomaterials for biomedical applications in 

the areas of cancer diagnosis and therapy. Specifically, the program focuses on the design, synthesis, 

characterization and pharmacological studies of carbon nanocapsules that seal in their interior 

radioactive materials. After sealing the chosen radionuclides, the external walls of the closed-ended 

filled carbon nanotubes can be decorated with biologically active molecules in order to convey 

specific targeting properties and enhance their biocompatibility. The general idea of this project has 

been suggested and developed from a research study performed by a team involving most of the 

partners in the present consortium, and published in 2010 in Nature Materials.
[19]

 As already 

mentioned above, in this report they described the preparation of carbohydrate-functionalized CNTs 

filled with 
125

I radioisotopes for nuclear imaging purposes (cf. Section 4.1.3 and Figure 4.3). It was 

demonstrated that this CNT conjugate allowed the delivery of an unprecedented radiodosage and 

remained stable within the biological milieu in vitro and in vivo without leakages of radionuclides. 

This initial study cast a new light on the potential of CNTs as tools for the development of novel 

cancer therapeutics and diagnostics. It appeared thus interesting to carry out further investigations by 

exploring different filling materials, functionalizations and/or targeting molecules. Indeed, the choice 

of the filling radionuclide will allow to tailor a specific radiation, cancer type and therapy. In parallel, 

the functionalization of the external surface offers versatility towards the appendage of multiple 

functionalities, thus enabling to modulate the biodistribution of the carrier. Since the delivery of 

radioactivity takes place through the walls of the nanotubes, the release of the encapsulated 

radionuclides is not needed (and not desired). In the RADDEL project, we propose that the 

encapsulation of therapeutic or imaging radioisotopes within CNTs and subsequent surface 

functionalization with targeting ligands could offer a stable and efficient way for the selective 

delivery of radioisotopes at ultrasensitive doses for therapeutic or diagnostic purposes. 

4.2.2 OVERVIEW ON THE CONSORTIUM

Due to the many scientific areas covered by the research program, the RADDEL project is highly 

multidisciplinary and involves partners with expertise in different fields, from physics and materials

science, to chemistry, pharmacology and radiology. Furthermore, the nature of the project implies a 

strong interconnection and collaboration between the partners, and each of them was assigned with 

specific tasks, according to their expertise (Table 4.1). The list of partners involved in the 

consortium and their respective expertise and/or task within the network is presented here below. In 

summary, the group of Dr. Tobias in Barcelona was in charge of the purification, filling and sealing 

of the nanotubes with the selected radionuclides. Samples of pristine CNTs were then characterized 

by different techniques by the groups of Dr. Ballesteros and Dr. Kalbá� (Barcelona and Prague, 

respectively), and initial toxicological studies were performed in vivo and in vitro by the groups of 
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Prof. Al-Jamal and Prof. Kostarelos (London and Manchester). The groups of Prof. Davis, Prof. Prato 

and Dr. Bianco (Oxford, Trieste and Strasbourg) had the task to explore the external covalent 

functionalization of the provided pristine CNTs and the further conjugation of a targeting molecule. 

The prepared samples were characterized by multiple techniques by Dr. Ballesteros and Dr. Kalbá�, 

and the toxicological and pharmacological profile of f-CNTs was assessed in vivo and in vitro in 

Strasbourg, London and Manchester. The group of Al-Jamal had also the role of developing suitable 

cellular and animal tumor models for therapeutic and biodistribution investigations. IBA, the 

industrial partner, assisted in the choice of radioisotopes, tumor models and preparation strategies; 

they further provided the radionuclides for the filling and the facilities for the irradiation of the cold 

isotopes (non-radioactive). Dosimetry calculations on the radiation dosage to be used for specific 

tumor cell lines and consequent effects were performed by Dr. Emfietzoglou (Ioannina). Prof. Van 

Tendeloo provided high-resolution microscopic facilities for the characterization of the most relevant 

samples. 
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Partner Institute Location Expertise/ Task 

Dr. Gerard Tobias 
Institut de Ciència de Materials de 

Barcelona (ICMAB-CSIC) 

Bellaterra 

(Spain) 

CNT purification, filling and 

sealing with metal halides 

Prof. Benjamin G. Davis 
University of Oxford 

(UOX) 

Oxford 

(UK) 

CNT filling, functionalization, 

synthesis of sugar-based 

targeting molecules 

Prof. Kostas Kostarelos 
University of Manchester 

(UNIMAN) 

Manchester 

(UK) 

Biology, pharmacology and 

therapeutic efficiency 

Dr. Khuloud Al-Jamal 
King's College London 

(KCL) 

London 

(UK) 

Biology, pharmacology and 

therapeutic efficiency 

Dr. Tatiana Da Ros 

Prof. Maurizio Prato 

Università degli Studi di Trieste 

(UNITS) 

Trieste 

(Italy) 

CNT covalent 

functionalization 

Dr. Cécilia Menard-Moyon 

Dr. Alberto Bianco 

Centre National de la Recherche 

Scientifique (CNRS) 

Strasbourg 

(France) 

CNT covalent 

functionalization, conjugation 

of biomolecules, in vitro

toxicity studies 

Dr. Belén Ballesteros 
Catalan Institute of 

Nanotechnology (ICN 2) 

Bellaterra 

(Spain) 

Microscopic characterization: 

HRTEM and STEM 

Dr. Dimitris Emfietzoglou 
University of Ioannina 

(UOI) 

Ioannina 

(Greece) 

Dosimetry, radiology, toxicity 

simulations 

Dr. Martin Kalbá�

Ustav Fyzikalni Chemie J. 

Heyrovskeho AV CR 

(HIPC) 

Prague 

(Czech 

Republic) 

Spectroscopic characterization 

(Raman, Vis-NIR, 

photoluminescence)  

Dr. Jean-Claude Saccavini 

Cis Bio International 

Ion Beam Applications SA 

(IBA)* 

Saclay 

(France) 

Radiology, radionuclide 

supply and irradiation 

Prof. Gustaaf Van Tendeloo 

Electron Microscopy for Materials 

Science, Universiteit Antwerpen 

(EMAT-UA) 

Antwerp 

(Belgium) 

Microscopic characterization 

by HRTEM 

Table 4.1 List of partners involved in the RADDEL consortium and respective location and expertise, or 

task within the project. *Industrial partner.
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4.2.3 SYNOPSIS

In the following section we will outline the development of the RADDEL project and illustrate the 

selected strategies, the goals and the methodologies employed to achieve them. An explanation of the 

overall organization and articulation of the project within the network is fundamental to understand 

the research aims, choices and work that our group undertook and that will be presented in detail in 

Chapter 5.  

In the design of the final conjugates and the synthetic procedures, the network had to take into 

account several procedural issues and satisfy the necessary clinical requirements for 

radiopharmaceuticals. For instance, the nature and half-life of the radioisotope are determinant for 

the whole preparation setup and for the final applications. On the advice of the industrial partner, 

from a panel of possible radionuclides, we selected the following three for our investigations: 

Radionuclide Radiaton type (MeV) Half-life Penetration Range 

153
Sm � (0.8), � (0.103) 1.95 d 3.0 mm 

177
Lu � (0.497), � (0.208) 6.7 d 1.6 mm 

131
I � (0.6), � (0.364) 8.04 d 2.0 mm 

Table 4.2 Selected radionuclides and respective key characteristics.[3]

This choice was dictated by several considerations, such as availability of the radioisotope, in its hot 

and cold state, irradiation process, radiochemical purity, radiation type, energy and half-life. The 

selected radionuclides are essentially all � and � emitters, which enables to concomitantly accomplish 

therapy and imaging of the tumor. Considering the half-life of the three isotopes, the whole bench 

preparation of the radioactive nanocarrier should be completed in maximum two, seven or eight days 

(for Sm, Lu and I, respectively), in order to have in the injectable formulation an amount of 

radioactivity sufficient for therapeutic purposes. We reasoned that the most convenient approach was 

to first perform the filling and sealing of nanotubes with the suitable non-radioactive isotopic 

precursor, and proceed with its radio-activation in a second instance (Figure 4.4). This strategy 

would allow to carry out the filling and subsequent washing steps in normal laboratory facilities and 

without consuming the radioactive life of the isotope. It would have been desirable to carry out also 

the external functionalization prior to the radio-activation, however, the conditions and energies 

employed in this process are drastic and the appended organic functionalities would not resist. In 

fact, the irradiation is performed in specific industrial reactors at elevate temperature and pressure. 

By adopting this sequence, radio-activation followed by external functionalization, it is crucial that 

the latter does involve simple and ‘short’ steps (reactions and work-up), shorter than the half-life of 

the radioisotope (Figure 4.4). 

We decided that the CNT functionalization and derivatization with the bioactive target should be 

performed only by a covalent approach, in order to ensure the in vivo stability of the final conjugate. 

Besides, the chemical reactions for the CNT functionalization must preserve their closed ends and 

avoid the formation of big defects (holes) in the structure, which could result in the leakage of the 

radionuclides along time. As a consequence, the CNT covalent modification had to be restricted to 

sidewall functionalization, ruling out the reactions that require too harsh conditions, long times, 

addition of metallic catalyst, or long purification steps. The panel of possibilities thus comprehended: 

1,3-dipolar cycloaddition, radical addition, Bingel and nitrene reactions. In order to avoid 
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overlapping researches, the group of Prof. Prato  investigated over the first two reactions, whereas 

our group focused on the last two (see Chapter 5). 

Figure 4.4 General representation of the procedures for the preparation of f-X@CNTs (X = general metal) 

for the delivery of radioactivity. a) Filling and sealing of purified CNTs with non-radioactive isotopes, b) 

irradiation of X@CNTs, c) covalent functionalization, d) conjugation of the bioactive target. 

As a general guideline, we decided to investigate the covalent functionalization of CNTs starting 

from TEG or PEG derivatives, in order to introduce on the sidewalls water-soluble moieties that 

could enhance the dispersibility and biocompatibility of the carrier. The terminations of the 

functional chains should also be suitable for further derivatization with an imaging probe and/or 

targeting biomolecule (Figure 4.4). To this purpose, investigations were focused on sugar building 

blocks and antibodies, as targeting agents, and on fluorescent probes, for imaging. The biological and 

pharmacological profile of the prepared filled and functionalized conjugates (f-X@CNTs) was then 

assessed both in vitro and in vivo. Different human and murine cell lines were employed to evaluate 

the cellular uptake, intracellular trafficking and internalization mechanisms. The targeting and 

therapeutic efficacy of f-X@CNTs was studied with specific cancer cell lines and tumor xenograft 

models. The tissue distribution, pharmacokinetics, body excretion profile were also investigated, 

following in vivo administration both in normal and tumor-bearing mice. 

Because of the safety requirements associated with the manipulation of radioactive materials, the 

costs and the required radio-lab facilities, experiments with radioactive material were only envisaged 

at the final step of the project, with optimized protocols. Preliminary investigations on the feasibility 

of the whole procedure were indeed needed to setup any experiment involving radioactivity. The 

group of Dr. G. Tobias in Barcelona has been providing the other partners with CNTs filled with 

model compounds (non-radioactive analogues of the radioactive candidates), and at the same time 

exploring and improving the methodologies to purify, fill and seal SWCNTs and MWCNTs. This 

allowed the other groups to carry on investigations on the reactivity of the model X@CNTs toward 

covalent functionalization, biological behavior, characterization, etc. The most promising approaches 

were selected and optimized preparation protocols were set up to be tested with the radioactive 

compounds. 
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4.3 CONCLUSIONS

The RADDEL project is aimed at investigating new strategies and methodologies for the preparation 

of novel CNT conjugates for the delivery of radioactivity. The multidisciplinarity of the network 

allowed to develop all investigations in a synergistic way, by matching the expertise and facilities of 

each partner. Our task within this macro-project has been to explore the reactivity of different types

of purified CNTs toward [2+1] cycloaddition reactions (Bingel and nitrene) and the subsequent 

derivatization with targeting/imaging molecules. All functionalization procedures were conceived in 

order to achieve the final conjugates within a short time (few days), avoiding long purification steps 

and harsh reaction conditions that might engender leakages of the filling material. Because in the 

final scenario we expect to functionalize radioactive filled CNTs, the total synthetic pathway after 

irradiation up to the injectable formulation should be as simple and rapid as possible. In the next 

chapter we will describe the researches carried out by our group to achieve these goals and the final 

results.
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Abstract – In the present Chapter we will relate about the work we have accomplished within 
the RADDEL framework. We have synthesized the organic precursors for Bingel and nitrene 
cycloadditions and investigated the functionalization of various empty and filled CNTs by these 
two reactions. Later, investigations on the further derivatization with a targeting antibody have 
been carried out in order to obtain a targeting CNT-carrier of radioactivity. The principal 
constraints in the design of the preparation steps have been the preservation of the sealed 
CNT structure and the employment of short reaction times. To this purpose, different conditions 
have been attempted and optimization screenings have been carried out. We have succeeded 
in the functionalization of CNTs by nitrene reaction and further derivatized these conjugates 
with a tagging molecule, fluorescent probes or a targeting antibody. The Ab-conjugates have 
been thoroughly chemically characterized and their toxicological and targeting properties have 
been assayed both in vitro and in vivo. 

CHAPTER 5 

5 DESIGN 

DESIGN AND SYNTHESIS OF FUNCTIONALIZED RADIOACTIVITY-
DELIVERY NANOCARRIERS
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Although less popular than [3+2] cycloadditions, [2+1] cycloadditions have also been largely explored 

for the functionalization of carbon nanotubes. This type of reactions lead to the formation of 3-membered 

rings on the CNT sidewalls and they typically require highly reactive species (carbenes, nitrenes), and/or 

harsh reaction conditions. In this Chapter we will describe the investigations that we carried out within 

the RADDEL project, to achieve the functionalization of filled CNTs by [2+1] cycloaddition, and the 

further derivatization with a targeting antibody. We started our investigations in parallel on Bingel 

reaction and the nitrene reaction but, for the sake of clarity, we will first introduce and discuss about 

Bingel reaction and afterwards about nitrene one. In the last section of this Chapter, the strategies adopted 

for the conjugation of the targeting antibody will be presented, followed by the biological experiments 

performed on the final conjugates. All investigations were carried out on pristine CNTs provided by our 

partner in Barcelona. For more information about the purifications and filling methods of CNTs, we refer 

to the final Annex (a preliminary reading of this Annex at page 159 could be beneficial to a better 

understanding of the following discussion).  

5.1 BINGEL REACTION

Bingel reaction is a cyclopropanation reaction, which is formally considered as a [2+1] cycloaddition 

between a carbon double bond and a halo-malonate derivative, usually obtained in situ in the presence of 

a mixture of a base and tetrabromomethane (or iodine). In terms of mechanism, the reaction can be 

described as a nucleophilic addition operated by the malonyl carbanion (obtained by basic proton 

abstraction) towards an electrophilic double bond, followed by intramolecular aliphatic substitution into a 

closed ring, with elimination of the halide anion. This reaction was named after C. Bingel, who first 

reported the cyclopropanation of C60 using a bromomalonate derivative and NaH, in 1993.[1] The reaction 

has then been widely used in fullerene chemistry, due to the high reactivity under mild conditions, and 

because it consents to prepare multiple-substituted fullerene adducts. The first application of the Bingel 

reaction on CNTs was reported in 2003 by Coleman et al., who employed diethylbromomalonate as 

nucleophile and diazabicyclo[5.4.0]undec-7-ene (DBU) as a base, achieving a good degree of 

functionalization under mild conditions (i.e. room temperature for 24 h). The authors then further 

derivatized the SWCNTs with a tagging moiety (i.e. 2-(methylthio)ethanol followed by binding of gold 

particles) to be able to visually assess the functionalization by spectroscopic techniques. A modified 

version of the reaction, called Bingel-Hirsch, employs non-halogenated malonate, DBU and CBr4 as 

halogenating agent, bypassing the need for isolation/purification of the bromomalonate precursors.
[2]

Applying this procedure, Ashcroft et al. performed the in situ functionalization of ultra-short SWCNTs by 

reacting them with malonic acid bis-(3-tert-butoxycarbonylaminopropyl) ester overnight.
[3]

 The sidewall 

functionalization of oxidized SWCNTs by Bingel reaction has been also reported to occur successfully 

under microwave (MW) irradiation, with reduced reaction time (up to 30 min) and degrees of 

functionalization controllable by changing the microwave output power. 

From an applicative point of view, Bingel reaction is rather appealing because it allows the introduction 

of two terminal groups on one grafting side, thus doubling the overall amount of available functionalities. 

In addition, by a proper asymmetric synthesis of the malonate precursor, it is possible to have two 
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different head-groups, which would ultimately enable the selective derivatization of so-functionalized 

CNTs with two diverse molecules (for example a targeting molecule and a tag).  

5.1.1 RESULTS AND DISCUSSION

5.1.1.1 First approach: Bingel reaction using a malonate 
Several malonate precursors have so-far been employed to carry out the Bingel reaction either on 

fullerenes or nanotubes.
[4,5]

 Symmetric malonate derivatives are rather easy and quick to prepare as they 

can be obtained by simple esterification of malonyl chloride with an alcohol-terminating functionality, in 

the presence of a base. For the initial investigation on Bingel reaction, we designed a simple malonate 

precursor that can be prepared in few steps: we decided to use a bi-functional TEG chain, featuring at one 

terminus the hydroxyl group, and at the other a protected-amino group. Though TEG is a short chain, its 

hydrophilic character can enhance the nanotube water-dispersibility upon functionalization. Furthermore, 

the use of shorter ethylene glycol chains offers the advantage of minimizing the adsorption phenomena 

and facilitates the thorough removal of unreacted precursor by dialysis. We selected 

[(chloroethoxy)ethoxy]ethanol as starting material, which is a commercially available and not expensive 

compound. Firstly, the chlorine atom was substituted with phthalimide,
[6]

 in order to introduce a terminal 

protected amine (Scheme 5.1). Secondly, the so-obtained phthalimide-TEG-alcohol was reacted with 

malonyl chloride in the presence of pyridine, reproducing a procedure reported for the preparation of a 

similar malonate.
[7]

 Malonate derivative 2 was obtained in 53% yield and was then employed as precursor 

for the Bingel reaction. 

Scheme 5.1 Preparation of malonate derivative 2 . 

For the preliminary assessment of the reactivity of the nanotubes provided by our collaborator toward 

both Bingel and nitrene reaction, we decided to perform all reactions on a batch of empty SWCNTs, 

whose preparation was faster and more affordable for our partner. The first trial of Bingel reaction on 

these tubes was carried out following the procedure reported by Imahori and co-workers.[8] A o-

dichlorobenzene (ODCB) dispersion of SWCNTs was treated with malonate 2, iodine and DBU, and 

reacted overnight at r.t. (Scheme 5.2). The work-up of the reaction consisted in several washing steps 

with different solvents, followed by dialysis against deionized H2O to ensure removal of absorbed 

precursor. After cleavage of the phthalimide group by hydrazine, the amine loading calculated by Kaiser 

test was negligible, and this negative result was supported by TGA. The same reaction was then 

attempted at higher temperatures (80 and 120 °C), but the loading resulted either negligible or very low 

(Table 5.1). It is to be noticed that Imahori’s attempts of Bingel reaction were not very successful with 

pristine and oxidized SWCNTs, while they worked efficiently on oxidized SWCNTs after 

functionalization with alkyl chains using an amidation reaction. Thus a non-optimal dispersion and 

individualization of CNTs in the solvent could possibly account for these negative results. 
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Scheme 5.2 Bingel reaction with malonate derivative 2 , followed by hydrazine-mediated phthalimide cleavage. 

We then carried out the reaction substituting the iodine with CBr4, according to the procedure employed 

by Ashcroft et al. on ultra-short pristine SWCNTs,
[3]

 but the loading assessed by the Kaiser test and TGA 

was again very low, indicating no functionalization. A table summarizing the trials we attempted is 

presented below.

Entry Reactants Temperature Time K.T. loading (�mol/g)

1 I2, DBU r.t. 24 h nd 

2 I2, DBU 80 °C 24 h 12 

3 I2, DBU 120 °C 24 h 20 

4 CBr4, DBU r.t. 24 h 12 

Table 5.1  List of the different reaction conditions employed to achieve the Bingel cyclopropanation of empty 

SWCNTs, and amine loading determined by Kaiser test (K.T.). 

Raman spectroscopy was performed on some of these samples, to control whether the electronic structure 

of the graphenic network had been modified by the reaction, with re-hybridization of some carbon atoms 

from sp
2
 into sp

3
 and consequent variation of the D/G band intensity ratio (Figure 5.1). This technique 

also proved that the Bingel reaction was not successful. 

Figure 5.1 Raman spectra of SWCNTs before (p-SWCNTs) and after (f-SWCNTs) performing Bingel reaction at 

r.t. The spectra is the average of measurements on two areas, and values were normalized on the G band 

maximum value. No variation in the intensity of the D band can be noticed.
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5.1.1.2 Second approach: Bingel reaction using a bromomalonate 
We hypothesized that the employed malonate derivative could possibly be not very reactive and that the 

in situ formation of the halogenated intermediate may not have occurred. We therefore synthesized the 

bromomalonate and performed the Bingel reaction according to the procedure of Coleman and co-

workers.
[9]

 After a few attempts to halogenate malonate 2 in the �-position, the corresponding 

bromomalonate 3 was finally obtained by reaction of 2 with CBr4 and DBU at -78 °C, under argon 

(Scheme 5.3).
[10]

Scheme 5.3 a) Synthesis of bromomalonate precursor 3; b) Bingel reaction followed by phthalimide cleavage. 

Using bromomalonate 3 we performed the Bingel cyclopropanation and the following phthalimide 

cleavage on three pristine CNT samples (empty SW, SmCl3@SW and empty MW), also exploring 

different reaction temperatures and times, but the different characterization techniques showed that no 

functionalization occurred (Table 5.2).

Entry CNT type Reactants Temperature Time K.T. loading (�mol/g)

1 empty SWCNTs DBU 80 °C 24 h 8 

2 SmCl3@SWCNTs DBU r.t. 18 h nd 

4 MWCNTs DBU r.t. 18 h nd 

Table 5.2 List of the different reaction conditions employed to achieve the Bingel cyclopropanation with 

malonate precursor 3. 

5.1.1.3 Third approach: microwave-assisted Bingel reaction 
Imahori and co-workers reported that they could accomplish the functionalization of CNTs by Bingel 

reaction with good loading degrees by applying microwave irradiation instead of classical heating.
[8]

 They 

performed the reaction at fixed temperature (120 °C) for 30 min, and observed that the loading degree 

was enhanced when using higher MW power. Their approach appeared interesting to us and was explored 

on our CNTs, in order to test whether the MW could improve the low reactivity toward the Bingel 

reaction. Indeed, many organic reactions, cycloadditions in particular, have shown improved yields when 

performed under microwave irradiation.[11,12] Furthermore, the very short reaction time reported by 

Imahori is valuable in the perspective of using functionalized CNTs as carriers of short half-life 

radioisotopes. However, we were primarily concerned by the effect of MW treatment on the structure of 

sealed CNTs, which would be the ones finally used for the purpose of the project. Would MW treatment 
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damage the structure of CNTs compromising the hermetic sealing? Can the internal filling leak out after 

MW treatment due to possible generation of holes? Our partner at ICMAB - CSIC carried out few 

experiments to address these questions: they irradiated LuCl3@SWCNTs and EuCl3@SWCNTs at 120 °C 

with 100 W power during 60 min and characterized the samples by TGA, elemental analysis, STEM and 

Raman spectroscopy. For both samples they observed that the encapsulated metal halide was preserved 

inside the nanotubes and there was no significant variation in the filling yield, nor in the amounts of 

defects (ID/IG ratio). Hence the microwave irradiation did not induce any leakage and the conditions used 

were therefore suitable for the functionalization of filled CNTs.  

We thus investigated the Bingel reaction by MW irradiation employing malonate precursor 2 and 

following the protocol reported in Imahori’s paper.
[8]

 A dispersion of SWCNTs, malonate 2, iodine and 

DBU in N-methylpyrrolidone (NMP) was irradiated with MW (60 W) at 120 °C for 30 min. The amine 

loading determined by Kaiser test after deprotection resulted to be 48 �mol/g, which, though higher than 

the previous results, it is considered still low. The thermogravimetric analysis of the sample after nitrene 

reaction (Pht-functionalized SWCNTs) shows a significant weight loss (18%) compared to that of the 

pristine SWCNTs, yet the TG curve of the sample after phthalimide cleavage does not significantly differ 

from the previous (Figure 5.2). Normally, after deprotection the weight loss of the amino-functionalized 

SWCNTs (SW-NH2) is lower than that of the precursor (SW-Pht), due to the lower weight of the 

functional chain after the loss of phthalimide (see Figure 5.5 for example). This incongruence, together 

with the previous unsuccessful results, prompted us to speculate that the hydrazine employed in the 

deprotection step, could possibly interfere with the two ester groups causing their cleavage. To solve this 

doubt we thus decided to prepare a different malonate precursor featuring a Boc protecting group in place 

of the phthalimide one. 

Figure 5.2 TG curves of pristine SWCNTs, phthalimide-functionalized SWCNTs and amino-functionalized 

SWCNTs.

5.1.1.4 Fourth approach: Bingel reaction using a Boc-protected malonate 
Rather than deprotecting and reprotecting the amino group of compounds 1 or 2 (Scheme 5.1), we 

thought it more convenient to synthesize ab initio a new malonate precursor and, by a literature research, 

we selected a short and ‘easy’ synthetic strategy. The hydroxyl group of the previously-employed starting 
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material, [(chloroethoxy)ethoxy]ethanol, was readily converted into azide group by reaction with NaN3

and catalytic amount of NaI and compound 4 was obtained in 81% yield without need of purification 

(Scheme 5.4).[13] The Boc protecting group was then inserted by copper-catalyzed click-reaction 

between the azido group of 4 and the alkyne of previously synthesized Boc-propargyl amine. This type of 

click reaction, also known as Huisgen 1,3-dipolar cycloaddition, results in the formation of 1,2,3-triazoles 

and it is particularly interesting because it works very efficiently in mild conditions and it is compatible 

with almost any functional group. We reacted together compound 4 and Boc-propargyl amine in a water-

based solution, in the presence of CuSO4 and sodium ascorbate, attaining compound 5.
[14]

 By double 

esterification of malonyl chloride, we finally obtained the desired malonate precursor for Bingel reaction 

(6). 

Scheme 5.4 Synthesis of Boc-protected malonate precursor 6 . 

The Bingel reaction with precursor 6 was performed by the aid of MW irradiation, using three different 

power settings: 40, 50 and 60 W, as in the procedures reported by Imahori (Scheme 5.1).
[8]

 After 

dialysis against water, the Boc protecting group was cleaved by treatment with HCl in dioxane, and the

amine loading was assessed by the Kaiser test, but for all three samples the values were almost zero. 

Moreover, TGA performed before and after deprotection gave incongruent results, as the loading appears 

to be increased after the Boc cleavage. This could be eventually explained assuming that there might be 

some solvent absorbed on CNTs, although this phenomenon was never observed in the previous cases.  

Scheme 5.5  Microwave-assisted Bingel reaction with malonate precursor 6 , followed by Boc cleavage. 
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5.1.2 CONCLUSIONS

We have accomplished the synthesis of three different malonate precursors (phthalimide-protected 

malonate and bromomalonate, and Boc-protected malonate), and investigated the Bingel reaction on a 

few types of pristine CNT trying different procedures and reaction conditions (time, temperature, MW, 

etc.). The samples were characterized by a combination of techniques (Kaiser test, TGA and Raman 

spectroscopy) but for all our attempts the degree of functionalization was very low or negligible. As 

during the course of these unsuccessful attempts, we were obtaining much more satisfying results with the 

functionalization by nitrene reaction, we focused our efforts toward the latter reaction. 

5.2 NITRENE REACTION

Nitrenes are uncharged, electron deficient molecular species which can be considered as the nitrogen 

analogue of carbenes, where the nitrogen atom behaves like an electrophile. These reactive intermediates 

cannot be isolated and are formed in situ either by thermolysis or photolysis of azides (with N2 extrusion), 

or from isocyanates (with CO extrusion).
[15]

 The most commonly applied approach is to generate nitrenes 

from alkyl azides or azidocarbonates. The thermal or light induced extrusion of nitrogen results in the 

formation of single-state or triple-state nitrenes. The first types have two p-orbitals, each filled with two 

electrons, and they can either attack the nanotube sidewall in an electrophilic [2+1] cycloaddition or

undergo a transition into a triple-state by inter-system crossing (ISC) (Scheme 5.6).[16] The triple-state 

nitrenes are biradicals and can therefore react with the �-system of the nanotubes. In both ways, aziridine 

rings are formed, with two carbon atoms belonging to the nanotubes, and one nitrogen atom from the 

azide.  

Scheme 5.6 Generation of nitrene species from azidocarbonate and possible pathways for the reaction with 

nanotubes forming aziridine rings: radical addition or electrophilic cycloaddition. Adapted from ref. [17]. 

The group of Hirsch has been among the first to explore the functionalization of SWCNTs with reactive 

species such as nitrenes, carbenes and radicals.
[18]

 In 2003 they published a detailed study of nitrene 
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reaction onto CNTs by using a range of (R-)oxycarbonyl nitrenes generated from the corresponding 

azidocarbonates.
[19]

 By this reaction approach the authors managed to covalently functionalize SWCNTs 

with different alkyl and aryl groups and proved the binding by means of multiple characterization 

techniques (AFM, XPS, TEM and UV-Vis), also remarking a significant improvement in the CNT 

dispersibility after reaction. Holzinger et al. employed some di-azidocarbonate precursors to achieve the 

cross-linking of SWCNTs.
[17]

 Gao and co-workers reported a methodology for the large-scale production 

of f-CNTs by using nitrene chemistry, paving the way for its possible conversion at industrial scale.[20] In 

place of azidocarbonates, they performed the nitrene reaction starting from alkyl azides featuring different 

terminal groups (i.e. -OH, -NH2, -COOH and -Br), demonstrating that different functional CNTs could be 

prepared by a one-step reaction. In another report, SWCNTs were successfully functionalized with 

nitrenes derived from p-toluensulfonyl, methylsulfonyl and trimethylsilyl azides.
[21]

 Yet the authors 

reasoned that the interpretation of the type of bond formed upon reaction is not always straightforward, as 

nitrenes could react with aromatic moieties also in other ways than the expected [2+1] cycloaddition. 

Indeed, the formation of 5-membered rings (i.e. oxoazoles or triazoles) or of open 6,5-aza-annulenes have 

been reported in the case of fullerene,
[22–25]

 while the possible rearrangement of aziridines cannot be 

excluded.
[26,27]

 Finally, MW-assisted nitrene reactions have been reported to achieve the functionalization 

of carbon nanohorns (conical-shaped nanotubes) in a very short time,
[28]

 representing a good alternative to 

the classical heating, also from the environmental point of view. 

Despite the incertitude on the reaction mechanism and on the exact bonding after reaction, nitrene 

reaction still represents an interesting approach for the functionalization of CNTs, as good levels of

loading have been reported with consequent increased dispersibility. Besides, by changing the alkyl 

substituent on the nitrogen atom, different organic functionalities can be tethered to the CNTs, allowing 

the further extension of the lateral chains with molecules of interest. 

5.2.1 RESULTS AND DISCUSSION

  

The use of azidocarbonates as precursors of (R-)oxycarbonyl nitrenes is very common and is indeed the 

most reported strategy for the functionalization of CNTs.
[17,19]

 However, the synthesis of azidocarbonates 

involves the preparation of a chlorocarbonate precursor from the reaction of the desired alcohol with 

phosgene (or its substitutes, diphosgene or triphosgene). Although this can be purchased in ‘diluted’ 

solutions (e.g. 20% w/w in toluene), it still remains a very toxic and hazardous compound, hence we 

preferred to avoid this strategy and perform the nitrene reaction with normal alkyl azides, which has been 

reported as well.
[20]

 We started the synthesis of the azide precursor from the same starting material 

previously used for the preparation of the malonate derivatives. Indeed, the hydroxyl group of the 

previously synthesized compound 1 (Scheme 5.1) can be conveniently transformed into an azide by 

preliminary conversion into the corresponding tosylate. By following a reported procedure,
[29]

 we 

accomplished the synthesis of compound 8, which features the reacting azide group at one terminus, and a 

phthalimide-protected amino group at the other one (Scheme 5.7). We then used this precursor to 

perform our first trial of nitrene reaction on empty SWCNTs.  
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Scheme 5.7 Synthesis of the precursor for nitrene reaction by tosylation of compound 1 and subsequent azidation. 

SWCNTs were dispersed in dry ODCB by sonication under inert atmosphere, and after addition of a 20-

fold mass excess of azide 8, the mixture was reacted at 160 °C for 18 hours (Scheme 5.8).
[20]

 As nitrene 

reaction can proceed also by radical addition, it is important to ensure an inert atmosphere within the 

reaction vessels, to prevent the highly reactive species from reacting with oxygen.
[30]

Scheme 5.8 Nitrene reaction on empty SWCNTs followed by phthalimide cleavage. 

The nitrene reaction was followed by thorough washing steps, dialysis against ddH2O (to remove the 

absorbed TEG chain), and finally the phthalimide protecting group was cleaved by hydrazine (Scheme 
5.8). The amine loading determined by Kaiser test was 104 �mol/g, which was rather satisfactory. We 

then explored the reaction under the same conditions on different types of CNTs provided by our ICMAB 

partner (MWCNTs, SmCl3@SWCNTs and LuCl3@SWCNTs) to assess their reactivity. We could 

confirm, by both Kaiser test and TGA (Figure 5.3), that the nitrene reaction worked successfully for all 

CNT batches, with K.T. showing higher loadings for filled CNTs (Table 5.3). For the estimation of the 

degree of functionalization by TGA, we decided to take weight loss values at 650 °C, because up to 600 

°C strong weight losses were still occurring. As also mentioned in other Chapters of this Thesis, there is a 

discrepancy between the loading obtained by Kaiser test and TGA due to the intrinsic difference between 

the two techniques.  

Sample 

Name
p-CNTs 

K.T. loading † 

(�mol/g) 

TGA loading † 

 (�mol/g) 

9 SWCNTs –B1 104 246 

10 MWCNTs 81 924 

11 SmCl3@SWCNTs –B1 204 (250) 801 (981) 

12 LuCl3@SWCNTs 179 (213) 683 (811) 

Table 5.3  Functionalization loading determined by Kaiser test and TGA for nitrene reaction performed on 

different types of pristine CNTs (p-CNTs). † In parenthesis, loading values expressed as �mol/g of carbon, 

calculated on the basis of the filling yield. (Details on the specific CNT batch employed for each reactions are 

reported in Table 5.10 in the Annex. In the CNT name, B1  indicates the employed batch). 

In general, the loading values are expressed as �mol of organic function per gram of sample. However it 

is worth to remark that in filled CNTs the total carbon percentage is less than in empty CNTs, therefore 

the effective loading is higher. In Table 5.3, loadings expressed as �mol/g of carbon are shown in 

parenthesis for the filled CNTs for the sake of comparison, taking into account the filling yield of the 

specific CNT batch (see Table 5.10 for specifications). Remarkably, filled CNTs display higher degrees 
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of loading than empty CNTs. All experiments here presented were carried out considering the total 

sample weight, regardless of the atomic composition, and along the following discussion we will report 

the degrees of functionalization as �mol/g of sample (and not of carbon). 

5.2.1.1 Microscopic visualization of functional groups 
In order to have a further proof of the presence of free amines on the CNTs and of their availability for 

further derivatization, we decided to couple the amines with a tagging molecule featuring a heavy-

element, which would enable atomic-scale detection by electron microscopy, in analogy with what was 

reported by our partners.
[31,32]

 In their study, a 2,3,5-triiodophenyl motif was introduced on the nanotube 

sidewall functionalities as a substituent of the pyrrolidine ring generated by 1,3-dipolar cycloaddition. 

They were then able to detect the iodine tag along the CNTs by Z-contrast STEM imaging coupled with 

energy-dispersive X-ray spectroscopy (EDX). The principle of Z-contrast STEM is that the image is 

strongly dependent on the atomic number Z of the observed atoms, thus a heavy-element such as iodine 

will appear with higher contrast compared to the carbon background of the nanotubes. In addition, the 

EDX detector associated with the STEM allows to obtain the elemental composition of the imaged area, 

providing a further characterization proof. 

We linked a 2,3,4-triiodophenyl motif to the free amine functions of CNTs 9, 10, 11 and 12 by EDC-

assisted amidation with 2,3,4-triiodobenzoic acid (Scheme 5.9). Characterization of the new conjugates 

by Kaiser test proved that the amount of free amines sensibly decreased, meaning that most of the amino 

groups have reacted with the tagging molecule (Table 5.4), and that the tag is covalently attached to the 

CNTs. In addition, by comparing the reaction yield obtained by the Kaiser test values for the different 

types of nanotubes, we can conclude that there is no significant difference in the reactivity of the amino 

groups toward further functionalization. 

Scheme 5.9 Tagging of amino groups with the 2,3,4-triiodophenyl motif. CNT structure is representative of all 

types of pristine CNTs (empty, filled, SW and MW). 
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Sample 

name
p-CNTs 

-NH2 loading

before tagging 

(�mol/g) 

-NH2 loading 

after tagging 

 (�mol/g) 

Conversion 

yield 

(%) 

9 SWCNTs –B1 104 12 88 

10 MWCNTs 81 17 79 

11 SmCl3@SWCNTs –B1 204 34 83 

12 LuCl3@SWCNTs 179 37 79 

Table 5.4 Amine loading values obtained by K.T. before and after tagging by amidation, and conversion yield 

calculated as (x-y)/x*100, where x is the loading value before tagging, and y the value after tagging.

The functionalization was as well confirmed by TGA, comparing the thermogravimetric curves of the 

amino-functionalized CNTs (CNT-NH2) with that of the tag-functionalized CNTs (CNT-I) (Figure 5.3). 

The weight loss corresponding to CNT-I is higher than that of CNT-NH2, as expected, since there was an 

increase in molecular weight upon reaction. As examples, we report below the TG curves relative to 

SmCl3@SWCNTs and LuCl3@SWCNTs after the two functionalization steps. Similar profiles were 

obtained also for the other compounds. 

  

Figure 5.3 TG curves of pristine, amino-functionalized and tag-functionalized SmCl3@SWCNTs (left) and 

LuCl3@SWCNTs (right).

The obtained tag-functionalized CNTs were then characterized by high-resolution STEM and EDX by 

our partner at ICN 2 (Barcelona). By microscopy imaging of CNT-I, it was possible to visualize many 

randomly distributed bright dots along the CNT sidewalls, which were not observed in the amino-

functionalized CNT precursors (Figure 5.4). These bright dots were attributed to the iodine atoms of the 

tag molecule, and the elemental analysis of specific imaged areas performed by EDX gave a further proof 

of the presence of iodine (Figure 5.4). The same results were observed for all set of samples (9-12), but, 

for simplicity, we report here only the images referred to compounds 12 and 12-I. By STEM coupled 

with EDX it was possible to simultaneously detect the filling material (for samples 11 and 12) and the 

iodine tag. 
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Figure 5.4 Simultaneous detection of filling and functionalization. (Top) Z-contrast STEM images of amino-

functionalized LuCl3@SWCNTs 12 (left) and tag-functionalized LuCl3@SWCNTs 12-I (right). The brightest rods 

correspond to the filling material, while the tiny bright dots on the right-side image are generated by the iodine 

atoms. (Bottom) EDX analysis of compounds 12  (left) and 12-I (right), and STEM image of the analyzed area in 

the inset. Images collected by Elzbieta Pach and Dr. B. Ballesteros from ICN 2 (Barcelona). 

5.2.1.2 Optimization studies 
As explained in Chapter 4, one of the major commitments in the preparation of the final conjugates is the 

time required for all steps after irradiation. In fact, because of the short half-life of the radionuclide 

candidates, the synthetic steps leading to the injectable formulation should be as short as possible. To this 

purpose, we optimized the conditions to reduce the time of the nitrene reaction and the phthalimide 

deprotection. Besides, we have also worked on the optimization of the treatments to purify the samples 

after each step. 

Optimization of nitrene reaction 

In our first trials of nitrene cycloaddition, the reaction time was 18 hours. In the attempt to reduce the 

time while maintaining good degrees of functionalization, we carried out a screening study on empty 

SWCNTs by varying the solvent, the temperature, and the time of reaction (Table 5.5). The same work-

up procedure (including dialysis against water) was used in each case. Reduction of the reaction time to 
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12 and 2 hours did not afford any functionalization (according to Kaiser test after phthalimide cleavage), 

whereas increasing the temperature to 200 and 220 °C resulted in considerable loadings with a reaction 

time of 12 hours. To draw these conclusions we relied on Kaiser test values, which gives an accurate 

image of the available functional groups introduced. The outputs of TGA were used to control the 

consistency of the data between the samples. In the case of sample 14 (160 °C, 12 h), we noticed a 

relevant incongruence between the low loading calculated by Kaiser test and the high value resulting 

from TGA. To check whether any side-reaction might occur due to the solvent or its adsorption on the 

tubes, we performed a blank reaction by sonicating SWCNTs in dry ODCB and heating at 160 °C for 18 

h, but without adding the organic azide. The TGA of the resulting compound (after the usual work-up) 

presented a weight loss of 18% compared to the pristine SWCNTs, which was rather surprising and 

indicative of a relevant effect due to the sonication or heating of ODCB with the nanotubes. By a 

literature search, we found that indeed some groups already reported that ODCB (and other chlorinated 

solvents) can undergo decomposition and polymerization upon ultrasonication, resulting in irreversible 

chemical interactions with the CNTs, leading to a sort of doping.
[33,34]

 These empirical observations cast a 

doubtful shadow on some reports on CNT functionalization, where long sonications (up to several hours) 

in ODCB have been carried out prior to reaction, to achieve good CNT dispersions.
[17,19]

 To avoid these 

potential doping phenomenon, we decided to use NMP, which was as good as ODCB in dispersing 

pristine CNTs, and did not show adsorption onto the tubes, according to TGA after a blank reaction. 

Nitrene reaction performed in NMP at 200 °C for 12 hours afforded the highest degree of 

functionalization so far (sample 18 in Table 5.5). The degree of functionalization estimated by Kaiser 

test was 271 �mol/g, while the characterization by TGA showed data consistent with our expectations 

(Figure 5.5). Repetitions of the nitrene reaction on Sm-filled SWCNTs coming from the same batch of 

empty nanotubes, afforded an amine loading of 90 �mol/g (at 200 °C) or 146 �mol/g (at 190 °C) after Pht 

deprotection (compounds 19 and 20). Although these results are lower than the analog reaction performed 

on empty SWCNTs (18), they are still satisfying, and prove that nitrene cycloaddition occurs rather 

efficiently on both empty and filled CNTs. 

Sample 

Name
p-CNTs Solvent 

Temperature 

(°C)

Time 

(h)

K.T. loading †

(�mol/g) 

TGA loading † 

(�mol/g) 

13 SWCNTs ODCB 160 2 25 313 

14 SWCNTs ODCB 160 12 22 785 

15 SWCNTs ODCB 160 18 84 689 

16 SWCNTs ODCB 200 12 231 439 

17 SWCNTs ODCB 220 12 168 636 

18 SWCNTs NMP 200 12 271 930 

19 SmCl3@SWCNTs NMP 200 12 90 (110) 618 (752) 

20 SmCl3@SWCNTs NMP 190 12 146 (178) 731 (890) 

Table 5.5 Functionalization loadings determined by K.T. and TGA for nitrene reaction performed on empty 

SWCNTs-B2 and SmCl3@SWCNTs-B2. †In parenthesis, loading values expressed as �mol/g of carbon, calculated 

on the basis of the specific filling yield. (Specification on the CNT batch employed for each reactions are 

reported in Table 5.10) 
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Figure 5.5  TG curves of pristine SWCNTs, phthalimide-functionalized SWCNT (18-Pht) and amine-

functionalized SWCNTs (18-NH2). 

We then explored the nitrene reaction under MW irradiation. Karousis et al. have reported the MW-

assisted functionalization of carbon nanohorns by nitrene cycloaddition, achieving good yields after 60 

minutes of irradiation (100 W) at 220 °C.
[28]

 Such short time of reaction would be very advantageous for 

our goals. We performed our first attempts of MW-assisted nitrene reaction on SmCl3@SWCNTs trying 

two different reaction times: 60 and 30 minutes (21 and 22 in Table 5.6), with NMP as a solvent. In both 

cases, the reaction occurred successfully, affording a higher loading for the longer time (60 min), 

although the degree of functionalization obtained with the 30 min reaction was already satisfying (Figure 
5.6). 

Figure 5.6 TG curves of SmCl3@SWCNT-B2, phthalimide-functionalized CNTs 21 and 22 obtained by MW-

assisted nitrene reaction with 60 and 30 min reaction time. Weight loss values taken at 650 °C. 

For precaution we also performed a blank reaction, by irradiating in the same conditions a dispersion of 

pristine SmCl3@SWCNTs without the azide, and observed by TGA only a minimal increase of weight 

loss. This suggests that no side-reaction was occurring, and also that there was no leakage of the filling 

material. We then carried out a short screening of the reaction conditions by performing the nitrene 

cycloaddition on empty SWCNTs under MW irradiation (Table 5.6). It is evident that both temperature 
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and time affect the reaction output, and that a duration of 30 min is sufficient to achieve sufficient degrees 

of functionalization. Hence, MW irradiation is a valuable option for the functionalization of filled CNTs. 

Sample 

Name
p-CNTs 

Temperature 

(°C)

Time 

(min)

K.T. loading † 

(�mol/g) 

TGA loading †*

(�mol/g) 

21 SmCl3@SWCNTs 220 60 135 (164) 654 (796) 

22 SmCl3@SWCNTs 220 30 104 (127) 487 (593) 

23 SWCNTs 160 60 144 624 

24 SWCNTs 180 60 92 604 

25 SWCNTs 180 30 107 628 

26 SWCNTs 220 60 199 517 

Table 5.6 Functionalization loadings determined by K.T. and TGA for MW-assisted nitrene reactions performed 

on SmCl3@SWCNT-B2 and SWCNT-B2. Reactions were performed in dry NMP with an initial power of 100 W. 

†In parenthesis, loading values expressed as �mol/g of carbon, calculated on the basis of the filling yield. 

*Loadings calculated before Pht cleavage. 

During the course of these investigations, our partner in Barcelona succeeded in preparing a batch of 

shorter SWCNTs filled with LuCl3 (LuCl3@SWCNT–S, where S stays for ‘short’), featuring an average 

length of 530 nm (Table 5.10). It is commonly recognized that shorter nanotubes are more suitable for 

bioapplications, especially in drug delivery. After having proved the reactivity of this batch toward 

nitrene reaction, we carried out an optimization screening study on this type of CNTs (Table 5.7). For 

each time point, the experiment was repeated twice, to study the reproducibility of the reaction. The 

results show that the variability upon repetition is small, in agreement with what is typically found with 

CNTs. Upon reduction of the reaction time, the degree of functionalization did not vary linearly. The 2-

hour reactions (31 and 32) afford a discrete degree of functionalization according to the Kaiser test, 

however, the 6-hour conditions was the best compromise between time and loadings. 

Sample 

Name

Temperature 

(°C)

Time 

(h)

K.T. loading 

(�mol/g) 

TGA loading*

(�mol/g) 

27 200 12 97 597 

28 200 12 126 762 

29 200 6 115 624 

30 200 6 108 539 

31 200 2 71 379 

32 200 2 96 538 

33 190 6 146 625 

Table 5.7  Functionalization loadings determined by K.T. and TGA for nitrene reaction performed on 

LuCl3@SWCNT-S. *Loadings calculated before cleavage. 

Taking into account all screening experiments, we remarked that there are significant differences in the 

average loadings achieved with each batch of pristine CNTs, and that the optimal reaction conditions 

might be slightly different from one batch to the other. As a general conclusion, we observed that 

reactions performed at 200 °C for 12 hours usually afforded good degree of functionalization and that the 
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reaction time can in principle be reduced to 6 hours without decreasing much the final loading. We 

furthermore proved that microwaves are a valuable option for the functionalization of filled CNTs in very 

short times, and their employment with irradiated material would be advantageous to reduce the total 

preparation time. 

Optimization of phthalimide cleavage

So far, the cleavage of the phthalimide protecting group has been carried out by stirring an ethanol 

dispersion of CNTs with 10% v/v hydrazine hydrate overnight. We explored the possibility to reduce the 

time necessary for an efficient deprotection by running the reaction for 2, 6 and 12 hours. The amine 

loading determined by Kaiser test was 146 �mol/g, 136 �mol/g and 149 �mol/g, respectively. These 

results evidenced that 2 hours are sufficient to achieve deprotection.  

Optimization of work-up procedure

The work-up after nitrene reaction consists in filtration and washing in different solvents, with sonication 

steps of 10-15 minutes in a water bath. We investigated the possibility to avoid dialysis that we had so far 

performed after the nitrene reaction to remove the adsorbed TEG chain. Of two aliquots of Pht-

functionalized short LuCl3@SWCNTs, one was submitted to dialysis and the other not. Kaiser test after 

phthalimide deprotection gave a loading of 108 �mol/g for the dialyzed sample and 96 �mol/g for the 

non-dialyzed. This result suggests that dialysis is not fundamental, and thorough washing steps are 

sufficient to remove adsorbed organic compounds. 

5.3 CONJUGATION OF A TARGETING ANTIBODY

Our biologist partner at KCL in London have been studying a tumor model that overexpresses epidermal 

growth factor receptor (EGFR). The EGFR is a plasma membrane receptor that regulates multiple cellular 

processes and it is overexpressed in many cancer types such as metastatic colorectal cancer and advanced 

squamous cell carcinoma of the head and neck.
[35]

 Cetuximab (Erbitux®) is a chimeric monoclonal 

antibody (mAb) able to efficiently target and inhibit the EGFR. It has been approved for clinical use in 

the treatment of advanced chemo-refractory cancers such as colorectal cancer, non-small-cell lung cancer, 

head and neck cancer.
[36–38]

 The conjugation of radionuclides to Cetuximab via metal chelation has been 

already investigated with the goal of enhancing its therapeutic efficacy and achieve simultaneous tumor 

diagnosis and treatment.
[39]

 The anchoring of Cetuximab to CNTs has also been already reported
[40–42]

 to 

provide targeting properties to CNTs used as carrier. However, to the best of our knowledge, no example 

of radioactivity delivery by means of Cetuximab-labeled CNTs has been ever reported. It seemed to us 

very interesting to exploit the high targeting efficiency of this mAb to direct our CNT radioactivity carrier 

to specific tumor tissues. 
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5.3.1 FIRST STRATEGY

In our group, small antibodies and proteins had been previously conjugated to CNTs by a maleimide 

linker (cf. Chapter 3 or ref. [43]). We thus designed a synthetic strategy to covalently tether Cetuximab 

onto amino-functionalized CNTs via a maleimide linker. We performed a scale-up of nitrene reaction on 

Sm-filled long SWCNTs and finally obtained SmCl3@SWCNT-NH2 (34-NH2) with an amine loading of 

293 �mol/g. A previously synthesized maleimide linker (N-succinimidyl 3-maleimidopropionate) was 

then coupled to the amino groups by amidation, affording conjugate 34-mal (Scheme 5.10). By Kaiser 

test the amount of free amines was 65 �mol/g, which, by difference corresponds to a loading of 

maleimide of 228 �mol/g. 
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Scheme 5.10 Derivatization of amino-functionalized CNTs with the maleimide linker and subsequent coupling 

with thiolated Cetuximab. 

The double bond of the maleimide is very reactive toward sulfhydryl groups, which are generally present 

in proteins in the form of cysteine disulfide bonds. However, for an efficient reaction the protein should 

display a certain number of free thiols, and these should be easily accessible. Because we did not know 

whether Cetuximab displayed any free and accessible thiol group, we decided to generate thiol moieties 

by derivatization of the amine residues with the commonly used Traut’s reagent (2-iminothiolane) 

(Scheme 5.10).
[44,45]

 The thiolated Cetuximab was then reacted with conjugate 34-mal by shaking the 

two reagents for 1 h at r.t. After centrifugation and removal of the supernatant, the re-dispersed CNTs 

were thoroughly dialyzed to remove the adsorbed antibody. The final conjugate (34-mal-Ab) was 

characterized by TGA and gel electrophoresis (Figure 5.7). By comparing the thermographs of 34-mal-

Ab with that of the maleimide precursor we estimated the loading of Ab to be 44 mg/g, which is not very 

high. We performed gel electrophoresis of the compound under non-reducing and reducing conditions. 

Under reducing conditions, the addition of �-mercaptoethanol to the sample denatures the protein by 

reducing the disulfide bonds. In this way, the quaternary protein structure is broken and the subunits 

migrate independently through the gel. In non-reducing conditions the band of Cetuximab can be 
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visualized at the corresponding size position (ca. 150 kDa), while in reducing conditions bands of the 

protein fragments appear at ca. 55 and 36 kDa (Figure 5.7). For the CNT conjugate we could not detect 

the bands relative to the antibody under reducing conditions, although the amount of CNTs loaded in the 

well was relatively high (50 �g). This could be explained by the fact that the amount of Ab attached to the 

nanotubes was very low, and gel electrophoresis may not be sufficiently sensitive to allow the detection 

of the Ab at the employed concentration.  

  

Figure 5.7 (Left) TG curves of pristine SmCl3@SWCNT-B3 and conjugates 34-Pht, 34-mal and 34-mal-Ab. 

(Right) Gel electrophoresis of Cetuximab and 34-mal-Ab run under non-reducing (+) and reducing conditions (-) 

at 150 kV. Gel stained with Coomassie blue. Protein size marker on lane 1 (size in kDa). 

The causes of this low degree of functionalization could be attributed to the fact that the thiolation of 

Cetuximab was probably not very efficient, and only a low amount of thiol groups might have been 

introduced on the antibody. We decided to discard this strategy and study a different approach to append 

Cetuximab onto the CNTs. 

5.3.2 SECOND STRATEGY

In a recent report, Bonifazi and co-workers succeeded in conjugating Cetuximab to functionalized 

MWCNTs by EDC-assisted amidation between carboxylic groups on the antibody and amino groups 

present on the CNTs.
[40]

 Molecular dynamics simulations of the structure of Cetuximab also revealed that 

40% of carboxylic acids are buried in the mAb’s tertiary structure, while the remaining 60% is 

homogenously distributed on the outer surface and therefore potentially reactive toward amidation 

reactions with amines. As our functionalized CNTs do also display free amino groups on the sidewalls, 

we decided to adopt their protocol to anchor Cetuximab directly by its carboxylic groups. Besides, this 

approach would allow to achieve the final conjugate with one step less compared to our first strategy. The 

previously synthesized amino-functionalized SmCl3@SWCNTs 19-NH2 (amine loading of 90 �mol/g) 

were incubated for 24 h with Cetuximab in the presence of EDC and sulfo-NHS (NHSS) in buffer 

conditions (Scheme 5.11Scheme 5.1). Since proteins can have a strong affinity for CNTs, we carried 

out a control reaction to check if non-covalent immobilization of the antibody also occurred. Conjugate 
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19-NH2 was mixed with Cetuximab in the absence of coupling reagents (Scheme 5.11), under the same 

conditions of the covalent reaction. 

EDC, NHSS
MES buffer pH 7.4

MES buffer
pH 7.4

19 -NH2 19 -Ab19 / Ab

N

O O

NH2

N

O O

NH2

N

O O

H
N

O

Scheme 5.11 Covalent derivatization of 19-NH2 with Cetuximab (19-Ab) and control reaction in the absence of 

coupling reagents (19/Ab). 

By comparing the weight loss of 19-Ab (obtained by covalent amidation) with that of 19-NH2, we 

estimated that the loading of antibody on CNTs was 250 mg/g, which is sensibly higher than that obtained 

in the previous approach (Figure 5.8). However, the TG curve of the non-covalent conjugate (19/Ab) 

also displayed a significant weight loss (20% over 19-NH2), which corresponds to a loading of mAb of 

200 mg/g. This result suggests that a non-negligible amount of antibody was absorbed on the CNTs and 

was not removed despite the thorough washing and dialysis steps. To further quantify the concentration of 

Cetuximab in the covalent conjugate, we performed bicinchoninic acid (BCA) protein assay, which is a 

very sensitive colorimetric assay commonly employed for the quantification of proteins.
[46]

 This test is 

based on the reduction of copper (II) ions by the amino acid residues and consequent formation of a 

colored chelate complex with bicinchoninic acid. The amount of Cu
2+

 reduced is proportional to the 

amount of protein present in the solution. The concentration of Cetuximab on 19-Ab determined by BCA 

was124 mg/g of samples. As well as for TGA, in this result the contribution of non-covalently attached 

Ab cannot be excluded. 

   

Figure 5.8 (Left) TG curves of pristine SmCl3@SWCNTs-B2 and conjugates 19-NH2, 19-Ab and 19/Ab. (Right) 

Gel electrophoresis of Cetuximab, 19-Ab and 19/Ab run under non-reducing (+) and reducing conditions (-) at 

150 keV. Gel stained with Coomassie blue. Protein size marker on lane 1 (size in kDa). 
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The mAb immobilization was then evaluated by gel electrophoresis for both 19-Ab and 19/Ab under non-

reducing and reducing conditions (Figure 5.8). In non-reducing conditions, for the non-covalent 

conjugate 19/Ab the band of the unbound Cetuximab is clearly visible at the corresponding size position 

(150 kDa). Whereas, for the covalent conjugate (19-Ab), we can only see a shadow in correspondence to 

the mAb position. This suggests that most of Cetuximab is covalently bound to the CNTs, although the 

presence of a small amount of non-conjugated mAb cannot be excluded. Under reducing conditions, the 

breakage of the antibody structure into heavy and light chains results in two bands at ca. 25 and 50 kDa. 

These are visible for the non-covalent conjugate (19/Ab), while they are barely detectable for 19-Ab. 

Considering TGA and BCA loading values, we would have expected to see more intense bands for 

compound 19-Ab under reducing conditions. We can speculate that either the reduction operated by �-

mercaptoethanol was not very efficient, or that the part of mAb covalently attached to the CNTs is not 

released upon reduction and is therefore not migrating. 

5.3.2.1 Immunostaining 
We further characterized the antibody-CNT conjugates by electron microscopy, performing an 

immunostaining with a secondary antibody conjugated with gold nanoparticles (AuNPs). This experiment 

has the double goal of allowing to visualize the Cetuximab attached to the CNTs and to prove its ability 

to recognize a specific anti-antibody. The antibody-functionalized conjugate 19-Ab and the control 

reaction 19/Ab were stained with an anti-human IgG linked with colloidal AuNP (15 nm diameter), able 

to recognize Cetuximab (a human IgG). As a further control, the same samples were separately stained 

with an anti-rabbit IgG/AuNP (15 nm), which instead is not specific toward human IgGs. By TEM 

imaging of 19-Ab stained with anti-human IgG/AuNP, a multitude of black dots corresponding to the 

AuNPs were visible all along the CNTs (Figure 5.9). In the dark-field STEM images it is possible to 

distinctly recognize both the AuNPs as bright big dots, and the samarium-filling. Almost no AuNP are 

visible in the images corresponding to 19-Ab incubated with the anti-rabbit IgG, proving that there is no 

unspecific binding between this secondary antibody and Cetuximab, neither adsorption of the IgG onto 

the CNTs. Interestingly, for the non-covalent conjugate (19/Ab) we did not observe any specific labeling 

of the secondary anti-human IgG, as if no adsorbed Cetuximab was present on the CNTs (Figure 5.9). 

Further characterization of 19-Ab stained with anti-human IgG was performed by EDX analysis and EDX 

elemental mapping, confirming the presence of both Au and Sm, and their location in the analyzed area 

(Figure 5.10). By this immunostaining experiment we could therefore prove that Cetuximab was 

efficiently immobilized on the Sm-filled CNTs and that its affinity toward an appropriate secondary 

antibody was preserved upon conjugation. 
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Figure 5.9  TEM images (top raw) and dark-field STEM images (bottom raw) of conjugate 19-Ab after staining 

with anti-human and anti-rabbit IgG/AuNP, and of conjugate 19/Ab after staining with anti-human IgG/AuNP. 

STEM images were collected by Elzbieta Pach and Dr. B. Ballesteros from ICN 2 (Barcelona). 

Figure 5.10  Dark-field STEM images of conjugate 19-Ab after staining with anti-human IgG/AuNP. (Top) EDX 

analysis of the area in the red rectangle. (Bottom) STEM HAADF image, Au and Sm mapping of the area in the 

orange rectangle by EDX. Images and analysis collected by Elzbieta Pach and Dr. B. Ballesteros from ICN 2 

(Barcelona). 
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5.3.2.2 Biological evaluation 
The synthesized CNT-Ab conjugate was then tested in vitro and in vivo by Dr. Aritz Pérez from our 

group. To achieve a comparative view of the biological profile of the conjugate 19-Ab, we also tested the 

non-covalent conjugate 19/Ab, the amino-functionalized precursor 19-NH2, and a sample of empty 

amino-functionalized SWCNTs (9-NH2) obtained by nitrene reaction. The latter sample was employed in 

the experiments to verify whether empty and filled SWCNTs displayed a different behavior. A number of 

experiments have been carried out to assess the toxicological profile, biocompatibility, uptake and 

targeting ability of the CNT conjugates. However, herein we will only describe the most relevant 

experiments and discuss the obtained results. 

Cell viability and pro-inflammatory response 

We first investigated the cytotoxicity of the synthesized compounds on RAW264.7 cells, which 

correspond to a cell line of murine macrophages. Macrophages are involved in the immune response and 

thus the employment of this type of cells allows to study both the cytotoxic effects and the inflammatory 

response that could be caused by CNTs. RAW264.7 cells were treated with the CNT conjugates at 

different concentrations and after 24 hours of incubation, the number of viable cells was calculated by 

flow cytometry. From Figure 5.11 we can see a significant decrease of cell viability only for 19/Ab at 

high concentrations. Nevertheless, the percentage of viable cells remains around 70%.  

  

Figure 5.11 Cell viability after 24 hour incubation with 9-NH2, 19-NH2, 19-Ab and 19/Ab at different 

concentrations (1, 10, 25, 50 and 100 �g/ml). Red bars represent the positive (non-treated cells) and negative 

(DMSO 20%) controls. Error bars for standard deviation (n=4). *p < 0.05 with respect to non-treated cells. 

Furthermore, the levels of interleukin-6 (IL6) and TNF� present in the cell supernatant were determined 

to evaluate the inflammatory response. IL6 and TNF� are two cytokines whose secretion is enhanced 

during cell activation for an immune response. In Figure 5.12 we can observe relevant levels of 

cytokines for cell treated with high concentration of the CNT-Ab conjugates (covalent and non-covalent), 

compared to untreated cells and amino-functionalized CNTs. This suggests that the two compounds 

probably trigger an acute immune response. Nevertheless, the amount of cytokines for 19-Ab and 19/Ab

is considerably lower than that in the positive control. 
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Figure 5.12  Graphs representing the amount of IL6 (left) and TNF� (right) produced by RAW264.7 cells after 24 

hour incubation with 9-NH2 , 19-NH2, 19-Ab and 19/Ab at different concentrations (1, 10, 25, 50 and 100 �g/ml). 

Red bars represent the positive (non-treated cells) and negative (LPS+IFN�) controls. Error bars for standard 

deviation (n=4). *p < 0.05 with respect to non-treated cells.

Both cell viability and cytokine measurements demonstrate the absence of remarkable toxic effects 

caused by the CNT samples toward RAW264.7 macrophages. A slight increase of the cytotoxicity could 

be observed at high concentrations only for the conjugates presenting the antibody. However, the 

behavior of the Ab-conjugates (19-Ab, 19/Ab) does not differ much from that of the amino-

functionalized CNTs (empty or filled). 

These compounds were also tested in human peripheral blood mononuclear cells (PBMC), affording 

similar outcomes (data not shown). Furthermore, a group of mice was injected with 150 �g of either 19-

NH2, 19-Ab or 19/Ab. In every case, no acute immune response (1, 7 or 13 days after injection) was 

observed, demonstrating the biocompatibility of our functionalized CNTs also in vivo (data not shown). 

Uptake and binding: evaluation by flow cytometry 

As previously mentioned, Cetuximab can target the EGFR which is overexpressed by many cancer cells. 

In order to verify the ability of 19-Ab to effectively target the EGFR and be taken up by the cells, we 

tested it on two different cell lines: U87 glioblastoma cells overexpressing the EGFR (U87-EGFR+) and 

CHO (Chinese hamster ovary) cells, which do not express EGFR. As the CHO cells do not exhibit the 

EGFR, they are intended to work as a negative control for the targeting, and they should therefore not 

internalize the Ab-CNTs. Both type of cells were separately incubated with 19-Ab, 19/Ab and 19-NH2

for 1, 3 and 24 hours. Afterwards, the cells were incubated with a secondary anti-human IgG labeled with 

Cy3 and specific toward Cetuximab. This allowed the assessment of the uptake by flow cytometry. From 

the obtained results (Figure 5.13), it is clear that no uptake occurred in CHO cells, whereas the U87 cells 

were able to internalize Cetuximab alone and both Ab-CNT conjugates (covalent and non-covalent), even 

after 1 h incubation. Looking at the percentages for the U87 cells, we can see that almost the totality of 

the cells have taken up nanotubes. For the CHO cells instead, the amount of cells that internalized the 

different tested CNTs is below 10%. Furthermore, no internalization of the amino-functionalized CNTs 

(19-NH2) was observed, highlighting the targeting efficiency provided by the presence of Cetuximab onto 

CNTs. Both the absence of internalization of 19-NH2 and the low uptake levels in CHO cells demonstrate 

the ability of the Cetuximab-functionalized CNTs to specifically bind and target cells that overexpress the 

EGFR. 
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Figure 5.13 Bars represent the % of Cy3 positive cells in CHO cell line (left) or U87 cells (right) after the 

treatment for 1, 3 or 24 hours with each of the CNTs tested (19-NH2 , 19-Ab and 19/Ab) at 10 �g/ml. 

From the same experiment, it was also possible to assess the mean fluorescence intensity in U87 cells, 

which is representative of the number of CNTs that were internalized by each cell (Figure 5.14). This 

quantification is an indirect estimation of the amount of compound inside one cell. While the graphs in 

Figure 5.13 shows the number of cells that internalized nanotubes, Figure 5.14 indicates how many 

CNTs have been internalized by one cell. The more the band is shifted to the right, the higher the mean 

fluorescence within the cell, and thus the internalized compound. 

Figure 5.14 Histograms representing the mean fluorescence intensity in U87 cells after incubation with 10 �g/ml 

CNTs (19-NH2, 19-Ab and 19/Ab) or 2.5 µg/ml of Cetuximab for 1 (left), 3 (middle) and 24 hours (right).

Also in this case, we can remark a strong difference between 19-NH2 and the Ab-conjugates, 19-Ab and 

19/Ab. Only a small difference can be observed between the covalent and non-covalent conjugates for 

longer incubation time. After 24 hour incubation, the band of 19-Ab appears shifted to the right, 

signifying that its internalization is slightly enhanced compared to 19/Ab. These results are in agreement 

with the previous ones, showing a good level of internalization of both 19-Ab and 19/Ab. The level of 

uptake is almost equal for the two conjugates, suggesting that the amount of antibody attached to the 

CNTs (either covalently or not) is similar, which is in agreement with the TGA results. The precursor 

conjugate devoid of Cetuximab (19-NH2) is instead not internalized, as expected. 

Uptake and binding: evaluation by elemental analysis 

Considering that the synthesized conjugates are filled with metal ions (samarium), we exploited 

inductively coupled plasma atomic emission spectrometry (ICP-AES) to get a further proof of the CNT 

uptake by the cells. By this technique it is in fact possible to determine the samarium content in a given 

sample, which is an indirect measurement of the extent of CNTs that have been internalized. By 
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comparison of the samarium content found in CHO and U87 cells after 24 hour incubation with 19-Ab, 

we can affirm that the uptake of nanotubes was higher in the case of U87 cells (Table 5.8). A certain 

amount of Sm was found also in the CHO cells, suggesting that a small degree of non-specific uptake 

occurred. However, the values of Sm content per cell clearly highlight that U87 cells were more efficient 

in internalizing the CNTs, proving the targeting ability conferred by Cetuximab. These outputs confirm 

once more the results obtained by flow cytometry and show the targeting efficiency of the synthesized 

conjugates. 

Cell line Entry Sm (pg/cell)

CHO Ø < 0.10 

CHO 19-Ab 1.59 ±  0.04 

U87 Ø < 0.10 

U87 19-Ab 5.60 ±  0.08 

Table 5.8 ICP-AES results indicating the Sm content in CHO and U87 cells after incubation for 24 hours with 19-

Ab (25 �g/ml) or without (Ø for untreated cells). 

5.3.3 FLUORESCENCE LABELING

To further investigate the interactions of CNTs with cells and assess the internalization mechanism, we 

decided to derivatize the amino-functionalized CNTs with a fluorescent tag, such as cyanine 5 (Cy5) and 

fluorescein isothiocyanate (FITC). By amidation reaction of CNTs 20-NH2 we prepared two different 

fluorescently-labeled conjugates: 20-Cy5 and 20-FITC (Scheme 5.1).  

Scheme 5.12 Labeling of 20-NH2 with Cy5 (left) and with FITC (right). 
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The carboxylic group of Cy5 was preliminarily activated with N,N,N�,N�-tetramethyl(succinimido) 

uronium tetrafluoroborate (TSTU), in the presence of DIEA to form the corresponding NHS.
[47]

 The 

coupling of Cy5-NHS with the amino group onto CNTs was then performed in situ. The reaction between 

the isothiocyanate of FITC and the amino groups of 20-NH2 occurred instead without addition of 

coupling reagents. By comparison with the precursor, the loading of dye determined by Kaiser test was 

109 �mol/g for 20-Cy5 and 102 �mol/g for 20-FITC, while the weight increase estimated by TGA 

corresponded to a dye loading of 71 �mol/g and 87 �mol/g, respectively (Figure 5.15). The results 

obtained by Kaiser test and TGA were in good agreement. It is worth to note that both reactions afforded 

a similar loading of fluorescent dye. 

Figure 5.15 TG curves of pristine SmCl3@SWCNTs and conjugates 20-NH2, 20-Cy5 and 20-FITC. 

After excitation at the specific wavelengths (620 nm for Cy5, 470 nm for FITC), the conjugates showed 

an intense fluorescence emission (data not shown). Nevertheless, upon incubation of the two conjugates 

with cells, it was not possible to clearly detect fluorescence in the cells, even using high concentrations of 

CNTs. We hypothesized that, despite being the CNTs fluorescently labeled, the total amount of dye was 

not sufficient to detect their fluorescence in vitro. Another hypothesis is that fluorescence quenching may 

occur due to aggregation of the CNTs in the cellular media, or due to charge transfer between the dye and 

the CNTs. 

To increase the loading of dye on the CNTs and prevent the quenching, we designed a different strategy 

based on the conjugation of a labeled antibody onto the CNTs. Antibodies are in fact commonly labeled 

with fluorescent molecules to study their behavior in vitro and in vivo. Usually, proteins are labeled with 

fluorophores by amidation between the primary amino groups of the amino acid residues and the NHS-

ester of the fluorophore.
[48]

 By attaching the dye to the amine groups of Cetuximab and then tethering the 

labeled Cetuximab to the CNTs via the carboxylic groups, we can exploit non-competing binding sites of 

the antibody and in principle multiply the amount of fluorescent probes on the CNTs. With this strategy, 

we could moreover mimic the previously synthesized Ab-conjugate and further assess its biological 

profile. After pre-activation of Cy5 to introduce the reactive NHS-ester, we accomplished the labeling of 

Cetuximab with Cy5 by coupling reaction (Scheme 5.13). The labeled antibody (Ab-Cy5) was 

thoroughly purified by size-exclusion chromatography and dialysis, to remove unreacted mAb and Cy5. 
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The degree of labeling (DL) estimated by UV-Vis spectroscopy was 4.4, meaning that an average of 4.4 

molecules of Cy5 was bound to one molecule of Cetuximab. 

Scheme 5.13 Multi-labeling of Cetuximab with Cy5. 

The Ab-Cy5 was then coupled to short LuCl3@SWCNTs previously functionalized by the nitrene 

reaction (33-NH2). We concomitantly investigated the possibility to optimize the reaction conditions with 

the aim to shorten the reaction time and work-up steps. CNTs 33-NH2 were incubated with Ab-Cy5 for 2, 

6 and 24 h, following the same protocol used for the preparation of 19-Ab (Scheme 5.14). For all time 

points, the corresponding control reaction (without coupling reagents) was performed simultaneously, and 

all conjugates were treated and purified in the same conditions. During the washing steps (centrifugation, 

supernatant removal and CNT re-dispersion), it was possible to verify the thorough removal of non-

reacted mAb by UV-Vis spectroscopy, thanks to the intense UV absorption of Cy5 on the Ab. 

Furthermore, to assess if dialysis was necessary, one aliquot of the 24 h reaction was submitted to dialysis 

against PBS, while another aliquot was not dialyzed.  

Scheme 5.14 Covalent derivatization of 33-NH2 with labeled Cetuximab (Ab-Cy5) and control reaction in the 

absence of coupling reagents (33/Ab-Cy5).

By TGA, we did not observe significant differences between the covalent reaction and the control sample 

for all time points, meaning that there is a strong adsorption of the antibody on the CNTs (Figure 5.16
and Table 5.9). In addition, the loadings calculated for all time points were very similar between each 

other, highlighting no difference between short and long incubation times. The effect of dialysis was also 

not significant. It is however worth to remark, that prior to TGA, all samples were dialyzed against water 

for 2 days. This step is fundamental to remove the salts present in the buffer, which would otherwise 

substantially affect the TGA outputs. As a consequence, part of the non-covalently bound Ab could have 

been removed from all samples. 
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Figure 5.16 Example of TGA graph showing the curves of pristine LuCl3@SWCNTs, conjugates 33-NH2, and 

conjugates 33-Ab-Cy5 and 33/Ab-Cy5 obtained after 24 h incubation and dialyzed against PBS. 

The BCA assay used to determine the protein concentration gave similar outputs as TGA. There is indeed

no specific trend in the loadings of the different incubation time points, neither differences between 

covalent and non-covalent reactions (Table 5.9). 

2 h 6 h 24 h

dialyzed 

24 h 

non-dialyzed     

TGA BCA TGA BCA TGA BCA TGA BCA 

33-Ab-Cy5 175 408 189 557 179 379 194 673 

33/Ab-Cy5 193 408 177 672 189 462 189 693 

Table 5.9  Functionalization loadings determined by TGA (mg/g) and BCA (mg/g) for compounds 33-Ab-Cy5 and 

33/Ab-Cy5 after different incubation times, with and without coupling reagents, respectively. 

Finally, all conjugates were analyzed by gel electrophoresis under non-reducing and reducing conditions 

(Figure 5.17). For the non-reducing conditions, we can observe a difference at the 24 h time point 

between the covalent conjugate and the corresponding control. In fact, for the covalent conjugate, the 

band of the antibody is not really intense, while it appears clearly under reducing conditions. This results 

confirms that the mAb is covalently attached to the CNTs.  

Figure 5.17  Gel electrophoresis under non-reducing (left) and reducing conditions (right) at 200 kV showing 

Cetuximab (Ab), labeled Cetuximab (Ab-Cy5) and conjugates 33-Ab-Cy5 and 33/Ab-Cy5 at the different time 

points and at 24 h non-dialyzed (n.d.). Starred lanes correspond to the control conjugates 33/Ab-Cy5 at the same 

time point. Gel stained with Coomassie blue. Protein size marker on the first lane (size in kDa). 
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The same behavior can be seen for the non-dialyzed conjugates (covalent and control), suggesting that 

dialysis is unnecessary. From gel electrophoresis we can also conclude that incubation times longer than 6 

h are necessary to achieve a certain extent of covalently attached antibody. Indeed, only non-covalent 

interaction is observed for shorter time points (2 and 6 h), for both covalent and non-covalent reactions. 

However, the employed purification protocols (multiple centrifugation and dialysis) are not sufficient to 

totally remove the adsorbed mAb. 

5.3.3.1 Biological evaluations 

Assessment of the uptake mechanism 

These newly synthesized fluorescent compounds represented a useful tool to analyze the internalization

mechanism of the CNTs. In fact, the presence of the fluorescent tag on the CNTs allows both to visualize 

their intracellular distribution by confocal microscopy, and to quantify the extent of internalization by 

flow cytometry. The cellular internalization of CNTs can occur by two different mechanisms.
[49]

Nanotubes can reach the cytoplasm by active endocytosis or through a passive way, also known as 

“nanoneedle” mechanism.
[49]

 To elucidate the internalization mechanism, cells were incubated with 

fluorescent CNTs (33-Ab-Cy5 and 33/Ab-Cy5 from the 24 h time point) at two different temperatures: 4 

°C and 37 °C. At low temperatures (i.e. 4 °C), the active cellular mechanisms are blocked, therefore only 

passive diffusion can occur. This experiment was performed on both CHO and U87 cells, to assess also 

the targeting properties of the conjugates. From the results obtained by flow cytometry (Figure 5.18), it 

is evident that the uptake of CNTs was significantly lower in CHO cells compared to U87 cells for both 

conjugates. Moreover, for the U87 cells, the uptake reaches 100% of cells already at 10 �g/mL. 

Therefore, both 33-Ab-Cy5 and 33/Ab-Cy5 display good targeting properties toward EGFR and the 

targeting efficiency of Cetuximab has not been compromised by the conjugation on the CNTs and the 

labeling. In the case of U87 cells, no significant difference can be observed between the incubation at 4 

°C or 37 °C.  

Figure 5.18  (Left) Bars represent the % of Cy5 positive cells in CHO or U87 cells after 2 hour incubation with 

33-Ab-Cy5 and 33/Ab-Cy5 (obtained after 24 h incubation) at 1, 10 and 25 �g/ml either at 4 °C or at 37 °C. Error 

bars represent standard deviation (n=3). **p <0.01 with respect to U87 cells. (Right) Example of histogram 

representing the mean fluorescence intensity of CHO and U87 cells after 2 hour incubation with 33-Ab-Cy5 at 25 

�g/ml at 4 °C and at 37 °C.
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Since endocytosis is blocked at 4 °C, these results suggest that CNTs enter the cells by a passive 

mechanism. On the contrary, in CHO cells, CNTs seem to enter via an active mechanism, as 

representative levels of cellular internalization are detected only at 37 °C. Interestingly, this indicates that 

different types of cells adopt different mechanisms toward the internalization of CNTs. Looking at the 

quantity of CNTs internalized by the cells (Figure 5.18 -rightside), the difference between CHO and U87 

clearly stands out, meaning that only a small amount of CNTs have been taken up by CHO cells, with a 

slightly increase at 37 °C. Finally, no differences can be detected between the covalent and the non-

covalent conjugates (33-Ab-Cy5 and 33/Ab-Cy5), and the percentage of cells that took up the CNTs 

(Figure 5.18) as well as the mean fluorescence intensity (data not shown) are similar for both conjugates. 

These results are in agreement with the data obtained by TGA and BCA (Table 5.9), suggesting that a 

similar amount of antibody is present on the CNTs, either covalently bound or simply adsorbed. 

Intracellular distribution 

The functionalization of CNTs with a fluorescently-labeled antibody allowed to study the localization of 

CNTs within the cells by means of confocal microscopy. Conjugates 33-Ab-Cy5 and 33/Ab-Cy5 were 

incubated with CHO and U87 cells for 2 hours. From the microscopy images in Figure 5.20, a higher 

amount of CNTs can be seen inside U87 cells in comparison to CHO cells, although there is no 

significant difference between the two conjugates. By this experiment it was possible to have a visual 

proof of the targeting ability of the synthesized compounds, whose uptake is sensibly higher in U87 cells. 

However, we could not exactly determine whether the nanotubes were inside the cells or only localized 

on the membrane (where the EGFR is). For a better comprehension, a colocalization experiments is 

planned, where the plasma membrane is as well stained. 

Figure 5.19  Fluorescence images of CHO and U87 cells treated for 2 hours with 33-Ab-Cy5 and 33/Ab-Cy5 (25 

�g/ml) at 37 °C. Red color corresponds to the Cy5 on CNTs, while blue represents the stained nuclei.
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5.3.4 FUNCTIONALIZATION OF RADIOACTIVE FILLED CNTS

Along our investigations we have been mainly working with SWCNTs, and the tested filled tubes were 

only SWCNTs. In fact, for MWCNTs, while the large internal diameter facilitates the filling process, it 

hampers the tip closure. Very recently, the ICMAB partner succeeded in preparing a batch of short sealed 

and filled MWCNTs (SmCl3@MWCNTs). They then filled both SWCNTs and MWCNTs with 152-

enriched samarium, which is the suitable isotope leading to 
153

Sm after irradiation. Due to short-timing 

with the planned irradiation dates, we could not perform thorough preliminary investigations on these 

batches. The sample of 
152

SmCl3@MWCNTs was irradiated in IBA facilities (Saclay), and an aliquot was 

sent to KCL (London) for functionalization and animal studies. The hot material (950 MBq) was diluted 

with cold SmCl3@MWCNTs of the same batch (to reach an injectable amount) and submitted to 

functionalization by nitrene reaction followed by antibody conjugation, using the best reaction protocols 

(nitrene reaction: 200 °C, 6 h; deprotection: 2h; mAb coupling: 24 h). Aliquots of CNTs were taken apart 

after each step to allow characterization after decay. The final conjugates were then injected in mice 

inoculated with lung tumor, to assess the therapeutic effect. To evaluate the biodistribution of the 

compounds and its targeting ability, another aliquot of the radioactive functionalized CNTs were injected 

in mice bearing lung tumor, glioma tumor or subcutaneous melanoma, and in tumor-free mice. The 

interpretation of the data obtained by these studies is still in progress. The irradiation of 
152

SmCl3@SWCNTs and subsequent functionalization will be planned in the future weeks, according to 

the reactor availability at IBA. 

5.4 CONCLUSIONS

Within the RADDEL project we have investigated the reactivity of different types of empty and filled 

carbon nanotubes toward two [2+1] cycloaddition reactions, i.e. Bingel reaction and nitrene reaction. 

Bingel reaction was carried out using a phthalimide protected malonate and the corresponding 

bromomalonate as precursors, but did not afford functionalization for any of the employed pristine CNTs. 

The reaction was explored also at higher temperatures, by MW-irradiation and with a Boc-protected 

malonate, but all attempts were unsuccessful according to Kaiser test after amine deprotection, Raman 

spectroscopy and TGA. It was instead possible to achieve good degrees of CNT functionalization by 

nitrene cycloaddition, starting from an organic azide precursor bearing a Pht-protected amino group. The 

presence and availability of the amine functionalities onto CNTs toward further derivatization was 

confirmed by microscopy imaging after coupling with a triiodophenyl motif. An optimization survey was 

carried out to reduce the time of the synthetic steps leading to the amino-functionalized conjugates. This 

investigation evidenced that the best compromise between time and loading was to perform nitrene 

reaction at 200 °C for 6 h in NMP, while the phthalimide deprotection can be efficiently achieved after 2 

h hydrazine-treatment. Besides, MW-assisted nitrene reaction can be a valuable option to afford good 

loading in very short time (30-60 min). The dialysis of the conjugates after cycloaddition can also be 

avoided, provided that thorough washing steps are carried out. We then explored different strategies to 

achieve the derivatization of amino-functionalized CNTs with Cetuximab, an antibody that targets the 
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EGFR. The first approach using the maleimide linker did not lead to high loading of mAb as we could not 

detect the band of the antibody by gel electrophoresis. We therefore investigated a different and shorter 

conjugation strategy, which involved the coupling of the amino groups on CNTs to the carboxylic groups 

of the antibody. The reaction afforded Sm3Cl@SWCNT-Ab (19-Ab) with higher loading of mAb. In the 

control compound (19/Ab), obtained by performing the reaction without coupling reagents, we could 

detect a consistent amount of adsorbed mAb both by TGA and gel electrophoresis. However, by 

immunostaining the mAb-conjugates with a secondary anti-human antibody labeled with AuNP, we could 

visualize the mAb only on the covalent conjugate (19-Ab). The microscopic imaging of the 

immunostained CNTs proved that Cetuximab was efficiently immobilized onto the CNTs and that it still 

preserved its affinity toward a counter antibody. Cytotoxicity assays performed on RAW264.7 

macrophages and PBMC cells highlighted that all CNT conjugates (covalent, non-covalent and precursor) 

are not substantially provoking cell death nor inflammatory response, except for high CNT 

concentrations. Both in vitro and in vivo results suggest that the compounds have a good biocompatibility 

and are not toxic in the tested cell lines. Evaluation of the targeting ability by flow cytometry and ICP-

AES proved that both the mAb-CNT conjugates (19-Ab and 19/Ab) can efficiently target and bind with 

cells that do overexpress the EGFR (U87), while no uptake was observed in a control cell line (CHO). 

However, no significant difference was found between the covalent conjugate and the control. Finally, the 

fluorescent labeling of CNTs has been explored with the aim of further investigating the internalization 

mechanisms. Two conjugates featuring FITC and Cy5 directly attached to the amino groups of CNTs 

were first prepared, but did not show sufficient levels of fluorescence upon incubation with the cells. A 

different strategy was then investigated, which involved the coupling of CNTs with fluorescently-labeled 

Cetuximab. The conjugation was performed with different reaction times, but it proved to afford the 

covalent conjugate with times above 6 h. The evaluation of the cellular uptake by flow cytometry and 

confocal microscopy proved once more that the mAb-CNT conjugates are able to target and be uptaken 

by EGFR-overexpressing cells (U87), without substantial difference between 33-Ab-Cy5 or 33/Ab-Cy5. 

Furthermore, the internalization mechanism in this cell lines appears to be a passive one, while in the 

CHO an active entry seems to occur.  

Overall, we have developed an optimized synthetic approach for the covalent functionalization of filled 

CNTs by nitrene reaction and their further conjugation with antibodies targeting specific cancer cells. We 

have succeeded to prepare a novel antibody-CNT conjugate which displays elevated targeting affinity 

toward the EGFR and low cytotoxicity. We have then employed our optimized protocol to perform the 

functionalization of radioactive filled CNTs and we are currently assessing their therapeutic efficacy and 

their in vivo biodistribution. We believe that our synthetic strategy is a valuable approach for the 

preparation of targeted CNT carriers and that our conjugates are promising tool to achieve the targeted 

delivery of radioactivity. 
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5.5 EXPERIMENTAL PART

5.5.1 COMPOUNDS SYNTHESIS AND CHARACTERIZATION

Materials and Methods 

The chemicals and solvents were obtained from commercial suppliers and used without further 

purification. All CNT batches were provided by our partner Dr. Gerard Tobias from ICMAB – CSIC 

(Bellaterra, Barcelona) and detailed information are provided in the Annex. Cetuximab was provided by 

our partner Dr. Al-Jamal from KCL (London) as pharmaceutical formulation Erbitux® (C = 5 mg/mL). 

The solvents used for synthesis were analytical grade. When anhydrous conditions were required, high 

quality commercial dry solvents were used. For the fluorescent tagging, fluorescein isothiocyanate 

(FITC) isomer 1 (95%) and cyanine 5 (Cy5) were employed, and they were purchased from Alfa Aesar 

and provided by the group of Anthony Romieu (Université de Bourgogne in Dijon), respectively. N-

succinimidyl 3-meleimidopropionate was synthesized as described in Chapter 3. Water was purified 

using a Millipore filter system MilliQ®. When stated, suspensions were sonicated in a water bath (20 W, 

40 kHz). Thin layer chromatography (TLC) was conducted on pre-coated aluminum plates with 0.25 mm 

Macherey-Nagel silica gel with fluorescent indicator UV254. Chromatographic purifications were 

carried out with silica gel (Merck Kieselgel 60, 40-60 �m, 230-400 mesh ASTM). For the labeled 

antibody purification, the column was assembled by packing Sephadex G-25 Fine (GE Healthcare) with 

PBS buffer. 
1
H-NMR and 

13
C-NMR spectra were recorded in deuterated solvents using Bruker 

spectrometers (Avance III - 400 MHz and Avance I - 500 MHz). Chemical shifts are reported in ppm 

using the residual signal of deuterated solvent as reference. The resonance multiplicity is described as s

(singlet), t (triplet), qt (quintuplet), m (multiplet), bs (broad singlet), and bt (broad triplet). Coupling 

constants (J) are given in Hz. For CNTs filtration, PTFE membrane from Millipore were employed. If 

not differently specified, dialysis of CNT compounds was carried out employing membrane with MWCO 

12000-14000 Da, purchased from Spectrum Laboratories, Inc. Mini-dialysis and buffer exchange were 

performed in Slide-A-Lyzer dialysis tubes (10000 MWCO) from Thermo Scientific. Protein 

concentration was carried out with Amicon Ultra-15 centrifugal filters (10000 MWCO) from Millipore. 

Centrifugation was performed either on a Eppendorf 5804 R apparatus, or on a Beckman Avanti J-25 

centrifuge equipped with JS-7.5 rotor. The UV–vis analysis were performed on a Varian Cary 5000 

spectrophotometer and the Kaiser test was performed according to reported procedures.
[50,51]

 The BCA 

protein assay kit was purchased by Thermo Fischer Scientific and the assay was performed according to 

the provider protocol. FT-IR spectra were measured on a Perkin Elmer Spectrum One ATR-FT-IR 

spectrometer with direct deposition of the compound. Raman spectroscopy was performed on a 

Renishaw inVia microRaman equipped with a Leica microscope. Spectra were recorded using 514 nm 

laser (5% laser power) using X 50 objective lens. TGA was performed on a TGA1 (Mettler Toledo) 

apparatus from 30 °C to 900 °C with a ramp of 10 °C min
-1

 under N2 using a flow rate of 50 mL/min and 

platinum pans. For TGA of the CNT-antibody conjugates, an aliquot of the conjugate in PBS was 

previously dialyzed against deionized water to remove the buffer salts and lyophilized. For the loading 

estimation, values of weight loss were picked at 650 °C. LC/MS analyses were performed on 

ThermoFisher Finnigan LCQ Advantage Max instrument. MS experiments were performed on a Bruker 
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Daltonics microTOF spectrometer (Bruker Daltonik GmgH, Bremen, Germany) equipped with an 

orthogonal electrospray (ESI) interface. Calibration was performed using Tunning mix (Agilent 

Technologies). Sample solutions were introduced into the spectrometer source with a syringe pump 

(Harvard type 55 1111: Harvard Apparatus Inc., South Natick, MA, USA) with a flow rate of 5 �L/min. 

TEM analysis were performed on a Hitachi H7500 microscope (Tokyo, Japan) with an accelerating 

voltage of 80 kV, equipped with a AMT Hamamatsu camera (Tokyo, Japan). 

HRTEM, STEM and EDX analysis were performed by Elzbieta Pach and Dr. Belén Ballesteros in ICN 2 

(Barcelona). MW-assisted reactions were performed in the laboratory of Prof. M. Prato and T. Da Ros, in 

University of Trieste. 

Synthesis of organic precursors 

Synthesis of N-[2-(2-hydroxyethoxy)ethoxy]ethylphthalimide 1

2-[2-(2-Chloroethoxy)ethoxyethanol (10 g, 59 mmol) was added to a solution of potassium phthalimide 

(12.08 g, 65 mmol) in DMF (100 mL) and stirred at 100°c for 17 h. The precipitated phthalimide salts 

were then removed by filtrating the solution over a celite pad. The filtrate was concentrated, diluted with 

H2O (50 mL) and extracted with DCM (3x50 mL). The combined organic phases were dried over MgSO4

and concentrated, affording a white viscous solid (15.7 g, 95% yield). 

1
H NMR (CDCl3, 400 MHz) � (ppm): 7.86-7.83 (2H, m), 7.71-7.69 (2H, m), 3.90 (2H, t, J = 5.7 Hz), 

3.75 (2H, t, J = 5.7 Hz), 3.66-3.59 (6H, m), 3.52 (2H, t, J = 4.3 Hz), 2.26 (1H, br s). All structural 

assignments were in agreement with previously reported data.
[6]

Synthesis of compound 2

Malonyl chloride (0.36 mL, 3.71 mmol) was slowly dropped on a solution of compound 1 (2.07 g, 7.42 

mmol) and pyridine (0.60 mL, 7.42 mmol) in dry DCM (150 mL) at 0 °C, under argon, and the solution 

was stirred at r.t. for 1.30 h. Afterwards, the resulting blue solution was concentrated by rotary 

evaporation and the residue was extracted with DCM, dried over MgSO4 and purified by FC (eluant 

AcOEt/Cy in gradient from 7:3 to 8:2), obtaining 2 as a yellowish oil (1.23 g, 53% yield). 

1
H NMR (CDCl3, 500 MHz) � (ppm): 7.84-7.80 (4H, m), 7.71-7.68 (4H, m), 4.19 (4H, t, J = 4.8 Hz), 

3.88 (4H,t, J = 5.8 Hz), 3.72 (4H, t, J =5.8 Hz), 3.63-3.61 (8H, m), 3.58-3.56 (4H, m), 3.40 (2H, s). 
13

C 

NMR (CDCl3, 125 MHz) � (ppm): 168.17, 166.41, 133.90, 132.01, 123.16, 70.46, 69.95, 68.77, 67.87, 

64.47, 41.13, 37.13. MS (ESI, m/z): 649.20 [M+Na]+. HR-MS (ESI): m/z = 649.2017 [M+Na]+ (calcd for 

C31H34N2O12Na m/z = 649.2004). FT-IR (neat, � /cm
-1

): 2952, 2871, 1706, 1388, 1320, 1110, 1022, 718. 



Design and synthesis of functionalized radioactivity-delivery nanocarriers  

144 

Synthesis of compound 3

DBU (100 �L, 0.7 mmol) was added to a solution of malonate 2 (0.44 g, 0.7 mmol) in dry THF (180 mL) 

at 0 °C under argon, and the solution was stirred at the same temperature for 30 min and at r.t. for other 

30 min. After cooling down to -78 °C, CBr4 (232 mg, 0.7 mmol) was added, and the mixture was stirred 

at -78 °C for 1.30 h and at r.t. for 1 h. The reaction was then quenched with NH4Cl, the organic phase 

was separated, diluted with hexane (50 mL), washed twice with brine, dried over MgSO4 and 

concentrated at reduced pressure. The resulting oil was purified by FC (eluant AcOEt/Cy in gradient 

from 1:1 to 7:3) affording bromomalonate 3 as yellow oil (270 mg, 54% yield).  

1
H NMR (CDCl3, 300 MHz) � (ppm): 7.82-7.78 (4H, m), 7.71-7.67 (4H, m), 4.88 (1H, s), 4.25 (4H, q, J

= 4.8 and 3.5 Hz), 3.86 (4H,t, J = 5.7 Hz), 3.70 (4H, t, J =5.7 Hz), 3.64-3.57 (12H, m). 
13

C NMR 

(CDCl3, 75 MHz) � (ppm): 168.17, 164.43, 133.91, 132.02, 123.17, 70.56, 70.00, 68.47, 67.89, 66.06, 

41.87, 37.19. MS: m/z 704.5 (M
+
,100), 706.5 (94). The compound was used immediately after 

preparation, without any further characterization. 
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Synthesis of 2-[2-(2-azidoethoxy)ethoxy]ethanol (4)

Sodium azide (19 g, 0.3 mol) and sodium iodide (0.90 g, 6 mmol) were added to a solution of 2-[2-

(chloroethoxy)ethoxy]ethanol (5 g, 30 mmol) in H2O (30 mL) and the mixture was stirred at 60 °C for 12 

h. After filtration of the crude, the aqueous layer was extracted with EtOAc (3 x 30 mL). Combined 

organic phases were dried over Na2SO4, filtered and concentrated under reduced pressure, affording 4 as 

transparent oil (4.20 g, 81% yield). 

1
H NMR (CDCl3, 500 MHz) � (ppm): 3.73 (2H, t, J = 4.5 Hz), 3.68 (6H, s), 3.62-3.60 (2H, m), 3.39 (2H, 

t, J = 5.0 Hz). MS (ESI, m/z): 198.08 [M+Na]
+
. HR-MS (ESI): m/z =198.0836 [M+Na]

+
 (calcd for 

C6H13N3O3Na m/z = 198.0849). All structural assignments were in agreement with previously reported 

data.[13,52]

Synthesis of Boc-propargyl amine

A solution of Boc2O (3.96 g, 18 mmol) in DCM (25 mL) was dropped over 30 min on a solution of 

propargyl amine in DCM (20 mL) at 0 °C, and the resulting solution was then stirred at r.t. for 1 h. The 

solvent was removed under reduced pressure and the remaining yellow oil was purified by FC (eluant 

EtOAc/Cy 1:9) affording the product as white crystals (2.50 g, 90% yield). 
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1
H NMR (CDCl3, 400 MHz) � (ppm): 4.67 (2H, br s), 3.92 (2H, d, J = 2.7 Hz), 2.22 (1H, t, J = 2.5 Hz), 

1.45 (9H, s). All structural assignments were in agreement with previously reported data.
[53]

Synthesis of compound 5

2-[2-(azidoethoxy)ethoxy]ethanol 4 (2.0 g, 11.4 mmol), Boc-propargyl amine (1.78 g, 11.4 mmol) and 

sodium ascorbate (113 mg, 0.57 mmol, 5%) were dissolved in a mixture of t-BuOH/H2O 1:2 (10 mL). 

After the addition of CuSO4 ·5H2O (285 mg, 1.14 mmol, 10%), the solution was stirred at r.t. for 48 h, 

under argon. The reaction mixture was then diluted with water (20 mL), extracted with chloroform (3 x 

15 mL), and the organic phases were dried over MgSO4 and concentrated. After FC purification (eluant 

EtOAc/Cy in gradient from 1:9 to 7:3), the product was obtained as transparent oil (1.55 g, 41% yield). 

1
H NMR (CDCl3, 500 MHz) � (ppm): 7.90 (1H, s), 5.38 (1H, br s), 4.54 (2H, t, J = 4.9 Hz), 4.41 (2H, d, 

J = 5.3 Hz), 3.87 (2H, t, J = 4.9 Hz), 3.76 (2H, t, J = 4.5 Hz), 3.62 (4H, s), 3.58 (2H, t, J = 4.5 Hz), 2.88 

(1H, br s), 1.42 (9H, s). 
13

C NMR (CDCl3, 125 MHz) � (ppm): 155.94, 144.95, 123.76, 79.81, 72.41, 

70.37, 70.12, 69.13, 61.60, 50.33, 35.70, 28.34. MS (ESI, m/z): 353.18 [M+Na]
+
. HR-MS (ESI): m/z = 

353.1770 [M+Na]
+
 (calcd for C14H26N4O5Na m/z = 353.1795). FT-IR (neat, � /cm

-1
): 3347, 2876, 1694, 

1520, 1458, 1367, 1249, 1166, 1120, 1059, 928. 
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Synthesis of compound 6

Malonyl chloride (0.23 mL, 2.34 mmol) was slowly dropped on a solution of 5 (1.55 g, 4.69 mmol) and 

pyridine (0.38 mL, 4.69 mmol) in dry DCM (30 mL), at 0° C under Ar, and the resulting solution was 

stirred at 0 °C for 2 h. The crude was concentrated, washed with H2O (2 x 20 mL) and further purified by 

FC (eluant DCM/MeOH in gradient from 99:1 to 85:15), affording compound 6 as transparent oil (1.01 

g, 59% yield). 

1
H NMR (CDCl3, 500 MHz) � (ppm): 7.70 (2H, s), 5.28 (2H, br s), 4.53 (4H, t, J = 5.0 Hz), 4.39 (4H, d, 

J = 3.4 Hz), 4.28 (4H, t, J = 4.7 Hz), 3.86 (4H, t, J = 5.0 Hz), 3.66 (4H, t, J = 4.7 Hz), 3.59 (8H, s), 3.44 

(2H, s), 1.42 (18H, s). 
13

C NMR (125 MHz, CDCl3) � (ppm) 166.44, 155.79, 123.20, 79.58, 70.49, 70.41, 

69.38, 68.82, 64.42, 50.38, 41.21, 35.91, 28.34. MS (ESI, m/z): 729.36 [M+H]
+
. HR-MS (ESI): m/z = 

729.3764 [M+H]
+
 (calcd for C31H53N8O12 m/z = 729.3777). FT-IR (neat, � /cm

-1
): 3352, 2987, 2875, 

1699, 1512, 1453, 1365, 1277, 1249, 1163, 1125, 1044, 935, 912, 861, 779. 

Synthesis of compound 7

p-Toluensulfonyl chloride (6.63 g, 34.8 mmol) was slowly added to a solution of compound 1 (6.48 g, 

23.20 mmol) and Et3N (6.4 mL, 46.4 mmol) in MeCN (50 mL), at 0 °C and under argon. The mixture 

was stirred at 0 °C for 20 min and at r.t. for 1h, and the crude was then poured into water (40 mL), 
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extracted with EtOAc (3 x 30 mL) and dried over MgSO4. The concentrated crude was further purified 

by FC (eluant EtOAc/Cy in gradient form 1:3 to 1:1), affording 7 as yellow oil (6.90 g, 69% yield). 

1
H NMR (CDCl3, 500 MHz) �(ppm): 7.83-7.81 (2H, m), 7.76 (2H, d, J = 8.3 Hz), 7.70-7.69 (2H, m), 

7.32 (2H, d, J = 8.3 Hz), 4.08 (2H, t, J = 4.8 Hz), 3.86 (2H, t, J = 5.8 Hz), 3.68 (2H, t, J = 5.8 Hz), 3.61 

(2H, t, J = 4.8 Hz), 3.55 (2H, dd, J = 6.2 and 5.6 Hz), 3.51 (2H, dd, J = 6.1 and 5.6 Hz), 2.43 (3H, s). All 

structural assignments were in agreement with previously reported data.[29]

Synthesis of compound 8

A solution of tosylate 7 (6.9 g, 15.91 mmol) in MeCN (50 mL) was treated with NaN3 (3.10 g, 47.75 

mmol) and a catalytic amount of NaI, and refluxed (90 °C) for 48 h under argon. Because of the inherent 

risk related with the manipulation of azides, especially at high reaction temperatures, all manipulations 

were carried out with extra care using a protection screen during reaction. The cooled mixture was 

diluted with water (30 mL) and extracted with DCM (4 x 20 mL). The combined organic phases were 

dried over MgSO4, concentrated and purified by FC (eluant EtOAc/Cy in gradient form 1:3 to 1:2), 

affording the product as an orange oil (3.9 g, 80% yield). 

1
H NMR (CDCl3, 400 MHz) �(ppm): 7.85-7.83 (2H, m), 7.72-7.70 (2H, m), 3.90 (2H, t, J = 5.8 Hz), 3.75 

(2H, t, J = 5.7 Hz), 3.66-3.64 (2H, m), 3.62-3.59 (4H, m), 3.30 (2H, t, J = 5.1 Hz). All structural 

assignments were in agreement with previously reported data.
[29]

Antibody derivatization 

Thiolation of Cetuximab 

The Ab formulation Erbitux® was dialyzed overnight against 5 mM EDTA/PBS buffer (pH 7.8, adjusted 

with NaHCO3), to remove the additive present in the pharmaceutical formulation. A freshly prepared 

solution of 2-iminothiolane (60 �L, 11 mM) in 5 mM EDTA/PBS buffer was added to an aliquot of Ab 

(1.1 mL, C = 5 mg/mL) in the same buffer. The solution was shaken at r.t. for 1 h, and then dialyzed 

against 5 mM EDTA/PBS buffer (pH 6.5) at 4 °C for 24 h, to remove the excess of Traut’s reagent. The 

so-obtained Ab (C = 0.5 mg/mL) was immediately used for the coupling with maleimide functionalized 

CNTs. 
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Fluorescent labeling of Cetuximab (Ab-Cy5) 

Pre-activation of Cy5: a 10 mg/mL solution of Cy5 was prepared by dissolving Cy5 (5.99 mg, 7.04 

�mol) in dry DMF (500 �L), under argon. DIEA (12 µL) and 40 �L of a 0.15 M solution of TSTU in dry 

DMF (corresponding to 7 �mol of TSTU) were then added to the Cy5 and the reaction mixture was 

stirred at r.t. for 4 h, in the dark. The activated Cy5 (300 �L, ca. 3 mg) was added to a 5 mg/mL solution 

of Cetuximab in PBS (6 mL) at pH 8 (adjusted with 1 M NaHCO3) and gently stirred for 2 h, in the dark. 

The reaction mixture was then filtered through a Sephadex G-25 column with PBS (pH 7.4) as elution 

buffer and the fractions corresponding to the Ab-Cy5 were joined together and concentrated in a Amicon 

centrifugal filter (MWCO 10000). By measuring the UV-Vis absorbance of the conjugate, the degree of 

loading was calculated according to: 

�� � �
���� 	 
���


���� � ���� 	 ��� 	 
���

where:  A280 and A650 = absorbance of the conjugate solution at 280 nm and 650 nm 

 CF = correction factor due to the contribution of the dye at 280 nm (0.05) 

�280 = molar extinction coefficient of the antibody (203000 cm
-1

M
-1

) 

�650 = molar extinction coefficient of the dye (250000 cm
-1

M
-1

) 

Labeled Cetuximab (Ab-Cy5) was obtained with a DL = 4.4 and with 83% yield. 

Synthesis of f-CNTs 

General procedure for Bingel reaction 

Malonate derivative 2 (200 mg, 1 eq.) and I2 (89 mg, 1 eq.) were added to a dispersion of CNTs (10 mg) 

in dry ODCB (15 mL), obtained by bath-sonicating the nanotubes in the solvent for 30 min, under argon.

DBU (0.20 mL, 2 eq.) was added drop-wise and the mixture was stirred at the selected temperature for 

24 h, and afterward diluted with EtOH (15 mL) and filtered over a PTFE membrane (0.1 µm). The black 

solid was re-dispersed in ODCB (10 mL) by sonication (10 min) and precipitated from acetone (20 mL) 

by centrifugation (4500 rpm, 10 min). This re-dispersion/centrifugation cycle was repeated twice. The 

CNTs were then dispersed in a small volume of ddH2O by sonicating for 15 min (a small aliquots of 

MeOH was added when good dispersions were not achievable) and dialyzed against ddH2O for 2 days. 

To recover the CNTs, the dialyzed dispersion was filtered (0.1 µm) and the black solid was re-dispersed 

in MeOH (20 mL) by sonication (10 min) and re-filtrated. This cycle was repeated with acetone (20 mL) 

and the obtained CNTs were finally dried under vacuum. The so-obtained sample was analyzed by TGA 

for the assessment of the loading. 
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General procedure for MW-assisted Bingel reaction 

In a capped MW glass tube, SWCNTs (5 mg) were dispersed in dry NMP (1 mL) by sonicating for 15 

min, under argon. I2 (33 mg, 0.13 mmol), DBU (400 �L, 0.26 mmol) and a solution of the selected 

malonate precursor (100 mg) in dry NMP (1 mL), were then added to the suspension, and this was stirred 

in the microwave apparatus at 120 °C (fixed temperature) for 30 min with an average power of 40, 50 or 

60 WTable 5.7. The mixture was then diluted with EtOH (5 mL), filtered through a PTFE membrane 

(0.1 µm), and the CNTs recovered on the membrane were washed by dispersing them in DMF (15 mL), 

sonicating for 10 min and filtrating. This washing sequence was further repeated with MeOH (x 2) and 

acetone (x 1). The CNTs were then dialyzed and dried as above described and TGA of sample was 

performed. 

General procedure for phthalimide deprotection

Hydrazine hydrate (10% v/v) was added to a 1 mg/mL dispersion of Pht-protected CNTs in EtOH, 

obtained by sonicating them for 10 min. The dispersion was stirred overnight (or other specified time) at 

r.t., and then diluted with EtOH (twice the reaction volume) and filtered (0.1 µm). The recovered CNTs 

were re-dispersed in MeOH by sonication (10 min) and filtrated. This washing cycle was repeated again 

with MeOH and with acetone (x 2), and the black solid on the membrane was finally dried in vacuum. 

Kaiser test and TGA were performed to assess the functionalization degree. 

General procedure for Boc deprotection

Boc-protected CNTs (5 mg) were sonicated for 10 min in a 2M solution of HCl in 1,4-dioxane (5 mL), 

and the mixture was stirred overnight at r.t. Following filtration of the reaction mixture (0.1 µm), the 

CNTs were washed with DMF, MeOH (x 2) and acetone (x 2) and dried in vacuo. Kaiser test and TGA 

were performed to assess the functionalization degree. 

General procedure for nitrene reaction –small scale

In a flame-dried Schlenk tube, pristine CNTs (5 mg) were dispersed in dry ODCB (or NMP) (4 mL) by 

sonicating for 15 min under argon. A solution of azide 8 (100 mg) in dry ODCB (or NMP) (1 mL), was 

then added to the CNT dispersion by syringe, and the mixture reacted in an oil bath for the selected time 

at the selected temperature, under vigorous stirring and under argon (see Table 5.3, Table 5.5 and 

Table 5.7). The cooled mixture was then diluted with EtOH (10 mL) and filtered (0.1 �m). The CNTs 

recovered on the filter were washed by dispersing them in DMF (10 mL), sonicating for 10 min and 

filtrating. This washing sequence was further repeated with MeOH (x 2) and with acetone (x 2). The 

CNTs were then dialyzed and dried as above described and TGA of the sample was performed. 
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General procedure for tagging of compounds 9, 10, 11 and 12

Amino-functionalized CNTs (5 mg) were dispersed in dry DMF (5 mL) by sonicating for 30 min. 2,3,4-

Triiodobenzoic acid (100 mg, 20 eq. w/w, 0.2 mmol), HOBt (54 mg, 0.4 mmol) and DIEA (0.25 mL, 5% 

v/v) were then added to the dispersion at r.t., and finally EDC·HCl (154 mg, 0.8 mmol) was added at 0 

°C. The mixture was briefly sonicated and then stirred at r.t. for 48 h. After filtration, the recovered 

CNTs were washed with DMF (x 2), MeOH (x 2) and acetone (x 1), and finally dried in vacuo. The 

obtained tag-functionalized CNTs (9 -I, 10 -I, 11 -I and 12 -I) were then characterized by Kaiser test, 

TGA, Z-contrast STEM and EDX.

General procedure for MW-assisted nitrene reaction 

Pristine SWCNTs (5 mg) were dispersed in dry NMP (4 mL) by sonicating 15 min in a capped MW 

glass vial, under argon. A solution of azide 8 (100 mg) in dry NMP (1 mL) was added to the CNT 

dispersion, this was flushed with argon for few minutes and finally stirred in the microwave apparatus at 

the selected temperature (see Table 5.6) for 60 min (or 30 min) with an average power of 100 W. The 

mixture was then diluted with DMF (5 mL), filtered through a PTFE membrane (0.1 µm), and the CNTs 

recovered on the membrane were washed with DMF (x 1), MeOH (x 2) and acetone (x 1). After dialysis 

against ddH2O and vacuum-drying, the CNT samples were characterized by TGA. 

Synthesis of SmCl3@SWCNT-NH2 (34-NH2) 

In a flame-dried Schlenk tube, SmCl3@SWCNTs (15 mg) were dispersed in dry ODCB (12 mL) by 

sonicating for 15 min under argon. A solution of azide 8 (300 mg) in dry ODCB (3 mL), was then added 

to the CNT dispersion by syringe, and the mixture was stirred at 200 °C for 12 h. After cooling, the 

mixture was diluted with EtOH (15 mL) and filtered (0.1 �m). The CNTs recovered on the filter were 

washed with DMF (x 1), MeOH (x 2) and acetone (x 2), dialyzed for 48 h against ddH2O. The dialyzed 

nanotubes (34-Pht) were recuperated by filtration, washed with MeOH (x 1) and acetone (x 1) and 

finally dried under vacuum. The degree of functionalization estimated from the weight loss comparison 

with pristine SmCl3@SWCNTs is 22.8 %, corresponding to a loading of 789 �mol/g. 

For the deprotection, CNTs (13 mg) were dispersed in EtOH (10 mL) by sonicating for 10 min, and 

afterwards treated with hydrazine hydrate (1.3 mL). The dispersion was stirred overnight at r.t., and then 

diluted with EtOH (15 mL) and filtered (0.1 µm). The CNTs were washed with MeOH (x 2) and acetone 

(x 2) and finally dried in vacuo. The free amine loading calculated by Kaiser test is 293 �mol/g. 
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Synthesis of SmCl3@SWCNT-mal (34-mal) 

Conjugate 34-NH2 (15 mg) was dispersed in dry DMF (7 mL) by sonicating for 20 min under argon. A 

solution of N-succinimidyl 3-meleimidopropionate (104 mg) in dry DMF (2 mL), and DIEA (0.7 mL) 

were then added to the CNT dispersion, and this was stirred at r.t. for 48 h. After filtration over a PTFE 

membrane (0.1 �m), the recovered CNTs were washed with DMF (x 2), MeOH (x 2) and acetone (x 1), 

and finally dried in vacuo. The free amine loading of meleimido-functionalized CNTs calculated by 

Kaiser test is 65 �mol/g, which corresponds to a degree of functionalization of 228 �mol/g. The 

estimation of the degree of functionalization obtained from TG analysis corresponds to 607 �mol/g. 

Synthesis of SmCl3@SWCNT-mal-Ab (34-mal-Ab) 

Conjugate 34-mal (8.5 mg) was dispersed in a solution of thiolated Cetuximab (8.5 mL, 0.5 mg/mL) in 5 

mM EDTA/PBS (pH 6.4) by sonicating for 1 min in cold water. The mixture was shaken at r.t. for 24 h 

and then centrifuged (4500 rpm, 4 °C, 5 min). The supernatant was removed and the CNTs were re-

dispersed in PBS buffer pH 7.4 by sonicating 30 sec in cold water. Centrifugation and re-dispersion in 

fresh PBS were repeated until no Ab could be detected in the supernatant by UV-Vis. The CNT 

dispersion was then dialyzed (MWCO 300000 Da) against PBS buffer pH 7.4 for 48 h at 4 °C. Conjugate 

34-mal-Ab was characterized by TGA and GE and stored at 4 °C in a PBS solution (1.3 mg/mL). The 

loading of antibody estimated from TG analysis is 44 mg/g. 

Scale-up for the synthesis of SmCl3@SWCNT-NH2 (19-NH2 and 20-NH2) 

In a flame-dried Schlenk tube, SmCl3@SWCNTs (30 mg) were dispersed in dry NMP (25 mL) by 

sonicating for 15 min under argon. A solution of azide 8 (560 mg) in dry NMP (5 mL), was then added 

to the CNT dispersion by syringe and the mixture was stirred at 200 °C for 12 h. The cooled mixture was 
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then diluted with EtOH (15 mL) and filtered (0.1 �m). The CNTs recovered on the filter were washed 

with EtOH (x 1), MeOH (x 2) and acetone (x 2) and dialyzed for 48 h against ddH2O. The dialyzed 

nanotubes were recuperated by filtration, washed with MeOH (x 1) and acetone (x 1) and finally dried 

under vacuum. The degree of functionalization estimated from the weight loss comparison with pristine 

SmCl3@SWCNTs is 17.1% for 19-Pht (corresponding to a loading of 618 �mol/g), and 20% for 20-Pht

(corresponding to a loading of 731 �mol/g). 

For the deprotection, CNTs (28 mg) were dispersed in EtOH (25 mL) by sonicating for 10 min, and 

afterwards treated with hydrazine hydrate (3 mL). The dispersion was stirred at r.t. for 2 h, and then 

diluted with EtOH (15 mL) and filtered (0.1 µm). The recovered CNTs were washed with MeOH (x 2) 

and acetone (x 2), and finally dried under vacuum. For conjugate 19-NH2, the free amine loading 

calculated by Kaiser test is 90 �mol/g, while the degree of functionalization estimated by TGA is 711 

�mol/g, which corresponds to a phthalimide loss of 513 �mol/g (by comparison of the weight loss with 

the precursor). For conjugate 20-NH2, the free amine loading calculated by Kaiser test is 146 �mol/g, 

while the degree of functionalization estimated by TGA is 918 �mol/g, which corresponds to a 

phthalimide loss of 519 �mol/g. 

Synthesis of SmCl3@SWCNT-Ab (19-Ab) and control (19/Ab) 

An aliquot of Erbitux® (2 mL) was submitted to buffer exchange in a Slide-a-Lyzer Mini Device 

(MWCO 10000) against MES buffer pH 7, in order to bring Cetuximab in the required buffer medium. 

MES buffer 50 mM was prepared by dissolving MES (9.76 g) in ddH2O (800 mL) and pH was adjusted 

to 7 with 10 N NaOH before bringing the solution to 1 L volume. 

Conjugate 19-NH2 (16 mg) was dispersed in DMF (1.3 mL) by sonicating for 15 min in a centrifuge 

plastic tube. A solution of EDC·HCl (6 mM) and sulfo-NHS (4.4 mM) in MES (2.5 mL) was then added 

to the dispersion under sonication. After 5 min, Cetuximab (1 mg/mL in MES, 11 mL) was added and 

the mixture was gently stirred at r.t. for 24 h. The reaction mixture was homogenized by sonicating for 

30 sec and the CNTs were precipitated by centrifugation (4500 rpm, 10 min, 15 °C). The supernatant was 

removed, the CNTs were re-dispersed in PBS (20 mL) by sonicating for 10 min. Centrifugation, buffer 

removal and re-dispersion were repeated at least 3 times in order to remove non-reacted antibody. The 

CNT dispersion was then dialyzed (MWCO 300000 Da) against PBS for 24 h. The obtained 19-Ab was 

finally stored at 4 °C in PBS solution (3.5 mg/mL). The loading of antibody estimated by TGA is 250 

mg/g, whereas by BCA assay is 124 mg/g. 
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For the control reaction, the same procedure was carried out proportionally on a smaller amount of 19-

NH2 (3.1 mg) and without addition of EDC·HCl and sulfo-NHS. The obtained conjugate 19/Ab was 

stored at 4 °C in PBS solution (1.57 mg/mL). The loading of antibody determined by TGA is 200 mg/g. 

Synthesis of SmCl3@SWCNT-Cy5 (20-Cy5)

Pre-activation of Cy5: DIEA (17 µL) and a solution of TSTU (2.6 mg) in dry DMF (1.5 mL) were added 

to a solution of Cy5 (2.5 mg) in dry DMF (1.5 mL), under argon. The reaction mixture was stirred at r.t. 

for 7 h, in the dark. 

A dispersion of CNTs 20-NH2 (6 mg) and DIEA (17 µL) in dry DMF (2 mL) was then added to the 

cyanine solution, sonicated for 5 min and stirred at r.t. for 2 days, in the darkness. The suspension was 

filtered (0.1 µm) and the CNTs were washed with DMF (x 2), MeOH (x 2) and acetone (x 1) and finally 

dried under vacuum. The residual amine loading determined by Kaiser test is 35 �mol/g which, by 

difference with the loading of the precursor, corresponds to a degree of functionalization of 109 �mol/g. 

The loading of Cy5 estimated by TGA is 71 �mol/g, corresponding to 56 mg/g. 

Synthesis of SmCl3@SWCNT-FITC (20-FITC) 

CNTs 20-NH2 (6 mg) were sonicated in dry DMF (3 mL) for 10 min under argon. DIEA (25 µL) and a 

solution of FITC (6 mg) in dry DMF (1.5 mL) were added, the dispersion was sonicated for 2 min and 

then stirred for 2 days in the darkness. The CNTs were recovered by filtration (0.1 µm) and washed with 

DMF (x 2), 0.1 M HCl (x 1), MeOH (x 2) and acetone, and finally dried under vacuum. The residual 

amine loading determined by Kaiser test is 42 �mol/g which, by difference with the loading of the 

precursor, corresponds to a degree of functionalization of 102 �mol/g. The loading of FITC calculated 

from the TG analysis is 87 �mol/g, which corresponds to 34 mg/g. 
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Synthesis of LuCl3@SWCNT-Ab-Cy5 (33-Ab-Cy5) and control (33-Ab-Cy)

Ab-Cy5 (8 mL, 3.8 mg/mL) was submitted to buffer exchange in a Slide-a-Lyzer Mini Device (MWCO 

10000) against 50 mM MES buffer pH 7. Conjugate 33-NH2 (4 mg) was dispersed in DMF (400 �L) by 

sonicating for 15 min in a centrifuge plastic tube. A solution of EDC·HCl (6 mM) and sulfo-NHS (4.4 

mM) in MES (800 �L) was then added to the dispersion under sonication. For the control reactions, MES 

buffer (800 �L) without EDC·HCl and sulfo-NHS was added instead. After 5 min, Ab-Cy5 (0.96 mg/mL 

in MES, 2.8 mL) was added to the CNT dispersion and the mixture was gently stirred at r.t. for 2, 6 or 24 

h. The reaction mixture was homogenized by sonicating for 30 sec and the CNTs were precipitated by 

centrifugation (4500 rpm, 10 min, 12 °C). The supernatant was removed, the CNTs were re-dispersed in 

PBS (3 mL) by sonicating for 10 min. Centrifugation, buffer removal and re-dispersion were repeated 4 

times and the decanted fraction were analyzed by UV-Vis to check the absences of non-reacted Ab-Cy5. 

The CNT dispersion was then dialyzed (MWCO 300000 Da) against PBS for 24 h (except for the 

specified non-dialyzed conjugates at 24 h time point). The obtained conjugates were stored at 4 °C in 

PBS solution. The loading of antibody was determined by TGA and BCA protein assay and values are 

reported in Table 5.9. Gel electrophoresis of all samples was run under non-reducing and reducing 

conditions.

5.5.2 BIOLOGICAL INVESTIGATIONS

Gel Electrophoresis 

Gel electrophoresis were performed on Mini-PROTEAN® TGXTM 4-20% Tris-glycine gels purchased by 

Bio-Rad Laboratories (Hercules, California). Tris-glycine buffer was used to fill the tank. Prior to 

loading, the samples were added with Laemmli buffer for non-reducing conditions or reducing 

conditions (Laemmli buffer supplemented with 5% �-mercaptoehtanol). The first well was always loaded 

with the protein ladder. The gel was run at a voltage of 150 V or 200 V for ca. 60 min and then stained 

overnight with Coomassie blue. Finally, the staining solution was removed and the gel extensively 

washed with distilled water to allow the visualization of the proteins bands. 
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Immunostaining 

For the colloidal gold immunostaining, 20 �L of CNT dispersion (20 �g/mL) in PBS were drop-casted 

on the TEM grids and allowed to dry in the air. The TEM grids were first incubated with acetylated BSA 

in UPS water (1% w/w) for 45 min and then incubated for 2 h with 20 �L of staining solution (anti-

Human IgG/AuNP or anti-Rabbit IgG/AuNP). The staining solutions were prepared as following: the 

secondary IgG/AuNP was dissolved in BSA (0.1% w/w in PBS) in a 1:50 volume ratio. After incubation, 

the excess of immunoglobulin was rinsed away by incubating the grids with 300 �L of PBS for 5 min (3 

times), and finally with 300 �L of ddH2O. After drying in the air the grid were observed by TEM (in 

Strasbourg) and STEM (in ICN 2 – Barcelona). 

Cell culture: RAW macrophages 

Phagocytic RAW 264.7 murine macrophage cell line was the model selected to evaluate the cytotoxicity. 

Briefly, RAW 264.7 cells were cultured in RPMI 1640 supplemented with 10% heat inactivated Fetal 

Bovine Serum (FBS), 100 U/ml gentamycin, �-mercaptoethanol (50 �M) and HEPES (20 mM) under 

controlled atmosphere (37°C, 5% CO2). When confluence reached 70-80%, RAW 264.7 cells were 

detached with SE buffer (PBS containing 2 mM EDTA and 2% FBS), reseeded in 96 well plates at a 

density of 10
5
 cells/well and allowed to adhere overnight (37 °C, 5% CO2) prior to CNTs addition. 

Cell viability in RAW macrophages 

Cells were then treated with 1, 10, 25, 50 and 100 �g/ml of the different CNTs. DMSO (20%) was used 

as death positive control and LPS+IFN� as a cytokine inducer control. After 24 h incubation, 

supernatants were collected for cytokine determination and cells were harvested with SE buffer and 

stained with both APC-Annexin V (AnnV; BD Pharmingen 550475) and propidium iodide (PI, 0.2 

�g/ml; Sigma-Aldrich) in a calcium containing buffer. Early apoptosis is shown by AnnV positive 

staining; double AnnV and PI stained cells will be considered necrotic or late apoptotic while the 

absence of staining shows viable cells. (Figure 5.12). The percentage of live (AnnV-/PI-), early apoptotic 

(AnnV+/PI-) and late apoptotic/necrotic (AnnV+/PI+ and AnnV-/PI+) cells was determined by acquiring 

at least 25,000 events using a Gallios flow cytometer (Beckman Coulter, Villepinte-France) and 

analyzing the data with Flowing Software 2.5.1. 

Cytokine determination by ELISA 

Polyvinyl microtiter plates were coated with 50 �l/well of Specific Purified Rat Anti-Mouse IL6 (BD 

Pharmingen 554400) or Specific Purified Rat Anti-Mouse TNF� (BD Pharmingen 557516) diluted in 

0.05 M carbonate pH 9.6 buffer and incubated overnight at 4 °C. After washings with PBS containing 

0.05% Tween (PBS-T), a saturation step was performed by adding 100 �l/well of PBS containing 10% 

FBS for 1 h at 37 °C. After washings with PBS-T, 50 �l of culture supernatants (from the viability 

experiment) were added and incubated at 37 °C for 2 h. Plates were then washed with PBS-T and 50 
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�l/well of secondary Biotin Rat Anti-Mouse IL6 (BD Pharmingen 554402) or secondary Biotin Rat Anti-

Mouse TNF� (BD Pharmingen 557432) were added and incubated for 1 h at room temperature. Then, 

plates were washed with PBS-T, and 50 �l/well of streptavidin conjugated to horse radish peroxidase 

(diluted 1/500) were added. The plates were incubated for 30 min at r.t., and then washed extensively 

with PBS-T and ddH2O . The enzymatic reaction, revealing the presence of cytokines in the tested 

supernatants, was visualized by adding 3,3’,5,5’-tetramethylbenzidine in the presence of H2O2. The 

resulting absorbance was measured at 450 nm after the reaction was stopped with 1 N HCl. Recombinant 

IL6 (BD Pharmingen 554582) or recombinant TNF� (BD Pharmingen 554589) were used as standards. 

Cell culture: U87 and CHO cells 

U87 glioblastoma cells were modified to overexpress EGFR receptor by the group of Prof. Al-Jamal in 

KCL. Both U87-EGFR+ and CHO cell lines were provided by the KCL partner. U87-EGFR+ were 

cultured under controlled atmosphere (37°C, 5% CO2) in Dulbecco's Modified Eagle Medium (DMEM) 

supplemented with 10% FBS, 100 U/ml gentamycin and 1% Penicillin-Streptomycin, whereas for CHO 

cell line RPMI 1640 supplemented with 10% FBS and 1% Penicillin-Streptomycin was used. When 

confluency reached 70-80%, cells were tripsinized, and reseeded in 24 well plates at a density of 10
5

cells/well and allowed to adhere overnight (37 °C, 5% CO2) prior to CNTs addition. 

Cellular uptake experiment 

Cells were treated with 10 µg/ml of CNT 19-NH2, 19-Ab and 19/Ab. As a positive control 2.5 µg/ml of 

Cetuximab (Erbitux®, Merck KGaA) were added. 1, 3 and 24 hours after the addition of the CNTs, cells 

were washed twice with PBS, fixed with 4% paraformaldehyde (PFA) for 15 min, permeabilized with 

Triton X-100 (0.1% in PBS) for 10 min, blocked with 1% BSA for 30 min and finally, incubated for 2 h 

with a fluorescent Cy3-Goat Anti-Human IgG (H+L) (109-165-088-JIR, Stratech Scientific Ltd) 

secondary antibody that binds Cetuximab, before being subjected to flow cytometry analysis. The 

percentage of Cy3 positive cells and the mean fluorescent intensity were determined by acquiring at least 

10,000 events using a FACSCalibur flow cytometer (BD, Franklin Lakes, NJ) and analyzing the data 

with Flowing Software 2.5.1 

ICP-AES 

U87-EGFR+ and CHO cells were seeded in quadruplicate onto 24-well plates at a density of 10
5

cells/well and allowed to adhere overnight prior to exposure to 19-Ab (25 �g/ml). 24 h later cells were 

extensively washed with cold PBS, tripsinized, collected and stored in a glass vial until analysis. ICP-

AES analyses were performed on an Agilent 7500ce apparatus. 
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Cellular uptake with fluorescent CNTs 

U87-EGFR+ and CHO cells were seeded onto 24 well/plates (10
5
 cells/well) and allowed to adhere 

overnight. Afterwards, cells were treated with 1, 10 or 25 �g/ml of 33-Ab-Cy5 and 33/Ab-Cy5 and 

incubated either at 4 °C or at 37 °C for 2 h to compare the non-active and active uptake mechanisms, 

respectively. Cells were then extensively washed with cold PBS, tripsinized, collected and analyzed with 

Gallios flow cytometer (Beckman Coulter, Villepinte-France). The percentage of fluorescent cells and 

their mean fluorescent intensity was determined by acquiring at least 10,000 events and analyzing the 

data with Flowing Software 2.5.1. 

Confocal Microscopy experiment 

Cells were seeded onto polystyrene culture chambers (Falcon 354108) and allowed to adhere overnight 

(105 cells/well). Fluorescent CNTs 33-Ab-Cy5 and 33/Ab-Cy5 (25 �g/ml) were then added and 

incubated for 2 h at 37 °C. Cells were then extensively washed with cold PBS, fixed with 4% PFA and 

treated with DAPI (0.1% in PBS) in order to stain the nuclei of the cells. Images were obtained with an 

Axio Observer Z1 microscope (Zeiss) connected to a Spinning Disk Confocal head (Yokogawa) and 

ImageJ software was used for further analyses. 
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5.6 ANNEX: CNTS PURIFICATION AND FILLING

Our partner in Barcelona (ICMAB – CSIC), focused on the optimization of methods for purification, 

shortening and filling of both SWCNTs and MWCNTs. We here report a brief explanation and 

description of how these steps are generally carried out, and of the methodologies employed by our 

partner. During a short stay at ICMAB, I was myself involved in the purification and filling of one batch 

of pristine CNTs that I later employed for functionalization. 

5.6.1 INTRODUCTION

Purification 

All along the project, commercially available pristine CNTs produced by CVD were employed. As-

produced pristine CNTs (both SWCNTs and MWCNTs) contain impurities such as metal nanoparticles 

(from the catalyst used for the growth of CNTs), graphitic particles and amorphous carbon, therefore 

their purification is fundamental for the desired biomedical applications. Most metal particles present in 

as-produced CNTs are surrounded by concentric graphitic shells, which prevent their simple dissolution 

by aqueous acids.
[54]

 The graphite layer can be removed by different methods such as nitric acid, 

hydrogen peroxide, air treatment; however these methods lead to an extensive disruption of the CNT 

tubular structure.[54] Steam treatment at high temperatures is instead less aggressive as steam is a mild 

oxidizing agent that can remove the amorphous carbon without introducing major defects and functional 

groups.
[54,55]

 The longer the steam treatment, the more carbon (in its different forms, i.e. amorphous, 

graphitic or nanotube) is removed, therefore longer treatments result in consistent consumption of CNTs. 

According to our partner’s studies, 4-hour treatment with steam at 900 °C is a good compromise between 

quality of the sample and weight loss. The process of steam purification also causes the opening of the 

tube ends (for both SWCNTs and MWCNTs) and a slight reduction of the nanotube length.
[54,55]

 This 

treatment is then followed by reflux of the CNTs with concentrated HCl to remove the nude metal 

particles which can now be readily dissolved by acids. The quality of the purified samples and the 

absence of particles can be verified by HRTEM, while TGA in air allows to determine the amount of 

residual metal particles. 

Filling and sealing

The filling of carbon nanotubes with inorganic compounds, in the specific case metal halides, can be 

achieved by molten-phase capillary wetting.
[56,57]

 In this process the salt is heated above its melting point 

inside a sealed ampoule under vacuum and in the presence of CNTs. The molten material percolates into 

the opened nanotubes by capillary action. Once filled, cooling the system back to room temperature 

causes the dangling bonds at the ends of the nanotubes to seal by radical recombination.
[58]

 While this 

evidence has been variously reported for SWCNTs, the complete sealing of filled MWCNTs under 

similar conditions is more difficult to achieve because of their larger diameter. Therefore, more 
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investigations need to be carried out on this topic. The excess of material external to the CNTs can be 

dissolved away by extensive washings with an appropriate solvent. The filling yield (i.e. the mass ratio 

between the encapsulated material and carbon) can be exactly determined by thermogravimetric analysis 

of the sample in flowing air.
[59]

 Another very useful technique to characterize endohedral nanotubes is 

HRTEM, which is the only microscopic technique that allows to see through the sidewalls of nanotubes 

and visualize their content with atomic resolution. By HRTEM it is possible to prove that molecules are 

genuinely located inside nanotubes and reveal structural information about their packing. In fact, metal 

halides encapsulated within nanotubes can be found in an amorphous phase or arranged in a crystal 

form.
[32,60]

5.6.2 EXPERIMENTAL PART

In the following table are listed the various type of pristine CNTs we have employed in our 

investigations, along with their main characteristics. A brief description of the experimental protocol for 

their preparation is reported just below, to highlight the main differences between one batch and the 

other. 

Sample Name CNT type Median Length 

(nm) 

Mean Length 

(nm) 

Filling Filling Yield 

[wt %] 

Reactions 

SWCNT –B1 SW 420 690 / / 9 

SWCNT –B2 SW 420 690 / / 
13-18 

23-26 

SmCl3@SWCNT –B1 SW 420 690 SmCl3 16.02 11 

SmCl3@SWCNT –B2 SW 420 690 SmCl3 17.86 19-22 

SmCl3@SWCNT –B3 SW 420 690 SmCl3 18.36 34 

LuCl3@SWCNT SW 420 690 LuCl3 15.82 12 

LuCl3@SWCNT -S SW 266 530 LuCl3 29.94 27-33 

MWCNT MW 1630 2093 / / 10 

SmCl3@MWCNT MW 225 308 SmCl3 16.71  

Table 5.10 Specifications on the batches of pristine CNTs used for our reactions (corresponding number in the 

last column). Samples and data provided by ICMAB partner.

General procedure for the purification of SW and MWCNTs 

CNTs were ground with a mortar and then heated for 4 h at 900 °C inside a quartz tube, in the presence 

of steam and under argon. Steam-treated CNTs were then dispersed in HCl (37% with H2O, 1:1) and 

heated at 110 °C overnight. The dispersion was then filtered, the CNTs on the membrane were washed 

with H2O until neutral pH of the filtrate, and finally dried at 100 °C. 



CHAPTER 5 

161 

Preparation of short SWCNTs 

CNTs were treated with freshly prepared piranha solution (H2SO4/H2O2, 4:1) for 2 h. After quenching of 

the reaction with H2O, the mixture was filtered and the CNTs on the membrane were washed with water 

and dried at 100 °C. The CNTs were then steam-treated at 900 °C for 1 h, and purified with HCl as 

above-described. 

Filling of SWCNTs 

CNTs were ground with the chosen filling material in a 1:10 weight ratio, under inert atmosphere (glove 

box). The mixture was then sealed in a quartz tube under vacuum, and the sample was annealed in a 

furnace at 900 °C (for SmCl3), or 960 °C (for LuCl3) for 12 h. The sample was then dispersed in H2O by 

sonicating for 15 min, heated at 65 °C for 3-4 h, filtered and rinsed with ddH2O. This washing protocol 

was repeated three times (or more) in case TEM characterization evidenced the presence of residual 

external material. 
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Carbon nanotubes are a unique material that proved to have many promising applications, especially 

in the fields of nanoelectronics, composite materials and nanotechnology. In the last decade the 

potential exploitation of this material in the biomedical field has attracted great interest due to the 

ability of CNTs to be internalized into cells, paving the way for the possible use of CNTs as drug or 

gene delivery system. In this context, we focused our interest in developing new carbon nanotube 

bio-conjugates with the ultimate aim of achieving anticancer therapy. Specifically, the researches 

described in this Thesis have been addressed toward the investigation of new chemical strategies for 

the preparation of CNT carriers of genes (siRNA), therapeutic nanobodies or radioactivity. 

In the first experimental section (Chapter 2), we have described the preparation of amino-

functionalized MWCNTs as carriers of siRNA. Several studies have employed CNTs functionalized 

with positively-charged groups for the delivery of genomic material in vitro and in vivo, showing 

promising results. Our group had also previously remarked that the type of chemical 

functionalization used to surface-modify oxMWCNTs can lead to significant differences in nanotube 

cellular uptake and delivery ability. In this study, we designed and explored six synthetic strategies to 

achieve the direct conversion of the carboxylic groups of oxMWCNTs into amino groups, without 

extending the lateral chain. The aim was to further clarify the relationship between the CNT surface 

functionalization and the siRNA complexation ability. We succeeded to introduce nitrogen-

containing fucntional groups (most probably amines) onto the CNTs. However, the degree of 

conversion of �COOH into �NH2 was not very high, suggesting that a consistent amount of 

carboxylic groups was still present. We then evaluated the ability of the amino-functionalized 

MWCNTs to complex siRNA and to achieve gene transfection inside a tumor cell line. Two of the 

synthesized conjugates showed good complexation efficacy and were able to be uptaken by the cells 

without triggering any short-term toxic effect. By this study, it was evident that the synthetic strategy 

employed to modify the CNT surface can have a strong impact on the behavior of the final conjugate 

in a biological environment. Though, characterization and understanding of the surface chemistry are 

indeed crucial to gain a better comprehension of this behavior. 

The second research project (Chapter 3) concerned the preparation of a novel CNT construct for the 

delivery of VHH, a therapeutic nanobody. VHHs are nowadays largely investigated as a valid 

alternative to full antibodies, thanks to their smaller size and high affinity for the target. The VHH we 

employed is able to target !-catenin, whose overexpression is associated with many cancers. We have 

conjugated VHH to oxMWCNTs through a designed linker featuring a cleavable disulfide bond, to 

access the controlled intracellular release of the therapeutic. In one of the constructs, VHH was 

directly linked to the disulfide bond of the linker (PEG4-SPDP), while in another, VHH was 

distanced from the cleavage site by a maleimide spacer. For comparison, a third VHH-CNT 

conjugate devoid of cleavable linker was synthesized. SPR analysis of the three conjugates proved 

that the nanobody affinity toward !-catenin was still preserved after conjugation. In vitro and in vivo 

assessment of the efficacy of the conjugates showed their toxicity toward a carcinoma cell line 

overexpressing !-catenin and their ability to afford tumor reduction and prolonged survival of tumor-

bearing mice. Despite no clear evidence proved the better efficacy of the two conjugates presenting 

the disulfide linker over the un-cleavable conjugate, all biological results evidenced that these novel 

CNT-VHH constructs are efficient against the tested tumor and could therefore be further optimized 

to achieve a powerful tool for the delivery of therapeutic nanobodies. 

The last research work described in this Thesis (Chapter 5) was accomplished within the Marie Curie 

ITN project named RADDEL, which is aimed at the development of CNT-based carriers for targeted 

delivery of radiotherapy. The fact that the hollow interior of CNTs can be exploited to confine the 

radionuclide, while the sidewalls can be externally decorated with biologically active molecules, 
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renders CNT a highly suitable carrier of radioactivity. In fact, upon sealing of the filled CNTs, the 

radionuclide is confined inside the nanotubes and the targeting ability provided by the external 

biomolecule can direct its delivery toward a specific site. Within this framework, we have focused 

our researches on the functionalization of different types of pristine empty and filled CNTs by [2+1] 

cycloaddition (Bingel and nitrene reactions) and on the subsequent conjugation of a targeting 

antibody. Our attempts to functionalize CNTs by Bingel reaction, using different malonate precursors 

or reaction conditions, did not lead to satisfying degrees of loading. On the other hand, nitrene 

cycloaddition of an organic azide onto CNTs proved to be an efficient strategy to achieve the 

functionalization of many types of pristine CNTs with good loadings. Functionalized CNTs were 

further derivatized with a tagging molecule (for microscopic characterization), fluorescent probes 

(for assessment of cellular internalization pathways) or a targeting monoclonal antibody (for targeted 

delivery). Through a number of reaction screenings we succeeded to set up an optimized protocol to 

achieve the complete preparation of mAb-functionalized filled CNTs in a relatively short time, in 

view of the translation of this protocol on radioactive material. The characterization of the mAb-CNT 

conjugates by different techniques proved that the mAb (Cetuximab) was successfully immobilized 

onto nitrene-functionalized CNTs, and that its affinity toward a counter antibody was still preserved. 

In vitro and in vivo assays suggested that the mAb-CNT conjugates have a good biocompatibility and 

are not toxic in the tested cell lines. Furthermore, we demonstrated that these compounds showed 

good ability to target and bind their receptor, the EGFR, which is overexpressed by many cancer 

cells. However, no substantial difference could be found between the covalent mAb-CNT conjugate 

and its non-covalent control. Finally, the mechanism adopted by the cells to internalize these 

compounds seems to depend on the specific type of cells, although further investigations on this 

subject are needed to clarify the CNT entry pathway and their intracellular localization. We have 

very recently employed our optimized protocol to perform the functionalization of radioactive filled 

CNTs and we are currently assessing their therapeutic efficacy and their in vivo biodistribution in 

collaboration with our partners in KCL (London). Overall, the synthetic strategy that we designed 

looks like a promising approach for the functionalization of filled CNTs with a targeting mAb to 

achieve the delivery of radiotherapy. Further investigations envisaging different targeting molecules, 

functional chains and/or radionuclides may be performed to prepare new conjugates with different 

therapeutic properties. Indeed, the possibility to select different radionuclide/targeting molecule pairs 

widens the applicative range of our strategy and offers the option to tune the properties of the 

radiopharmaceutical according to the specific targeted tumor. This is a very valuable aspect of our 

strategy that could have a very high and wide potential in the field of radiotherapy. 

To conclude, we have explored new methodologies and chemical approaches for the covalent 

functionalization of CNTs for applications in the biomedical field. Our studies constitute a proof-of-

principle that CNTs are a promising tool to achieve the delivery of anticancer therapeutics. We 

therefore believe that the investigations on the potential of CNTs as a carrier are still of valuable 

interest, in association with researches to improve their characterization and studies of their 

toxicological profile. For any clinical translation of CNT conjugates it is indeed crucial to have a full 

understanding of their behavior under all perspectives (chemical, physical, toxicological, 

therapeutic). 
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Cinzia SPINATO 

Résumé 

L’application de nanotubes de carbone (CNTs) dans le domaine biomédical a été largement 
explorée grâce à leur propriétés physico-chimiques et à leur biocompatibilité. Par la 
fonctionnalisation extérieur et/ou intérieur des CNTs c’est possible de préparer des nouveaux 
conjugués avec diffèrent propriétés et applications. On a exploré la modification des nanotubes par 
voie covalente pour leur utilisation comme vecteurs de biomolécules pour achever la thérapie 
anticancéreuse. Pendant ma Thèse, j’ai travaillé sur trois projets: l’application de différentes 
approches pour la conversion des groupes acides carboxyliques de MWCNTs oxydés en amines, 
dans le but de préparer des conjugués capables de complexer du siRNA (petits ARN interférents). 
Dans un second projet, j’ai développé des conjugués à base de nanotubes de carbone couplés avec 
un fragment d’anticorps thérapeutique via une liaison clivable afin d’en étudier le potentiel 
antitumoral. Dans le dernier projet, on a achevé la fonctionnalisation de CNTs remplis avec des 
molécules radioactivables par cycloaddition de nitrene et ensuite conjugué un anticorps de ciblage 
tumoral. Le but été d’utiliser les nanotubes comme vecteurs pour la délivrance de radioactivité à 
l'intérieur des cellules tumorales ciblées par l’anticorps. On a aussi conduit des investigations 
biologique, afin d’évaluer la toxicité et l’efficace de ce conjugué. 

Mots-clés : nanotubes de carbone, réaction nitrene, délivrance de molécules thérapeutiques, 
radiothérapie. 

Abstract 

The application of carbon nanotubes (CNTs) in the biomedical field has been widely explored thanks 
to their physico-chemical properties and their biocompatibility. By the external and/or internal 
functionalization of CNTs it is possible to prepare novel conjugates tailoring different properties and 
applications. We have investigated the covalent derivatization of CNTs by different chemical 
strategies to achieve suitable carriers for anticancer therapy. In one project, we have explored the 
conversion of the carboxylic groups of oxidized CNTs into amino groups, and the ability of these 
conjugates to complex genetic material, for gene delivery. In another project, CNTs have been 
functionalized with linkers bearing a cleavable disulfide bond, and further conjugated to a therapeutic 
nanobody for controlled intracellular drug release. Finally, we have investigated the reactivity of 
close-ended CNTs filled with radioactivable material toward Bingel and nitrene cycloadditions and 
the conjugation of a targeting antibody, for the target delivery of radioactivity. By several 
characterization techniques we have proved that the antibody is covalently grafted to the CNT-carrier 
and it still possesses its targeting ability. Investigations on the biological profile of these conjugates 
(cytotoxicity, targeting, uptake, biodistribution) have been also carried out. 

Keywords: carbon nanotubes, nitrene reaction, drug delivery, gene silencing, radiotherapy. 
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