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Thesis Overview 

 

The Critical Dimension (CD) is highly influenced by the Reactive Ion Etching (RIE) of silicon 

in the CMOS technology. The CD has to be well-controlled since it is one of the most 

important features related to process stability and product quality. However, the RIE process 

involves a lot of parameters which are highly confounded and entangled and thus it is very 

difficult to analyze the process. The main objectives of this thesis are to have an 

understanding of the fundamental mechanisms of the etching process and to propose 

innovative solutions to reduce the variations of CD by reaching the good control of the process 

desired.  
 

This research was carried out in parallel between STMicroelectronics Rousset and the Center 

Microelectronic of Provence (CMP).  

 

The structure of this thesis is organized in five chapters. The experimental results of this 

study are presented through chapters III to V (Figure 1). These chapters begin with an 

introduction to the relevant literature and the experimental details related to the process. 

Then, the results are expressed in two parts; the characterization and the optimization of the 

process. A summary of the result is presented at the end of each part and finally the 

conclusions are drawn.  

 

 

 

Figure 1. Structure of the three experimental chapters that compose the thesis. 
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The main propose of each chapter is: 

 

In Chapter I, the main aspects and actual tendencies in CMOS technology and plasma 

etching is introduced.  
 

Chapter II, describes the experimental systems regarding the plasma etching equipment and 

the characterization techniques.  
 

Chapter III, is dedicated to a detailed understanding of the main mechanism involved in the 

etching of the mask and specially the silicon during the etch of the new vertical transistor of 

the eSTM structure. Characterizations of the plasma itself, and the surface of the wafer are 

discussed. After understanding the mechanism involved in this process, a model able to 

predict the optimum CD in terms of electrical results is proposed by means of DOE. 
 

Chapter IV, presents to the characterization of the reactor walls during the eSTM process. 

Since this technology is still in development, the cleaning recipe has to be optimized in order 

to get the best results without contaminating the chamber from process to process due to fact 

of working in an industrial environment (ST Microelectronics).  
 

Chapter V, contains the study of the source of variability during the STI trench etch process. 

The development of a R2R control for the CD of this trench to improve the uniformity 3sigma 

total of the CD is described.  

 

Finally, the main conclusions are summarized, as well as the proposition of the possible 

applications of the results obtained and future directions of this work. 
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“Science knows no country, because knowledge belongs to 

humanity, and is the torch which illuminates the world” (L. Pasteur) 

 
Chapter I 

Introduction 
 

 

 
This chapter presents the general motivation of this thesis, based on the 

past and present state-of-the-art related to the plasma etching in 

semiconductor manufacturing. An overview of the microelectronics with 

emphasis in the CMOS technology will be introduced followed by some of 

the most important plasma etching concepts. Finally, the objectives of the 

thesis are presented. 
 

 

 

Picture of cold plasma discharge [I].  
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 Great advances in semiconductor technology and circuit design techniques have been 

observed in recent years. Yet, chip manufacturing is a very challenging undertaking, 

primarily because of the complexity and sensitivity of its production process [1]. 

 

1. MICROELECTRONICS: AN OVERVIEW  
 

As the name suggests, microelectronics is related to the study and manufacture of very small 

electronic designs and components. Over the last decades, the semiconductor industry has 

played a major role in social and economic development since the invention of the transistor. 

Every remarkable modern innovation has been made possible by the transistor, but they are 

most commonly known for their contribution to the world of computers. 

The beginning of semiconductor research is well established by the mid-1930s, when the 

quantum theory of solids began to be interesting to industrial scientists seeking solid-state 

alternatives to vacuum-tube amplifiers and electromechanical relays [2].  In 1947, the most 

important invention of the past century, the transistor, emerges from the Bell laboratories 

by J. Bardeen, W. Brattain and W. B. Shockley. Eleven years later, in 1958, Jack Kilby 

created the first Integrated Circuit (IC) while working at Texas Instruments laboratories [3]. 

Up to 1970 the integrated circuit’s innovation and business was almost completely a U.S. 

phenomenon. In 1971, appears the first commercially microprocessor by Intel which held 

2300 transistors and announcing a new era in Integrated Electronics [4]. Figure I-1 shows 

the first Integrated Circuit from Texas Instrument (1958) and the first microprocessor from 

Intel (1971). 

 

    
Figure I-1. First Integrated Circuit Texas Instruments, 1958 (source: Texas Instruments) and first 

microprocessor Intel, 1971 (source: Intel). 

 

As the semiconductor technology improved, the technology of transistors grew making them 

faster, cheaper, smaller and more reliable. The object was to miniaturize electronics 

equipment to include increasingly complex electronics functions in limited space with 

minimum weight.  

According to the empirical theory of Gordon Moore in 1965 [5], the number of transistors on 

an Integrated Circuit (IC) roughly doubles every year, whereas the cost per transistor is 
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reduced at the same time. Ten years later, in 1975, he reformulated this theory explaining 

that the number of transistors per integrated circuit doubles every 18 months.  

 

This prediction has been surprisingly accurate. As a result, the scale gets smaller, and 

transistor count increases at a regular pace to provide improvements in IC functionality and 

performance while decreasing costs. The exponential growth that continues today is shown 

in Figure I-2. 

 

Figure I-2. Moore’s Law for transistor counts since 1970 [Data from 6]. 
 

Since 1977, the Moore’s law is showed as a technology roadmap in the International 

Technology Roadmap for Semiconductors (ITRS) where the evolution of the microelectronics 

is predicted in a short, medium and long term [7].  The ITRS synchronizes the technology 

development and the timely availability of manufacturing tools and methods. However, as 

the physical limits are approached, other factors such as design cost, manufacturing 

economics and device reliability, make progress through device scaling alone ever more 

challenging, and alternative ways forward must be sought [8].   

Microelectronics therefore seeks to develop in new ways for keeping the miniaturization 

going, as it has been coming until now. This miniaturization has been possible thanks to the 

control of processes implied on the fabrication of Integrated Circuits based on CMOS 

technologies.  

 

Introduction to the CMOS technology and its main aspects are presented in the next section. 
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2. CMOS TECHNOLOGY 

 

CMOS (Complementary Metal-Oxide Semiconductor) is the semiconductor technology used 

in the transistors that are manufactured into most of today’s computer microchips such as 

microprocessors, microcontrollers, static RAM and other digital logic circuits. CMOS derives 

its name from the basic physical structure of these devices; the MOS capacitor, composed of 

a semiconductor, oxide and a metal gate.  

 

In the following sections, some key aspects of this technology will be discussed. In the first 

section a quick overview of CMOS basics is given, such as the principal element used in 

microelectronics, the integration of this element into the technology and the classification of 

semiconductor memories. The second will deal with the fabrication process and finally, the 

role of plasma etching in CMOS technology is shown. 

 

2.1. Basics  
 

The most basic element in the design of a large scale integrated circuit is the transistor. For 

the processes we will discuss, the type of transistor available is MOSFET [9,10], which 

becomes imperative when the problems of high power consumption become dominant. Even 

if the bipolar transistors are faster than MOSFET’s, these devices have low power 

consumption and can be scaled down easily than other transistor types.  MOSFET is a 

compromised of an MOS capacitor (gate and substrate terminals) and two pn junctions 

(source and drain terminals) as illustrated by Figure I-3. The MOS capacitor [10,11,12] 

consists of a Metal-Oxide-Semiconductor structure. It is actually a “sandwich” consisting of 

the underlying substrate material, which is a single crystal of semiconductor material 

(usually silicon heavily-doped); a thin insulating layer (usually thermal silicon dioxide); and 

an upper metal layer. Actually, the transistors that we will discuss do not use metal for their 

gate regions, but instead use heavily-doped polycrystalline silicon (Poly-Si).  

 

                                                

Figure I-3. Basic schematic view of a MOSFET structure. 
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As capacitor, the MOS is able to store charge; however, the MOSFET, as transistor, acts as 

a current switch and amplifies the current. The electrical charge, or current, can flow from 

the source to the drain depending on the charge applied to the gate region. Details of the 

MOSFET structure and physical operation are explained in 2.1.1. 

Almost universally, the MOSFET structure utilizes doped silicon as the semiconductor on 

the substrate and its native oxide, silicon dioxide, as the insulator. The semiconductor 

material in the source and drain regions is “doped” with a different type of material than in 

the region under the gate, so an NPN or PNP structure exists between the source and drain 

regions [10,13,14,15].   

The most commonly used semiconductor since the early 1960s is silicon (Si) [16,17] which is 

today the cornerstone of modern CMOS technology. The main reasons we use silicon [18] are 

that silicon devices exhibit better properties at room temperature, and high-quality silicon 

dioxide can be grown thermally. There is also an economic consideration, device-grade silicon 

cost much less than any other semiconductor material [19].   

Semiconductors [20] are a group of materials having conductivities between those of 

conductors and insulators. Silicon atoms form covalent bonds and can crystallize into a 

regular lattice. Each of these elements has four valence electrons and needs four more to 

complete the valence energy shell. If a silicon atom, has four nearest neighbors, with each 

neighbor atom contributing one valence electron to be shared, then the atom of the center 

will have eight electrons in its outer shell. This structure is called an intrinsic semiconductor 

and can conduct a small amount of current. In intrinsic semiconductors, the conductivity is 

determined by both electrons and holes and depends on the carrier density. A two-

dimensional representation of the covalent bonding in silicon is shown in Figure I-4. 
 

 

Figure I-4. 2D Schematic representation of the covalent bonding in silicon. 

It is possible to shift the balance of electrons and holes in a silicon crystal lattice by "doping" 

it with other atoms. This doping process, described in [21,22], can greatly alter the electrical 

characteristics of the semiconductor.  Semiconductors in its pure form are called intrinsic 

whereas that impure semiconductors are called extrinsic.  

Depending on the type of impurity added we have two types of semiconductors: N-type and 

P-type. An extrinsic semiconductor will have either a preponderance of electrons (n-type) or 

a preponderance of holes (p-type). These effects are schematically shown in Figure I-5. 
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Figure I-5. Representation of the intrinsic silicon lattice (a), N-doped Si (b), P-doped Si (c). 

Atoms with more valence electrons than silicon, mainly from group V [23], are used to 

produce “n-type” silicon material, which adds electrons to the conduction band and hence 

increases the number of electrons. Atoms with less valence electrons than silicon, mainly 

from group III [24], result in “p-type” silicon material. In p-type, the number of electrons 

trapped in bonds is higher, thus effectively increases the number of holes. Table I-1 

summarizes the properties of semiconductor types. 

Table I-1. Properties of P-type and N-type semiconductors. 

 P-type (positive) N-type (negative) 

Dopant Group III (e.g. Boron) Group V (e.g. Phosphorous) 

Valence Electrons 3 5 

Polarity Positive Negative 

Charge carriers Missing Electrons (Holes) Excess Electrons 

 

The intrinsic silicon is not useful due to the low conductivity. The extrinsic semiconductors 

are the primary reason we can fabricate the various semiconductor devices [25] that we will 

consider in this thesis. 
 

     2.1.1. The MOSFET Structure and Principle of Operation 

 

The Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) is by far the most 

common type of transistor. The basic MOSFET structure was proposed by Atalla [26], but 

the first MOSFET transistor was reported in 1960 by Kahng and Atalla [27].  

As explained before, it is a compromise between a MOS capacitor and two pn junctions: the 

Source and the Drain (S/D). These regions, heavily-doped, are quite similar and are labelled 

depending on what they are connected to. The source is the terminal or node, which acts as 

the source of charge carriers. The charge carriers leave the source and travel to the drain.  

In the case of an N channel MOSFET, the source is the more negative of the terminals; in 

the case of a P channel, it is the most positive of the terminals. The area under the gate oxide 
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is called the “channel”, which is lightly doped. Table I-2 summarizes the properties of the 

transistor types [28]. 

Table I-2. Composition of NMOS and PMOS.  

Transistor type S/D channel Inversion layer created 

NMOS n-type p-type n-type 

PMOS p-type n-type p-type 

 

The basic device parameters are the channel length L, which is the distance between the two 

metallurgical n+-p junctions; the channel width W; the insulator thickness d and the 

substrate doping NA. In a silicon integrated circuit, a MOSFET is surrounded by a thick oxide 

(called the field oxide to distinguish it from the gate oxide) or a trench filled with insulator 

to electrically isolate it from adjacent devices [10]. The insulation trenches that isolate the 

different transistors between them are called STI (Shallow Trench Isolation). The basic 

structure of a MOSFET is illustrated in Figure I-6. 

 

Figure I-6. Schematic diagram of a basic MOSFET [Adapted from10]. 

MOSFET works [13,29] by electronically varying the width of a channel along which charge 

carriers flow (electrons or holes).  The charge carriers enter into the channel trough the source 

and exit via the drain. The width of the channel is controlled by the voltage on the gate. The 

flow of the current between the source and the drain depends on the voltages that are applied 

to these terminals.  

 

Corresponding to whether the transistor is in an ON state or an OFF state at zero gate–

source voltage, two basic forms of MOSFET are available [30,31]: “Depletion-mode” and 

“Enhancement-mode”. A channel marks the main difference between the two types (the so-

called conducting “path”). It is located between the source and drain. With the depletion-

mode MOSFET it is formed in the doping process during fabrication. In the enhancement-
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mode device there is no channel between the source and drain. Both types of MOSFET devices 

have either an n-channel or a p-channel depending on their added impurities. However, 

MOSFET is a unipolar device, its operation depends on only one type of charge, either 

electrons or holes, but never both. 

 

The operational principle of MOSFET depends on the MOS capacitor, since it is the main 

part of the device. We will consider subsequently the case of an n-MOS as an example. 

MOSFET having n-channel region between source and drain is a four terminal device, where 

the terminals are gate, drain, source and substrate or body. The drain and source are heavily 

doped n+ region and the substrate is p-type.  The current flows of the negatively charged 

electrons, that is why it is known as n-channel MOSFET. When we apply positive voltage to 

the gate, the holes present beneath the oxide layer experience repulsive force and they are 

pushed downwards in to the bound negative charges which are associated with the acceptor 

atoms. The positive gate voltage also attracts electrons from n+ source and drain region in to 

the channel, thus the electron rich channel is formed. Now, if a voltage is applied between 

the source and drain, current flows freely between them. The gate voltage controls the 

electron concentration in the channel. N-channel is preferred over p-channel MOSFET as the 

mobility of electrons are higher than holes [32]. The diagrams of enhancement mode and 

depletion mode for an n-MOS are given in Figure I-7. 

 

Figure I-7. Schematic of n-MOS in depletion-mode and enhanced-mode [Adapted from 32]. 

CMOS circuits require n-MOS and p-MOS transistors, the integration of these transistors on 

the same substrate for CMOS processes is explained in next section. 

     2.1.2. From MOS to CMOS 

 

MOSFET is the most-important device for forefront high-density integrated circuits such as 

microprocessors and semiconductor memories. These circuits, fabricated with the CMOS 

technique, require an nMOS and pMOS transistor technology on the substrate to enable the 

logic functions. To this end, an n-type is usually provided in the p-type substrate or an n-type 

and p-type in a low-doped substrate.  
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The advantage of CMOS is that the output can be as high as the power supply voltage and 

as low as ground. In addition, there is no power dissipation in either logic state. Instead the 

power dissipation occurs only when a transition is made between logic states. CMOS circuits 

are the most suited for very/ultra-large-scale integration (VLSI/ULSI) [29,33]. 

Several applications are possible such as microprocessors, microcontrollers and other digital 

logic circuits [34-37]. Even if this technology is also used for several analogy circuits, one of 

the most widespread is the microprocessor, which takes several million transistors and at 

least 10 levels of metal for the interconnections. Figure I-8 shows the photograph of a 

microprocessor including in the same circuit the microcontroller (logic) dedicated to the 

processing of inputs and outputs and the memory where the information is stored.  
 

  
 

Figure I-8. Microprocessor including the memory and the logic. 

The microprocessor allows managing a large amount of stored data in the RAM (Random 

Access Memory) memory cells, the so-called Volatile Memories. The memory part used to 

stock the information is the so-called Non Volatile Memory (NVM) [38-41]. As the names 

imply, a volatile memory loses the content when there is no voltage whereas a nonvolatile 

memory does not need voltage to maintain the data.  

As the memory market enters the Gigabit and GHz range with consumers demanding ever 

higher performance and more diversified applications, new types of devices are being 

developed in order to keep up with the scaling requirements for cost reduction [42]. In this 

scenario, memories [43,44] play an important role. The most important semiconductor 

memories will be summarized in the next section. 

 

     2.1.3. Semiconductor Memories 

 

Semiconductor memories can be classified by regarding different criteria, Figure I-9 shows a 

first classification of these memories. 
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Figure I-9. Classification of semiconductor memories. 

The Volatile Memories are fast and are used for temporary storage of data since they lose the 

information when the power is turned off. This means that they need to be permanently 

under tension to keep their information. The Non Volatile Memories (NVM) [39,49] retain 

the information even when the power is down. They have been conceived in order to store the 

information without any power consumption for a long time.  

The first Non Volatile semiconductor memory is the ROM (Read Only Memory). This new 

device appears when the gate electrode of a conventional MOSFET is modified so that 

semipermanent charge storage inside the gate stack is possible. Since the first nonvolatile 

memory device proposed by Kahng and Sze in 1967 [50] various device structures have been 

made, and nonvolatile memory devices have been extensively used in commercial products. 

The two groups of nonvolatile memory devices are the floating-gate devices [51] and the 

charge-trapping devices [52]. 

The characterization and optimization which have been carried out during the development 

of this thesis is related to the Floating-gate’s structure, but before getting into details about 

the memories studied here, we should first clarify what a Floating gate transistor is. A 

floating gate is basically a MOSFET with two supplementary levels of polysilicon. These two 

levels of polysilicon are separated by a tri-insulating layer of ONO (Oxide / Nitride / Oxide), 

whose role is to prevent the pass from the floating-gate to the control-gate.  

For the understanding of this thesis, the difference between the EEPROM and the Flash 

memories, both of them floating-gate based, should be introduced.  The basic structure of 

each memory is presented in Figure I-10 and the main different between these two NVM are 

explained as follows: 

 

 EEPROM (Electrically Erasable Programmable Read Only Memory). An 

electrically erasable/programmable ROM, can be erased not only electrically, but also 

selectively by byte address. To erase selectively, a select transistor is needed for each 

cell, leading to a two-transistor cell (2T); the floating-gate and the select-transistor. 
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The select transistor increases the size of the memories and the complexity of array 

organization, but the memory array can be erased bit per bit. 
 

 Flash memory.  The name “flash” comes from its fast erasing mechanism. It looks 

like EEPROM memory but without the select transistor. As opposed to a full-feature 

EEPROM, can be erased electrically but only by a large block of cells simultaneously. 

It loses byte selectivity but maintains one-transistor cell (just the floating-gate). Today 

it is the most produced memory.  

 

Figure I-10. Schematic of EEPROM (a) and Flash (b) memories. 

Among other characteristics, the ideal memory should have low power consumption, fast 

read/write/erase and high density solution… But the “ideal” device does not exist yet. 

However, different types of memories have been invented in order to pursuit these specific 

properties [43,44]. Example of this attempt is the eSTM (Embedded Select Trench 

Memory) which is represented in Figure I-11. This memory has been presented by 

STMicroelectronics in 2012 [53,54].  
 

        
        Figure I-11. Schematic of eSTM structure. 

 

The eSTM aims to have the advantages of consumption and isolation from the EEPROM, due 

to its select transistor, together with the advantage of the Flash by reducing its size. Based 

on this, two select-transistors have been merged into a single vertical transistor of selection. 
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Thanks to this, it is possible to convert a large cell (2T) as the EEPROM, into a new cell, 

smaller in size and still with low consumption, at the expense of a slightly more complex 

manufacturing process but still compatible with a CMOS technology. The properties of 

EEPROM, Flash and eSTM memories are compared below in Table I-3.  

Table I-3. EEPROM, Flash and eSTM properties.  

 EEPROM FLASH eSTM 

Low Consumption x  x 

Fully-Bit alterable x  x 

High Density  x x 

Fast Write/Erase  x x 

 

The main characteristics of this new structure are: 

 A vertical transistor, used as the selection transistor.    

 The Niso, serving to isolate transistors to the substrate, is also used in the eSTM as a 

source line to win a contact.  

 Two floating gate transistors, with a length of 100 nm, presented on either side of the 

selection transistor separated by an N+ implant.  

 The trench where the select-transistor will be placed consist of 450nm of depth 

(corresponding to the Niso) and 150 nm of width.  

 

In this thesis, two different trenches have been studied. Chapter III and Chapter IV are 

related to the characterization and optimization of the eSTM trench process; Chapter V will 

be focused on the STI trench. Details of those fabrication processes will be explained in their 

respective chapters, but first it is important to present the basic steps of the fabrication 

processes in CMOS technology that all these structures follow.  

 

2.2. Fabrication Processes  

 

Integrated-circuits are now fabricated industrially by using wafers. Wafers are thin circular 

slices, usually of monocrystalline silicon. On each wafer hundreds or thousands of individual 

chips are fabricated, as represented in Figure I-12. Technically, each of these individual chips 

is called die, and each die might represent an Integrated Circuit (IC) [55]. For economic 

reasons, the size of the wafer increases gradually on the semiconductor manufacturing 

industries, up to 300mm today. Due to the size of the devices on the IC, it is essential to work 

in a very-clean environment, the so-called clean room, keeping temperature and humidity 

under control in order to prevent the contamination that could damage the functionality of 

the circuit.  
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Figure I-12. Representative drawing of a die. 

 

Complex technologies might have more than 40 layers, which implies more than 400 

successive process steps. These steps can be segmented into different families [19,56,57,58]. 
 

 Epitaxial growth. It consists in growing a crystal of a material onto another 

material.  

 Ion Implantation or Doping. To introduce chemical elements in the substratum 

material in order to obtain the right electrical properties (i.e., specific regions with 

positive or negative charge).  

 Thermal treatment. By increasing the temperature of a substrate under controlled   

atmosphere in order to change its properties. 

 Deposition. Thin films of different materials are deposited on the wafer through 

several processes, such as: Chemical Vapor Deposition (CVD), Physical Vapor 

Deposition (PVD), Plasma Enhanced Chemical Vapor Deposition (PECVD) and 

Metallization.  

 Lithography. It is used to add patterns on the wafer. First, the wafer is coated with 

a film of photosensitive polymer. Then, the pattern is transferred from a photo mask 

onto the photosensitive polymer by projecting light through the mask and exposing 

the wafer using ultraviolet light. Finally, the polymerized sections of photoresist 

material are removed from the wafer to develop the pattern. 

 Etching. With the etch processes, the areas defined by the patterns can be removed. 

Etching can be wet or dry. In wet etching, liquids are used such as acids, bases and 

solvents to chemically remove wafer surface material. In dry etching or plasma 

etching, the wafer surface is exposed to a plasma. Plasma etching is the most common 

etch process and since it is the object of study in thesis, details about this step will be 

developed in 3. 

 Planarization of the surface. In order to achieve a flat layer, the wafer surface is 

polished. This is critical for the follow-on process steps (e.g. better linewidth control 

during photolithography) and can serve to increase device yields by removing 
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undesirable foreign material on the wafer surface. Usually by Chemical-Mechanical 

Polishing (CMP). 

 Cleaning. It consists in removing any residue from the material surface. 
 

There are two classes of processing steps in the manufacture of an integrated circuit: those 

concerning the implementation of active devices, the so-called "Front End of Line" (FEOL) 

and those related to the achievement of interconnections between these devices to get the 

expected logic function, known as "Back End of Line" (BEOL). Details about the FEOL and 

BEOL are introduced in the next sections. 

     2.2.1. Front End of Line (FEOL) 
 

This thesis focuses on the FEOL. Therefore, we introduce the different processes performed 

during the wafer fabrication, which is characterized by its complexity and highly expensive 

processes. In order to design MOS transistors various successive steps are performed such as 

[29]: 
 

-  Starting material, called “substrate” or “well”. Consists of the selection of the type 

of wafer to be used, the CMP and cleaning of the wafer. 

- Shallow Trench Isolation (STI) module. Creation of regions of dielectrics 

between regions of active areas. The regions of dielectrics, called STI, are not very 

deep trenches filled with SiO2 in order to electrically isolate the transistors from each 

other. 

- Well module. The “wells” are formed by creating n-type or p-type by means of 

implantation of Phosphorus (P) or Boron (B). The non-implanted areas are protected 

by a photoresist. This will allow the opposed conduction type respect to the transistor 

that will be created in this area. 

- Gate module. The formation of the gate (N- or P-channel) which is the control 

electrode of the transistor. 

- Source/Drain module. The Source as the Drain will receive the implantation N for 

a N-MOS transistor and P for a P-MOS. The non-implanted area, as it is the case for 

the STI, are protected by a photo-resist. The formation of the S/D take place in two 

parts. First, there is a Lightly Doped Drain (LDD) implantation, as a extension of the 

S/D. After that, the creation of “spacers”-explained below- is carried out before the 

second implantation. For the second implantation, the dose is incremented and the 

area is limited by the spacers. Here, the S/D regions themselves are created. 

- Spacers. Two spacers are created on either side of the gate, allowing its alignment 

with the source/drain during the production and the limitation of the second 

implantation under the gate. 

- Siliciding. This step is performed in order to reduce the contact resistance of the 

gate, source and drain. 
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After these steps, the transistors will be obtained as represented in Figure I-13.  In order to 

perform these transistors, all the different fabrication processes explained before (such as 

deposition, lithography, etch, etc) are required. Specifications related to the etching of the 

trench for the different technologies studied in this thesis will be introduced at the beginning 

of each chapter. 

 

Figure I-13. Representation of MOS transistors at the end of the FEOL steps. 

Major differences in the design of the FEOL are often due to the specific technology 

requirements.  

     2.2.2. Back End of Line (BEOL) 
 

Once the various semiconductor devices have been created, they must be interconnected to 

form the desired electrical circuits. This occurs in a series of wafer processing steps called 

BEOL, which normally begins when the first layer of metal is deposited on the wafer. The 

BEOL will help to achieve the metal interconnections between the individual devices by 

creating interconnect wires, vias and dielectric structures. These interconnections are 

organized on several levels which are interconnected from each other by means of insulating 

trenches of a dielectric material. Current technologies use up to 12 levels of interconnections.  

Conventionally, aluminum (Al) metallization contact are used for these interconnections. 

However, higher performance BEOL are implemented using a Cu for the respective 

conducting and insulating materials, since the electrical conductivity of Cu is higher than the 

one of Al [58].  When the BEOL is finished, there is a “back-end process” also called “post-fab” 

since it is carried out not in the cleanroom.  

 

2.3. The Role of Plasma Etching in CMOS Technology 
 

Silicon-based CMOS technology has been the main force driving the progress of the 

microelectronics industry for over four decades. The remarkable decrease in design rule and 

increase in the number of components on an individual integrated circuit required a major 

change in the technology used to fabricate such circuits. By subsequent etching and 

deposition of patterns, the microelectronic devices like transistors and the interconnecting 
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lines are produced on a semiconductor substrate as it has been explained before. The main 

steps such as deposition, lithography and plasma etching, are sketched in Figure I-14.  

 

 
 

Figure I-14. Representation of the main microelectronics fabrication steps [Adapted from 59]. 

 

During the etching, the silicon is reached, as Figure 1-14 shows, this is why a good control of 

this process had to be developed. In the earliest days of large-scale integration, isotropic wet 

chemical etching was sufficient to produce the patterns required. As commercial pressures 

forced the industry to ever smaller design rules, the limitations of wet chemical etching 

became progressively less satisfactory and this is why dry etching or plasma etching became 

a technology essential to microelectronics circuit fabrication [60-61]. Figure I-15 illustrates 

the differences between wet and dry etching. 

 

 

Figure I-15. Sketch of an isotropic wet etch process and an anisotropic dry etch process          

[Adapted from 59]. 
 

 

Nowadays, one of the principal challenges at the nanoscale faced by the semiconductor 

industry is the device fabrication [19] and the control of variations at the nanoscale [62-64]. 

To address this challenge, plasma etching is widely investigated [59,65,66,67].  Likewise, 

plasma etching is the object of this research so that an introduction to the plasma etching in 

microelectronic and its state-of-the-art will be presented in the next section. 
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3. PLASMA ETCHING 
 

Plasma or dry etching of silicon plays a major role in semiconductor manufacturing. It 

consists in allowing the transfer of complex circuit patterns by photolithography to the silicon, 

silicon dioxide, and metals that build the integrated circuits.  

 

3.1. Introduction 
 

The first use of the term “Plasma” in literature is dated 1928 [68] when Irving Langmuir 

designates it as a partially ionized gas. More accurately, a plasma [69] is a gas containing 

charged and neutral species, including some or all of the following: electrons, positive ions, 

negative ions, atoms and molecules, that show a collective behavior. Plasma is one of the four 

fundamental states of matter, the other being solid, liquid and gas; but plasma has properties 

unlike those of the other states. Besides, it is the most abundant form of ordinary matter in 

the universe. The 99% is plasma such as the starts, the solar core, the aurora, etc. On earth, 

plasmas are used in domestic appliances like neon tubes; for energy production like fusion 

reactor and for surface treatments like depositing thin films and etching materials. Etching 

materials with plasma has become a key process for removing material from surface in CMOS 

manufacturing.  

 

Much of the understanding of plasmas has come from the pursuit of controlled plasma etching 

processes for CMOS technology, where the plasma generation [70] requires the application 

of strong Radio Frequency (RF), under vacuum conditions. The main advantage of using dry 

etching against wet etching relies on the possibility that plasma etching offers of anisotropic 

etching (Figure I-15), which is highly preferable for smaller feature dimensions. Furthermore, 

anisotropic etching has the ability to etch with finer resolution and higher aspect ratio than 

isotropic etching. So, by the late 1970s, the microelectronics industry drives the transition 

from wet etching to plasma etching, and nowadays almost all the pattern-transfer processes 

are done by plasma etching. The possibility of anisotropic etching comes from the two 

approaches, physical and chemical, that this process implies. The physical part (3.3) can be 

accomplished by neutral, ion, electron or photon bombardment that assisted etching 

reactions of a surface exposed to a chemical etchant.  It is anisotropic and non-selective. The 

chemical part (3.4) involves a chemical reaction between etchant gases to attack the silicon 

surface. It is spontaneous, isotropic and exhibits high selectively.  

 

Coburn and Winters, in their classical experiment in 1979 [71] showed that plasma etching 

is the synergetic result of the combination between these two mechanisms; the ion 

bombardment and the neutral chemical reaction.  
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In the following sections, the main aspects of plasma etching will be discussed. The first one 

is about the basic properties of plasmas, since they are required for plasma etching processes. 

Then, the physical and chemical interactions at surfaces in contact with plasmas are 

discussed. Finally, the state-of-the-art in plasma etching is introduced. 

 

3.2. Basic Plasma Properties 
 

There are several textbooks that provide very comprehensive introductions to plasma physics 

[72-75]. In this section, the fundamental plasma discharge concepts which underlie the 

operation of plasma etching will be discussed.  

 

To form and sustain, a plasma requires some energy source to produce the required ionization, 

the degree of ionization  is an important parameter of a plasma (I.1). The plasmas used in 

the semiconductor industry are weakly ionized plasma discharges because the degree of 

ionization is around 1 out of every 10,000 at most. The majority of the particles remain 

neutral, and only one ion and one electron exist for every 10,000 neutral particles [61]. The 

degree of ionization [76] of a plasma is defined as: 
 

Degree of ionization:     =
𝑛𝑖

𝑛𝑖+𝑁𝑔
            (I.1) 

where, 𝑛𝑖 is the ion density (cm-3), 𝑁𝑔 is neutral species density (cm-3) 

 

Therefore, if  is zero, then the gas is called neutral. However, if  = 1 then the plasma is 

completely ionized.  The electron density (ne) is related to this by the average charge state of 

the ions (Z) through (I.2.): 

𝑛𝑒 = 𝑍 ∙ 𝑛𝑖             (I.2) 

 

The electron density (ne) and ion density (ni) are substantially equal to one another, ni≈ne, a 

condition commonly termed “quasi-neutrality” [77]. Because electrons are able to travel 

freely within the plasma, it has a conductive property. When a radiofrequency (RF) power is 

applied on a pair of electrodes in an etch chamber, electrons are accelerated by an electric 

field generated by the RF power, acquire kinetic energy, and collide with atoms and molecules 

to cause ionization, excitation, dissociation, etc (3.3.3). But even if in the RF electric field, the 

electrons are continuously accelerated, they have much smaller mass than atoms and so they 

can only transfer small amounts of energy in collisions. As a result, the different plasma 

species have different kinetic energies and thus different temperatures. This means that they 

are not in a thermodynamic equilibrium. Typically, one can only speak of temperature if the 

particles are in equilibrium between each other. However, it is possible to set a temperature 

for each of these species by making the approximation that the particles have an energy 
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distribution according to the Maxwell-Boltzmann distributions [78]. This means that there 

is a thermodynamic equilibrium within each specie. 

 

Based on the relative temperatures of the electrons (Te), ions (Ti) and the neutral gas (Tg), 

plasmas are classified as thermal or non-thermal. Thermal [79] plasmas have electrons and 

the heavy particles at the same temperature while that non-thermal [80] plasmas have the 

ions and neutrals at a much lower temperature (often near the ambient temperature), 

whereas electrons are much "hotter" (Te>>Tg). Other definition based on the electronics 

temperature of a plasma (I.3), is referred to as being hot [81] if it is nearly fully ionized, or 

cold [82] if only a small fraction (for example 1%) of the gas molecules are ionized. In the 

literature, it can be also referred as hot plasma (T>106 K) and cold plasma (T<106 K). Plasmas 

utilized in semiconductor manufacturing are usually cold plasmas since only a small fraction 

of the gas molecules are ionized. Furthermore, for these plasmas Te>>Ti.  
 

Electronic temperature:    𝑇𝑒(𝑒𝑉) =
𝑘𝐵

𝑒
𝑇𝑒(𝐾)          (I.3) 

where, 𝑘𝐵 is the Boltzmann constant (𝑘𝐵 = 1,38 ∙ 10−23 𝐽. 𝐾−1) 

𝑒 is the elementary charge (𝑒 = 1,6 ∙ 10−19 𝐶) 

 

As explained before, the electrons have much smaller mass than atoms and thereby they are 

much faster. Because of that, the flux to the walls of the electrons should be as well much 

bigger and thereby the plasma would not be neutral. To preserve its “quasi-neutrality”, the 

plasma is protected by forming a load zone of positive space, called sheath.  Due to this sheath, 

the plasma has higher potential (Vp) than the walls. The plasma is brought to a potential 

Vp>0 which will make that more electrons are retained in the plasma and more ions are 

accelerated to the walls. The sheath has a minimal thickness that is on the order of the Debye 

length (λD). The Debye length describes the distance over which an electrical disturbance is 

screened in a space charge as defined in (I.4). 

Debye length:    λ𝐷 = √
∈0 𝑘𝐵 𝑇𝑒

𝑒2𝑛𝑒
            (I.4) 

where,  ∈0 is the electric permittivity of vacuum ( ∈0= 8,85 ∙ 10−12 𝐴. 𝑠. 𝑉−1𝐾−1) 

 

The main role of the sheath is to maintain the neutrality of the surface exposed to the plasma. 

Since the ions are attracted to the surface, they can bombard surfaces and etch the materials, 

and that is the principle which is used for etching processes. The result of the RF current 

flowing across a plasma sheath is the DC self-bias (VDC). It increases with RF current and 

decreases with RF frequency. The DC voltage is created to repel electrons, therefore the 

higher the electron density and the higher the electron energy, the higher the modulus of the 
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DC voltage will be. The tendencies of the DC bias voltage can be predicted by modifying some 

plasma parameters (see 3.4.1). 
 

3.3. Physics and Chemistry of Plasma Etching 
 

Plasma etching uses chemistry to enhance rates and selectivity while keeping anisotropy 

properties of sputtering. This section deals with the basic phenomena of the plasma etching 

processes. An understanding of etching reactions in a plasma environment requires a 

knowledge of the three principal mechanisms: the chemical etching (3.3.1), the physical 

etching (3.3.2), and the ion-enhanced mechanism (3.3.3). 

 

     3.3.1. The chemical etching 
 

The chemical etching involves a chemical reaction between the reactive species of the gas 

with the surface without ion bombardment. It is spontaneous, isotropic, exothermic and 

exhibits high selectively. The mechanisms of chemical etching can be divided into the four 

basic steps: reactive species generation, adsorption, volatile products creation and 

desorption. A simple example of chemical plasma etching [61,83,84,85] is Si etching using 

fluorine, which has a high etch rate even at room temperatures (see Figure I-16): 
 

1. Generation. Start with inert molecular gas CF4. 

2. Adsorption. Make discharge to create reactive species:  

CF4
− + e-→ CF3 + F + e- 

3. Volatile products creation. Species reacts with material, yielding volatile product: 

 Si(solid) + 4F(gas) → SiF4 (gas) ↑  

4. Desorption. Pump away product. CF4 does not react with Si. SiF4 is volatile. 
 

 
 
 

Figure I-16. Example of chemical etching process of silicon with CF4 [Adapted from 61]. 
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3.3.2. The physical Etching 
 

The physical etching involves momentum from energetic ions to the surface atoms via  

commission cascade processes. This mechanism is non-selective, but allows directional 

anisotropy profiles. An example of the physical etching mechanism is shown in Figure I-17.   

 

Figure I-17. Example of physical etching process [Adapted from 86]. 

 

The physical etching is also known as sputtering, this directional phenomenon that allows 

the anisotropy of etching profiles is the only mechanism leading directly to etching in physical 

etchings. This process is defined by the sputter yield 𝑌𝑝 (number of atoms ejected per incident 

ion) [86] which theoretically follows the relationship (I.5). The sputtering yield depends on 

the ion and target masses, the ion energy, the bonding energy of the target material and the 

crystal structure. 

𝑌𝑝 = 𝐴 (√𝐸𝑖 − √𝐸𝑡ℎ )   when 𝐸𝑖 > 𝐸𝑡ℎ     (I.5)  

 

where, 𝐴 is the proportionality factor,  

𝐸𝑖 is the energy of the ions, and 

𝐸𝑡ℎ is the energy of the threshold.  
 

While it is possible to remove material by a physical method such a sputtering, this is not 

acceptable for a process step since it is not selective and may introduce damage and 

impurities [87]. 
   

     3.3.3. Ion-Enhanced Etching  
 

When a surface is exposed to both chemically reactive neutral which can react with a surface 

to produce a volatile product and ion bombardment the combined ion and neutral fluxes often 

etch more rapidly than surfaces exposed to only the neutral bombardment [87]. 

 

This mechanism is a combination of both chemical and physical etching, where the reactive 

ions are directly involved in the chemical etching. Therefore, the kinetics of elementary steps 

of the chemical etching is accelerated by the presence of the ions. The typical processes that 

take place in the system together with the ion-enhanced etching are [70,87,88]: 
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1. Generation: Reactive species produced by ionization of etch gas atoms. 

2. Formation of DC Bias for ion acceleration: Reactive species are transported   

by diffusion to the surface of the film being etched. 

3. Diffusion: Diffusion of plasma-generated reactive intermediates from the bulk of 

the plasma to the surface of the material being etched. 

4. Adsorption: Reactive species are absorbed onto the film surface. 

5. Reaction: A chemical reaction occurs and volatile by-products are created. 

6. Desorption: Volatile reaction by-products are desorbed from the surface. 

7. Pumpout:  Desorbed species are diffused into bulk of gas, and are pumped from                                 

the chamber.  

 

A representation of this mechanism is shown in Figure I-18, including the name of each 

process. 

 

 
Figure I-18. Reaction steps taking place in the system during ion-enhanced etching            

    [Adapted from 87]. 

 

This mechanism was introduced for the first time by Coburn and Winters, as mentioned 

before (3.1). In their classical experiment, whose results are represented in Figure I-19, the 

etching rate was monitored while XeF2 and Ar+ beams were turned on and off. It can be seen 

that the silicon etch rate increased by one order of magnitude when the ion beam was turned 

on. The etch rate of the combination of ions and chemical active species cannot be explained 

by the addition of the separate etch effects. This shows the importance of the ion/neutral 

synergy in plasma etching.  
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Figure I-19. Experiment showing the synergetic effect of ion-enhanced etch reactions.            

[Adapted from 71]. 

 

From physical to chemical processes, different etching systems can be found such as Sputter 

Etching, High Density Plasma Etching, Reactive Ion Etching, plasma etching and wet 

chemical etching [61]. In function of the selected process, the properties may change. A 

summary of the properties of these mechanisms is shown in Figure I-20.  

 

  

Figure I-20. Plasma etching mechanism by process. 

 

This study is based on High Density Plasma Etching processes which take place into a Lam 

Research 2300 Versys, which is an improved ICP (Inductively Coupled Plasma) system. Even 

if this equipment will be described in Chapter II, Table I-4 summarizes some useful equations 

and orders of magnitude to describe a plasma.   



CHAPTER I. INTRODUCTION 

 

34 
 

Table I-4. useful equations and orders of magnitude to describe a plasma  

Description Definition  

 

Maxwellian velocity 

distribution function (𝑓(𝑣𝑥)) 

 

 

𝑓(𝑣𝑥) = √
𝑚

2𝜋𝑘𝐵𝑇
 𝑒𝑥𝑝 (−

𝑚𝑣𝑥
2

2𝑘𝐵𝑇
) 

 

 

 

(I.6) 

 

Maxwellian electron energy 

distribution function (𝑓(𝐸)) 

 

 

𝑓(𝐸) =
2

√𝜋
𝑇−3/2√𝐸 ∙ 𝑒𝑥𝑝 (−

𝐸

𝑘𝐵𝑇
) 

 

(I.7) 

 

Child-Langmuir, sheath 

thickness  

(d sheath)  

(if 𝑒𝑉𝐷𝐶 ≫ 𝑘𝐵𝑇𝑒) 

 

 

 

𝑑𝑠ℎ𝑒𝑎𝑡 =
√2

3
𝜆𝐷 (

2𝑒𝑉𝐷𝐶

𝑘𝐵𝑇𝑒
)

3/4

 

 

 

(I.8) 

 

 

Thermal velocity (𝑉�̅�) 

 

 

𝑉�̅� = √
8𝑘𝐵𝑇𝑒

𝜋𝑚
 

 

 

 

(I.9) 

 

 

Bohm velocity (𝑈𝐵) 
[76] 

 

𝑈𝐵 = √
𝑘𝐵𝑇𝑒

𝑀𝑖
 

 

 

 

(I.10) 

 

 

Characteristic electron 

frequency (𝑤𝑒) 

 

 

𝑤𝑒 = √
𝑒2𝑛𝑒

𝜖0𝑚𝑒
 

 

 

 

(I.11) 

 

Characteristic ion  

frequency (𝑤𝑖) 

 

 

𝑤𝑖 = √
𝑞2𝑛𝑖

𝜖0𝑀𝑖
 

 

 

 

(I.12) 

 

electronic temperature Te~3eV [65,66] (1ev=11600K) 

electron mass me: 9,1.10-31kg 

d sheath ≈ 0,74mm [65], ≈ 1mm [66] 

electronic density ne=ni: ~1010 cm-3 [66], ~1011 cm-3 [65,66], ~1012 

Mi, q: ion mass and ion charge 

Boltzmann constant 𝒌𝑩 = 1,38 ∙ 10−23 𝐽. 𝐾−1 

elementary charge 𝒆 = 1,6 ∙ 10−19 𝐶 
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3.4. Key Parameters in Plasma Etching  
 

This section takes care of the main parameters involved in plasma etching processes.  

The first part is dedicated to the influence of the plasma parameters (3.4.1) and the second 

one to the useful parameters that exist for the evaluation of the process performance (3.4.2). 

 

     3.4.1. Influence of Plasma Parameters 

 

In general terms, the plasma etching recipe used to process a wafer in semiconductor 

manufacturing, can be divided into three main steps: 

 The Breakthrough (BT), which starts etching the hard mask or anti-reflection layer. 

 The Main Etch (ME), where profile and CD are the most two important concerns. 

 The Over Etch (OE), where the most important factor is the selectivity to bottom layer.  

 

In order to reach the goal settled down for each step some parameters involved in the process 

can be modified. Taking into account that the dimensions of the reactor are fixed, the DC 

Bias voltage can be influenced by the process parameters. As the DC voltage is created to 

repel electrons, therefore the higher the electron density and the higher the electron energy, 

the higher the modulus of the DC voltage will be. Using this reasoning, one is able to predict 

the tendencies of the DC bias voltage by modifying the following parameters [89]: 

 Power: the influence of power is straightforward. An increase of power increases both 

the density and the energy of the free electrons. Therefore, the DC voltage becomes 

more negative with increasing power. 

 

 Pressure: the pressure of the plasma does also influence the DC bias voltage. At 

higher pressure, electrons suffer more collisions, therefore they gain less energy 

between collisions. The electron energy decreases with pressure and the DC bias 

voltage becomes less negative with increasing pressure. 

 

 Gases and flows:  the electronegativity of used gases is a determining factor. When 

all other process parameters remain constant, the electronegativity of the gas will 

determine the DC voltage. Gases with low electronegativity, such as O2, N2 etc, have 

very negative DC bias voltages. Fluorine, chlorine and bromine containing gases are 

much more electronegative, thus, these gases decrease the density of the free electrons 

in the plasma (increasing the number of negative ions). F-plasmas are more 

electronegative than Cl-plasmas, which are more electronegative than Br-plasmas. 

The absolute flow of the gases does in general not affect the DC voltage. However, if a 

mixture of gases is used, the DC bias will be a monotonically increasing function of 
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the relative flows of the gases. On the other hand, small flows of electronegative gases 

do not influence the DC bias very much. 

 

     3.4.2. Parameters for Evaluating Plasma Etching Performance 

 

High selectivity can be achieved with plasma etching; however, it is difficult to control the 

process. In order to verify the performance of each process some parameters should be taken 

into account [90-92]: 

 

 Etch rate:  is defined as the material thickness etched per unit time (Å/mn).  It 

depends on the material as well as the chemistry and the etch power used. If the etch 

rate is too high, the process will be difficult to control. 
 

 Uniformity: is the percentage variation of the etch rates across wafer. It is very 

important to control the uniformity within the wafer because it is very common to 

observe differences between the measures at the center and edge of the wafer (e.g.  

Figure I-21). These differences result in different electrical behaviors.  
 

              
Figure I-21. Measure of uniformity [91]. 

 

 Selectivity: is the ratio of the etching rates of one material over the other. For 

example, the selectivity is the etch rate of the layer being etched to the etch rate of 

the mask. Etching with high selectivity is supposed to remove the selected layer 

entirely without harming the substrate and mask. 
 

 Isotropic/ Anisotropic: etching that erodes material at a same etching rate in all 

directions is called Isotropic. Anisotropic etching refers to a directional etching, that 

means the etch rate is different in lateral and vertical direction. In plasma etching 

this is always perpendicular to the material and anisotropic, as explained before (See 

Figure I-15). 
 

 Microloading: the behavior of the etching is highly dependent on the structures of 

the environment to be defined, this means if the structure is isolated or dense. The 
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concept of microloading refers to the difference in response to the process between the 

dense zones and the isolated areas. 
 

 Profiles: the patterns obtained after etching can achieve different profiles as shown 

in Figure I-22. That depends on the process parameters such as chemistry, pressure, 

temperature, etc. It can influence the electrical behavior of the structure.  

 
Figure 1-22. Plasma etching profiles [Adapted from 91]. 

 

 Critical Dimensions (CD): is the width of a pattern or the space between two 

patterns, as represented in Figure I-23. It is the most critical parameters of a device. 

The measures are performed with either CD-SEM or by scatterometry. Both of them 

will be explained in Chapter II.  

          
Figure 1-23. Representation of the CD post photolithography and etching [Adapted from 61]. 

 

 CD bias: is the difference between the CD measured after the etching, and the CD 

measure after the photolithography (the previous step before plasma etching). It 

allows to control the stability of the etching step regardless of photolithography. Is 

given by (1.13): 

𝐶𝐷𝐵𝐼𝐴𝑆 = 𝐶𝐷𝐸𝑇𝐶𝐻 − 𝐶𝐷𝑃𝐻𝑂𝑇𝑂                      (1.13) 
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3.5. State-of-the-art in Plasma Etching  
 

Since the introduction of plasma etching processes into semiconductor manufacturing in the 

late 1960’s and early 1970’s [93,94], it should now be obvious that plasma etching is an 

incredibly complex technique and it takes some time before one is familiar with it. Although 

there was some discussion of profile control at the beginning, it was not until mid-1970’s that 

plasma etching was able to eliminate the undercutting in the etching process [93]. 

At the beginning, most of the plasma etching work involved the use of halocarbon fedgases, 

being CF4 the most common. An important paper, describing a method for etching SiO2 

selectively to Si by using a fluorine-deficient (polymerizing) chemistry, revolutionized the 

processes.  For the first time, the sidewall passivation term was introduced. Fluorinated 

chemistries were known for having tendency to etch isotopically so that sidewall passivation 

was required in order to maintain an acceptable profile. Using the deposition of polymers as 

a passivation layer, the profile and selectivity could be controlled. There are two possible 

mechanisms for the formation of this passivation; by chemical reactions or by physical 

sputtering [94]. Chemical analysis using spectroscopy techniques are commonly used for 

revealing the composition of the passivation layer. 

In the late 1970’s some important etching studies were initiated. These studies confirmed the 

importance of the synergy between ion bombardment and the chemistry reactions during the 

plasma etching [71]. An important development of plasma etching equipment started by this 

time. The first method used for increasing the plasma density in single-wafer dry etching 

equipment was the magnetron RIE. This method had little margins in terms of wafer 

charging resulting from non-uniform plasma. Near the end of the 1980’s system using 

inductively powered sources to generate higher density plasmas were successfully introduced.  

It was in 1985 that Hitachi commercialized the ECR plasma etching. The ECR etcher 

required a large magnetic coil to form a strong magnetic field, which made it difficult to have 

a compact etch chamber. The need for addressing this issue led to the development of the 

ICP. With a simple coil placed on top of the etch chamber it was possible to generate a high-

density plasma by electromagnetic induction [61,95,96].  

An important example of an ICP etcher was the transformer coupled plasma (TCP®) etcher 

launched by Lam Research in 1992 [93,95]. In this equipment, a DCBIAS is created by applying 

RF power to the bottom electrode, then, the controllable DCBIAS directs the ions normal to the 

wafer surface and therefore there is very little interaction between the top and the bottom 

electrical fields. The high energy efficiency creates a high density plasma where both ion 

energy and directionality are controlled by the power applied to the lower electrode [97]. Since 

this equipment is used for the development of this study, further information can be found in 

Chapter II.  
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The reactor walls can play important roles in the etching process, even if the plasma potential 

is low enough to eliminate wall sputtering as a source of contaminants [93]. The species of 

the plasma which diffuse away and interact with the reactor walls are not always susceptible 

to be cleaned. For instance, F-based chemistries are known for leaving contamination on the 

chamber, such as AlFx, YFx, etc, which have been widely investigated [66,67,98,99] but still 

highly difficult to eliminate. This is an important problem, not only because of the health of 

the equipment, but also because the surface of the reactor walls changing over time it might 

alter the plasma and the wafer surface by deposition of non-desired species over the wafer. 

Under these conditions, the reproducibility of the etching processes cannot be guaranteed. 

Several studies [65-67,99-102] have been carried out related to this subject. In Chapter IV, a 

deeper state-of-the-art related to this subject will be presented together with our results. 

Nowadays, engineers are still looking for the most suitable process control of plasma etching 

in order to reach good reproducibility [62,103,104]. Because of the smaller dimensions this is 

still a big challenge, even more since any process variation can cause considerable fluctuation 

of the performance and the failure of the chip. For this reason, the control of the dispersion 

of the CD in plasma etching step is essential since it is extremely correlated to the electrical 

parameters of the transistor [105-108]. It is here, when process engineers need statistical 

tools. As we will see in Chapter V, in an industrial environment as STMicroelectronics, this 

control of the dimensions is pretty important in order to set regulation methods in place. 

Due to the reduction of the dimensions, the high number of new materials introduced and 

the complexity of the process itself, plasma etching is still regarded as one of the most critical 

steps in IC manufacturing and this is why the research on this area it has not diminished. 

 

4. OBJECTIVES  
 

The initial objective of this thesis is to characterize and optimize the plasma etching 

process related to the new architecture developed in 2012 by STMicroelectronics, the eSTM. 

This structure has already been introduced (Figure 1-11). This would help for the 

enhancement and increase of our knowledge on the physical phenomena which happen 

during this process, which was not fully understood yet, especially the passivation during the 

etching of the vertical transistor. This would offer the possibility to optimize the etch process 

and get the best CD in terms of electrical results.  The emphasis must be put on the 

characterization in order to get the maximum knowledge about the interactions taking place 

during the process inside the reactor walls, such as plasma-surface interactions and plasma-

reactor wall interactions. Because plenty of new materials are introduced in semiconductor 

manufacturing, the study of the a-C:H (used as a mask for etching silicon during this study) 

has to be studied too, since it could influence the composition of the passivation layer. 
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Since the interactions between the plasma and the walls of reactors are responsible for a lack 

of reproducibility of the etching processes, this study also aims at the understanding of the 

cleaning of the reactor walls. As introduced in (3.5) the problem of the Fluorine has been 

shown in the reactor that is used for this study. As a new technology still in development, the 

study of the plasma-reactor wall interactions occurring in the case of the eSTM trench process 

was required.  

The second objective of this thesis is to investigate the process drifts that occur during the 

first trench etching (STI), since the reproducibility of production processes generates serious 

concerns in making the component of the chips. Moreover, the reproducibility of the STI is 

critical for the following steps. As the eSTM is still in development stage, no-data about the 

drifts of this technology could be obtained yet. However, the first part -that one related to the 

STI/active- of the eSTM process fabrication is practically the same as the flash. Thus, the 

idea was to develop a model able to get the CD of the STI (flash) under control and based on 

that, set a similar model to control the STI of the eSTM technology. In this way, we will 

anticipate that everything is ready for switching to a production-mode when the day arrives. 
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“No amount of experimentation can prove me right; a single 

experiment can prove me wrong” (A. Einstein) 

 
Chapter II 

Experimental: Materials and 

Equipment 
 

 

 
This chapter presents the main experimental techniques for the 

characterization of the plasma etching processes used in this work. It 

contains information about the tools, materials and characterization 

techniques. The plasma etching equipment and the plasma diagnostics 

techniques are introduced as well as the surface analysis characterization 

techniques, paying special attention to XPS characterization of thin films. 

Finally, the Floating Sample Method used to characterize the reactor walls 

will be introduced too.  
 

 

 

An inside view of an old-type XPS system [II]. 
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 All the experiments are carried out in a plasma reactor suited for 200mm wafer in 

STMicroelectronics Rousset. In addition, several diagnostic techniques  are used to study the 

plasma-surface and the plasma-reactor wall interactions. Furthermore, since the use of 

different materials influences these interactions, the basic concepts of each tool and materials 

used will be discussed in this chapter.    

 

1. MATERIALS 
 

As dimensions decrease, extreme-UV photoresists are required. Photoresists as 193nm with 

low selectivity, demand a thick layer of stack to be used for successful pattern transfer [109]. 

In order to satisfy the continual need for shrinking CD, this stack changes for each technology 

depending on which are the most suitable materials and thicknesses. The different materials 

used as stack in this study are described below. 

 

1.1. Stack  
 

A classical semiconductor stack comprises a substrate, a semiconductor layer and a mask. 

For the work presented in the following chapters, the stack could be compound of a 

Photoresist, BARC, a-C:H, TEOS, NFARL, Nitride, SiO2, the semiconductor layer and the 

substrate. In Chapter I we already introduced the properties of Silicon and SiO2. Here, the 

properties of the rest of materials are briefly described. 

 

 Photoresist (PR). A photoresist is a light-sensitive material used in the 

photolithography process to form a patterned coating on the surface to be etched. The 

PR are usually classified by their wavelengths in the UV spectrum.  The PR used in 

this study is for 193nm lithography which have lower selectivity and a poor 

mechanical strength when compared to 248nm PR [109]. For this reason, a thick mask 

is needed. The PR can be positive (the exposed portion will be removed during 

development) or negative (the exposed portion will be retained during development).  

The resins used at STMicroelectronics are all positive. Their nature may vary; 

thickness, indices and viscosities are some of the parameters which have to be 

considered for reaching different critical dimensions.  

 

 Bottom Anti-Reflective Coating (BARC). The BARC is an organic anti-reflective 

film applied before the PR in order to absorb light. It uses destructive interference to 

give little reflection at the PR/BARC interface. The main property of this material is 

to have a low coefficient of reflection. It prevents chemical interaction between the PR 

and the substrate and increases the CD control. In the absence of this layer, the light 
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used to react with the PR can expose an area of the PR intended to be masked being 

the cause of a CD variation. It can also increase depth of focus and reduce reflective 

notching [110].  This layer is also deposited by the photolitography workshop.  

 

 Hydrogenated Amorphous Carbon (a-C:H). Also known as Ashable Hard Mask 

(AHM), is a diamond-like carbon film [111,112], hard, amorphous and with a 

significant fraction of sp3-hybridized carbon atoms which contains a significant 

amount of hydrogen [111]. This material will serve as a mask for etching once the 

resin has been consumed. Typically, a-C:H films can be deposited by CVD, PECVD 

and ion beam deposition [112]. Depending on the processing technology used and the 

conditions of the process, the relative concentration of the film differs, but it can be 

characterized through the ratio of sp2 to sp3 hybridized bonds present in the material. 

In STMicroelectronics, a-C:H films are deposited by CVD and can be characterized 

experimentally comparing to the relative intensities of its spectroscopic peaks. 

Characterization of the a-C:H layer will be discussed in Chapter III.  

 

 Tetraethylorthosilicate (TEOS). Prepared by alcoholysis of silicon tetrachloride is 

a tetrahedral molecule used as a precursor to silicon dioxide [113]. Note that the 

silicon oxide layer deposited by this technique is generally called TEOS, which is 

wrong from a chemical point of view [114].  Unlike the AHM which is a carbon-based 

mask, TEOS is an oxide-based material but it is also used as a hard-mask.  Since it is 

an oxide, it will not disappear during the strip process that will be done at the end of 

the etching.  

 

 Nitrogen-Free Anti-Reflective Layer (NFARL). It is a silicon-rich oxide with high 

etch selectivity to the a-C:H. Optical properties and etch characteristics of AHM and 

NFARL films make them well suited for integration into a spacer double patterning 

flow [115]. This is another anti-reflective layer but unlike the BARC; the NFARL 

material will tend to maintain a constant thickness regardless of the relief of the layer 

below. This is why it says to be planarizing and will tend to reduce inequalities of the 

relief. 

 

 Nitride.   Silicon nitride (Si3N4) is an amorphous material, similar to SiO2 films, 

widely used as an oxide barrier in VLSI fabrication. It is usually used as an etch hard 

mask in STI applications [116]. Because of the thermal mismatch between silicon and 

Si3N4, silicon nitride is deposited onto Si with a thin oxide buffer layer, called path 

oxide, in order to prevent stress-induced damage at the interface at elevated 

temperature [58]. This is the last layer of hard-mask while etching the STI. Its main 
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function is to serve as a barrier layer during the polishing that will be carried out after 

etching by the CMP workshop. To take it out, wet etching using H3PO4 will be required. 

 

The use of these materials is different for each goal and so the stack varies each time. The 

stack used for each case will be described in its respective chapter. 

 

1.2. Photolithography Mask  
 

The reticle used for this study was initially designed to conduct XPS studies at the 

STMicroelectronics site in Crolles. Figure II-1 shows the description of this mask, with the 

areas used for the characterization in this thesis. This is a reticle for 193nm 

photolithography. 
 

 

  Figure II-1. Reticle mask for photolithography UV 193 nm used in this study. 

 

The structures of the eSTM developed by STMicroelectronics, whose dimensions are 40x160 

μm², are not adapted to carry out the first characterizations by XPS or TOF-SIMS with a 

high sensitivity. A prior analysis is necessary to determine the chemical composition of the 

passivation layer formed on the surfaces. Therefore, different sized structures, defined by a 



CHAPTER II. EXPERIMENTAL: MATERIAL AND EQUIPMENTS 

 

45 

 

lithographic mask specially designed for a similar study carried out in Crolles, are used as a 

first stage of the study presented in Chapter III. The advantage of this mask is that it has a 

plurality of width structures and different spaces such as the open area, the mask area and 

some others with shapes large enough to be characterized by using XPS and ARXPS. The 

reticle is made by 47 zones of approximately 3 x 3 mm² involving different-sized structures 

and a SEM observation area 3 × 6 mm². The characterization analysis is done through the 

zone numbers selected in Figure II-1 being the zones 4, 5 and 36. These areas are detailed in 

the following section 1.2.1. The dimensions of each of the zones being 3x3 mm² make XPS 

analysis able to be performed with a maximum probe size in order to obtain excellent 

detection sensitivity. This will be a first approach on the analysis that will be finally carried 

out over the real product. 

 

     1.2.1. Areas of Study 
 

For the characterization of the eSTM structure, that will be discussed in Chapter III, we will 

talk about two steps; the one related to the etching of the STI trench, and the other one 

related to the eSTM trench etch. Further details about that will be given in Chapter III. A 

brief introduction of each area of the mask presented in Figure II-1 are presented as follows.  

 Area n°4: 

It is called "open area". It will be the “Silicon reference” for this study. It is not covered by 

chrome and so during the photolithography step, the resist is irradiated by the UV rays. 

Thus, the present resin on the silicon wafer is subjected to chemical modifications and after 

the development of the resin, it is removed from this area. This means that after the etching 

step, the area n°4 is completely composed of silicon, since the AHM will be totally consumed 

during the STI step. Area n°4 is therefore used as reference, allowing the characterization of 

the chemical composition of the silicon surface after each of the two etching steps (STI and 

trench). This chemistry will be later compared with the chemical compositions of the bottom 

trench (a priori silicon) of areas n°36 and n°46. Figure II-2 is a representation of the 

development of the stack from the start to the end of the etching step related to this area. 

 

 

Figure II-2. Representation of the process of the Area n°4 being totally exposed to the 

photolithography UV and resulting in the etching of a non-protected silicon. 
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 Area n°5: 

It is called "mask area" ". It will be the “Line-reference” for this study. Unlike the “open area”, 

the area n°5 is completely covered by chrome during the photolithography step, thus the resin 

is not irradiated by the UV rays, which does not cause chemical modification and so during 

the development of the resin, it remains on the original stack. As represented in Figure II-3, 

during the STI etching step, the resin is completely etched first, inducing a first contact to 

the AHM which will be partially consumed at the end of this step. During the trench etching, 

a part of the AHM will be consumed, but still remaining after the etch process. This is why 

area n°5 will be used as a reference for the lines (a priori AHM-based).  

 

 

Figure II-3. Representation of the process of the Area n°5 being totally covered by the mask during 

the UV photolithography and resulting in the etching of the AHM without reaching the silicon. 

 
 

 Area n°36:  

This area of the mask, contains alternating lines and spaces. The widths of the lines and 

spaces in this area are those closest to the eSTM dimensions with lines of 300nm and spaces 

of 200nm. It is on this area that we will achieve the XPS analyses to characterize the chemical 

composition of the passivation layer formed on the bottom and the sidewalls of the trenches 

created in the two etching processes that will be used as input for the real product 

characterization. Figure II-4 is a representation of the development of the stack from the 

start to the end of the etching step related to this area, with a final representation of the 

sample that will be characterized in Chapter III. 

 

 

Figure II-4. Representation of the process of the Area n°36 which lines and spaces does not 

measure the same being L=300nm S=200nm. 
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2. PLASMA ETCH EQUIPMENT 
 

Plasma etch equipment in STMicroelectronics are available from Lam Research. The 

experiments carried out in this PhD are done in a Lam Versys 2300 etch chamber designed 

for 200mm wafers system for sub-90 nm applications. Further details of this equipment are 

presented in 2.1.1. The equipment is available for both production and research experiments. 

The wafer handling and processing is controlled by software. In addition, this platform 

includes a new EPD (EndPoint Detection) system that will be introduced in 3.1. 

 

2.1. The Etch Platform 
 

With the aim of reducing cost and accelerate the process, the etching chambers are grouped 

on a platform composed of multiple chambers that contains the following parts (see Figure 

II-5) 

 

 Load lock: in each load lock a cassette of 25 silicon wafers can be loaded, up to 3 load 

locks per equipment. Each cassette of 25 wafers will be called “lot” in this thesis. 

 

 Transfer robot: a robot arm which recovers the wafers present on the loading ports 

to be etched. 

 

 Aligned system: equipped with a laser that locates the notch of the silicon wafers 

that defines the orientation of the crystals so that they are always introduced into the 

etching chambers with the same orientation. 

 

 Two vacuum load locks: the wafers are introduced before entering into the transfer 

chamber. Here, they are brought from atmospheric pressure to a vacuum pressure of 

about 90mTorr. 

 

 Vacuum transfer robot: a robot arm which transfers wafers between the etch 

chambers and vacuum load lock. The wafer remained there briefly before being 

introduced into the appropriate etching chamber. 

 

 Chambers: 3 chambers for the polysilicon etching processes and one more used for 

stripping, which removes resin used for masking during the etching. 
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Figure II-5. Schematic representation of the LAM Versys etching platform.  
 

     2.1.1. Lam Versys 2300 Etch Chamber 
 

The Versys 2300 etch chamber is a high density Transformer Coupled Plasma (TCP) source 

as we introduced in Chapter I. Based on the ICP source, Lam Research launched this 

equipment [93,95] where the plasma is generated by a planar ring shaped coil with multiple 

windings just like in a transformer [65].  This design is able to deliver a much higher plasma 

density compared to a standard chamber design. A schematic drawing of the etch chamber is 

given in Figure II-6.  

 

Figure II-6. Schematic representation of the etching platform LAM Versys [Adapted from 65]. 
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As explained in Chapter I, the high energy efficiency creates a high density plasma where 

both ion energy and directionality are controlled by the power applied to the lower electrode 

[97]. Nowadays, this configuration is widely used, especially for highly selective processes 

where good anisotropy is required [65]. A capacitive couple source does not generate a high 

density plasma because a lot of power is used to accelerate ions (low density, high energy) 

unlike in a purely inductive coupled plasma where ions have little energy as most of the 

power is used for ionization (high density, low energy). In this TCP configuration, capacitive 

as inductive, the power is supplemented with a capacitive coupled RF source to control the 

ion energy. The biggest advantage is that the separation of RF coupling provides the 

opportunity of controlling the ion current (inductive TCP) independently of the control of ion 

energy (capacitive bias). In these capacitive tools the power is often delivered with multiple 

frequencies, allowing some independent control of ion density and energy. The different 

properties of the inductive coupling used in conductor etching are detailed below: 

 

 High fractional ionization 10-3-10-1 %. 
 

 Low pressure from 1 to 80mTorr; High flow turbo pump. 
 

 Requires high inductance between coil and plasma. 
 

 Need some capacitive power to control energy (requires 2RF generators). 
 

 Generates large RF current but low power is used for ion acceleration. 
 

 Fine control of ion density and energy (useful for conductor etching). 
 

 High plasma density 1011-1013/cm3 → High fractional dissociation. 
 

 Chamber wall collisions dominated → Sensitive to wall conditions. 
 

 Without bias power field lines do not cross any sheath → No ion acceleration. 

 
 

     2.1.2. Process Etch and Chamber Conditioning 
 

In this section, some important concepts for the plasma etching processes are presented such 

as the plasma recipe, the steps with variable time during etching processes and the chamber 

conditioning.  

 

2.1.2.1. Example of a Plasma Etching Recipe  
 
 

In Chapter I we divided a recipe into 3 steps: the BreakThrough (BT), the Main Etch (ME) 

and the Over Etch (OE). However, recipes are more complex than this due to the large 

number of steps that it contains. In order to understand how a recipe looks like, a simplified 

example is presented. Figure II-7 shows the representative diagram of the stack of material 

to be etched during the recipe and Figure II-8 presents the recipe itself.  
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Figure II-7. Representation of the stack to be etched. 

 

 

Figure II-8. Recipe example for etching the stack presented before (Figure II-7). 

 

The rows represent the process parameters and the columns correspond to the different steps 

of the process which are carried out one after the other. The process parameters are composed 

of: 

- Row 1, 2: the numbers and names of the steps. 

- Row 3: the desired pressure in the chamber for each step (in mTorr). 

- Rows 4, 5: the RF power applied to the upper electrode (W) and the voltage 

between the two electrodes (V); respectively. 

- Row 6: the injection mode of the gas in the chamber. It is possible to choose 

between "Equal", "Center" and "Edge". 

- Rows 7 to 14: the different rates of gas to be sent to the chamber, in cm3/min (or 

sccm). The theoretical maximum and the maximum measured flows are also 

indicated (for instance the row "HBr_100 (98.0 sccm)" the theoretical maximum 

flow is 100sccm, and the maximum measured flow is 98sccm). 

- Row 15: Helium is sent under the wafer throughout the process in order to 

maintain it cool. This row corresponds to the set pressure of helium under the 

wafer (in Torr). 

- Rows 16 to 17: the temperature of the ESC at the center (Inner) and edge (Outer) 

of the wafer (in ° C). 

- Row 18: the type of step (five possible choices): 
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- Stab: in these stabilizing steps, the gas is sent to the chamber. But during 

these steps the plasma is not turned on (because there is no RF power), so 

there is not etching yet. The step ends when the required pressure, flow 

and temperature are reached. The time written as "Process Time"(row 19) 

is the maximum time allowed to achieve these instructions (usually 30 

seconds). If after that time, the conditions are not achieved, the process will 

stop and an alert will be displayed on the machine. It is also possible to set 

a minimum time for the detection of the end of etching (row 21). 
 

- Time: these are the classic steps of etching (with "fixed time"). The etching 

is carried out during the time indicated on row 19. 
 

- EndPT: these are the steps to be etched with endpoints. The machine will 

perceive itself (by means of optical and interferometric systems) that it 

must stop the current etching and go to the next step. If the endpoint is not 

detected before the time indicated in row 19, the machine switches to abort. 
 

- OverEtch: These are the "over-etching" steps, placed after the endpoints. 

They allow to continue etching after the endpoint detection (for instance, 

for the elimination of possible waste). The time of this OverEtch 

corresponds to a percentage of the endpoint time. The percentage is fixed 

in the line called "OverEtch (%)". If this line is not filled, the time will be 

the one written in row19. 
 

- DeChuck: this step is the end of the process. It is the step when the wafer 

will be detached to be returned to the fout. The time specified in row 19 is 

the maximum time allowed for dechuck. 

 

The order of the steps corresponds to the stack by layers. In this example (Figure II-8): 

 

 The first layer to be etched is the BARC. The first two steps of the recipe are 

the stabilizing and etching steps of BARC. 

 The next step is the Breakthrough (BT), which allows to pass through the 

eventual native oxide who was able to grow on the Polysilicon (since the 

Polysilicon etch chemistry is selective to the oxide). 

 The etching of Polysilicon is then divided into three steps increasingly selective 

to oxide: ME1 and ME2 (for Main Etch) and OverEtch (OE). This sequence 

keeps the no degradation of the barrier layer while maintaining a relatively 

short time of process. 

 Finally, the steps of Dechuck and Pins-Up are the steps where the wafer is 

removed from the holder and back into the “cassette”. 
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2.1.2.2. Steps with Variable Time 
 
 

Etching processes are dependent on some process parameters that may vary from wafer to 

wafer and/or lot to lot, especially the time. There are three types of variable time steps: 

 

 Endpoint steps: these are the steps where the end of the etching is detected 

automatically. Their time, thus, vary from wafer to wafer (because of thickness 

variations of the layers to be etched and etch rate variations). 
 

 Stabilization steps: These steps end when all instructions (pressure, 

temperature and gas flow) are reached. 
 

 Run to Run (R2R) steps: these are the steps where the etching times are 

calculated by control loops in order to compensate the etching rate variations, 

or the variability of photolithography. These times are updated automatically 

in the recipe while the lot starts to be processed. They are calculated in function 

of the CD measured after photolithography on the lot, and the etch rate of the 

etching machines.  

 

2.1.2.3. Chamber Conditioning  
 
 

In order to keep the chamber in the same conditions at the beginning of each new process, 

the WAC (Waferless Auto Clean) is used. It consists of recipes similar to the process recipe, 

with the difference that there is not wafer in the chamber. There are two types of WAC: 
 

 Conditioning: it starts automatically before the passage of the first wafer of each lot. 

It can be used for both to bring the chamber to the right temperature and to clean the 

interior of the room. 

 Post-WAC: after etching each wafer, it is launched in order to clean the chamber. 

With the aim of use the most suitable WAC for each process, the recipe has to been well 

selected in function of the deposition by-product on the chamber after the process. In this 

thesis (Chapter IV) the optimization of the WAC process used for the eSTM will be shown. 

 

3. DIAGNOSTIC TECHNIQUES 
 

The diagnostic techniques used during this thesis were performed in-situ and ex-situ. The 

etch platform is equipped with in-situ diagnostic tools such as the End Point detection 

systems which allows the control of the etching and the plasma characterization. The other 

characterization techniques that will be introduced in this section are not in-situ. Some of 

them are anyway performed in the cleanroom (CDSEM used for CD control), others in the 

laboratory namely the physical characterization techniques (SEM and TEM, used for 
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morphological characterization of the patterns after etching) and the chemical 

characterization (XPS and ARXPS, used for the surface characterization) are carried out at 

Cimpaca. The characterization platform Cimpaca is a french mutualized laboratory 

supported by european, national and regional public funds. 

 

3.1. End Point Detection Technique (EPD) 

 

The etch platform LAM Versys is equipped with an End point detection system that combines 

the techniques of Optical Emission Spectroscopy (OES) and Light Signal Reflectometry 

(LSR). This is essential for the process in order to achieve the end of each material with good 

precision.  

 

     3.1.1. What is an Endpoint? 
 

By using dry etching, the layers of the stack can be removed partially. The goal is to remove 

the layer in the unmasked areas without etching the next layer below. In order to achieve 

this goal several possibilities can be considered [117]: 
 

 Use chemicals which etch the layer selectively, which means that some specific 

chemicals can etch one layer better than another one. 
 

 Stop the etching by using a fixed time that can be calculated from the etch rate. 

However, this method is not very precise due to the variabilities of thickness 

that can be induced during the deposition process. 
 

 Stop the etching after removal a certain thickness of material. This method 

requires a thickness measurement system in the plasma etcher and is the 

called EndPoint Detection.  

 

Ideally in dry etching, the film must be removed completely with no damage or removal of 

the underlying film. Nevertheless, usually an over-etch is required in order to remove any 

remaining. Figure II-9 shows the difference between an ideally etched material versus one 

that has been over or under etched. Under-etch is characterized by not clearing out 

completely the film being etched, over-etch is characterized by clearing out the film 

completely and partially etching through the next film and ideal etch clears out only the film 

required [118]. 

 
 

Figure II-9. Representation of the terminology used in endpoint detection. [Adapted from 118]. 
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Endpoint detection is used to identify when the film being etched has reached the underlying 

film. This allows to identify which point of the process can be stopped, or changed to a more 

selective etching [118].  There are a variety of phenomena from which signals can be derived 

to mark the beginning and end of the process such as pressure change, bias change, Mass 

Spectrometry, Emission Spectroscopy, laser interferometry and reflectance [119]. When the 

power is on, the etchant concentration increases until etching starts. Then, the etchant 

concentration decreases while the reaction products accumulate to stable values. As the film 

clears, the etchant signal increases again and the product signal falls. Finally, at the endpoint, 

there is a third signal from the reactions and the substrate. These events are represented in 

Figure II-10. 

 

 

Figure II-10. Idealized schematics of the events that can be used for EPD [Adapted from 119]. 
 

The endpoint detection was probably the first system for controlling the etching process, 

being used even before SPC [120] and today several ways to detect the endpoint are provided 

for plasma etching available from almost all the manufacturers.  In STMicroelectronics both 

LSR (Light Signal Reflectometry) as OES (Optical Emission Spectroscopy) systems are used 

to determine the endpoints. Further details about each technique are explained in the 

following sections. 

 

     3.1.2. Light Signal Reflectometry (LSR)  
 

This technique is used to determine the remaining film thickness in real time by measuring 

the reflection of a monochromatic light beam. The beam is sent perpendicularly towards the 

substrate, so that the light is reflected by the different layers composing the stack due to the 

difference in the nature and the diffraction indexes of these layers. The reflected beam 

undergoes constructive and destructive interferences. These interferences depend on the 

material thickness and so the remaining material can be determined in real time.  This 

technique is able to determine both the endpoint of a material at the interface with another 

material and to stop the etch process before reaching this interface. 
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3.1.2.1. Principle 

 

Since Michelson, the father of visible-light interferometry, was awarded with the Nobel in 

physics in 1907 [121], interferometry-based techniques are one of the most important 

methods of experimental physics today [122]. LSR technique is based on this principle of 

interferometry. It relies on an external light source directed onto the sample which reflected 

light is detected and analyzed. Interferometry, in the strict sense, is the measurement of 

changes in the signal phase between two separate acquisitions, from the same ground target. 

The principle of reflectance interferometry used to determine the endpoints, implies that for 

different layer thicknesses, constructive or destructive interference occurs leading to a 

sinusoidal change in the signal intensity as the layer thickness reduces. It is possible to count 

the number of fringes (each period of the oscillation) in order to calculate the thickness etched 

[123,124].  

Two different materials A and B are considered for an example. A is the material where the 

etching must be stopped. B is the material to be etched which optic index is n and thickness 

is d. If the monochromatic light is sent with a normal incidence towards these layers, the 

light will be reflected by the surface of B and the interface of A. Figure II-11 illustrates this 

example. 

 

Figure II-11. Light reflection with normal incidence on a stack of 2 materials A and B  

[Adapted from 125,126]. 

The period of this function is d=λ/2n (λ is the light wavelength), which means that for each 

fringe of this function, a thickness of B equal to λ/2n has been etched. In this way, the 

thickness etched can be calculated when necessary just by counting the number of fringes as 

explained before. When the signal stops fluctuating, the etching will be finished. 

 

3.1.2.2. End Point Detection by LSR 

 

An example of EPD detection by the LSR technique is represented in Figure II-12, which is 

related to the partial etching of polysilicon during the 80nm gate process [125].  
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Figure II-12. Evolution of the polysilicon etching of 80nm by interferometry (LSR-600nm) 

 [Adapted from 125]. 

In this example, the first EPD is detected for the ME1 when the first 60nm of polysilicon has 

been etched. The second EPD is detected when the remaining 20nm are reached.  

 

     3.1.3. Optical Emission Spectroscopy (OES) 
 

This technique is based on the spectral analysis of the light emitted from the plasma that 

allows to identify the reactive species present in the gas during the etching process. In 

contrast to LSR technique, OES analyzes the light emitted from a plasma source to draw the 

interferences about the chemical and physical state of the process [127]. In the plasma phase, 

the molecules are excited due to the interactions of electrons and neutral species. While the 

relaxation process, when the light emission occurs, each excitation state emits a specific 

wavelength (λ) and thus, the molecules that compose the plasma phase can be determined by 

the analysis of the emission spectra [128]. Tables of spectral lines [129,130,131] and 

identification of molecular spectra [131,132] in conjunction with knowledge of the process 

chemistry are the relevant elements for the identification of the EPD and the spectral 

analysis. 

 

3.1.3.1. Principle 

The principle of operation of OES is based on the measurement of photons emitted when 

electrons move from an excited electronics state to a lower state [133].  

The existence of discrete energy levels for electrons orbiting the hydrogen-like atoms nucleus 

is described in the Bohr model of the atom introduced in 1913 [134]. The electron is subjected 

to inelastic collisions which makes the electron drops from higher to lower energy levels. 

When that happens, a photon is released from the atom and the frequency of the emitted 

photon is proportional to the energy difference between the original and final electron energy 
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levels [135]. Basically, OES is used to deduce the gaseous species that exist in a plasma, the 

inelastic collisions which take place for a plasma glow discharge (see Figure II-13) such as 

[135]:  
 

- Ionization: the atom, in a neutral state where all electrons are in the lowest orbits available, 

needs the ionization energy that is the energy required to remove the outermost electron in 

an atom or molecule in its ground electronic state. 
 

- Excitation: occurs when the atom absorbs energy, as the ionization energy, and its electrons 

are excited to higher energy orbits. 
 

- Relaxation: is the opposite process to excitation. Relaxation is the movement of an electron 

in an excited atom from a higher energy level to a lower one. Excited electrons fall from their 

unstable outer orbits and release energy in form of photons in the process. 

 
 

            
Figure II-13. Schematic of radioactive decay principle. Representation of ionization (a), 

excitation (b) and relaxation and emission (c) process [adapted from 135].  

 

The radioactive decay principle represented in Figure II-13, lies in the radiative decay of the 

excited species X* from the plasma where a photon with energy hυ is produced according to 

the process: X* = X + hυ. The photons emitted from excited atoms and ions are measured as 

they decay to lower electronic levels. Since each element has its characteristics wavelengths, 

the elements can be identified. The photons emitted from the excited species (atoms and ions) 

are separated by a diffraction grating according to their wavelength and reach the photon 

detection system [133].  

 

3.1.3.2. Instrumentation 

Spectrometers used for plasma diagnostics are in principle similar as UV-VIS spectrometers 

used in chemistry. The main difference is its much higher spectral resolution and in the case 

of emission spectrometry, there is no lamp inside the spectrometer. Optical prisms are used 

in older spectrometers, only. The OES used in this thesis (OES Plus on Flex45) is more stable 

than those older spectrometers by design, because there are no mirrors. The spectrometer is 
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mounted on the hoist arm. The process starts when the light is collected through a fused 

quartz window at the height of the plasma in the reactor. Then, a diffraction grating spreads 

out this incoming light into a spectrum. When the process ends, the wavelength spectrum 

shows the plasma composition. Figure II-14 outlines the OES sensor structure showing the 

three most important components: the entrance, the diffraction grating and the Charged 

Coupled Device (CCD). To generate an OES spectrum, the light emitted by the plasma is 

directed onto a dispersive element followed by a Charged-Couple Device (CCD). A spectrum 

is acquired every 100 milliseconds, which is equivalent to 10 Hz [136]. 
 

 

Figure II-14. Schematic of how the OES sensor works (a) and the spectrometer used from LAM (b). 

 

The spectrometer has the following characteristics: 
 

• Wavelength precision and stability of < +/- 1nm 

• Unit to unit intensity matching < 20% (250-850nm) 

• Second order diffraction < 1% 

 

3.1.3.3. End Point Detection by OES 

OES is another commonly method used for detecting endpoints during wafer processing. 

During the course of an etch process and the material transition, the composition of the 

plasma is modified, resulting in a change in the emission spectrum [127]. The basic principle 

of the OES endpoint system is to take advantage of these modifications in plasma chemistry 

when a layer in a film stack has completely cleared and a new layer is exposed during the 

etch process. In order to detect a material transition using OES, the first step is to determine 

which spectral regions show a change at the transition. Once the candidate regions have been 

selected, the EPD can be detected by monitoring the light intensity at the selected 

wavelengths. 

An example of the SiO2 etching with CO, whose representative wavelength is 484nm, is 

followed in Figure II-15. At the beginning, the intensity of the CO line increases, which is 

representative of the SiO2 etching process, but when all the silicon oxide is consumed, the 

intensity of the CO line drops indicating the end of the process [125]. 
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Figure II-15. Evolution of the CO line intensity (484nm) during a SiO2 etching process in a 

CF4/CH2F2 plasma [Adapted from 125,137]. 

The disadvantage of the OES as EPD system is its lack of precision: it helps to determine 

when the etching is complete but it is not able to know the remaining thickness in real time 

[126]. This is why LSR technique is used when stopping before the end of the layer is 

necessary. However, OES can be used to analyze the composition of the plasma as it is 

explained as follows. 

 

3.1.3.4. Spectral Analysis 

OES can be used not only for EPD but also for spectral analysis which enables the 

identification of the species involved in the plasma during the etch process. It is able to detect 

all the excited atoms and radicals emitted in the spectral regions between 200-900nm. The 

color of the global discharge is thus dependent on the feeding gases. In some cases, from the 

emission intensities of the excited species it is possible to obtain their concentration in the 

ground state, and this can be very useful in the formulation of the growth and etching 

mechanism [138]. 

An example of the spectral analysis is presented in Figure II-16. It is the study of the 

fluorocarbon-based chemistry (CF4/CH2F2/He) which was performed during this thesis for the 

plasma diagnostic (Chapter III). By using OES, fluctuations in relative concentrations of 

plasma species have been monitored, including CF2*, CH*, H*, and F*. The spectrum 

correspond to a silicon non-coated wafer.  
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Figure II-16. Optical emission spectrum of F-based plasma over a silicon non-patterned wafer. 

 

The presence of H is concluded by the two lines of the Balmer series for hydrogen at 656.3nm 

(Hα) and 486.2nm (Hβ), being the Hα the strongest one. Several C2 band system were also 

identified, represented by the Swan band (435nm-686nm) system at 516.7nm, 473.71nm, 

563.55nm, with the 516.7nm as the most intensive line over the entire spectrum, for both 

cases. Swan bands are the most characteristics features of C2 in all hydrocarbon spectra. The 

presence of F as an atom is observed with low intensity lines that appear at 703.7nm and 

712.7nm, almost with the same intensity for both of them. However, the presence of F is 

shown at the beginning of the spectrum, by means of the presence of CF2 radicals, even if 

these radicals are not as intense as C2 lines, the dissociation coming from the CF4 gas is 

confirmed.  

 

3.2. Scatterometry 
 

Two methods of CD measurement are used during manufacturing, namely -Scanning 

Electron Microscopy (3.5) and scatterometry [139]. The term scatterometry refers to optical 

methods of measuring critical dimensions using a grating test structure. The measures can 

be done in a spectroscopy ellipsometer as is the case in STMicroelectronics. The main 

challenge is to analyze the changes in the optical response that the grating structure imparts 

versus the response of a non-patterned film stack [140]. Scatterometry has many attributes 

common to other optical metrologies. It is simple and cheap, highly repeatable (good 

precision) and consistent with other methods (accurate) [141]. 
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     3.2.1. Principle 
 

Scatterometry can be defined as the measurement and characterization of light diffracted 

from periodic structures [141].  The scattered or diffracted light pattern (signature) can be 

used for characterizing the details of the grating shape itself. Since the device is composed of 

periodic structures, the scattered light consists of distinct diffraction orders at angular 

locations specified by the following grating equation: 
 

𝑠𝑖𝑛 𝜃𝑖 + 𝑠𝑖𝑛 𝜃𝑛 = 𝑛
𝜆

𝑑
           (II.1.) [141] 

 

where 𝜃𝑖 is the angle of incidence, 

𝜃𝑛 is the angular location of the n, 

𝑛 is the diffraction order, 

𝜆 is the wavelength of incident light, and 

d is the spatial period (pitch) of the structure. 
 

In the most part of cases, the measurement is performed with an ellipsometer associated with 

a method of solving an inverse problem. For this purpose, two conditions must be satisfied: 

it is necessary to know the optical indices of the materials and the sample to be measured 

must be composed of periodic structures [142]. Basically, the principle of ellipsometry-based 

scatterometry is that light polarizes in-plane of reflection reflects differently than light 

polarized perpendicular to the reflection plane [140].  

 

     3.2.2. Instrumentation  
 

Scatterometers are simple instruments that essentially consist of an illumination source, 

some focusing optics, perhaps a rotation stage and a detector. Usually, by using these 

instruments, one has access to the top CD, middle CD, lower CD and the angle between the 

pattern and the substrate surface [125]. The scatterometry principle of operation and the 

scatterometry measures that can be obtained are represented in Figure II-17. 

 

Figure II-17. Scatterometry operation (a) and measures (b) [Adapted from 125]. 
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The main advantage of this technique compared to microscopy is that it is able to provide 

different geometrical information (thickness, CD) by performing a single measurement. 

 

     3.2.3. New Model for STI Measures 
 

At the beginning of this thesis, in STMicroelectronics, there was not a scatterometry model 

available for the STI measurements. Since CD-SEM measures were not highly accurate at 

this stage, a scatterometry model able to perform these measures was required. Further 

details about this will be presented in Chapter V, where the R2R model will be introduced. 

Nevertheless, Figure II-18 confirms the better accuracy of scatterometry versus CD-SEM for 

the STI. 
 

 

Figure II-18. Scatterometry (a) vs CD-SEM (b) measures for the STI. 

 

As it can be appreciated, by using CD-SEM, the measurement is hard due to the top view 

which complicates the decision about where the measures should be taken, making this 

technique unprecise for that purpose. However, the scatterometry model, using a profile view, 

simplifies that decision. Therefore, it is more convenient for the CD control of the STI. 

The model was developed in collaboration with the metrology equipment. The major 

challenge for developing this model was the complexity of measuring the STI by using 

Scatterometry because of the stack after etch such as the line of shape and TCR (Top Corner 

Rounding). Until then, the only scatterometry measure available for the STI was the total 

height, and there was not scatterometry measures post the photolitography step. By 

developing this model, we did introduce not only the measure post-photolitography, but also 

all the informations about the different CDs, notably the CD at the TCR which is the most 

important since it is the most correlated with the electric performances of the final device. 

Furthermore, the model uses optic measures at the interfaces, unlike other models which 

measure CDs by using percentages of height from the ground. This makes the model even 
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more accurate. In Chapter V, explanations about why it was important to develop this model, 

will be presented. The models that will be cited for the development of the R2R model in 

Chapter V are represented in Figure II-19.  
 

 

 

Figure II-19. Scatterometry model post photolithography (a) and post etching (b).  

 

3.3. X-Ray Photoelectron Spectroscopy (XPS) 
 

X-ray Photoelectron Spectroscopy (XPS) [143] is the most widely technique used for surface 

analysis. It can be applied to a broad range of materials and it provides chemical state 

information from the surface of the material being studied.  
 

     3.3.1. Principle 
 

The existence of discrete energy levels for electrons orbiting the nucleus of H-like atoms, 

described in the Bohr model, it has been referred before in 3.1.3. So that matter is made of 

atoms, atoms are made of a nucleus and several electrons. XPS derives information on the 

elemental composition and specification of matter by evaluating the electronic structure of 

the atoms and/or ions residing within the surface of the sample [143].  

XPS is based on the photoelectric effect, illustrated in Figure II-20. The basic principle of the 

photoelectric effect was enunciated by Einstein [144] in 1905. Knowing that each atom has 

core electron with its characteristic binding energy, and that conceptually, this binding 

energy is equal to the ionization energy of that electron. When an X-ray beam directs to the 

sample surface, the energy of the X-ray photon is absorbed completely by the core electron of 

an atom. If the photon energy (ℎ𝑣) is large enough, then the core electron will escape from 

the atom and emits out of the surface. The emitted electron with the kinetic energy of Ek is 

referred to as the photoelectron [145]. 
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Figure II-21. Representation of the photoelectric effect [Adapted from 146]. 

 

According to the Einstein equation [144] for the photoelectric effect, the kinetic energy of the 

photoelectron was related through the X-ray energy to an atomic binding energy as: 
 

𝐸𝐾 = ℎ𝑣 − 𝐸𝐵                                      (II.2) [147,148] 
 

where ℎ𝑣: X-ray beam incident energy or photon energy, 

𝐸𝐾: Electron kinetic energy of the photoemitted electron, and 

𝐸𝐵: Electron binding energy of the core level. 

    

Considering the photoemission process as sketched in Figure II-21; before the emission of the 

photoelectron, the total energy of the system is the energy of the X-ray ℎ𝑣 plus the energy of 

the target atom in its initial state Ei. By following the emission of the photoelectron, the total 

energy of the system is the kinetic energy of the photoelectron EK plus that of the ionized 

atom in its final state Ef. The total energies before and after photoemission, related to the 

Einstein’s equation, can be seen as if the “binding energy” EB of the electron is just the 

difference between the final and initial state energies of the target atom Ef – Ei [148].  

 

 

Figure II-21. Sketch of the photoemission process [Adapted from 148]. 
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According to the photoelectron emitted (Figure II-20), some atoms could lack electrons in the 

internal layers from which photoelectrons have been released. To get over this ionized state, 

the atom can emit another photon or undergo an Auger transition. For the absorption of a 

photon carrying energy of ℎ𝑣, there is an equation (II.3) that enables to explain the energy 

balance, based on the principle of the conservation of energy as [149]: 
 

           ℎ𝑣 = 𝐸𝐾 + 𝐸𝐵 + Ø𝑊𝑜𝑟𝑘 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛                  (II.3) [149]      

 

where Ø𝑊𝑜𝑟𝑘 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛: Energy required for an e- to leave the material, dependent 

of both the spectrometer and the material. 

 

     3.3.2. Instrumentation 
 

The XPS used for this thesis is a KRATOS AXIS NOVA from CIMPACA (Centre Intégré de 

Microélectronique Provence-Alpes-Côte d'Azur) characterization platform. The equipment is 

composed of a photoelectron extractor system along with an analyzer detector system, enable 

to generate spectra by their binding energies. The main characteristics of this XPS are: 

 Pumping system to achieve ultra-high vacuum (10-8 to 10-10 Torr). 

 Monochromatic X-Ray aluminum source (Al Kα =1486eV). 

 Delay Line Detector system, used for both spectroscopy and imaging modes. 

 Analyzer for separating the emitted electrons according to their kinetic energy and a 

counting system (associated with a computer acquisition). 

 Ion gun for performing analysis cycles / abrasion in depth. 

 Electron gun for the analysis of samples for electrical insulation. 

 Non-fixed holder, with possibility of movement for analysis ARXPS (3.3.4). 
 
 

     3.3.3. Spectral Analysis 
 

XPS analysis reveals which chemical elements are presented at the surface and it informs us 

about the chemical bound nature which exists between these elements [149] by measuring 

the kinetic energy of the ejected electrons from the analyzed surface. Thus, it is possible to 

determine their binding energy which depends on the analyzed element and its chemical 

environment. An appropriate data processing leads to the specimen elemental composition. 

The software used for analyzing the data collected during this thesis was CasaXPS. All the 

spectra analyzed during this thesis were obtained from cimpaca. 

The analyzed depth is dependent on the ability of electrons for reaching the surface. Since 

the emitted photoelectrons undergo inelastic collisions within the material and lose some 

part of their energy, only some of them will have enough energy to reach the surface and be 

collected. Therefore, the XPS analysis comes from the surface’s first 10nm [137]. 
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An example of an a-C:H sample that has been etched by using F-based chemistry, is shown 

in Figure II-22.  

 

Figure II-22. XPS general spectrum of a-C:H surface etched with CF4/CH2F2/He. 

By counting these electrons versus their binding energy, the general spectrum shown in 

Figure II-22 is obtained.  The peaks are indexed with the same name as the electronic layers 

where the photoelectrons come from. Each line corresponds to a given binding energy. Several 

tables have been set up to show which orbital is associated with each energy, even if in some 

cases there are several solutions.  

For the semi-quantitative analysis, high energy resolution (<0.6eV) spectra are required. 

Figure II-23 shows the XPS spectrum of the carbon C1s from the same analysis as the 

spectrum at low resolution (Figure II-22). 

 

 

Figure II-23. XPS high-resolution spectrum of carbon C1s. 
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By subtraction of the continuous background by the semi-empirical method of Shirley [150], 

which attempts to use information about the spectrum to create a background sensitive to 

change in the data, each XPS peak can be decomposed into its different components. In Figure 

II-23, for example, the C1s envelope has been resolved into four components that correspond 

to the signals of four different chemical environments (CI, CII, CIII and CIV). Unfortunately, 

by using XPS, the absolute concentrations of the different species presented in the analyzed 

surface cannot be determined. However, it is possible to determine the relative concentration 

of each element and therefore, to determine the total surface composition as an atomic 

percentage. In this thesis, the data treatment of the XPS spectra was carried out at cimpaca. 

Thus, in order to perform our analysis, we will present these results pre-treated such as they 

have been obtained. Further information about peak fitting in XPS can be found in 

[151,152,153].  

 

     3.3.4. Angle-Resolved XPS (ARXPS) 
 

The Angle-Resolved X-Ray Photoelectron Spectroscopy (ARXPS) enables the analysis of the 

surface composition by varying the angle of analysis of the XPS, unlike standard XPS which 

characterizes the composition of flat surfaces. This is highly interesting for characterizing 

the Sidewall Passivation Layer (SPL) that protects the structures from lateral etching 

[59,66,67,125,126]. It is in function of the angle of the analysis that the photoelectrons coming 

from the mask+bottom or mask+sidewalls would be differentiated. Figure II-24 sketches how 

the sidewall passivation layers are analyzed by using ARXPS.   

 

Figure II-24. Sketch of the ARXPS technique for analyzing the SPL [Adapted from 125,126]. 

However, not only by tilting the analyzer one can identify the contributions coming from the 

mask or the polysicon. For that purpose, we will use along with the ARXPS technique, the 

differential charging effect which takes place on the insulating analyzed surfaces due to 

the electron gun effect. In electron spectroscopy, the surface can be either positive or negative 

charged [154]. In fact, the photoelectrons coming from these insulating surfaces will see their 
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kinetic energy increase shifting the peak toward lower binding energies. Figure II-25 shows 

this effect.  

 

Figure II-25. Difference between a conductor and insulating material due to the electron gun 

influence [Adapted from 67]. 

 

As shown in this example, the contribution coming from the insulating surfaces can be 

separated from the ones coming from the conducting materials where the photoelectric peaks 

are not influenced by the electron flux. Here, the conducting material is the polysilicon and 

the insulating material is the mask. While the electron gun is OFF, the contribution of both 

materials overlap whereas that when the flux of electrons is turned ON, the mask 

contribution is clearly separated from the conducting material.  

The sample surface acquires a positive potential which varies from several volts and the 

kinetic energies of the photoelectrons are decreased by the electronic field. This means that 

Fermi levels of the sample and the spectrometer are no longer in equilibrium [154].  

 

For the development of this thesis, the analysis of passivation layers formed on the sidewalls 

with a a-C:H hard mask (Chapter III) are done by taking advantage of this method. Another 

method which profits the XPS analyses is the floating sample method, also used in this thesis. 

 

     3.3.5. Floating Sample Method 
 

During plasma etching processes, some material layers are deposited on the chamber walls. 

Since these layers are source of shifts in the etch process, Joubert et al [155] developed the 

so-called “floating-sample” technique in order to analyze these deposits. By using XPS, these 
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layers can be analyzed in order to know their chemical composition. For that purpose, a 

floating sample is set on the top of a wafer where the layers deposited are identical to those 

deposited on the chamber walls. The principle of this technique is illustrated in Figure II-26. 

   

Figure II-26. Floating-sample technique setup for measuring the chamber wall deposition 

[Adapted from 156]. 

 

Providing that the air gap between the floating sample and the wafer is large enough, the 

sample will be electrically floating while the silicon wafer is RF biased [155]. The air gap acts 

as serial condenser whose capacitance is small compared with the sheath. The floating 

sample experiences absolutely the same condition as the reactor walls so that the same 

deposit will be formed. Unlike the standard etching, where the wafer is submitted to 100eV, 

the ion bombardment for the floating sample as the reactor walls is around 15eV, so that 

related to the deposition instead of etching. 

In their studies [155, 156], the floating sample was transferred under vacuum to the XPS 

analyzer after the process. Thus, the chemical composition of the deposit formed on the 

sample could be analyzed quantitatively. In this thesis, an experimental study is conducted 

where different materials are sputtered in order to find out in which conditions the walls 

impact on the plasma composition. However, the transfer will not take place under vacuum 

since our XPS is not in-situ so that some contamination will be considered. The development 

and results of this procedure will be presented in Chapter IV. 

 

The thickness of the air gap has to be calculated in order to prevent the DC biasing of the 

floating-sample that happens when the RF voltage applied between the electrode and the 

plasma, drops across the equivalent capacitance represented by the air gap [155]. The air gap 

thickness is calculated following the equations by Ramos and Joubert [66,155].  
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The RF amplitude on the floating-sample can be calculated since the two capacitances are in 

series by; 
 

𝑉𝑠ℎ𝑒𝑎𝑡ℎ
𝑅𝐹 =

𝐶𝑔𝑎𝑝

𝐶𝑔𝑎𝑝+𝐶𝑆
 𝑉𝑅𝐹      (II.4) [66,155] 

 

 

where 𝑉𝑠ℎ𝑒𝑎𝑡ℎ
𝑅𝐹  is the power applied to the wafer, 

𝐶𝑔𝑎𝑝 is the equivalent capacitance of the air gap, and 

  𝐶𝑆 is the sheath capacitance.  

 

𝐶𝑔𝑎𝑝  and 𝐶𝑆 are respectively given by; 

 

𝐶𝑔𝑎𝑝 = 𝜀0𝜀𝑟𝑆/𝑑𝑔𝑎𝑝    (II.5) [66,155] 
 

𝐶𝑠 = 𝜀0𝑆/𝑑𝑠ℎ𝑒𝑎𝑡ℎ    (II.6) [66,155] 
 

where 𝜀0 is the permittivity of vacuum, 

𝜀𝑟 is the dielectric constant of the material below the floating-sample substrate, 

(being equal to 1 in the air gap case [155]) 

𝑆 is the area of the sample, 

𝑑𝑔𝑎𝑝  is the spacing between the sample and the wafer, and 

𝑑𝑠ℎ𝑒𝑎𝑡ℎ is the sheath thickness on the floating-sample. 

 

Plasma physics distinguishes two types of sheath [66]. For the first case, the sheath thickness 

is calculated according to the Child-Langmuir law (I.8) which can be applicable when 

𝑉𝑠ℎ𝑒𝑎𝑡ℎ
𝐷𝐶 ≫ 𝑇𝑒. For the second case, the sheath thickness is calculated according to the Debye 

length (I.4), which is applicable when 𝑉𝑠ℎ𝑒𝑎𝑡ℎ
𝐷𝐶 ≈ 𝑉𝑝 . The two cases can be considered 

respectively the upper and lower limit for self-bias but in fact, the floating-sample technique 

is between them. The result of our calculations can be found in Chapter IV. 
 

 

3.4. Scanning Electron Microscopy (SEM) 
 

The Scanning Electron Microscope (SEM) operates on the same basic principles as the light 

microscope but uses electrons instead of light. What one can see with a light microscope is 

limited by the wavelength of light. SEM uses electrons as "light source" and their much lower 

wavelength make possible to get a good resolution [157]. Therefore, the resolution is much 

higher than an optical microscope being in the order of nanometers but the images are 

obtained in black and white. In order to obtain all the information that SEM can provide, it 

is necessary an understanding of the major modes of microscopy and the electron beam 

parameters that affect them [158,159].  
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During the measure, a focused electron beam is scanned across the sample while secondary 

electrons emitted from the sample are collected. The orientation of the surface features is 

highly influent respect to the number of electrons emitted which creates variations in the 

contrast of the image. The electron probe of a SEM is scanned horizontally across the sample 

into two perpendicular (x and y) directions. The x-scan is relatively fast unlike the y-scan 

which is much slower [160]. In this work, a S-4800 FE-SEM from Hitachi was used for all the 

morphological cross section analysis. 

 

3.5. CD-Scanning Electron Microscopy (CDSEM) 
 

The CD-SEM (Critical Dimension-Scanning Electron Microscopy) used for controlling the CD 

[58], is a top view SEM, as it was introduced before (3.2). The images are automatically 

analyzed with detection algorithms. The objective is to determine the characteristic 

dimension of the structure. This dimension is called critical dimension, denoted by the 

following CD, and depends on the geometry analyzed [142]. The interest of this technique is 

that it allows measuring a large number of patterns in a short period of time. Therefore, it is 

one of the most used metrology techniques in the microelectronic industry [137]. For instance, 

for a transistor in top view represented by a polycrystalline silicon rectangle, the critical 

dimension will be the width of the rectangle.  
 

3.6. Transmission Electron Microscopy (TEM) 
 

It was invented soon before the SEM and is used as well for morphological characterization. 

Whereas the conventional SEM scans horizontally across the sample in two perpendicular 

directions, TEM uses a stationary incident beam [160]. The TEM allows us to measure the 

dimensions obtained after etching with a sub manometer scale resolution. In this technique, 

an electron beam is focalized normal to the sample and by the help of magnetic lenses, the 

electrons transmitted or diffracted by the sample are focalized in the plane of the image. 

Therefore, high resolution images can be obtained but the preparation of the samples is long 

and difficult. As well as SEM, to obtain all the information that TEM can provide, it is 

necessary an understanding of the major modes of microscopy and the electron beam 

parameters [161,162].  In this work, a CM 200-T from FEI was used for all the TEM analysis. 

 

4. SUMMARY 
 

 

In this chapter, the etching platforms, diagnostic tools and the methods used for the 

characterization of the etching process during this thesis, have been defined. In the chapters 

that follow, we will outline how we used these tools and we will present the studies and 

analyzes performed during this thesis. 
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“It was almost as incredible as if you fired a 15-inch shell at a 

piece of tissue paper and it came back to hit you” (E. Rutherford) 

 

Chapter III 

eSTM: Characterization and 

Process Optimization 
 

 

 
This chapter shows the characterization and optimization of the eSTM 

process. Firstly, the characterization of the different parts that interact 

during the process etch are discussed. Therefore, the diagnostics of the 

plasma itself and the composition of the surface layer being etched are 

studied, paying attention to the determination of the chemical composition 

of the passivation layer. Secondly, in order to optimize the CD 

performances, a model is proposed by using DOE. This model is able to 

predict and control the CD by establishing the units for the most important 

parameters. Finally, the conclusions of this chapter are discussed. 

 

 

 
 

 

TEM profile of the eSTM of this thesis.
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As it has been introduced in Chapter I, the eSTM aims at having the advantages of 

consumption and isolation from the EEPROM, due to its selection transistor, plus the 

advantage of the Flash by reducing its size.  

 

The chapter is organized as follows. Firstly, an introduction based on the literature review is 

presented followed by the experimental details related to the eSTM fabrication process and 

the etching specifications. Secondly, the characterization of the plasma and the wafer surface 

interactions are discussed, followed by the optimization of the CD developing a model by 

means of DOE. Finally, the conclusions of this study conclude this chapter. 

 

1. INTRODUCTION 
 

Besides the information of the eSTM introduced in Chapter I, this section seeks to increase 

the knowledge related to the state-of-the-art of this memory as well as the plasma etching 

challenges that has been faced for developing this structure (Figure I-11). 

 

1.1. Embedded Select Trench Memory (eSTM) 
 

Recently, demands for a higher density e-NVM (embedded Non-Volatile Memory) are 

increasing. At the same time, high performances of the cell are also currently requested since 

cell performances can be a speed limitation. The eSTM is a new disruptive NVM architecture 

for ultra-low power application developed at STMicroelectronics Rousset site. Table III-1 

summarizes the targets of this cell. 

Table III-1. Targets of the eSTM structure. 

Item Specifications 

Cell size <0.1 µm2 

Consumption during programing/erasing <10 nA/cell 

Cycling 500 Kcyc 

Retention 10 years 85°C 

Programming/erasing speed <1ms 
 

The main objectives during the development of the eSTM cell were: 

 To integrate the selection transistor for reducing power consumption. 

 To have a quite simple manufacturing process that approximates the one of the Flash. 

 To maintain a cell size close to that of a floating gate transistor.  
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In literature, one memory cell respects the first two criteria: the 2T cell (2 transistors), so 

this was our starting point. 

 

     1.1.1. The Starting Point: The 2T cell 
 

The 2T cell [169,170], represented in Figure III-1, counted with a selection transistor. This 

cell was particularly easy to perform with a standard CMOS process flow. 

 

 

Figure III-1. TEM cross-section of the two-transistor cell in 90nm technology node [169], 

where CG is the Control Gate, FG the Floating Gate and AG the Access Gate. 

One of the most important points in 2T-cells for eVNM applications is how to sustain or 

increase cell performance while cell size must be continually shrinking [170]. This 

disadvantage of size is due to the two transistors which are used for only one memory. It was 

therefore essential to find a solution able to reduce the size of this cell. Therefore, it was 

necessary to perform a new memory architecture. For the eSTM, the size of the cell was 

reduced by integrating a polysilicon vertical transistor but the process of integration of this 

transistor was pretty complicated. Before going into details of the process flow needed for 

obtaining the deep trench of the eSTM, it was important to search in literature if other 

polysilicon trenches had been already used. 

 

     1.1.2. Literature Review of the Polysilicon Vertical Trenches 
 

In the literature, deep trenches are used in various ways such as insulators, inductors, DRAM 

capacitors or floating gate transistors. 

 

1.1.2.1. Polysilicon Trenches Used as Insulators: 

For the good performance of the IC, it is important to keep the structures isolated between 

them. However, with the decrease of technological nodes, the structures are getting closer 

and closer, increasing negative effects as leaks. In order to reduce these effects, polysilicon 
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deep trenches have been used to improve the insulation of the structures [171-173]. In 2004, 

A. Watson and S. Voltman [171] demonstrated the influence and improvement of Deep Trench 

(DT) isolation and Sub-collector on the Latchup Robustness in BiCMOS Silicon Germanium 

Technology. As a result, significant improvements of latchup robustness were demonstrated 

with the trench structure, which implied an advance in the understanding of the influence of 

deep trench on CMOS latchup robustness. Figure III-2.c shows the Latchup Structure with 

the Deep Trench and Sub-collector. A. T. Tilke et al [172] presented in 2006 a novel buried 

integration for compact cell design with Deep Trench Isolation (DTI). In their paper, they 

reported the working principle of the novel buried bitline cell where a novel deep trench 

isolation module was added to shallow trench isolation. In 2007 [173], they outlined an even 

more aggressive shrink was feasible by using a self-aligned STI-on-DTI concept used for the 

integration of an embedded flash memory in a high-performance CMOS logic process. The 

schematic layout of the eFlash array with DTI are shown in Figure III-2.a as well as the TEM 

cross-sectional micrographs of the DTI/STI in Figure III-2.b. 

 

Figure III-2.  Two different application of polysilicon trenches used for transistors insulation. 

a) schematic layout of the eFlash array with DTI [173], b) the TEM cross-sectional of the 

DTI/STI [173] and c) polysilicon trench used as insulating ring to surround the structure [171]. 

The first application [173] was used for the integration of an embedded flash memory in a 

high-performance CMOS logic process. Here, the DTI was placed between the two memory 

transistors below the STI. The dimensions of the DTI were 1.5 to 3μm depth and a length of 

160 to 180nm fully filled with polysilicon. In the second application [171], the polysilicon 

trench was used as insulating ring to surround the structure. The length was not specified 

but the depths of the trench varied between 1 and 6μm. In both cases, the presence of a 

polysilicon trench was used to improve the device performance.  

 

1.1.2.2. Polysilicon Trenches Used as Inductors: 

Another possibility was to use the polysilicon trenches in order to improve the performance 

of the inductors. In 2006, H-L. Tu [174], showed that the deep-trench-mesh pattern 

significantly improves the inductor performance with higher resonant frequency and higher 

peak in broadband response. The integration of these deep trenches improved the inductors 
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in two ways; increasing the resonant frequency by decreasing the capacity coupling and/or 

increasing the quality by reducing the resistive losses. Figure III-3 shows the necessary steps 

followed for performing a deep trench. 

 

 

Figure III-3.  Steps for improving an inductance by integrating polysilicon lines [ 174], where

 a) Standard substrate, b) Deep trenches substrate, c) Side view of inductor of deep 

trenches and d) Mesh-like deep trenches beneath the inductor. 

 

1.1.2.3. Polysilicon Trenches Used as Capacitors for DRAM: 

Another use of the polysilicon deep trenches was as trench-capacitor in volatile DRAM 

memories as described by H. Sunami in 2008 [175]. In this paper, the author described the 

circumstances of invention and development of the trench-capacitor DRAM cell. The 

invention of the trench-capacitor DRAM was patented in 1975 but the first trial development 

was presented in 1982 in I-Mbit DRAM era. Those volatile memories were composed of a 

transistor and a capacitance. Figure III-4.a presents the different approaches that have been 

provided in order to improve both the performances and the size of the cell. Figure III-4.b 

shows a deep polysilicon trench used as buried capacitor. 

 

           

Figure III-4.  a) Major advancement in DRAM cell innovation and b) First I-Mbit DRAM with 

trench capacitor [175]. 
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1.1.2.4. Polysilicon Trenches used as Floating Gate Transistor: 

In literature, the deep trench has been also used as floating gate [176-178]. In 2004, D. Lee et 

al [176] presented the structural and electrical characteristics of the latest generation of a 

self-aligned split-gate NOR memory incorporating a vertical floating-gate channel. Their 

results demonstrated the continued scalability of the SuperFlash cell for high-density, high-

speed applications. Two years later, H. Van Tran et al [177] showed an experimental 0.11um 

4.5F2 1.8V multilevel 1Mb vertical floating gate split gate source side injection (SSI) test 

vehicle for Giga-bit NOR flash memory for the first time. In 2007, B. Chem [178] exposed the 

highly reliable Low Power SoC throughout the three generations of SuperFlash embedded 

memory.  

The cell structure, the process sequence and the final trench [176-177], whose dimensions 

were 200nm depth and 280nm longer, are represented in Figure III-5. The polysilicon, 

deposited after the oxide (the tunnel oxide), is etched to obtain the spacers which will be the 

floating gate of the memory.  

 

 

Figure III-5.  a) cell structure, b) process sequence where (1) is the trench post etch, (2) the 

polysilicon deposition, (3) polysilicon etch for creating the spacers and (4) oxide deposition and 

c) is the profile of the final trench [176]. 

So far, different kinds of polysilicon trenches has been used in literature. In this research, 

the architecture of the eSTM uses the polysilicon trench as vertical transistor.  

 

     1.1.3. The Polysilicon Trench of the eSTM: The Vertical Transistor 
 

As we introduced in 1.1.1. the starting point for the eSTM architecture development was the 

2T cell. Apart from its size, this cell was a very interesting memory since its manufacturing 

process was compatible with the CMOS process. In order to reduce its size, its two selection 

transistors have been merged into a single vertical transistor reaching the size of a flash for 

this new cell. The polysicon trench of the eSTM is, hence, used as vertical transistor as shown 

in Figure III-6. This made the manufacturing process more complex but still compatible with 

CMOS process as for the flash. This manufacturing process will be detailed in section 2. 
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Figure III-6.  Polysilicon trench used as vertical transistor for the eSTM. 

 

 

This structure, developed by STMicroelectronics in 2012 [53,54], uses the polysilicon trench 

as vertical transistor. The Niso serves to isolate the transistors from the substrate and as 

source line allowing earn a contact. Two floating gate transistors are located on both sides of 

the vertical transistor. The polysilicon trench, whose characterization and process 

optimization are the purpose of this chapter, requires a width of 150nm and a depth of 450nm 

in order to reach the Niso. A perspective of the trench is represented in Figure III-7 together 

with a SEM cross-section of its profile. 

 

Figure III-7.  a) Schematic representation of the trench after etching and b) SEM cross-section. 

 

Since the good integration of this trench is critical for the cell performance, the step of plasma 

etching needs to be carefully studied in order to perform a required and reliable trench. For 

that purpose, some plasma etching considerations have been taken into account and the 

literature review related to this subject is presented in the next section. 

 

1.2. Plasma Etching Considerations 
 

The dimensional control is very important for the realization of small structures. However, 

the speed of etching remains a secondary aspect since the thicknesses of the layers used are 

thin and the most important thing to consider is the plasma chemistry used.  
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In the previous section, the polysilicon trench was named as deep trench, from a standpoint 

of plasma etching; this changes. Deep trench, in plasma etching, refers to an attack of several 

tens to hundreds of silicon’s microns, which is not the case of the nanometric dimensions 

required for performing CMOS transistors as explained in the previous section. For deep 

silicon trenches there are different methods such as BoschTM, cryogenic or STiGerTM, among 

others [67]. However, within the framework of this thesis, for an etch of 700nm as is required 

for the eSTM trench, the importance relies in knowing the plasma chemical considerations 

as well as the factors involved for a directional and selective etching. It is therefore presented, 

in this section, an analysis of considerations of the etch directionality and etch selectivity as 

well as a review of the literature on plasma chemistries used for polysilicon trenches.  

 

     1.2.1. Pure Plasma Chemistries 
 

A large variety of fluorine, chlorine, bromine, hydrogen and oxygen based plasmas mixed 

with gas additives are used in semiconductor industry. The chemistry used varies depending 

on the material used. During the etching of the eSTM trench, two materials must be 

considered; Si and SiO2. As sketched in Figure III-7, the eSTM trench is composed of 

polysilicon alternating with the silicon dioxide of the STI. If remembering the STI process, it 

involves the etching of a pattern of trenches in the silicon and depositing one dielectric 

material (SiO2) to fill the trenches. Table III-2 summarizes the reactive gases used for those 

materials. 

Table III-2. Reactive gases used for Si and SiO2. 

Material Reactive Chemistries 

Si 

CF4/O2, BCl3 [70], CCl4, CF3Br [70,184], SiCl4 [183,184] 

Hl [179], BCl3/Cl2 [180,183], Br2/SF6 [181, 183] 

SF6, HBr, Cl2, NF3 [70, 179, 180, 182], CF4 [179, 183,184] 

BCl3/Cl2 [180, 181], HBr/Cl2/O2, HBr/O2 [180, 181, 183] 

SF6, Cl2 [70, 179, 180, 182, 183, 184], Br2 [184] 

SiO2 

CF4 [182,183,184], CHF3 [179, 182,184] 

C3F8, C5F8 [180, 182, 183,184], C2F6 [179, 180, 182, 183,184] 

F4/H2, CHF3/C2F6, CHF3/CO2 [70], CCl2F2 [181,183] 

C4F8, SF6, NF3 [179], CHF3/CF4, CHF3/O2, CH3CHF2 [181] 

CF4/O2, CF4/CHF3/Ar, C4F8/CO, CH2F2 [180] 

 

The most used chemistries for etching silicon are hydrogen- and halogen-based plasmas (F, 

Cl, Br) due to their high etch rates. Whereas F-based plasmas are generally used for isotropic 

etching, Cl- and Br-based plasmas are primarily used to achieve anisotropic etch profiles [88]. 

Generally, plasmas with large amounts of F atoms generation will etch Si faster than 

plasmas that contain large amount of Cl or Br, but profile control is harder to achieve, due to 
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the fast-isotropic etching by F atoms. For the case of etching silicon oxide, as for other 

dielectrics etching, the most used chemistries are fluorocarbon and hydrofluorocarbon 

usually with some additives [182]. To etch, chemical bonds need to be broken, so reactions 

that lead to bond stronger than Si-Si will etch silicon, and reactions that lead to bond stronger 

than Si-O will etch SiO2. F-, Cl- and Br-based plasmas will etch the silicon because Si-

halogens bonds are stronger than Si-Si bonds, however, only Si-F is stronger than Si-O bond 

and thus only F is preferred to etch SiO2. Nevertheless, because of the ion bombardment, 

SiO2 slightly etched in Cl- and Br-plasmas [185]. A brief introduction to some pure plasma 

chemistries such as F-, Cl-, Br-plasmas, are presented here: 

 

 Fluorine-based Plasmas 

Fluorine plasma with silicon, as silicon dioxide, proceeds spontaneously without ion 

bombardment, inducing high etch rates and profiles nearly isotropic. Often, 

chlorofluorocarbons (CFC) are used to produce polymers deposition in parallel with the 

etching process and polymerization occurs simultaneously. Adding Hydrogen causes HF 

to form and the F/C ratio to drop, leading to more polymerization and less etching [183].  
 

 

 Chlorine-based Plasmas 

Si and SiO2 are not etched spontaneously at room temperature by Cl atoms making only 

ion-induced possible which is useful for etch directionality [186]. Chlorine atoms 

chemisorb on Si and form an ordered Cl monolayer which is barely influenced by 

temperature and will “inhibit” etching. 
 

 

 Bromine-based Plasmas 

The low spontaneous etch rate of Si and SiO2 with Br atoms, by creating a Br monolayer, 

has received considerable interest in RIE [187]. Including HBr in plasma the gas mix 

results in an improved etch profile. There are less undercut, more vertical sidewalls, and 

flatter trench bottoms, which are really important for high aspect ratio trenches. It is 

highly used since it makes the profile more anisotropic than when using Cl2 alone being 

besides very selective [180].  

 

Usually when selecting the chemistry, noble gases (typically Ar or He) are considered because 

they stabilize and homogenize plasmas that otherwise constrict or oscillate in the reactor. 

Furthermore, the “inert” addition can enhance anisotropic etching due to its effect on the 

sheath potentials [184]. For instance, Br-containing plasmas have tendency to form localized 

discharges under normal RIE processes conditions, which can be mitigated by diluting the 

HBr. Helium has been demonstrated to be effective for this purpose [188]. 
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However, the chemistry selection requires some other criteria besides the nature of the 

materials being etched. Between these other criteria, the etch directionality and the etch 

selectivity are explained as follows. 

 

     1.2.2. Etch Directionality in RIE 
 

Etch directionality is due to directed energy input into an etching reaction at a surface and 

can be accomplished by neutral, ion, electron or photon bombardment of a surface exposed to 

a chemical etchant [70,88]. 

 

1.2.2.1. Fluorine- vs Chlorine- vs Bromine-based Plasmas 

Etching can be accomplished using F-, Cl-, and Br-based chemistries, which in all the cases, 

generate volatile etch products such as SiF4, SiCl4 and SiBr4, respectively. In order to get a 

good directional etching, F-based is not the most suitable choice, since it results normally in 

a large undercut of the masking layer, indicating a large chemical etch rate [70]. As explained 

before, Chlorine and Bromine-based chemistry are primarily used for anisotropic etching 

profiles. Etch directionality can be explained by the fact that Si and SiO2 are not 

spontaneously etched by Cl and Br atoms [186]. Furthermore, the F-C bond is stronger than 

the Cl-C or Br-C bond, so the electron impact dissociation of the mixed halocarbons produces 

especially Cl or Br atoms and the etching characteristics using these discharges are Cl- or 

Br- like. In both cases, for Cl- as Br-plasmas processes, a vertical sidewall inherently appears 

and helps therefore the vertical etching [185]. 

 

1.2.2.2. Etch Directionality Through Sidewall Passivation 

The anisotropy control can be also obtained by the formation of a passivation layer on the 

sidewall which protects it from spontaneous etching reactions [179], as shown in Figure III-

8. The formation of the sidewall passivation decreases the lateral etch rate compared to the 

etching where no sidewall passivation occurs. Hence, these sidewalls passivation are the key 

to achieve directionality etch. 

 

 

Figure III-8. Schematic of etching profiles a) without sidewall passivation and b) with the 

passivation [Adapted from 70]. 
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The passivation prevents the sidewalls of the trenches of being exposed to ion bombardment 

and they will be covered by the etch-inhibiting film and prevents mask undercutting. The 

bottom of the trench which is exposed to ion bombardment is free from passivating film and 

etching reaction can proceed [70]. This is why sidewall passivation makes possible to achieve 

directionality. In addition, passivation of the sidewalls is observed for most reactive 

chemistries. It uses as precursor erosion and redeposition of masking material or formation 

of etch products with low volatility and redeposition. On the other hand, the presence of these 

passivation changes the etch rate, mask selectivity, etc. Thus, the control of the composition 

and the formation of the passivation layer is highly important for controlling the trench 

profile. This is why an important part of this thesis is related to the analysis of the 

passivation composition formed during the eSTM trench (3.2). 

 

     1.2.3. Etch Selectivity in RIE 
 

Pattern transfers require that a substrate material would be preferentially etched with 

respect to the masking layer but also to other materials. A partially selective process can 

usually be improved by controlling the temperature or by using additives. For instance, the 

selectivity for F atoms etching Si over SiO2 decreases exponentially with temperature [184]. 

Hence, selective-controlled materials etching is an essential part of plasma chemistry 

selection. 

 

    1.2.4. Literature Review on the Mechanistic Studies of Si and SiO2 Etching 
 

Since the eSTM trench, object of study in this chapter, implies the etching of Si and SiO2 

(STI), a brief state-of-the-art looking for the mechanistic studies of mixed plasmas 

chemistries used for etching those materials in the literature, is provided in this section. In 

most cases, a specific gas mixture or “recipe” is created for etching, taking into account the 

materials and the effect of the additives.  Certain insights as the effect of the oxygen, 

hydrogen, nitrogen or other gas additions should be considered when creating the recipe 

[88,70,182]. Beyond this, some examples from the literature where mixed plasma chemistries 

have already been studied for etching Si as SiO2 are presented.  

 

1.2.4.1. Literature Review of Si and SiO2 Etching in Fluorocarbon Plasmas  

It is well known that F atoms are responsible for etching SiO2 at room temperature unlike 

Cl, Br and H do not react with this material. Even if slowly, F atoms react with SiO2 under 

these conditions. Furthermore, ion bombardment greatly accelerates this process. However, 

to satisfy the constraints of selectivity between SiO2 and other materials (such as Si, Si3N4…) 

strongly polymerizing chemistries are required. This is why Fluorocarbon plasmas are 

used for selective etching of SiO2. By using fluorocarbon plasmas, neutral CFx radicals and 



CHAPTER III. eSTM: CHARACTERIZATION AND PROCESS OPTIMIZATION 

 

84 
 

ions bombard surfaces and lead to the formation of a fluorocarbon film. It passivates the 

wafer surface by polymeric deposition, which is the most important aspect of etching SiO2 in 

fluorocarbon-based plasmas [182]. This process is a competition between the deposition of the 

passivation film and the etching itself as represented in Figure III-9. 

 

 

Figure III-9. The influence of F/C ratio and electrode bias voltage on etching and polymerization 

processes in a fluorocarbon discharge. [189,190]. 

 

Figure III-9 summarizes the study of the etching mechanism by using fluorocarbon plasmas 

which were extensively described by E. Hay et all in 1980 [190]. Unlike processes that rely 

on a sidewall film to suppress etching, the fluorocarbon film supplies reactants that are 

activated by ion bombardment. The film also improves selectivity toward etching of Si. If the 

deposition rate is too fast, then the film continues to thick and no etching occurs [182]. The 

polymerization has several origins; the passivating species may come from the gas phase (by 

deposition of etching products or by condensation of the species on the gas phase) or from the 

redeposition of species sprayed from the bottom of the trenches. Oehrlein et al have 

extensively studied these etching mechanisms for SiO2 in fluorocarbon plasmas [191-194]. 

They have identified three distinct etch regimes mechanisms for SiO2 (see Figure III-10.a) 

and have named them as: the fluorocarbon film deposition regime, the fluorocarbon 

suppression regime and the oxide sputtering regime. They also explained that the deposition 

rate of the fluorocarbon film depends on gas composition and self-bias voltage, as E. Kay et 

all. Under conditions when the etching rate for the fluorocarbon film is much slower than the 

deposition rate, a thick film grows and no etching occurs. If conditions are such that the film 

etching rate is much greater than the deposition rate, then little if any film will form on Si 

or SiO2 [194]. Figure III-10.b shows the results of their study related to the deposition and 

etching rates of the film deposited in fluorocarbon plasmas for different feed gases as a 

function of the DC-bias voltage and hence ion bombardment energy.   
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Figure III-10. a) SiO2 etch rate as a function of RF bias power level (40sccm CHF3, 10mTorr 

operating pressure, 1400W inductive power) b) Fluorocarbon etch rates as a function of self-bias 

voltage at 6mT operating pressure in 1400W discharges fed with fluorocarbon plasmas [194]. 

 

In parallel to these studies, Coburn started to investigate the formation of these fluorocarbon 

films on Si and SiO2 in CF4/H2 plasmas [195], where more carbon deposition was observed on 

the Si surface relative to the SiO2 surface as hydrogen was added to the CF4 plasma. He 

attributed the high selectivity of etching SiO2 over Si to this difference in film thickness 

formed on Si and SiO2. After Coburn, the role of hydrogen on the etching process has been 

extensively investigated in the literature. Standaert et al [196] reported the etching of silicon 

through a thick fluorocarbon layer for silicon etching in CHF3, C3F6, C2F6 and C3F6/H2 

plasmas. By studying the role of H2 they saw a change in the refractive index of the thick 

passively deposited fluorocarbon layer, where it was concluded that the composition of the 

fluorocarbon layer changes upon hydrogen addition. The H in the layer suppresses the F flux 

towards the silicon interface by the formation of volatile HF in the steady state fluorocarbon 

layer. This results in a thicker fluorocarbon layer and the suppression of the silicon etch rate. 

Roland et all [196] also studied the role of the fluorocarbon layer while proposing a new high 

density plasma SiO2 etching process based on CHF3/CH4 mixture. They demonstrated that 

adding CH4 to CHF3, the SiO2/Si selectivity improves considerably, through the formation of 

a thick fluorocarbon layer on Si. During the study, they were focused on the understanding 

of the deposition of this layer on the SiO2 which played an important role in the etching 

mechanism and the role of neutral species such as CxHy and CxHyFz were pointed out for the 

fluorocarbon deposition mechanism. In summary, etching performances can be modified by 

using hydrofluorocarbons with F/C ratio less than 3, such as CHF3 and CH2F2, to increase 

the selectivity [119]. Hyun-Kyu et al [197] showed that the addition of CH2F2 enhanced the 

production of fluorocarbon films by reactive C-F species, resulting in more fluorocarbon films 

deposited on the photoresist layer and the sidewalls compared to the CH2F2 being absent. 
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This finally led to drastic improvements in the critical dimension loss and the profiles. Figure 

III-11 shows the trench profile manipulation by decreasing the F/C ratio when inducing H2.  

 

  

Figure III-11. Trench profile manipulation of the F:C ratio through hydrogen introduction [119]. 

 

The addition of amounts of O2 is also known to play an important role in the mixed gases 

by increaseasing dramatically the F-atom density, thus etch rate in the discharge as it was 

described by D’Agostino et al [198]. Mogab and co-workers also presented the effect of oxygen 

additions to CF4 plasmas for etching SiO2 and Si [199]. They showed that for SiO2, the 

variation in etching rate with O2 is accounted by a proportional variation in F, the active 

etchant. As for the silicon, the etching occurs by a reaction with F atoms. Other gas additives 

have also been studied in the literature. Noble gases such as argon and helium have been 

added, as explained before, to stabilize plasmas. Xi Li and co-workers presented in 2002, the 

effect of Ar and O2 additives on SiO2 etching in C4F8-based plasmas [200]. They did a 

comparative gas-phase study of C4F8, C4F8/O2 and C4F8/Ar plasmas. When a strong reduction 

of the fluorine content of the fluorocarbon steady-state layer, an increase in the thickness 

was seen. This was observed when up to 90% Ar was added to C4F8, coinciding with an 

increase of the Si/SiO2 etching selectivity. They explained this change in the fluorocarbon 

surface chemistry by the strongly increased ion/neutral flux ratio characteristic of Ar-rich 

C4F8/Ar gas mixtures. Later, they presented their study about the characteristics of C4F8 

plasmas with Ar, Ne and He additives for SiO2 etching [201]. With their conditions (600W 

and 20mTorr), Ar addition gives rise to the largest ion current density, and He to the smallest 

ion current density. Fluorocarbon deposition rates on unbiased Si substrates were measured 

and was greater for C4F8 discharges with Ne or He additives than when Ar was added. Zhang 

and Kushner [202], in their study of the surface reactions during C2F6 plasmas etching SiO2, 

developed a surface reaction mechanism for fluorocarbon plasmas. The mechanism describes 

the polymerization process as resulting from neutral sticking, ion sputtering, F atom etching, 

and low-energy ion assisted deposition. The etch mechanism is a multistep passivation 

process which results in consumption of both the polymer and the wafer, as represented in 

Figure III-12. The major steps in the mechanism proposed in their study were as follows. 

Polymer layers grow on the SiO2 surface by CxFy deposition. Low-energy ion bombardment 

activates polymer surface sites while ion sputtering (F atom etching) and ion assisted 

polymer–wafer interactions consume the polymer. A steady state thickness of the polymer 
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may be reached as a balance of its deposition and consumption. SiO2 etching results from a 

polymer–wafer interaction which consumes both the SiO2 wafer and the polymer. 

Chemisorption on SiO2 sites from either the polymer or directly from the plasma produces 

SiFxCO2 which dissociates to SiFx sites upon ion bombardment or F atom interaction. The 

SiFx species are then removed by either ion chemical sputtering or F atom etching. The 

polymer passivation layer limits mass diffusion and dissipates energy. Thus, the rates of 

reactions involving energy transfer or species diffusion through the polymer, depend on the 

polymer thickness [202]. 
 

 

Figure III-12. Schematic of the surface reaction mechanism for fluorocarbon etching of SiO2. I+ 

represents ion species, the dashed lines represent energy transfers through the polymer layer and 

the curved lines represent species diffusion through the polymer [202].  

So far, numerous studies of etching Si and SiO2 in fluorocarbon plasmas can be found in 

literature. Here, some examples showed up that when using CxFy radicals as the precursors, 

a fluorocarbon passivation film is formed. Furthermore, this etching is conditioned by the     

F/C ratio which is strongly influenced by the bias power. When including some additives in 

the plasma, the chemistry turns about a more selective one and the etch profile becomes 

much more anisotropic. 

 

1.2.4.2. Literature Review of Poly-Si Etching in Halogen Plasmas 

When etching only Poly-Si, several gas combinations are used in RIE reactors to produce 

vertical trench sidewalls. These etch chemistries have evolved from F to Cl to Br. 

Furthermore, the chemical etching of Si by halogen atoms at room temperature follows this 

trend (F>Cl>Br), but the dopant type and level highly affects the Cl and Br reactivity [182]. 

When etching with fluorocarbon plasmas, the mechanism related to the passivation are 

identical to those described above for the SiO2 etching (1.2.3.a). SF6 plasmas have been 

extensively studied for etching vertical profiles, but it is always necessary to include an 

additive since, alone, they cannot etch anisotropically. Gomez et al [203], explained that the 

anisotropy cannot be reached without adding O2 when etching with SF6 plasmas. They 
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explained that increasing the SF6/O2 ratio in the feed gas increases the F/O ratio in the 

plasma and so the sidewall passivation by O atoms cannot keep up with the chemical etching 

by F atoms. As the F-to-O ratio is decreased, effective sidewall passivation by O2 results in 

nearly vertical sidewalls. The temperature plays still an important role in these processes. 

One year later, they studied the SF6/O2/Cl2 plasmas [204], in order to increase the vertical 

etching rate by creating volatiles species such as SiCl4 besides the SiF4. In this case, the 

passivation layer created was SiOxCly. Hwang et al [205], were the first interested in the use 

of Br for etching silicon, since it does not generate a chemical etching. In 2005, Gomez et al 

[204], taking advantage of this, used the HBr in complement to the gas mixture SF6/O2. They 

found out that by using SF6/O2/HBr the H2 molecules coming from the dissociation of the 

HBr were able to modified the F-/O ratio of the plasma and the etch kinetics. This is because 

H2 causes a reduction of the F concentration in the gas phase of the plasma. However, in 

terms of selectivity (Si/SiO2), Cl2, HBr, or their mixture are better choices when vertical or 

near vertical walls are desired. Nevertheless, when using Cl or Br there is no deposition layer 

(passivation) on the sidewalls, but profile control and loading are easier to achieve than by 

using F due to the fast isotropic etching by F-atoms. In order to improve the anisotropy of the 

process when etching with Cl2 and/or HBr is necessary to add a passivating component. 

The role of O2 addition is therefore highly important. When etching with SF6 the O2 is 

needed for controlling the anisotropy of the process by creating thin SiOxFy layers. When 

etching with Cl2 and/or HBr, O2 is required for reaching vertical trenches with the help of the 

sidewall passivation. Without this addition, neither Cl2 nor HBr could generate this layer. 

Mainly, the O2 addition contributes to the sidewall passivation but also improves selectivity 

to underlying oxygen-containing layers such as SiO2 [182]. Furthermore, the O2 addition has 

also an impact on the profile in function of the mask [179]. With a resist mask, stronger mask 

charging and sidewalls attack (foot removal). With a hardmask, higher ion flux and 

availability of O2 for creating SiOxBry/ SiOxCly formation.. This is sketched in Figure III-13.  

 

 

Figure III-13. Effect of the O2 when using a resist mask (a) and a hardmask (b) [179].  

Chang et al [206], studied the effect of O2 addition, microwave power and RF power for a high 

selective etching of polysilicon with the three halogen-bearing plasmas (SF6, Cl2, and HBr). 

They found out that the maximum etching rate and selectivity in the three cases occurred at 

concentrations where oxygen was added; about 7.5% for SF6 plasmas, 5% for Cl2 plasmas and 

3% for HBr plasmas. Furthermore, they observed that the selectivity to oxide was related to 
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the amount of silicon halides that were produced during poly-si etching and the electrically 

polarized level of these products when they adsorb on the oxide surface. They concluded that 

the selectivity on oxide is approximately infinite for the HBr system. In their study, they 

proposed the HBr gaseous system for satisfying the VLSI applications since it exhibited 

excellent etching characteristics. In contrast with the SF6 gaseous system that obtained the 

lowest selectivity and anisotropy among the three gaseous systems studied. Several studies 

have been carried out for the etching of Si with Cl-based plasmas obtaining good results, as 

the one of Schwartz and Schaible [207] who studied the etching of Si using Cl/Ar RIE. In their 

study, the use of Cl2 resulted in very directional profiles. When etching silicon using Cl2/O2 

and even Cl2/O2/HBr plasmas leads to SiOxCly-like passivation on the sidewalls. Typically, a 

composition gradient is presented: the surface layer is more Cl-, H- and Br-rich, while the 

bulk layer is more oxidized [208]. Recently, the use of Br chemistry has received 

considerable interest in RIE. Bestwick et al [188], studied the characteristics of Si and SiO2 

etching in HBr reactive ion etching plasmas by measuring etch rates, optical emission, cross‐

sectional analysis, and XPS analysis. They found that the reaction layer on silicon due to HBr 

reactive ion etching is typically very thin, of the order of 1 monolayer thick. Fukasawa and 

co-workers [209], characterized the structural and electrical properties of HBr/O2 plasma 

damage to the Si-substrate. They saw that in the case of HBr/O2 plasma-induce damage, H 

generates the deep damage layer and ion-enhanced diffusion of oxygen causes the thick 

surface oxidation.  Etching with HBr implies low etch rate and the formation of residues on 

the wafer and the chamber walls. But, as Chang et al proposed [206], the HBr gaseous system 

exhibited excellent etching characteristics. Some of the most important reasons for moving 

to HBr are its better selectivity, more isotropic profile, and mainly less formation of micro-

trenching. Vyvoda et al [211], studied extensively the effects of plasma conditions on the 

shapes of features etched in Cl2 and HBr plasmas. Figure III-14 shows the evolution of the 

microtrenching in time by using Cl and HBr. As it can be seen, even if with the time both 

systems have been improved, microtrenching is much worse when using Cl2 than HBr. 

 

 

Figure III-14. Microtrenching evolution in time for Cl-plasmas (a) and HBr-plasmas (b) [210,211].  

In their study [211], they observed microtrenching formations under certain plasma 

conditions and they proposed that it could be reduced by using higher bias powers. When a 
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HBr plasma was used instead of Cl2, the etching rate decreased by 50%, but the etching 

profiles were more vertical and the trench bottoms were flat. They found as well, some 

isolated lines etched in the HBr plasma, which revealed broad but shallow microtrenches 

near the edges of the line. However, the microtrenching was much worse for Cl2 than HBr 

plasmas. 

Hence, experimental results from different studies, confirm that the use of halogen gases are 

useful plasma sources for Si etching applications. Mainly, Cl2 and HBr are highly 

recommendable when vertical trenches are targeted. Being the Cl2 more suitable when high 

etch rate is necessary and HBr when really small features are sought, since it is able to reach 

more isotropic profile without microtrenching formation. Furthermore, it is the most selective 

when adding O2. The experimental details as well as the selected chemistry used during this 

study will be detailed in next section. 

 

2. EXPERIMENTAL APPROACH 
 

Besides the information of the eSTM introduced in Chapter I and 1.1.3, this section seeks to 

increase the knowledge related to the experimental details that would be necessary for the 

understanding of the rest of the chapter; the characterization and optimization of the process 

etch. For that purpose, the technology and the specifications of the etching process will be 

presented in this part. 

 

2.1. Fabrication Process  
 

The operation of the eSTM cell is identical to a NOR Flash with a selection transistor. This 

new technology, the eSTM, is based on another technology already in production at 

STMicroelectronics, the M10+. However, some constraints are linked to the process of 

realization of the vertical transistor, since it is completely new. The fabrication of the cell 

consists of a succession of steps, similar to the Flash but with additional steps that are 

explained as follows.  

 

     2.1.1. The Necessary Steps for Reaching the eSTM Trench 
 

The eSTM trench after etching was sketched together with a SEM section in Figure III-7. 

Here, the main steps for performing this trench are represented in Figure III-15. These steps 

share the standard flash steps. Once the active/STI are defined, the STI is filled with SiO2. 

Then, a perpendicular trench to the active lines is created. To do this, a hardmask is required. 

This hardmask will allow the etching of the active/STI areas while protecting those other 

areas that should not be etched. Details about this hardmask are described in 2.2.1. When 
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the photolithography step ends with the masking and photolithography, the etching of the 

eSTM trench starts. The etching process, that will be explained in details in the following 

sections, could be divided into 2 main etch steps. The first one consists in etching the Si 

together with the SiO2 (STI). The second one is the final one since will reach the required 

dimensions for the eSTM trench into the silicon (7000Å).  Afterwards, the trench will be filled 

with polysilicon. Since this study is based on the characterization and optimization of the 

plasma etching process involved for the creation of this trench, further details about the 

following steps are not necessary. However, specifications about the process etch will be 

presented in 2.2. 
 

   

Figure III-15.  Schematic representation of the main steps for performing the eSTM trench.  

 a) starting from the standard flash active/STI, b) masking and photolithography, c) etching 

the first part of the trench and d) final etching step for reaching the eSTM trench. 

 

The residues of polysicon of the Figure III-15.d are due to the chemistry used for etching that 

will be explained in the following section.  

 

     2.1.2. The Selected Chemistry for the eSTM Trench 
 

In order to choose the suitable chemistry for etching the trench of the eSTM, two main steps 

have been considered. The first step required the etching of SiO2 of the STI together with the 

silicon of the trench. The second step starts when the STI ends and just the silicon needs to 

be etched. Figure III-16 schematizes the two main steps of the trench. For the first step 

(Si/SiO2), the selected chemistry was CF4/CH2F2/He; whereas that for the second step (Si), 

the selected chemistry was HBr/O2/He. The decision was based on the needs of each process. 

The first step required a strongly reactive chemistry since it was necessary to etch both Si 
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and SiO2 at the same time. The second step required a highly selective chemistry. Based on 

these requirements and with the background of the literature for etching Si and SiO2 

presented previously in 1.2.4, an F-based chemistry was the most suitable in terms of 

reactivity for the first step as a Br-based was the adequate for performing a selective deep 

vertical trench. In the first step, we chose CF4 as main gas but etching together with CH2F2. 

By adding CH2F2 gas, the production of fluorocarbon films by reactive C-F species is 

enhanced, as explained before. Even the etch selectivity to photoresist was also enhanced in 

the presence of CH2F2 due to hydrogen atoms as well as reactive C-F species. In the second 

step, the HBr was selected because of its selectivity. Moreover, by adding O2, the passivation 

on the sidewalls occurs easily. However, during the first chemistry (F-based) there is a 

difference between the etch rate of Si and SiO2 that leads to the residues represented in 

Figure III-15.d and Figure III-16.b. These residues are just peaks of silicon. 
 

 

 

Figure III-16. Scheme of the two main etch steps of the eSTM trench a) firs step; Si/SiO2 etching and 

b) second step; polysilicon etching. 

 

During the first step, the F-atoms are able to etch the complete STI (450nm) but only 78nm 

of silicon. Therefore, it can be observed (Figure III-17) that the depth of the trench is not 

identical between a cross-section along the active (450nm) and along the STI (700nm).  

 

 

Figure III-17. SEM cross-section of the eSTM. a) Perpendicular to the trench, b) Parallel to the 

trench. The silicon peaks can be seen in both images. 
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2.2. Specifications 
 

In this part, the stack composition will be described followed by the etching specifications of 

the recipe. Finally, a physical characterization of all the steps of the recipe will be performed. 

 

     2.2.1. Stack 
 

As explained before, a hardmask is necessary for the etching of the eSTM trench. The 

required stack for this process is represented in Figure III-18. 
 

 

 

Figure III-18. Required stack for the etching of the eSTM trench. 

 

The silicon part, represented in Figure III-18 as Si, included the Si as the SiO2. The harmask 

is composed of NFARL and AHM. Those materials were already introduced in Chapter II. 

The PR, which is deposited during the photolithography step, measured 3750Å.  NFARL and 

AHM, both of them deposited by PECVD, measured 275Å and 4000Å respectively. Due to the 

required depth for the trench (7000Å), a high resolution PR is necessary. The PR used has a 

wavelength of 193nm. In addition, NFARL and AHM were mandatory to protect the areas 

that should not be etched until reaching the end of the trench. NFARL is used for controlling 

the CD whereas that the AHM is used to protect the covered areas from the implantation. 

Besides, since the AHM is C-based material (a-C:H), it can be easily removed after the etching 

process. Usually, the BARC is situated between the NFARL and PR, but for this process in 

order to avoid another layer to be etched, the BARC have been replaced by HMDS 

(Hexamethyldisilazane). The HMDS is as the BARC an antireflective material but it does not 

impact the etching process. 

 

     2.2.2. Etching Specifications 
 

The recipe used for etching the eSTM trench is sketched in Figure III-19. It is composed of 5 

etching steps. This 5 steps are the etching of the NFARL, the etching of the AHM, the over-

etch of the AHM, the first main step (Si/SiO2) and the second main step (Si) which is the final 

one. As explained previously, the etch rate of the SiO2 during the step four of this recipe, it 
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is much faster than for etching Si.  However, during the final step, the Si etch rate increases 

strongly by using the Br-plasma.  

 

 

Figure III-19. Schematic representation of the five etching steps of the eSTM trench. 

 

Here, the AHM overetch step is not represented, since it is somehow included on the AHM 

step. During this overetch the chemistry used is the same, the goal is to “clean” the residues 

of AHM that could remain after the main etch of this material. Henceforth, we could refer to 

the fourth step (Si/SiO2) as STI trench and to the final one (Poly-Si) as eSTM trench. The 

chemistry used during the NFARL step, CF4/CH2F2/He, is only responsible for the NFARL 

opening. A F-based chemistry was required since the NFARL is kind of oxide-type material. 

Then, the AHM which is C-based material is etched with Cl2/HBr/O2. This chemistry is 

selective and it is just directed to etch the AHM. The following layer is the STI, but first, just 

after the etching of the AHM which takes 50sec we perform an overetch of 29% of time in 

order to eliminate the possible residuals of AHM that can remain on the sidewalls. During 

the overetch the etching is lateral. There is no risk of etching the following layer (Si/SiO2). 

After having etched the hardmask, the first main step starts, the STI trench. As explained 

before, during this step, the etching rate of SiO2 is faster than for Si (3780Å/min vs 840Å/min, 

respectively) but since it is F-based (CF4/CH2F2/He) and so that non selective, it is able to 

etch both even with different rates. Finally, the etch of the eSTM trench, which is Br-based 

(HBr/O2), etch the silicon deeply and vertically but being at the same time strongly selective 

respect to the SiO2. The etch rate of the Si etching during this step is 3015Å/min. The 

temperature is constant during all the recipe (Inner/Outer: 60/60°C). The specifications of 

this recipe for each step are summarized in Table III-3. 
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Table III-3. Etching specifications for each step. 

Parameter NFARL AHM AHM OE STI eSTM 

Pressure (mTorr) 15 5 5 7,5 30 

TCP RF Power (W) 445 800 800 1130 1000 

Bias RF Voltage (V) 135 400 400 275 360 

Process time (s) 28 50 0 70 76 

OverEtch (%) 0 0 29 0 0 

Cl2 (200sccm) 0 20 20 0 0 

HBr (1000sccm) 0 150 150 0 450 

CF4 (200sccm) 40 0 0 105 0 

He (500sccm) 250 0 0 270 0 

O2 (20sccm) 0 0 0 0 10 

O2 (200sccm) 0 100 100 0 0 

CH2F2 (100sccm) 15 0 0 75 0 
 

 

     2.2.3. Morphological Study of each Step 

 

In order to get an idea of the morphology and the dimensions of each step of the process, a 

physical study was performed. The SEM cross-sectional images are shown in Figure III-20. 

 

 
Figure III-20. SEM cross-section of the etching steps of the eSTM trench with the AHM mask.          

a) NFARL, b) AHM, c) AHM OE, d) Si/SiO2 trench, e) Poly-Si trench. 
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As it can be noted, the CD changed continuously, being at the end of the process (STI trench 

to eSTM trench) where less differences occur. The variability from one wafer to another plays 

also a role in those changes. It can be appreciated as well, in Figure III-20.d (the STI trench) 

and Figure III-20.e (the eSTM trench)  the residues of silicon that have been previously 

mentioned.  

A similar study was performed at the end of the chapter for the optimization of the process, 

trying to be more representative of what happens just after each step. Thus, without 

considering the AHM. 

3. CHARACTERIZATION 
 

The aim of this section is to characterize the etch process of the eSTM trench since it is a 

completely new process at STMicroelectronics. The methods used for this study are OES and 

XPS. Spectroscopy techniques have been widely used for plasma process monitoring and 

control. By using these two methods we could understand the reactions that are taking place 

during the etch process. OES is used in order to know the species in the plasma and XPS to 

analyze the chemical composition of the sidewalls; the passivation layer. The idea was to 

increase our knowledge about the plasma-surface interactions.  

With OES, a simple study looking for the species identification during the final trench was 

performed. With XPS, we have monitored the two main steps of the etch process; the STI 

trench and the eSTM trench. For that purpose, specific analyses have been performed as they 

will be explained in each subsection (3.1. and 3.2.) where the particularities of each study 

will be developed. Furthermore, the study of the AHM is necessary for the understanding of 

the process, so it has been taken into account for the characterization of the process.  

 

3.1. Plasma Diagnostics 
 

The first part of the characterization is related to the identification of the species that are 

active through the plasma while etching the trench. As it has been established in Chapter II 

(3.1.3.), OES is one of the most extensively used diagnostic technique for in-situ plasma 

monitoring [127,128,133]. The majority of optical emissions in etching plasmas is a result of 

electron impact excitation. Most atomic and diatomic species can be monitored by OES, but 

due to the complexity of the excitation mechanism, OES is usually a qualitative technique. 

Only excited species in plasmas are detected and so the observed spectrum gives information 

about the excited-state density and does not directly reflect the ground-state population 

profile [213]. 

 

In this section, spectra that have been taken during the process are analyzed looking for the 

element identification. The goal was to have a basic idea of the species involved in the plasma-
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phase to facilitate the understanding of the plasma-surface interactions (3.2.). No species 

density or quantification of them are studied. 

 

     3.1.1. Background 
 

3.1.1.1. Mechanisms for Optical Emission 

Plasma-induced emission can result from several different excitation processes [212], such as 

electron impact excitation (III.1), electron impact dissociation (III.2) or chemiluminescence 

recombination (III.3). Where A and B are atoms or molecules, AB and BC are radicals or 

molecules, the asterisk (*) indicates the excited emitting species, and e- (+ M) may be either 

a neutral species, a negative ion, an electron plus a third body (M), or a surface [213].  
 

   𝐴 + 𝑒−  → 𝐴∗ + 𝑒−      (III.1) 
 

   𝐴𝐵 + 𝑒−  → 𝐴∗ + 𝐵 + 𝑒−    (III.2) 
 

   𝐴 + 𝐵𝐶 → 𝐴𝐵∗ + 𝐶     (III.3) 
 

Lineshape measurements can distinguish process (III.1) from all others. Since the electron 

mass is small compared to atomic or molecular masses, the velocity distribution of the 

emitting species formed in reaction (III.1) is the same as the ground state, which is in turn 

equilibrated with the gas temperature.  

 

3.1.1.2.  Literature Review on Plasma Etching Diagnostics by Using OES 

Optical emission during plasma processing may come from neutral or ionized atoms, radicals, 

or molecules that have been electronically excited. This type of emission has been critically 

reviewed by Donnelly [212], Herman [213] and Dreyfus [214].  It was first used in an etching 

application by Harshbager et al [215], both to probe and control the etching of with CF4/O2 in 

parallel plate plasma. They studied the spectroscopic analysis of optical emission during RF 

plasma etching to gain a better understanding of the plasma chemistry involved in those 

systems. They identified F, O, Si and CO emissions and showed that F and Si emissions 

exhibited a maximum as a function of O2 addition to CF4. The F* and O* emission decreased 

greatly when a silicon wafer was introduced because these atoms were consumed during 

etching; while the CO bands were unaffected. Jung et al [216] studied the molecular emission 

of CF4 in low pressure ICP. The analysis of the spectra showed the CF radical but the other 

CFx radicals were not seen, whereas strong C and C2 emissions, dissociation products of CF4 

gas, were observed. Hansen and Engeln [217] also studied the detection of hydrocarbon 

radicals during plasma etching processes. Since then, many similar studies have been 

conducted on etching species [218-220]. Besides, some other studies by using OES have been 

extensively developed as well. Dreyfus et all [214], in 1985, discussed between other optical 

techniques, the OES with actinometry, proposing the advantage to be able to quantify the 
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species.  The same year, Shabushnig et al [221], summarized the applications of OES to 

semiconductor processing. Their idea was to present several examples serving as a brief 

introduction to both chemists and process engineers. Some years later, G. Gifford [222] also 

described the applications of OES in plasma manufacturing system. In his study, he 

explained that to properly identify a specific chemical species in complex gas mixture, the 

OES analyses must be performed with a high resolution equipment. He illustrated how a 

high resolution spectrum from OES should be (Figure III-21). Hershkowitz and Breun [223], 

pointed out that plasma processing diagnostics play two different roles- characterization and 

control. The goal of plasma characterization is related to establish connections of data with 

external parameters and to verify models. The goal of control diagnostics is to make 

noninvasive in situ measurements of relevant processing parameters. 
 
 

 

Figure III-21. High resolution OES spectrum of nitrogen plasma [222]. 

 

Using OES for a slightly different purpose, in 1996, Ino and co-workers [224] studied how to 

enhance the chamber cleaning in-situ by evaluating extracted plasma parameters obtained 

with OES. At the end of their study, they confirmed the accuracy of the technique with a RF-

plasma direct probing method and by ion current measurements. Not far from this, Miwa 

and Kawabata [225] used OES for in-situ quantification of the deposition amount in a Poly-

Si etch chamber. In this study, they described an attempt to estimate the deposition amount. 

They found out that the quantity of the deposition increased as a function of cumulative 

etched wafers in the etch chamber. In addition to all these uses, optical emission can be used 

to detect tool and process malfunction in plasmas used for etching and other processes by 

monitoring emission from discharge-excited impurities. This was explained by Selwyn [226] 

with several examples such as N2 emission at 337.1 nm, which can indicate an air leak; OH 

emission at 306.4 nm indicating dissociation of water vapor or CO emission at 483.5 nm can 

indicate residual photoresist on the surface. 
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3.1.1.3.  Representative Emission Lines 

Table III-4 compiles a selection of emission lines detected in OES obtained from literature by 

different research groups and companies1.  

Table III-4. Representative emission lines of some species from literature. 

Species λ (nm) 

Si 
212,41; 220,79; 221,08; 243,51; 250,69; 251,61; 251,43; 251,29; 390,55 [216] 

288,2 [118,227,228]; 251,5; 288,08; 390,48 [238]; 504,1; 505,5; 634,7; 637,1 [228] 

O 
777; 843 [70,88]; 777,2 [118,227,228]; 777,38; 844,7 [118,228]; 844,6 [65] 

615,6; 615,7; 615,8; 645,6 [228]; 437; 497; 502; 533; 544; 605 [241] 

F 
704 [70,88]; 703,7 [65,118,227,228]; 677; 683; 686; 687; 690; 691; 697 [241] 

683,4; 685,6; 690,9 [228,232,233]; 634,8 [228]; 712,8 [118,227,228]; 685,4 [118,227] 

Br 
834,37 [65,228,230]; 827,5 [218]; 470; 479; 570; 576; 588 [241]; 440; 450 [240] 

827,24; 780,30; 793,87; 751,30; 734,85; 844,66[228]; 656 [230]; 460-480 [239] 

H 
656 [70,88,217,230,241]; 653,3; 410; 486,2 [228,229]; 656,5 [118,217,227,228] 

486 [228,241]; 434 [228,231,241]; 486,1 [118,217,224,227,228]; 434,1 [229] 

He 706 [225] 

C 247,86 [228,229,216]; 248 [241]; 283,7; 426,7; 732,6 [228]; 597,36 [216] 

C2 
516,5 [228,234]; 410; 563,55 [229]; 473,71 [229,234] 

471,52; 496,76; 468,48; 467,86; 466,87 [234] 

N2 337 [70,88,227]; 315,9; 337,1 [228] 

H2 600 [229] 

CN 387 [70,88, 227,228]; 289,8; 304,2 [228]; 410; 388 [229] 

CO 
484 [70,88]; 483,5 [227,228,224]; 519,8 [227,228] 

292,5; 302,8; 313,8; 325,3; 482,5 [228]; 431,4; 520; 432-434 [231] 

CH 
431,4 [217,231,229]; 388,9 [217,229] 

432,3; 438,5; 430; 390; 314; 387,13; 388 [229] 

OH 309 [70,88]; 308,9 [227,228]; 281,1; 306,4 [228]; 306 [216] 

CF 202,5; 209,7; 210; 213; 247; 240; 220-320 [216] 

CF2 
251,9 [227,228]; 600; 202,5; 209,7; 210; 213 [216] 

250-350 [232]; 470-720 [235,236]; 220-320 [216] 

CF3 255-275 [237]; 220-320 [216] 

CH2 216 [229] 

CH3 537,5 [229] 

SiF 
440 [70,88, 228,227]; 440,1 [228] 

 436,82; 440,05; 443,02; 446,20 [224]; 777 [70,88,118,228,227] 

SiBr 290 [132]; 308 [225]  

SiF2 390,15; 395,46 [224] 

1LAM Research [228], which provides the hardware specifications with the equipment.  
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The emission lines from this table are a collection from the literature. The series are signaled 

in blue italic. These wavelengths will be used in 3.3.3. for the analysis of our spectra. However, 

there are numerous tables for identifying all the rest of species if necessary [129,130,131]. 

This selection from the literature is based on the emission lines that may be involved in our 

process and so it will be useful for the following part.  

 

     3.1.2. Experimental 
 

3.1.2.1. Experimental Set-up 

Specifications about all the equipment used for this thesis, were introduced in Chapter II. 

The experimental set-up for this study includes:  
 

 The plasma reactor: 200mm VERSYS STAR from LAM Research (Chapter II. 2.1.1.) 

 The OES spectrometer: OES Plus on Flex45 (Chapter II. 3.1.3.2.) 
 

The spectrometer is mounted on the plasma equipment as it can be seen in Figure III-22. In 

that way, emissions from the plasma can be collected by the equipment. Emissions from 220-

900nm are collected with this equipment. 

 
 

 
Figure III-22. OES equipment used for this study.  

 

3.1.2.2. Substrates 

The substrate was a patterned wafer where all the etching process steps for reaching the 

eSTM trench have been performed. The final step, where the eSTM trench is etched has been 

monitored in order to be analyzed. With the aim of analyzing the optical emissions during 

the etching of the eSTM trench, we performed, additionally, some previous analyses carried 

out across a typical silicon wafer and across a silicon wafer with a coating layer of amorphous 

hydrogenated carbon (AHM). This will enable us to understand how the chemistry employed 

to etch impacts different surfaces. Furthermore, we could differentiate the Si and AHM 
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contribution to the spectrum of the eSTM etching. A schematic representation of the 

substrates is shown in Figure III-23. 

 
 

 

Figure III-23. Schematic representation of the substrates uses during this study a) full silicon wafer 

non patterned, b) full silicon wafer with a AHM(a-C:H) deposition of 4000Å non patterned and c) 

patterned wafer during the process etching of the eSTM trench. 

 

3.1.2.3. Chemistry Considerations 

We have monitored the two etch processes. They are related to the STI trench and the eSTM 

trench. As it has been introduced in previous sections; the first process, related to the STI 

trench, uses F-based plasmas (CF4/CH2F2/He). The second one, related to the eSTM trench, 

uses Br-based plasmas (HBr/O2). However, the eSTM trench is performed just after the STI 

trench, so F-based considerations might be needed for the analysis. Therefore, the second 

etch process is performed using the two steps, the first one with CF4/CH2F2 as in the first 

etch process, followed by a second step using HBr/O2, to finalize this process. This is 

summarized in Table III-5, where Run#1 would be the conditions for the STI trench study, 

and Run#2 would be the conditions for the eSTM trench study, as explained, Br-based 

chemistry but preceded by a F-based chemistry.  

Table III-5. Experimental gases set for the spectral analysis. 

Run # 

Gas flow (sccm) 

CF4 

(200sccm) 

CH2F2 

(100sccm) 

He 

(500sccm) 

HBr 

(1000sccm) 

O2 

(20sccm) 

1 105 75 270   

2* 
105 75 270   

   450 10 
 

*The Run#2 is composed of 2step, the first one which is the same as the first run followed by the second one: HBr/O2. 

 

During the plasma diagnostic study, the first process (Run#1) will be referred to F-based 

chemistry and the second one (Run#2) to Br-based chemistry as it will be focused on the 

second step (HBr/O2).  
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     3.1.3. Results 
 

The results are presented in two parts. The first part is performed with non-patterned wafers. 

The goal of this part is to identify the different behavior of each material during the etching 

process. The two chemistries (F-based and Br-based) are regarded in order to see the 

influence of each one. The second part is dedicated to the analysis of the patterned wafer 

which is the spectrum monitored during the real etching of the eSTM trench.   

 

Identification of species was made by comparing observed spectral lines with compiled list of 

known lines. All the references for the wavelength used during this section can be found in 

Table III-4.  

 

3.1.3.1. Influence of the Chemistry over Different Materials: AHM and Si 

The two main chemistries employed for reaching the eSTM trench are studied in this part. 

Firstly, the F-based chemistry related to the STI trench step, where both AHM (mask) and 

Silicon are involved. Secondly, the Br-based chemistry related to the eSTM trench, where 

these two materials are still involved after being exposed to the F-based chemistry in the 

previous step. Thus, this section is organized in function of the chemistry used, in that way 

the different behaviors of the material can be shown under the same conditions. It must be 

remembered that those studies were performed over non-patterned wafers, and so the only 

interactions considered were the interactions plasma-surface of the material being studied 

each time. No interaction with other materials were considered. It should be noticed that the 

background of the spectra is not always flat since the noise, offset, and baseline filtering 

methods were not used here. The goal is to have an idea about the species present in the 

plasma and not to quantify them. 

 
 

 F-based Plasma 

 

First, we studied the fluorocarbon-based chemistry (CF4/CH2F2/He). By using OES we 

monitored fluctuations in relative concentrations of plasma species, including CFx*, CH*, H*, 

and F* analyzed on deposited a-C:H film as well as over silicon non-coated wafer. The optical 

emission spectra of F-based plasma are shown in Figure III-24 and Figure III-25. It has been 

taken as example in Chapter II, 3.1.3.4, the emission spectrum for F-based plasma etching a 

silicon sample, this example corresponds to Figure III-25, whose study is developed here.          
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Figure III-24. Emission spectrum for F-based plasma etching an a-C:H sample, representative of the 

interactions between the plasma and the mask (AHM). 

 

 
Figure III-25. Emission spectrum for F-based plasma etching a silicon sample, representative of the 

interactions between the plasma and the trench during the STI etching step.  

 

Both spectra showed almost the same composition, with a strong response due to hydrocarbon 

radicals. The main difference was due to the Si signal at the beginning of the second spectrum 

(Figure III-25), which was missing for the a-C:H one, since there was no silicon. This signal 

could be also a CF2 line. Since in the a-C:H spectrum this signal was missed, the Si emission 

was more probable but still the CF2 could be hidden by Si. CH* lines appeared at 390nm for 

the AHM spectrum and 431.4nm for both of them. CH bands are usually produced in 

electrical discharges where carbon and hydrogen are present [229]. The presence of H was 

concluded by the three lines of the Balmer series for hydrogen at Hα (656.5nm), Hβ (486.1nm) 

and Hδ (410nm), being the Hα the strongest one in both spectra. Hγ (434 nm) was difficult to 
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identify due to the CH band at 431.4nm, but it should be present since the other three lines 

were detected. Several C2 band system were also identified, represented by the Swan band 

(435-686nm) system at 473.71nm, 516.5nm, 563.55nm, with the one at 516.5nm as the most 

intensive line over the entire spectrum for both cases. Swan bands are the most characteristic 

features of C2 in all hydrocarbon spectrums.  

 

The presence of F as an atom was also observed, but as slight sign in comparison to all the 

rest of species detected. These small lines of F appeared at 683.4 and 703.7nm, almost with 

the same intensity for both of them. Moreover, the presence of F was shown at the beginning 

of the spectrum, by means of the CF2 emission line at 251.9nm. CF3 radicals were also in that 

range between 255-275nm. When CF4 gas is introduced into the plasma, various species 

containing F can be produced by dissociation. The most common species are CF, CF2 and CF3 

radicals [216]. Here, the presence of F*, CF2* and C2 lines proved that the dissociation coming 

from the CF4 gas was taking place. 

 

 Br-based Plasma 

 

For the second case, where the bromine-based chemistry was analyzed, which chemistry is 

composed by HBr/O2, preceded by the first chemistry (CF4/CH2F2/He), we have monitored 

mainly Br*, O* and F*. When etching the silicon sample, the presence of Si was detected at 

the beginning of the spectrum, not being presented over the a-C:H sample. The optical 

emission spectra of bromine-based plasma are shown in Figure III-26 and Figure III-27.  

 

 
 

Figure III-26. Emission spectrum for Br-based plasma etching an a-C:H sample, representative of 

the interactions between the plasma and the mask (AHM). 
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Figure III-27. Emission spectrum for Br -based plasma etching a silicon sample, representative of 

the interactions between the plasma and the trench during the eSTM etching step.  

 

The presence of Br, which was the most present specie over both spectra, was detected at 

450nm, 479nm, 734.85nm, 751.30; 780,30nm, 793.87nm and 834.37nm, being this one the 

most intensive line over the whole spectra. This region is usually used for oxygen detection 

too, which can be hidden for some of those Br species in this study. However, it was easy to 

detect its presence at the end of both spectra with the representative intensity line at 

844.7nm. Other species which have in common those spectra with those where the F-plasma 

was used are Fluorine and Hydrogen. Fluorine is detected at 683.4nm and 703.7nm, as well 

as the spectra studied before by using F-plasmas. The presence of H was not confirmed in 

these spectra. An emission line was detected at 656.5nm, corresponding to the Hα but it could 

be also due to bromine [230]. In any case, the absence of the other lines from the Balmer 

series suggests that hydrogen concentration was small compared to the previous spectra 

where F-based plasma were used. The leading difference between these two spectra is located 

at the beginning of them. The presence of Si at 212.41nm, 251.61nm and 288.2nm for the 

silicon wafer, was easily recognized on the second spectra. Being the line at 251.61nm the 

second most important contribution of this spectrum, after the Br line at 834.37nm.  

 

3.1.3.2. eSTM Optical Emission Study 

Until now, we described the spectra of wafers non patterned, for both a-C:H and silicon 

materials that were specifically prepared for the study. In this section, a standard wafer 

(eSTM) was used to be monitored during the etching of the eSTM trench. Therefore, the 

bromine-based chemistry was analyzed (HBr/O2, preceded by the first chemistry 

CF4/CH2F2/He). The species presented on the plasma during the STI trench were also 

monitored, but some of them were in saturation (from 360nm to 600nm). Beyond this range, 

Hα at 656.5nm and the F lines at 683.4nm and 703.7nm were shown. For the eSTM trench, 
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we monitored mainly Br*, O* and F*. The optical emission spectra of the eSTM trench etching 

with bromine-based plasma is shown in Figure III-28.  

 

As happened during the previous analysis, the contribution of the first etch step 

(CF4/CH2F2/He) remains during the second step (HBr/O2). This was concluded for the 

presence of CFx*, CH*, H*, and F*, that could not come from the second chemistry but from 

the first one. CFx* and CH* lines were not identified, but several peaks were seen in their 

regions. That would be related to influence of the F-based chemistry over the mask, since the 

CH is representative of the a-C:H film presence. Other feature of the first step was the strong 

presence of hydrogen. The four lines of the Balmer series for hydrogen at Hα (656.5nm), Hβ 

(486.1nm), Hγ (434nm) and Hδ (410nm) were detected during the eSTM process. The line at 

656.5nm (Hα) could be also representative of Br. Nevertheless, even if the Br could be detected 

at this wavelength, the presence of H was confirmed due to the presence of the others lines 

of the Balmer series. F* atoms were also detected at 683.4 and 703.7nm as in all the previous 

spectra. In this spectrum, other line could be associated to F at 634.8nm, but that one could 

be also related to Si. The Si-line was also present at the beginning of this spectrum at 

288.2nm. However, the species identified at the beginning of the spectrum are just indicatives 

because with the strong background is difficult to confirm them. This is the case of CFx, CH, 

Si, Hδ and Hγ.  

 

Figure III-28. Emission spectrum for Br -based plasma etching the Poly-Si trench patterned with the 

AHM mask during the eSTM etching step.  

 

The signature of the second chemistry in this spectrum was determined by the detection of 

Br* and O*. Bromine was detected at the same wavelengths as it was detected before for the 

AHM and Si-wafer. Also the O* was detected at the end of the spectrum as for the previous 

spectra, but with two additional lines in this case which were detected at 497 and 615.6nm. 
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     3.1.4. Summary 
 

This section presented the study of spectrographic test performed in order to improve the 

understanding of the species present within various plasmas. The light emitted by the 

plasma, which is investigated using OES, was analyzed in the 220-840nm range. With the 

different optical emission systems studied, the understanding of the species that interfere on 

the etching process of the eSTM trench was described based on the contributions from both 

the chemistry (F-based and Br-based plasmas) and the materials (AHM and silicon). The 

main species detected were CFx*, CH*, H*, and F* for the first chemistry and Br*, O* and F* 

for the second one. The a-C:H film (mask) produced both CH and C2 radicals during the F-

based plasma etching. Hydrogen Balmer emission lines were very intense in the F-based 

plasmas (for AHM and Si) as for the eSTM trench etching. During the first etching 

(CF4/CH2F2/He) the presence of Hα was clearly detected. For the Br-based plasma spectra, 

this line at 656.6nm, could be rather associated to the Br. This is the case of the AHM and Si 

spectra during the Br-plasma etching, as we concluded because of the absence of Hβ and Hδ. 

Nevertheless, for the eSTM etching, we associated this line to Hα since other lines of this serie 

were detected. It is remarkably interesting the presence of F in all the spectra, even during 

the second chemistry. This F could remain from the first chemistry as it could be just still 

present on the gas lines. In any case, it is something to keep in mind while analyzing the 

surface and the composition of the coating deposited on the reactor walls.  

 

Since it was a qualitative analysis, those studies were performed to have an idea about how 

the spectra looked like, the species that were involved during the process and the reaction 

with each material. Those analyses were not used to deduce the concentration of the species, 

but rather to define the plasma process state and to identify meaningful wavelengths of the 

OES signal for those different etching. In addition to these analyses, another study was 

performed for improving the understanding of the process etch related to the wafer surface 

composition. This study is presented as follows in the next section. 

 

3.2. Surface Characterization 
 

In the previous section we had characterized the plasma itself with the aim of understanding 

the species presented in the gas phase as an input to better understand the plasma-surface 

interactions that takes place during the eSTM trench etching. It is, therefore, essential for 

this understanding to characterize the Sidewall Passivation Layer (SPL) and the elements 

that compose this layer. Thus, the goal of this section is to characterize the chemical 

composition of the sidewalls after the etching process. Based on the method introduced in 

Chapter II (3.3.3.4.), we wanted to develop a similar protocol at STMicroelectronics Rousset 

to have the possibility of studying the SPL. 
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However, as explained by Hershkowitz and Breun [242], industrial processing tools 

manufacturers have resisted to the use of in situ diagnostics and most of the tools are not 

equipped with diagnostics, since they are not designed for diagnostic uses. This is the case of 

STMicroelectronics, where ex-situ XPS analysis have been performed, since there was no 

other possibility. By taking into account the limitations of the ex-situ analyses, several 

analyses have been performed in collaboration with the cimpaca platform for developing this 

protocol and characterize the eSTM trench passivation. 

 

     3.2.1. Background 
 

During the etching, anisotropy control is obtained by the formation of a passivation layer 

which is formed on the sidewalls and it protects them from spontaneous etching reactions. In 

the order to investigate the composition of the sidewall passivation layer, XPS analyses were 

performed. The passivation is function of the mask material, the etch chemistry and the 

plasma processing conditions. Since the critical dimensions are directly dependent on the 

passivation layer thickness, the control of the sidewall passivation is essential. Hence, the 

formation mechanisms and the composition of these layers should be understood. As 

explained in Chapter II (3.3.3.), the chemical composition of the SPL is usually studied by 

XPS [243-256].  

 

3.2.1.1.  Mechanisms for Sidewall Passivation Layer Formation 

 

A balance between continuous deposition and etching produces a specific etch slope. This 

slope depends on the passivation. Depending on the plasma etching conditions, there are 

different mechanisms (see Figure III-29) for sidewall passivation layer (SPL) formation [179]:  

- Mask etch products sputtered into the plasma gas phase by energetic ion 

bombardment and they are deposited on the sidewalls. 

-  Dissociation of the feed gas stock leading to the condensation of some molecules 

or atoms. 

- Etch by products dissociation in the gas phase creating the formation of partially 

volatile or non-volatile etch by products on the sidewalls. 

- Direct line of sight deposition of non-volatile etch by -products.  
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Figure III-29. Sidewall passivation layer formation mechanisms [179]. 
 

The development of plasma etch processes requires a good comprehension of the passivation 

layer formation mechanisms which are key parameters to control the critical dimensions.  

 

3.2.1.2.  Literature Review on Surface Characterization by Using XPS 

XPS analyses after plasma processing analyzed the kinetic energy of electrons that are 

ejected from the atoms in the sample when the sample is irradiated with a beam of x-rays for 

determining the elements present in the sample. In 1967, Siegbahn published a 

comprehensive study of XPS [257], bringing instant recognition of the utility of XPS, which 

he referred to as ESCA (Electron Spectroscopy for Chemical Analysis). To acknowledge his 

extensive efforts to develop XPS, Siegbahn received the Nobel Prize for Physics in 1981. Since 

that time, the use of XPS analyses for understanding the sidewall passivation layer created 

during the plasma etching processes has been largely studied.  

 

In 1988, Oehrlein et al [255] studied for the first time the silicon trenches formed by RIE 

using XPS. They proposed a powerful approach to the surface characterization of 

semiconductor microstructures by analyzing the silicon sidewall passivation for a SF6/O2 

etching process. This approach was based on the geometrical shadowing of the incident X-

Ray beam (ARXPS) and the electrostatic charging of insulating portions. Based on this 

method, at the Laboratoire des Technologies de la Microelectronique (LTM) in Grenoble 

(France), the Chemical Topography Analysis method was developed [249-254]. 

 

In 1989, Bestwick and Oehrlein [188] studied the composition and thickness of reaction layers 

on silicon surfaces resulting from exposure to HBr RIE plasmas. The results that they 

obtained indicated that silicon etching by bromine occurs only in the presence of ion 

bombardment. The two factors that lead them to that conclusion were the relative involatility 
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of silicon bromides and the relative difficulty with which bromine penetrates the surface to 

react with the underlying silicon. Cheng et al [245] also studied the HBr and Cl2 coverage on 

Si surfaces etched in mixed HBr/Cl2 plasmas. For that, they used XPS and in-situ, real-time, 

pulsed laser-induced thermal desorption. In their results, they showed up that HBr plasmas 

etch Si more slowly than Cl2 plasmas because less halogen is available on the surface for the 

formation of volatile SiBrx products in ion bombardment-stimulated reactions. 

 

In 1996, Bell et al published a group of studies related to the polysilicon gate etching in high 

density plasmas related with different XPS investigations [251-254]. In these studies, they 

investigated the silicon trenches by using Cl-based chemistry, the sidewall passivation of Si-

trenches with an oxide hard mask and the difference between using photoresist and oxide 

masks. In their experiments, they used the geometrical shadowing of photoelectrons and 

electrostatic charging of insulating portions to differentiate the XPS peaks resulting from 

insulating photoresist surfaces from those conducting silicon surfaces, as shown in Figure 

III-30. 

 

 
 

Figure III-30. XPS spectra recorded by Bell et all. Si 2p on the left and O 1s on the right [251]. 

 

Desvoivres et al [249] also studied the sidewall passivation films formed during gate etch 

processes by using XPS. Their studies, performed for HBr, Cl2 and O2 based chemistry, 
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showed that the sidewall passivation films SiXxOy (X=Br, Cl, x+2y ≤ 4) were formed during 

the main step of the process and become oxidized at the early stage of the overetch step 

leading to an oxidelike layer after halogen desorption. They also studied different chemistries 

such as HBr/O2, HBr/Cl2/O2 and Cl2/O2. When comparing them, a high SiOx percentage was 

detected for the HBr/O2 chemistry which indicated that a relative thicker passivation layer 

was formed with respect to the chlorine-based chemistries. They observed SiOxBry on the 

sidewalls for the HBr/O2 chemistry and SiOxCly for the chlorine-based plasmas. Besides, they 

observed that the SiOx percentage increased with the overetch step, while bromine 

concentration decreased, showing that bromine atoms are substituted by oxygen atoms when 

analyzing the HBr/O2 chemistry. Related to that, they also investigated the impact of air 

exposure on the chemical composition of the passivation layer. The results were similar to 

those obtained when increasing the overetch time. A strong increment in the oxygen 

concentration in the layer, while bromine desorbs under air exposure. Even more, no bromine 

was detected in the passivation layer when the wafer was exposed to the air. Vallier et al 

[250] used as well the chemical topography analysis using XPS based on the photoelectron 

shadowing effect together with the differential charging of insulating vs. conductive 

materials under a low energy gun. They showed the same results as Desvoivres, so that the 

oxygen concentration in the passivation layer increases as a function of the overetch time, 

while bromine concentration decreases, showing that the bromine atoms are substituted by 

oxygen atoms. Furthermore, the Si-Si percentage decreased as a function of the overetch time, 

so the photoelectrons were screened by the passivation layer, as shown in Figure III-31. From 

those observations, they concluded that the substitution of bromine by oxygen increased in 

the passivation layer as a function of the overetch time. Thus, leading the SPL to its 

densification. 
 

 

Figure III-31. Si 2p energy region recorded by XPS for HBr/O2 chemistry. The plain line is the spectrum 

recorded after the main etch, and the dotted line after the final process (main etch+overetch) [250]. 
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In any case, the passivation layer thickness seems to be strongly dependent on the oxygen 

concentration in the gas phase. Higher oxygen concentrations in the gas phase lead to thicker 

passivation layers. Also, when etching with a F-based plasma, the oxygen plays an important 

role. Passivation mechanisms have been also proposed for the F-based plasmas [67,85,259]. 

For instance, Avertin [67], proposed the SiOxFy layer formation for a SF6/O2 plasma (Figure 

III-32).  
 

 

Figure III-32. Formation of the SiOxFy passivation over a Si-sample with SF6/O2/HBr [67]. 
 

 

     3.2.2. Experimental 
 

3.2.2.1. Experimental Set-up 

Specifications about all the equipment used for this thesis, were introduced in Chapter II. 

The experimental set-up for this study includes:  
 

 The plasma reactor: 200mm VERSYS STAR from LAM Research (Chapter II. 2.1.1.) 

 The XPS equipment: KRATOS AXIS NOVA (Chapter II. 3.3.2.) 

The equipment where all the analyses were performed is part of the CIMPACA 

characterization platform. It counts with a monochromatic X-Ray aluminum source (Al Kα 

=1486eV) and a non-fixed holder so it is able to perform ARXPS analysis (Chapter II. 3.3.4.) 

as it can be seen in Figure III-33. 
 

 

                   
Figure III-33. Sample Platen for ARXPS used in this thesis. Entire strip (indicated between red 

arrows on the right) rotates about the Y-axis.  
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Furthermore, by the chemical topography analysis method, a pattern of lines and trenches 

can be analyzed by using ARXPS, so that some signals are shadowed by adjacent lines. Then, 

the signal from the mask can be identified thanks to a technique of differential charging: an 

electron flood gun charges dielectric materials and shifts their peak positions (binding 

energies) in the XPS spectra. Several studies have been done related to this method 

[59,67,125,258, 249-255]. 

For the ARXPS analyses, the sample was always analyzed at 0° and X°, by tilting the holder. 

The angle of analysis (X°) was calculated based on the SEM measures that determined the 

dimensions of the patterned features. Furthermore, the charging compensation was applied 

to both positions. The protocol used for the samples analyzed on this thesis is sketched in 

Figure III-34. 

 

 

Figure III-34. Samples studied by using XPS. The blue lines correspond to the analyzed part. The 

area n°36 and the eSTM trench are analyzed by using the flood gun on/off in each position. 

 

The area n°36 and the real product were studied by performing the chemical topography 

analysis (ARXPS + differential charging effect). However, when analyzing the eSTM trench 

SiO2 was included to the analysis since it was present on the sidewalls as the material used 

to filled the STI. To differentiate these parts, the floating sample method was used. 

 

 

3.2.2.2. Substrates 

With the aim of analyzing the sidewall passivation of the eSTM trench after the etching 

process, additional analyses were required since such a small dimension were never before 

characterized at STMicroelectronics Rousset. Thus, some previous analyses were carried out 

by using the photolithography mask presented in Chapter II. In that chapter, we presented 

three areas (Chapter II. 3.1.1.2.). Areas 4 and 5, the open-area and mask-area, were used as 

representation of the reactions between the plasma and two different materials; the silicon 

and the hydrogenated amorphous carbon (AHM mask).  This enabled us to understand how 

the chemistry employed to etch impacted different surfaces. The other area of the 

photolithography mask studied before analyzing the eSTM trench on the real product, was 

the area n°36. This area was easier to characterize than the eSTM trench, not only because 
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it had bigger dimensions but also because it was only composed of polysilicon. Thus, it was 

used to develop the protocol for to the real product (the eSTM trench). Finally, the eSTM 

trench was studied by using the chemical topography analysis and the floating sample 

method (see Figure III-34). 

 

3.2.2.3. Chemistry Considerations 

We have performed XPS analyses after the two etch processes related to the STI trench and 

the eSTM trench. Details about these processes have already been explained previously in 

this chapter (3.1.2.3.). 
 

  

3.2.3. Results 
 

The results are presented in three parts. The first part (3.2.3.1.) is related to the study 

performed with non-patterned wafers in order to identify the different composition of each 

material after the etching process. The passivation of the a-C:H (area n°5), representative of 

the mask during the process, and over silicon (area n°4), representative of the Si-trench, are 

discussed in this part. The second part (3.2.3.2.) is dedicated to the analysis of the patterned 

area n°36 which have bigger dimension than the eSTM trench. This study was performed by 

studying the contributions of areas n°4 and 5 first, and afterwards by using ARXPS analyses 

in order to develop the protocol of characterization for the eSTM trench. Finally, the analysis 

of the real product, the eSTM trench, are presented in the third part (3.2.3.3.).  

For all these analyses, the two chemistries (F-based and Br-based) are regarded in order to 

see the influence of each one with respect to the chemical composition of the wafer surface. 

 

3.2.3.1. Influence of the Chemistry over Different Materials: AHM and Si 

The two main chemistries employed for reaching the eSTM trench are studied in this part. 

The F-based and the Br-based chemistry, where the AHM and Si materials are involved. For 

the Br-step, the samples were previously exposed to the F-based chemistry, as it has been 

explained in 3.1.2.3. Thus, this section is also organized in function of the chemistry used, in 

that way the different behaviors of the material can be shown under the same conditions. All 

these studies were performed over non-patterned wafers, and so the only interactions to be 

considered were the interactions plasma-surface of the material being studied each time. The 

goal was to have a global idea about the chemical composition presented over the wafer 

surface after etching each material. 
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 F-based Plasma 
 

First, we studied the fluorocarbon-based chemistry (CF4/CH2F2/He). From the survey spectra 

of the areas n°4 and n°5, the chemical composition was identified. This chemical composition 

is represented in Figure III-35. 
 

 

Figure III-35. Chemical composition after the first etching (F-plasma) of the areas n°4 and n°5 

representatives of the silicon and the AHM, respectively.  

 

C 1s, O 1s, F 1s and Si 2p were detected by using XPS. All the elements were presented in 

all the samples except for the area n°5 (AHM), where no silicon was detected. Areas n°4 and 

n°5 have a strong contribution of the material analyzed. Area n°4 is mainly composed of 

silicon whereas area n°5 is mainly composed of carbon, as the material analyzed were silicon 

and amorphous carbon, respectively. 

The composition of area n°4 (Si) was ranked as Si > O > C > F. The Silicon was mainly Si-Si 

with a part of it linked to the oxygen which was detected in the Si 2s peak at 103.2eV and at 

532.7eV on the O 1s peak. Moreover, the O-Si contribution to the O 1s peak was the main 

contribution, followed by H-O-H at 533.4eV. Part of the C contributions were linked to F, 

with a clear contribution F-C to the F 1s peak at 686.6eV. This means that this part was 

coming from the chemistry employed during this etching (CF-based). However, a big part of 

the C 1s peak was also due to the hydrocarbon contamination (C-C/C-H contribution) of the 

sample which was exposed to the air after the etching process, before the XPS analysis. The 

composition of area n°5 (AHM) was ranked as C > F > O. The C 1s peak counted with the 

clear signature of the AHM material, as revealed with the presence of the Csp2 (284.2eV) and 

Csp3 (284.8eV) contributions, the rest of the contributions to this peak were linked to the 

chemistry (C-F) and to the air contamination (C-C/C-H). Furthermore, the main contribution 

to the F 1s peak, as happened with the area n°4, was the F-C that appeared here at 687.9eV 

and 686.9eV. This verified the chemistry contribution also for this analysis. The oxygen in 

this case was not linked to the Si, which besides was not present in this analysis, but to the 
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C. The O-C contribution to the O 1s peak appeared at 532.4eV being the most important 

contribution to this peak followed by O=C (533.8eV) and 0-H (531.1eV).  From these analyses, 

the area n°4 was mainly composed of Si as well as the area n°5 was manly composed of C, 

both of them with a superficial layer highly fluorinated and oxidized. Area n°4 mainly 

oxidized while area n°5 mainly fluorinated. 

 

 Br-based Plasma 
 

The XPS study for the second case was related to the bromine-based chemistry, which is 

composed by HBr/O2, preceded by the first chemistry (CF4/CH2F2/He). The chemical 

composition obtained from the spectra of the areas n°5 and n°4 is shown in Figure III-36. 
 

 

Figure III-36.  Chemical composition after the second etching (Br-plasma) of the areas n°4 and n°5 

representatives of the silicon and the AHM, respectively. 

 

As for the first chemistry studied before, C 1s, O 1s, F 1s and Si 2p were detected during the 

second chemistry. Moreover, some traces of Br 3d were also presented this time. As happened 

before, all the elements were presented in all the samples except for area n°5 (AHM) where 

no silicon was detected. The explanation was the same as before, areas n°4 and n°5 had a 

strong contribution of the material analyzed. Area n°4 was mainly composed of silicon 

whereas area n°5 was mainly composed of carbon, as the material analyzed were silicon and 

amorphous carbon, respectively. 

 

The composition of area n°4 (Si) was ranked as O > Si > C > F > Br. Even if the silicon was 

still mainly Si-Si, a stronger contribution than for the first chemistry was detected in the Si 

2s peak related to the SiO2 contribution. Also the O-Si contribution to the O 1s peak was here 

more important than for the first study, followed by the H-O-H contribution at 533.4eV. The 

presence of fluorine, remaining from the first chemistry, was still linked to C, as it can be 

deduced from the F-C contribution to the F 1s peak at 686.6eV. The composition of area n°5 



CHAPTER III. eSTM: CHARACTERIZATION AND PROCESS OPTIMIZATION 

 

117 

 

(AHM) was ranked as C > O > F > Br. The C 1s peak counted as before with the signature of 

the AHM material, as revealed with the presence of the Csp2 (284.2eV) and Csp3 (284.8eV) 

contributions. Furthermore, since the presence of oxygen increased, the C-O and C=O 

contributions were detected both on the C 1s and the O 1s peaks. Being the C-O contribution 

at 532.4eV, the most important for the O 1s peak. Fluorine and Bromine traces were also 

detected, each one issued of each chemistry used (F- and Br-based plasmas). This verified the 

chemistry contribution also for these analyses.  

 

From these analyses, the area n°4 was mainly composed of O and Si while area n°5 was 

manly composed of C. The chemical composition after the second chemistry was not far from 

the results obtained after the first chemistry except for the Br traces detection. Furthermore, 

a strong raise of the oxygen contribution was clearly appreciated. This increment was due to 

the chemistry (HBr/O2). Thus, the SiO2 passivation over the area n°4 (Si) was thicker and the 

Si-O contribution was more significant than before. The consequences of this oxygen 

increment when analyzing the area n°5 (AHM) were the same, a passivation layer strongly 

oxidized with several links between the oxygen and the carbon (O-C, O=C). 

 

3.2.3.2. XPS Analysis of the Area n°36: Protocol Development 

The two main chemistries employed for reaching the eSTM trench are also discussed in this 

part, where both AHM (mask) and Silicon are involved. However, this study was performed 

over a patterned wafer, the area n°36, which dimensions were bigger than the real eSTM 

trench. This structure had lines of 300nm and spaces of 200nm, as it has been already 

introduced in Chapter II (1.2.1.). 

 

The area n°36 was studied in two ways. First, after having analyzed the areas n°4 (Si) and 

n°5 (AHM), we analyzed the area n°36. The idea was to use the contribution of these two 

areas (n°4 and n°5) to the area n°36 in order to deduce the part related to the mask and to 

the sidewalls. Secondly, by using the ARXPS we only analyzed the sidewalls and mask 

without taking into account the bottom contribution, and then by using the differential 

charging effect we deleted the contribution related to the AHM to finally understand just the 

sidewall passivation of the silicon trench. 

 

 F-based Plasma 
 

First, we studied the fluorocarbon-based chemistry (CF4/CH2F2/He). The chemical 

composition from the survey spectra obtained by using XPS is shown in Figure III-37. 
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Figure III-37. Chemical composition of the of the areas n°4, n°5 and n°36 after the F-plasma etching. 

 

The composition of area n°36 was ranked as C > O > Si > F. The Silicon was mainly Si-Si 

with a part of it linked to the oxygen which was detected in the Si 2s peak at 103.7eV and at 

533.1eV on the O 1s peak. The C was linked to the F as represented with the F-C contribution 

to the F 1s peak at 686eV. But the main part of C was the C-C/C-H which appears at 285.5eV 

on the C 1s peak. 

 

Concerning the previous analysis (area n°4 and n°5), almost all the elements were in the 

middle of the two studied areas. For the area n°36, more C (44.4%) than area n°4 (11.4%) but 

less than area n°5 (71.5%) was detected. Also the fluorine was in the middle of the other two 

areas. However, area n°36 was closer to area n°5 in fluorine composition.  The contribution 

of oxygen was more important for area n°4 (36.3%) than n°5 (10.9%), being the area n°36 in 

between (22.4%). But the composition of the O 1s peak was closer to that of the area n°4 (Si), 

being the O-Si (533.1eV) the most important contribution whereas that for the area n°5 

(AHM) was O-C. Since the Si was not detected for the AHM study, this could only be 

correlated to the Si part of the sample. Nevertheless, the contribution of Si to the chemical 

composition of area n°36 (18.9%) was lower than for the area n°4 (47.3%). The most important 

contribution to the Si 2p peak for the area n°4 was the Si-Si contribution. When analyzing 

the high resolution peak Si 2p for the area n°36, the most important contribution was still 

the Si-Si. However, the Si-O contribution was stronger than for area n°4, with the presence 

of SiO2 at 103.7eV. This was not surprising when seeing the percentage of Si and O for both 

areas. Area n°4 had 47.3% Si and 36.3% O while area n°36 hasd18.9% Si and 22.4% O. Being 

the contribution of oxygen more important to that of silicon, a high Si-O contribution was 

expected as it was verified with these results for the area n°36.  

 

From that first analysis based on studying the contributions of the AHM and Si samples, we 

concluded that the area n°36 has similar compositions to the other areas. We found out a 
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good agreement in area n°36 between the two materials previously studied. Based on the 

contributions of each peak we could say that those of F and C were closer to the area n°5 

(AHM) while those of O and Si were closer to area n°4 (Si). However, with this analysis was 

difficult to conclude that the sidewalls were only composed of Si and O. Therefore, a second 

analysis was performed; the ARXPS + differential charging effect. The high resolution 

spectra of the area n°36 by using ARXPS at 45° for the peaks F 1s, O 1s, C 1s and Si 2p are 

shown in Figure III-38. These spectra were obtained with and without the charge 

compensation, so that with the flood gun ON and OFF. 

 

 

Figure III-38. XPS spectra area n°36 after the STI trench etching (F-based chemistry). 

 

In Figure III-38, the peaks that looked affected by the differential charging effect were C 1s 

and F 1s. Thus, these peaks were related to the AHM. The O 1s also experimented a little 

effect. The Si 2p did not change when applying the charge compensation. The hypothesis that 

we took from that, was that the sidewalls were mainly composed of Si and O. However, the 

chemical composition for this area n°36 (Figure III-37) was 44.4% C, 22.4% O, 14.3% F and 

18.9%Si. C 1s was the main contributor to this composition and it was mainly presented on 

the mask.  However, since a small part of C was linked to F, some C could be also presented 

on the sidewalls. The silicon was completely on the sidewalls as well as the oxygen with just 

a little part affected by the charging effect that could be attributed to the mask. 

 

From the two analyses, the contribution of areas n°4 and n°5 plus the ARXPS with charging 

effect, we could say that after the first chemistry, the silicon sidewalls of the area n°36 were 

mainly oxidized with a fluorinated contribution that could be related to this layer or due to 

polymer formation on the sidewalls (CxFy) which is, in any case, coming from the chemistry. 
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 Br-based Plasma 
 

The chemical composition obtained from the XPS survey spectrum for the Br-based plasma 

is shown in Figure III-39. This analysis was performed after the second chemistry etching, 

where the bromine-based chemistry was analyzed. 

 

   
 

Figure III-39. Chemical composition of the areas n°4, n°5 and n°36 after the Br-plasma etching. 

 

The composition of area n°36 was ranked as C > O > Si > F > Br. Actually, it was really close 

to the chemical composition after the first chemistry with some traces of bromine coming 

from the chemistry. Moreover, this time there was more percentage of oxygen 37.6%, 

compared to the previous analysis where it was 22,4%. This increment of the oxygen 

contribution was linked to the chemistry employed (HBr/O2) as happened before with areas 

n°4 and n°5, where the oxygen was notably more important after the second chemistry. The 

main contribution when analyzing the high resolution peak for O 1s was O-Si (531.1eV). The 

C 1s was the main contributor to this composition. It was mainly composed of C-C/C-H that 

could be linked to the AHM mask as well as the air exposition. Furthermore, some C-F links 

were found when analyzing the C 1s peak at 287.2eV. This link was confirmed on the F 1s 

peak at 688eV (F-C). The Si 2p, as before, was mainly composed of Si-Si and Si-O. 

 

Concerning the previous analyses (area n°4 and n°5), the area n°36 had more C (41.9%) than 

area n°4 (10.9%) but less than area n°5 (74.7%). The fluorine was closer to the area n°4, but 

still all the areas showed low F composition, which was normal since no fluorine was used 

during the second etch. The F contribution was remaining from the first chemistry. The 

oxygen was more present for area n°4 (45%) than n°5 (24.1%), being the area n°36 in between 

(37.6%). However, the composition of the O 1s peak was closer to that of the area n°4 (Si) 

since the O-Si (531.1eV) was the most important contribution whereas that for the area n°5 

(AHM) was O-C. Since the Si was not detected for the AHM study, this could only come from 
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the Si part of the sample. Nevertheless, the contribution of Si to the chemical composition of 

area n°36 (18.4%) was lower than for the area n°4 (42%). Bromine was also detected but in 

really low percentage as for the other areas (n°4 and n°5). 

 

From that second analysis based on studying the contributions of the AHM and Si samples, 

we concluded that the area n°36 after the second chemistry (HBr/O2) had similar 

compositions to the other areas. Based on the contributions of each peak we could say that 

those of F and C were closer to the area n°5 (AHM) while those of O and Si were closer to the 

area n°4 (Si). However, based on this analysis, it was difficult to conclude that the sidewalls 

were only composed of Si and O. Therefore, the chemical topography analyses were also 

performed for this study. The high resolution spectra of the area n°36 by using ARXPS at 30° 

for the peaks F 1s, O 1s, C 1s, Br 3d and Si 2p are shown in Figure III-40. These spectra were 

obtained with and without the charge compensation, so that with the flood gun ON and OFF. 

 

 

Figure III-40. XPS spectra area n°36 after the eSTM trench etching (Br-based chemistry). 

 

In Figure III-40, all the peaks looked somehow affected by the charging effect, mainly the C 

1s. Also the O 1s experienced an important effect, but a part of it was still related to the 

sidewalls since it did not experiment any change. The Si 2p changed as well when applying 

the charge compensation. However, the Si-Si contribution was almost not affected by this 

effect. The most important change was related to the Si-O contribution, indicating that some 

SiOx passivation was also presented on the mask sidewalls. Bromine and fluorine shared 

contributions with AHM and Si, being the more important part of bromine related to the Si 

and the most important part of F related to the AHM. The hypothesis that we took from that, 

was that the sidewalls were mainly composed of Si, O, Br and some F. However, the chemical 
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composition for area n°36 (Figure III-33) was 41.9% C, 37.6% O, 18.4%Si, 1.3% F and 0.8%Br. 

Being the C 1s the main contributor to this composition, mainly presented on the mask 

respect to these analyses. The Si-Si part of the silicon was completely on the sidewalls as well 

as some Si-O-Br and Si-O-F, since all these elements (Si, O, Br and F) have kept a part of 

them that was not affected when applying the charge compensation. 

 

From the two analyses, the contribution of areas n°4 and n°5 plus the ARXPS with charging 

effect, we could say that after the second chemistry, the silicon sidewalls of the area n°36 

were mainly oxidized with a brominated contribution to this layer which was related to the 

chemistry and some fluorinated contribution remaining from the first chemistry. 

 

3.2.3.3. Sidewall Passivation Study of the eSTM Trench 

Until now, the idea was not to have a final conclusion about the passivation layers studied 

but to develop the protocol that it could be applied to the real product. However, this product 

counted with a supplementary difficulty to the small dimensions which was the STI trench. 

The STI trench, as explained before, is filled by SiO2. Thus, in this part, the study was 

performed taking into account that the trench was not only composed of polysilicon (as it was 

the case of area n°36) but of Si/SiO2. 

 

The final protocol was based on the ARXPS with the differential charge effect. The 

contribution of areas n°4 and n°5 was not considered since it did not provide any further 

information.  Furthermore, by using ARXPS we could eliminate the bottom contribution 

keeping only the mask and the sidewalls contributions. Then, by using the differential charge 

effect, it was easier to dissociate the mask from the Si sidewalls since only the isolated 

materials are affected by this effect (the AHM in our case). With this protocol, we could 

analyze the sidewall passivation of the eSTM trench which was the final goal of this study. 

Nevertheless, by using XPS ex-situ we had some limitations: the passivation layer could be 

not completely representative of the passivation after the etching due to the air exposition 

which increased the O and C contributions to the layer. Furthermore, the desorption of some 

products together with the oxidation of the passivation layer would not be well controlled, as 

it has been studied for other groups [67]. Therefore, the goal was to have an idea of the 

passivation composition but mainly to know the differences between the center and the edge 

of the wafer. For that purpose, ARXPS analyses with and without charge effect have 

been performed on the center and the edge of the wafer. Then, to differentiate the Si-

passivation from the SiO2-passivation, since the trench of composed of Si/SiO2, the floating 

sample method was used. These floating sample studies were performed only for the second 

chemistry since it was the final one and so that the representative of the real passivation 

after the etching process. However, the first chemistry has been also analyzed in order to 
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have an idea of the layer created after the first etch with ARXPS and the differential charge 

effect.  

 

 F-based Plasma 
 

First, we studied the fluorocarbon-based chemistry (CF4/CH2F2/He). The chemical 

composition obtained from the XPS survey spectra are shown in Figure III-41. The analyses 

were performed on the center and edge of the wafer at 0° and 30°, where 0° was mainly 

representative of the AHM top and Si bottom, and the 30° of the sidewalls of the trench and 

the AHM. 

    

Figure III-41. Chemical composition in function of the tilt (0°/30°) and the position (center/edge). 

 

The elements detected during these analyses were C 1s, F 1s, O 1s and Si 2p. In all the cases, 

the C 1s was the maximum contributor followed by the O 1s. Being the oxygen more presented 

on the sidewalls than the bottom, whereas the carbon was almost completely constant for all 

the situations. For the analysis performed at 0°, more silicon than fluorine was detected 

whereas that for the analysis performed at 30° was the opposite. Furthermore, the fluorine 

concentration increased at the edge when analyzing at 30° (10.1% center vs 10.9% edge). The 

silicon was less presented on the sidewalls (30°). This was normal since at 0° we were 

analyzing the bottom, were the passivation was less thick and more silicon should be detected. 

At 30°, the sidewalls having thicker passivation allowed less Si signal to be detected. The 

main differences were related to the Si 2p peak being 7.9% the lowest percentage (edge-30°) 

and 11.1% the highest one (center-0°). The chemical composition relative to the Si 2p in 

function of the tilt and the position is shown in Figure III-42.  
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Figure III-42. Chemical composition relative to the Si 2p in function of the tilt and the position. 

 

From the results of Figure III-42, the main contributions were the Si 2p peak were Si-Si and 

Si-O, being the last one presented as silicon dioxide (SiO2) and silicon sub-oxides (SiOx). When 

analyzing at 0°, the silicon was mainly elementary silicon (Si-Si) with some contribution of 

Si-O in its form SiO2 and SiOx. However, at 30° the silicon was strongly oxidized and almost 

completely SiO2, with a contribution of Si-Si about 37-38% in both the center and the edge. 

That means that the sidewall passivation of the trench was mainly SiO2. But it should be 

considered that here there was also the STI trench which composition was SiO2. Furthermore, 

these analyses were not only related to the eSTM trench but also to the AHM. The differential 

charge compensation was used to dissociate the part related to the AHM from that one 

related to the eSTM trench at 30°. The results are shown in Figure III-43. 
 

 

Figure III-43. XPS spectra with and without charge compensation after the first chemistry at 30°.  

The spectra of the Figure III-43 were performed at 30° and at the center. All the spectra were 

analyzed showing the same behavior. All the peaks were almost not affected by the 

differential charging effect except the C 1s and some part of the F 1s that could be linked to 
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the AHM. The O 1s and the Si 2p practically did not change with the charge compensation, 

mainly the Si 2p, which does not move at all. The conclusion was that the sidewall passivation 

of the trench was mainly composed of F, O and Si. Being the Si mainly oxidized in its form 

SiO2 and having bigger contribution of O than F. Thus, the passivation of the trench sidewalls 

was more oxidized than fluorinated and moreover the fluorination was more pronounced on 

the edge than the center. The presence of polymers type CxFy was also considered, due to the 

high contribution of C 1s which is linked to F. In any case, the presence of F, could be due to 

a deposition coming from the reactor walls which was also exposed to this F-based chemistry 

and so that a F-passivation could happen also on the walls. This will be studied in the next 

chapter (Chapter IV). 

 

 Br-based Plasma 
 

The chemical composition obtained from the XPS survey spectra for the Br-based plasma step 

are shown in Figure III-44. These analyses were performed after the second chemistry 

etching (HBr/O2) and on the center and edge of the wafer at 0° and 30°. As before, the 0° is 

mainly representative of the AHM top and Si bottom, and the 30° of the sidewalls of the 

trench and the AHM. 

 

 

Figure III-44. Chemical composition in function of the tilt (0°/30°) and the position (center/edge). 

 

The elements detected during this analysis were C 1s, F 1s, O 1s and Si 2p. Some traces of 

bromine were detected as well, but in such small contribution that it was not possible to 

quantify them. In all the cases, the C 1s was the maximum contributor followed by the O 1s, 

as happened before for the first chemistry. Being the oxygen more presented at 30° than 0°, 

thus, on the trench sidewalls. Unlike the oxygen, the carbon was more present at 0° than 30°, 

corresponding to the AHM top and the Si bottom. The behavior of the silicon was the same 

as the oxygen, being more present on the sidewalls than the bottom of the trench. However, 
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no big differences were appreciated between the passivation at the centers and the edges. 

Furthermore, the contributions related to the Si 2p peak presented the same behavior, being 

the passivation more similar in terms of tilt than due to its position on the wafer. The 

chemical composition relative to this peak is shown in Figure III-45.  

 

 

Figure III-45. Chemical composition relative to the Si 2p in function of the tilt and the position. 

 

When analyzing the Si 2p peak, no sub-oxides were detected, just Si-Si and SiO2 contributions 

fitted the peak. For the analysis after the first chemistry, the silicon was mainly Si-Si at 0° 

with some contribution of Si-O (SiO2 and SiOx) and strongly oxidized (almost completely SiO2) 

at 30° with a contribution of Si-Si about 37-38%. After the second chemistry, the contributions 

were the same for all the samples in terms of proportion, being ranked as Si-O > Si-Si, for a 

Si-O completely in form SiO2. However, at 30° the samples were much more oxidized than 

those at 0°. This means that the sidewall of the trench was much more oxidized than the 

bottom of the trench. Nevertheless, as before, it should be considered that the trench had also 

the STI, composed of SiO2.  

 

In order to identify the part related to the STI and the one related to the polysilicon trench, 

the floating method were used. Nevertheless, before using the floating sample method, the 

part related to the AHM had to be dissociated from that one related to the eSTM trench. For 

that, the differential charging effect was used which results are shown in Figure III-46. These 

spectra were performed at 30° and at the center.  
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Figure III-46. XPS spectra with and without charge compensation after the second chemistry at 30°. 

 

Carbon and fluorine were affected by the charging effect. This could mean that the mask was 

mainly composed of C and F. However, a part of F could be still linked to the sidewalls as 

well, since the effect was so small that it was difficult to properly appreciate it. The O 1s and 

the Si 2p practically did not change due to the charge compensation, mainly the Si 2p which 

did not move at all. The conclusion was that the sidewall passivation of the trench was mainly 

composed of O and Si with some fluorinated contribution remaining from the first chemistry. 

Being the Si mainly oxidized, if the passivation layer could be in form SiOxFy, the “x” should 

be significantly higher than “y”. 

 

Floating sample analyses: 
 

Trying to better understand the composition of the sidewalls, the floating sample analyses 

were carried out. For performing these analyses, the floating samples were a Si-sample and 

a SiO2-sample being representatives of the eSTM trench related to the Si-trench and the STI-

trench (SiO2). The small samples were placed on the top of a standard process wafer. After 

the process, these small samples, were analyzed by using XPS. These results are shown in 

Figure III-47. 
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Figure III-47. Chemical composition of the Si and SiO2 samples representative of the eSTM trench. 

 

The elements detected during these analyses were C 1s, F 1s, O 1s and Si 2p. Some traces of 

bromine were detected as well, but as in previous analyses, they were such small that it was 

not possible to quantify them. For both samples, Si and SiO2, the O 1s was the main 

contributor followed by the Si 2p. The lowest contribution to the chemical composition were 

the bromine and fluorine. However, the fluorine was quantified being more important for the 

Si sample (2.4%) than for the SiO2 sample (1.6%). Also the carbon was more present over the 

Si sample than over the SiO2. The oxygen, even if it was the main contributor in both analyses, 

it was more presented over the SiO2 (63.9%) sample than the Si sample (52.4%). Both samples 

were ranked as O > Si > C > F > Br. The detailed composition of the most important peaks 

(O, Si, C) are summarized in Table III-6. 

Table III-6. Composition of the peaks C 1s, O 1s and Si 2p for the Si and SiO2 samples. 

 
C 1s  O 1s Si 2p 

CC-CH COH C=O C=C COOH O-C O-Si Si-Si SiOx + SiOxFy 

Si sample 8.8% 2% 0.6% 0.6% 0.5% 3.7% 48.7% 14% 18.7% 

SiO2 sample 3.7% 0.4% 0.2% 0.1% 0.1% 0.8% 63.1% 0% 30.7% 

The chemical compositions of each peak are expressed respect to the contribution envelope peak to the total (Figure III-43) 

 

The most important contribution to the C 1s peak was in both samples the CC-CH, followed 

by COH. The other three contributions (C=O, C=C and COOH) were also the same but did 

not follow the same order of importance for each sample. Anyway, even the contribution of 

the three together was not bigger than 2% of the total in any case, being 1.7% for the Si 

sample and 0.4% for the SiO2 sample. The Si 2p was difficult to analyze. Only the Si-Si 

contribution was evident for the Si sample being 14%. No Si-Si was detected for the SiO2 

sample, which was not surprising since no elementary silicon was expected when analyzing 

the silicon dioxide. The other components of the Si 2p peak, the Si-O contribution presented 

in both samples, was named as SiOx + SiOxFy since it was not possible to identify the 
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components linked to the O and/or to the F. Furthermore, neither the F 1s peak or O 1s peak 

were possible to be decomposed.  For the O 1s peak, the part linked to the carbon (O-C) being 

3.7% for the silicon and 0.8% for the SiO2, was subtracted from the total percentage of oxygen. 

Thus, the oxygen linked to the silicon (O-Si) was 48.7% for the Si sample and 63.1% for the 

SiO2 sample.  

 

From that analyses we could conclude that a heterogeneous layer SiOxFy, with x and y 

variables, was presented on the two samples after the final trench etching. The value of x 

and y was unknown, however, in order to compare the samples between them, we had 

calculated the ratio of O and F respect to this layer. The values of these reports are shown in 

Table III-7. 

 

Table III-7. Oxygen and fluorine ratio respect to the SiOxFy layer. 

 F 1s O-Si SiOxFy F/ SiOxFy* Si-O/ SiOxFy 

Si sample 2.4 48.7 18.7 0.13 2.6 

SiO2 sample 1.6 63.1 30.7 0.05 2.1 

*This is the value of the ratio of the atomic concentration of fluorine divided by the atomic concentration SiOxFy. 

 

From the results presented in Table III-7, we concluded that the passivation layer over the 

Si sample was more oxidized and fluorinated than the SiO2 sample. 

 

The floating sample analyses led us to the same conclusion as before. A SiOxFy passivation 

mainly oxidized, was detected over both the STI part (SiO2) and the Si part of the eSTM 

trench after the final etching. Since Bromine was used to etch the last part of the trench, 

some bromine was expected (SiOxBry). However, it was impossible to quantified the bromine 

signal in our experiments. Although it had always been detected when analyzing after the 

final chemistry, it was not able to be quantified. This phenomenon had already been studied 

by others authors and explained based on the ease of Br to be replaced by F and O atoms [67]. 

 

3.2.4. Discussion 
 

The etching process of the eSTM trench is sensitive to several parameters which allow the 

anisotropic etching of the trench. The surface characterization by means of XPS with the 

different substrates, helped us understanding the composition of the passivation layer of the 

eSTM trench. The main elements detected were C 1s, F 1s, O 1s and Si 2p for both chemistries, 

with some traces of Br 3d detected after the second chemistry (HBr/O2). Several analyses 

were performed in order to develop the protocol and better understand the mechanism of 

passivation of the eSTM trench, since the dimensions were highly small compared to the 

features studied in the literature. This is also because the XPS works at lower resolution 
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since more information is coming from the lines and spaces of the device studied which 

complicates the analyses. First, we analyzed the reactions taking place over a Si and an AHM 

samples. Then, by using the contribution of the information taken during these analyses, we 

could understand easier the passivation of the area n°36 and the eSTM trench. The goal was 

to know the chemical composition of the eSTM trench. However, we did analyze the 

passivation created also after the first chemistry. For the eSTM trench, during the first 

chemistry, the main contributors to the passivation were C, F, O and Si. Being the silicon 

mainly oxidized in its form SiO2 and having bigger contribution of O than F. The fluorinated 

contribution, even if smaller than the oxidized one, was more detected on the edge than the 

center. As hypothesis, we associated this effect to the influence of the reactor walls, since 

some F-passivation is also expected on the reactor walls during the process when using a F-

based chemistry.  

 

For us, it was really difficult, to identify the parts coming from the mask and those coming 

from the silicon sidewalls, since in all our analyses, the differential charging effect was not 

highly pronounced. In Babaud [125], for instance, the differential charging effect was bigger 

and so the results more evident, as it is shown in Figure III-48.  

 

 

Figure III-48. Differential charging effect where the impact can be clearly appreciated [125]. 

 

When analyzing the passivation after the second chemistry, it was mainly composed of O and 

Si. However, still with some fluorinated contribution remaining from the first step. Based on 

the literature, the passivation layer when etching with HBr should be SiOxBry. In our case, 

the passivation was more SiOxFy, even if some contributions of Br were detected, they were 

too small to be quantified. Actually, since our analyses were performed ex-situ, the bromine 

desorbs due to the air exposition, as it has been explained in section 3.2.1.2. Furthermore, in 

literature [249,250] is extensively studied the fact that the oxygen addition to HBr-based 



CHAPTER III. eSTM: CHARACTERIZATION AND PROCESS OPTIMIZATION 

 

131 

 

chemistries as well as air exposure, induces some effect on the silicon sidewalls passivation 

films: bromine desorption occurs and the films oxidizes, leading to the densification of the 

SPL. Avertin [67], also saw this phenomenon during his studies for a SF6/HBr/O2 plasma. He 

explained that the bromine, being not detected, was easily replaced by F or O and so that it 

was difficult to detect Br on the surfaces. Since our analyses were performed ex-situ, due to 

the industrial limitations, the passivation studied was subjected to these factors. 

Furthermore, we did not only expose the samples to the air, but also we added oxygen to the 

HBr-chemistry. However, these analyses allowed us to have an idea of the plasma-surface 

mechanism that take place during the eSTM process. Furthermore, those studies were used 

to develop the protocol of the chemical topography analyses and the floating sample method 

at STMicroelectronics. 

 

With a SiOxFy passivation on the sidewalls, we wanted to differentiate the STI (SiO2) part of 

the trench to the eSTM trench itself (Poly-Si). For that purpose, we used the floating sample 

technique. This method, is mainly used to simulate the reactor walls, however, some studies 

have employed it for analyzing the sidewalls passivation [67,125,260]. From these studies, 

we know that the floating sample is not as accurate for analyzing the passivation as it is for 

characterizing the reactor walls deposition. In fact, the walls of the reactor as a floating 

sample are bombarded by ions at normal incidence with an energy equal to the plasma 

potential whereas the sidewalls of the structures are bombarded by ions of grazing incidence 

with an energy set by the power of polarization of the substrate. The technique of the floating 

sample therefore, allows the access to information about the presence of a re-deposition of 

the gaseous phase, which may optionally be formed on the sidewalls of the etched structures. 

In any case, the use of this method was not isolated. Instead, it allowed us to confirm the 

conclusion given before, a SiOxFy passivation mainly oxidized, is detected over both the STI 

part (SiO2) and the Si part of the eSTM trench after the final etching. However, the main use 

of the floating sample method in this thesis was related to the characterization of the reactor 

walls. Those studies will be presented in Chapter IV.  

 

In any case, the creation of the sidewall passivation layer is a combination of complex 

mechanisms and its absence has disastrous consequences for the etching profile and the 

critical dimensions. In our case, some problems were faced as the difficulty of doing the 

analysis ex-situ together with the low effect induced by the differential charging effect. 

However, the aim of these analyses was to characterize the passivation, which is related to 

the CD. But in order to keep the CD under control, several parameters have to be taken into 

account. The following part is related to the study of these parameters influence respect to 

the CD. 
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4. OPTIMIZATION 
 

Nowadays, RIE is one of the most widely used pattern-transfer processes in semiconductor 

manufacturing, which becomes increasingly challenging due to the complexity of the process 

itself together with the decrease in feature dimension as it has been explained in Chapter I.  

Furthermore, the Critical Dimension is highly influenced by the RIE of silicon in the CMOS 

technology. This CD has to be well-controlled, as explained before, since it is one of the most 

important parameters for the electrical results. However, the RIE process involves lot of 

parameters which makes highly complicated the understanding of the process. Before we 

characterized the process by studying the influence of the gases on the passivation layer 

which is highly related to the CD. The objective of this part, was to describe and evaluate the 

parameters which take place during the process in order to select the most important in terms 

of CD variations for the eSTM trench. Thus, we could optimize the performance of the cell by 

improving the eSTM trench CD in terms of electrical results. For this purpose, some 

experiments were carried out to finally propose an analytical model developed using DOE. 

The final objective was to have a model adapted to the process such that it can even predict 

the CD anytime we need an industrial change. 
 

 

4.1. Background    
 

The first use of the term “Design of Experiment” in literature is introduced by Ronald A. 

Fisher. To study the process stability, the concept of variance is rendered. R. Fisher firstly 

introduced the term variance in 1918 [262] and developed the subdivision of sums of squares, 

which is now known as the Analysis of Variance (ANOVA). In 1935, Fisher [263] further 

proposed the fundamental concept of the design of experiments which then has been widely 

applied and extended in every aspect. Meanwhile, Fisher also completed the key elements to 

the theoretical groundwork in both ANOVA and DOE. His first ANOVA application was 

published in 1921 [263]. The synergy between mathematical and statistical techniques in 

DOE provides the precious process insights and the optimal result through experimental 

runs. Wang et al [264] pointed out that ANOVA helps to optimize the effect of each factor 

versus the objective function. Furthermore, DOE methods are very useful in analyzing the 

complex multi-parameters processes [271-273], as the systematic relationship between the 

adjustable inputs, i.e., the factors, and the response outputs, i.e., the measurements, will be 

analyzed and extracted in an attempt to determine the optimal process performance. 

 

The most used statistical techniques to optimize the required output parameters are 

Factorial Method, Taguchi Method and Response Surface Method (RSM) [274]. However, 

there are other options. Saltelli named a few such as the Sensitivity Analysis (SA) [265] and 

"One Factor At a Time" (OFAT) approaches [268]. His definition of the term sensitivity 
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analysis is the study of how the uncertainty in the output of a mathematical model or system 

(numerical or otherwise) can be apportioned to different sources of uncertainty in its inputs 

[265]. He also pointed out that the sensitivity analysis is valuable for the determination of 

some physical parameters embedded into a complex model from experimental determination 

of observables that are further down-stream in the model. One of the most common and 

simplest methodologies that could be implemented for the sensitivity analysis is via an 

elementary "One Factor At a Time" (OFAT) approach [268].  This derivative-based method 

was conceived and defined as a local measure of the effect of a given input on a given output.  

The system derivative is denoted Sj=∂Yj/∂Xj, where Y is the output of interest and X an input 

factor as explained by Rabitz and Turanyi [266-267]. 

 

As explained in previous chapters, the number of parameters involved in the etching plasmas 

is important and therefore the analysis of the mechanisms and interactions involved in these 

plasmas become complex. Both, experimental strategies and response surface methodologies, 

help to optimize the organization of experimental tests to obtain the maximum information 

with minimum experiences. When using DOE, understanding the experience plans is based 

on two key concepts; the experimental space and the mathematical modeling of the studied 

variables. Compared to those other experimental strategies, RSM is intended to predict the 

response with a good quality all over the experimental domain [275]. Factorial designs are 

widely used to investigate the joint effects of the factors on a response variable. A factorial 

design is an experimental strategy in which design variables are varied together, instead of 

one-at-a-time [276]. If the number of combinations in a factorial design is too high to be 

logistically feasible, it will be called fractional factorial design [277], in which some of the 

possible combinations are eliminated. A major use of these designs is in screening 

experiments. These fractional factorial designs are among the most widely used kind of 

designs in industry. The other factorial designs are full factorial designs. A very important 

case of the full factorial design is that one where each of the k factors has only two levels 

[277]. Since each replicate of these designs has exactly 2k experimental trials or runs, they 

are usually called 2k factorial designs. These designs are one of the subject of this section and 

therefore some concepts related to them are presented as follows. The understanding of these 

designs resides in two main notions: the experimental design and the mathematical 

formulation.  

 

 The Experimental Design  
 

In a factorial design the influences of all experimental variables, factors, and interaction 

effects on the response or responses are investigated. If the combinations of k factors are 

investigated at two levels, a factorial design will consist of 2k experiments [278]. In the 

experimental layout, the actual process parameter settings are replaced by - 1 and + 1. In 
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this way the size of the experimental domain has been settled. The level of the factors may 

be arbitrarily called “low” and “high”. These two levels can be quantitative or qualitative 

[277]. An experiment with two variables would be represented as in Figure III-49. 

 

Figure III-49. The experiment in a design with two variables [278]. 

 

 The Mathematical Formulation 
 

The outcome of an experiment is dependent on the experimental conditions. This means that 

the result can be described as a function based on the experimental variables (see III.4). 

 

𝑦 = 𝑓(𝑥) + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙     (III.4) 

 

The f(x) is approximated by a polynomial function and represents a good description of the 

relationship between the experimental variables and the responses within a limited 

experimental domain [278]. There are several types of polynomial models. The simplest one 

contains only linear terms and describes only the linear relationship between the 

experimental variables and the responses (III.5). The next level of polynomial models 

contains additional terms that describe the interaction between different experimental 

variables (III.6). The next level of polynomial models can be used to determine an optimum 

(maximum or minimum). Quadratic terms have to be introduced in this model to determine 

non-linear relationships between the experimental variables and responses (III.7). 

 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙                (III.5) 

 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏12𝑥1𝑥2 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙         (III.6) 

 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏11𝑥1
2 + 𝑏22𝑥2

2 + 𝑏12𝑥1𝑥2 + 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙    (III.7) 
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The polynomial functions described above contain a number of unknown parameters 

(𝑏0, 𝑏1, 𝑏2, etc.) to be determined. The residual is related to the lack of fit.  

 

For the different models different types of experimental designs are needed. However, the 

main steps for designing an experiment are always the same [270]: Statement of the problem, 

formulation of hypothesis, experimental design choice, performing the experiment, statistical 

analysis of the data and modeling, optimization and verification of the results. 

 

4.2. Experiments 
 

The equipment used in this study is the 200mm VERSYS STAR from Lam Research 

introduced in Chapter II (2.1.1.). The specifications about the process have also been already 

introduced in this chapter (2.2.) as well as the stack (2.2.1.) and the etching specifications 

(2.2.2.).  In Figure III-19, the etching specifications were sketched. This is, the etch definition 

from the initial stack, which comes from the photolithography step, to the silicon trench 

(eSTM) reached after etching. This process definition does not require a long recipe in terms 

of steps. However, the complexity of the process increases with the huge number of 

parameters required. There were 10 main parameters involved in the recipe used for this 

study, such as pressure, temperature, TCP, BIAS and gas flows. Several gases are needed in 

order to cover the necessity of etching each layer. For instance, as it has been explained 

before, while etching the Si/SiO2, the selected chemistry is F-based whereas that for the 

Silicon etching is Br-based.  

 

To begin designing a set of necessary experiments, it was critical to know the most important 

factors (inputs) related to the outputs, i.e., the CD in this study. Given that the process under 

study involves 10 parameters in each of the 4 steps, the reduction of the number of inputs 

was mandatory even all they are suspected to be key factors. A factorial design could be 

proposed but since the study was carried out in an industrial environment 

(STMicroelectronics), the RIE process was conducted on the basis of “lot”. One “lot” is a set of 

25 wafers to be processed within an etching chamber. Therefore, the first desired constraint 

due to industrial limitation was imposed by the company: the number of experiments was 

expected not to exceed 25 in order to avoid the variability that can be induced from the lot-

to-lot effect. There were two goals in this research: the first one was to find out the factors 

and steps with the biggest influences in terms of final CD in order to build up a mathematical 

model with the significant "process window"; the second goal was to be able to predict the CD 

with the model such that it enables to adjust the CD when needed (ex: for electrics 

performances, morphology, etc.). These aims will be satisfied by choosing the suitable factors 

to perform the DOE modelling and by evaluating the model. 
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For the whole study, the final CD was measured on the top of the trench by using CDSEM 

online. Figure III-50 shows the standard CD after etching indicating where the CD, that we 

target to optimized, had to be measured. The SEM images are taken after removing the mask. 
 

 

Figure III-50.SEM images of the eSTM trenches appearance and the CD measured at the top. 
 

 

     4.2.1. Choice of the Factors 
 

In order to reduce the number of factors, several experiments were performed. Since the 

majority of inputs came from the recipe parameters, experiments related to the process 

sensitivity were done. After knowing the most important parameters, further experiments 

were executed to find out the most influential steps concerning the CD. These experiments, 

related to the steps sensitivity, were performed in two stages. First, a partitioning was done 

in order to know the most important steps by analyzing the influence of each layer with 

respect to the final CD. However, there were still too many inputs left to start the DOE 

analysis. Hence, another experiment was finally carried out to correlate the most influential 

parameters with the most important steps by doing other process sensitivity analysis for each 

of the selected parameters. These preliminary experiments were very essential for factor 

screening, i.e., identifying the correct set of process variables to be included in the DOE study. 

The resulting choice of key factors shows high adequacy for the experimental design. In the 

following sub-sections, these preliminary tests are explained respectively. 
 

 
 

4.2.1.1. Identification of Most Influential Parameters and Steps  
 

As mentioned before, Saltelli [265], defined the term Sensitivity Analysis (SA) as a study of 

how the uncertainty in the output of a mathematical model or system can be apportioned to 

different sources of uncertainty in its inputs. In our study, the sensibility analysis used is an 

OFAT screening test, which consist in changing one parameter of the recipe at a time in order 

to exploring what the model did with the new value. In these analyses the baseline value was 

kept constant. The factors were moved away from the baseline only once (or twice) and the 

baseline was not changed throughout the analysis. Saltelli called this approach "Elementary 
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OAT", or EOAT [268]. The existence of interactions is initially ignored. We assume that there 

are no interactions between steps since the chemistry used was selective. Thus, this study 

was used as a screening stage before the DOE analysis.  

 

 Process Sensitivity Analysis 
 

To perform the process sensibility, it was necessary to check the hardware variabilities of the 

tool configuration such that the chamber matching capability and the key sub-system with 

largest contribution to the CD variability could be understood in advance. Table III-8 shows 

the hardware variabilities from Lam Research related to the RIE equipment used in this 

study.  

Table III-8. Hardware variabilities for 2300 VERSYS system. 

Hardware Sub-system Intrinsic HW variability (3σ) 

TCP RF Power & Delivery ± 1.5% [w] 

Bias RF Power & Delivery (voltage mode) ± 3.0% [volts] 

Vacuum & Pressure ± 3.6% [mTorr] 

Gas Delivery ± 3.4% sccm 

Temperature Control (TCP Window) ± 5.0 °C 

ESC Temperature (Wafer Temperature) ± 1.5 °C (at 250W Bias Power) 

 

The parameters involved in the process under study were the pressure, the TCP Power, the 

Gas Flows, the BIAS Voltage and the ESC Temperature. For each one of them, two variations 

were performed. Normally, these variations should be done as Add/Subtract following the 

Lam Research recommendations. However, in our case some modifications of these 

suggestions were required for some parameters as it is shown in Table III-9. 

 

Table III-9. Hardware variabilities for 2300 VERSYS system. 

Process parameters Variation for Sensitivity Analysis 

Pressure Add/Add → +10%/+20% 

TCP power Subtract/Subtract → -10%/-20% 

Gas flows Add/Subtract → ±15% 

Bias voltage Add/Subtract → ±10% 

ESC temperature Add/Subtract → ±5% 

 

There were two cases where the recommendations of Add/Subtract had to be changed. The 

two parameters under modifications were the Pressure and the TCP Power. For the case of 

the pressure, it was not possible to do Add/Subtract since in some steps of the recipe we need 

to use too many gases. Thus, we were obliged to do Add/Add because we could not even turn 
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on the plasma for these steps if we would decrease the pressure. The case of the TCP Power 

was in the opposite way. In some steps, almost the maximum power of the equipment was 

reached. For instance, while etching the Si trench, the TCP Power was already close to 

1200w. This is the reason why we could only do Subtract/Subtract. For the rest of parameters, 

we followed the Add/Subtract recommendations by doing ±10% for the BIAS Voltage, ±5% for 

the ESC Temperature and ±15% for the gases flows. The gases involved on this study were 

Cl2, HBr, CF4, He, O2 (at 20sccm and 200sccm) and CH2F2. The total number of experiments 

required to perform the EOAT were 20, as the numbers of parameters were 10. The results 

of this process sensitivity analysis regarding the CD expected variation are shown in Figure 

III-51. 

 

 
 

Figure III-51.CD expected process variation from the process sensitivity analysis. 

 

As shown in Figure III-51, the high sensitivity was related to the O2 (200sccm), the ESC 

Temperature, the BIAS Voltage, the HBr, the Pressure and the CH2F2. There were still too 

many parameters to be used for the next sensitivity analysis even if the partitioning will 

identify the most important steps. The total expected CD variation (III.8) as well as the worst 

case CD variation (III.9) are calculated as follows. 

 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 = √∑ 𝑅𝑥𝑖
2 (

𝑑𝑓

𝑑𝑥𝑖
)𝑖

2
       (III.8) 

 

𝑊𝑜𝑟𝑠𝑡 𝐶𝑎𝑠𝑒 =  ∑ 𝑅𝑥𝑖
(

𝑑𝑓

𝑑𝑥𝑖
)𝑖      (III.9) 

 

The expected CD variation was ±4.02nm while the CD variation in the worst case could be 

magnified to ±11.1nm. 
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 Step Partitioning 
 

As explained before, a “partitioning” consist on etching one wafer per each step. By stopping 

the process after each step, each wafer is representative of one of the steps. After identifying 

the key process parameters, the following stage was on the step partitioning to find out the 

most important steps by analyzing the influence of each layer with respect to the final CD. 

The measures performed by SEM (Figure III-52) and the results of this partitioning are 

presented in Table III-10. 

 

 

Figure III-52.SEM images of the etching partitioning for the eSTM trench process. 

 

Table III-10. Step partitioning in relation to CD. 

Step CD variation Δ CD* 

PHOTOLITOGRAPHY Starting CD: 100nm - 

NFARL 100nm → 90nm 10nm 

AHM 90nm → 152nm 62nm 

STI  152nm → 184nm 32nm 

Si trench 184nm → 172nm 12nm 

*Absolute values 

 

In Table III-10, it can be appreciated that the CD was changing from one step to another. 

The differences between two consecutive steps were calculated to study the source of 

variation in terms of steps. According to Table III-10, the steps which induce the most CD 

variation were the AHM and the STI. In particular, the AHM step which induced 62nm of 

CD variation which increased the CD from 90nm after the NFARL opening to 152nm after 

the AHM etching.  

The measurements were taken by online CDSEM and verified by SEM profiles, which further 

confirm that these measurements had small variability. However, the wafer-to-wafer 

variability could always appear during the experiments. Repeating the analysis several times 

led to the same results and verified that the AHM and STI  were the most influential steps.  
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4.2.1.2. Key Factors Selection for DOE Analysis 
 

With the identification of the most influential parameters and steps, the most influential 

parameters (O2 rate flow, the ESC Temperature, the BIAS Voltage, the HBr, the Pressure 

and the CH2F2 rate flow) were then correlated with the most important steps (AHM and STI 

trench). To select the design factors for DOE, two new sensitivity analyses were carried out. 

The first analysis was to evaluate the effects of the influential parameters during the AHM 

etching step and the other one was to study the impacts of the same parameters during the 

STI trench etching step. The results for the two analysis are shown in Figure III-53 and 

Figure III-54. 
 

 
 

Figure III-53. CD variation for the AHM etching step. 

 

The effects of the parameters during the AHM etching on the final eSTM trench CD were 

ranked as: O2 > P > HBr > BIAS > ESC. The contributions of the ranked parameters to the 

variability occurred in this step were 41%, 28%, 17%, 13% and 1%, respectively. 
 

 
 

Figure III-54. CD variation for the STI trench etching step. 
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The effects of the parameters during the STI trench etching on the final eSTM trench CD 

were ranked as: P > BIAS > CH2F2 > ESC. The contributions of the ranked parameters to the 

variability occurred in this step were 40%, 28%, 28% and 4%, respectively.  

 

As a result, the input factors for the DOE were O2 (AHM), P (AHM), P (STI trench), BIAS 

(STI trench) and CH2F2 (STI trench). Considering that these five control factors were the 

most critical parameters/steps related to the final CD of the eSTM trench, a response surface 

model was built to take into account the main effects and the interactions among the key 

parameters. The model must be capable of predicting/optimizing the CD through fine-tuning 

the parameters. 

 

     4.2.2. Design of Experiments 
 

The software Design Expert proposed several DOE models. The one used for this study was 

a response surface D-Optimal. It used discrete factors with any number of levels. The 

construction of the experimental design is often easy and simply selected from matrices 

already published. But it is important that the plan suits to the study and not the reverse.  

 

4.2.2.1. Experimental Design 
 

To study the main effects and all the interactions of the selected factors, the ideal design 

matrix is surely based on the full factorial design. Given the 5 factors with 3 levels, the full 

factorial design will require 243 wafers. However, only 21 runs were indispensable to study 

the full quadratic model. With the constraint of using only one lot, i.e., 25 wafers, the number 

of experiments was reduced to 21 in order to evaluate the main effects and all the second 

order interactions. Three additional experiments at the center of the design space, called 

replicates, were added in order to study the repeatability and robustness of design [269]. To 

avoid the first wafer effect and to have the stable chamber condition, total 24 experimental 

wafers are processed and their CD’s of the silicon trench, i.e., the response of the DOE model, 

were measured after the process. Replicates are not the same that repeated measurements 

on the same experimental unit. Replicating a run means including the same set of processing 

conditions more than once during the experiment. There are two reasons for replication: to 

increases the precision of estimates of effects and to give additional information on 

background process variation [269]. The requirements to be respected for performing a good 

experiment are randomization of experiments to improve statistical tests, replication or 

center point repetition for experimental error estimation and maximization of the accuracy 

of measurements [270]. Table III-11 summarizes the design levels of the 5 selected 

parameters. The 24 experiments (21 trails with 3 replicates) were generated based on D-

Optimal criteria where level 0, i.e., SA, SB, SC, SD, and SE, indicates the standard setting for 

the five factors.  
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Table III-11. Selected factors and designated levels. 

Step Parameters -1 0 +1 Variations 

AHM 
O2 SA-10 SA SA+10 20sccm 

P SB-0,5 SB SB+0,5 1mTorr 

STI trench 

P SC-0,75 SC SC+0,75 1,5mTorr 

BIAS SD-27,5 SD SD+27,5 55V 

CH2F2 SE-7,5 SE SE+7,5 15sccm 

 

This DOE was carried out through the AHM and STI trench steps, since the two steps were 

evaluated as the most important ones. However, the CD was always measured at the top of 

the final eSTM trench, which was therefore the final CD. No interaction between the steps 

take place since the chemistry changes for each step and it is selective to etch the target 

material. Therefore, it was expected to see only the interactions among the parameters within 

the same step. 

 

4.2.2.2. Execution of Experiments 

 

Table III-12 summarizes the test performed during the DOE study made in random order. 

Design Expert automatically randomizes the order of the experimental runs. There are two 

reasons for randomization: it reduces the risk of unanticipated sources of variation affecting 

the estimates of effects and it helps to meet the assumptions of the statistical methods used 

in analyzing experimental data [269]. 
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Table III-12. D-Optimal design matrix. 

Run A (sccm) B (mTorr) C (mTorr) D (V) E (sccm) 

1 0 0 0 0 0 

2 +1 -1 -1 0 -1 

3 -1 +1 -1 0 +1 

4 -1 +1 +1 -1 -1 

5 -1 0 +1 -1 0 

6 -1 0 -1 +1 0 

7 0 0 -1 -1 +1 

8 +1 +1 0 -1 +1 

9 0 0 0 0 0 

10 -1 +1 +1 +1 0 

11 0 +1 +1 +1 +1 

12 +1 -1 +1 0 +1 

13 0 +1 -1 +1 -1 

14 -1 -1 +1 0 -1 

15 0 0 0 0 0 

16 -1 0 +1 -1 +1 

17 +1 -1 +1 +1 -1 

18 -1 0 -1 -1 -1 

19 +1 +1 +1 +1 -1 

20 -1 -1 +1 -1 0 

21 -1 -1 0 +1 +1 

22 +1 0 -1 +1 +1 

23 +1 +1 -1 -1 0 

24 +1 0 +1 -1 -1 

 

4.3. Results 
 

By conducting all the 24 experimental runs and collecting the process responses, i.e., the final 

trench CD, the response surface models were built and evaluated using the Design Expert 

software. The best model was then selected and analyzed in the following. 

 

     4.3.1. DOE Analysis 
 

From all the models proposed by Design Expert, ANOVA suggested the one that suited the 

best to the experiments. The ANOVA summaries for different types of models are listed in 

Table III-13.  

 

 



CHAPTER III. eSTM: CHARACTERIZATION AND PROCESS OPTIMIZATION 

 

144 
 

Table III-13. Analysis of variance (ANOVA) for three estimated models. 

Source 
Sequential 

p-value 

Lack of Fit    

p-value 

Adjusted     

R-Squared 

Predicted    

R-Squared 

Linear <0.0001 0.9031 0.9756 0.9651 

2FI 0.9006 0.7268 0.9639 0.8216 

Quadratic 0.7268 - 0.9508 - 

 

As can be seen in Table III-13, a linear model would be sufficiently good as it outperforms 

the other two types of models. Therefore, the linear model was decided. To further evaluate 

the effect significance of the process parameters, ANOVA was again performed within the 

linear model and summarized in Table III-14. 

 

Table III-14. ANOVA for the Linear Response Surface model. 

Source 
Sequential 

p-value 

Degrees of 

freedom 
Mean Square F-value 

p-value       

Prob > F 

Modela 1498.64 5 299.73 184.60 <0.0001 

A 1069.28 1 1069.28 658.55 <0.0001 

B 260.28 1 260.28 160.30 <0.0001 

C 18.34 1 18.34 11.30 0.0035 

D 30.78 1 30.78 18.96 0.0004 

E 84.42 1 84.42 51.99 <0.0001 

Residual 29.23 18 1.62 - - 

Lack of Fitb                     19.42 15 1.29 0.40 0.9031 

Pure Error 9.81 3 3.27   

Cor Total 1527.87 23    
a Significant/ b Not significant  

 

 

Apparently the linear model was significant with the extremely small p-value (<0.0001). The 

Model F-value of 184.60 implies that the model was significant. Furthermore, the five main 

effects resulted from the key parameters were all significant as well. The insignificant lack 

of fit for this model undoubtedly confirmed the significance of the linear model. The statistical 

results related to this model are shown in Table III-15. 
 

Table III-15. Statistical results evaluated by ANOVA. 

Std.Dev 1.27 R-Squared 0.9809 

Mean 133.31 Adj R-Squared 0.9756 

C.V. % 0.74 Pred R-Squared 0.9651 

PRESS 53.37 Adeq Precision 46.622 
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The Predicted R-Squared of 0.9651 was in reasonable agreement with the Adjusted R-

Squared of 0.9756; i.e., the difference was less than 0.2. The Adequate Precision measures 

the signal to noise ratio. A ratio greater than 4 is desirable. Our ratio of 46.622 indicates an 

adequate signal. Therefore, we can conclude that this model can be used to navigate the 

design space. The linear model can be expressed as (III.10) in terms of the 5 factors and the 

intercept term. 

 

 CD =  +172.67 − 7.88 ∙ A − 3.95 ∙ B − 1.01 ∙ C + 1.36 ∙ D − 2.32 ∙ E   (III.10) 

 

The CD model in (III.10) was built in terms of coded levels, i.e., - 1 and +1, with respect to 

the baseline settings. Equation (III.10) is useful for identifying the relative impact of the 

factors by comparing the coefficients. Figure III-55 shows a Pareto diagram which 

standardizes the effects of the 5 design factors to the variability of the final CD of the eSTM 

trench.  

           

Figure III-55. Pareto diagram of the standardized effects studied with respect to the final CD variation. 

 

The Pareto diagram in Figure III-55 shows that the biggest impact on the final CD variation 

actually came from the factor A, i.e., the mass flow of the O2 during the AHM etching. The 

pressure during the AHM etching step (factor B) and the mass flow of CH2F2 during the STI 

trench etching (factor E) had as well a significant effect but less important than the O2 during 

the AHM etching. The Bias voltage (factor D) and the pressure (factor C) during the etching 

of the STI trench, despite significant, were the least important. Figure III-56 displays the 

factor effects over the final CD of the silicon trench within the practical process window. The 

estimated effects of all the five factors were: 0.79nm/sccm (A), -9.35nm/mTorr (B), 

0.02nm/mTorr (C), 0.01nm/V (D), and -0.22nm/sccm (E). Furthermore, each factor plays a 

different role through the process. 
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Figure III-56. Factor effects over the final CD with the practical process window. 

 

The gases flow as was the case of the factor A (O2_AHM) and E (CH2F2_ STI trench) were 

related to the plasma chemistry. By increasing or reducing a gas, we could see impacted the 

CD dimensions due to the passivation effect. Both of these gases, O2 and CH2F2, were used to 

passivate. For instance, the CD of the AHM was extremely important since it was used as a 

mask for its following steps. The CD coming out of this step would be directly influenced for 

the next steps and, therefore, affect the final CD. The O2 plays a role to the lateral etching 

and the passivation of the AHM as well as happened with the flow of CH2F2 during the STI 

trench etching. Increasing the flow rate induced an augmentation of the C:F ratio and affects 

the CD because of its strong polymerizing behavior. In order to keep a good isotropic etching, 

it should be highly controlled. A similar behavior happened when increasing the Bias voltage 

(factor D), which was related to the STI trench. With the increasing Bias voltage, the CD 

would increase accordingly due to the effect of the sidewalls passivation. The pressure as was 

the case of the factors B (P_AHM) and C (P_ STI trench) was related to the gas phase. By 

increasing the pressure, the lateral etching increased as well, and thus the CD became lower. 

The effect of the pressure was less significant when etching the STI trench than when etching 

the AHM. 

     4.3.2. Predictions and Validation 
 

To easily explain and utilize the CD model, the -1 and +1 levels in (III.10) were restored to 

their real values in each factor and the model was rebuilt as shown in (III.11). The factor 

effects in (III.11) could not be compared directly as the coefficients were now scale sensitive. 

However, this model was more straightforward to predict the real CD values using the real 
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factor settings without any encoding. The initial recipe could be then optimized with the 

desired CD such that the best electrical performance of the IC can be achieved.  

 

CD =  +315.614 − 0.788 ∙ A − 7.896 ∙ B − 1.341 ∙ C + 0.049 ∙ D − 0.309 ∙ E       (III.11) 

 

A comparison of experimental and predicted results for the different answers of the DOE is 

represented in Figure III-57. 

 

 

Figure III-57. Comparison between experimental and calculated CD values. 

 

To verify that the model worked for making predictions, some complementary wafer was 

processed and the corresponding responses were collected. As can be seen in Figure III-57, 

the predicted and the real CD measurements for these testing runs were highly matched. It 

did not only prove the significance of the model in (III.10) and (III.11), but also confirms the 

applicability of this response surface model. 

 

     4.3.3. Further Details 
 

Taking advantage of the experiments performed, further analyses were carried out over some 

of these experimental wafers. 

 

4.3.3.1. Physical Analyses 

 

The wafers with the lowest and highest CD, were used to perform physical analyses, such as 

SEM and TEM.  Figure III-58 shows the SEM analysis of these wafers. 
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Figure III-58. SEM images of a standard CD of the eSTM trench compared to the lowest and highest 

CD obtained during the DOE. 

 

With the results shown in Figure III-58, we could verify the measures taken online by 

CDSEM, so the accuracy of measurements was confirmed. Table III-17 summarizes the 

comparison of the CDSEM and SEM measures for the wafer with highest and lowest CD.   

 

Table III-17. Comparison of CDSEM and SEM measures. 

Wafer CD SEM  CDSEM 

Highest 186nm 187nm 

Lowest 156nm 155,7nm 

 

Figure III-59 shows the TEM analysis of these wafers with the measurement of the sidewall 

passivation at the top and at the bottom of the trench. 
 

 

Figure III-59. TEM images of the passivation at the top and bottom of the eSTM trench for the wafer 

with highest (a) and with lowest CD (b). 
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It can be appreciated that the passivation top and bottom of the trench with lowest CD was 

thicker than that created at the top and bottom of the wafer with highest CD. 3.4nm/3.7nm 

for the lowest CD wafer and 3.0nm/3.0nm for the highest CD wafer. That verified that the 

lowest CD was due to an increment of the passivation layer due to the effect of the studied 

parameters. 

 

4.3.3.2. Electrical Analyses 

 

With the validated confidence of the CD model, electrical analyses were done to study the 

electrical properties of the experimental wafers.  During the wafer testing, which is 

performed before a wafer is sent to die preparation, all individual integrated circuits of the 

wafer were tested for functional defects by applying special test patterns to them. During 

those tests, it was concluded that the wafers with lower CD’s did have less scatter. Based on 

the engineering knowledge, it was also known that the wafers with lower CD’s usually have 

better reliability. 

 

4.4. Summary and Industrialization 
 

To study the physical behavior in the Reactive Ion Etching (RIE) process in relation to the 

final trench CD measurements, a practical study was done in this research and two objectives 

were accomplished. The first one was to identify the key factors and steps with the largest 

influences on the final CD. The DOE analysis was performed and the final CD was modelled 

with the representative "process windows" significantly. The second goal was therefore to use 

the designed model to predict the CD such that it enables reaching the desired CD for better 

product performances (ex: electrics, morphology, etc.).  

 

The physical characterization verified that when there was a thicker passivation, the CD was 

lower, since we were measuring the trench (the space). The electrical characterization of the 

wafers allowed us to choose the best CD in terms of electrical performances. 

 

For the industrialization, the selected CD was lower than the standard CD of the eSTM 

trench (172nm). There is one electrical parameter (HBIN60) that is critical for us. This 

parameter is related to the electrical results. The lower it is, the better the reliability of the 

cell. This critical parameter was not even present over the wafer no.12 in the DOE study, 

which had the CD measurement equal to 166nm (see Figure III-60). It is therefore regarded 

as the optimal CD of the eSTM trench. To put this model in real practice, the selected CD 

should be lower than the actual CD of the eSTM trench (172nm), which was settled down to 

be at 166nm.  
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Figure III-60. Electrical results of the experimental wafers. 

 

To obtain the desired CD from the designed model, there could be up to 100 solutions of the 

parameter settings. In order to have an executable recipe, the setting choices were based on 

the plasma considerations and the limitations of the equipment. Several tests were carried 

out to validate this new recipe and ensure its successful process. 

 

5. CONCLUSION 
 

This chapter shows the characterization and optimization of the eSTM process. First, the 

characterization of the different parts that interact during the process etch were discussed. 

Therefore, the diagnostics of the plasma itself by using OES and the composition of the 

surface layer being etched by XPS were studied. In a second stage, for reducing the CD with 

the aim of optimizing the electrical results, a model was proposed by using DOE; being able 

to predict and so that control the CD by establishing the units for the most important 

parameters.  

 

Once the plasma and the chemical composition of the SPL were characterized, we could 

explain the formation of a SiOxFy passivation layer which is mainly oxidized due to the 

influence of the oxygen in the chemistry and the air exposure. This is also the reason why 

the bromine desorbs together with the ease of being replaced by F and O. The 

characterization of the plasma as the sidewall passivation was important for the development 

of the process since it was a totally new process which needed to be characterize but also 
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because we could develop the chemical topography analysis at ST Microelectronics Rousset.  

Thus, the protocol it can be nowadays used for characterizing others samples. 

 

The final goal of this chapter was to reduce the CD in order to get better performance related 

to the electrical results. In order to keep the CD under control, several parameters were taken 

into account. Some studies were performed in order to find out the factors and steps with the 

biggest influence in terms of final CD. With that, we improved our knowledge of the process 

and obtained a mathematical model with the representative "process window". The model 

proposed by means of DOE was able to predict the CD such that it allow us to change the CD 

as long as it will be required for any reason as it has been demonstrated by changing the 

target CD of the technology from 172nm to 166nm. We decided to reduce the CD based on 

the electrical results, since the wafers with lower CD were those with better performance 

respect to the electrical results. Therefore, it was demonstrated that the eSTM trench CD 

can be achieved with the model presented in this chapter. 
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“A careful analysis of the process of observation in atomic physics has shown 

that the subatomic particles have no meaning as isolated entities, but can only be 

understood as interconnections between the preparation of an experiment and the 

subsequent measurement” (E. Schrödinger) 

 

Chapter IV 

Plasma-Reactor Wall 

Interactions: The Fluorine 

Problem  
 

 

 
This chapter presents the experimental analyses carried out for the 

characterization of the reactor walls used in this work. It contains 

information on the process and the characterization technique used, the 

Floating Sample Method. The analyses were focused on the fluorine 

problem, a well know issue in plasma reactors which use F-based plasmas. 

Finally, a new strategy for cleaning the reactor is proposed.  

 
 

 

Image of the floating sample performed during this thesis. 
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During plasma etching processes, there are plasma-surface interactions, as explained 

in the previous chapter but also the plasma-reactor wall interactions. Due to the differences 

on the energy of the ion bombardment and the chemical composition of the reactor walls 

respect to the wafer surface, the effects are completely different. In this chapter, the reactions 

taking place on the reactor walls during the eSTM trench process are studied.  

 

The chapter is organized as follows. Firstly, an introduction based on the literature review is 

presented followed by the experimental details related to the process and cleaning. Secondly, 

the characterization of the coatings deposited on the walls and the optimization of the 

cleaning strategy are discussed. Finally, the conclusions of this study conclude this chapter. 

 

1. LITERATURE REVIEW 
 

Organic or mineral layers are deposited on the chamber walls during the plasma etching 

processes [155]. These layers can produce large and uncontrolled shifts in the etch process so 

that should be well controlled and properly cleaned. However, the chemical nature of these 

layers, even if it is largely studied [66, 155, 279-286], remains poorly understood in 

industries, due to the lack of in-situ diagnostics available to monitor the reactor walls. In this 

section, we present a state-of-the-art about the studies carried out related to this subject as 

well as an introduction to the fluorine contamination problem. 

 

1.1. Influence of Reactor Wall Conditions on Etch Processes 
 

Controlling the stability of plasma processes becomes a major issue as the dimensions of the 

gates shrink at each new generation. Among the different reasons leading in controlling the 

feature dimensions, the chemical composition of the coating formed on the reactor walls is 

one of the most important [155]. During the etching of successive wafers, the wall surfaces 

exposed to the plasma will change progressively. As result, the etching characteristics of the 

plasma changes. The coating layers formed on the reactor walls have been studied by several 

authors for different plasmas chemistries. 

 

Schaepkens et al [279], studied the influence of the reactor wall conditions in high density 

fluorocarbon plasma etch processes. They saw that the reactor wall temperature was an 

important parameter, since it could reduce the loss of fluorocarbon species from the plasma 

to the walls as the wall temperature increased. They even proposed a model describing the 

time dependence of the reactor wall temperature. Some years later, Joubert et al [155] 

proposed a method for monitoring the chamber walls coating deposited during plasma 

processes. This technique, which has already been introduced in Chapter II (3.3.5.), is the so-
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called floating sample or air gap. They validated the technique during silicon gate etching in 

HBr/Cl2/O2 plasmas, which are known to deposit silicon oxychloride layers on the chamber 

walls. They also studied the influence of CF4 addition in the plasma. They observed that CF4 

addition severely decreased the deposition rate of SiOClx species on the chamber walls. 

Xu et al [280] also showed that the chemical nature of coatings on the chamber walls can 

change by varying the CF4/O2 ratio in the HBr/Cl2/CF4 chemistry. When the chambers were 

exposed to low CF4/O2 ratios, they were covered by SiOClx oxide-like films whereas that for a 

CF4/O2 ratio of 4:1, the Al2O3 chamber walls was kept free from deposition. They also 

appreciated that for higher ratios, the chamber walls were coated with carbon-like films. 

Cunge et al [281] also remarked this phenomenon of enhancement by the recombination rate 

of Br atoms with CF4 addition and resist etching in HBr/Cl2/O2 plasmas. They explained that 

the recombination coefficient of Br atoms on organic polymer surfaces (CxFy or CxCly) is much 

larger than on SiO2-like surfaces (SiOxCly). In another study, Cunge et al [282] measured the 

absolute concentrations of SiClx radicals by broad band UV adsorption spectroscopy for 

HBr/Cl2/O2 processes at different O2 gas flow rates and RF powers in the plasma. They saw 

that the oxidation by O atoms of SiClx species chemisorbed on the layer leaded to the 

irreversible incorporation of silicon on the chamber walls by forming a silicon oxychloride 

film on the reactor surface. They represented the silicon lifecycle and the deposition 

mechanism of the SiOxCly layer on the reactor as it is shown in Figure IV-1. 

 

 

Figure IV-1. Schematic of the silicon lifecycle and deposition mechanism of the SiOxCly layer on the 

reactor walls. The left part without O2 and the right with O2 added [282]. 

 

There are also several studies related to the fluorinated mechanism of reactor walls 

irradiated by high density F-based plasmas. Miwa et al [283] studied the contribution of F-

based plasmas to Al2O3 and Y2O3 reactor walls. For both of them, when the surface of the 

reactor was bombarded by high-flux positive ions of a CF4/O2 plasma, the walls were 

significantly fluorinated. Ramos et al [284] saw the same problem; F-based chemistries 

leaved AlFx species on the reactor walls being their reactor walls composed of Al2O3. Moreover, 

the mass-production factories reactor walls are composed of Al2O3 and Y2O3 inner walls which 

have problems in significant erosion and particle generation when they are immersed in 

fluorine-based plasmas [283]. Furthermore, this problem is accentuated due to the fact that 
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most of the cleaning strategies use also F-containing plasmas. This fluorine problem have 

been largely studied due to the importance of maintaining stable plasma processing 

conditions.  

 

1.2. Contamination: The Fluorine Problem 
 

Joubert et al [155] already saw a significant AlF component at 75.9eV in the Al 2p peak when 

developing the floating sample technique. This component was observed for O2 flows larger 

or equal to 5sccm demonstrating that a fluorine-rich interference layer was formed on the 

Al2O3 surface of the reactor on which the SiOClx film grew.  

 

Ramos et al [284] delved more on this topic when studying the wafer to wafer reproducibility 

which is a major challenge in etching processes. The periodic dry cleaning of the reactor that 

they studied which was F-based is one of the most common strategy nowadays to ensure 

process repeatability. However, as mentioned before, this kind of cleaning based on fluorine, 

left AlFx species on the reactor walls as they observed, and several groups confirmed [156, 

283-287]. Ramos et al explained that during a SF6/O2 WAC (Wafer-less Auto Clean) the Al2O3 

roof was simultaneously fluorinated and sputtered. Thus, releasing non-volatile AlFx species 

in the plasma, which were redeposited on all other surfaces exposed to the plasma. Hence, 

the reactor cleaning plasma left residues on the reactor walls on its own. This accumulation 

of an AlF3 deposited on the chamber walls from the process and the cleaning is at the origin 

of process drifts. In other study of this group [285], they exposed the presence of an AlOFx 

layer formed as well due to the fluorination of the Al2O3 reactor wall. In this work, they 

verified that this layer can flake off when it becomes too thick, as they said in their first study. 

They also explained that the AlFx layer increased when the F-based plasma duration 

increased, as shown in Figure IV-2. 

 

Figure IV-2. Al 2p XPS spectra from the floating Al2O3 sample before and after exposure to different 

SF6/O2 cleaning plasmas [285]. 
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They concluded that the formation of AlFx coatings is inescapable in any inductively coupled 

reactor containing Al2O3-covered parts. Furthermore, the problem was not only related to the 

reactor with Al2O3 walls, but also to the others.   

 

Miwa et al [283], studied two kind of reactors, one with walls made of Al2O3 and another one 

made of Y2O3. Both surfaces, Al2O3 and Y2O3, were fluorinated after being exposed by F atoms. 

They explained that the key step in the fluorination process was the decomposition of the Al-

O (or Y-O) bonding on the ceramic surface by reactions with carbon in fluorocarbon deposits. 

Once the metal-oxide bonding was decomposed, the progress of fluorination was inevitable. 

Ramos [66] also studied the behavior of Y2O3 surfaces when they were exposed to F-based 

plasmas. Their results confirmed those of Miwa. The concentration of fluorine in his results 

showed that the surfaces of the reactor walls composed of Y2O3 turned into a YFx surface after 

exposure to the fluorinated plasma. He concluded, that we can expect the same types of 

problems with a Y2O3 reactor and an Al2O3 reactor. However, the Y2O3 is known to be a more 

stable compound than Al2O3. Actually, Miwa et al [283] said that even if fluorinated as well 

as the Al2O3, the Y2O3 surfaces were less contaminated when they were irradiated by the 

same plasma. In order to provide more stable CD performances, these F-based depositions 

on chamber walls need to be reduced. Several cleaning strategies propositions showed up due 

to this concern [156, 286-288], as it will be explained later in this chapter (4.1.). 

 

2. PROCESS AND CLEANING CONSIDERATIONS  
 

The process of the eSTM trench has already been introduced in Chapter III (2.1.). The same 

steps for reaching the eSTM as well as the selected chemistry for each one of them being 

those F- and Br-based plasmas are used for this study.  

The cleaning, performed after each wafer, was the so-called WAC (Wafer-less Auto Clean) 

[289]. It is a periodic dry cleaning of the reactor in which a protective cover wafer for the 

electrostatic chuck is not necessary. WAC is the most common strategy to ensure process 

repeatability which is a major challenge in etching processes. It removes deposition from the 

chamber walls which ensures that the chamber is maintained in a clean state in order to 

improve process performance in the equipment. It also improves productivity, minimizes 

drifts associated with changing chamber conditions and enables application mixing an insitu 

processing capability in the tool [289].  

 

LAM Research considers two possibilities when selecting the WAC. When etching with 

fluorocarbon based chemistries, it deposits CxFy polymers. When etching with HBr/Cl2/O2 

chemistries, the deposits are silicon oxi halides-like films or “glassy” depositions (SiOzClx and 

SiOzBrx). Thus, the WAC used for processes where F- and Br-based chemistries are employed 
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should clean both deposits, CxFy and SiOzClx/ SiOzBrx. The most widely used WAC for that 

purpose uses SF6/O2 chemistry [156,283,284,286,289]. 

 

The WAC used in our experiment uses this SF6/O2 chemistry. It is composed of two main 

cleaning steps. The clean 1 (F-based), is used for cleaning the “glassy” deposition; the silicon 

oxi-halides. The clean 2 (O-based), is used for cleaning the CxFy polymers deposition. 

However, since the clean 1 uses also O2, some C-containing deposits are etched during this 

step too. Since the eSTM is a new technology still in development, the WAC was taken from 

other technology where also F- and Br-plasmas were used. That WAC implied 30s for the 

clean 1 and 35s for the clean 2 (30_35). A schematic representation of the WAC operation 

process used in our study is shown in Figure IV-3. 

 

 

Figure IV-3. Principle of the WAC used for cleaning the C- and Si-by products.  

 

Concerned about the fluorine problem introduced in the previous section, which is not only 

related to the process but also to the WAC because also uses F-based plasmas, we wanted to 

characterize the coating deposited during the process and during the WAC on the reactor 

walls. The goal of analyzing the fluorination produced during the process and during the 

WAC, was to reduce it by keeping the reactor as free of fluorine as possible.  

 

3. CHARACTERIZATION 
 

This section is related to the characterization of the reactor walls coatings formed during the 

etching process of the eSTM trench. 

 

3.1. State-of-the-art 
 

The study of the plasma-wall interactions is difficult due to the lack of diagnostic methods to 

monitor the chemical nature of the films formed on the reactor walls during the etching. 

Therefore, a state-of-the-art seeking the possible techniques existing for characterizing the 

coatings deposited on the chamber walls was required in order to select the way that best 

meet the conditions of this study. 
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The first study of the coating deposited during the silicon etching by Cl2/O2 plasmas on the 

reactor walls, was developed by Zau et al [290] in 1992. In their study, they fixed a gold 

sample on the surface which was analyzed later by Auger Electron Spectroscopy (AES). They 

saw that the oxychloride film, formed by reaction between the etching products and the added 

O2, passivated the interior etcher surfaces against Cl surface recombination and the 

composition. Thus, the reactor walls conditioning was similar to the sidewalls passivation 

being SiOxCly.  

 

In 2001, Godfrey et al [291] proposed a new diagnostic method for monitoring the reactor 

walls. This one was based on Multiple Total Internal Reflection Fourier Transform InfraRed 

(MTIR-FTIR) spectroscopy. They used it to detect etch products and the films deposited on 

the reactor walls during Cl2 plasma etching of Si, to determine the effectiveness of a SF6 

plasma to clean films deposited on the walls and to monitor wafer-to-wafer etching 

reproducibility. The technique consisted of a FTIR spectrometer and a box with all the 

necessary optical components to direct the infrared radiation to and from an Internal 

Reflection Crystal (IRC) that was mounted on the inside wall of the plasma reactor. The 

optical box was attached to the exterior of the plasma reactor wall and held the IRC just 

inside the reactor together with a series of mirrors. The bigger trapezoidal IRC was directly 

exposed to the plasma and simulated a portion of the reactor walls. The spectra collected as 

a function of time during their experiment was used to analyze the bonds formed on the IRC 

surface and so that the chemical composition of the coatings can be determined. Ullal et al 

[292] also used this method to monitor the films formed on the reactor walls. In their results, 

the silicon oxychloride film etching proceeded by incorporation of F, which also abstracted 

and replaced the Cl atoms in the film. If the SF6 plasma was not maintained for a sufficiently 

long period to remove all the deposits, the F incorporated into the film was infiltrated into 

the gas phase during the subsequent etch processes. They explained that this residual F can 

have undesirable effects on the etching performance and the wafer-to-wafer reproducibility.  

 

Some years later, Miwa et al [225] studied the deposition on the etch chamber using OES. 

They obtained relative quantity of deposition in the etch chamber from the ratio of optical 

emission intensity of SiBr to He in the plasma. Based on the results of relative quantity of 

deposition depending on cumulative etched wafers in the chamber, they estimated a 

mechanism of particle occurrence from the deposition on the chamber. They explained that 

the SiBr density in the plasma might be proportional to the Si contained in the deposition. 

Thus, they could estimate the deposition amount by determining the SiBr density from the 

optical emission. 

 

In 2004, Joubert et al [155] proposed the floating sample method, already introduced in this 

thesis. This method is the most widely used method for characterizing the reactor walls 
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composition since it allows the quantitative analysis of the coatings chemical composition 

without requiring any specific equipment, by using a sample electrically floating on top of a 

standard wafer where the same deposit as on the reactor walls is formed. By transferring the 

wafer carrying the electrically floating sample into the XPS analysis chamber, the chemical 

composition can be determined.  

 

Ramos et al [284] studied the plasma-reactor wall interactions in advanced gate etching 

processes by using two techniques. Firstly, the floating sample developed by Joubert et al 

[155]. Secondly, another technique already presented by Cunge et al [293]. This new method 

was based on the detection of Cl2 by laser absorption allowing to determine whether the 

reactor has been correctly cleaned before processing a new wafer, which was no easy to 

characterize before. The goal of their diagnostic technique was to prevent process drifts and 

thus the waste of expensive wafers. This method was performed without wafer using laser 

absorption spectroscopy in a reference Cl2-based plasma. They showed up that the advantage 

of using their method lies in the possibility of measuring within a few seconds the Cl2 density 

in the steady-state plasma, which is highly sensitive to the reactor walls’ coating. 

 

In this research, we wanted to characterize the coatings on the reactor walls of the industrial 

reactor of ST Microelectronics Rousset, where all our experiments were carried out and until 

now the coatings on the reactor have never been characterized before. Due to industrial 

constraints, we decided to use the floating sample method since it allowed us to characterize 

the reactor walls, without opening the chamber and therefore, without contaminating it. 

Furthermore, we wanted to develop this protocol at the company so that it could be used for 

the process engineers in order to characterize any other equipment as needed. 

  

3.2. Experimental  
 

Specifications about all the equipment used for this thesis, were introduced in Chapter II. 

The experimental set-up for this study includes:  

 

 The plasma reactor: 200mm VERSYS STAR from LAM Research (Chapter II. 2.1.1.) 

 The XPS equipment: KRATOS AXIS NOVA (Chapter II. 3.3.2.) 

 

The analyses were performed by using the floating sample method developed by Joubert et 

al [155]. The samples were fixed on the wafers, but separated from it by a thick air gap 

calculated for each process. Kapton adhesive rolls were used to create the air gap between 

the wafer and the sample. As mentioned before (Chapter II. 3.3.5.), when the RF biasing 

voltage is applied to the wafer, if the air gap is thick enough, it prevents the DC-biasing of 

the sample. The wafer holding the sample is etched under regular conditions while the 
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sample is electrically floating, and so the same deposits grows on the sample and the reactor 

walls [155].  

The experimental protocol used in this research consisted into analyze the deposits created 

during the etch of the STI (F-based chemistry), the one created during the eSTM trench 

etching and the one created during the WAC.  The value of the plasma parameters, such as 

the Boltzmann constant (𝑘𝐵), the elementary charge (𝑒) and the electric permittivity of 

vacuum(∈0), have already been presented in Chapter I (3.2. and 3.3.). However, there are 

some others that need to be introduced. For instance, the electronic density (ne) which in our 

case was 1011 cm-3. Furthermore, there are specific parameters for each process (STI and 

eSTM) as summarizes in Table IV-1.  

Table IV-1. Specific plasma operating conditions for each step (STI and eSTM). 

Parameters 
Steps 

STI (F-plasma) eSTM (Br-plasma) 

Time  70s 76s 

Pressure 7.5mTorr 30mTorr 

Electronic temperature  3eV 2eV 

Bias RF voltage  275v 360v 

 

According to the equations introduced in Chapter I (Debye length (I.4) and Child-Langmuir 

sheat (I.8)) we can calculate the air gap needed. With a Debye length of 0.04mm for the STI 

step and 0.03mm for the eSTM step, the calculated air gap required for simulating the F-

based step (STI) was 1mm and 1.3mm for simulating the Br-based step (eSTM). For 

analyzing the deposits created during the WAC, no space was required since there is no bias 

applied. Thus, the piece of silicon with the Y2O3 deposition was directly mounted on the wafer 

support. Another consideration was taken into account related to the characteristics of our 

process. The maximum time of each process step had to be at most 30 seconds to avoid 

temperature problems on the floating sample. Our process times were 70s for the first step 

and 76s for the second one. Thus, the steps were divided into several steps to not pass the 

maximum time advised. 

 

Since this research was performed in an industrial reactor, several precautions were taken 

into account. For instance, the processes were always carried out between two TXRF (Total 

Reflection X-Ray Fluorescence) analyses in order to see that no contamination happened 

between them and also that the chambers were in the same conditions before/after the 

experiments. Furthermore, the Preventive Maintenance (PM) of the equipment was 

performed always after the second TXRF in order to be sure that the equipment was totally 

cleaned.  
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     3.2.1. Substrates 

 

The chamber walls are made of Al2O3 but coated with Y2O3 since LAM discovered that this 

compound is more stable than Al2O3. For analyzing the walls of the chamber by using the 

floating sample method, Y2O3 samples were essential. Our samples were deposited on silicon 

by ion sputtering with xenon at Université de Poitiers (CNRS). The thickness was about 

200nm.  

 

3.3. Results  
 

The information that we had about the samples was just related to the deposition process, as 

explained before. Thus, the first analysis was performed over a Y2O3 sample to have it as a 

reference. The characterization of their composition was carried out by XPS and the results 

are shown in Figure IV-4. The sample was mainly composed of oxygen (39.1%), carbon 

(36.4%) and yttrium (23.2%). However, some traces of fluorine were also detected (0.2%) and 

most surprising; molybdenum (1.1%). We could not have further information about the 

molybdenum origin. In this study, we decided to not consider its presence which was detected 

in all the samples since it was not related to our process.  

 

 

Figure IV-4. XPS survey spectrum of the Y2O3 sample used as reference for our study. 

 

Avoiding the molybdenum presence, which is indeed very low, the composition of the 

reference was mainly Y atoms linked to O atoms (Y-O) and O atoms linked to Y atoms (O-Y). 

Actually, this was the expected composition for a Y2O3 sample. However, the sample 

presented as well some traces of fluorine and in particular an important carbon contribution, 

coming probably from the air contamination. Those contaminations (F and C) disappeared 

quickly during the first seconds that the sample is exposed to the plasma. 
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The first thing we wanted to study was the process influence on the reactor walls. This 

process, extensively explained in this thesis, is the one related to the eSTM trench. Thus, 

analyses about the influence of the STI step (F-based chemistry) and the eSTM step (Br-

based chemistry) on the reactor walls were performed. The results, by using the floating 

sample method, are shown in Figure IV-5. From these results, we concluded that the presence 

of fluorine was the most important contribution for both processes, after the F-chemistry (STI 

step) and the Br-chemistry (eSTM step). Both compositions were pretty similar except for the 

presence of bromine over the sample related to the eSTM which was clearly coming from the 

chemistry (0.7%). The carbon was linked to the F (CFx) with a contribution of the air 

contamination (CC:CH). However, no silicon was detected in any sample, only few traces 

during the eSTM step not even quantifiable. This was really surprising since from the eSTM 

step (HBr/O2) some “glassy” depositions were expected on the reactor walls. 

 

 

Figure IV-5. Chemical composition of the STI (F-plasma) and eSTM (Br-plasma) steps compared to 

the Y2O3 reference. 

 

Trying to understand if the absence of silicon was due to the process or to the Y2O3 sample 

used, we decided to perform the same analysis on a Al2O3 sample. The reactor counts also 

with this material on its composition even if it is covered with a Y2O3 coating. The results 

when using the Al2O3 sample were similar to those obtained with the Y2O3 sample. Less than 

2% of silicon was detected for the Al2O3 sample. Still too low compared with the percentage 

expected during a silicon etching step with HBr. In any case, we were always able to detect 

the composition of the sample (Y2O3) which means that the coating thickness was less than 

10nm which is the range of detection of the XPS. The reduction of O atoms was explained by 

the incorporation of fluorine. The Y atoms were less linked to O atoms (Y-O) and more linked 

to F (Y-F) since its presence was more important after the process. Thus, after the process, 

the yttrium is mainly linked to the fluorine in the form YFx. 
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Still concerned about the fluorine problem, we characterized also the coatings deposited on 

the reactor walls during the WAC, which is intended to clean the coatings (see Figure IV-3) 

from one process to another. The result is shown in Figure IV-6 compared with the Y2O3 

reference. 
 

 

Figure IV-6. Chemical composition of the WAC (SF6/O2 plasma) compared to the Y2O3 reference. 

 

Since the WAC was also F-based (SF6/O2), and knowing from the literature that these kind 

of plasma also leaves F-contamination on the reactor walls, we wanted to know if the coatings 

were more or less fluorinated than the process (STI and eSTM steps). Since the pressure used 

during the WAC is higher than those used during the processes, it is supposed to reduce these 

F-containing formations. From the results shown in Figure IV-6, we could see that the 

presence of fluorine after the WAC was still very disturbing, compared to the reference. 

Respect to the previous analyses, we saw a reduction of fluorine which before was 55% and 

52.3% for the STI and the eSTM steps, respectively. 

 

After the WAC, the Y atoms were more linked to O atoms than F atoms, even if the YFx 

formation existed (Y-F). All the contributions related to the Y 3d peak can be observed in 

Figure IV-7, where the composition of the Y peak is represented for the reference (Y2O3), the 

STI process (F-based chemistry), the eSTM process (Br-based chemistry) and the WAC 

(SF6/O2 plasma). 
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Figure IV-7. Y 3d spectra for the reference (a), the STI step (b), the eSTM step (c) and the WAC (d). 
 

It can be appreciated, from Figure IV-7, that in all the analyses the Y-F contribution was 

present, except for the reference, where the yttrium was in its metal form and linked to the 

oxygen atoms. 

After analyzing the process and the WAC influences on the reactor walls, all them affected 

by the fluorine problem, we needed to find a solution in order to improve the situation. 

 

4. OPTIMIZATION 
 

This section is related to the optimization of the cleaning strategy used nowadays at ST 

Microelectronics Rousset for the eSTM technology. 
 

4.1. State-of-the-art  
 

A brief state-of-the-art seeking the possible techniques existing for cleaning the coatings 

deposited on the chamber walls was done in order to select the best strategy for ST 

Microelectronics Rousset, since all these analyses were performed in its industrial reactor. 
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In 1998, Schaepkens et al [279], studied the influence of reactor wall conditions on etch 

processes in inductively coupled fluorocarbon plasmas. In their results, they showed that the 

loss of fluorocarbon species from the plasma to the walls was reduced as the wall temperature 

increased. Therefore, if the walls have a temperature higher than a certain feedgas chemistry 

dependent value, no net deposition will happen.  

Smith and James [287] patented a method for removing PECVD residues of fluorinated 

plasma using in-situ H2 plasma. This method for cleaning the chamber was related to the 

PECVD processes. Miwa et al [286] used the same principle for modifying the fluorinated 

Al2O3 surface in plasma etching processes. In their study, they irradiated H2 and O2 plasmas 

on fluorinated Al2O3 samples which was prepared by exposing the sample to an SF6/O2 plasma. 

The effects of the H2 plasma irradiation were the reduction of the AlOxFy and AlFx bonding 

components but it induced Al-OH bonding. For removing these Al-OH bonding they used 

sequential irradiation of O2 plasmas after the H2 plasma irradiation. However, the sample 

after being exposed to H2 and O2 plasmas increased the level of peroxidation and surface 

roughness.  

Another widely used approach, was the one employed by Cunge et al [156]. They proposed a 

new chamber walls conditioning to improve the stability of plasma processes by getting rid 

of AlF particles. The chamber conditioning was achieved by coating the reactor walls between 

wafers with a carbon-rich polymer. The cleaning of the chamber was achieved in two steps. 

A first one used to remove the deposit formed on the carbon layer by using SF6 plasmas 

followed by the carbon coating using O2 plasmas. With their strategy, the etching process 

would always start under the same conditions. The carbon-coated chamber and the Al2O3 

reactor walls would be only exposed to O atoms. The principle of conditioning is shown in 

Figure IV-8. 

 

 

Figure IV-8. Principle of the strategy of coating by using a carbon-rich film [66]. 
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Ramos et al [285], proposed to clean the aluminum fluoride coatings from plasma reactor 

walls in SiCl4/Cl2 plasmas. They remembered that by cleaning the reactor in fluorine 

chemistries, as SF6, AlFx and YFx formations are inevitable, and so they proposed to clean it 

in SiCl4/Cl2 plasmas, restoring the Al2O3 or Y2O3 walls before processing the next wafer. Their 

results verified that the use of this chemistry was good enough. Furthermore, SiCl4-based 

plasma chemistries also removed other metal fluorides, such as HfFx and more generally 

metallic oxides from the reactor walls. 

Other alternatives, as the one proposed by Abdolahad et al [288] exit. They used a fluorine-

free high-resolution selective plasma etching of silicon-oxide on silicon substrates. Of course, 

if there is a way for etching without using F-based chemistries, no fluorine contamination 

will happen. 

In our case, the first option was to put in place a strategy similar to the conditioning strategy 

developed by Cunge [156]. However, for economic reasons, we could not put it in place and 

the industrials decided to keep using the WAC. In any case, the optimization of the recipe 

was required in order to get the one that matched the best with our recipe. The goal was also 

to reduce the fluorine time exposition in order to reduce the YFx formations. The strategy 

followed then, was to optimize the WAC. By optimizing the WAC, more repeatable conditions 

can be achieved which is essential as CD size continues to shrink. 

  

4.2. Strategy  
 

After deciding to continue using the WAC for cleaning the reactor walls, we employed a 

strategy based on 4 steps for improving it. 

- Step 1: time definition for clean 1 (SF6/O2) by using the iteration method. 

- Step 2: time definition for clean 2 (O2) by using the endpoint detection method. 

- Step 3: New WAC cleanliness verification methodology. 

- Step 4: Floating sample method for verifying the optimization. 

Due to the LAM restrictions related to the WAC, the clean 1 cannot be lower that 12s and 

the clean 2 cannot be lower than 30s. So that the minimum WAC would be 12_30s. This 

strategy is explained as follow. 

 

     4.2.1. Protocol 
 

The protocol followed consisted on recording the optical emission of 5 production wafers. Two 

WAC’s were performed after each one. The first one, was the one that we wanted to test. The 

second one, was a reference WAC, which times for clean 1 and clean 2 were longer (60_60) 

than the standard WAC (30_35) in order to be used as chamber clean reference. 
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- Step 1: time definition for clean 1 (SF6/O2) by using the iteration method 

In order to define the time for clean 1, the recorded traces for 703nm (F) were compared with 

the chamber clean reference (60_60). The trace which overlap with the reference was the good 

one. Several references are needed to confirm the results are not due to the variability of the 

process. Five WAC times were tried for clean 1. These times were 25s, 20s, 15s, 10s and the 

standard one which is 30s. Even knowing that the LAM restrictions do not allow a clean 1 

lower than 12s, we wanted to test it in order to see if 10s would be already enough. Since we 

knew, from the previous analyses, that there were not many “glassy” deposits to be cleaned. 

- Step 2: time definition for clean 2 (O2) by using the endpoint detection method 

Once the time for clean 1 was defined, we ran a WAC with the optimal time selected for clean 

1, and 60s for clean 2. Then, the endpoints of the clean 2 were evaluated by using the 516nm 

(C) line. The optimized time for clean 2 must be equal to the endpoint plus 30% of this 

endpoint. 

- Step 3: New WAC cleanliness verification methodology 

A long WAC and a clean reference (WAC 60_60) was required to be sure that the chamber 

was cleaned. We processed a standard wafer with the new optimized WAC, selected with the 

optimal times for steps 1 and 2.  After that, a new chamber clean reference WAC was used 

for comparing its traces related to the 703nm (F) and to verify if the traces overlap. That 

would confirm that the WAC was successful.  

- Step 4: Floating sample method for verifying the optimization 

After verifying that the WAC was the good one by using OES, we used the floating sample 

method for comparing if the fluorine deposition was reduced with this new WAC compared 

with the previous one. 

The results of these experiments are shown in the next part. 

 

4.3. Results  
 

The results related to the step 1, the time definition for clean 1 (SF6/O2) by using the iteration 

method, are shown in Figure IV-9 and Figure IV-10.  
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Figure IV-9. Time definition for clean 1 (SF6/O2) by using the iteration method. 

 

In Figure IV-9 all the lines overlap. In order to clarify this, a zoom between 10 and 26s is 

shown in Figure IV-10, where it can be easily appreciated the fact that even when using a 

clean 1 of 10s, the chamber was already well cleaned. 

 

  

Figure IV-10. Zoom of Figure IV-9 between 0s and 40s with more references. 

 

In Figure IV-10 more references were introduced in order to confirm that the variation was 

due to the equipment and not to the WAC time. By introducing these references, it was easy 

to see that the tests were mixed between them and the only difference was the variability of 

the equipment itself. Therefore, the chamber was always clean. Furthermore, for considering 

a real variation it should be around 250a.u., here, the scale was set between 1640a.u. and 

1680a.u and moreover, the different times employed did not respect any logic, the variation 

between them is totally arbitrary which confirmed that it was associated to the variability 

and not to the process time. Thus, even at 10s, the clean 1 was enough. This matched with 

the analyses performed by using the floating sample, when we saw the influence of the 

process on the reactor walls. The absence of silicon when using the Y2O3 sample or the low 
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presence of it when using the Al2O3 sample, was therefore, confirmed with these experiments 

due to the fact that already at 10s the chamber is totally cleaned of “glassy” depositions. 

However, we set the time for clean 1 at 12s, which was the minimum recommended by LAM. 

 

Once the time for clean 1 was selected (12s), we analyzed the 516nm line related to the carbon 

by running a WAC 12_35. The result of this second step of the protocol, related to the time 

definition for clean 2 (O2) by using the endpoint detection method, is shown in Figure IV-11. 

 

 

Figure IV-11. Time definition for clean 2 (O2) using the endpoint detection method for line 516nm (C). 

 

As it can be appreciated from Figure IV-11, the endpoint time was set at 20s. However, a 30% 

overetch is mandatory in order to be sure that we totally cleaned all the C-polymers. Thus, 

the optimized time for clean 2 was 26s, with the overetch included. Therefore, our optimized 

WAC was 12_26s, where 12s were needed for clean 1 and 26s for clean 2. Furthermore, during 

the clean 1 (SF6/O2) at the same time that the “glassy” depositions are cleaned by SF6, the O2 

etch the C-polymers too. Since we reduced the time for clean 1, the clean 2 could not be 

reduced that much since more C-polymers (CFx) than “glassy” depositions were founded in 

the analyses. 

 

The step 3 was related to the verification of the WAC, which was successfully validated. 

However, even if the WAC was already optimized for the eSTM process, where few “glassy” 

depositions were involved on the process etch, we wanted to see how the fluorine 

contamination was affected by this reduction of time for the clean 1 (from 30s to 12s). For 

that purpose, we used the floating sample for characterizing the coating deposited during the 

new WAC (12_26s) and to compare it with the previous one (30_35s), as explained in the 

protocol (step 4). Furthermore, since we wanted to reduce the fluorine as much as possible, 

we characterized also the new WAC by increasing its pressure (from 60mTorr to 85mTorr). 

Because the number of molecules is proportional to the pressure of the system, and the mean 

free path (λ) is dependent on the number of molecules; under too high pressure the λ is too 
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short and so the electrons and ions cannot build up the necessary speed for ionizing collisions, 

thereby less is the Y2O3 attack and lower the YFx formations. Figure IV-12 shows the 

chemical composition of the floating sample representatives of the coatings deposited on the 

reactor walls during the old WAC (30_35s) not optimized, the new WAC (12_26s) and the new 

WAC with high pressure (12_26s at 85mTorr).  
 

 

Figure IV-12. Chemical composition of the first WAC, new WAC and new WAC (high pressure) 

compared to the Y2O3 reference. 

 

From the results shown in Figure IV-12, we verified that the reduction of fluorine was related 

to the reduction of time (new WAC) and implemented when increasing the pressure (new 

WAC high pressure). For the standard and new WAC, the pressure employed was 60mTorr 

whereas that for the new WAC (>P) we used 85mTorr, which is the maximum allowed by 

LAM Research. Due to the results obtained with the floating sample analyses, the optimal 

WAC which is nowadays in production is the new WAC with high pressure (85mTorr). Thus, 

the time for clean 1 is 12s at 85mTorr and the clean 2 is 26s. 

 

5. CONCLUSIONS 
 

This chapter shows the characterization and optimization of the plasma-wall interactions 

taking place during the eSTM process. The characterization of the plasma-reactor wall 

interactions was studied based on the analyses of the coatings deposited on the reactor walls. 

These analyses were performed by using the floating sample method and analyzed by XPS. 

Furthermore, the analyses of the influence of the WAC was also studied since the chemistry 

employed used also fluorine, which was the source of contamination during both, the process 
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and the cleaning. Of course, these analyses were performed ex-situ, since there was no other 

possibility, as happened for the analyses of Chapter III. Therefore, some contamination must 

be taken into account. However, in this part, more than going into details of the composition 

of the coatings, we were concerned about the fluorine problem and the YFx formations. The 

fluorine was more present during the process than during the WAC, since the time of 

exposition to the F-chemistry was lower during the cleaning than during the process. 

However, it was highly present in all the analyses.  

 

In order to reduce the problem of the fluorine contamination, a state-of-the-art looking for 

some possible strategies was done. However, due to industrial limitations, the only strategy 

possible for us was to optimize the WAC. Due to the low presence of “glassy” depositions, 

nothing when analyzing the coatings by using a Y2O3 sample and less than 2% when using 

an Al2O3 sample, the first clean step (clean 1) could be reduce 18s. Thus, the time for the 

clean 1 was modified to12s. The time for clean 2 was reduced to 26s. With this new WAC, we 

optimized the cleaning for the eSTM process, but we also reduced the total WAC time from 

65s to 38s. Having this, a positive impact for the production line.  

 

However, related to the fluorine problem, we could not do something else than reducing the 

clean 1, the one which uses SF6, and increasing the pressure. With the new WAC at 85mTorr 

during 12s for clean 1 (F-based step), we reduced the percentage of fluorine on the coatings 

from 30.8% for the first WAC to 26.9% for the optimized one.  

 

In summary, the goal of this chapter was to study the plasma-reactor wall interactions, we 

did understand that for the eSTM process more CFx polymers are deposited on the chamber 

than SiOxBry or SiOxFy as expected. By optimizing the WAC, we did reduce the YFx 

formations, but still, some new strategies must be considered in order to completely avoid 

this formations, since as long as we continue using a F-based chemistry, they will be always 

present on the reactor walls. For the moment, further analyses must be performed in ST 

Microelectronics Rousset in order to see how important is the presence of the F-based coatings 

on the reactor walls for the process reproducibility in order to see if some other strategies, as 

for instance the conditioning explaining before (4.1.), should be put in place. 
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      “A great deal of my work is just playing with 

equations and seeing what they give” (P.A.M. Dirac) 

 
Chapter V 

STI: Plasma Etch Process 

Control for Critical Dimensions 
 

 
In this chapter, a process control solution is proposed in order to reduce 

the etch process variability for the critical dimensions of the STI trench.  

Tight controls of these dimensions are required for the suitable running of 

the transistors since CD variations are directly linked to processor speed 

and transistor performance. In this research, a fully plasma etch study is 

carried out looking for sources of variability throughout the STI etch 

process with the aim of set a Run-to-Run (R2R) controller able to optimize 

the CD for reaching better manufacturing yields.  
 

 

 

        

TEM profile of the STI trench of this thesis.  
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As feature size continues to decrease, process control has become essential for 

controlling profile and CD uniformity across the wafer [294]. To reduce the process variability 

related to the CD of the STI after etching, process control solutions have been performed 

based on a technology in production at STMicroelectronics. For confidentiality reasons this 

technology will be referred as follow as M10+. Since the etching process of the STI is the same 

for both technologies, M10+ and eSTM, these solutions can be applied to both technologies. 

However, since the eSTM is still in development, we needed the historical data of the M10+ 

to propose the adequate solution.  

 

The chapter is organized as follows. Firstly, an introduction based on the STI and the 

definition of some process control concepts is presented, followed by the experimental details 

related to the etching process and the industrial context. Secondly, the characterization of 

the source of variation during the STI etching and the optimization of the CD drift are 

discussed. Finally, the conclusions of this study conclude this chapter. 

 

1. INTRODUCTION 
 

Since the size of the memory cell decreases and the packing density increases, it is becoming 

vital to ensure that each bit is electrically isolated from each other. Failure to electrically 

isolate the device core, can make difficult to program and erase the memory cell and to create 

reliability issues as a result of static-charge loss [295]. The goal of the study presented in this 

chapter was to control the CD of the STI in order to avoid these problems.  

 

1.1. The STI Process 
 

The STI process is considered a highly critical manufacturing step because it constrains all 

subsequent patterning layers by defining the active regions for the electrical structures [295]. 

It is the preferred isolation used on CMOS processes nodes of sub-0.5µm technology because 

it completely avoids the bird's beak shape characteristic compared to the LOCOS, which is 

the traditionally isolation technique [296]. The STI is created early during the semiconductor 

device fabrication process, before the transistors formation. The price for saving space with 

STI is the larger number of different process steps, as shown in Figure V-1, which are: 

 

a) etching of the silicon substrate. 

b) etching and under etching of the oxide pad. 

c) a thermal oxide in the trench is grown, the so-called liner oxide.  

d) the trench is filled with a deposited oxide.  

e) the excessive oxide deposited is removed with chemical mechanical planarization.  
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f) the nitride mask is removed.  

 

Figure V-1. Steps in a typical STI process flow [296]. 

 

All these steps are usually required for creating the STI. Due to the number of steps and the 

processes involved, it is difficult to control the CD. Advanced Process Controls (APC) are 

employed in semiconductor industries for controlling the variability that can be induced 

during these steps. 

 

1.2. Process Variation 
 

All manufacturing and measurement processes exhibit variation by nature. When we sample 

the wafer after a process and take its measurement, such as the critical dimensions, we 

observe that the values are fluctuating. This is called variability, which can be also defined 

as the collection of observed values distributed around a location value.  

There are different types of variations. One classification could be related to the Production 

Process Characterization (PPC) such as [297]:  

 

 Controlled variation: When the variation is characterized by a stable and 

consistent pattern of variation over time. It will be random in nature and will 

be exhibited by a uniform fluctuation at a constant level. 

 

 Uncontrolled variation: When the variation is characterized by a pattern of 

variation that changes over time and hence is unpredictable.  

 

These concepts of controlled and uncontrolled variations are important for determining the 

variability of a process. It will be stable only if it runs in a consistent and predictable manner. 

This means that the average process value is constant over time and thus the variability is 
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controlled. On the other hand, if the variation is uncontrolled, either the process average or 

the process variation is changing [297]. 

 

     1.2.1. Measures of Variation 
 

An important aspect of a descriptive study of the variable is numerically measuring the 

extent of variation around the center. Two data sets of the same variable may exhibit similar 

center positions but have significantly different variability behavior. Two of the most 

frequently used measures of variation are the range and the standard deviation [298].  

 

 Range:  

The range is obtained by computing the difference between the largest and the smallest 

observed values of the variable in a data set: 
 

Range = Max − Min.      (V.1.) 

By using the range, a great deal of information is ignored, since only the largest and smallest 

values of the variable are considered. The other observed values are disregarded. The range 

can only increase, never decrease, when additional observations are included in the data set. 

Thus, the range is overly sensitive to the sample size. 

 

 Standard Deviation:  

The standard deviation is the most frequently used measure of variability. It is considered 

as the average of the absolute deviations of observed values from the center of the variable 

in question. For a variable x, the standard deviation (𝑆𝑥), is: 
 

𝑆𝑥 = √
∑ (𝑥𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
      (V.2.) 

The standard deviation is always a positive number (𝑆𝑥 ≥ 0), which is defined using the 

mean (�̅�) of the variable x. For that reason, it is the preferred measure of variation when the 

mean is used as the measure of center (i.e., in the case of a symmetric distribution). However, 

the standard deviation is used more often, through its square, called variance (𝑺𝒙
𝟐) and 

expressed as: 
 

𝑆𝑥
2 =  

∑ (𝑥𝑖−�̅�)2𝑛
𝑖=1

𝑛−1
      (V.3.) 
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The standard deviation satisfies the basic criterion for a measure of variation. However, the 

standard deviation does have its drawbacks. For instance, its values can be strongly affected 

by a few extreme observations [298]. 

 

1.3. Process Control in Semiconductor Manufacturing 
 

Traditionally, process variation is monitored through implementing Statistical Process 

Control (SPC) charts on the critical product characteristics. As in the complex manufacturing 

environment in IC fabrication, the framework of Advanced Process Control (APC) is defined 

and developed in a much bigger extent. With the advancement of modern IT systems, a full 

spectrum snapshot can be taken while the fab is running and stored in different databases 

according to the data properties. In the following, the evolution of process control techniques 

is introduced. 

 

     1.3.1. Statistical Process Control (SPC) 
 

Statistical Process Control is used as an analytical decision making tool which allows 

practitioners to see when a process is working correctly and when it is not. Since the variation 

is present in any processes, it is necessary to identify when the variation is natural and when 

it needs to be controlled [299]. The idea was originated in the 1920s at Bell Laboratories. Dr. 

Walter Shewart developed the concept of control with respect to the variation, and came up 

with SPC Charts providing a simple way to determine if the process is under control or not. 

Today, this approach is widely used in semiconductor manufacturing facilities around the 

world.  

It is a technique in which the process output is monitored in order to detect an out of control 

observation. A process is considered out of control if the output variance can be attributed to 

an assignable cause. This cause can be compensated by manipulating one or several process 

input variables [300]. SPC is used as an industry-standard methodology for measuring and 

controlling the product/process quality during manufacturing. The data are then plotted on 

a SPC control chart with pre-determined limits. These control charts are the essential tools 

to achieve a rational management of the production process.  
 

 SPC Charts 

Control chart is one of the primary techniques in SPC to show the variation of measurement 

over the time period the process is being monitored. A process is in control or not depends on 

the variance of the process output over time. Control charts illustrate and compare the 

process variation against upper and lower control limits to see if it falls into a normal region. 

There are usually two kinds of limits expressed in an SPC chart; specification limits, 
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determined by the client's needs, and control limits, determined by the capability of the 

process. 
 

• Specification limits: denoted by "LSL" and "USL" for Lower and Upper Specification 

limits. These are the strict limits that shall not be crossed, because there is a risk of 

malfunction. 

• Control limits denoted by "LCL" and "UCL" for Lower and Upper Control Limits. 

The control limits create a confident region indicating that everything is working as expected 

when the output falls within it. Any variation observed within the region will be concluded 

as a common cause, i.e., the natural variation, which is expected as part of the process. If the 

output falls outside the region, as the point “A” in Figure V-2, an assignable cause should be 

investigated to identify the source of the product variation. Therefore, corresponding changes 

in the process settings should be performed in order to fix the issue. 

 

 

Figure V-2. SPC chart where the value “A” is out of the UCL [299]. 

     

 1.3.2. Advanced Process Control (APC)  
 

The APC concept evolved the SPC in which process or product data are analyzed to see if the 

process is deviating from the statistical norms. SPC techniques can only detect a small class 

of process deviations, and generally cannot tell what caused the deviations or how to correct 

them. However, APC, as a comprehensive framework, uses measurements of important 

process variables to incorporate a feedback loop into the control strategy. APC has included 

critical IT systems and statistical algorithms to study the variability transmission from the 



CHAPTER V. STI: PLASMA ETCH PROCESS CONTROL FOR CRITICAL DIMENSIONS 

179 

 

output variable to certain controllable input variables. Two main modules are commonly 

addressed in a APC framework [300-302]:  
 

 Fault Detection and Classification (FDC) 

FDC involves monitoring the behavior of the manufacturing equipment during operation and 

detecting events that might affect the quality of the product. The importance of FDC mainly 

resides in increasing the equipment utilization while maintaining the product quality by 

extracting key features and patterns from the huge amount of real-time process data. 

 

 Run-to-Run (R2R) 

R2R is a type of discrete process control which includes wafer-to-wafer and batch-to-batch 

control in an attempt to reduce output variability [300].  The product recipe is modified 

between “runs” in order to minimize process drift and shift. Moyne [303] said that nowadays 

this is the main form of process tuning implemented as standard process and equipment 

control solution in the industry. 

 

The first R2R controls system was proposed in the early 1990s when the results of Semi-tech-

funded projects showed that the thickness of wafers in a CMP process could be controlled by 

modelling the process physics and making adjustments before the start of each run. Today, 

R2R control is used throughout the factory and has been even extended to support “inter-

process control”, or control across multiple process types [301]. 

R2R control solutions are process-centric and can be categorized as feedforward (FF) and 

feedback (FB) controls. FF and FB can be further augmented to inter-process control 

solutions, such as the CD control between lithography and etch operations. Once the 

throughout the key process operations can be effectively tightened, the device performance 

at the end will be surely enhanced. The structure of a typical R2R control solution is shown 

in Figure V-3. 

 

 

Figure V-3. Input/output R2R structure [303]. 
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Campbell et al [300] did a comparison of R2R control algorithms and they classified them as: 

EWMA Controller, Predictor-corrector controllers and model predictive control. Ning et al 

[304] classified them such as EWMA Gradual Mode (GM), time-based EWMA (GMt), 

Knowledge-based Interactive R2R Controllers (KIRC) and Optimizing Adaptive Quality 

Controllers (OAQC).  Others R2R classifications from literature can be seen as Single 

Input/Single Output (SISO), Multiple Input/Multiple Output (MIMO), Lot-Level control, 

Wafer-level control or Within Wafer control. 

 

In this chapter, the R2R controller developed for controlling the CD of the STI during the 

plasma etching process is discussed. Modelling details are presented in section 4.2. 

 

2. EXPERIMENTAL 
 

As introduced before in 1.2, the STI is considered as a highly critical manufacturing step. 

Moreover, when it is used as a base of a complex process such as the eSTM, the limits (CD) 

have to be really well defined in order to avoid electrical problems. The STI process is 

performed at the beginning of the process flow. The etch process definition required for the 

STI formation, takes into account from the stack deposition, until the measure of the STI 

trenches performed during the etching. In order to understand the study performed for 

controlling the CD of the STI, some experimental concepts need to be introduced before. Thus, 

the necessary stack and the etching specifications related to this process are presented in 

this part. 

 

2.1. Stack 
 

As well as for the etching of the eSTM trench, a hardmask is also necessary when etching the 

STI trench since the dimensions are quite small. The required stack for this process is 

represented in Figure V-4. 

 

 

Figure V-4. Required stack for the etching of the STI trench. 
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The required mask for reaching the STI trench is composed of NFARL, AHM, TEOS and 

nitride. These materials were already introduced in Chapter II. The PR and the BARC, 

deposited during the photolithography step, measure 1900Å and 820Å, respectively. The 

NFARL and AHM, both of them deposited by PECVD, measure 275Å and 2000Å. The 

thickness of the TEOS is 490Å and 1200Å for the nitride. The nitride will remain after the 

plasma etching process for protecting the features during the CMP process and it will be 

removed later. There is also a thin layer of SACOX (sacrificial oxide) between the nitride and 

silicon layers. 

 

2.2. Etching Specifications 
 

The most important steps required for the process definition of the STI trench are sketched 

in Figure V-5. 

 
Figure V-5. Schematic representation of the main etching steps required for reaching the STI trench: 

Initial stack (a), BARC and NFARL etching (b), AHM etching (c), AHM overetch (d), 

TEOS/Nitride/Breakthrough and stripping AHM (e), TCR and STI trench (f).  

 

In Figure V-5, the first CD (a) is representative of the CD after the photolitography step, 

which is our input CD. The last CD (f), is the CD that will be the case of study during this 

thesis, which is the CD of the STI trench after the etching process. 

 

This huge stack and the complexity of the plasma etch process itself are directly responsible 

of the CD drifts. The recipe counts with 32 steps, including stabilization and transitions 

steps. However, it could be summarized with 8 main steps, where 5 of these steps require 

EPD systems and therefore also an overetch. Since the goal of this chapter is to study the 

variations on the CD after etching from a process control point of view, no great specifications 

related to the chemistry or the others parameters are required. However, it is important to 

underline, which of these steps are using EPD. They are BARC, NFARL, AHM, Strip, TEOS, 

nitride, and the final etching of the STI trench. All these layers are etched in two step; the 

EPD followed by the overetch. As explained for the eSTM process, the goal of the overetch is 
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to “clean” the residuals of the target material after the EPD etching. Therefore, the unique 

steps that are performed without EPD systems but in fixed time are the BreakThrough (BT), 

the TCR (Top Corner Rounding) and the final etching of the trench. The BT is used to open 

the silicon to be sure that the next step starts really etching the silicon.  

 

The chemistry used during each step, is only responsible of the etching of this step since it is 

selective to the others, as it has been already explained in previous chapters. 

 

2.3. Industrial Context 
 

As it has been introduced in Chapter II, during the time that this study was developed at 

STMicroelectronics Rousset, there was not scatterometry model available for the STI 

measures. All the measures, before/after etching of the CD were performed by using CDSEM 

in-line. Since the accuracy of this method was not very reliable for the STI, as explained in 

Chapter II, we developed a scatterometry model able to measure the CD using a profile view. 

All the details about the model were previously explained in Chapter II (3.2.3.).  

 

However, the development of this model took place in parallel with the analyses here 

presented. For this reason, most of these results were obtained with CDSEM.  

 

3. CHARACTERIZATION 
 

The characterization of the process here, is related to the study of all the parameters that 

can be the source of CD variations in order to understand its influence on the final CD of the 

STI. The goal is to propose a solution to keep the final CD under control, close to the target, 

after the plasma etching process. 

 

3.1. Process Variability 
 

The STI etch process is used to create shallow trenches in the silicon substrate, which are 

used to form isolation barriers between device elements. This process involves the etching of 

eight layers (see Figure V-4) and a complicate recipe including different steps such as 

stabilizations, transitions, EPD steps, overetch and fixed time steps. To complete this 

complicated process, together with the complexity of the plasma etching operation, undesired 

variations on the final CD can be induced. Furthermore, the previous steps, including the 

depositing stack and the photolithography can also cause unwanted variations that then 

change the input CD as soon as the etching operation starts.  While STI CD variation gets 

worse, the wafer yields are reduced. To handle this issue, we took a “global picture” of the 



CHAPTER V. STI: PLASMA ETCH PROCESS CONTROL FOR CRITICAL DIMENSIONS 

183 

 

situation at the beginning of this thesis at STMicroelectronics Rousset, where the STI etching 

process was not under control. This initial situation is shown in Figure V-6. 

 

 

Figure V-6. SPC chart of the STI CD after etching. The black dashed line represents the target. The 

three process chambers show obvious different behaviors over time. 

 

The variations on the CD can be easily perceived in Figure V-6 where the CD is often on or 

off the target with a big deviation. To keep the STI CD close to the target and reduce the 

range, effective models and strategies are required. As more and more data can be collected 

nowadays, it is very important to filter out the most significant sources of variations that 

interact with the etching process before constructing the model. The following sections start 

with the introduction to the impact of previous steps and the variation induced by the etching 

process itself. Based on these results, we decided the best strategy for keeping the CD on 

target. 

 

3.2. Impact of Previous Steps 

 

In addition to the complexity of the etching process itself, there are two main external factors 

impacting the STI CD.  The thickness variation of each layer in the stack and the CD post 

photolithography, which is the starting point of the CD after etching. 

 

 The Influence of Thickness Variation 
 

The standard STI etch process involves etching the bottom antireflective coating (BARC), the 

nitride, the underlying pad oxide, and a shallow trench into the silicon substrate. At the 90-

nm technology node, STI etch requires a hard-mask process to reduce defectivity and improve 

chamber performance. In our research, we added the NFARL and the AHM layers, which 
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enable to reduce the STI CD. However, there was no possibility of measuring these two layers 

separately, as they had the same refractive index. Therefore, we were not able to see the 

different influences that each one provides. In order to increase our knowledge about the 

impact of the two additional layers on the final CD, we did an experiment to induce the 

variations on their thickness during the deposition step while maintaining each time one of 

these materials in its standard conditions. We could then differentiate how the variation of 

each material influences the final STI CD. To perform these experiments, the EPD steps were 

avoided in order not to correct the intentional difference in thickness. These results are 

presented in Figure V-7. 

 

 

Figure V-7. AHM (a) and NFARL (b) individual influence on the STI CD without EPD system. 

 

From analytical results shown in Figure V-7, we concluded that the NFARL has stronger 

influence on the STI CD than the AHM does. With the variation of 79Å in NFARL thickness, 

the influence on the CD is the same as when varying 130Å of the AHM thickness. In both 

cases, the influence would be 1nm of the final CD. 

 

Since we are using EPD system when etching these layers, as well as for the other materials, 

we supposed that the thickness variation coming from the previous steps, such as the 

deposition thickness variations, are corrected by the EPD. As explained in Chapter II, the 

EPD does not perform etching in a fixed process duration, instead, the etching process stops 

when the end of the target material is detected. In order to verify that EPD system are 

actually correcting these possible thickness variations, we did a regression analysis to 

identify the impacts of the layers on the CD. We then tested the EPD performance on this 

layer. The study was performed with the software provided by KLA-Tencor, and the results 

of the analysis are shown in Figure V-8. 
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Figure V-8. Influence of the thickness variation of each layer on the final CD. 

 

From Figure V-8, we decided to test the EPD performance with respect to the TEOS thickness 

variation, as it appeared to be the most influential one. Thus, we induced several variations 

on the thickness deposition of this layer by making the experiments in one lot, i.e., 25 wafers. 

Knowing the standard thickness of the TEOS layer is 490Å, we divided a complete lot into 

five groups of thickness 440Å, 465Å, 490Å, 515Å and 540Å. If the EPD worked well, no matter 

what the thickness of the TEOS layer is, the final CD would be always the same. The 

differences in this case, shall be only related to the process time. The results of this study are 

shown in Figure V-9. 

 

 

Figure V-9. Study of the EPD performance during the etching of the TEOS layer. 

 

The results, as shown in Figure V-9, demonstrated that the EPD can correct the thickness 

variation induced by the previous steps.  
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Even if the performance of the EPD systems is good enough to control the variation of 

thickness induced for the previous steps, there is still another important factor to be 

responsible for the CD drifts, as mentioned before, this is the photolithography CD.  

 

 The Influence of Photolithography 
 

It is expected that the bigger post-photolithography CD leads to larger post-etching CD (see 

Figure V-10). 

 

 

Figure V-10. The process physics of the post-photolithography and the post-etching CD’s. 

 

To further understand the influence of photolithography process on the CD after etching, the 

CD correlation between the two workshop is illustrated in Figure V-11. 

 

 

Figure V-11. The lot-level CD’s after the photolithography and etching are plotted together to 

observe any possible correlations. 

 

Surprisingly, we did not find a significant correlation of the CD’s after the photolithography 

and etching process. This may be due to the rework strategy of the photolithography step at 
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STMicroelectronics Rousset. If the post-photolithography CD of one wafer deviates more than 

±3nm from the target, the wafer is sent to rework. To further verify this conjecture, we 

performed a study including CD at its biggest and smallest limits of the photolithography, 

i.e., 80nm and 100nm, in contrast to the CD target at 90nm, while the rework policy is 

disabled temporarily. The results of this study are presented in Figure V-12. 

 

 

Figure V-12. The impacts of different post-photolithography CD’s on the post-etching CD. 

 

As can be confirmed from Figure V-12, bigger CD variation after the photolithography leads 

to the different CD’s after etching. Given the reworking of photolithography at 

STMicroelectronics Rousset, the influence of the post-photolithography CD, can be neglected 

because the variation will be very small (within ±3nm).  

In summary, the influences of the previous steps can be ignored since the thickness variations 

are corrected by using the EPD systems and the impact of the photolitigraphy CD is 

negligible when the rework strategy is applied. One can conclude that the variation on the 

post-etching CD (see Figure V-6) should lie within the etching process itself. Consequently, 

the effect of the etching step on the STI CD was of the next study focus 

 

 3.3. The Influence of Etching  
 

In order to study the source of variation within the etching process, we identified these factors 

as effects coming from process chamber, lot-to-lot, wafer-to-wafer, intra-wafer product type, 

silicon supplier, and the unexplainable source. The analysis of variance was performed by 

using the KLA-Tencor software which allows to select the factors of our interest. This result 

is shown in Figure V-13. 
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Figure V-13. Analysis of variance of the etching CD. 

 

From Figure V-13, we can see that the two green bars, which account for 48% of the CD 

variation, can be improved using R2R controllers. The most important effect which influences 

the variation of the STI CD is the process chamber effect (43%). Furthermore, the three 

process chambers are clarified to be rather mismatched. This chamber effect (43%) together 

with the lot-to-lot effect (5%) can be corrected by developing a FB R2R. There is also an 

unexplained effect, which appears to be the most critical one. We could only optimize the 

variability due to the chamber and lot-to-lot effects (48%). However, at that stage, we started 

to develop the scatterometry model with the metrology equipment, as explained previously 

in Chapter II (3.2.). Even if we didn’t know the source of this unexplained effect, we thought 

that maybe by improving the measurement system, we could reduce this effect. 

 

During the development of this scatterometry model, we started to develop the strategy for 

controlling the CD; the FB R2R, which is the main goal of this research in order to reduce 

the part of the variability that was related to the chamber and lot-to-lot effect.  

 

4. OPTIMIZATION 
 

The strategy employed for optimizing the process control of the STI etching by improving the 

CD drifts, was based on a Feedback Run-to-Run (FB R2R) controller. Details about this model 

are presented in this section. 
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4.1. The EWMA R2R Strategy 
 

Although there exist numerous ways to design a R2R controller, as explained in the first 

section of this chapter, the most widely implemented design is based on an Exponentially 

Weighted Moving Average (EWMA) scheme [300]. In 1959, Roberts [305] firstly suggested 

that the EWMA control scheme can be used for process monitoring. By choosing a proper 

weighting factor λ, the EWMA control procedure can become sensitive and detect the small 

or gradual drift in the process. The basic equation of exponentially smoothing established by 

Roberts can be expressed as: 

 

𝐸𝑊𝑀𝐴𝑡 =  𝜆𝑌𝑡 + (1 − 𝜆)𝐸𝑊𝑀𝐴𝑡−1 , for t=1,2,…,n,    (V.4.) 

where,  

𝐸𝑊𝑀𝐴0 is the mean of historical data,  

𝑌𝑡 is the observation at time t, 

n, is the number of observations to be monitored including 𝐸𝑊𝑀𝐴0, and 

0 < λ ≤ 1 is a constant that determines the depth of memory. 

 

Equation (V.4) is from Roberts [305], but there are some alternative approaches. For 

instance, according to Hunters [306], 𝑌𝑡−1 is used instead of 𝑌𝑡. The parameter λ determines 

the rate at which “older” data enter into the calculation of the EWMA statistics. A value of 

λ=1 implies that only the most recent measurement influences the EWMA. Thus, a large 

value of λ=1 gives more weight to the recent data and less weight to the older data while a 

small value of λ gives more weight to older data [307]. The value of λ is usually set between 

0.2 and 0.3 [306], although this choice is somewhat arbitrary and based on engineering 

knowledge.   

 

Another approach (V.6.) is found in Campbell et all [300]. They explained that usually the 

typical EWMA R2R Controllers are based on a linear regression model for describing the 

process model of the form: 

 

�̂�𝑘+1 = 𝑏𝑢𝑘 + 𝑐𝑘            (V.5.)  

 

where �̂�𝑘+1 is the predicted output at batch k+1, b is the process gain, 𝑢𝑘 is the process input 

calculated based on previous observations through batch k, and 𝑐𝑘 is the estimate for the 

disturbance entering system. The basic equation of exponential smoothing (V.4.) is explained 

in a different way [300], under the form:  

 

𝑐𝑘+1 =  𝜆(𝑌𝑘+1 − 𝑏𝑢𝑘) + (1 − 𝜆)𝑐𝑘           (V.6.)  
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Equation (V.6.), compared to (V.4.), requires the calculation of the desired output (T) with the 

EWMA-based R2R controller, expressed as:  

 

𝑢𝑘 =
𝑇−𝑐𝑘

𝑏
                        (V.7.)  

 

The strategy that we followed for developing the FB R2R model is related to these EWMA 

designs. 

 

4.2. The STI-Etch R2R Controller 
 

The final element of the R2R controller is the control law which specifies how the recipe of 

the process should be updated. The FB R2R controller that we developed is illustrated in 

Figure V-14.  

 

 

Figure V-14. Schematic diagram of the R2R controller developed for the STI CD. 

 

It firstly required to select the parameter in charge of adjusting the CD. The photoresist trim 

is often used as the main factor. However, the photoresist disappeared during the AHM step 

in this research. The AHM then becomes the most influential on the STI CD. This is the novel 

finding for the process engineers such that this step is employed to control the CD. 

Furthermore, the overetch of the material AHM_OE is indeed due to the shrinking CD, since 

the O2 is a selective chemistry which is able to etch the AHM laterally without etching the 

following materials. For the AHM_OE, we performed a study in order to see if overetching 

the material at this layer within a fixed duration has a constant etch rate in all chambers. 

The result is shown in Figure V-15. 
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Figure V-15. AHM_OE etch rate in two different chambers. 

As can be seen in Figure V-15, the etch rates, i.e., the slopes, of the two chambers are constant 

and present a constant offset in-between. As a result, this step (AHM_OE) is kept to control 

the STI CD. 

 

     4.2.1. R2R Operation 
 

The model automatically takes into account the changes in the CD target specification. The 

final CD is fed back into the control model and used to update the model parameters, which 

in this research is the overetch of the AHM (AHM_OE). The standard etching time during 

the overetch (𝑎) is 15.5s. All the model parameters are defined in Table V-1.  

 

Table V-1. The definitions of model parameters. 

Notation Definition 

 CD target 

𝑌𝑡 Observed CD at time t  

𝑌�̂� Predicted CD based on R2R controller at time t, for 𝑡 ≥ 2 

𝑎 AHM etching time during the overetch (constant=15.5s) 

𝑎�̂� Predicted time AHM OE at time t, where �̂�𝒕 = 𝒂 + �̂�𝒕−𝟏  (V.8.) 

𝑏 Etch rate (constant per chamber) 

 Smoothing factor EWMA (0 <  ≤ 1) 

𝑆𝑡 Offset time, where 𝑺𝒕 =
𝒀𝒕−

𝒃
  (V.9.) 

𝑆�̂� EWMA predicted Offset time, where 𝑺�̂� =  ∙ 𝑺𝒕 + (𝟏 − ) ∙ �̂�𝒕−𝟏  (V.10.) for 𝑡 ≥ 2 
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The smoothing scheme starts by setting 𝑆1̂ =  ∙ 𝑆1 =   
𝑌1−

𝑏
 (there is no So), where �̂�𝑡 stands 

for smoothed observation or EWMA, and 𝑆𝑡  stands for the offset time (V.9.). The subscripts 

refer to the time period 1, 2, 3…n. For example, the second period, based on (V.10.) is: 

 

�̂�2 =  ∙ 𝑆2 + (1 − ) ∙ �̂�1   
 

The first prediction can be calculated for �̂�𝑡 since we start with 𝑡 ≥ 2. The predicted CD basic 

equation, based on the EWMA controller, is under the form: 

 

  𝑌�̂� = 𝑌𝑡 − 𝑏 ∙  �̂�𝑡−1            (V.11.)  

 

By substituting �̂�𝑡−1   in the predicted CD basic equation (V.7.), the predicted CD equation 

would be expanded as: 

 

 𝑌�̂� = 𝑌𝑡 − 𝑏 ∙   ∙ ∑ (1 − )𝑗 ∙ 𝑆𝑡−1−𝑗  
𝑡−2
𝑗=0              (V.11.a) 

 

By substituting  𝑆𝑡 =
𝑌𝑡−

𝑏
, V.11.a: 

 

𝑌�̂� = 𝑌𝑡 − 𝑏 ∙   ∙ ∑ (1 − )𝑗 ∙ (
𝑌𝑡−1−𝑗−

𝑏
) 𝑡−2

𝑗=0              (V.11.b) 

 

The final equation to predict the CD, can be written as: 

 

𝑌�̂� = 𝑌𝑡 −   ∙ ∑ (1 − )𝑗 ∙ (𝑌𝑡−1−𝑗 − )𝑡−2
𝑗=0               (V.11.c) 

 

The R2R operation over the timeline is shown in Figure V-16. 

 

 

Figure V-16. FB R2R operation is illustrated from lot to lot over time. 

 

By varying the weighting factor, i.e., , the EWMA control procedure can be sensitive to a 

small or gradual drift in the process.  In this research,  was set to 0.4, in order to avoid the 
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variations that could be induced by the metrology variability. This value was experimentally 

calculated. 

 

     4.2.2. Model Validation 
 

For validating the model before putting into practice in the production line, some 

“simulations” were performed based in (V.11.) and evaluated. The results related to the 

process chamber effect and the lot-to-lot effect are shown in Figure V-17 and Figure V-18, 

respectively. 

 

 

 

Figure V-17. Comparison between (a) the observed data and (b) the predicted CD by using the 

proposed R2R controller. Three chambers are denoted in different colors while the dashed lines 

indicate the targets. 

 

Respect to these results, the model was validated since the process chamber effect which was 

the one that we were interested in correcting, improved 88% of the 43% that this effect 

induced to the total variability. Thus, 38% of the total variability. In this Figure V-17, the 

standard deviation between chambers goes from 0.79 (a) to 0.09 (b). 
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Figure V-18. Lot-to-Lot variations in the three chambers are observed in (a), (b) and (c), where the 

dark blue line indicates the observed data and light blue line represents the predicted value. 

 

However, even if with the R2R we were able to correct a significant percentage of the 

variability, we wanted also to improve the metrology system since it could allow to keep 

reducing the variability due to the better accuracy of the measures. 

 

     4.2.3. New Metrology  
 

Once the scatterometry model was completely developed, we did some variations on the 

plasma parameters in order to have different CD values for testing the accuracy of this model. 

The model was able to be representative in all cases and therefore nowadays the 

scatterometry model is used in the cleanroom as a representative measure of the CD and the 

height of the STI trench, not only after the etching but also after the photolitography step. 
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5. CONCLUSIONS 
 

This chapter shows the characterization and optimization of the STI process. First, the 

characterization of the sources of variation have been studied. The results showed that the 

variation induced by the previous steps, especially the thickness variations, could be 

improved during the etching process by using the EPD systems. The post-photolithography 

CD is already corrected due to the implementation of the rework strategy, which reworks the 

wafers with large CD deviations from the desired targets. Therefore, the variations coming 

from the deposition thickness of the previous steps or the photolithography was negligible. 

 

The etching variability was analyzed. A R2R controller was developed for keeping the STI 

CD in control by reducing the most important effects; the process chamber and the lot-to-lot 

variation. To develop the R2R model based on the EWMA control scheme, the time of 

exposition of the AHM to O2 during the AHM overetch step was selected as the control 

parameter. The AHM overetch step was usually performed in fixed process duration. By 

varying the duration, we get bigger and smaller CD with respect to the predicted one. The 

experimental study showed that the etch rate remains constant for all chambers under 

different settings of durations and thus the control model can be built based on the chosen 

parameter with less confounding effects. The smoothing factor  in the R2R model is set to 

0.4, experimentally. The R2R model was further validated with historical data. The variation 

due to the chamber effect has dropped from 43% to 5% of the total variation. The objective is 

to keep improving/reducing the variation with the new scatterometry metrology system. The 

unexplained effect could be actually improved by this more accurate metrology system to 

measure the CD’s. All the study was performed and the R2R control was deployed for the 

technology already existing in production, where the historical data coming from the 

technology have been validated. Then, the next goal is to put the R2R model into practice for 

the STI process of the eSTM technology in production mode. 
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"I applied streaks and blobs of colors onto the canvas with a palette knife,  

and I made them sing with all the intensity I could..." (W. Kandinsky) 
 

Conclusions and Future Work 
 

This thesis was conducted within the framework of a joint collaboration between industrial 

and academics. Thus, the work presented in this manuscript is intimately linked to the 

industrial development of the newest STMicroelectronics Rousset technology; the eSTM. This 

thesis aimed to study and optimize a very specific stage: the plasma etching processing of the 

embedded trench for advanced microelectronics applications. Throughout these years, a link 

has been established between academia and industry trying to explain the phenomena and 

problems appearing in the process via the process characterization and modelling.  

 

The objectives of this work can be divided into three parts. Firstly, the study of the eSTM 

trench including the characterization of the process and the design optimization to achieve a 

model able to predict the CD (Critical Dimension) of the eSTM trench for the optimal electric 

results. Secondly, the development of the floating sample method at STMicroelectronics 

Rousset which allowed us to study the reactor walls deposition and the implementation of 

the cleaning strategy. And, finally, the characterization of the STI process for controlling the 

CD by developing a controller model. In addition, within the timeframe of this thesis, a new 

scatterometry model was also developed. This model can be used to measure the STI CD after 

the photolithography and etching steps, which could stand up as a potential alternative 

candidate to CDSEM measures. Each of these parts was divided into two main sections; the 

characterization and the optimization. In the following, the major contributions of each of 

these parts are summarized. 

 

- Contributions to the characterization and optimization of the eSTM 

The characterization of the eSTM trench during the etching process contributed to improve 

our knowledge of the process. It allowed us to identify the role of the species of the etching 

gases and to understand the composition of the sidewalls passivation through surface 

analysis. From these characterizations, we could interpret the role of the gases during the 

etching. Furthermore, the protocol employed for the characterization of the passivation layer 

is nowadays ready at ST Microelectronics Rousset and it can be used for characterizing other 

samples. Even if, for the moment, the analyses can only be performed ex-situ.   

 

A model was developed by using DOE in order to optimize the eSTM trench etching process 

in terms of CD. The related-study also improved our knowledge of the physical behavior in 
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relation to the final trench CD process. Respect to the industrial contributions, the eSTM CD 

of the trench was reduced based on the electrical results. The optimal CD proposed during 

this study is nowadays the target CD of this trench, which is obtained with the recipe 

proposed by the DOE model. Furthermore, the designated model can be used to predict the 

CD such that it enables reaching the desired CD for better product performances (ex: 

electrics, morphology, etc.). 

 

- Contributions to the characterization and optimization of the Reactor Walls 

Thanks to the Floating Sample Method, we could analyze the composition of the reactor walls 

deposits during the process and the cleaning by using XPS. During the eSTM process more 

CFx polymers were deposited on the chamber than SiOxBry or SiOxFy as expected, knowing 

this, we could improve the WAC used for cleaning the reactor walls after each process. The 

two cleaning steps were reduced, so that the total WAC time was reduced from 65s to 38s. 

That made also an impact to the production process time, which is also reduced. For the 

industrialization, the pressure was increased. With the optimal WAC proposed, the 

percentage of fluorine on the coatings was reduced from 30.8% to 26.9%.   

 

- Contributions to the characterization and optimization of the STI 

A process control solution was required to reduce the etch process variability related to the 

STI CD. A R2R controller was developed for keeping the STI CD under control by improving 

the variability due to the process chamber and lot-to-lot effects. This R2R is nowadays up to 

be set in place for the technology in production, the one which historical data have been used 

for these analyses. The idea is to set the same model in place for the STI CD of the eSTM 

technology, once it will be in production mode. Moreover, the scatterometry model developed 

at the same time, is already working in the production line. 

 

- Future work 

The studies performed in this thesis are far from reaching its full potential yet. Indeed, many 

improvements are still possible:  

 

- A better characterization of the wafer surface and the deposits created on the reactor 

walls could be performed with analyses in-situ. Since the experiments were performed 

in the industrial reactor of STMicroelectronics, we did not have this option. However, 

if an improvement of the equipment would be possible, or trying to find the same 

equipment in a laboratory which could do it, the mechanism taking place for the 

plasma-surface and plasma-reactor walls could be explained avoiding the 

contamination influence of air exposition. 
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- Even if the cleaning strategy (WAC) was improved for the process and the deposits 

created on the reactor walls, it could be better optimized by avoiding the cleaning 

gases or using a conditioning strategy, as explained in Chapter IV. For that, the line 

gases must be changed. A study related to the influence of the F-contamination once 

the eSTM technology would be in production mode, should be performed in order to 

understand the influence of this contamination on the variability of the process. Even 

a study could be performed for analyzing the possibilities of performing the process 

without using F-based chemistries. 

 

- The R2R model was validated during the time that was set of-line. However, a new 

analysis of variance should be performed now that the scatterometry measures are in 

place. Furthermore, FDC analyses would help to improve the variability due to the 

equipment.  

 

- The R2R controller was developed for controlling the CD of the STI that can be used 

both for the technology studied which is already in production and for the STI of the 

eSTM technology. Furthermore, based on this model, a similar controller could be 

developed for controlling the CD variabilities of the eSTM trench, once it will be in 

production mode. 

 

Although the technology studied in this manuscript (eSTM) is still not a technology in 

production at STMicroelectronics Rousset, the results obtained in our study were transferred 

and used for an overall improvement of the manufacturing process in order to maximizing 

the performance of the device still in development. Furthermore, the R2R model is already 

scheduled to be put in place for the technology which shares the STI process with the eSTM 

technology in the coming months. 
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1. Introduction 
 

Ces dernières années, de grands progrès ont été observés dans la technologie des 

semiconducteurs et dans les techniques de conception de circuits. Pourtant, la fabrication de 

puces électroniques est une tâche très difficile, principalement en raison de la complexité et 

la sensibilité de son processus de production [1]. De plus, comme le marché des mémoires 

entre dans un marché où les consommateurs exigeant des performances toujours plus élevées 

et des applications plus diversifiées, de nouveaux types de dispositifs sont en cours de 

développement afin de suivre les exigences d'échelle en vue de la réduction des coûts. Dans 

ce scénario, les mémoires [43, 44] jouent un rôle important.  

Les mémoires volatiles sont rapides et sont utilisées pour le stockage temporaire de données 

car elles perdent l'information lorsque l'alimentation est coupée. Cela signifie qu'elles doivent 

être en permanence sous tension pour conserver leurs informations. Les Mémoires Non 

Volatiles (NVM) [39,49] conservent les informations même lorsque l'alimentation est coupée. 

Elles ont été conçues pour stocker l'information sans aucune consommation d'énergie 

pendant une longue période. 

Pour la compréhension de cette thèse, la différence entre l'EEPROM et les mémoires Flash, 

toutes deux à base flottante, doit être introduite. La structure de base de chaque mémoire est 

présentée à la Figure 1. Les principales différences entre ces deux NVM sont: 

• EEPROM (de l’anglais, Electrically Erasable Programmable Read Only Memory). Une 

ROM électriquement effaçable/programmable, qui peut être effacée électriquement, mais 

également sélectivement par adresse d'octet. Pour effacer sélectivement, un transistor de 

sélection est nécessaire pour chaque cellule, conduisant à une cellule à deux transistors (2T); 

la grille flottante et le transistor de sélection. Le transistor de sélection augmente la taille 

des mémoires et la complexité de l'organisation de la matrice, mais la matrice mémoire peut 

être effacée par bit. 

• Mémoire FLASH. Le nom "flash" provient de son mécanisme d'effacement rapide. Elle 

ressemble à la mémoire EEPROM mais sans le transistor de sélection. Contrairement à une 

EEPROM, elle peut être effacée électriquement, mais seulement par un grand bloc de cellules 

simultanément. Elle perd la sélectivité des octets mais permet d’avoir une cellule à un 

transistor (juste la grille flottante). Aujourd'hui c'est la mémoire la plus produite. 
 

 

Figure 1. Schéma des mémoires EEPROM (a) et Flash (b). 
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La mémoire idéale doit entre autres avoir une faible consommation d'énergie, permettre une 

lecture/écriture/effacement rapides et une solution haute densité ... Mais l'appareil "idéal" 

n'existe pas encore. Cependant, différents types de mémoires ont été inventés afin d’atteindre 

ces propriétés spécifiques [43,44]. Exemple de cette tentative est l'eSTM (de l’anglais, 

Embedded Select Trench Memory) qui est représenté dans la Figure 2. Cette mémoire a été 

présentée par STMicroelectronics en 2012 [53,54]. 
 

 

Figure 2. Schéma de la structure eSTM. 
 

L'eSTM à pour objectif combiner les avantages de faible consommation énergétique et 

d'isolement de l'EEPROM, en raison de son transistor de sélection, avec la taille réduite de 

la mémoire Flash en réduisant sa taille. Sur cette base, deux transistors de sélection ont été 

fusionnés en un seul transistor vertical de sélection. Grâce à cela, il est possible de convertir 

une grande cellule (2T), en une nouvelle cellule, plus petite en taille et encore à faible 

consommation, malgré un processus de fabrication légèrement plus complexe mais toujours 

compatible avec une technologie CMOS. Les propriétés des mémoires EEPROM, Flash et 

eSTM sont comparées dans le Tableau 1. 

Tableau 1. Propriétés des EEPROM, Flash et eSTM.  

 EEPROM FLASH eSTM 

Low Consumption x  x 

Fully-Bit alterable x  x 

High Density  x x 

Fast Write/Erase  x x 
 

 

 

 

TECHNOLOGIE CMOS 
 

La technologie CMOS à base de silicium a été la force motrice de progression de l'industrie 

de la microélectronique depuis plus de quatre décennies. La diminution remarquable de la 

règle de conception et de l'augmentation du nombre de composants sur un circuit intégré 

individuel ont nécessité un changement majeur dans la technologie utilisée pour fabriquer 

ces circuits. La gravure et le dépôt subséquents de motifs, ont permis de produire des 

composants microélectroniques comme les transistors et les lignes d'interconnexion sur un 
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substrat semi-conducteur. Les principales étapes telles que le dépôt, la lithographie et la 

gravure plasma sont représentées dans la Figure 3. 
 
 

Figure 3. 

Représentation des principales étapes de fabrication CMOS [Adapté de 59]. 
 

De nos jours, l'un des principaux défis auxquels est confrontée l'industrie des semi-

conducteurs est la fabrication de ces composants [19] et le contrôle des variations à l'échelle 

nanométrique [62-64]. Pour relever ce défi, les études se portent sur la gravure par plasma 

[59,65,66,67]. Le plasma ou la gravure sèche de silicium joue un rôle majeur dans la 

fabrication des semi-conducteurs. Elle permet le transfert de motifs de circuits complexes par 

photolithographie sur le silicium, le dioxyde de silicium et les métaux qui construisent les 

circuits intégrés. 

Une grande partie de la compréhension des plasmas provient des procédées de gravure 

plasma développées pour la technologie CMOS, où la génération de plasma [70] nécessite 

l'application d'une forte radiofréquence (RF), sous vide. Le principal avantage de la gravure 

sèche ou plasma repose sur son anisotropie, ce qui est hautement préférable pour des 

dimensions plus petites. De plus, la gravure anisotrope a la capacité de graver avec une 

meilleure résolution des motifs plus fine et un rapport d'aspect plus élevé que la gravure 

isotrope. Ainsi, à la fin des années 1970, l'industrie de la microélectronique entraîne la 

transition de la gravure humide vers la gravure plasma, et aujourd'hui presque tous les 

processus de transfert de modèle sont effectués par gravure plasma. La gravure anisotrope 

est rendue possible par la combinaison d’approches physiques et chimiques. La partie 

physique peut être réalisée par bombardement neutre, ionique, électronique ou photonique 

qui assiste les réactions de gravure d'une surface exposée à un agent de gravure chimique. 

Ce bombardement est anisotrope et non sélectif. La partie chimique implique une réaction 

chimique entre les gaz d'attaque et la surface du silicium. Cette réaction est spontanée, 

isotrope et expose de façon sélective. Coburn et Winters, dans leur expérience classique en 

1979 [71], ont montré que la gravure plasma est le résultat synergique de la combinaison 

entre ces deux mécanismes; le bombardement ionique et la réaction chimique neutre. 
 
 

L'ETAT DE L'ART EN GRAVURE PLASMA 
 

Depuis l'introduction des procédés de gravure sèche ou gravure plasma dans la fabrication 

des circuits à base semi-conducteurs à la fin des années 60 et au début des années 70, il était 
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établi que la gravure plasma est une technique incroyablement complexe. Bien qu'il y ait eu 

une discussion sur le contrôle du profil dès le début, ce n'est que vers le milieu des années 

1970 que sous-cotation dans le processus de gravure plasma a pu être éliminé [93]. 

Au début, la majeure partie du travail de gravure sèche impliquait l'utilisation des molécules 

halocarbonées, le CF4 étant le plus courant. Puis, un article important, décrivant un procédé 

pour graver SiO2 sélectivement par rapport à Si en utilisant une chimie sans fluor 

(polymérisation), a révolutionné les procédés. Pour la première fois, le terme de passivation 

des flancs a été introduit. En effet, les produits chimiques fluorés étaient connus pour avoir 

tendance à graver de façon isotopique, de sorte que la passivation des parois latérales était 

nécessaire pour maintenir un profil acceptable. L’utilisation d’un dépôt de polymères comme 

couche de passivation, a permis de contrôler le profil et la sélectivité. Il existe deux 

mécanismes possibles pour la formation de cette passivation; par des réactions chimiques ou 

par pulvérisation physique [94]. Des analyses chimiques utilisant des techniques de 

spectroscopie sont aujourd’hui couramment utilisées pour révéler la composition de cette 

couche de passivation. 

À la fin des années 1970, d’importantes études sur la gravure ont été menées, confirmant 

l'importance de la synergie entre le bombardement ionique et les réactions chimiques lors de 

la gravure plasma [71]. Un développement important des équipements de gravure plasma a 

commencé à cette époque. La première méthode utilisée pour augmenter la densité du plasma 

dans l'équipement de gravure sèche à une seule plaquette était le magnétron RIE (de 

l’anglais, Reactive Ion Etching). Cette méthode avait peu de marges en termes de chargement 

de plaquettes résultant d'un plasma non uniforme. Vers la fin des années 80, un système 

utilisant des sources alimentées par induction pour générer des plasmas de densité plus 

élevée a été introduit avec succès. C'est en 1985 que Hitachi a commercialisé la gravure 

plasma ECR (de l’anglais, Electron Cyclotron Resonance). Le réacteur ECR a besoin d'une 

grande bobine magnétique pour former un champ magnétique fort, ce qui rendait difficile 

d'avoir une chambre de gravure compacte. La nécessité d'aborder cette question a conduit au 

développement du ICP (de l’anglais, Inductively Coupled Plasma). Avec une bobine simple 

placée au-dessus de la chambre de gravure, il était possible de générer un plasma de haute 

densité par induction électromagnétique [61,95,96]. 
 

2. Expérimental : Matériaux et Équipement 
 

 

MATERIAUX 
 

L’empilement (stack) de semi-conducteurs classiques en industrie microélectronique 

comprend un substrat, une couche semi-conductrice et un masque. Pour le travail présenté 

dans cette thèse, le stack est composé de photorésine (PR), BARC, a-C:H, TEOS, NFARL, 
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Nitrure, SiO2, d’une couche semi-conductrice et d’un substrat dont la nature et fonction sont 

décrites ci-dessous. 

• Photorésine (PR). La photorésine est un matériau photosensible utilisé dans le procédé 

de photolithographie pour former un revêtement à motifs sur la surface à graver. La PR 

utilisée dans cette étude est une photorésine de 193nm. Ces résines ont une sélectivité 

inférieure et une résistance mécanique médiocre par rapport à celles de 248nm [109]. Pour 

cette raison, un masque épais est nécessaire. 

• BARC. De l’anglais, Bottom Anti-Reflective Coating, cette couche anti-réflect organique 

appliqué avant le PR afin d'absorber la lumière. Il empêche l'interaction chimique entre le 

PR et le substrat et augmente le contrôle du CD. 

• a-C:H ou AHM. De l’anglais, Hydrogenated Amorphous Carbon Mask. Il s'agit d’une 

couche de carbone de type diamant [111,112], dur, amorphe et avec une fraction importante 

d'atomes de carbone hybrides sp3, contenant une quantité significative d'hydrogène [111]. Ce 

matériau servira de masque pour la gravure une fois la résine consommée. 

• TEOS. De l’anglais, Tetraethylorthosilicate. Préparé par l'alcoolyse du tétrachlorure de 

silicium, il s’agit d’une molécule tétraédrique utilisée comme précurseur du dioxyde de 

silicium [113]. Il s'agit d'un matériau à base d'oxyde également utilisé comme masque dur. 

• NFARL. De l’anglais, Nitrogen-Free Anti-Reflective Layer. Il s'agit d'un oxyde riche en 

silicium avec une sélectivité élevée vers l'a-C:H. Les propriétés optiques et les 

caractéristiques de gravure des films AHM et NFARL les rendent bien adaptés à l'intégration 

dans un espaceur à double motif [115]. Il s'agit d'une autre couche anti-réfléchissante, mais 

contrairement au BARC, le NFARL aura tendance à maintenir une épaisseur constante 

indépendamment du relief de la couche inférieure. C'est pourquoi il est dit « planarisant » et 

aura tendance à réduire les inégalités du relief. 

• Nitrure. Le nitrure de silicium (Si3N4) est un matériau amorphe, similaire aux films de 

SiO2. Il est largement utilisé comme barrière d'oxyde. Il est généralement utilisé comme 

masque dur de gravure dans les applications STI [116]. En raison de la différence de 

coefficient de dilatation thermique entre le silicium et le Si3N4, le nitrure de silicium est 

déposé sur Si avec une mince couche tampon d'oxyde, appelée oxyde de chemin, afin d'éviter 

les dommages induits par le stress à l'interface à température élevée [58]. 

 
 

ÉQUIPEMENT DE GRAVURE  
 

L’équipement utilisé pour le développement dans cette thèse est le réacteur TCP®, de 

l’anglais Transformer Coupled Plasma, lancé par Lam Research en 1992 [93,95]. Cet 

équipement est un exemple de réacteur ICP. Dans cet équipement, un DC-BIAS est créé en 

appliquant une puissance RF à l'électrode inférieure, puis, le DC-BIAS contrôlable dirige les 

ions normaux à la surface de la tranche et donc il y a très peu d'interaction entre les champs 

électriques supérieur et inférieur. Le rendement énergétique élevé crée un plasma à haute 
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densité où l'énergie ionique et la directionnalité sont contrôlées par la puissance appliquée à 

l'électrode inférieure [97]. La Figure 4 présente cet équipement : un cluster comprenant 4 

chambres de gravure. 
 

               
Figure 4. Représentation schématique de la plateforme de gravure LAM Versys.  

 

Lam Research a lancé cet équipement de type ICP [93,95] où le plasma est généré par une 

bobine en forme d'anneau planaire avec enroulements multiples comme dans un 

transformateur [65]. Cette conception est capable de fournir une densité de plasma beaucoup 

plus élevée par rapport à une conception de chambre standard. Un schéma de la chambre de 

gravure est donné dans la Figure 5. 
 
 

   
Figure 5. Représentation schématique de la plateforme de gravure LAM Versys 2300 [Adapté de 65]. 

 

Dans cette configuration TCP, capacitive comme inductive, la puissance est complétée par 

une source RF couplée capacitive pour contrôler l'énergie ionique. Le plus grand avantage est 

que la séparation du couplage RF offre la possibilité de contrôler le courant ionique (TCP 

inductif) indépendamment du contrôle de l'énergie ionique (bias capacitif). Dans ces outils 

capacitifs, la puissance est souvent fournie avec des fréquences multiples, permettant un 

certain contrôle indépendant de la densité ionique et de l'énergie. 

Afin de maintenir la chambre aux conditions initiales, un nettoyage WAC (De l’anglais, 

Waferless Auto Clean) est appliqué entre chaque procédé. Il se compose de recettes similaires 
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à la recette du procédé, en sachant qu'il n'y a pas de plaquettes dans la chambre. Il existe 

deux types de WAC: 

• Le Conditionnement: démarre automatiquement avant le passage de la première 

plaquette de chaque lot. Il peut être utilisé à la fois pour amener la chambre à la bonne 

température et pour nettoyer l'intérieur de la salle blanche. 

• Le Post-WAC: est lancé pour nettoyer la chambre après gravure de chaque plaquette. 

La recette de WAC doit être sélectionnée en fonction du sous-produit de dépôt sur la chambre 

après le procédé. 
 

3. eSTM: Caractérisation et Optimisation des 

Procédés 
 
 

Le fonctionnement de la cellule eSTM est identique à un flash NOR avec un transistor de 

sélection. Cependant, des développements sont nécessaires pour mettre en place le procédé 

de réalisation du transistor vertical, car il est complètement nouveau. La fabrication de la 

cellule consiste en une succession d'étapes, semblables à la Flash mais avec des étapes 

supplémentaires où réside toute la complexité du procédé. 
 
 

SPECIFICATIONS DU PROCEDE 
 

L'eSTM partage les étapes standard du procédé flash jusqu'à la définition des zones 

actives/STI. Une fois ces zones définies, la STI est remplie de SiO2. Ensuite, une tranchée 

perpendiculaire aux lignes actives est créée. Pour ce faire, une masque dure est nécessaire. 

Ensuite, la tranchée sera remplie de Si. Puisque cette étude est basée sur la caractérisation 

et l'optimisation du procédé de gravure plasma impliqué dans la création de cette tranchée, 

ces étapes sont représentées dans la Figure 6. 
 

 
 

Figure 6.  Représentation schématique des principales étapes de réalisation de la tranchée 

eSTM. A) à partir du flash active/STI standard, b) masquage et photolithographie, c) gravure de 

la première partie de la tranchée et d) étape de gravure finale pour atteindre la tranchée eSTM. 
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Considérations de gravure 
 

La Figure 7 illustre le procédé utilisé pour graver la tranchée eSTM. Il est composé de 5 

étapes de gravure. Ces 5 étapes sont la gravure du NFARL, la gravure de l'AHM, la sur-

gravure de l'AHM, la première étape de gravure de tranchée (Si/SiO2) et la deuxième étape 

(Si) qui est la dernière. La vitesse de gravure du SiO2 pendant la quatrième étape de cette 

recette est beaucoup plus élevée que pour la gravure de Si. Cependant, au cours de l'étape 

finale, la vitesse de gravure de Si augmente fortement en utilisant un plasma à base de 

brome. 
 
 

 

 Figure 7. Représentation schématique des cinq étapes de gravure de la tranchée eSTM. 
 

Ici, l'étape de sur-gravure de l’AHM n'est pas représentée, puisqu'elle est en quelque sorte 

incluse dans l'étape de gravure de l’AHM. Au cours de cette sur-gravure, la chimie utilisée 

est la même. L'objectif, est de "nettoyer" les résidus d'AHM qui pourraient rester après la 

gravure principale de ce matériau. Désormais, nous pouvons nous référer à la quatrième 

étape (Si/SiO2) comme tranchée STI et à la dernière (Si) comme tranchée eSTM. La chimie 

utilisée lors de l'étape NFARL, CF4/CH2F2/He, n'est responsable que de l'ouverture NFARL. 

Une chimie à base de fluor est nécessaire puisque le NFARL est un matériau de type oxyde. 

Ensuite, l'AHM qui est un matériau à base de carbone est gravé avec Cl2/HBr/O2. Cette 

chimie est sélective et grave uniquement l'AHM. La couche suivante est le STI, mais tout 

d'abord, juste après la gravure de l'AHM qui prend 50sec nous effectuons une sur-gravure de 

29% du temps afin d'éliminer les résidus possibles de AHM qui peuvent rester sur les parois 

latérales. Pendant cette étape, la gravure est latérale. Il n'y a aucun risque de gravure de la 

couche suivante (Si/SiO2). Après avoir gravé le masque dur, la première étape principale 

démarre, la tranchée STI. Comme expliqué précédemment, au cours de cette étape, la vitesse 

de gravure du SiO2 est plus rapide que pour le Si (3780Å/min contre 840Å/min, 

respectivement), mais comme elle est à base de fluor (CF4/CH2F2/He) et donc non sélective, 

elle est capable de graver les deux. Enfin, la gravure de la tranchée eSTM, à base de Br 

(HBr/O2), grave le silicium profondément et verticalement tout en étant fortement sélective 

par rapport au SiO2. La vitesse de gravure de Si au cours de cette étape est de 3015Å/min. 

La température est constante pendant toute la recette (Intérieur/Extérieur: 60/60°C). 
 
 

CARACTERISATION 
 

Le but de cet étude est de caractériser le processus de gravure de la tranchée eSTM car il 

s'agit d'un procédé complètement nouveau chez STMicroelectronics. Les méthodes utilisées 
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pour cette étude sont OES (de l’anglais, Optical Emission Spectroscopy) et l’XPS (de l’anglais, 

X-Ray Photoelectron Spectroscopy). OES est utilisée afin de connaître les espèces dans le 

plasma et XPS pour analyser la composition chimique des parois latérales; la couche de 

passivation. L’objectif est d'accroître notre connaissance sur les interactions plasma-surface. 
 

Caractérisation du plasma par OES 
 

La première partie de la caractérisation est liée à l'identification des espèces activées 

par/présentes dans le plasma lors de la gravure de la tranchée. La plupart des espèces 

atomiques et diatomiques peuvent être surveillées par OES, mais en raison de la complexité 

du mécanisme d'excitation, l’OES est généralement une technique qualitative. Seules les 

espèces excitées dans les plasmas sont détectées et le spectre observé donne des informations 

sur la densité de l'état excité et ne reflète pas directement le profil de la population au sol 

[213]. 

Le spectromètre, « OES Plus sur Flex45 », est monté sur l'équipement du plasma afin de 

collecter ses émissions. La lumière émise par le plasma, qui est étudiée à l'aide d'OES, a été 

analysée dans la gamme 220-840nm. Les différents systèmes d'émission optique étudiés 

comprenaient les contributions de la chimie (plasmas à base F et Br) et des matériaux liés au 

masque et à la tranchée (AHM et silicium). Les principales espèces détectées étaient CFx*, 

CH*, H* et F* pour la première chimie et Br*, O* et F* pour la seconde. Le film a-C:H 

(masque) produit des radicaux CH et C2 pendant la gravure au plasma à base de F. Les 

lignées d'émission de Balmer d'hydrogène étaient très intenses dans les plasmas à base de F 

(pour AHM et Si) comme pour la gravure de tranchée eSTM. Lors de la première gravure 

(CF4/CH2F2/He), la présence de Hα a été clairement détectée. Pour les spectres de plasma à 

base de Br, la deuxième chimie, une ligne observée à 656,6nm, pourrait être plutôt associée 

au Br, en raison de l'absence de Hß et de Hδ dans les autres spectres. Néanmoins, pour la 

gravure eSTM, nous avons associé cette ligne à Hα puisque d'autres lignes de cette série ont 

été détectées. Il est intéressant de noter que le fluor est présent sur tous les spectres, même 

pendant la deuxième chimie (plasma bromé). Cette détection de F est probablement liée à la 

présence de fluor résiduel de la première chimie dans la chambre, ou dans les lignes de gaz. 

En plus de ces analyses, une autre étude a été réalisée pour améliorer la compréhension de 

la gravure de la tranchée de l’eSTM liée à la composition de surface de plaquette. 
 

Caractérisation de surface par XPS 
 

Le procédé de gravure de la tranchée eSTM est sensible à plusieurs paramètres qui 

permettent la gravure anisotrope. La caractérisation superficielle par XPS des différents 

substrats nous a permis de comprendre la composition de la couche de passivation de la 

tranchée eSTM. Les principaux éléments détectés étaient C 1s, F 1s, O 1s et Si 2p pour les 

deux chimies, avec quelques traces de Br 3d détectées après la deuxième chimie (HBr/O2). 

Etant données les très faibles dimensions par rapport aux caractéristiques étudiées dans la 
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littérature, plusieurs analyses ont été réalisées afin de développer le protocole et de mieux 

comprendre le mécanisme de passivation de la tranchée eSTM.  

Premièrement, lors de la première chimie, les principaux contributeurs à la passivation 

étaient C, F, O et Si. Le silicium était principalement oxydé sous sa forme SiO2 et avait une 

contribution plus grande d’oxygène que de fluor. La contribution fluorée, même si plus faible 

que la contribution oxygénée, était plus présente sur le bord que sur le centre. Nous avons 

associé cet effet à l'influence des parois du réacteur, car une certaine passivation F est 

également attendue sur les parois du réacteur pendant le processus en utilisant une chimie 

à base de F. Pour nous, il était très difficile d'identifier les pièces provenant du masque et 

celles provenant des flancs de silicium, puisque dans toutes nos analyses, l'effet de charge 

différentielle n'était pas très prononcé.  

Lors de l'analyse de la passivation après la deuxième chimie, la couche de passivation était 

principalement composée d’oxygène et de silicium. Il y avait encore avec une certaine 

contribution fluorée restante de la première étape. Selon la littérature, la couche de 

passivation formée lors de l'attaque avec HBr doit être SiOxBry [249,250]. Dans notre cas, la 

passivation était du type SiOxFy, car même si certaines contributions de Br ont été détectées, 

elles étaient trop faibles pour être quantifiées. En effet, puisque nos analyses ont été 

effectuées ex-situ, le brome pu désorber avec l'exposition à l'air. La désorption du brome et 

l’oxydation des couches de passivation des flancs de silicium en présence d’oxygène (par ajout 

d’oxygène aux chimies à base de HBr ou par exposition à l’air) est un effet qui a été étudié de 

manière approfondie dans la littérature [249,250]. Avertin [67], a également observé ce 

phénomène au cours de ses études pour un plasma SF6/HBr/O2. Il a expliqué que le brome, 

n'étant pas détecté, peut aisément être remplacé par F ou O et qu'il est donc difficile de 

détecter Br sur les surfaces. Puisque nos analyses ont été réalisées ex-situ, en raison des 

limitations industrielles, la passivation étudiée a été soumise à ces facteurs. De plus, nous 

avons non seulement exposé les échantillons à l'air, mais aussi ajouté de l'oxygène à la chimie 

HBr. Cependant, ces analyses nous ont permis d'avoir une idée du mécanisme de la surface 

du plasma qui a lieu au cours du processus eSTM. Avec une passivation SiOxFy sur les parois 

latérales, nous avons voulu différencier la partie STI (SiO2) de la tranchée par rapport à la 

tranchée eSTM elle-même (Si). À cette fin, nous avons utilisé la technique de l'échantillon 

flottant développé par Joubert et al [155] en 2004. Cette méthode est principalement utilisée 

pour simuler les parois du réacteur, cependant, certaines études l'ont utilisée pour analyser 

la passivation des flancs [67,125,260]. Ces études ont montré que l'échantillon flottant n'est 

pas aussi précis pour l'analyse de la passivation que pour la caractérisation du dépôt des 

parois du réacteur. En effet, les parois du réacteur en tant qu'échantillon flottant sont 

bombardées par des ions à incidence normale avec une énergie égale au potentiel plasma 

tandis que les parois latérales des structures sont bombardées par des ions d'incidence de 

pâturage avec une énergie fixée par la puissance de polarisation du substrat. La technique 

de l'échantillon flottant permet donc d'accéder à des informations sur la présence d'un 
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nouveau dépôt de la phase gazeuse qui peut éventuellement être formé sur les parois 

latérales des structures gravées. Cette méthode a été utilisée en corrélation avec les autres 

méthodes de caractérisation. Elle a permis de confirmer la conclusion effectuée auparavant, 

qu’une passivation SiOxFy principalement oxydée est détectée à la fois sur la partie STI (SiO2) 

et la partie Si de la tranchée eSTM après la gravure finale. 

Dans tous les cas, la formation de la couche de passivation des flancs est une combinaison de 

mécanismes complexes et son absence a des conséquences désastreuses pour le profil de 

gravure et les dimensions critiques. Dans notre cas, certains problèmes ont été confrontés. 

Des problèmes comme la difficulté de faire l'analyse ex-situ avec le faible effet induit par 

l'effet de charge différentielle. Le but de ces analyses était de caractériser la passivation, qui 

est liée à la CD (de l’anglais, Critical Dimension). Mais pour garder la CD sous contrôle, 

plusieurs paramètres doivent être pris en compte. La partie suivante est liée à l'étude de 

l’influence de ces paramètres sur le CD. 
 
 

OPTIMISATION 
 

La dimension critique (CD) est fortement influencée par la gravure RIE du silicium dans la 

technologie CMOS. Cette CD doit être bien contrôlée, car il s’agit d’un des paramètres les 

plus importants pour les résultats électriques. Cependant, le procédé RIE dépend de 

nombreux paramètres, ce qui complique sa compréhension. 

L'objectif de cette étude était de décrire et d'évaluer les paramètres qui entrent en jeu au 

cours du procédé afin de sélectionner les plus importants en termes de variations de CD pour 

la tranchée eSTM. Ainsi, nous pourrions optimiser les performances de la cellule en 

améliorant le CD de la tranche eSTM en termes de résultats électriques. Pour cela, quelques 

expériences ont été réalisées afin de proposer un modèle analytique développé à l'aide de 

plans d’expériences ou « DOE » pour ses sigles en anglais Design of Experiments. L'objectif 

final était d'avoir un modèle adapté au procédé de telle sorte qu'il puisse prédire le CD chaque 

fois que nous aurions eu besoin d'un changement industriel. 
 

Partie Expérimentale 
 

Il y avait 11 principaux paramètres impliqués dans la recette utilisée pour cette étude, 

comme la pression, la température, TCP, BIAS et les flux de gaz. Plusieurs gaz sont 

nécessaires pour graver chaque couche. Par exemple, comme il a été expliqué précédemment, 

lors de la gravure du Si/SiO2, la chimie choisie est à base F alors que celle pour la gravure au 

silicium est à base de Br. Pour commencer à concevoir un ensemble d'expériences nécessaires, 

il était essentiel de connaître les facteurs les plus importants (entrées) liées aux sorties, c'est-

à-dire le CD dans cette étude. Étant donné que le procédé à l'étude comporte 10 paramètres 

dans chacune des 4 étapes, la réduction du nombre d'entrées est obligatoire même si l'on 

soupçonne qu'ils sont des facteurs clés. Il y avait deux objectifs dans cette recherche: le 

premier était de découvrir les facteurs et les étapes avec les plus grandes influences en termes 
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de CD final afin de construire un modèle mathématique et donc la « fenêtre de procédé » 

significative; le second objectif était de pouvoir prédire le CD avec le modèle de sorte qu'il 

permet d'ajuster le CD au besoin (ex: pour les performances électriques, la morphologie, etc.). 

Ces objectifs seront satisfaits en choisissant les facteurs appropriés pour effectuer la 

modélisation du DOE et en évaluant le modèle. Pour l'ensemble de l'étude, le CD final a été 

mesuré sur le haut de la tranchée en utilisant le CDSEM en ligne. 
 

 Identification des paramètres et étapes les plus influentes 

Dans notre étude, « l'analyse de sensibilité » utilisée est un test qui consiste à faire varier un 

paramètre de la recette à la fois afin d'explorer ce que le modèle fait avec la nouvelle valeur. 

Dans ces analyses, la valeur de référence a été maintenue constante. Les facteurs ont été 

écartés de la ligne de base une seule fois (ou deux fois) et la ligne de base n'a pas été modifiée 

tout au long de l'analyse. L'existence d'interactions est initialement ignorée. Nous supposons 

qu'il n'y a pas d'interactions entre les étapes puisque la chimie utilisée était sélective. Ainsi, 

cette étude a été utilisée comme étape de dépistage avant l'analyse du DOE. 

 Analyse de sensibilité des processus 

Le nombre total d'expériences requises pour effectuer l’analyse de sensibilité était de 20, 

étant donné que le nombre de paramètres était de 10. Les résultats de cette analyse de 

sensibilité du procédé concernant la variation attendue du CD sont présentés en Figure 8. 
 

 
Figure 8. Variation de CD attendue à partir de l'analyse de sensibilité du procédé. 

 
 

La Figure 8 montre que, la sensibilité la plus élevée était liée au débit d’O2 (200sccm), à la 

température ESC, à la tension BIAS, au débit d’HBr, à la pression et au débit du CH2F2. Il y 

avait encore trop de paramètres à utiliser pour la prochaine analyse de sensibilité. Un 

découpage procédé ou « partitioning » était donc nécessaire pour identifier les étapes les plus 

importantes. 
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 Partitioning  

Faire un découpage procédé ou « partitioning » consiste à graver une plaquette par étape. En 

arrêtant le processus après chaque étape, chaque plaquette est représentative de l'une des 

étapes.  

Après avoir identifié les principaux paramètres du processus avec l’analyse de sensibilité, 

l'étape suivante était de faire un partitioning pour découvrir les étapes les plus importantes 

en analysant l'influence de chaque couche par rapport au CD final. Les résultats de ce 

partitioning sont présentés dans le Tableau 2. 
 
 

Tableau 2. Partitioning par étapes de gravure par rapport au CD. 

Step CD variation Δ CD* 

PHOTOLITOGRAPHY Starting CD: 100nm - 

NFARL 100nm → 90nm 10nm 

AHM 90nm → 152nm 62nm 

STI trench 152nm → 184nm 32nm 

Si trench 184nm → 172nm 12nm 

*Values absolutes 
 

Dans le Tableau 2, on peut noter que le CD à changé d'une étape à l'autre. Les différences 

entre deux étapes consécutives ont été calculées pour étudier la source de variation en termes 

d'étapes. Selon ce tableau, les étapes qui induisent la plus grande variation CD sont l'AHM 

et la tranchée STI. En particulier, l'étape AHM qui induit 62nm de variation de CD. Après 

cette étape, le CD a augmenté de 90 nm après l'ouverture NFARL à 152nm après la gravure 

AHM. 

 Sélection des facteurs clés pour l'analyse du DOE 

Avec l'identification des paramètres et des étapes critiques, les paramètres critiques (débit 

de O2, température ESC, tension BIAS, débit HBr, pression et CH2F2) ont ensuite été corrélés 

aux étapes les plus importantes (AHM et STI). Pour sélectionner les facteurs de conception 

pour le DOE, deux nouvelles analyses de sensibilité ont été réalisées.  

Les effets des paramètres lors de la gravure AHM sur le CD final de la tranchée eSTM ont 

été classés comme suit: O2> P> HBr> BIAS> ESC. Les contributions des paramètres à la 

variabilité dans cette étape étaient de 41%, 28%, 17%, 13% et 1%, respectivement. Les effets 

des paramètres pendant la gravure de la tranchée STI sur le CD final de la tranchée eSTM 

ont été classés comme suit: P>  BIAS> CH2F2> ESC. Les contributions des paramètres classés 

à la variabilité survenue dans cette étape étaient de 40%, 28%, 28% et 4%, respectivement. 

En conséquence, les facteurs d'entrée pour le DOE étaient O2 (AHM), P (AHM), P (tranchée 

STI), BIAS (tranchée STI) et CH2F2 (tranchée STI). Considérant que ces cinq facteurs 

de contrôle étaient les paramètres/étapes les plus critiques liés au CD final de la tranchée 

eSTM, un modèle de surface de réponse doit être construit pour tenir compte des principaux 
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effets et des interactions entre les paramètres clés. Le modèle doit pouvoir prévoir/optimiser 

le CD en ajustant les paramètres. 

 Design of Experiments (Plan d’experience) 

Le logiciel Design Expert a proposé plusieurs modèles DOE. Celui utilisé pour cette étude 

était un modèle de réponse de surface D-Optimale. Il a utilisé des facteurs discrets avec 

n'importe quel nombre de niveaux. 

- Conception expérimentale 

Pour étudier les effets principaux et toutes les interactions des facteurs choisis, la matrice de 

conception idéale est sûrement basée sur la conception factorielle complète. Compte tenu des 

5 facteurs à 3 niveaux, la conception factorielle complète avait nécessite 243 wafers. Avec la 

contrainte d'utiliser un seul lot, c'est-à-dire 25 wafers, le nombre d'expériences a été réduit à 

21 pour évaluer les effets principaux et toutes les interactions de second ordre. Trois 

expériences supplémentaires au centre de l'espace de conception, appelées répétitions, ont 

été ajoutées afin d'étudier la répétabilité et la robustesse de la conception [269]. Pour éviter 

le premier effet de plaque et avoir la condition de chambre stable, on traite 24 wafers 

expérimentals et on mesure leurs CD de la tranchée de silicium, c'est-à-dire la réponse du 

modèle de DOE après le procédé. 

Le Tableau 3 résume les niveaux de conception des 5 paramètres sélectionnés. Les 24 

expériences (21 tests avec 3 répétitions) ont été générées sur la base des critères D-Optimal, 

où le niveau 0, c'est-à-dire SA, SB, SC, SD et SE, indique le réglage standard pour les cinq 

facteurs. 

Table 3. Niveaux de conception pour les paramètres sélectionnés . 

Step Parameters -1 0 +1 Variations 

AHM 
O2 SA-10 SA SA+10 20sccm 

P SB-0,5 SB SB+0,5 1mTorr 

STI trench 

P SC-0,75 SC SC+0,75 1,5mTorr 

BIAS SD-27,5 SD SD+27,5 55V 

CH2F2 SE-7,5 SE SE+7,5 15sccm 
 

 

 

Ce DOE a été réalisé à travers les étapes de la tranchée AHM et STI, puisque les deux étapes 

ont été évaluées comme les plus importantes. Cependant, le CD a toujours été mesuré en 

haut de la tranchée finale de l'eSTM, qui était donc le CD final. Aucune interaction entre les 

étapes n'a lieu puisque la chimie change pour chaque étape et elle est sélective pour graver 

le matériau cible. Par conséquent, on s'attendait à voir seulement les interactions entre 

paramètres dans la même étape. 

- Résultats 

En menant les 24 essais expérimentaux et en recueillant les réponses au processus, c'est-à-

dire le CD de tranchée finale, les modèles de surface de réponse ont été construits et évalués 
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à l'aide du logiciel « Design Expert ». Le meilleur modèle, étant le modèle linéaire, a été 

sélectionné et analysé. Ce modèle peut être exprimé comme (1) en fonction des 5 facteurs et 

du terme d'interception. 

CD= +172.67-7.88∙A-3.95∙B-1.01∙C+1.36∙D-2.32∙E  (1) 

Le modèle CD dans (1) a été construit en termes de niveaux codés, c'est-à-dire, -1 et +1, par 

rapport aux paramètres de ligne de base. L'équation (1) est utile pour identifier l'impact 

relatif des facteurs en comparant les coefficients. 

- Prédictions et Validation 

Une comparaison des résultats expérimentaux et des résultats prédits pour les différentes 

réponses du DOE est représentée dans la Figure 9. 
 

 
Figure 9. Comparaison entre les valeurs CD expérimentales et calculées.  

 

Pour vérifier que le modèle a fonctionné pour faire des prédictions, une plaquette 

complémentaire a été traitée et les réponses correspondantes ont été recueillies. Comme on 

peut le voir sur la Figure 9, les mesures prédites et les vraies mesures de CD pour ces essais 

ont été fortement corrélées. En conclusion, le modèle est significatif et donc il peut être 

utilisée pour prédire les CD. 
 
 

CONCLUSIONS 

Ce chapitre présente la caractérisation et l'optimisation du processus eSTM. Tout d'abord, on 

a discuté de la caractérisation des différentes parties qui interagissent pendant la gravure 

de processus. Par conséquent, les diagnostics du plasma lui-même en utilisant OES et la 

composition de la couche superficielle en cours d'attaque par XPS ont été étudiés. Dans un 

second temps, pour réduire le CD dans le but d'optimiser les résultats électriques, un modèle 

a été proposé en utilisant le DOE. Ce modèle est capable de prédire et de contrôler le CD en 

établissant les unités pour les paramètres les plus importants. 
 

4. Interactions Plasma-Parois du Réacteur 
 
 

Pendant les processus de gravure plasma, il y a les interactions plasma-surface, comme 

expliqué précédemment, mais aussi les interactions plasma-parois du réacteur. En raison des 
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différences sur l'énergie du bombardement ionique et de la composition chimique des parois 

du réacteur par rapport à la surface de la plaquette, les effets sont complètement différents. 
 
 

INFLUENCE DES CONDITIONS DE LA PAROI DU REACTEUR SUR LES 

PROCESSUS D'ATTAQUE 
 

Le contrôle de la stabilité des processus de plasma devient un problème majeur à mesure que 

les dimensions des grilles diminuent à chaque nouvelle génération. Parmi les différentes 

raisons qui conduisent à contrôler les dimensions des caractéristiques, la composition 

chimique du revêtement formé sur les parois du réacteur est l'une des plus importantes [155]. 

Lors de la gravure de tranches successives, les surfaces de paroi exposées au plasma vont 

changer progressivement. En conséquence, les caractéristiques de gravure du plasma 

changent. Les couches de revêtement formées sur les parois du réacteur ont été étudiées pour 

plusieurs auteurs pour différentes chimies de plasmas. De plus, il existe plusieurs études 

relatives au mécanisme fluoré des parois des réacteurs irradiées par des plasmas à haute 

densité à base de fluor. Lorsque la surface du réacteur est bombardée par des ions positifs à 

haut flux d'un plasma fluor, les parois sont significativement fluorées. En outre, les parois 

des réacteurs des usines de production de masse sont composées de parois intérieures d'Al2O3 

et Y2O3 qui présentent des problèmes d'érosion et de génération de particules significatives 

lorsqu'elles sont immergées dans des plasmas à base de fluor [283]. Ce problème est accentué 

du fait que la plupart des stratégies de nettoyage utilisent également des plasmas contenant 

du fluor. Ces problèmes de fluor ont été largement étudiés en raison de l'importance de 

maintenir des conditions stables de traitement au plasma. 

Chez STMicroelectronics, le nettoyage effectué après chaque plaquette liée au procédé eSTM 

est le WAC (Wafer-less Auto Clean) [289]. Comme introduit précédemment, il s'agit d'un 

nettoyage périodique du réacteur dans lequel des plaquettes ne sont pas nécessaires. Le WAC 

de nos expériences utilise une chimie à base de SF6/O2. Il se compose de deux étapes 

principales de nettoyage. Le Clean-1 (à base de F) est utilisé pour nettoyer le dépôt «vitreux» ; 

les oxi-halogénures de silicium. Le Clean-2 (à base de O2), est utilisé pour nettoyer le dépôt 

de polymères de type CxFy. Cependant, comme le Clean-1 utilise également O2, certains 

dépôts contenant du carbone sont également gravés pendant cette étape. Puisque l'eSTM est 

une nouvelle technologie encore en développement, au début le WAC a été prise d'autre 

technologie. Ce WAC impliquait 30s pour le Clean-1 et 35s pour le Clean-2 (30_35). La Figure 

10 présente une représentation schématique du processus opérationnel de WAC utilisé dans 

notre étude. 

 

            

Figure 10. Principe du WAC utilisé pour le nettoyage des produits C- et Si-.  
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Concernant le problème du fluor, qui n'est pas seulement lié au procédé, mais aussi au WAC, 

nous voulions caractériser le revêtement déposé lors du procédé et pendant le WAC sur les 

parois du réacteur. L'objectif est d'étudier la présence du fluor dans la chambre de gravure 

pendant le procédé et pendant le WAC a fin de réduire cette concentration et maintenir le 

réacteur toujours dans les mêmes conditions. 
 
 

CARACTERISATION DES REVETEMENTS 
 

L'étude des interactions plasma-parois est difficile en raison de l'absence de méthodes de 

diagnostic pour contrôler la nature chimique des films formés sur les parois du réacteur 

pendant la gravure. En 2004, Joubert et al [155] ont proposé la méthode de l'échantillon 

flottant. Cette méthode est la méthode la plus largement utilisée pour caractériser la 

composition des parois du réacteur car elle permet l'analyse quantitative de la composition 

chimique des revêtements sans nécessiter d'équipement spécifique, en utilisant un 

échantillon flottant électriquement au-dessus d'une plaquette standard où le même dépôt que 

sur le réacteur va se déposer. En transférant la tranche portant l'échantillon électriquement 

flottant dans la chambre d'analyse XPS, on peut déterminer la composition chimique. En 

exploitant cette méthode [155], nous avons pu analyser les parois du réacteur de l'équipement 

de gravure plasma de STMicroelectronics Rousset sans contaminer la chambre. Le protocole 

expérimental consistait à fixer les échantillons sur les plaquettes, mais à les séparer par un 

gap calculé pour chaque procédé. Des rouleaux adhésifs Kapton ont été utilisés pour créer ce 

gap entre la plaquette et l'échantillon. Comme mentionné précédemment, lorsque la tension 

de polarisation RF est appliquée à la plaquette, si le gap est suffisamment épais, il empêche 

la polarisation DC de l'échantillon. La plaquette contenant l'échantillon est gravée dans des 

conditions régulières alors que l'échantillon est électriquement flottant, et ainsi les mêmes 

dépôts se développent sur l'échantillon et les parois du réacteur [155]. Cependant, notre 

analyse XPS a été effectuée ex-situ, puisqu'il n'y avait pas d'autre possibilité. Par conséquent, 

une certaine contamination doit être prise en compte. 

Le protocole expérimental utilisé dans cette recherche a consisté à analyser les dépôts créés 

au cours de la gravure de la STI (chimie à base de fluor), celle créée lors de la gravure de 

tranchée eSTM et celle créée lors de la WAC. 
 

Substrats 

Les parois de la chambre du LAM Versys 2300 sont en Al2O3 mais enrobées de Y2O3 puisque 

LAM a découvert que ce composé est plus stable que l’Al2O3. Pour analyser les parois de la 

chambre en utilisant la méthode de l'échantillon flottant, des échantillons de type Y2O3 

étaient essentiels. Nos échantillons ont été déposés sur silicium par pulvérisation ionique au 

xénon à l'Université de Poitiers (CNRS). L'épaisseur était d'environ 200 nm.  
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Résultats 

La première chose que nous voulions étudier était l'influence du processus sur les parois du 

réacteur, celle liée à la tranchée eSTM. Ainsi, des analyses sur l'influence de l'étape STI 

(chimie à base de F) et de l'étape eSTM (chimie à basée de Br) sur les parois du réacteur ont 

été effectuées. A partir de ces résultats, nous avons conclu que la présence du fluor était la 

contribution la plus importante pour les deux processus, après la chimie F- (étape STI) et 

après la Br- (étape eSTM). Les deux compositions étaient assez semblables à l'exception de 

la présence du brome par rapport à l'échantillon lié au eSTM qui provient clairement de la 

chimie. Le C a été lié au F (CFx) avec une contribution de la contamination de l'air (CC:CH). 

Cependant, aucun silicium n'a été détecté dans aucun échantillon, seules quelques traces au 

cours de l'étape eSTM qui ne sont même pas quantifiables. Cela a été vraiment surprenant 

puisque de l'étape de l'eSTM (HBr/O2), certains dépôts « vitreux » étaient attendus sur les 

parois du réacteur. Dans tous les cas, nous avons toujours été en mesure de détecter la 

composition de l'échantillon (Y2O3) ce qui signifie que l'épaisseur du revêtement était 

inférieure à 10nm qui est la capacité de détection du XPS. La réduction des atomes d'oxygène 

a été expliquée par l'incorporation de fluor. Les atomes Y étaient moins liés aux atomes O (Y-

O) et plus liés à F (Y-F) puisque sa présence était plus importante après le processus. Ainsi, 

après le procédé, l'yttrium est principalement lié au fluor sous la forme YFx. 

Toujours concernées par le problème du fluor, nous avons également caractérisé les 

revêtements déposés sur les parois du réacteur pendant le WAC, qui est destiné à nettoyer 

les revêtements d'un procédé à l'autre. Puisque le WAC était également à base F (SF6/O2), et 

sachant par la littérature que ce type de plasma laisse également une contamination F sur 

les parois du réacteur, nous voulions savoir si les revêtements étaient plus ou moins fluorés 

que pendant les procédés (STI et eSTM). Puisque la pression utilisée pendant le WAC est 

plus élevée que celle utilisée pendant les processus, elle est supposée réduire ces formations 

contenant du fluor. Après les analyses, nous avons pu voir une réduction du fluor en ce qui 

concerne les analyses précédentes (55%  pour la gravure de la STI et 52,3% pour cela de 

l’eSTM), mais encore la présence de fluor après le WAC était encore très inquiétante (30,8%).  

Après avoir analysé le processus et les influences du WAC sur les parois du réacteur, toutes 

concernées par le problème du fluor, nous devions trouver une solution pour améliorer la 

situation. 
 
 

OPTIMISATION DE LA STRATEGIE DE NETTOYAGE 
 

L'optimisation de la recette WAC a été nécessaire afin d'obtenir celle qui correspond le mieux 

à notre recette. L'objectif était également de réduire l'exposition au fluor pour réduire les 

formations YFx. La stratégie suivie alors, était d'optimiser le WAC. En optimisant le WAC, 

des conditions plus reproductibles peuvent être obtenues, ce qui est essentiel car la taille du 

CD continue de diminuer. 
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 Stratégie 

La stratégie suivie consistait à enregistrer l'émission optique de 5 wafers de production. Deux 

WAC ont été effectués après chacun d'eux. Le premier, c'était celui que nous voulions tester. 

Le second, était un WAC de référence, dont les temps de Clean-1 et de Clean-2 étaient plus 

longs (60_60) que le WAC standard (30_35) pour être utilisés comme référence de chambre 

propre. 

 Etape 1: Définition du temps pour Clean-1 (SF6/O2) en utilisant la méthode 

d'itération 

Afin de définir le temps du Clean-1, les traces enregistrées pour 703nm (F) ont été comparées 

avec la référence de nettoyage de la chambre (60_60). La trace qui se chevauchent avec la 

référence était la bonne. Plusieurs références sont nécessaires pour confirmer que les 

résultats ne sont pas dus à la variabilité du processus. Cinq temps de WAC ont été essayés 

pour le Clean-1. Ces temps étaient entre 10s et 25s, plus le standard qui est de 30s. Même en 

sachant que les restrictions LAM ne permettent pas un Clean-1 inférieur à 12s, nous avons 

voulu le tester afin de voir si 10s seraient déjà assez. Aussi, pour vérifier les analyses 

précédentes, où nous n’avions pas trouvé beaucoup de dépôts « vitreux » à nettoyer. 

 Etape 2: Définition du temps pour Clean-2 (O2) en utilisant la méthode de 

détection de point final 

Une fois que le temps pour le Clean-1 a été défini, nous avons recherché un WAC avec le 

temps optimal sélectionné pour Clean-1 et 60s pour Clean-2. Ensuite, les EndPoint du Clean-

2 ont été évalués en utilisant la ligne 516nm (C). Le temps optimisé pour Clean-2 doit être 

égal au point final plus 30% de ce point final.  

  Étape 3: Nouvelle méthodologie de vérification de la propreté de WAC 

Un WAC long et une référence propre (WAC 60_60) étaient nécessaires pour être sûr que la 

chambre avait été nettoyée. Nous avons traité une plaquette standard avec le nouveau WAC 

optimisé, sélectionné avec les temps optimaux pour les étapes 1 et 2. Ensuite, on a utilisé une 

nouvelle référence WAC de chambre pour comparer ses traces relatives au 703nm (F) et 

vérifier si les traces chevauchaient. Cela confirmerait que la WAC a réussi. 

 Étape 4: Utilisation de la méthode d'échantillon flottant pour vérifier 

l'optimisation 

Après avoir vérifié que le WAC était le bon avec des analyses OES, nous avons utilisé la 

méthode de l'échantillon flottant pour comparer si le dépôt de fluor a été réduit avec ce 

nouveau WAC. 
 

Résultats 

La Figure 11 et la Figure 12 montrent les résultats relatifs à l'étape 1, la définition de temps 

pour Clean-1 (SF6/O2) en utilisant la méthode d'itération. 
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Figure 11. Définition de temps pour Clean-1 (SF6/O2) en utilisant la méthode d'itération. 
 

Dans la Figure 11, toutes les lignes se chevauchent. Pour clarifier ceci, un zoom entre 10s et 

26s est montré dans la Figure 12, où on peut facilement apprécier le fait que même en 

utilisant un nettoyage de 1 de 10s, la chambre était déjà bien nettoyée. 
 

 

Figure 12. Zoom de la Figure 11 entre 10s et 26s avec plus de références. 

Dans la Figure 12, des références supplémentaires ont été introduites afin de confirmer que 

la variation était due à l'équipement et non au temps du WAC. En introduisant ces 

références, il était facile de voir que les expériences étaient mélangées entre elles et que la 

seule différence était la variabilité liée à l'équipement lui-même. Par conséquent, la chambre 

était toujours propre. En outre, pour envisager une variation réelle, il devrait être autour de 

250a.u., ici, l'échelle a été fixée entre 1640a.u. et 1680a.u et d'ailleurs, les différents temps 

employés ne respectaient aucune logique. La variation entre elles est totalement arbitraire, 

ce qui confirme qu'elle était associée à la variabilité et non au temps de processus. Ainsi, 

même à 10s, le Clean-1 était suffisant. Ceci correspondait aux analyses effectuées en utilisant 

l'échantillon flottant, lorsque nous avons vu l'influence du procédé sur les parois du réacteur. 

L'absence de silicium lors de l'utilisation de l'échantillon Y2O3 a donc été confirmée avec ces 

expériences du fait que déjà à 10s la chambre est totalement nettoyée de dépôts "vitreux". 

Cependant, nous avons fixé le temps de Clean-1 à 12s, ce qui était le minimum recommandé 

par LAM. 

Une fois le temps de Clean-1  sélectionné (12s), nous avons analysé la ligne de 516nm liée au 

carbone en exécutant un WAC 12_35. Le résultat de cette deuxième étape du protocole, lié à 
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la définition de temps pour Clean-2 (O2) en utilisant la méthode de détection de point final, 

est montré dans la Figure 13. 
 

 

Figure 13. Définition du temps pour Clean-2 (O2) en utilisant la méthode de détection de point final 

pour la ligne 516nm (C). 
 

Comme on peut l'apprécier à partir de la Figure 13, le temps du Clean-2 a été fixé à 20s. 

Cependant, 30% de ce temps doit être ajouté afin d'être sûr que nous avons totalement 

nettoyé tous les polymères C. Ainsi, le temps optimisé pour le Clean-2 était de 26s, en 

comptant le 30% supplémentaires. Par conséquent, notre WAC optimisé était 12_26s, où 12s 

étaient nécessaires pour Clean-1 et 26s pour le Clean-2. En effet, pendant le Clean-1 (SF6/O2) 

en même temps que les dépôts « vitreux » sont nettoyés par SF6, le O2 nettoie aussi les 

polymères carbonés. Puisque nous avons réduit le temps pour le Clean-1, le Clean-2 ne 

pouvait pas être autant réduit car de polymères C (CFx) ont été trouvés dans les analyses. 

L'étape 3 était liée à la vérification du WAC, qu’a été validée avec succès. Cependant, même 

si le WAC était déjà optimisé pour le procédé eSTM, où peu de dépôts « vitreux » étaient 

impliqués dans la gravure de procédé, nous voulions voir comment la présence du fluor a été 

affectée par cette réduction de temps pour le Clean-1 (de 30s à 12s). Pour cela, nous avons 

utilisé la technique de l'échantillon flottant. Avec ce technique on a pu caractériser les dépôts 

sur la chambre lors du nouveau WAC (12_26s) et le comparer au précédent (30_35s), comme 

expliqué dans le protocole (étape 4). De plus, puisque nous voulions réduire autant que 

possible le fluor, nous avons également caractérisé le nouveau WAC en augmentant sa 

pression (de 60mTorr à 85mTorr). En sachant que le nombre de molécules est proportionnel 

à la pression du système, et le libre parcours moyen (λ) dépend du nombre de molécules; sous 

une pression trop élevée, le λ est trop court et donc les électrons et les ions ne peuvent pas 

atteindre la vitesse nécessaire pour les collisions ionisantes, donc il y en a moins d'attaque 

Y2O3 et donc moins de formations YFx. 

A partir de ces résultats, nous avons vérifié que la réduction du fluor était liée à la réduction 

du temps (nouveau WAC) et à l'augmentation de la pression (nouvelle WAC haute pression). 

Pour le standard et le nouveau WAC, la pression utilisée était de 60mTorr alors que pour le 

nouveau WAC (à haute pression), nous avons utilisé 85mTorr, ce qui est le maximum permis 
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par LAM Research. En raison des résultats obtenus avec les analyses d'échantillons flottants, 

le WAC optimal qui est aujourd'hui en production est le nouveau WAC à haute pression 

(85mTorr). Ainsi, le temps pour le Clean-1 est 12s à 85mTorr et le Clean-2 est 26s. 
 
 

CONCLUSIONS 
 

L'objectif de cette étude était d'analyser les interactions entre les parois du réacteur et le 

plasma. En utilisant la méthode de l'échantillon flottant, nous avons compris que pendant la 

gravure de la tranché eSTM, plus de polymères CFx sont déposés sur la chambre que SiOxBry 

ou SiOxFy comme prévu. En optimisant le WAC, nous avons réduit les formations YFx, mais 

il faut néanmoins envisager de nouvelles stratégies pour éviter complètement ces formations, 

car tant que nous continuerons à utiliser une chimie à base de fluor, ces formations seront 

toujours présentes sur les parois du réacteur. Pour le moment, d'autres analyses doivent être 

réalisées chez ST Microelectronics Rousset afin de voir l'importance de la présence des 

revêtements à base de fluor sur les parois du réacteur pour la reproductibilité du procédé afin 

de voir si d'autres stratégies plus appropriées pourraient être utilisées. Un exemple pourrait 

être la stratégie de « conditionnement », résumée à la Figure 14. 
 

 

Figure 14.  Principe de la stratégie de revêtement en utilisant un film riche en carbone [66]. 
 

Cette stratégie, employée par Cunge et al [156] propose un nouveau conditionnement des 

parois de la chambre pour améliorer la stabilité des processus plasmatiques en se 

débarrassant des particules d'AlFx. Avec cette stratégie, obtenue en revêtant les parois du 

réacteur entre les plaquettes avec un polymère riche en carbone, le procédé de gravure 

commencerait toujours dans les mêmes conditions. 

5. STI: Contrôle de Procédé de Gravure Plasma par 

rapport aux Dimensions Critiques 
 
 

Comme les dimensions critiques continuent à diminuer, le contrôle du processus est devenu 

essentiel pour contrôler le profil et l'uniformité du CD [294]. Afin de réduire la variabilité du 
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procédé lié au CD des STI après gravure, des solutions de contrôle de processus doivent être 

réalisées. 
 
 

LE PROCÉDÉ STI 
 

Le procédé STI est considéré comme une étape de fabrication très critique parce qu’elle limite 

toutes les couches de motifs ultérieures en définissant les régions actives pour les structures 

électriques [295]. Il s'agit de la technique d’isolation utilisé sur les nœuds de processus CMOS 

sous-0,5μm parce qu'il évite complètement la forme du bec d'oiseau caractéristique du 

LOCOS, qui était traditionnellement la technique d'isolement [296]. Le STI est créé au début 

du procédé de fabrication du dispositif semi-conducteur, avant la formation des transistors. 

De plus, lorsqu'elle est utilisée comme base de processus complexes tel que l'eSTM, les CD 

doivent être vraiment bien définies pour éviter des problèmes électriques.  

La STI est effectué au début du flux de procédés. Afin de comprendre l'étude réalisée pour 

contrôler le CD de la STI, quelques concepts expérimentaux doivent être introduits avant. 

Ainsi, le « stack » nécessaire et les spécifications de gravure liées à ce procédé sont présentées 

dans cette partie. 
 

Caractéristiques 

Le masque requis pour atteindre la tranchée STI est composé de NFARL, AHM, TEOS et 

nitrure. Les étapes les plus importantes nécessaires à la définition du processus de la 

tranchée STI sont montrées dans la Figure 15. 
 

 

Figure 15. Représentation schématique des principales étapes de gravure requises pour atteindre la 

tranchée STI: Empilement initial (a), gravure BARC et NFARL (b), gravure AHM (c), recouvrement 

AHM (d), TEOS/Nitrure/Découpe et décapage AHM ), la tranchée TCR et STI (f). 
 

Dans la Figure 15, le premier CD (a) est représentatif du CD après l'étape de la 

photolithographie, qui est notre CD d'entrée. Le dernier CD (f), est le CD qui sera le cas 

d'étude au cours de cette thèse, qui est le CD de la tranchée STI après le procédé de gravure. 

Cet énorme empilement ainsi que la complexité du procédé de gravure plasma sont 

directement responsables des dérives de CD. La recette compte avec 32 étapes, y compris les 

étapes de stabilisation et de transitions. Cependant, elle pourrait être résumée en 8 étapes 
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principales, où 5 de ces étapes nécessitent des systèmes EPD (EndPoint) ou detection de fin 

d’attaque, et donc aussi un « overetch ». 
 
 

CARACTERISATION 
 

La caractérisation de procédé ici, est liée à l'étude de tous les paramètres qui peuvent être la 

source de variations du CD, afin de comprendre leurs influences sur le CD final du STI. 

L'objectif est de proposer une solution pour maintenir le CD final sous contrôle, proche de la 

valeur cible (target), après le procédé de gravure plasma. 
 

Variabilité du procédé 

En plus de la complexité du procédé de gravure plasma, il existe deux principaux facteurs 

externes qui ont une incidence sur le CD du STI. La variation d'épaisseur de chaque couche 

dans les étapes de dépôt et le CD post-photolithographie, qui est le point de départ du CD 

après gravure. Cependant, après avoir analysé l'influence de ces étapes, nous avons vu que 

la variation induite par les étapes précédentes, en particulier les variations d'épaisseur, 

pouvaient être améliorées au cours du procédé de gravure en utilisant les systèmes EPD. 

Respect du CD post-photolithographie, il est déjà corrigé en raison de la mise en œuvre de la 

stratégie de « re-working » de l’atelier de photolithographie, qui retravaillent les plaquettes 

avec des écarts importants de CD par rapport aux cibles souhaitées. Par conséquent, les 

variations provenant de l'épaisseur de dépôt des étapes précédentes ou de la 

photolithographie étaient négligeables. 

Afin d'étudier la source de variation dans le procédé de gravure, nous avons identifié ces 

facteurs comme des effets provenant de la chambre de gravure, lot à lot, wafer-wafer, intra-

wafer, type de produit, fournisseur de silicium, et la source inexplicable. L'analyse de 

variance a été réalisée en utilisant le logiciel KLA-Tencor qui permet de sélectionner les 

facteurs qui nous intéressent. Les 48% de la variation du CD peuvent être améliorés en 

utilisant des contrôleurs R2R. L'effet le plus important qui influence la variation du CD de 

la STI est l'effet de la chambre de gravure (43%). Cet effet de chambre (43%) ainsi que l'effet 

lot-à-lot (5%) peuvent être corrigés en développant un FeedBack R2R. Il y a aussi un effet 

inexpliqué, qui semble être le plus critique. Nous avons seulement pu optimiser la variabilité 

due à la chambre et les effets de lot à lot (48%). Cependant, nous avons pensé que peut-être 

en améliorant le système de mesure, nous pourrions réduire cet effet. Pour cela, nous avons 

développé un modèle de scatterométrie. Dans le même temps, nous avons commencé à 

développer la stratégie de contrôle du CD; le FB R2R qui est le principal objectif de cette 

recherche afin de réduire la part de la variabilité liée à la chambre et l'effet lot-à-lot. 
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OPTIMISATION 
 

Une fois que la variabilité de gravure a été analysée, la stratégie employée pour optimiser le 

contrôle de procédé de la gravure du STI en améliorant les dérives de CD a été basée sur une 

boucle de control (FB R2R). 

Le contrôleur R2R a été développé pour maintenir le CD du STI sous contrôle en réduisant 

les effets les plus importants; les variations dues a la chambre de gravure et l’effet du lot. 

Pour développer le modèle R2R basé sur le schéma de contrôle EWMA, le temps d'exposition 

d'AHM (chimie O2) pendant l'étape de surgravure (overetch) d’AHM a été sélectionnée comme 

paramètre de contrôle. Cette étape était habituellement effectuée en temps fixe. En faisant 

varier la durée du temps, on obtient un CD plus grand ou plus petit par rapport à ce qui à 

été prédit. 

L'élément final du contrôleur R2R est la loi de contrôle qui spécifie comment la recette du 

procédé doit être mise à jour. Le régulateur FB R2R que nous avons développé est illustré à 

la Figure 16. 
 
 

 

Figure 16. Diagramme schématique du contrôleur R2R développé pour le CD de la STI. 
 

 

Fonctionnement R2R 

Le modèle prend automatiquement en compte les changements dans la spécification de target 

du CD. Le CD final est réintroduit dans le modèle de contrôle et utilisé pour mettre à jour les 

paramètres du modèle, qui dans cette recherche est le overetch d'AHM (AHM_OE). Le temps 

de gravure standard pendant le overetch (a) est de 15,5 s. Tous les paramètres du modèle sont 

définis dans le Tableau 4. 
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Tableau 4. Les définitions des paramètres du modèle. 

Notation Definition 

 CD target 

𝑌𝑡 Observed CD at time t  

𝑌�̂� Predicted CD based on R2R controller at time t, for 𝑡 ≥ 2 

𝑎 AHM etching time during the overetch (constant=15.5s) 

𝑎�̂� Predicted time AHM OE at time t, where �̂�𝒕 = 𝒂 + �̂�𝒕−𝟏  (2) 

𝑏 Etch rate (constant per chamber) 

 Smoothing factor EWMA (0 <  ≤ 1) 

𝑆𝑡 Offset time, where 𝑺𝒕 =
𝒀𝒕−

𝒃
  (3) 

𝑆�̂� EWMA predicted Offset time, where 𝑺�̂� =  ∙ 𝑺𝒕 + (𝟏 − ) ∙ �̂�𝒕−𝟏  (4) for 𝑡 ≥ 2 
 

 

Le schéma de lissage commence par le réglage 𝑆1̂ =  ∙ 𝑆1 =   
𝑌1−

𝑏
 (il n'y a pas So). Par rapport 

à notre équation d’EWMA (4) �̂�𝑡 représente l'observation lissée, et 𝑆𝑡 représente le temps de 

décalage (3). Les indices se réfèrent à la période 1, 2, 3 ... n. 

La première prédiction peut être calculée pour �̂�𝑡  puisque nous commençons par 𝑡 ≥ 2 . 

L'équation de base pour prédire le CD, basée sur le contrôleur EWMA, peut s’écrire sous la 

forme: 

       𝑌�̂� = 𝑌𝑡 − 𝑏 ∙  �̂�𝑡−1      (5) 

En substituant �̂�𝑡−1 dans l'équation de base du CD prédit, L'équation de CD prédite serait 

comme suit: 

     𝑌�̂� = 𝑌𝑡 − 𝑏 ∙   ∙ ∑ (1 − )𝑗 ∙ 𝑆𝑡−1−𝑗  
𝑡−2
𝑗=0                     (5.a) 

En remplaçant 𝑆𝑡 =
𝑌𝑡−

𝑏
, (5.a), l'équation finale pour prédire le CD, peut s’écrire: 

    𝑌�̂� = 𝑌𝑡 −   ∙ ∑ (1 − )𝑗 ∙ (𝑌𝑡−1−𝑗 − ) 𝑡−2
𝑗=0              (5.b) 

 

En faisant varier le facteur de pondération, c'est-à-dire, , la procédure EWMA peut être 

sensible à une dérive faible ou progressive dans le procédé. Dans cette étude,  a été fixé à 

0.4, afin d'éviter les variations qui pourraient être induites par la variabilité de la métrologie. 

Cette valeur a été calculée expérimentalement. 
 

 

Validation du modèle 
 

Pour valider le modèle avant mise en production, certaines simulations ont été réalisées et 

évaluées. Les résultats relatifs à l'effet de chambre et à l'effet de lot sont indiqués 

respectivement dans la Figure 17 et la Figure 18. 
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Figure 17. Comparaison entre (a) les données observées et (b) le CD prédit en utilisant le contrôleur 

R2R proposé. Trois chambres sont indiquées en différentes couleurs tandis que les lignes en pointillé 

indiquent les cibles. 
 

En ce qui concerne ces résultats, le modèle a été validé puisque l'effet de chambre qui était 

celui que nous nous intéressions à corriger, s’est amélioré de 88% dur les 43% que cet effet 

induit à la variabilité totale. Ainsi, 38% de la variabilité totale a été corrigé. Dans cette Figure 

17, l'écart type entre les chambres passe de 0,79 (a) à 0,09 (b). 

 

Figure 18. Les variations de Lot à Lot dans les trois chambres sont observées en (a), (b) et (c), où la 

ligne bleu foncé indique les données observées et la ligne bleu clair représente la valeur prédite. 
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Cependant, même si avec le R2R nous avons pu corriger un pourcentage significatif de la 

variabilité, nous voulions aussi améliorer le système de métrologie car il pourrait permettre 

de continuer à réduire la variabilité due à une meilleure précision des mesures. Une fois que 

le modèle de scatterométrie a été complètement développé, nous avons fait quelques 

variations sur les paramètres plasma afin d'avoir différentes valeurs de CD pour tester la 

précision du modèle. Le modèle a pu être représentatif dans tous les cas et aujourd'hui, le 

modèle de scatterométrie est utilisé dans la salle blanche comme mesure représentative du 

CD et de la hauteur de la tranchée STI, non seulement après la gravure mais aussi après 

l'étape de la photolithographie. 
 
 

CONCLUSIONS 
 

Cette étude montre la caractérisation et l'optimisation du CD par rapport à la gravure de la 

tanche d’isolation (STI). Premièrement, la caractérisation des sources des variations a été 

étudiées. La variabilité de la gravure a également été analysée. Un contrôleur R2R a été 

développé pour maintenir le CD du STI contrôlé en réduisant les effets les plus importants; 

l’effet de chambre et l’effet du lot. Le modèle R2R a été validé avec des données historiques 

et le facteur de lissage  dans le modèle R2R est fixé à 0.4, expérimentalement. La variation 

due à l'effet de chambre est passée de 43% à 5% de la variation totale. L'objectif est de 

continuer à améliorer/réduire la variation avec le nouveau système de métrologie 

(scatterométrie). L'effet inexpliqué pourrait être réellement amélioré par ce système de 

métrologie plus précis pour mesurer les CD.  

6. Conclusions 
 
 

Cette thèse a été menée dans le cadre d'une collaboration entre industriels et universitaires. 

Ainsi, le travail présenté dans ce manuscrit est intimement lié au développement industriel 

d’une nouvelle technologie de STMicroelectronics Rousset; l'eSTM. Cette thèse visait à 

étudier et à optimiser une étape très spécifique: le traitement par gravure plasma de la 

tranchée pour des applications microélectroniques avancées.  

Les objectifs de ce travail peuvent être divisés en trois parties. Tout d'abord, l'étude de la 

tranchée eSTM en incluant la caractérisation et l’optimisation du procédé pour obtenir un 

modèle capable de prédire le CD de la tranchée eSTM par rapport aux résultats électriques. 

Deuxièmement, le développement de la méthode de l'échantillon flottant à 

STMicroelectronics Rousset qui nous a permis d'étudier le dépôt sur les parois du réacteur et 

la mise en œuvre de la nouvelle stratégie de nettoyage (WAC). Enfin, la caractérisation du 

procédé STI pour contrôler le CD en développant un modèle de control R2R. De plus, 

parallèlement aux travaux de cette thèse, un nouveau modèle de scatterométrie a également 

été développé. Ce modèle est utilisé pour mesurer le CD de la STI après les étapes de 

photolithographie et de gravure et permet d’avoir mesures plus représentatives.  
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TRAVAIL FUTUR 
 

Les études effectuées dans cette thèse sont loin d’être exhaustives encore. En effet, de 

nombreuses améliorations sont encore possibles: 

- Une meilleure caractérisation de la surface de la plaquette et des dépôts créés sur les parois 

du réacteur pourrait être réalisée avec des analyses in-situ. Puisque les expériences ont été 

réalisées dans le réacteur industriel de STMicroelectronics Rousset, nous n'avions pas cette 

option. Cependant, si une amélioration de l'équipement est possible en utilisant des 

équipements des caractérisation in-situ, on pourrait éviter l'influence de la contamination 

induite par l’exposition de l’échantillon à l’air. 

- Même si la stratégie de nettoyage (WAC) a été améliorée, elle pourrait être optimisée en 

évitant les gaz de nettoyage fluorés ou en utilisant une stratégie de conditionnement, comme 

expliqué dans la conclusion de cette étude. Pour cela, les gaz de ligne doivent être changés. 

Une étude portant sur l'influence de la contamination fluor sur le CD de l’eSTM devrait être 

réalisée afin de comprendre l'influence de cette contamination sur la variabilité du procédé.  

- Le modèle R2R a été validé pour réduire la variabilité de CD du STI par rapport à la cible 

(target). Cependant, une nouvelle analyse de la variance devrait être effectuée maintenant 

que les mesures de scatterométrie sont en place. En outre, des analyses FDC contribueraient 

à améliorer la variabilité due à l'équipement. 

- Le contrôleur R2R a été développé pour contrôler le CD du STI.Un contrôleur similaire 

pourrait être développé pour contrôler les variations de CD de la tranchée eSTM, une fois 

qu'elle sera en mode production. 

Bien que la technologie étudiée dans ce manuscrit (eSTM) ne soit pas encore une technologie 

en production chez STMicroelectronics Rousset, les résultats obtenus dans notre étude ont 

été transférés et utilisés pour une amélioration globale du procédé de fabrication afin de 

maximiser les performances du dispositif encore en développement.  
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Among other characteristics, the ideal memory should have low power consumption, fast 

read/write/erase and high density solution. Different types of memories have been 

developed to pursuit these specific properties. Example of this attempt is the eSTM 

(Embedded Select Trench Memory). The eSTM aims to have the advantages of 

consumption and isolation from the EEPROM, due to its select transistor, together with 

the advantage of the Flash by reducing its size at the expense of a slightly more complex 

manufacturing process but still compatible with a CMOS technology. This PhD work 

studies the characterization and optimization of the plasma etching processes for this 

new technology developed by STMicroelectronics, the eSTM. This work has been highly 

related to the characterization of the reactor walls, the plasma itself and the wafer 

surface. The main objectives of this thesis are to understand the fundamental 

mechanisms of the etching processes and to propose innovative solutions to reduce the 

variations of CD by reaching the good control of the process desired. This thesis would 

help for the enhancement and increase of our knowledge on the physical phenomena 

which happens during this process, especially the passivation. This would offer the 

possibility of optimize the etch process and get the best CD (Critical Dimension) in 

terms of electrical results. The emphasis, was put on the characterization to get the 

maximum knowledge about the interactions taking place during the process inside of 

the reactor walls, such as plasma-surface interactions and plasma-reactor wall 

interactions. In order to characterize those films (both passivation as coatings on the 

reactor walls) and their composition, different techniques are used. Since the 

interactions between the plasma and the walls of reactors are responsible for a lack of 

reproducibility of the etching processes, this study also aims at the understanding of the 

cleaning of the reactor walls. Notably, the problem of the Fluorine has been shown in 

the reactor that is used for this study. As a new technology still in development, the 

study of the plasma-reactor wall interactions was required in order to develop the 

optimal cleaning after the etching in an industrial reactor at STMicroelectronics. 

Furthermore, this thesis was also focused on the optimization of the process drifts at 

STI (Shallow Trench Isolation) level, since the reproducibility of production processes 

generates serious concerns in making the component of the chips. Therefore, corrective 

actions were developed to control the source of variations by creating a regulation loop 

able to correct the CD dispersion between lots (25wafers). Such kind of R2R would play 

a key role for controlling the CD of the STI (Shallow Trench Isolation). Additionally, this 

model could be applied for controlling the CD of the new eSTM product. 
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Parmi d’autres caractéristiques, la mémoire électronique idéale doit présenter une faible 

consommation d'énergie, haute densité et de la rapidité en lecture/écriture/effacement. 

Différents types de mémoires ont été ainsi développées. Un exemple en l’eSTM, de 

l’anglais Embedded Select Trench Memory. Ce travail de thèse étudie la caractérisation 

et l'optimisation des procédés de gravure plasma utilisés dans la fabrication de cette 

nouvelle technologie développée par STMicroelectronics Rousset, l'eSTM. Ce travail a 

été fortement lié à la caractérisation des parois du réacteur, le plasma lui-même et la 

surface de la plaquette de silicium. Lors de cette thèse, la caractérisation chimique des 

surfaces exposées aux plasmas a permis de caractériser et d'optimiser ce nouveau 

procédé de gravure. De plus, les interactions entre le plasma et les parois des réacteurs 

sont responsables de l’absence de reproductibilité des procédés de gravure. Cette étude 

vise également à comprendre les dépôts sur les parois du réacteur qui se produisent 

pendant la gravure de la tranchée de l’eSTM. L'étude de ces dépôts a été nécessaire afin 

de développer un protocole de nettoyage optimal au sein d’un réacteur industriel, à 

STMicroelectronics. L’un des paramètres les plus critiques dans le développement des 

nouveaux dispositifs et dans l’amélioration des performances sont les Dimensions 

Critiques (CD) des transistors qui jouent un rôle fondamental au niveau des résultats 

électriques.  La gravure plasma est contrôlée par la formation d'une couche de 

passivation se formant en surface des flancs du silicium. La maitrise de cette couche par 

les conditions du plasma (pression, puissance source débit de gaz...) a permis de 

développer un model innovant afin d'optimiser le CD de la tranchée. De plus, cette thèse 

a également porté sur l'étude des dérives des CD au niveau des STI (Shallow Trench 

Isolation). Des mesures correctives ont été développées afin de contrôler les sources de 

variations en créant une nouvelle stratégie de gravure pour corriger la dispersion des 

CD entre lots (25 plaquettes de silicium). Cette correction est possible par la mise en 

place base de boucles de régulations (R2R) permettant le contrôle de procédé de 

fabrication de la STI. Cette correction peut être aussi appliqué sur des tranchées type 

eSTM.  
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