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population dans les fermenteurs industriels.

JURY
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mélange, de transfert locaux et des effets d’hétérogénéité de
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R É S U M É

Les biotechnologies sont un champ d’application majeur pour les travaux de recherche
actuels et à venir [Noorman and Heijnen, 2017; Camarasa et al., 2018]. Elles sont actuelle-
ment appliquées aux productions industrielles de composés chimiques, de bio-carburants
et bio-plastiques, ou de molécules à forte valeur ajoutée. La diversité naturelle des micro-
organismes nous laisse espérer de nouvelles applications industrielles dans un futur proche,
et pourrait aider à la lutte contre les crises environnementales et énergétiques.

De la découverte de nouvelles voies de production à leurs applications industrielles,
plusieurs étapes d’ingénierie sont requises pour permettre le passage d’échelle. Ce tra-
vail peut être facilité par la modélisation et la simulation prédictive des bioréacteurs.
Différentes approches ont été développées dans cet objectif, mais les modèles obtenus
échouent généralement à reproduire les observations expérimentales à différentes échelles
[Enfors et al., 2001]. Cela s’explique par l’utilisation d’hypothèses qui, bien que valides
aux échelles de culture en laboratoire, ne s’appliquent pas aux échelles industrielles. Le
défi principal abordé par ce travail est de s’affranchir de ces hypothèses afin d’améliorer
les modèles tout en assurant un coût numérique plus faible que les approches usuelles.

Cette thèse se concentre sur le développement d’une structure de modèle pour les
fermenteurs industriels, en visant un usage d’ingénierie. Ce travail se base sur deux
postulats : (i) par leur taille, les fermenteurs industriels sont hétérogènes; (ii) par leur
nature, les micro-organismes sont des systèmes dynamiques. Ces considérations induisent
plusieurs conséquences. La principale est que les micro-organismes vont se différencier
les uns des autres. La seconde est qu’ils seront en déséquilibre avec leur environnement,
entrâınant des baisses de performance à l’échelle du procédé. Pour intégrer l’ensemble
de ces aspects dans une unique structure de modèle, tout en permettant des simula-
tions rapides d’un fermenteur, l’approche proposée couple (i) un modèle métabolique
dynamique pour décrire le comportement des cellules, (ii) un modèle de bilan de popu-
lation pour suivre l’hétérogénéité biologique et (iii) un modèle de compartiments pour
décrire l’hydrodynamique.

Un résultat majeur a été le développement d’une structure de modèle métabolique, qui
a été confrontée avec succès à de nombreuses données expérimentales, tout en préservant
un coût numérique significativement faible. Cette structure a été appliquée à deux micro-
organismes, Escherichia coli et Saccharomyces cerevisiae. Une comparaison de plusieurs
méthodes permettant de traiter les équations de bilans de population a été menée en
termes de stabilité, précision et performances a conduit à la sélection de la méthode
étendue de quadrature des moments. Une amélioration majeure de cette méthode a été
identifiée, permettant un gain de stabilité et de performances, en réduisant son coût d’un
facteur 10. L’hydrodynamique gaz-liquide d’un fermenteur industriel a été obtenue par
Mécanique des Fluides Numérique (CFD) et des outils supplémentaires ont été développés
pour extraire des modèles de compartiments à partir des simulations CFD. Finalement,
le couplage des modèles métaboliques, de bilan de population et de compartiments a été
illustré par la simulation d’une configuration industrielle.

Mots clés : bioréacteur, modélisation, simulation, bilan de population, métabolisme, scale-up,
CFD, modèle de compartiments, micro-mélange
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S U M M A RY

Biotechnologies form a significant field for current and upcoming research [Noorman and
Heijnen, 2017; Camarasa et al., 2018]. They are currently applied to industrial production
of chemicals, bio-fuels or high-value molecules. The natural –massive– diversity of micro-
organisms is expected to unlock new industrial applications in a near future, and could
help facing the environmental and energetic crises.

Between the lab discovery of new interesting pathways to their industrial application,
multiple engineering stages are required to scale-up the process efficiently. In this context,
the predictive modelling and simulation of bioreactors facilitates the scale-up procedure
of new processes, and can be applied to existing systems to improve their performances.
Attempts to produce such predictive models exist, but proposed approaches usually do
not fit experimental results at different scales simultaneously [Enfors et al., 2001]. This
can be explained by the use of modelling hypotheses that, while being valid at lab-scale,
tend to be inaccurate in large-scale heterogeneous systems. Removing the need for these
hypotheses while keeping the model complete, yet simple enough to allow fast simulations,
is a challenge that this thesis attempts to tackle.

This PhD thesis focuses on developing a modelling framework for fermenter simulations,
aiming at engineering applications. This work is based on two premises: (i) due to their
size, industrial fermenters are heterogeneous; (ii) due to their nature, micro-organisms are
dynamic systems. Coupling these considerations leads to a variety of consequences. The
main one is that cells will tend to differentiate one from another, hence inducing biological
heterogeneity at a population scale. The second one is that micro-organisms will be at
disequilibrium with their environment, which induces loss in process performances. To
embrace all of these aspects in a modelling framework, while allowing for fast simulations,
we chose to couple (i) a dynamic metabolic model for cell behaviour, (ii) a population
balance model to track biological heterogeneity and (iii) a compartment model to describe
the fermenter hydrodynamics.

A significant achievement has been the development of a metabolic model structure
which has shown to be accurate against numerous experimental data sets, while having a
significantly low numerical cost. This structure has been applied to two micro-organisms:
Escherichia coli and Saccharomyces cerevisiae. Multiple numerical methods exist to treat
Population Balance Equations. They have been compared in terms of stability, accuracy
and performances, which led to the selection of the Extended Quadrature Method of
Moments (EQMOM). We happened to identify a major improvement to this method,
which led to a further increase of its performances and stability, by reducing its cost
by a factor 10. Computational Fluid Dynamics (CFD) has been used to access the
gas-liquid hydrodynamics of an actual industrial fermenter. Tools have been developed
to post-process CFD results and obtain compartment models. Finally, the coupling of
compartment, population balance and metabolic models for engineering application has
been illustrated on an industrial fermenter.

Keywords: bioreactor, modelling, simulation, population balance, metabolism, scale-up, CFD,
compartment model, micro-mixing
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C O N F I D E N T I A L I T Y N O T I C E

For confidentiality reasons, the complete thesis cannot be made fully available. The
current version is incomplete; this confidentially safe version comes with following modi-
fications of the original manuscript:

• details about an industrial fermenter geometry and operating conditions were dis-
carded;

• simulation results were normalized or changed to arbitrary units;

• content of Appendix D has been completely removed.

Despite these modifications, this manuscript version remains faithful to the original thesis.
Observations, discussions and analysis were left untouched.
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passées au sein du Hall GPE sur le campus de l’INSA de Toulouse. J’ai rejoint cette
école début 2011 en tant qu’étudiant Ingénieur et j’y ai rencontré d’une part celui qui
allait ensuite être mon mâıtre de stage puis mon directeur de thèse, et d’autre part celle
avec qui je vis maintenant depuis 6 ans. Il est connu que le temps semble passer vite
en bonne compagnie, et depuis 2011, le temps est passé vite, très vite! J’ai fait de très
belles rencontres, et maintenant que je sais que je resterai encore de nombreuses années
sur Toulouse, je sais que je ne perdrai pas de vue la majorité de celles et ceux que j’ai pu
côtoyer, en particulier durant ma thèse.

Avant de commencer à travailler sur cette thèse, j’ai discuté avec plusieurs doctorants et
leur principal conseil était “Choisis bien tes directeurs de thèse, davantage que le sujet”. À
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mentor, et l’image de ce que devrait être tout directeur de thèse : impliqué tout en laissant
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leurs doctorants ; et très actif pour faciliter l’insertion professionnelle de tes thésards en
leur ouvrant ton réseau. Pour cela, pour les bonnes soirées passées au travers de nombreux
congrès, pour ces journées de brainstorming intensif, et pour la place importante que tu
m’as laissée au sein de ton projet de recherche, je te remercie très sincèrement. J’espère
que nous continuerons à collaborer encore longtemps !

Le fait que ma thèse ait été co-encadrée par deux laboratoires et un partenaire in-
dustriel aurait pu être une source de complication, mais cela s’est au final extrêmement
bien déroulé. Du côté IMFT, Pascal Fede m’aura apporté un regard de non-biologiste
sur ce travail avec une expertise en mécanique des fluides multiphasique et une rigueur
mathématique autrement manquante dans mes écrits. Pascal, merci de m’avoir ou-
vert les portes de l’IMFT ce qui aura –à terme– débouché sur mon poste actuel, et de
m’avoir accueilli dans ton bureau à une période de ma thèse où j’avais besoin de changer
d’environnement. Avec toi aussi j’espère continuer à collaborer longtemps.

Du côté industriel, j’ai également pu profiter d’un encadrement très humain, dont
l’objectif était d’amener le projet aussi loin que possible et sans perdre de vue les
thématiques industrielles ; sans jamais être contraignant, toujours en étant constructifs.
J’ai bénéficié d’un véritable intérêt pour ce travail à toutes les échelles de la recherche
chez Sanofi. Je tiens en particulier à remercier mes interlocuteurs directs, à savoir Ge-
offrey Laronze, Marie-Isabelle Penet et Marine Bertin. Vous avez porté ce projet de
thèse et m’avez permis de travailler durant ces quelques années sur des thématiques nous
intéressant tous profondément. Nos fréquents échanges, par téléconférence ou en face-à-
face, ont toujours été productifs, constructifs, et se sont déroulés dans la bonne humeur.
Travailler avec vous a été pour moi une très bonne expérience ; j’espère que vous partagez
cet avis et que les collaborations vont pouvoir se poursuivre sur la lignée de cette première
thèse.
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Cette thèse s’est déroulé en parallèle de plusieurs projets partageant des thématiques
communes. Cela a été la source de discussions intéressantes, et parfois critiques pour
la poursuite de mon travail, ainsi que d’échanges qui ont permis à mon travail d’aller
bien plus loin que ce que j’aurais été capable d’effectuer de manière isolée. Dans ce
cadre, je tiens à remercier en particulier Bastien Polizzi, alors post-doctorant dans le
cadre de la chaire d’attractivité BIREM, dont l’aide sur le développement d’un code de
post-traitement de résultats de CFD a débloqué l’ensemble des résultats décrits dans les
chapitres IV et V. Bastien, merci de m’avoir consacré du temps et de m’avoir débloqué
dans une période où tu avais d’autres priorités. Merci également pour les nombreux re-
tours que tu m’as fait sur mes développements et mes présentations. Je te souhaite une
bonne continuation et j’espère que nos chemins professionnels se recroiseront. Je tiens
également à remercier Guillaume Jambon qui, par le biais d’un projet qui n’a pas pu aller
à son terme, m’a apporté la vision critique de quelqu’un n’étant pas de mes thématiques
scientifiques. Cela m’a aidé à remettre en question des certitudes personnelles non jus-
tifiées et à donc limiter les biais dans ma démarche scientifique.

Bien que cela ne transparait que peu dans ce manuscrit, une partie non négligeable
du temps consacré à ma thèse a porté sur la réalisation de simulations en mécanique des
fluides numériques, en utilisant le logiciel NEPTUNE CFD. Je tiens donc à remercier ceux
qui m’ont aidé sur l’utilisation de cet outil, tout d’abord Lokman Bennani qui m’a formé
à l’utilisation du logiciel, et ensuite Hervé Neau pour son aide tout au long de ma thèse.
Hervé, non seulement tu as répondu à mes nombreuses demandes concernant Neptune,
mais tu m’as également fait découvrir le métier d’Ingénieur en Calcul Scientifique. Tu
m’as entendu lorsque dès ma deuxième année de thèse je t’ai dit être intéressé par ce
métier, et voilà que deux ans plus tard j’ai le plaisir de travailler quotidiennement avec
toi. À toi Hervé, mais également à l’ensemble du service CoSiNus, à savoir Alexei Stoukov,
Annäıg Pedrono et Pierre Elyakime : merci de m’avoir accueilli dans votre équipe et de
m’avoir aidé à préparer et à obtenir le concours grâce auquel je suis assuré de vous côtoyer
ces prochaines années !

Pour arriver jusque là, j’ai eu de la chance. La chance de rencontrer d’une part ceux
qui, tout au long de ma formation, m’ont laissé l’opportunité de faire mes preuves, m’ont
formé et m’ont guidé, jusqu’à ma position actuelle. La chance d’autre part de rencontrer
ceux qui ont fait de ces années de thèse une période si agréable de ma vie et qui auront
créé cette ambiance chaleureuse propre au Hall GPE. La liste de ces personnes est longue
et je vais en oublier quelques-un, qu’ils ne m’en veuillent pas. Merci à Sylvie Besses, le
hasard aura voulu que d’Angers à Toulouse, je fasse une école d’ingénieurs et une thèse
à quelques pas de là où vous avez fait vos propres études. Merci à Patrice Davodeau,
je n’ai pas oublié notre conversation. Merci à Annie Leuridan et Laurent Bonaventure,
cette année passée sur Nantes fût intense, mais vous m’avez donné les outils qui m’ont
permis de poursuivre, merci de m’avoir fait confiance et d’avoir ouvert les portes de
l’ATS à une formation jusque là inconnue ! Merci Aras Ahmadi pour l’ensemble de nos
nombreuses discussions, l’une d’entre elle ayant eu un impact particulièrement important
sur les développements que j’ai réalisés (POO), et pour ton expertise sur les questions
d’optimisation qui m’aura fortement dépanné dans mes derniers mois de thèse. Merci
Alain Liné, tu seras parvenu à me faire aimer la mécanique (des fluides, tout du moins),
merci pour ton regard sur les aspects de simulation CFD que j’ai rencontrés dans ma
thèse. Merci à Arnaud Cockx, pour l’organisation que tu as donné à l’équipe TIM,
permettant aux doctorants de participer activement à la vie de l’équipe, tu m’as permis
d’expérimenter à petite échelle un rôle de support informatique et cela se sera montré
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Daniel, Nour et Arezki : partager un bureau avec vous a été une formidable expérience
à coups de luttes féministes (?...), d’entraide au branchement de câbles (par post-it in-
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nombreux mois, le sevrage risque de prendre encore quelques années, et pourrait ne jamais
être complet !...

Si j’ai pu, après un BAC technologique et un BTS, poursuive mes études si loin, c’est
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mes choix qui m’auront conduit à ce parcours atypique, et aura fait des sacrifices entre
autre pour me permettre d’aller au bout de ces choix : je ne te le dis jamais assez, merci !
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et que j’ai donc pu visiter à quelques reprises ces dernières années. Merci de m’avoir
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N O TAT I O N S

Roman symbols

Symbol Description Unit
a? Specific gas-liquid transfer area m2/m3

a◦ Gas-liquid transfer area per gas volume unit m2/m3
G

C Vector of mass concentrations kg/m3

d32 Bubble Sauter diameter m
db Bubble diameter m
D Dilution rate s−1

D Diffusion/dispersion coefficient m2/s
f Specific consumption or production molar transfer rate mol/kgX · s
~g Gravity acceleration m/s2

H Gas solubility, Henry constant kgL/kgG
H Shannon entropy
J Jacobi matrix
kL Vector of volumetric reaction rates kg/m3 · s
K Biological affinity constant kg/m3

L
Ki Biological inhibition constant kg/m3

L
m Maintenance rate molG/kgX · s
m Moment of a number density function
mp Particle mass kgX
~M Momentum exchange rate kg/m2 · s2

M Molar mass of chemical species kg/mol
n Concentration density function of cell properties distribution
nb Number density function of bubble size distribution
Ncell Number of biological cells
p̂ Vector of biological properties
P Pressure Pa
q Specific reaction or metabolic-mode rate mol/kgX · s
r Vector of specific reaction rate kg/kgX · s
R Vector of volumetric reaction rates kg/m3 · s
t Time s
T Characteristic time-scale of phenomena s
~u Velocity m/s
V Volume m3

~x Vector of location m
Y Conversion yield mol/mol

xiii



xiv Subscripts and superscripts

Greek symbols

Symbol Description Unit
α Local phase fraction m3

k/m3

β Probability Density Function of property redistribution
κ Kernel Density Function
µ Dynamic fluid viscosity Pa · s
µ Biological growth-rate kgX/kgX · s
ϕ Specific consumption or production mass transfer rate kg/kgX · s
Φ Volumetric mass transfer rate kg/m3 · s
π Orthogonal polynomial
ρ Phase density kg/m3

σ Glycolytic stress
τ Stress tensor Pa
ζ Adaptation rate of biological properties

Subscripts and superscripts

Symbol Description
x@p Particle or individual attached variable
x∗ Variable defined at equilibrium with environment
x(a) Actual (realised) output of biological model
x(b) Biological phase attached variable
x(e) Environment attached variable
x(g) Global variable accounting for biological and environmental conditions
x(max)/xmax Maximum possible value
x̃ Population mean value
〈x〉 Volumetric mean value
x̄ Time mean value

Tensors and operators

Tensors are denoted by a bold font in mathematical notations, e.g. C. This manuscript
refers to vectors and operators defined either in the geometrical space, e.g. ~x and ~∇, or
in a space of individual-scale properties as defined under the framework of Population
Balance Models, e.g. x̂ and ∇̂. On top of classical vectorial notations (dot-product
~a ·~b, cross-product ~a×~b, tensor-product ~a⊗~b), this manuscript makes use of Hadamard
operators for element-wise products (A ◦B) and element-wise divisions (A�B).



Abbreviations xv

Abbreviations

ATP Adenosine TriPhosphate
BSD Bubble Size Distribution
CDF Concentration Density Function
CFD Computational Fluid Dynamics
CFL Courant-Friedrichs-Lewy
CFU Colony-Forming Units
CMA Compartment Model Approach
DNS Direct Numerical Simulation
EQMOM Extended Quadrature Method of Moments
FBP Fructose-1,6-BiPhosphate
FLOP Floating-Point Operations
GLIM Generalized Large-Interface Model
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I
C O N T E X T , S TAT E O F T H E A RT A N D O B J E C T I V E S

I.1 Bioreactors in current economy

Biotechnologies refer to “any technological application that uses biological systems, living
organisms, or derivatives thereof, to make or modify products or processes for specific use”
[United Nations, 1992]. This broad definition encompasses a large-variety of applications
in most fields of current industries, classified through so-called colors of biotechnologies.
Green biotechnologies refer to agriculture use, blue to marine applications, red to health
and pharmaceutical applications, white to industrial productions, and so on [Kafarski,
2012]. The global market size for biotechnologies was estimated at approximately USD
330 billion in 2015 and could reach up to USD 775 billion by 2024. This impressive
expected growth can be attributed to recent breakthroughs in experimental capabilities to
interact with biological systems, from fast and affordable genome sequencing to targeted
genome edition [e.g. CRISPR-Cas9, Bolotin et al., 2005]. These experimental advances
also benefit from a context of fossil fuels depletion to which biotechnologies are expected
to provide an answer through biofuel, biogas or bio-material productions.

Whilst biotechnologies are not new and can be traced back to alcoholic beverage pro-
ductions in all known civilisations, a major challenge for current industries is “to move
from traditional methods towards more standardized industrial processes” [Noorman and
Heijnen, 2017]. Most current productions occur in large-scale bioreactors: large mixed
culture tanks, possibly aerated, in which a substrate is converted by a biological pop-
ulation into a product of interest. These products can be specific high value molecules
(hormone, pharmaceuticals, ...), solvants, biopolymers, biofuels, biogas or even food ingre-
dients. Considering the high volume or high value productions in each of these markets,
any improvement to bioreactor processes will have significant financial impact. Doing
so will require to understand local phenomenon occurring in such systems, and to cou-
ple these understandings of elementary phenomenon to predict the large-scale behaviour
of the process. This, by itself, constitutes an exciting challenge for both academic and
industrial communities.

I.2 Challenges for operating robust large-scale bioprocesses

When designing a bioprocess, the first steps consist in identifying a micro-organism
that converts an available substrate into the targeted molecule, either naturally, or af-
ter metabolic engineering. This organism is then tested in lab-scale cultures in flasks
or litre-scale bioreactors, and optimal culture conditions are then determined (pH, oxy-
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gen/substrate concentrations, temperature, . . . ). However, when scaling-up these cul-
tures to industrial scales, conversion yield loss are usually observed.

Enfors et al. [2001] pointed out the existence of large-scale gradients as the main ex-
planation for this difference of behaviour between lab-scale and industrial-scale cultures.
Indeed, in litter-scale reactor, the mixing is fast enough to ensure homogeneous conditions
in terms of pH, temperature, substrate or oxygen concentrations, . . . Therefore, when se-
lecting micro-organisms for their high conversion performances in lab-scale cultures, the
selection is biased in that chosen organisms perform well, but under tightly controlled con-
ditions. To reach high production rates, industrial bioreactors are high volume systems.
However, the higher the volume, the higher the mixing time. Therefore, it is usually not
possible to replicate the perfectly controlled homogeneous conditions of lab-scale cultures
into production-scale bioreactors, where gradients will then appear.

Cells travelling in an heterogeneous environment will experience fluctuations, of pH,
temperature, concentration and so on. They will undergo periodic starvation and over-
feeding [Ferenci, 2001], they will face aerobic and anaerobic conditions every few seconds
or minutes, or switch between nitrogen and carbonaceous limitations [Löffler et al., 2017].
These conditions will be drastically different from tightly controlled lab-scale cultures
in which the strain has been selected. This is known to cause undesired metabolic ef-
fect through the activation of unproductive biological reactions [Neubauer et al., 1995;
Brand et al., 2018] as the natural objective of micro-organisms is survival, not industrial
production.

I.3 Using bioprocesses simulation to improve their robustness

As soon as large-scale bioreactors are considered, one has to admit that gradients will
always appear in these systems; that cells will have to travel in these gradients and
that their metabolism will be disturbed by these environmental fluctuations. In silico
“experimentations” –or simulations– of bioreactors are useful to assess these nefarious
effects. They can also become tools to design bioprocesses or optimise mixing, feeding
strategy or other operating conditions in order to reduce unwanted large-scale effects and
improve production yields. The use of simulation tools is expected to replace the use
of empirical scale-up criteria that are, for now, used to design industrial bioprocesses
[Takors, 2012].

A prerequisite to bioreactors simulations is the definition of a model, which sums up
to a closed set of equations describing the dynamic evolution of a biological culture, and
the use of suitable numerical methods to solve these equations. The basis of most models
are local mass balance equations such as

∂C(~x, t)
∂t

+ ~u(~x, t) · ~∇C(~x, t)− ~∇ ·
(
D~∇C(~x, t)

)
= R(C(~x, t)) (I.1)

with ~x and t the location and time, ~u the local fluid velocity and C a vector of concentra-
tions of dissolved species that are convected and dispersed/diffused by the fluid motion.
This equation describes the evolution of local concentrations in an elementary volume of
fluid in which some reactions occur.

If only chemical reactions were considered, the Right-Hand Side (RHS) term would be
a sink or source term that could be attributed to these reactions and could be directly
computed from thermodynamics and kinetic laws. In the case of bioreactors, these reac-
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tion terms must account for the contribution of each viable micro-organism to the overall
observed local reaction rate.

Up to now, very few works attempted to perform large-scale simulations of bioreactors,
and even less managed to use these simulations as decision assisting tools. Therefore,
there is still room left for the emergence of engineering tools that will help the decision
making process. One goal of this thesis is to provide a simulation framework that al-
lows performing simulations of large-scale biological systems, in a reasonable amount of
computation time, to pave the way for the development of such tools.

I.4 Challenges in bioreactors modelling

To start, we shall explain what still limits the emergence of engineering tools based on
bioreactor simulations. Bioreactors are large tanks, usually aerated through gas injection,
mixed by one or multiple impellers, in which micro-organisms are cultivated. This implies
that interactions occur continuously at multiples length and time scales. Even though
Eq. (I.1) is an over-simplification of a bioreactor model, it still emphasize the fact that
two aspects are core to the modelling: physical transport on the Left-Hand Side (LHS),
and bioreactions on the RHS. Both aspects must therefore be dealt with and will bring
complementary challenges to the modelling of bioprocesses.

I.4.1 Describing large-scale hydrodynamics...

In terms of transport, a complete model must be able to describe the velocity field within
the reactor. This can be done either by enforcing a circulation flow through so-called
Compartment Models [Delafosse et al., 2014; Vrábel et al., 1999] or by solving equations
of fluid mechanics, namely Navier-Stokes equations, for multiphase flows. Bioreactors
are three-phases systems, with a liquid culture medium, gas bubbles for aeration, and a
biological phase made of micrometric living particles.

Numerous works focus on the simulation of gas-liquid stirred systems using Computa-
tional Fluid Dynamics (CFD) [Schütze and Hengstler, 2006; Moilanen et al., 2008; Zhang
et al., 2009; Elqotbi et al., 2013]. Due to the low Stokes number of micro-organisms,
biological cells follow the same trajectories as fluid-particle which explains why two-
phases simulations are sufficient to describe hydrodynamics in bioreactors [Delafosse,
2008; Linkès et al., 2014]. In these simulations, the liquid phase is actually a mixture
representation of both liquid and biological phases, and one can integrate the rheological
effects of biomass on the properties of that mixture phase [Bezzo et al., 2003; Moilanen
et al., 2007; Laupsien, 2017].

I.4.2 ... as well as single-cell functioning ...

Despite the modelling difficulties tied to CFD approaches, the hydrodynamic description
might not be the most challenging aspect of bioreactors modelling. The simple, almost
naive, reaction term R(C(~x, t)) in Eq. (I.1) encompasses a wide variety of phenomena
whose modelling is all but straightforward.

First, at the smallest scales, bioreactions occur within each viable micro-organism.
These living systems uptake some substrates from their environment (i.e. sugars, oxygen,
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ammonium, organic molecules, ...) and process them through metabolic pathways to
produce new cells, energy, and multiple by-products.

Internal metabolic –or reactive– pathways a cell is capable-of may differ between strains,
but also between individuals of the same strain. Numerous modern experimental tools are
used nowadays to investigate this wide variety of living systems, to understand and even
predict the internal interactions, reactions and regulations that occur in each cell. These
tools are usually gathered within the `omics family: fluxomics, metabolomics, proteomics,
genomics, . . . [Winter and Krömer, 2013].

Thanks to recent progresses in experimental capabilities, databases and models start to
emerge to describe the overall functioning of cells for strains commonly used in industrial
bioprocesses. Orth et al. [2011] propose such a model for the bacteria Escherichia coli by
describing 1366 genes, 2251 reactions between 1366 metabolites and numerous transports
and interactions. Similarly, Heavner et al. [2012, 2013] provide incremental updates of a
consensus yeast model for Saccharomyces cerevisiae that, in its version 6, described 900
genes, 1458 metabolites and 1888 possibles reactions between these.

For reactions to take place within a cell, substrates must first be up-taken from the
culture medium. A particularity of biological system is that they manage to prevent
thermodynamic equilibrium at the liquid-biological phases interface through the expense
of energy. Transport between this two phases is regulated by the biological membrane
and by the activation –or deactivation– of different transporters Ferenci [1996, 1999];
Gosset [2005]. The state of these transporters evolves along a cell’s trajectory due to
complex regulation mechanisms that respond to fluctuations of external (pH, concen-
trations, light, temperature, ...) and internal (metabolite concentrations, storages, ...)
signals [e.g. Schlegel et al., 2002]. Tracking the state of these transporters appears to be
required to predict the overall reaction terms in Eq. (I.1).

Overall, micro-organisms can be seen as reactive particles in heterogeneous catalysis
systems. In order for the reaction to occur, substrate must first be brought near a cell
membrane through external transport. Due to the size of micro-organisms, the description
of this external transport cannot be done directly by solving fluid-dynamics equations.
Indeed, this would require to solve all scales of turbulence up to the Kolmogorov and
Batchelor length-scales (1 to 10 µm under commonly observed mixing rates in bioreactors,
Delafosse [2008]). This would roughly require discretizing the whole volume of a 100m3

bioreactor into 1017 to 1020 volume elements. To give an idea of the infeasibility of such
a computation, as of November 2017, the super computer with the biggest memory could
“only” hold approximately 1.7 1015 bytes of information. But even if such a simulation
was feasible, it would not be relevant if the same level of accuracy cannot be met when
describing the behaviour of micro-organisms. In particular, no model is able to predict
accurately the impact of short term fluctuations (≈ 1µs) in a cell environment on its
metabolic behaviour. A more standard chemical engineering approach will make use of
closure laws based on the comparison of characteristic times of micromixing and reaction.
This approach will be sufficient for the overall modelling of bioreactions in a fluid particle.

I.4.3 ... among billions of different cells.

One last source of complexity for the modelling of bioreactors is yet to be considered. As
stated previously, micro-organisms respond to environmental fluctuations through regu-
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lation and dynamic evolution of internal concentrations of numerous metabolites. From
one cell to an other, fluctuations will differ, and thus cells will differentiate in response to
this so-called extrinsic noise [Delvigne and Goffin, 2014]. Moreover, cells may differenti-
ate spontaneously due to stochastic noise in the occurrence of internal reactions through
molecular crowding [Klumpp et al., 2013] or due to the uneven distribution of cellular
content during cell division or budding. This stochastic differentiation is referred to as
intrinsic noise, and ensures that biological heterogeneity exists, even in well controlled
environments.

If this heterogeneity did not exist, the term R(C) in Eq. (I.1) could be written as
simply as

R(C) = Ncell r(C) (I.2)

with Ncell the number of cell in a volume of liquid, and r the consumption and production
rates of a single cell.

Due to the biological heterogeneity, one must introduce a vector of cell properties, p̂,
that will impact the metabolism and thus the rates of consumption and production. This
vector may contain information such as its mass, size, age, internal concentrations of
metabolites or other variables of interest. This vector is different between cells, and thus
the source/sink term in Eq. (I.1) must be written

R(C) =
Ncell∑
i=1
r(C, p̂i) (I.3)

The introduction of this state vector comes with multiple modelling difficulties. Gath-
ering experimental data at the scale of a biological population is still a difficult task.
Few works ensure a stringent control of cells environment through microfluidics to access
cell-attached properties [Yasuda, 2011; Nobs and Maerkl, 2014] and an other currently
developped approach is the use of flow cytometry to access cell-scale information [Brog-
naux et al., 2013]. Modelling the evolution of these variables is then a challenge due to
the limited accessibility to experimental data.

Moreover, even if one can predict the evolution of a micro-organism state over time,
hardly no information is usually available about the distribution of biological state at the
beginning of a biological culture.

Finally, a simulation tool based on a model that account for the varying biological state
should be able to describe the variety of internal properties among a biological population.
Note that a cell concentration of 109 Colony-Forming Units (CFU) per millilitre is quite
usual. If one aims at performing fast simulations of bioreactors while accounting for
biological heterogeneity, a strong focus must be made on keeping track of the diversity
among such a large population, without following each individual isolatedly.

I.5 Bioreactors as three phases systems

At the most fundamental level of description, bioreactors are three-phases systems:
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• an aqueous liquid phase, constituted by the culture medium which carries other
phases;

• a gaseous phase, usually bubbles of air or pure oxygen, meant to transfer oxygen
to the culture medium and possibly to strip carbon dioxide or volatile compounds
from it;

• a biological phase which catalyses reactions of interest within a high number of
micro-organisms.

Each of these phases carries dissolved matter, and they all exchange momentum , mat-
ter and heat. The description of these transport and transfer phenomenon are core to
the modelling of bioreactors, in particular when considering the transfer of substrates
and products between the culture medium and micro-organisms. Therefore, a complete
modelling of these systems must account for all three phases.

I.5.1 Euler-Euler treatment of gas and liquid phases

Large-scale gas-liquid systems are often modelled using the Euler-Euler description in
which both phases are considered as inter-penetrating continua. This approach solves
local volumetric phase fractions αk and velocities velocity ~uk by formulating continuity
and momentum balance equations on each phase.

This Euler-Euler approach is especially suited to described homogeneous phases. The
gas phase is actually dispersed, bubble size is not monodispersed and gas concentration
may differ from one bubble to another. But overall, thanks to coalescence and breakage
in stirred bioreactors, it can be considered that the gas phase is almost homogeneous so
that one does not need to describe concentration heterogeneity between close bubbles.

Many authors have gathered experimental data about bubble-size distributions in ag-
itated tank [Barigou and Greaves, 1992; Machon et al., 1997; Alves et al., 2002] and
others have used this data to model breakage, coalescence and transport phenomena over
bubble populations [Ribeiro and Lage, 2004; Laakkonen et al., 2007; Buffo et al., 2012;
Yang and Xiao, 2017]. Despite the relevancy of these models for large-scale bioreactors,
no particular focus was made during this work on the gas-liquid aspect of the overall
modelling.

Overall, the Euler-Euler treatment of gas and liquid phases can be summed up to three
equations for each phase.

Continuity equations are

∂αGρG
∂t

+ ~∇ · (αGρG~uG) = 0 (I.4)
∂αLρL
∂t

+ ~∇ · (αLρL~uL) = 0 (I.5)

where

• k ∈ {G,L,B} designates respectively the gas, liquid and biological phase;

• αk designates the volumetric phase fraction (m3
k/m

3), ∑k αk = 1;

• ρk is the phase density (kgk/m3
k);
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• ~uk is the local velocity of phase k (m/s).

Momentum conservation equations are

∂αGρG~uG
∂t

+ ~∇ · (αGρG~uG ⊗ ~uG) = αG
(
ρG~g − ~∇P

)
+ ~∇ · τG + ~MG (I.6)

∂αLρL~uL
∂t

+ ~∇ · (αLρL~uL ⊗ ~uL) = αL
(
ρL~g − ~∇P

)
+ ~∇ · τL + ~ML (I.7)

where

• ~g is the body acceleration which only encompasses gravity in bioreactors (m/s2);

• P is the local pressure, shared by all phases (Pa);

• τk is the stress tensor of phase k (Pa) ;

• ~Mk represents momentum exchange between phases (kgk/m2.s2).

Finally, both gas and liquid phases carry numerous dissolved species (substrate, oxygen,
. . . ) whose concentrations are tracked by the following mass balance equations:

∂αGCG

∂t
+ ~∇ ·

(
αGCG~uG − ~∇ (αGDG ◦CG)

)
= αGRG + ΦLG + ΦBG (I.8)

∂αLCL

∂t
+ ~∇ ·

(
αLCL~uL − ~∇ (αLDL ◦CL)

)
= αLRL + ΦGL + ΦBL (I.9)

where

• Ck is a vector of concentrations carried by phase k (kg/m3
k);

• Dk is the vector of diffusion/dispersion rates of species carried by phase k (m2/s);

• Rk is a source or sink term related to chemical reactions occurring in phase k
(kg/m3

k.s);

• Φkk′ is the rate of mass transfer from phase k to phase k′ (kg/m3.s).

In most bioreactors, no significant chemical reaction occur in gas and liquid phases,
except for acid-base reactions which play a role in the pH of the culture medium. We
choose not to cover this last aspect, hence in this manuscript RG = 0 and RL = 0.
Similarly, gaseous compounds usually dissolved into the liquid phase and do not transfer
directly from the gas phase to micro-organisms which implies that ΦBG = 0.

All reactions of interest occur within micro-organisms. Therefore, a strong focus must
be made on mass transfer between liquid and biological phases. While mass transfer
between gas and liquid phases can be deduced from thermodynamic laws (see I.6.1), bi-
ological systems have the unique capability of preventing thermodynamic equilibrium.
Micro-organisms are indeed able to dynamically regulate the flow of matter through their
membrane, at the expense of energy, in order to improve assimilation in poor environ-
ments [Ferenci, 1996], and to reduce assimilation in too rich environments. The modelling
of ΦBL will then be a crucial aspect and will require to accurately describe the biological
phase.
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Opposite to the gas phase, micro-organism do not undergo coalescence or breakage and,
as explained previously, they tend to differentiate from one another due to environmental
fluctuations or to internal stochastic noise [Klumpp et al., 2013]. Thus, the biological
phase must be modelled as a heterogeneous particulate phase. i.e. each particle has its
own set of properties that impacts the computation of ΦBL, and these properties differ
between particles .

Note that Eqs. (I.4) and (I.5) are only valid under the assumption that the gas-liquid
mass-transfer (ΦGL) has a negligible impact of phase volumes. This mass transfer should
be integrated, for instance if all oxygen is transferred from air to the liquid phase inducing
a 21% loss of volume in the gas phase.

I.5.2 Lagrangian description of micro-organisms

At its fundamental level, a Lagrangian treatment of a dispersed phase consists in a track-
ing of trajectories of numerous particles. In the present context of bioreactors modelling,
micro-organisms can be modelled as Lagrangian particles whose trajectories follow liquid
streamlines considering that they are non-inertial particles. This is verified by compar-
ing their characteristic relaxation time, estimated around ≈ 10µs by Delafosse [2008],
against smallest turbulence time-scales, estimated by the same author to be around a few
milliseconds.

Along with each particle trajectory, one solves a set of ordinary differential equations
that defines the evolution of particle-attached properties. Therefore, the Lagrangian
approach sums up to a trajectory equation, and a property evolution equation, attached
to each particle:

∂~x@p

∂t
= ~uL(~x@p) (I.10)

∂p̂@p

∂t
= ζ̂ (p̂@p,CL(~x@p)) (I.11)

where

• subscript @p designates variables attached to a Lagrangian particle;

• ~x@p is the location of a particle;

• p̂@p is the vector of biological properties attached to a particle;

• ζ̂ is the rate of evolution of p̂@p ([unit of p̂]/s).

Under this formalism, local transfer rates from liquid to cells is given by

ΦBL(~x, t) =
∑
i

Dp(~x, t)mpϕ (p̂@pi ,CL(~x, t)) (I.12)

where

• the summation is performed over Lagrangian particle strictly located at ~x;

• ϕ is the vector of specific consumption/production rates (kg/kgcell · s);

• Dp is the local particle density (particle/m3
L).
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• mp is the unitary particle mass (kgcell)

In order to reach high accuracies, this approach requires a high number of particles, so
that high local particle density is obtained in every location of the considered bioreactor.
Without this high density, no statistical convergence can be met and the evaluation of
ΦBL will be skewed. This high density can be reached for small-scale reactors, but is yet
to be seen in large-scale simulations.

Currently, the best work in terms of Lagrangian simulations for bioreactors made use
of Lagrangian particles to record environmental perturbations seen by micro-organisms
along their trajectory [Haringa et al., 2016]. However, this work did not consider the gas
phase, and did not resolve the consumption of substrate using Lagrangian particles. Con-
centration fields where resolved using a kinetic model which did not account for biological
heterogeneity. These simulations are then useful to assess the effect of environmental per-
turbation on biological populations in large-scale fermenters, but are not yet used for
predictive modelling and simulation of bioreactors.

I.5.3 Population Balance Equation for biological phase

Many scientific communities face similar modelling difficulties when dealing with hetero-
geneous large populations. An example among others is crystallizers in which numerous
particles (crystals) have particle-attached properties such as size and morphology [Pagli-
olico et al., 1999; Jung et al., 2000]. The tracking of these properties at the particle scale
is required to follow their evolution over time for each crystal.

A modelling framework has been developed for such situations: Population Balance
Models (PBMs). These models describe the evolution of a statistical distribution of
particle-attached properties. Let n(p̂) be a Number Density Function (NDF) describing
this statistical distribution of properties:

N(p̂ ∈ [p̂0, p̂0 + ∆p̂]) =
∫ p̂0+∆p̂

p̂0
n(p̂)dp̂ (I.13)

N is the amount (number, mass or local concentration) of particles whose state p̂ is in-
cluded between p̂0 and p̂0 +∆p̂. Throughout this work, n(p̂) is defined as a Concentration
Density Function (CDF), making N homogeneous to a cell concentration (kgcell/m3

L).
A PBM describes all phenomenon that modify n(p̂) under the formalism of a Population

Balance Equation (PBE):

∂αLn(p̂)
∂t

+~∇·
(
αL~uLn(p̂)−DB ~∇ (αLn(p̂))

)
+αL∇̂·

(
ζ̂ (p̂,CL)n(p̂)

)
= B(p̂)−D(p̂) (I.14)

where

• dependency over space ~x and t is not detailed for sake of clarity but applies to n(p̂),
αL, ~uL, CL, B(p̂) and D(p̂);

• DB is the dispersion coefficient of cells (m2/s);

• B(p̂) is the rate of birth of new micro-organisms in the state p̂;

• D(p̂) is the rate of death of micro-organisms in the state p̂.



10 context, state of the art and objectives

This PBE shares a similar structure with Eq. (I.9). The second term on the LHS
accounts for the transport of cells thank to their carrying fluid, and is analogous to the
trajectory equation under a Lagrangian treatment of the biological phase (Eq. (I.10)).
Source and sink terms are on the RHS to describe new-cell formation through cell division,
or their possible death, just like reaction or transfer terms describe added or removed
dissolved species in Eq. (I.9).

The major difference between Eqs. (I.9) and (I.14) comes from the fact that the NDF
does not only depends on location ~x and time t, but also on p̂. Under the PBM formalism,
p̂ must be seen as a location, not in the physical space, but in the space of biological
properties. Therefore, the evolution of cell’s properties in the Lagrangian approach (Eq.
(I.11)) is now described as a transport term in the internal properties space, with a
velocity ζ̂(p̂,CL), in the third term on the LHS of the PBE.

Provided some numerical methods to transform the PBE into a set of equation that
exactly match the formalism of (I.9), this approach is directly compatible with a Eulerian
multiphase modelling. In particular, under this formalism, the overall mass transfer-rate
between the liquid and biological phases can be written

ΦBL(~x, t) =
∫

Ωp̂
n(p̂, ~x, t)ϕ (p̂,CL(~x, t)) dp̂ (I.15)

where ϕ is the specific rate of bioreactions (kg/kgcell · s). The overall accuracy of this
method depends on how accurate the NDF resolution is.

I.6 Usual modelling closures for bioreactors

The description given in I.5 of elementary equation sets for bioreactor modelling is meant
to be as generic as possible. All existing work about bioreactor models and simulations
can be integrated under this formalism provided some closures or model reductions. Such
usual closures or approach are detailed hereafter, to lay the foundations of discussions
about the degree of accuracy that should be used on each aspect of the overall modelling.

I.6.1 Gas-liquid mass transfer

Equations (I.8) and (I.9) both describe the transfer of matter between liquid and gas
phases through the terms ΦGL and ΦLG. This mass transfer occur at the gas-liquid
interface. The transfer of oxygen or carbon dioxide is usually limited by a resistance
in the liquid film. Therefore, the gas-liquid mass transfer of one of these compound is
usually modelled as

ΦGL = kLa
∗(HCG − CL) (I.16)

where

• kL is the liquid-film resistance to transfer (m/s);

• a∗ is the specific transfer area (m2/m3);

• H is the solubility (kgL/kgG).
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H is a thermodynamic equilibrium constant illustating the linear relationship between
liquid and gas phase concentrations (or partial pressure) of a compound at rest as de-
scribed by Henry’s law [Sander, 2015]. Its value mainly depends on temperature and on
the composition of both phases.

The transfer resistance, kL, is related to convection and diffusion phenomena in the
liquid film. Numerous correlation are available in literature to estimate its value for
bubbles in water. These correlations usually take the following form:

Sh = a+ bRec + Scd (I.17)

with

Sh = kL db
D

, Re = ρL db |~uL|
µL

, Sc = µL
ρL D

(I.18)

where

• Sh, Re and Sc respectively designate the dimensionless Sherwood, Reynolds and
Schmidt numbers;

• db is the bubble diameter (m);

• D is the dissolved gas molecular diffusivity (m2/s);

• µL is the liquid dynamic viscosity (Pa · s);

• a, b, c and d are the correlation fitting parameters.

As shown in the definition of dimensionless numbers, the resistance kL is dependent on
the bubble diameter db. Numerous experimental analysis show that their exists a Bubble
Size Distribution (BSD) in stirred aerated reactors. Let nb(d) be that distribution in a
volume of reference V . It is possible to express the specific gas-liquid transfer area from
that distribution:

[specific area] = [total bubble area in V]
[total bubble volume in V] ×

[total bubble volume in V]
V

which numerically translates into

a∗ = a◦αG (I.19)

with a◦ the specific area expressed per unit of gas volume (m2/m3
G):

a◦ =
∫

Ωdb πd
2
bnb(db)ddb∫

Ωdb
π
6d

3
bnb(db)ddb

= 6
d32

(I.20)

d32 is known as the Sauter diameter and is an integral property of the BSD.
If the BSD is resolved, the kL value used in Eq. (I.16) should be a mean value over all

bubbles:

k̃L =
∫

Ωdb kL(db)nb(db)ddb∫
Ωdb nb(db)ddb

(I.21)
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I.6.2 Phase-fractions and velocity fields

All local equations (Eqs. (I.4-I.9), (I.10) and (I.14)) require the knowledge of local phase
fractions and velocities. These informations could be accessed locally by experimental
measurements based, for instance, on Particle Image Velocimetry (PIV) and ombroscopy
methods. However, these methods are limited to small set-ups and would be impractical
on large-scale bioreactors. In particular, they require transparent vessels and fluids which
is not applicable to industrial fermenters.

For now, experimental measurements are applied to small-scale systems using model
fluids [Laupsien, 2017]. These measures are then used to improve existing hydrodynamic
model and to perform large-scale simulation of hydrodynamics, by solving numerically
the fluid mechanics equations given in Eqs. (I.4-I.7).

CFD-RANS approach

The Euler-Euler modelling of gas-liquid systems has been presented previously (see Eqs.
(I.4)-(I.9)) and consists in considering that both phases are interpenetrated continuous
phases each characterised by its own velocity ~uk and local phase fraction αk. To solve
these variables over time and space, CFD software apply some numerical methods, such
as the finite-volume or finite-element methods, to degenerate Navier-Stokes equations into
a set of discrete integrable equations. However, due to their strong non-linearities, these
equations can not be directly resolved as soon as large turbulent systems are considered.
Bioreactors will then be modelled using the Reynolds-Averaged Navier-Stokes (RANS)
approach in which velocity and local fractions are split into a mean and a fluctuating
component:

~uk(~x, t) = ~Uk(~x) + ~u′k(~x, t) (I.22)
αk(~x, t) = ᾱk(~x, t) + α′k(~x, t) (I.23)

Injecting these decompositions into momentum conservation equations (Eqs. (I.6)-(I.7)),
leads to following equations for conservation of the mean local momentum:

∂ᾱGρG~uG
∂t

+ ~∇ · (ᾱGρG~uG ⊗ ~uG) = ᾱG
(
ρG~g − ~∇P

)
+ ~∇ · (τG + τ ′G) + ~MG (I.24)

∂ᾱLρL~uL
∂t

+ ~∇ · (ᾱLρL~uL ⊗ ~uL) = ᾱL
(
ρL~g − ~∇P

)
+ ~∇ · (τL + τ ′L) + ~ML (I.25)

where τ ′k are Reynolds stress tensors, defined as

τ ′kij = ρku′kiu
′
kj (I.26)

which represent the mean effect of velocity fluctuations on the dispersion of momentum.
Under RANS approaches, these fluctuations are not resolved. Therefore, the Reynolds
stress tensors will need to be modelled by introducing conserved turbulence characterising
variables. Multiple models have been developed for that purpose [Couderc et al., 2008]
and the most commonly applied, though not the most accurate, is the two-equations k−ε
model first proposed by Launder and Spalding [1972]. This model resolves the turbulent
kinetic energy k (J/kg) and the rate of viscous dissipation of that energy ε (W/kg).
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Closure for momentum transfer between liquid and gas phase

In Eqs. (I.24)-(I.25), terms ~Mk represent the interfacial transfer of momentum between
gas and liquid phases. Here, we only consider momentum exchange between a dispersed
gas phase (i.e. bubbles) and a surrounding liquid. When transferred from phase A,
momentum will either be received by phase B, or will be used to extend the interfacial
area. When this area is left unchanged, one can model the momentum transfer as

~MG = − ~ML = ~fB + ~fD + ~fVM + ~fL (I.27)

with

• ~fB: buoyancy force resulting from body and gravitational forces,

~fB = (ρG − ρL)~g (I.28)

• ~fD: drag force resulting from pressure and viscous effects on the gas-liquid interface,
usually modelled as

~fD = FD(~uL − ~uG) with FD = 18µL
d2
b

CDReb
24 (I.29)

for spherical bubbles of diameter db of Reynolds number Re = ρLdb|~uG−~uL|
µL

. CD is
the bubble drag coefficient.

• ~fVM : virtual (or added) mass force. This is the force required to accelerate the
fluid surrounding a bubble, modelled as

~fVM = CVMρL

(
∂~uL
∂t
− ∂~uG

∂t

)
(I.30)

with CVM = 0.5 the virtual mass coefficient.

• ~fL: lift force due to the unbalanced distribution of pressure and viscous constraints
on the gas-liquid interface modelled as:

~fL = CLρLαG(~uL − ~uG)× (~∇× ~uL) (I.31)

with CL the lift force coefficient.

See Couderc et al. [2008], Laupsien [2017] and ANSYS Fluent [2015] for further references
on these models and for closures for drag, virtual mass and lift force coefficients. These
topic are vast and the development of models suiting the properties of culture broth
(rheology, gas-liquid interface contamination, . . . ) are still on-going. However, this does
not constitute a core topic of this thesis.

Reducing the spatial resolution: compartment approaches

While CFD simulations form the current trend for hydrodynamic description of reactors,
they have not always been as widely available as today. Chemical engineers then devel-
oped other approaches to describe the transport in heterogeneous systems that are still
relevant nowadays including mainly the Compartment Model Approach (CMA).
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Figure I.1: Compartmental representation of macroscopic flow patterns in a 22 m3 fed-
batch bioreactor [Pigou and Morchain, 2015]. Model from Vrábel et al. [1999].

In these models, the reactor volume is split into a low number of sub-volumes (i.e. the
compartments, or zones) assumed to be homogeneous. The transport is then described
by defining the volume flow-rates of each phase between adjacent compartments. These
models can be deduced from experimental observations [Reuss, 1991; Mayr et al., 1993;
Vrábel et al., 1999; Zahradńık et al., 2001] or from CFD simulations [Bezzo et al., 2003;
Le Moullec et al., 2010; Delafosse et al., 2014; Zhao et al., 2016]. An example of such a
compartment-based model is illustrated in Fig. I.1.

I.6.3 Biological behaviour

Once biological heterogeneity is tackled through Lagrangian or PBE approach, one still
needs to define how a cell, in the state p̂ and in an environment characterized by concen-
trations CL, will behave. This question encompasses two aspects:

• What will be the rates of consumption of substrates and production of (by-)products?
i.e. How to compute ϕ(p̂,CL) in Eqs. (I.12) and (I.15)?

• How will evolve the cell’s properties? i.e. How to compute ζ̂(p̂,CL) in Eqs. (I.11)
and (I.14)?

Both aspects must be considered together, and answers will strongly depend on which
cell properties are tracked in p̂. Thereafter are listed some examples of approaches to
model this overall biological behaviour. In terms of metabolism, two distinctions are
possible:

• kinetic/metabolic model

• structured/unstructured model

Kinetic models will be constant conversion yields model and can usually be summed
up to a simple pseudo-reaction, for instance:

YSXS + YOXO2
X−→ X + YPXP (I.32)
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with S: substrate, O2: oxygen, X: biomass and P : product. YAB is the conversion
yield of A into B. These simple models do not account for the actual complexity of
metabolic networks. They rely on the hypothesis of balanced growth with constant
biomass composition over time and act as black box models of the internal cell functioning.

On the opposite side, metabolic models rely on a description of the metabolic net-
work and let substrates flow through different pathways depending on current internal
and external conditions. Therefore, depending on which pathways are activated and on
their respective efficiency for substrate conversion, a metabolic model will exhibit varying
global conversion yields.

The structured aspect of metabolism modelling relates to whether the model tracks
cell attached quantities. These can be composition/internal concentrations, physiology
parameters (mass, size, age, . . . ), or variable without physically defined definition (cyber-
netic variables, Tartakovsky et al. [1997]). These are the quantities that can be tracked
through Population Balance approaches detailed previously.

If a model is structured and tracks some cell-attached properties, these information
can be used to determine the rates of reactions described through kinetic or metabolic
approaches. If the model is unstructured, only external information (i.e. environmental
concentrations) are used to model these rates. Hereafter are four examples illustrating
each association of the kinetic/metabolic and structured/unstructured modelling.

unstructured kinetic model A simple unstructured kinetic model can be
based on the previous pseudo-reaction (Eq. (I.32)). The growth rate is often defined
using Monod-type law [Monod, 1952]:

µ = µmax
S

S +KS

O

O +KO

(I.33)

with S and O the liquid phase concentrations of substrate and oxygen, KS and KO the
respective affinities of the cell toward these compounds, and µmax the maximum growth
rate. Chapter II discusses the applicability of this law.

Once the growth-rate µ (gX/gX · h) is determined from environmental conditions (hence
the unstructured nature of the model), the volumetric consumption or production rates of
S, O2, X and P (Ri expressed in gi/L.h) can be computed by considering stoichiometry
from Eq. (I.32):

RS = −YSXµX (I.34)
RO2 = −YOXµX (I.35)
RX = µX (I.36)
RP = YPXµX (I.37)

unstructured metabolic model Xu et al. [1999] propose a metabolic model
describing the behaviour of Escherichia coli using either glucose or acetate as a carbon
source, and able to switch between oxidative and fermentative energy production modes.
This model will be further detailed in Chapter II and is illustrated in Fig. I.2.

In an environment characterised by moderate glucose and oxygen availability, this
model will predict a behaviour summed-up by the pseudo-reaction:

YSXS + YOXO → X (I.38)



16 context, state of the art and objectives

Figure I.2: Structure of model for E. coli from Xu et al. [1999]. Reprinted by permission
from John Wiley and Sons.

In the absence of oxygen, the observed pseudo-reaction is:

YSXS → X + YAXA (I.39)

with A the acetate, here produced as a fermentation by-product. In the absence of glucose
and presence of both acetate and oxygen, acetate remplaces glucose as the main carbon
source:

YAXA+ YOXO → X (I.40)

Depending on environmental conditions, the model will actually yield any combination
of this three behaviours.

The switch between these modes is only defined from biological constants and environ-
mental conditions, hence the unstructured aspect of this model. The model capability to
switch between multiple behaviour and global conversion yields is typical from metabolic
models.

structured kinetic model Structured kinetic models are unusual. Their idea
would be to track internal cell properties but not to use them to predict how matter
flows in the metabolic network. The use of these properties would then be limited to
predicting the kinetics of bioreactions. Note however that kinetic models have a narrow
range of application (stationnary or pseudo-stationnary cultures) in which laws such a
Monod laws exist to predict these reaction rates.
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To formulate a structured kinetic model, one could simply track an internal cell glucose
concentration Sin whose evolution could be dictated by

∂Sin
∂t

= 1
τS

(S − Sin) (I.41)

with τS the characteristic time of substrate assimilation, and then base the Monod law
on this internal concentration

µ = µmax
Sin

Sin +KS

O

O +KO

(I.42)

Doing so would induce a delay in the answer of a cell in terms of growth rates following
a sudden change in its environment glucose concentration.

structured metabolic model Structured metabolic models form the vast ma-
jority of current cell modelling. They describe internal properties of cells and use that
information to predict which metabolic pathways are activated and at which rates. They
can account for internal metabolic regulations, for lack or excess of metabolites, and for
cell-cycle effects.

Quantities that can be tracked are

• Internal concentrations [Reuss, 1991; Rizzi et al., 1997; Lei et al., 2001; Lapin et al.,
2004; Matsuoka and Shimizu, 2013]

• Physiology quantities such as age, mass, size, ... [Hatzis et al., 1995; Mantzaris
et al., 1999; Robert et al., 2014]

• Cybernetic variables [Sweere et al., 1988; Abulesz and Lyberatos, 1989; Morchain
et al., 2013]

• Sub-population fractions [Le Moullec et al., 2010]

In particular, internal concentration based metabolic models can benefit from recent
advances in metabolic flux analysis [Nöh et al., 2007; Kajihata et al., 2015].

Bioreaction rates in structured metabolic models can be computed by different ways,
the most common being:

• Use of kinetic expressions based on internal concentrations.

• Optimization algorithm aiming a maximizing one rate or yield, usually the growth
rate [Varma and Palsson, 1994; Orth et al., 2011]

• Decision-tree based closure [Sweere et al., 1988]

The evolution of biological properties directly depends on their definitions. Age in-
creases naturally over-time and is reset to 0 at cell-division. Cell mass or internal concen-
trations evolution can be modelled through mass balances. The evolution of cybernetic
variables is usually more tricky as their definition and physical meaning is not direct.
Their evolution will be modelled on a per-variable manner.
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I.7 Handling the PBE in a Eulerian transport scheme

Whereas many authors already attempted using Population Balance Modelling for the
simulation of bioreactors, few works actually made use of PBE in conjunction with a
transport scheme for fermenters. Example of such attempts are Heins et al. [2015] who
transported a PBM developed by Lencastre Fernandes et al. [2012] in a two-compartments
set-up. An other example actually preceded the current PhD thesis and was presented
in Pigou and Morchain [2015]. In this work, a PBM was applied to the simulation of a
22m3 fermenter using a metabolic model for E. coli derived from the work of Xu et al.
[1999].

One of the main reason this coupling is hardly ever considered is because of the need
for numerical methods to make the PBE (Eq. (I.14)) compatible with the generic local
transport equation (Eq. (I.9)). Such methods already exist and were applied by numer-
ous scientific communities for whom the coupling of PBEs with a transport scheme is
especially required.

Overall, all methods will consist in forming a vector P (~x, t) from which one can de-
duce an approximation ñ(p̂, ~x, t) of n(p̂, ~x, t). P (~x, t) will be referred to as a vector of
population-scale biological properties, opposed to p̂ which is the vector of cell-scale bi-
ological properties. By construction, P (~x, t) will be transportable in the Euler-Euler
framework of gas-liquid description:

∂αLP (~x, t)
∂t

+ ~∇ ·
(
αL~uLP −DB ~∇(αLP )

)
= S(P ,CL) (I.43)

where S(P ,CL) is the overall source or sink term which accounts for all phenomenon
that modify the distribution in the space of internal properties: transport in the internal
space, birth and death of cells in a specific state p̂.

Two main approaches will be detailed hereafter, and illustrated with the example of a
one dimensional PBE whose cell-scale biological property is the cell age, p̂ = a:

∂αLn(a)
∂t

+ ~∇·
(
αL~uLn(a)−DB ~∇(αLn(a))

)
+αL

∂(ζa(a,CL)n(a))
∂a

= B(a)−D(a) (I.44)

where

• ζa is the rate of age increase over time, therefore ζa = 1 s/s;

• B(a) is the rate of formation of new cells whose age is a. All cells are born with
a age a = 0 so that B(a) = Γbδ(a) with Γb the rate of formation of new cells
(kgcell/m3

L · s) and δ the Dirac delta function;

• D(a) is the rate of death of cells of age a with D(a) = Γd(a)n(a) with Γd(a) the
specific rate of death (kgcell/kgcell · s).

I.7.1 Sectional methods

This first category of approach to solve the PBE in a Eulerian transport scheme has
multiple designation: sectional methods [Nguyen et al., 2016], pivot methods [Kumar
and Ramkrishna, 1996a,b] or class methods [Alopaeus et al., 2006, 2007, 2008; Morchain
et al., 2013].
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Figure I.3: Illustration of a continuous Number Density Function of age distribution and
associated 20-classes discretization.

This approach consists in discretizing the space of biological properties into numerous
“sections” or “classes”. Under this formalism, P is a vector whose values are the concen-
trations of cells which belong to each section. For each section, one attaches a “pivot” p̂i
and all cells within that section are assumed to be actually located at that pivot in the
space of internal properties. For the cell-age distribution example, Fig. I.3 illustrates the
application of this discretization to an arbitrary distribution.

Let P = [N1, N2, . . . , N20]T . In this 1D example, one must perform integrations of
the PBE on the support of each class to obtain the law of evolution of P . For instance,
the evolution of N10 is given by integrating each term of the PBE from Eq. (I.44) over
a ∈

[
a10−1/2; a10+1/2

]
:

∂αLN10

∂t
+~∇·

(
αL~uLN10 −DB ~∇(αLN10)

)
=
∫ a10+1/2

a10−1/2

(B(a)−D(a))da−[ζa(a,CL)n(a)]a10+1/2

a10−1/2

(I.45)

The third term of the LHS is the flux of cells between the 10−th class and its surrounding
classes.

n(a) can be approximated from P as a discrete distribution where all cells are consid-
ered to be located at the pivot of their class, or as a uniform by part distribution. By
increasing the number of classes, the error between n(a) and its approximation decreases.

Variants of this method aims at higher accuracy by solving multiple values in each
section such as the Two-Size Moment (TSM) sectional method [Nguyen et al., 2016] and
High-order Moment conserving Method of Classes (HMMC) [Alopaeus et al., 2006, 2007,
2008].
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I.7.2 Moment methods

Moments are integral properties of a NDF. The k − th order integer moment of a mono-
variable NDF such as n(a) is defined as

mk =
∫

Ωa
akn(a)da (I.46)

where

• m0 is the total amount of individual; here the total concentration of cells whatever
their age;

• m1 is related to the population mean age ã by m1 = ãm0;

• m2 holds information about the standard deviation σa of the age distribution: σa =√
m2m0−2m2

1
m0

Higher order moments are related to age distribution skewness, kurtosis, flatness, and
other descriptors of the distribution shape.

Methods of moments, applied to a PBE, will track moments of the NDF whose evolution
is described by that PBE. Let P = [m0,m1, . . . ,mN−1]T be the vector of the first N
integer moments of n(a). The moment equations, which describes the evolution of each
element of P , is obtained by multiplying all terms of the PBE (here Eq. (I.44)) by ak

and integrating over the space of definition of a, Ωa:

∂αLmk

∂t
+ ~∇ ·

(
αL~uLmk −DB ~∇ (αLmk)

)
+
[
akζan(a)

]
∂Ωa

−
∫

Ωa
kak−1ζan(a)da =

∫
Ωa
ak(B(a)−D(a))da (I.47)

where the third term on the LHS represent the flux of cells, weighted by ak, at the limits
of the space of age definition. As the ageing process will not allow cells to go out out the
space of age, this term is necessarily null.

After a reorganization of terms, and an expansion of B(a) and D(a) definitions, one
obtains the following moment equations:

∂αLm0

∂t
+ ~∇ ·

(
αL~uLm0 −DB ~∇ (αLm0)

)
= Γb −

∫
Ωa

Γd(a)n(a)da (I.48)

∂αLmk

∂t
+ ~∇ ·

(
αL~uLmk −DB ~∇ (αLmk)

)
= kζamk−1 −

∫
Ωa
akΓd(a)n(a)da, (I.49)

k ∈ {1, . . . , N − 1}

If Γd(a) is not defined as a polynomial of a, the integral term on the RHS of Eqs. (I.48)
and (I.49) will not be closed in terms of moments of n(a). Moreover, even if Γd(a) is
indeed a polynomial but is not constant, the volution of mk will depend on higher order
moments such as mk+1 which leads to an unclosed set of equations. For these reasons,
numerical methods to estimate unknown integral properties of n(a) from its resolved
moments are usually required. Examples of such methods are the Quadrature Method
of Moments (QMOM) [Marchisio et al., 2003a], the Extended Quadrature Method of
Moments (EQMOM) [Yuan et al., 2012] and the Maximum Entropy method [Mead and
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Figure I.4: Segregated description of the mixing of two different populations. Reproduced
with permission from Elsevier [Morchain, 2017].

Papanicolaou, 1984] which are fully discussed in chapter III. New numerical methods
to close moment equations are still developed, and multiple recent works –not in the
field of bioprocesses– couple them along with CFD simulations [Marchisio et al., 2003b;
Passalacqua et al., 2017; Askari et al., 2018].

Multi-variate population balance models can also be tackled through methods of mo-
ments through numerical methods that are not explored in this manuscript such as the
Conditional Quadrature Method of Moments (CQMOM, Yuan and Fox [2011]) and the
Bivariate EQMOM [Pollack et al., 2016].

I.7.3 Unsegregated models

Previously described approaches are said to be segregated. They consider the biological
phase as discrete and attach sets of properties at the individual scale. Therefore, they
allow to correctly describe the mixing of two different populations as illustrated in Figure
I.4. Properties remain attached to cells and therefore do not mix, only their distributions
are mixed. For instance, a mix of 10 cells of 1µm and 10 cells of 2µm does not yield a
population of 20 cells of 1.5 µm, but yields a population made of two sub-populations of
each cell size.

Unsegregated approaches do not track distributions during mixing, they consider that
all individuals in the same location are identical. For the previous example, the unseg-
regated approach would predict that indeed, the population mix yields a population of
cells that share the same size 1.5 µm. Though the unsegregated approach are obviously
inaccurate to describes the discrete aspect of the biological phase, it has the benefit
of a significantly low numerical cost and is therefore often used in place of segregated
approaches.

I.8 Overview of current state-of-the-art

Section I.5 developed a generic set of equations to describe the three phases constituting
a bioreactor, and section I.6 lists multiple closures or approaches of different accuracies
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for these equations. These foundations for bioreactors modelling being laid down, it will
be interesting to see how multiple works about bioreactor simulation integrate under this
generic modelling framework.

Table I.1 is a summary of which approaches were used by multiple authors in terms of

• Approach for hydrodynamic description
– CFD: Numerical resolution of fluid mechanics equations.
– CMA: Formulation of a compartment model for transport.
– 0D-model: Use of spatially homogeneous equations.

• Bioreactions
– Kinetic: Use of kinetic (constant yield) model.
– Metabolic: Use of varying yield model.
– Structured: Use of at least one internal dynamic property.

• Biological heterogeneity (applicable only to structured models)
– Segregated: multiple biological states are considered in the same spatial loca-

tion ~x
∗ Lagrange: Lagrangian treatment of the biological phase.
∗ Section: Sectional treatment of a PBE (pivot/class methods).
∗ Moment: Moment treatment of a PBE.

– Unsegregated: All cells are locally assumed to be identical even though their
properties may evolve in time and space.

This list is not exhaustive, and focuses only on works in which biological cultures are
simulated by coupling an hydrodynamic model and a reactive biological phase. Therefore,
works focusing solely on bioreactor hydrodynamics or on the pure analysis of experimental
results were discarded.

Most of these articles were classified within four categories, depending on their approach
and goals:

I Simulations based on 0D hydrodynamics using structured unsegregated metabolic
models.

II Simulations based on CMA coupled with structured unsegregated metabolic models.

III Simulations based on CFD coupled with Lagrangian modelling of the biological
phase.

IV Simulations based on CMA coupled with structured metabolic model and population
balance approaches.

The category I makes the vast majority of listed works, and mainly corresponds to
the development of metabolic models for the purpose of fitting a few sets of experimental
data obtained in lab-scale –homogeneous– cultures. These models make use of structured
approach and therefore could require taking into account the segregated aspect, however,
neither works from categories I and II do implement any approach to account for biolog-
ical heterogeneity. The fact is that, even if these models are supposedly compatible with
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Table I.1: Overview of existing work on bioreactor simulation.

Reference
Hydrodynamics Bioreactions Heterogeneity

Category0D CMA CFD Kinetic Metabolic Structured Segregated Un-
segregatedLagrange Section Moment

Young et al. [1970] X - - X - - - - - -
Sweere et al. [1988] X - - X - - - - - -

Reuss [1991] X - - - X X - - - X I
Nielsen and Villadsen [1992] X - - - X X - - - X I

Bellgardt [1994] X - - X - X - - - -
Varma and Palsson [1994] X - - - X X - - - X I

Hatzis et al. [1995] X - - - - X X - - -
Rizzi et al. [1997] X - - - X X - - - X
Xu et al. [1999] X - - - X - - - - -

Vrábel et al. [1999] X X - - X - - - - - II
Lei et al. [2001] X - - - X X - - - X I

Mantzaris et al. [2001] X - - X - - - X - -
Vrábel et al. [2001] X X - - X - - - - X II

Chassagnole et al. [2002] X - - - X - - - - X
Bezzo et al. [2003] - X X - X - - - - - II

Gerdtzen et al. [2004] X - - - X X - - - X I
Rodŕıguez et al. [2004] X - - - X X - - - X I

Lapin et al. [2004] - - X X X X X - - - III
Hristov et al. [2004] - X - X - - - - - -

Hjersted and Henson [2006] X - - - X X - - - X I
Laakkonen et al. [2006] - X X X - - - - - -

Lapin et al. [2006] - - X - X X X - - - III
Morchain and Fonade [2009] X - - - X X - - - X I

Meadows et al. [2010] X - - - X X - - - X I
Le Moullec et al. [2010] - X X - X X - - - X II

Lencastre Fernandes et al. [2012] X - - X - X - - - -
Elqotbi et al. [2013] X - X X - - - - - -

Matsuoka and Shimizu [2013] X - - - X X - - - X I
Morchain et al. [2013] X - - X - X - X - -
Morchain et al. [2014] - - X X - X - X - -
Goldrick et al. [2015] X - - - X X - - - X I

Heins et al. [2015] - X - X - X - X - - IV
Pigou and Morchain [2015] X X - - X X - X - - IV

Haringa et al. [2016] - - X - - X X - - - III
Ordoñez et al. [2016] X - - - X X - - - X I

Farzan and Lerapetritou [2017] - - X X X X - - - X III
Kuschel et al. [2017] - - X - - X X - - - III
Brand et al. [2018] X - - - X X - - - X I

segregation by their structured nature, they are usually not designed with this consider-
ation in mind. They may therefore have a prohibitive complexity through the use of a
high number of internal variables, or the parameter identification might have been flawed
by assuming that all cells are identical in a lab-scale system while they may actually
differentiate through stochastic processes [Delvigne et al., 2014].

First attempts to account for cell’s history and exposure to different environmental
fluctuations were carried out through the Euler-Lagrange framework using CFD simu-
lations (see category III). Developments related to this approach are still ongoing and
for now the Lagrangian method is used to characterise environmental fluctuations along
cell’s trajectories rather than to predict their effect of biological heterogeneity and reverse
coupling on concentration field gradients. For instance, Haringa et al. [2016] tracked the
signal of substrate concentration fluctuations in a large-scale fermenter using Lagrangian
particles, but for the “prediction” of concentration fields evolutions, they relied on an
unstructured kinetic model.

Finally, some attempts are being made to couple the biological heterogeneity with
intermediate hydrodynamic resolutions (category IV). On that regard, developments of
CMA models from CFD is an interesting topic that has been considered by numerous
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authors classified in category II (all those for which both CMA and CFD approaches are
ticked), and is also investigated in papers not referenced here (i.e. Delafosse et al. [2015]).

Bailey [1998]’s classification is at the origin of (un)segregated and (un)structured clas-
sifications of biological models. Table I.2, excerpted from Zieringer and Takors [2018]
summarizes pros and cons of these categories. From these, it is easily understood why
the majority of developments on bioreactor simulation relies on unsegregated descrip-
tions, due to the mathematical complexity on segregated approaches. However, it is also
clear that structured segregated models will be required for the simulation of industrial
fermenters.

Table I.2: Partial reproduction of the summary of pros and cons of (un)segregated and
(un)structured approaches for biological models listed by Zieringer and Takors
[2018].

Model class Application Advantages Disadvantages
Structured Systems in transient state Cellular compartmentation Biological knowledge
Unstructured Steady-state systems Easy to build Only penomenological cell description
Segregated Heterogeneous, individual cell systems More representative and informative Difficult to handle mathematically
Unsegregated Systems with average cell description Easy to build for a large number of cells Average cell description

I.9 Proposed approach, thesis goals and outline

The main goal of this PhD thesis is to develop a model structure that encompasses
all aspects of bioreactors modelling while keeping a low numerical cost. This model
structure is applied to the simulation of an industrial fermenter in which the baker yeast,
Saccharomyces cerevisiae, is cultivated.

In order to reach all-coupling simulations of bioreactors, it is necessary to develop a
modelling strategy and to focus on each aspect of the overall model to ensure that lowest
possible numerical costs are achieved while not sacrificing accuracy. Indeed, aiming at
low numerical cost will be useless if each part of the model is not accurate enough to
obtain an overall predictive model. Therefore, along this thesis, discussions about the
trade-off between numerical cost and accuracy will be a common thread.

Considering all previously detailed aspects, the proposed modelling strategy is as follow:

1. First, define a structured metabolic for the considered micro-organism. This defini-
tion should answer the following questions:

• What are chemical species that are used as source of matter/energy, and/or
are produced by the considered strain? This step consists in defining CL.

• What is the minimal list of biological properties that should be tracked for
each cell to determine its behaviour? Examples would be age, size, internal
concentrations, storage level, or others... This step consists in defining p̂

• What mathematical model allows predicting the rates of consumption or pro-
duction of chemical species for a cell defined by p̂ in an environment char-
acterized by concentrations CL? This steps consists in defining closure for
ϕ(p̂,CL).

• Along with the definition of ϕ(p̂,CL), what mathematical model gives the
evolution of cell-attached properties for a cell defined by p̂ in an environment
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characterized by concentrations CL? This step consists in defining closure for
ζ̂(p̂,CL).

2. Define how to model biological heterogeneity
• Based on p̂ definition chose the most suited numerical method by weighting

accuracy against numerical cost.

3. Define how to describe large-scale hydrodynamics
• Arbitrate about the implementation of biological models within CFD or CMA

frameworks by considering hydrodynamic and biological time-scales as well as
numerical cost.

These steps actually draw the structure of this PhD thesis. Chapter II focuses on
the metabolism modelling. In particular, this chapter details a modular and numerically
efficient model structure. This structure is first applied to a bacteria, E. coli, to illustrate
its application to a simple micro-organism. Then, the same structure is applied to S.
cerevisiae to prepare large-scale simulations of an industrial fermenter cultivating this
specie. Both models are compared to, and validated against, experimental data available
throughout the literature.

In this work, the PBM approach is considered to be the key element that allows large-
scale simulations of bioreactors. Chapter III makes a strong focus on this aspect by
comparing both sectional and moment methods to solve 1D population balance mod-
els. Studying the core principles of moment methods led to a major improvements of
a numerical method used to close equations in monovariate moment approaches. These
improvements of the numerical method are described too in this chapter.

In order to illustrate the coupling of metabolic models and population balances with
hydrodynamics, Chapter IV focuses on performing numerical simulations of the gas-liquid
hydrodynamics of an actual industrial fermenter. To further exploit these CFD simulation
results, Chapter IV details how to produce a compartment model from highly resolved
CFD results.

Finally, Chapter V couples developments from Chapter II to IV to perform the simu-
lation of industrial biological cultures and show the capabilities and applications of the
proposed modelling framework.

Table I.3: Approaches used in following Chapters.

Reference
Hydrodynamics Bioreactions Heterogeneity

Category0D CMA CFD Kinetic Metabolic Structured Segregated Un-
segregatedLagrange Section Moment

Chapter II X - - - X X - - - X I
Chapter III X X - - X X - X X - IV
Chapter IV - X X - - - - - - -
Chapter V - X - - X X - - X - IV

Table I.3 is based on the same structure than Table I.1, but summarizes which ap-
proaches are developed in the current work. First, Chapter II focuses on developing a
low-cost metabolic model structure and relies on homogeneous non-segregated simula-
tions. Note that this model structure is designed for upcoming coupling with segregated
approaches. These are developed in Chapter III were numerical methods to solve Pop-
ulation Balance Equation are investigated. This chapter implements both homogeneous
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and compartment model approaches to assess numerical methods in terms of accuracy,
stability and performances. In order to not be bound to Compartment Models available
from the literature, and to make possible the use of this work for any bioreactor, Chapter
IV focuses on the use of CFD simulations to formulate Compartment Models. Finally,
Chapter V illustrates the coupling of developments from all three previous chapters to
perform the predictive simulation of a large-scale fedbatch culture, and underlines how
this tool can be used for engineering purposes.
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Résumé

La principale complexité associée à la modélisation d’un bioréacteur industriel provient
de la description de la phase biologique. Les micro-organismes ne sont pas des particules
inertes ou catalysant de simples réactions chimiques, mais sont des systèmes vivants et dy-
namiques dotés par leur évolution Darwinienne de capacité de régulation et d’adaptation
aux perturbations dans leur environnement. Ils sont donc capables de sélectionner de
manière préférentielle leurs substrats, de réguler leur assimilation en s’affranchissant des
équilibres thermodynamiques au prix d’une dépense énergétique, et d’orienter la matière
assimilée vers de multiples voies métaboliques par le biais de régulations internes forte-
ment couplées.

Ce premier chapitre de développements se focalise sur la modélisation de ces aspects,
dans la continuité de très nombreux travaux sur ce sujet enrichissant la littérature depuis
plusieurs décennies. Ces travaux tombent généralement soit dans un excès de simplicité en
négligeant de nombreuses dynamiques cellulaires, soit dans un excès de complexité en cher-
chant à décrire les échelles les plus fines. Il va de soi qu’aucune de ces deux modélisations
limites ne peuvent être envisagées pour la simulation prédictive de bioréacteurs industriels.
Quelques modèles se situant à un niveau intermédiaire de complexité existent, mais ils
n’ont en général pas été pensés ni construits en vue d’un couplage avec le transport de
la phase biologique dans un système hétérogène.

Nous chercherons à intégrer les dynamiques biologiques, les régulations des flux et
l’orientation de la matière entre différentes voies métaboliques dans un modèle de faible
coût numérique. Cela permettra le couplage avec des approches aussi bien Lagrangienne
que de Bilan de Population pour prendre en considération la diversité biologique, c’est-
à-dire le fait que les micro-organismes peuvent se différencier suite à des perturbations
environnementales ou stochastiques. Il sera alors possible d’envisager des simulations de
cultures biologiques aux échelles industrielles pour un coût numérique raisonnable.

Ce chapitre propose essentiellement une structure de modèle métabolique. Cette struc-
ture, dérivée du travail de Xu et al. [1999] et des approches de réduction de réseaux de
réactions métaboliques par la définition de modes métaboliques, permettra effectivement
d’intégrer les dynamiques, les régulations et les différentes orientations de la matière,
sans faire appel à des procédures coûteuses d’optimisation. La mise en œuvre de cette
structure est illustrée d’une part pour la modélisation d’Escherichia coli, et d’autre part
pour décrire les comportements dynamiques de Saccharomyces cerevisiae. En partic-
ulier ce dernier modèle, qui sera utilisé par la suite dans le Chapitre V, est testé sur
plusieurs jeux de données expérimentales obtenus par différentes équipes de chercheurs,
pour plusieurs souches sauvages de la levure, et sur des modes de culture distincts. La
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confrontation massive à différents jeux de données expérimentales constitue un test sévère
pour un modèle. À notre connaissance, c’est la première fois qu’un modèle métabolique
de si faible coût numérique est confronté à autant de données expérimentales.
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Summary

The main challenge in the modelling of industrial bioreactors comes from the depiction
of the biological phase. Micro-organisms are not inert particles or catalysts for simple
chemical reactions. These are living and dynamic systems which, through Darwinian
evolution, obtained regulation and adaptation capabilities to face environmental pertur-
bations. They are then able to select preferential substrates, regulate their assimilation by
over-coming thermodynamic equilibrium at the expense of energy, and to channel assim-
ilated matter toward multiple metabolic pathways through internal and tightly coupled
regulations.

This first development chapter focuses on modelling these aspects, in the continuation
of numerous works which covered this topic over the last decades. These works tended
to fall either in an oversimplification excess, by neglecting most of cell dynamics, or in a
complexity excess by attempting to describe smallest scales. It is obvious that both of
these limit modelling approaches may not be considered to perform predictive simulations
of large-scale fermenters. Some models lie at an intermediary level of complexity, but these
were not designed by anticipating their coupling with the transport of the biological phase
in an heterogeneous system.

This chapter describe how to integrate biological dynamics, flux regulation and the
channelling of matter through multiple metabolic pathways in a low numerical cost model.
This low-cost permits the integration of this model under Lagrangian or Population Bal-
ance modellings to account for biological diversity, i.e. the fact that micro-organisms will
differentiate due to environmental or stochastic perturbations. This shall allow the sim-
ulation of industrial-scale biological cultures with a reasonable and tractable numerical
cost.

This chapter mainly describes a structure proposal for metabolic models. This struc-
ture, derived from the work of Xu et al. [1999] and from metabolic-mode approaches for
metabolic networks reduction, describes indeed dynamics, regulations and matter chan-
nelling with an especially low numerical cost. This structure is applied to the modelling
of Escherichia coli and to the description of dynamic behaviours of Saccharomyces cere-
visiae. In particular the model developed for this yeast, which will be used in Chapter
V, is challenged against numerous experimental data sets produced by multiple research
teams with different wild strains and culture modes. Challenging a model against such
different data sets is quite a severe test. To the best of our knowledge, this is the first
attempt to produce such a low-cost metabolic model that fits so many experimental data
sets.
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II.1 Objectives and constraints of the biological modelling

In the proposed modelling framework, the metabolic model serves to predict the mass
transfer rates between the liquid and the biotic phase. The starting point is the knowledge
of the cell state and the concentrations in the surrounding liquid. To develop metabolic
models, two questions must be tackled. (i) What limits the reaction rates? (ii) Through
which pathways will the matter be transformed? This notion of pathways encompasses
the need to define reaction stoichiometry, but also energetic cost of the conversion.

At the most fundamental levels, biological reactions depend on oxidative reactions
of carbonaceous reduced matter (sugars, fat). Just like in combustion, these reactions
release energy, part of it as heat, but most of this chemical energy will be used by the
living system to produce highly complex biomolecules, new cells, to interact with the
environment by controlling flux at the membrane level, or even by using this energy to
move toward more favourable environments.

In combustion, energy is only released as heat in fast reactions, whose time-scales
can be as low as nanoseconds [Caudal et al., 2013]. The need for biological system to
control the release of energy implies that they must be able to limit and control the rate
of bioreactions. Some of these limitations occur naturally, for instance due to limiting
diffusive transport within a cell cytoplasm. Cells also actively regulate their internal
reaction rates by decreasing the concentrations of some enzymes, or by limiting fluxes at
the membrane level at the expense of energy. For these reasons, even in rich environment,
bioreactions will never be as fast as combustion.

If limitations do not come from internal reaction rates, or from limiting cross-membrane
transfer, the limitation will be external to the cell. It is indeed straightforward to un-
derstand that cells without internal reserves cannot perform any reaction in a depleted
environment where no substrate is available.

Both internal and external limitations will have to be considered when designing a
biological model for large-scale simulation. Indeed, in such systems, the environment will
be rich in substrate near the feeding point but might be depleted in other parts of the
reactor. Similarly, oxygen will be highly available near the bubble spargers where gas is
still rich, but may be limited elsewhere if the oxygen transfer rate is insufficient compared
to the overall biological needs. Consequently, due to this possibly cyclic environmental
availabilities, the proposed model will need to handle both sources of limitations.

If the biological reaction could be summed up to

Glucose + Oxygen→ Cells

31



32 metabolism modelling

the rate of this reaction would simply be the limiting value between the possible as-
similation rates of glucose and oxygen, and the maximum production rate of new cells.
Unfortunately, the chemistry of living systems is much more complicated than that.

This chapter will detail proposed models for a bacteria, Escherichia coli, and for a
yeast, Saccharomyces cerevisiae. Both of these micro-organisms are said to be optional
aero-anaerobic. This implies that they are both able to grow either with, or without,
oxygen. If oxygen is present, cells produce energy from oxidative catabolism, i.e. en-
ergy producing pathway, whose final electron receiver is oxygen. These pathways are
analogous to full combustion of organic matter in presence of oxygen. On the opposite,
if no oxygen is available, fermentative catabolism still allows producing energy. These
pathways lead to the formation of some by-products (alcohol or acid compounds) just
like partial combustion.

The proposed models will then have to be able to switch between these two modes
of energy production depending on oxygen availability, but complexity goes on. While
glucose is the preferential source of carbon and energy for these micro-organisms, they
are also able to grow on other carbonaceous substrate. In particular, by-products from
fermentative catabolism are still reduced carbon matter and can be assimilated again in
oxygen-rich environments, both for energy and new cell productions.

Moreover, the model will be used in large-scale where the biomass undergoes both
(i) short-term perturbations such as sudden expositions to high substrate concentrations
when cells pass by the feeding point, as well as (ii) long term modifications of the overall
environment, for instance if the oxygen supply becomes limiting due to increasing biomass
concentration over time.

Due to the last aspect, the metabolic model must be able to switch between multiple
modes and must behave well both in long-term steady situations and in dynamic envi-
ronments. The model construction will have to account for these aspects, and must be
challenged against both steady and dynamically changing experimental conditions.

Finally, one must keep in mind that this model will be used for long-term large-scale
simulations. This model will be called in each volume of reference solved by the hydrody-
namic part of the overall model, and for each biological state considered in the biological
heterogeneity part of the whole model. The numerical cost of the biological model must
then be maintained as low as possible and can not rely on expensive computations.

II.2 Proposed metabolic model structure

II.2.1 Inspiration from a decision-tree model by Xu et al. [1999]

Foundations of the proposed structure come from Xu et al. [1999] who developed a simple
model for E. coli. This model describes growth of this bacteria in anaerobic conditions,
where glucose could be fermented producing energy as well as acetate as a by-product;
and in aerobic conditions where both glucose and acetate could be used as main carbon
source along with an oxidative energy production. This model is illustrated on Fig. II.1
and relies on two simple yet powerful ideas:

1. Growth is limited by some maximum fluxes of matter (glucose, acetate, oxygen).

2. Available matter will first be directed toward high-yield and/or high-affinity metabolic
modes, only leftovers will be directed toward other modes.
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Figure II.1: Structure of model for E. coli from Xu et al. [1999]. Reprinted by permission
from John Wiley and Sons.

The first idea allows describing the overall metabolism only in terms of flux of matter
and energy. As energy is produced from biochemical reactions, all fluxes are coupled
through mass and energy balances. For instance, if the flux of glucose and oxygen that
is processed by a cell is known, one can deduce the associated flux of energy-carrying
metabolites produced through the oxidative pathway.

The second idea comes as a replacement for a commonly used approach when solving
metabolic models. Most models based on an extensive description of a metabolic net-
work rely on constraint-based flux optimization to deduce an internal cell composition,
and matter orientation between metabolic pathways, from environmental composition.
Examples are the YEAST model for S. cerevisiae [Heavner et al., 2012, 2013], and the
iJO1366 model for E. coli [Orth et al., 2011]. The flux optimization usually aims at
identifying the cell state that maximizes growth.

Instead of performing expensive optimization computations, the E. coli model from Xu
et al. [1999] enforces that matter will be used in priority within efficient growth modes,
sorted in the following order:

1. Growth on glucose with oxidative energy production;

2. Growth on glucose with fermentative energy production;

3. Growth on acetate with oxidative energy production.

Obviously, if no oxygen is available, only the mode 2 will be activated. Similarly, a lack
of glucose in presence of acetate will only activate the mode 3. Overall, this approach
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ensures that the most efficient metabolic mode is used when associated substrates are
available. This indirectly allows the model to maximize growth, without actually relying
on expensive optimization algorithms. Note that if a strain has been engineered so that it
tends to maximize an other process than growth, this can still be accounted for by simply
sorting metabolic modes differently. This approach is not limited to strains maximizing
growth.

Therefore, the model from Xu et al. [1999] does integrate two of the three constraints
that we are interested in. The computation of reaction rates is fast as no specific expen-
sive algorithm is involved. Moreover, by construction, it allows describing multiple cell
functioning modes.

This model structure removes the need for solving numerous intracellular concentra-
tions and for computing reaction rates using over-parametrized kinetic expressions based
on all these internal concentrations. Such models would be the one from Rizzi et al. [1997],
or those applied to metabolic flux analysis [Matsuoka and Shimizu, 2013]. The high num-
ber of dynamics tracked by these models, i.e. number of internal concentrations, make
them hardly compatible with heterogeneous bioreactor modelling. While simplifying the
computation of bioreaction rates, it is crucial to observe that this computation depends
on the prior knowledge of some key fluxes. This approach then only reduces the number
of degrees of liberty of the system to be solved. In the present case of Xu et al. [1999],
the glucose uptake rate and the maximum respiration rate have to be known. The first
one is modelled as a function of two constant cell properties qSmax and KS along with the
glucose concentration (see Eq. (1) in Fig. II.1) and a similar modelling is proposed by
the authors for the oxygen consumption rate. It is reasonable to question these closure
laws with at least two ideas in mind: do all cells share the same state and will uptake at
the same rates in the same environment? Also, some closure laws have to be defined for
some fluxes, but which ones are the most relevant?

II.2.2 Brief description of the model structure

The model from Xu et al. [1999] lacks the integration of dynamics variables. A first at-
tempt of integrating this aspect was done in work preceding this PhD thesis [Pigou and
Morchain, 2015]. The proposal was to associate a growth capability to micro-organisms
which would evolve over time. Metabolic modes aiming at growth, i.e. new cell produc-
tion, could be limited by this growth capability even if sufficient nutrients were avail-
able. If a strong disequilibrium occurred between glucose consumption, and glucose
requirements for growth, the excess glucose would be diverted into the well-known over-
flow metabolism which induces acetate production when E. coli is suddenly exposed to
high glucose concentrations [Xu et al., 1999; Matsuoka and Shimizu, 2013; Yamanè and
Shimizu, 1984]. This initial model was fully detailed in Pigou and Morchain [2015] and
kept a structure similar to Xu et al. [1999]. Here, we further improve upon this previous
work by defining a procedure to define metabolic models. Overall, the design of these
models will rely on:

1. Identifying self-sufficient metabolic modes that can be observed in experimental
cultures.
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2. Sorting metabolic modes by order of priority. A general rule would be to prioritize
growth-mode with high yield efficiency (substrate affinity, more efficient energetic
production, ...).

3. Identifying what can limit the rate of each mode.

The model structure will be more easily explained through application examples to il-
lustrate each of these three basis aspects, and how their combination makes the model
structure suitable for dynamic simulations of industrial fermenters. Nevertheless, we start
with a short generic explanation of the proposed structure.

Metabolic modes

The concept of metabolic modes is usually associated to the model reduction of complex
metabolic networks through linear analysis by identifying limits of a convex hyper-volume
of admissible metabolic flux. This approach is extensively detailed by Trinh et al. whose
summary figure is reproduced in Fig. II.2. Readers interested in these model reduction
approaches should refer to their article [Trinh et al., 2008].

In short, metabolic modes are elementary functionings of a cell and each modes de-
scribes the transformation of some input matter (substrates, oxygen, . . . ) into some
output matter (products, by-products, new cells, . . . ). One property of these modes is
that, taken individually, they appear as constant stoichiometry bioreactions. All pos-
sible thermodynamically admissible metabolic behaviours can be expressed as a linear
combination of these elementary modes.

The way metabolic modes are combined evolves over time due to (i) the evolution
of environmental concentrations and (ii) the evolution of biological capabilities to pro-
cess matter through each possible pathway. These changing combinations of elementary
modes explain how the overall conversion yields of matter by cells may change from
one experimental condition to another, even though underlying stoichiometry does not
actually change.

The usual approach consists in deducing metabolic elementary modes from a detailed
metabolic network, coupled to thermodynamic constraints over this network [Trinh et al.,
2008]. Highly detailed metabolic network models exist for E. coli[Orth et al., 2011] and S.
cerevisiae[Heavner et al., 2012, 2013] and model reduction methods could be applied to
them [Gerdtzen et al., 2004]. However, we choose to manually design simplified metabolic
models instead of reducing complex ones. This was decided in order to ensure a low-
cost final model, and to only account for selected metabolic features. Doing so allows
for keeping the model complexity low which improves the identifiability of the model
parameters.

Therefore, we propose to manually define metabolic modes to list, in an exhaustive
manner, all metabolic features of interest of the considered strain. Such features could
be:

• capability to grow using glucose and oxygen only, i.e. oxidative glucose-based
growth;

• capability to grow using only glucose and producing acetate as a by-product, i.e.
fermentative glucose-based growth;

• . . .
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Figure II.2: Illustration of elementary mode analysis of metabolic networks. Reprinted by
permission from Springer Customer Service Centre GmbH: Springer Nature,
Applied Microbiology and Biotechnology, Elementary mode analysis: a useful
metabolic pathway analysis tool for characterizing cellular metabolism, Trinh,
Wlaschin and Srienc, COPYRIGHT (2008). License number 4355340054177.



II.2 proposed metabolic model structure 37

Selected metabolic modes must be non-colinear, meaning that no mode should be a linear
combination of others.

Modes prioritization

Once metabolic modes are defined, the challenge is to determine how much each ele-
mentary mode is activated, based on environmental substrate availabilities, and internal
biological limits. On that regard, we keep the approach from Xu et al. [1999] by giv-
ing a higher priority to metabolic modes that make use of high-affinity substrates and
high-efficiency energetic pathways.

Each mode makes use of resources, and the reaction rate associated to a mode will be
limited by resources availability. These may be substrate resources, reactive resources,
and/or transport resources. For instance, an elementary mode that describes growth
using glucose and oxidative catabolism may be limited by:

• External transport limitation due to turbulence, mixing, external concentrations,
...

– Maximum glucose uptake rate allowed by the environment ϕ(e)
G (kgG/kgX · h).

– Maximum oxygen uptake rate allowed by the environment ϕ(e)
O (kgO/kgX · h).

• Internal bioreaction rate limitations due to enzyme content, induction or repression
of pathways, ...

– Limit on glucose utilization (maximum rate of glycolysis for instance).
– Maximum rate of respiratory chain for oxidative energy production.
– Maximum rate of any sub-reaction required to produce new cell building

blocks.
– . . .

• Mass transfer limitations due to insufficient membrane transporters, repression of
these transporters, ...

– Maximum transport rate of glucose through the biological membrane
– Possible transports between cytoplasm and mitochondria in eukaryotic cells.
– . . .

These resource limits are shared by all metabolic modes. Hence, the resulting linear
combination of metabolic modes cannot use more resources than those available. There-
fore, in order to respect this constraint, and to account for the mode prioritization, the
resolution of metabolic model will consist in

• Computing available resources
– Maximum mass transfer/transport rates of S: ϕ(max)

S (kgS/kgX · h)

– Maximum rate of i-th reaction in the metabolic network: q(max)
i (moli/kgX · h)

• Maximizing the rate of each metabolic mode, one by one, in their priority order,
while always respecting global constraints

1. Identify limiting resource for mode A;
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2. Set rate of mode A such that its limiting resource is depleted;
3. Compute remaining resources for mode B;
4. Identify limiting resource for mode B;
5. Set rate of mode B such that its limiting resource is depleted;
6. Compute remaining resources for mode C;
7. . . .

The main benefit of this structure is its low numerical cost. The dynamic aspect of
this model comes from how one computes available resources. If these resources are
only defined in terms of external concentrations, the output of the metabolic model
will be entirely controlled by the environment (unstructured modelling). The preferred
approach will be to track some dynamic biological properties and use them to compute
these resources, then the model will behave in a dynamic way and the “memory” of cells
will affect their metabolic behaviour. Some dynamic properties could be

• Internal concentrations, or storage quantities;

• Number and/or activity of membrane transporters (porines, PTS, ...);

• Non-biochemical properties of cells such as age, mass, length, number of bud scars
for yeasts, ...

• Reactive capabilities, either expressed in terms of enzyme concentrations, or in
terms of maximum achievable reaction rates.

Instead of tracking all possible dynamic properties, following model developments
will focus on (i) identifying what dynamic behaviours are of interest, (ii) listing which
metabolic pathways and elementary modes are necessary to describe them, and (iii) defin-
ing which biological properties are required to account for these dynamics. The goal will
be to obtain models that exhibit correct behaviours in lab-scale dynamic cultures, while
keeping the model size as low as possible in terms of elementary modes and dynamic
variables.

II.3 Application to a simple micro-organism: Escherichia coli

II.3.1 General presentation

Escherichia coli is a well-known bacteria whose genome sequence is known since 1997
[Blattner et al.]. This micro-organism has multiple industrial uses through the intro-
duction of heterologous metabolism pathways. It is mainly known for its historic use
in therapeutic insulin production, but is also used for the production of amino acids,
monomers (1, 3-Propanediol, 1, 4-Butanediol), other protein therapeutics, organics acids,
and so on [Theisen and Liao, 2016].

As stated in introduction (II.1), this bacteria is optional aero-anaerobic, meaning that
it can produce energy using either oxidative of fermentative pathways. It is able to use
glucose as a primary source of carbon and energy, and produces multiple organic acids,
the main one being acetate, when using fermentative pathways. These acids can also
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serve as carbon source when sugars are depleted and oxygen is available. Finally, E. coli
is known to produce acetate when exposed to significantly high glucose concentrations,
this is known as the overflow metabolism. This phenomenon has been extensively studied
over the last decades as this acetate production inhibits growth, but also diverts glucose
from metabolic pathways of industrial interest and therefore affects the conversion yield
of the process [Xu et al., 1999; Anane et al., 2017]. All of these metabolic aspects are
considered in the following model.

II.3.2 Elementary metabolic modes, limitations and global rates

Metabolic network

The basis of metabolic models is the considered metabolic network which sums up all
bioreactions. Here, the considered network is kept close to the one illustrated in Fig. II.1
and is illustrated in Fig. II.3. This network consists in following bioreactions:

G+ YEGE
q

(G)
r1−−→ YXGX (r1)

A+ YEAE
q

(A)
r1′−−→ YXAX (r′1)

G+ YOGO
q

(G)
r2−−→ Y

(o)
EGE (r2)

A+ YOAO
q

(A)
r2′−−→ Y

(o)
EAE (r′2)

G+
q

(G)
r3−−→ Y

(f)
EGE + YAGA (r3)

G
q

(G)
r4−−→ YAGA (r4)

G
q

(G)
r5−−→ ∅ (r5)

with G: Glucose, A: Acetate, O: Oxygen, X: Cells/Biomass and E: Adenosine TriPhos-
phate, an energy-carrying molecule. Yij are molar conversion yields (moli/molj), and q(j)

i

the specific reaction rates of reaction i, expressed in terms of processed quantity of j
(molj/kgX · h).
r1 represents the production of new cells using glucose and energy. r2 and r3 are

reactions for glucose-based production of energy, respectively through oxidative and fer-
mentative catabolism. r4 is the dissimilation of excess glucose into acetate through the
overflow metabolism. r′1 and r′2 are acetate-based reactions for cell production and energy
production through an oxidative pathway.

Reaction r5 was not explicitly described in the model from Pigou and Morchain [2015].
It corresponds to a use of glucose for unproductive processes generally referred to as
maintenance processes [Hempfling and Mainzer, 1975]. Usually, maintenance is associated
to a use of energy through ATP consumption [Meadows et al., 2010]. However, the model
described in Pigou and Morchain [2015] (Appendix A) made use of Pirt’s law [1965] to
account for the effect of maintenance on the conversion yield of glucose into biomass,
YXG. This was done by varying this yield depending on the performed growth rate. By
separating maintenance into a different reaction, YXG is now a model constant. The fact
that reaction r5 uses glucose in place of ATP is related to the definition of the maintenance
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Figure II.3: Simplified metabolic network considered for E. coli modelling.

rate in Pirt’s law, expressed as a consumption of substrate (molG/gX · h). This was kept
here to prevent the current model and the one described in Appendix A from differing.

Elementary modes

The E. coli model will associate previously defined bioreactions into the five following
elementary modes:

A. Maintenance

B. Oxidative growth on glucose

C. Fermentative growth on glucose

D. Overflow

E . Oxidative growth on acetate

These modes are here sorted by their order of priority. Indeed, maintenance corresponds
to the highest needs of a cell to ensure its minimal functioning. Glucose will then be
oriented toward this mode in priority. Then come modes related to growth using the
highest affinity substrate: glucose. Priority is given to the oxidative growth as its efficient
energy-producing pathway allows for highest yields of conversion. If not all glucose is
used for growth, leftovers are directed into the overflow metabolism. This is the non-
equilibrium metabolism that was not present in Xu et al. [1999] model. Finally, a mode
enables growth on acetate using an oxidative energy producing pathway.

All five modes are illustrated in Fig. II.4. Let q(j)
i be the rate of mode i ∈ {A,B, C,D, E}

(molj/kgX · h), ϕ(i)
j be the mass rate of production of j ∈ {G,A,O,X} by the mode i

(kgj/kgX · h), and f
(i)
j be the molar rate of production of j (molj/kgX · h). Note that

ϕ
(i)
j = Mjf

(i)
j (II.1)

with Mj the molar mass of j (kgj/molj). Biomass is represented by the typical chemical
formula C5H7NO2.
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Figure II.4: Elementary modes for E. coli metabolic modelling.
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Table II.1: Stoichiometry of elementary modes for E. coli metabolic model: consumption
and production rates.

Mode, i Mode rate, q(j)
i f

(i)
G /q

(j)
i f

(i)
A /q

(j)
i f

(i)
O /q

(j)
i f

(i)
X /q

(j)
i

(molj/kgX · h) (molG/molj) (molA/molj) (molO/molj) (molX/molj)
A q

(G)
A −1 0 0 0

B q
(G)
B −1 0 − YEGYOG

YEG+Y (o)
EG

YXGY
(o)
EG

YEG+Y (o)
EG

C q
(G)
C −1 YAGYEG

YEG+Y (f)
EG

0 YXGY
(f)
EG

YEG+Y (f)
EG

D q
(G)
D −1 YAG 0 0

E q
(A)
E 0 −1 − YEAYOA

YEA+Y (o)
EA

YXAY
(o)
EA

YEA+Y (o)
EA

Table II.2: Stoichiometry of elementary modes for E. coli metabolic model: reaction rates.
Values are ratios between reaction rates and mode rates (mol/mol).

Reaction rate, q
(j)
i (molj/kgX · h)

q(G)
r1 q(G)

r2 q(G)
r3 q(G)

r4 q(G)
r5 q

(A)
r1′ q

(A)
r2′

M
od

e
ra

te
,q

(j
)

i
(m

ol
j/

kg
X
·h

)

q
(G)
A 0 0 0 0 1 0 0

q
(G)
B

Y
(o)
EG

YEG + Y
(o)
EG

YEG

YEG + Y
(o)
EG

0 0 0 0 0

q
(G)
C

Y
(f)
EG

YEG + Y
(f)
EG

0 YEG

YEG + Y
(f)
EG

0 0 0 0

q
(G)
D 0 0 0 1 0 0 0

q
(A)
E 0 0 0 0 0 Y

(o)
EA

YEA + Y
(o)
EA

YEA

YEA + Y
(o)
EA

Though this would be feasible through the use of dynamic variables, we will not describe
the accumulation of intracellular matter. Therefore, one can easily access the overall
stoichiometry of each mode by formulating mass and energy balances over intracellular
content. This leads to the stoichiometry table in Tab. II.1 where the consumption and/or
production rates ϕ(i)

j are expressed in terms of mode rates q(j)
i , and to Tab. II.2 which

details the activity level of each reaction for all modes.
It is crucial to observe that the strength of this modelling approach lies in its ability

to detect if some substrate is available for side reactions. This ability comes from the a
priori knowledge of both the uptake rate and the maximum glucose utilization rate for
growth. It is worth explaining this feature in some more details because it is also tightly
related to the dynamic capabilities of the metabolic model.

Growth-rate dynamics

The model proposed in Pigou and Morchain [2015] (article available in Appendix A) is
based on the idea that growth-rate is a dynamic property of cells. By tracking the growth
capability of a cell, one is able to define its needs in terms of glucose consumption. On
the other hand, it has been observed that glucose uptake is not directly correlated to
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growth-rate [Natarajan and Srienc, 2000] as their “reactivity” [Leegwater et al., 1982]
allows them to dynamically adapt their uptake capacity in response to environmental
fluctuations in substrate availability [Ferenci, 1996]. Therefore, by (i) tracking growth
capability and (ii) modelling glucose uptake, one will be able to measure a disequilibrium
between glucose needs and uptake, which will condition the activation of the overflow
metabolism if glucose is in excess.

This notion of a dynamic growth-rate is often not considered for the modelling of biore-
actors. Instead, one often assume a local equilibrium between a cell and its environment
by making use of equilibrium kinetics that usually follow the [Monod, 1952], already
presented in I.6.3:

µ∗ = µmax
G∗

G∗ +KG

(II.2)

where µ∗ and G∗ are steady-state –at equilibrium– growth-rate and glucose concentration,
µmax is the maximum mean growth-rate observed at the population level, and KG is the
affinity for glucose (kgG/m3

L). Other terms can be added to this law to account for
affinity toward other substrates and/or for inhibition by some compounds. These laws
are deduced from experimental observations as detailed hereafter.

Using Monod kinetics law to model steady-state conditions from the point of view
of a cell is a valid approach. However, large-scale bioreactors are heterogeneous, and
a cell travelling in concentration gradients will experience dynamic fluctuations in its
surrounding environment. Using Monod kinetics in these systems would then be an
over-simplification “by allowing instantaneous adaptation of the cell to the abiotic envi-
ronment” [Silveston et al., 2008].

This is perfectly illustrated by the experimental response of a chemostat system to a
dilution-rate shift-up. Chemostats are continuous homogeneous lab-scale cultures char-
acterized by their dilution rate D = Q/V (h−1) with V their volume (m3) and Q the flow
rate passing through the reactor (m3/h). A simple mass balance on such a system shows
that at steady state, the dilution rate of a chemostat matches the mean growth rate of a
biological population (µ̃ = D at steady-state).

As illustrated in Fig. II.5, if one suddenly increases the dilution rate from D to D′ in
a chemostat culture, the biomass concentration first decreases (meaning that µ̃ < D′),
then increases (µ̃ > D′) to finally reach a new equilibrium (µ̃ = D′). This experimentally
proves that the growth-rate is indeed a dynamic variable.

This problematic of whether Monod models can be applied to dynamic chemostat
cultures was actually fully investigated half a century ago [Young et al., 1970]. The
conclusion of these authors was that inducing a delay in the evolution of growth-rate was
necessary to achieve a reasonable fitting with experimental data.

Let µc@p be the glucose-based growth-rate of a cell, whose evolution is described as

∂µc@p
∂t

= ζµ(µc@p,CL) (II.3)

Chapter III will detail how such a biological property can be tracked over an entire
biological population. ζµ(µc,CL) will be defined in such a way that µc will evolve over-
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Figure II.5: Experimental measurements of biomass and glucose concentrations in a
chemostat culture after a dilution rate shift-up [Kätterer et al., 1986]. Dashed-
lines: modelling with dynamic growth-rate. Dotted-lines: modelling with
equilibrium growth-rate.

time toward µ∗ (computed from CL). The following model was proposed by Morchain
and Fonade [2009]:

ζµ(µc@p,CL) =
( 1
T

+ µc@p

)
(µ∗(CL)− µc@p) (II.4)

This formulation implies that all cells will adapt their growth rate to eventually reach
µ∗(CL) but that fastest growing cells will be able to adapt their growth machinery faster.
The question is then to identify the time-scale T and the equilibrium law µ∗(CL).

This delay between an environmental change and the biological answer in terms of
growth rate has been observed on Candida tropicalis and Trichosporon cutaneum by
Kätterer et al. [1986], on Azobacter vinelandi and Saccharomyces cerevisiae [Young et al.,
1970], and on Lactococcus lactis [Adamberg et al., 2009]. Each time, the time-scale of
that delay was about an hour. This seems to imply that producing the growth-related
cellular machinery is as complex and slow as producing new cells, considering that the
characteristic time of growth is about an hour too. Therefore, T ≈ 1h and can be iden-
tified through dilution-rate shift-up experiments [Kätterer et al., 1986] or in accelerostat
cultures [Adamberg et al., 2009].

A subtlety implemented in Pigou and Morchain [2015] was the use of different time-
scales Tu and Td depending on whether the growth-rate adaptation was performed upward
(µc < µ∗) or downward (µc > µ∗). This was necessary for fitting the modelling to
experimental data in large-scale bioreactors and implied that upward adaptation is a
faster phenomenon than downward adaptation.
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The notion of equilibrium, and thus the Monod law (Eq. (II.2)), can be analysed
experimentally in chemostat cultures. A simple mass balance on the biomass over a
chemostat will be

∂XT

∂t
=
(
µ̃− Q

V

)
XT (II.5)

whereXT =
∫
Ωµ n(µc)dµc is the total biomass concentration (kgX/m3), µ̃ is the population

mean growth-rate and V the reactor volume. At steady-state, one can easily observe that
µ̃ = Q/V = D with D being the chemostat dilution rate. Therefore, by controlling the
feeding flow rate Q, one can enforce a growth-rate at steady-state.

By doing so, it is possible to experimentally observe an equilibrium law between a
biological population mean growth-rate and the residual substrate concentration. An
example is given in Fig. II.6 from Schmideder et al. [2015] where lab-scale bioreactors
were used to access steady-state kinetics of E. coli on glucose. Parameters of the Monod
law can be extracted from such experiments. µmax is the maximum growth rate achievable
by the population. For high dilution rates, D > µmax, the population can not growth fast
enough and is flushed out of the reactor. This allows identifying µmax as the maximum
dilution rate at which biomass is still present (≈ 0.52h−1 in Fig. II.6).

Figure II.6: State of equilibrium between a E. coli population and its environment in
milliliter-scale chemostat cultures [Schmideder et al., 2015].

Mode limitations

Pigou and Morchain [2015] detailed a procedure to compute reaction rates q(G)
r1 , q(G)

r2 , ...
from environment concentrations GL, AL and OL and the glucose-based growth capabil-
ity µc@p (see Appendix A of that article for full details of the initial procedure). Here,
the goal is to define the maximum consumption rates or reaction rates, i.e. available re-
sources, such that the metabolic mode-based model will behave in a similar manner than
the decision-tree model detailed in Pigou and Morchain [2015]. As far as consumption
rate are concerned, they can be limited either by biological limits, e.g. insufficient mem-
brane transporters, or by environmental limits, e.g. depleted environment or insufficient
micromixing. The model from Pigou and Morchain [2015] did not explicitly consider both
aspects. In terms of notations, environmental limits are noted ϕ

(e)
i , biological limits ϕ(b)

i

and global limits ϕ(g)
i (kgi/kgX · h).
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First, the maintenance elementary mode will be limited by the maintenance rate m ini-
tially defined in Pirt’s law as the quantity of glucose required for maintenance operations
(molG/kgX · h). This will simply translate into a limit reaction rate for reaction r5

q(g)
r5 = m (II.6)

Models from Xu et al. [1999] and Pigou and Morchain [2015] both used the same
formulation for a maximal oxygen consumption rate:

ϕ
(g)
O = ϕ

(max)
O

O

O +KO

K
(O)
i,A

A+K
(O)
i,A

(II.7)

with ϕ
(max)
O the maximum achievable oxygen consumption rate, KO the affinity constant

of E. coli toward oxygen, and K
(O)
i,A the inhibition constant of oxygen uptake by acetate.

Equilibrium growth rates on glucose and acetate are defined by following Monod laws:

µ∗G = µ
(max)
G

G

G+KG

O

O +KO

Ki,A

A+Ki,A

(II.8)

µ∗A = µ
(max)
A

A

A+KA

O

O +KO

Ki,G

G+Ki,G

(II.9)

Elementary modes leading to cell-production might be limited by growth capabilities,
defined as maximum reaction rates for reactions r1 and r′1. In accordance with the model
from Pigou and Morchain [2015], these maximum growth reaction rates are defined from
cell-attached growth capability µc@p and from equilibrium growth rates µ∗G and µ∗A:

q(g)
r1 = min (µc@p, µ∗G)

MXYXG
(II.10)

q
(g)
r′1

= min (µc@p −min (µc@p, µ∗G) , µ∗A)
MXYXA

(II.11)

The underlying idea is simply that cells grow as fast as their internal capabilities allow
them to, unless their environment is limiting them.

The last limitation introduced in Pigou and Morchain [2015] is related to glucose con-
sumption. Considering that glucose uptake systems are quickly regulated compared to
the adaptation of growth capabilities [Ferenci, 1996; Quedeville et al., 2018], we assumed
that all cells will assimilate as much glucose as a cell at equilibrium with its environment.
Therefore, ϕ(g)

G is defined as the total glucose consumption rate of a cell characterized
by µc@p = µ∗G with null mode rates for overflow and acetate-based growth elementary
metabolic modes (q(G)

D = 0 and q
(A)
E = 0).

Mode rates computation

Once metabolic modes are defined in terms of stoichiometry and priority ranks, along
with maximum available resources, computing actual mode rates q(j)

i is straightforward.
To summarize, available resources are:

• Consumption rates
– of oxygen: ϕ(g)

O (kgO/kgX · h) or f (g)
O = ϕ

(g)
O /MO (molO/kgX · h);
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– of glucose: ϕ(g)
G (kgG/kgX · h) or f (g)

G = ϕ
(g)
G /MG (molG/kgX · h).

• Reaction rates
– of glucose-based growth: q(g)

r1 (molG/kgX · h);

– of acetate-based growth: q(g)
r′1

(molA/kgX · h);

– of maintenance: q(g)
r5 (molG/kgX · h).

This process of computing mode rates simply consists in following operations

1. Compute mode A rate by considering limits in maintenance rate (q(g)
r5 ) and glucose

availability f (g)
G ,

q
(G)
A = min

(
q(g)
r5 ; f (g)

G

)
2. Compute resources left for modes B to E by decreasing glucose availability,

f
(g)
G ← f

(g)
G − q

(G)
A

3. Compute mode B rate by considering limits in glucose-based growth reaction rate
q(g)
r1 , glucose availability f (g)

G and oxygen availability f (g)
O ,

q
(G)
B = min

YEG + Y
(o)
EG

Y
(o)
EG

q(g)
r1 ; f (g)

G ; YEG + Y
(o)
EG

YEGYOG
f

(g)
O


4. Compute resources left for modes C to E by decreasing glucose and oxygen avail-

abilities, as well as glucose-based growth capability,

f
(g)
G ← f

(g)
G − q

(G)
B

f
(g)
O ← f

(g)
O −

YEGYOG

YEG + Y
(o)
EG

q
(G)
B

q(g)
r1 ← q(g)

r1 −
Y

(o)
EG

YEG + Y
(o)
EG

q
(G)
B

5. Compute mode C rate by considering limits in glucose based growth reaction rate
q(g)
r1 and glucose availability f (g)

G ;

q
(G)
C = min

YEG + Y
(f)
EG

Y
(f)
EG

q(g)
r1 ; f (g)

G


6. Compute resources left for modes D and E by decreasing glucose availability,

f
(g)
G ← f

(g)
G − q

(G)
C

7. Compute mode D rate by considering only glucose availability f (g)
G ,

q
(G)
D = f

(g)
G (II.12)
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8. Compute mode E rate by considering limits in acetate-based growth reaction rate
q

(g)
r1′ and oxygen availability f (g)

O ,

q
(A)
E = min

YEA + Y
(o)
EA

Y
(o)
EA

q
(g)
r1′ ;

YEA + Y
(o)
EA

YEAYOA
f

(g)
O


Overall bioreaction rates

Once mode rates are known, the actual growth-rate, substrate consumption rates, and
(by-)product production rates are simply given by a linear combination of mode rates
based on stoichiometry coefficients from Tab. II.1. These actual rates are denoted by the
upper-script (a):

µ(a) =
 YXGY

(o)
EG

YEG + Y
(o)
EG

q
(G)
B + YXGY

(f)
EG

YEG + Y
(f)
EG

q
(G)
C + YXAY

(o)
EA

YEA + Y
(o)
EA

q
(A)
E

MX

ϕ
(a)
G = −

(
q

(G)
A + q

(G)
B + q

(G)
C + q

(G)
D

)
MG

ϕ
(a)
A =

(
YAGYEG

YEG + Y
(f)
EG

q
(G)
C + YAGq

(G)
D − q

(A)
E

)
MA

ϕ
(a)
O = −

(
YEGYOG

YEG + Y
(o)
EG

q
(G)
B + YEAYOA

YEA + Y
(o)
EA

q
(A)
E

)
MO

II.3.3 Discussion

This E. coli model mainly serves as an illustration of the metabolic mode based structure,
by reusing and restructuring developments published prior to this PhD thesis where the
model predictions were challenged against experimental data [Pigou and Morchain, 2015].
This model was voluntarily kept simple by only describing a slow cell dynamic, the growth-
rate adaptation, to show the interest of coupling such simple metabolic models with
biological properties tracking. It will be shown hereafter, in Section II.4, that adding a
few dynamics, while preserving this model structure, allows representing more advanced
metabolic behaviour, here in the case of the baker’s yeast Saccharomyces cerevisiae.

The most important aspect of the proposed model is its low numerical cost. Many
quantities can be precomputed, the numerical cost is then mainly related to (i) the
computation of available resources, (ii) the computation of the maximum mode rate for
each mode, which was shown to simply consist in the identification of the most limiting
rate and (iii) the computation of resources left for ulterior modes.

This simple order of computations, consisting only in multiplications, addition, and
calls to the min function, allows for fast computations. In particular, if this model must be
called numerous times –which will be the cased in Chapter V for large-scale simulations–
it is important to note that such a model structure is compatible with vectorization. This
can be done either in [MATLAB, 2016] using vectorization notations, or more broadly
using instruction sets available in last generation processors (SSE, AVX, ...), to further
accelerate computations of the metabolic behaviour.

In addition to its low cost and possible computation speed-ups allowed by the com-
putation procedure simplicity, a major feature of this model structure is its facilitated
modularity. For instance, one could easily implement a mortality phenomenon that would
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be triggered if maintenance requirements are not fulfilled. Doing so would simply require
a supplementary reaction that would describe cell death:

X
q

(X)
r6−−→ ∅ (r6)

A new mode, say F , would trigger death to a rate proportional to the unsatisfied mainte-
nance rate, q(g)

r5 . If maintenance requirements are fulfilled by mode A, q(g)
r5 = 0 for modes

B to F and therefore no death occurs. Otherwise, cell death is triggered.
This modularity comes from the fluency of adding or removing metabolic modes with-

out influencing much other aspects of the model, but also from the easiness of adding
dynamics of interest. For instance, we defined the glucose uptake limit, ϕ(g)

G , directly
from a cell equilibrium state and thus we assumed that glucose uptake is instantaneously
adapted to environmental fluctuations. It can be experimentally shown that the uptake
rate of glucose after a sudden exposure to high concentrations induces a quick regula-
tion of membrane transporters to limit the influx of glucose [Sunya et al., 2012]. This is
explained by Ferenci [1996] through the coexistence of two membrane transporter fami-
lies, (i) porines which are passive transport systems, based on natural diffusivity through
protein channel and (ii) the PhosphoTransferase System (PTS) which is an active (i.e.
energy consuming) transport system [Chassagnole et al., 2002]. Activities and number of
both transporters can be regulated with a time-scale of a few seconds to a few minutes,
which induces a short-term dynamic response of glucose uptake capabilities after environ-
mental perturbations. If one models dynamics of these transporter systems, it is possible
to derive ϕ(g)

G from this cell-attached information and therefore improve the overall model
to short-term perturbations. Actually, this work has been started in a project parallel
to this PhD thesis, but needs few refinements before coupling it with current metabolic
model [Quedeville et al., 2018].

Summing-up steps required for the definition of a mode-based metabolic model, one
needs to

1. list reactions defining the metabolic network and their respective stoichiometry;

2. define metabolic modes as self-sufficient combinations of elementary reactions;

3. define the order of priority of elementary modes;

4. identify and quantify substrate uptake, and reactive, resources that may limit the
rate associated to each mode.

Once the networks and modes are defined in terms of stoichiometry matrices, and closures
are provided for limiting resource, the computation of mode rates is straightforward and
numerically efficient.

A final aspect of interest lies in the choice of cell-attached dynamic variables. Usual
approaches consist in tracking cell-size, mass or age [Fredrickson and Tsuchiya, 1963;
Hatzis et al., 1995; Heins et al., 2015] while we propose to track the growth-rate. The
rational behind this choice is that from this growth-rate, it is easy to deduce reactive
and transfer flux in the metabolic network. Here, the growth-rate is associated to the
capability of cells to process substrate to form new cells, which is sufficient information
to deduce the activation rate of growth-related metabolic modes. If we tracked physical
cell properties (age, mass, . . . ), more disputable closures would be required to deduce the
rates of metabolic modes from these quantities.
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II.4 Application to Saccharomyces cerevisiae

II.4.1 General presentation

Saccharomyces cerevisiae is one of the most employed strain for industrial production
purposes [Theisen and Liao, 2016]. Thanks to its versatility, this micro-organism is
employed both for (i) high-quantity low-value productions such as xylose-based biofuel
[Kim et al., 2013] and for (ii) low-quantity high-value productions such as pharmaceutical
molecules [Paddon and Keasling, 2014].

Industrial cultures of S. cerevisiae are subjected to the Glucose –or Crabtree– effect.
Indeed, like E. coli, S. cerevisiae is an optional aero-anaerobic micro-organism. There-
fore, it is expected to produce energy through oxidative pathways in presence of oxygen,
and through fermentative pathways in anaerobic conditions. However, the Crabtree effect
leads to the production of ethanol, showing that fermentative metabolism is active, even
in presence of dissolved oxygen. This phenomenon is known to occur when the culture
medium is rich in glucose, but with triggering concentrations varying between experimen-
tations. This ethanol production is often undesired and detrimental due to the inhibitory
effect of this by-product on growth, and the yield-loss resulting from the diversion of the
main substrate toward ethanol producing pathways.

Just as E. coli which grows on both glucose and acetate, S. cerevisiae can use multiple
carbon sources. It will be shown hereafter that glucose, ethanol and acetate are all
possible carbon sources for this yeast.

Finally, the growth rate dynamics that were observed on E. coli are actually general-
izable to most micro-organisms, including the baker’s yeast. Therefore, these dynamics
will be considered too for the modelling of this strain.

Many experimental data for S. cerevisiae cultures are available in the literature. The
proposed model will rely on these observations and will be designed to fit, at least quali-
tatively, with observed tendencies, as well as quantitatively when possible.

II.4.2 Metabolic network

The metabolic modelling will be dedicated to wild strains of S. cerevisiae and will focus
on the central carbon metabolism. The specificity of this metabolism in S. cerevisiae com-
pared to E. coli is the fact that the oxidative metabolism occurs in mitochondria whose
main purpose is to produce energy, mainly Adenosine TriPhosphate (ATP) molecules,
through the oxidation of co-enzymes that are reduced by other parts of the metabolism.

The central carbon metabolism has been modelled by Rizzi et al. [1997] who considered
the metabolic network illustrated in Fig. II.7. However, closure for their model was
obtained by tracking up to 15 internal concentrations, while we attempt to significantly
limit the number of biological properties.

Therefore, we based our metabolic network on a more simple one, from Pronk et al.
[1996], where main pathways are simplified into a few global reactions. Their minimalistic
metabolic network is given in Fig. II.8, and the version we used, with associated reactions
and trans-membrane mass transfers is illustrated in Fig. II.9.

Considered reactions are listed in Tab. II.3. Most reactions and isolated pathways have
well defined stoichiometry. In these cases, coefficients directly appear in reaction formulas.
Cell production (reaction r10) is not an actual reaction so stoichiometry coefficients in
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Figure II.7: Structure of the metabolic network considered for S. cerevisiae modelling
by Rizzi et al. [1997]. Reprinted by permission from John Wiley and Sons:
Biotechnology & Bioengineering, In vivo analysis of metabolic dynamics in
Saccharomyces cerevisiae: II. Mathematical model, Rizzi, Baltes, Theobald
and Reuss, COPYRIGHT (1997).



52 metabolism modelling

Figure II.8: Illustration of the central carbon metabolism of S. cerevisiae as detailed
by Pronk et al. [1996]. Reprinted by permission from John Wiley and
Sons: YEAST, Pyruvate Metabolism in Saccharomyces cerevisiae, Pronk,
Yde Steensma and Van Dijken, COPYRIGHT (1996).
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Figure II.9: Simplified metabolic network considered for S. cerevisiae modelling.
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Table II.3: Detail of reactions used in the metabolic network from Fig. II.9.
Reaction Formula Description
r1a GLC + ATP qr1a−−→ F6P Glycolysis I
r1b F6P + ATP

qr1b−−→ 2G3P Glycolysis II
r1c G3P qr1c−−→ Pyr + NADH + 2ATP Glycolysis III
r2 Pyr qr2−→ AcAl Pyruvate decarboxylation
r3 EtOH qr3−→ AcAl + NADH Ethanol dehydrogenation
r′3 EtOH qr3′−−→ AcAl + NADPH Ethanol dehydrogenation
r4 AcAl qr4−→ Acet + NADH Acetaldehyde dehydrogenation
r5 Acet + ATP qr5−→ AcCoA Acetate utilization
r6 Pyr qr6−→ AcCoA + NADH Pyruvate dehydrogenation
r7 AcCoA qr7−→ 3.6NADH + ATP TriCarboxylic Acid cycle
r8 2NADH + Oxy qr8−→ 5ATP Respiratory chain
r9 3GLC qr9−→ 6NADPH + G3P + 2F6P Pentose-Phosphate Pathway
r10 YCXAcCoA + YEXATP + YNXNADPH qr10−−→ X Cell production

this reaction will be fitting parameters, and are allowed to differ from one elementary
mode to another. Note that reactions formulas given in this table are simplifications of
actual reactions, and only describe elements on which we will formulate mass balances
to determine each mode global stoichiometry. For instance, we only describe reduced co-
enzymes (NADH and NADPH) and not their oxidized counterpart, as their mass balances
are symmetric.

II.4.3 Elementary modes

Mode definition

The choice of elementary modes comes from the analysis of experimental data available in
the literature. What defines a mode is the list of its “reactant” (substrates, oxygen, . . . ),
and the list of its “products” (cells, by-product or product of industrial interest). Many
data sets were used to define the following list of metabolic modes, but those represented
in Fig. II.10 are sufficient to exhibit most of the following modes:

G1. Oxidative growth on glucose.

Y
(G1)
GX GLC + Y

(G1)
OX Oxy

q
(X)
G1−−→ X

G2. Fermentative growth on glucose.

Y
(G2)
GX GLC

q
(X)
G2−−→ X + Y

(G2)
EX EtOH
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(a) Aerobic batch culture of S. cerevisiae
CBS8066 after addition of excess glucose in
the culture medium.

(b) Anaerobic batch culture of S. cere-
visiae CBS8066 after addition of ex-
cess glucose in the culture medium.

Figure II.10: van Dijken and Scheffers, Redox balances in the metabolism of sugars by
yeasts, FEMS Microbiology Reviews, 1986, volume 32, issue 3, p. 199-224,
by permission of Oxford University Press.

E1. Oxidative growth on ethanol.

Y
(E1)
EX EtOH + Y

(E1)
OX Oxy

q
(X)
E1−−→ X

E2. Oxidation of ethanol.

EtOH + Y
(E2)
OE Oxy

q
(E)
E2−−→ Y

(E2)
AE Acet

A1. Oxidative growth on acetate.

Y
(A1)
AX Acet + Y

(A1)
OX Oxy

q
(X)
A1−−→ X

The culture illustrated in Fig. II.10a is split into four phases, in which different modes
are, or can be, activated. In phase I, the fact that ethanol and cells are produced along
with glucose consumption indicates that mode G2 is activated, moreover, the production of
acetate indicated that mode E2 is activated too. The fact that no cell is produced in phase
II once glucose is depleted tends to indicate that growth only happens through glucose
consumption in phase I. In absence of data about oxygen consumption, the possibility that
mode G1 is activated during this first culture phase cannot be confirmed nor discarded.
In phase II, glucose is depleted and no growth is observed but ethanol is converted into
acetate, which implies that only mode E2 is activated. In phase III, acetate keeps being
oxidized by mode E2 and growth is observed but it is not clear whether it should be
attributed to either mode E1, A1 or a combination of both.

In Fig. II.10b, the anaerobic conditions ensure that modes G1, E1, E2 and A1 are dis-
abled. Therefore, only mode G2 can explain the observed growth and ethanol production
in phase I. The steady conditions in phase II confirm that the metabolism of S. cerevisiae
cannot process ethanol in the absence of oxygen.
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None of these observed phases of culture prove the existence of mode G1, but it is known
that in aerobic continuous cultures of S. cerevisiae, and at low dilution rate, growth is
possible on glucose by consuming oxygen, and without the production of ethanol or other
fermentation by-products [Postma et al., 1989].

Stoichiometry coefficients for each mode are computed from mass balance equations on
all species that appear in reactions described in Tab. II.3. These mass balance equations
differ from one mode to another depending on which reactions are activated per mode as
illustrated in Fig. II.11.
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Figure II.11: Elementary modes for S. cerevisiae metabolic modelling.

As stoichiometry coefficients for anabolism (reaction r10) are undefined, the global
stoichiometry of modes will be parametrized by yields YCX , YEX and YNX . We detail
hereafter the computation of stoichiometry parameters for mode G1 by showing the un-
derlying linear system associated to this mode. The same approach has been applied to
all modes but only final results are shown for sake of clarity.

Stoichiometry of mode G1

As shown in Fig. II.11, the mode corresponding to oxidative growth on glucose makes
use of reactions r1, r2, r3 r4, r5, r6, r7, r8, r9 and r10, and requires the transfer of glucose
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and oxygen from the environment to the cell, and of pyruvate between the cytoplasm and
the mitochondria. Therefore, we aim at identifying the rate of each of these reactions
and transfers from the overall rate of the mode, q(X)

G1 (molX/gX · h). By assuming that
metabolites do not accumulate in cells, and considering stoichiometry of reactions (see
II.3), one can formulate mass balances on GLC, ATP, F6P, G3P, NADH, AcAl, Acet,
Oxy, NADPH, biomass (X), Pyr and AcCoA. Note that these last two metabolites are
located both in cytoplasm and in mitochondria. These mass balances are summed up in
the following linear system



−1 · · · · · · · · −3 · −1 · · ·
−1 −1 2 · · −1 · 1 5 · −Y

(G1)
EX · · · ·

1 −1 · · · · · · · 2 · · · · ·
· 2 −1 · · · · · · 1 · · · · ·
· · 1 −1 · · · · · · · · · −1 ·
· · 1 · 1 · 1 3.6 −2 · · · · · ·
· · · 1 −1 · · · · · · · · · ·
· · · · 1 −1 · · · · · · · · ·
· · · · · 1 · · · · −Y

(G1)
CX · · · ·

· · · · · · · · −1 · · · −1 · ·
· · · · · · · · · 6 −Y

(G1)
NX · · · ·

· · · · · · · · · · 1 · · · −1
· · · · · · −1 · · · · · · 1 ·
· · · · · · 1 −1 · · · · · · ·
· · · · · · · · · · · · · · 1



×



q
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q
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q
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q
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q
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q
(G1)
r5

q
(G1)
r6

q
(G1)
r7

q
(G1)
r8

q
(G1)
r9

q
(G1)
r10

f
(G1)
G

f
(G1)
O

f
(G1)
P

f
(G1)
X



=



0
0
0
0
0
0
0
0
0
0
0
0
0
0

q
(X)
G1



Mass transfer rates fi (moli/gX · h) are defined such that a positive value corresponds
to matter leaving the cytoplasm. This linear system has been inverted using MATLAB
[2016] symbolic toolbox, which leads to following reaction and mass transfer rates:



q(G1)
r1a

q(G1)
r1b

q(G1)
r1c

q(G1)
r2

q(G1)
r4

q(G1)
r5

q(G1)
r6

q(G1)
r7

q(G1)
r8

q(G1)
r9

f
(G1)
G

f
(G1)
O

f
(G1)
P



= Y
(G1)
EX q

(X)
G1



1/32
1/32
1/16

0
0
0

1/16
1/16
7/40

0
−1/32
−7/40
1/16



+Y
(G1)
CX q

(X)
G1



11/32
11/32
11/16

1
1
1

−5/16
−5/16

1/8
0

−11/32
−1/8
−5/16



+Y
(G1)
NX q

(X)
G1



−83/192
−19/192
−1/32

0
0
0

−1/32
−1/32
−7/80

1/6
−13/192

7/80
−1/32



and by definition q(G1)
r10 = f

(G1)
X = q

(X)
G1 . Overall yields of this modes are simply given by

Y
(G1)
GX = −f (G1)

G /f
(G1)
X and Y

(G1)
OX = f

(G1)
O /f

(G1)
X
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The model will describe limits over some of these reaction and mass transfer rates
and these stoichiometry coefficients will allow determining the limiting factor for mode
G1. The same approach, based on linear systems, has been applied to determine the
stoichiometry of other modes.

Stoichiometry of mode G2

The mode G2 which describes fermentative growth on glucose activates reactions r1, r2,
r3, r4, r5, r9 and r10. It consumes a single substrate, glucose, and produces ethanol as a
fermentation by-product. Rates of these reactions and mass transfers can be expressed
from the rate of cell production by this mode, q(X)

G2 (molX/gX · h). The procedure is
identical to the one used for mode G1 and considers mass balances on GLC, ATP, F6P,
G3P AcAl, Acet, NADPH, biomass (X), Pyr, EtOH and AcCoA. Note that a mass
balance on NADH would be a linear combination of mass balances on Pyr and AcAl
which explains why it is not considered. Overall, we obtain following reaction and transfer
rates:

q(G2)
r1a

q(G2)
r1b

q(G2)
r1c

q(G2)
r2

q(G2)
r3

q(G2)
r4

q(G2)
r5

q(G2)
r9

f
(G2)
G

f
(G2)
E



= Y
(G2)
EX q

(X)
G2



1/2
1/2
1
1
−1
0
0
0
−1/2
−1



+ Y
(G2)
CX q

(X)
G2



1/2
1/2
1
1
0
1
1
0
−1/2

0



+ Y
(G2)
NX q

(X)
G2



−2/3
−1/3
−1/2
−1/2
1/2
0
0

1/6
−1/6
1/2


and q(G2)

r10 = f
(G2)
X = q

(X)
G2 .

Stoichiometry of mode E1

Mode E1 describes the oxidative growth on ethanol. It requires reactions r3, r′3, r4, r5, r7,
r8, r10, consumes both ethanol and oxygen, and AcCoA produced in cytosol is transferred
to mitochondria to enter the TriCarboxylic Acid Cycle. By formulating mass balances as
previously, we obtain following rates parametrized by the mode rate q(X)

E1 (molX/gX · h):


q(E1)
r3

q
(E1)
r′3

q(E1)
r4

q(E1)
r5

q(E1)
r7

q(E1)
r8

f
(E1)
E

f
(E1)
O

f
(E1)
C



= Y
(E1)
EX q

(X)
E1



1/14
0

1/14
1/14
1/14
1/5
−1/14
−1/5
−1/14


+ Y

(E1)
CX q

(X)
E1



5/7
0

5/7
5/7
−2/7
1/5
−5/7
−1/5
2/7


+ Y

(E1)
NX q

(X)
E1



−23/28
1

5/28
5/28
5/28

0
−5/28

0
−5/28



and q(E1)
r10 = f

(E1)
X = q

(X)
E1 .
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Stoichiometry of mode E2

Mode E2 is the only one which does not describe a growth phenomenon but the oxidation
of ethanol into acetate. It is based on reactions r3, r4 and r8 which produce acetate from
ethanol and oxygen. Rates associated to this mode, parametrized by the mode rate q(E)

E2

(molE/gX · h), are simply:



q(E2)
r3

q(E2)
r4

q(E2)
r8

f
(E2)
A

f
(E2)
O

 = q
(E)
E2


1
1
1
1
−1


and f

(E2)
E = q

(E)
E2 .

Stoichiometry of mode A1

The mode A1 describes the oxidative growth on acetate. It is based on reactions r5, r7,
r8 and r10, it consumes acetate and oxygen and, similarly to mode E1, transfers AcCoA
from cytosol to mitochondria. Rate associated to this mode are parametrized by the
mode rate q(X)

A1 (molX/gX · h) as following:


q(A1)
r5

q(A1)
r7

q(A1)
r8

f
(A1)
A

f
(A1)
O

f
(A1)
C


= Y

(A1)
EX q

(X)
A1



1/9
1/9
1/5
−1/9
−1/5
−1/9


+ Y

(A1)
CX q

(X)
A1



10/9
1/9
1/5
−10/9
−1/5
−1/9


+ Y

(A1)
NX q

(X)
A1



5/18
5/18

0
−5/18

0
−5/18



and q(A1)
r10 = f

(A1)
X = q

(X)
A1 .

Fitting parameters for metabolic modes

In order for the model to quantitatively fit experimental data, parameters YEX , YCX and
YNX will be adjusted. However, actual pathways underlying the anabolism reaction (r10)
may differ depending on used substrates or sources of energy. Therefore, one can expect
that conversion yields YEX , YCX and YNX may slightly differ from one mode to an other.
Consequently, the fitting of experimental data will be done by allowing a small variance
for these parameters between modes.

II.4.4 Cell dynamics

Growth rate dynamics on multiple substrates

Elementary modes forming the metabolic network allow for growth on three different
carbonaceous substrates: glucose, ethanol and acetate. Similarly to what has been con-
sidered in the model developed in Section II.3.2 for E. coli, Young et al. [1970] refer to
observed dynamics on growth rate adaptation to environmental changes in cultures of
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S. cerevisiae. Therefore, we will attach three biological properties to cells to account for
their growth capability on each substrate:

• µG@p: growth capability on glucose (gX/gX · h);

• µE@p: growth capability on ethanol (gX/gX · h);

• µA@p: growth capability on acetate (gX/gX · h).
We model the adaptation rate of all three growth rate capabilities with a similar adapta-
tion law:

∂µk@p

∂t
= ζµk (µk@p,CL) = 1

Tµk
(µ∗k(CL)− µk@p), k ∈ {G,E,A} (II.13)

This first-order adaptation law was chosen, instead of the second-order law used for E.
coli (see Eq. (II.4)), to limit the number of parameters in the model, and facilitate
parameter identification. It will be shown in Section II.5, that this law allows for a
satisfactory enough fitting of the model against experimental data. These adaptation laws
still require the definition of an equilibrium growth rate for each substrate. We defined
these, using Monod-like kinetic laws, by considering that growth on glucose is slightly
inhibited by both ethanol and acetate, and that growth based on these by-products is
strongly inhibited by glucose which is the preferential carbon source. Equilibrium laws
are then given by

µ∗G(CL) = µ
(max)
G

G

G+KG

K
(G)
i,E

E +K
(G)
i,E

K
(G)
i,A

A+K
(G)
i,A

µ∗E(CL) = µ
(max)
E

E

E +KE

K
(G)
i,G

G+K
(G)
i,G

µ∗A(CL) = µ
(max)
A

A

A+KA

K
(A)
i,G

G+K
(A)
i,G

K
(A)
i,E

E +K
(A)
i,E

Time-scales associated to the adaptation of each growth rate, TµG , TµE and TµA , will
have a similar order of magnitude than the time-scale used in the E. coli model, about
an hour. These time-scales are allowed to slightly differ between substrates.

Crabtree effect: adapting the oxidative capacity

Once growth-rate dynamics are tackled, the main dynamic effect to be considered about S.
cerevisiae is the Crabtree effect. As already stated, this effect consists in the production
of ethanol, which is a fermentative pathway by-product, under aerobic conditions. Pronk
et al. [1996] actually differentiate two phenomenon, the long-term Crabtree effect and the
short-term Crabtree effect, each having distinct origins.

The long-term effect corresponds to the production of ethanol in culture at high growth-
rate, no matter the residual glucose concentration. It can be observed by tracking oxygen
consumption, carbon dioxide production, and sugar to cell conversion yield against in-
creasing dilution rates in chemostat cultures as shown in Fig. II.12.

At low growth rates (µ < 0.3h−1), oxygen consumption increases almost linearly with
the growth-rate. The respiratory quotient (molar ratio between carbon dioxide produc-
tion and oxygen consumption) is near 1.0 which denotes an exclusive use of oxidative
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Figure II.12: Illustration of long-term Crabtree effect in chemostat cultures. (left) Spe-
cific oxygen consumption rate. Reproduced with permission of Microbiology
Society via Copyright Clearance Center [Barford and Hall, 1979]. (right)
Respiratory quotient and conversion yield of glucose [van Dijken and Schef-
fers, 1986].

pathways. Once the dilution –and growth– rates reach the critical value of 0.3h−1, oxy-
gen consumption reaches a plateau, and the respiratory quotient starts increasing linearly
with the growth-rate. This RQ increase can be attributed to the use of fermentative path-
ways. This also explains the associated drop in glucose conversion yield, as fermentative
pathways are less efficient than oxidative ones. Similar results have been observed by
Petrik et al. [1983] and Rieger et al. [1983].

Overall, the long-term Crabtree effect can be attributed to a limiting oxidative capacity
which cannot exceed the capacity required to grow at a critical rate µcrit ≈ 0.3h−1. The
steady-state data shown in Fig. II.12 are however not sufficient to determine whether the
oxidative capacity is a dynamic property of cells. Indeed, the capacity could always be
at its peak value, and would be under-solicited at low growth-rate. Another hypothesis
would be that cells dynamically adapt their capacity at low growth-rates.

It has been assumed that the oxidative capacity is indeed a dynamic property of cells.
While growth-rate dynamics denotes the adaptation of cells to varying substrate avail-
ability, the adaptation of oxidative capacity will denote the adaptation of cells to varying
energy production requirements. This assumption is in-line with the modelling of Scere-
visiae by Sweere et al. [1988] where a dynamic oxidative capacity was considered too.

Assessing whether this assumption is correct is difficult due to a lack of experimental
evidence. Indeed, due to the short-term Crabtree effect which prevents an efficient use of
oxidative pathways, one cannot observe whether the oxidative capacity is a limiting factor
after a sudden increase of dilution-rate in chemostat culture. A possibility would be to
perform anaerobic chemostat culture at moderate growth-rate and to observe whether
switching to aerobic conditions allows an instantaneous use of oxygen resources.

For now, we will describe the evolution of a cell-attached property ϕ
(b)
O@p (gO/gX · h)

which is the maximum amount of oxygen that can be processed by cells in the respiratory
chain to produce energy. This variable will evolve toward an equilibrium capacity which
depends on the equilibrium growth-rate associated to the environment. This equilibrium
capacity is modelled against experimental data illustrated in Fig. II.13 by

ϕ∗O =
ϕ

(max)
O

µ∗G
µ
Olim
G

if µ∗G ≤ µOlim
G

ϕ
(max)
O otherwise

(II.14)
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Figure II.13: Experimentally measured specific oxygen consumption rate in chemostat
cultures at equilibrium.

Figure II.14: Concentrations of ethanol (◦), acetate (�) and glycerol (4) after a dilution-
rate shift-up (0.05 to 0.15 h−1) in a glucose-fed chemostat culture of S.
cerevisiae. Reproduced by permission of Oxford University Press [Guillou
et al., 2004].

with µOlim
G the minimal growth-rate at which the long-term Crabtree effect occurs and

ϕ
(max)
O the corresponding oxidative capacity. The cell capacity ϕ

(b)
O@p will evolve toward

this equilibrium value at the following rate:

∂ϕ
(b)
O@p

∂t
= ζϕO = 1

TϕO

(
ϕ∗O − ϕ

(b)
O@p

)
(II.15)

Sweere et al. [1988] also modelled S. cerevisiae by introducing a dynamic oxidative ca-
pacity. This property evolved with a time-scale of 1.8h.

On top of the long-term Crabtree effect, which is simply described by the observed
plateau in specific oxygen consumption in Fig. II.12, the critical dynamic behaviour for
S. cerevisiae modelling is the short-term Crabtree effect. This effect corresponds to the
production of ethanol by S. cerevisiae, in aerobic cultures, after a sudden exposition to
high glucose concentrations. This is illustrated in Fig. II.14 where ethanol is produced
in a chemostat culture after a dilution-rate shift-up.
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Figure II.15: Intracellular concentration in Glucose-6-Phosphate (G6P), Fructose-6-
Phosphate (F6P) and Fructose-1,6-BiPhosphate (FBP), after a glucose pulse
in chemostat culture of S. cerevisiae. Reproduced by permission of John Wi-
ley and Sons [Theobald et al., 1997].

The short-term Crabtree effect is usually attributed to a saturation of the respiratory
chain, which induces an overflow at the pyruvate node in the metabolic network, and
results in a diversion of carbon toward ethanol production [Pronk et al., 1996]. More
recently, Rosas-Lemus et al. [2014] isolated mitochondria from both Crabtree-positive
and Crabtree-negative yeasts and could measure their activity when exposed to different
conditions. In particular, they observed that one metabolite of the glycolysis pathway,
the Fructose-1,6-BiPhosphate (FBP), closes mitochondrial unspecific channels which are
responsible for most mass-transfers between cytoplasm and mitochondria.

Theobald et al. [1997] measured intracellular concentrations of multiple metabolites,
including FBP, in S. cerevisiae right after a glucose pulse in chemostat culture. Their
most interesting result to understand the short-term Crabtree effect is shown in Fig.
II.15 where one can observe that after the pulse, glucose is assimilated and consequently
converted into G6P , F6P and then FBP. As long as the environment remains rich in
glucose, the intracellular concentration of FBP remains at high levels, which shows that
the conversion of FBP by the fructose-bisphosphate aldolase is a limiting reaction in the
glycolysis pathway.

Coupling measurements of intracellular concentrations after a glucose pulse [Theobald
et al., 1997] with the observation of isolated mitochondria by Rosas-Lemus et al. [2014]
allows inferring a probable cause for the short-term Crabtree effect: if a cell is suddenly
exposed to high glucose concentrations, this substrate will enter the cytoplasm but the
cellular machinery will not be sufficient to process efficiently this high substrate quantity.
Therefore, FBP will accumulate which will close mitochondria unspecific channels and
prevent part of the pyruvate to enter the TriCarboxylic Acid cycle which reduces the
energetic efficiency of the cell by under-using the respiratory chain. As pyruvate accumu-
lates, and the use of oxidative pathways is diminished, some of that pyruvate is diverted
toward the fermentative pathway which explains the ethanol production.
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Overall, this short-term Crabtree dynamics can be described by considering that (i) in
glucose-rich environments, some metabolites accumulate quickly –within a few seconds
(Fig. II.15)– in cells which reduces the use of oxidative metabolic modes and (ii) in
environments with non-excessive glucose concentrations, these metabolites are processed
and the respiratory capacity can be fully exploited once again. The time-scale associated
to the return to standard cell functioning is not clearly identifiable from previous results
and will be a fitting parameters of the model.

Instead of quantitatively track intracellular concentrations to determine whether the
short-term Crabtree effect occurs, we chose to track an adimensional quantity, σ@p ∈ [0, 1]
which we refer to as the glycolytic stress. If σ@p = 0, cells are unstressed and the oxidative
capacity can be fully exploited. Otherwise, oxidative modes will be inhibited.

Stress evolution is modelled by the following law:

∂σ@p

∂t
= ζσ = κσ

T
(u)
σ

(1− σ)− (1− κσ)
T

(d)
σ

σ (II.16)

κσ is a variable close to 1 in stressful environment and close to 0 in unstressing envi-
ronments. Therefore, the first term on the Right-Hand Side (RHS) describes the stress
increase with a time-scale T (u)

σ ≈ 1s and the second term describe stress recovery over a
longer time-scale T (d)

σ ≈ 1min. It was decided to characterise the stressfulness of an en-
vironment by comparing the difference between a cell’s growth capacity on glucose µG@p
with the equilibrium growth-rate µ∗G(CL) against a threshold value δµσ:

κσ =
(

1
1 + exp (−50 (µ∗G − µG@p − δµσ))

)2

≈

0 if µ∗G − µG@p < δµσ

1 otherwise
(II.17)

µG@p is here taken as an estimate of a cell’s capability to process glucose, and µ∗G a rough
estimate of the glucose uptake rate. Therefore, the difference µ∗G − µG@p is a measure
of the disequilibrium between a cell and its environments. The introduced threshold
value δµσ reflects the fact that small scale disequilibriums are indeed dumped by minor
metabolic adjustments whereas larger disequilibrium are stressful and will turn into major
metabolic perturbations.

Observing conversion yields and respiration rates under active Crabtree-effect, we could
notice that oxidative modes are not entirely inhibited by this effect. Overall, after a
significant stressing event (glucose pulse, dilution rate shift-up), respiration is reduced
by approximately 60% compared to the oxygen consumption rate preceding the event.
Therefore, we compute an inhibition factor ki,σ by

ki,σ =
k

(min)
i,σ

k
(min)
i,σ +

(
1− k(min)

i,σ

)
σ@p

(II.18)

with k
(min)
i,σ = 0.4. The computation of rates associated to each mode will still be based

on the identification of the limiting factor, but afterwards, the rate of oxidative modes
will be multiplied by ki,σ. Doing so, if a cell is fully stressed (σ@p ≈ 1), oxidative modes
will be slowed down by 60%. Otherwise, these mode rates will be left almost unchanged.
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II.4.5 Mode limitations

Similarly to the E. coli model developed in Section II.3, the rates of metabolic modes
in the S. cerevisiae model will be computed by defining available resources which, once
depleted, will limit metabolic mode rates. We recall here that generally speaking, the
uptake rates ϕ(g) (g/gX · h) is either limited by the availability in the environment ϕ(e)

or by the cell capability to import the substrates ϕ(b). None of these limits is actually
constant in industrial bioprocessed but in this section, it will be assumed the ϕ(g) = ϕ(b),
i.e. that the environment is not limiting. The modelling of ϕ(e) and its combination with
ϕ(b) to compute ϕ(g) is an aspect that will be developed in Chapter V.

Biological limits on carbonaceous substrate uptake-rates will simply be defined as bi-
ological constants, ϕ(b)

{G,E,A} = ϕ
(max)
{G,E,A}, which will be fitting parameters for the model.

Limits on oxygen consumption rate is defined by the cell-attached biological property
ϕ

(g)
O = ϕ

(b)
O@p.

Cell-attached growth capabilities µG@p, µE@p and µA@p form limits on cell production
rates for growth modes. It is known that fermentative growth is slower than oxidative
growth on glucose, µ(max,o)

G > µ
(max,f)
G . In order to account for this, while only attaching a

single glucose-based growth capability µG@p to cells, the maximum growth rate on glucose
through fermentation is set to a fraction of the maximum value for oxidative growth. This
aspect will clearly appear hereafter in the computation of the rate for mode G2. Note that
this approach makes the implicit assumption that a cell fully adapted to oxidative growth
on glucose will be instantaneously able to grow a full efficiency in a fermentative mode is
oxygen is suddenly depleted. This is not an accurate description of the switch between
oxidative and fermentative growths, but it allows limiting the number of cell-attached
dynamic properties.

II.4.6 Mode rates computation

Available resources available for S. cerevisiae metabolic modes are:

• Consumption/uptake rates
– of glucose: ϕ(g)

G (kgG/kgX · h) or f (g)
G = ϕ

(g)
G /MG (molG/kgX · h);

– of ethanol: ϕ(g)
E (kgE/kgX · h) or f (g)

E = ϕ
(g)
E /ME (molE/kgX · h);

– of acetate: ϕ(g)
A (kgA/kgX · h) or f (g)

A = ϕ
(g)
A /MA (molA/kgX · h);

– of oxygen: ϕ(g)
O (kgO/kgX · h) or f (g)

O = ϕ
(g)
O /MO (molO/kgX · h).

• Growth capabilities
– on glucose µ(g)

G = µG@p (kgX/kgX · h);

– on ethanol µ(g)
E = µE@p (kgX/kgX · h);

– on acetate µ(g)
A = µA@p (kgX/kgX · h);

Stoichiometry of modes has been defined previously (see Section II.4.3) and here, we will
only make use of global conversion yields associated to each mode. Note however that
these yields actually depend on stoichiometric coefficients associated to the anabolism
reaction which will be fitting parameters in Section II.5.

Steps for the computation of mode rates are
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1. Compute the inhibition factor of oxidative modes by glycolytic stress ki,σ.

2. Compute mode G1 rate considering inhibition by stress and limits in oxygen and
glucose uptake rates (f (g)

O and f
(g)
G ) and glucose-based growth capacity µ(g)

G ,

q
(X)
G1 = ki,σ min

 f
(g)
O

Y
(G1)
OX

; f
(g)
G

Y
(G1)
GX

; µ
(g)
G

MX



3. Compute remaining resources for modes G2, E1, E2 and A1,

f
(g)
O ← f

(g)
O − Y

(G1)
OX q

(X)
G1

f
(g)
G ← f

(g)
G − Y

(G1)
GX q

(X)
G1

µ
(g)
G ← µ

(g)
G −MXq

(X)
G1

4. Compute mode G2 rate considering limits in glucose uptake rate f (g)
G and glucose-

base growth capacity µ(g)
G corrected for fermentative growth,

q
(X)
G2 = min

 f
(g)
G

Y
(G2)
GX

; µ
(max,f)
G

µ
(max,o)
G

µ
(g)
G

MX



5. Compute mode E1 rate considering the stress level, upper bounds on uptake rates
for oxygen and ethanol (f (g)

O and f
(g)
E ) and the limited growth capacity on ethanol

µ
(g)
E ,

q
(X)
E1 = ki,σ min

 f
(g)
O

Y
(E1)
OX

; f
(g)
E

Y
(E1)
EtX

; µ
(g)
E

MX



6. Compute resources available for modes E2 and A1,

f
(g)
O ← f

(g)
O − Y

(E1)
OX q

(X)
E1

f
(g)
E ← f

(g)
E − Y

(E1)
EX q

(X)
E1

7. Compute mode E2 rate considering limits in oxygen and ethanol uptake rates (f (g)
O

and f
(g)
E ),

q
(E)
E2 = min

 f
(g)
O

Y
(E2)
OE

; f (g)
E



8. Compute resources available for mode A1,

f
(g)
O ← f

(g)
O − Y

(E2)
OE q

(E)
E2
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9. Compute mode A1 rate considering the stress level, upper bounds on uptakes rates
for oxygen and acetate (f (g)

O and f
(g)
A ) and the limited growth capacity on acetate

µ
(g)
A ,

q
(X)
A1 = ki,σ min

 f
(g)
O

Y
(A1)
OX

; f
(g)
A

Y
(A1)
AX

; µ
(g)
A

MX



Once mode rates are computed through this straightforward procedure, actual con-
sumption/production and growth rates are computed by

µ(a) =
(
q

(X)
G1 + q

(X)
G2 + q

(X)
E1 + q

(X)
A1

)
MX

ϕ
(a)
G = −

(
Y

(G1)
GX q

(X)
G1 + Y

(G2)
GX q

(X)
G2

)
MG

ϕ
(a)
E =

(
Y

(G2)
EX q

(X)
G2 − Y

(E1)
EX q

(X)
E1 − q

(E)
E2

)
ME

ϕ
(a)
A =

(
Y

(E2)
AE q

(E)
E2 − Y

(A1)
AX q

(X)
A1

)
MA

ϕ
(a)
O = −

(
Y

(G1)
OX q

(X)
G1 + Y

(E1)
OX q

(X)
E1 + Y

(A1)
OX q

(X)
A1

)
MG

II.5 Challenging the model developed for S. cerevisiae

II.5.1 Comparison data

The model described previously is meant to reproduce the behaviour of a wild S. cerevisiae
strain in steady environment but also in dynamic situations. Therefore, we attempted
to fit the model against multiple experimental data sets coming from different culture
modes. To do so, we extracted data points from the literature for experiments using
different wild strains of S. cerevisiae. A summary of these data sets is given in Table II.4.

Table II.4: References for data sets used to fit the S. cerevisiae model.
Source Strain Culture mode
Flikweert et al. [1999] CEN-PK113-7D Steady-state chemostat

Glucose pulse in chemostat
Barford and Hall [1979] 248 UNSW703100 Steady-state chemostat
van Dijken and Scheffers [1986] CBS 8066 Aerobic batch cultures

Anaerobic batch culture
Sweere et al. [1988] CBS 8066 Glucose pulse in chemostat

II.5.2 Model fitting strategy

For now, the model has only been described qualitatively and only order of magnitudes
were given for the model parameters. All model parameters were fitted manually against
previously listed data sets. This was done by iterating over two fitting steps:
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1. Fit parameters that only have an impact on steady-state behaviour (conversion
yields, affinity/inhibition constants, maximum kinetic rates, ...) against steady-
state chemostat data.

2. Fit parameters that have an impact on dynamic behaviour (adaptation rates of
biological properties, order of magnitude of short-term Crabtree effect, . . . ).

Final model parameters are listed in Table II.5.

Table II.5: List of fitted parameters for S. cerevisiae model.
Kinetic parameters Mode yields
Symbol Value Symbol Value
µ

(max,o)
G 0.49 h−1 Y

(G1)
EX 16.02 molATP/molX

µ
(max,f)
G 0.37 h−1 Y

(G2)
EX 12.02 molATP/molX

µ
(max)
E 0.12 h−1 Y

(E1)
EX 16.02 molATP/molX

µ
(max)
A 0.20 h−1 Y

(A1)
EX 18.02 molATP/molX

ϕ
(max)
O 8.90 molO/kgX · h Y

(G1)
CX 2.77 molAcCoA/molX

ϕ
(max)
G 19.86 molG/kgX · h Y

(G2)
CX 3.02 molAcCoA/molX

ϕ
(max)
E 3.87 molE/kgX · h Y

(E1)
CX 2.52 molAcCoA/molX

ϕ
(max)
A 4.13 molA/kgX · h Y

(A1)
CX 3.02 molAcCoA/molX
Y

(G1)
NX 29.4 mmolNADPH/molX

Affinity/Inhibition constants Y
(G2)
NX 29.4 mmolNADPH/molX

Symbol Value Y
(E1)
NX 29.4 mmolNADPH/molX

KG 41.37 gG/m3
L Y

(A1)
NX 29.4 mmolNADPH/molX

K
(G)
i,E 40.0 kgE/m3

L Y
(E2)
AE 0.5 molA/molE

K
(G)
i,A 6.0 kgA/m3

L
KE 561.8 gE/m3

L Constants
K

(E)
i,G 10 gG/m3

L Symbol Value
KA 450.6 gE/m3

L MG 180.2 gG/molG
K

(A)
i,G 2.0 gG/m3

L ME 46.0 gE/molE
K

(A)
i,E 2.0 gE/m3

L MA 59.0 gA/molA
MO 32.0 gO/molO

Dynamics time-scales MX 113.1 gX/molX
Symbol Value
TµG 2.5 h Diverse
TµE 3.5 h Symbol Value
TµA 0.4 h µOlimG 0.31 h−1

TϕO 1.6 h δµσ 0.2 h−1

T (u)
σ 3 s k

(min)
i,σ 0.4

T (d)
σ 120 s
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Figure II.16: Comparison of model predictions against experimental steady-state chemo-
stat measurements. � Data from Flikweert et al. [1999]. N Data from
Barford and Hall [1979]. (a) Conversion yield of glucose to cell. (b) Specific
oxygen consumption rate. (c) Respiratory quotient.

II.5.3 Comparison results

Steady-state comparison

First, the model has been assessed by simulating glucose-fed chemostat culture at multiple
dilution rates. The culture state was considered steady with the stopping criterion∣∣∣∣∣

∣∣∣∣∣
(
∂C

∂t

)
�C

∣∣∣∣∣
∣∣∣∣∣ < 10−3h−1 (II.19)

i.e. when concentrations would vary by less than 0.1% over an hour. At this steady-
state, we extracted from the mode rates the global conversion yield of glucose into cell,
the specific oxygen consumption rate and the respiratory quotient RQ. The latter is the
molar ratio between rates of produced carbon dioxide and consumed oxygen. This is a
metrics often used to assess the well functioning of a culture as this ratio is close to 1 if
the metabolic is fully oxidative, and significantly increases when fermentative pathways
are active. Results are illustrated in Fig. II.16 and clearly show correct tendencies as well
as the switch of metabolism occurring around D = 0.31h−1 = µOlim

G due to the long-term
Crabtree effect.

Dynamic simulations

van Dijken and Scheffers [1986] have performed lab-scale cultures of S. cerevisiae which
are of particular interest for the development of our model. They performed batch cul-
tures, but with the particularity that these batch cultures directly follow pre-culture in
chemostat. As explained in Section II.3, chemostat cultures allow for enforcing a specific
growth-rate over a biological population. As batch culture are highly sensitive to initial
condition, having performed these chemostat pre-culture helps us defining the initial state
of the biological population. Note that this knowledge of initial state is often missing.
Therefore, we will focus the fitting of the model on data sets from these authors having
a great confidence in their exploitability.

Three data sets corresponding to three batch culture are actually available. The ex-
perimental data and corresponding simulations are shown in Fig. II.17. Sub-figures (a)
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Figure II.17: Comparison of model predictions with batch culture following pre-
cultivation in chemostat from van Dijken et al. [2000]. (a) and (b): precul-
ture at dilution rate 0.1h−1. Aerobic batch culture. (c) and (d): preculture
at dilution rate 0.2h−1. Aerobic batch culture. (e) and (f) preculture at
dilution rate 0.1h−1. Anaerobic batch culture.

and (b) correspond to an aerobic batch culture with a pre-culture dilution rate set to
D = 0.1h−1. Sub-figures (c) and (d) are similar but with an higher pre-culture dilution
rate set to D = 0.2h−1. Finally, sub-figures (e) and (f) correspond to an anaerobic batch
culture with a pre-culture dilution rate of D = 0.1h−1.

Overall, all metabolic modes play their role in different phases of theses cultures as
shown previously in Fig. II.10. Therefore, we could adjust conversion yield but also
time-scales for biological properties adaptation over these data sets. Following this, we
could attempt reproducing chemostat cultures disturbed by glucose pulses by Flikweert
et al. [1999] (see Fig. II.18) and Sweere et al. [1988] (see Fig. II.19). Due to the use of
different strains of S. cerevisiae, the imperfect fitting is not surprising. However, main
tendencies seem to be well reproduced and the use of automated fitting tool in place of
a manual adjustment of model parameters could certainly yield even better agreement.
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Figure II.18: Comparison of model predictions with glucose pulse experiment in chemo-
stat culture by Flikweert et al. [1999]. Dilution rate: 0.10h−1.
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Figure II.19: Comparison of model predictions with glucose pulse experiment in chemo-
stat culture by Sweere et al. [1988]. Dilution rate: 0.08h−1.
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II.6 Conclusion

This chapter focused on developing a low-cost structure for metabolic models which can
account for dynamic biological properties and multiple metabolic modes. This work is
actually the continuation of a Master thesis where a simple metabolic model for E. coli by
Xu et al. [1999] was derived to account for a dynamic growth capability and disequilibrium
between a cell and its environment [Pigou and Morchain, 2015]. Principles underlying
these first models have been reapplied under a better organized formalism, based on a
metabolic mode definition and a simple methodology to compute rates of these modes.
This was mainly done by selecting key metabolic fluxes and by providing simple closure
laws to estimate them. This in turn allows computing all fluxes and thus consumption
and production rates.

The proposed structure has been illustrated on two standard micro-organisms in indus-
trial bio-processes: Escherichia coli and Saccharomyces cerevisiae. The first one mainly
served as an illustration of the structure. The second one will be used in Chapter V to
perform large-scale simulations of an industrial bioreactor.

The S. cerevisiae model has been challenged against multiple experimental data sets,
originating from multiple labs and research teams. A preliminary fitting has been per-
formed manually which yields a satisfactory match between simulations and experimental
results. An ulterior step would be to improve numerically the fitting while also assessing
the model sensitivity to its parameters through an optimization based procedure [Sánchez
et al., 2014]. For now, the proposed model is a proof-of-concept which illustrates that
the proposed structure can indeed reproduce observed tendencies over a wide range of
culture modes even in dynamic conditions. Note that this is done using a low number of
floating-point operations (flop), about 140 flop, and a limited number of parameters too
(35 different parameters in Table II.5). To give a sense of comparison, Rizzi et al. [1997]
proposed a intracellular concentrations-based model tracking 15 metabolites concentra-
tions which required fitting 87 model parameters and relied on at least 330 floating-point
operations. This model did not handle long-term cultures as the growth-rate was a con-
stant model parameter.
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B I L A N S D E P O P U L AT I O N A P P L I Q U É S AU X S Y S T È M E S
B I O L O G I Q U E S

Résumé

Afin de prédire le comportement des bioréacteurs aux échelles de pilotes de laboratoire
et de procédés industriels, tout en préservant un même modèle, l’élément clé est de
considérer les micro-organismes comme des systèmes dynamiques. Suivre leurs propriétés
dynamiques est alors un prérequis pour une modélisation précise des fermenteurs.

Dans le Chapitre II, des modèles métaboliques sont présentés pour Escherichia coli et
Saccharomyces cerevisiae et sont basés sur la définition de variables dynamiques directe-
ment liées aux vitesses de réactions internes. Les variables alors choisies sont les capacités
de croissance, de mobilisation des voies oxydatives, et le stress glycolitique. Ces variables
ont été sélectionnées car directement utilisables pour prédire l’orientation des flux de
matières entre les modes métaboliques élémentaires du modèle. Ces choix de variables
étaient donc justifiés par leur couplage avec la structure de modèle métabolique proposée.
Cependant, de nombreux auteurs ont considéré d’autres quantités attachées aux cellules
telles que leur âge, masse, taille, . . . Au delà du choix de ces variables, le principal défi
est de suivre ces quantités à l’échelle d’une population biologique.

Pour résoudre la diversité de ces variables sur l’ensemble de la population de micro-
organismes, et grâce au nombre important d’individu, il va être possible d’appliquer
des approches statistiques. Au lieu de suivre les propriétés attachées à chaque cellule
prise individuellement, nous proposons d’appliquer la modélisation par bilan de popu-
lation, dont le principe est de résoudre l’évolution spatiale et temporelle d’une distri-
bution statistique. Le formalisme des bilans de population se couple parfaitement avec
les modèles métaboliques présentés en Chapitre II, mais aussi avec les descriptions de
l’hydrodynamique qui seront détaillées en Chapitre IV. Cependant, cette approche peut
se révéler numériquement coûteuse selon la méthode choisie pour résoudre l’Équation de
Bilan de Population.

Ce chapitre vise principalement à identifier la méthode la plus adaptée pour résoudre
les équations de bilan de population appliquées à la modélisation des bioréacteurs. Deux
catégories de méthodes sont considérées : méthodes des classes et méthodes des moments.
La méthode des classes a déjà été appliquée à la modélisation des bioréacteurs avant ce
travail de thèse [Pigou and Morchain, 2015]. Appliquer les méthodes aux moments à la
modélisation des fermenteurs est cependant un élément nouveau proposé au cours de ce
travail.

Une première partie de ce chapitre présente (i) une variante des méthodes des classes,
dite de pivots-fixes et (ii) des méthodes de quadratures des moments afin de fermer
le jeu d’équations obtenu dans la formulation aux moments : la méthode de Quadra-
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ture des Moments (QMOM), sa version étendue (EQMOM) et l’approche du Maximum
d’Entropie. Une seconde partie se concentre sur la comparaison de ces méthodes en ter-
mes de précision, de stabilité et de performance. Cette comparaison a été publiée dans
Chemical Engineering Science [Pigou et al., 2017]. Au cours de ce travail, EQMOM a
été identifiée comme répondant aux besoins associés à la simulation des bioréacteurs. Le
travail d’implémentation de méthodes pour leur comparaison nous a permis d’identifier
une amélioration majeure qu’il était possible d’apporter à EQMOM. Une troisième par-
tie de ce chapitre décrit brièvement cette amélioration, et se concentre sur la mesure des
gains qu’elle apporte. En particulier, il est montré que le coût numérique d’EQMOM
a été réduit d’un facteur 5 à 30. L’ensemble des détails relatifs à cette nouvelle version
d’EQMOM ont été publiés dans le Journal of Computational Physics [Pigou et al., 2018a].
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P O P U L AT I O N B A L A N C E S FO R B I O L O G I C A L S Y S T E M S

Summary

In order to use similar models to predict the behaviour of bioreactors at both lab-scale
and industrial scale, the key consideration is that micro-organisms are dynamic systems.
Tracking their dynamic properties is therefore a prerequisite for an accurate modelling of
fermenters.

In Chapter II, metabolic models are developed for Escherichia coli and Saccharomyces
cerevisiae and are based on the definition of dynamic variables directly related to internal
reaction rates. Chosen variables were growth capabilities, oxidative capacity and gly-
colytic stress. These variables were selected as they directly contain information useful
for orienting matter between elementary metabolic modes. These variable choices were
then motivated by the proposed metabolic model structure. However, many authors have
considered other quantities such as cell age, mass, size, budding index, . . . Beyond this
variable choice, the main numerical challenge is to track these quantities over a large
biological population.

To track the diversity of these variables among whole biological populations, one can
benefit from the high number of cells to apply statistical approaches. Instead of tracking
these properties cell-by-cell, we propose to make use of the Population Balance Modelling
(PBM) approach which tracks statistical distributions over time and space. The PBM
formalism can be perfectly coupled with metabolic models as proposed in Chapter II,
and with hydrodynamic framework that will be discussed in Chapter IV. However, this
approach can be computationally expensive depending on the method used to solve the
Population Balance Equation.

This chapter aims at identifying the best suited method to handle Population Balances
for the simulation of large-scale bioreactors. Two categories of methods are considered:
methods of classes and methods of moments. The class method has already been used in
the context of bioreactor modelling before this PhD thesis [Pigou and Morchain, 2015]
however this problem is an original application case for method of moments that have
been mainly developed in other chemical engineering fields.

The first part of this chapter introduces (i) the fixed-pivot method which is one variant
of methods of classes and (ii) quadrature methods used to close the set of equations in mo-
ment formulation, namely the Quadrature Method of Moments (QMOM), its Extended
version (EQMOM) and the Maximum-Entropy approach. The second part focuses on
comparing these methods in terms of accuracy, stability and performance. This compar-
ison has been published in Chemical Engineering Science [Pigou et al., 2017]. Finally,
over the course of this work, EQMOM was found to be a method suiting the goal of
bioreactor simulations, and we happened to identify a major improvement in the basis of

75



76 population balances for biological systems

this method. These improvements are quickly presented in a third part, and are shown
to significantly reduce the numerical cost of EQMOM by a factor ranging between 5 and
30. Full details of this new EQMOM version were published in Journal of Computational
Physics [Pigou et al., 2018a].



III
P O P U L AT I O N B A L A N C E S FO R B I O L O G I C A L S Y S T E M S

III.1 Introduction

Bioreactors are heterogeneous systems and so are biological populations. This fact is
well documented [Delvigne and Goffin, 2014; Heins et al., 2015; Simen et al., 2017] and
constitutes the main challenge in bioreactor modelling. The proposed modelling frame-
work accounts for this by associating a vector of biological properties, p̂, to cells. These
properties evolve along cell’s trajectories, and influence their metabolic behaviour.

In chapter II, two biological models have been detailed. The first one describing E. coli
considers a single biological property, the cell’s growth capability µc, hence p̂ = µc. The
second model describes the behaviour of S. cerevisiae and requires multiple dynamic vari-
ables, namely the specific growth capability associated to each carbon substrate (glucose,
ethanol and acetate), the unstressed oxidative capacity, and the glycolytic stress, hence
p̂ =

[
µG, µE, µA, ϕ

(b)
O , σ

]T
. These models are defined at the cell-scale. They take as

input the vector of biological properties p̂ and the vector of concentrations in the liquid
environment of a cell, CL. From these inputs, both models yield (i) a vector of specific
consumption/production rates r(p̂,CL) which will be source/sink terms in mass balance
equations of dissolved species, as well as (ii) rates of evolution of biological properties
ζ̂(p̂,CL).

The cell-scale behaviour being modelled, the remaining challenge is to describe this
biological behaviour at the scale of the whole population, in a numerically tractable way.
As stated in chapter I, these questions are not new and arise in many engineering fields.
Suitable modelling frameworks have already been developed to tackle these problems, and
the challenge is mainly to transpose and adapt them to the modelling of heterogeneous
bioreactors.

The modelling of heterogeneous population will be handled by Population Balance
Models (PBMs). They are based on Population Balance Equations (PBEs) which track
a statistical distribution n(p̂) of heterogeneous properties in space and time. PBEs allow
taking into account all phenomena that influence the statistical distribution. The cell-
scale evolution of biological properties, modelled through the term ζ̂(p̂,CL), will be a
transport term in the space of biological properties, which is the support of the Number
Density Function (NDF) n(p̂). The fact that new cells are formed by cell-division (for
bacteria) or budding (for yeasts) and that these new cells can have properties differing
from their mothers cells can also be taken into account, as soon as one describes the
probability that a mother of properties p̂′ will produce a daughter cell of properties p̂.
This will be referred to as the redistribution probability law β(p̂, p̂′).

This chapter focuses on how to handle the PBE in a way compatible with other aspects
of a bioreactor modelling. The core question is: how to track n(p̂) in a numerically efficient
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way? For the modelling of bioreactors, having access to this distribution is of interest as
it allows estimating local rates of consumption or production of dissolved species (glucose,
acetate, oxygen, ...):

R (n(µ),CL) =
∫

Ωp̂
n(p̂)r(p̂,CL)dp̂ (III.1)

Approaches developed hereafter will not directly track n(p̂) but will yield approximations
of this reaction term.

A generic PBE compatible with models developed in chapter II is

∂n(p̂)
∂t

+ ∇̂ ·
(
ζ̂(p̂,CL)n(p̂)

)
=
∫

Ωp̂
µ(p̂′,CL)β(p̂, p̂′)n(p̂′)dp̂′ (III.2)

Spatial convection and dispersion terms must be added on the Left-Hand Side (LHS),
refer to Eq. (I.14) for the complete PBE. A supplementary term on the Right-Hand Side
(RHS) could account for cell death, but this has not been considered in this work. Specific
PBEs for E. coli and S. cerevisiae, based on models from Chapter II, will be detailed in
Section III.2.

As explained in Chapter I, PBEs are not directly compatible with mass balance equa-
tions as described in classical Euler-Euler gas-liquid modelling and simulation frameworks
(see Eq.(I.9)), due to the transport term in the space of cell’s properties. Both sectional
and moment methods can be applied to transform a PBE into a set a equations having
the expected structure. This is presented in Section III.3 in the case of developed PBEs.

When moment methods are applied to a PBE, some integral terms may not be for-
mulated directly in terms of moments. For bioreactors, and in particular if one uses the
metabolic model structure developed in Chapter II, this situation will occur. Therefore,
supplementary numerical methods will be required to provide closure for these integral
terms. Some of these methods were assessed by John et al. [2007] and Lebaz et al. [2016].
Supplementary comparisons have been performed, aiming in particular toward the sim-
ulation of bioreactors. Methods first detailed in Section III.4 are then compared to the
sectional method as presented in Section III.5 which sums up an article published in
Chemical Engineering Science [Pigou et al., 2017, accessible in Appendix B].

Numerous readings while implementing these methods, in particular of Chihara [1978],
Dette and Studden [1997], and Nguyen et al. [2016], allowed identifying –almost by
serendipity– a way to improve an already efficient method, the Extended Quadrature
Method of Moments (EQMOM). This led to an article [Pigou et al., 2018a, accessible in
Appendix C] whose main developments and results are summed up in Section III.6. Note
that these improvements are not specific to the study-case of a bioreactor modelling, and
can benefit all communities using moment methods for one-dimension PBMs.

Most developments presented in this chapter are related to one-dimensional PBMs and
are thus applied to the PBE related to E. coli for sake of illustration. However, the
modelling of S. cerevisiae as presented in Chapter II requires five dynamic biological
properties. Therefore, Section III.7 describes the trade-off that is applied to consider
these five variables while using only numerical methods for 1D PBEs.
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III.2 Considered Population Balance Equations

III.2.1 A generic 1D population balance model on growth-rate

As stated in Chapter II, this PhD thesis is the continuation of a worked started with the
modelling of large-scale cultures of E. coli. This preliminary work integrated the use of
a Population Balance Model based on the growth capability p̂ = µc of a cell, i.e. the
growth rate a cell can achieve if substrates are sufficiently available in the environment.
This PBM was first proposed by Morchain et al. [2013, 2014] and takes the following
form:

∂n(µc)
∂t

+ ∂

∂µc
(n(µc)ζµ(µc,CL)) =

∫
Ωµ
µ(µ′c,CL)n(µ′c)β(µc, µ′c)dµ′c (III.3)

with µ(µ′c,CL) being the growth rate achieved by a cell based on its growth capabilities
and on the substrate availability in its environment. ζµ(µc,CL) is the rate of evolution
of the growth rate, and β(µ, µ′) is the probability density function that a mother cell of
growth capability µ′ will yield a daughter cell of growth capability µ.

The computation of µ(µc,CL) was detailed in Chapter II.3. Over the course of this
work, various proposal were made for the terms ζµ(µc,CL) and β(µ, µ′). They are detailed
hereafter.

Dynamics of growth-rate adaptation

Growth-rate adaptation corresponds to the second LHS term in Eq. (III.3) where ζµ(µc,CL)
is the rate of adaptation of a cell’s growth rate. This notion of a dynamic growth-rate has
been fully detailed in Chapter II for the specific case of E. coli, but is actually applicable
to a variety of other micro-organisms (see Section II.3).

The proposed model for growth-rate adaptation to an environment is based on the
fact that, in constant environments, the mean growth-rate of a population reaches an
equilibrium value that usually follows the Monod [1952] law, already presented in I.6.3:

µ∗ = µmax
G∗

G∗ +KG

(III.4)

where µ∗ and G∗ are steady-state –at equilibrium– growth-rate and glucose concentration,
µmax is the maximum mean growth-rate achievable by the population, and KG is the
affinity of the cell with glucose (kgG/m3

L). Other terms can be added to this law to
account for affinity toward other substrates and/or for inhibition by some compounds.

In unsteady environments, it can be observed that growth-rate evolves dynamically
and requires a few hours to reach a new equilibrium. Therefore, the following model was
suggested by Morchain and Fonade [2009]:

ζµ(µc,CL) =
( 1
T

+ µc

)
(µ∗(CL)− µc) (III.5)

with T the time-scale of adaptation (≈ 1h) and µ∗(CL) the Monod law adapted to the
considered micro-organism.
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Redistribution of growth rate at cell-division

The redistribution of growth-rate when new cells are formed, let it be by cell division or
budding, is modelled through the probability density function β(µc, µ′c) which represents
the probability that a new cell will have a growth-rate µc if its mother cell is characterised
by a growth-rate µ′c.

The simplest approach is to assume that the growth-rate is inherited at cell division,
therefore

β(µc, µ′c) = δ(µc, µ′c) (III.6)

where δ is the Dirac delta distribution, that can be defined by its sifting property∫
f(x)δ(x, x′)dx = f(x′) (III.7)

Though being a simple approach, which in particular prevents the need for integral term
on the RHS of Eq. (III.3), this model is not supported by experimental measurements.

The choice of the growth rate as a discriminating factor between individuals facilitates
the computation of reaction rates as shown in Chapter II. However, the growth rate is
a variable that is more easily attached to a population rather than to individuals. This
can reveal to be problematic if one must produce a Probability Density Function (PDF)
defining the growth-rate of a daughter cell based on the growth rate of its mother cell, as
one requires the knowledge of cell-attached growth-rates.

The growth-rate has two definitions depending on whether one considers the total
mass of the biological population, or the total number of cells. In terms of mass, it
is defined as the rate of population mass increase, hence µ being defined with a unit
kgbiomass/kgbiomass · h. It is also well-known that the growth rate can be defined by the
population doubling time µ̃ = ln(2)/τ where τ is the time required to double the number
of cells in the population. As thoroughly analysed by Quedeville et al. [2018], these two
definitions only match when cells mean-mass remains constant. This only happens in
steady-state culture (chemostat) or during exponential growth in batch cultures.

The number based definition of µ may give access to cell-attached growth-rate if one
considers that the population doubling time is relatable to the cell division-time –if one
consider bacteria exhibiting cell division– or budding-time if one considers budding yeast.
The modelling of the probability density function β(µc, µ′c) can then be based on experi-
mental data that follow the division time along cells lineage in a steady environment.

Such experimental data are not widely available but Yasuda [2011] did perform such
lineage analysis on E. coli cultures. Similar analysis were also conducted by Nobs and
Maerkl [2014] on Schyzosaccharomyces pombe. This yeast exhibits a rod-shape and cell-
division similar to E. coli. These authors developed microfluidic devices allowing for the
visually monitored culture of micro-organisms in chemostat conditions, using perfused
feeding. Camera and image processing tool were then used to track individual cells
over-time which gives access to statistically significant measures of doubling times along
lineages. As demonstrated in Morchain et al. [2016], we could post-process these data
to model the redistribution β(µc, µ′c). The proposed model is given by the following
skew-normal distribution:

β(µc, µ′c) = 1
σ
√

2π
exp

(
−(µc − l)2

2σ2

)(
1 + erf

(
α(µc − l)
σ
√

2π

))
(III.8)
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with l = kl µ̃ and σ = kσ µ̃. Numerical parameters were deduced from data from Yasuda
[2011] and are kl ≈ 0.65, kσ ≈ 0.46 and α ≈ 3.65.

Note that this model is still to be improved. Indeed, one can notice that β(µc, µ′c) is
actually not dependent on µ′c meaning that in this model, the growth-rate of a daughter
cell is not related to that of its mother. Instead, the redistribution law refers to the
population mean growth rate µ̃ and β(µc, µ′c) becomes βµ̃(µc).

Attaching mean population properties to the individual behaviour can be considered
as a major flaw of this proposed model. This is due to the fact that the only available
experimental data was obtained in non-limiting environment where µ̃ = µmax. Then
it was necessary to extend the model to less favourable environments which is done
by assuming a linear dependency of the PDF parameters with µ̃. The redistribution
probability function becomes narrower in slowly growing populations as shown in Figure
III.1.

Figure III.1: Illustration of the extrapolation of β(µc, µ′c) to slow or fast growing popula-
tions [Morchain et al., 2016].

Further work will be required to improve this model by removing the dependency of
cell-attached behaviour to population-attached mean properties. For instance, the skewed
distribution observed by Yasuda [2011] tends to indicate that the higher the mother
cell’s growth-rate, the higher the difference between the mother’s and the daughter’s cell
growth-rate. A proposition would then be that β(µc, µ′c) is a standard PDF (Gaussian or
Log-normal for instance) dependent on µc, whose mean value is µ′c and whose spreading
parameter is proportional to µ′c. This improved modelling has not been extensively looked
into and is, for now, limited by experimental data availability.



82 population balances for biological systems

III.2.2 Modelling S. cerevisiae dynamics

Biological properties

As detailed previously in Chapter II, we model the metabolic behaviour of S. cerevisiae
by considering five dynamic biological properties attached to each cell:

• µ
(b)
G : maximum rate of glucose-based growth in non-limiting aerobic environment

(gX/gX · h).

• µ
(b)
E : maximum rate of ethanol-based growth in non-limiting environment (gX/gX · h).

• µ
(b)
A : maximum rate of acetate-based growth in non-limiting environment (gX/gX · h).

• ϕ
(b)
O : maximum oxygen consumption rate (gO/gX · h).

• σ: cell glycolytic stress (no unit, normalized between 0 and 1).

The three maximum growth rates and the maximum oxygen consumption rate are
properties that slowly change over time in order to reach values of equilibrium with the
environment:

∂µ
(b)
{G,E,A}

∂t
= ζµ{G,E,A} = 1

Tµ{G,E,A}

(
µ∗{G,E,A} − µ{G,E,A}

)
(III.9)

∂ϕ
(b)
O

∂t
= ζϕO = 1

TϕO

(
ϕ∗O − ϕ

(b)
O

)
(III.10)

where star values are population mean rates that are experimentally observed in a steady
environment. Time constants TµG,µE ,µA,ϕO have an order or magnitude of an hour.

The stress σ is a variable which keeps track of whether a cell has been exposed to high
glucose concentrations recently. If not, σ ≈ 0 which will imply in the metabolic model
that the short-term Crabtree effect is not active. If the cell has indeed been recently
exposed to high glucose concentrations (stressing environment), σ ≈ 1 and the short-
term Crabtree effect is triggered. Therefore, the evolution of this variable is described by
two mutually exclusive terms:

∂σ

∂t
= ζσ = κσ

T
(u)
σ

(1− σ)− (1− κσ)
T

(d)
σ

σ (III.11)

where κσ ∈ [0, 1] qualifies the stressfulness of the environment, T (u)
σ is the time constant

of stress increase in stressful environments (≈ 1s) and T (d)
σ is the characteristic time for

a return to unstressed metabolic behaviour (≈ 100s).
Closures for µ∗{G,E,A} and ϕ∗O were defined in Chapter II and are based on the vector of

liquid-phase concentrations CL = [CG, CE, CA, CO]. κσ computation also relies on CL

but also on the value of µG.

Population Balance Equation

In order to track these properties and their respective evolution, not at a cell-scale, but
at the population scale, a multivariate population balance model can be formulated. Let
p̂ = [µ(b)

G , µ
(b)
E , µ

(b)
A , ϕ

(b)
O , σ] be the vector of biological properties of a cell, and n(p̂) the
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Number Density Function which represents the statistical distribution of these properties
over the biological population. A Population Balance Equation tracking the evolution of
n(p̂) is

∂n(p̂)
∂t

+
∑

i∈{G,E,A}

(
∂

∂µ
(b)
i

(n(p̂)ζµi(p̂,CL))
)

+ ∂

∂ϕ
(b)
O

(n(p̂)ζϕO(p̂,CL)

+ ∂

∂σ
(n(p̂)ζσ(p̂,CL) =

∫
Ωp̂
µ(a)(p̂′,CL)n(p̂′)β(p̂, p̂′)dp̂′ (III.12)

or, more simply by defining ζ̂ = [ζµG , ζµE , ζµA , , ζϕO , ζσ]T :

∂n(p̂)
∂t

+ ∇̂ ·
(
ζ̂(p̂,CL)n(p̂)

)
=
∫

Ωp̂
µ(a)(p̂′,CL)n(p̂′)β(p̂, p̂′)dp̂′ (III.13)

Redistribution term

The RHS of (III.12) is analogous to the RHS of (III.3) and represents the distribution
of biological properties when new cell are formed. We did not attempt to provide a fine
description for this term as the difficulty of finding relevant experimental data observed
for E. coli is worsened by the multi-dimensionality of the current S. cerevisiae modelling.

Therefore we applied an inheritance assumption by making daughter cells identical to
their mother. This is modelled by defining the transition distribution β(p̂, p̂′) as a 5D
Dirac distribution:∫

Ωp̂
f(p̂′)β(p̂, p̂′)dp̂′ = f(p̂) (III.14)

which yields∫
Ωp̂
µ(a)(p̂′,CL)n(p̂′)β(p̂, p̂′)dp̂′ = µ(a)(p̂,CL)n(p̂) (III.15)

III.3 Applying sectional and moment methods to E. coli PBE

As stated previously, Population Balance Equations have a structure that is not directly
compatible with mass balance equations in Eulerian modelling framework. To allow
compatibility between the Population Balance Model framework with simulation software
based on local mass balances, both sectional and moment methods can be applied to
replace the PBE by a set of local mass balance equations.

Here, the focus is made on applying these methods on one-dimensional PBEs. Methods
for higher order PBEs were not investigated in this PhD and are being tackled in an other
ongoing project. Therefore, following sections illustrate the use of both sectional and
moment methods on the 1D PBE associated to the modelling of E. coli (see Eq. (III.3)).
This PBE is here recalled with an explicit convection term:

∂n(µc)
∂t

+~∇·(~uLn(µc))+ ∂

∂µc
(n(µc)ζµ(µc,CL)) =

∫
Ωµ
µ(µ′c,CL)n(µ′c)β(µc, µ′c)dµ′c (III.16)
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III.3.1 Sectional methods

Sectional methods, also referred to as class methods or pivot methods, consist in a dis-
cretization of the support of a continuous NDF.

In the considered case of the PBE describing the evolution of the growth-rate of E. coli,
the considered support is µc ∈ [0, µlim[ where µlim is the maximum growth-rate achievable
by a single cell. µlim must not be confused with the maximum growth-rate µmax as seen
in the Monod kinetic law (see Eq. (III.4)). µmax is the maximum growth-rate that can
be observed at the population scale. This value is only a mean value, meaning that there
exists cells that grow at a higher rate than µmax. Experimental results have indeed shown
that at the cell-scale, some cells grow and divide at a higher rate indeed, hence µlim > µmax.
In the proposed model, such individuals whose growth rate is higher than µmax appear
thank to the modelling of the cell-division redistribution function β(µc, µ′c) which can
theoretically generate cells with infinitely high growth-rate but with low probability. We
set µlim = 2.2µmax considering that the probability to generate individuals such that
µc > 2.2µlim is negligible (< 0.07%).

We considered the simplest of sectional methods consistent with the bounded support,
that is the fixed pivot method using regular grid [Kumar and Ramkrishna, 1996a]. In this
approach, the support Ωµ = [0, µlim[ is discretized into Nclass intervals of same lengths.
Bounds of the i-th interval, or class, are defined as

µi−1/2 = (i− 1) µlim

Nclass

µi+1/2 = i
µlim

Nclass

with i ∈ {1, . . . ,Nclass}. All cells whose property lies within the bounds of the i-th class,
for which µc ∈ [µi−1/2, µi+1/2[, are assumed to share the same property µi defined as the
mean class property:

µi = (i− 1/2) µlim

Nclass

An illustration of this discretization is given in Fig. III.2 for Nclass = 10.

µ1/2 µ3/2 µ5/2 µ7/2 µ9/2 µ11/2 µ13/2 µ15/2 µ17/2 µ19/2 µ21/2

0 µlim

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9 µ10

Figure III.2: Example of NDF support discretization in regular grid fixed pivot technique.

Let Ni be the amount of cells in the i-th class (kgX/m3
L). The mass balance equation

on Ni is obtained by integrating Eq. (III.16) over [µi−1/2, µi+1/2[ which leads to

∂Ni

∂t
+ ~∇·(~uLNi) = − [n(µc)ζµ(µc,CL)]µi+1/2

µi−1/2
+
Nclass∑
j=1

(
µ(µj,CL)Nj

∫ µi+1/2

µi−1/2

β(µc, µj)dµc
)

(III.17)
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The first term on the RHS is the net flux of cell moving between adjacent classes due to
growth-rate adaptation. The second term on the RHS is the rate of production of new cells
whose growth-rate is located in the i-th interval. This second term is already closed and
only requires the analytical or numerical (pre)computation of integrals

∫ µi+1/2
µi−1/2

β(µc, µj)dµc
for each pair of classes.

The first term is not directly accessible from N = [N1, . . . , NNclass ]T as is requires the
knowledge of the values n(µc) not at the pivot locations µi, but at the interval boundaries
µi±1/2. The following transport scheme was then used by Morchain et al. [2013] as it allows
preserving the positivity of N elements [Kumar and Ramkrishna, 1997]:

− [n(µc)ζµ(µc,CL)]µi+1/2
µi−1/2

≈ 1
∆µ

[
Ni−1ζ

u
µ(µi−1,CL) +Ni+1ζ

d
µ(µi+1,CL)−Ni|ζµ(µi,CL)|

]
(III.18)

where

ζuµ(µc,CL) =
ζµ(µc,CL) if µc < µ∗(CL)

0 otherwise

ζdµ(µc,CL) =
−ζµ(µc,CL) if µc > µ∗(CL)

0 otherwise

This first scheme is applicable here because all cells move toward the same µ∗(CL) value.
The fixed pivot method lies in the family of finite volume methods to solve partial

derivative equations. It is then also possible to apply the well-known Rusanov scheme
which is suited for transport terms in finite-volume approaches and ensures an accurate,
conservative and non-oscillatory solution1.

Under that formalism, the computation of bioreaction rates over the population is given
by a sum over all classes:

R(N ,CL) =
Nclass∑
i=1

Nir(µi,CL) (III.19)

III.3.2 Methods of moments

Methods of moments do not track directly local values of the NDF but resolve a finite
set of its moments mN = [m0,m1, . . . ,mN ]T with

mk =
∫

Ωµ
µkcn(µc)dµc (III.20)

While defining a cut-off value µlim was required for the sectional method, this is not
required any more for moment methods, therefore Ωµ = [0,+∞[.

1 The application of Rusanov scheme for the closure of mass-balance equations when applying the sectional
method was suggested by Dr. Bastien POLIZZI.
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Multiplying each term of Eq. (III.16) by µkc , k ∈ {0, . . . , N} and integrating over Ωµ

yields

∂m0

∂t
+~∇· (~uLm0) =

∫
Ωµ
µ(µ′c,CL)n(µ′c)β(µc, µ′c)dµ′c (III.21)

∂mk

∂t
+~∇· (~uLmk) = k

∫
Ωµ
µk−1
c n(µc)ζµ(µc,CL)dµc+∫∫

Ωµ
µkcµ(µ′c,CL)n(µ′c)β(µc, µ′c)dµ′cdµc (III.22)

The total amount of cells m0 is not affected by the adaptation of growth-rate, but only by
the total number of newly created cells (RHS of Eq (III.21)). Both the adaptation and
the formation of new cells will affect higher order moments, and therefore the shape of
the growth-rate distribution. The first term on the RHS of Eq. (III.22) can be expressed
in terms of moments if one considers the model for ζµ(µc,CL) given in Eq. (III.5):

∫
Ωµ
µk−1
c n(µc)ζµ(µc,CL)dµc = µ∗(CL)

T
mk−1 +

(
µ∗(CL)− 1

T

)
mk −mk+1 (III.23)

Note however that this closure is not possible if T depends on µc and C. This was the
case in the modelling from Pigou and Morchain [2015] where two different characteristic
times Tu and Td are used as explained previously (see Section III.2.1).

For the modelling of bioreactors, one should expect unclosed integral terms when meth-
ods of moments are applied. For the currently considered PBE, these unclosed terms are
mainly related to the fact that biological reaction rates cannot be directly expressed in
terms of moments of n(µc). This is the case for the cell-division integral terms in moment
equations (see Eqs. (III.21) and (III.22)), but also for the reaction rates in dissolved
species mass balance equations

R(n,CL) =
∫

Ωµ
n(µc)r(µc,CL)dµc (III.24)

which cannot be expressed directly in terms of moments of the distribution n(µc), at
least because, under the formalism proposed in Chapter II, elements of r(µc,CL) are not
continuously differentiable with respect to µc.

III.4 Numerical methods providing closure for moment formula-
tions

As shown previously, moment equations do not form a closed system for the considered
case of bioreactors modelling. Numerous integral terms appear in this formulation, and
their closure requires the knowledge of the raw distribution n(µc), which is not accessible
from only a finite set of its moments. Therefore, a numerical method is required to
provide closure by approximating integral properties of the distribution when only few
moments of that distribution are known.
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Multiple numerical methods exist to tackle this issue. All of these methods propose an
approximation ñ(µc) of n(µc) as well as a quadrature rule such that

∫
Ωµ
f(µc)n(µc)dµc ≈

Nnode∑
i=1

wif(ξi) (III.25)

where wi are the weights of the quadrature, ξi its nodes, and Nnode the number of quadra-
ture nodes. These weights and nodes are computed from moments mN = [m0, . . . ,mN ]T
of n(µc) in such a way that the quadrature rule (Eq. (III.25)) correctly reproduces these
moments, i.e. yields exact results if f(µc) = µkc , k ∈ {0, . . . , N}.

John et al. [2007] and Lebaz et al. [2016] assessed multiple moment-based closure
methods and noticed that the following ones were either inaccurate or unstable for their
respective test-cases:

• The Kernel Density Element Method [Athanassoulis and Gavriliadis, 2002]

• The Spline Method [John et al., 2007]

For these reasons, these two methods were not furthermore considered for the simulation
of bioreactors. Hereafter are detailed other existing methods that have been considered
during this work to hopefully provide low-cost, stable and accurate closures. These
methods will be compared in section III.5 to the class method.

III.4.1 Quadrature Method Of Moments

The Quadrature Method of Moments was first proposed by McGraw [1997] to provide
closure in moment-evolution equations in the modelling of aerosol size distributions. It
is derived from the theory of orthogonal polynomial [Chihara, 1978] which serves as a
basis for Gauss-quadratures whose main purpose is to provide approximations of integral
terms in general.

Using an even number 2P of moments, Quadrature Method of Moments (QMOM)
yields a P nodes quadratures. Its weights wP and nodes ξP are obtained by computing
eigenvalues and normalized eigenvectors of a P × P tridiagonal symmetric matrix whose
elements are deduced from m2P−1. Exact details of this computation are given in Section
III.6.

In a sense, one can consider that QMOM yields an approximation of n(µc) defined by

ñ(µc) =
P∑
i=1

wiδ(µc, ξi) (III.26)

where δ is the Dirac delta distribution defined in Eq. (III.7).
This approximation is discontinuous whereas n(µc) is expected to be a continuous

distribution. Therefore, QMOM cannot be used to estimate point-wise values of n(µc)
and must be restricted to situations where only integral properties are required. When
applying QMOM, the generic quadrature rule from Eq. (III.25) becomes

∫
Ωµ
f(µc)n(µc)dµc ≈

P∑
i=1

wif(ξi) (III.27)
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III.4.2 Extended Quadrature Method of Moments

[Yuan et al., 2012] introduced the EQMOM as a generalisation of bi-Gaussian approxi-
mations of NDFs proposed by Chalons et al. [2010]. EQMOM approximates a NDF as a
convex mixture of Kernel Density Functions (KDFs) of the same parametric family:

ñ(µc) =
P∑
i=1

wiκ(µc, ξi, σ) (III.28)

where κ(µ, ξ, σ) is a probability density function, referred to as the EQMOM kernel, whose
location parameter is ξ and shape parameter is σ. Over the past few years, multiple
kernels were found to be compatible with the method:

• Gaussian kernel [Chalons et al., 2010; Marchisio and Fox, 2013];

κG(µ, ξ, σ) = 1
σ
√

2π
exp

(
−(µ− ξ)2

2σ2

)
(III.29)

• Laplace kernel [Pigou et al., 2018a]

κλ(µ, ξ, σ) = 1
2σ exp

(
−|µ− ξ|

σ

)
(III.30)

• Log-Normal kernel [Madadi-Kandjani and Passalacqua, 2015]:

κL(µ, ξ, σ) = 1
σµ
√

2π
exp

(
−(log(µ)− log(ξ))2

2σ2

)
(III.31)

• Gamma kernel [Yuan et al., 2012]:

κΓ(µ, ξ, σ) = µ(l−1) exp(−µ/σ)
Γ(l)σl with l = ξ

σ
and Γ(x) =

∫ +∞

0
tx−1e−tdt (III.32)

• Weibull kernel [Pigou et al., 2018a]:

κW (µ, ξ, σ) = 1
σξ

(
µ

ξ

) 1−σ
σ

exp
−(µ

ξ

)1/σ
 (III.33)

• Beta kernel [Yuan et al., 2012]:

κβ(µ, ξ, σ) = µ(l−1)(1− µ)(m−1)

B(l,m) with l = ξ

σ
,m = 1− ξ

σ

and B(l,m) =
∫ 1

0
x(l−1)(1 − x)(m−1)dx (III.34)

The core of this method is the moment-inversion procedure which is an iterative process
whose goal is to identify values of the weights wP , nodes ξP and shape parameter σ from
an odd number of moments 2P + 1. This procedure was first developed by Yuan et al.
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[2012] and has been further improved by Nguyen et al. [2016]. An even more efficient
moment-inversion procedure has been identified during the course of this work and is
detailed in section III.6.

For all kernels, it is possible to establish a quadrature rule such that

∫
Ωµ
f(µ)κ(µ, ξ, σ)dµ ≈

Q∑
j=1

ωj(ξ, σ)f(λj(ξ, σ)) (III.35)

with ωQ(ξ, σ) = [ω1(ξ, σ), . . . , ω(ξ, σ)Q] and λQ(ξ, σ) = [λ1(ξ, σ), . . . , λQ(ξ, σ)] the weights
and nodes of this Q-nodes quadrature rule. Therefore, when using EQMOM, integral
terms over the population n(µc) can be approximated by

∫
Ωµ
f(µc)n(µc)dµ ≈

P∑
i=1

Q∑
j=1

wiωj(ξi, σ)f (λj(ξi, σ)) (III.36)

More importantly, EQMOM yields a continuous approximation of n(µc) from its moments
which allows approximating point-wise values of this distribution. This is not possible
with QMOM which only yields discrete distributions.

III.4.3 Maximum-Entropy Method

The Maximum-Entropy method was assessed by Lebaz et al. [2016] and favorably selected
when compared to Kernel Density Element Method (KDEM) and Spline Methods for the
modelling of a depolymerization process. This method was introduced by Mead and
Papanicolaou [1984] and has been further improved by Tagliani [1999, 2001]. Its core
idea is to select, between all NDFs whose first moments are given by mN , the one whose
Shannon entropy is the highest.

The Shannon entropy of a NDF p(x) defined on Ωx = [0, 1] is defined as

H[p] = −
∫ 1

0
p(x) log p(x)dx (III.37)

and is a measure of the amount of information required to define p(x).
Solving the Moment Maximum-Entropy problem requires identifying the NDF p(x) of

highest Shannon Entropy under the constraints∫ 1

0
xkp(x)dx = m′k k ∈ {0, . . . , N},m′0 = 1 (III.38)

with m′N moments of p(x).
Mead and Papanicolaou [1984] and Tagliani [1999] show that the solution to this prob-

lem is a NDF whose expression takes the following form:

p(x) = exp
(
−

N∑
i=0

λix
i

)
(III.39)

which is the exponential of a polynomial function. The core procedure of the Maximum-
Entropy approach then lies in the identification of polynomial coefficients λN = [λ0, . . . , λN ].
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It is shown that the researched λN values minimize the convex function Γ(λN) defined
as [Mead and Papanicolaou, 1984]

Γ(λN) =
N∑
i=1

λim
′
i + log

(∫ 1

0
exp

(
−

N∑
i=1

λix
i

)
dx
)

(III.40)

and whose Jacobian and Hessian matrices are easily expressed in terms of the following
integrals [Abramov, 2007]

m̂′k =
∫ 1

0
xk exp

(
−

N∑
i=0

λix
i

)
dx k ∈ {0, . . . , 2N} (III.41)

Finding the Maximum Entropy reconstruction from a moment set mN is then equiva-
lent to finding the minimum of Γ(λN). This is feasible by applying the Newton-Raphson
iterative procedure to identify the root of the Jacobian matrix of this function. Note
however that each iteration of this procedure requires 2N numerical integrations (see
Eq. (III.41)) and that the accuracy and stability of the method depends on the accuracy
of these numerical integrations. Vié et al. [2013] then suggested the use of an adaptive
quadrature rule. The basics of this adaptive quadrature is to split the interval [0, 1] into
multiple sub-intervals depending on the values of intermediary reconstructions, and then
use a Gauss-Legendre quadrature on each on these sub-intervals.

Hitherto, the method has only been presented for a NDF p(x) defined on Ωx = [0, 1].
We must then transform our problem of reconstructing the NDF n(µc) on Ωµ = [0, µlim]
to reach the expected formalism. This is done by a simple variable change

p(x) = n(x ∗ µlim) (III.42)

which implies the following relation between moments mN of n(µc) and moments m′N of
p(x):

m′k = µ
−(k+1)
lim

k∑
i=0

k!
i!(k − i)!mk−j (III.43)

Among methods compared in this work (QMOM, EQMOM and ME), the Maximum
Entropy approach can be seen as the most –mathematically speaking– elegant. Its core
principle is to “extract” as much information as possible from the known moments, and
does not requires any hypothesis about an expected shape of the raw NDF.

III.5 Comparison of numerical methods

As detailed in an article published before the current PhD work [Pigou and Morchain,
2015], we performed simulations of a large-scale bioreactor, using the model for E. coli
which inspired the formulation of metabolic models proposed in Chapter II, the Popu-
lation Balance Model presented previously (see Section III.2.1), and the Compartment
Model from Vrábel et al. [1999]. These simulations relied on the use of the class method
to solve the Population Balance Equation.

Accuracy was obtained through the use of 100 classes while 80 of them contained
virtually no cell. This is a usual drawback of sectional methods which implies that most
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of the memory allocated to the tracking of the biological-population state holds no useful
information. This explains why we considered the use of methods of moments, in order
to make a better use of allocated memory. Less tracked variables implies both less used
memory, and also less mass balance equations to be solved, which can be of significant
interest in particular when the biological modelling (metabolic model coupled with the
PBM) is embedded in Computational Fluid Dynamics (CFD) simulations.

These gains expected from a switch toward methods of moments come with the neces-
sity to use quadrature methods as presented previously. This implies an expected loss of
accuracy difficult to estimate a priori. Therefore, estimating the accuracy of quadrature
methods compared to the class method is a prerequisite to their use in large-scale simula-
tions. As far as the class method is concerned, increasing the number of classes to assess
the sensibility of results to that number, and to tightly control the method accuracy, is
straightforward.

An other key element of comparison is the numerical cost associated to each method. As
already stated, the class method requires solving coupled mass balance equations over all
classes, as well as one call to the metabolic model for each class that holds non negligible
quantity of micro-organisms. Moreover, the discretization of the biological properties
space induces a stringent constraint on the simulation time-step analogous to the Courant-
Friedrichs-Lewy (CFL) condition, well known to CFD-software users [Courant et al., 1928].
On the other side, each quadrature method presented in section III.4 comes with different
numerical costs related to

• varying number of resolved moments;

• the computation of the quadrature rule;

• a varying number of calls to the metabolic model depending on the size of the
produced quadrature rule.

Finally, stability will also be a concern. For the class method, stability is ensured
by using low-order transport schemes as detailed previously (see III.3.1). Stability is
more difficult to achieve for methods of moments where time-integration can produce
non-realisable moment sets, i.e. vector of moments that cannot be associated to any well-
defined NDF [Vikas et al., 2011], or if a quadrature method fails to produce an accurate
quadrature rule.

Over the course of this work, a strong focus has been made on comparing the class
method with all three considered quadrature methods (QMOM, EQMOM and the Max-
imum entropy approach latter referred to as MaxEnt) on each of these aspects: memory
use, numerical cost and stability. This is detailed hereafter by first explaining the com-
parison methodology and then the observed results. Full details of this comparison can
be found in Pigou et al. [2017].

III.5.1 Comparison methodology

In order to assess methods of moment against the class method, two biological cultures
have been simulated. They are both shortly described hereafter and have been fully
detailed in Pigou et al. [2017].

The first simulation set-up allowed assessing the stability of all methods for the simu-
lation of a stressed homogeneous system, and to measure the dependency of results on
the number of resolved moments.
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The second simulation set-up is that of a large-scale fedbatch culture already simulated
in Pigou and Morchain [2015] using the class method and whose results are reproduced
using moment methods. This allows to assess the accuracy and stability of these methods
in heterogeneous systems.

Stressed chemostat culture

The first simulation case corresponds to experimental results shown previously in Chapter
II, Fig. II.5, from Kätterer et al. [1986]. It is a chemostat culture started with a dilution
rate D = 0.10h−1 which is suddenly shifted toward a higher dilution rate D′ = 0.42h−1.
In this set-up, the bioreactor can be considered as homogeneous, and the biological popu-
lation only experiences a single environmental perturbation. This allows for a comparison
of methods in a tightly controlled set-up. The time integration was performed by a first-
order explicit Euler method with a fixed time-step, shared by all methods, chosen so that
all results are independent from that time-step.

In order for these simulations to quantitatively compare against experimental results
from Kätterer et al. [1986], constants of the E. coli metabolic model from Pigou and
Morchain [2015] have been changed to match the conversion yields of Candida tropicalis.

Large-scale fedbatch culture

Vrábel et al. [2001] performed simulations of a large-scale (22m3) fedbatch culture of E.
coli using the metabolic model from Xu et al. [1999] and the hydrodynamic Compartment
Model Approach developed by Vrábel et al. [1999]. We reproduced these simulations as
detailed in Pigou and Morchain [2015] by integrating the Population Balance Model for
the dynamic adaptation of E. coli growth-rate as detailed previously (see III.2.1) using the
class method to solve the PBE. Please refer to Pigou and Morchain [2015]; Pigou et al.
[2017] for a full presentation of the hydrodynamic modelling by Compartment Model
Approach (CMA).

We reproduced these simulations by using moment methods (QMOM, EQMOM and
MaxEnt) with a number of moment based on results from the simulation of the stressed
chemostat culture.

III.5.2 Comparison results

Stressed chemostat cuture

Fig. III.3 sums-up simulation results for biomass and glucose concentrations for each
method and different orders of resolution. The first observation is that all methods
manage to correctly reproduce the overall dynamics of the system. This dynamics is
mainly related to the accuracy of the PBE treatment which describes the growth-rate
dynamic evolution (see Eq. (III.16)). In particular, the moment equation (Eq. (III.22))
of the last resolved moment mN−1 requires the knowledge of the unknown moment mN .
The predicted dynamics will then depend on the approximation of this unknown moment
from the quadrature rule yield by each method. An analysis conducted on this aspect
has shown that all methods and order correctly predicted this unknown moment with
less than 0.2% of relative error. This implies that all moment method correctly predict
the dynamics indeed.
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(a) Class method
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(b) QMOM method
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(c) Gaussian EQMOM method
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(d) MaxEnt method
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Figure III.3: Comparison of experimental data from Kätterer et al. [1986] against simula-
tion results from each method. For methods of moments, N is the number
of resolved moments.

Clearly, all methods yield accurate approximate of unknown moment. A more sensi-
tive variable will be the acetate production. As stated in Chapter II, Section II.3, the
metabolic model for E. coli predicts that cells whose growth-rate µc is lower than the
equilibrium growth rate µ∗ will produce acetate through the overflow metabolism. Here,
we reused this model by only changing some conversion yields to fit experimental data in
terms of glucose and biomass concentration (see Fig. III.3) but this overflow metabolism
is still enabled. Since acetate production is closely related to the shape of the distribu-
tion n(µc), the acetate concentration should be sensitive to methods order and accuracy.
Predicted evolutions of these concentrations are given in Fig. III.4.

Let AM(t) be the evolution of acetate concentration as predicted by moment methods,
and AC(t) the same evolution as predicted by the class method with 400 classes. Fig.
III.5 summarizes the error between moment methods against the class method with

ε =
∫ tf
t0 |AM(t)− AC(t)|dt∫ tf

t0 AC(t)dt
(III.44)

with t0 = 25h and tf = 45h. This figure shows that in terms of accuracy, MaxEnt
is the more accurate method, even with as low as 3 moments, for the prediction of
acetate production in this stressed chemostat culture. EQMOM and MaxEnt share similar
accuracy as soon as 5 moments are tracked. Finally, QMOM requires twice as many
moments as other methods to reach a similar accuracy of 5%.

While performing these simulations, we noticed stability issues with MaxEnt as soon as
7 moments were used. Stability could still be maintained at the cost of extra operations as
detailed in Pigou et al. [2017] but no more than 7 moments could be tracked. In terms of
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Figure III.4: Evolution of acetate concentrations as predicted by each moment method.
Black dash-dotted line: results from class method using 400 classes.
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Figure III.5: Relative error on acetate concentration predictions for all methods and or-
ders. The 400 classes method serves as a reference.

numerical costs, Fig. III.6 details the run-time associated with each method. The QMOM
method appears twice in this figure because two different algorithms were tested to per-
form the quadrature computation (PDA: Product Difference Algorithm, WA: Wheeler
Algorithm, also referred to as Chebyshev Algorithm is Section III.6). The “Blank” mea-
surement corresponds to simulations were reaction terms were not computed in order to
isolate bioreaction and population balance related computations from other tasks per-
formed by the simulation software. A complete analysis of these run-times is provided in
Pigou et al. [2017], main observations are:

• Overall, all method have a similar order of magnitude in term of associated run-time
even though this numerical cost has different sources for each method.

• The cost associated to the class method mainly comes from calling the metabolic
model for each class, as well as computing the redistribution term by integrating a
skew-normal distribution over each class (see Eq. (III.8)).
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Figure III.6: Mean run-time per time-step for each tested method and order (ms/ts) (±
standard-deviation measured on 20 simulations).

• The iterative process underlying the MaxEnt approach often converges in a single it-
eration, but this increases up to 10 iteration by time-step right after the dilution-rate
shift-up. Simulating the next few hours following this shift significantly increases
the mean observed run-time for this method, but it should be quite fast if used in
systems with minor perturbations.

• QMOM has a computational cost hardly dependent on the method order and is the
fastest method as it yield the lower number of quadrature nodes.

• Analytical solutions were used for 3 and 5 moments with EQMOM which explains
the significant increase in numerical cost for N = 7.

One surprising aspect in this comparison of run-time is the low difference between the class
method and QMOM. One would expect a significantly lower cost for QMOM compared to
the class method which is not visible here. This observation has been latter linked to the
use of a simulation software based on Oriented Object Programming in MATLAB [2016]
which happened to be badly optimized. The transfer of data between the time integration
routine and modelling blocks (code for quadrature computations, for metabolic model
computations, ...) significantly slowed down the simulations. Therefore, all previous
comparisons only have a qualitative value but not a quantitative one. A better approach
would have been to compare the number of required Floating-Point Operations per time-
step but this is a less accessible metrics. The key element of comparison will then be
stability and accuracy of quadrature methods.

Large-scale fedbatch culture

Initial simulations of a homogeneous system led to the selection of EQMOM and MaxEnt
with N = 5 as well as QMOM with N = 10 to perform simulations of a 22m3 heteroge-
neous fedbatch culture. Figure III.7 details the volumetric means of glucose, biomass and
acetate concentrations, as well as local acetate production/consumption rates, at three
different heights referred to as top, middle and bottom. Once again, all moment methods
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Figure III.7: Simulation results for the different population balance methods in the het-
erogeneous fedbatch culture. (a) Glucose concentration, (b) Total biomass
concentration, (c) Acetate concentration and (d) Acetate specific production
rate.



III.5 comparison of numerical methods 97

B
la

n
k

C
la

s
s
 1

0
0

C
la

s
s
 2

0
0

C
la

s
s
 4

0
0

Q
M

O
M

 4
Q

M
O

M
 6

Q
M

O
M

 8
Q

M
O

M
 1

0
E
Q

M
O

M
 3

E
Q

M
O

M
 5

E
Q

M
O

M
 7

M
E
 3

M
E
 4

M
E
 5

0

5

10

15

20

25

30

R
u

n
ti

m
e

(m
s/

ti
m

es
te

p
)

Figure III.8: Mean run-time per time-step for each method (ms/time-step ± standard
deviation measured on 5 simulations per method and order).

closely match the results obtained with the class method. This confirms that 5 moments
are sufficient to account for biological heterogeneity with the proposed modelling.

In terms of stability and numerical cost, Fig. III.8 is similar to Fig. III.6 by showing
run-times per time-step for each method. The analysis of these run-times is similar to
the homogeneous chemostat with the only noticeable change being that the Maximum
entropy approach could not be tested with more than 5 moments due to stability issues,
and its numerical cost is here significantly higher than that of QMOM and analytical
EQMOM.

III.5.3 Conclusion

Overall, all tested quadrature methods gave satisfactory accuracy compared to the class
method, but required significantly less resolved variables. In terms of tracked moments,
EQMOM and MaxEnt make a better use of the information embedded within the first
few integer moments than QMOM which leads to a good accuracy with as few as 3 to 5
moments. Meanwhile, QMOM required twice as much moments as the other methods to
reach similar accuracy. Little time after these developments were published [Pigou et al.,
2017], an other group performed a similar analysis by comparing QMOM, MaxEnt and a
polynomial closure method [Müller et al., 2017]. They observed too the lack of accuracy
of QMOM at equivalent number of resolved moments compared to other methods.

A key observation was the lack of stability related to the Maximum Entropy approach.
This had already been observed by Vié et al. [2013] and has been confirmed to be a major
drawback of this method for simulations of large-scale bioreactors. Therefore, MaxEnt
has been discarded from future use in this context.

QMOM and EQMOM shared similar computational costs, but EQMOM required less
resolved moments. This implies lower cost for the resolution of coupled mass-balance
equations, especially if the PBM is used within a CFD framework, but this also improves
the simulation stability. Indeed, the resolution of high order moment sets may lead more
easily to the appearance of unrealisable moment sets which would constitute a strong
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source of instability. Therefore, EQMOM seems to be the most relevant choice for the
resolution of Population Balance Equations in the context of large-scale bioreactors.

III.6 Improving the Extended Quadrature Method of Moments

III.6.1 Developments background

While performing simulations presented previously when comparing methods to solve
PBEs, all variants of EQMOM were tested even though only results based on Gauss-
EQMOM have been presented. This is due to instabilities that have been observed for
the Log-normal, Gamma and Beta variations. These instabilities led to failures in the
quadrature computation when these kernels were used for the EQMOM moment-inversion
procedure, only the Gauss kernel did not fail.

Using a mixture of Gaussian kernels –defined on R– to approximate a NDF defined
on Ωµ = [0, µlim] or Ωµ = [0,+∞[ obviously presents an intrinsic weakness, and actually
led to the appearance of some quadrature nodes with negative growth-rate in results
presented previously (see III.5.2). This was corrected by truncating and renormalizing the
approximated NDF over Ωµ for the integration of bioreaction rates over the population,
this approach was however unsatisfactory.

Results from Pigou et al. [2017] show that 5 moments are sufficient for accurate simu-
lations of large-scale bioreactors when EQMOM is used to provide closure. Consequently,
an attempted approach to prevent instabilities was to develop analytical solutions for
2-nodes EQMOM reconstructions for other kernels. Such an analytical solution was only
described for the Gauss kernel by Chalons et al. [2010] and supplementary analytical
solutions have been identified for Gamma, Laplace and Log-normal kernels. The iden-
tification of Laplace and Weibull distributions as kernels compatible with the EQMOM
method happened simultaneously with these analytical solution developments.

Unfortunately, using analytical solutions for the Log-normal and Gamma kernels did
not provide an efficient response to the previously observed stability issues. The explana-
tion for this came from Nguyen et al. [2016]: the EQMOM reconstruction may happen
not to be defined, it may be possible that the last moment may not be conserved by an
EQMOM approximation. Nguyen et al. [2016] then proposed a new EQMOM moment-
inversion procedure which

• is more stable than previous ones by adding a realisability check at each iteration
of the procedure;

• makes use of a faster root-finding algorithm compared to previous implementations,
namely the Ridder’s method;

• switches from a root-finding algorithm toward a minimization algorithm if no EQ-
MOM reconstruction exists.

If we identified these recent improvements of EQMOM sooner, this would have had an
impact on the article presenting the method comparison [Pigou et al., 2017] by

1. allowing the use of LogN-EQMOM or Gamma-EQMOM in place of Gauss-EQMOM;

2. improving the stability even for higher number of moments;
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3. reducing the numerical cost observed for EQMOM.

However, the strong focus made on EQMOM to tackle these instabilities, coupled with
multiple readings associated to the mathematical fundamentals of Gauss-Quadrature,
orthogonal polynomial and moment theories [Chihara, 1978; Dette and Studden, 1997;
Gautschi, 2004], led to the identification of a whole new EQMOM moment-inversion
procedure of significantly lower numerical cost. Main aspects of this new procedure are
laid out hereafter, followed by quantification of gains provided by these new developments.

III.6.2 Description of EQMOM moment-inversion procedures

The new EQMOM moment-inversion procedure has been fully detailed in Pigou et al.
[2018a] and Pigou et al. [2018b]. Main ideas are summarized hereafter but please refer
to these articles for complete explanations.

Gauss quadratures - QMOM

First, EQMOM is based on the Quadrature Method of Moments or more generally on
Gaussian quadratures whose basics are at the core of the new procedure and need to be
reminded. Let n(µ) be a NDF defined on a support Ωµ whose first N+1 integer moments
are mN = [m0, . . . ,mN ]T with

mk =
∫

Ωµ
µkn(µ)dµ (III.45)

A P-nodes Gauss-quadrature associated with the NDF n(µ) is defined by its weights wP

and nodes ξP such that
∫

Ωµ
µkn(µ)dµ = mk =

P∑
i=1

wiξ
k
i ∀k ∈ {0, . . . , 2P − 1} (III.46)

The computation of wP and ξP constitutes the core of QMOM and is a two steps process.
It is well-known from the theory of orthogonal polynomials [Gautschi, 2004] that any
NDF is associated to a sequence of monic orthogonal polynomials denoted πk –with k the
order of the polynomial– such that∫

Ωµ
πi(µ)πj(µ)n(µ)dµ = 0 for i 6= j. (III.47)

These polynomials satisfy a three-terms recurrence relation

πk+1(µ) = (µ− ak)πk(µ)− bkπk−1(µ) (III.48)
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with ak and bk the recurrence coefficients specific to the NDF n(µ), π−1(µ) = 0 and
π0(µ) = 1. Let Jn be the n×n Jacobi matrix associated to n(µ). This is a tridiagonal
matrix defined as

Jn =


a0

√
b1 0

√
b1 a1

. . .
. . . . . . √

bn−1
0

√
bn−1 an−1

 (III.49)

Weights and nodes of the quadrature rule from Eq. (III.46) are obtained from spectral
properties of JP . Nodes ξP are the eigenvalues of JP and weights are given by

wi = m0v
2
1,i (III.50)

where v1,i is the first component of the normalised eigenvector belonging to the eigenvalue
ξi. QMOM and Gauss-quadratures then rely on

1. the computation of recurrence coefficients aP−1 = [a0, . . . , aP−1]T and bP−1 =
[b1, . . . , bP−1]T from m2P−1;

2. the computation of eigenvalues and eigenvectors of JP .

The first step is easily performed using the Chebyshev algorithm [Wheeler, 1974]. The
second step can be tackled using Francis or Jacobi algorithms [Ford, 2015], but these
have a high numerical cost. The following improvements of EQMOM are actually mainly
related to reducing the number of call to these algorithms to one single call as further
explained hereafter.

Moment-inversion procedure

EQMOM is a method that approximates a NDF n(µ) from its first 2P+1 integer moments
m2P as

n(µ) ≈ ñ(µ) =
P∑
i=1

wiκ(µ, ξi, σ) (III.51)

The goal of the EQMOM moment-inversion procedure is to identify the weights wP =
[w1, . . . , wP ]T , the nodes ξP = [ξ1, . . . , ξP ]T and the shape parameter σ from the first
2P + 1 integer moments m2P of n(µ), under the constraint m̃2P = m2P with m̃2P the
moments of ñ(µ).

Yuan et al. [2012] noticed a linear relationship m̃n = An(σ) ·m∗n with

n∗(µ) =
P∑
i=1

wiδ(µ, ξi), m∗n =


m∗0
m∗1
...
m∗n

 , m∗k =
∫

Ωµ
µkn∗(µ)dµ (III.52)

where δ(µ, ξ) is the Dirac distribution defined in Eq. (III.7). An(σ) is a lower-triangular
(n+1)×(n+1) matrix whose elements depend on the chosen EQMOM kernel. By defi-
nition of Gauss quadrature, if one applies QMOM to the vector m∗2P−1, the returned
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weights and nodes will be wP and ξP . Therefore, if σ is known, computing wP and ξP
is only a matter of (i) computing m∗2P−1 = A−1

2P−1 ×m2P−1 and (ii) extract wP and ξP
by computing a Gauss quadrature based on m∗2P−1. The challenge is then to identify the
value of the shape parameter σ.

The initial approach developed by Yuan et al. [2012] and latter improved by Nguyen
et al. [2016] formulates a scalar non-linear function D2P (s), whose root is the shape
parameter, D2P (σ) = 0. The computation of that function is as follow:

1. Compute m∗2P−1(s) = A−1
2P−1(s)×m2P−1;

2. Apply the QMOM method to m∗2P−1(s):
a) Apply the Chebyshev algorithm to m∗2P−1 to access recurrence coefficients
aP−1(s) and bP−1(s);

b) Compute eigen-properties of JP (s) to access wP and ξP .

3. Compute m̃2P (s) = ∑P
i=1wi

∫
Ωµ µ

2P δσ(µ, ξi)dµ;

4. Compute D2P (s) = m2P − m̃2P (s).
By construction, and for any s value, the resulting vectors wP and ξP will verify m̃2P−1 =
m2P−1, but only the specific value s = σ will yield m̃2P = m2P , hence D2P (σ) = 0.
Finding σ can then be done by using a root-finding algorithm such as dichotomic or
secant-bounded methods, or the more efficient Ridder’s method as suggested by Nguyen
et al. [2016].

One can notice in this initial approach that it is necessary to compute eigenvalues and
eigenvectors of JP (s) for each tested s value, which is an expensive operation. We then
propose a new method which allows identifying σ at a lower numerical cost.

The new moment-inversion algorithm is based on the fact that, by construction,m∗2P (σ)
is the vector of the first 2P + 1 moments of a convex mixture of P Dirac distributions. It
is well known that such a moment set has a very specific property: it is strictly located on
the boundary of the realisable moment spaceM2P . This space is the set of all moment sets
m2P induced by all possible NDFs defined on Ωµ. Therefore, identifying σ is equivalent
to finding s such that m∗2P (s) is located on the boundary of M2P . By construction, if
s < σ, m∗2P (s) will be within this space, and otherwise, if s > σ, m∗2P (s) will be outside
of the realisable moment space. The question is then to determine whether of moment
set is realizable, which actually comes at really low cost.

If the support of the NDF is Ωµ = R, it is known that the realisability of a moment
set m2P if equivalent to the positivity of the recurrence coefficients bP defined previously
[Chihara, 1978; Favard, 1935]. If the support is the positive half-line Ωµ =]0,+∞[, the
realisability can be checked by the positivity of elements of ζ2P = [ζ1, . . . , ζ2P ]T defined
by

ζ2k = bk
ζ2k−1

, ζ2k+1 = ak − ζ2k (III.53)

with ζ1 = a0 = m1/m0 [Shohat and Tamarkin, 1943]. Finally, if the support is the
bounded segment Ωµ =]0, 1[, a moment set is realisable if each of its canonical moments
p2P = [p1, . . . , p2P ]T is located in ]0, 1[ with

pk = ζk
1− pk−1

, p1 = m1/m0 (III.54)
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Table III.1: Vector of realisability criterion c2P and associated realisability domain C2P
for a vector of 2P + 1 moments on classical supports.

Ωξ c2P C2P
]−∞,+∞[ bP ]0,+∞[P
]0,+∞[ ξ2P ]0,+∞[2P
]0, 1[ p2P ]0, 1[2P

Figure III.9: Steps for the computation of convergence criterion in (a) the original EQ-
MOM moment-inversion procedure [Nguyen et al., 2016] and (b) the new
proposed approach. Inspired by Figure 1 from Nguyen et al. [2016]. CA:
Chebyshev Algorithm. QC: Quadrature Computation.

It is then possible to define a vector of realisability criterion c2P and its associated
realisability domain C2P for each support as summarized in Table III.1. For each s value,
one can compute the vector c∗2P (s) associated to m∗2P (s). If c∗2P (s) ∈ C2P , then s < σ. If
c∗2P (s) /∈ C2P , then s ≥ σ. The situation s = σ is characterised by c∗2P−1(s) ∈ C2P−1 and
c∗2P (s) = 0.

Complete algorithms based on the Ridder’s method to iteratively select new s values to
be tested are detailed in Pigou et al. [2018a], as well as multiple subtleties, in particular to
handle situations where the EQMOM reconstruction does not exist. Computation steps
of both the original objective function D2P (s) and the new vector objective function
are illustrated in Fig. III.9. Note that the computation of ζ2P−1(s) or p2P−1(s) was
also necessary in the approach developed by Nguyen et al. [2016] before the quadrature
computation step to ensure stability.

III.6.3 Measuring the performance gains

The new EQMOM moment-inversion procedure only requires the computation of real-
isability criterion associated to the vector of degenerated moments m∗2P (s) in order to
identify σ. These computations were already performed in the original approach to en-
sure the realisability of m∗2P (s) prior to the quadrature computation and ulterior steps.
Therefore, it is obvious that the new approach will have a lower numerical cost. A strong
focus was made in Pigou et al. [2018a] in quantifying these performance gains.

Performance was measured on randomly generated moment sets though three metrics:
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• Number of Floating-Point Operations (FLOP) required for the whole moment-
inversion procedure;

• Number of tested s values before convergence is reached and σ is identified;

• CPU runtime for each call to the procedure.

Both the original and new approaches have been implemented in MATLAB [2016]. All
source codes used for these comparisons are available as Supplementary Data of Pigou
et al. [2018a] along with the complete methodology.

In terms of computational cost, Table III.2 details the reduction of required FLOP
per call to the moment-inversion procedure for five kernels, out of the six available. It
is shown that the higher the order of the reconstruction, the more significant the gain
provided by the new procedure, ranging from about 60% for P = 2 up to 92% for P = 5.
This significant improvement of EQMOM can be attributed to two phenomena.

Table III.2: Gain in FLOP when using the new EQMOM moment-inversion procedure.
P = 2 P = 3 P = 4 P = 5

Gauss 59.1%±12.3% 84.2%±3.5% 87.9%±2.5% 88.0%±13.1%
Laplace 64.2%±10.7% 87.5%±2.7% 91.0%±1.7% 91.6%±8.9%
Log-normal 58.9%±20.0% 85.6%±5.8% 89.1%±4.3% 93.3%±3.5%
Gamma 58.2%±18.8% 82.1%±7.3% 85.7%±6.8% 91.6%±5.4%
Weibull 67.7%±15.1% 87.4%±5.1% 90.0%±4.2% 94.2%±3.6%

The first one is detailed in Table III.3 which presents the reduction in the number of
iterations to reach the convergence on σ. This reduction is mainly due to the fact that
in the moment-inversion procedure proposed by Nguyen et al. [2016], if a moment set
m∗2P−1(s) happens not to be realisable, the objective function D2P (s) is set to an arbi-
trarily high negative value such as −10100. Using arbitrary value in root-search algorithm
slows down the convergence as it leads to a non optimal choice for the next tested value.
On the opposite, the way the new procedure makes use of all elements of c2P (s), one
after the other, prevents the need of such arbitrary values and therefore allows reaching
a converged state in a few iterations.

Table III.3: Reduction in number of tested s values when using the new EQMOM moment-
inversion procedure.

P = 2 P = 3 P = 4 P = 5
Gauss 8.6%±27.7% 40.9%±17.7% 54.2%±12.8% 53.0%±55.2%
Laplace 8.6%±28.3% 41.1%±17.6% 54.3%±12.7% 53.2%±54.4%
Log-normal 8.8%±45.9% 21.9%±32.8% 30.5%±27.0% 49.5%±23.8%
Gamma 15.5%±38.2% 24.7%±31.1% 34.9%±30.1% 57.2%±24.9%
Weibull 26.3%±35.0% 27.2%±30.2% 32.4%±28.1% 54.0%±25.8%

The second reason for the net decrease of computational cost was expected and is
related to the fact that in the former approach, the quadrature computation is performed
in almost each iteration loop. More specifically, this step is called if m∗2P−1(s) is happens
to be realisable. In the new approach, the quadrature computation is not required any
more to identify σ. It is only performed once when σ is identified to obtain wP and ξP .



104 population balances for biological systems

We could not find a moment set for which the former approach was faster than the new
one. Note that only randomly generated sets were used for the comparison. Therefore,
the benefits of this new EQMOM version are beyond the specific application case of
bioreactors modelling and should benefit all communities using this method.

Moreover, we observed an unexpected yet appreciable feature of the new approach: its
stable –bounded– numerical cost. Figs. III.10 and III.11 show the raw and normalized
distributions of floating point cost for the Gauss and Log-normal kernels with P = 4. In
both example, the raw distribution shows a lower numerical cost for the new approach
as stated previously. Normalized distribution shows that the standard-deviation of the
distribution of numerical costs is lower for the new approach. This is shown on two
examples but this has been observed for all kernels and orders. This lower variance in
numerical cost is especially marked for EQMOM kernels defined on Ωµ =]0,+∞[. The
fact that the numerical cost is more consistent from one moment set to another will be
particularly beneficial to facilitate load-balancing in highly parallelized simulations, for
instance for PBE-CFD coupling.
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Figure III.10: Distribution of numerical cost (FLOP) over 104 calls to moment-inversion
procedures with Gauss-EQMOM and P = 4.

Figure III.11: Distribution of numerical cost (FLOP) over 104 calls to moment-inversion
procedures with LogN-EQMOM and P = 4.
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III.7 Reducing the 5-D Population Model to a 1-D treatment

This chapter mainly focused on numerical methods that suit mono-dimensional Popu-
lation Balance Models. However, Chapter V will describe the simulation of industrial
cultures of S. cerevisiae, whose metabolism is described by accounting for five dynamic
biological properties (see Eq. (III.12)). Accounting for multi-variate PBEs for biological
systems is actually one of the goal of a project carried out by Quedeville et al. [2018] in
parallel to this PhD thesis. For now, we will need to simplify the treatment of the 5D
PBE in order to be able to apply 1D methods.

We propose to simplify the PBE treatment by analysing the involved time-scales. The
PBM allows tracking the two-way coupling between physical (concentration) heterogene-
ity with biological heterogeneity. Therefore, we propose to first analyse time-scales asso-
ciated to concentration fluctuations as perceived by micro-organism against time-scales
associated to the evolution of their biological properties.

We first remind that, in industrial bioreactors, order of magnitudes for meso and macro-
mixing time scales are respectively about 0.1 to 1s and 10 to 100s [Delafosse, 2008]. The
first four biological properties described in the S. cerevisiae metabolic model (µ(b)

G , µ(b)
E ,

µ
(b)
A and ϕ

(b)
O ) evolve over time with a characteristic time-scale T ≈ 1h (see Table II.5).

Therefore, we can infer from these time-scales that the slow biological regulations that
occur to adapt these biological properties will act as a low-pass filter. The distributions
of growth and oxidative capacities will be mainly homogeneous in a large fermenter.

Moreover, Chapter V will focus on the simulation of substrate-limited fedbatch cultures.
In short, this implies that while glucose concentration will locally be high at the feeding
point, most of the fermenter volume will be depleted in terms of glucose. Therefore,
most of the time cells will be in a poor environment and will go through high-glucose
concentration areas every few minutes (circulation time) for a few seconds (mean residence
time in the feeding area). In these conditions, we can expect the distribution of growth
capability on glucose µ(b)

G to be nearly monodispersed at low values.
The conclusion of this first analysis is that, whilst growth and oxidative capabilities

are dynamic properties, it is most likely not required to track their distribution in time
and space. The tracking of mean population values might be sufficient.

On the other side, the glycolytic stress σ is a peculiar property. In Chapter II, we
modelled its evolution such that

• in stressing (high glucose concentration) environment, the stress increases with a
time-scale T (u)

σ ≈ 1s;

• in non-stressing environment, the cell recovers from stress with a time-scale T (d)
σ ≈

1min.

Therefore, while other properties are almost unresponsive to the occasional exposition to
high glucose concentrations in the feeding area, the stress σ will be strongly impacted.
A cell travelling in a substrate-limited fedbatch culture will be exposed to the stressing
environment of the feeding area for a few second which will be sufficient for its stress level
to increase significantly. Multiple passes through this area are separated, in mean, by the
fermenter circulation time (≈ 1min) which allows for a recovery from previous stressing
events. Depending on trajectories of each cell, areas where recently stressed cells will
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cross the path of unstressed micro-organisms will exist. Therefore we can a priori expect
a strong effect of the stress heterogeneity over the biological population.

To account for the dynamic evolution of mean growth and oxidative capabilities, along
with the stress heterogeneity, we may simply track uncoupled moments of the distribution
n(p̂). Let theses moments be defined as

mk1,k2,k3,k4,k5 =
∫

ΩµG

∫
ΩµE

∫
ΩµA

∫
ΩϕO

∫
Ωσ
µk1
G µ

k2
E µ

k3
A ϕ

k4
O σ

k5dσdϕOdµAdµEdµG. (III.55)

We will track following moments of the distribution

M =



m0,0,0,0,0
m1,0,0,0,0
m0,1,0,0,0
m0,0,1,0,0
m0,0,0,1,0
m0,0,0,0,1

...
m0,0,0,0,Nmσ


=



XL

µ̃
(b)
G XL

µ̃
(b)
E XL

µ̃
(b)
A XL

ϕ̃
(b)
O XL

σ̃XL
...

m0,0,0,0,Nmσ


(III.56)

with Nmσ the number of moments tracked along the stress direction to account for the
heterogeneity of σ.

From these moments, we will produce a quadrature rule formed by weights wQ =
[w1, . . . , wQ] and vectors of properties p̂Q = [p̂1, . . . , p̂Q] such that

∫
Ωp̂
f(p̂)n(p̂)dp̂ ≈

Q∑
i=1

wif(p̂i). (III.57)

Vectors of properties p̂i are defined as

p̂i =



µ̃
(b)
G

µ̃
(b)
E

µ̃
(b)
A

ϕ̃
(b)
O

σi

 =


m1,0,0,0,0/m0,0,0,0,0
m0,1,0,0,0/m0,0,0,0,0
m0,0,1,0,0/m0,0,0,0,0
m0,0,0,1,0/m0,0,0,0,0

σi

 (III.58)

and wQ and σQ = [σ1, . . . , σQ] are the weights and nodes of a quadrature formed from the
vector of moments [m0,0,0,0,0,m0,0,0,0,1, . . . ,m0,0,0,0,Nmσ ] using either QMOM or EQMOM
method.

III.8 Conclusion

In order to account for the heterogeneity of cell-attached properties in the modelling of
bioreactors, the Population Balance Model approach has been selected to facilitate the
coupling with the classical mass-balance based modelling framework of reactors in chem-
ical engineering. PBMs are compatible both with Computational Fluid Dynamics, CMA
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and 0D hydrodynamic model which makes this approach compatible with the modelling
of all bioreactor scales.

Population Balance Equations can be solved using either sectional –or class– methods
or moment methods. The former are more intuitive and constitute a direct resolution
of the equation, at the cost of high number of resolved variables. Therefore, methods
of moments have been assessed in order to significantly reduce the size of simulations.
Multiple methods to provide closure in moment formulations have been implemented
and tested against the class method, these were QMOM, EQMOM and the Maximum
Entropy approach. MaxEnt was found to be the most accurate of all methods, but its
lack of stability makes this numerical method unsuited for the simulation of large-scale
biological cultures where any numerical failure compromises the integrity of the whole
simulation. QMOM is the fastest of all three methods, but requires twice has much
resolved moments as EQMOM to reach a similar accuracy and cannot provide point-wise
evaluation of the NDF. Therefore, EQMOM has been favourably selected as the best
suited method. Its proved to be accurate and stable with a reasonable numerical cost.

EQMOM has been developed quite recently [Yuan et al., 2012] and has been improved
over time [Madadi-Kandjani and Passalacqua, 2015; Nguyen et al., 2016; Passalacqua
et al., 2017]. Using this method and researching the mathematical fundamentals of meth-
ods of moments led to the discovery of a new procedure to solve the EQMOM moment-
inversion problem. This implies that a new version of EQMOM is now available to whom
may be interested in faster computations based on this method [Pigou et al., 2018a].

While Chapter II focused on modelling bioreaction rates for E. coli and S. cerevisiae,
the current Chapter detailed Population Balance Equations for both micro-organisms.
Thanks to these, and to the selection of suited numerical methods, previously developed
metabolic models can now be applied in dynamic heterogeneous systems at reasonable
computational costs.



IV
M O D É L I S AT I O N D E L ’ H Y D RO DY N A M I Q U E AU X G R A N D E S
É C H E L L E S

Résumé

Les Chapitres II et III se sont concentrés sur la modélisation de la phase biologique.
Désormais, des modèles sont disponibles pour décrire le comportement métabolique de
micro-organismes soumis à des perturbations, ainsi que des méthodes numériques pour
intégrer ces comportements à l’échelle d’une population. Afin d’appliquer ces modèles à la
simulation de fermenteurs industriels, un aspect manquant est celui de l’hydrodynamique
de ces systèmes. Savoir comment les phases gaz et liquide circulent dans un bioréacteur
est en effet un pré-requis pour prédire le transport des espèces dissoutes (substrats, sous-
produits, . . . ), le taux de transfert des espèces gazeuses (oxygène, dioxyde de carbone,
. . . ) et le transport de la phase biologique.

Appliquer directement des méthodes expérimentales sur les bioréacteurs industriels
pour obtenir les champs de vitesses et la distribution spatiale des deux phases semble
difficile, voire impossible, et serait particulièrement onéreux. L’outil alors le plus adapté
est la Mécanique des Fluides Numérique (CFD) qui permet de prédire l’hydrodynamique
dans les systèmes de grande échelle, seulement à partir de leur géométrie, des conditions
opératoires, et du choix de modèles adaptés à la description de cuve agitée gaz-liquide. Au
cours de ce travail, deux logiciels de CFD ont été mis en œuvre. La suite applicative AN-
SYS Workbench a été utilisée pour définir la géométrie d’un fermenteur industriel, pour
générer des maillages, et pour effectuer des simulations sous ANSYS Fluent basées sur
une approche pseudo-stationnaire. NEPTUNE CFD, un logiciel développé par les princi-
paux acteurs de l’industrie nucléaire civile française (CEA, EDF, FRAMATOME, IRSN),
a été utilisé pour effectuer des simulations plus avancées. Celles-ci sont basées sur une
approche instationnaire à maillage tournant en intégrant de nouvelles modélisations pour
décrire les interactions gaz/liquide, en particulier à fort taux de gaz. Le coût numérique
important de ces simulations instationnaires a nécessité la mise en oeuvre de calculs
haute performance sur supercalculateurs. Cela peut, d’une certaine manière, sembler en
contradiction avec l’objectif principal de cette thèse de parvenir à simuler des cultures
biologiques industrielles de manière rapide et peu coûteuse.

Après avoir détaillé le fermenteur industriel à simuler et les simulations CFD associées,
ce chapitre développe une analyse de temps caractéristiques. Il est ainsi montré que,
bien qu’une résolution spatiale fine soit requise pour les simulations CFD, le couplage de
l’hydrodynamique avec la modélisation de la phase biologique ne requiert pas une telle
résolution. Au contraire, une description spatiale fine engendrerait des coûts computa-
tionels prohibitifs et contraindrait fortement les pas de temps utilisés pour les simulations.
Ainsi, nous proposons d’effectuer le couplage des modèles biologiques (métabolique et bi-
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lan de population) avec l’hydrodynamique dans une approche par compartiments. La
dernière section de ce Chapitre se concentre donc sur la méthodologie employée pour
déduire un modèle de compartiments à partir des résultats de simulations CFD. Cette
méthodologie, basée sur l’exploitation de données au format Ensight Gold exportable par
ANSYS Fluent et NEPTUNE CFD, est développée pour intégrer les champs de vitesse
aux frontières entre les compartiments, et les champs scalaires (fractions volumiques,
variables caractéristiques de la turbulence) sur le volume de chaque compartiment. Lors
de l’implémentation de cette méthodologie, nous avons observé une erreur résiduelle non
négligeable qui, non résolue, induit un schéma de transport non conservatif. Dès lors, nous
proposons une procédure basée sur une optimisation multi-variables et multi-objectifs
pour corriger cette erreur et obtenir une modélisation conservative de l’hydrodynamique
des bioréacteurs industriels.
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Summary

Chapters II and III focused on the description of the biological phase. Now models are
available to describe the metabolic behaviour of micro-organisms subjected to perturba-
tions along with numerical method to integrate these behaviours at the population-scale.
In order to integrate these models in simulations of industrial fermenters, the remaining
aspect is that of hydrodynamics. Knowing how gas and liquid phases flow in the system
is indeed required to predict the transport of dissolved species (substrates, by-products,
. . . ), the local transfer rate of gases (oxygen, carbon dioxide, . . . ) and the transport of
the biological phase.

Using directly experimental methods in industrial fermenters to obtain the knowledge
of fluid velocities and spatial distribution of both phases is difficult, if not impossible,
and would be prohibitively expensive. The most suited tool is the Computational Fluid
Dynamics which allows predicting large-scale hydrodynamics solely from the system ge-
ometry, operating conditions, and the choice of suitable models to describe gas-liquid
turbulent flows in a stirred tank reactor. Over the course of this work, two CFD software
have been used. The ANSYS Workbench tool-suite has been employed to define the
system geometry, generate meshes, and to perform pseudo-stationary simulations using
ANSYS Fluent. NEPTUNE CFD, a software developed by the main actors of French
civil nuclear industry (CEA, EDF, FRAMATOME, IRSN), has been used to perform
more detailed simulations. They used an unsteady moving-mesh approach and new mod-
els for the description of gas-liquid interaction at high gas flow rates. The numerical
cost of these unsteady simulations required the use of supercomputing resources, which
somehow contradicts the goal of performing fast –low-cost– simulations for industrial
fermentations.

After having detailed the considered industrial set-up and associated CFD simulations,
the current Chapter develops a time-scale analysis. While fine CFD simulations are re-
quired to access hydrodynamics in industrial bioreactors, it is shown that the coupling
with biological models does not require the spatial resolution of CFD simulations. Ac-
tually, this spatial resolution would induce a prohibitively high computational cost and
would enforce a limiting time-step for simulations. Therefore, we propose to perform the
coupling of biological (metabolic and population balance) models with a Compartment
Model.

The last part of this Chapter then focuses on describing how to obtain a compartment
model starting from CFD results. A methodology, based on the Ensight Gold file format
which can be exported from both ANSYS Fluent and NEPTUNE CFD, is developed
to integrate velocity field over contours of compartments, and phase fraction fields over
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compartment volumes. When implementing this methodology, we noticed non negligible
residual error on obtained compartment models. If not resolved, this would lead to non-
conservative transport schemes. Therefore, a procedure based on multi-objectives multi-
parameter optimisation is proposed to fix this residual error and enforce a conservative
hydrodynamic model for large-scale bioreactors.
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IV.1 Introduction

The modelling of bioreactors has often been limited to either homogeneous descriptions
of the system where no gradient are considered, or to heterogeneous descriptions where
biological complexity is left apart (see I.8). Only few attempts were made to handle both
biological heterogeneity and metabolic complexity within a unified modelling framework
that could be applied to all bioreactor scales.

In order to achieve this goal, the Euler-Euler-PBE gas-liquid modelling framework
has been selected. It allows integrating biological heterogeneity described by Population
Balance Equations (PBEs) (see Chapter III) and metabolic models (see Chapter II) as
source/sink terms in mass balance equations. Depending on the scale of the reactor, and
on the comparison between mixing and reaction/transfer/adaptation characteristic times,
the system will either be homogeneous or heterogeneous with large-scale or local-scale
gradients. Depending on the situation, the conservation equations will require to be
written over control volumes defined with different length scales. Let Ck be a vector of
quantities expressed per unit of volume of the phase k, mass balance equations on this
quantity can be:

• For homogeneous systems of volume V

∂〈αk〉VCk

∂t
= Sk (IV.1)

• For heterogeneous systems with large-scale gradients, modelled by Compartment
Model Approach (CMA)

∂〈αk,i〉ViCk,i

∂t
=

NC∑
j=1

Q
(k)
j,i Ck,j −Ck,i

NC∑
j=1

Q
(k)
i,j + Sk,i (IV.2)

• For heterogeneous systems with short-range gradients, approached by Computa-
tional Fluid Dynamics (CFD)

∂αkCk

∂t
+ ~∇ ·

(
αkCk~uk − ~∇ (αkDk ◦Ck(~x, t))

)
= Sk (IV.3)

αk is the local phase fraction and 〈αk〉 is its mean value over a control volume. Subscripts
i and j denote variables attached to the i-th or j-th compartment in a compartmental
approach with NC compartments.
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Elements of Ck may correspond to liquid-phase concentrations of oxygen, glucose, ac-
etate, . . . (kg/m3

L), to gas-phase concentrations of oxygen, carbon dioxide, or other gaseous
compounds (kg/m3

G) but also, for the treatment of PBEs to class-attached biomass con-
centrations (kgX/m3

L) or to moments of the distribution of biological properties (unit
depending on moment order and property unit). The compatibility of models and nu-
merical methods developed in Chapters II and III, with these transport equations, is
then straightforward. Sk is the vector of source/sink terms associated to each quantity
tracked in Ck and can account for mass transfer, reaction, or adaptation/redistribution
of biological properties as defined in previous chapters.

Note that the homogeneous modelling is a simplification of a compartment model with
a single compartment (or actually, that CMA is an extension of homogeneous models).
Therefore, in this chapter we only consider CMA and CFD approaches. Therefore, two
questions arise when a specific bioreactor has to be simulated:

• Which approach should be selected between CMA and CFD for the coupling of
transport with bioreaction?

• How to access phase presence and velocity fields (αk(x) and ~uk(x) for CFD, εk,i and
Q

(k)
i,j for CMA)?

As part of this project and in relation with industrial interests of Sanofi, a specific
application case was selected for the whole modelling framework and simulation work-
flow. The presentation of this application will drive the current chapter by illustrating
the specific questions that occurred and how they have been tackled to obtain a large-scale
hydrodynamics modelling.

First, the industrial bioreactor is briefly described in section IV.2 along with operating
conditions. Considering the size of the system, and the culture mode, it will be made clear
that the bioreactor will never be strictly homogeneous and that heterogeneity must be
accounted for. Therefore, CMA or CFD description of transport will be required, which
in turn requires the description of velocity fields. As no sufficient experimental data is
available on that industrial geometry, numerical computations of velocity fields are a re-
quirement. CFD simulations are thus presented in section IV.3. Section IV.4 focuses on
determining whether the high spatial accuracy achieved in CFD simulations is required
for the coupling with biological models. A comparison of time-scales associated to the bio-
logical phase and to the CFD transport scheme will show that the CMA approach is more
efficient to perform the coupling between transport and biological reactions/adaptation.
Therefore a methodology for converting CFD results into Compartment Models is pre-
sented in section IV.5.

IV.2 Production-scale fermenter

IV.2.1 System geometry

The study of bioreactor modelling and simulation has been applied to an industrial-scale
fermenter of undisclosed volume. This vessel is equipped with three turbines, whose
specifications may not be disclosed for confidentiality reasons. The bottom impeller is a
6-blade radial turbine, responsible for gas dispersion. The other two impellers are 3-blade
turbines leading to an hybrid radial and pumping-up axial flow, whose goal is to favour
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Figure IV.1: Simplified geometry of the considered industrial large-scale bioreactor. 6-
blade Rushton turbines are displayed in place of actual turbines.

large-scale mixing and gas dispersion. Central vortex is prevented by three baffles. An
incomplete geometry, where actual impellers are replaced by Rushton turbines, is shown
in Fig. IV.1. The fermenter dimensions are undisclosed. Gas is injected at undisclosed
location.

IV.2.2 Operating conditions

The goal of the study and of simulations presented in Chapter V is to assess the effect of
stirring speed and gas flow rate on observed metabolic dysfunctions of the baker yeast (see
Chapter II). Therefore, CFD computations will be performed for two sets of operating
conditions summed up in Table IV.1.

Table IV.1: Operating conditions to be simulated. Normalized by Operating Condition 1
for confidentiality reasons.

Operating condition 1 Operating condition 2
Impeller rotation speed 1 1.4
Gas flow rate 1 1.85
Liquid volume 1 1

This fermenter is used for fedbatch cultures. This implies that the liquid volume
increases over-time during the course of the fermentation process which spans several
days. Instead of solving hydrodynamics over such a long period, it has been decided
to perform pseudo-stationary simulations of the overall system at an operating point
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corresponding to an undisclosed liquid volume. This point corresponds to a specific time
in the fedbatch process, associated to a specific biomass concentration and substrate
feeding rates which will be used for simulations in Chapter V.

IV.3 CFD simulations

IV.3.1 Goal and constraint on bioreactor hydrodynamic computations

Leaving aside all biological considerations and on a strictly hydrodynamics point of view,
the numerical simulation of industrial fermenters poses multiple challenges.

The first one comes from the geometric complexity of these systems. In order to
monitor the process, to control temperature and pH or to allow injection of gas and
liquid sources of feeding material, bioreactors are filled with numerous apparatus which
can locally affect the circulation of fluids.

The second aspect is the presence of macro-instabilities. Large-scale bioreactors are
operated in turbulent flow regime which implies small scales for velocity fluctuations,
while the overall system is large. The continuous stirring also induces periodic fluctuations
of velocity fields associated to the cyclic movement of turbines. Solving simultaneously
small and large scales poses a numerical challenge.

A third source of complexity originates from physical properties of culture broth. The
presence of high cell concentrations increases the fluid viscosity. This viscosity is even
more significantly increased locally around the glucose feeding point if concentrated syrup
is directly injected in the system. Moreover, the numerous chemical and biological species
in the culture broth influence the gas-liquid surface tension.

Finally, a fourth challenge comes from the gas-liquid aspect of these systems. Indeed,
high gas flow rates applied to the considered fermenter prevent the use of spargers to
disperse gas in the system. Instead, an exhaust-pipe injects the gas and the bottom
turbine is responsible for breaking gas pockets into dispersed bubbles. This implies that
a correct description of the gas-liquid hydrodynamics requires handling both a continuous
gas phase under the bottom turbine, a dispersed gas phase carried by the liquid, as well
as breakage and coalescence phenomenon which will affect the distribution of bubble sizes
and shapes. Note that breakage and coalescence will be impacted by the local evolutions
of viscosity and surface tensions as pointed out in the third consideration.

Overall, bioreactor hydrodynamics is a complex topic indeed. Nevertheless, a per-
fect description of these complexities will not be required for the upcoming coupling of
transport by fluids with biological reactions. The hydrodynamic description will then be
simplified by estimating whether each aspect is expected to have a significant effect on the
overall coupling. Said otherwise, we will only describe phenomenon whose consequences
are perceived by the biological modelling, both in terms of metabolism and of biological
adaptation.

IV.3.2 Simplifying the hydrodynamics modelling

This thesis is not focused on performing complex –state-of-the-art– simulations of in-
dustrial fermenters hydrodynamics. All previously listed aspects do have an impact on
overall bioreactor performances, but quantifying these impacts requires describing all phe-
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nomenon, including biological-phase related aspects, with the same high accuracy and
at the expense of inaccessible numerical cost. Therefore, we focused on obtaining rough
hydrodynamics, both in terms of velocity field and in terms of spatial distribution of the
gas phase.

Having the correct order of magnitude for these variables (velocities and phase fractions)
will yield correct meso and macro-mixing times, as well as local oxygen transfer rate.
These in turn will impact the biological model, and allow a reverse coupling between large-
scale gradient/local substrate availabilities, biological state and metabolic behaviours.

To facilitate CFD simulations while preserving meso/macro-mixing time-scales, the
fermenter geometry has been simplified to its bare minimum. All small elements that
only slightly disturb the flow have been removed from the geometry as they only induce
local perturbations that do not significantly influence macromixing and gradients. Fig.
IV.1 illustrates which elements were kept: vessel walls, the three baffles, and the agitator
shaft. Baffles and turbine blades were even more simplified by describing them using a
thin-wall approach, therefore their thickness was not described, which allows for a slightly
coarser meshing and improves the mesh quality in terms of aspect ratios.

In terms of turbulent velocity fluctuations, solving them would require performing
Direct Numerical Simulations (DNSs) where all scales of turbulence are resolved, down
to the Kolmogorov scale, or at least Large-Eddies Simulations (LESs) where only the
smallest –sub-grid– scales are modelled. However, the size of the industrial fermenter
prevents such simulations due to a prohibitive numerical cost. This will not be a major
issue, considering that an accurate description of turbulent velocity fluctuations is not
required in the first place. Indeed, the biological model only responds to potential lack
of substrate due to micro-mixing limitations, and not to actual velocity fluctuations.
Evaluating the flux of substrate available through micro-mixing is feasible using integral
properties of turbulence, such as the kinetic turbulent energy k and the dissipation rate
of that energy ε, in the k−ε Reynolds-Averaged Navier-Stokes (RANS) approach.

It is known that in stirred vessels, the instantaneous velocity field U(~x, t) can be de-
composed into a mean value ū(~x), a periodic perturbation associated to agitation ũ(~x, t)
and chaotic fluctuations associated to turbulence u′(~x, t) [Escudié and Liné, 2004].

U(~x, t) = ū(~x) + ũ(~x, t) + u′(~x, t) (IV.4)

It is clear that the mean velocity will strongly impact meso and macro-mixing and there-
fore large-scale gradients. As stated previously, smallest scales of turbulent fluctuations
are related to micro-mixing and will have an impact on substrate consumption by micro-
organisms and this aspect will be modelled using variables of the k−ε approach in Chapter
V. However, the need for describing periodic fluctuations ũ(~x, t) is more difficult to assess
beforehand. For sake of simplicity, we first used in ANSYS Fluent [2015] the Multiple
Reference Frames (MRF) approach which consists in discarding these periodic fluctua-
tions, in line with the approach used by Haringa et al. [2016] among other examples.
Other simulations using a rotating mesh approach have been performed under an other
software, NEPTUNE CFD [2016], in order to account for these periodic fluctuations of
velocity fields.

Part of this section is edited out for confidentiality reasons.
Due to the breakage of large gas caps, and to classical breakage and coalescence of

dispersed bubbles, strongly poly-dispersed Bubble Size Distributions (BSDs) are expected
in industrial fermenters. Despite the fact that models are available to track this BSD
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Figure IV.2: Illustration of differences between dispersed gas model and Generalized
Large-Interface Model (GLIM) on simple 2D CFD simulations performed
under Neptune CFD. (a) Initial conditions. The green arrow indicates the
source and direction of gas injection. (b) Dispersed model. (c) GLIM model.

through a Population Balance Model approach [Laakkonen et al., 2007; Li et al., 2018],
or to resolve the transport of the interfacial area, we did not integrate these in our
simulations. Instead, we performed simulations by enforcing a constant bubble diameter.

IV.3.3 Momentum exchange between phases

For interaction modelling between gas and liquid phases, we followed general guidelines
of ANSYS Fluent [2015] user guide for bubbly flows. Drag was described using the uni-
versal drag laws for bubble-liquid flows [Kolev, 2007]. This law is applicable to most
gas-flow regimes, and even to non-spherical bubbles, under the condition that the hy-
draulic diameter of the flow domain is significantly larger than the characteristic size of
the dispersed phase, which is here the case. The lift force is modelled using the variant of
Tomiyama [1998] law proposed by Frank et al. [2004]. For stability reasons, virtual mass
force modelling was not enabled in performed simulations.

For simulations that ran under NEPTUNE CFD [2016], we made use of the Gener-
alized Large-Interface Model [Merigoux et al., 2016] which is designed to describe flows
where a phase exists both as continuous pockets and dispersed bubbles [Mer et al., 2018].
This model detects large gas-liquid interfaces by comparing gas fraction gradients to a
threshold value and by adding a special treatment at the interface location. This ensures
preserving the consistency of these large interfaces (large pockets or free surface) which
is otherwise lost when using purely dispersed models. This is illustrated in Fig. IV.2
where a simple 2D set-up is simulated using either dispersed or GLIM modelling. The
free surface consistency is quickly lost using the dispersed modelling (Fig. IV.2b). The
gas pockets predicted by GLIM can be dispersed by turbulent flow which is consistent
with experimental observations of aerated bioreactors [Moilanen et al., 2008].
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Figure IV.3: (a) Mesh of stator zone, discretized using ≈ 300000 hexahedral elements.
Green surfaces represent two out of three thin-wall baffles. (b) Sectional
view of rotor zone mesh, discretized using ≈ 1000000 tetrahedral and prism
elements.
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IV.3.4 Geometry meshing

The same mesh has been used on both ANSYS Fluent [2015] and NEPTUNE CFD [2016].
In order for it to be compatible with MRF as well as rotating-mesh approaches, two zones
were defined: a rotor encompassing the agitator shaft, and a stator. These meshes are il-
lustrated on Fig. IV.3. The stator zone could be entirely meshed by hexahedral elements.
The complex geometry of impellers prevented such a regular meshing and therefore re-
quired an unstructured tetrehadron-based meshing. Zones in-between impellers were
meshed using prism elements. A similar quadrangle-based mesh was enforced on the
contact surface between rotor and stator meshes.

IV.4 Time-scale analysis

As stated previously, the instantaneous velocity field U(~x, t) can be decomposed into a
mean value ū(~x), a periodic fluctuation ũ(~x, t) and a chaotic fluctuations u′(~x, t).

Turbulent fluctuations are filtered by the RANS approach which is closed by applying
the k−ε model for the transport and dissipation of turbulent kinetic energy. Moreover,
the periodic perturbation is filtered out too by the MRF approach which models the
system as pseudo-stationary. Therefore, smallest time-scales of the hydrodynamics have
not been resolved by previously described CFD simulations. Chapter V describes how
micromixing and turbulent fluctuations can be accounted for in the coupling of transport
with biological reaction.

If only mean velocity fields have been solved, and therefore only meso and macro-
mixing are well described by these fields, one can wonder whether the resolution of the
“fine” mesh used for CFD simulations is still required for the coupling of transport with
metabolic and population balance models described in Chapters II and III. The smallest
time-scale associated to these models is the one associated to the increase of glycolytic
stress, σ, if cells are exposed to environment rich in terms of glucose concentration. This
time-scale was identified to be around 3 seconds. Therefore, in order to correctly resolve
the biological model, the simulation time-step does not need to be significantly lower than
that value.

If the coupling of transport and biological model is directly performed with transport
described by a finite-volume scheme using the CFD mesh, the time integration will have
to respect the CFL condition [Courant et al., 1928]. Let ci be the Courant number
associated to the i-th volume element of the mesh, i ∈ {1, . . . , Nmesh}:

ci = |~u(~xi)|δt
δxi

(IV.5)

with ~u(~xi) the velocity of a phase at the center of the i-th volume element, δt the simula-
tion time-step, and δxi the characteristic length of the volume element. It is well known
that the stability of the transport scheme requires that

max
i

ci ≤ 1

Having obtained a pseudo-stationary velocity field for each phase through the RANS-
MRF approach, it is possible to deduce from this stability condition a maximum time-
step δtmax that should be used to perform coupled simulations within the CFD framework.
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This maximum time-step has been measured using ANSYS Fluent built-in post-processing
tools. The characteristic length δxi was approximated by the cubic root of the i-th
cell’s volume. Obtained maximum time-steps are 2.0ms and 1.5ms for the two operating
conditions presented in Section IV.2.

The time-scale associated to numerical stability of the transport terms is significantly
lower than the smallest time-scale associated to other aspects of bioreactor modelling.
Therefore, keeping the spatial accuracy of CFD simulations is not a requirement to per-
form coupled simulations of transport with transfer, reaction, and biological adaptation.
It will be more efficient to compute a Compartment Model from CFD results as it will
allow to significantly reduce the numerical cost on two aspects.

Typical number of compartments in Compartment Model Approach range from dozens
[Vrábel et al., 1999] to thousands [Delafosse et al., 2014]. This is significantly lower than
the number of volume-elements used for CFD simulations, which was here of 1.2 million
cells. Therefore, a compartment model yields a much lower number of resolved vari-
ables, hence limited memory requirements, and decreases the numerical cost by reducing
the number of calls to the metabolic model (Chapter II) and to numerical methods as
Quadrature Method of Moments (QMOM) or Extended Quadrature Method of Moments
(EQMOM) for the resolution of PBEs (Chapter III).

Moreover, the modelling will be used to perform simulations of long-term biological
cultures. Whether these simulations span a whole culture (hours/days of simulated time),
or attempt to identify a steady or pseudo-stationary state as shown in Chapter V, it will be
necessary to simulate multiple hours of the system. The simulation of 10h of culture with a
time-step limited by the Courant condition of δtmax ≈ 2.0ms would require ≈ 1.8 109 time-
steps. Though being clearly infeasible, we still attempted to perform these simulations
in order to estimate the numerical cost that would be required. These simulations ran on
a computing cluster using 240 allocated CPU cores using the software NEPTUNE CFD
[2016] without accounting for biological heterogeneity (unsegregated approach, see I.6.3),
and by disabling the resolution of RANS and k−ε equations, therefore using a frozen flow
approach. Only mean values for biological properties were tracked, and the metabolic
model was called once per mesh volume-element. This over-simplified modelling, and the
use of significant computing resources, still yield a mean computation time of 1.5s per
time-step. A 10h long simulation would then require about a year of computations. It is
therefore obvious that handling the transport of species carried by each phase within the
framework of CFD simulations is not reasonable, if particular if one expect quick answer
from simulations for an engineering application, and even more if the complete modelling,
integrating biological heterogeneity, is considered.

For all previously detailed reasons, the Compartment Model Approach will be used
to perform coupled simulations in Chapter V. The lower number of compartments com-
pared to the number of mesh elements will decrease both memory and numerical costs.
Moreover, the higher volume of compartments will allow to relax the Courant condition
to higher stable time-steps, thus significantly reducing the total number of time-steps re-
quired. Following sections therefore focus on the computation of a suitable Compartment
Model from CFD results.
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IV.5 From CFD to Compartment Models

IV.5.1 State of the art, constraints and selected approach

The idea of degrading results of CFD simulations to obtain compartment models and
associated flow maps is certainly not new [Bezzo et al., 2003]. It has been successfully
applied to waste-water treatment [Le Moullec et al., 2010] and to bioreactor modelling in
previous works [Delafosse et al., 2010, 2014; Nauha et al., 2018].

Two main approaches exist to perform the compartmentalization of CFD results. The
first one consists in identifying sub-volumes in which some parameters are near constant
through either stochastic or more usually deterministic methods. This approach leads
to compartments of homogeneous turbulence or gas fraction for instance. However, the
shape of these compartments will tend to be irregular and will strongly differ between
operating conditions.

The second approach to obtain a compartment model from CFD is the manual zoning
where geometric bounds of each compartment are defined by-hand. For the simulation
of bioreactors, having regular compartments seems to be a more interesting option for
two reasons. The first one is the easier comparison of simulation results when operating
conditions are modified. For instance, assessing the effect of stirring speed or aeration
rate on the overall culture is easier if one is sure that the compartmentalization was
performed in exactly the same way between simulations (see Chapter V). The second
reason why manual zoning might be more interesting is related to an unexplored idea. If
one wants to integrate varying operating conditions or fluid properties over time such as
a liquid viscosity depending on the biomass concentration, or on a product concentration
(i.e. xanthan production), the approach would consist in

• performing CFD simulations for multiple conditions;

• computing compartment models associated to each CFD simulation;

• dynamically compute a compartment model as a convex mixture of previously de-
fined models.

The last step is by far easier and less error prone if compartment models are defined on
a regular –manual– zoning.

Note that Delafosse et al. [2010] obtained a better agreement in terms of mixing time
between CFD simulations and manual zoning than when automatic zoning was used. This
manual zoning approach has also been favourably selected by Delafosse et al. [2014] and
Nauha et al. [2018]. For all these reasons, this will be the retained approach for following
developments. The question is then to determine the technical solution for computing
the compartment model from CFD results.

By CFD results, we imply results coming from simulation performed either on AN-
SYS Fluent or on NEPTUNE CFD. These could be single-phase simulations or, more
generally for aerated bioreactors, gas-liquid simulations. While we initially aimed at
generating transient compartment model based on time-resolved hydrodynamics, only
pseudo-stationary hydrodynamics are handled by following developments.

To handle results coming from both software, ANSYS Fluent and NEPTUNE CFD,
the selected approach has been to create a code able to read and post-process files in the
Ensight Gold format. Both software can export simulation results in this format, and a
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Figure IV.4: Volume mesh element types allowed by Ensight Gold format. From left
to right: 4-nodes tetrahedron, 5-nodes pyramid, 8-nodes hexahedron and
6-nodes pentahedron.

full documentation of this standard is available [Ensight, 2016]. Following developments
would not have been possible without the help of Dr. Bastien POLIZZI who wrote C++
libraries to handle reading operations on datafile in Ensight Gold format.

IV.5.2 Numerical integrations

Simulation data exported by ANSYS Fluent and Neptune CFD are cell-centered values
of scalar and vector fields. Exported fields are

• Velocity fields ~uG(~x) and ~uL(~x);

• Phase fraction fields αG(~x) and αL(~x);

• Liquid-phase turbulence characteristic variables k(~x) and ε(~x)

The mesh generated in section IV.3 is unstructured and contains following volume element
types illustrated in Fig. IV.4: tetrahedron, pyramids, pentahedron and hexahedron.

The mesh being unstructured and mostly irregular, the challenge is to identify a method
to automatically integrate scalar fields on zone volumes, and vector fields on zone bound-
aries to obtain the compartment model, as illustrated in Fig. IV.5.

Similarly to Delafosse et al. [2014], we chose to define compartments on a regular
cylindrical grid. Let rmin = 0, rmax, amin = −π, amax = +π, zmin and zmax be respectively
the radius, angle and height extents of the system. This cylindrical domain will be split
into Nr, Na and Nz regular divisions along each component. Therefore, the total number
of compartments will be NC = Nr ∗Na ∗Nz. This compartmentalization is illustrated in
Fig. IV.6.

The integration procedure has hardly been documented in previous compartmental-
ization works. Therefore, we detail hereafter the chosen approach which is numerically
efficient and is compatible with complex geometries to compute mean values of scalar
fields over each compartment volume, and flux of velocity fields over inter-compartment
limits.
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Figure IV.5: Steps of the compartmentalization procedure of CFD results.

Figure IV.6: Compartmentalization of the industrial geometry. (left) top view, (middle)
side view, (right) interior view.
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Figure IV.7: Illustration of splitting procedure to 2D meshes. Note that the initial mesh
(left-hand side) contains both triangles and quadrangles, some of them lo-
cated in multiple compartments. The final mesh (right-hand side) contains
only triangles strictly located within a single compartment.

Mesh splitting

Some authors used natural limits of mesh elements to perform the integration of fields.
This was done by identifying neighbour cells whose center lie in different compartments,
and then integrating vector fields over the facet joining these cells. While being seemingly
straightforward, this approach has a main numerical drawbacks: it requires the knowledge
of the mesh associativity, i.e. which mesh elements are connected by shared vertices
and facets. This information is not directly available in Ensight Gold geometry files.
Associativity can be reconstructed at moderate cost if the whole geometry is meshed in a
unique block (or “part’ is the Ensight Gold format terminology), but the cost significantly
increases when multiples parts constitute the complete mesh. As explained in Section
IV.3.4, the simulation of stirred reactors requires to mesh independently rotor and stator
zones, which translates as two different parts when data is exported to Ensight Gold
format. Moreover, the accuracy of this approach can be questioned as soon as the mesh
is strongly irregular.

In order to obtain low-cost and accurate compartmentalization even for complex geom-
etry, we chose to perform a mesh splitting. The basic idea is to split each mesh-element
located on a compartment limit into multiple sub-elements whose vertices are all located
into a single compartment or strictly on a compartment limit. This is illustrated in Fig.
IV.7 for a 2D-mesh where at-limit elements are split into sub-elements strictly located in
each compartment. This idea is easily generalizable to 3D-meshes too by splitting volume
mesh elements into sub-elements.

To facilitate the splitting operation of mesh-elements by surfaces that limit compart-
ments, we first reduce all types of elements to tetrahedron. This is illustrated by Fig.
IV.8 for element types handled by the Ensight Gold format shown in Fig. IV.4. Indeed,
splitting in two a hexahedron, pentahedron or pyramid can yield complex shapes, how-
ever a tetrahedron can only be split by a plane into sub-elements that are tetrahedrons,
pyramids or pentahedrons. These elements can in turn be re-divided into tetrahedrons
allowing for an easy iterative procedure.
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Figure IV.8: Splitting of volume elements from Fig. IV.4 into tetrahedrons.

Therefore, one only needs to

1. define how to split pyramids, pentahedrons and hexahedrons into tetrahedron;

2. identify tetrahedrons which are located in multiple compartments;

3. compute coordinates of sub-parts of the tetrahedron which are located in each
compartment.

The first step is straightforward and is illustrated by Fig. IV.8. The second step is
easily done by checking whether all vertices of a tetrahedron are located in the same
compartment. If at least one vertex is in a different compartment than others, then
the tetrahedron needs to be split into two sub-volumes. Finally, the third step is only a
matter of detecting which edges cross the compartment limits, computing the intersection
coordinates and forming sub-elements.

Note that in this approach, one only needs to know coordinates of vertices for each
initial mesh element. This information is directly available in geometry files in Ensight
Gold format. Iterating over mesh elements, and splitting them into sub-volumes is only
a matter of simple linear algebra and computations of edge/surface intersections.

These steps have been implemented into a non-optimized and unparallelized C++ code.
When applied to the industrial bioreactor mesh, with a 432 compartments (Nr = 6,
Na = 6, Nz = 12) model as shown in Fig. IV.6, the mesh splitting procedure only
required about 3 seconds on a mid-end desktop while an associativity based approach
required multiple minutes, which illustrates the efficiency of this approach.

After the mesh-splitting step, all facets located at the limit between compartments
are triangles and should have been identified. Similarly, all volumes elements should be
tetrahedrons fully located in each compartment. Therefore, integrating vector and scalar
fields will easily be done as explained hereafter.

As illustrated in Fig. IV.5, applying the manual zoning on a complex geometry can yield
compartments that do not contain any volume element (compartment n°33) or partially
filled compartments (n°1, 9, 17, 25 and 34). Therefore, the actual volume of compartments
will not be defined by their geometric boundaries shown in Fig. IV.6, but will rather
be the sum of elementary volumes of each tetrahedron contained in each compartment.
By automatically discarding empty compartments, the developed compartmentalization
approach can be applied to any complex geometry.
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Integrating scalar fields

Let NT,i be the number of tetrahedrons in the i-th compartment (i ∈ {1, . . . , NC}), VT,i,j
the volume of the j-th tetrahedron associated to that compartment (j ∈ {1, . . . , NT,i}),
and ST,i,j the value of a scalar field at the center of this tetrahedron.

The total volume of the i-th compartment, Vi, is simply defined as the sum of elemen-
tary tetrahedron volumes:

Vi =
NT,i∑
j=1

VT,i,j (IV.6)

Let 〈Si〉 be the volumetric mean value of the scalar field in the i-th compartment, it is
defined as

〈Si〉 = 1
Vi

NT,i∑
j=1

ST,i,jVT,i,j (IV.7)

One main drawback of manual zoning approach is that created compartments might
be strongly spatially heterogeneous in terms of some scalar fields. If one cannot afford to
lose this heterogeneity information because it has a significant impact on other aspects
of the modelling, approaches developed in Chapter III can be reapplied here. Indeed,
it has been observed that methods of moments are efficient when one wants to describe
heterogeneous systems by storing only few information. Let MS,N,i = [MS,0,i, . . . ,MS,N,i]
be moments of the volumetric distribution vi(S) where

∫ S2
S1
vi(S)dS is the sub-volume of

compartment i associated to scalar values in-between S1 and S2. These moments can be
computed by:

MS,k,i =
∫ Smax

Smin
Skv(S)dS ≈

NT,i∑
j=1

SkT,i,jVT,i,j (IV.8)

where Si,min = minj ST,i,j and Si,max = maxj ST,i,j are limits of S values observed in the
i-th compartment. Note that MS,0,i = Vi and MS,1,i = Vi〈Si〉.

Using first few moments of v(S), one can precompute a quadrature rule such that each
nodes of this rule is a sub-volume of the i-th compartment associated to a discrete value
of the scalar field S. This gives access to sub-grid –or sub-compartment– heterogeneity
and helps circumventing the drawback of manual zoning.

The moment approach is suggested as it allows gathering most of heterogeneity in-
formation within a few numerical values, but it is not strictly speaking required as the
volumetric distribution vi(S) is known thank to the small-scale CFD meshing. Therefore,
if multiple uncorrelated heterogeneous fields, say S(1) and S(2), coexist in a compartment,
is is possible to directly post-process the multivariate distribution vi(S(1), S(2)) to obtain
a sub-compartment quadrature.

These developments about sub-grid heterogeneity have not been applied, due to time
limitations in the overall project. However, it is worth noting that when done right, the
compartmentalization process can retain most of useful information obtained through the
expensive CFD computations without even using a high number of compartments.

As stated previously, we exported from CFD simulations multiple scalar fields: local
phase fractions αG and αL and liquid-phase turbulent variables k and ε. Therefore, we
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directly integrated fields of local phase fractions to obtain phase volumes VG,i and VL,i,
and we computed mean turbulence variables 〈k〉i and 〈ε〉i:

VG,i =
NT,i∑
j=1

αGT,i,jVTi,j (IV.9)

VL,i =
NT,i∑
j=1

αLT,i,jVTi,j (IV.10)

〈k〉i = 1
VL,i

NT,i∑
j=1

αLT,i,jkT,i,jVTi,j (IV.11)

〈ε〉i = 1
VL,i

NT,i∑
j=1

αLT,i,jεT,i,jVTi,j (IV.12)

Integrating vector fields

For the simulation of bioreactors, we are interested in computing the flow of each phase
through all faces delimiting compartments, to obtain the volumetric flow rates, Q(k)

i,j ,
required in Eq. (IV.2).

Let S be the surface separating the i-th and j-th compartments and ~n the vector
normal to that surface, oriented toward the j-th compartment. In order to account for
the fact that phases can flow in both directions across the surface, which introduce back-
mixing between compartments, we will distinguish two volumetric flow-rates Q(k)

i,j and
Q

(k)
j,i defined as

Q
(k)
i,j =

∫∫
S
αk max (0, ~uk · ~n) dS

Q
(k)
j,i =

∫∫
S
αk max (0,−~uk · ~n) dS

with αk the local phase fraction of phase k ∈ {G,L}, and ~uk its velocity.
Using the manual zoning described previously, surfaces delimiting compartments are

defined at constant radius, angle or height. Therefore, the normal vector of these surface
are defined as one of the basis vector of a cylindrical coordinate system. Let c ∈ {r, a, z}
be the constant cylindrical coordinate of the surface S, previous definitions of Q(k)

i,j and
Q

(k)
j,i can be simplified into

Q
(k)
i,j =

∫∫
S
αk max (0, uk,c) dS

Q
(k)
j,i =

∫∫
S
αk max (0,−uk,c) dS

where uk,c ∈ {uk,r, uk,a, uk,z} is the component of the phase velocity orthogonal to the
surface S. Vector fields are defined in terms of Cartesian coordinates in Ensight Gold
format, ~uk = [uk,x, uk,y, uk,z]T , and from these values, one can easily deduce components
in terms of a cylindrical coordinate basis uk,r and uk,a; uk,z is left unchanged between
Cartesian and Cylindrical coordinate basis.

r =
√
x2 + y2 uk,r = cos(a)uk,x + sin(a)uk,y
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a = tan−1
2 (y, x) uk,a = −sin(a)uk,x + cos(a)uk,y

where tan−1
2 is the generalization of the tan−1 function which yields angle in-between −π

and +π depending on the quadrant in which the point of coordinates (x, y) is located.
Thank to this simplification allowed by a cylindrical manual zoning, the approximation

of flow-rates is straightforward. LetNt be the number of triangles associated to the surface
S following the mesh-splitting operation, αtn,k and utn,k,c variables attached to the n-th
triangle (n ∈ {1, . . . , Nt}) and Stn its surface. Flow rates are simply approximated as:

Q
(k)
i,j ≈

Nt∑
n=1

αtn,k max (0, utn,k,c)Stn

Q
(k)
i,j ≈

Nt∑
n=1

αtn,k max (0,−utn,k,c)Stn

The remark formulated on the integration of scalar fields is also applicable here for
velocity fields: one could track the distribution of velocity over the surface, for instance by
tracking the moments of that distribution. However, this seems less relevant for multiple
reasons. The first one is that, as detailed hereafter (see IV.5.3), when performing the
integration of velocity fields, we noticed non negligible error on computed flows. If the
first-order integration is vitiated with manifest error, one could question the accuracy of
higher order information about the velocity distribution on the surface. Moreover, the
integration of weighted velocity fields αk~uk only accounts for mean velocity fields as ~uk
is here defined as the Reynolds averaged velocity, and a pseudo-stationary –the MRF–
approach was used in ANSYS Fluent. As previously suggested, integrating periodic and
turbulent fluctuations of velocity fields in the compartment model might be of prior
interest before considering the tracking of high order information on the mean velocity
distribution on inter-compartment surfaces.

IV.5.3 Cleaning error from circulation map

Flows between compartments are more easily handled if stored into a circulation matrix.
Consider the simplified compartment model illustrated in Fig. IV.9. The matrix M is
the circulation matrix associated to this simple compartment model and contains flows
between compartments. The flow on the i-th row and j-th column is the volumetric flow
rate going from the i-th compartment to the j-th. Note that this value contains only
positive values, or null values for unconnected compartments. This matrix M is defined
for both phases but following observations and developments can be applied similarly to
each phase. Therefore, the phase dependency does not appear in following notations.

The integration methodology developed in Section IV.5.2 was applied to steady-state
velocity and scalar fields. Therefore, phases should not accumulate into compartments
and inflows associated to each compartment should balance outflows. Let F (in)

i and
F

(out)
i be the total inflow and outflow associated to the i-th compartment, these can be

computed by summing all elements on the i-th column or row of M :

F
(in)
i =

NC∑
j=1

Mj,i, F
(out)
i =

NC∑
j=1

Mi,j (IV.13)
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Figure IV.9: Illustration of a 6 compartments model and associated circulation matrix.

One would expect that F (in)
i = F

(out)
i , ∀i ∈ {1, . . . , NC}. To check the accuracy of the

computation of flow rates as detailed previously, we measured the relative error ēi on the
flow balance on each compartment, defined as

ēi = 2|F (in)
i − F (out)

i |
F

(in)
i + F

(out)
i

(IV.14)

For both phases, and operating conditions described in Section IV.2, ēi was usually low,
around 1% of numerical error, but could go as high as 25% in some compartments.

The reason why this error is of major importance and must be tackled is that it leads to
a non-conservative transport scheme. If only transport were considered, the total mass
of transported species would not change over-time, but the system would never reach
homogeneity, which is unrealistic. Moreover, the modelling of bioreactors is not limited
to transport but must also account for mass transfer and bioreaction. Therefore, using
a non-conservative transport scheme would lead to an error that would cumulate over
time. To prevent any bias in simulation results, it is of prior importance to “clean” the
circulation map from these imbalances.

The source of the error has not been perfectly identified. It did not seem to come from
a lack of convergence in CFD as pursuing these simulations did not resolve the issue.
The C++ implementation of the integration method could be to blame as it has not been
directly checked against an other code implementing the same approach. However the
software Ensight has been used to manually compute the flow rate imbalance over a few
compartments, and a similar –thought slightly lower– numerical error was again observed.

Consequently, it has been decided to keep the flawed circulation maps M as “raw
material” to produce cleaned circulation maps M ′ by applying a transformation dictated
by the two following constraints:

1. M ′ must be a balanced circulation maps, which translates into errors on each
compartments, ē′i, being close to the machine error under the considered precision.
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2. M ′ should be as close as possible to M . A metric could be to minimize ‖M −M ′‖
while respecting the first constraint.

The first constraint makes M ′ suitable for a coupling with transfer and bioreactions
without cumulating numerical error over time. The second constraint ensures that the
circulation of matter as predicted by CFD computations is conserved, as much as possible,
even if one has to arbitrarily modify the circulation map M .

Let Q′ij be the cleaned flow rates forming the matrix M ′ and wij the correction weights
such that Q′ij = wijQij. This simply translates into M ′ = W ◦M . The problem
of identifying the matrix of correction weights W ∈ RN2

C
+ under the previously defined

two constraints can be translated into the following multi-objective and multi-parameter
optimization problem:

minimize
W∈R

N2
C

+

(1− wij)2, (i, j) ∈ {1, . . . , NC}2

subject to
NC∑
j=1

(wijQij − wjiQji) = 0, i ∈ {1, . . . , NC}

The optimization goal “minimize (1−wij)2” translates the second constraint of chang-
ing M as less as possible by trying to keep correction weights as close as possible from 1.
This is done under the constraint that corrected flows must satisfy the balance of flows
on all compartments.

This optimization system can easily be solved using the “fmincon” function available in
MATLAB [2016] optimization toolbox. This function uses a deterministic linear approach
to find a minimum to the problem, under specified constraints. Note that Jacobian
matrices associated to the vector of minimization objectives, and to the vector of equality
constraints, are easily expressed in terms of wij values which facilitates the identification
of a minimum.

The computation time associated to the minimization process was about a few minutes.
Correction weights identified through this optimization process led to circulation matrices
M ′ for each phase and operating condition that were balanced with an absolute error on
flow balances always lower than 1.8 10−15, which is only 8 time the machine error under
double precision. Note that this value is the maximum observed error, but for most
compartments, this error was even lower. Therefore, the balance constraint is indeed
abided to, thank to the resolution of the constrained minimization problem.

Even though circulation matrix M ′ complies with the balance constraint, the high
dimension of the problem prevents ensuring that the identified minimum is global and
not only local. Therefore, there may exist a better solution to the problem than the
one identified. As illustrated if Fig. IV.10, for all cases the correction weights were kept
close to 1, with a standard deviation of only 4.5%. Highest corrections were around 15%
which we considered to be sufficiently low to maintain macro and meso-mixing times, and
main circulation loops, during the correction process. Therefore, we did not attempt to
improve the correction by verifying whether the identified minimum is global, or only
local. If needed, it will be more efficient to improve the numerical integration of flows
in order for M to be closer from a balanced circulation matrix, rather than trying to
identify the extrema of a high dimension optimization problem.
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Figure IV.10: Distribution of correction weights wij on compartment models associated
to each phase and operating conditions described in section IV.2.

IV.5.4 Conclusion and outlooks on the compartmentalization process

Using previous developments and pseudo-stationnary simulation results from ANSYS
Fluent [2015], the production of a conservative compartment model is a simple two-step
process:

1. Use the developed C++ tool to integrate scalar and vector fields over compartments.

2. “Clean” the obtained circulation maps by solving a multi-dimensional optimisation
problem.

For now, the second step was performed using MATLAB [2016] and functions available in
its optimisation toolbox, but certainly libraries are available to integrate this step directly
in the C++ tool. Obtaining a compartment model now simply consists in defining the
number of compartments along each direction.

For arbitrary reasons, we decided to fix the number of orthoradial divisions to Na = 6,
by simply considering the number of baffles (three) and blades for bottom and top turbines
(respectively six and three blades). From there, we defined the number of radial divisions
Nr = 6 and axial divisions Nz = 12 to preserve similar compartment lengths along each
direction. After the compartmentalization process, we measured the mean residential
time associated to each compartment. Obtained min and max values are 0.281s and 4.31s
for a operation condition 1, and 0.196s and 3.08s for operating conditions 2 (see Table
IV.1). These values being of the same order of magnitude than the smallest time-scale
associated to the biological model (τ (u)

σ = 3s), we considered this compartmentalization
to be sufficient.

Developments related to the compartmentalization process came late over the course
of this PhD thesis. After obtaining a conservative compartment model, focus was quickly
shifted toward coupled simulations presented in Chapter V. Therefore, some aspects
would still require supplementary work. The first aspect, which would not need much
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investment, would be to assess the sensitivity of coupled simulations to the number of
divisions by increasing and decreasing the total number of compartments. The second
aspect lies in the exploitation of CFD results from NEPTUNE CFD [2016].

NEPTUNE CFD [2016] was used to perform unsteady simulations of the fermenter
hydrodynamics. The simulated time of transient hydrodynamic cannot be directly used
to perform simulation spanning a whole fermentation culture (several days). Fields of
velocity, phase fractions and turbulence variables evolve through time and space and can
be decomposed into mean fields, periodic fields, and noise fields. Exploiting them to
obtain a unstationary compartment model would require to filter out noise fields and to
ensure the periodicity of field by enforcing a cyclic pattern over a short period of time
that would be repeated to span days of fermentation culture. This work might require
coupling Proper Orthogonal Decomposition (POD) of these fields [Bergmann, 2004; Liné
et al., 2013] with Fourier transform. These are only raw ideas and would require maybe
a year of dedicated work. In particular, we already observed an unbalance of phase
mass balances with stationary CFD results. This problem will necessarily occur again
with unsteady hydrodynamics, and will be more difficult to tackle considering that the
previous constraint on circulation maps,

NC∑
j=1

Qij −Qji = 0, i ∈ {1, . . . , NC},

would become
NC∑
j=1

Qij(t)−Qji(t) = Vi
∂〈αi〉(t)
∂t

, i ∈ {1, . . . , NC}

which is not a simple scalar problem any-more. A first step would then be to attempt
these developments on liquid-only CFD simulation results. Therefore, the exploitation
of the simulation results database from NEPTUNE CFD [2016] to obtain compartment
models has not been tackled. This database is kept for ulterior exploitation.

IV.6 Conclusion

Large-scale bioreactor always tend to be heterogeneous. This fact is particularly true
for the substrate-limited fedbatch culture which constitutes the application example of
the overall modelling framework developed over this thesis. To account for spatial het-
erogeneity and gradients, one needs to model the transport of species carried by both
phases. This, in turns, requires the knowledge of fluid velocities and spatial distribution
of both phases.

In order to access hydrodynamics information, Computational Fluid Dynamics is the
most suited tool as it gives a good idea of organised flow structures, associated mixing
times and gas dispersion, without other knowledge than the system geometry and op-
erating conditions. Therefore, the considered bioreactor has been simulated using two
software and different approaches to account for the rotating agitator shaft, and to de-
scribe the gas phase.

ANSYS Fluent has been used to perform pseudo-stationary simulations using the MRF
approach. By virtually adding source terms to momentum conservation equation associ-
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ated to centrifugal and Coriolis pseudo-forces in an rotating area, this modelling approach
is used to describe the effect of agitators without actually obtaining a transient hydrody-
namics. In these simulations, the gas injection had to be simplified by not describing a
continuous gas phase at its injection point, to ensure computation stability.

NEPTUNE CFD was used to perform more detailed simulations, by accounting both
for the transient –periodic– effect of agitators on velocity fields through a moving-mesh
approach, and for the presence of both continuous and dispersed gas-phase using the
Generalized Large-Interface Model [Coste, 2013; Merigoux et al., 2016]. Though being
available for future developments related to this work, these simulation results have not
been further exploited due to difficulties associated to the formulation of dynamic com-
partment models.

CFD is a powerful tool to obtain large-scale hydrodynamics, and both used software
allow the resolution of mass balance equation of species carried by phases. These equa-
tions could account for source/sink terms in order to model bioreactions as well as the
evolution of biological properties. Therefore, it could have been possible to integrate mod-
els from Chapters II and III into CFD simulations. However, it has been observed that
performing this coupling within the CFD simulation framework is actually infeasible due
to prohibitively expensive computations. This numerical cost comes from two origins: (i)
the high number of mesh cells in which all variables must be resolved, and for which the
metabolic model must be computed multiple times due to biological heterogeneity; (ii)
the Courant condition [Courant et al., 1928] which enforces a small time-step to ensure
the stability of the transport scheme, while simulations must span dozens of hours of
biological culture. Therefore, the use of Compartment Model Approach seems to be a
more interesting choice to perform the coupling of species transport with other aspects
of the modelling.

Multiple works already focused on using CFD simulation results to form compartment
models. Two main methodologies exist: (i) the automatic zoning, which aims toward
homogeneous compartments in terms of some variables (i.e. turbulent kinetic energy),
and (ii) the manual zoning where compartments are defined by setting arbitrary geomet-
ric boundaries. The second option has been favoured as it will simplify the comparison
between different operating conditions, and was found not to produce significantly differ-
ent results compared to the automatic zoning [Delafosse et al., 2010]. Moreover, manual
zoning is a requirement if one aims at producing dynamic compartment models.

As CFD simulations ran using two different software and with a complex geometry
and associated meshing, specific developments were required to perform the integration
of scalar and vector fields over the manually defined compartmentalization. Both ANSYS
Fluent and NEPTUNE CFD can export results in the same –documented– Ensight Gold
format which enabled the development of a common tool to perform these integrations.
An approach based on mesh refinement –or splitting– has been proposed and successfully
applied to pseudo-stationary CFD results originating from ANSYS Fluent. Numerical
error led to a non-conservative compartment model but this could be easily solved by
a simple optimization-based correction of the circulation map. The formulation of this
optimization problem was facilitated by the pseudo-steady state associated to the MRF
approach. While the use of the same integration tool could be directly applied to unsteady
CFD results from Neptune CFD, the fact that local phase fractions evolve over time
complicates the post-integration correction of computed flow to obtain a conservative
compartment model. This task has not been tackled over the course of this work and is
left for future developments.
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Overall, through the use of numerical tools, it has been possible to obtain a conserva-
tive gas-liquid compartment model for multiple operation conditions on an industrial fer-
menter. Through Chapter II to IV, all scales of interest for the description of bioreactors
have been modelled, using matched accuracy. Simulation coupling transport, biological
heterogeneity and dynamic metabolism are therefore accessible as it will be demonstrated
in the following chapter.





V
S I M U L AT I O N D ’ U N B I O R É AC T E U R I N D U S T R I E L

Résumé

En couplant les développements issus des Chapitres précédents, en particulier le modèle
métabolique pour S. cerevisiae (Chapitre II), la résolution d’une équation de bilan de
population par la méthode EQMOM (Chapitre III) et les modèles de compartiments
d’un bioréacteur industriel (Chapitre IV), il est désormais possible de réaliser la simula-
tion de cultures industrielles et d’illustrer les capacités de la structure proposée pour la
modélisation des bioréacteurs. Ces simulations sont le sujet principal de ce Chapitre.

Dans un premier temps, les modèles et méthodes numériques précédemment développés
sont résumés afin de souligner en quoi leur usage couplé induit une modélisation fermée
des bioréacteurs intégrant les aspects listés au Chapitre I : fonctionnement cellulaire
interne, gradients aux grandes échelles et leur couplage bidirectionnel au travers de
l’hétérogenéité biologique. De plus, la manière dont est modélisée l’articulation entre
limitations biologiques et environnementales est détaillée ici, et s’appuie sur des con-
sidérations abordées dans les Chapitres précédents.

Le système simulé est un fermenteur industriel opérant en culture fedbatch. Ces cul-
tures sont parmis les plus difficiles à simuler car leurs comportements sont sensibles aussi
bien aux conditions initiales du système qu’aux conditions opératoires tout au long de la
culture. Afin de se défaire de ces sensibilités, nous simulerons un état pseudo-stationnaire
de la culture. Ces simulations visent à quantifier l’effet des conditions opératoires de
mélange et d’injection de gaz, ainsi que l’importance de la stratégie d’injection du sub-
strat, sur l’apparition de comportements métaboliques indésirables, i.e. les productions
d’éthanol et d’acétate.

Il est ainsi montré que dans des conditions opératoires de référence, éthanol et acétate
sont produits en conséquence (i) d’un transfert gaz-liquide d’oxygène insuffisant et (ii)
d’un dysfonctionnement métabolique attribué à l’effet Crabtree. En multipliant les
points d’injection du substrat principal, nous montrons que la production d’éthanol peut
être réduite de 48% sans coût énergétique supplémentaire. En augmentant la dépense
énergétique par un mélange plus rapide et un débit de gaz injecté plus élevé, la production
d’éthanol peut être entièrement inhibée. Ces simulations, servant de preuves de concept
à la mise en œuvre de la modélisation proposée des bioréacteurs, montrent l’intérêt de
disposer de tels outils facilitant les prises de décision sur les problématiques d’ingénierie.
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Summary

By coupling developments from previous Chapters, namely the S. cerevisiae metabolic
model from Chapter II, the resolution of the population balance using EQMOM as de-
tailed in Chapter III and the compartment models from Chapter IV, it is now possible to
perform simulations of an industrial fermenter to show the capabilities of the proposed
bioreactor modelling framework. These simulations are the core topic of this Chapter.

Previously detailed models and numerical methods are first summarized to underline
how their conjoint use form a closed bioreactor model that accounts for all aspects listed
in Chapter I: inner cell functioning, large-scale gradients, and their two-way coupling
through biological heterogeneity. Moreover, the articulation between biological and envi-
ronmental metabolic limitations is discussed here as this aspect requires considerations
from all three previous Chapters.

The simulated system is an industrial fermenter used in fedbatch culture mode. These
cultures are the most difficult to simulate as their courses depend both on initial condi-
tions and operating conditions over time. In order to discard any effect of initial condi-
tions, we choose to simulate a pseudo-stationary state of the system. These simulations
aim at quantifying the effect of mixing and gas-flow rate operating conditions, as well
as the importance of the substrate injection strategy, on the occurrence of undesired
metabolic behaviours, i.e. the productions of ethanol or acetate.

It is shown that under reference operating conditions, ethanol and acetate are produced
as a consequence of both (i) poor gas-liquid mass transfer of oxygen and (ii) metabolic
dysfunction due to the Crabtree effect. By changing the substrate injection design, we
show that the ethanol production can be reduced by 48% at no extra energetic cost. By
increasing the energetic expense through faster mixing and higher gas-flow rates, this
ethanol production can be entirely prevented. These proof-of-concept simulations of a
large-scale bioreactor show the interest of such a decision-assisting tool for engineering
purposes.
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V.1 Introduction

The simulation of all phenomenon in bioreactors is a challenging topic, and will require
a computational power that will probably not be accessible within the next few years
or even decades. However, as it has been thoroughly discussed throughout this thesis,
describing all details of these phenomenon is not actually required, which allows for a
simplified yet complete enough modelling of industrial fermenters. This Chapter will focus
on demonstrating that, indeed, accurate enough simulations of large-scale fermenters can
be performed, at reasonable numerical cost, to obtain an engineering assisting tool. Doing
so will require to integrate developments of previous three Chapters.

Chapters II, III and IV focused on the development or applications of models and
numerical methods that, when coupled, yield a bioreactor model complete enough to ac-
count simultaneously for large-scale gradients, biological heterogeneity, and metabolism
complexity. More specifically, Chapter IV presented the methodology used to obtain a
gas-liquid hydrodynamic model of an actual industrial fermenter. Chapter III focused
on numerical methods to efficiently account for biological heterogeneity in terms of some
dynamic parameters whose effect on metabolism is non negligible. Finally, Chapter II de-
tailed a structure for metabolic models that can account for most cell behaviour observed
experimentally, but at a very low numerical cost. Section V.2 sums-up these models,
methods, and the way they can easily be used together.

Developed models will be applied to the simulation of a the culture of S. cerevisiae, in
the bioreactor presented in Chapter IV. Section V.3 details these simulations in terms of
culture mode, operating conditions, and simulation tool. Section V.4 presents results of
these simulations and underlines how these could be used for engineering purposes.

V.2 Summary of developed model

Chapter I details most approaches that can be used to model bioreactors. We selected
those that appeared to be the most numerically efficient, while being accurate enough, to
obtain a model that do not neglect spatial nor biological heterogeneities, and accounts for
metabolic consequences of these heterogeneities. Hereafter, these approaches are briefly
reminded to clarify which set of equations is solved, and which closures are used. Some
modelling aspects, related to limitations of mass transfer between phases have not been
particularly considered in previous Chapters and will be detailed in this section.
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V.2.1 Mass balance equations

Simulations detailed in Section V.4 are about fedbatch cultures of S. cerevisiae in an
industrial-scale gas-liquid fermenter. The model developed for this yeast in Chapter II
accounts for four species dissolved in the liquid phase that can be ingested or produced
by cells: glucose, ethanol, acetate and oxygen. Out of these, only oxygen also exists in
the gas phase. It has been explained in Chapter IV that spatial heterogeneity will be
accounted for by a Compartment Model Approach, and in chapter III that biological
heterogeneity will be tracked using moment methods applied to a 5 variables Population
Balance Equation (PBE).

Therefore, simulations will track three vectors: liquid-phase concentrations CL =
[GL, EL, AL, OL]T , gas-phase concentrations CG = [OG] and moments of biological-
phase properties distribution M , in each compartment of the hydrodynamic model:

∂εL,iViCL,i(t)
∂t

=
NC∑
j=1

Q
(L)
j,i CL,j(t)−CL,i(t)

NC∑
j=1

Q
(L)
i,j + ΦBL,i + ΦGL,i (V.1)

∂εG,iViCG,i(t)
∂t

=
NC∑
j=1

Q
(G)
j,i CG,j(t)−CG,i(t)

NC∑
j=1

Q
(G)
i,j + ΦLG,i (V.2)

∂εL,iViMi(t)
∂t

=
NC∑
j=1

Q
(L)
j,i Mj(t)−Mi(t)

NC∑
j=1

Q
(L)
i,j +Zi (V.3)

All terms appearing in these balance equations are detailed hereafter.

V.2.2 Compartment models for industrial fermenters

The transport of dissolved or biological species by gas and liquid phases is described by
a Compartment Approach. This model describes the industrial fermenter as NC = 432
compartments as described in Chapter IV and illustrated in Fig. IV.6 through a manual
zoning approach.

This models defines Vi as the i-th compartment volume (m3); εL,i and εG,i respectively
the liquid and gas phase fraction (m3

L/m3 and m3
G/m3); Q(L)

i,j and Q
(G)
i,j the volumetric

flow rate from the i-th to the j-th compartment for the liquid and gas phases (m3
L/s and

m3
G/s).

Chapter IV detailed how these model parameters could be obtained from a pseudo-
stationary Computational Fluid Dynamics (CFD) simulation of the industrial fermenter.
Therefore, for upcoming simulations, these parameters will be kept constant over time.
Further work will be required to obtain transient compartment models. Note that in
the compartmentalization process, fields of turbulent kinetic energy k (J/kgL) and its
dissipation rate ε (W/kgL) were post-processed so that following models may access ki
and εi in each compartment if required. This will be of particular interest in models for
inter-phase mass transfer limitation.
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V.2.3 Population Balance Equations tracking biological heterogeneity

The metabolic model described in Chapter II and briefly recalled hereafter accounts for
five cell-attached dynamic variables:

• µ
(b)
G : glucose-based growth capability (gX/gX · h);

• µ
(b)
E : ethanol-based growth capability (gX/gX · h);

• µ
(b)
A : acetate-based growth capability (gX/gX · h);

• ϕ
(b)
O : oxidative capability (molO/gX · h);

• σ: glycolytic stress.

Let p̂ = [µ(b)
G , µ

(b)
E , µ

(b)
A , ϕ

(b)
O , σ]T be the vector of these properties, and ni(p̂) the sta-

tistical distribution of these properties over cells located in the i-th compartment. This
distribution is defined such that∫

Ωp̂
ni(p̂)dp̂ = XL,i (V.4)

where XL,i is the biomass concentration (kgX/m3
L) in the i-th compartment.

A PBE tracking ni(p̂) is

∂εL,iVini(p̂, t)
∂t

+ εL,iVi∇̂ ·
(
ζ̂(p̂,CL,i)n(p̂)

)
=

NC∑
j=1

(
Q

(L)
j,i nj(p̂, t)− ni(p̂, t)Q

(L)
i,j

)
+∫

Ωp̂
rX(p̂′,CL,i)β(p̂, p̂′)n(p̂′)dp̂′ (V.5)

where ζ̂(p̂,CL,i) is the vector of adaptation rates of biological properties, rX(p̂,CL) is the
actual growth rate of cells of properties p̂ in a liquid environment of composition CL, and
β(p̂, p̂′) the probability that a cell of properties p̂′ yields a daughter cell of properties p̂.
The modelling of ζ̂(p̂,CL,i) and rX(p̂,CL) is handled hereafter by the metabolic model.

Due to a lack of experimental data, β(p̂, p̂′) will simply be defined as a 5-dimensional
Dirac distribution∫

Ωp̂
f(p̂′)β(p̂, p̂′)dp̂′ = f(p̂) (V.6)

which implies that daughter cells inherit properties of their mother.
The use of moment methods has been selected in Chapter III for their efficiency. Let

moments of n(p̂) be defined as

mk1,k2,k3,k4,k5 =
∫

ΩµG

∫
ΩµE

∫
ΩµA

∫
ΩΦO

∫
Ωσ
µk1
G µ

k2
E µ

k3
A ϕ

k4
O σ

k5n(p̂)dσdϕOdµAdµEdµG (V.7)
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Due to the fact that only monovariate numerical methods were considered in Chapter III,
only following uncoupled moments will be resolved:

M =



m0,0,0,0,0
m1,0,0,0,0
m0,1,0,0,0
m0,0,1,0,0
m0,0,0,1,0
m0,0,0,0,1

...
m0,0,0,0,Nmσ


=



XL

µ̃GXL

µ̃EXL

µ̃AXL

ϕ̃OXL

σ̃XL
...

m0,0,0,0,Nmσ


(V.8)

with Nmσ the number of moments resolved along the stress dimension of the distribution.
x̃ denotes a population mean variable. The rational behind the choice of these moments
has been detailed in Section III.7.

The Extended Quadrature Method of Moments (EQMOM) will be applied on moments
m0,0,0,0,k5 , k5 ∈ {0, . . . , Nmσ} to obtain a quadrature rule wQ = [w1, . . . , wQ]T , σQ =
[σ1, . . . , σQ]T , such that

∫
Ωp̂
f(p̂)n(p̂)dp̂ ≈

Q∑
j=1

wjf(p̂j) (V.9)

with p̂j = [µ̃G µ̃E µ̃A Φ̃O σj]T .

V.2.4 Metabolic model for S. cerevisiae

The metabolic model of S. cerevisiae allows the computation of rCL , rX and ζ̂, considering
biological properties p̂ and the environment composition CL, with

rCL(p̂,CL) =


rG(p̂,CL)
rE(p̂,CL)
rA(p̂,CL)
rO(p̂,CL)

 , ζ̂(p̂,CL) =


ζµG(p̂,CL)
ζµE(p̂,CL)
ζµA(p̂,CL)
ζΦO(p̂,CL)
ζσ(p̂,CL)

 (V.10)

ri is the rate of consumption or production of i ∈ {G,E,A,O,X} (kgi/kgX · h), and ζi
the rate of adaptation of the biological property i ∈ {µG, µe, µA,ΦO, σ} ([unit of i]/h).
The model structure proposed in Chapter II performs these computations at very low
numerical cost, between 135 and 150 floating-point operations by set of biological and
environmental properties (p̂,CL).

ζ̂(p̂,CL) and rX(p̂,CL) are directly used in the moment-tracking equation. Coupling
the quadrature rule in Eq. (V.9) with rCL(p̂,CL) yields the mass transfer rate from liquid
phase to biological phase, ΦLB,i in Eq. (V.1):

ΦLB,i =
∫

Ωp̂
rCL(p̂,CL,i)ni(p̂)dp̂ ≈

Q∑
j=1

wi,jrCL(p̂i,j,CL,i) (V.11)
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with wi,j and p̂i,j the quadrature weights and nodes computed from moments Mi, j ∈
{1, . . . , Q}.

V.2.5 Mass transfer between gas and liquid phases

As briefly described in Section I.6.1, the model for gas-liquid mass-transfer will only
consider the resistance to transfer in the liquid phase. The transfer rate of oxygen will
be described by

ΦGL,O = kLa
∗V (H OG −OL) (V.12)

with

• kL the liquid-film resistance to transfer (m/s);

• a∗ the specific inter-facial area (m2/m3);

• V the considered volume of control (m3);

• H the Henry constant for oxygen at the culture temperature (kgOL/kgOG).

The specific transfer area will be deduced from an estimated mean bubble diameter of
db ≈ 1cm and the local gas fraction εG:

a∗ = 6εG
db

(V.13)

The resistance to transfer, kL, is modelled using the following correlation from Kawase
et al. [1992]; Laakkonen et al. [2006] suited for mass transfer in bioreactors:

kL = 0.3
√
DO,L

(
ε

εGνG + εLνL

)1/4
(V.14)

with DO,L = 1.98 10−9m2/s the oxygen diffusivity in water, and νk = µk/ρk the kinematic
viscosity of phase k (m2/s).

The solubility was set to H = 0.0272kgOL/kgOG which corresponds to a saturation
oxygen concentration of 7.8gO/m3

L for water at equilibrium with surrounding air under
atmospheric pressure and a temperature of 20°C.

Oxygen being the only compound that transfers between gas and liquid phases, vectors
of gas-liquid transfer rates in Eqs. (V.1-V.2) are simply defined as

ΦGL =


0
0
0

ΦGL,O

 , ΦLG = [−ΦGL,O] (V.15)
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V.2.6 Mass transfer toward the biological phase

Integrating biological and physical regimes in the modelling

As for now, the coupling of a metabolic model with the description of a variable environ-
ment has not been properly addressed while this topic is key to the modelling of industrial
bioreactors.

In Chapter II, the metabolic model was formulated by assuming that one knows the flux
of matter (glucose, ethanol, acetate, oxygen) that cells are able to assimilate. These values
were defined as cell-attached properties, either constant for carbonaceous substrates (ϕ(b)

G ,
ϕ

(b)
E and ϕ

(b)
A ) or variable for the oxidative capability (ϕ(b)

O ). These fluxes are meaningful
when the cell functioning, or bioreactions in general, are in the biological regime: when
growth is limited by cells capabilities to process substrate available in the environment.
Biological regime occurs when the environment is rich in substrates compared to a cell
capability to process that substrate.

The inverse situation is the physical regime, which occurs when the environment is poor
compared to cell capabilities. The coupled modelling must be able to account for both
biological and physical regimes, as well as the transitional regime where both limitation
occurs. This will allow the model to deal with poor –limiting– environments.

Initial proposition based on Monod kinetics

In previous work [Pigou and Morchain, 2015], we considered the modelling of E. coli and
described the glucose-based growth capability µ(b)

G as a dynamic variable attached to cells,
and compared it to the Monod equilibrium growth rate µ∗G, to assess whether the cell
was in the biological or the physical regime. Under this approach, the actual growth rate
µ

(a)
G was defined as

µ
(a)
G = min(µ(b)

G , µ
∗
G) (V.16)

which exhibited expected asymptotic behaviours:µ
(a)
G = µ

(b)
G G� KG

µ
(a)
G = 0 G 7→ 0

(V.17)

with KG the affinity of cells toward glucose (kgG/m3
L).

Despite its correct asymptotic behaviour, the approach based on Monod kinetic law is
unsatisfactory on multiple regards.

1. This approach associates instantaneous metabolic behaviours to variables defined
after a long-term adaptation of a population to its environment, i.e. the equilibrium
growth-rate µ∗.

2. As 0 ≤ µ∗G ≤ µ
(max)
G by definition of Monod kinetics, this formulation forbids cells

to have an actual growth rate higher than µ
(max)
G , despite experimental proofs that

exceeding this Monod maximum growth-rate is actually feasible at the cell-scale.

3. This formulation does not explicit why cells actually slow their growth rate down
in poor environments.
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For these reasons, a more satisfactory and predictive description of the switch between
physical and biological regimes has been looked for.

A micro-mixing issue

It is easily understood that transport of substrate in the culture medium up to a cell
membrane precedes its uptake and use in anabolic or catabolic reactions. Bioreactions
can then be limited by either (i) external transport, (ii) mass transfer through the bio-
logical membrane or (iii) internal transport and/or availability of reaction catalyzers (i.e.
enzymes).

In models developed in Chapter II for E. coli and S. cerevisiae, limitations of transport
through the biological membrane and of reactive capabilities are encompassed within (i)
maximum consumption flow rates ϕ(b)

{G,E,A,O} and (ii) growth capabilities µ(b)
{G,E,A}. A lack

of these capabilities will induce a biological regime for growth or reaction.
Therefore, including physical regime to the model requires to account for limitations of

external transport too. On many regards, biological systems can be analysed under the
point of view of heterogeneous catalysis. Micro-organisms behave as reactive particles
in a turbulent flow that catalyse the transformation of substrates into products and by-
products, and also happen to generate new reactive particles through cell division or
budding. To analyse heterogeneous catalysis systems, a classical approach in chemical
engineering is to compare the reaction rate to the transport rate of reactants. This is
done through the so-called Damköhler number Da:

Da = (bio)reaction rate
transport rate = transport characteristic time-scale

(bio)reaction characteristic time-scale (V.18)

where Da� 1 denotes a reactive –or biological– regime, and Da� 1 denotes a physical
regime. Detecting the regime then requires the identification of the limiting transport
phenomenon. Considering the cell size (≈ 5−10µm), the liquid medium surrounding cells
will be renewed through micromixing that encompasses both engulfment micromixing
at the Kolmogorov scale, and diffusive mixing at the Batchelor scale [Delafosse, 2008].
Therefore, we previously proposed [Morchain et al., 2016] to base the physical limitation
of bioreactions on the micro-mixing time-scale associated to the lifespan of engulfing
eddies [Baldyga and Bourne, 1999]:

τE ≈ 17
√
µL
ρLε

(V.19)

with µL and ρL the dynamic viscosity (Pa · s) and density (kgL/m3
L) of the liquid phase,

and ε the local turbulent-energy dissipation rate (W/kgL).
Overall, transport by micro-mixing and assimilation by cells are two serial phenomenon

whose limiting rate must be simultaneously considered to compute a maximum achievable
consumption rate for substrates. Let ϕ(b)

S be the maximum specific consumption rate
of substrate S ∈ {G,E,A,O} considering biological limitations as already defined in
Chapter II, and ϕ(e)

S be the maximum specific consumption rate considering environmental
limitations (kgS/kgX · h). We propose the following model for ϕ(e)

S :

ϕ
(e)
S ≈

SL
XLτE

(V.20)
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with SL the substrate concentration (kgS/m3
L), XL the biomass concentration (kgX/m3

L)
and τE the micro-mixing time-scale as defined previously. This formulation was chosen
as it is the most simple that exhibits the three following behaviours:

1. If the environment is depleted in terms of substrate S, environmental limitation
occurs: lim

S 7→0
ϕ

(e)
S = 0.

2. At low turbulence, micro-mixing is inefficient and a limitation occurs: lim
ε7→0

ϕ
(e)
S = 0.

3. At constant substrate concentration, if the amount of biomass increases, less sub-
strate will be available per cell as we assume that substrate is distributed evenly
between micro-organisms: lim

X 7→+∞
ϕ

(e)
S = 0

Once maximum consumption rates associated to environment limitations ϕ(e)
S and to

biological limitations ϕ(b)
S are known, one has to compute a global maximum consumption

rate ϕ(g)
S which cannot be higher than either ϕ(e)

S or ϕ(b)
S . We chose to apply the following

formulation, based on serial resistance law:

1
ϕ

(g)
S

= 1
ϕ

(e)
S

+ 1
ϕ

(b)
S

⇔ ϕ
(g)
S = ϕ

(e)
S ϕ

(b)
S

ϕ
(e)
S + ϕ

(b)
S

(V.21)

This formulation has the same asymptotic behaviours than a simple ϕ(g)
S = min

(
ϕ

(e)
S , ϕ

(b)
S

)
but offers a smoother transition between biological and physical regimes.

Note that the oxygen consumption rate has been described in a slightly different man-
ner. Indeed, when biological oxygen consumption exceeds gas-liquid mass transfer, the
liquid phase gets depleted and oxygen consumption enters a physical regime. Suppos-
edly, an equilibrium should be reached between gas-liquid mass transfer and biological
consumption of oxygen. However, the high sensitivity of the metabolic behaviour over
oxygen consumption leads to a stiff set of Ordinary Differential Equations (ODEs) as far
as oxygen mass balance equations are concerned.

In order to relax the stiffness of this problem, ϕ(e)
O is defined as

ϕ
(e)
O ≈

OL

XLτE
+ ΦGL,O

XL

(V.22)

with ΦGL,O defined previously in Eq. (V.12). This formulation implies that oxygen can
be transported to cells either by micro-mixing when dissolved oxygen is available, or
directly from the gas-phase to cells. This could be justified by considering that, when
the liquid phase is mainly depleted in terms of oxygen, micro-organisms close to bubbles
will directly assimilate freshly dissolved oxygen.

When the liquid phase is close to oxygen saturation, the gas-liquid transfer rate is
negligible and only micro-mixing brings oxygen to cells. On the other side, when low
oxygen concentrations are observed, cells are still able to grow using aerobic pathways,
with oxygen consumption being equal to the gas-liquid transfer rate.

This formulation makes ϕ(g)
O less sensitive to oxygen concentration variations in micro-

aerobic environments, and strongly stabilises simulations, without altering the physical
meaning of the overall model.
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V.2.7 Short summary

Overall, the bioreactor modelling consists in three sets of Ordinary Differential Equations
per compartment recalled hereafter

∂CL,i(t)
∂t

= 1
εL,iVi

NC∑
j=1

Q
(L)
j,i CL,j(t)−CL,i(t)

NC∑
j=1

Q
(L)
i,j + ΦBL,i + ΦGL,i

 (V.23)

∂CG,i(t)
∂t

= 1
εG,iVi

NC∑
j=1

Q
(G)
j,i CG,j(t)−CG,i(t)

NC∑
j=1

Q
(G)
i,j + ΦLG,i

 (V.24)

∂Mi(t)
∂t

= 1
εL,iVi

NC∑
j=1

Q
(L)
j,i Mj(t)−Mi(t)

NC∑
j=1

Q
(L)
i,j +Zi

 (V.25)

where i denotes a variable attached to the i-th compartment, and with

• εL the liquid phase fraction (m3
L/m3);

• εG the gas phase fraction (m3
G/m3);

• V the compartment volume (m3);

• Q
(k)
i,j the volumetric flow rate of the phase k ∈ {G,L} from the i-th to the j-th

compartment (m3
k/h);

• CL = [GL, EL, AL, OL]T the vector of liquid-phase attached concentrations
(kg/m3

L);

• CG = [OG] the vector of gas-phase attached concentrations (kg/m3
G);

• ΦBL = [ΦBL,G, ΦBL,E, ΦBL,A, ΦBL,O]T the vector of mass transfer rates from the
biological phase to the liquid phase (kg/h);

• ΦGL = [0, 0, 0, ΦGL,O]T the vector of mass transfer rates from the gas phase to
the liquid phase (kg/h);

• ΦLG = [−ΦGL,O] the vector of mass transfer rates from the liquid phase to the gas
phase (kg/h);

• M the vector of moments of the distribution of biological properties;

• Z the vector of rates of change of elements of M .

εL, εG, V are defined for each compartment, along with circulation maps Q(k)
i,j , by the

compartment model computed in Chapter IV. The computation of transport terms, i.e.
summations over NC compartments in Eqs. (V.23-V.25), is straightforward once the
circulation map is known.

In each compartments, following computations are performed at each time-step:

1. Compute ΦGL and ΦLG by simply computing ΦGL,O as detailed in Eq. (V.12).
• Note that this computation is based on kLa

∗V values which depend on local
phase fractions and turbulent dissipation rates.
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2. Compute the vector of local maximum specific consumption rates considering en-
vironmental limitations ϕ(e) based on the local micro-mixing time-scale defined in
Eq. (V.19):

ϕ(e) =


ϕ

(e)
G

ϕ
(e)
E

ϕ
(e)
A

ϕ
(e)
O

 =


GL/(XLτE)
EL/(XLτE)
AL/(XLτE)
(OL/τE + ΦGL,O)/XL

 (V.26)

3. Compute a quadrature rule wQ and p̂Q based on moments M as detailed in Section
V.2.3, using the improved EQMOM method detailed in Chapter III.

4. Integrate the metabolic behaviour over quadrature nodes to obtain ΦBL:

ΦBL =
Q∑
i=1

wiϕ
(a)(CL,ϕ

(e), p̂i) (V.27)

were ϕ(a)(CL,ϕ
(e), p̂i) represents the actual consumption or production rates given

as output of the metabolic model detailed in Chapter II.

V.3 Simulations description

Now that the complete modelling framework has been extensively detailed in previous
Chapters, and summarized in Section V.2, we shall present the illustrative simulations
in which the framework has been applied. This section details a fedbatch culture and
elements of comparison between multiple operating conditions.

V.3.1 A pseudo-stationary fedbatch culture

Culture mode

In the context of baker’s yeast production, many studies have shown that the excess of
free glucose in the environment tends to induce aerobic ethanol production [Yamanè and
Shimizu, 1984], which was referred to in Chapter II as the Crabtree effect. This ethanol
production is identified as the main cause for lower conversion yields of glucose into cells.

In order to reduce this effect, a usual strategy is to perform fedbatch cultures of S.
cerevisiae. In this cultivation mode, a pre-culture –usually in batch– allows to reach a
high cell-density. After this first step, the system is continuously fed with a limiting
quantity of substrate. This is expected to limit the amount of free glucose, and thus the
occurrence of aerobic ethanol formation. However, this is not always the case and the
Crabtree effect may still be triggered even in glucose-limited high cell-density fedbatch
cultures. This is usually attributed to poor macro-mixing of the system through the
short-term Crabtree effect.

For the industrial case of interest, the culture goal is actually not cell production, and
for undisclosed reasons, the culture medium needs to be fed both with glucose and ethanol.
Note that ethanol should only be a substrate, and for efficiency reason, should not be a
by-product of glucose consumption. Therefore, both for baker’s yeast production and for
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Figure V.1: Illustration of bioreactor culture modes. (a) Batch. (b) Fedbatch. (c) Chemo-
stat.

the industrial production, it will be of interest to be able to predict the appearance of
the Crabtree effect in large-scale fedbatch cultures of S. cerevisiae.

Difficulties associated with the simulation of fedbatch processes

There exists three classical culture modes for bioreactors, illustrated in Fig. V.1:

• Chemostat: continuous cultures with constant feeding and withdrawal of culture
medium;

• Batch: discontinuous cultures where all nutrients are initially in the culture medium;

• Fedbatch: semi-continuous cultures where the system is closed but continuously
fed.

In terms of consequences of the culture mode on numerical simulation, one can easily
understand that

• In chemostat cultures, initial conditions have no effect on steady-state conditions.
This steady-state is controlled by the feeding flow rate and its composition.

• In batch cultures, only initial conditions will influence the course of the culture.

• In fedbatch cultures, both initial conditions and operating conditions will impact
the course of the culture.

For these reasons, simulating a whole fedbatch culture is particularly difficult. Any error
on initial concentration, any uncertainty on the initial state of cells over the biological
population, or errors on feeding flow rate or composition, will accumulate over time
and can yield unrealistic results, mainly after considering strong interactions between
gradients and the heterogeneous metabolic behaviour.

Moreover, due to the continuous feeding, the liquid volume keeps increasing over time.
Describing this effect would require a Compartment Model with dynamic compartment
volumes and most certainly dynamic number of compartments. While being easily feasi-
ble, this would still require to perform CFD simulations with multiple increasing liquid
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volumes, and would need some supplementary developments that were not performed
over the course of this thesis.

Proposed approach: simulating a pseudo-stationnary state in the fedbatch
process

The goal of simulations will not be to predict the evolution of concentrations over time
for the whole fedbatch process. We will assess the effect of operating conditions –i.e.
stirring speed, gas-flow rate and injection mode of glucose– on the occurrence of ethanol
formation due to the Crabtree effect.

Thank to the glucose-limited culture mode, the biomass concentration is expected not
to increase significantly over time. Moreover, high glucose and ethanol concentrations
will be expected near their respective feeding points, but the overall system will be poor
in terms of these substrates. Therefore, large-scale gradients should remain relatively
constant over time. This will allow overcoming previously listed problems encountered
with the simulation of a fedbatch process.

The chosen approach will be to describe glucose and ethanol feeding as volumetric mass
source terms FG and FE (kg{G,E}/m3

L) in compartments corresponding to their respective
feeding points, to set a biomass concentration XL corresponding to these feeding rates of
substrate, and to disable the increase of biomass concentration over time.

Using mass source terms simply removes the need for describing the volume increase.
Moreover, disabling accumulation of biomass will let the simulation converge toward
concentration fields close to those that would be experimentally encountered when the
fedbatch process reaches the biomass concentration XL. This approach can only be used
thanks to the fact that concentration fields are expected to evolve over-time in a slower
manner than local distributions of biological properties.

The same set of values XL, FG et FE will be used with all operating conditions detailed
hereafter. Note that actual values cannot be disclosed for confidentiality reasons.

V.3.2 Assessed variables

The simulation tool will be used to assess the effect of following operating conditions on
the occurrence of the Crabtree effect:

• Stirring speed: 35 or 49 rotations per minute;

• Gas flow rate: 2700 or 5000Nm3/h;

• Glucose feeding strategy: unique injection point (surface feeding) or multiple injec-
tion points.

These simulated conditions are summarized in Table V.1.
Stirring speed and gas flow rates are variables that can be easily changed, in a certain

range of values, on an existing industrial installation. Therefore, quantifying their impact
on the Crabtree effect means being able to improve the efficiency of an existing process.
This is done by identifying the good trade-off between the process performance loss due to
this undesired metabolic behaviour, and the energetic expense associated to mixing and
gas injection. Investigating the effect of the glucose injection strategy should generally
be reserved for process design purposes but we expect to show how critical the glucose
injection is.
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Table V.1: Operating conditions (OC) to be simulated. Values are normalized by Oper-
ating Conditions 1 for confidentiality reasons.

Stirring
speed (rpm)

Gas flow
rate (Nm3/h)

Glucose feeding
points

Operating conditions 1 1 1 1
Operating conditions 2 1.4 1.85 1
Operating conditions 3 1 1 3

V.3.3 Numerical tool

All following simulations were performed using a short (about 600 lines) Matlab code.
This code is organised as following:

1. Load pre-defined circulation maps.

2. Precompute constants defined globally (e.g. associated to metabolic mode) or lo-
cally (e.g. local kLa values).

3. Define the matrix of initial conditions.

4. Integrate over time using a first-order explicit Euler scheme.

A convergence criteria was introduced to automatically detect the steadiness of the
solution and stop the simulation. This criteria is defined by∣∣∣∣∣

∣∣∣∣∣∂Vi∂t
� Vi

∣∣∣∣∣
∣∣∣∣∣ < 10−4h−1, ∀V ∈ {CL,CG,M},∀i ∈ {1, . . . , NC} (V.28)

which implies that the simulation stops as soon as the relative variation of all resolved
variable is lower than 0.01% over the course of an hour.

V.4 Simulation results and analysis

V.4.1 Concentration fields presentation

Due to the high number of compartments, only some concentration fields are shown
hereafter. Full concentration fields are given as six sub-figures, each representing a slice
of compartments at constant angle. An example is given in Fig. V.2 which illustrate
glucose concentration fields under Operating Conditions 1. Note that in these conditions,
glucose is injected on top of the reactor, in the compartments of coordinates (r5, a2, z10).
Due to the counter-clockwise rotation of impellers, the liquid phase mainly moves in the
direction of decreasing angle values. This explains why concentrations of glucose decrease
along with the angle indexes (〈G〉a2 > 〈G〉a1 > 〈G〉a6 > 〈G〉a5 > 〈G〉a4 > 〈G〉a3).

V.4.2 Quantifying metabolic dysfunction

As stated previously, the biological system is cultivated under a glucose-limited fedbatch
mode. This limitation is indeed visible in Fig. V.2 where glucose is only available in
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Figure V.2: Glucose concentration fields in steady fedbatch culture under Operating Con-
ditions 1.

the downstream of the feeding point and is depleted in most of the reactor volume. In
these conditions, the population mean growth-rate is spatially homogeneous: 〈µ(b)

G 〉 =
0.0118 h−1 and max

(
µ

(b)
G

)
−min

(
µ

(b)
G

)
< 4.10−6 h−1 which is consistent with predictions

from Chapter III where we decided not to track the diversity of growth-rates as this would
not be significant.

The low growth-rate, coupled with the periodic exposure to high glucose concentrations
is expected to induce the short-term Crabtree effect through the increase of the glycolytic
stress σ. We recall that this stress is indeed induced by a disequilibrium between the up-
take rate (high in glucose-rich regions) and the glucose utilization rate through anabolism
(spatially homogeneous). The mean value of this stress is shown in Fig. V.3 and ranges
between min(σ) = 0.09 and max(σ) = 0.66. This corresponds to a loss of 12% to 50% of
efficiency for oxidative metabolic modes according to Eq. (II.18).

The metabolic dysfunctional can be illustrated by concentration fields of ethanol and
acetate, shown in Figs. V.4 and V.5. The presence of ethanol can be partially attributed
to its direct injection as a co-substrate in the compartment of coordinates (r5, a4, z9).
However, the fact that highest concentrations span the whole top area of the reactor
implies that ethanol is also produced as a by-product of glucose fermentation. This
fermentation is due to the short-term Crabtree effect, which limits the use of oxidative
metabolisms, and is reinforced by an insufficient gas-liquid mass transfer rate of oxygen
which causes oxygen depletion in the upper part of the reactor, as shown by low residual
oxygen concentrations in Fig. V.6.
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Figure V.3: Field of mean glycolytic stress in steady fedbatch culture under Operating
Conditions 1.

Figure V.4: Field of ethanol concentration in steady fedbatch culture under Operating
Conditions 1.

Figure V.5: Field of acetate concentration in steady fedbatch culture under Operating
Conditions 1.
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Figure V.6: Field of oxygen concentration in steady fedbatch culture under Operating
Conditions 1.

In the bottom part of the reactor, oxygen is more available since glucose is depleted
whilst oxygen mass-transfer is high. Therefore ethanol is oxidized into acetate which,
in turn, is consumed through acetate-based growth of cells. Overall, all carbonaceous
substrates are fully used for cell production, as their concentrations are negligible at
the bottom of the reactor. However, the production of ethanol and acetate and their
subsequent re-consumption induces yield losses and should be avoided. More than con-
centration fields, it appears that the most interesting information that can be retrieved
from these simulations are the local production and consumption rates [Pigou and Mor-
chain, 2015].

V.4.3 Reducing metabolic dysfunction: energy or design?

The metabolic dysfunction of S. cerevisiae, mainly associated to ethanol production, can
be attributed to both (i) the Crabtree effect and (ii) a limiting gas-liquid mass transfer of
oxygen. Operating Conditions 2 and 3 represent two proposals to improve the functioning
of the bioreactor.

Operating Conditions 2 correspond to the use of supplementary energy to increase the
stirring speed and the injected gas flow rate. This should improve both mixing, thus
reducing the magnitude of the short-term Crabtree effect, and gas-liquid mass-transfer
by increasing local gas fractions. Note that these conditions required specific CFD sim-
ulations as detailed in Chapter IV to account for the different hydrodynamic. On the
other-hand, Operating Conditions 3 propose a change in the bioreactor design, by in-
jecting the glucose through three feeding pipes. In doing so, glucose should be more
evenly distributed which should decrease the overshoot of substrate perceived by cells
when travelling near feed points, and thus the short-term Crabtree effect.

Figures V.7, V.8, V.9, V.10 and V.11 show the comparison of glucose, ethanol, aceate
and oxygen concentration fields, and the field of population mean stress, between the
three operating conditions. Similarly, some noteworthy macroscopic metrics are summed-
up in Table V.2. mE and mA are total masses of ethanol and acetate in the bioreactor.
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Figure V.7: Comparison of glucose concentration fields between simulated operating con-
ditions on compartment slice a2.

Figure V.8: Comparison of ethanol concentration fields between simulated operating con-
ditions on compartment slice a2.

mσ is expressed in terms of mass of biomass but no physical meaning should be looked
for this variable. It is defined as

mσ =
∫∫∫

V

∫
Ωσ
σn(σ)dσdV, with n(σ) =

∫
ΩµG

∫
ΩµE

∫
ΩµA

∫
ΩΦO

n(p̂)dΦOdµAdµEdµG

(V.29)

which is the volumic integral of m0,0,0,0,1. σ was defined as an adimensional quantity
measuring the stress level of cell between 0 and 1. By its definition, mσ is expressed as
a mass of biomass, but should be interpreted as a “quantity of stress” in the reactor.

By simply looking at ethanol and acetate concentration fields, Operating Conditions 2
which correspond to higher stirring and gas-flow rates are the more favourable in terms of
performances and reduction of metabolic dysfunctions. The explanation for this mainly
lies in the elevated oxygen concentrations. These are the consequence of an enhanced
gas-liquid mass transfer of oxygen thanks to (i) higher local gas fractions and inter-facial
area, and (ii) increased turbulence which favourably affects the mass transfer coefficient
kL.
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Figure V.9: Comparison of acetate concentration fields between simulated operating con-
ditions on compartment slice a2.

Figure V.10: Comparison of oxygen concentration fields between simulated operating con-
ditions on compartment slice a2.

Figure V.11: Comparison of fields of population mean glycolytic stress between simulated
operating conditions on compartment slice a2.
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Table V.2: Macroscopic metrics comparing performances of the three simulated operating
conditions. Values normalized by Operating Conditions 1 results (except for
min(σ) and max(σ)). Units are those of raw (not normalized) values.

Op. Cond. 1 Op. Cond. 2 Op. Cond. 3
max(GL) (gG/L) 1.00 1.13 0.47
mE (kgE) 1.00 0.02 0.52
mA (kgA) 1.00 0.03 1.44
〈OL〉 (mgO/L) 1.00 16.7 1.03
min(σ) 0.09 0.10 0.00
max(σ) 0.65 0.57 0.04
mσ (kgX) 1.00 0.76 0.04

Under Operating Conditions 2, the stress level is slightly lower than in the reference
case (Op. Cond. 1). Indeed the higher stirring rate induces a shorter residence time in
the feeding zones where the maximum glucose concentration is also smaller. Both effects
decrease cell exposure to stressing conditions. However, this decrease in stress levels is
not especially significant compared to the reference case. Coupling this observation with
the low amount of ethanol observed under Op. Cond. 2 allows inferring that the ethanol
produced in reference conditions is mainly attributed to the limiting oxygenation of the
liquid phase. This conclusion is reinforced by results of simulations under Op. Cond. 3.

When changing the reference case by injecting glucose through three different feeding
points (located in compartments of heights z2, z6 and z10, radius r5 and angle a2), it
becomes visible in Fig. V.11 that the stress level has fallen down to zero everywhere in the
reactor. This can be explained by the fact that a significant part of the bioreactor volume
now contains glucose (Fig. V.7) in noticeable amounts, and that over-concentrations at
feeding points are less stressing (see max(G) in Tab. V.2). Therefore, maximum stress
levels under Op. Cond. 3 are lower than minimum stress levels in the two other conditions.
Resolving the stress issue and the occurrence of the Crabtree effect partially resolves the
ethanol production issue by decreasing its quantity by 48% (see mE in Tab. V.2).

A surprising result from these simulations is the slight increase of acetate quantities
due to the multiple point injection of glucose. This can be explained by subtleties of the
metabolic models from Chapter II: the presence of a significant amount of glucose in a
larger fraction of the bioreactor volume, under Op. Cond. 3, strongly inhibits growth on
ethanol. However, the currently proposed metabolic model assumes a constant ethanol
uptake rate unless the environment is limiting. By inhibiting growth on ethanol while not
varying the uptake rate of this substrate, the metabolic model predicts that this substrate
will be diverted toward ethanol oxidation into acetate (metabolic mode E2). Whether this
behaviour is consistent with experimental data is yet to be checked. If it is not, this shows
that the metabolic model could still be improved, in particular by considering varying
biological limits on uptake rates as currently considered by Quedeville et al. [2018].

Overall, these simulations show the interest of a modelling framework for bioreactors
which allows for fast simulations. Here, we could identify the cause for ethanol production
in an industrial fermenter, and therefore a way to decrease these negative effects, i.e. the
increase of oxygen mass-transfer rate. We could also quantify the effect of a better reactor
design by showing a reduction of ethanol concentrations by 50% simply by distributing
the glucose feeding over three points instead of a single one. Operating conditions at
higher stirring and gas-flow rates have shown to significantly decrease ethanol produc-
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tion, but the study could be pushed further by identifying the optimal trade-off between
this undesired ethanol production, and the energetic cost of the process. In particular,
energetic expense is known to increase as the cube of the stirring speed, therefore one
could use the proposed simulation framework to identify the lowest stirring speed which
still prevents ethanol production. It is easy to see how this tool can find its place in
technical studies offices as an engineering or decision-assisting tool.

V.4.4 Numerical cost

Presented simulations ran in almost real-time using a simple Matlab code. Matlab is a
programming language known for its ease-of-use and the accessibility of advanced routines
for scientific computing, but this is an interpreted language, which consequently does not
make an efficient use of computing resources. This is in particular true when one uses
multiple routines, each defining its own variables, as this has been the case with the
metabolic model and the EQMOM moment-inversion procedure in previously described
simulations. For this reason, it might be beneficial to estimate the gain that would be
provided by switching simulations toward a compiled language.

First, we estimate the numerical cost (in floating-point operations, flop) associated to
computations performed at each time-step and in each compartment. This corresponds
to following operations:

• 1 call to a 2-nodes EQMOM moment-inversion procedure ≈ 800 flop [Pigou et al.,
2018a],

• 5 calls to the metabolic model for S. cerevisiae ≈ 5× 140 = 700 flop,

• time-advancement of variables, computation of stopping criteria, computation of
gas-liquid mass-transfer rate, . . .≈ 50 flop

. To simulate one hour of culture, using timesteps δt = 1.10−5 h, the number of operation
required is then Nflop ≈ 105×432×(800+700+50) ≈ 1010 flop. This number of operations
is not high even for mid-range CPUs present on current desktop computers. The actual
computing throughput of a CPU is always hard to predict, as different codes will not
have the same vectorizability, especially when iterative algorithms such as the EQMOM
moment-inversion procedure are involved. However, any current CPU should be able
to process 1010 flop within a few seconds with a tight memory management. Over the
course of this PhD thesis, an engineer wrote a C++ code that reproduced simulations
from Pigou and Morchain [2015]. Our Matlab code needed one day to perform associated
simulations while the C++ code obtained the same results within only ten seconds.

Therefore, the coupling of compartment, population balance and mode-based metabolic
models does allow for fast simulations on industrial bioreactors. A “slow” Matlab code
was able to perform these simulations in real-time, but translating this interpreted code
into a compiled language could allow for much faster than real-time simulations. This
opens the door for many engineering applications, from parametric optimization of the
process to real-time simulation-based control of an industrial installation.
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V.5 Conclusion

The modelling of industrial bioreactors is a challenging topic as one must account for
large-scale hydrodynamics as well as the peculiarities of the biological phase which is
made of dynamic living systems and therefore tends to become heterogeneous. To per-
form predictive simulations while using limited computational resources, we choose to
couple a metabolic designed in Chapter II, a population balance model tackled by a nu-
merical method improved in Chapter III and compartment models deduced from CFD
simulations in Chapter IV. Numerical methods and procedures associated to these models
were designed, improved or selected for their efficiency in order to reach fast simulation
times.

One aspect that was missing from previous Chapters developments is the limitation of
substrate uptake by cells due to limiting environments. This aspects has been introduced
in the modelling by following preliminary developments detailed in Morchain et al. [2016]
based on micro-mixing considerations and classical chemical engineering approaches. Clo-
sure laws have been suggested to simultaneously account for environmental and biological
limits on uptake rates.

By applying these developments to an industrial example, we could show the capa-
bilities of this modelling framework. Using a simple MATLAB [2016] implementation,
we could simulate in real-time an industrial bioreactor to quantitatively assess the effect
of some operating conditions, namely the stirring speed and the gas-flow rate, and to
illustrate the use of this tool for bioreactor design purposes. This shows the feasibility of
simulating large-scale bioreactors while accounting for both physical and biological het-
erogeneities, on standard computing resources, and opens the door to the development
of engineering software.





VI
O U T L O O K S A N D C O N C L U S I O N S

VI.1 Introduction

The simulation of industrial biological systems form a vast topic encompassing a variety
of strikingly different aspects, from the comprehension of the living organisms chemistry
and of advanced numerical methods, to high-performance computing and chemical engi-
neering. Many of these aspects were, at least partially, considered over the course of this
PhD thesis as demonstrated in previous Chapters.

To cover both metabolic modelling, advanced numerical methods for population bal-
ance, the mastering of Computational Fluid Dynamics (CFD) software and the develop-
ment of numerous processing and simulation tools, over the course of three years, choice
had to be made about what could, and could not, be reasonably done. Therefore, for each
aspect developed in previous Chapters, there is still room left for numerous improvements
and supplementary studies and developments. Though not being exhaustive, section VI.2
details some of these outlooks.

Research is an “activity undertaken in order to increase the stock on knowledge [...]
and the use of this knowledge to devise new applications” [OECD, 2008]. On this regard,
section VI.3 serves as a general conclusion to this report with an overview of major
achievements of this work.

VI.2 Outlooks

The major goal of this thesis was to develop a model framework or structure that al-
lows fast, yet accurate, simulations of bioreactors. On that regard, we mainly aimed at
performing proof-of-concept simulations coupling developed models structures, numerical
methods and tools, rather than focusing on obtaining an over-parametrized model and
fit it to few experimental data. Now that these proof-of-concept simulations have been
obtained as presented in Chapter V, it will be interesting to improve the accuracy of pro-
posed models to enhance their predictive capabilities, or to slightly modify the modelling
framework to expand its capabilities. These aspects are discussed hereafter, by keeping
a structure close to this thesis: prospect considerations for Chapter II to V are discussed
one-by-one in dedicated sections.

VI.2.1 Metabolic modelling

The metabolic model structure developed in Chapter II is satisfactory on multiple regards.
In particular, it allows describing dynamic cultures, including switches between multiple
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elementary modes, while keeping a strikingly low numerical cost. This is mainly done by
outsourcing dynamic aspects to the biological heterogeneity part of the overall modelling,
which track the evolution and diversity of biological properties. If the metabolic model
structure was to be improved, the most crucial improvement might be to reduce the
constraint on the sorting of metabolic modes. A comparison with cybernetic models with
a view of tracking the origin of metabolic mode shifts would be profitable. If done, the
proposed solution should not significantly increase the model numerical cost, for instance
by not relying on iterative optimization methods.

Apart from the metabolic model structure definition, two main aspects should be con-
sider to build upon developments presented in Chapter II. The first one is in the direct
continuation of the modelling of Saccharomyces cerevisiae. Chapter II describes a model
for this yeasts which has been fitted against multiple experimental data sets. While be-
ing satisfactory, this fitting was performed by-hand through a manual iterative procedure.
The goal was to demonstrate capabilities of the model structure under dynamic perturba-
tions but we did not search for the highest possible accuracy. On top of accuracy, an other
aspect is that of parameter identifiability. While designing the model, we attempted to
keep the number of parameters as low as possible to limit the risk of over-parametrization
and prevent in-identifiability of parameters. We did manage to limit the number of pa-
rameters to 35 where other models required more parameters for a final model with less
capabilities to predict the course of dynamic large-scale cultures (e.g. 87 parameters for
the model from Rizzi et al. [1997]). Nevertheless, tools and methods exist to automati-
cally improve a model fitting, and to assess the identifiability of parameters [Steuer, 2007;
Balsa-Canto et al., 2010; Kravaris et al., 2013; Sánchez et al., 2014]. Applying these
approaches, using existing tools, to the currently proposed S. cerevisiae model would
be easily feasible and could significantly improve its predictive capabilities. Once these
developments are integrated to reinforce the model definition method, one could easily
enrich the wild strain S. cerevisiae model which new elementary modes corresponding to
specific synthetic pathways corresponding to industrial interests.

A large part of this thesis work was dedicated to automating complex tasks. When
improving the Extended Quadrature Method of Moments in Chapter III, we automated
the benchmark of these method implementations. As detailed in Chapter IV, we used
CFD software which, though requiring a certain level of expertise, were designed to be as
user-friendly as possible. To make use of CFD results, we developed a C++ tool which
automatically integrates scalar and vector fields into a compartment model, and a Matlab
tool to clean these models from numerical error. Even though all these automated tools
would need to be interconnected under a single platform –which has been started under
the ADENON project briefly detailed hereafter– one aspect has not been automated at
all: the design of elementary-mode based metabolic models. For now, designing metabolic
models for E. coli and S. cerevisiae required analysing experimental data from lab-scale
cultures [van Dijken and Scheffers, 1986; Flikweert et al., 1999; Sweere et al., 1988],
reading analysis of their metabolism dysfunctional [Pronk et al., 1996; Xu et al., 1999]
and browsing databases of metabolic reactions [Heavner et al., 2013; Orth et al., 2011]
to define a minimal set of required elementary modes. This work is time-consuming and
widely depends on the availability of detailed resources about a specific micro-organism.

To improve on this aspect, and possibly reach an almost fully automated modelling
and simulation platform for bioreactors, tools will be required to simplify the design of
metabolic models. One approach would be to rely on detailed metabolic network to
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determine simplified networks [Gerdtzen et al., 2004] from which elementary modes can
be extracted [Trinh et al., 2008].

VI.2.2 Biological heterogeneity

The idea of tracking dynamics properties of micro-organisms is not new [Sweere et al.,
1988] but coupling this description to the transport of a biological phase in an non-
homogeneous system is a more demanding problem. Some attempts used Lagrangian
approaches [Lapin et al., 2006] but did not provide a reverse coupling between these
dynamic cell properties and local consumptions rates which influence gradients. Other
attempts were limited to a rough description of spatial heterogeneity by considering
simple two-compartments set-up [Heins et al., 2015]. Our current Population Balance-
based modelling results from work by Morchain [2000]; Morchain et al. [2013] who applied
Population Balance Model (PBM) approaches to biological systems, thus enabling a full
coupling between a fine treatment of the biological phase and the description of time-
evolving gradients [Pigou and Morchain, 2015].

In this context, we did not diverge from these ideas and, as shown in Chapter III,
we kept a Population Balance treatment of the biological phase. We shifted from class-
approach toward less expensive moment methods but we restricted ourselves to monovari-
ate numerical methods. This is partially due to results from Pigou and Morchain [2015]
where a single biological property was deemed sufficient on some regards, and to discus-
sion with Lebaz et al. [2016] who, in a different context, also dealt with dynamic systems
using monovariate Population Balance Equations (PBEs). This has shown some limits as
the metabolic model designed for S. cerevisiae happened to require at least five dynamic
biological properties. Consequently, a significant improvement of the modelling frame-
work for industrial fermenters would be the ability to handle multi-variate description of
biological heterogeneity. Two approaches could be suggested to do so while keeping the
numerical cost reasonable.

Multi-variate population balance models

Numerical methods to treat multivariate population balance models do exist. For ob-
vious reasons of numerical costs, discretization methods (finite-volume, finite-element)
will not be considered. However, multi-variate moment methods are available such as
the multidimensional moment-constrained maximum-entropy method [Abramov, 2007],
the Conditional Quadrature Method of Moments [Yuan and Fox, 2011] or a multivariate
version of the Gauss-EQMOM approach [Pollack et al., 2016; Chalons et al., 2017]. We
could attempt to implement and apply them to the modelling of biological systems, but
for multiples reasons, this choice might not be the most advisable.

The choice of moment-methods in place of class method for mono-variate PBMs was
motivated in Chapter III by their extensive comparison. In particular, we could use the
class-method as a reference to ensure the accuracy for mono-variate moment methods.
However, such a reference is not available for multi-variate PBMs unless one implements
finite-volume scheme to obtain a reference resolution of the PBE under controlled accu-
racy.

If a metabolic model happens to require multiple dynamic variables evolving with short
time-scales and whose evolutions are tightly coupled, accuracy in the resolution of cou-
pled moments, and on the computation of quadrature rules, will be critical. However,
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it is known that increasing the number of moments does not necessarily improves sig-
nificantly the accuracy of the method [Tagliani, 2001; Gzyl and Tagliani, 2010]. This
could already be observed in comparisons performed in Chapter III (see also Pigou et al.
[2017], Appendix B) between numerical methods, where results from MaxEnt and EQ-
MOM methods were only slightly sensitive to the number of resolved moments. The
capability of multi-variate moment methods to handle any set of biological properties
whose evolution may or may not be tightly coupled can therefore be questioned. At least,
this aspect can hardly be assessed in a rational manner.

A final aspect is that of stability. Numerical methods tested in Chapter III are ap-
plicable only if resolved moments remain within the realisable moment space, i.e. a
complex-geometry convex space in which moment sets correspond to actual –realisable–
probability distributions. In Chapter V, we already faced instability issues when resolv-
ing more than 5 moments over the distribution of glycolytic stress σ. These were due
to a time-integration scheme which did not ensure moment realisability. Some possible
development could then be to derive such a realisability-preserving scheme to perform
time-integration of moment sets in a Compartment Model framework, or to identify
one if this already exists. Note that while the geometry and mathematical properties
of the realisable mono-variate moment space are well understood [Dette and Studden,
1997; Gautschi, 2004], as much cannot be said for the multi-variate realisable moment
space. Therefore, deriving a realisability-preserving scheme for multi-variate problems is
expected to be a more challenging task.

Pseudo-Lagrangian/Monte-Carlo approaches

Though suited for mono-variate problems, the application of moment methods is more
challenging for multi-variate models. Class methods have also been considered for multi-
variate situations, but they basically consist in a N + 3-dimensions finite volume scheme
to solve the Population Balance Equation with N the number of biological properties
and 3 the number of geometrical dimensions. This would turn to be expensive, both in
terms of meshing due to the extra dimensions, and in terms of global numerical cost as
this has been discussed in previous chapters.

A solution to tackle multi-variate problems for the simulation of large-scale bioreac-
tors might lies in an approach that was discarded in Chapter I to consider biological
heterogeneity: the Lagrangian approach. We oriented developments toward Population
Balances and moment-methods following a lineage other works [Morchain and Fonade,
2009; Morchain et al., 2013; Pigou and Morchain, 2015] and due to a synergy between
multiple projects with this thesis [Lebaz, 2015; Quedeville et al., 2018]. The Lagrangian
framework solves issues associated to class and moment methods: its cost does not in-
crease with the number of biological properties, its accuracy is easily controlled by the
number of considered particles and is assessed through convergence studies. Moreover,
only relevant parts of the phase-space are explored by particles which removes the draw-
backs of class-methods where numerous classes happen to be empty most of the time.
Finally, computations over a large-number of particles constitutes an embarrassingly par-
allel problem which can strongly benefit from current advances in parallel computations.

The reason why we did not consider Lagrangian approaches sooner is because, for now,
Euler-Lagrange simulations of bioreactors were limited to using the Lagrange phase as a
non-reactive phase which would only record the events occurring along the trajectories
of each particles [Lapin et al., 2004, 2006; Haringa et al., 2016]. The main difficulty is to
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allow a reverse coupling: having access to the biological heterogeneity is useful only if its
effect on local uptake rates and on concentration gradients can be accounted for. Doing
so within a CFD framework, which is the natural framework for Lagrangian simulations,
is a major challenge.

So could we overcome these remaining difficulties? An approach that seems to resolve
all issues is to couple the principle of particle-tracking along with Compartment Modelling.
Under this idea, the “location” of a particle, or micro-organism, is no longer a vector
of spatial coordinates ~x, but the index of a compartment. The location of the micro-
organism within the compartment is not resolved, hence the pseudo-Lagrangian approach.

The “tracking” of particles in a compartmental framework has been suggested by De-
lafosse et al. [2015] which compared “trajectories” of particles with stochastic motion
in a compartment model against experimental trajectories obtained through optical tra-
jectography. Note that in their work, the compartment model was deduced from CFD
simulations. A particle located in the i-th compartment would leave this compartment
after a time δt taken randomly out of the Residential Time Distribution (RTD) of an
homogeneous volume:

δt ∼ λe−λt, with λ =
∑NC
j=1Qij

Vi
(VI.1)

Once a particle reaches its local residence time, the probability that it enters the j-th
compartment is given by

pj = Qij∑NC
j=1Qij

(VI.2)

Delafosse et al. [2015] have shown the interest of this method to effectively track the rough
locations and trajectories of particles in a stirred-tank reactor under a Compartment
Model framework. Note however that they used between 19000 to 35000 compartments
in their zonal model which is significantly high compared to the 432 compartments model
from Chapters IV and V. We may question the relevancy of previous closures for δt and
pj if the number of compartments is significantly lowered.

To improve upon previous developments, we propose to deduce laws for δt and pj
using actual Lagrangian tracking in CFD software. It is quite simple to perform particle
tracking in ANSYS Fluent [2015] and to export trajectories in an Ensight Gold format
datafile. Therefore, an easily feasible development is to improve the tool presented in
Chapter IV that converts CFD results into a compartment model. The goal would be
to detect all events of a particle moving from one compartment i to another j, and to
record both the time of the event t, the source and destinations compartments i and j.
From this information, on numerous events, it would be possible to construct probability
distributions from which one can randomly pick the time δt during which a particle
that entered compartment j while coming from compartment i will remain in j before
jumping into the compartment k. By extracting these easily accessible distributions from
CFD results, it should be possible to accurately mimic trajectories of particles, within a
compartment model, without requiring as many compartments as Delafosse et al. [2015].
This also opens the door to Monte-Carlo simulations where one does not actually solve
the trajectories of particles.
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Once pseudo-Lagrangian simulations are shown to be feasible within compartment
model framework, it remains to explain how they actually solve previously met problems.
In Chapter V, moments of the distribution of biological properties were used to create
quadrature rules that allow integrating the biological behaviour over the population (see
Eq. (V.27)):

ΦBL =
Q∑
i=1

wiϕ
(a)(CL,ϕ

(e), p̂i) (VI.3)

Using pseudo-Lagrangian approaches, this quadrature is simply replaced by:

ΦBL = XL

Np

Np∑
i=1
ϕ(a)(CL,ϕ

(e), p̂i) (VI.4)

with Np the number of particles in the considered compartment, XL the local biomass
concentration (gX/L) and p̂i the vector of biological properties of the i-th particle. These
properties simply evolve over time as described by the following Ordinary Differential
Equation:

∂p̂i
∂t

= ζ̂(p̂i,CL) (VI.5)

Overall, this Lagrangian approach easily replaces the quadrature methods of moment to
account for biological heterogeneity. However, they have the advantage of being directly
compatible with multi-variate descriptions of the biological phase, and they only span
parts of the phase-space that are relevant for the described system, thus tackling draw-
backs of both the class and moment approaches. Moreover, as stated previously, the
accuracy of the method can easily be assessed through convergence studies by varying
the total number of particles.

The main drawback of this approach will be its numerical cost that increases linearly
with the number of particles. In particular, the metabolic model (computation of ϕ(a)
and ζ̂) must be called for each particle individually. On that regard, the low-cost of the
model structure proposed in Chapter II is beneficial, but does not prevent the fact that,
to reach convergence, the number of particle per compartment Np will be higher than the
number of quadrature nodes in moment method approaches. This is the cost for enabling
multi-variate biological models. Note however that this can be balanced by the use of
parallelisation programming techniques which are easily applicable here as the metabolic
model can be computed in parallel between multiple particles.

VI.2.3 Large-scale hydrodynamics

This thesis was not about improving the current state-of-the-art in terms of hydrody-
namics modelling for bioreactors. There is still many aspects to improve upon in terms
of modelling of rheology, of gas-liquid interactions, of turbulence, . . . Improving this
modelling can be done in parallel of its coupling with biological heterogeneity and be-
haviour as this will only impact the obtained compartment model. Nevertheless, the
work presented in Chapter IV can be improved on two aspects. The first one is specific
to the application case of the industrial fermenter, and the second one is a long-term
improvement of the proposed modelling framework.
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For the CFD simulations of the industrial fermenter presented in Chapter IV, the choice
of turbulent model and of closures for momentum exchange between gas and liquid phases
has been somehow overlooked: we did not try to choose the most recent models on that
regard. Moreover, we imposed a mono-dispersed bubble size distribution onto the gas
phase, which is clearly a disputable choice considering the high gas flow rate and the
large role of coalescence and breakage in large-scale aerated reactors [Laakkonen et al.,
2006, 2007]. Therefore, to improve coupled simulations from Chapter V, a first step could
be to improve the hydrodynamic modelling that yields the used compartment model in
Chapter IV. On that regard, a critical aspect would be to enable models for interfacial
area transport which would significantly improve gas-liquid interaction description, as
well as the prediction of gas-liquid oxygen mass transfer in coupled simulations [Hibiki
and Ishii, 2000].

In coupled simulations of an industrial fermenter shown in Chapter V, most of the
numerical cost is associated to the treatment of the biological phase, to account for its
heterogeneity and to compute its metabolic behaviour. It would make sense to also
dedicate part of the computational power toward an improvement of the hydrodynamic
description. In particular, for now, we presented simulations using a steady compartment
model, with circulation maps and local phase-fractions that were constant over time. As
already briefly suggested in Chapter IV, it should be possible to obtain dynamic com-
partment models from time-resolved CFD simulations. Doing so could improve the de-
scription of interactions between the biological phase and its environment, in particular
in stressing zones, by improving the prediction of exposure time of cells to these stressing
situations. Over the course of this thesis, a significant time has been spent on obtain-
ing time-resolved CFD simulations using NEPTUNE CFD [2016], the development of
dynamic compartment models could rely upon these available results.

VI.2.4 Simulation of industrial fermenters

The simulation of industrial fermenters has been the core topic of this thesis. Beyond
modelling considerations that have been thoroughly explored previously, the future of
bioreactor simulation can be summed-up to two questions: why perform such simulations?
and how to perform these simulations? We already started answering the first question,
by illustrating the use of the proposed modelling framework for design and engineering
purposes, the second question is far from being tackled.

Engineer toolboxes lack an integrated solution to easily perform simulations of large-
scale bioreactors and most developments from this thesis could be integrated into such a
software tool-suite. Since the prototype work that led to this PhD thesis [Pigou and Mor-
chain, 2015], we have been developing the ADENON software which is a MATLAB [2016]
based solution for the dynamic simulation of large-scale bioreactors. This tool provides
a user-friendly graphical interface to set-up simulations coupling compartment models,
metabolic modelling and population balance models solved through class or moment
methods. It was designed with modularity in mind allowing for new models (compart-
ment, metabolism, . . . ) to be easily added to the database of already available models.
This tools has been used to perform simulations presented in multiple published articles
[Pigou and Morchain, 2015; Morchain et al., 2016; Pigou et al., 2017].

We could build upon this first software by (i) converting it into a compiled language
thus improving significantly its performances and (ii) by adding developments from Chap-



170 outlooks and conclusions

ter IV to help integrating compartment models based on CFD results. Moreover, as
suggested previously, this tool-suite could integrate a tool formulating elementary-mode
based metabolic model using detailed metabolic networks.

Such tools already exist in the Chemical Engineering community to assist the design
and the operation of chemical processes (Aspen HYSYS, ProSim, . . . ). It is easy to see
how the biochemical engineering community could also benefit from similar software.

VI.3 General conclusion

The modelling and simulation of industrial bioreactors is a challenging topic. This last
sentence has been a leitmotiv scattered throughout this thesis. To explain these chal-
lenges, our main postulate is that micro-organisms may face both internal (i.e. bio-
logical) and external (i.e. environmental) limitations and that due to the scale of in-
dustrial fermenters, these limitations will be at disequilibrium, inducing the well-known
metabolic dysfunctions in large-scale cultures. To address these challenges, we propose
to model bioreactors using three distinct yet complementary modelling-blocks. These are
illustrated in the graphical abstract of an introductory article reproduced in Fig. VI.1
[Pigou and Morchain, 2015]. We proposed a modelling for E. coli cultures based on (i)
a simplified metabolic model, (ii) a mono-variate population balance model and (iii) an
hydrodynamic compartmental model. By using Population Balance modelling to track
the biological state, we could apply the same metabolic model to the simulation of lab-
scale and industrial-scale cultures while correctly predicting the metabolic disequilibrium
between cells and their environment. This PhD thesis was a direct continuation of this
preliminary work and aimed at improving the proposed framework to expend its capabili-
ties while preserving a numerical cost sufficiently low to allow for fast simulations. To do
so, we compared and improved existing numerical methods, used engineering CFD tools,
developed methodologies to obtain compartment models from CFD results, defined a
low-cost architecture for metabolic model, and illustrated the capabilities of the obtained
modelling framework on an industrial application case.

Chapters II to V show multiple developments improving the modelling of bioreactor
but also what could be a generic methodology to model these systems:

1. Identify metabolic features of the micro-organism and develop a low-cost dynamic
metabolic model.

2. Select a suited approach and numerical method to account for the heterogeneity of
dynamic biological properties between micro-organisms.

3. Use CFD software to describe the hydrodynamic and deduce a compartment model
from resulting fields.

4. Couple previously obtained models to gain insight in the bioreactor functioning.

Of course, these developments are still on-going works and do no yet fully address the
modelling of bioreactors. This thesis still does not change the statement from Takors
[2012] according to which we are still not able to “accurately predict – a priori — large-
scale process performance”. In particular, future modellings will require experimental
advances to fully analyse core mechanisms that need to be accounted for. Overall, this
thesis was at the junction of multiple disciplines and we attempted to cover all of these,
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Figure VI.1: Graphical abstract of Pigou and Morchain [2015] illustrating the three com-
plementary modelling blocks forming the proposed modelling framework for
bioreactors: metabolic, population balance and hydrodynamic.

not only by using existing tools, but also by improving the connectivity between multiple
modelling blocks.

In terms of metabolic modelling, we tried to find the best trade-off between the com-
plexity of the metabolic network, the model numerical cost, and its capability to handle
dynamic situations. We applied the proposed metabolic model structure to E. coli and
S. cerevisiae, and were able to challenge the S. cerevisiae model against experimental
data from numerous different culture modes and yeast strains. On that regard, the devel-
oped model structure can be seen as a rationalisation of the one described in Pigou and
Morchain [2015] to facilitates its application to new micro-organisms and to improve its
modularity.

In terms of biological heterogeneity, we used the Population Balance modelling frame-
work in continuation to previous developments [Morchain et al., 2013; Pigou and Mor-
chain, 2015]. We focused on numerical methods suiting mono-variate problems only to
realise latter that this would generally not be sufficient for micro-organisms and that
multi-variate population balances, or possibly Lagrangian methods, should be considered
as well. Nevertheless, we could challenge multiple moment methods (QMOM, EQMOM,
Maximum Entropy) against the class method already used in Pigou and Morchain [2015].
The main conclusion from this comparison being that QMOM is the fastest method
but requires numerous moments to preserve a good accuracy while EQMOM offers the
best trade-off between accuracy, stability and number of resolved moments. An unex-
pected achievement has been the significant improvement of the core iterative algorithm
of EQMOM inducing a significant performance and stability gain that will benefit all
communities using this method.

Finally, in terms of bioreactor hydrodynamics, we mainly used available CFD software
to access the gas-liquid hydrodynamics of an industrial bioreactors. Our main contri-
bution has been on coupling the CFD results with the biological modelling. For that
purpose, we developed a procedure to convert CFD results into compartment models, in
a way that exploits the information contained in the standard Ensight Gold file format, so
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that a single software implementation of that procedure can be used for the compartmen-
talization of results from ANSYS Fluent [2015], NEPTUNE CFD [2016], OpenFOAM,
and other CFD software.

The final aspect in this work has been the development of a bioreactor simulation
tool-suite, ADENON, whose purpose is to integrate and couple metabolic models and
numerical methods to solve population balances along with compartmental approaches
to enable engineering studies using the proposed modelling framework. The relevancy
of this tool has been demonstrated on scale-up issues and on actual industrial systems
for design and optimisation purposes. For now, a MATLAB version of ADENON allows
for real-time simulations but future versions based on compiled languages shall enable
significantly faster simulations along with new capabilities such as parametric studies or
anticipated process control.
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Caudal, J., Fiorina, B., Massot, M., Labégorre, B., Darabiha, N., Gicquel, O., 2013. Characteristic
chemical time scales identification in reactive flows. Proceedings of the Combustion Institute 34, 1357
– 1364. doi:doi.org/10.1016/j.proci.2012.06.178.
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les réacteurs de grand volume. Ph.D. thesis. INSA de Toulouse.

Morchain, J., 2017. Bioreactor Modeling. Elsevier. doi:10.1016/c2015-0-05985-8.
Morchain, J., Fonade, C., 2009. A structured model for the simulation of bioreactors under transient

conditions. AIChE Journal 55, 2973–2984. doi:10.1002/aic.11906.
Morchain, J., Gabelle, J.C., Cockx, A., 2013. Coupling of biokinetic and population balance models to

account for biological heterogeneity in bioreactors. AIChE Journal 59, 369–379. doi:10.1002/aic.
13820.

Morchain, J., Gabelle, J.C., Cockx, A., 2014. A coupled population balance model and CFD approach
for the simulation of mixing issues in lab-scale and industrial bioreactors. AIChE Journal 60, 27–40.
doi:10.1002/aic.14238.

Morchain, J., Pigou, M., Lebaz, N., 2016. A population balance model for bioreactors combining
interdivision time distributions and micromixing concepts. Biochemical Engineering Journal , –
doi:10.1016/j.bej.2016.09.005.

Müller, L., Klar, A., Schneider, F., 2017. A numerical comparison of the method of moments for the
population balance equation. arXiv:arXiv:1706.05854.

Natarajan, A., Srienc, F., 2000. Glucose uptake rates of single E. coli cells grown in glucose-limited
chemostat cultures. Journal of Microbiological Methods 42, 87–96. doi:10.1016/S0167-7012(00)
00180-9. microbial Analysis at the Single Cell Level.

Nauha, E.K., Kálal, Z., Ali, J.M., Alopaeus, V., 2018. Compartmental modeling of large stirred tank
bioreactors with high gas volume fractions. Chemical Engineering Journal 334, 2319 – 2334. doi:/10.
1016/j.cej.2017.11.182.

NEPTUNE CFD, 2016. version 3.2.0 user guide. EDF SA, 6 quai Watier, 78401 Chatou, France.
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Nöh, K., Grönke, K., Luo, B., Takors, R., Oldiges, M., Wiechert, W., 2007. Metabolic flux analysis at
ultra short time scale: Isotopically non-stationary 13c labeling experiments. Journal of Biotechnology
129, 249–267. doi:10.1016/j.jbiotec.2006.11.015.

Noorman, H.J., Heijnen, J.J., 2017. Biochemical engineering´s grand adventure. Chemical Engineering
Science 170, 677 – 693. doi:10.1016/j.ces.2016.12.065. 13th International Conference on Gas-
Liquid and Gas-Liquid-Solid Reactor Engineering.

OECD, 2008. OECD Glossary of Statistical Terms. OECD Publishing.
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uptake and utilization rate is intro-
duced.
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pare favorably to E. coli culture data.
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a b s t r a c t

A generic model for the description of biological population dynamics in industrial bioreactors is
detailed. Hydrodynamics, mass transfer between the cell and the surrounding fluid, population
heterogeneity, metabolism and biological adaptation have to be considered with equal interest and, if
possible, simultaneously. This model couples a hydrodynamic model, a population balance model for the
growth rate adaptation and a metabolic model predicting the reaction rates depending on the state of
the individuals. This approach dissociates the growth rate from local concentrations leading to a good
understanding of the effects of a changing environment on a microbial population. Our model is applied
to Escherichia coli for which experimental data exist in the literature for batch and fed-batch cultures.
The considered strain is known for producing acetate when exposed to heterogeneities. When
simulating a large bioreactor using a compartment model approach for hydrodynamics, our coupled
model could predict that, under certain conditions, acetate is simultaneously produced and consumed in
different areas of the reactor.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The modeling of intensified bioreactors is a current challenge for
both the academic and industrial communities. This is principally due
to the complexity of such processes that combine mixing, transfer and
reaction over a very large range of time and length scales. Compared

to other chemical processes, the case of bioprocesses is even more
complex because of the dynamic response of biosystems (Enfors et al.,
2001). The chemical composition of the liquid phase constraints the
cell potential, the biological uptakes modify the concentration fields
and microorganisms adapt to the concentration changes experienced
along their trajectories. Aiming at higher productivities always pushes
the bioreactor towards a more severe competition between mixing
and substrate uptake (Linkès et al., 2014). The main consequence is
the formation of large scale concentration gradients which in turn
expose cells to fluctuating concentration signals further triggering cell
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adaptation and metabolic dysfunctioning. It has been shown that
periodic exposure to excessive substrate concentration induces some
modifications of the cell metabolism and leads to: (i) the over
assimilation of substrates, (ii) the formation of by-products, and (iii)
a decrease in the overall reactor performance. As a result, the
modeling and simulation of industrial bioreactors leads to a strong
two-way coupling issue illustrated in Fig. 1. Indeed, in biological
reactors, the reaction rates co-evolve with concentration fields due to
a permanent adaptation of the physiological state of cells.

Comparing the characteristic times of the various processes
involved is of great help to identify the potential issues. In a previous
work, mixing, substrate uptake and biological adaptation times were
considered (Morchain et al., 2014). An important result concerns the
concept of local equilibrium between the biophase and the liquid
phase. A cell may adapt to any change in its environment (Ferenci,
1996, 1999) through a large variety of response systems having
different characteristic times (Wick et al., 2001, 2002; Franchini and
Egli, 2006; Ryall et al., 2012). As an illustration, growth rate
adaptation is a slow process whereas the change of biovolume due
to an osmotic shock is very fast. In between, the characteristic time of
substrate uptake regulation is in the range of a few seconds. In most,
if not all, studies coupling hydrodynamics and bioreactions, it is
assumed that the microorganisms are at an equilibrium with their
environment: the reaction rates are calculated from the local con-
centrations in the liquid phase via a kinetic (Altintas et al., 2006;
Peskov et al., 2012) or a metabolic model (Xu et al., 1999; Meadows
et al., 2010; Matsuoka and Shimizu, 2013). The consequence is that
the actual history of cells is not considered: all cells are supposed to
behave as if they were adapted to that local environment. In other
words, instantaneous adaptation of the cell functioning is postulated.
In order to account for the cell diversity and the ability to be out of
equilibrium, the outgoing approach is to consider population balance
modeling. Cells are segregated according to one or more internal
properties. They are presumably different from one another. The
vector of internal properties can be used to define the behavior of
any cell in terms of reaction rates. This approach is very powerful to
address the issues related to bioreactor dynamics. Unfortunately, cell
ensembles (Henson et al., 2002; Mantzaris, 2005, 2006, 2007) and
class methods (Lencastre Fernandes et al., 2012) are not easy to
implement in the framework of Computational Fluid Dynamics
softwares and would lead to prohibitively large computational times
(Lapin et al., 2006).

Nevertheless, hydrodynamics, mass transfer between the cell and
the surrounding fluid, population heterogeneity, metabolism and
biological adaptation have to be considered with equal interest and,
if possible, simultaneously. One possibility to combine all these asp-
ects into a tractable model is to reduce the size of the problem thro-
ugh the use of a simplified hydrodynamic model named compart-
ment approach (Vrábel et al., 1999, 2000; Lencastre Fernandes et al.,
2013). Bezzo et al. (2003), Moullec et al. (2010) and Delafosse et al.

(2014) have proposed different techniques to transpose the 3D-CFD
results into a reduced compartment model.

In this paper, we propose to combine a compartment model
approach for the hydrodynamics, a population balance model for
the population dynamics and a metabolic model for the description
of bioreactions. The problem formulation is closed by setting the
mass transfer law between cells and the liquid phase. The first part
of the paper deals with the model presentation with a minimum
details since most aspects have already been published elsewhere
(Morchain and Fonade, 2009; Morchain et al., 2013, 2014). Then the
metabolic part of the model (adapted from Xu et al., 1999) is
validated against experimental results obtained in a small scale
(15 L) batch cultivation of Escherichia coli. In the third part the whole
model combining the aforementioned aspects is compared to some
experimental results from a 20 m3 fed-batch cultivation of the same
strain (Xu et al., 1999a; Vrábel et al., 2001). In that case, we will rely
upon the reactor compartimentation proposed by the authors. A
significant improvement of the predictive capacities is obtained with
our two-way coupled approach, without parameter adjustment
between the two scales. Namely, the occurrence of a disequilibrium
between the cell and the environment allow the formation of large
amount of by-products when assimilation rates exceed the internal
utilization rates for growth and energy production. On the opposite,
by-products are uptaken and used as secondary substrate in zones
where the main substrate is depleted. Owing to the population
balance approach the threshold between substrate excess and
substrate limiting conditions is relative to the physiological state of
each microorganism. The actual behavior of each subgroup of cells
results from the disequilibrium between its own potential and that
offered by the local environment.

2. Materials and methods

2.1. Hydrodynamic model

The principle of the Compartment Model Approach (CMA) is
briefly recalled hereafter. More details can be found in the original
papers of Hristov et al. (2004) and Zahradník et al. (2001). In such a
model, the reactor's volume is split into N sub-volumes, referred as
“compartments” and considered as perfectly homogeneous. We then
need to define a “circulation map” representing the flow pattern cir-
culating between those compartments. This circulation map may be
deduced from CFD simulations (Delafosse et al., 2010, 2014) or exp-
erimental observations (Vrábel et al., 1999).

To mathematically implement such a model, we define a matrix
of volume flow rates, M f, which is a N-by-N matrix such as the
Mf

m;n entry of this matrix is the value of the flow, expressed in
m3:h�1, going from the m-th compartment to the n-th one with m
and nAf1;…;Ng.

Let Cin be the mass concentration of any species, referred as i, in
the compartment nAf1;…;Ng. Then, the mass conservation equa-
tion for this species in the n-th compartment is given in the foll-
owing equation:

∂Cn
i

∂t
¼ RiþTiþ ∑

N

m ¼ 1
ðMf

m;nC
m
i Þ�Cn

i ∑
N

m ¼ 1
ðMf

n;mÞ ð1Þ

The term Ti is a gas–liquid transfer rate and Ri an overall
reaction rate, both expressed in gi L

�1 h�1. The calculation pro-
cedure for the bioreaction rates will be detailed in following parts
through a population balance model and a metabolic model.

The mass balances, for each species and over each compartment,
lead to a set of Ordinary Differential Equations. The ODEs sets were
solved using a program written with MATLABs 7.9 (R2009b) using
the ODE solver ode23with relative and absolute error tolerances set
respectively to 10�3 and 10�6.

Fig. 1. Illustration of (a) the one-way coupling (as in chemical reactors) and (b) the
two-way coupling in biochemical reactors: concentration gradients impact the cell
state and induce biological heterogeneity.
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2.2. Population balance

The population balance model, detailed in previous papers
(Morchain et al., 2013, 2014), discriminates individuals depending
on their growth capabilities represented by a biological growth rate
μ. The application of the general formulation of a Population Balance
Equation (PBE) proposed by Ramkrishna (2000), adapted to our case
in a homogeneous volume, is given by the following equation:

∂Xðμ; tÞ
∂t

¼ � ∂
∂μ

ðXðμ; tÞζÞþhðμ; tÞ ð2Þ

In this formulation, ζ represents the rate of variation of the internal
variable μ and h is the rate of production of cell with a given value of μ.

We consider that the cell division will lead to the formation of
daughter cells which inherit of their mother's growth rate. Under
that assumption, the PBE given in Eq. (2) becomes

∂Xðμ; tÞ
∂t

¼ � ∂
∂μ

ðXðμ; tÞζðμÞÞþμXðμ; tÞ ð3Þ

The first term on the right hand side of Eq. (3) is the net flux of
biomass moving in μ-space. ζ represents the velocity in that space.

The model actually distinguishes an upward velocity, ζu com-
puted using a time constant Tu characterizing the upward adapta-
tion, and a downward velocity ζd computed with a similar time
constant Td.

ζuðμÞ � Tu�1þμ
� �

μn�μ
� � ð4Þ

ζdðμÞ � Td�1þμ
� �

μn�μ
� � ð5Þ

This formulation implies that the population will tend to reach
a balanced growth rate μn representing the optimal growth rate
considering local concentrations. We can assume that the relation-
ship between μn and those local concentrations is known.

In order to solve this PBE, we use a discretizationmethod. Previous
equations have then been discretized and their exact formulations are
given in previous work (Morchain et al., 2013). The biological popu-
lation is segregated within J classes referred by jAf1;…; Jg. Each class
is characterized by its biological growth rate μj:

μj ¼ μmax
j�1
J�1

ð6Þ

The biomass concentration within the class j is noted Xj, the
total biomass concentration XT is then given by

XT ¼ ∑
J

j ¼ 1
Xj ð7Þ

Each concentration Xj is transported by the liquid phase as
dissolved species, which allow applying Eq. (1) to those J conc-
entrations.

The migration of biomass between classes is presented in Fig. 2.
A change in the environment results in a modification of the
optimal growth rate, μn, represented by the double-arrow in Fig. 2.
The population does not adapt immediately to the new environ-
ment, but migrates toward the two classes surrounding μn at a rate
controlled by the time constants Tu and Td.

The second term of Eq. (3) represents the formation of new cells
with a growth rate equal to μ. After discretizing this term, we
introduce the actual growth rate μj

a. Indeed, if the environmental
conditions are favorable, cells will be able to achieve the growth
rate μj corresponding to their class. If the environment is limiting,
cells will not be able to grow at their potential growth rate μj and
will be limited to the maximum growth rate possible in that env-
ironment, μn. Thus, the actual growth rate in each class is calculated
as the minimum of the two: μa

j ¼min μj;μn

� �
. In the discretized

version of Eq. (3), the rate of cell production is therefore defined as
μa
j Xj. See also Appendix A for further details.
It is noteworthy that cells with a specific growth rate smaller

than μn are limited by their own biological capabilities whereas
those having a specific growth rate higher than μn will be limited
by the environment. Although the environment is the same for all
cells, their metabolic behaviors are therefore expected to be diff-
erent. The population balance model thus introduces inertia, or
time delay, in the dynamic response of the cell population to a
changing environment. It decouples the actual growth rate of the
population from local concentrations.

2.3. Metabolic model

2.3.1. General description
The metabolic model is invoked for each class of individuals

described in the population balance model. It allows the calcula-
tion of the specific reaction rates for each group of individuals.
This step only requires the knowledge of the concentrations in the
liquid phase and the specific growth rate of individuals (related to
their class index).

Our metabolic model for E. coli is based on the one described by Xu
et al. (1999): their model details the growth of E. coli in aerobic
conditions in the presence of glucose or acetate. They considered a
metabolism, called “overflow metabolism”, leading to acetate forma-
tionwhen the oxidative pathway for energy productionwas saturated.

Based on their work, we added a fermentative pathway for energy
production triggered in anaerobic conditions, or when the oxidative
pathway is saturated. We also dissociated the overflow metabolism
from energy or biomass production, which was not the case in Xu et
al.'s model. Now, this metabolism is triggered when there is a dise-
quilibrium between glucose assimilation and needs. Finally, we used
the Pirt's formulation (Pirt, 1965) to estimate the conversion yield of
glucose in biomass as explained in Appendix A.

Then, our metabolic model is based on four categories of bio-
logical reactions:

■ Anabolism ðanaÞ: biomass production through glucose (or ace-
tate) and energy consumption.

■ Oxidative catabolism ðoxyÞ: energy production through oxida-
tive pathway.

■ Fermentative catabolism ðfermÞ: energy production through fer-
mentative pathway (mixed-acid fermentation).

■ Metabolism ðoverÞ: production of acetate through glucose over-
consumption.

The oxidative and fermentative catabolism pathways allow to
produce the energy needed for biomass growth. In presence of
oxygen, the oxidative pathway will be preferably used for its better
energetic yield. The fermentative pathway is triggered only when

Fig. 2. Schematic representation of mechanisms affecting the specific growth rate
distribution.
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the energetic need for growth is not fulfilled by the oxidative
pathway, it leads to acetate formation.

It is known that E. coli is able to grow using glucose (G), or acetate
(A) if glucose is depleted, as carbon source. If a cell consumes more
glucose than what it is able to use, the amount in excess will be
converted in acetate through the overflow metabolism (Matsuoka
and Shimizu, 2013). In our work, we assimilated the energy to mol-
ecules of Adenosine TriPhosphate (ATP, noted E) which is the main
energy source used for cellular functions.

Those considerations lead to the following set of reactions,
represented in Fig. 3:

GþYEGE⟶
qGana YXGX ðR1Þ

AþYEAE⟶
qAana YXAX ðR10Þ

GþYOGO⟶
qGoxy

Yo
EGE ðR2Þ

AþYOAO⟶
qAoxy

Yo
EAE ðR20Þ

G⟶
qGferm

Yf
EGEþYAGA ðR3Þ

G⟶
qGover YAGA ðR4Þ
With YBA being stoichiometric molar coefficients in molB mol�1

A
while qGα and qAα are the specific reaction rates on G and A res-
pectively expressed in molG g�1

X h�1 and molA g�1
X h�1.

2.3.2. Solution procedure
The improvements made between Xu et al.'s model and ours do

not rely only on the new fermentative reaction, but mainly on its
strong coupling with the population balance model. Our goal is
here to estimate the reaction rates for individuals in each class.
When solving the ODEs set, the following procedure will be called
for each class of the population balance model in each compart-
ment of the hydrodynamic model. Although modern metabolic
flux calculations now refer to time-consuming optimization meth-
ods, our procedure is a hierarchic method, consisting in a set of
tests, similar to the method used by Xu et al. (1999). The advantage
of the simple method adopted here is to allow a direct and rapid
calculation of the reaction rates.

First, let us dissociate the overflow reaction (R4) from “useful
reactions”. By useful reaction, we mean the reactions whose goal is
the production of new cells, through direct production (anabolism:
R1 and R0

1) or energy production (catabolism: R2, R
0
2 and R3).

Our main hypothesis is that there is an energetic balance
within a cell: the rate of ATP production through catabolism rea-
ctions must be equal to the rate of ATP consumption by anabolism.
Under that assumption, we will be able to define a method to
estimate the useful reaction rates of a cell, just by knowing its
specific growth rate μj, and liquid-phase concentrations (G, A, O).
This method is represented by the hereunder function f, and is
detailed in Appendix A.

f : ½0; μmax� � R3
þ⟶R5ðμj;G;A;OÞ↦ðqGana; qAana; qGoxy; qAoxy; qGfermÞ ð8Þ

With this method defined, the overflow reaction rate is the
only one missing. In our model, this metabolism is triggered when
a cell consumes (or uptakes) more glucose than what is needed for
its growth.

Let us note that ΦG
u the useful glucose uptake rate, i.e. the

amount of glucose which is used by anabolism and catabolism rea-
ctions. This rate is then defined as

Φu
G;j ¼ qGana;jþqGoxy;jþqGferm;j ð9Þ

The reaction rate of the overflow metabolism, will simply be
the difference between the total glucose uptake rate ΦG;j and the
useful part of this rate Φu

G;j:

qGover;j ¼ΦG;j�Φu
G;j ð10Þ

Closing this problem finally requires an estimation of the total
glucose uptake rateΦG;j. It has been observed that the glucose uptake
rate, in continuous cultures of E. coli, is not correlated to the growth
rate (Leegwater et al., 1982; Natarajan and Srienc, 2000). In other
words, the glucose uptake rate will be the same for all cells, no matter
their class-index.

As cells dynamically adapt their uptake capacity in response to
substrate fluctuations (Ferenci, 1996), our proposal is to consider
that the regulation of the uptake system is fast compared to the
characteristic time of concentration fluctuations. This adaptation
of the uptake system will be made in order to uptake the amount
of glucose that would be needed for internal reactions if the cell
were at equilibrium with the environment.

By definition, cells at equilibrium do not produce overflow
metabolites and therefore ΦG;j can be expressed as

8 jAf1;…; Jg;ΦG;j ¼Φn

G ¼Φu
GðμnÞ ð11Þ

In other words, the glucose uptake rate equals the sum of
glucose internal utilization rates of a cell whose biological growth
rate is μj ¼ μn.

The last requirement in this procedure is an expression for μn.
This equilibrium growth rate represents the mean growth rate of
a biological population adapted to its environment. Usually, this

Fig. 3. Representation of the internal reactions considered in the metabolic model.
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growth rate is modelized using an empirical law such as a Monod
formulation which we used here.

We consider growth on two different substrates: glucose and
acetate. The presence of glucose strongly inhibits the use of acetate
(Xu et al., 1999). Moreover, acetate is known for its inhibition pro-
perties. This leads to the following formulation for μn :

μGn ¼ μG
max

G
GþKG

O
OþKO

Ki;A

AþKi;A
ð12Þ

μAn ¼ μA
max

A
AþKA

O
OþKO

Ki;G

GþKi;G:
ð13Þ

μn ¼ μGnþμAn ð14Þ
Summing up, the calculation process requires the following steps:

(i) Estimate the equilibrium growth rate from local concentra-
tions:

G;A;O↦μn

(ii) Estimate the glucose consumption rate of a virtual cell at
equilibrium with its environment:

ðqGnα ; qAnα Þ ¼ f ðμn;G;A;OÞ; α stands for any reaction ðanabolism;

catabolism; etc:Þ

(iii) Deduce the population glucose uptake rate from this
balanced state:

ΦG ¼Φu
GðμnÞ ¼ qGnanaþqGnoxyþqGnferm

(iv) In each class jAf1;…; Jg, estimate the internal reaction rates
for anabolism and catabolism:

ðqGα;j; qAα;jÞ ¼ f ðμj;G;A;OÞ

(v) In each class, deduce from precedent results the overflow
reaction rate:

qGover;j ¼ΦG�qGana;j�qGoxy;j�qGferm;j

It must be understood that all these reaction rates will strongly
depend on the class-index of the considered cell. In the same
environment, two cells of different classes will exhibit very diff-
erent behaviors. An illustration of the variety of behaviors encoun-
tered in a same population, for a particular environment, is given
in Appendix A after the presentation of the method f.

2.3.3. Overall reaction rates
Knowing the reaction rates for each reaction, the specific con-

sumption or production rates ri;j in gi g
�1
Xj

h�1 are calculated:

rX;j ¼ qGana;jYXGþqAana;jYXA

� �
MX ¼ μa

j ð15Þ

rG;j ¼ � qGana;jþqGoxy;jþqGferm;jþqGover;j
� �

MG ð16Þ

rA;j ¼ qGferm;jYAGþqGover;jYAG�qAoxy;j�qAana;j
� �

MA ð17Þ

rO;j ¼ � qGoxy;jYOGþqAoxy;jYOA

� �
MO ð18Þ

The volumetric reaction rates needed in the mass conservation
equation (Eq. (1)), Ri in gi L

�1 h�1 with iAfX;G;A;Og, are easily
obtained from a summation of the specific rates over the entire

population:

Ri ¼ ∑
J

j ¼ 1
ri;jXj ð19Þ

For all specific variables, i.e. variables expressed per gram of
biomass (subscript j), we define a mean variable over the popula-
tion using the notation � . Thus, the population growth rate, noted
~μa , is given by

~μa ¼ 1
XT

∑
J

j ¼ 1
ðμa

j XjÞ ð20Þ

Note that ~μa is the growth rate experimentally observed.
Model parameters used in our simulations of E. coli cultivations

are given in Tables 1 and 2.

3. Results

3.1. Batch culture

First, our biological model has been challenged by a set of
experimental data coming from a batch culture conducted in a
15 liters stirred tank reactor. This culture and related measure-
ment methods have been described by Xu et al. (1999). From these
data, it can be assumed that mixing and oxygen mass transfer
were not limiting, so that the reactor is treated as perfectly mixed.
Thus, the associated Compartment Model consisted in a single
compartment (Mf¼0). In the experiment, the oxygen concentra-
tion was regulated around a value corresponding to 30% of sat-
uration. Accordingly it was decided to discard the conservation
equation for oxygen in the liquid phase and to impose a constant
value in the simulations.

During a 12 h culture, measurements of glucose, biomass and
acetate concentrations were carried out each hour. Plus, a respiro-
metric monitoring allowed to determine the Oxygen Consumption
Rate (OCR in mmolO L�1 h�1). In that paper the authors proposed
a metabolic model for aerobic cultivation of E. coli in which over-
flow metabolism resulted from the saturation of the oxidative cap-
acity of cells. Our formulation is slightly different: overflow results
from an extra assimilation of substrate compared to the cell needs.
The latter may include energy production by fermentation if the
oxidative capacity is saturated. Therefore it was essential to check

Table 1
Model constants for E. coli.

Symbol Value Unit Source

Molar masses
MX 113.1 gX mol�1

X
a

MG 180.2 gG mol�1
G

MO 32.0 gO mol�1
O

MA 59.0 gA mol�1
A

Affinity and inhibition constants
KG 0.05 gG L�1 0:05b

0:095c

(

KA 0.05 gA L�1 0.05b

KO 0.1 mgO L�1 0:0768c

0:1d

(

Ki;G 0.2 gG L�1

Ki;A 3.0e gA L�1 4.0–5.0b

Ko
i;A 4.0 gA L�1 4.0b

a The biomass is represented by the typical chemical formula C5H7NO2.
b Xu et al. (1999).
c Meadows et al. (2010).
dMorchain et al. (2013).
e Curve fitting.
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that our modification constitutes a real improvement while pre-
serving the original model capacities.

Results for batch culture simulations with both models, as well
as experimental data, are shown in Fig. 4a,b,e,f. The initial conc-
entrations used for simulations are detailed in Table 3. The initial
biomass concentration, X0, was not reported by Xu et al. (1999).
After implementing the original model described by these auth-
ors, the initial biomass concentration could be identified through a
curve fitting of the data. The value obtained was also used as the
initial condition for our simulations.

We decided to initialize the population in the class correspond-
ing to μj ¼ 0:4 h�1. This value is chosen as it gives the best fitting
of experimental data. The reason for this choice is further detailed
at the beginning of the discussion section.

The results presented in Fig. 4 were obtained using 100 classes
in our population balance model. Unpublished data show that the
simulation results are independent from the number of classes as
long as this number is higher than 60.

Fig. 4a and b represents the concentrations of glucose and
acetate over time. The substrate consumption is perfectly repre-
sented by both models, however those models differ in the way
this substrate is used, leading to a difference in acetate product-
ion. When glucose is depleted, the acetate is re-consumed at a rate
consistent with experimental observation. Our model provides a
much better fit of the experimental data which is not the result of
a parameter adjustment as will be discussed later on. Fig. 4e and f
shows a good prediction of oxygen consumption as long as glucose
is present. This prediction becomes less accurate as soon as this

substrate is entirely consumed. In such a situation, some phenom-
ena like endogenous metabolisms are known to participate in the
oxygen consumption. Yet, such details are not implemented in our
model, leading to those prediction errors.

The experimental concentrations have been post-processed to
determine the experimental apparent growth rate ~μa and acetate
variation rate ~rA as detailed in the following equations:

~μa tiþtiþ1

2

� �
¼ Xiþ1�Xi

tiþ1�ti

XiþXiþ1

2

� ��1

ð21Þ

~rA
tiþtiþ1

2

� �
¼ Aiþ1�Ai

tiþ1�ti

XiþXiþ1

2

� ��1

ð22Þ

With A and X being the experimental concentrations of Acetate
(in gA L�1) and Biomass (in gX L�1). The subscripts i and iþ1 refer
to two consecutive samples and analysis.

As shown in Fig. 4b, our model predicts acetate formation
almost perfectly compared to Xu et al's model. This is mainly exp-
lained by the way our model differentiates the two acetate origins:
the fermentation, and the overflow metabolism.

At initial conditions, glucose and oxygen concentrations are
high compared to their affinity constants, meaning that culture
conditions are optimal (here, μn

0 � 0:64 h�1). Meanwhile, it is obs-
erved experimentally that the specific rate of acetate production is
high too. However, Xu et al.'s model is not able to predict that high
initial acetate production (Fig. 4d): only a constant production rate
is predicted, and is correlated to an oxygen deficiency caused by a
low value of the maximum oxygen uptake rate. On the opposite,
our own model differentiate two phases in the acetate production.
In our model the glucose uptake rate is correlated to μn, which
happens to be high initially. However, we initialized the biological
population in a unique class such as ~μ ¼ 0:4 h�1. Then, for the first
2 h of the culture, a disequilibrium exists between the population
and its environment ( ~μoμn) leading to acetate formation through
the overflow metabolism (see ~rAover in Fig. 5b). This production
decreases along with the progressive adaptation of the population
to the environment.

Around 2 h, a switch between the two acetate origins occurs:
the high value of ~μa leads to high energetic needs, saturating the
oxidative catabolism pathway. Then, a fraction of the energy is
produced through fermentation.

It may be observed that the curve of acetate produced by the
fermentation pathway (Aferm in Fig. 5a) looks alike the curve of
acetate predicted by Xu et al.'s model (Fig. 4b). This tends to show
that the so-called overflow metabolism used in their model con-
sists in a fermentative metabolism. Indeed, their model links ace-
tate production with energy and cell production as does our ferm-
entation reaction (R3).

Here, we chose to initialize the population with a Dirac distribu-
tion by concentrating all biomass in a unique class. However, many
other distributions could have led to similar results such as, maybe,
a Gaussian distribution centered around μ¼ 0:45 h�1 or even a
multimodal distribution. Here, we want to point out that there is a
lack of experimental data about the state of the population in the
inoculum used in biological cultures. As measurements are usually
carried out at the population scale, hardly no data exists about the
distribution of biological parameters even though such data appear
more and more mandatory for the good comprehension of biologi-
cal behaviors observed in bio-reactors (Dhar and McKinney, 2007).

The inhibition of respiration by acetate is underlined in Fig. 4e
as the specific oxygen consumption rate ~ΦO decreases significantly
between 2 and 8 h. This inhibition strengthens the acetate produ-
ction through fermentation by limiting the use of the oxidative
pathway.

Those results allow to validate our biological model in a reactor
in which hydrodynamics has no visible effect on the biological

Table 2
Model constants for E. coli

Symbol Value Unit Source

Molar yields
YEG 12.05 molE mol�1

G

Ymax
XG 1.32 molX mol�1

G
1.2570.05

a

m 250 μmolG g�1
X :h�1 310b

220c

350740d

8>><
>>:

YOG 6.0 molO mol�1
G

6.0c,d

Yo
EG 20.0 molE mol�1

G
18.7d

Yf
EG

3.0 molE mol�1
G

3.0e

YAG 2.0 molA mol�1
G

2.0c

YEA 4.0 molE mol�1
A

YXA 0.40f molX mol�1
A

0.21c

YOA 2.0 molO mol�1
A

2.0c,d

Yo
EA 4.67 molE mol�1

A
4.67d

Biological limitations
μGmax 0.663 gX :g

�1
X h�1 0:67670:038

g

μAmax 0.032 gX g�1
X h�1 0:05270:028

g

Φmax
O 15.6 mmolO g�1

X h�1 15:3719c

20d;h

(

Growth rate adaptation
Tu 1.9 h 1.9i

Td 6.7f h 1.9i

a Values extracted from Xu's overall yield YX=S;of and YX=S;ov (Xu et al., 1999)
coupled with our Y∅=f =o

EG values.
b Russell and Cook (1995).
c Xu et al. (1999).
d Varma et al. (1993).
e Wang et al. (2010).
f Curve fitting.
g Extracted from Xu's qAc;max, qSmax, YX=A and YX=S;ox (Xu et al., 1999).
h Meadows et al. (2010).
i Morchain and Fonade (2009).
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population. However, in large bioreactors, heterogeneities may
appear under certain conditions depending on the quality of
mixing and the intensity of biological reactions. Thus, the ability
of our model to predict the complex transition between homo-
geneous and heterogeneous concentration fields has to be chal-
lenged against experimental data.

3.2. Fedbatch culture

The validation of our model in large bioreactors was performed
using data provided by Xu et al. (1999a) on a fed-batch culture
conducted in a 30 m3 reactor stirred with four impellers (Rushton
turbines). This reactor has been described previously (Xu et al.,
1999a; Larsson et al., 1996) and its matrix of volume flow rates, Mf,
was computed using the compartment model proposed by Vrábel
et al. (1999, 2000, 2001) with 70 compartments. The Appendix B
details the calculation of Mf for this reactor.

The validation of our implementation of this compartment
model was performed through the simulation of a tracer pulse-
response. Fig. 6 details the predicted relative concentration of the
tracer on top, middle and bottom positions of the reactor by
injecting the tracer in the top-stirrer compartment. These curves
are very similar to those presented by Vrábel et al. (1999) which
validates our implementation of the flow map at the reactor scale.

Fig. 4. Comparison of experimental data with simulation results in a batch reactor.

Table 3
Initial concentrations for batch culture.

Symbol Value Unit

X0 0.077 gX L�1

A0 0.00 gA L�1

G0 13.86 gG L�1

O0 2.70 mgO L�1
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We also deduce from this tracer experiment that the overall
mixing time in this reactor is about tmix � 250 s.

In the following, the notation 〈〉 describes the volumetric ave-
rage of variables. By default, the volumetric average is taken over
the entire reactor volume, but a subscript may be used to specify a
sub-part of the reactor (top, middle or bottom). The Fig. 7
compares the results from our simulation, the experimental data
(Xu et al., 1999a) and the curves coming from Xu et al.'s simula-
tions using Xu et al.'s model (Vrábel et al., 2001). Initial conditions
are reported in Table 4. The biomass was initially put in the class
corresponding to μj ¼ 0:63 h�1 as this choice leads to the best
curve fitting. As for the batch culture, consequences of this choice
are detailed at the beginning of the discussion.

It is important to note that the simulation of the fedbatch
culture was carried out without further adjustments of our model
parameters compared to the batch culture simulation.

Fig. 7a details the evolution of glucose concentrations on top,
middle and bottom positions. It should be noticed that the way
Vrábel et al. (2001) modeled the feed leads to an overestimation of
glucose concentration during the first hours of culture (Fig. 7a)
which is not consistent with experimental measurements. Never-
theless, the same sudden shift of the feed flow rate at t¼0.8 h was
imposed in our simulation in order to allow the assessment of the
results. Both models give very similar results regarding the glucose

concentration. It is likely that a modification of the affinity
constant for glucose could produce better agreement between
the experimental data and the simulation results. However this
does not constitute an objective for this work which is more
focused on the minimal structure of a two-way coupling approach
for the simulation of heterogeneous bioreactors. It will appear
clearly in the next paragraphs that the benefits of the coupled
approach is more related to the structure of the model than to the
accuracy of the parameter identification procedure.

The first observation of interest is on the total biomass concen-
tration XTh i given in Fig. 7b. The mixing-time, tmix � 250 s, is
negligible compared to the characteristic time of biological growth
(Morchain et al., 2014), then the total biomass concentration is
independent of the position within the reactor. Vrábel et al.'s sim-
ulation over-predicted the biomass production and an unjustified
adjustment of the conversion yield YXG by a factor as large as 0.76
was necessary to fit experimental data. Meanwhile, our model
correctly predicts this production by taking into account the known
phenomena of yield decrease at low growth rate using the Pirt's
formulation (Pirt, 1965) as explained in Appendix A.

The next remarkable point is related to the acetate production.
The acetate concentration is presented in Fig. 7c and its specific
variation rate is given in Fig. 7d. In that case a noticeable
difference between the model predictions appears. Whereas the
model of Xu et al. predicted no residual acetate, our coupled
model qualitatively predicts the transient accumulation before
10 h and the formation of a spatial gradient as the biomass con-
centration increases.

As shown in Fig. 7d, the acetate is produced everywhere in the
reactor before 7 h. After that, it appears that acetate is produced in
the upper part of the reactor and is consumed in the lower part of
the reactor where the glucose concentration is very low. Moreover
the data in Fig. 7d also allow the identification of the mechanisms
involved. The thick dotted-dashed line corresponds to the

Fig. 5. Differentiation of acetate production pathway throughout the culture. Aferm: acetate produced through fermentative catabolism, Aover: acetate produced by overflow
metabolism.

Fig. 6. Pulse-response monitoring after tracer injection in the feeding compartment.

Table 4
Fed-batch culture—initial conditions.

Value Unit

Volume V0 22 m3

Biomass X0 0.10 gX L�1

Glucose G0 0.029 gG L�1

Acetate A0 0.05 gA L�1
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production through fermentation. The fermentation metabolism is
only triggered between 4 and 7 h leading to the acetate peak
observable at the same time in Fig. 7c. This demonstrates that,
apart from that period of time, acetate is produced through
overflow metabolism.

4. Discussion

Our modeling approach, based on population balance model, is
clearly dependent on the initial conditions, obviously X and G
concentrations, but also the initial growth rate distribution whose
choice may have a real impact on the simulation results. This is a
common feature of biological systems which has been discarded in
most previous modeling approaches. From that initial distribution
will depend the global kinetic of the culture, but also the initial
disequilibrium between the population and its environment which
leads to different metabolic behaviors.

In batch and fedbatch cultures, we decided to concentrate all
the biological population in one class. The choice of that class was
made in order to fit the results with experimental data.

For the batch culture, the initial population growth rate
imposed in the simulation (μj ¼ 0:4 h�1) is different from the exp-
erimental one reported by Xu et al. (1999). Based on their exp-
erimental measurements, Xu et al. (1999) estimated the initial

growth rate around μ¼ 0:56 h�1. However, since initial biomass
concentrations are negligible, this estimation of the initial growth
rate may be flawed and we estimate, by an error analysis, that the
actual growth rate is lies between 0:3 h�1 and 0:8 h�1.

With our model, the choice of the initial distribution has two
main consequences: the first one is about the initial disequilibrium
between the biological population and the environment. Actually,
the value of μ returned by Xu et al.'s model is very similar to what
we call the equilibrium growth rate, μn. Then, by initializing the
entire population at μj ¼ 0:4 h�1, we artificially create the initial
disequilibrium that explains, with our model, the high value of ~rA .
Many different initial distributions could produce similar results in
terms of ~rA . The fact is that the experimental information on the
actual distribution of growth rate at t¼0 is not available.

The second consequence is about the global kinetic of the culture.
If we initialized the biomass at μj ¼ 0:2 h�1, we would have inc-
reased the disequilibrium, leading to an higher production of acetate,
but we also would have add a lag in the biomass growth (glucose
consumption would have been slower). We choose the value of μj ¼
0:4 h�1 as it was the best compromise between the global kinetic
and the acetate production.

The same comment applies to the initial distribution of fedbatch
culture. Moreover, in continuous culture (e.g. fedbatch or chemostat),
the medium is continuously renewed and the duration of the culture
exceeds the time scale of biological growth-rate adaptation. Then, after

Fig. 7. Experimental data and simulation results in the 30 m3 fedbatch reactor.
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a few hours, the population tends to “forget” its initial state. For
example, in our fedbatch simulation, the choice of the initial distribu-
tion only has an effect for the first hours of the simulation: it is found
that the initial conditions are forgotten when the culture enters the
“mixing/reaction competition zone” after 7 h. So it has no fundamental
impact on the observations made when the reactor becomes spatially
heterogeneous.

On the results of the models, the main difference between
ours and Xu et al.'s one is shown on fedbatch acetate curves.
Indeed, their model was not able to predict the acetate residual
concentration that is experimentally observed after 10 h of
fedbatch culture while ours predicts the apparition of an acetate
gradient over the reactor.

To understand this capability of our model, one must distinguish
two different phases in the culture. For the 7 first hours of culture,
the reactor appears homogeneous while, after 10 h, vertical gradi-
ents appear for glucose and acetate. It is worth investigating more
specifically what happens during the transitional phase between
7 h and 10 h. This can be done through the time scale analysis of the
various processes involved.

In a previous paper (Morchain et al., 2014), we introduced the
time scale of the substrate assimilation, tS:

tG ¼ 〈G〉
〈RG〉

� MXYXG〈G〉
MGμmax〈XT 〉

ð23Þ

Fig. 8 shows the evolution of this assimilation time-scale com-
pared to the mixing time. It can be seen that a switch occurs around
7 h with the assimilation time becoming smaller than the mixing
time. This means that at the beginning of the culture, the glucose
poured into the reactor is quickly mixed compared to the reaction
rate, leading to an homogeneous reactor. Then a regime switch
occurs, the substrate consumption gets faster (due to an increasing
biomass concentration) and substrate is now consumed before
reaching the bottom of the reactor, leading to the observed gradients.

A gradient on acetate concentration appears around 2 h after the
glucose gradient. This delay of 2 h results from the dynamic ada-
ptation of the population (Eq. (4)). This clearly illustrates the of dyn-
amic responses at the reactor scale: the acetate gradient is a cons-
equence of the biomass adaptation to the heterogeneous glucose
concentration field induced by a mixing limitation.

Those different situations may be visualized and understood in
Figs. 9 and 10. It is shown that around 8 h the reactor changes from
a homogeneous to a heterogeneous state. After the transitional
phase, glucose is mainly present around the feeding point while a

major fraction of the reactor has little or no substrate as shown in
Fig. 9 top. This leads to the strong spatial variation of the equi-
librium growth rate (Fig. 9 bottom). In our model, the uptake rate
is closely related to local concentrations whereas the utiliza-
tion rate for growth is determined by the volume average concen-
tration. This is consistent with the fact that the adaptation of
uptake systems is rather fast compared to that of the growth rate.
This difference in the response dynamics is thought to be respon-
sible for the cell disequilibrium.

As explained previously, the overflow metabolism is triggered
when the biomass is in a rich-in-substrate environment while
being adapted to a limiting environment. This is what happens
during the heterogeneous phase: the biomass is accustomed to a
mean concentration but happens to be in a high concentration
zone around the feeding point, and in low concentration zones
elsewhere, leading to a permanent disequilibrium (Fig. 10 top).
This unbalanced population reacts by producing acetate through
overflow in the feeding area. This acetate is afterward transported
in the areas with low glucose concentrations and is consumed
there by the starving biomass, leading to the acetate gradient as
underlined in Fig. 10 bottom.

Furthermore, it is interesting to observe that, the time constant
of growth rate adaptation being larger than the circulation time,
the mean biological growth rate ~μ is related to the volume average
concentration of glucose 〈G〉. Thus, as already demonstrated in a
previous work, the population distribution in the μ-space is ind-
ependent of the location in the reactor, but the difference between
the population state and the local environment is spatially dep-
endent (Morchain et al., 2014). Although the time constant related
to the specific growth rate adaptation is much larger than the mix-
ing time, the repeated exposure to high and low concentrations
over hours has a significant effect on the width of specific growth
rate distribution of the population. Indeed, Fig. 11 shows the
evolution of the population distribution over classes compared
with the equilibrium growth rate in different areas of the reactor.
The width of the distribution is related to the width of the colored
zone around the volumetric mean. In this figure β is defined by

βðt;μjÞ ¼
XjðtÞ

maxJj ¼ 1ðXjðtÞÞ
ð24Þ

It is indicative of the population growth rate distribution width
(note that only values higher than 5% are shown). Thus it is visible
that the population is always distributed (and almost centered)
around the mean volumetric growth rate.

It may be seen that after 10 h, when a major volumetric fraction
of this reactor has low glucose concentrations, the population gets
used to these low concentrations by moving to lowest classes. Then,
this population is no longer capable to use the glucose efficiently
when being in the feeding area, leading to these high local acetate
productions.

Such phenomena may only be predicted by considering the
disequilibrium between the substrate consumption and the cell
needs. The quantification of this disequilibrium relies upon the use
of a population balance model to describe the dynamic adaptation
of the growth rate.

In the present work, we considered in our modeling that
biological heterogeneity in terms of growth rate distribution is
induced by the environment (exogenous heterogeneity). In a
chemostat, this characteristic of the model ensures that the
population growth rate will tend, in the long term, to the dilution
rate. In a constant environment, all cells will be distributed in the
two classes surrounding μn as shown in Morchain et al. (2013).
However, recent experimental data indicate that an interdivision
time distribution exists in a chemostat (Nobs and Maerkl, 2014). It
implies that endogenous source of heterogeneity is also present.

Fig. 8. Comparison of mixing and substrate assimilation time scales during the
fedbatch culture.

M. Pigou, J. Morchain / Chemical Engineering Science 126 (2015) 267–282276



Taking this fact into account in the modeling constitutes a
potential way for future improvements. Still, the current formula-
tion proposed in this work remains meaningful in a large scale
bioreactor in which concentration gradients are present and play a
dominant role in the production of heterogeneity within the
population.

5. Conclusions

In this work, we focused on the dynamic simulation of bior-
eactors. Due to the strong two-way coupling between the biological
behavior and the spatial and temporal variations of concentration
fields, we introduced a modeling using a metabolic and a popula-
tion balance models. It leads to the description of a possible dis-
equilibrium between the biomass and its environment, interpreted
as an imbalance between a cell needs and its actual glucose cons-
umption. This modelization has been applied to the well known
bacteria Escherichia coli in order to challenge our model with data
extracted from the literature.

We integrated this biological model with a compartment model
describing the hydrodynamics of two reactors of different scales:
(i) a 15 L homogeneous reactor and (ii) a 30 m3 stirred reactor. Our
model was consistent enough to allow good predictions of
experimental measurements at two reactor scales without

modifying its parameters. Thus, we shown that the coupling of a
metabolic and a population balance models strongly improves the
prediction of acetate production, as well as the overall biological
behavior, compared to the standalone metabolic model. In parti-
cular, we observed that the formation of a glucose gradient
necessarily induces the production and the consumption of
acetate in different zones of the reactor. Such phenomena could
not be predicted without introducing an unbalanced biomass in
our modeling. So it is believed that these concepts leading to a
two-way coupled approach is a promising way to address the issue
of simulating industrial bioreactors.

Notation

Roman
A acetate
E energy, molecule of ATP
G glucose
J number of classes
K affinity or inhibition biological constant (g L�1)
M molar mass (g mol�1)
m maintenance rate (molG g�1

X :h�1)

Mf matrix of volume flow rates

Fig. 9. Glucose concentration field (top) and related equilibrium growth rates (bottom) in the 30 m3 reactor during the cultivation. The grid corresponds to the 70
compartments of the hydrodynamic model. The numerical data are local instantaneous values.
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N number of compartments
O oxygen
q specific reaction rate (mol g�1

X h�1)
R volumetric reaction rate (g L�1 h�1)
r specific reaction rate (g g�1

X h�1)
T volumetric transfer rate (g L�1 h�1)

Td time constant for downward transfer between classes (h)

Tu time constant for upward transfer between classes (h)
t time (h)
X cells, biomass
Y stoichiometric molar coefficient (mol mol�1)

Subscript and superscript

n variable describing a cell at equilibrium with its
environment

0 initial conditions
a actual or achieved
f fermentative reaction
i generic notation for any species (A, E, G, O or X)
j class index
m compartment index
max maximum value of a biological constant
n compartment index
o oxidative reaction
T total over the biological population

Greek

α generic notation for any biological reaction
Φ biological uptake rate ðmol g�1

X h�1Þ
μ specific growth rate of a cell (h�1)
ζ rate of change of specific growth rate (h�2)

Fig. 10. Overall population disequilibrium expressed as μn� ~μ (top) and acetate production/consumption rates (bottom). The grid corresponds to the 70 compartments of the
hydrodynamic model. The numerical data are local instantaneous values.

Fig. 11. Evolution of biological population width, and equilibrium growth rates at
different locations in the reactor.
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Appendix A. Metabolic reaction rates calculation

This appendix details explicitly the calculation procedure of
biological reaction rates. It presents a method to calculate these
reactions rates, starting from the cell biological growth rate μj and
the liquid-phase concentrations (in glucose (G), acetate (A) and
oxygen (O)). In its principle, this method is similar to that pro-
posed by Xu et al. (1999): it consists in a set of tests (hierarchic
method). This procedure defines the rates of the following reactions:

GþYEGE⟶
qGana YXGX ðR1Þ

AþYEAE⟶
qAana YXAX ðR10Þ

GþYOGO⟶
qGoxy

Yo
EGE ðR2Þ

AþYOAO⟶
qAoxy

Yo
EAE ðR20Þ

G⟶
qGferm

Yf
EGEþYAGA ðR3Þ

This estimation is here possible by assuming an energetic
balance within a cell: the rate of ATP production, through cata-
bolism pathways, is strictly equal to the rate of ATP consumption
through anabolism:

Yo
EGq

G
oxyþYf

EGq
G
ferm ¼ YEGqGana ðA:1Þ

Yo
EAq

A
oxy ¼ YEAqAana ðA:2Þ

First, we must evaluate the actual growth rate of the conside-
red cell. We consider that growth may be limited either by the
biological growth rate (internal limitation), or by the environment
concentrations (external limitation). Those concentrations allow to
compute an environment permitted (or equilibrium) growth-rate μn :

μGn ¼ μG
max

G
GþKG

O
OþKO

Ki;A

AþKi;A
ðA:3Þ

μAn ¼ μA
max

A
AþKA

O
OþKO

Ki;G

GþKi;G
ðA:4Þ

μn ¼ μGnþμAn ðA:5Þ
Then, the actual growth rate is defined as the minimum between

the biological, and the equilibrium, growth rates. We define an
actual growth rate for glucose-based growth (μa;G

j ), and an other
one for acetate-based growth (μa;A

j ). The sum of them leads to the
actual growth rate of the cell:

μa;G
j ¼min μj;μ

Gn
� �

ðA:6Þ

μa;A
j ¼min μj�μa;G

j ;μAn
� �

ðA:7Þ

μa
j ¼ μa;G

j þμa;A
j ¼min μj;μ

n

� �
ðA:8Þ

Anabolism

The anabolism reaction rates are directly deduced from the actual
growth rates, on G (Eq. (A.10)) and A (Eq. (A.11)), of the j-th class. The

conversion yield of glucose in biomass, YXG, is computed using the
Pirt's formulation (Pirt, 1965). This formulation, given in Eq. (A.9),
reflects the fact that maintenance operations take a major role in
substrate consumption at low growth rate while having a negligible
effect at high growth rate (Russell and Cook, 1995):

1
YXG

¼m�MX

μa
j

þ 1
Ymax
XG

ðA:9Þ

m (in molG g�1
X h�1) is the maintenance rate, representing the

amount of substrate needed for maintenance. In the present work,
m was kept constant at 250 μmolG g�1

X h�1, but for a more detailed
model it has been suggested that this rate is partially linked to the
growth rate (Holms, 1996; Meadows et al., 2010).

qGana;j ¼
μa;G
j

YXGMX
ðA:10Þ

qAana;j ¼
μa;A
j

YXAMX
ðA:11Þ

Those rates represent a cell-production rate that will effectively
be achieved. But to allow this cell production, energy must be
produced as well. We then must estimate the rate of energy pro-
duction through the oxidative pathway, and if needed, through the
fermentative pathway.

Catabolism

As the oxidative pathway provides a better energetic yield, we
make the assumption that the energy needed for anabolism will
be only produced through that pathway if possible. The fermenta-
tive pathway will only be triggered if there is an oxygen deficiency.

First, lets estimate the amount of oxygen that would be needed
(upper-script n) to produce all the energy needed. In that case, the
oxidative catabolism reaction rates would be

qG;noxy;j ¼
YEGqGana;j

Yo
EG

ðA:12Þ

qA;noxy;j ¼
YEAqAana;j

Yo
EA

ðA:13Þ

This leads to a needed oxygen consumption rate, expressed in
molO g�1

X h�1, in Eq. (A.16).

ΦG;n
O;j ¼ YOGq

G;n
oxy;j ðA:14Þ

ΦA;n
O;j ¼ YOAq

A;n
oxy;j ðA:15Þ

Φn
O;j ¼ΦG;n

O;j þΦA;n
O;j ðA:16Þ

Beside of the oxygen need, we estimate the oxygen availability
which does not depend on the considered class and relies on liquid
phase concentrations. This maximum possible oxygen consump-
tion rate (upper-script p) is assumed to follow a Monod model.
This model implements an inhibition of oxygen uptake rate by
acetate as observed by Xu et al. (1999):

Φp
O ¼Φmax

O
O

OþKO

KO
i;A

AþKO
i;A

ðA:17Þ

If the oxygen availability excess the cell needs (Φp
OZΦn

O;j), then
all energy is produced by oxidative pathway:

qGoxy;j ¼ qG;noxy;j ðA:18Þ

qAoxy;j ¼ qA;noxy;j ðA:19Þ

qGferm;j ¼ 0 ðA:20Þ
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Otherwise, if oxygen is a limiting factor (Φp
OoΦn

O;j), the
fermentative catabolism is triggered to fulfill energetic needs.
Then, the fermentation reaction rate is deduced from the energy
balance (Eq. (A.1):

qGoxy;j ¼ qG;noxy;j

Φp
O

Φn
O;j

ðA:180Þ

qAoxy;j ¼ qA;noxy;j

Φp
O

Φn
O;j

ðA:190Þ

qGferm;j ¼
YEGqGana;j�Yo

EGq
G
oxy;j

Yf
EG

ðA:200Þ

Using Eqs. (A.1)–(A.20)0, we define the function f introduced in
Section 2.3.2:

f : ½0; μmax� � R3
þ⟶R5

ðμj;G;A;OÞ↦ qGana; q
A
ana; q

G
oxy; q

A
oxy; q

G
ferm

� �
ðA:21Þ

By using both this function and the calculation procedure of the
overflow reaction rate, we may plot all the reaction rates throughout a
population in a given environment as done in Fig. A1. This figure has
been computed with the following concentrations: G¼ 0:2 gG L�1,

O¼ 3:6 mgO L�1 and A¼ 0:06 gA L�1. Some constants were also
modified to make the figure more readable: μG

max ¼ 0:6 h�1, μA
max ¼

0:3 h�1 and Φmax
O ¼ 8 mmolO g�1

X h�1.
In this figure, each abscissa corresponds to the behavior of a

particular class.
Fig. A1a shows the evolution of the actual growth rates both on

glucose and acetate following Eqs. (A.6)–(A.8). Thus, three differ-
ent regimes may be observed:

■ μjA ½0;μGn�: only glucose in consumed due to strong internal
limitations.

■ μjA ½μGn;μn�: both glucose and acetate are consumed, but
growth is still limited by internal capabilities.

■ μjA ½μn;μmax�: availabilities of glucose and acetate limit growth.

Fig. A1b shows the evolution of the needed oxygen consump-
tion rateΦO

n , expressed in Eq. (A.16). When the oxygen needs (ΦO
n)

exceed the oxygen availability (ΦO
p , Eq. (A.17)), the oxygen con-

sumption is saturated and a part of the energy is produced thr-
ough fermentation. It leads to the following regimes:

■ μjA ½0;μferm�: Energy produced only through the oxidative
pathway.

■ μjA ½μferm;μmax�: Energy produced with both oxidative and
fermentative pathways.

These two first sub-figures allow to identify, for each value of
μj, what is (or are) the factor(s) limiting growth. From that, we can
deduce the actual reaction rates, presented in Fig. A1c and d. In
particular, these inter-correlations may be observed:

1. The anabolism rates, qGana and qAana, are directly proportional to
μa;G (Eq. (A.10)) and μa;A (Eq. (A.11)).

2. The energy used for growth on acetate is always produced
through acetate oxidation, then, qAoxy is directly proportional to
qAana.

3. The rate of energy production for growth on glucose are cal-
culated such as the maximum part of this energy in produced
through the oxidative pathway, in the limit of oxygen avai-
labilities.

4. The useful part of glucose uptake, ΦG
u is the sum of qGana, q

G
oxy

and qGferm.
5. The overflow reaction rate, qGover , is defined as the difference

between Φu
GðμnÞ and Φu

GðμÞ

Again, each abscissa represents the behavior of a particular
class. It is important to note that depending on the state of the
population, not all these behaviors will be exhibited. Our biological
model couples the population balance with this metabolic model,
leading to a wide variety of different possible behaviors at the
scale of the population. In usual models, an instantaneous adapta-
tion of bacteria to their environments is postulated. When using
our metabolic model, such an hypothesis would constrain the
observed behaviors to the one described in Fig. A1 at the μn

abscissa.

Appendix B. Computation of the matrix of volume flow rates
for the fedbatch reactor

Vrábel et al. (1999, 2000, 2001) designed, challenged and used
a compartment model to run simulations compared with the
behaviors observed within their large bioreactor (30 m3). We used
the description of their compartment model to compute the
matrix of volume flow rates, Mf, needed to run our own

Fig. A1. Evolution of (a) growth rates, (b) oxygen uptake rates, (c) glucose uptake
and reactions rates and (d) acetate reaction rates, throughout the population. Left
hand side: legends of variables depending only on the environment (independent
from individuals). Right hand side: legends for corresponding curves. Legends also
detail the equations in which are given expressions of corresponding variables.
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simulations. This model is based on the definition of three flows
induced either by the use of Rushton turbines, or by the aeration.

Vrábel et al. observed that each of the four stirrers induces two
circulation loops plus a supplementary loop on the top of the
reactor as shown in Fig. B1 left. The flow in those loops is named
Circulation Flow (CF). The presence of bubble for the aeration
creates a flow that connects the circulation loops on their middles.
This aeration Induced Flow (IF) also increases the velocity of the
liquid within the circulation loops. Finally, the mixing and the
aeration leads to the apparition of vertical turbulence flow (EF).

With these observations, Vrábel et al. modelized this hydro-
dynamics by splitting the reactor's volume in 14 rows (3 per stirrer
plus 2 for the top-loop), and each row in 5 columns, as shown in
the right of Fig. B1. The last figure shows a numeration of
compartments as well as the flows going through each of them.

By definition, the matrix of volume flow rates is here a 70-by-
70 matrix. Its value on the m-th row and n-th column represents
the flow going from the compartment m to the compartment n.
For example Mf

18;19 ¼ CFþ2IF as shown in Fig. B1.
Once Mf has been designed based on values of CF, IF and EF, an

estimation of these flows is needed. The calculation method used
in estimating those flows has already been detailed by Vrábel et al.
(1999, 2000). However, their procedure needs the knowledge of
the stirrer speed and the gas-holdup throughout the culture. We
then considered a constant stirrer speed of 1 s�1, a gas flow of
1=60 m3 s�1 and an overall gas-holdup of 8%. Those values are
consistent with the range of values used by Vrábel et al. (1999,
2000, 2001).

These values lead to the following flows:

■ CF ¼ 0:32 m3 s�1

■ IF ¼ 0:04 m3 s�1

■ EF ¼ 0:28 m3 s�1
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� A biological population balance model is solved using class and moment methods.
� Homogeneous chemostat and heterogeneous fedbatch cultures are simulated.
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� QMOM and EQMOM are well suited and have major advantages against class method.
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a b s t r a c t

A predictive modelling for the simulation of bioreactors must account for both the biological and hydro-
dynamics complexities. Population balance models (PBM) are the best approach to conjointly describe
these complexities, by accounting for the adaptation of inner metabolism for microorganisms that travel
in a large-scale heterogeneous bioreactor. While being accurate for solving the PBM, the Class and Monte-
Carlo methods are expensive in terms of calculation and memory use. Here, we apply Methods of
Moments to solve a population balance equation describing the dynamic adaptation of a biological pop-
ulation to its environment. The use of quadrature methods (Maximum Entropy, QMOM or EQMOM) is
required for a good integration of the metabolic behavior over the population. We then compare the accu-
racy provided by these methods against the class method which serves as a reference. We found that the
use of 5 moments to describe a distribution of growth-rate over the population gives satisfactory accu-
racy against a simulation with a hundred classes. Thus, all methods of moments allow a significant
decrease of memory usage in simulations. In terms of stability, QMOM and EQMOM performed far better
than the Maximum Entropy method. The much lower memory impact of the methods of moments offers
promising perspectives for the coupling of biological models with a fine hydrodynamics depiction.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The large-scale simulation of bioreactors is currently a challeng-
ing issue. Such simulations must account for both (i) the (multi-
phase) hydrodynamics and (ii) the metabolic behaviour of the
biological population carried by the fluid. The first can be achieved
through the use of widespread CFD softwares which require signif-
icant computational power. The second can be addressed with
advanced cell models which result from community efforts to inte-
grate genome-scale reconstructions of a strain metabolic network
and depict thousands of intracellular reactions and metabolite con-

centrations. Examples are the iJO1366 model for Escherichia coli
(Orth et al., 2011) and the consensus YEAST model for Saccha-
romyces cerevisiae (Heavner et al., 2012; Heavner et al., 2013).
These models describe state of the art knowledge of a cell
metabolism, however their implementations require to solve
either cumbersome optimization problems to access a steady-
state cell-functioning, or to solve dynamically the metabolite con-
centrations in a cell that experiences exogeneous perturbations.

Even though the computational power increased significantly
over the past few decades, it is still not possible to couple the
CFD approach with a biological modelling that fully embraces the
biological complexity. Such an approach is numerically untractable
as it requires to solve dynamically the intracellular concentrations
for each cell in a bioreactor with an Euler-Lagrange framework.

http://dx.doi.org/10.1016/j.ces.2017.05.026
0009-2509/� 2017 Elsevier Ltd. All rights reserved.
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Therefore, two simplified approaches are usually applied. On the
one hand, one can neglect the spatial heterogeneity and solve a
complex metabolic model in homogeneous batch or chemostat cul-
tures (Meadows et al., 2010; Matsuoka and Shimizu, 2013). On the
other hand, one will describe the hydrodynamic complexity jointly
with a simplified biological approach such as either structured or
unstructured kinetic models (Bezzo et al., 2003; Elqotbi et al.,
2013; Lu et al., 2015).

Concentration gradients are known to be responsible for meta-
bolic dysfunctions in large-scale reactors (Enfors et al., 2001),
therefore we should avoid the first approach and describe the spa-
tial heterogeneities. However, the use of kinetic models should be
discarded too. Indeed, from the point of view of a cell travelling in
these heterogeneous concentrations fields, the concentration sig-
nal is fluctuating (Linkès et al., 2014; Haringa et al., 2016). This
make kinetic models inappropriate as they are usually based on
the Monod kinetics law which reflects a steady-state equilibrium
between a population and its environment. By making use of a
Monod law, the kinetic models have ‘‘been over simplified by
allowing instantaneous adaptation of the cell to the abiotic envi-
ronment” (Silveston et al., 2008).

In previous work (Pigou and Morchain, 2015), we stepped back
in both the hydrodynamic description by using a Compartment
Model Approach (Cui et al., 1996; Mayr et al., 1993; Vrábel et al.,
2000; Vrábel et al., 2001) and in the metabolic description of
E. coli by simplifying the key reactions of the central carbon meta-
bolism into a 6 reactions model inspired by the model proposed by
Xu et al. (1999). More importantly, we introduced the use of a Pop-
ulation Balance Model (PBM) as a key modelling tool that allows
describing simultaneously both (i) the concentration gradients,
(ii) a dynamic adaptation of cells to the fluctuating conditions they
experience along their trajectories and (iii) the metabolic impact of
a disequilibrium between a cell and its local environment. This
approach has been successfully challenged against experimental
data in lab-scale batch culture and industrial-scale heterogeneous
fedbatch culture. More recently, we improved the PBM to account
for an experimentally observed stochastic diversity related to cell-
division (Morchain et al., in press).

Until now, we solved the PBM using a class method (also known
as fixed pivot method, Kumar and Ramkrishna (1996a, 2001)) with
at least 60 classes to span the entire range of possible values for the
chosen variable (i.e. the maximum growth-rate achievable by a cell
provided enough nutrients are available). Each class represents a
scalar that must be transported by the hydrodynamic framework.
While transporting a hundred classes within a 70 compartments
model (Pigou and Morchain, 2015) was perfectly feasible, doing
the same in a CFD simulation would be prohibitively expensive.

The current paper thus makes the focus on improving the
numerical tractability of the PBM, through the use of the Method
of Moments (MOM), in order to increase the allowed level of spa-
tial accuracy. Instead of performing a direct resolution of the pop-
ulation balance equation, the MOM describes the evolution of the
first moments of a Number Density Function (NDF). However, it
will be of interest to perform a reverse operation and to recover
an approximation of the NDF from a finite set of its moments; this
is known as a truncated moment problem (Abramov, 2007).

Many methods are available to tackle this problem. A review of
such methods is available (John et al., 2007) though new methods
or improvements are available since its publication. More recently,
Lebaz et al. (2016) compared the most common approaches which
are Kernel Density Element Method (KDEM), Spline-based method,
and the Maximum Entropy (MaxEnt) method applied to the case of
a depolymerization process. The KDEM approximates the unknown
NDF as the sum of weighted Kernel Density Functions (KDF). The
identification of the weights is performed through a constrained
minimization procedure, which requires a high number of
moments to prevent an underdetermined problem and the multi-
plicity of solutions. The spline method (John et al., 2007) leads to
a piece-wise polynomial reconstruction, but the resulting recon-
struction is highly dependent on numerical parameters, and can
lead to negative values of the reconstructed NDF. For these reasons,
the KDEM and spline methods will be discarded in the current
work.

The MaxEnt method (Mead and Papanicolaou, 1984; Tagliani,
1999) was point out as efficient and accurate, even with a low
number of moments, by Lebaz et al. (2016). It is however

Notation

Roman
C concentration (kg.m�3)
H Shannon entropy
K biological affinity constant (kg.m�3)
L quadrature node abscissae (h�1)
m moment of distribution n (kg.m�3.h�k)
n number density function (h.kgX.m�3)
N number of resolved moments
NC number of classes
Nc number of compartments
P order of moment methods
q specific reaction rate (mol.kg�1

X .h�1)
Q flow rate (m3.h�1)
R reaction rate (kg.m�3.h�1)
T time constant of adaptation (h)
V compartment volume (m�3)
w quadrature node weight (kgX.m�3)
Y stoichiometric molar coefficient (mol.mol�1)

Subscript and superscript
~x population mean value
x� equilibrium value

xa achieved value
xA acetate
xG glucose
xi inhibition
xk moment order
xm compartment index
xn compartment index
xO oxygen
xT threshold value

Greek symbols
e turbulent energy dissipation rate (W.kg�1)
j PDF kernel
l growth rate ðgX :g�1

X :h�1Þ
m kinematic viscosity ðm2:s�1Þ
u polynomial coefficient
U specific uptake rate ðg:g�1

X :h�1Þ
W environmental limitation coefficient
r standard deviation (h�1)
f rate of change of specific growth rate (h�2)
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ill-conditioned at the boundaries of moment space (Massot et al.,
2010), but this can be handled by providing some adjustments of
the method (Vié et al., 2013). Finally, we consider the recent
EQMOM method (Chalons et al., 2010; Yuan et al., 2012;
Marchisio and Fox, 2013) which constitutes an interesting fusion
of KDEM with the QMOM approach (Marchisio et al., 2003a;
Marchisio et al., 2003b; Marchisio et al., 2003c). This method has
proven to be stable and efficient –in particular near the frontier
of the realizable moment space where MaxEnt is ill-conditioned–
but requires to make assumptions on the shape of the
reconstruction.

The current work is focused on assessing the methods QMOM,
EQMOM and MaxEnt against the already used classes method, in
the perspective of running predictive and numerically tractable
bioreactor simulations.All thesemethodshavebeenused toperform
the simulation of a homogeneous chemostat culture stressedwith a
dilution rate shift (Kätterer et al., 1986). After, themethods are com-
pared in terms of their numerical efficiency, their accuracy and their
stability in this peculiar configuration. Finally, the moment and
classes methods are compared on the configuration investigated
by Pigou and Morchain (2015) of a heterogeneous fedbatch culture
described by Vrábel et al. (1999, 2000). For this last, the heterogene-
ity is taken into account by a compartment model approach.

2. Models and methods

2.1. Local mass balance

The basis in the modelling of bioreactors is the formulation of
local mass balances. They describe the evolution of local concen-
trations as a consequence of (i) transport by the carrying fluid
and (ii) consumption or production by the biological phase. As in
previous work (Pigou and Morchain, 2015), we will hereafter
describe the hydrodynamics using Compartment Model Approach
(CMA). Let Cn (kg.m�3) be the vector of mass concentrations within
the n-th compartment, Vn the volume (m3) of that compartment,
and Qn;m (m3.h�1) the volume flow rate going from the n-th to
the m-th compartment. The total number of compartments is Nc .
Then, the mass balance equation in compartment n is given as:

@VnCn

@t
þ Cn

XNc

m¼1

ðQn;mÞ �
XNc

m¼1

ðQm;nCmÞ ¼ VnRðCnÞ ð1Þ

Our contribution is to express the vector of biological reaction
rates RðCÞ (kg.m�3.h�1) as the sum of the substrate uptake rates,
or product production rates, due to all cells considering their indi-
vidual physiological states. Let l (h�1) be the biological growth
capability of a cell (i.e. the growth rate they can achieve if permit-
ted by the nutrient availability), we will distinguish each individual
upon this value. Different cells, having different values of l in a
similar environment, will exhibit different metabolic behaviours.
Then, in order to express the bioreaction rates at the scale of the
biological population, one must know the statistical distribution
of the property l over that population, and integrate the uptake
or production rates over that distribution:

RiðCnÞ ¼
Z þ1

0
nðlÞUiðl;CnÞdl ð2Þ

where nðlÞ is the NDF defining the fraction of the biological phase
whose specific growth rate is l. The first two moments of this NDF
are defined as following:Z þ1

0
nðlÞdl ¼ X ð3ÞZ þ1

0
lnðlÞdl ¼ ~lX ð4Þ

with X the total biomass concentration (kg.m�3) and ~l the popula-
tion mean growth rate (h�1). In the current work, we consider the
metabolic behaviour of Escherichia coli and the vector C actually
consists in a vector of Glucose (G), Acetate (A) and Oxygen (O)
concentrations.

C ¼
CG

CA

CO

2
64

3
75 ð5Þ

We will also consider scalar variables to transport information
about the distribution nðlÞ as explained afterwards.

Therefore, the glucose uptake rate UGðl;CÞ, the oxygen uptake
rate UOðl;CÞ and the acetate uptake/production rate UAðl;CÞ will
be outcomes of the metabolic model calculation procedure. The
later uses as inputs (i) the specific potential growth rate of individ-
ual, l; (ii) the vector of concentrations in the liquid phase C, and
(iii) the equilibrium law l� ¼ f ðCÞ. The growth rate at equilibrium
l� is the growth rate that cells would exhibit at steady state in an
environment defined by the vector of concentrations C. Such
expressions are known from chemostat experiments and typically
take the form of a multi-component Monod-Law, taking here into
account the inhibitory effect of acetate:

l� ¼ lmax
CG

CG þ KG

CO

CO þ KO

K i;A

CA þ K i;A
ð6Þ

with KG and KO the affinity constants (kg.m�3) of the biomass
toward glucose and oxygen, and K i;A the inhibitory constant of
growth by acetate.

A noticeable point is that the substrate uptake rate is not alge-
braically related to the specific growth rate as it cannot be assumed
in general that cells are at equilibrium with their environment
(Ferenci, 1996). Therefore, our approach is consistent with theoret-
ical considerations (Perret, 1960) and experimental observations
(Abulesz and Lyberatos, 1989; Li, 1982; Silveston et al., 2008) indi-
cating that the growth and uptake rates are decoupled in the
dynamic regime whilst an algebraic relation exists between them
at steady state.

The second point in terms of modelling resides in the calcula-
tion of the NDF nðlÞ that defines the concentration of biomass
whose potential growth rate is l. This calculation will be
addressed in a dedicated paragraph.

2.2. Calculation procedure for the metabolic reaction rates

The procedure is almost identical to that presented in a previ-
ous paper (Pigou and Morchain, 2015), therefore, only the key fea-
tures of the metabolic model, and the few differences of the
calculation procedure are detailed here.

The first step of that procedure is to compute the actual growth
rate of each cell, by taking into account its growth capabilities (see
Section 2.3), and a potential limitation related to nutrient availabil-
ity. In the previous work, we defined this actual growth rate of a
cell, la, as the minimum between its biological growth capability,
l, and the environment equilibrium growth rate l� (given by the
Monod law, Eq. (6)): la ¼ minðl�;lÞ. However, we recently shifted
this formulation toward a more meaningful and physical one,
based on a limitation by the micromixing, which proved to be con-
sistent with experimental studies of membrane transporters at
limiting nutrient concentrations (Ferenci, 1996; Ferenci, 1999).
The detailed explanation for this change is given in Morchain
et al. (in press).

We then defined a threshold glucose concentration, CGT , around
which micromixing will start to be a limiting factor. As long as the
bulk substrate concentration is significantly higher than this
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threshold concentration, cells will be fed enough by micromixing
to be able to achieve their potential growth rate.

CGT ¼ RG � 17
m
e

� �0:5
ð7Þ

The term 17
ffiffiffiffiffiffiffiffi
m=e

p
is proposed by Baldyga and Bourne (1999) to

evaluate the micro-mixing time-scale, and depends on the fluid
viscosity, m (m2/s), and the turbulent energy dissipation rate, e,
whose value usually ranges from 0:5 to 10 W/kg depending on
the bioreactor stirring.

As RG is an output of the metabolic calculation procedure (Eq.
(2)), which itself depends on la, and considering that we only need
the order of magnitude of the limiting concentration, we provide
the following rough approximation of RG for the estimation of CGT :

RG � MG

YXGMX

Z þ1

0
lnðlÞdl ð8Þ

With YXG the molar yield of glucose to cell conversion

(molX :mol�1
G ), MX the molar mass of biomass (MX ¼ 113:1 gX :

mol�1
X considering the typical chemical formula C5H7NO2) and MG

the molar mass of glucose (MG ¼ 180:2 gG:mol�1
G ).

Now, following Morchain et al. (in press), the actual growth rate
is given by:

la ¼ Wl ð9Þ
where the coefficient W reads:

W ¼ 1� e�CG=CGT ð10Þ

As a recall, the estimation of la along with the calculation of l�

is the very first step of the calculation procedure of the metabolic
model, as detailed in Pigou and Morchain (2015) which explains
why the choice of la formulation is of importance. After estimating
the actual -effectively achieved- growth rate of a cell, the calcula-
tion procedure of the metabolic model is exactly the one described
in the previous work.

This metabolic model roughly describes the central metabolism
of Escherichia coli, it accounts for:

� Anabolism based on either glucose or acetate as a carbon
source, leading to the formation of new cells,

� Oxidative catabolism on both substrates for energy production,
� Fermentative catabolism of glucose, leading to the production
of energy, and acetate as a by-product,

� Overflow metabolism, leading to production of acetate when
glucose is over-consumed.

Each pathway is simplified into the following set of reactions:

Gþ YEGE !q
G
ana YXGX ðR1Þ

Aþ YEAE !q
A
ana YXAX ðR10 Þ

Gþ YOGO !q
G
oxy
Yo

EGE ðR2Þ

Aþ YOAO !q
A
oxy
Yo

EAE ðR20 Þ

G !
qG
ferm

Y f
EGEþ YAGA ðR3Þ

G !q
G
over YAGA ðR4Þ

G: Glucose, E: Energy, A: Acetate, O: Oxygen, X: Biomass. YBA is
the stoichiometric molar coefficient in molB=molA. qG

a and qA
a are

the specific reaction rates for reactions respectively based on glu-

cose (molG:g�1
X :h�1) and on acetate (molA:g�1

X :h�1).
The calculation procedure gives access to the specific reaction

rates, and is based on:

� The growth capability of a cell (l), whose evolution is described
by the Population Balance Model (see Section 2.3),

� The environmental conditions (G, A and O concentrations) and
the W coefficient,

� An assumption of non-accumulation within the cytoplasm. In
particular, the rate of energy production is balanced by the rate
of energy consumption.

2.3. Population balance model

External and intrinsic perturbations are known to produce
heterogeneity among the cell population. In order to track this
diversity, the usual mathematical approach is to refer to a popula-
tion balance model. The originality of our approach resides in that
the discriminating factor is the specific growth rate of individuals.
Recent observations have proved that this variable is actually dis-
tributed in a cell population (Yasuda, 2011). This formulation is
advantageous since the relationship between the growth rate and
the metabolic reaction rates is much more natural than when the
size or mass of the cell is chosen as the discriminating parameter
(Pigou and Morchain, 2015; Morchain et al., in press). The Popula-
tion Balance Equation (PBE) for the specific growth rate distribu-
tion nðlÞ is here given for a homogeneous case; terms
accounting for the transport might be added on the left hand side
depending on the hydrodynamic framework:

@nðlÞ
@t

¼ � @

@l
nðlÞfðlÞ½ � þ

Z þ1

0
bðl;l0Þnðl0ÞWl0dl0 ð11Þ

The first term in the right-hand side of Eq. (11) is a convection
term in the l-space instead of the physical space. It describes the
fact that individuals are able to adapt their specific growth rate
in response to insufficient or excessive substrate concentrations.
We refer to this term as the adaptation term. In the adaptation
term, fðlÞ refers to a velocity in the l-space or equivalently to
the rate of change of l over time. This velocity can be either posi-
tive or negative depending on whether the environment is respec-
tively rich or poor in nutrients, compared to what a cell is used to.
In previous work, a general form for fðlÞ was proposed and vali-
dated against experimental data sets:

fðlÞ ¼ 1
T
þ l

� �
l� � lð Þ ð12Þ

The second term of Eq. (11) is often referred to as the birth and
death term in PBM. bðl;l0Þ is a Probability Density function (PDF)
which defines the probability that a mother cell having a specific
growth rate l0 produces a daughter cell whose specific growth
rate is l. The analysis of recent experimental data revealed that
b can be modeled using a skew-normal distribution (Yasuda,
2011; Morchain et al., in press) whose parameters are given in
Appendix A.

Instead of looking for an analytic solution for the PBE (Eq. (11)),
we will try to solve that equation numerically. The most
straightforward method simply consists in a discretization of the
l-space using either fixed (Kumar and Ramkrishna, 1996a) or
moving (Kumar and Ramkrishna, 1996b) meshes. These methods
tend to be expensive as soon as heterogeneous systems are consid-
ered. However, they accurately describe the solution distribution
of the PBE and allow an easy coupling with the transport and
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reaction parts of the modelling (Eq. (1)). We used to apply these
fixed mesh (also known as Methods Of Classes, MOC), as detailed
in previous papers (Morchain et al., 2013; Pigou and Morchain,
2015). We will here focus on applying methods of moments and
challenging their results against the already validated MOC. Know-
ing the law for the evolution of the distribution (Eq. (11)), the first
step to apply moment methods is to transform the PBE so that it
expresses the evolution of the distribution’s moments. The k-th
order moment of the distribution nðlÞ is defined as:

mk ¼
Z þ1

0
lknðlÞdl ð13Þ

The Appendix A details how this definition and the PBE lead to
the following law of moments evolution:

@mk

@t
¼ k

l�

T
mk�1 þ l� � 1

T

� �
mk �mkþ1

� �
þWm1Bkð~lÞ ð14Þ

� Bk is the k-th order moment of the PDF bðl;l0Þ whose formula-
tion is also given in Appendix A.

� ~l is the population mean growth rate, defined in terms of
moments by:

~l ¼
R þ1
0 lnðlÞdlRþ1
0 nðlÞdl ¼ m1

m0
ð15Þ

@mk
@t depends on mkþ1 which leads to an unclosed formulation. To

tackle this issue, McGraw (1997) introduced the Quadrature
Method of Moments (QMOM) which is based on a Gaussian
quadrature whose nodes and weights are chosen so that the N first
moments of the PDF are well computed by the quadrature:

mk ¼
XP
i¼1

wiL
k
i 8k 2 f0; . . . ;N � 1g ð16Þ

P is here the order of the method, which deals with N ¼ 2 � P
number of moments. The core of the method lies in the identifica-
tion of weights wi and abscissas Li of the Gaussian quadrature.
These parameters allow an exact computation of moments of order
ranging from 0 to N � 1 and usually give satisfactory approxima-
tion of higher order moments. This method then allows closing
the formulation given by Eq. (14).

We introduce here one refinement of the PBE compared to the
one described in Pigou and Morchain (2015). The moment formu-
lation of the PBE (Eq. (14)) is correct only if the time constant T is
not dependent on l. However, we used in Pigou and Morchain
(2015) one time constant Tu ¼ 1:9h for individuals that are moving
upward in the l-space, and a different time constant Td ¼ 6:7h for
individuals moving downward. This formulation implies that the
decrease of growth capabilities in poor environments is slower
than the increase of these capabilities in rich environments, and
this fact is required to allow a good fitting of experimental data.
In the current work, and in order to make use the moment formu-
lation of the PBE given in Eq. (14), we define the time constant Tm

as the mean value of the functional TðlÞ that we used previously:

TðlÞ ¼ Tu if l < l�

Td otherwise

�
ð17Þ

Tm ¼ m�1
0

Z
Xl

TðlÞnðlÞdl ð18Þ

¼ aTu þ ð1� aÞTd with a ¼ m�1
0

Z l�

0
nðlÞdl ð19Þ

We then actually make use of the PBE given in Eq. (20) to
describe the evolution of moments. Similarly, we use the time

constant Tm to describe the evolution of the distribution in the
class method in order to have consistent formulations between
methods.

@mk

@t
¼ k

l�

Tm
mk�1 þ l� � 1

Tm

� �
mk �mkþ1

� �
þWm1Bkð~lÞ ð20Þ

2.4. Reconstruction methods

In the present case, and it seems very likely that this would
extend to many biological applications, the calculation of the inte-
gral reaction term in Eq. (2) cannot be expressed in terms of
moments of nðlÞ, at least because the uptake rates Uiðl;CÞ are
not continuously differentiable with respect to l. To tackle this
issue, we must construct a suited quadrature rule that will be used
to approximate all integrals of the following form:Z
Xl

f ðlÞnðlÞdl �
X
i

wif ðLiÞ ð21Þ

wherew and L are the weights and abscissas of the quadrature rule.
Different methods exist to provide a quadrature rule with the

constraint that this rule does compute accurately the known N
moments of the distribution:Z
Xl
lknðlÞdl ¼

X
i

wiL
k
i k 2 f0; . . . ;N � 1g ð22Þ

Each method formulates some assumptions about the proper-
ties of the NDF nðlÞ, and identify a unique NDF n̂ðlÞ that matches
the set of known moments and the formulated assumptions. We
will refer to n̂ðlÞ as a reconstruction – or approximation – of
nðlÞ. Knowing the properties of n̂ðlÞ, obtaining the quadrature rule
w and L will be quite straightforward.

We will then use this rule to perform the estimation of higher
order unknown moments (Eq. (14)) as well as the numerical com-
putation of unclosed integral terms (Eq. (2) and (19)).

2.4.1. The QMOM method
TheQMOMmethod is the easiestmethod to implement. Itmakes

the assumption that the moment set is at the frontier of the realiz-
able moment space. This implies that the distribution n̂ðlÞ is a dis-
crete distribution, written as the sum of P ¼ N=2 weighted Dirac
distributions. The reconstructed NDF is then given by:

n̂ðlÞ ¼
XP
i¼1

widðl� LiÞ ð23Þ

Thus the reaction term (Eq. (2)) can be approximated by:

RðCÞ �
XP
i¼1

wiUðLi;CÞ ð24Þ

Due to the complexity of the function Uðl;CÞ, a high order
quadrature will be required, which implies the need of a high num-
ber of resolved moments to correctly approximate the integral
term in Eq. (2).

The computation of the weights wi and abscissas Li of the
quadrature nodes is performed using either the Product-
Difference Algorithm (PDA) or the Wheeler Algorithm (WA) as
implemented by Marchisio and Fox (2013), with some code tuning
to improve efficiency.

With this method, a generic quadrature is given by:Z
Xl

f ðlÞnðlÞdl �
XP
i¼1

wif ðLiÞ ð25Þ

2.4.2. The EQMOM method
Yuan et al. (2012) introduced the Extended Quadrature Method

of Moments (EQMOM) which consists in coupling QMOM with the
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Kernel Density Element Method (KDEM) in which the NDF is
reconstructed as the weighted sum of Kernel Density Functions.

The reconstructed NDF, using a P-nodes EQMOM reconstruc-
tion, has the following expression:

n̂ðlÞ ¼
XP
i¼1

wijðl; Li;rÞ ð26Þ

This method then requires the first N ¼ 2P þ 1 moments of the
NDF, in order to identify uniquely the value of wi; Li and r. The fol-
lowing kernels are known to be compatible with the EQMOM pro-
cedure: Gaussian jG (Chalons et al., 2010), Log-Normal jL (Madadi-
Kandjani and Passalacqua, 2015), Beta jb and Gamma jC

(Athanassoulis and Gavriliadis, 2002; Yuan et al., 2012) kernels.
We tested each of these kernels but we will only focus on the Gaus-
sian kernel in this paper. Its expression is given hereafter:

jGðl; L;rÞ ¼ 1
r
ffiffiffiffiffiffiffi
2p

p e�
ðl�LÞ2
2r2 ð27Þ

This method relies on the Wheeler algorithm (Marchisio and
Fox, 2013), in order to identify the values ofw and L. On top of that,
a non-linear solver must identify the unique value of rwhich leads
to a reconstructed distribution whose moments match the
expected values. We implemented a bisection method to find
numerically the root of the objective function that quantify the
good agreement of the reconstruction with the set of known
moments. We also implemented analytical solutions for P ¼ 1
and P ¼ 2 as described by Marchisio and Fox (2013).

The integration of the metabolic behaviour over the population
(Eq. (2)) is performed by using a 10-nodes Gauss-Hermite quadra-
ture for each node of the Gaussian EQMOM reconstruction as sug-
gested by Yuan et al. (2012).

With this method, a generic quadrature is given by:

Z
Xl
f ðlÞnðlÞdl �

XP
i¼1

wi

XP0
j¼1

bjffiffiffiffi
p

p f Li þ ajr
ffiffiffi
2

p� �
ð28Þ

wi and Li and r are the weights and nodes returned by the EQMOM
procedure. aj and bj are the nodes and weights of a Gauss-Hermite
quadrature of order P0.

2.4.3. The Maximum Entropy method
Given a finite realizable set of N moments, there exists an infi-

nite set of NDF with the same set of first N moments (Mead and
Papanicolaou, 1984). Therefore, the goal of any reconstruction
method is to choose one plausible NDF out of this infinite set of
possibilities. While the EQMOM method enforces the expected
shape of the reconstruction by choosing arbitrarily a specific ker-
nel, the Maximum Entropy method aims to find, out of all possible
reconstructions, the one that maximizes the Shannon Entropy
defined for any PDF f as:

H½f � ¼ �
Z þ1

�1
f ðxÞ lnðf ðxÞÞdx ð29Þ

Tagliani (1999) describes the application of this method for the
specific case of a positive PDF defined on the closed support
x 2 ½0;1�. This method can be extended to any finite support ½a; b�
without loss of generality by a mere linear change of variable.

The reconstructed distribution whose Shannon entropy is the
highest takes the following form (Mead and Papanicolaou, 1984;
Tagliani, 1999):

n̂ðlÞ ¼ exp �
XP
i¼0

uili

 !
ð30Þ

With P ¼ N � 1 the highest order of known moments.

The key issue is to identify the values of the polynomial coeffi-
cients ui, which is achieved through the minimization of the fol-
lowing function (Kapur, 1989; Mead and Papanicolaou, 1984):

Cðu1; . . .uPÞ ¼
XP
k¼1

uk
mk

m0
þ ln

Z 1

0
exp �

XP
k¼1

uklk

 !
dl

 !
ð31Þ

The C function is both convex and smooth which makes its min-
imization possible through an iterative Newton-Raphson proce-
dure, with the necessary and sufficient condition that the
moment sequence is realizable and not too close from the frontier
of the realizable moment space, otherwise the Hessian matrix will
be ill-conditioned.

The Jacobian and Hessian matrices of this function are easily
expressed, but they require the numerical computation of the fol-
lowing integrals:

m̂k ¼
Z 1

0
lk exp �

XP
i¼0

uil
i

 !
dl k 2 f0; . . . ;2Pg ð32Þ

These integrals must be evaluated numerically as no analytic
form exists as soon as P > 2, which is done using the adaptative
support quadrature proposed by Vié et al. (2013). The fact that
such integrals must be numerically computed, at each step of
the Newton-Raphson procedure, which itself is called at each
time-step, explains why we marked that method as computa-
tionally intensive on Fig. 1. However as moments evolve in a
continuous way over time, the ui will also evolve continuously,
and the initial guess of the Newton-Raphson procedure is set
as the solution of the previous time-step, leading to a fast
convergence.

The number of nodes for the resulting quadrature rule actually
depends on the results of the procedure described by Vié et al.
(2013). We used a 15 nodes Gauss-Legendre quadrature for each
sub-intervals identified by their procedure. The number of sub-
interval, s, is variable depending on the ui values: s 2 f1; . . . ;Ng.
Thus, a generic quadrature is given by:

Z
Xl

f ðlÞnðlÞdl�
Xs
i¼1

XP0
j¼1

bj
xmax;i�xmin;i

2
f

ajþ1
2

ðxmax;i�xmin;iÞþxmin;i

� �

ð33Þ

with

� s the number of sub-intervals returned by the procedure
described by Vié et al. (2013) (s 6 N),

� xmin;i and xmax;i the minimum and maximum limits of the i-th
sub-interval,

� aj and bj the nodes and weights of a Gauss-Legendre quadrature
of order P0.

Finally, in our following simulations, we did encounter cases
where the moment set was too close from the frontier of the
moment space which led to ill-conditioned Hessian matrices. We
first performed the reconstruction on the support ½0;K � lmax� with
K ¼ 1:5, however we observed that our distributions only span a
tiny fraction of this interval at each time. This often led to moment
sets whose last moment were close to their upper or lower bound
in the moment space (we underlined this by calculating the canon-
ical moments using the QD algorithm from Dette and Studden
(1997)). We then decided to adapt dynamically the value of K
between 0 and 2 in order to stretch the support of the reconstruc-
tion so that the moments of the distribution are always far enough
from the frontier of the moment space, which then allows a fast
and accurate convergence of the MaxEnt method.
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The rules for the evolution of K, from time step ðnÞ to timestep
ðnþ 1Þ are based on the value of the last canonical moments
pP 2 ½0;1� computed from the set of known moments m0; . . . ;mP:

� If pðnÞ
P < 0:4 : Kðnþ1Þ ¼ 0:96 � KðnÞ.

� If pðnÞ
P > 0:6 : Kðnþ1Þ ¼ 1:04 � KðnÞ.

This proposition is most probably not universal and might only
work in our specific application cases.

2.5. Simulation software

All following simulations are performed using ADENON, a user-
friendly simulation software we developed using the environment
provided by MATLAB R2016a. This software is mainly focused on
the simulation of bioreactors, by applying our PBM/Metabolic bio-
logical models within a hydrodynamic framework (compartment
models, plug-flow reactors, batch or fedbatch cultures as well as
accelerostat cultures). Population balances can be solved using
either class ormomentmethods,with all core routines –formoment
quadrature or distribution reconstruction– built into this software.

Following the case configuration provided by the user, this tool
formulates the corresponding ODE in terms of mass and volume
balances. This set of ODE is then solved using an explicit scheme
for time integration, either the Runge-Kutta 2,3 pair of Bogacki
and Shampine (1989) or a simple first-order Euler scheme. The
specificities of our solver compared to the built-in ‘‘ode23” func-
tion are (i) its capability of running in parallel (multi-core) mode
by distributing the resolved variables and the reconstruction com-
puting across CPU cores, and (ii) the fact that it enforces the consis-
tency of resolved variables (mainly their non-negativity) in a more
stringent way.

We used the simple explicit Euler scheme for all simulations,
and choose a timestep dt tiny enough to make the solution inde-
pendent from this timestep.

3. Results

3.1. Stressed chemostat culture

In a first attempt of applying the method of moments with
reconstruction of the NDF, we chose to reproduce numerically
the experimental results from Kätterer et al. (1986). We simulate
a homogeneous chemostat culture with a constant initial dilution

rate D ¼ 0:1 h�1 for 30 h in order to reach a steady-state, we then

apply a sudden shift in dilution rate toward D0 ¼ 0:42 h�1 in order
to analyse 15 h of the transient-state.

As the original experiments were conducted using Candida trop-
icalis instead of E. coli, we adjusted the parameters of our metabolic
model to fit quantitatively the biomass and substrate curves pro-
vided by Kätterer et al. (1986). It is however obvious that the meta-
bolic behaviours of the yeast C. tropicalis and the bacteria E. coli are
quite different and a mere parameter adjustment of a E. coli meta-
bolic model will not produce a model exhibiting the metabolic
behaviour of C. tropicalis. Here, we are only interested in the anal-
ysis of the population balance part of the model. We shall investi-
gate each reconstruction method in terms of stability, computation
time, and accuracy of the reconstruction. The shape of the recon-
struction will have a metabolic impact in terms of acetate produc-
tion, and we will only compare these productions between class
and moment methods, not against experimental results.

The Fig. 2 shows simulation results for each method, with dif-
ferent orders or resolution. We applied QMOM with order ranging
from P ¼ 2 to P ¼ 5 (N ¼ 2P), EQMOM with order ranging from
P ¼ 1 to P ¼ 3 (N ¼ 2P þ 1) and MaxEnt with P ranging from 2 to
6 (N ¼ P þ 1).

The overall dynamics are well reproduced by each method, even
with as few as two nodes with QMOM, even though that last
method gives noticeably different results depending on its order.
As explained before, the overall dynamics does not depend directly
on the redistribution term of the PBE (Eq. (11)) but mainly on the

Fig. 1. Summary of applied methods to couple the population balance with transport and reaction. �Numerically expensive methods. P: Order of moment method (positive
integer). P0 : Order of nested quadrature (we use P0 ¼ 10 (EQMOM) or P0 ¼ 15 (MaxEnt)).
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adaptation term. The moment formulation of this term needs a clo-
sure method to estimate the next unsolved moment, so as long as
this estimation is reasonably accurate, the dynamics should be
well reproduced.

We then assessed the error on the estimation of the next
unknown moment for each method and order by comparing them
to the moments calculated with 400 classes. Full data set is pro-
vided as supplementary data. It is shown that the error is mainly
kept under 0.2%.

In terms of shape of the reconstruction, we can use the same
data set to compare the original distribution solved with the class
method to the reconstructions as illustrated on Fig. 3.

The shape of the reconstruction has two main effects. It affects
the biomass concentration at steady-state due to the Pirt law
which changes the yield of substrate conversion to biomass
depending on the property l of each individual. The population
mean conversion yield will then depend on that shape, which
explains why steady-state biomass concentrations are order-
dependent for QMOM (Fig. 2b). However, as the resulting recon-
structions are quite similar with EQMOM and MaxEnt (Fig. 3), no
matter the order of the method, they always predict similar
steady-state biomass concentrations.

The second effect is the metabolic behaviour. As stated before,
our metabolic model does not represent the actual metabolic beha-

Fig. 2. Simulation results for each method, compared with experimental data from Kätterer et al. (1986).

Fig. 3. Comparison of reconstructed distributions against distribution resolved by class. An arbitrary scale is used for the Dirac distribution (QMOM).
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viour of Candida tropicalis, however, it describe the overflow meta-
bolism existing in E. coliwhich leads to acetate production in a way
that depends on the shape of the distribution. Fig. 4 illustrates
these different acetate productions depending on the chosen
method. Once again, QMOM exhibits different behaviours depend-
ing on the order of the method, while EQMOM and MaxEnt lead to
predictions close to the class method.

Acetate production is slightly overestimated by all moment
methods (Fig. 4), due to the fact that they do not account for the
narrow peak of the distribution (Fig. 3b,c,d). This slightly overesti-
mates the disequilibrium between the individuals and their envi-
ronment, which is a key point in our modelling: the
disequilibrium between the cell uptake of substrate and its
requirements for growth determines the intensity of the overflow
metabolism (i.e. the production of by-products, here the acetate).

In terms of simulation performances, the Fig. 5 details the mean
computation time spent on each time-step of the simulation. A
blank simulation –ran without computing the terms related to

bioreaction or population balance– is shown in order to estimate
and distinguish the actual models computation time from the time
spent on other tasks in the software.

The class method is a direct one, the computation time is
mainly spent on (i) computing the metabolic model from Pigou
and Morchain (2015) for each class and (ii) computing the redistri-
bution term of the PBE as detailed in Morchain et al. (in press) for
each class, which implies computing NC þ 1 values of the Owen’s T
function using 10-nodes Gauss-Legendre quadratures (with NC the
number of classes).

All method of moments must compute the first N moments of
the skewnormal distribution which is not expensive considering
that their expressions are available. The major computational cost
then comes from (i) establishing the quadrature rule and (ii) com-
puting the metabolic model for each node of the quadrature.

In this regard, QMOM is the least expensivemethod: the quadra-
ture rule is computed using directly either the Product-Difference
Algorithm (PDA) or the Wheeler Algorithm (WA), both consisting
in computing the eigenvalues and eigenvectors of a particular
N=2� N=2 matrix, and computing the metabolic model for N=2
nodes. The WA seems to be slightly faster than the PDA.

In order to establish a quadrature rule with the EQMOM
method, Marchisio and Fox (2013) detail the analytical solution
for N ¼ 3 and a solution whose cost is hardly higher than a 2 nodes
QMOM for N ¼ 5, which explains the low computation times for
these two orders of resolution. The case N ¼ 7 needs an iterative
algorithm to find the suited quadrature rule, based on a dichotomic
method. We speed-up that method by making use of the result
from the previous timestep, the dichotomic algorithm then con-
verges most of the time in 3 to 6 evaluation of the objective func-
tion, each of which requiring a single call to the WA.

Finally,MaxEnt is themost expensivemethod. It is actually as fast
as QMOMand EQMOMwhen themoment set is far from the frontier
of the moment space, but our model often produces moment sets
near the frontier. Then,we slowdown themethod by using different
tweaks in order to stabilise it: (i) the adaptive quadrature proposed
by (Vié et al., 2013), (ii) the dynamic adaptation of the distribution’s
support and (iii) the computation of canonical moments to check
realizability of the moment set. The underlying Newton-Raphson
procedure often converges in a single iteration, but this number
increases up to 10 for many time-steps after the dilution rate shift,
so simulating the next few hours following this shift is actually as
long as computing the rest of the time range.

Fig. 4. Evolution of acetate concentrations as predicted by the E. coli metabolic
model. Black dash-dotted line: results from class method.

Fig. 5. Mean run-time per timestep for each method and different orders (ms/ts)
(� standard deviation measured on 20 simulations per method and order).
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3.2. Fedbatch culture - Vrabel et al.

We simulated the very same fedbatch culture described with a
70 compartments hydrodynamic model by Vrábel et al. (2001) but
using our own biological modelling as detailed in Pigou and

Morchain (2015). Here, we reproduce these simulations, by using
the methods of moments to solve the population balance model.
The QMOMmethod is applied with 5 nodes (N = 10) as this seemed
to be required to produce the same results than the EQMOM and
MaxEnt methods (Figs. 2 and 4). The MaxEnt method is used with

Fig. 6. Representation of the macroscopic flow patterns in the fedbatch reactor (left) and details of its compartmentalization and specific flows for the top of the reactor
(right). Values for the flow rates CF, IF and EF are given in the appendix B of Pigou and Morchain (2015).

Fig. 7. Simulation results for the different population balance methods in the heterogeneous fedbatch culture. (a) Glucose concentration, (b) Total biomass concentration, (c)
Acetate concentration and (d) Acetate specific production rate.
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N = 5 moments as we did not manage to increase the number of
moments up to 7 is this setup due to stability issues and also
because, surprisingly, the prediction of acetate production was
actually better with 5 moments than with 7 moments (see
Fig. 4c). Finally, EQMOM was also applied with N = 5 moments as
going up to 7 moments did not increase the precision drastically
(Fig. 4b) but did increase significantly the computation time
(Fig. 5). This will also make the comparison between MaxEnt and
EQMOM more relevant.

In order to enforce the consistency of numerical results, we
limit the maximum value of the time-step to the minimum com-
partment mean-residence-time:

dtmax ¼ min
Nc

n¼1

VnPNc
m¼1Qn;m

 !
ð34Þ

The value of the maximum time-step for the compartment
model shown in Fig. 6 is dtmax ¼ 1:4710�5 h.

The Fig. 7 gathers the results in term of glucose, total biomass
and acetate concentrations as well as mean population reaction
rates. The plotted values are mean values at different heights
(volumetric mean value over compartments of the same row).
The three heights (top, middle and bottom) correspond to the
following compartments (see Fig. 6 for numbering):

� top: compartments 11–15,
� middle: compartments 36–40,
� bottom: compartments 61–65.

The good agreements between the methods is related to
the fact that, in the heterogeneous large-scale reactor, the
distribution is continuously perturbed by external fluctuations
which prevent the apparition of the narrow distribution seen
previously (Fig. 3). The expected distribution has a smoother
shape which is well reconstructed by MaxEnt and EQMOM as
shown in Fig. 8.

Finally, we ran 5 times the first hour of simulation in order to
gather statistics about simulation runtimes in the heterogeneous
case with different orders of resolution. The results are shown in
Fig. 9.

Each CPU core had to perform calculations for 14 compartments
in Fig. 9 while a single compartment was considered in Fig. 5 which
explains the overall higher computation times. However, the previ-
ous analysis about the comparison of the complexity of each
method remains the same, and the observations on the heteroge-
neous case are the same than in the homogeneous case: QMOM
maintains a constant computation time, EQMOM is as fast as

QMOM as long as N 	 5 and MaxEnt is slower than other methods
due to the stabilisation of the method.

4. Discussion

Dealing with a biological phase naturally leads to the use of the
‘‘population” semantic field due to the individual nature of cells,
each of which having its own set of properties and its own ‘‘mem-
ory”. Hence, the use of a Population Balance Model to describe a
biological population seems to be obvious, almost axiomatic.

The most natural way to solve a PBM is the class method, which
constitutes a direct resolution of the equations. However, its accu-
racy comes with the price of a high memory cost. Unpublished data
show that for simple batch and chemostat simulations, the results
are dependent on the number of classes up to 60 classes, and we
can even notice differences between 100 and 400 classes in
Fig. 2a. This number of classes is needed to span the entire prop-
erty space with sufficient accuracy, however simulations clearly
show that most of the time a large fraction of classes are nearly
empty. This means that we allocate memory for variables that
most of the time carry almost no information, but still happen
sometime to be used, depending on the state of the population.

This explains why we are shifting toward methods of moments.
They resolve basic properties of the distribution (total number,
mean, variance, skewness, flatness, . . .) which all contain useful
information no matter the state of the population. Moments gather
higher entropy about the distribution than classes, in the sense of

Fig. 8. Comparison of distribution shapes as resolved by the class method and reconstructed by the EQMOM and MaxEnt methods both with N ¼ 5 moments.

Fig. 9. Comparison of simulation runtimes for each method (ms=ts) (� standard
deviation measured on 5 simulations per method and order). Simulations
performed using 5 CPU cores.
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information theory. This significantly reduces the required number
of resolved variables, from more than 60, to half a dozen.

For some applications, each equation of the model can be for-
mulated in terms of moments (Hulburt and Katz, 1964; McGraw,
1997) leading to closed formulations or easy closure through the
used of quadrature based methods. In these cases, the accuracy
of the methods of moments poses no question –and is even better
than a class method considering that the latter induces numerical
diffusion in the parameter space– for a smaller memory and com-
putational cost.

Unfortunately, we deal here with a metabolic complexity that
offers no model formulation in terms of moments. We tackle this
issue by using reconstruction methods, namely QMOM, EQMOM
and MaxEnt methods; but these methods introduce quadrature
inaccuracy as well as extra computational cost, which we tried to
quantify in our simulations.

The results in terms of concentration fields are really promising,
as the biomass, glucose and acetate concentrations were well
reproduced both in the homogeneous and the heterogeneous
cases. We mainly noticed slight errors consisting in an over-
production of acetate with moment methods in the Katterer case
(see Fig. 4) due to difficulties in reconstructing a narrow distribu-
tion with a wide base (similar to a Laplace distribution). However,
we are shifting toward moment methods only to perform large-
scale simulations at low memory cost: the class method performs
just fine enough for homogeneous cases. The crucial comparison
must then be made on the large-scale simulation.

In Fig. 7, we observe a surprisingly good agreement between the
class method and the moment methods. The only noticeable differ-
ence is seen on acetate curves for the moment methods which
slightly underestimate the acetate production for t � 10 h which
induces a persistent shift along time when compared to the class
method. On this regard, the accuracy for variables whose value is
of importance (substrate and product concentrations) is satisfac-
tory for all methods.

In terms of computational cost, which we evaluate through the
simulation time, Yuan et al. (2012) already performed a compar-
ison of EQMOM and the MaxEnt methods. They observed that
EQMOM was a hundred times faster than MaxEnt for the recon-
struction of two NDF. However, we do not feel that their compar-
ison is fair: the slow convergence of MaxEnt is only due to a bad
initialization of the Newton-Raphson procedure, similar to what
we observe in our simulations for the very first time-step. We want
to supplement their observations by pointing out that when used
in time resolved simulations, which happens to be our specific
application for these methods, the MaxEnt method performs only
slightly slower than EQMOM (see Figs. 5 and 9) due to different
adjustments made in order to improve stability.

We do not develop nor try to promote a specific reconstruction
method, but only want to draw general guidelines about which
method should be used for the simulation of large-scale bioreac-
tors. We then did our best to keep the comparison of the methods
as fair as possible. On the basis of our results, here are the key
observations we made about the different methods.

EQMOM is a stable method: it behaves well near the moment
space frontier and we did not notice any particular difficulty when
increasing the number of resolved moments. When used on mono-
modal distribution, it can be applied at a low computational cost
with 3 or 5 moments, thanks to analytical solutions (Marchisio
and Fox, 2013). The possibility to increase the number of resolved
moments, without loss of stability, means that this method is also
well suited to reconstruct multi-modal distributions, this will be
useful when tracking fast population dynamics in heterogeneous
systems. Moreover, the method naturally embeds the feature of
nested quadratures: a relevant Gauss-Hermite quadrature can be
constructed on each Gaussian node of the EQMOM reconstruction,

which helps performing efficiently the integration of Eq. (2), com-
pared to MaxEnt. This can be an important advantage of this
method if the metabolic model (computation ofU) is computation-
ally expensive. Here, the metabolic model was easy enough to
compute, which hide this salient feature of EQMOM
reconstructions.

The same level of accuracy than EQMOMwith 5 moments could
be reached with QMOM using 10 moments with a similar compu-
tation time, but with less calls to the metabolic model. Both meth-
ods can then be used based on whether we try to reduce the
memory usage or the number of calls to a potentially complex
metabolic model. Similarly, as shown in A, if the redistribution
law bðl;l0Þ did not allow such a simple moment formulation
(Eq. (20)), the computational cost of EQMOM or MaxEnt to com-
pute the redistribution term would be significantly higher than
QMOM. This is directly related to the number of nodes returned
by each method for a generic integral approximation (see Fig. 1,
Eqs. (25), (28) and (33)).

MaxEnt is known to be ill-conditioned near the boundaries of
the moment space (Massot et al., 2010) or when the number of
resolved moments increases (Gzyl and Tagliani, 2010), in particular
we did not manage to perform simulations using this method and
more than 7 resolved moments, or even 5 moments in the hetero-
geneous case. This comes from the fact that we describe quite nar-
row distributions on a large support, which naturally correspond to
moments near the frontier of the moment space. When the method
is working, it might give a better reconstruction with 5 moments
than EQMOMwith 7 moments (Fig. 3a), however, using this recon-
struction to construct a relevant quadrature rule is more difficult
than for EQMOM.We then recommend its use when assessing slow
dynamics (preserving mono-modal distribution in heterogeneous
systems) for simulations where the time-step is negligible com-
pared to the characteristic time of moment evolution (to ensure
a good initialization), and only if a method can be designed to form
a set of moment far enough from the frontier of the moment space.
These are quite restrictive conditions which do not make this
method the more advisable.

Finally, in terms of memory footprint, we managed to reduce
the number of resolved variables to describe the population from
about a hundred (class method) to about only 5 variables which
will be significant when moving toward CFD simulations of biore-
actors. However, it should be noted that for MaxEnt, memory reg-
isters must be allocated both for the transported moments and for
the vector of polynomial coefficientsuwhich serves as initial value
for the Newton-Raphson procedure. MaxEnt then requires twice as
much memory space than QMOM and EQMOM methods for equiv-
alent number of resolved moments.

The significant improvements in terms of memory usage will be
even more significant when we will shift toward multivariate pop-
ulation balance models. For a bivariate distribution, the number of
classes or moments will roughly be squared leading to about 104

classes opposed to 25 moments in each geometrical node.

5. Conclusions

The point of applying population balance based modelling for
the predictive simulation of heterogeneous bioreactors is now well
established (Morchain et al., 2014; Morchain et al., in press; Pigou
and Morchain, 2015; Heins et al., 2015; Bertucco et al., 2015;
Fredrickson and Mantzaris, 2002). This paper is more focused on
numerical methods to solve the population balance model, in order
to shift from a class method to moment based methods. In our
modelling, the reconstruction methods of a NDF from a finite set
of moments is required for the computation of the population
metabolic behaviour. We then implemented QMOM, EQMOM and
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Maximum Entropy methods, and challenged them in terms of sta-
bility, memory footprint, computational cost and accuracy against
class method results.

At equivalent number of resolved moments, QMOM is notice-
ably less accurate than EQMOM and MaxEnt. However, increasing
the number of moments for QMOM does not increase significantly
the computation time, which make this method competitive with
the others when looking only at accuracy and simulation runtime.

If reducing the memory footprint is the main concern, EQMOM
actually reaches the same accuracy than QMOM with half the
number of resolved moments. However, its computational cost
increases significantly between 5 and 7 resolved moments, due
to the need of an iterative procedure rather than an analytical or
direct solution.

Depending on the use case, MaxEnt has often been reported as
an interesting method (Massot et al., 2010; Vié et al., 2013; Lebaz
et al., 2016), however, we will tend to discard it for our future
works. Indeed, even when the method is well-conditioned, it is
not particularly competitive with EQMOM in terms of computation
time and accuracy, but comes with twice the memory usage of
EQMOM. Moreover, the method tends to be quickly unstable if
moments are near the limit of realizability. This poses problem
for our modelling as the lack of experimental data about the
dynamics of internal biological properties will make us formulate
models which tend toward narrow distributions until data are
available. An example of that is the PBM from Pigou and
Morchain (2015) which led to a Dirac distribution in steady-state
homogeneous systems until experimental data from Nobs and
Maerkl (2014, 2011) allowed us to improve the PBM and add an
experimentally justified redistribution term as explained in
Morchain et al. (in press).

Overall, the QMOM and EQMOM methods have shown to be
accurate and stable enough for the simulation of a large scale
bioreactor with a significantly reduced memory impact and a sim-
ulation time of the same order of magnitude than the class method.
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Appendix A. Moment formulation of the PBE

As a recall, the population balance equation is defined as

@nðlÞ
@t

¼ � @

@l
nðlÞfðlÞ½ � þ

Z þ1

0
bðl;l0Þnðl0ÞWl0dl0 ðA:1Þ

and the k-th order moment of the distribution nðlÞ is defined by

mk ¼
Z þ1

0
lknðlÞdl ðA:2Þ

We want to formulate the law of moments evolution, as the

sum of contributions from an adaptation term @ma;kðtÞ
@t

� �
, and a

growth term @mg;kðtÞ
@t

� �
:

@mkðtÞ
@t

¼ @ma;kðtÞ
@t

þ @mg;kðtÞ
@t

ðA:3Þ

The formulation of @ma;kðtÞ
@t comes by multiplying the first RHS

term of Eq. (A.1) by lk and integrating by part with respect to l:

@ma;kðtÞ
@t

¼ �
Z
Xl
lk @

@l
nðl; tÞ 
 fðlÞð Þdl ðA:4Þ

¼
Z
Xl

klk�1nðl; tÞfðlÞdl� lknðl; tÞfðlÞ� 	
@Xl ðA:5Þ

Considering that the adaptation will not allow individuals to
cross the frontier of the l-space (@Xl), the second term of Eq.
(A.5) is necessarily null. By expanding the formulation of

fðlÞ ¼ T�1 þ l
� �

ðl� � lÞ, the formulation of @ma;kðtÞ
@t in terms of

moments of the distribution is trivial:

@ma;kðtÞ
@t

¼ k
l�

T
mk�1ðtÞ þ l� � 1

T

� �
mkðtÞ �mkþ1ðtÞ

� �
ðA:6Þ

The contribution of the growth term to the moment evolution
depends both on the used quadrature method and on the propra-
bility function modeling the redistribution phenomena related to
cell division. We have

@mg;kðtÞ
@t

¼
Z
Xl
lk

Z
Xl

bðl; ~lÞWl0nðl0Þdl0
" #

dl ðA:7Þ

The approximations of nðlÞ by the methods of moments lead toZ
Xl

f ðlÞnðlÞdl �
XI

i¼1

wi � f ðLiÞ ðA:8Þ

where I;wi and Li depend on the methods used to perform the
quadrature of moments (Eqs. (25), (28) and (33)).

Using these quadratures, we reach the following expression:

@mg;kðtÞ
@t

� W
Z
Xl
lk

XI

i¼1

wiLibðl; LiÞ
 !

dl ðA:9Þ

� W
XI

i¼1

wiLi

Z
Xl
lkbðl; LiÞdl ðA:10Þ

This last formulation is generic and can be used for any redistri-
bution law bðl;l0Þ. In the case of current simulations, we base this
term on the previous work from Morchain et al. (in press) were we
identified the following probability density function as a good
model for experimental data from the literature (Nobs and
Maerkl, 2014; Yasuda, 2011):

bðl;l0Þ ¼ 2
r
/

l� l
r

� �
U a� l� l

r

� �
ðA:11Þ

with:

� /ðxÞ ¼ 1ffiffiffiffi
2p

p e�
x2
2 ,

� UðxÞ ¼ 1
2 1þ erf xffiffi

2
p
� �� �

.

The redistribution law is a skew-normal distribution whose
parameters depend on the population mean growth rate ~l but
not on the growth rate of the mother cell (hence, l0 is not used
in the expression):

~l ¼ m1ðtÞ
m0ðtÞ ðA:12Þ

l ¼ kl ~l ðA:13Þ
r ¼ kr ~l ðA:14Þ
a ¼ 3:65 ðA:15Þ

The constants kl and kr were chosen so that the PDF bðl;l0Þ fits
experimental data, but also with the constraint that the first
moment of this PDF is equal to ~l so that the redistribution term
will have no impact on the population mean growth rate. The used
values are:

Then, the growth related evolution of the distribution moments
is easily expressed in terms of moments of bðl;l0Þ ¼ bðlÞ and does
not require the moment quadrature:
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@mg;kðtÞ
@t

¼
Z
Xl

lk
Z
Xl

bðlÞWl0nðl0Þdl0
" #

dl ðA:16Þ

¼ W
Z
Xl
lkbðlÞ

Z
Xl
l0nðl0Þdl0

" #
dl ðA:17Þ

¼ W
Z
Xl
lkbðlÞm1ðtÞdl ðA:18Þ

¼ Wm1ðtÞBk ðA:19Þ
Bk is the k-th order moment of the PDF bðlÞ which happens to

only depend on ~l whose value is accessible using the first two
moments of the distribution (Eq. (A.12)). The moments Bk can be
determined analytically using the Moment Generating Function
of the skew-normal distribution:

Bk ¼ @kM
@tk

ð0Þ ðA:23Þ

MðtÞ ¼ exp lt þ r2t2

2

� �
1þ erf

ratffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1þ a2Þp

 ! !
ðA:24Þ

We used the MATLAB Symbolic Toolbox to pre-compute the
expressions of Bk;8k 2 f0; . . . ;9g.

Note that in order to respect the constraint B1 ¼ ~l; kr and kl
must satisfy the following relationship:

kl þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a2

pð1þ a2Þ

s
kr ¼ 1 ðA:25Þ

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.ces.2017.05.026.
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Population Balance Models have a wide range of applications in many industrial fields 
as they allow accounting for heterogeneity among properties which are crucial for some 
system modelling. They actually describe the evolution of a Number Density Function 
(NDF) using a Population Balance Equation (PBE). For instance, they are applied to 
gas–liquid columns or stirred reactors, aerosol technology, crystallisation processes, fine 
particles or biological systems. There is a significant interest for fast, stable and accurate 
numerical methods in order to solve for PBEs, a class of such methods actually does 
not solve directly the NDF but resolves their moments. These methods of moments, and 
in particular quadrature-based methods of moments, have been successfully applied to 
a variety of systems. Point-wise values of the NDF are sometimes required but are not 
directly accessible from the moments. To address these issues, the Extended Quadrature 
Method of Moments (EQMOM) has been developed in the past few years and approximates 
the NDF, from its moments, as a convex mixture of Kernel Density Functions (KDFs) of 
the same parametric family. In the present work EQMOM is further developed on two 
aspects. The main one is a significant improvement of the core iterative procedure of that 
method, the corresponding reduction of its computational cost is estimated to range from 
60% up to 95%. The second aspect is an extension of EQMOM to two new KDFs used for 
the approximation, the Weibull and the Laplace kernels. All MATLAB source codes used for 
this article are provided with this article.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Population Balance Equations (PBEs) are particular formalisms that allows describing the evolution of properties among 
heterogeneous populations. They are used to track the size distribution of fine particles [1]; the bubble size distribution 
in gas–liquid stirred-tank reactors or bubble columns [2,3]; the crystal-size distribution in crystallizers; the distribution of 
biological cell properties in bioreactors [4,5]; the volume and/or surface distribution of soot particles in flames [6,7] or the 
formation of nano-particles [8], among other examples.
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Nomenclature

Greek symbols

ε relative tolerance

λ j j-th nested quadrature node

μ positive measure

ω j j-th nested quadrature weight

�ξ NDF support

πk k order orthogonal polynomial

σ shape parameter

ξ random variable

ξi i-th main quadrature node

ζ realisability criteria on ]0,+∞[

Roman

a orthogonal polynomials recurrence coefficient

A transition matrix to degenerated moments

b orthogonal polynomials recurrence coefficient

H Hankel determinant

J n n order Jacobi matrix

mk moment of order k
M realisable moment space

n number density function

ñ approximation of n
N order of moment set

N order of realisability

pk canonical moment of order k
P number of main quadrature nodes

Q number of nested quadrature nodes

wi i-th main quadrature weight

A PBE describes the evolution and transport of a Number Density Function (NDF), under the influence of multiple 
processes which modify the tracked property distribution (e.g. erosion, dissolution, aggregation, breakage, coalescence, nu-
cleation, adaptation, etc.).

One often requires low-cost numerical methods to solve PBEs, for instance when coupling with a flow solver 
(e.g. Computational Fluid Dynamics software). Monte-Carlo methods constitute a stochastic resolution of the popula-
tion balance and can be applied to such PBE–CFD simulations [9]. Similarly, sectional methods allow direct numeri-
cal resolutions of the PBE through the discretisation of the property space [10,11]. They respectively require a high 
number of parcels or sections in order to reach high accuracy and are thus often discarded for large-scale simula-
tions.

An interesting alternative approach lies in the field of methods of moments. A PBE, which describes the evolution of a 
NDF, is transformed in a set of equations which describes the evolution of the moments of that distribution. Moments are 
integral properties of NDFs, the first low order integer moments are related to the mean, variance, skewness and flatness of 
the statistical distributions described by NDFs. This approach then reduces the number of resolved variables to a finite set of 
NDF moments. It also comes with some difficulties when one must compute non-moment integral properties, or point-wise 
evaluations, of the distribution [12].

To tackle these issues, one can try to recover a NDF from a finite set of its moments. In most cases, this reverse problem 
has an infinite number of solutions and different approaches exist to identify one or an other out of them. The simplest is 
probably to assume that the NDF is a standard distribution (Gaussian, Log-normal, . . . ) whose parameters will be deduced 
from its first few moments. Other methods that lead to continuous approximations, and which preserve a higher number 
of moments, are the Spline method [13], the Maximum-Entropy approach [12,14,15] or the Kernel Density Element Method 
(KDEM) [16].

More recently, the Extended Quadrature Method of Moments (EQMOM) was proposed as a new approach which is more 
stable than the previous ones, and yields either continuous or discrete NDFs depending on the moments [1,17,18]. EQMOM 
has been implemented in OpenFOAM [19] for the purpose of PBE–CFD coupling. The core of this method relies on an 
iterative procedure that is a computational bottleneck.

The current work focuses on EQMOM and develops a new core procedure whose computational cost is significantly 
lower than previous implementations by reducing both (i) the cost of each iteration and (ii) the total number of required 
iterations.

The previous core procedure [1] will be recalled before describing how it can be shifted toward the new – cheaper 
– approach. Both implementations will be compared in terms of computational cost (number of required floating-point 
operations) and run-time.

Multiple variations of EQMOM exist, the Gauss EQMOM [17,20], Log-normal EQMOM [21] as well as Gamma and Beta 
EQMOM [18]. Two new variations, namely Laplace EQMOM and Weibull EQMOM, are proposed along with a unified formal-
ism among all six variations.

The whole source code used to write this article (figures and data generation) is provided as supplementary data, as well 
as our implementations of EQMOM in the form of a MATLAB functions library [22].
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2. Quadrature Based Methods of Moments: QMOM and EQMOM

2.1. Definitions

Let dμ(ξ) be a positive measure, induced by a non-decreasing function μ(ξ) defined on a support �ξ . This measure is 
associated to a Number Density Function n(ξ) such that dμ(ξ) = n(ξ)dξ . Let mN be the vector of the first N + 1 integer 
moments of this measure:

mN =

⎡⎢⎢⎢⎣
m0
m1
...

mN

⎤⎥⎥⎥⎦ , mk =
∫
�ξ

ξkn(ξ)dξ (1)

Three actual supports will be considered: (i) �ξ = ]−∞,+∞[, (ii) �ξ = ]0,+∞[ and (iii) �ξ = ]0,1[. For each support, 
one can define the associated realisable moment space, MN (�ξ ), as the set of all vectors of finite moments mN induced 
by all possible positive measures defined on �ξ .

A moment set is said to be “weakly realisable” if located on the boundary of the realisable moment space (mN ∈
∂MN (�ξ )). Otherwise, if located within the realisable moment space, mN is said to be “strictly realisable”.

2.2. Quadrature method of moments

EQMOM is based on the Quadrature Method of Moments (QMOM) that was first introduced by McGraw [23]. It is used to 
approximate integral properties of a distribution where only a finite number of its moments is known. By making use of an 
even number of moments 2P , one can compute a Gauss quadrature rule characterised by its weights w P = [w1, . . . , w P ]T

and nodes ξ P = [ξ1, . . . , ξP ]T such that:∫
�ξ

f (ξ)dμ(ξ) =
P∑

i=1

wi f (ξi) (2)

holds true if f (ξ) = ξk, ∀k ∈ {0, . . . , 2P − 1}. Otherwise, this quadrature rule will produce an approximation of the integral 
property. The computation of the quadrature rule (i.e. the vectors w P and ξ P ) is of special interest for following develop-
ments, which is why its two main steps will be detailed.

Any positive measure dμ(ξ) is associated with a sequence of monic polynomials (i.e. polynomial whose leading coeffi-
cient equals 1) denoted πk – with k the order of the polynomial – such that:∫

�ξ

πi(ξ)π j(ξ)dμ(ξ) = 0, for i �= j (3)

These polynomials are said orthogonal with respect to the measure dμ(ξ) and are defined by:

πk(ξ) = 1

ck

∣∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mk−1 mk
m1 m2 · · · mk mk+1
...

...
. . .

...
...

mk−1 mk · · · m2k−2 m2k−1

1 ξ · · · ξk−1 ξk

∣∣∣∣∣∣∣∣∣∣∣
(4)

with ck a constant chosen so that the leading coefficient (of order k) of πk equals 1, hence making πk a monic polynomial.
It is known that monic orthogonal polynomials satisfy a three-term recurrence relation [24]:

πk+1(ξ) = (ξ − ak)πk(ξ) − bkπk−1(ξ) (5)

with ak and bk being the recurrence coefficients specific to the measure dμ(ξ), π−1(ξ) = 0 and π0(ξ) = 1.
Let J n(dμ) be the n × n Jacobi matrix associated to the measure dμ. This is a tridiagonal symmetric matrix defined as:

J n(dμ) =

⎛⎜⎜⎜⎜⎝
a0

√
b1 0

√
b1 a1

. . .

. . .
. . .

√
bn−1

0
√

bn−1 an−1

⎞⎟⎟⎟⎟⎠ (6)
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The weights and nodes of the quadrature rule from Eq. (2) are given by spectral properties of J P (dμ). The nodes ξ P of 
the rule are the eigenvalues of J P (dμ). The weights of the rule are given by:

wi = m0 v2
1,i (7)

where v1,i is the first component of the normalised eigenvector belonging to the eigenvalue ξi . The computation of the 
quadrature rule (Eq. (2)) then relies on two steps:

1. The computation of the recurrence coefficients aP−1 = [a0, . . . , aP−1]T and bP−1 = [b1, . . . , bP−1]T .
2. The computation of the eigenvalues and the normalised eigenvectors of J P (dμ).

Multiple algorithms are available in the literature to compute the recurrence coefficients:

• The Quotient-Difference algorithm [25,26]
• The Product-Difference algorithm [27]
• The Chebyshev algorithm [28]

The Chebyshev algorithm was found to be the stablest one of the three [1,28], its description is given in Appendix A.

2.3. Extended Quadrature Method of Moments

The QMOM method is well suited for the approximation of integral properties of the NDF, which is actually the main 
purpose of Gauss quadratures. However, in many applications such as evaporation [12] or dissolution [29] processes, point-
wise values of the NDF n(ξ) are required but not directly accessible from the moments. For that purpose, a method is 
needed to produce an approximation ̃n(ξ) of the original distribution n(ξ), by knowing only a finite set of its moments.

In a sense, one can consider that the Gaussian quadrature computed with QMOM approximates n(ξ) as a weighted sum 
of Dirac distributions:

ñ(ξ) =
P∑

i=1

wiδ(ξ, ξi) (8)

with the Dirac δ distribution defined by its sifting property

+∞∫
−∞

f (ξ) δ(ξ, ξm)dξ = f (ξm) (9)

For most applications, n(ξ) is expected to be a continuous distribution whilst QMOM yields monodisperse or discrete 
polydisperse reconstructions of n(ξ), with ̃n(ξ) = 0 for all values of ξ except some finite number of these values.

Many methods were suggested to tackle this problem and to propose a continuous reconstruction ñ(ξ) from a finite 
number of moments mN . Some of them are the Spline method [13], the Maximum-Entropy approach [14,15,12] or the 
Kernel Density Element Method [16]. Their properties will not be discussed here but one only underlines that they tend 
to be unstable, ill-conditioned, or have a high sensitivity to numerical parameters [13,29,30]. In particular, none of them 
can handle the case of a weakly realisable moment set. Such a moment set is associated to a discrete (or degenerated) 
distribution and, in this specific case, the distribution provided by QMOM is the only possible reconstruction (see Eq. (8)).

Note that a failure – or instabilities – in a numerical method can compromise the integrity of large-scale simulations. 
For this reason, Chalons et al. [17], Yuan et al. [18] and Nguyen et al. [1] proposed a robust and stable method to tackle this 
reconstruction problem by handling both continuous approximations and discrete solutions. Their approach, the Extended 
Quadrature Method of Moments, approximates n(ξ) as a convex mixture of Kernel Density Functions (KDFs) of the same 
parametric family:

ñ(μ) =
P∑

i=1

wiδσ (ξ, ξi) (10)

with

• wi : the weight of the i-th node, wi ≥ 0, ∀i ∈ {1, . . . , P }
• ξi : the location parameter of the i-th node, ξi ∈ �ξ , ∀i ∈ {1, . . . , P }
• δσ : a KDF chosen to perform the approximation, referred later to as the reconstruction kernel. σ is the shape parameter 

of the approximation.
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The computation of the weights w P = [w1, . . . , w P ]T , the nodes ξ P = [ξ1, . . . , ξP ]T and the shape parameter σ from the 
moment set m2P is performed by the EQMOM moment-inversion procedure. The improvement of this procedure constitutes 
the core of this article and is detailed in section 3.

Multiple standard normalized distribution functions can be used as the reconstruction kernel δσ (e.g. Gaussian, Log-
normal, etc.). A list of them is given in Appendix B. All of these kernels degenerate into Dirac distribution if their shape 
parameters are sufficiently small:

lim
σ→0

δσ (ξ, ξm) = δ(ξ, ξm) (11)

This allows EQMOM to be numerically stable in the case of a moment set m2P being on the boundary of the realisable 
moment space ∂M2P (�ξ ). Indeed, in such cases, the EQMOM approximation simply degenerates in a weighted sum of 
Dirac distribution and the definition given in Eq. (10) still holds true, with σ = 0.

EQMOM can also be used to compute integral properties of the NDF with high accuracy. This comes with the introduction 
of nested quadratures. The main quadrature proposes the following approximation of integral terms:

∫
�ξ

f (ξ)n(ξ)dξ ≈
P∑

i=1

wi

⎡⎢⎣∫
�ξ

f (ξ)δσ (ξ, ξi)dξ

⎤⎥⎦ (12)

Moreover, a quadrature rule can be used to approximate the bracketed integral in Eq. (12). This will be the nested quadra-
ture that actually depends on the kernel δσ (ξ, ξm). For instance, Gauss–Hermite quadratures can be used to approximate 
integrals over a Gaussian kernel (see Appendix B.1). Nested quadratures then give the following approximation:∫

�ξ

f (ξ)n(ξ)dξ ≈
P∑

i=1

wi

Q∑
j=1

ω j f
(

g(σ , ξi, λ j)
)

(13)

with Q the order, ωQ = [ω1, . . . , ωQ ]T the weights and λQ = [λ1, . . . , λQ ]T the nodes of the sub-quadrature. g defines the 
nodes of the nested quadrature from σ , ξi and λ j . These nested quadratures are detailed for all KDFs in Appendix B and 
Appendix C.

3. Moment inversion procedure

The EQMOM moment-inversion procedure comes with analytical solutions for some kernels in the case of low-order 
quadratures. The one-node analytical solutions are detailed for all kernels in Appendix B. When they exist, the two-nodes 
analytical solutions are implemented in MATLAB code (see supplementary data) but are not detailed in this article. The 
current section is focusing on the numerical procedure used to compute the reconstruction parameters in absence of an 
analytical solution.

The procedure proposed by Yuan et al. [18] and Nguyen et al. [1] is first recalled in section 3.1. The section 3.2 details 
how their approach can be shifted toward a new convergence criteria that will be applied to the specific cases of

• the Hamburger moment problem (section 3.3): NDF defined on the whole phase space �ξ = ]−∞,+∞[
• the Stieltjes moment problem (section 3.4): NDF defined on the positive phase space �ξ = ]0,+∞[
• the Hausdorff moment problem (section 3.5): NDF defined on the closed support �ξ = ]0,1[

Some moment sets lead to ill-conditioned situations that need to be specifically handled by EQMOM implementations. 
These are addressed in section 3.6.

3.1. Standard procedure

Let mN be the vector of the first N + 1 integer moments of the measure dμ(ξ) = n(ξ)dξ , with N = 2P an even integer:

mN =

⎡⎢⎢⎢⎣
m0
m1
...

mN

⎤⎥⎥⎥⎦ , mk =
∫
�ξ

ξkn(ξ)dξ (14)

The EQMOM moment-inversion procedure aims to identify the parameters σ , w P = [w1, . . . , w P ]T and ξ P = [ξ1, . . . , ξP ]T

such that mN = m̃N with:
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m̃N =

⎡⎢⎢⎢⎣
m̃0
m̃1
...

m̃N

⎤⎥⎥⎥⎦ , m̃k =
∫
�ξ

ξkñ(ξ)dξ, ñ(ξ) =
P∑

i=1

wiδσ (ξ, ξi) (15)

For any value of σ , Yuan et al. [18] identified a procedure which leads to the parameters w P and ξ P such that mN−1 =
m̃N−1. The EQMOM moment-inversion problem has then been reduced to solving a scalar non-linear equation by looking 
for a root of the function D N (σ ) = mN − m̃N(σ ).

The approach developed by Yuan et al. [18] and then improved by Nguyen et al. [1] is based on the fact that, for the 
KDFs used in EQMOM, it is possible to write the following linear system:

m̃n = An(σ ) · m∗
n (16)

where An(σ ) is a lower-triangular (n + 1) × (n + 1) matrix whose elements depend only on the chosen KDF and on the 
value σ , whereas m∗

n is defined as:

m∗
n =

⎡⎢⎢⎢⎣
m∗

0
m∗

1
...

m∗
n

⎤⎥⎥⎥⎦ , m∗
k =

P∑
i=1

wiξ
k
i (17)

By their definition, the moments m∗
n correspond to the moments of a degenerated distribution (i.e. a finite sum of Dirac 

distributions), hence these moments will be referred as the degenerated moments of the approximation. Degenerated moments 
are defined in such a way that the vectors w P and ξ P can be computed from m∗

2P−1 using a Gauss Quadrature (see 2.2).
At this point, one has the basis required to compute the objective function D N (σ ) and to search for its root. The com-

putation of D N (σ ) from a vector mN is as follow (see also Fig. 1a):

1. Compute m∗
N−1(σ ) = A−1

N−1(σ ) · mN−1.
2. Compute the recurrence coefficients a∗

P−1(σ ) and b∗
P−1(σ ) by applying the Chebyshev algorithm to m∗

N−1(σ ).
3. Use the recurrence coefficients to compute the Gaussian quadrature rule w P (σ ) and ξ P (σ ).
4. Knowing the parameters σ , w P (σ ) and ξ P (σ ) of the reconstruction, compute m̃N (σ ), this can be done easily by:

• Computing the N-th order degenerated moment of the approximated NDF: m∗
N (σ ) =∑P

i=1 wi(σ )ξi(σ )N .
• Multiplying the last line of AN (σ ) and the vector of degenerated moments: m̃N(σ ) = [0, 0, . . . , 1] · AN(σ ) ·[

m∗
0(σ ), . . . ,m∗

N−1(σ ),m∗
N (σ )

]T .
5. Compute D N(σ ) = mN − m̃N(σ ).

For each compatible KDF, it is possible to use low order moments to compute an upper bound σmax so that the search of 
a root of D N is restricted to the interval σ ∈ [0, σmax]. Then a bounded non-linear equation solver such as Ridder’s method 
can be applied to actually find the root of the function.

Two specific cases were discarded in the previous description of the method. First, it happens that the function D N does 
not admit any root, in such a case the procedure is switched toward the minimisation of this function in order to reduce 
the error on the last moment of the approximation.

Second, during the computation of D N (σ ), one must compute degenerated moments from which weights and nodes are 
extracted. If degenerated moments m∗

N−1(σ ) turn out not to be realisable on the support �ξ of the NDF, the quadrature 
performed on this vector will lead to nodes outside �ξ , or even to negative/complex weights. Nguyen et al. [1] then suggest 
to check for the realisability of degenerated moments, and if these are not realisable, to set m̃N (σ ) to a arbitrarily high 
value such as 10100. This will force the non-linear equation solver to test a lower value of σ in order to bring back the 
vector m∗

N−1(σ ) within the realisable moment space. However note that this is only a numerical trick to converge toward 
the actual root, but D N (σ ) is actually undefined as soon as m∗

N−1(σ ) is not realisable.

3.2. A new procedure based on moment realisability

The reversible linear system linking raw moments of the approximation m̃N to its degenerated moments m∗
N is such 

that a new objective function D∗
N (σ ) – whose root is the same as that of D N (σ ) – can be formulated. Its computation is as 

follow (see also Fig. 1b):

1. Compute m∗
N(σ ) = A−1

N (σ ) · mN .
2. Compute a quadrature on the vector m∗

N−1(σ ) to obtain the vectors w P (σ ) and ξ P (σ ).

3. Compute m∗
N(σ ) =∑P

i=1 wi(σ )ξi(σ )N .
4. Compute D∗

N(σ ) = m∗
N(σ ) − m∗

N (σ ).
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Fig. 1. Comparison of the computation of convergence criteria based on (a) DN(σ ), (b) D∗
N (σ ) and (c) the realisability criteria of the support �ξ . CA: 

Chebyshev Algorithm. QC: Quadrature Computation. The convergence criteria are highlighted in light blue. Inspired by Fig. 1 from Nguyen et al. [1]. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Note that D N (σ ) = D∗
N(σ ) × AN,N(σ ). As shown in Appendix B for all kernels, diagonal elements of An(σ ) are always 

strictly positive, therefore the two objective functions do share the same roots.
The benefit of this new objective function is that it only requires the matrix A−1

N (σ ) instead of both the matrix A−1
N−1(σ )

and the last line of AN(σ ). This only increases the clarity of the method, but has hardly no effect on its numerical cost.
The point of this alternative approach is however to underline a crucial element for the new EQMOM implementation: 

we actually look for a value of σ for which m∗
2P (σ ) = m∗

2P (σ ). This implies that, for this specific searched σ value, the 
vector m∗

2P (σ ) reads

m∗
2P (σ ) =

⎡⎢⎢⎢⎢⎢⎣
∑P

i=1 wiξ
0
i∑P

i=1 wiξ
1
i

...∑P
i=1 wiξ

2P
i

⎤⎥⎥⎥⎥⎥⎦ (18)

which is, by construction, the vector of the first 2P + 1 moments of the sum of P Dirac distributions.
Under the condition that a P -node EQMOM reconstruction exists for the moment set m2P with σ > 0, wi > 0, ξi �=

0, i ∈ {1, . . . , P }, the vector m∗
2P (σ ) will have the following specific properties:

1. The vector m∗
2P−1(σ ) must be strictly within the realisable moment space MN−1(�ξ ).

2. The vector m∗
2P (σ ) must be on the boundary of the realisable moment space MN (�ξ ).

EQMOM procedure will then rely on the realisability of the vector m∗
2P (σ ) instead of the computation of the error on 

the last moment, this will be a cheaper approach.
Situations were the EQMOM reconstruction exist but with σ = 0, or ∃i ∈ {1, . . . , P }, wi = 0 or ξi = 0 are tackled in 

section 3.6 but are always based on checking the realisability of m∗
2P (σ ).

The actual definition of the realisable moment space of order n, Mn , depends on the support �ξ of the NDF. The 
three classical supports, corresponding to the Hamburger, Stieltjes and Hausdorff moment problems, come with different 
constraints on a moment set to ensure its realisability. The realisability criteria for each of these supports will then be 
detailed.

Fig. 1 sums up the “standard approach” based on D N (σ ), the shifted approach, based on D∗
N (σ ), as well as the new 

approach based on the realisability criteria of m∗
2P (σ ) for all three supports.

3.3. Application to the Hamburger problem

As stated in 2.2, it is known that monic polynomials which are orthogonal to a measure dμ(ξ) = n(ξ)dξ satisfy a 
three-term recurrence relation (Eq. (5)) with ak and bk, k ∈ N, the recurrence coefficients specific to the measure dμ(ξ). The 
Favard’s theorem [31] and its converse [32] imply that the measure dμ(ξ) is realisable on �ξ = ]−∞,+∞[ if and only if 
ak ∈ R and bk > 0, ∀k ∈ N.
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Fig. 2. Evolution of the different convergence criteria for both Gaussian (a and b) and Laplace (c and d) kernels depending on σ value. The two initial 
moment sets are m(1)

6 = [1 1 2 5 12 42 133]T and m(2)
6 = [1 2 7 17 58 149 493]T .

One looks for a value of σ such that the associated degenerated moments m∗
2P−1(σ ) are strictly realisable (i.e. within the 

moment space), and the moments m∗
2P (σ ) are weakly realisable (i.e. on the frontier of realisability). Then, if the Chebyshev 

algorithm is used to compute the recurrence coefficients a∗
P−1(σ ) = [a∗

0(σ ), . . . , a∗
P−1(σ )]T and b∗

P (σ ) = [b∗
1(σ ), . . . , b∗

P (σ )]T

from the vector m∗
2P (σ ), the condition of realisability can be written in terms of values of b∗

P (σ ): looking for the EQMOM 
reconstruction parameters with the Gaussian and Laplace kernels is equivalent to looking for a value of σ such as:

• b∗
k (σ ) > 0, ∀k ∈ {1, . . . , P − 1}

• b∗
P (σ ) = 0

Fig. 2 makes use of the developments from Appendix B.1 and Appendix B.2, about the Gaussian and Laplace kernels 
respectively, to show the evolution of D6(σ ), D∗

6(σ ) and b∗
k (σ ), k ∈ {1, 2, 3} for two sets of 7 moments (P = 3). This figure 

illustrates the fact that indeed the approaches based on D N (σ ), D∗
N(σ ) and b∗

P (σ ) are equivalent as they share the same 
circled root.

Let denote σk the root of bk(σ ). One can notice that the root σk lies within the interval [0, σk−1]. We actually observed 
the existence of all roots σk, k ∈ {1, . . . , P } on numerous (about 106) randomly selected moment sets of N + 1 = 13 mo-
ments, and never observed an undefined root. The generality of this observation has not been mathematically proved, but 
it seems that indeed σk is always defined and always lies in σk ∈ [0, σk−1] , k ∈ {2, . . . , P }. σ1 is defined analytically.

The previous observations were used to design a simple algorithm which allows identifying the root σP . This algorithm 
is based on the fact that it is possible to check whether a value σt is higher or lower than σP at low cost and with no prior 
knowledge of σP value:

• If b∗
k (σt) > 0, ∀k ∈ {1, . . . , P }, then σt < σP .

• Otherwise, that is if ∃k ∈ {1, . . . , P }, b∗
k (σt) < 0, then σt > σP .

One can then use an iterative approach that will

1. Check the realisability of the raw moments m2P = m∗
2P (0) by computing b∗

P (0) and checking the positivity of all 
elements.

2. Initialise an interval 
[
σ

(0)

l , σ
(0)
r

]
such that σ (0)

l < σP and σ (0)
r > σP , and then update these bounds to shrink the search 

interval. These initial values will be σ (0)

l = 0 and σ (0)
r = σ1 with σ1 the analytical solution of b∗

1(σ ) = 0.
3. Iterate over k

(a) Choose σt ∈
[
σ

(k−1)

l , σ
(k−1)
r

]
.

(b) Compute b∗
P (σt).

(c) If all elements of b∗
P (σt) are positive, set σ (k)

l = σt and σ (k)
r = σ

(k−1)
r .

(d) Otherwise, set σ (k)

l = σ
(k−1)

l and σ (k)
r = σt .

The choice of σt at step 3a will be made by trying to locate the root σ j of b∗
j (σ ) with j the index of the first negative 

element of b∗
P

(
σ

(k)
r

)
. Following Nguyen et al. [1] developments, the use of Ridder’s method is advised to select σt . This 

method actually tests two σ values per iteration. Consequently, the step 3 of the previous algorithm becomes:
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3. Iterate over k
(a) Identify j the index of the first negative element of b∗

P

(
σ

(k−1)
r

)
.

(b) Compute σt1 = 1
2

(
σ

(k−1)

l + σ
(k−1)
r

)
and b∗

P (σt1 ).

(c) Compute σt2 = σt1 +
(
σt1 − σ

(k−1)

l

) b∗
j

(
σt1

)√
b∗

j

(
σt1

)2−b∗
j

(
σ

(k−1)

l

)
∗b∗

j

(
σ

(k−1)
r

) and b∗
P (σt2 ).

(d) Set σ (k)

l as the highest value between σ (k−1)

l , σt1 and σt2 such that the corresponding vector b∗
P contains only 

positive values.
(e) Set σ (k)

r as the lowest value between σ (k−1)
r , σt1 and σt2 such that the corresponding vector b∗

P contains at least 
one negative value.

Stop the computation if σ (k)
r − σ

(k)

l < ε σ1 or if b∗
P

(
σ

(k)

l

)
< ε b∗

P (0), with ε a relative tolerance (e.g. ε = 10−10). Then 
compute the weights w P and nodes ξ P of the EQMOM reconstruction by computing a Gauss quadrature based on the 
recurrence coefficients a∗

P−1

(
σ

(k)

l

)
and b∗

P−1

(
σ

(k)

l

)
.

Actual implementations of this algorithm for both kernels are provided as supplementary data.

3.4. Application to the Stieltjes problem

It is well known that the realisability of a moment set mN on the support �ξ = ]0,+∞[ is strictly equivalent to the 
positivity of the Hankel determinants H2n+d [33] defined as:

H2n+d =

∣∣∣∣∣∣∣
md · · · mn+d
...

. . .
...

mn+d · · · m2n+d

∣∣∣∣∣∣∣ (19)

with d ∈ {0, 1} and n ∈ N, 2n + d ≤ N .
This condition on the positivity of Hankel determinants can be translated into a condition on the positivity of the 

numbers ζk [32] defined by:

ζk = Hk−3Hk

Hk−2Hk−1
, H j = 1 if j < 0 (20)

These numbers can be directly computed from the recurrence coefficients aP and bP defined in 2.2 through the following 
relations:

ζ2k = bk

ζ2k−1
, ζ2k+1 = ak − ζ2k (21)

with ζ1 = a0 = m1/m0.
The goal here is to use these realisability criteria to compute the parameters of EQMOM quadrature with either the 

Log-normal, the Gamma or the Weibull kernel (see Appendix B.3, Appendix B.4 and Appendix B.5 respectively). In these 
cases, one must

1. Compute m∗
N(σ ) = A−1

N (σ ) · mN with AN (σ ) the matrix associated to the chosen kernel (see Appendix B.3, Ap-
pendix B.4, Appendix B.5).

2. Apply the Chebyshev algorithm to m∗
N(σ ) to access the recurrence coefficients a∗

P (σ ) and b∗
P (σ ).

3. Compute ζ ∗
N (σ ) = [ζ ∗

1 (σ ), . . . , ζ ∗
N (σ )]T using relations in Eq. (21).

One actually looks for σ such that

• ζ ∗
k (σ ) > 0, ∀k ∈ {1, . . . , N − 1}

• ζ ∗
N (σ ) = 0

Let σk be the root of ζ ∗
k (σ ). In all cases, the root σ2 is defined, analytically for the Log-normal and Gamma kernels, and 

numerically for the Weibull kernel. Fig. 3 shows the evolution of D6(σ ), D∗
6(σ ) and ζ ∗

6(σ ) for three moment sets when the 
developments relative to the Weibull (see Appendix B.5) kernel are used. Three situations can be observed on that figure:

1. All roots σk , k ∈ {2, . . . , N} are defined (Fig. 3a).
2. Some intermediary roots σk , k ∈ {3, . . . , N − 1}, are not defined but the root σN still exists (Fig. 3b).
3. The root σN is not defined (Fig. 3c).
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Fig. 3. Evolution of the different convergence criteria for the Weibull kernel depending on σ value. The initial moment sets are m(a)
6 =

[1 1.5 12 131 15200 18033 2.16e5]T , m(b)
6 = [1 5.5 78 1285 22225 4.05e5 7.88e6]T and m(c)

6 = [1 1 2 5 14 42 133]T .

These three cases can be observed for the Gamma and Log-normal kernels too.
In the first two cases, when σN exists, the EQMOM approximation is well defined. The last case – where ζ ∗

N (σ ) admits 
no root in [0, σN−1] – actually corresponds to the case described by Nguyen et al. [1] where D N(σ ) did not admit any root 
either. In this case, it was suggested to minimise D N (σ ) in order to reduce the difference between mN and m̃N (σ ) as much 
as possible.

DN (σ ) tends to be a decreasing function, but is undefined as soon as any element of ζ ∗
N−1(σ ) is negative. The minimum 

of D N(σ ) is then usually located at the highest order defined root. For instance, in the case shown in Fig. 3c, the minimum 
of D6(σ ) is located at the root σ5 of ζ ∗

5 (σ ).
The moment-inversion procedure for reconstruction kernels defined on �ξ = ]0,+∞[ is then reduced to the identifica-

tion of the defined root σk, k ∈ {2, . . . , N}, of highest index. The algorithm proposed in section 3.3 already converges toward 
this root and only requires little adjustments:

1. Check the realisability of the raw moments m2P = m∗
2P (0) by computing ζ ∗

N (0) and checking the positivity of all 
elements.

2. Initialise an interval 
[
σ

(0)

l , σ
(0)
r

]
with σ (0)

l = 0 and σ (0)
r = σ2 with σ2 the solution of ζ ∗

2 (σ ) = 0.

3. Iterate over k
(a) Identify j the index of the first negative element of ζ ∗

N

(
σ

(k−1)
r

)
.

(b) Compute σt1 = 1
2

(
σ

(k−1)

l + σ
(k−1)
r

)
and ζ ∗

N(σt1 ).

(c) Compute σt2 = σt1 +
(
σt1 − σ

(k−1)

l

)
ζ ∗

j

(
σt1

)√
ζ ∗

j

(
σt1

)2−ζ ∗
j

(
σ

(k−1)

l

)
∗ζ ∗

j

(
σ

(k−1)
r

) and ζ ∗
N(σt2 ).

(d) Set σ (k)

l as the highest value between σ (k−1)

l , σt1 and σt2 such that the corresponding vector ζ ∗
N contains only 

positive values.
(e) Set σ (k)

r as the lowest value between σ (k−1)
r , σt1 and σt2 such that the corresponding vector ζ ∗

N contains at least 
one negative value.

Stop the computation if σ (k)
r −σ

(k)

l < εσ1 or if ζ ∗
N

(
σ

(k)

l

)
< εζ ∗

N (0), with ε a relative tolerance (e.g. ε = 10−10). Then compute 
the weights w P and nodes ξ P of the EQMOM reconstruction by computing a Gaussian-quadrature based on recurrence 
coefficients a∗

P−1

(
σ

(k)

l

)
and b∗

P−1

(
σ

(k)

l

)
.

3.5. Application to the Hausdorff problem

Moments of a distribution defined on the closed support �ξ = ]0,1[ must obey two sets of conditions in order to be 
within the realisable moment space [15,26]. The moment set mN is interior to the realisable moment space associated to 
the support �ξ = ]0,1[ if and only if:

• Hk > 0, ∀k ∈ {0, . . . , N}
• Hk > 0, ∀k ∈ {1, . . . , N}
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Fig. 4. Evolution of the different convergence criteria for the Beta reconstruction kernel and four initial moment sets. These sets can be found in the figure 
source code provided as supplementary data.

with Hk defined in Eq. (19) and Hk defined by

H2n+d =

∣∣∣∣∣∣∣
md−1 − md · · · mn+d−1 − mn+d

...
. . .

...

mn+d−1 − mn+d · · · m2n+d−1 − m2n+d

∣∣∣∣∣∣∣ (22)

Leaving aside the obvious condition H0 = m0 > 0, the conditions Hk > 0 and Hk > 0 induce a lower bound m−
k and an 

upper bound m+
k for the values of mk , k ∈ {1, . . . , N}. Consequently, one can define the canonical moments of the distribution 

pN = [p1, . . . , pN ]T as

pk = mk − m−
k

m+
k − m−

k

(23)

A moment set mN is strictly realisable if and only if the associated canonical moment set pN lies in the hypercube ]0,1[N . 
Canonical moments can be computed through the recurrence relation [34]:

pk = ζk

1 − pk−1
(24)

with ζk defined in Eq. (20) and p1 = m1.
In the case of the Beta kernel (see B.6), one is looking for a value of σ such that the vector p∗

N (σ ) has the following 
properties:

• p∗
k (σ ) ∈ ]0,1[ , ∀k ∈ {1, . . . , N − 1}

• p∗
N (σ ) = 0

p∗
N(σ ) is computed from the vector ζ ∗

N(σ ) which is deduced from the recurrence coefficients a∗
P−1(σ ) and b∗

P (σ ). These 
are computed –like previously– through the Chebyshev algorithm applied to the vector m∗

N(σ ) = A−1
N (σ ) · mN .

Fig. 4 shows the evolution of the canonical moments and the convergence criteria D6(σ ) and D∗
6(σ ) for four different 

sets of 7 moments with the developments relative to the Beta kernel (see Appendix B.6). Each of these sets corresponds to 
one of the four situations encountered when dealing with Beta EQMOM:

• Fig. 4a: the root σN of D N (σ ), D∗
N(σ ) and p∗

N (σ ) exists and can be identified through a similar procedure than that 
described in sections 3.3 and 3.4.

• Fig. 4b: the root σN is not defined but the minimum of D N (σ ) is located at the σ value for which p∗
N−1(σ ) is on the 

boundary of the hypercube ]0,1[N−1.
• Fig. 4c: D N(σ ), D∗

N(σ ) and p∗
N (σ ) admit multiple roots.

• Fig. 4d: the root σN is defined, but there is a range ]σv1 , σv2 [ with σv2 < σN , highlighted in light grey, such that in 
this interval the convergence criteria are undefined because ∀σ ∈]σv1 , σv2 [, p∗

N−1(σ ) /∈ ]0,1[N−1.
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The algorithm proposed in sections 3.3 and 3.4 can still be applied here by replacing the convergence criteria by the 
canonical moments, and by checking that the values of p∗

N (σ ) all lie in the interval ]0,1[ instead of checking only for 
positivity:

1. Check the realisability of the raw moments m2P = m∗
2P (0) by computing p∗

N (0) and checking that all elements lie in 
]0,1[.

2. Initialise an interval 
[
σ

(0)

l , σ
(0)
r

]
with σ (0)

l = 0 and σ (0)
r = σ2 with σ2 the analytical solution of p∗

2(σ ) = 0.

3. Iterate over k
(a) Identify j the index of the first element of p∗

N

(
σ

(k−1)
r

)
that is either negative or higher than 1.

(b) Compute σt1 = 1
2

(
σ

(k−1)

l + σ
(k−1)
r

)
and p∗

N(σt1 ).

(c) If j < N and p∗
j

(
σ

(k−1)
r

)
> 1

• Compute σt2 = σt1 +
(
σt1 − σ

(k−1)

l

) q∗
j

(
σt1

)√
q∗

j

(
σt1

)2−q∗
j

(
σ

(k−1)

l

)
∗q∗

j

(
σ

(k−1)
r

) and p∗
N (σt2 ), with q∗

j (σ ) = 1 − p∗
j (σ ).

(d) Else, that is if j = N or p∗
j

(
σ

(k−1)
r

)
< 0

• Compute σt2 = σt1 +
(
σt1 − σ

(k−1)

l

) p∗
j

(
σt1

)√
p∗

j

(
σt1

)2−p∗
j

(
σ

(k−1)

l

)
∗p∗

j

(
σ

(k−1)
r

) and p∗
N(σt2 ).

(e) Set σ (k)

l as the highest value between σ (k−1)

l , σt1 and σt2 such that the corresponding vector p∗
N lies in ]0,1[N .

(f) Set σ (k)
r as the lowest value between σ (k−1)

r , σt1 and σt2 such that the corresponding vector p∗
N does not lie in 

]0,1[N .

Stop the computation if σ (k)
r − σ

(k)

l < εσ2 or if p∗
N

(
σ

(k)

l

)
< εp∗

N (0), with ε a relative tolerance (e.g. ε = 10−10). As previ-

ously, once convergence is achieved, the weights w P and nodes ξ P of the reconstruction can be obtained by computing a 
Gaussian quadrature rule based on the recurrence coefficients a∗

P−1

(
σ

(k)

l

)
and b∗

P−1

(
σ

(k)

l

)
.

This algorithm will converge to the root σN for cases similar to Fig. 4a; to the minimum of D N (σ ) for cases similar to 
Fig. 4b; to one of the multiple roots for cases similar to Fig. 4c. In the case illustrated in Fig. 4d, the algorithm may or may 
not identify the existing root, depending on whether one of the intermediate tested σ values lies in the greyed area.

One could try to develop a more robust algorithm, that will always find the root if it is defined, even in the case shown in 
Fig. 4d. An other improvement would be to ensure a consistent result when multiple roots exist, for instance by converging 
toward the lowest root, so that a small perturbation in the raw moments will only cause a small change on the resulting σ
value. Nothing prevents the current algorithm from converging toward one root for a moment set and toward another one 
after a small perturbation of this set which could induce instabilities in large-scale simulations. Note that these limitations 
already existed in previous EQMOM implementations and do not result from the new approach developed in this article.

3.6. Handling weakly realisable and ill-conditioned moment sets

The EQMOM moment-inversion procedure attempts to identify a NDF defined by

ñ(ξ) =
P∑

i=1

wiδσ (ξ, ξi) (25)

whose first 2P + 1 integer moments are given by m2P .
This approximation is not always possible as shown in sections 3.4 and 3.5. When the EQMOM approximation exists, it 

may be ill-conditioned if at least one of the followings holds true:

• σ = 0
• ∃i, wi = 0
• ∃i, ξi = 0

The first situation is that of m2P being weakly realisable. The second situation occurs if m2P is the moment set of a 
convex mixture of the reconstruction kernel with less than P nodes. These situations are not mutually exclusive, a vector 
m6 could be the vector of the 7 first moments of a bi-Dirac distribution, one of which could be located in ξ = 0.

Accounting for these situations requires introducing the order of realisability of a moment set, N (mN). This notation 
was introduced by Nguyen et al. [1] but was only defined on �ξ =]0, +∞[ in terms of Hankel determinants. The following 
definition is broader as it encompasses theirs but extends it to other supports. N (mN ) is the number of moments in the 
largest strictly realisable subset of mN . For each support, the order of realisability is defined in terms of the realisability 
criterion:
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• For �ξ = ]−∞,+∞[, compute bP from m2P ;
– if all elements are positive, N (m2P ) = 2P + 1;
– else, if there is n such that bn = 0, N (m2P ) = 2n;
– else, if there is n such that bn < 0, N (m2P ) = 2n − 1.

• For �ξ = ]0,+∞[, compute ζ 2P from m2P ;
– if all elements are positive, N (m2P ) = 2P + 1;
– else identify n such that ζn ≤ 0, N (m2P ) = n.

• For �ξ = ]0,1[, compute p2P from m2P ;
– if all elements are included on ]0, 1[, N (m2P ) = 2P + 1;
– else identify n such that pn /∈ ]0, 1[, N (m2P ) = n.

Detecting situations where σ = 0 requires to check the order of realisability of raw moments. If N (m2P ) is even, set 
σ = 0; otherwise apply the iterative procedure to m2P ′ with N (m2P ) = 2P ′ − 1 to identify σ [1].

The actual number of nodes required by the EQMOM approximation, i.e. the number of non-zero weights P ′′ , is de-
termined from N (m∗

2P (σ )). If it is even, P ′′ = N (m∗
2P (σ ))/2; otherwise, P ′′ = (N (m∗

2P (σ )) + 1)/2 but one node will be 
located in ξ = 0 which might be an issue for KDFs defined on �ξ = ]0,+∞[ or �ξ = ]0,1[. The weights and nodes will be 
computed from the recurrence coefficients a∗

P ′′−1(σ ) and b∗
P ′′−1(σ ). If P ′′ < P , let wk = 0, ξk = 1/2, ∀k ∈ {P ′′ + 1, . . . , P }.

These adjustments of the first and last steps of algorithms described in sections 3.3, 3.4 and 3.5 give great stability to 
the moment-inversion procedure at low cost.

In the situation where N (m∗
2P (σ )) = 2P , the EQMOM approximation is guaranteed to preserve the whole moment set 

m2P . However, if N (m∗
2P (σ )) < 2P , the approximation may, or may not, preserve all moments with no simple method to 

check for this. One should compute the moments of the EQMOM approximation and measure the relative error from original 
moments.

4. Comparison of EQMOM approaches

4.1. Method

The new EQMOM moment-inversion procedure only requires computation of the realisability criteria of the vector of 
degenerated moments m∗

2P (σ ) in order to identify σ . These computations were already performed in the original approach 
[1] to ensure the realisability of the vector m∗

2P−1(σ ) prior to the quadrature computation and ulterior steps.
It is therefore obvious that the new approach will always require a lower number of floating point operations (FLOP). In 

order to quantify this reduction on FLOP number, and the actual performance gain, different implementations of EQMOM 
are compared, they are based either on the realizability criteria, or on a quadrature-based objective function.

4.1.1. Tested EQMOM implementations
Comparison are performed for kernels defined on �ξ = ]−∞,+∞[ (i.e. Gauss and Laplace kernels), and on �ξ = ]0,+∞[

(i.e. Log-Normal, Gamma and Weibull kernels), using MATLAB [22] implementations.
Implementations that are based on the realizability criteria of m∗

2P (σ ) use algorithms that were fully described in sec-
tions 3.3 and 3.4 and adjustments from section 3.6.

For quadrature-based moment-inversion implementations, we optimized codes from Marchisio and Fox [20] and the 
OpenQBMM project [19] by implementing optimizations suggested by Nguyen et al. [1] and adjustments from section 3.6. 
Instead of searching for the root of D2P (σ ) (see Fig. 1a), these implementations directly search the root of D∗

2P (σ ) (Fig. 1b). 
Doing so, all compared implementations only require the matrix A−1

2P (σ ) and can benefit from the same code optimization 
when computing m∗

2P (σ ) = A−1
2P (σ ) · m2P .

For kernels defined on �ξ = ]0,+∞[, if Ridder’s method fails to identify a root of D∗
2P (σ ), the golden-ratio method 

is used to minimize D2P (σ )2 = (
D∗

2P (σ ) · A2P ,2P (σ )
)2. The golden-ratio minimization method was already used in Open-

QBMM [19].

4.1.2. Performance measurements
The main element of comparison is the number of floating-point operations required for the whole moment-inversion 

procedure. The MATLAB implementations embed a simple FLOP counter that distinguishes each operation (+, −, ∗, /, 
exp, 

√·, �(·), . . . ) and counts them for each step of the moment-inversion procedure (linear system, Chebyshev algorithm, 
quadrature computation and others).

In order to evaluate the number of operations used in the computation of the eigenvalues and eigenvectors of the Jacobi 
matrix (Eq. (6)), the Jacobi and the Francis algorithms which are suited for symmetric matrices [35] are used in place of the 
MATLAB built-in “eig” function [22]. The Jacobi algorithm is used for matrices of size up to 3 × 3 and the Francis algorithm 
for larger matrices in order to always use the fastest method.

Two others metrics are measured for each call to the moment-inversion procedure: the number of tested σ values and 
the wall-time of function calls.
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Table 1
Comparison of Gauss EQMOM implementations corresponding to Fig. 1b and 1c for moment sets far from the frontier of realisability. The count of FLOP 
details the operations related to (i) the matrix–vector product A−1

2P (σ ) · m2P , (ii) the Chebyshev Algorithm (CA), (iii) the Quadrature Computation (QC) and 
(iv) a miscellaneous category. Results are given as mean±standard-deviation among 104 moment sets.

P = 2 P = 3 P = 4 P = 5

New
approach

FLOP A−1
2P (σ ) 237±59 767±141 1709±253 3201±476

CA 177±40 477±83 979±139 1751±251

QC 52±0 474±42 995±120 1746±188

Misc. 54±12 65±11 75±11 86±12

Total 519±112 1783±242 3759±441 6784±830

Evaluations 12±3 14±2 17±2 19±3

Run-time (ms) 1±0 2±0 3±0 4±1

Former 
approach

FLOP A−1
2P (σ ) 295±161 1433±423 4060±869 8516±1870

CA 202±102 853±241 2246±467 4509±967

QC 742±377 9171±2910 24997±9966 52312±14096

Misc. 191±99 430±129 804±156 1298±251

Total 1429±739 11887±3603 32108±10645 66635±16085

Evaluations 14±7 26±7 39±8 50±11

Run-time (ms) 1±1 9±3 17±5 31±7

Gain in FLOP 59.1%±12.3% 84.2%±3.5% 87.9%±2.5% 88.0%±13.1%

Evaluations 8.6%±27.7% 40.9%±17.7% 54.2%±12.8% 53.0%±55.2%

Run-time 53.2%±13.2% 81.9%±4.2% 84.0%±3.6% 83.3%±18.0%

4.1.3. Tested moment sets
Each comparison was performed on 104 randomly generated moment sets. These have varying size 2P + 1 ∈ {5, 7, 9, 11}

and were either far from, or close to, the boundary of the realisable moment space.
Moments sets for kernels defined on �ξ = ]−∞,+∞[ were computed from random vectors aP−1 and bP using a re-

versed Chebyshev algorithm. Distribution laws for the elements of these vectors are

• ak ∼ N (0, 25), k ∈ {0, . . . , P − 1}.
• bk ∼ 1 + Exp(4), k ∈ {1, . . . , P }.
• bP ∼ Exp(0.5) for moment sets close from the frontier of realisability.

Similarly, moments sets for kernels defined on �ξ = ]0,+∞[ were computed from random vectors ζ 2P using a reversed 
ζ -Chebyshev algorithm [1]. Elements of these vectors are generated using following distribution laws:

• ζk ∼ 1 + Exp(4), k ∈ {1, . . . , 2P }.
• ζ2P ∼ Exp(0.5) for moment sets close from the frontier of realisability.

4.1.4. Reproducibility
To allow reproducibility of results described hereafter, every source codes previously described, and randomly generated 

data, are available as supplementary data.

4.2. Results

Results of the comparison performed on Gauss-EQMOM for moment sets far from the boundary of the realisable moment 
space are given in Table 1. Similar tables are available as supplementary data for all kernels and moment sets.

Table 2 underlines a decrease in the number of tested σ values, in particular for high order reconstructions. This decrease 
is mainly due to the fact that in the former approach, if m∗

N−1(σ ) turns out not to be realisable, the objective function is 
set to a arbitrarily high negative value. The use of such an arbitrary value slows down the convergence of the non-linear 
equation solver. Meanwhile, the new approach never makes use of arbitrary values, all the elements of the vectors of 
realisability criteria (b∗

P (σ ), ζ ∗
2P (σ ) or p∗

2P (σ )) are used one after the other which yields a better choice of the next tested 
σ value.

Moreover, for kernels defined on �ξ = ]0,+∞[ and in situations illustrated in Fig. 3c, the former approach may switch 
from a root search to a minimization process if no root is found. This induces numerous supplementary tested σ values 
before convergence is reached while this situation never occurs in the new approach.

A significant drop in the total number of FLOP can be observed in Table 3. This was expected and is mainly justified 
by the fact that the quadrature computation is only called once in the new approach whilst it is called for most tested σ
values in the former moment-inversion procedure. This quadrature, which consists in the computation of the eigenvalues 
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Table 2
Gain in number of tested σ values.

P = 2 P = 3 P = 4 P = 5

Gauss Strict 8.6%±27.7% 40.9%±17.7% 54.2%±12.8% 53.0%±55.2%

Weak 10.2%±25.5% 43.0%±17.4% 54.7%±20.0% 42.4%±86.3%

Laplace Strict 8.6%±28.3% 41.1%±17.6% 54.3%±12.7% 53.2%±54.4%

Weak 9.9%±23.7% 43.3%±17.4% 54.8%±19.9% 42.5%±85.7%

Log-normal Strict 8.8%±45.9% 21.9%±32.8% 30.5%±27.0% 49.5%±23.8%

Weak 4.0%±38.1% 17.8%±26.4% 40.0%±27.0% 59.1%±16.1%

Gamma Strict 15.5%±38.2% 24.7%±31.1% 34.9%±30.1% 57.2%±24.9%

Weak 7.5%±28.3% 20.7%±26.0% 47.2%±29.6% 65.4%±16.0%

Weibull Strict 26.3%±35.0% 27.2%±30.2% 32.4%±28.1% 54.0%±25.8%

Weak 9.4%±15.7% 19.4%±17.7% 41.8%±25.3% 63.3%±16.4%

Table 3
Gain in FLOP for all tested kernels and moment sets.

P = 2 P = 3 P = 4 P = 5

Gauss Strict 59.1%±12.3% 84.2%±3.5% 87.9%±2.5% 88.0%±13.1%

Weak 59.3%±11.3% 84.4%±3.7% 87.8%±4.8% 85.3%±20.4%

Laplace Strict 64.2%±10.7% 87.5%±2.7% 91.0%±1.7% 91.6%±8.9%

Weak 64.1%±9.1% 87.5%±2.9% 90.8%±3.5% 89.6%±14.1%

Log-normal Strict 58.9%±20.0% 85.6%±5.8% 89.1%±4.3% 93.3%±3.5%

Weak 56.7%±16.7% 84.7%±4.6% 90.8%±4.4% 94.7%±2.4%

Gamma Strict 58.2%±18.8% 82.1%±7.3% 85.7%±6.8% 91.6%±5.4%

Weak 54.2%±14.1% 81.1%±6.1% 88.7%±6.9% 93.4%±3.5%

Weibull Strict 67.7%±15.1% 87.4%±5.1% 90.0%±4.2% 94.2%±3.6%

Weak 61.0%±6.5% 86.7%±3.0% 91.8%±3.9% 95.7%±2.3%

and eigenvectors of a tridiagonal symmetric matrix, is the most expensive operation used in the EQMOM moment-inversion 
procedure.

Concerning the impact of whether the moment sets are close or far from the boundary of the moment space, no signifi-
cant difference appears in Tables 2 and 3. This implies that there are no preferential situations where the former approach 
would have been more interesting. The new EQMOM core procedure should be used against all moment sets.

Overall, one observes a net decrease in the number of floating-point operations and in the computation run-times of 60% 
up to 95% for these implementations of EQMOM and the tested moment sets.

One final interesting observation is the evolution of variability in the computational cost of each EQMOM reconstruction. 
This is illustrated by the ratios standard-deviation/mean shown in Table 4. The high ratios occurring for the former approach, 
ranging from 24% up to 794%, show that the distributions of required FLOP by EQMOM reconstruction are highly skewed. 
This leads to high probabilities of significantly different computational costs between different moment sets.

On the other hand, that ratio never goes higher than 26% for the new approach if P = 2, and 16% for higher order recon-
structions. It implies that the distribution of numerical cost is more narrow and that this new approach will induce more 
consistent numerical costs among different moment sets. This is a salient feature of this new moment-inversion algorithm 
as it allows better load-balancing in high performance computing, in particular in highly parallelized CFD softwares.

5. Conclusion

The first developments relative to the Extended Quadrature Method of Moments are quite recent [17]. Most of these 
developments were dedicated to widening the use of this method to new application cases, in particular by adding new 
reconstruction kernels to the EQMOM formalism, and to demonstrate its stability and accuracy compared to other methods. 
This article summarised all of these developments, relative to the Gaussian kernel [17], to the Log-normal kernel [21] and 
to the Gamma and Beta kernels [18]. It was also shown that at least two other kernels are perfectly compatible with the 
EQMOM formalism: the Laplace and Weibull kernels.

The youth of EQMOM explains that there is still room left for improvements. The core of this method – the moment-
inversion procedure – is an iterative process which is its computational bottleneck. Nguyen et al. [1] proposed some 
modifications, compared to previous implementations, in order to stabilise the method and to speed-up its resolution, 
namely the use of Ridder’s method instead of bounded-secant or dichotomic methods to solve the non-linear problem, and 
the realisability checks performed prior to the quadrature computation.
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Table 4
Ratio standard-deviation/mean of the distribution of total number of FLOP required by EQMOM reconstructions. Only moment sets generated far from the 
frontier of realisability are considered.

P = 2 P = 3 P = 4 P = 5

Gauss New approach 0.22 0.14 0.12 0.12
Former approach 0.52 0.30 0.33 0.24

Laplace New approach 0.21 0.12 0.11 0.11
Former approach 0.67 0.30 0.43 0.43

Log-normal New approach 0.26 0.15 0.12 0.11
Former approach 1.10 0.97 7.94 6.48

Gamma New approach 0.25 0.16 0.15 0.15
Former approach 1.26 1.14 0.87 3.23

Weibul New approach 0.21 0.13 0.12 0.11
Former approach 1.05 1.46 7.21 6.41

Further improvements were proposed by shifting the resolution toward a new paradigm. This results in a significant 
decrease in computational cost of about 60%–95% in terms of required floating-point operations. This resulted in our MATLAB 
implementations in a similar gain in terms of computation wall-time. Moreover, the new approach offers more consistent 
numerical costs which will be beneficial to load-balancing in parallelized software.

In multiple works [1,18,30], EQMOM has been compared to other methods (Maximum Entropy approach or sectional 
methods) and exhibited (i) similar accuracy even with a lower number of resolved variables, and (ii) faster or comparable 
computation times. The new improvements of EQMOM will make it even more competitive as its stability and accuracy 
are kept while reducing the gap in terms of numerical cost between EQMOM and other cheaper methods such as Gauss or 
Gauss–Radau quadratures.

We strongly believe that transparency about these developments will help further refinements of EQMOM. For that 
reason, all sources used to generate figures and data in this article are provided as supplementary data. We also release all 
our EQMOM source codes both with this article and in an open-access GIT repository (url: https://gitlab .com /open -eqmom). 
It will be updated as well as supplemented with implementations of EQMOM in languages other than MATLAB. In the case 
of the Beta reconstruction kernel, some suggestions for further improvements in terms of accuracy and stability were listed 
in section 3.5. These will be tackled in ulterior work.
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Appendix A. Chebyshev algorithm

The Chebyshev algorithm allows to compute the three-term recurrence coefficients of the monic polynomials orthog-
onal to a measure dμ(ξ) whose moments are given by the vector mN = [m0, . . . , mN ]. This version of the algorithm fills 
column-wise a N + 1 × � N+1

2 � matrix denoted S .
First, fill the first column with the moments Si,0 = mi , compute a0 = m1/m0 and fill the second column with Si,1 =

Si+1,0 − a0 Si,0, ∀i ∈ {1, . . . , N − 1}.
Then iterate for j ∈ {2, . . . , � N−1

2 �}:

a j−1 = S j, j−1

S j−1, j−1
− S j−1, j−2

S j−2, j−2

b j−1 = S j−1, j−1

S j−2, j−2

Si, j = Si+1, j−1 − a j−1 Si, j−1 − b j−1 Si, j−2, i ∈ { j, . . . , N − j}

Appendix B. Kernels for EQMOM

There exists multiple variations of the EQMOM method depending on the Kernel Density Function that is used for the 
reconstruction in Eq. (15). This section details the specificities of multiple KDF that were found to be compatible with the 
EQMOM procedure. It details for each kernel
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1. the actual expression of that kernel δσ (ξ, ξm);
2. the expression of its moments;
3. the matrix An(σ ) that allows the transfer between the raw moments of the reconstruction m̃n and its degenerated 

moments m∗
n;

4. the nested quadrature rules suiting this kernel;
5. the analytical solutions available for one-node EQMOM (P = 1).

Two-nodes analytical solutions exist for the Gaussian, Gamma, Laplace and Log-normal kernels and are accessible using 
the same methodology than that used by Chalons et al. [17] for the Gaussian kernel. These solutions are not detailed here 
but are implemented in the MATLAB code given in supplementary data.

All definitions of matrices An(σ ) are given using zero-offset. The element of the first line and column of this matrix then 
reads A0,0(σ ).

B.1. Gaussian kernel

B.1.1. Definition
The Gaussian kernel δ(G)

σ (ξ, ξm) was first used in EQMOM by Chalons et al. [17]. It is defined on �ξ = ]−∞,+∞[ by

δ
(G)
σ (ξ, ξm) = 1

σ
√

2π
exp

(
− (ξ − ξm)2

2σ 2

)
(B.1)

B.1.2. Moments and linear system
Moments of the Gaussian kernel are given by:

+∞∫
−∞

ξkδ
(G)
σ (ξ, ξm)dξ =

�k/2�∑
j=0

k!
j!(k − 2 j)!

(
σ 2

2

) j

ξ
k−2 j
m (B.2)

Moments of the distribution ̃n(ξ) =∑P
i=1 wiδ

(G)
σ (ξ, ξi) are given by the linear system

m̃n = A(G)
n (σ ) · m∗

n (B.3)

with

A(G)
i, j (σ ) =

⎧⎪⎨⎪⎩
0 if j > i or (i − j mod 2) = 1

i!(
i− j

2

)
! j!

(
σ 2

2

) i− j
2

otherwise
(B.4)

The inverse of this matrix is given by:

A(G)−1
i, j (σ ) =

⎧⎪⎨⎪⎩
0 if j > i or (i − j mod 2) = 1

i!(
i− j

2

)
! j!

(
−σ 2

2

) i− j
2

otherwise
(B.5)

which translates, for the case n = 4, into:⎡⎢⎢⎢⎢⎢⎢⎣
m̃0

m̃1

m̃2

m̃3

m̃4

⎤⎥⎥⎥⎥⎥⎥⎦=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

σ 2 0 1

0 3σ 2 0 1

3σ 4 0 6σ 2 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
m∗

0

m∗
1

m∗
2

m∗
3

m∗
4

⎤⎥⎥⎥⎥⎥⎥⎦ (B.6)

⎡⎢⎢⎢⎢⎢⎢⎣
m∗

0

m∗
1

m∗
2

m∗
3

m∗
4

⎤⎥⎥⎥⎥⎥⎥⎦=

⎛⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

−σ 2 0 1

0 −3σ 2 0 1

3σ 4 0 −6σ 2 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ·

⎡⎢⎢⎢⎢⎢⎢⎣
m̃0

m̃1

m̃2

m̃3

m̃4

⎤⎥⎥⎥⎥⎥⎥⎦ (B.7)
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B.1.3. Moment preserving nested quadrature
The approximation of integral properties using Gauss EQMOM is performed through the following nested quadrature:

+∞∫
−∞

f (ξ)n(ξ)dξ ≈ 1√
π

P∑
i=1

wi

Q∑
j=1

ω j f
(
ξi + σλ j

√
2
)

(B.8)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes of 
a Q -nodes Gauss–Hermite quadrature rule (see Appendix C).

B.1.4. Single node analytical solution
The case P = 1 has the following analytical solution:

w1 = m0

ξ1 = m1

m0

σ =
√

m2m0 − m2
1

m0

B.2. Laplace kernel

B.2.1. Definition
The Laplace kernel δ(λ)

σ (ξ, ξm) is defined on �ξ = ]−∞,+∞[ by

δ
(λ)
σ (ξ, ξm) = 1

2σ
exp

(
−|ξ − ξm|

σ

)
(B.9)

B.2.2. Moments and linear system
Moments of the Laplace kernel are given by

+∞∫
−∞

ξkδ
(λ)
σ (ξ, ξm)dξ =

k∑
j=0

k!
(k − j)!

1 + (−1) j

2
ξ

k− j
m σ j (B.10)

Moments of the distribution ̃n(ξ) =∑P
i=1 wiδ

(λ)
σ (ξ, ξi) are given by the linear system

m̃n = A(λ)
n (σ ) · m∗

n (B.11)

with

A(λ)
i, j (σ ) =

{
0 if j > i or (i − j mod 2) = 1
i!
j!σ

i− j otherwise
(B.12)

The inverse matrix is defined by

A(λ) −1
i, j (σ ) =

⎧⎪⎨⎪⎩
1 if i = j

−( j + 1)( j + 2)σ 2 if i = j + 2

0 otherwise

(B.13)

which translates for n = 6 into⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 1
2!σ 2

0! 0 1

0 3!σ 2

1! 0 1
4!σ 4

0! 0 4!σ 2

2! 0 1

0 5!σ 4

1! 0 5!σ 2

3! 0 1
6!σ 6

0! 0 6!σ 4

2! 0 6!σ 2

4! 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∗
0

m∗
1

m∗
2

m∗
3

m∗
4

m∗
5

m∗
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.14)



M. Pigou et al. / Journal of Computational Physics 365 (2018) 243–268 261⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m∗
0

m∗
1

m∗
2

m∗
3

m∗
4

m∗
5

m∗
6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

−2σ 2 0 1

−6σ 2 0 1

−12σ 2 0 1

−20σ 2 0 1

0 −30σ 2 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(B.15)

B.2.3. Moment preserving nested quadrature
The approximation of integral properties using Laplace EQMOM is performed through the following nested quadrature:

+∞∫
−∞

f (ξ)n(ξ)dξ ≈
P∑

i=1

wi

Q∑
j=1

ω j f
(
ξi + σλ j

)
(B.16)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes of 
a Q -nodes “Gauss-Laplace” quadrature rule (see Appendix C).

B.2.4. Single node analytical solution
The case P = 1 has the following analytical solution:

w1 = m0

ξ1 = m1

m0

σ =
√

m2m0 − m2
1

2m2
0

B.3. Log-normal kernel

B.3.1. Definition
The Log-normal kernel δ(L)

σ (ξ, ξm) was first used in EQMOM by Madadi-Kandjani and Passalacqua [21]. It is defined on 
�ξ = ]0,+∞[ by

δ
(L)
σ (ξ, ξm) = 1

σξ
√

2π
exp

(
− (log(ξ) − log(ξm))2

2σ 2

)
(B.17)

B.3.2. Moments and linear system
Moments of the Log-normal kernel are given by

+∞∫
0

ξkδ
(L)
σ (ξ, ξm)dξ = ξk

mzk2
with z = eσ 2/2 (B.18)

Moments of the distribution ̃n(ξ) =∑P
i=1 wiδ

(L)
σ (ξ, ξi) are given by

m̃k = m∗
k zk2

(B.19)

This can be translated into a linear system

m̃n = A(L)
n (σ ) · m∗

n (B.20)

with A(L)
n (σ ) a diagonal matrix:

A(L)
i, j (σ ) =

{
zi2

if i = j

0 otherwise
(B.21)

whose inverse matrix is directly given by

A(L)−1
i, j (σ ) =

{
z−i2

if i = j

0 otherwise
(B.22)
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B.3.3. Low cost nested quadrature
A variable change allows approximating integral properties over a LogN EQMOM reconstruction using Gauss–Hermite 

quadratures [21]:

+∞∫
0

f (ξ)n(ξ)dξ ≈ 1√
π

P∑
i=1

wi

Q∑
j=1

ω j f
(
ξi exp

(
σλ j

√
2
))

(B.23)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes of 
a Q -nodes Gauss–Hermite quadrature rule (see Appendix C).

Parameters of this nested quadrature do not depend on σ of the main quadrature nodes ξ P . Consequently, ωQ and λQ
only need to be computed once. It is worth noting that this quadrature does not preserve the moments of the distribution 
and only yields exact results for f (ξ) = log(ξ)k, k ∈ {0, . . . , 2 min(P , Q ) − 1}.

B.3.4. Moment preserving nested quadrature
Passalacqua et al. [19] suggested the use of Gauss–Wigert quadratures [36] to preserve the moments of a LogN EQMOM 

reconstruction:

+∞∫
0

f (ξ)n(ξ)dξ ≈
P∑

i=1

wi

Q∑
j=1

ω
(σ)
j f

(
ξiλ

(σ )
j

)
(B.24)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ω(σ )
Q and λ(σ )

Q are the weights and nodes 
of a Q -nodes Gauss–Wigert quadrature rule of parameter σ (see Appendix C). This quadrature rule must be computed for 
each value of σ , i.e. for each LogN EQMOM reconstruction.

B.3.5. Single node analytical solution
The case P = 1 has the following analytical solution:

w1 = m0

ξ1 =
√

m4
1

m2m3
0

σ =
√√√√log

(
m2m0

m2
1

)

B.4. Gamma kernel

B.4.1. Definition
The Gamma kernel δ(�)

σ (ξ, ξm) was first used in EQMOM by Yuan et al. [18]. It is defined on �ξ = ]0,+∞[ by

δ
(�)
σ (ξ, ξm) = ξ (l−1) exp(−ξ/σ )

�(l)σ l
with l = ξm

σ
and �(x) =

+∞∫
0

tx−1e−tdt (B.25)

B.4.2. Moments and linear system
Moments of the Gamma kernel are given by

+∞∫
0

ξkδ
(�)
σ (ξ, ξm)dξ = Gk(ξm,σ ) =

{
1 if k = 0∏k−1

j=0 (ξm + jσ) otherwise
(B.26)

Moments of the distribution ̃n(ξ) =∑P
i=1 wiδ

(�)
σ (ξ, ξi) are given by the linear system

m̃n = A(�)
n (σ ) · m∗

n (B.27)

with

A(�)
i, j (σ ) =

⎧⎪⎨⎪⎩
0 if j > i or i = 0 or j = 0

1 if i = 0 and j = 0

A(�)
i−1, j−1(σ ) + (i − 1)σ A(�)

i−1, j(σ ) otherwise

(B.28)
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The inverse of this matrix is given by

A(�)−1
i, j (σ ) =

⎧⎪⎨⎪⎩
0 if j > i or i = 0 or j = 0

1 if i = 0 and j = 0

A(�)−1
i−1, j−1(σ ) − jσ A(�)−1

i−1, j (σ ) otherwise

(B.29)

which translates, for n = 6 into⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

0 1σ 1

0 2σ 2 3σ 1

0 6σ 3 11σ 2 6σ 1

0 24σ 4 50σ 3 35σ 2 10σ 1

0 120σ 5 274σ 4 225σ 3 85σ 2 15σ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∗
0

m∗
1

m∗
2

m∗
3

m∗
4

m∗
5

m∗
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.30)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∗
0

m∗
1

m∗
2

m∗
3

m∗
4

m∗
5

m∗
6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 1

0 −σ 1

0 σ 2 −3σ 1

0 −σ 3 7σ 2 −6σ 1

0 σ 4 −15σ 3 25σ 2 −10σ 1

0 −σ 5 31σ 4 −90σ 3 65σ 2 −15σ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
·

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.31)

B.4.3. Low cost nested quadrature
A Gauss–Laguerre quadrature can be used to approximate integral properties over a Gamma EQMOM reconstruction:

+∞∫
0

f (ξ)n(ξ)dξ ≈
Q∑

j=1

ω j f (σλ j)

P∑
i=1

wi

�
(

ξi
σ

)λ
ξi
σ −1
j (B.32)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes of 
a Q -nodes Gauss–Laguerre quadrature rule of parameter α = 0 (see Appendix C). The advantage of this quadrature is that it 
only requires ωQ and λQ to be computed once. However, this quadrature will not preserve the moments of the distribution.

B.4.4. Moment preserving nested quadrature
A generalized Gauss–Laguerre quadrature preserves the moments of a Gamma EQMOM reconstruction:

+∞∫
0

f (ξ)n(ξ)dξ ≈
P∑

i=1

wi

�
(

ξi
σ

) Q∑
j=1

ω
(αi)

j f
(
σλ

(αi)

j

)
(B.33)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ω(αi)
Q and λ(αi)

Q are the weights and nodes 
of a Q -nodes Gauss–Laguerre quadrature rule of parameter αi = ξi

σ − 1 (see Appendix C).

The accuracy of this quadrature comes with a cost related to the computation of ω(αi)
Q and λ(αi)

Q for each value of αi .

B.4.5. Single node analytical solution
The case P = 1 has the following analytical solution:

w1 = m0

ξ1 = m1

m0

σ = m2

m1
− m1

m0
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B.5. Weibull kernel

B.5.1. Definition
The Weibull kernel δ(W )

σ (ξ, ξm) is defined on �ξ = ]0,+∞[ by

δ
(W )
σ (ξ, ξm) = 1

σξm

(
ξ

ξm

) 1−σ
σ

exp

(
−
(

ξ

ξm

)1/σ
)

(B.34)

B.5.2. Moments and linear system
Moments of the Weibull kernel are given by

+∞∫
0

ξkδ
(W )
σ (ξ, ξm)dξ = ξk

m�(1 + kσ) (B.35)

Moments of the distribution ̃n(ξ) =∑P
i=1 wiδ

(W )
σ (ξ, ξi) are given by

m̃k = m∗
k�(1 + kσ) (B.36)

This can be translated into a linear system

m̃n = A(W )
n (σ ) · m∗

n (B.37)

with A(W )
n (σ ) a diagonal matrix:

A(W )
i, j (σ ) =

{
�(1 + iσ) if i = j

0 otherwise
(B.38)

whose inverse matrix is directly given by

A(W )−1
i, j (σ ) =

{
1

�(1+iσ )
if i = j

0 otherwise
(B.39)

B.5.3. Low cost nested quadrature
A Gauss–Laguerre quadrature can be used to approximate integral properties over a Weibull EQMOM reconstruction:

+∞∫
0

f (ξ)n(ξ)dξ ≈
P∑

i=1

wi

Q∑
j=1

ω j f
(
ξiλ

σ
j

)
(B.40)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes of 
a Q -nodes Gauss–Laguerre quadrature rule of parameter α = 0 (see Appendix C). The advantage of this quadrature is that it 
only requires ωQ and λQ to be computed once. However, this quadrature will not preserve the moments of the distribution 
and only yields exact results for f (ξ) = ξk/σ , k ∈ {0, . . . , 2 min(P , Q ) − 1}

B.5.4. Moment preserving nested quadrature
One can produce a Gauss quadrature that preserves the moments of Weibull EQMOM approximations:

+∞∫
0

f (ξ)n(ξ)dξ ≈
P∑

i=1

wi

Q∑
j=1

ω
(σ)
j f

(
ξiλ

(σ )
j

)
(B.41)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ω(σ )
Q and λ(σ )

Q are the weights and nodes 
of a Q -nodes “Gauss-Weibull” quadrature rule of parameter σ (see Appendix C). The weights and nodes of the nested 
quadrature need to be computed for each value of σ , i.e. for each Weibull EQMOM approximation of the NDF.
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B.5.5. Single node numerical solution
The parameters w1, ξ1 and σ of the one-node Weibull EQMOM must be solution of the following system:

m0 = w1

m1

�(1 + σ)
= w1ξ1

m2

�(1 + 2σ)
= w1ξ

2
1

The first equation gives w1 = m0 but no explicit solution exists for the two other equations. One can however notice that 
s = σ

1+σ must be a root of

G(s) = m2m0

m2
1

− �( 1+s
1−s )

�( 1
1−s )

2
(B.42)

which is monotonous, defined on s ∈ [0, 1[ and has the following limits

G(0) = m2m0

m2
1

> 0

lim
s→1− G(s) < 0

G(s) then admits a single root that can be computed numerically with the Ridder’s method. One can also narrow down, at 
a very low cost, the search interval [0, 1[ by using the property

gn = G

(
n

n + 1

)
= m2m0

m2
1

− (2n)!
(n!)2

(B.43)

with n an integer, which induces the following recurrence relation:

gn = c − hn (B.44)

hn+1 =
(

4 − 2

n + 1

)
hn (B.45)

with c = m2m0
m2

1
and h1 = 2.

The proposed algorithm to identify the root of G(s) is

1. Compute c = m2m0
m2

1• if c < 1, cancel the operation as the moments are not realisable;
• if c = 1, s = 0 is the root of G(s);
• if c < 2, set sl = 0, vl = c − 1, sr = 1

2 and vr = c − 2 and go to step 3.
• otherwise, set sl = 0, vl = c − 1 and go to step 2.

2. Initialise i = 1, h = 2 and iterate
(a) increment i by 1;

(a) compute h = h ∗
(

4 − 2
i

)
• if h = c, then s = i

i+1 is a root of G(s);

• if h < c, set sl = i
i+1 and vl = c − h;

• if h > c, set sr = i
i+1 , vr = c − h and go to step 3.

3. Apply the Ridder’s method to G(s) on the interval [sl, sr]
(a) compute st1 = 1

2 (sl + sr) and vt1 = G(st1 );

(b) compute st2 = st1 + (st1 − sl)
vt1√

v2
t1

−vl vr

and vt2 = G(st2 );

(c) set sl the highest value between sl , st1 and st2 whose image by G is positive;
(d) set sr the lowest value between sr , st1 and st2 whose image by G is negative;
(e) stop the computation if vl < ε(c − 1) with ε a relative tolerance (e.g. ε = 10−10) and consider sl as a root of G(s).

Once the root of G(s) is identified, compute

σ = s

1 − s

ξ1 = m1

m0�(1 + σ)
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Note that each iteration of the Ridder’s method requires two computations of G(s), that implies four computations of 
the Gamma function – which is quite expensive – by iteration. This explains the interest of the second step which allows to 
narrow down the research interval at hardly no cost.

B.6. Beta kernel

B.6.1. Definition
The Beta kernel δ(β)

σ (ξ, ξm) was first used in EQMOM by Yuan et al. [18]. It is defined on �ξ = ]0,1[ by

δ
(β)
σ (ξ, ξm) = ξ (l−1)(1 − ξ)(m−1)

B(l,m)
with l = ξm

σ
and m = 1 − ξm

σ
(B.46)

with B(l, m) = ∫ 1
0 x(l−1)(1 − x)(m−1)dx the beta function.

B.6.2. Moments and linear system
Moments of the Beta kernel are given by

1∫
0

ξkδ
(β)
σ (ξ, ξm)dξ = Hk(ξm,σ ) =

{
1 if k = 0∏k−1

j=0

(
ξm+ jσ
1+ jσ

)
otherwise

(B.47)

Moments of the distribution ̃n(ξ) =∑P
i=1 wiδ

(β)
σ (ξ, ξi) are given by the linear system

m̃n = A(β)
n (σ ) · m∗

n (B.48)

with the elements of A(β)
n (σ ) being computed from the elements of the matrix relative to Gamma EQMOM, A(�)

n (σ ):

A(β)

i, j (σ ) = A(�)
i, j (σ )

Fi(σ )
(B.49)

Fi(σ ) =
{

1 if i ≤ 1

(1 + (i − 1)σ )Fi−1(σ ) otherwise
(B.50)

The inverse of this matrix is also easily defined from A(�)−1
n (σ ):

A(β)−1
i, j (σ ) = A(�)−1

i, j (σ )F j(σ ) (B.51)

B.6.3. Low cost nested quadrature
A Gauss–Legendre quadrature can be used to approximate integral properties over a Beta EQMOM reconstruction:

1∫
0

f (ξ)n(ξ)dξ ≈ 1

2

P∑
i=1

wi

B (αi+1, βi+1)

Q∑
j=1

ω j f

(
1 − λ j

2

)(
1 − λ j

2

)αi
(

1 + λ j

2

)βi

(B.52)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and λQ are the weights and nodes 
of a Q -nodes Gauss–Legendre quadrature rule (see Appendix C); αi = ξi−σ

σ and βi = 1−ξi−σ
σ . This nested quadrature only 

requires ωQ and λQ to be computed once, but will not preserve the moments of the distribution.

B.6.4. Moment preserving nested quadrature
A Gauss–Jacobi quadrature will preserve the moments of the distribution:

1∫
0

f (ξ)n(ξ)dξ ≈ 2
σ−1
σ

P∑
i=1

wi

B (αi+1, βi+1)

Q∑
j=1

ω
(αi ,βi)

j f

⎛⎝1 − λ
(αi ,βi)

j

2

⎞⎠ (B.53)

with w P , ξ P and σ the EQMOM reconstruction parameters computed from m2P ; ω(αi ,βi)
Q and λ

(αi ,βi)
Q are the weights 

and nodes of a Q -nodes Gauss–Jacobi quadrature rule of parameters αi = ξi−σ
σ and βi = 1−ξi−σ

σ (see Appendix C). The 
moment-preserving property of this quadrature comes with the need to compute ω(αi ,βi)

Q and λ(αi ,βi)
Q for each node of the 

main Beta EQMOM quadrature.
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B.6.5. Single node analytical solution
The case P = 1 has the following analytical solution:

w1 = m0

ξ1 = m1

m0

σ = m2
1 − m0m2

m0(m2 − m1)

Appendix C. Gaussian quadratures

A Q-node Gaussian quadrature allows to approximate a function integral as a weighted sum of point wise values of this 
function over an interval I:∫

I

f (x)p(x)dx ≈
Q∑

j=1

ω j f
(
λ j
)

(C.1)

p(x) is a weight function, and the quadrature rule yields accurate integral evaluations if f (x) = xk, k ∈ {0, . . . , 2Q − 1}. 
The computation of the weights ωQ and nodes λQ is performed as detailed in 2.2 by considering polynomials that are 
orthogonal with respect to the weight function p(x).

Table C.1 details for each Gauss quadrature:

• the weight function p(x);
• the integration support I;
• the computation of recurrence coefficients aQ −1 and bQ −1;
• the zero-th order moment P0 of p(x).

The recurrence coefficients are used to construct the Jacobi matrix J Q associated with p(x) on I (see Eq. (6)). The 
nodes λQ are the eigenvalues of J Q , and the weights ωQ are given by ω j = P0 v2

1, j with v1, j the first component of the 
normalised eigenvector belonging to the eigenvalue λ j .

Table C.1
Specifics of Gauss quadratures used for EQMOM nested quadratures.

Gauss- I p(x) aQ and bQ P0

Hermite R exp
(−x2

)
ak = 0

bk = k/2

√
π

Laplacec R exp (−|x|) /2

Apply Chebyshev algorithm to

P 2Q −1 with Pk =
{

0 if k odd

k! if k even
1

Laguerref R+ xα exp (−x) a0 = 1 + α

ak = 2 + ak−1

bk = k(k + α)

�(1 + α)d

Wigerta,f R+ 1
γ x

√
2π

exp
(

log2(x)
2γ 2

)
ak =

((
z2 + 1

)
z2k − 1

)
z2k−1

bk =
(

z2k − 1
)

z6k−4

z = exp(γ 2/2)

1

Weibullc,f R+ γ xγ−1 exp
(−xγ

) Apply Chebyshev algorithm to
P 2Q −1 with Pk = �(1 + k/γ )

1

Legendreb ]−1,1[ 1 ak = 0

bk = k2

4k2 − 1

2

Jacobib,f ]−1,1[ (1−x)α (1+x)β ak = β2−α2

δk(δk+2)

bk = 4k(k+α)(k+β)(k+α+β)

δ2
k (δ2

k −1)

δk = 2k+α+β

2α+β+1×
B (α+1, β+1)e

a Wilck [36].
b Shen et al. [37].
c Not standard Gauss-quadrature.
d �(x) = ∫ +∞

0 tx−1e−t dt .
e B(x, y) = �(x)�(y)

�(x+y)
.

f α > −1, β > −1, γ > 0.
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Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2018 .03 .027.
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D
C O U P L E D S I M U L AT I O N R E S U LT S

This Appendix details all simulations results for coupled simulations described in Chapter
V.

For confidentiality reasons, the complete thesis cannot be made fully available. In the
current version, this appendix has been edited out.
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