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Peter Šramel: A Synthesis and Biological Screening of Predicted Inhibitors of 

Tyrosine Kinases e.g. KDR 

Université de Strasbourg, Ecole européene de Chimie, Polymères et Matériaux (ECPM), 

UMR CNRS 7509, Laboratoire SynCat , Strasbourg, France 

 

 

Protein kinases represent a group of enzymes responsible for phosphorylation – transfer 

of a phosphate group from adenosine triphosphate (ATP) to tyrosine or serine / threonine 

residues. Protein phosphorylation is one of the most important tools regulating a cell 

activity. A cell “signalization” through an endothelial receptor tyrosine kinase VEGFR2 

TK (KDR) is the important pathway influencing growth of a tumor. Small-molecule 

inhibitors of VEGFR2 TK (VEGFR2 TKIs) have become an important tool for the 

treatment of various types of cancer. 

This dissertation thesis resulted in a discovery of 16 biologically active N,5-diaryloxazol-

2-amines (IC50, VEGFR2 TK). Very good results were achieved especially with 

compounds 189, 191, 211, 214, 220, 221, 223 and 4 exhibiting the activity under 500 nM. 

Within the first project a theory of Regioisomeric bioisostery (RegBio) was proposed and 

its evaluation is currently in progress. The second project brought a discovery of new 

interaction region – Salt bridge containing pocket (SBCP) in a specific intermediate 

conformation of the VEGFR2 TK. The third project resulted in the synthesis of aldehyde 

precursor 269 which was subsequently used for the preparation of N-aryloxazole-2-

amine-based CLK1inhibitor 261. Within the last project, bioactivities of quinoides 270 – 

274 and VEGFR2 TKIs 275, 2, 191, 15 were studied on hepatocellular cancer (HCC) and 

its cancer stem cells (HCSCs). An aggressiveness factor (AF) characteristic was proposed 

to estimate a quality of novel drug candidates for their ability to eradicate CSCs sub 

population. 

 

 

Key words: tyrosine kinase inhibitors, VEGFR2 TK (KDR), bioisosterism, N-

aryloxazol-2-amines. 
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Peter Šramel: Synthèse et Screening Biologique dʼinhibiteurs de Tyrosine Kinase, 

KDR, conçus in silico 

Université de Strasbourg, Ecole européene de Chimie, Polymères et Matériaux (ECPM), 

UMR CNRS 7509, Laboratoire SynCat, France 

 

 

Les protéines kinases représentent le groupe d’enzymes qui servent d’intermédiaire pour 

la phosphorylation de protéines – le transfert d’un groupe phosphate de l’adénosine 

triphosphate (ATP) sur des chaînes latérales correspondantes de tyrosine, de serine ou de 

thréonine des acides aminées. La phosphorylation de protéines est un des outils les plus 

importants pour la régulation de l’activité cellulaire. La « signalisation » cellulaire par le 

récepteur de tyrosine kinase VEGFR2 (KDR) appartient aux réactions biochimiques clés 

influençant la croissance de tumeurs. L’inhibition thérapeutique de cette réaction à l’aide 

des composés de faible poids moléculaire spécifiques est devenue une stratégie utile dans 

le cadre des thérapies anticancéreuses. 

Ce travail a amené à la découverte de 16 substances biologiquement actives sur la base 

N,5-diaryloxazol-2-amine (IC50, VEGFR2 TK). D’excellents résultats ont été atteints 

notamment dans le cas des substances 189, 191, 211, 214, 220, 221, 223 et 4 qui montrent 

une activité inhibitrice inférieure à 500 nM. Dans le cadre du premier projet nous avons 

proposé la théorie de la Bioisostérie régioisomère (RegBio) dont l’évaluation est toujours 

en cours. Le résultat de notre deuxième projet a été la découverte d’une nouvelle zone 

d’interaction – SBCP (une poche contenant un pont salin) à l’intérieur de l’espace de 

liaison ATP du récepteur de tyrosine kinase VEGFR2. Dans le cadre du troisième projet 

nous avons proposé et réalisé la synthèse du précurseur aldéhyde 269 qui a été consommé 

durant la préparation d’un inhibiteur actif N-aryloxazol-2-amine de kinase CLK1 261. 

Dans le cadre du quatrième projet nous avons étudié l’impact des dérivées quinones 270 – 

274 et des inhibiteurs VEGFR2 TK 275, 2, 191 et 15 sur le carcinome hépatocellulaire 

(HCC) et ses cellules souches (HCSCs). En se basant sur les résultats de notre recherche 

nous avons proposé le terme de facteur d’agressivité (AF) qui caractérise le pouvoir des 

inhibiteurs de tumeurs de diminuer la sous-population des cellules cancéreuses 

correspondantes.   

 

 

Mots clés: inhibiteurs de tyrosine kinase, VEGFR2 (KDR), bioisostérisme, N-

aryloxazol-2-amines. 
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Medicinal chemistry 

Aβ (Abeta) Amyloid beta 

ADME 

Absorption, distribution, metabolism and 

excretion – describes the disposition and 

fate of a pharmaceutical compound within a 

living organism 

ALK 
Anaplastic lymphoma receptor tyrosine 

kinase 

ALL Acute lymphoid leukemia 

AML Acute myeloid leukemia 

α2AR (alpha2AR) α2 adrenoreceptor / alpha 2 adrenoreceptor 

ATP Adenosine triphosphate 

BA (%) 

Bioavailability – a subcategory of 

absorption and the fraction of administered 

dose of unchanged drug that reaches the 

systemic circulation 

CAM 
Chick chorioallantoic membrane assay – a 

model for studying neovascularization 

CDK Cyclin-dependent kinase  

CLK1 Dual specificity protein kinase CLK1 

CLL Chronic lymphocytic leukemia 

Cmax (ng / ml) 

Maximum serum concentration of a drug 

achieved in a specific compartment or test 

area of the body after the drug has been 

administrated 

CMGC 
A specific group of kinomically related 

kinases CDK, MAP, GSK and CLK 

CML Chronic myeloid leukemia 

CNS Central nervous system 

COX-1 / 2 Cyclooxygenase-1 / 2 

CYP19 Aromatase / Estrogen synthase 



Abbreviations 

DAPT 
Inhibitor of Notch pathway (commercially 

available CSC inhibitor) 

DDR Discoidin domain receptor 

DGAT Diglyceride acetyltransferase 

DLBCL Diffused large B-cell lymphoma 

DRD1-3 Dopamine receptor D1-3 

dTMP Deoxythymidine monophosphate 

dUMP Deoxyuridine monophosphate 

ED50 (e.g., mg / kg, mmol / kg or mg / l, 

mmol / l when a tissue is perfused) 

Half maximal effective dose – the dose of a 

drug that produces a specified in vivo 

response in 50 % of a test population  

EGFR Epidermal growth factor receptor 

EPHA Ephrin type-A receptor 

EPHB Ephrin type-B receptor 

FDA (US FDA) US Food and drug administration agency 

FGFR Fibroblast growth factor receptor 

FLT3 Fms-like tyrosine kinase 3 

G + Gram-positive organism 

G- Gram-negative organism 

HCC Hepatocellular carcinoma 

HCSC Hepatocellular carcinoma stem cells 

Hep3B Liver cancer cell line (epithelial) 

Hin Haemophilus influenzae 

HTS 

High-throughput screening – a method for 

scientific (chemical, genetic, pharmaco- 

logical…) experimentation used in drug 

discovery 

Huh7 Liver cancer cell line (epithelial) 



Abbreviations 

 

IC50 (M) 

Half maximal inhibitory concentration – 

the concentration of an agonist drug 

required for 50 % inhibition of particular 

biological target 

IGFR Insulin growth factor receptor 

IMPDH  
Inosine monophosphate dehydrogenase 

(IMP dehydrogenase) 

INSR Insulin receptor 

IP International patent 

I1R I1 imidazoline receptor 

Kd (M) 

Dissociation constant defining affinity 

between a drug and a protein, 

corresponding to the concentration of a 

drug at which the binding site of a protein 

is half-occupied 

Ki (M) 

Equilibrium dissociation constant for ligand 

receptor interactions determined in 

inhibition studies 

5-LOX 5-Lipoxygenase 

LTK Leukocyte tyrosine kinase 

Mahlavu Liver cancer cell line (mesenchymal) 

MED (e.g., mg / kg, mmol / kg or mg / l, 

mmol / l when a tissue is perfused) 

Minimum effective dose – the lowest dose 

level of a pharmaceutical product that 

provides a clinically significant response in 

average efficiency 

MAP kinase Mitogen-activated protein kinase 

MIC 

Minimum inhibitory concentration – the 

lowest concentration of a tested compound 

that prevents visible growth of a bacteria 

nAChR Nicotinic acetylcholine receptor 

NS3 (HCV) Nonstructural protein 3 

NSAI Nonstereoidal aromatase inhibitor 



Abbreviations 

NSCLC Non-small lung cancer carcinoma 

NTRK Neurotrophic tyrosine kinase 

PDGFR Platelet-derived growth factor receptor 

PET  Positron emission tomography  

PGI2 Prostacyclin (prostaglandin I2) 

PPAR-γ 
Peroxisome prolifelator-activated receptor 

gamma 

PTP1B Protein-tyrosine phosphatase 1B 

RCC Renal cell carcinoma 

ROR 
Receptor tyrosine kinase-like orphan 

receptor 

RTK Receptor tyrosine kinase 

SAR 

Structure-activity relationship – the 

relationship between the molecule and its 

biological activity 

Sau Staphylococcus aureus 

Spn Streptococcus pneumoniae 

SRC 
Binding domain for proto-oncogene 

tyrosine protein kinase 

TK Tyrosine kinase 

TKI Tyrosine kinase inhibitor 

Tmax (h) The time at which is Cmax observed 

TrpV1 

Transient receptor potential cation channel 

subfamily V member 1 (Capsaicin 

receptor)  

VEGF Vascular endothelial growth factor 

VEGFR2 TK (KDR) 
Vascular endothelial growth factor receptor 

2 (Kinase Inserted Domain Receptor) 

  



Abbreviations 

 

Organic synthesis 

Ar Argon atmosphere 

Bn (protecting group) Benzyl 

Boc (protecting group) tert-Butyloxycarbonyl 

Brine Saturated aq solution of NaCl 

CataCXium A Butyldi-1-adamantylphosphine 

DES Deep eutetic solvent 

DMF N,N-Dimethylformamide, (CH3)2NCHO 

DMSO Dimethyl sulfoxide, (CH3)2SO 

EA Ethyl acetate, CH3CO2CH2CH3 

EDC . HCl 
1-Ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride 

ESI Electrospray ionization 

FLC Flash liquid chromatography 

Hex Hexol (a mixture of hexanes) 

HOBt hydrate 1-Hydroxybenzotriazole hydrate 

HRMS High resolution mass spectrometry 

HV High vacuum (< 0.1 Torr) 

IR Spectroscopy Infrared spectroscopy 

LC-MS 
Liquid chromatography – mass 

spectrometry 

LiHDMS Lithium hexamethyldisilazide, LiN(SiMe3)2 

MIDA N-methyliminodiacetic acid 

MS Mass spectrometry 

MW Microwave irradiation 

NMP N-Methyl-2-pyrrolidone 

NMM N-Methylmorpholine 



Abbreviations 

NMO . H2O 4-Methylmorpholine N-oxide monohydrate 

NMR Nuclear magnetic resonance spectroscopy 

–OMs Mesylate / Methanesulfonate 

–ONs Nosylate / para-Nitrobenzenesulfonate 

–OTf Triflate / Trifluoromethanesulfonate 

–OTs Tosylate / para-Toluenesulfonate 

PEG-400 Polyethylene glycol 400 

PMB (protecting group) para-Methoxybenzyl 

RT Room temperature 

Rotavap, RVE Rotary vacuum evaporator 

SPhos 
2-Dicyclohexylphosphino-2ʼ,6ʼ-

dimethoxybiphenyl 

T3P Propylphosphonic anhydride 

TBAF 
Tetrabutylammonium fluoride, 

(CH3CH2CH2CH2)N
+
F

- 

TBS / TBDMS (protecting group) tert-Butyldimethylsilyl 

TFA Trifluoroacetic acid, CF3CO2H 

THF Tetrahydrofuran 

TLC Thin layer chromatography 

TMS (protecting group) Trimethylsilyl 

TosMIC 
Toluenesulfonylmethyl isocyanide, 

CH3C6H4SO2CH2NC 

Tr (protecting group) Trityl / Triphenylmethyl 

Ts (protecting group) Tosyl / para-Toluenesulfonyl 

US Ultrasound irradiation 

XPhos 
2-Dicyclohexylphosphino-2ʼ,4ʼ,6ʼ-

triisopropylbiphenyl 
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1. Introduction 

 

Cancer is the name given to a collection of related diseases. In all types of cancer, some 

of the body’s cells begin to divide without stopping and spread into surrounding tissues. 

Cancer can start almost anywhere in the human body, which is made up of trillions of 

cells.  

Normally, human cells grow and divide to form new cells as body needs them. When 

cells grow old or become damaged, they die, and new cells take their place. However, 

when cancer develops, this orderly process breaks down. As cells become more and more 

abnormal, old and damaged survive and new cells form when they are not needed. These 

extra cells can divide without stopping and may form growths called tumors.  

Cancerous tumors are malignant, which means they can spread into or invade nearby 

tissues. In addition, as these tumors grow, some cancer cells can break off and travel to 

distant places in the body through the blood or the lymph system and form new tumors far 

from its place of origin.  

Angiogenesis is the formation of new blood vessels. This process involves the migration, 

growth and differentiation of endothelial cells, which line the inside of the vascular wall. 

Angiogenesis plays a critical role in the growth and spread of cancer. A blood supply is 

necessary for tumors to grow beyond a few millimeters in size Tumors can induce a 

formation of this supplementary vascular system by giving off chemical signals that 

stimulate angiogenic growth. Tumors can also stimulate nearby normal cells to produce 

angiogenesis signaling molecules. The resulting new blood vessels supply growing 

tumors with oxygen and nutrients, allowing the cancer cells to invade nearby tissue, to 

move throughout the body and to form new colonies of cancer cells, called metastases.
1
 

As it was mentioned above, the process of angiogenesis is controlled by chemical signals 

in the body. Vascular endothelial growth factors (VEGFs) and their endothelial tyrosine 

kinase receptors (VEGFRs) are central regulators of angiogenesis. VEGF signaling 

through VEGFR2 TK (KDR) is the major angiogenic pathway which blockage using 

small-molecule inhibitors represents perspective anti-angiogenic strategy for cancer 

therapy.
2
  

                                                 
1
 www.cancer.gov (accessed October 4

th
, 2017). 

2
 Lohela, M.; Bry, M.; Tammela, T.; Alitalo, K. Curr. Opin. Cell. Bio. 2009, 21, 154 – 165. 
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Many of the small-molecule inhibitors of VEGFR2 TK (KDR) are competitive for ATP 

and exert their inhibitory activity by binding to the ATP pocket of the highly conserved 

kinase domain. In general, the ATP binding site of protein kinases lies at the cleft 

between the amino-terminal and carboxy-terminal lobes, which are joined by key residues 

capable of forming hydrogen bonds with ATP. As a result of the structural conservation 

of the ATP-binding pockets in protein kinases, small-molecule agents often display high 

affinity for additional members of the receptor tyrosine kinase (RTK) family. The 

multikinase inhibitor profile of some small-molecule inhibitors offers the possibility of 

disrupting several independent biological pathways that are vital for tumor proliferation 

and metastasis.
3
 

The introduction of small-molecule VEGFR2 TK inhibitors has added another dimension 

in the treatment of several oncology indications as they offer a unique mechanism. The 

VEGFR2 TK inhibitors have demonstrated superior benefits in treating certain types of 

tumors, such as renal cell carcinoma and hepatocellular carcinoma, as a monotherapy 

option. Many of the approved VEGFR2 TK inhibitors have also shown synergy when 

used in combination with other anticancer agents.
4
 

 

The optimization of ligands in a medicinal chemistry development into potential small-

molecule therapeutics requires a number of key design principles. Through consideration 

of the synthetic possibilities in a compound with a desired physiological profile, it is 

possible for a medicinal chemistry project team to identify potential replacements that 

maintain or modulate certain desirable or undesirable properties. Bioisosterism is the 

concept of certain similarity between functional groups or scaffolds in molecules in terms 

of their biological interactions. Reasonable replacement of molecular groups is defined as 

bioisosteric replacement. A subset of bioisosteric replacement is referred to as scaffold 

hopping, where the core of a small-molecule is replaced. The core may be of direct 

functional importance in interacting with the protein target or it may provide the 

necessary scaffolding that allows substitution with functional groups in the appropriate 

geometric configuration.
5
 

 

                                                 
3
 Ivy, S. P.; Wick, J. Y.; Kaufman, B. M. Nat. Rev. Clin. Oncol. 2009, 6, 569 – 579. 

4
 Sharma, K.; Suresh, P. S.; Mullangi, R.; Srinivas, N. R. Biomed. Chromatogr. 2015, 29, 803 – 834. 

5
 Brown, N. Mol. Inf. 2014, 33, 458 – 462. 
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In 2005 Harris et al. (GlaxoSmithKline) published a scientific article where a series of 

N,5-diaryloxazol-2-amine (1) derivatives was identified as ATP-competitive inhibitors of 

VEGFR2 TK. The structure-activity relationship (SAR) study of the new N,5-

diaryloxazol-2-amine scaffold was described. Optimization of the aryl rings led to the 

discovery of potent inhibitors which exhibited very good biological activities at the both 

enzymatic and cellular levels. Especially, a compound 2 (AAZ) showed also excellent 

solubility and good oral pharmacokinetics when dosed as its bis-mesylate salt. Because of 

these beneficial properties, the compound 2 (AAZ) was selected as a promising drug 

candidate.
6
 (Figure 1) 

 

 

Figure 1. Chemical structures and determined biological activities of N,5-diaryloxazol-2-amine (1) and the 

drug candidate 2 (AAZ).  

 

This dissertation thesis is primary devoted to the development of novel, in silico predicted 

AAZ-based inhibitors of VEGFR2 TK and the determination of their activity by in vitro 

enzymatic assays. Our goal is to broaden the knowledge about these compounds from 

chemical and also biological point of view and effectively apply it in the medicinal 

chemistry praxis. The utilization of small-molecule inhibitors may serve as a valuable 

tool for better understanding the molecular mechanisms of splicing and it may also lead to 

the discovery of a novel class of therapeutics. 

 

Within the first main project – Regioisomeric bioisostery (RegBio) we aimed to 

synthesize and determine a biological activity of the predicted series of N,5-diaryloxazol-

2-amines, e. g. 2 (AAZ) (AAZ-like compounds) and their regioisomeric N,4-diaryloxazol-

                                                 
6
 Harris, P. A.; Cheung, M.; Hunter III, R. N.; Brown, M. L.; Veal, J. M.; Nolte, R. T.; Wang, L.; Liu, W.; 

Crosby, R. M.; Johnson, J. H.; Epperly, A. H.; Kumar, R.; Luttrell, D. K.; Stafford, J. A. J. Med. Chem. 

2005, 48, 1610 – 1619. 
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2-amine analogues, e. g. 3 (AAZ-regio) (AAZ-regio-like compounds). These 

regioisomers are expected to have a similar binding position in the ATP-binding pocket 

of VEGFR2 TK possibly resulting in the similar inhibitory activities known for the AAZ-

like compounds. For the proposed hypothesis we introduced the name Regioisomeric 

Bioisostery (RegBio). Based on obtained activity values (IC50, VEGFR2 TK) of the 

predicted compounds and subsequent comparative study, we would like to evaluate our 

theory. (Figure 2) 

 

 

Figure 2. Regioisomeric Bioisostery (RegBio) – the suitable regioisomeric change in 2 (AAZ) followed by 

the induced conformational change leads to the bioisosteric candidate 3 (AAZ-regio).  

 

Within the second main project – Salt bridge containing pocket (SBCP) we aimed to 

synthesize and determine a biological activity of the predicted series of specifically 

substituted N,5-diaryloxazol-2-amines, e. g. 4. Based on obtained activity values (IC50, 

VEGFR2 TK), we would like to evaluate our predictions concerning additional 

interactions inside the ATP-binding pocket of VEGFR2 TK. We are interested especially 

in the interactions within a novel binding region named Salt bridge containing pocket 

(SBCP), which was recently discovered in a unique DFG-IN / OUT conformation of 

VEGFR2 TK.  No discussion about the possible interactions within this pocket and their 

influence on the activity of potential inhibitors was published in the literature. (Figure 3) 
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Figure 3. Interaction analysis, predicted docking score (in silico) and published biological activity (if 

available) of 2 (AAZ) and newly designed 4 in the VEGFR2 TK ATP-binding site with the highlighted 

SBCP region. 

 

Within the third and fourth project, a broader exploitation of the influence of N,5-

diaryloxazol-2-amines on different biological targets (kinase CLK1, cancer cells, etc.) 

was aimed to be carried out. Results of these projects were succesfuly published in the 

scientific literature. The complete manuscripts are attached in the corresponding chapter 

of this dissertation thesis. (Chapter 15) 

 

 





 

 

 

 

 

 

 

 

 

 

 

Chapter 2. Receptor tyrosine kinases (RTKs) and 

their inhibition 

 





Receptor tyrosine kinases (RTKs) and their inhibition 

39 

2. Receptor tyrosine kinases (RTKs) and their inhibition 

 

The concept of “oncogenic addiction” established by Weinstein described that tumor cells 

may exhibit addiction on an activated oncogenic signaling pathway to sustain their survival 

and proliferation. Several oncoproteins, including tyrosine kinases, are known to be 

essential for the oncogenic process. 

Protein kinases are enzymes that are responsible for phosphorylation and transfer of a 

phosphate group from adenosine triphosphate (ATP) to tyrosine, serine or threonine 

residues. Protein phosphorylation is one of the most important tools regulating cell 

activities. Some oncoproteins need phosphorylation for regulation and activation.
7,8

 

Among different protein kinases, RTKs have emerged as key pharmacological targets in 

oncology. Phosphorylation of other protein kinases, as well as intracellular intermediates 

by these RTKs is critical for signal transduction, regulation of cellular activity and 

function. Among 58 known RTKs, 30 of them have been shown to be necessary for 

oncogenesis in various tumors. 

Similar to transmembrane proteins, RTKʼs structure consists of three different parts: 

extracellular, transmembrane and cytoplasmic region. The extracellular part is 

preceded by a cleavable signal sequence and holds the binding sites that interact with 

ligands. The extracellular domain is also involved in the dimerization of RTKs, a process 

that is critical for the activation of intrinsic tyrosine kinase. The cytoplasmic region 

contains tyrosine residues that are phosphorylated upon ligand binding and activation, 

regulate catalytic function, and also serve as docking sites for SRC Homology 2 (SH 2) 

domain-containing proteins.
9
 

Deregulation of RTK activity is the major mechanism by which tumor cells escape from 

physiological constraints on survival and growth. Aberrant RTK activation due to receptor 

over-expression, chromosomal translocation, gene amplification, mutations, and impaired 

receptor downregulation contribute to the development of various forms of cancer in 

human. Some examples of RTKs that are under investigation are listed in the table 

below.
8,10,11

 (Table 1) 

 

                                                 
7
 Weinstein, I. B. Carcinogenesis 2000, 21, 857 – 864. 

8
 Tsai, C. J.; Nussinov, R. Semin. Cancer. Biol. 2013, 23, 235 – 242. 

9
 Hojjat-Farsangi, M. Int. J. Mol. Sci. 2014, 15, 13768 – 13801. 

10
 Haglund, K.; Rusten, T. E.; Stenmark, H. Crit. Rev. Oncol. 2007, 13, 39 – 74. 

11
 Abella, J. V.; Park, M. Am. J. Physiol. Endocrinol. Metab. 2009, 296, 973 – 984. 
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Table 1. Oncogenic receptor tyrosine kinases identified in particular type of cancer.
9
  

Oncogenic RTK 

(Examples) 
Cancer (Examples) 

Approved Selective 

TKI for Treatment 

ALK NSCLC, colorectal cancer, breast cancer - 

AXL Lung, colon, breast, AML, CML - 

CCK4 (PTK7) SCLC, breast cancer, gastric and colon cancer, AML - 

DDR1 NSCLC, breast cancer, AML, ovarian cancer - 

DDR2 NSCLS, lung cancer, CML, breast cancer - 

EGFR1 (ERBB1 / HER1) Breast cancer, hepatocellular carcinoma + 

EGFR2 (ERBB2 / HER2) Breast cancer, gastric adenocarcinomas + 

EGFR (ERBB3 / HER3) 
Breast cancer, ovarian cancer, squamous cell lung 

cancer 
+ 

EGFR4 (ERBB4 / HER4) Breast cancer, melanoma + 

EPHA1 NSCLC, prostate cancer - 

EPHA2 

Hepatocellular carcinoma, colorectal cancer, breast 

cancer - 

EPHA3 Glioblastoma, lung cancer, melanoma, ALL - 

EPHA4 NSCLC, gastric cancer - 

EPHA5 Breast cancer, hepatocellular carcinoma, ALL - 

EPHB1 NSCLC, cervical cancer, ovarian cancer - 

EPHB2 Cervical cancer, breast cancer - 

EPHB3 NSCLC, breast cancer, colorectal cancer - 

EPHB4 Breast cancer, melanoma, glioma - 

FGFR1 Squamous cell lung cancer, breast cancer - 

FGFR2 

Squamous cell lung cancer, breast cancer, thyroid 

cancer - 

FGFR3 Bladder cancer, squamous cell carcinoma - 

FLT3 AML, acute promyelocytic leukemia - 

IGF1R CLL, breast cancer, pancreatic cancer - 

IGF2R Breast cancer, prostate cancer, colorectal carcinoma - 

INSR Colorectal cancer, prostate cancer - 

INSRR Neuroblastoma - 

KIT AML, melanoma, ovarian carcinoma - 
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LTK Gastric cancer, lymphomas and leukemias - 

MER Glioblastoma, hepatocellular carcinoma - 

MET Hepatocellular carcinoma, CLL, breast cancer - 

MUSK Ovarian cancer - 

NTRK1 (TrkA) Colorectal cancer, breast cancer - 

NTRK2 (TrkB) Neuroblastoma, astrocytoma - 

NTRK3 (TrkC) Neuroblastoma, breast cancer - 

PDGFRA Lung adenocarcinoma, gastrointestinal stromal tumors - 

PDGFRB Gastrointestinal stromal tumors, glioblastoma - 

RET NSCLC, medullary, thyroid carcinoma - 

RON (MST1R) Pancreatic cancer, breast cancer, NSCLC - 

ROR1 CLL, ALL, AML, MCL, HCL, melanoma - 

ROR2 Melanoma, hepatocellular carcinoma, colon cancer - 

ROS1 NSCLC, ovarian cancer - 

RYK CML, ovarian cancer - 

TIE Glioblastoma, breast tumor - 

TEK Bladder cancer, glioblastoma, AML - 

TYRO3 Colon cancer, melanoma, thyroid cancer, breast cancer - 

VEGFR1 (FLT1) Ovarian cancer, NSCLC, colorectal carcinoma + 

VEGFR2 (KDR) Renal cell carcinoma, breast cancer + 

VEGFR3 (FLT4) Thyroid carcinoma, breast cancer + 
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Identifying new oncogenic RTKs that are over-expressed by tumor cells and regulate the 

growth, survival, invasion and communication of these cells with their microenvironment 

have facilitated the development of new anti-cancer agents and have revolutionized 

treatment options. Therefore, due to the interesting biological features, RTKs are of the 

main focus for developing new tyrosine kinase inhibitors (TKIs) for therapeutic 

intervention in cancer patients.
9
 

TKIs, as well as other small inhibitors, are low molecular weight organic compounds. A 

cut off at 500 D (Daltons) is recommended and based on the observation that clinical 

attrition rates are significantly reduced when the molecular weight falls below 500 D. On 

the other hand, the recommended upper weight is about 900 D.
12,13 

Proper TKIs hits are usually selected by high-throughput screening (HTS), alternatively by 

in-silico screening methods that detect the most proper TKI candidates among a large 

library of compounds. Absorption, distribution, metabolism, excretion and toxicity 

(ADMET) of a drug candidate are very important elements that should be optimized for in 

vivo use. Based on these properties, there are several challenges in front of the selection of 

effective inhibitors. Membrane permeability, inactivation due to metabolism of the drug, 

decreasing due to non-specific interactions with other cellular components or rapid 

excretion, toxicity and lack of distribution into appropriate cellular compartment represent 

the major problems behind the drug discovery. 

For TKIs, there are two basic processes of inhibition RTKs signalization activity. TKIs can 

prevent and block vital pathways through targeting signaling molecules which interact with 

and activate RTKs. TKIs can also translocate through the cell membrane by interacting 

with the cytoplasmic domain of RTKs and inhibit the catalytic activity of the TK domain 

by interfering with the binding of ATP or its substrates.
14,15

 (Figure 4) 

 

                                                 
12

 Lipinsky, C. A. Drug Discov. Today 2004, 1, 337 – 341. 
13

 Veber, D. F.; Johnson, S. R.; Cheng, H. Y. ; Smith, B. R.; Ward, K. W.; Kopple, K. D. J. Med. Chem. 

2002, 45, 2615 – 2623. 
14

 Prueksaritanont, T.; Tang, C. AAPS J. 2012, 14, 410 – 419. 
15

 Johnson, L. N. Q. Rev. Biophys. 2009, 42, 1 – 40. 
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Figure 4. Targeting receptor tyrosine kinase by tyrosine kinase inhibitors (TKIs). Blocking small-molecule 

inhibitors of kinase domain prevents the phosphorylation of the receptor at TK domain and subsequently 

interferes with cell proliferation, differentiation, migration, and survival and induces cell apoptosis.
9
  

 

2.1. VEGFR2 TK (KDR) inhibitors 

 

Small-molecule multiple tyrosine kinase inhibitors belonging to the VEGFR2 TK 

(Vascular Endothelial Growth Factor Receptor 2), resp. KDR (Kinase Inserted Domain 

Receptor) class have become an important tool for the treatment of various types of cancer. 

Many of the compounds in this class have been approved for several cancer indications as 

a monotherapy option, while this includes renal cell carcinoma (RCC), gastrointestinal 

stromal tumor (GIST), hepatocellular carcinoma (HCC) and leukemia. In addition the 

usefulness of VEGFR2 TK inhibitors has also been confirmed in combination treatment 

with other well-established pharmacological treatments such as cytotoxic drugs and/or 

monoclonal antibodies.
4
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The overview of some current representatives of specific/selective RTK inhibitors and 

multi-target kinase inhibitors (TKIs) interacting with VEGFR2 TKs listed in the following 

tables. (Table 2 and 3) The corresponding chemical structures are shown on the figures 

below. (Figure 5 and 6) 

 

Table 2. Current specific/selective RTK inhibitors interacting with VEGFR2 TK.
9,16,17

 

Name 
Trade / Code 

name 

Mol. Mass 

(g/mol) 

*IC50 

(nM) 
Cancer (examples) 

Clinical phase / 

FDA approved 

cediranib 5 Recentin 450.50 ˂1.00 
NSCLC, kidney and 

colorectal cancer 
Phase 3 

lenvatinib 6 E7080 426.85 ˂4.00 Thyroid cancer Since 2016 

tivozanib 7 AV-951 454.86 6.50 RCC, breast cancer Phase 3 

vatalanib 8 
PTK787 / PTK 

/ ZK 
346.81 37.0 

NSCLC, DLBCL, 

colorectal 

adenocarcinoma 

Phase 2 

 

Table 3. Current multi-target tyrosine kinase inhibitors (TKIs) interacting with VEGFR2 TK.
9,16,17

 

Name 
Trade / Code 

name 

Mol. Mass 

(g/mol) 

*IC50 

(nM) 
Cancer (examples) 

Clinical phase / 

FDA approved 

axitinib 9 Inlyta 386.50 0.20 RCC Since 2012 

foretinib 10 
EXEL-2880 / 

XL-880 
632.65 0.90 

NSCLC, breast, 

gastric, papillary 

renal cancer 

Phase 2 

golvatinib 11 E7050 633.69 16.0 

Gastric cancer, HCC, 

glioblastoma, 

melanoma 

Phase 2 

MGCD-265 

12 
- 517.60 3.00 NSCLC Phase 2 

pazopanib 13 Votrient 437.51 30.0 
Advanced renal cell 

carcinoma 
Since 2009 

                                                 
16

 www.selleckchem.com (accessed February 12
th

, 2017). 
17

 www.fda.gov (accessed February 12
th

, 2017). 
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ponatinib 14 Iclusig 532.56 1.50 

CML, philadelphia 

positive chromosome 

ALL 

Since 2012 

sorafenib 15 Nexavar 464.80 90.0 
Hepatocellular 

carcinoma 
Since 2005 

sunitinib 16 Sutent 532.56 80.0 
Gastrointestinal 

stromal tumor 
Since 2006 

vandetanib 17 Caprelsa 475.35 40.0 
Metastatic medullary 

thyroid cancer 
Since 2011 

*Half maximal inhibitory concentration (IC50) represents the measure of the effectiveness of TKIs in 

inhibiting the VEGFR2 TK in biochemical assays. It is the concentration of an agonist drug required for 50 

% inhibition of a particular biological target.
18

 

 

 

Figure 5. Chemical structures of the current specific/selective RTK inhibitors interacting with VEGFR2 

TK.
9,16

 

                                                 
18

 Neubig, R. R.; Spedding, M.; Kenakin, T.; Christopoulos, A. Pharmacol. Rev. 2003, 55, 597 – 606. 
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Figure 6. Chemical structures of the current multi-target TKIs interacting with VEGFR2 TK.
9,16
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2.2. VEGFR2 TK activity assay 

 

The radioisotope filter binding assay is considered to be the standard for measuring the 

kinase activity of the VEGFR2 TK protein and it is the only format for the direct detection 

of a true enzymatic product. Analyzed compounds are incubated with a corresponding 

kinase, a substrate, cofactors, and a radioisotope-labelled ATP (
32

P-ɣ-ATP or 
33

P-ɣ-ATP). 

The reaction mixtures are then applied onto specific filter papers, which bind the 

radioisotope-labelled catalytic product, while the unreacted ATP is removed by washing of 

the papers.  

The IC50 profile of the experimental compounds developed and discussed within this 

dissertation thesis was determined by testing at 10 concentrations (1 x 10
-4

 M to 3 x 10
-9

 

M) for each compound. All positively tested compounds bound selectively to VEGFR2 TK 

by concentration dependent manner. The measurements were performed by Reaction 

Biology Corp.,USA.
19

 

 

                                                 
19

 Determination of enzymatic IC50 activity on VEGFR2 receptor has been performed by Reaction Biology 

Corp., Malvern, Pennsylvania, USA, www.reactionbiology.com/webapps/site/ (accessed May 13
th

, 2017). 
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3. Isosterism and bioisosterism in drug design 

 

One of the key challenges for the medicinal chemists is the modulation and mediation of 

the potency of small-molecule therapeutics against their biological target. In addition, it is 

essential to ensure that the molecule reaches its target effectively while also satisfies 

necessary safety requirements. One of the most significant approaches for targeted 

modulation of molecular properties is bioisosteric replacement. 

Because the bioisosteric replacement, resp. scaffold hopping represents the main idea of 

the Regioisomeric Bioisostery (RegBio) project, in the following chapter we will provide a 

theoretical background of this concept and an overview of possibly replacable groups 

together with corresponding practical examples.   

 

3.1. Isosterism 

 

The concept of isosterism was originally contemplated by James Moir in 1909. This 

notion was further refined by Irving Langmuir based on his experimental observations.
20

 

According to Langmuir’s studies from 1919 isosteres were defined as compounds or 

groups of atoms that have the same number and arrangement of electrons. Such 

compounds should show remarkable similarity in physical properties. Using the octet rule 

and measured properties of a number of substances, Langmuir was able to identify 

particular isosteric groupings. The relationship was demonstrated to be true between 

nitrogen and carbon monoxide in terms of physical properties and the same similarities 

were also observed between nitrous oxide (N2O) and carbon dioxide (CO2). The list of 

isosteres defined by Langmuir is given in the table below.
21

 (Table 4) 

 

Table 4. Groups of isosteres identified by Langmuir.21,22
  

Groups Isosteres 

1 H
-
, He, Li

+ 

2 O
2-

, F
-
, Ne, Na

+
, Mg

2+
, Al

3+ 

3 S
2-

, Cl
-
, Ar, K

+
, Ca

2+ 

                                                 
20

 Langmuir, I. J. Am. Chem. Soc. 1919, 41, 1543 – 1559. 
21

 Meanwell, N. A. J. Med. Chem. 2011, 54, 2529 – 2591. 
22

 Patani, G. A.; LaVoie, E. J.; Chem. Rev. 1996, 96, 3147 – 3176. 
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4 Cu
+
, Zn

2+ 

↓ 

8 N2, CO, NC
- 

9 CH4, NH4
+ 

10 CO2, N2O, N3
-
, (NCO)

- 

↓ 

20 MnO4
-
, CrO4

2- 

21 SeO4
2-

, AsO4
3- 

 

In 1925, H. G. Grimm extended the idea of isosterism, introduced by Langmuir, with 

Grimmʼs hydride displacement law. According to this law, the addition of hydrogen 

atom will result in a pseudoatom with similar properties to the atom of the next 

highest atomic number. E.g., –CH= is isosteric with –N= and –NH– is isosteric with –O– 

and so on.
23

  

In 1932, Friedrich Erlenmeyer further broadened previous studies and redefined isosteres 

as atoms, ions, and molecules in which the peripheral layers of electrons can be 

considered identical.
24

 In addition, Erlenmeyer also proposed the following three 

additions to the concept of isosteres: 

 

1. All elements within the same group in the periodic table are isosteres to each other. 

Therefore, silicon and carbon are isosteres as well as oxygen and sulfur. 

2. The term “pseudoatoms” is used to characterize atoms, resp. groups of atoms that 

appear superficially different but are actually very similar in physical properties. For 

example pseudohalogens represent the class, where –Cl is isosteric to –CN or –SCN 

and so on. 

3. Finally, “ring equivalences” are used to permit isosteric matches between different ring 

systems. For example the similar isosteric properties of benzene and thiophene, where 

–CH=CH– from benzene is replaced by –S– in thiophene. 

  

                                                 
23

 Grimm, H. G. Z. Electrochem 1925, 31, 474 – 480. 
24

 Erlenmeyer, H.; Berger, E.; Leo, M. Helv. Chim. Acta 1933, 16, 733 – 738.   



Isosterism and bioisosterism in drug design 

53 

3.2. Bioisosterism 

 

The widespread application of the concept of isosterism to modify biological activity has 

given rise bioisosterism. The emergence of bioisosteres as structurally distinct compounds 

similarly recognized by biological systems has its origin in a series of later Erlenmeyer’s 

studies. It was showed that particular antibodies were unable to discriminate between –O–, 

–NH– and –CH2– (19, 20, 21) or phenyl and thienyl rings (22, 23) in the context of 

artificial antigens derived by reacting of diazonium ions with proteins.
21,25

 (Scheme 1) 

 

 

Scheme 1. The example of the bioisosteric antigens 19 – 23 tested by Erlenmeyer.  

 

The term “bioisostere” was introduced by Harris Friedman in 1951. He defined 

bioisosteres as structural moieties which fit the broadest definition of isosteres and 

have the same type of biological activity. This definition really only considers the 

macromolecular recognition of bioisosteres, which is also highly important, but largely 

ignores the specifics of numerous other physicochemical properties that are optimized in a 

medicinal chemistry project.
25,26 

Friedman’s definition was followed in 1979 with the definition from Thornber which says 

that bioisosteres are groups or molecules which have chemical and physical 

                                                 
25

 Brown, N. Bioisosteres in Medicinal Chemistry 2012 Wiley-VCH, Weinheim. 
26

Friedman, H. L. Influence of Bioisosteric Replacements upon Biological Activity 1951 NAS-NRS, 

Washington. 
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similarities producing broadly similar biological properties.
27

 This notion suggests that 

bioisosteres are typically less than exact structural mimetics and are often more alike in 

biological rather than physical properties. Therefore, an effective bioisostere for one 

chemical application may not be usable in another setting, which necessitating the careful 

selection and tailoring of an isostere for a specific case. Consequently, the design of 

bioisosteres usually introduces structural changes that can be, depending on the context, 

favorable or unfavorable. These changes affecting mainly: 

 

1. Size: molecular weight 

2. Shape: bond angles and hybridization states 

3. Electronic distribution: polarizability, inductive effects, charge and dipoles 

4. Lipid solubility 

5. Water solubility 

6. pKa 

7. Chemical reactivity, including likelihood of metabolism 

8. Hydrogen bonding capacity 

 

In the medicinal chemistry practice, the development and application of bioisosteres have 

become a fundamental approach influencing mainly four key parameters: 

 

1. Structural: Structural moieties often have an important role in maintaining a preferred 

conformation of a molecule and influencing parameters such a molecular size or bond 

angles. This is relevant especially for moieties creating the basis of a particular 

chemical structure. Scaffold hopping can be seen as an example. 

2. Receptor interactions: When the moiety that is being replaced interacts directly with a 

receptor or enzyme, then the most relevant parameters will be size, shape, electronic 

properties, pKa, chemical reactivity and hydrogen bonding. 

3. Pharmacokinetics: Except of the direct biological response optimization, it is 

important also to optimize the absorption, transport, and excretion properties of the 

molecule. In these situations, the most important parameters to consider are 

lipophilicity, hydrophilicity, hydrogen bonding and pKa. 

                                                 
27

 Thornber, C. W. Chem. Soc. Rev. 1979, 8, 563 – 580. 
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4. Metabolism: A particular moiety can be involved in blocking or assisting with 

biological metabolism of the molecule. For example, –Cl and –CH3 groups on benzene 

are potentially interchangeable for some situations. However, toluene derivative could 

be metabolized to a benzoic acid with the result being a short half-life and/or 

unexpected side effects.
25

 

 

In 1991, Alfred Burger defined bioisosteres as compounds or groups that possess near-

equal molecular shapes and volumes, approximately the same distribution of 

electrons, and exhibiting similar physicochemical properties. Burger’s definition 

included all of the aforementioned extensions and resulted in the classification of 

bioisosteres into classical and nonclassical group.
28,29

 

Classical bioisosteres represent the concept of structurally simple, mono-, di-, and trivalent 

atoms or groups and ring equivalents. In contrast, nonclassical bioisosteres extend the 

concept to structural elements offering more subtle and sophisticated form of biochemical 

equivalence.
21  

  

                                                 
28

 Burger, A. Prog. Drug Res. 1991, 37, 288 – 362. 
29

 Burger, A. In Medicinal Chemistry 1970 Wiley-Interscience, New York. 
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3.2.1. Classical bioisosteres 

 

Monovalent atoms and groups replacements 

 

 

Figure 7. Bioisosterically replaceable monovalent atoms and groups. 

 

One of the most common monovalent isosteric replacements is the substitution of 

hydrogen with fluorine. These atoms have similar van der Waals radius but different 

electronic effects, whereas fluorine is the most electronegative element in the periodic 

table. Due to the high strength of the C-F bond, fluorine is often introduced to achieve 

metabolic stability. Moreover, due to its high electronegativity, fluorine can be introduced 

to reduce basicity of proximal amines or increase acidity of proximal acids and also to 

influence a conformation in molecules. One of the most well-known examples of effective 

replacement of hydrogen with fluorine is observed in the antineoplastic drug 5-fluorouracil 

(25). This compound is metabolized in vivo to 5-fluoro-2ʼ-deoxyuridine monophosphate 

(5-fluoro-dUMP) (26), which is the active drug that forms a stable ternary complex with 

enzyme thymidilate synthase (TS), the enzyme providing the DNA replication via the 

conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate 

(dTMP).
25,30

 (Scheme 2) 

 

 

Scheme 2. Bioisosteric H / F replacement in the prodrug – 5-fluorouracil (25). 
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 Longley, D. B.; Harkin, D. P.; Johnston, P. G. Nat. Rev. Cancer 2003, 5, 330 – 338. 
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Although the –CHF2 moiety has not been widely exploited by medicinal chemists, it is 

beginning to attract attention and several interesting applications have recently been 

examined.  In one of the most successful demonstrations of utility, the –CHF2 moiety was 

recognized as a potential isostere of a thiol in the context of inhibitors of NS3 (HCV) 

protease, an important antiviral target that cleaves the substrates at the carboxy terminal of 

cysteine. Difluoro-Abu analogue 29 of the hexapeptide NS3 inhibitor 27 proved to be 

equipotent and 20-fold more potent than simple Abu derivative 28. An X-ray cocrystal of a 

related inhibitor revealed the key ligand-protein interactions, with the –CHF2 moiety 

donating a H-bond to the carbonyl group of Lys136 and at the same time accepting a weak 

H-bond from the aromatic C4-hydrogen atom of Phe154.
31

 (Figure 8) 

 

 

Figure 8. Hexapeptide HCV NS3 inhibitor 27 and its analogues, Abu 28 and difluoro-Abu 29. 

 

Hydroxamic acid moiety represents an important pharmacophoric fragment, widely used in 

medicinal chemistry. However, hydroxamic acids can express toxicity based on a 

metabolic activation, which manifests either as Lossen rearrangement to the corresponding 

isocyanate or as hydrolytic degradation to release the carboxylic acid and hydroxylamine.
32

 

The potential of –CHF2 moiety to act as an isostere of the hydroxyl of hydroxamic acids 

has been evaluated in a series of dual inhibitors of cyclooxygenase-2 (COX-2) and 5-

lipoxygenase (5-LOX). Hydroxamic acids are well-established inhibitors of 5-LOX, 

binding to the active site iron, and substitution of the toluene ring of 30 with a cyclic 

hydroxamic acid affords the dual COX-2 / 5-LOX inhibitor 31. The –CHF2 analogue 32 

was explored as a non-hydroxamic acid isostere and appeared to be an effective mimetic, 

                                                 
31

 Narjes, F.; Koehler, K. F.; Koch, U.; Gerlach, B.; Colarusso, S.; Steinkühler, C.; Brunetti, M.; Altamura, 

S.; De Francesco, R.; Matassa, V. G. Bioorg. Med. Chem. Lett. 2002, 12, 701 – 704. 
32

 Filipo, M.; Charton, J.; Hocine, A.; Dassonneville, S.; Deprez, B.; Deprez-Poulain, R. J. Med. Chem. 2009, 

52, 6790 – 6802. 
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although the mechanism of action of this compound has not been fully clarified.
33

 (Figure 

9) 

 

 

Figure 9. Cyclooxygenase and lipoxygenase inhibition associated with a series of pyrazole-based inhibitors 

30, 31 and 32. 

 

Bivalent atoms and groups replacements 

 

 

Figure 10. Bioisosterically replaceable bivalent atoms and groups.   

 

A successful use of bivalent bioisosteres can be found in derivatives of the 

antihypertensive drug rilmenidine (33), where they were used as a way of finding similar 

compounds with reduced side effects. Rilmenidine (33) exerts its activity by binding to the 

I1 imidazoline receptors (I1Rs), but it also binds to the α2-adrenoreceptors (α2ARs), which 

are considered to be responsible for the side effects. As shown, several bivalent 

bioisosteres 34 – 40 of rilmenidine (33) were able to maintain I1Rs binding, while losing 

affinity to the α2ARs.
25,34

 (Figure 11) 
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 Chowdhury, M. A.; Abdellatif, K. R. A.; Dong, Y. ; Das, D.; Suresh, M. R.; Knaus, E. E. J. Med. Chem. 

2009, 52, 1525 – 1529. 
34

 Shann, S.; Bruban, V.; Pompermeyer, K.; Feldman, J.; Pfeiffer, J.; Renard, P.; Scalbert, E.; Bousquet, P.; 
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Compound R X *pKi  I1Rs (M) *pKi  α2ARs (M) 

33 H O 7.13±0.10 7.25±0.08 

34 H CH2 6.29±0.11 <5 

35 5-CH3 CH2 5.80±0.08 <5 

36 3-CH3 CH2 <5 <5 

37 4-CH3 CH2 6.19±0.10 <5 

38 cis/trans-4,5-diCH3 CH2 6.27±0.11 <5 

39 5-Et CH2 6.77±0.09 <5 

40 cis-4,5-(CH2)4 CH2 <5 <5 

Figure 11. Bivalent bioisosteric analogues of rilmenidine (33).  

*
Ki - equilibrium dissociation constant for ligand receptor interactions determined in inhibition studies. It has 

the dimension M (mol / l). The Ki for a given ligand is typically (but not necessarily) determined in a 

competitive radioligand binding study by measuring the inhibition of the binding of a reference radioligand 

by the competing ligand of interest under equilibrium conditions.
18

 Ki is the concentration of a competitive 

inhibitor that is required to decrease the maximal rate of an enzymatic reaction by half. 

pKi - The negative logarithm to base 10 of the equilibrium dissociation constant (Ki) in molar concentration 

units (M). The major benefit to using the pKi measures of pharmacological potency rather than the constant 

Ki is that pharmacological potency often ranges over many orders of magnitude (Ki values from 10
-10

 to > 10
-

3
 M), it is easier to present and discuss these differences in pKi form (i.e., values generally range from about 

10 to 3).
18 

 

Trivalent atoms and groups replacements 

 

 

Figure 12. Bioisosterically replaceable trivalent atoms and groups.  
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An application of trivalent bioisosterism can be found in the development of 

hypocholesterolemic agents, where two CH groups present in cholesterol (41) were 

replaced with two nitrogen atoms. This resulted in 20,25-diazacholesterol (42), which is 

potent inhibitor of cholesterol biosynthesis. An introduction of the nitrogen atom induced a 

loss of the stereogenic centre and improved the possibility of additional interactions in the 

enzymatic active site.
22,35

 (Figure 13) 

 

 

Figure 13. Cholesterol (41) and its bioisosteric analogue 20,25-diazacholesterol (42).  

*Minimum effective dose (MED) – the lowest dose level of a drug that providing a clinically significant 

response in average efficiency, which is statistically superior to the response provided by the placebo.
36

 

 

Tetravalent Atoms Replacements 

 

 

Figure 14. Bioisosterically replaceable tetravalent atoms and groups.  

 

A recent example of bioisosteric replacement of a carbon with silicon was reported by 

Warneck and colleagues, who synthesized the silicon derivative 44 of p38 MAP kinase 

inhibitor BIRB-796 (43), which is in clinical evaluation for several inflammatory diseases, 

such as rheumatoid arthritis, Crohnʼs disease and psoriasis. The silicon bioisostere 44 was 

found to be unusually less lipophilic than BIRB-796 (43), of comparable potency, and 

more metabolically stable in human liver microsomes.
25,37

 (Figure 15) 

                                                 
35
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36
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rd

 ed.) 2010 Informa Healthcare, London. 
37
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Figure 15. Example of carbon / silicon bioisosteric replacement. 

 

Ring replacements 

 

 

Figure 16. Bioisosterically replaceable atoms and groups in ring moieties.  

 

The substitution of phenyl ring with pyridine is widely used to improve metabolic stability 

or pKa value. One efficient example of this can be recently found in a group of HIV-1 

inhibitors 45, 46 which are currently in clinical development. Compound 45 was identified 

as a lead in the discovery of HIV-inhibiting drugs, due to its fast metabolism and low 

solubility; bioisosteres of phenyl ring were evaluated. This led to the identification of 

BMS-488043 (46) – a potent HIV-inhibitor with better pharmacokinetic profile.
25, 38

 

(Figure 17) 
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Figure 17. The example of phenyl / pyridine bioisosteric replacement.  

 

S-4CPG (47) is a metabotropic glutamate receptor 1 (mGluR1) antagonist which activity is 

dependent on the distance between its ω-carboxylic acid and α-amino acid moieties and 

their linear topological relationship. The propellane (bicyclo[1.1.1]pentane) derivative 48 

was explored as a bioisostere of 47 exhibiting good antagonist activity against mGluR1a. 

The propellane moiety, which serves as a spacer in this compound, has a different 

stereoelectronic profile to the phenyl ring but is able to keep the ω-carboxylate and α-

amino acidic moieties in the coplanar position crucial for activity.
 39,40 

(Figure 18) 

 

 

Figure 18. The example of unconventional phenyl / propellane bioisosteric replacement.  

  

                                                 
39
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40
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3.2.2. Nonclassical bioisosteres 

 

Carbonyl group replacements 

 

 

Figure 19. Bioisosterically replaceable carbonyl-like moieties. 

 

Modafinil (49) is a widely used drug in the treatment of excessive sleepiness caused by 

narcolepsy, shift work sleep disorder, and obstructive sleep apnea. This compound has a 

stereogenic sulfoxide group, and it is currently marketed as racemate. De Risi et al. 

investigated the replacement of the sulfoxide group with a carbonyl to facilitate synthesis 

and to remove problems associated with chirality. Compound 50 showed a slight loss of 

activity compared to modafinil, but this was restored when the amide function was 

modified in compound 51.
25,41

 (Figure 20) 

 

 

Figure 20. Bioisosteric analogues of modafinil (50, 51).  

  

                                                 
41
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Lett. 2008, 18, 923 – 928. 
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Carboxylic acid replacements 

 

 

Figure 21. Bioisostericly replacable carboxylic acid-like moieties. 

 

Angiotensin II receptor antagonists provide an instructive insight into carboxylic acid 

isostere design, since binding affinity to the receptor in a series of biphenyl acids is quite 

sensitive to the character of the acidic element. The tetrazole moiety in Losartan (53) 

causes a 10-fold increase in inhibitory potency compared to the carboxylic analogue 52, a 

result explored through geometrical analysis that indicated the tetrazole projects the acidic 

–NH– group 1.5 Å further from the aryl ring than a –COOH group. The –CONHSO2Ph 

moiety incorporated into 54 exhibits the similar geometrical topology to –COOH in 52 and 

therefore offers a comparable potency.
21,42,43

 (Figure 22) 

 

                                                 
42
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Figure 22. Geometrical arrangements associated with the carboxylic acid, tetrazole and acylsulfonamide 

moiety in angiotensin II antagonists 52 – 54 and their biological activities. 

 

Hydroxyl group replacements 

 

 

Figure 23. Bioisosterically replaceable hydroxyl-like moieties. 

 

In 2005, the synthesis and biological evaluation of phenol bioisosteric analogues of 

benzazepine D1 / D5 antagonist were reported. The most promising compound 55 has 

undergone several clinical trials, including schizophrenia, cocaine addiction, and obesity. 

Expect of proved good antagonist activity, the compound 55 presented problematic 

pharmacokinetic issues. This liability was mainly caused by O-glucuronidation on phenolic 

–OH group and by demethylation of N-CH3 group. Therefore several novel compounds 56 

– 59 containing heterocyclic rings with N-H hydrogen bond donor as isosteres of the 

phenolic –OH group were investigated. The investigation resulted in improved 

pharmacokinetic profiles and maintained good antagonist activity.
25,44

 (Figure 24) 

 

                                                 
44
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Compound R X 
KiD1 

(nM) 

KiD5 

(nM) 

*Cmax 

(ng/ml) 
*Tmax (h) *BA (%) 

55 - - 1.20 2.00 72 0.5 0.6 

56 Me NH 7.00 4.20 1300 1.0 87 

57 H NH 16.5 2.40 1640 6.0 42 

58 Me S 2.10 2.80 462 2.0 - 

59 H S 6.50 1.70 5690 1.0 - 

Figure 24. The compound 55 and its bioisosteres 56, 57, 58 and 59 showing good pharmacokinetic profiles, 

while maintaining good antagonist activity on the D1 / D5 receptors.  

*Cmax (ng / ml) is a term used in pharmacokinetics refers to the maximum serum concentration that a drug 

achieves in a specific compartment or test area of the body after the drug has been administrated. Tmax (h) is 

the time at which the Cmax is observed.
45

 BA (%) is a bioavailability – a subcategory of absorption and the 

fraction of administered dose of unchanged drug that reaches the systemic circulation. By definition, when a 

medication is administered intravenously, its bioavailability is 100 %.
46

 

 

Catechol 

 

 

Figure 25. Bioisosterically replaceable catechol-like moieties. 
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Catechol bioisosteres are often utilized to overcome pharmacokinetic and toxicological 

issues linked to this moiety. Successful examples of bioisosteric replacement of catechols 

can be found in catecholamines. Benzimidazole analogues 62 and 63 of the adrenergic 

agonist norepinephrine (60) and isoproterenol (61) were synthesized to evaluate their 

activity in adrenergic systems and also to improve their biological stability.
25,47

 (Figure 26) 

 

 

Figure 26. Catecholamines 60, 61 and their benzimidazole bioisosteres 62, 63. 

*Half maximal effective dose (ED50) represents the amount of a drug that produces a specified response in 50 

% of a test population.
18

 

 

Halogen replacements 

 

 

Figure 27. Bioisosterically replacable halogen-like moieties. 

 

One of the approaches in the development of drug targeting breast cancer is the inhibition 

of estrogen biosynthesis with aromatase (CYP19) inhibitors. Nonsteroidal aromatase 

inhibitors (NSAI) such as vorozole (64) and liarozole (65) have shown several advantages 

over steroidal drugs in adjuvant treatment. A new class of NSAI based 2-,3-,5-, and 7-

[(aryl)(azoyl)methyl]-1H-indoles as more potent and selective inhibitors was developed. 

                                                 
47

 Arnett, C. D.; Wright, J.; Zenker, N. J. Med. Chem. 1978, 21, 72 – 78. 
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Compounds 66 and 67 were modified on the indolic nitrogen and on the phenyl ring. The 

compound 66 with X = Cl and the compound 67 with X = CN proved to be equipotent on 

CYP19 and selective toward CYP17.
25,48

 (Figure 28) 

 

 

Figure 28. Bioisosteric replacement in nonsteroidal aromatase inhibitors 64 – 67.  

 

Amide and ester bioisosteres 

 

 

Figure 29. Bioisosterically replaceable amide-like and ester-like moieties. 
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Bioisosteres of amides are generally introduced to modulate polarity and bioavailability, 

while ester bioisosteres are used to improve metabolism.  

A recent successful example of amide bioisosterism can be found in the development of 

inhibitors of the enzyme cathepsin K, which is involved in osteoclastic bone resorption and 

is a target for the treatment of osteoporosis. Compound 68 was identified as a potent 

inhibitor of cathepsin K, but it was not selective over other cathepsines in cell-based 

assays. Modifications led to 69, a highly selective cathepsin K inhibitor, which presented 

metabolic liabilities. The metabolic problems of the compound 69 led to the identification 

of odanacatib (70), which is currently under clinical evaluation.
25,49

 (Figure 30) 

 

 

Figure 30. An example of bioisosteric replacement of amide moiety in 68 leading to the clinical candidate 

odanacatib (70).  
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Thiourea replacements  

 

 

Figure 31. Bioisosterically replaceable thiourea-like moieties. 

 

Metiamide (71) is an antiulcer drug acting as antagonist of the histamine H2 receptor. Its 

high-dosage chronic toxicity tests revealed kidney damage and agranulocytosis, which was 

attributed to presence of thiourea fragment in the molecule. For this reason, the bioisosteric 

replacement of the sulfur in metiamide (71) was investigated. A cyanoguanidine analogue 

cimetidine (72) retained the same activity as metiamide (71), without toxic effects at high 

doses.
25,50

 (Figure 32) 

 

 

Figure 32. Thiourea bioisosteric replacement in antiulcer drugs 71 and 72.  

*The dissociation constant Kd reffers to the equilibrium dissociation constant for ligand-receptor interactions 

determined directly in a binding assay using a labeled form of the ligand.
18

 It is commonly used to describe 

the affinity between a ligand (a drug) and a protein, i. e. how tightly a ligand binds to a particular protein. 

The dissociation constant has molar units (M), which corresponds to the concentration of a ligand at which 

the binding site on a particular protein is half-occupied. 
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Pyridine replacements 

 

 

Figure 33. Bioisosterically replaceable pyridine-like moieties. 

 

(+)-Anatoxin-a (73) is an alkaloid from algae, which binds a variety of nicotinic 

acetylcholine receptor (nAChR) subtypes. PHT (74) was the first bioisosteric and 

conformationally constrained modification of 73 retaining similar activity. In 2001, the 

synthesis and biological evaluation of some pyridine bioisosteres of PHT (74) was 

published. These compounds were designed and synthesized as new ligands selective for 

certain nAChR subtypes to be used in the treatment of several CNS disorders or as 

analgesics. The pyridine in 74 was replaced by other nitrogen-containing rings such as 1,2- 

or 1,3-diazines and compound 75 was found to be the most potent among all synthesized 

compounds.
25,51

 (Figure 34) 

 

 

Figure 34. Pyridine bioisosteric replacement in 73 leading to selective inhibitor 75 of nicotinic acetylcholine 

receptor (α4)2(β2)3. 
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Cyclic versus noncyclic system replacements 

 

A classical example of the replacement of a cyclic system with an acyclic analogue can be 

found in the nonsteroidal estrogen trans-diethylstilbestrol (77). This compound was 

designed by opening of rings A and B of estradiol (76) and only E-isomer 77 showed 

significant estrogen activity.
25,52

 (Figure 35) 

 

 

Figure 35. Example of bioisosteric replacement of estradiol (76) by trans- diethylstilbestrol (77). 

 

3.2.3. Heterocyclic bioisosterism in drug design 

 

Five- and six-membered heterocycles play a prominent role in drug design, especially 

because of their application as drug scaffolds or important structural elements. The 

versatility of heterocycles based on their size and shape allows them to be projected along 

a range of vectors, while their natural electronic and physical properties are important for 

mediating drug-target interactions. By rational selection and disposition of substituents, 

their electronic and physical properties as well as acidity and basicity can be easily 

modulated. The most important features of heterocycles utilizable in drug design and 

bioisosteric mimicry are their ability to act as H-bond donor (N-H, O-H, C-H) or acceptor, 

their electron withdrawing or donating effects, and their potential to be engaged in π-π 

interactions. In addition, their ability of tautomerisation offers an additional possibility to 

optimize the spatial location of interacting groups or substituents.
21
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Heteroatoms as H-bond acceptors 

 

Two approaches have been taken to address the question of which atom, O or N, interacts 

with H-bond donor when both are available in molecules containing, for example 

alkoxypyridine (78), alkoxime (79), oxazole (80) or isooxazole moiety (81). An ab initio 

study (computational chemistry methodology) of functional groups interacting with water 

provided theoretical insight, while the analysis of H-bonding interactions in molecules 

deposited in the CSD (Cambridge Structural Database) provided practical examples. The 

ab initio calculated data about H-bond lengths and interaction energies indicated that N is a 

much stronger H-bond acceptor than O when these atoms are integrated to, resp. 

conjugated with sp
2
 π-conjugated systems. This result is supported also by the prevalence 

of N acting as the H-bond acceptor in the CSD. For methoxypyridine (78) and oxazole 

(80), the difference in the energy of H-bond provided by O and N acting as acceptors 

varies from 6 to 12 kJ/mol.
53

 (Figure 36) 

 

 

Figure 36. Examples of molecules containing two potentional H-bond acceptors 78 – 81 and comparison of 

the calculated H-bond interaction energies of H2O with N and O atoms in some of the given molecules. 
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A practical example of the consequences of different H-bond interactions associated with 

oxazole rings is provided by series of prostacyclin (PGI2) mimetics 82, 83 and 84 

inhibiting blood platelet aggregation. Their activity is sensitive to the topology of the 

central oxazole ring causing a 5-fold difference in EC50 between the isomers 82 and 83. 

The decreased activity of the inhibitor 83, comparable to the cis-olefin 84, suggests that the 

differently orientated oxazole ring does not contribute to binding and acts simply as a 

scaffolding element providing the optimal geometry of the ligand to complement the PGI2 

receptor. The obtained analytical data led to the conclusion that the N atom of the “central” 

oxazole ring in 82 participates on the important H-bond interaction in PGI2 receptor active 

site while the similarly positioned oxazole O atom in 83 is not able to interact in the same 

manner.
54,55 

(Figure 37) 

 

 

Figure 37. Series of prostacylin (PGI2) mimetics 82 – 84 and their corresponding activities. 

 

An interesting example of regioisomeric 2-aminooxazoles possibly providing different H-

bond interactions was published by Perner et al. Compounds 85 and 86 were designed as 

inhibitors of the transient receptor potential vanilloid 1 (TRPV1) which plays the 

significant role as a principle integrator of multiple pain-producing stimuli. The compound 

85 containing 5-phenyloxazol-2-amine moiety exhibited comparable inhibition potency 

(IC50 = 0.20 μM) against TRPV1 as its 4-phenyloxazol-2-amine analogue 86 (IC50 = 0.90 

μM). Unfortunately no ligand-receptor analysis was published in the study, so the direct 
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influence of the differently substituted oxazole core on the interaction pattern of the given 

inhibitors is debatable.
56

 The 4-phenyloxazol-2-amine moiety could also influence the 

pharmacokinetic properties of 86 and in this way change the overall activity. (Figure 38) 

 

 

Figure 38. Example of the regioisomeric 2-aminooxazole analogues 85 and 86 and their biological activities. 

 

3.3. Scaffold hopping 

 

Bioisosterism is the concept of similarity between functional groups or scaffolds in 

molecules that exhibit a similar shape and electronic distribution (stereocompatibility) in 

terms of their potential biological interactions. A rational replacement of molecular groups 

(or fragments) is defined as a bioisosteric replacement.
5
 

A subset of bioisosteric replacement is referred to as scaffold hopping, where the core 

structure of a small-molecule ligand is replaced. The core may be of direct functional 

importance in interacting with the protein target or it may provide the necessary 

scaffolding that allows substitution with functional groups in the appropriate geometric 

configuration.
57

  

Bioisosteric replacement and scaffold replacement is commonly integrated to modern 

medicinal chemistry and drug design. (Figure 39) 
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Figure 39.  Schematic representation of the principal spproaches to scaffold hopping.
58

 

 

3.3.1. Examples of successful scaffold hopping 

 

One of the early examples of successful scaffold hopping is the discovery of GABA-

receptor modulators originating from the benzodiazepine core, e. g. diazepam (87). After 

the discovery of 87 in 1950s, many attempts were undertaken to enhance its 

pharmacokinetic and pharmacodynamic properties by changing substituents, but also by 

moving to a completely new structures. Examples of compounds with a novel scaffold are 

zopiclone (88), zolpidem (89) and zaleplon (90).
59

 (Scheme 3) 

 

 

Scheme 3. Literature example for scaffold hopping – novel GABA ligands 87 – 90. 
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Another example is represented by the set of dopamine agonists 91 – 94. These molecules 

nicely demonstrate that the scaffold hopping strategy originating from the natural ligand – 

dopamine (91) can lead to the discovery of ligands with high structural similarity to 91, e. 

g. fenoldopam (93) but also to completely novel structures, e. g. quinpyrrole (94).
60,61 

(Scheme 4) 

 

 

Scheme 4. Literature example for scaffold hopping – novel dopamine agonists 93 and 94.
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4. 2-Aminooxazoles in medicinal chemistry 

 

Oxazoles are a class of heterocyclic compounds that are believed to occur in the nature 

from post-translational modification of serine and threonine residues in peptides. These 

structural motifs represent very important building blocks of natural products, 

pharmaceuticals and synthetic intermediates. Among numerous heterocyclic moieties of 

the biological or pharmacological interest, the oxazole ring is endowed with various 

biological activities, such as hypoglycemic, anti-inflammatory, and antibacterial 

activities.
62

  

 

One of the most important pharmacophoric elements of inhibitors designed in our research 

group is N,5-diaryloxazol-2-amine moiety (1) respectively its regioisomeric form – N,4-

diaryloxazol-2-amine (95). (Figure 40) Harris et al. identified structure 1 as a promising 

initial hit during the development of a new series of VEGFR2 inhibitors. Oxazole 1 

represented an attractive starting point, exhibiting moderate VEGFR2 enzyme potency 

(IC50 = 1.20 µM) and inhibiting VEGF-induced proliferation of human umbilical vein 

endothelial cells (HUVEC) with an IC50 of 3.00 µM. Based on the SAR studies a several 

improved derivatives of N,5-diaryloxazol-2-amine (1) were discovered.
6
 Nowadays, there 

is no known comparative study dealing with biological activities of the regioisomeric N,5-

diphenyloxazol-2-amine (1) and N,4-diaryloxazol-2-amine (95) or their derivatives. 

 

 

Figure 40. Chemical structure of the 2-aminooxazole regioisomers 1 and 95. 
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4.1. N,5-Diaryloxazol-2-amines – their synthesis and activity 

 

The scientific database Reaxys describes 1110 chemical compounds containing N,5-

diaryloxazol-2-amine moiety (1). 907 of the described compounds possess various 

biological activities.
63

 These compounds are mostly antineoplastic species influencing the 

following therapeutic targets: vascular endothelial growth factor receptors (VEGFRs),
6
 

inosine monophosphate dehydrogenase (IMPDH II),
64

 epidermal growth factor receptors 

(EGFRs), cyclin-dependent kinases (CDKs 2 and 4), platelet-derived growth factor 

receptors (PDGFRs),
65

 capsaicin receptors (TrpV1),
66

 protein tyrosine phosphatase (PTP 

1B),
67

 blood-coagulation factor VII A,
68

 diglyceride acetyltranferase (DGAT),
69

 cKit 

tyrosine kinase,
70 , 71

 Flt 1 and Flt3 receptor kinases,
72

 BCR-ABL tyrosine kinase,
73

 

tubulins,
74

 fibroblast growth factor receptors (FGFRs),
75

 sphingosine kinases (SK 1 and 2), 

dihydroceramide desaturase (Des 1),
76

 protein kinase CLK 1
77

 and virus HIV-1.
78
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Derivatives of N,5-diaryloxazol-2-amine (1) are described as anti-angiogenic and anti-

tumor agents,
6,64,76

 antibiotics, immunosuppressants, anti-inflammatory compounds,
68,77

 

antiviral compounds, fungicides, platelet aggregation inhibitors,
64,78

 antirheumatics, anti-

arteriosklerotics,
70

 anti-diabetics,
67

 anti-obesity agents
68

 and allergy inhibitors.
69

 Some 

examples of the structuraly related bioactive compounds are given below. (Figure 41)  

 

 

Figure 41. The structures of N,5-diaryloxazol-2-amine (1) and some bioactive structuraly related compounds 

with their corresponding activities. 
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Despite a broad biological exploitation, synthesis of N,5-diaryloxazol-2-amine (1) based 

compounds is still not optimally developed. Preparation of the specifically substituted 

oxazole-2-amine moiety is a relatively complex topic, and often low yields are observed. 

The most common and efficient methodology for the preparation of N,5-diaryloxazol-2-

amine (1) containing compounds was described in literature as a reaction of 

arylisothiocyanates, resp. arylisocyanates with α-azidoacetophenones. This reaction 

requires the presence of PPh3 or pPPh3 (a polymer resin-bound PPh3) and it is usually 

performed under two possible types of conditions: in dioxane (80 to 95 °C, 30 min to 4 h) 

78,79,80,81
 or in CH2Cl2 (0 °C to RT, 1 to 12 h).

82,6,83
 Yields of the aminooxazoles obtained 

by this methodology are described in the range from 1 to 95 %. The reactions performed in 

dioxane (80 to 95 °C, 30 min to 4 h) using arylisothiocyanates have usually higher yields 

compared to reactions performed with arylisocyanates in CH2Cl2 (0 °C to RT, 1 to 12 h). 

The yield of the reaction also seems to be dependent on the structure of used substrates.
82

 

The chosen examples of previously published cyclizations between arylisothiocyanates, 

resp. arylisocyanates with α-azidoacetophenones leading to the formation of N,5-

diaryloxazol-2-amine (1) based products are depicted on the schemes below. (Scheme 5 

and 6) 
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Scheme 5. Examples of the cyclization reactions leading to N,5-diaryloxazol-2-amine derivatives 107, 110 

and 113 (reaction conditions: PPh3, dioxane, 80 to 95 °C, 30 min to 4 h).  

 

 

Scheme 6. Examples of the cyclization reactions leading to N,5-diaryloxazol-2-amine derivatives 107, 115 

and 118 (reaction conditions: PPh3, CH2Cl2, 0 °C or RT, 1 h to 12 h). 
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The addition-elimination reaction between variously substituted anilines and derivatives of 

2-chloro-5-phenyl oxazole represents another useful synthetic methodology leading to the 

preparation of N,5-diaryloxazol-2-amine (1) containing compounds. 

The first synthesis from literature began with a transformation of 2-amino-1-

phenylethanone (119) to 5-phenyloxazole-2-thiol (120) using CS2 and Na2CO3 in a mixture 

of EtOH and H2O. 2-Chloro-5-phenyl oxazole (121) was subsequently prepared by the 

reaction of 120 with POCl3 in Et3N. The final addition-elimination reaction between the 2-

chlorooxazole 121 and aniline 122 was performed in 
i
PrOH at 80 °C and provided N,5-

diaryloxazol-2-amine derivative 123 with the yield of 26 %.
6
 (Scheme 7) 

 

 

Scheme 7. Preparation of N,5-diaryloxazol-2-amine derivative 123 using the addition-elimination reaction of 

2-chlorooxazole 121 with aniline 122. 

 

Another example represents the synthesis starting with a transformation of 4-

formylbenzonitrile (124) to 4-(oxazol-5-yl)benzonitrile (125) using toluenesulfonylmethyl 

isocyanide (TosMIC) and K2CO3 in refluxing MeOH. The subsequent preparation of 2-

chlorooxazole derivative 126 was performed by treating the oxazole 125 with LiHDMS 

and Cl3CCCl3 in THF. The final addition-elimination reaction between the 2-chlorooxazole 

126 and aniline 127 in 
i
PrOH at 80 °C provided N,5-diaryloxazol-2-amine derivative 128 

in 78 % yield.
84

 (Scheme 8) 
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Scheme 8. Preparation of N,5-diaryloxazol-2-amine derivative 128 using the addition-elimination reaction of 

2-chlorooxazole 126 with aniline 127. 

 

The similar synthetic methodology was used for the preparation of 2-chlorooxazole 

derivative 129. However, the preparation of N,5-diaryloxazol-2-amine derivative 131 was 

described as a reaction of the 2-chlorooxazole 129 with acetanilide 130 in the presence of 

NaH in DMF. The product 131 was isolated with the yield of 44 %.
71

 (Scheme 9) 

 

 

Scheme 9. Preparation of N,5-diaryloxazol-2-amine derivative 131 using the addition-elimination reaction of 

2-chlorooxazole 129 with aniline 130. 

 

An interesting synthetic strategy for the preparation of N,5-diaryloxazol-2-amine (1) 

derivatives uses specific reactions based on the transition-metal catalysis. 

For example, the Rh2(OAc)4 catalyzed reaction of N,N-disubstituted cyanamides with α-

diazoacetophenones providing the corresponding N,N-disubstituted derivatives of 5-

phenyloxazole-2-amines in high yields (134, 84 %). Unfortunately the same reaction using 
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N-monosubstituted, resp. unsubstituted cyanamides provided the corresponding derivatives 

of 5-aryloxazole-2-amine in relatively low yields (136, 33 %).
85

 

Another synthtetic example is the gold-catalyzed heterocyclization of various 

arylacetylenes with N,N-disubstituted resp. N-monosubstituted cyanamides in the presence 

of an oxidation agent 2-methylpyridine N-oxide (139). In the most described cases, 2-

aminooxazoles functionalized at the nitrogen atom as well as at the fifth position of the 

heterocyclic ring were prepared and isolated in good to moderate yields (1, 78 %).
86

 

(Scheme 10) 

 

 

Scheme 10. The synthesis of N,5-diaryloxazol-2-amines 134, 136 and 1 via transition-metals catalyzed 

cyclization. 
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4.2. N,4-Diaryloxazol-2-amines – their synthesis and activity 

 

In contrast with previously discussed derivatives of N,5-diaryloxazol-2-amine (1), the 

synthesis and practical utilization of  N,4-diaryloxazol-2-amine (95) based compounds are 

far less fequently described in the literature. The database Reaxys describes 41 chemical 

compounds containing N,4-diaryloxazol-2-amine moiety (95) while only 6 of the described 

compounds possess biological activity. These compounds are known to be used as 

modulators of amyloid β (Aβ) aggregation levels
87,88

 and antagonists of the vanilloid 1 

receptor (TrpV1).
56

 Derivatives of N,4-diaryloxazol-2-amine (95) are described as agents 

for the Alzheimer disease treatment,
87,88

 analgesics (painkillers) and agents for the 

inflammatory hyperalgesia treatment (hypersensitivity to pain).
56

 An overview of some 

N,4-diaryloxazol-2-amine (95) based compounds together with their biological activities is 

given below. (Figure 42) 

 

 

Figure 42. Structure of N,4-diphenyloxazole-2-amine (95) and some examples of bioactive compounds 

possessing this moiety. 

 

Regarding the published procedures for the preparation of N,4-diaryloxazol-2-amine (95) 

derivatives, the most used is a cyclization reaction of arylureas with α-

bromoacetophenones. The reaction was described under various conditions with relatively 

broad range of yields. For example, Pathak et al. performed the first reaction scope in 

refluxing EtOH. The final 2-aminooxazole products were isolated in good yields (42 to 55 

%).
89

 An interesting possibility is represented by the reaction in the deep eutetic solvent 
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(DES) consisting of melted choline chloride and urea in molar ratio of 1 / 2. The reaction 

was described to be carried out by sonication or heating at 65 °C. According to the 

published results ultrasound driven reactions provided the desired products with higher 

yield and in shorter time (82 to 90 % in 15 min) compared to the reactions driven by 

heating (45 to 60 % in 4 h).
90

 Another oxazolation examples were published using 

glycerine or PEG-400 (RT) as a solvent with suprisingly high yields (76 to 90 %).
91,92

 The 

newest published synthesis of N,4-diaryloxazol-2-amine (95) derivatives was performed in 

DMF at 95 °C with the yield of 56 %.
88

 (Scheme 11) 

 

 

Scheme 11. Examples of the cyclization reaction leading to the N,4-diaryloxazol-2-amine derivatives 144, 

147 and 141. 
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Different synthesis leading to N,4-diarylloxazol-2-amine (86) was performed via 

cyclization reaction of α-bromoacetophenone (150) with formamide.
93

 The reaction 

provided 4-phenyloxazole (151) which was subsequently transformed to 2-chloro-4-

phenyloxazole (152) using lithium hexamethyldisilazide (LiHMDS) and Cl3CCCl3 in THF. 

The final product 86 was preparated by microvawe driven addition-elimination reaction of 

152 with aniline 153 in CH3CN in 5 % yield.
56

 (Scheme 12) 

 

 

Scheme 12. Synthesis of N,4-diaryloxazol-2-amine (86) using the addition-elimination reaction 2-

chlorooxazole 152 with aniline 153. 
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5. Transition-metal catalyzed coupling reactions in 

medicinal chemistry 

 

Coupling reactions represent an important synthetic procedure, without which the 

preparation of many compounds, designed within this dissertation thesis, would not be 

possible. The coupling reactions were utilized for the preparation of the potential VEGFR2 

TK inhibitors across most of the thesis projects. In the following chapter we will provide 

general information about the chemistry behind the coupling reactions and also a brief 

overview of the particular reaction methodologies that were utilized within our projects 

together with some practical examples of their successful application in medicinal 

chemistry. 

 

C-C bond-forming reactions play a decisive and important role in modern organic 

synthesis. In the last quarter of the 20
th

 century, a family of C-C bond-forming reactions 

evolved as a new powerful tool in synthesis. Based on transition-metal catalysis, this newly 

acquired ability to forge C-C bonds between or within functionalized and sensitive 

substrates provided new opportunities, particularly in total synthesis but also in medicinal 

and process chemistry as well as in chemical biology and nanotechnology. Among these 

processes, the palladium-catalyzed cross-coupling reactions are the most prominent.
94

 

From a medicinal chemistry point of view, the ability to create C-C bonds under mild 

conditions opens many new possibilities for designing novel compounds, further enhanced 

when it is combined with combinatorial approaches.
95,96

 Since some of the palladium-

catalyzed cross-coupling reactions are rapid and mild, even 
11

C (t1/2 = 20.4 min) or 
18

F (t1/2 

= 110 min) labeled compounds can be successfully prepared for the Positron Emission 

Tomography (PET) studies using these methods.
97

 From a process chemistry viewpoint, 

the cross-coupling reactions allow us to develop more convergent processes and provide 

more flexibility in the process designs.
98

 

Most palladium catalyzed reactions are believed to have quite similar catalytic cycle. The 

mechanism has been widely accepted to involve an initial oxidative addition of an 
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electrophile R
1
-X (where X represents a leaving group) to an electron-rich Pd(0)-species 

producing an organo-Pd(II) complex. Transmetalation of an organometallic reagent R
2
-M 

(where M represents a metal atom) results in the formation of a mixed diorgano-Pd(II) 

complex. Subsequent trans-cis isomerization in the ligand sphere of Pd(II) and C-C bond 

formation upon reductive elimination regenerate the initial Pd(0) catalyst and release the 

coupling product R
1
-R

2
.
99

 (Scheme 13) 

It should be kept in mind that also unwanted homocoupling by-products can be formed, 

mostly by oxidative dimerization of the organometallic species (with air or by the 

electrophile being the oxidant) or by reductive (Wurtz-type) dimerization of the 

organohalide (by the Pd(0) complex or via metal residues from the formation of the 

organometallic species). Under ligand-free conditions or when the ligand-Pd coordination 

is labile, homo-coupling can be significant.
100

 

 

 

Scheme 13. Catalytic cycle of palladium catalyzed cross-coupling reaction. L2Pd(0) represents an initial 

Pd(0)-catalyst, R
1
-X represents an electrophile (where X is a leaving group), R

2
-M represents an 

organometallic reagent (where M is a metal atom) and R
1
-R

2
 represents a final coupling product. 

 

Careful choice of a ligand can influence two steps of the catalytic cycle. The use of strong 

σ-donating ligands, such as trialkylphosphines, increases electron density around the metal, 

accelerating the oxidative addition of the catalyst to the substrate. This is commonly 
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believed to be the rate determining step. Choice of the ligand also determines the 

mechanism by which the oxidative addition occurs.
101

 The elimination step is accelerated 

by the use of bulky ligand, in particular the phosphine ligand exhibiting a large cone angle 

(also known as Tolmanʼs angle - θ).
102

 (Figure 43) 

 

 

Figure 43. Tolmanʼs cone angle - θ of the monodentate P(CH3)3 ligand attached to a metal atom (M).
103

 

 

5.1. Stille coupling 

 

The palladium-catalyzed cross-coupling of organic electrophiles with organotin 

compounds (containing Sn-C bond) is known as the Stille reaction (developed in 1978). 

This reaction is one of the most widely applied palladium-catalyzed C-C bond-forming 

procedures, in large part due to typically mild reaction conditions, the ease of preparation 

of coupling partners, and the tolerance of a variety of sensitive functionalities in this 

transformation.
104,105 

(Scheme 14) 

The Sn-C represents one of the most covalent bond as compared to other possible cross-

coupling partners containing Li-C, Mg-C, Al-C, Zn-C, or B-C bond. This suggests that Sn-

C compounds are the least nucleophilic coupling partners among the group and therefore 

the least reactive for a transmetalation step. On the transmetalation of organotin 

compounds can participate not only sp and sp
2 

hybridized carbons but in many cases also 

carbons with sp
3
 hybridization. Organostannanes can be prepared by transmetalation of C-

Li or C-MgX with R3SnX, nucleophilic substitution of R3SnLi, hydrostannation of olefins 

with R3SnH, or palladium-catalyzed coupling of Ar-X with R3SnSnR3.
106

 Organostannanes 
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are air and water stable and isolable by standard laboratory techniques. This makes from 

the Stille coupling a versatile reaction suitable for the medicinal chemistry use where quick 

assembly of building blocks is one of the most important aspects. 

There are some problems associated with the Stille coupling reaction. The biggest issue is 

the toxicity of organostannanes which could make it undesirable especially on a process 

scale. Removal of organostannane by-products (typically R3SnOH) from a coupled product 

can be difficult.
98

 

 

 

Scheme 14. General scheme of the Stille cross-coupling reaction.
94

  

 

On the following scheme there is an example of the Stille coupling reaction successfully 

used for the preparation of the N,5-diaryloxazol-2-amine 2 (AAZ) developed by 

GlaxoSmithKline as an inhibitor of VEGFR2 TK. According to its good in vitro as well as 

in vivo activity, the compound 2 was chosen as the promising drug candidate.
6
 (Scheme 

15) 

 

 

Scheme 15. Stille coupling reaction used for the preparation of VEGFR2 TK inhibitor 2 (AAZ). 

 

Another example of the effective Stille reaction applied in a medicinal chemistry 

represents the synthesis of cis-cefprozil (158) - an orally active antibiotics launched by 

Bristol-Meyers Squibb. The first known preparation of this drug based on the Wittig 
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reaction had a serious E/Z selectivity problem.
107

 Later, Farina and his co-workers applied 

the Stille coupling reaction, which took advantage of the retention of cis configuration of 

the organostannane reagent 156.
108

 (Scheme 16) Farina’s pioneering work led to the 

discovery of tris-(2-furyl)phosphine as a ligand and his kinetic studies with Liebeskind 

became the gold standard in cross-coupling reactions. 
98,109

  

 

 

Scheme 16. Stille coupling reaction used for the preparation of the antibiotic cis-cefprozil (158). 

 

5.2. Suzuki-Miyaura 

 

Another palladium-catalyzed C-C bond-forming reaction involves the palladium-mediated 

coupling of organic electrophiles, such as aryl or alkenyl halides and triflates, with 

organoboron compounds in the presence of base. This chemical process is called Suzuki-

Miyaura coupling reaction and for the first time it was reported by the Suzuki group in 

1979.
110,111

 The Suzuki-Miyaura reaction is particularly useful method for the construction 

of conjugated dienes and higher polyene systems of high stereoisomeric purity, as well as 

of biaryl and related systems. Furthermore, tremendous progress has been made in the 
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development of Suzuki coupling reactions of unactivated alkyl halides, enabling sp
2
-sp

3
 

carbon bond and even sp
3
-sp

3
 carbon bond formation. The ease of preparation of 

organoboron compounds and their relative stability to air and water, combined with the 

relatively mild conditions as well as the formation of nontoxic byproducts, makes the 

Suzuki-Miyaura reaction a valuable tool in organic synthesis.
112,113,114

 (Scheme 17) 

 

 

Scheme 17. General scheme of the Suzuki-Miyaura cross-coupling reaction.
94

  

 

The boron reagents initially employed for the Suzuki-Miyaura coupling were 

alkenylboranes and catechol boronic esters 159, both conveniently obtained through the 

hydroboration of terminal alkynes. However, by the 1990s boronic acids 160 had become 

the reagents of choice, especially for aryl couplings, primarily due to their enhanced 

reactivity and high atom-economy. Pinacol boronic esters 161 also became popular, 

particularly in the context of Miyaura-borylation.
115

 Over the last two decades, a wide 

range of new reagents for the Suzuki-Miyaura coupling have been developed, with 

stabilities that allow distal manipulation and expansion of substrate scope. 

Organotrifluoroborate salts 162 and MIDA (N-methyliminodiacetic acid) boronates 163 

are two of the most developed systems, but several other alternatives have also been well 

advanced (164, 165 and 166). For Suzuki-Miyaura coupling with sp
3
 carbon bearing 

boronic species, 9-BBN (9-borabicyclo[3.3.1]nonane) derivatives 167 are used in order to 

increase electron density at the boron atom.
116,117

 (Figure 44) 
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Figure 44. The most common boron reagents used for the Suzuki-Miyaura coupling reaction.
117

 

 

The synthesis of the first generation of cyclooxygenase-2 (COX-2) inhibitor – rofecoxib 

(Merck) (171) using the Suzuki-Miyaura coupling reaction as the key step is depicted on 

the following scheme.
118

 (Scheme 18) 

 

 

Scheme 18. Synthesis of the first generation COX-2 inhibitor – rofecoxib (171). 
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The synthesis of the second generation of (COX-2) inhibitor – etoricoxib (Merck) (177) 

utilizes the Suzuki-Miyaura coupling reaction twice. The first cross-coupling of 3-bromo-

5-chloro-2-aminopyridine (172) with boronic acid 169 takes place at the bromide carbon. 

The amino group of product 174 is afterwards transformed to a bromine group under 

Sandmeyer conditions. The resulting 2-bromo-5-chlroro-3-(4-(methylsulfonyl)phenyl) 

pyridine (175) is coupled with boronate 176 to provide the final product 177.
 98,119

 (Scheme 

19) 

 

 

Scheme 19. Synthesis of the second generation COX-2 inhibitor – etoricoxib (177). 

 

5.3. Sonogashira coupling 

 

Currently, the cross-coupling reaction for forming a sp
2
-sp carbon bond is one of the 

mildest and most successful methods in this field. The palladium-catalyzed coupling of 

terminal alkynes with vinyl or aryl halides was reported independently by the groups of 

Cassar and Heck in 1975.
120 , 121

 A few months later, Sonogashira and coworkers 
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demonstrated that this cross-coupling reaction can be accelerated by the addition of 

catalytic amount of Cu(I) salts. The success of reaction relies on the acidity of the terminal 

alkynyl hydrogen. Therefore, unlike other methods, there is no need to activate the 

nucleophile cross-coupling partner. For instance, Negishi, Suzuki-Miyaura, and Stille 

reactions require preparing C-Zn, C-B, C-Sn bond-containing reagents, respectively, prior 

to their coupling reactions.  

The Sonogashira reaction provides a valuable method for the synthesis of conjugated 

acetylenic systems with broad range of applications from natural products and 

pharmaceuticals to specifically designed molecules in biotechnology and nanotechnology. 

Practically, this is the easiest methodology to create C-C bonds, while the resulting triple 

bond can be easily transformed to other functional moieties. 
98,122,123

 (Scheme 20) 

 

 

Scheme 20. General scheme of the Sonogashira cross-coupling reaction.
94

  

 

On the following scheme there is shown the synthesis of an HIV-1 protease inhibitor 

candidate 183 which key building block, chlorinated furopyridine (182), was effectively 

prepared via the Sonogashira reaction.
124

 The reaction resembled the Larock indole 

synthesis.
125

 The structure of 183 is very similar to that of Crixivan (Merck) (184) – the 

powerful inhibitor of HIV-1 protease. (Scheme 21) 
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Scheme 21. Synthesis of the HIV-1 protease inhibitor candidate 183.  

 

Another example for the utilization of Sonogashira reaction in medicinal chemistry 

represents the synthesis of an oxazolidinone derivative 188 which was designed as the 

antibacterial agent against Gram-positive and Gram-negative microorganisms, including 

multi-drug resistant strains. The synthesis begins with the Sonogashira coupling between 

trimethylsilylacetylene (179) and iodophenyloxazolidinone 185 followed by removal of the 

silyl group, the click cycloaddition reaction with p-methoxybenzyl azide (187) and 

deprotection with trifluoroacetic acid leading to the final triazole-containing oxazolidinone 

188.
126

 (Scheme 22) 
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Scheme 22. Synthesis of the antibacterial agent 188. 

*In microbiology, the minimum inhibitory concentration (MIC) is the lowest concentration of a chemical that 

prevents visible growth of a bacteria (the concentration of a chemical with bacteriostatic activity).
127
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6. Project – Regioisomeric bioisostery (RegBio) 

 

An oxazole compound 2 (AAZ) was initially developed by GlaxoSmithKline
128

 as a 

powerful VEGFR2 TK ATP-competitive inhibitor. Because 2 showed good 

pharmacokinetic properties and strong VEGFR2 TK inhibitory activity (lit. IC50 = 22.0 nM 

(VEGFR2 TK)), the compound was selected as a promising drug candidate.
6
  

The 2 (AAZ) represents the N,5-diaryloxazol-2-amine derivative containing 2,5-

disubstitued oxazole ring as one of the key pharmacophoric fragments. A compound 3 

(AAZ-regio), N,4-diaryloxazol-2-amine derivative, contains 2,4-disubstituted oxazole ring 

and represents the regioisomeric compound to 2. We expect that the compound 3 takes a 

very similar binding position in the ATP-binding site of the VEGFR2 TK preserving the 

essential H-bond with Cys917 possibly leading to the similar inhibition properties as 

known for the inhibitor 2.  

The oxazole compound 3 (AAZ-regio) represents a new type of chemical structure. 

Oxygen atom from the oxazole ring is the isosteric atom to oxazole nitrogen. The 

appropriate conformer of 3 (AAZ-regio) is a bioisosteric candidate of the inhibitor 2 

(AAZ). For the proposed hypothesis we introduced the name Regioisomeric bioisostery 

(RegBio). (Figure 45 and 46) 

 

 

Figure 45. Regioisomeric bioisostery – the suitable regioisomeric change in 2 (AAZ) followed by the 

induced conformational change leads to the bioisosteric candidate 3 (AAZ-regio). 

                                                 
128
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Figure 46. Binding positions of inhibitor 2 (AAZ) and its regioisomeric analogue 3 (AAZ-regio) in the 

VEGFR2 TK ATP-binding pocket obtained by docking. 

 

The RegBio project is focused on the development of novel AAZ-like and corresponding 

AAZ-regioisomeric compounds with VEGFR2 TK inhibiting activity. According to the 

results of in silico screening we aimed to prepare five predicted regioisomeric pairs, a 

series of N,5-diaryloxazol-2-amine derivatives with pyridin-2-yl 2 (AAZ), pyrimidin-2-yl 

189, pyrimidin-5-yl 190, pyrrol-3-yl 191, tiophen-3-yl 192 substituent and a corresponding 

series of regioisomeric N,4-diaryloxazol-2-amines 3 (AAZ-regio), 193, 194, 195, 196, and 

determine their biological activity (IC50, VEGFR2 TK). (Figure 47 and 48) 

 

 

Figure 47. Series of predicted N,5-diaryloxazol-2-amine (1) derivatives 2 (AAZ), 189, 190, 191 and 192 with 

their in silico docking score. 
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Figure 48. Series of predicted N,4-diaryloxazol-2-amine (95) derivatives 3 (AAZ-regio), 193, 194, 195 and 

196 with their in silico docking score. 

 

6.1. Synthesis of N,5-diaryloxazol-2-amines 2, 189, 190, 191, 

192 

 

Based on information from the databases (Reaxys, SciFinder) and primary scientific 

literature we designed synthetic procedures of N,5-diaryloxazol-2-amines 2, 189, 190, 191 

and 192. 

In the first part of the synthesis an important oxazole precursor 107 was prepared. Its 

preparation originated from aniline 122 which was developed in our scientific group.
140

 

The compound 122 was transformed to isothiocyanate 105 by CSCl2 and subsequently 

used in a PPh3-mediated thermic cyclization reaction with α-azidoacetophenone 106 

providing the target oxazole precursor 107 in a good overall yield (48 %). (Scheme 23)  

The utilized cyclization reaction was optimized in our group and effectively used for the 

synthesis of many different N,5-diaryloxazol-2-amine derivatives. The proposed reaction 

mechanism was already published and it is depicted on the scheme below.
82

 (Scheme 24) 
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Scheme 23. Synthesis of N,5-diaryloxazol-2-amine precursor 107. 

 

 

Scheme 24. Proposed mechanism of the reaction leading to N,5-diaryloxazol-2-amine derivative M6.  
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The second part of the synthesis leading to N,5-diaryloxazol-2-amines 2, 189, 190, 191 and 

192 was successfully carried out by a coupling reaction of the precursor 107 with an 

appropriate heterocyclic coupling reagent. The compounds 2, 189 and 190 were prepared 

by the Stille coupling reaction of 107 with organostannanes 154, 199 and 200 respectively, 

in the presence of Pd(PPh3)4 and Bu4NBr in CH3CN (abs). A yield of the reactions varied 

from moderate (189, 33 %) to good (2, 50 % and 190, 60 %). (Scheme 25) Because of 

avoiding the further utilization of highly toxic organostannanes, a good commercial 

availability of suitable boronic coupling reagents and our attempt to finalize the synthesis 

in as short time as possible, we decided to use Suzuki coupling reaction for the preparation 

of 191 and 192. The compound 191 was prepared in 78 % yield by the coupling reaction of 

107 with pinacol boronate 201 in presence of Pd(PPh3)4 and Na2CO3 in a mixture of DMF / 

H2O. The compound 192 was prepared in 54 % yield by the coupling reaction of 107 with 

MIDA boronate 202 in presence of Pd(OAc)2, SPhos and K3PO4 in a mixture of THF / 

H2O. (Scheme 25 cont.) 

 

 

Scheme 25. Synthesis of N,5-diaryloxazol-2-amines 2, 189 and 190. 
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Scheme 25 cont. Synthesis of N,5-diaryloxazol-2-amines 191 and 192. 

 

6.2. Described synthesis of N,4-diaryloxazol-2-amines and 

unexpected synthesis of 1,5-diarylimidazolidine-2,4-

dione 204 

 

According to available information from the scientific databases (Reaxys, SciFinder) and 

primary literature the most common procedure for the preparation of N,4-diaryloxazol-2-

amine (95) derivatives is a cyclization reaction between arylureas and α-

bromoacetophenones carried out under various conditions. The more detailed overview of 

the published synthetic procedures could be found in the theoretical part of this dissertation 

thesis. (Chapter 4.2) 

With the aim to synthesize the desired N,4-diaryloxazol-2-amine precursor 205, we 

prepared appropriate starting compounds 203 and 198 and tested several published 

cyclization procedures. After analyzing the performed reactions we observed either the 

unreacted starting material (203 and 198) or a formation of many different mostly 

unknown products. More interestingly, the reaction performed in refluxing EtOH in the 

presence of catalytic amount of HCl within 5 days provided a formation of dominant 1,5-
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diarylimidazoline-2,4-dione 204 (41 % yield). (Scheme 26) The structure of 204 was 

supported by the standard analytical methodologies (
1
H-NMR, 

13
C-NMR, IR, MS, 

elemental analysis) and confirmed also by the X-ray spectroscopy. The X-ray analysis 

proved the presence of 204-syn product which was created as a racemic compound (both 

enantiomeres were packed in the crystal cell in the ratio of 1 / 1). (Figure 49) 

 

 

Scheme 26. Unexpected synthesis of 1,5-diarylimidazolidine-2,4-dione 204. 

 

 

Figure 49. Structure and molecular arrangement of (rac) 204-syn proved by the X-Ray spectroscopy. In the 

crystal of 204-syn are highlighted both enantiomeres; (R)-204-syn is depicted on the left side and (S)-204-

syn on the right side. 
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The proposed mechanism of the cyclization leading to 1,5-diarylimidazolidine-2,4-dione 

derivatives is depicted on the scheme below. (Scheme 27) α-Bromoacetophenone M7 is in 

the thermic, HCl catalyzed disproportionation reaction transformed to acetophenone M8 

and α,α-dibromoacetophenone M9. A significant presence of the both M8 and M9 in a 

reaction mixture after several hours of heating was proved by TLC and 
1
H-NMR analyses. 

The compound M9 subsequently reacts with urea derivative M10 providing an 

intermediate M12 which undergoes the cyclization reaction leading to the formation of 

1,5-diarylimidazolidine-2,4-dione derivative (rac) M15-syn.  

 

 

Scheme 27. Proposed mechanism of the reaction leading to 1,5-diarylimidazolidine-2,4-dione derivative 

(rac) M15-syn. 

 

According to the interesting chemical structure of 204 and its potential of a biological 

activity, derivatives 206 and 207 were synthesized by a coupling reaction of 204 with the 

heterocyclic reagents 154 and 201.  The compound 206 was prepared in 40 % yield under 

conditions of the Stille coupling reaction of 204 with stannane 154 and the compound 207 
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was prepared in 53 % yield using the Suzuki coupling of 204 with pinacol boronate 201. 

(Scheme 26 cont.) 

 

 

Scheme 26 cont. Synthesis of 1,5-diarylimidazolidine-2,4-diones 206 and 207. 

 

6.3. Novel synthesis of N,4-diaryloxazol-2-amine precursor 

205 

 

After our unsuccessful attempts to follow the literature procedures and synthetize N,4-

diaryloxazol-2-amine precursor 205 for the preparation of the predicted derivatives 3, 193, 

194, 195 and 196, we had to rethink our synthetic approach and develop our own synthesis.  

In 2014 Bailey and Sudini published the effective synthesis of various 2,4-disubstituted 

oxazoles by AgOTf-mediated reaction of amides with α-bromoketones in EA (50 °C).
129

 

We applied the publication-inspired reaction conditions on the cyclization of arylurea 203 

and α-bromoacetophenone 198. The reaction preformed in refluxing EA (abs) in the 

presence of AgOTf provided the desired product 205 in ca 10 % yield (
1
H-NMR, crude). 

(Scheme 28) In the crude mixture we observed the compound 205 and aniline 122 in a 

ratio of 1 / 1, the unreacted starting material 203 and many unidentified impurities. The 
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influence of AgOTf is essential for the formation of 205 because it improves a leaving 

group ability of the α-bromine atom in 198. Unfortunately the presence of AgOTf is also 

responsible for the degradation of urea 203 to aniline 122 which was proved by a simple 

reaction of 203 with the silver salt in refluxing EA. This fact together with the commonly 

known low thermal stability of α-haloacetophenones could cause the low yield of the 

desired product 205. 

 

 

Scheme 28. Synthesis of N,4-diaryloxazol-2-amine precursor 205. 

 

The proposed mechanism of the cyclization leading to N,4-diaryloxazol-2-amine 

derivatives is depicted on the scheme below. (Scheme 29) Urea derivative M10 

nucleophilically attacks the carbonyl group of α-bromoacetophenone M7 which leads to 

the formation of an intermediate M16. After the Ag-mediated thermal cyclization and 

subsequent water elimination, the final N,4-diaryloxazol-2-amine derivative M18 is 

formed.  
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Scheme 29. Proposed mechanism of the reaction leading to N,4-diaryloxazol-2-amine derivative M18. 

 

Despite we managed to prepare the desired product 205 only in a low yield, we gained a lot 

of important knowledge about the starting material properties and also about the reaction 

itself. We plan to improve the product yield and optimize the reaction by the utilization of 

starting acetophenones substituted with a better leaving group on the α-carbon (–OTs, –

OMs, –ONs etc.) without the addition of the silver salts damaging starting urea derivatives. 

We also plan to do a solvent scope possibly resulting in improvement of the reaction rate 

allowing us to perform the reaction at lower temperatures. After the successful synthesis of 

the precursor molecule 205 we will be able to prepare and biologically screen the predicted 

N,4-diaryloxazole-2-amine derivatives 3, 193, 194, 195, 196 and finalize the project. 
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6.4. Biological activity of the prepared compounds and 

evaluation of the RegBio project 

 

Within the RegBio project we successfully prepared the series of the predicted N,5-

diaryloxazol-2-amine derivatives 2, 189, 190, 191, and 192. We also determined in vitro 

inhibitory activities (IC50, VEGFR2 TK) of 2, 189, 191 and 192. An activity of the 

compound 190 is planned to be determined soon. (Figure 50) All biological assays were 

done by Reaction Biology Corp., USA.
19

 (Chapter 2.2) 

The synthesis and inhibitory potency (IC50, VEGFR2 TK) of the pyridin-2-yl and tiophen-

3-yl derivatives (2, 192) were already published by Harris et al.
6
 We prepared and 

analyzed these compounds as comparative standards for the utilized biological assay 

verification. Our determined IC50 activity values were mostly lower but comparable to the 

originally published values. The IC50 value from functional studies is not a constant and it 

is dependent on the condition of the experiment (tissue, receptor expression, type of 

measurement, etc.). Thus, IC50 should only be used for comparison of drugs under the 

specific conditions.
18

 According to the different experimental methodology used by Harris 

et al., the small differences in the published and our obtained IC50 values were not 

surprising. 

 

 

Figure 50. Overview of the prepared N,5-diaryloxazol-2-amines 2, 189, 190, 191 and 192 together with their 

determined inhibitory activities (if available). 
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The pyrimidin-2-yl, pyrimidin-5-yl and pyrrol-3-yl derivatives (189, 190 and 191) were 

prepared as new compounds and fully characterized. Moreover, 189 and 191 showed high 

inhibitory activities against VEGFR2 TK, especially the activity of 189 reached nearly a 

sub-nanomolar inhibitor level. The higher activities of 189, 191 and also 192 compared to 

the activity of 2 (AAZ) are probably caused by lower polarity of the corresponding 

heterocyclic substituents (according to their dipole moments) interacting in a hydrophobic 

pocket of the VEGFR2 TK active site. The higher activity of 191 could be caused also by 

the additional H-bond of the pyrrol –NH– group with Val912. A binding visualization of 

the inhibitors 189 and 191 in the ATP-binding site of VEGFR2 TK is depicted on the 

following figure. (Figure 51) 

 

 

Figure 51. Interaction analysis and binding positions of the pyrimidin-2-yl inhibitor 189 and its pyrrol-3-yl 

analogue 191 in the ATP-binding site of VEGFR2 TK obtained by docking. 

 

Within the synthesis of the key N,4-diaryloxazol-2-amine precursor 205, we found out the 

commonly published synthetic procedures are not suitable for its preparation. The HCl-

catalyzed cyclization reaction of arylurea 203 with α-bromoacetophenone 198 in refluxing 

EtOH led to the formation of 1,5-diarylimidazolidine-2,4-dione product 204 instead of the 
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expected precursor 205. It have to be mentioned that the preparation of 1,5-

diarylimidazolidine-2,4-diones under the conditions discussed above has not been 

described in the literature. The compound 204 was later transformed to the pyridin-2-yl 

and pyrrol-3-yl derivatives 206 and 207. A biological activity (IC50, VEGFR2 TK) of these 

compounds was examined by Reaction Biology Corp., USA providing a negative result. 

An activity of 206 and 207 is planned to be predicted and tested also on different 

appropriate biological targets. An overview of the prepared 1,5-diarylimidazolidine-2,4-

dione derivatives is depicted below. (Figure 52) 

 

 

Figure 52. Overview of the prepared 1,5-diarylimidazolidine-2,4-dione derivatives 206 and 207. 

 

With regard to the unsuccessful synthesis of the N,4-diaryloxazol-2-amine precursor 205 

using published procedures, we applied the reaction conditions developed for the 

preparation of 1,4-disubstitued oxazoles from amides and α-bromoketones. Using the 

AgOTf-mediated reaction of arylurea 203 with α-bromoacetophenone 198 in refluxing EA 

(abs), we prepared the required compound 205 in ca 10 % yield (
1
H-NMR, crude). 

Currently, we are working on the further optimization of the reaction. 

Summing-up the RegBio project, the proposed N,5-diaryloxzole-2-amine derivatives 2, 

189, 190, 191 and 192 were prepared and biologically screened with very good results 

while the synthesis of their regioisomeric N,4-diaryoxazole-2-amine analogues 3, 193, 194, 

195 and 196 is still in progress. Because of the missing biological data, we are currently 

not able to make the final activity comparison between the proposed regioisomeric pairs 

and evaluate our theory of Regioisomeric bioisostery. However, the obtained synthetic 

achievements and the outstanding assay results encourage us for the project finalization. 
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7. Project – Salt bridge containing pocket (SBCP) 

 

Twenty-two derivates of N,5-diaryloxazol-2-amine (1) (included 2 (AAZ))
 

with 

determined enzymatic (IC50, VEGFR2 TK) and cellular (IC50, hu-HUVEC / VEGF) 

activities were described.
6
 Five of them were substituted on the oxazole attached phenyl 

ring on its p-position (4-Cl, 4-CN, 4-CONH2, 4-OMe and 4-F). The derivatives containing 

an ionizable substituent, resp. a substituent able to form an H-bond interaction showed 

noticeable increase in the inhibitory activity. All the mentioned p-substituents were 

projected towards a small Salt bridge containing pocket (SBCP) that we discovered 

recently in a unique DFG-IN / OUT conformation of VEGFR2 TK induced by the N,5-

diaryloxazol-2-amine-type of ligands. The SBCP pocket (consisting of Lys866, Glu883 

and Phe1045 amino acid residues) represents an important interaction region over the 

ATP-binding site of the kinase. No discussion about the interactions within this pocket and 

their influence on the activity of potential inhibitors was noted in the literature. (Figure 53) 

 

 

 

Figure 53. Interaction analyses, activities and predicted binding positions of 2 (AAZ) and 208 in the 

VEGFR2 TK ATP-binding site with highlighted SBCP region. 
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Figure 53 cont. Interaction analysis, activity and predicted binding position of 209 in the VEGFR2 TK ATP-

binding site with highlighted SBCP region. 

 

The SBCP project is focused on the development of a novel series of p-substituted N,5-

diaryloxazol-2-amine compounds 208, 209, 210, 211, 212, a series of their m-substituted 

analogues 213, 214, 215, 216, 217 (Figure 54) and subsequent comparative analysis of 

their binding interactions and determined inhibitory activities (IC50, VEGFR2 TK). 

 

 

Figure 54. Series of predicted N,5-diaryloxazol-2-amines substituted in p-position 208, 209, 210, 211, 212 

and their m-substituted analogues 213, 214, 215, 216 and 217. 

 

Besides that we aimed to develop a series of predicted structurally related compounds 218, 

219, 220, 221, 222 and 223 containing a suitable heterocyclic substituent in the m-position 

allowing to get besides the beneficial hydrophobic interactions known for 2 (AAZ) also 

additional H-bond, resp. ionic interactions in the SBCP. With the same intention we aimed 
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to prepare a pair of N,5-diaryloxazol-2-amines 4, 224 containing both suitable p- and m-

substituents possibly resulting in the synergic binding. (Figure 55) 

 

 

Figure 55. Series of predicted N,5-diaryloxazol-2-amines substituted in m-position 218, 219, 220, 221, 222, 

223 or p- and m-position 4, 224 together with their docking score. 

 

7.1. Synthesis of p-substituted N,5-diaryloxazol-2-amines 

208, 209, 210, 211, 212 

 

Based on information from the databases (Reaxys, SciFinder) and primary scientific 

literature we designed a preparation of the predicted p-substituted N,5-diaryloxazol-2-

amines 208 – 212. 

The synthesis of 208 and 209 originated from a commercially available 4-(2-

bromoacetyl)benzonitrile (225) which was transformed to its azide derivative 226 using 

NaN3 in a mixture of acetone / H2O in 84 % yield. A PPh3-mediated thermal cyclization of 

226 with isothiocyanate 105 in dioxane (abs) provided the target oxazol derivative 208 in 

54 % yield. The similar preparation of 208 in CH2Cl2 (abs) at RT has been previously 

published with only 6 % yield.
6
 The proposed mechanism of the cyclization is depicted in 

the chapter 6.1. A procedure for the preparation of the oxazole 209 started from the nitrile 

225 which was transformed to amide 227 by a thermal acid hydrolysis in a mixture of TFA 

/ H2SO4 (4 / 1) in 92 % yield. A reaction of 227 with NaN3 in a mixture of acetone / H2O 

yielded 91 % of azide 228 which was then used in the oxazolation reaction with the 

isothiocyanate 105 providing the target oxazole 209 in 31 % yield. (Scheme 30) The 
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compound 209 can be prepared also directly from 208 by the thermal hydrolysis in TFA / 

H2SO4 (4 / 1) in ca 90 % yield.  

 

 

Scheme 30. Synthesis of p-substituted N,5-diaryloxazol-2-amines 208 and 209. 

 

The synthesis of 210, 211 and 212 started from a commercially available methyl 4-

acetylbenzoate (229) which was transformed to its bromo derivative 230 by 

trimethylphenylammonium tribromide in THF (abs) in 66 % yield. The compound 230 was 

then used in a reaction with NaN3 in a mixture of acetone / H2O yielding 87 % of azide 

231. The target oxazolester 210 was prepared by the thermic PPh3-mediated oxazolation 

reaction of 231 with the isothiocyanate 105 in 67 % yield. The oxazolester 210 was 

transformed to the target oxazolecarboxylic acid 211 by a thermal hydrolysis with 

LiOH.H2O in a mixture of THF / H2O in 80 % yield. Our original attempts to prepare the 

oxazolehydroxamic acid derivative 212 were through a direct reaction of the oxazole ester 
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210 with NH2OH.HCl in the presence of KOH in MeOH (abs)
130

 or by a reaction of 

oxazolecarboxylic acid 211 with NH2OH.HCl in the presence of NMM and T3P (50 % 

w/w in EA) in CH3CN (abs).
131

 Both of the above reactions provided a mixture of 211 and 

212 which was very difficult to purify by FLC or by crystallization. Finally we decided to 

perform an amide coupling reaction of the oxazolecarboxylic acid 211 with BnONH2.HCl, 

HOBt, EDC.HCl and Et3N in CH2Cl2 (abs) providing benzyl-protected oxazolehydroxamic 

acid 232 in 79 % yield. The intermediate 232 was purified by FLC and the isolated product 

was deprotected by hydrogenolysis in the presence of 10 % Pd / C in MeOH (abs) yielding 

60 % of the target oxazolehydroxamic acid 212. (Scheme 31) 

 

 

Scheme 31. Synthesis of p-substituted N,5-diaryloxazol-2-amines 210, 211 and 212. 
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7.2. Synthesis of m-substituted N,5-diaryloxazol-2-amines 

213, 214, 215, 216, 217 

 

A synthetic approach leading to the preparation of m-substituted N,5-diaryloxazol-2-

amines 213, 215, 216 and 217 was inspired by the synthesis of their p-substituted 

analogues. A synthesis of the derivative 214 was more specific and required further 

literature research. 

The synthesis of 213 started from a commercially available 1-(3-bromophenyl)ethanone 

(197) which was transformed to benzonitrile 233 using a Pd-catalyzed cyanation with 

Zn(CN)2 in DMF (abs) in 96 % yield. The compound 233 was treated with trimethylphenyl 

ammonium tribromide in THF (abs) providing its bromo derivative 234 in 90 % yield. The 

compound 234 was then used in a reaction with NaN3 in a mixture of acetone / H2O 

yielding 75 % of azide 235. The target oxazole benzonitrile 213 was prepared by the 

thermic PPh3-mediated heterocyclization of 235 with the isothiocyanate 105 in 38 % yield. 

The similar synthesis of 213 in CH2Cl2 (abs) at RT has been previously published in the 

literature with in only 1 % yield.
6
 The reduction of 213 to the oxazoleamine 214 was 

carried out using a standard catalytic hydrogenation in the presence of 10 % Pd / C and 

HCl in MeOH (abs)
132

 or by a non-catalytic reaction with LiAlH4 in THF (abs).
133

 After 

performing these reactions we observed serious problems with the reactivity of 213 and 

low stability of the oxazoleamine 214 (as free amine) resulting in the formation of mixtures 

containing many unidentified products with only a very small content of 214. The 

successful synthesis of the oxazoleamine hydrochloride 214 was done in 72 % yield by a 

fluoride activated hydrosilylation of 213 with PhSiH3 and TBAF in toluene (abs) followed 

by a hydrolysis with 1 M HCl in MeOH. (Scheme 32) 

 

                                                 
132

 Vidal Juan, B.; Forns Berenguel, M. P.; Castillo Mcquade, M.; Erra Sola, M.; Mir Cepeda, M. Almirall, 

S.A. 2012, WO2012/41476, A1. 
133

 Beesu, M.; Caruso, G.; Salyer, A. C. D.; Khetani, K. K.; Sil, D.; Weerasinghe, M.; Tanji, H.; Ohto, U.; 

Shimizu, T.; David, S. A. J. Med. Chem. 2015, 58, 7833 – 7849. 
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Scheme 32. Synthesis of m-substituted N,5-diaryloxazol-2-amines 213, 214. 

 

The synthesis of 215 – 217 started from a commercially available methyl 3-acetylbenzoate 

(236) which was transformed to its bromo derivative 237 by trimethylphenylammonium 

tribromide in THF (abs) in 76 % yield. The compound 237 was then used in a reaction with 

NaN3 in a mixture of acetone / H2O yielding 58 % of azide 238. The target oxazolester 215 

was prepared by the thermic PPh3-mediated heterocyclization of 238 with the 

isothiocyanate 105 in 58 % yield. The oxazolester 215 was then transformed to the target 

oxazolecarboxylic acid 216 by a thermal hydrolysis with LiOH.H2O in a mixture of THF / 

H2O in 97 % yield. 

The compound 216 was converted in the amide coupling reaction with BnONH2.HCl, 

HOBt, EDC.HCl and Et3N in CH2Cl2 (abs) to benzyl-protected oxazolehydroxamic acid 

239 in 67 % yield. The intermediate 239 was purified by FLC and the isolated product was 

deprotected by hydrogenolysis in the presence of 10 % Pd / C in MeOH (abs) yielding 67 

% of the pure target oxazolehydroxamic acid 217. (Scheme 33) 
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Scheme 33. Synthesis of m-substituted N,5-diaryloxazol-2-amines 215, 216 and 217. 

 

7.3. Synthesis of m-substituted heterocyclic N,5-diaryl 

oxazol-2-amines 218, 219, 220, 221, 222, 223 

 

A preparation of the m-substituted heterocyclic N,5-diaryloxazol-2-amines 218 – 221 

started from the coupling precursor 107 successfully used also for the preparation of the 

compounds 2, 189, 190, 191 and 192 within the project RegBio. (Scheme 25) 

The compound 218 was prepared in 50 % yield by quite unconventional direct coupling 

reaction of 107 with imidazole (240). The reaction was performed in the presence of 

Pd(OAc)2 and CuI in DMF (abs) at 150 °C. The mechanism of this reaction is probably 

very similar to the Sonogashira coupling. The compound 219 was prepared in 80 % yield 
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by the Stille coupling reaction of 107 with organostannane 241 in the presence of 

Pd(PPh3)4 and Bu4NBr in CH3CN (abs). The compounds 220 and 221 were prepared by the 

Suzuki coupling reaction of 107 with boronic acid 242, resp. boronic acid pinacol boronate 

243 in the presence of Pd(PPh3)4 and Na2CO3 in a mixture of DMF / H2O in 90 %, resp. 83 

% yield. All the utilized heterocyclic coupling reagents were obtained from commercial 

sources. (Scheme 34) 

  

 

Scheme 34. Synthesis of m-substituted N,5-diaryloxazol-2-amines 218, 219, 220 and 221. 
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Because of a limited availability of any 1H-imidazol-4-yl containing Stille or Suzuki 

coupling reagents and our unsuccessful attempts to perform the Miyaura borylation on 4-

bromo-1H-imidazole (246) or its Boc-protected derivative 247 (only starting material was 

isolated), we decided to choose an opposite approach. We prepared a Suzuki coupling 

precursor 245 by the reaction of 107 with bis-(pinacolato)diboron (244) in the presence of 

PdCl2(dppf) and KOAc in toluene (abs) in 84 % yield. Then we performed several test 

coupling reactions of 245 with 4-bromo-1H-imidazole (246) or with its Boc-protected 

derivative 247. The reactions were examined under either specific conditions developed for 

Suzuki couplings of halo imidazoles (Pd(OAc)2, CataCXiumA, K2CO3, dioxane / H2O, 90 

°C, 15 h)
134

 or under the standard conditions we previously used for Suzuki couplings 

(Pd(PPh3)4, Na2CO3, DMF / H2O, 100 °C, 15 h). Despite we detected the desired product 

222 (always without the Boc-group) in the crude mixture; a homocoupling product of 245 

was formed in the reaction prevailingly. Moreover because of the high polarity of 222 and 

relatively high basicity of imidazole derivatives in general (pKa of the conjugated acid of 

imidazole is approximately 6.95), we have not managed to perform an effective 

purification by FLC (SiO2). The preparation of 222 is currently under optimization. 

(Scheme 35) 

 

 

Scheme 35. Synthesis of m-substituted N,5-diaryloxazol-2-amine coupling precursor 245. 
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An originally designed synthesis for the preparation of the triazole 223 originated from the 

compound 107 subsequently transformed by the Sonogashira coupling to its acetylene 

derivative which was meant to be transformed to the final product 223 by CuI-mediated 

click reaction with trimethylsilyl azide at 100 °C.
135

 The synthesis failed in the last step 

because of low thermic stability of the acetylene derivative. 

According to information from the literature, we designed a new synthetic procedure 

starting from the bromoacetophenone 197 which was transformed to acetylene derivative 

248 in 61 % by the Sonogashira coupling reaction followed by a TMS deprotection. A 

click reaction of 248 with previously prepared azide derivative 187 in the presence of 

CuSO4.5H2O and sodium L-ascorbate in a mixture of CH2Cl2 / H2O provided p-

methoxybenzyl-protected triazole 251 in 82 % yield. (Scheme 36) α-Brominated product 

252 was then synthesized by a reaction of 251 with trimethylphenylammonium tribromide 

in THF (abs) in 71 % yield. The compound 252 was used in a reaction with NaN3 in a 

mixture of acetone / H2O yielding 77 % of azide 253. The target triazole 223 was prepared 

by the thermic PPh3-mediated heterocyclization of 253 with the isothiocyanate 105 (64 % 

yield) followed by a p-methoxybenzyl deprotection in refluxing TFA (51 % yield). 

(Scheme 36 cont.) 

 

 

Scheme 36. Synthesis of p-methoxybenzyl-protected triazole 251. 
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Scheme 36 cont. Synthesis of m-substituted N,5-diaryloxazol-2-amine 223. 

 

7.4. Synthesis of p,m-disubstituted heterocyclic N,5-diaryl 

oxazol-2-amines 4, 224 

 

A synthesis of p,m-disubstituted heterocyclic N,5-diaryloxazol-2-amines 4 and 224 was 

performed only in a small scale due to the problems with stability, purification and 

characterization of some intermediates and therefore it has to be further optimized. This is 

the reason why this synthesis is not regularly presented in the experimental part of the 

thesis. 

The synthetic procedure started with a transformation of aminoethanone 255 to 

benzonitrile 256 by a two-stage diazotation reaction in the presence of 
t
BuONO, BF3.Et2O 

in CH2Cl2 and CuCN, NaCN in H2O. The compound 256 was isolated in 65 % yield. A 

following bromination of 256 was performed by Br2 in CHCl3 yielding 81 % of compound 

257. Azide derivative 258 was prepared from 257 treated with NaN3 in MeOH. Because of 

a low stability of 258 resulting into very problematic FLC purification, a yield of this 

reaction was only estimated to 70 % by 
1
H-NMR analysis of the crude product. Oxazole 

intermediate 259 was prepared by the thermic PPh3-mediated heterocyclization of 258 with 

the isothiocyanate 105. A yield of the reaction was estimated to 60 % by 
1
H-NMR analysis 
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of the crude product for the same reasons mentioned above. A Stille coupling reaction of 

259 with organostannane 154 in the presence of Pd(PPh3)4 and LiCl in dioxane (abs) 

provided the target oxazole 4 in 40 % yield. The target oxazole 224 was then prepared by 

an acid hydrolysis of 4 in a mixture of TFA / H2SO4 in 80 % yield. The target products 4 

and 224 were prepared only in a small amount (ca 10 mg each). They were characterized 

by 
1
H-NMR and MS analyses and used directly in the biological assay (IC50, VEGFR2 

TK). (Scheme 37) 

 

 

Scheme 37. Synthesis of p,m-disubstituted N,5-diaryloxazol-2-amines 4 and 224. 
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7.5. Biological activity of the prepared compounds and 

evaluation of the SBCP project 

 

Within the SBCP project we successfully prepared the series of the p-substituted N,5-

diaryloxazol-2-amine derivatives 208 – 212 and their m-substituted analogues 213 – 217. 

We also determined the in vitro inhibitory activity IC50 (VEGFR2 TK) of 208, 209, 210, 

211, 213, 214 and 216. All biological assays were done by Reaction Biology Corp., USA.
19

 

(Chapter 2.2) An activity determination of the m-substituted ester 215 and the pair of 

hydroxamic acids 212, 217 is planned to be carried out soon. (Figure 56 and 57) 

The synthesis and inhibitory activity (IC50, VEGFR2 TK) of the derivatives 208, 209 and 

213 were already published by Harris et al.
6
 We prepared and analyzed these compounds 

as comparative standards for the biological assay verification. The same approach was 

chosen when the RegBio project was evaluated. The p-substituted derivatives 210, 211, 

212 and m-substituted derivatives 214, 215, 216, 217 were prepared as new compounds 

and fully characterized. 

 

 

Figure 56. Overview of the prepared p-substituted N,5-diaryloxazol-2-amines 208, 209, 210, 111 and 212 

together with their inhibitory activities (if available). 
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Figure 57. Overview of the prepared m-substituted N,5-diaryloxazol-2-amines 213, 214, 215, 216 and 217 

together with their inhibitory activities (if available). 

 

We proposed the theory that suitably p-substituted N,5-diaryloxazol-2-amines interacting 

in the SBCP binding region of VEGFR2 TK active site should exhibit an increased 

inhibitory activity. The results obtained from the performed biological assays and 

subsequent comparative study confirmed this suggestion. The tested p-substituted 

benzonitrile 208 and carboxylic acid 211 showed noticeable higher activities than their m-

substituted analogues 213 and 216. Especially the carboxylic acid 211 showed very good 

inhibitory potency. (Figure 58) 

 

 

Figure 58. Interaction analysis, activity and predicted binding position of 211 in the VEGFR2 TK ATP-

binding site. 
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The high inhibitory activity was detected also for the p-substituted amide 209. The m-

substituted derivative 214 containing a terminal amine group showed lower activity that 

was expected. The terminal amine group was chosen because the assumed ability to form a 

cation, π-interaction with Phe1045 in its protonised form. Unfortunately, the low activity 

value of 214 together with its in silico predicted interaction map suggest the protonised 

amine interacts more likely with a polar cytosolic fluid. (Figure 59) 

 

 

Figure 59. Interaction analysis, activity and predicted binding position of 214 in the VEGFR2 TK ATP-

binding site. 

 

Despite of the promising prediction, only p-substituted derivative showing quite low 

activity was the ester 210 (probably because of its lower polarity or adverse steric effect). 

(Figure 60) 

 

 

Figure 60. Interaction analysis, activity and predicted binding position of 210 in the VEGFR2 TK ATP-

binding site. 
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With the aim of better binding examination within the SBCP and the synthesis of wider 

range of VEGFR2 TKIs, we predicted and prepared the series of m-substituted heterocyclic 

N,5-diaryloxazol-2-amines 218, 219, 220, 221, 223 and p,m-disubstituted heterocyclic 

derivatives 4, 224. (Figure 61) We also sucesfully determined a biological activity of the 

derivatives 220, 221, 223, 4 and 224. All biological assays were done by Reaction Biology 

Corp., USA.
19

 (Chapter 2.2) An activity determination of 218 and 219 is planned to be 

carried out soon. 

 

 

Figure 61. Overview of the prepared m-substituted and p,m-disubstituted heterocyclic N,5-diaryloxazol-2-

amines 218, 219, 220, 221, 223, 4 and 224 together with their inhibitory activities (if available). 

 

The compounds 218, 219 and 222 containing the imidazole m-substituent were designed as 

bioisosteres of the m-pyridine derivate 2 (AAZ) discussed within the RegBio project. 

(Chapter 6) Besides of the beneficial interactions in the hydrophobic pocket of VEGFR2 
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TK ATP-binding site known for 2 (AAZ), we expected also an additional induced dipole 

interaction between possibly protonised imidazole nitrogen in position 3 (pKa of the 

conjugated acid is approximately 6.95) and Phe1045. Unfortunately, because the biological 

activities of 218 and 219 are still unknown and the synthesis of 222 is in progress, we are 

not able to confirm this theory. 

The m-substituted pyrazole derivatives 220, 221 and triazole 223 were designed as 

bioisosteres of the m-pyrrole derivative 191 from the RegBio project. (Chapter 6) Besides 

of the previously mentioned interactions in the hydrophobic pocket, we expected also an 

additional H-bond interaction of the heterocyclic –NH– group with Glu833, resp. Val912. 

According to the good inhibitory activities obtained for all three derivatives, our 

expectations could be evaluated positively. We can also assume that the observed slight 

activity decrease is probably caused by higher polarities of 220, 221 and especially 223 in 

comparison with 191. (Figure 62 and 63) 

 

 

 

Figure 62. Interaction analyses, activities and predicted binding positions of 220 and 221 in the VEGFR2 TK 

ATP-binding site. 
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Figure 63. Interaction analysis, activity and predicted binding position of 223 in the VEGFR2 TK ATP-

binding site. 

 

Finally the p,m-disubstituted derivatives 4 and 224 were designed to have a synergic 

interaction pattern combining the hydrophobic interactions of the pyridine substituent in m-

position (known for 2 (AAZ)) and the H-bond, resp. ionic interactions provided by the 

suitable substituent in p-position (known for 208, 209 etc.). After we obtained the 

biological activity results, the proposed synergic effect was confirmed in the nitrile 

derivative 4. An increase of the inhibitory activity of 4 compared to 2 and 208 was 

approximately tenfold. Surprisingly, the activity of the amide derivative 224 was in 

comparison to 2 and 209 significantly decreased. We assume that this activity decrease is 

caused by unfavorable interactions between the amide and pyridine substituent of 224 

(intramolecular H-bond, steric hindrance…) disrupting an ideal active conformation in the 

VEGFR2 TK ATP-binding site. (Figure 64 and 65) 

 

 

Figure 64. Interaction analysis, activity and predicted binding position of 4 in the VEGFR2 TK ATP-binding 

site. 
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Figure 65. Interaction analysis, activity and predicted binding position of 224 in the VEGFR2 TK ATP-

binding site. 

 

Summing-up the SBCP project, the proposed series of p- and m-substituted N,5-

diaryloxzole-2-amine derivatives 208 – 217 were prepared and most of them were 

biologically screened with very good results. We also prepared the series of m-substituted 

and p,m-disubstituted heterocyclic derivates 218, 219, 220, 221, 223, 4, 224 and 

successfully determined the biological activity in the most cases. An optimization of 

syntheses of the imidazole 222 and p,m-disubstituted derivatives 4, 224 is currently in 

progress. As we achieved the good results from the performed biological assays, made the 

interaction analyses and predictions supporting our hypothesis, the SBCP project is going 

to be finalized and published in a short time. 
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8. Project – CLK1 inhibition 

 

Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by 

modulating pre-mRNA splicing in cancer. CLK family kinases are also involved in 

alternative splicing and RNA processing in Duchenne muscular dystrophy, Alzheimer's 

disease, HIV-1, and influenza virus.  

Our research within the CLK1 inhibition project resulted in a discovery of four novel 

CLK1 inhibitors 97, 260, 261 and 98 possessing the N,5-diaryloxazol-2-amine scaffold. 

(Figure 66) The discovery included a determination of the corresponding inhibitory 

activities against CLK1 and some other CMGC kinases, a prediction of CLK binding 

poses, together with synthesis and complete physico-chemical characterization of the 

developed inhibitors. Additionally, analysis of all PDB available CLK structures and their 

ligand interactions were performed. 

As we determined by searching Reaxys / SciFinder database, there are only few powerful 

dual CLK / VEGFR TK inhibitors known in the literature. We proposed that our inhibitors 

have similar binding poses and interactions in CLK1, 3 and VEGFR2 TK mostly due to the 

N,5-diaryloxazol-2-amine pharmacophoric fragment. One of our developed inhibitors (98) 

already proved a good activity against both VEGFR2 and CLK1 enzymes. The research 

and obtained results have been already published in the literature.
77

 The manuscript is 

attached in the corresponding chapter. (Chapter 15) 

 

 

Figure 66. Developed CLK1 inhibitors 97, 260, 261 and 98 together with their biological activities 

determined against some CMGC protein kinases or VEGFR2 TK. 
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Within this dissertation thesis, we developed a methodology for the preparation of an 

important aldehyde precursor 269 which was used in the synthesis of the highly active 

CLK1 inhibitor 261. The synthesis started by a reaction of commercially available ethyl 2-

chloroacetate (262) with ethyl formate (263) in the presence of 
t
BuOK in THF (abs) which 

provided (E)-ethyl 2-chloro-3-hydroxyacrylate (264) in 73 % yield. The compound 264 

was subsequently transformed to 2-aminooxazole 265 by the cyclization reaction with urea 

in H2O in 51 % yield. A diazotation reaction of 265 in the presence of 
t
BuONO, CuCl2 

(abs) in CH3CN yielded 83 % of 2-chlorooxazole 266. An addition-elimination reaction of 

266 with the aniline 122 in 
i
PrOH (abs) provided N-aryloxazol-2-amine derivative 267 in 

65 % yield. An ester group of 267 was then reduced by LiAlH4 in THF (abs) yielding 82 % 

of alcohol derivative 268. The final aldehyde precursor 269 was prepared by an oxidation 

of 268 by MnO2 in CH2Cl2 (abs) in 56 % yield. (Scheme 38) 

 

 

Scheme 38. Synthesis of CLK1 inhibitor precursor 269. 
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9. Project – HCC and HCSCs influencing TKIs 

 

The Hepatocellular Carcinoma (HCC) is the sixth most frequent and second most deadly 

cancer worldwide. HCC patients are resistant to chemotherapy and radiotherapy, because 

conventional therapies can only reduce the bulk of the tumor mass but are unable to 

restrain tumor regrowth and relapse. HCC is a highly heterogeneous tumor in terms of 

morphology and as well as in clinical outcome. 

Bioactivities of quinoides 270 – 274 (Figure 67) and VEGFR2 TKIs 275, 2 (AAZ), 191 

and 15 (Figure 68) were studied on hepatocellular cancer (HCC) and its cancer stem cells 

(HCSCs). The compounds exhibited IC50 values in μM concentrations in HCC cells. The 

quinoid 272 was able to eradicate cancer stem cells, similar to the action of HCSCs killer 

standard - DAPT. However more cytotoxic VEFGR TKIs including sorafenib 15, which is 

the only FDA approved drug for the treatment of HCC, enriched the hepatocellular cancer 

stem cell population 2-3 fold after treatment. An aggressiveness factor (AF) characteristic 

was proposed to estimate a quality of drug candidates for their ability to eradicate CSCs 

sub population. Considering the tumor heterogeneity and HCSCs subpopulation 

enrichment upon TKIs treatment in patients, this study emphasized an importance of the 

chemotherapeutic agent choice synergistically acting on all the tumor subpopulations 

including its CSCs. The research and obtained results have been already published in the 

literature.
79

 The manuscript is attached in the corresponding chapter. (Chapter 15) 

 

 

Figure 67. Chemical structures of the quinoides 270 – 274 together with their inhibitory activities. 
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Figure 68. Chemical structures of the VEGFR2 TKIs 275, 2 (AAZ), 191 and 15 together with their 

inhibitory activities. 

 

Within this dissertation thesis, we prepared the examined series of VEGFR2 TKIs 275, 2 

and 191 (expect of the commercially available sorafenib 15) and proposed the 

aggressiveness factor as the novel drug characteristic. 
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10. Conclusions 

 

Within the project Regioisomeric bioisostery (RegBio) we proposed that the regioisomeric 

N,4-diaryloxazol-2-amine 3 (AAZ-regio) is able to maintain the VEGFR2 TK inhibition 

properties known for the biologically active N,5-diaryloxazol-2-amine 2 (AAZ) (IC50 = 

22.0 nM, VEGFR2 TK, lit.).
6
 Compounds possessing the N,4-diaryloxazole-2-amine 

scaffold represent the novel chemical species and possibly a new class of VEGFR2 TKIs.  

With the goal of proving our theory, we designed a series of variously substituted N,5-

diaryloxazol-2-amines 2 (AAZ), 189, 190, 191, 192 and their N,4-diaryloxazol-2-amine 

analogues 3 (AAZ-regio), 193, 194, 195 and 196. After completion of the synthesis, we 

intended to determine and evaluate their biological activities (IC50, VEGFR2 TK). 

We successfully prepared the series of N,5-diaryloxazol-2-amine derivatives 2, 189, 190, 

191 and 192. We also determined the in vitro inhibitory activity (IC50, VEGFR2 TK) of 2, 

189, 191 and 192. An activity evaluation of the compound 190 is planned to be determined 

soon. The compounds 189 and 191 showed high inhibitory activities against VEGFR2 TK, 

especially the activity of 189 reached nearly a sub-nanomolar inhibitor level.  

We discovered that the published heterocyclizations for the preparation of N,4-

diaryloxazol-2-amine derivatives from arylureas and α-bromoacetophenones provided 1,5-

diarylimidazolidine-2,4-dione 204 when applied on our starting material. According to the 

interesting structure of 204, we prepared and biologically screened the derivatives 206 and 

207. Unfortunately, no inhibitory activity against VEGFR2 TK was detected. 

The N,4-diaryloxazol-2-amine precursor 205 was finally prepared by the AgOTf-mediated 

reaction of arylurea 203 and α-bromoacetophenone 198 in ca 10 % yield (
1
H-NMR, crude). 

Analysis and further optimization of the reaction are currently in progress.   

Because the synthesis of predicted N,4-diaryloxazol-2-amines 3, 193, 194, 195 and 196 is 

not finished, we were not able to make the final comparison of the biological activities and 

evaluate the RegBio theory. However, based on the positive synthetic and biological 

results, the project is going to be finished in a short time. 

 

Within the project Salt bridge containing pocket (SBCP) we discovered the specific 

intermediate conformation DFG-IN / OUT of VEGFR2 TK which can be stabilized by the 

interaction with N,5-diaryloxazol-2-amine ligands. In this conformation a new binding 

region in the VEGFR2 TK is created. We named this domain the Salt bridge containing 



Conclusions 

156 

pocket (SBCP) because the present Lys866 and Glu833 residues are able to participate on 

the additional salt bridge, resp. H-bond interaction. According to our observations and 

information form the available literature, we proposed that suitably p-substituted 

derivatives of N,5-diaryloxazol-2-amine should posses an increased inhibitory activity.  

With the aim of the further exploitation of the VEGFR2 TK and evaluation of the SBCP 

hypothesis, we focused on the development of p-substituted derivatives of N,5-

diaryloxazol-2-amine 208 – 212, their m-substituted analogues 213 – 217 and subsequent 

comparative analysis of their inhibitory activities. We also developed a series of m-

substituted heterocyclic N,5-diaryloxazol-2-amine derivatives 218 – 223 possibly showing 

the hydrophobic interactions known for 2 (AAZ) and also the H-bond, resp. ionic 

interactions in the SBCP. With the same intention, we aimed to prepare a pair of N,5-

diaryloxazol-2-amines 4, 224 containing both a suitable p-substituent and a heterocyclic m-

substituent hopefully resulting in the synergic kinase binding.  

The both series of p-substituted derivatives 208 – 212 and their m-substituted equivalents 

213 – 217 were successfully prepared. Inhibitory activities (IC50, VEGFR2 TK) of 208, 

209, 210, 211, 213, 214 and 216 were determined. An activity determination of the m-

substituted ester 215 and the pair of hydroxamic acids 212, 217 is planned to be carried out 

soon. The results obtained from the biological assays and subsequent comparative studies 

suggest that our hypothesis was right. The tested p-substituted benzonitrile 208 and 

carboxylic acid 211 showed noticeable higher activities than their m-substituted analogues 

213 and 216. Especially the carboxylic acid 211 showed very good inhibitory potency. The 

high inhibitory activity was detected also for the p-substituted amide 209. 

We prepared the series of m-substituted heterocyclic N,5-diaryloxazol-2-amines 218, 219, 

220, 221, 223 and p,m-disubstituted heterocyclic derivatives 4, 224. We determined a 

biological activity of the derivatives 220, 221, 223, 4 and 224. An activity determination of 

218 and 219 will be carried out soon. The m-substituted pyrazole derivatives 220, 221 and 

triazole 223 were expected to interact in the hydrophobic pocket and to exhibit an 

additional H-bond with Glu833 from the SBCP, resp. Val912. According to the good 

inhibitory activities obtained for all three derivatives, our expectations could be evaluated 

positively. Finally the p,m-disubstituted derivatives 4 and 224 were designed to have a 

synergic interaction pattern combining the hydrophobic interactions of the pyridine 

substituent in m-position and the H-bond, resp. ionic interactions in the SBCP provided by 

the substituent in p-position. After we obtained the biological activity values, we observed 

the proposed synergic effect on the nitrile derivative 4 resulting in the high inhibitory 
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activity. Surprisingly, the activity of the amide derivative 224 was significantly low. We 

assumed that this activity decrease is caused by unfavorable interactions between the 

amide and pyridine substituent of 224 (intramolecular H-bond, steric hindrance…) 

disrupting an ideal active conformation in the VEGFR2 TK ATP-binding site. 

 

The CLK1 inhibition project resulted in a discovery of four novel CLK1 inhibitors 97, 260, 

261 and 98 possessing N,5-diaryloxazol-2-amine skeleton. Moreover one of our developed 

inhibitors (98) proved a good activity against both CLK1 and VEGFR2 TK enzymes. 

Within this dissertation thesis, we developed a methodology for the preparation of an 

important aldehyde precursor 269 which was used in the synthesis of the highly active 

CLK1 inhibitor 261. These research results have been already published in the literature.
77

 

 

Within our last project, bioactivities of quinoides 270 – 274 and VEGFR2 TKIs 275, 2 

(AAZ), 191 and 15 were studied on hepatocellular cancer (HCC) and its cancer stem cells 

(HCSC). The compounds exhibited IC50 values in μM concentrations in HCC cells. 

Quinoid 272 was able to eradicate cancer stem cells, similar to the action of HCSCs killer 

standard - DAPT. However more cytotoxic VEFGR TKIs including sorafenib 15, which is 

the only FDA approved drug for the treatment of HCC, enriched the hepatocellular cancer 

stem cell population 2-3 fold after treatment. An aggressiveness factor (AF) characteristic 

was proposed to estimate a quality of novel drug candidates for their ability to eradicate 

CSCs sub population. Within this dissertation thesis, we prepared the examined series of 

VEGFR2 TKIs 275, 2 and 191 (expect of the commercially available sorafenib 15) and 

proposed the aggressiveness factor characteristic. These research results have been already 

published in the literature.
79

 

 

Summing up the dissertation thesis, we prepared 61 compounds (including the synthesis of 

4 and 224) from which 36 were new. From 28 predicted final compounds, we prepared 22 

while 16 of them were biologically examined (IC50, VEGFR2 TK) with outstanding 

results. The compounds 189, 191, 211, 214, 220, 221, 223 and 4 exhibited the activity 

under 500 nM. 
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11. Discussion and conclusions in French 

 

Ce travail de thèse s’articule autour du squelette diaryloxazole-2-amine qui a été utilisé 

comme « core central » des dérivés possédant une activité VEGFR2 TKIs. Ces composés 

ont été synthétisés dans le cadre de quatre projets : RegBio, SBCP, CLK1 et HCC. 

 

11.1. Projet – Regioisomeric bioisostery (RegBio)  

 

Dans le cadre du premier projet « bioisostérie régioisomérique » (RegBio) nous avons 

proposé que le composé N,4-diaryloxazol-2-amine 3 (AAZ-regio), régioisomère du 

composé biologiquement actif connu N,5-diaryloxazol-2-amine 2 (AAZ)
128

 (IC50 = 22.0 

nM, VEGFR2 TK, lit.)
6
 soit capable de conserver les propriétés inhibitrices du VEGFR2 

TK de ce dernier. Les composés possédant le squelette N,4-diaryloxazole-2-amine 

représentent de nouvelles espèces chimiques non protégées et potentiellement une nouvelle 

classe d’inhibiteurs de VEGFR2 TKs. (Figure 45 et 46) 

 

 

Figure 45. Bioisostérie régioisomérique - le changement régioisomérique approprié dans 2 (AAZ) suivi par 

le changement de conformation conduit au bioisostère 3 (AAZ-regio). 
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Figure 46. Les positions de liaison de l'inhibiteur 2 (AAZ) et de son analogue régioisomère 3 (AAZ-regio) 

dans le site actif de VEGFR2 TK. 

 

Afin de prouver notre hypothèse, nous avons fait le design in silico d’une série de N,5-

diaryloxazol-2-amines 2 (AAZ), 189 – 192 et de N,4-diaryloxazol-2-amines 3 (AAZ-

regio), 193 – 196 différemment substituées. Après complétion de leur synthèse, nous avons 

évalué leur activité biologique (IC50, VEGFR2 TK). Nous avons préparé avec succès une 

série de cinq dérivés N,5-diaryloxazol-2-amines 2 (AAZ), 189, 190, 191, 192 et déterminé 

l’activité inhibitrice in vitro (IC50, VEGFR2 TK) de quatre d’entre eux 2 (AAZ), 189, 191 

et 192. L’activité du dérivé 190 est en cours d’évaluation. (Figure 69) 

 

 

Figure 69. Vue d’ensemble des N,5-diaryloxazol-2-amines 2 (AAZ), 189 – 192 et des N,4-diaryloxazol-2-

amines 3 (AAZ-regio), 193 – 196 conçues in silico, synthétisées ou en cours de synthèse ainsi que leur 

activité inhibitrice (si disponible). 
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Les composés 189 et 191 ont montré une acitivité inhibitrice VEGFR2 TK importante, et 

tout spécialement 189 qui atteint le niveau sub-nanomolaire. (Figure 51) 

 

 

Figure 51. Analyse d'interaction, activité et position de liaison prédite de 189 et 191 dans le site actif de 

VEGFR2 TK. 

 

Sur la base des informations provenant des bases de données (Reaxys, SciFinder) et de la 

littérature scientifique primaire, nous avons conçu des procédures de synthèse des N,5-

diaryloxazol-2-amines 2 (AAZ), 189 – 192. 

Dans la première partie de la synthèse, un précurseur 107 d'oxazole important a été 

préparé. Sa préparation provient de l'aniline 122 qui a été développée dans notre groupe 

scientifique. Le composé 122 a été transformé en isothiocyanate 105 par CSCl2 et ensuite 

utilisé dans une réaction de cyclisation thermique médiée par PPh3 avec de l'α-

azidoacétophénone 106 fournissant le précurseur cible d'oxazole 107. (Schème 23)  
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Schème 23. Synthèse du précurseur de N,5-diaryloxazol-2-amine 107. 

 

La réaction d'hétérocyclisation a été optimisée dans notre groupe et utilisée efficacement 

pour la synthèse de plusieurs dérivés différents de N,5-diaryloxazol-2-amines. Le 

mécanisme de réaction proposé a déjà été publié et il est représenté sur le schème ci-

dessous.
82

 (Schème 24) 

Dans le mécanisme proposé de formation d'oxazol M6, PPh3 réagit avec l'α-

azidoacétophénone M1 pour former un azaylide organique M3 analogiquement à la 

réaction de Staudinger. L'azaylide M3 formé attaque l'isothiocyanate organique M2 

fournissant carbodiimide M5-1. Le composé M5-1 forme ensuite sa forme énol M5-2, qui 

subit une cyclisation menant au produit oxazol M6. 
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Schème 24. Proposed mechanism of the reaction providing N,5-diaryloxazol-2-amine derivative M6. 

 

La deuxième partie de la synthèse menant aux N,5-diaryloxazol-2-amines 2 (AAZ), 189 – 

192 a été réalisée avec succès par une réaction de couplage du précurseur 107 avec un 

réactif de couplage hétérocyclique approprié. 

Les composés 2 (AAZ), 189 et 190 ont été préparés par la réaction de couplage de Stille de 

107 avec les organostannanes 154, 199 et 200 en présence de Pd(PPh3)4 et Bu4NBr dans 

CH3CN (abs). (Schème 25) En raison de l'utilisation ultérieure d'organostannanes 

hautement toxiques, d'une bonne disponibilité commerciale de réactifs de couplage 

boronique appropriés et de notre tentative de finalisation de la synthèse dans le plus court 

délai possible, nous avons décidé d'utiliser la réaction de couplage de Suzuki pour la 

préparation de 191 et 192. Le composé 191 a été préparé par la réaction de couplage de 

107 avec le borate de pinacol 201 en présence de Pd(PPh3)4 et de Na2CO3. Le composé 192 

a été préparé par la réaction de couplage de 107 avec le borate de MIDA 202 en présence 

de Pd(OAc)2, SPhos et K3PO4. (Schème 25 cont.) 
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Schème 25. Synthèse des N,5-diaryloxazol-2-amines 2 (AAZ), 189 et 190. 

 

 

Schème 25 cont. Synthèse des N,5-diaryloxazol-2-amines 191 et 192. 
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Au cours de la synthèse des dérivés 3 (AAZ-regio), 193 – 196, nous avons découvert que 

l’hétérocyclisation, publiée dans la littérature,
89

 d’acylurées avec des α-bromo-

acétophénones donne sur notre substrat, non pas sur la N,4-diaryloxazol-2-amine 205 

escomptée mais sur la 1,5-diarylimidazolidine-2,4-dione 204. (Schème 26) 

 

 

Schème 26. Synthèse inattendue du précurseur 1,5-diarylimidazolidine-2,4-dione 204. 

 

La structure de 204 a été confirmée par les méthodologies analytiques standards (
1
H-RMN, 

13
C-RMN, IR, MS, analyse élément.) et aussi par la spectroscopie à rayons X. (Figure 49) 

 

 

Figure 49. La structure et l'agencement moléculaire du (rac) 204-syn prouvé par la spectroscopie à rayons X.  
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Le mécanisme proposé de la cyclisation conduisant à des dérivés de 1,5-

diarylimidazolidine-2,4-dione est représenté sur le schème ci-dessous. (Schème 27) 

L'α-bromoacétophénone M7 est dans la réaction de dismutation catalytique thermodifiée 

par le HCl transformée en acétophénone M8 et α, α-dibromoacétophénone M9. Une 

présence significative de M8 et M9 dans un mélange réactionnel après plusieurs heures de 

chauffage a été prouvée par des analyses de CCM et de 
1
H-RMN. Le composé M9 réagit 

par la suite avec le dérivé d'urée M10 fournissant un intermédiaire M12 qui subit la 

réaction de cyclisation menant à la formation du dérivé 1,5-diarylimidazolidine-2,4-dione 

(rac) M15-syn. 

 

 

Schème 27. Mécanisme proposé de la réaction conduisant au dérivé 1,5-diarylimidazolidine-2,4-dione (rac) 

M15-syn. 
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Etant donné la structure intéressante de 204 et son potentiel d'activité biologique, les 

dérivés 206 et 207 ont été synthétisés par une réaction de couplage de 204 avec les réactifs 

hétérocycliques 154 et 201. Le composé 206 a été préparé dans des conditions de réaction 

de couplage de Stille de 204 avec du stannane 154 et le composé 207 a été préparé en 

utilisant le couplage de Suzuki de 204 avec le borate de pinacol 201. (Schème 26 cont.) 

 

 

Schème 26 cont. Synthèse non planifiée du précurseur 1,5-diarylimidazolidine-2,4-dione 204 et de ses 

dérivés 206 et 207. 

 

Après nos tentatives infructueuses de suivre les procédures de la littérature et de 

synthétiser le précurseur de N,4-diaryloxazol-2-amine 205 pour la préparation des dérivés 

prédits 3 (AAZ-regio), 193 – 196, nous avons dû repenser notre approche synthétique et 

développer notre propre synthèse. 

Le précurseur de la N,4-diaryloxazol-2-amine 205 a été finalement préparé avec 10% de 

rendement isolé en catalysant la condensation de l’arylurée 203 avec l’α-bromo-

acétophénone 198 avec du triflate d’argent.
129

 Nous essayons actuellement d’optimiser 

cette réaction. (Schème 28) Le mécanisme proposé de la cyclisation menant aux dérivés de 

N,4-diaryloxazol-2-amine est représenté sur le schème ci-dessous. (Schème 29) Le dérivé 

d'urée M10 attaque nucléophilement le groupe carbonyle de l'α-bromoacétophénone M7 

qui conduit à la formation d'un M16 intermédiaire. Après la cyclisation thermique médiée 
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par Ag et l'élimination subséquente de l'eau, on forme le dérivé final N,4-diaryloxazol-2-

amine M18. 

 

 

Schème 28. Synthèse du précurseur de N,4-diaryloxazol-2-amine 205. 

 

 

Schème 29. Mécanisme proposé de la réaction menant au dérivé N,4-diaryloxazol-2-amine M18. 
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La synthèse des N,4-diaryloxazol-2-amines 3 (AAZ-regio), 193 – 196 conçues in silico 

n’étant pas terminée, nous ne disposons pas encore des données biologiques nous 

permettant de valider notre hypothèse RegBio. Néanmoins, des progrès synthétiques 

réalisés récemment au laboratoire nous permettrons de finir ce projet à court terme.  
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11.2. Projet – “Salt bridge containing pocket” (SBCP) 

 

Dans le cadre du deuxième projet “Salt bridge containing pocket” (SBCP), nous avons 

découvert une conformation intermédiaire spécifique DFG-IN / OUT de VEGFR2 TK qui 

peut être stabilisée par des interactions avec des ligands N,5-diaryloxazol-2-amines. Dans 

cette conformation, une nouvelle région de binding dans le VEGFR2 TK est créée. Nous 

avons nommé ce domaine Salt bridge containing pocket (SBCP) parce que les résidus 

Lys866 et Glu833 présents peuvent participer à des interactions supplémentaires. 

Conformément à nos observations et aux informations de la littérature, nous avons proposé 

que des dérivés de N,5-diaryloxazol-2-amine p-substitués judicieusement sélectionnés 

devraient posséder une activité inhibitrice accrue.
6
  

Ainsi, nous nous sommes concentrés sur le développement des dérivés p-substitués de N,5-

diaryloxazol-2-amine 208 – 212 ainsi que de leur analogues m-substitués 213 – 217 afin de 

comparer leur activité inhibitrice. Les deux séries de dérivés p-substitués et leurs 

équivalents m-substitués ont été préparées. Les activités inhibitrices (IC50, VEGFR2 TK) 

de 208, 209, 210, 211, 213, 214 et 216 ont été déterminées. Celle des dérivés m-substitués 

215 et des acides hydroxamiques 212, 217 est en cours d’évaluation. (Figure 70) 

 

 

Figure 70. Vue d’ensemble des N,5-diaryloxazol-2-amines p-substituées 208 – 212 et de leurs analogues m-

substitués 213 – 217 conçus in silico avec leur activité inhibitrice (si disponible). 
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Les résultats obtenus jusqu’à présent suggèrent que notre hypothèse est juste. En effet les 

dérivés p-substitutés par un benzonitrile 208 ou un acide carboxylique 211 montrent de 

bien meilleures activités que leur analogues m-substitués 213 et 216. En particulier, l’acide 

carboxylique 211 s’avère très actif. (Figure 71) 

 

 

 

Figure 71. Analyse d'interaction, activité et position de liaison prédite des dérivés d'acide carboxylique 211 

et 216 dans le site actif de VEGFR2 TK. 

 

Sur la base des informations provenant des bases de données (Reaxys, SciFinder) et de la 

littérature scientifique primaire, nous avons conçu une préparation des dérivés p-substitués 

de N,5-diaryloxazol-2-amine 208 – 212. 

La synthèse de 208 provient du carbonitrile 225 disponible dans le commence qui a été 

transformé en son dérivé d'azide 226. Une cyclisation thermique médiée par PPh3 de 226 

avec l'isothiocyanate 105 a fourni le dérivé oxazol cible 208. Une procédure pour la 

préparation de l'oxazole 209 a commencé à partir du nitrile 225 qui a été transformé en 
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amide 227 par une hydrolyse d'acide thermique. Une réaction de 227 avec NaN3 avait 

conduit à l'azide 228 qui a ensuite été utilisé dans la réaction d'oxazolation avec 

l'isothiocyanate 105 fournissant l'oxazole cible 209. (Schème 30) 

 

 

Schème 30. Synthèse des N,5-diaryloxazol-2-amines p-substituées 208 et 209. 

 

La synthèse de 210, 211 et 212 a commencé à partir d'un 4-acétylbenzoate de méthyle 

commercialisé (229) qui a été transformé en son dérivé bromo 230. Le composé 230 a 

ensuite été utilisé dans une réaction avec NaN3 fournissant l'azide 231. L'oxazolester cible 

210 a été préparé par l'oxazolation thermique à médiation par PPh3 de 231 avec 

l'isothiocyanate 105. Le oxazolester 210 a été transformé en acide oxazolecarboxylique 

cible 211 par une hydrolyse thermique avec LiOH.H2O. Finalement, nous avons effectué 

un couplage amide de l'acide oxazolecarboxylique 211 avec BnONH2.HCl, HOBt, 

EDC.HCl et Et3N fournissant de l'acide oxazolehydroxamique protégé en benzyle 232. 
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L'intermédiaire 232 a été déprotégé par hydrogénolyse conduisant à l'acide 

oxazolehydroxamique cible 212. (Schéme 31) 

 

 

Schème 31. Synthèse des N,5-diaryloxazol-2-amines p-substituées 210, 211 et 212. 

 

Une approche synthétique menant à la préparation de N,5-diaryloxazol-2-amines 213, 215, 

216 et 217 m-substituées a été inspirée par la synthèse de leurs analogues p-substitués. Une 

synthèse du dérivé 214 a été plus spécifique et a nécessité de nouvelles recherches dans la 

littérature. 

La synthèse de 213 a commencé à partir d'une 1-(3-bromophényl)éthanone (197) 

disponible dans le commerce qui a été transformée en benzonitrile 233 en utilisant une 

cyanation catalysée par Pd. Le composé 233 a été traité avec du tribromure de 
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triméthylphényl ammonium dans du THF (abs) en fournissant son dérivé bromo 234. Le 

composé 234 a ensuite été utilisé dans une réaction avec du NaN3 fournissant de l'azide 

235. L'oxazole benzonitrile 213 cible a été préparé par l'hétérocyclisation thermique à 

médiation par PPh3 de 235 avec l'isothiocyanate 105. La synthèse réussie du chlorhydrate 

d'oxazoleamine 214 a été réalisée par une hydrosilylation activée par un fluor de 213 avec 

PhSiH3 et TBAF suivie d'une hydrolyse avec du 1M HCl dans du MeOH. (Schème 32) 

 

 

Schème 32. Synthèse des N,5-diaryloxazol-2-amines m-substituées 213 et 214. 

 

La synthèse de 215, 216 et 217 a commencé à partir d'un 3-acétylbenzoate de méthyle 

commercialisé (236) qui a été transformé en son dérivé bromo 237 par du tribromide de 

triméthylphénylammonium dans du THF (abs). Le composé 237 a ensuite été utilisé dans 

une réaction avec NaN3 dans un mélange d'acétone / H2O fournissant de l'azide 238. 

L'oxazolester cible 215 a été préparé par l'hétérocyclisation thermique à base de PPh3 de 
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238 avec l'isothiocyanate 105. L’oxazolester 215 a ensuite été transformé en acide 

oxazolecarboxylique cible 216 par une hydrolyse thermique avec LiOH.H2O dans un 

mélange de THF / H2O. Le composé 216 a été converti par la réaction de couplage amide 

avec BnONH2.HCl, HOBt, EDC.HCl et Et3N dans CH2Cl2 (abs) en acide 

oxazolehydroxamique protégé par un benzyle 239. 

L'intermédiaire 239 a été purifié par FLC et le produit isolé a été déprotégé par 

hydrogénolyse en présence de 10 % de Pd / C dans MeOH (abs) fournissant l'acide 

oxazolehydroxamique cible 217. (Schème 33) 

 

 

Schème 33. Synthèse des N,5-diaryloxazol-2-amines m-substituées 215, 216 et 217. 

 

Dans le même ordre d’idées, nous avons développé une série de six N,5-diaryloxazol-2-

amine m-substituées par un hétérocycle 218 – 223 pouvant établir à la fois une interaction 
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hydrophobe connue pour 2 (AAZ) et les interactions ioniques dans la SBCP. Nous avons 

également préparé la paire de N,5-diaryloxazol-2-amines 4, 224 contenant à la fois un 

substituant polaire en para et un hétérocyclique en meta pouvant donner un binding 

synergique. Les séries de N,5-diaryloxazol-2-amines m-substituées par un hétérocycle 218, 

219, 220, 221, 223 et m,p-disubstituées 4, 224 ont été synthétisées et l’activité biologique 

des dérivés 220, 221, 223, 4, 224 a été déterminée. La préparation de 222 et l’évaluation 

biologique de 218 et 219 sont en cours au laboratoire. (Figure 72) 

 

 

Figure 72. Vue d’ensemble des N,5-diaryloxazol-2-amines m-substituées par des hétérocycles 218 – 223 et 

de leurs analogues p,m-disubstitués 4 et 224 conçus in silico avec leur activité inhibitrice (si disponible). 

 

Les dérivés m-substitués par un pyrazole 220, 221 ou un triazole 223 étaient suspectés 

d’interagir dans la poche hydrophobe et de montrer une interaction supplémentaire avec le 

Glu833 de la SBCP, ou encore avec la Val912. Compte tenu des excellentes activités 

inhibitrices observées pour les trois dérivés, cette hypothèse a été vérifiée. (Figure 62 et 

63) 
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Figure 62. Analyse d'interaction, activité et position de liaison prédite des dérivés hétérocycliques 220 et 221 

dans le site actif de VEGFR2 TK. 

 

 

Figure 63. Analyse d'interaction, activité et position de liaison prédite de dérivé hétérocyclique 223 dans le 

site actif de VEGFR2 TK. 

 

Les dérivés m,p-disubstitués 4 et 224 ont été conçus pour leur interaction synergique 

potentielle combinant les interactions hydrophobes de la pyridine en position meta et 
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l’interaction ionique dans la SBCP provoquée par le substituant en para. Cet effet 

synergique est bien observé dans le cas du dérivé 4 possédant un carbonitrile, puisqu’il 

présente une excellente activité. Par contre, l’activité du dérive 224 possédant un amide 

primaire chute considérablement. Nous pensons que cette chute d’activité est due à des 

interactions défavorables entre les substituants amide et pyridine de 224 (interaction 

stérique défavorable ou liaison hydrogène intramoléculaire…) rompant la conformation 

active idéale dans le site actif du VEGFR2 TK. (Figure 64 et 65) 

 

 

Figure 64. Analyse d'interaction, activité et position de liaison prédite de dérivé hétérocyclique 4 dans le site 

actif de VEGFR2 TK. 

 

 

Figure 65. Analyse d'interaction, activité et position de liaison prédite de dérivé hétérocyclique 224 dans le 

site actif de VEGFR2 TK. 
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Une préparation des N,5-diaryloxazol-2-amines hétérocycliques m-substituées 218 – 221 a 

commencé à partir du précurseur de couplage 107 précédemment utilisé pour la 

préparation des composés 2 (AAZ), 189 – 192 (Figure 69) dans le cadre du projet RegBio.  

Le composé 218 a été préparé par une réaction de couplage direct non conventionnelle de 

107 avec de l'imidazole (240). La réaction a été effectuée en présence de Pd(OAc)2 et de 

CuI dans du DMF (abs). Le mécanisme de cette réaction est probablement très similaire au 

couplage de Sonogashira. Le composé 219 a été préparé par la réaction de couplage de 

Stille de 107 avec organostannane 241 en présence de Pd(PPh3)4 et Bu4NBr dans CH3CN 

(abs). (Schème 34) 

Les composés 220 et 221 ont été préparés par la réaction de couplage de Suzuki de 107 

avec l'acide boronique 242, resp. ester de pinacol d'acide boronique 243 en présence de 

Pd(PPh3)4 et Na2CO3 dans un mélange de DMF / H2O. Tous les réactifs de couplage 

hétérocyclique utilisés ont été obtenus à partir des sources commerciales. (Schème 34 

cont.) 

 

 

Schème 34. Synthèse des N,5-diaryloxazol-2-amines hétérocycliques m-substituées 218 et 219. 
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Schème 34 cont. Synthèse des N,5-diaryloxazol-2-amines hétérocycliques m-substituées 220 et 221. 

 

En raison de la disponibilité limitée de tout réactif de couplage de Stille ou de Suzuki de 

1H-imidazol-4-yle et nos tentatives infructueuses d'effectuer la borylation de Miyaura sur 

le 4-bromo-1H-imidazole ou son dérivé protégé par Boc (seul le matériel de départ a été 

isolé), nous avons décidé de choisir une approche opposée. 

Nous avons préparé un précurseur de couplage de Suzuki 245 par une réaction de 107 avec 

bis(pinacolato)diboron (244) en présence de PdCl2(dppf) et de KOAc dans du toluène 

(abs). La préparation de 222 est actuellement en cours. (Schéme 35) 

 

 

Schème 35. Synthèse du précurseur de couplage N,5-diaryloxazol-2-amine 245. 
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Une synthèse conçue à l'origine pour la préparation du triazole 223 provient du composé 

107. Le composé 107 a ensuite été transformé par le couplage de Sonogashira avec son 

dérivé d'acétylène qui devait être transformé en produit final 223 par une réaction de clic 

médiée par CuI avec de l'azoture de triméthylsilyle. La synthèse a échoué dans la dernière 

étape en raison de la faible stabilité thermique du dérivé d'acétylène. 

Selon les informations de la littérature, nous avons conçu une nouvelle procédure de 

synthèse à partir de la bromoacétophénone 197 qui a été transformée en acétylène 248 par 

la réaction de couplage de Sonogashira suivie d'une déprotection TMS. Une réaction de 

clic de 248 avec le dérivé d'azide 187 en présence de CuSO4.5H2O et d'ascorbate de 

sodium dans un mélange de CH2Cl2 / H2O a fourni le triazole 251 protégé par p-

méthoxybenzyle. (Schéme 36) Un produit 252 a ensuite été synthétisé par une réaction de 

251 avec du tribromure de triméthylphénylammonium dans du THF (abs). Le composé 252 

a été utilisé dans une réaction avec du NaN3 dans un mélange d'acétone / H2O fournissant 

de l'azide 253. Le triazole cible 223 a été préparé par l'hétérocyclisation thermique à 

médiation par PPh3 de 253 avec l'isothiocyanate 105 suivi d'une déprotection de p-

méthoxybenzyle dans TFA au reflux. (Schéme 36 cont.) 

 

 

Scheme 36. Synthèse du triazole protégé par le p-méthoxybenzyle 251. 



Discussion and conclusions in French 

184 

 

Schème 36 cont. Synthèse de N,5-diaryloxazol-2-amine hétérocyclique m-substituée 223. 

 

Une synthèse de N,5-diaryloxazol-2-amines hétérocycliques p,m-disubstituées 4 et 224 a 

été réalisée uniquement à petite échelle en raison des problèmes de stabilité, de purification 

et de caractérisation de certains intermédiaires et, par conséquent, elle doit encore être 

optimisée. C'est la raison pour laquelle cette synthèse n'est pas régulièrement présentée 

dans la partie expérimentale de la thèse.  

La procédure de synthèse a commencé avec une transformation de l'aminoéthanone 255 en 

benzonitrile 256 par une réaction de diazotation en deux étapes en présence de 
t
BuONO, 

BF3.Et2O dans CH2Cl2 et CuCN, NaCN dans H2O. Une bromation suivante de 256 utilisant 

Br2 dans CHCl3 a fourni le composé 257. Le dérivé d'azide 258 a été préparé à partir de 

257 par une réaction avec NaN3 dans du MeOH. L'intermédiaire oxazole 259 a été préparé 

par l'hétérocyclisation thermique à médiation PPh3 de 258 avec l'isothiocyanate 105. Une 

réaction de couplage de Stille de 259 avec organostannane 154 en présence de Pd(PPh3)4 et 

LiCl dans du dioxane (abs) a fourni l'oxazole cible 4. L'oxazole 224 cible a été préparé par 

une hydrolyse acide de 4 dans un mélange de TFA / H2SO4. Les produits cibles 4 et 224 

ont été préparés uniquement en petite quantité (environ 10 mg chacun). Ils ont été 

caractérisés par des analyses 
1
H-RMN et MS et utilisés directement dans l'analyse 

biologique (IC50, VEGFR2 TK). (Schème 37) 
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Schème 37. Synthèse des N,5-diaryloxazol-2-amines hétérocycliques p,m-disubstituées 4 et 224. 
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11.3. Projet – Inhibition CLK1 

 

Le troisième projet s’articule autour de l’inhibition des CLK1 et la découverte de quatre 

nouveaux inhibiteurs 97, 260, 261 et 98 possédant le squelette N,5-diaryloxazol-2-amine. 

(Figure 66) Nous avons montré que l’un de nos inhibiteurs développés possède une bonne 

activité à la fois sur les enzymes CLK1 et VEGFR2 TK et montre pour la première fois 

une activité inhibitrice duale sur ces récepteurs. Dans ce travail de thèse, nous avons 

développé une méthodologie pour la préparation d’un aldéhyde clef, précurseur utilisé pour 

la synthèse de 261 possédant une activité inhibitrice de CLK1 très importante. Ces résultats 

ont été publiés en 2017.
77

 

 

 

Figure 66. Inhibiteurs de CLK1 97, 260, 261 et 98 développés avec leur activité biologique déterminée 

contre quelques CMGC protein kinases ou/et VEGFR2 TK. 

 

Au cours de cette thèse, nous avons développé une méthodologie pour la préparation d'un 

important précurseur d'aldéhyde 269 qui a été utilisé dans la synthèse de l'inhibiteur 

hautement actif de CLK1 261. La synthèse a commencé par une réaction de 2-chloracétate 

d'éthyle (262) commercialisé avec du formiate d'éthyle (263) en présence de 
t
BuOK dans 

du THF (abs) qui a fourni (E)-éthyl-2-chloro-3-hydroxyacrylate (264). Le composé 264 a 

ensuite été transformé en 2-aminooxazole 265 par la réaction de cyclisation avec de l'urée 

dans de l'H2O. Une réaction de diazotation de 265 en présence de 
t
BuONO, CuCl2 (abs) 

dans CH3CN a fourni le 2-chlorooxazole 266. Une réaction d'addition-élimination de 266 

avec l'aniline 122 dans 
i
PrOH (abs) a fourni le dérivé de N-aryloxazol-2-amine 267. Un 

groupe esterique de 267 a ensuite été réduit par LiAlH4 dans du THF (abs) fournissant le 
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dérivé d'alcool 268. Le précurseur d'aldéhyde final 269 a été préparé par une oxydation de 

268 par MnO2 dans CH2Cl2 (abs). (Schème 38) 

 

 

Schème 38. Synthèse du précurseur inhibiteur de CLK1 269. 
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11.4. Projet – HCC et HCSC influencés par les inhibiteurs de la 

tyrosine kinase (TKIs) 

 

Enfin, dans le cadre du dernier projet, l’activité biologique des dérivés quinoides 270 – 274 

(Figure 67) et des VEGFR2 TKIs 275, 2 (AAZ), 191, 15 (Figure 68) a été évaluée sur des 

lignées de cancers hépatocellulaires (HCC) et sur leurs cancer de cellule souche (HCSC). 

Les composés testés ont montré des valeurs IC50 μM contre les cellules HCC. 

Le quinoide 272 a été capable d’éradiquer le cancer des cellules souches de manière 

identique à des HCSCs killer standards – DAPT. De plus, les VEFGR2 TKIs 275, 2 (AAZ) 

et 191 cytotoxiques comprenant le sorafenib (Nexavar™) 15 qui est le produit approuvé 

par la FDA pour le traitement des HCC, enrichissent les populations de CSCs 

hépatocellulaire 2 à 3 fois après traitement. Un facteur d’agressivité (AF) caractéristique a 

été proposé pour estimer la qualité de nouveaux candidats pour leur capacité à éradiquer 

les sous-populations de CSCs. Pendant ces travaux de thèse, nous avons préparé la série de 

VEGFR2 TKIs 275, 2 (AAZ) et 191 (le sorafenib 15 est disponible commercialement) et 

proposé un facteur d’agressivité caractéristique. Ces résultats ont été consignés dans un 

article en 2017.
79

 

 

 

Figure 67. Structure chimique des quinoides 270 – 274 avec leur activité inhibitrices sur HCC et VEGFR2 

TK. 
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Figure 68. Structure chimique des VEGFR2 TKIs 275, 2 (AAZ), 191 et 15 avec leur activité inhibitrices sur 

HCC et VEGFR2 TK. 

 

11.5. Conclusions 

 

Pendant les travaux de thèse, nous avons préparé 61 composés parmi lesquels 36 sont 

nouveaux. De 28 composés finaux conçus in silico, nous en avons testé 22 et 16 d’entre 

eux ont été évalués biologiquement (IC50, VEGFR2 TK) avec pour certains des activités 

spectaculaires. Les composés 189, 191, 211, 214, 220, 221, 223 et 4 ont montré une 

activité nM. Les résultats ont été publiés dans deux revues à comité de lecture
77,79

 (une 

troisième est en cours de rédaction) et présentés à cinq conférences scientifiques sous 

forme de communication orale ou de posters. 
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12. Future perspectives 

 

The finalization of the RegBio project is dependent on our ability to effectively prepare the 

N,4-diaryloxazol-2-amine precursor 205 and subsequently the corresponding series of its 

predicted derivatives 3, 193, 194, 195 and 196. 

As it was mentioned in the previous chapters, (Chapter 6.3 and 10) our attempts to prepare 

the precursor 205 by the AgOTf-mediated thermal heterocyclization of the arylurea 203 

and α-bromoacetophenone 198 were partially successful. We managed to prepare the target 

compound 205 in ca 10 % yield (
1
H-NMR, crude) but we also observed an intensive 

degradation of the utilized arylurea derivative 203 to aniline 122 and the problematic 

product purification.  

After consideration of the known facts and further study of the available literature, we 

rethought our synthetic approach and decided to substitute the previously used α-

bromoacetophenone 198 by its α-OTf-substituted analogue 276. Because of higher 

reactivity of the α-OTf-derivative 276 (–OTf is better leaving group than –Br), we assumed 

the heterocyclization could be performed without AgOTf and at lower temperature.  

Our most current results suggest that our attempts were finally successful. The optimized 

heterocyclization of the arylurea 203 with α-OTf-acetophenone 276 in CH3CN (abs) at 45 

°C yielded 67 % of the target N,4-diaryloxazol-2-amine precursor 205. (Scheme 39) The 

compound 205 was purified by FLC (SiO2) and its structure was proved by 
1
H-NMR, 

13
C-

NMR and MS analysis. 

 

 

Scheme 39. Novel synthesis of N,4-diaryloxazol-2-amine precursor 205. 
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In the near future we are going to finish the synthesis of the predicted series of final 

compounds 3, 193, 194, 195 and 196 using suitable palladium-catalyzed coupling 

reactions. A biological activity (IC50, VEGFR2 TK) of the compounds will be 

subsequently determined and the RegBio hypothesis evaluated. Obtained results will be 

published as soon as possible.  

 

Considering the finalization of the SBCP project, we are currently working on the 

synthesis of the imidazole derivative 222. As it was explained in one of the previous 

chapters, (Chapter 7.3) our attempts to prepare the compound 222, by the Suzuki coupling 

reaction, resulted in dominant formation of the homocoupling product of 245. The 

utilization of the unprotected 4-bromo-1H-imidazole (246) and also its Boc-protected 

derivative 247 provided to the same result. The Boc-protected derivative 247 was proved 

to be deprotected during the reaction.  

It is known fact that many of the standard protocols for palladium catalyzed C-C bond 

forming cross-coupling reactions fail in the presence of halo-substrates bearing acidic, 

nitrogen-rich heterocycles. In 2013 Düfert et al. published an interesting article dealing 

with the Suzuki coupling reactions of the unprotected, nitrogen-rich heterocycles. In the 

publication, possible inhibitory effects were well explained and a new methodology for the 

Suzuki coupling of a wide range of unprotected azoles, such as indazoles, benzimidazoles, 

pyrazoles, indoles, oxindoles and azaindoles was reported. Based on the reaction scope, the 

system using XPhos Pd G2 (282, 283), K3PO4 in dioxane / H2O at 100 °C provided the 

best results. On the following scheme is depicted a model reaction of bromopyrazoles 

(slightly more reactive than bromoimidazoles) to various boronic acids together with 

corresponding yields.
 136

 (Scheme 40)  

 

                                                 
136

 Düfert, M. A.; Billingsley, K. L.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 12877 – 12885. 
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Scheme 40. Suzuki coupling of bromopyrazole to various boronic acids.  

 

We expect that utilization the discussed methodology could possibly lead to our target 

imidazole derivative 222. In the case of a failure, there is still possible to use a different 

coupling conditions, more stable protecting group (Bn, PMB, Tr, Ts etc.) on the 

bromoimidazole substrate or alternatively build the imidazol-4-yl substituent directly on 

the N,5-diaryloxazol-2-amine scaffold. 

 

At present, we are working also on the synthesis of p,m-disubstituted heterocyclic N,5-

diaryloxazol-2-amines 4 and 224, which should be optimized and performed in a bigger 

scale. Hopefully, our optimization will be successful despite the partial instability of some 

intermediate products. More detailed analysis of this synthesis was discussed in the 

dedicated chapter. (Chapter 7.4) After finalized preparation of the compounds 222, 4, 224 

and evaluation the corresponding biological data (IC50, VEGFR2 TK), the complete SBCP 

project results will be published as soon as possible.   
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13. Experimental part 

13.1. Introduction 

 

Commercially available compounds were purchased from Sigma-Aldrich, Fluorochem, 

Alfa Aesar, Acros Organics or TCI Europe vendors. Solvents were purchased from Sigma-

Aldrich or Mikrochem in a technical grade, reagent grade or an analytical grade quality. 

When specified, anhydrous solvents were used; acetonitrile (CH3CN), dichloromethane 

(CH2Cl2), 1,4-dioxane, toluene (PhCH3) and triethylamine (Et3N) were dried and distilled 

from CaH2 under Ar. Tetrahydrofuran (THF) was distilled over sodium / benzophenone 

under Ar. Dimethylformamide (DMF), dimethylsulfoxide (DMSO) and methanol (MeOH) 

were purchased anhydrous from Sigma-Aldrich.  

A progress of the reactions was monitored using Thin Layer Chromatography (TLC) 

analysis (Merck Millipore Silica gel 60 F254). UV lamp (254 nm) and iodine vapors were 

used for the visualization of TLC spots. Crude mixtures were purified by crystallization, 

trituration or Flash Liquid Chromatography (FLC) on the silica gel 60 (230-400 mesh, 

0.040-0.063 mm) purchased from Merck Millipore or Sigma-Aldrich.  

The prepared compounds were characterized by their M.p., NMR (NMR diagram and 

textual assignment), IR and MS spectroscopy and elemental, resp. X-Ray analysis. The 

NMR diagrams represent compendious and condensed information about assigned 
1
H and 

13
C-NMR data of a particular chemical structure. 

1
H-NMR diagrams allow a smart and fast 

check of both chemical shifts and coupling constants. Numbers used on the diagrams mean 

chemical shift in δ ppm and numbers in parenthesis represent corresponding coupling 

constants in Hz. The reason why the NMR diagrams were used is to read and compare the 

NMR data more conveniently. 

Nuclear Magnetic Resonance (NMR) spectra were measured on Bruker AC 400, Varian 

Gemini 300 or Varian Gemini 600 machines with the solvent peak as a reference. In the 

NMR diagrams and assignments, coupling constants (J) are expressed in Hertz (Hz), 

multiplicity is described with (s) as singlet, (br s) as broad singlet, (d) as doublet, (dd) as 

doublet of doublets, (ddd) as doublet of doublets of doublets, (dm) as doublet of multiplets, 

(t) as triplet and (q) as quadruplet. 

Melting points were measured on Büchi Melting Point M-565 instrument and are given 

uncorrected. Infrared (IR) spectra were obtained neat using Agilent Technologies Cary 630 
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FTIR with diamond probe and MTS detector. Liquid Chromatography-Mass Spectrometry 

(LC-MS) analysis was performed on an Agilent Technologies 1200 Series instrument 

equipped with Mass spectrometer Agilent Technologies 6100 Quadrupole using 

electrospray ionization (ESI). Elemental and X-Ray analysis were obtained from the 

science analytical service at University of Strasbourg or Comenius University in 

Bratislava.  
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13.2. Project – Regioisomeric bioisostery (RegBio) 

13.2.1. Synthesis of N,5-diaryloxazol-2-amine precursor 107 

 

 

Scheme 23. Synthesis of N,5-diaryloxazol-2-amine precursor 107. 
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Synthesis of 4-(ethylsulfonyl)-2-isothiocyanato-1-methoxybenzene (105) 

 

 

 

To a solution of 500 mg (2.32 mmol, 1.00 mol eq) aniline 122 in 15 ml THF (abs), 780 μL 

(5.57 mmol, 2.40 mol eq) of Et3N (abs) was added under Ar. The mixture was cooled 

down to 0 °C and 530 μl (6.96 mmol, 3.00 mol eq) of thiophosgene was added dropwise 

within 30 min. Then the reaction was stirred 3.5 h at RT. After complete consumption of 

starting material 122 (TLC analysis), volatile parts were evaporated and a solid residue was 

stirred with 15 ml of EA. The obtained suspension was extracted with 15 ml of H2O and 3 

x 5 ml of NaHCO3 (saturated aq solution). The organic layer was separated, dried over 

Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified 

by FLC (Hex / EA = 2 / 1) yielding 427 mg (1.66 mmol, 72 %) of 4-(ethylsulfonyl)-2-

isothiocyanato-1-methoxybenzene (105).  

 

Novelty: The synthesis of 105 was described in the literature with the yield of 100 % 

together with its 
1
H-NMR spectra and elemental analysis.

6  

 

M.p.: 108 – 110 °C [Hex / EA]. Off-white crystalline solid material. 
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1
H-NMR (400 MHz, CDCl3): δ 7.76 (dd, 1H, J(5,6) = 8.7 Hz, J(3,5) = 2.3 Hz, H-C(5)), 

7.61 (d, 1H, J(3,5) = 2.3 Hz, H-C(3)), 7.04 (d, 1H, J(5,6) = 8.7 Hz, H-C(6)), 4.01 (s, 3H, -

OCH3), 3.09 (q, 2H, J(CH2CH3) = 7.4 Hz, -COOCH2CH3), 1.27 (t, 3H, J(CH2,CH3) = 7.4 

Hz, -COOCH2CH3). 

 

Synthesis of 2-bromo-1-(3-bromophenyl)ethanone (198) 

 

 

 

To a solution of 3.60 g (18.1 mmol, 1.00 mol eq) 1-(3-bromophenyl)ethanone (197) in 30 

ml of CHCl3, 2.89 g (18.1 mmol, 1.00 mol eq) of Br2 in 10 ml of CHCl3 was added 

dropwise at RT within 1 h. At the beginning of the addition, the reaction mixture was 

slightly heated (ca 50 – 60 °C) to start the bromination reaction indicated by decolorizing 

of the mixture. After completed addition the reaction mixture was stirred at RT for 3 h. 

When complete consumption the starting material 197 was confirmed (TLC analyze), the 

mixture was extracted with 2 x 10 ml of NaHCO3 (aq saturated solution) and 10 ml of H2O. 

Combined organic layers were dried over Na2SO4, filtered and evaporated under reduced 

pressure. The crude product was purified by crystallization from EtOH yielding 3.50 g 

(12.6 mmol, 70 %) of 2-bromo-1-(3-bromophenyl)ethanone (198).  

 

Novelty: The synthesis of 198 was described in the literature with 78 % yield.
137 

Its 
1
H-

NMR, 
13

C-NMR, IR and HRMS spectra were also published.
138

 

 

M.p.: 49.0 – 51.0 °C [EtOH] (lit. M.p.: 51 – 52 °C).
138

 White crystalline solid material. 

 

                                                 
137

 Sanath Kumar T.S.S.P.N.S.; Prasant A.; Krupadanam D.G.L.; Kumar K.A. Indian J. Chem. Sec B 2012, 

51B, 658 – 662. 
138

 Xie L.; Wu Y.; Yi W.; Zhu L.; Xiang J.; He W. J. Org. Chem. 2013, 78, 9190 – 9195. 
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1
H-NMR (300 MHz, CDCl3) 8.12 (dd, 1H, J(2,4) = 2.1 Hz, J(2,6) = 1.7 Hz, H-C(2)), 

7.91 (ddd, 1H, J(5,6) = 7.9 Hz, J(2,6) = 1.7 Hz, J(4,6) = 1.0 Hz, H-C(6)), 7.74 (ddd, 1H, 

J(4,5) = 8.1 Hz, J(2,4) = 2.1 Hz, J(4,6) = 1.0 Hz, H-C(4)), 7.38 (dd, 1H, J(4,5) = 8.1 Hz, 

J(5,6) = 7.9 Hz, H-C(5)), 4.41 (s, 2H, -COCH2Br). 

 

Synthesis of 2-azido-1-(3-bromophenyl)ethanone (106) 

 

 

 

To a solution of 500 mg (1.80 mmol, 1.00 mol eq) 2-bromo-1-(3-bromophenyl)ethanone 

(198) in 5.0 ml of MeOH (abs), 234 mg (3.60 mmol, 2.00 mol eq) NaN3 was added 

portionwise and the reaction mixture was stirred for 5 h at 35 °C under Ar. After 

consumption of starting material 198 (TLC analysis) the mixture was cooled down to RT 

and the solvent evaporated. A solid residue was partitioned between 30 ml of EA and 30 

ml of H2O, organic layer separated and aq layer extracted with 3 x 5 ml of EA. The 

combined organic layer was dried over Na2SO4, filtered and concentrated under reduced 

pressure. The crude product was purified by crystallization from a mixture of pentane / 

EtOH to yield 380 mg (1.58 mmol, 88 %) of 2-azido-1-(3-bromophenyl)ethanone (106). 
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Novelty: Synthesis of 106 was described in the literature with 91 % yield.
 
Its 

1
H-NMR, 

13
C-NMR, IR and HRMS spectra were also published.

139
 

 

M.p.: 71.0 – 74.0 °C [pentane / EtOH] (lit. M.p.: 51 – 53 °C [Hex / EA]).
139

 Yellow 

crystalline solid material. 

 

 

 

1
H-NMR (400 MHz, CDCl3): 8.05 (dd, 1H, J(2,4) = 2.0 Hz, J(2,6) = 1.7 Hz, H-C(2)), 

7.83 (ddd, 1H, J(5,6) = 7.9 Hz, J(2,6) = 1.7 Hz, J(4,6) = 1.0 Hz, H-C(6)), 7.76 (ddd, 1H, 

J(4,5) = 8.1 Hz, J(2,4) = 2.0 Hz, J(4,6) = 1.0 Hz, H-C(4)), 7.39 (dd, 1H, J(4,5) = 8.1 Hz, 

J(5,6) = 7.9 Hz, H-C(5)), 4.53 (s, 2H, -COCH2N3). 

 

Synthesis of 5-(3-bromophenyl)-N-(5-(ethylsulfonyl)-2-methoxyphenyl) 

oxazol-2-amine (107) 
 

 

 

A mixture of 1.00 g (3.89 mmol, 1.00 mol eq) isothiocyanate 105, 933 mg (3.89 mmol, 

1.00 mol eq) of azide 106 and 1.00 g (3.89 mmol, 1.00 mol eq) of PPh3 were dissolved 

in 25 ml of dioxane (abs) under Ar. The obtained solution was placed into the preheated 95 

                                                 
139

 Okumus S.; Tanyeli C.; Demir A.C. Tetrahedron Lett. 2014, 55, 4302 – 4305. 
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°C oil bath for 3 h. After consumption of the starting material 105 and 106 (TLC analysis), 

the reaction mixture was evaporated and an obtained solid material was dissolved in 25 ml 

of EA and extracted by 4 x 5 ml of brine. The organic layer was dried over Na2SO4, 

filtered and evaporated under reduced pressure. The crude product was purified by FLC 

(Hex / EA, 1 / 3) and crystallized from Hex / EA yielding 1.30 g (2.97 mmol, 76 %) of 5-

(3-bromophenyl)-N-(5-(ethylsulfonyl)-2-methoxyphenyl)oxazol-2-amine (107). 

 

Novelty: Synthesis of 107 was published in the literature with 35 % yield.
82 

Also its 
1
H-

NMR, 
13

C-NMR, IR, MS spectra and elemental analysis were published.
6,82

 

 

M.p.: 177 – 178 °C [Hex / EA]. (lit. M.p.: 182 – 183 °C [Hex / EA]).
82

 Pale yellow solid 

material. 

 

 

 

1
H-NMR (400 MHz, DMSO-d

6
):  9.81 (br s, 1H, -NH-), 8.77 (d, 1H, J(A4,A6) = 2.3 Hz, 

H-CA(6)), 7.82 (dd, 1H, J(C2,C4) = 2.1 Hz, J(C2,C6) = 1.7 Hz, H-CC(2)), 7.67 (s, 1H, H-

CB(4)), 7.61 (ddd, 1H, J(C5,C6) = 8.2 Hz, J(C2,C6) = 1.7 Hz, J(C4,C6) = 1.2 Hz, H-CC(6)), 

7.51 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.3 Hz, H-CA(4)), 7.47 (ddd, 1H, J(C4,C5) = 

7.8 Hz, J(C2,C4) = 2.1 Hz, J(C4,C6) = 1.2 Hz, H-CC(4)), 7.40 (dd, 1H, J(C5,C6) = 8.2 Hz, 

J(C4,C5) = 7.8 Hz, H-CC(5)), 7.28 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 3.98 (s, 3H, -

OCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 7.3 

Hz, -SO2CH2CH3). 
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13.2.2. Synthesis of N,5-diaryloxazol-2-amines 2, 189, 190, 191, 

192 

 

 

Scheme 25. Synthesis of N,5-diaryloxazol-2-amines 2, 189, 190, 191, 192. 
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Synthesis of N-(5-(ethylsulfonyl)-2-methoxyphenyl)-5-(3-(pyridin-2-yl) 

phenyl)oxazol-2-amine (2) 

 

 

 

A suspension of 100 mg (0.23 mmol, 1.00 mol eq) starting material 107, 26.4 mg (0.02 

mmol, 0.10 mol eq) of Pd(PPh3)4 and 148 mg (0.46 mmol, 2.00 mol eq) of Bu4NBr in 5 ml 

of CH3CN (abs) prepared in a sealed tube was bubbled by Ar for 10 min. Afterwards 295 

mg (0.80, 3.50 mol eq) of tributylstannane 154 was added and the mixture was stirred at 

100 °C for 15 h. The reaction was cooled down to RT, diluted with 10 ml of EA, quenched 

with 10 ml of KF (saturated aq solution) and stirred for 3 h. The organic layer was 

separated, washed with 10 ml of H2O, dried by Na2SO4, filtered and concentrated under 

reduced pressure. The crude product was purified by FLC (Hex / EA = 1 / 4) and triturated 

with Hex / EA yielding 50.0 mg (0.11 mmol, 50 %) of N-(5-(ethylsulfonyl)-2-

methoxyphenyl)-5-(3-(pyridin-2-yl)phenyl)oxazol-2-amine (2). 

 

Novelty: Synthesis of 2 was described in the literature with 51 % yield.
 
Its 

1
H-NMR, MS 

spectra and elemental analysis were also published.
6
 

 

M. p.: 206 – 207 °C [Hex / EA]. Off white solid material. 
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1
H-NMR (300 MHz, DMSO-d

6
):  9.84 (br s, 1H, -NH-), 8.82 (d, 1H, J(A4,A6) = 2.3 Hz, 

H-CA(6)), 8.71 (ddd, 1H, J(D5,D6) = 4.8 Hz, J(D4,D6) = 1.8 Hz, J(D3,D6) = 1.0 Hz, H-

CD(6)), 8.38 (dd, 1H, J(C2,C4) = 2.0 Hz, J(C2,C6) = 1.7 Hz, H-CC(2)), 8.03 (ddd, 1H, 

J(D3,D4) = 8.0 Hz, J(D3,D5) = 1.2 Hz, J(D3,D6) = 1.0 Hz, H-CD(3)), 7.98 (ddd, 1H, 

J(C4,C5) = 7.8 Hz, J(C2,C4) = 2.0 Hz, J(C4,C6) = 1.2 Hz, H-CC(4)), 7.93 (ddd, 1H, J(D3,D4) 

= 8.0 Hz, J(D4,D5) = 7.5 Hz, J(D4,D6) = 1.8 Hz, H-CD(4)), 7.71 (ddd, 1H, J(C5,C6) = 7.6 

Hz, J(C2,C6) = 1.7 Hz, J(C4,C6) = 1.2 Hz, H-CC(6)), 7.65 (s, 1H, H-CB(4)), 7.57 (dd, 1H, 

J(C4,C5) = 7.8 Hz, J(C5,C6) = 7.6 Hz, H-CC(5)), 7.51 (dd, 1H, J(A3,A4) = 8.6 Hz, J(A4,A6) 

= 2.3 Hz, H-CA(4)), 7.41 (ddd, 1H, J(D4,D5) = 7.5 Hz, J(D5,D6) = 4.8 Hz, J(D3,D5) = 1.2 

Hz, H-CD(5)), 7.28 (d, 1H, J(A3,A4) = 8.6 Hz, H-CA(3)), 3.99 (s, 3H, -OCH3), 3.21 (q, 2H, 

J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3). 

 

Synthesis of N-(5-(ethylsulfonyl)-2-methoxyphenyl)-5-(3-(pyrimidin-2-

yl)phenyl)oxazol-2-amine (189) 
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A suspension of 150 mg (0.34 mmol, 1.00 mol eq) starting material 107, 39.6 mg (0.03 

mmol, 0.10 mol eq) of Pd(PPh3)4 and 221 mg (0.69 mmol, 2.00 mol eq) of Bu4NBr in 5 ml 

of CH3CN (abs) prepared in a sealed tube was bubbled by Ar for 10 min. Afterwards 295 

mg (1.03 mmol, 3.00 mol eq) of tributylstannane 199 was added and the mixture was 

stirred at 100 °C for 48 h. The reaction was cooled down to RT, diluted with 10 ml of EA, 

quenched with 10 ml of KF (saturated aq solution) and stirred for 3 h. The organic layer 

was separated, washed with 10 ml of H2O, dried by Na2SO4, filtrated and concentrated 

under reduced pressure. The crude product was purified by FLC (Hex / EA = 1 / 2) and 

triturated with Hex / EA yielding 50.0 mg (0.11 mmol, 33 %) of N-(5-(ethylsulfonyl)-2-

methoxyphenyl)-5-(3-(pyrimidin-2-yl)phenyl)oxazol-2-amine (189). 

 

Novelty: Preparation or characterization of compound 189 has not been described in the 

literature. 

 

M. p.: 220 – 223 °C [Hex / EA]. Pale yellow solid material. 

 

 

 

1
H-NMR (400 MHz, DMSO-d

6
):  9.91 (br s, 1H, -NH-), 8.95 (d, 2H, J(D4,D5) = 5.0 Hz, 

2 x H-CD(4)), 8.83 (d, 1H, J(A4,A6) = 2.2 Hz, H-CA(6)), 8.67 (dd, 1H, J(C2,C6) = 2.2 Hz, 

J(C2,C4) = 1.6 Hz, H-CC(2)), 8.32 (ddd, 1H, J(C4,C5) = 7.9 Hz, J(C2,C4) = 1.6 Hz, J(C4,C6) 

= 1.1 Hz, H-CC(4)), 7.81 (ddd, 1H, J(C5,C6) = 7.8 Hz, J(C2,C6) = 2.2 Hz, J(C4,C6) = 1.1 

Hz, H-CC(6)), 7.66 (s, 1H, H-CB(4)), 7.61 (dd, 1H, J(C4,C5) = 7.9 Hz, J(C5,C6) = 7.8 Hz, 

H-CC(5)), 7.51 (dd, 1H, J(A3,A4) = 8.4 Hz, J(A4,A6) = 2.2 Hz, H-CA(4)), 7.51 (t, 1H, 

J(D4,D5) = J(D5,D6) = 5.0 Hz, H-CD(5)), 7.28 (d, 1H, J(A3,A4) = 8.4 Hz, H-CA(3)), 3.99 (s, 
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3H, -OCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3), 1.13 (t, 3H, J(CH2,CH3) = 

7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (100 MHz, DMSO-d

6
): (CD(2)), 157.8 (CD(4) and CD(6)), 156.2 (CB(2)), 

151.6 (CA(2)), 144.0 (CB(5)), 137.9, 130.1, 129.5, 128.8, 128.4, 126.4, 125.2, 122.9, 122.4, 

121.7, 120.3, 115.8 (CA(6)), 110.9 (CA(3)), 56.3 (-OCH3), 49.7 (-SO2CH2CH3), 7.4 (-

SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3423 (w), 3029 (w), 2961 (w), 2323 (w), 2114 (w), 2079 (w), 1723 

(w), 1613 (s), 1580 (s), 1529 (s), 1486 (m), 1453 (m), 1403 (s), 1351 (w), 1302 (s), 1264 

(s), 1234 (m), 1123 (s), 1087 (s), 1049 (w), 1017 (m), 958 (w), 913 (w), 892 (w), 827 (w), 

793 (m), 775 (s), 736 (s), 724 (s), 690 (m), 634 (w), 605 (m), 579 (w), 554 (m), 528 (s), 

489 (s), 469 (s). 

 

MS (ESI m/z): 437.1 [M + H]
+
, 459.1 [M + Na]

+
; in negative mode 435.0 [M - H]

-
. 

 

Anal. calcd for C22H20N4O4S (436.48): C, 60.54; H, 4.62; N, 12.84; Found: C, 60.72; H, 

4.51; N, 12.79. 

 

Synthesis of N-(5-(ethylsulfonyl)-2-methoxyphenyl)-5-(3-(pyrimidin-5-

yl)phenyl)oxazol-2-amine (190) 

 

 

 

A suspension of 100 mg (0.23 mmol, 1.00 mol eq) starting material 107, 26.4 mg (0.02 

mmol, 0.10 mol eq) of Pd(PPh3)4 and 161 mg (0.50 mmol, 2.18 mol eq) of Bu4NBr in 7 ml 

of CH3CN (abs) prepared in a sealed tube was bubbled by Ar for 10 min. Afterwards 253 
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mg (0.69 mmol, 3.00 mol eq) of tributylstannane 200 was added and the mixture was 

stirred at 100 °C for 20 h. The reaction was cooled down to RT, diluted with 10 ml of EA, 

quenched with 10 ml of KF (saturated aq solution) and stirred for 3 h. The organic layer 

was separated, washed with 10 ml of H2O, dried by Na2SO4, filtrated and concentrated 

under reduced pressure. The crude product was purified by FLC (Hex / EA = 1 / 2) and 

triturated with Hex / EA yielding 60.0 mg (0.14 mmol, 60 %) of N-(5-(ethylsulfonyl)-2-

methoxyphenyl)-5-(3-(pyrimidin-5-yl)phenyl)oxazol-2-amine (190). 

 

Novelty: Preparation or characterization of compound 190 has not been described in the 

literature. 

 

M. p.: 220 – 223 °C [Hex / EA]. Pale red solid material. 

 

 

 

1
H-NMR (300 MHz, DMSO-d

6
):  9.77 (br s, 1H, -NH-), 9.24 (s, 1H, H-CD(2)), 9.21 (s, 

2H, 2 x H-CD(4)), 8.78 (d, 1H, J(A4,A6) = 2.2 Hz, H-CA(6)), 8.05 (dd, 1H, J(C2,C4) = 1.9 

Hz, J(C2,C6) = 1.5 Hz, H-CC(2)), 7.73 (ddd, 1H, J(C5,C6) = 7.6 Hz, J(C4,C6) = 1.8 Hz, 

J(C2,C6) = 1.5 Hz, H-CC(6)), 7.71 (ddd, 1H, J(C4,C5) = 8.0 Hz, J(C2,C4) = 1.9 Hz, J(C4,C6) 

= 1.8 Hz, H-CC(4)), 7.70 (s, 1H, H-CB(4)), 7.62 (dd, 1H, J(C4,C5) = 8.0 Hz, J(C5,C6) = 7.6 

Hz, H-CC(5)), 7.51 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.2 Hz, H-CA(4)), 7.28 (d, 1H, 

J(A3,A4) = 8.5 Hz, H-CA(3)), 3.99 (s, 3H, -OCH3), 3.22 (q, 2H, J(CH2,CH3) = 7.3 Hz, -

SO2CH2CH3), 1.13 (t, 3H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (75 MHz, DMSO-d

6
): (CD(2)), 156.2 (CB(2)), 154.9 (2 x CD(4)), 151.6 

(CA(2)), 143.8 (CB(5)), 134.6 (CC(3)), 132.8, 130.2, 130.0, 128.9, 128.7, 125.7, 123.4, 



Experimental part 

213 

122.9, 122.5, 121.2, 115.8 (CA(6)), 110.9 (CA(3)), 56.4 (-OCH3), 49.8 (-SO2CH2CH3), 7.3 

(-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3420 (w), 2942 (w), 2207 (w), 1610 (s), 1577 (s), 1526 (m), 1489 (w), 

1419 (m), 1347 (w), 1301 (m), 1263 (m), 1142 (s), 1121 (s), 1080 (m), 1050 (w), 1020 (m), 

957 (w), 918 (w), 886 (w), 792 (m), 717 (s), 693 (m), 659 (w), 630 (w), 597 (w), 576 (m), 

534 (w), 495 (s), 453 (m), 422 (w). 

 

MS (ESI m/z): 437.3 [M + H]
+
, 459.3 [M + Na]

+
; in negative mode 435.4 [M - H]

-
. 

 

Anal. calcd for C22H20N4O4S (436.48): C, 60.54; H, 4.62; N, 12.84; Found: C, 61.01; H, 

4.82; N, 12.77.  

 

Synthesis of 5-(3-(1H-pyrrol-3-yl)phenyl)-N-(5-(ethylsulfonyl)-2-

methoxyphenyl)oxazol-2-amine (191) 

 

 

 

A suspension of 60.0 mg (0.14 mmol, 1.00 mol eq) starting material 107, 71.8 mg (0.21, 

1.50 mol eq) of pinacolboronate 201 and 15.8 mg (0.01 mmol, 0.10 mol eq) of Pd(PPh3)4 

in 5 ml of DMF placed in a sealed tube was bubbled by Ar for 10 min. Afterwards a 

solution of 29.0 mg (0.27 mmol, 2.00 mol eq) Na2CO3 in 2 ml of H2O was added and the 

reaction mixture was stirred at 100 °C for 15 h. Then the reaction was cooled to RT, 

diluted with 10 ml of EA and extracted with 3 x 5 ml of brine. The organic layer was 

separated, dried by Na2SO4, filtrated and concentrated under reduced pressure. The crude 

product was purified by FLC (Hex / EA = 1 / 9) and triturated with Hex / EA yielding 45.0 
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mg (0.11 mmol, 78 %) of 5-(3-(1H-pyrrol-3-yl)phenyl)-N-(5-(ethylsulfonyl)-2-

methoxyphenyl)oxazol-2-amine (191). 

 

Novelty: Preparation or characterization of 191 has not been described in the literature. 

 

M. p.: 230 – 250 °C (dec) [Hex / EA]. Pale yellow solid material. 

 

 

 

1
H-NMR (600 MHz, DMSO-d

6
):  11.00 (s, 1H, -NH- pyrrol), 9.70 (s, 1H, -NH-), 8.80 

(d, 1H, J(A4,A6) = 2.2 Hz, H-CA(6)), 7.78 (s, 1H, H-CC(2)), 7.57 (s, 1H, H-CB(4)), 7.50 

(dd, 1H, J(A3,A4) = 8.6 Hz, J(A4,A6) = 2.2 Hz, H-CA(4)), 7.46 (dd, 1H, J(C4, C5) = J(C5, 

C6) = 4.7 Hz, H-CC(5)), 7.36 (d, 2H, J(C4, C5) = J(C5, C6) = 4.7 Hz, H-CC(4) and H-CC(6)), 

7.29 (dd, 1H, J(D2,D5) = J(D2,D4) = 2.3 Hz, H-CD(2)), 7.27 (d, 1H, J(A3,A4) = 8.6 Hz, H-

CA(3)), 6.83 (dd, 1H, J(D4,D5) = 5.3 Hz, J(D2,D5) = 2.3 Hz, H-CD(5)), 6.51 (dd, 1H, 

J(D4,D5) = 5.3 Hz, J(D2,D4) = 2.3 Hz, H-CD(4)), 3.99 (s, 3H, -OCH3), 3.21 (q, 2H, 

J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3), 1.13 (t, 3H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (150 MHz, DMSO-d

6
): (CB(2)), 151.5 (CA(2)), 144.6 (CB(5)), 136.9 

(CC(3)), 130.2, 129.2 (CC(4)), 128.9, 128.1, 123.5 (CC(5)), 122.7, 122.3, 122.2, 119.3 

(CC(6)), 119.1 (CD(5)), 118.6 (CC(2)), 115.6 (CA(6)), 155.3 (CD(2)), 110.9 (CA(3)), 105.4 

(CD(4)), 56.4 (-OCH3), 49.8 (-SO2CH2CH3), 7.3 (-SO2CH2CH3). 

1
H- and 

13
C-NMR shift assignments were determined using COSY and HSQC 

experiments. 
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FT IR (solid, cm
-1

): 3415 (w), 3348 (w), 1613 (m), 1577 (s), 1529 (m), 1501 (w), 1488 

(w), 1433 (m), 1347 (w), 1294 (m), 1259 (m), 1227 (w), 1185 (w), 1171 (w), 1137 (m), 

1122 (s), 1074 (m), 1047 (m), 1018 (m), 968 (w), 925 (w), 888 (w), 880 (w), 813 (m), 794 

(w), 779 (s), 732 (s), 713 (s), 684 (s), 656 (m), 635 (w). 

 

MS (ESI m/z): 424.1 [M + H]
+
; in negative mode 422.1 [M - H]

-
. 

 

Anal. calcd for C22H21N3O4S (423.48): C, 62.40; H, 5.00; N, 9.92; found: C, 62.13; H, 

5.11; N, 9.62.  

 

Synthesis of N-(5-(ethylsulfonyl)-2-methoxyphenyl)-5-(3-(thiophen-3-yl) 

phenyl)oxazol-2-amine (192) 

 

 

 

A suspension of 150 mg (0.34 mmol, 1.00 mol eq) starting material 107, 123 mg (0.51, 

1.50 mol eq) of MIDA boronate 202, 7.70 mg (0.03 mmol, 0.10 mol eq) of Pd(OAc)2 and 

28.2 mg (0.07 mmol, 0.20 mol eq) of SPhos in 12 ml of THF placed in a sealed tube was 

bubbled by Ar for 10 min. Afterwards a solution of 546 mg (2.57 mmol, 7.50 mol eq) 

K3PO4 in 2.5 ml of H2O was added and the mixture was stirred at 65 °C for 12 h. The 

reaction was cooled down to RT, diluted with 15 ml EA and extracted with 3 x 5 ml of 

brine. The organic layer was separated, dried by Na2SO4, filtered and concentrated under 

reduced pressure. The crude product was purified by FLC (Hex / EA = 1 / 1) and triturated 

with Hex / EA yielding 81.0 mg (0.18 mmol, 54 %) of N-(5-(ethylsulfonyl)-2-

methoxyphenyl)-5-(3-(thiophen-3-yl)phenyl)oxazol-2-amine (192). 
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Novelty: Synthesis of 192 was described in the literature with 52 % yield.
 
Its 

1
H-NMR and 

HRMS spectra were also published.
6
 

 

M. p.: 220 – 222 °C [Hex / EA]. Pale brown solid material. 

 

 

 

1
H-NMR (400 MHz, DMSO-d

6
): 9.74 (br s, 1H, -NH-), 8.79 (d, 1H, J(A4,A6) = 2.2 Hz, 

H-CA(6)), 7.97 – 7.92 (m, 2H), 7.69 (dd, 1H, J = 4.9 Hz, J = 3.0 Hz), 7.66 – 7.60 (m, 2H), 

7.64 (s, 1H, H-CB(4)), 7.57 – 7.46 (m, 2H), 7.51 (dd, 1H, J(A3,A4) = 8.6 Hz, J(A4,A6) = 2.2 

Hz, H-CA(4)), 7.28 (d, 1H, J(A3,A4) = 8.6 Hz, H-CA(3)), 3.99 (s, 3H, -OCH3), 3.22 (q, 2H, 

J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3), 1.13 (t, 3H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3). 
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13.2.3. Unexpected synthesis of 1,5-diarylimidazolidine-2,4-

diones 206, 207 

 

 

Scheme 26. Unexpected synthesis of 1,5-diarylimidazolidine-2,4-diones 206, 207.  
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Synthesis of 1-(5-(ethylsulfonyl)-2-methoxyphenyl)urea (203) 

 

 

 

To 100 mg (0.46 mmol, 1.00 mol eq) of aniline 122 in a mixture of 2 ml CH3COOH and 4 

ml of H2O, a solution of 75.4 mg (0.93, 2.00 mol eq) KOCN in 1 ml of H2O was slowly 

added and the mixture was heated at 60 °C for 3 h. The reaction was diluted with H2O, 

placed into an ice bath, neutralized using saturated aq solution of NaHCO3 and extracted 

with 3 x 10 ml of EA. The organic layer was separated, dried with Na2SO4, filtered and 

concentrated under reduced pressure. The crude product was purified by crystallization 

from H2O / EtOH yielding 85.0 mg (0.33 mmol, 71 %) of 1-(5-(ethylsulfonyl)-2-

methoxyphenyl)urea (203). 

 

Novelty: Synthesis of 203 was described in the literature with 58 % yield. Also its 
1
H-

NMR, 
13

C-NMR, IR spectra and elemental analysis were previously published.
82

 

 

M. p.: 196 – 197 °C [H2O / EtOH]. (lit. M. p.: 198 – 199 °C [EA]).
82

 Light brown solid 

material. 
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1
H-NMR (300 MHz, DMSO-d

6
):  8.66 (d, 1H, J(4,6) = 2.4 Hz, H-C(6)), 8.25 (br s, 1H, -

NHCONH2), 7.40 (dd, 1H, J(3,4) = 8.6 Hz, J(4,6) = 2.4 Hz, H-C(4)), 7.19 (d, 1H, J(3,4) = 

8.6 Hz, H-C(3)), 6.38 (br s, 2H, -NHCONH2), 3.95 (s, 3H, -OCH3), 3.14 (q, 2H, 

J(CH2CH3) = 7.4 Hz, -COOCH2CH3), 1.08 (t, 3H, J(CH2,CH3) = 7.4 Hz, -COOCH2CH3). 

 

Synthesis of 5-(3-bromophenyl)-1-(5-(ethylsulfonyl)-2-methoxyphenyl) 

imidazolidine-2,4-dione (204) 

 

 

 

To a suspension of 1.86 g (7.20 mmol, 1.00 mol eq) urea 203 and 2.00 g (7.20 mmol, 1.00 

mol eq) of acetophenone 198 in 30 ml EtOH, 1.5 ml (3.60 mmol, 0.5 mol eq) of 5 M HCl 

was added. The reaction mixture was refluxed for 3 d. Afterwards another 1.00 g (3.60 

mmol, 0.50 mol eq) of acetophenone 198 was added and the mixture was refluxed for 

another 2 d. The solvent was evaporated, an obtained solid residue dissolved in 30 ml of 

EA and washed with 2 x 10 ml of saturated aq solution of NaHCO3 and 10 ml of H2O. 

Combined organic layers were dried by Na2SO4, filtered and concentrated under reduced 

pressure. The crude product was purified by FLC (Hex / EA = 1 / 3) yielding 1.30 g (2.87 

mmol, 40 %) of 5-(3-bromophenyl)-1-(5-(ethylsulfonyl)-2-methoxyphenyl) imidazolidine-

2,4-dione (204). 

 

Novelty: Preparation or characterization of 204 has not been described in the literature. 

 

M. p.: 217 – 218 °C [Hex / EA]. Off white solid material. 
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1
H-NMR (600 MHz, DMSO-d

6
):  11.53 (br s, 1H, -NH-), 7.90 (d, 1H, J(A4,A6) = 2.3 Hz, 

H-CA(6)), 7.73 (dd, 1H, J(A3,A4) = 8.8 Hz, J(A4,A6) = 2.3 Hz, H-CA(4)), 7.61 (dd, 1H, 

J(C2,C4) = 2.7 Hz or 1.7 Hz, J(C2,C6) = 2.7 Hz or 1.7 Hz, H-CC(2)), 7.49 (d, 1H, J(C4,C5) = 

7.8 Hz, H-CC(4)), 7.40 (d, 1H, J(C5,C6) = 7.8 Hz, H-CC(6)), 7.28 (d, 1H, J(A3,A4) = 8.8 

Hz, H-CA(3)), 7.28 (dd, 1H, J(C4,C5) = J(C5,C6) = 7.8 Hz, H-CC(5)), 5.85 (s, 1H, H-CB(5)), 

3.91 (s, 3H, -OCH3), 3.18 (q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 0.95 (t, 3H, 

J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3). 

 

13
C-NMR (75 MHz, DMSO-d

6
): 171.9 (CB(4)), 158.5, 155.0, 136.2, 131.7 (CC(4)), 

130.9 (CC(5)), 130.7 (CC(2)), 129.7, 129.0 (CA(4)), 128.9 (CA(6)), 127.0 (CC(6)), 124.2, 

121.9, 113.1 (CA(3)), 65.7 (CB(5)), 56.6 (-OCH3), 49.5 (-SO2CH2CH3), 7.3 (-SO2CH2CH3). 

1
H- and 

13
C-NMR shift assignments were determined using COSY and HSQC 

experiments.  

 

FT IR (solid, cm
-1

): 3171 (w), 3060 (w), 2747 (w), 2114 (w), 2052 (w), 1778 (m), 1707 

(s), 1598 (m), 1507 (m), 1450 (m), 1426 (s), 1405 (m), 1301 (s), 1269 (s), 1232 (w), 1197 

(w), 1189 (w), 1138 (s), 1099 (w), 1075 (s), 1009 (m), 941 (w), 864 (w), 885 (w), 819 (m), 

787 (s), 737 (s), 668 (m), 667 (w), 594 (w), 538 (s), 488 (s), 462 (s), 436 (m). 

 

MS (ESI m/z): 476.9 (100 %), 474.9 (98 %) [M + Na]
+
; in negative mode 453.0 (100 %), 

451.0 (98 %) [M - H]
-
. 

 

Anal. calcd for C18H17BrN2O5S (453.31): C, 47.69; H, 3.78; N, 6.18; found: C, 48.56; H, 

3.92; N, 6.24. 
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Synthesis of 1-(5-(ethylsulfonyl)-2-methoxyphenyl)-5-(3-(pyridin-2-yl) 

phenyl)imidazolidine-2,4-dione (206) 

 

 

 

A suspension of 50.0 mg (0.11 mmol, 1.00 mol eq) starting material 204, 13.2 mg (0.01 

mmol, 0.10 mol eq) of Pd(PPh3)4 and 80.1 mg (0.25 mmol, 2.18 mol eq) of Bu4NBr in 3.5 

ml of CH3CN (abs) in a glass tube was bubbled by Ar during 10 min. Afterwards 151 mg 

(0.41, 3.60 mol eq) of tributylstannane 154 was added, the glass tube was sealed and the 

mixture was stirred at 100 °C for 48 h. The reaction was cooled down to RT, diluted with 

10 ml of EA, quenched with 10 ml of 1 M KF aq solution and stirred for 3 h. The organic 

layer was separated, dried by Na2SO4, filtrated and concentrated under reduced pressure. 

The crude product was purified by FLC (Hex / EA = 1 / 3) and trituration with Hex / EA 

yielding 20.0 mg (0.04 mmol, 40 %) of 1-(5-(ethylsulfonyl)-2-methoxyphenyl)-5-(3-

(pyridin-2-yl)phenyl)imidazolidine-2,4-dione (206). 

 

Novelty: Preparation or characterization of 206 has not been described in the literature. 

 

M. p.: 138 – 140 °C [Hex / EA]. White solid material. 
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1
H-NMR (600 MHz, DMSO-d

6
):  11.52 (br s, 1H, -NH-), 8.66 (ddd, 1H, J(D5,D6) = 4.8 

Hz, J(D4,D6) = 1.8 Hz, J(D3,D6) = 1.0 Hz, H-CD(6)), 8.08 (dd, 1H, J(C2,C4) = 2.3 Hz, 

J(C2,C6) = 1.9 Hz, H-CC(2)), 7.99 (ddd, 1H, J(C4,C5) = 7.3 Hz, J(C2,C4) = 2.3 Hz, J(C4,C6) 

= 1.8 Hz, H-CC(4)), 7.95 (ddd, 1H, J(D3,D4) = 8.0 Hz, J(D3,D5) = 1.1 Hz, J(D3,D6) = 1.0 

Hz, H-CD(3)), 7.90 (d, 1H, J(A4,A6) = 2.4 Hz, H-CA(6)), 7.87 (ddd, 1H, J(D3,D4) = 8.0 Hz, 

J(D4,D5) = 7.7 Hz, J(D4,D6) = 1.8 Hz, H-CD(4)), 7.68 (dd, 1H, J(A3,A4) = 8.8 Hz, J(A4,A6) 

= 2.4 Hz, H-CA(4)), 7.44 (dd, 1H, J(C5,C6) = 7.6 Hz, J(C4,C5) = 7.3 Hz, H-CC(5)), 7.42 

(ddd, 1H, J(C5,C6) = 7.6 Hz, J(C2,C6) = 1.9 Hz, J(C4,C6) = 1.8 Hz, H-CC(6)), 7.36 (ddd, 

1H, J(D4,D5) = 7.7 Hz, J(D5,D6) = 4.8 Hz, J(D3,D5) = 1.1 Hz, H-CD(5)), 7.26 (d, 1H, 

J(A3,A4) = 8.8 Hz, H-CA(3)), 5.92 (s, 1H, H-CB(5)), 3.90 (s, 3H, -OCH3), 3.09 (q, 2H, 

J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3), 0.80 (t, 3H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (150 MHz, DMSO-d

6
): 172.5 (CB(4)), , 155.2, 155.1, 149.5 (CD(6)), 

139.0, 137.3 (CD(4)), 134.2, 129.5, 129.2, 2 x 128.8, 128.7, 126.7 (CC(4)), 125.7 (CC(2)), 

124.4, 122.9 (CD(5)), 120.3 (CD(3)), 113.0 (CA(3)), 66.4 (CB(5)), 56.6 (-OCH3), 49.5 (-

SO2CH2CH3), 7.1 (-SO2CH2CH3). 

1
H- and 

13
C-NMR shift assignments were determined using COSY and HSQC 

experiments.  

 

FT IR (solid, cm
-1

): 2925, (w), 2704 (w), 1771 (w), 1721 (s), 1593 (w), 1567 (w), 1504 

(m), 1477 (w), 1438 (m), 1415 (m), 1388 (m), 1307 (m), 1262 (m), 1182 (w), 1136 (s), 
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1091 (w), 1040 (w), 1018 (m), 1005 (w), 923 (w), 864 (w), 824 (w), 800 (w), 782 (m), 766 

(m), 757 (m), 731 (s), 716 (m), 696 (m), 631 (m). 

 

MS (ESI m/z): 452.1 [M + H]
+
; in negative mode 450.1 [M - H]

-
. 

 

Anal. calcd for C23H21N3O5S (451.49): C, 61.18; H, 4.69; N, 9.31; found: C, 63.13; H, 

4.68; N, 9.59. 

 

Synthesis of 5-(3-(1H-pyrrol-3-yl)phenyl)-1-(5-(ethylsulfonyl)-2-methoxy 

phenyl)imidazolidine-2,4-dione (207) 

 

 

 

A suspension of 60.0 mg (0.13 mmol, 1.00 mol eq) starting material 204, 71.8 mg (0.21 

mmol, 1.50 mol eq) of pinacolboronate 201 and 30.1 mg (0.03 mmol, 0.19 mol eq) of 

Pd(PPh3)4 in 3 ml of DMF placed in a sealed tube was bubbled by Ar for 10 min. 

Afterwards, a solution of 14.5 mg (0.14 mmol, 1.00 mol eq) Na2CO3 in 1 ml of H2O was 

added and the mixture was stirred at 100 °C for 17 h. The reaction was cooled down to RT, 

diluted with 10 ml of EA and extracted 3 x 5 ml of brine. The organic layer was separated, 

dried by Na2SO4, filtrated and concentrated under reduced pressure. The crude product was 

purified by FLC (Hex / EA = 1 / 2) and triturated with Hex / EA yielding 30.0 mg (0.07 

mmol, 53 %) of 5-(3-(1H-pyrrol-3-yl)phenyl)-1-(5-(ethylsulfonyl)-2-methoxyphenyl) 

imidazolidine-2,4-dione (207). 

 

Novelty: Preparation or characterization of 207 has not been described in the literature. 

 

M. p.: 190 – 193 °C [Hex / EA]. Light brown solid material. 
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1
H-NMR (600 MHz, DMSO-d

6
):  11.44 (br s, 1H, -NH-), 10.94 (s, 1H, -NH- pyrrol), 

7.89 (d, 1H, J(A4,A6) = 2.3 Hz, H-CA(6)), 7.68 (dd, 1H, J(A3,A4) = 8.8 Hz, J(A4,A6) = 2.3 

Hz, H-CA(4)), 7.44 (s, 1H, H-CC(2)), 7.42 (d, 1H, J(C5,C6) = 7.7 Hz, H-CC(6)), 7.26 (d, 1H, 

J(A3,A4) = 8.8 Hz, H-CA(3)), 7.22 (dd, 1H, J(C4,C5) = J(C5,C6) = 7.7 Hz, CC(5)), 7.21 (dd, 

1H, J(D2,D4) = J(D2,D5) = 2.4 Hz, H-CD(2)), 6.77 (dd, 1H, J(D4,D5) = 5.4 Hz, J(D2,D5) = 

2.4 Hz, H-CD(5)), 6.39 (dd, 1H, J(D4,D5) = 5.4 Hz, J(D2,D4) = 2.4 Hz, H-CD(4)), 5.78 (s, 

1H, H-CB(5)), 3.91 (s, 3H, -OCH3), 3.10 (q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 0.85 

(t, 3H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3). 

 

13
C-NMR (150 MHz, DMSO-d6): δ 172.5 (CB(4)), 158.4, 155.2, 136.7, 133.7, 129.5, 

128.9, 128.8, 128.6, 124.6, 124.5, 124.2, 123.8, 122.5, 119.0 (CD(5)), 115.3 (CD(2)), 113.0 

(CA(3)), 105.2 (CD(4)), 66.5 (CB(5)), 56.5 (-OCH3), 49.5 (-SO2CH2CH3), 7.2 (-

SO2CH2CH3). 

1
H- and 

13
C-NMR shift assignments were determined using COSY and HSQC 

experiments.  

 

FT IR (solid, cm
-1

): 3367 (w), 3060 (w), 2932 (w), 1773 (m), 1723 (s), 1595 (w), 1581 

(w), 1552 (w), 1502 (m), 1437 (m), 1390 (m), 1302 (m), 1276 (m), 1267 (w), 1230 (w), 

1188 (m), 1160 (w), 1152 (w), 1136 (s), 1087 (m), 1043 (w), 1028 (w), 1013 (m), 954 (w), 

937 (w), 910 (w), 877 (w), 862 (w), 825 (w), 811 (w), 794 (m -SO2-), 778 (w), 738 (m), 

727 (m), 698 (m), 674 (m), 668 (m), 634 (m). 
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MS (ESI m/z): 440.1 [M + H]
+
; in negative mode 438.1[M - H]

-
. 

 

Anal. calcd for C22H21N3O5S (439.48): C, 60.12; H, 4.82; N, 9.56; found: C, 60.94; H, 

5.01; N, 9.42. 

 

13.2.4. Synthesis of N,4-diaryloxazol-2-amine precursor 205 

 

 

Scheme 28. Synthesis of N,4-diaryloxazol-2-amine precursor 205. 
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Synthesis of 4-(3-bromophenyl)-N-(5-(ethylsulfonyl)-2-methoxyphenyl) 

oxazol-2-amine (205) 

 

 

 

A solution of 50.0 mg (0.18 mmol, 1.00 mol eq) acetophenone 198 and 57.8 mg (0.22 

mmol, 1.25 mol eq) of AgOTf in 5 ml of EA (abs) was stirred under Ar at 60 °C for 1 h. 

Afterwards 58.1 mg (0.22 mmol, 1.25 mol eq) of urea 203 was added and the reaction 

mixture was refluxed under Ar for 23 h. The TLC analysis showed one dominant new spot 

and much less intensive spots belonging to the starting material 198 and 203. The mixture 

was then cooled down to RT, diluted with 10 ml of EA, filtered through a silica pad and 

extracted with 5 ml of 1 % aq solution of NaHCO3 and 2 x 5 ml of brine. The separated 

organic layer was dried over Na2SO4, filtered and evaporated under reduced pressure. The 

crude product was isolated as brown viscous oil (40.0 mg). 
1
H-NMR analysis of the crude 

showed a dominant presence of 4-(3-bromophenyl)-N-(5-(ethylsulfonyl)-2-methoxy 

phenyl)oxazol-2-amine (205) and aniline 122 in a molar ratio of 1 / 1. The starting material 

198, 203 and a significant amount of unidentified products were also detected. The 

estimated yield of the target product 205 is ca 10 %. A subsequent purification using FLC 

(cyclohexane / EA = 1 / 1) provided 15.0 mg of yellow oil. 
1
H-NMR analysis of the oil 

showed a presence of 205 and 122 in a molar ratio of 1 / 1. A composition of the analyzed 

sample was confirmed also by the MS spectrometry. 

 

Note: The compounds 205 and 122 share a very similar polarity and therefore the 

separation on SiO2 could be difficult. 
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Novelty: Preparation or characterization of 205 has not been described in the literature. 

Synthesis and characterization of 122 was described and published in our group.
140

 

 

 

 

1
H-NMR (400 MHz, DMSO-d

6
) 205:  9.77 (s, 1H, -NH-), 8.90 (d, 1H, J(A4,A6) = 2.3 

Hz, H-CA(6)), 8.34 (s, 1H, H-CB(5)), 7.96 (dd, 1H, J(C2,C4) = 2.0 Hz, J(C2,C6) = 1.7 Hz, 

H-CC(2)), 7.76 (ddd, 1H, J(C5,C6) = 7.7 Hz, J(C2,C6) = 1.7 Hz, J(C4,C6) = 1.1 Hz, H-

CC(6)), 7.52 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.3 Hz, H-CA(4)), 7.50 (ddd, 1H, 

J(C4,C5) = 8.1 Hz, J(C2,C4) = 2.0 Hz, J(C4,C6) = 1.1 Hz, H-CC(4)), 7.40 (dd, 1H, J(C4,C5) 

= 8.1 Hz, J(C5,C6) = 7.7 Hz, H-CC(5)), 7.27 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 3.97 (s, 

3H, -OCH3), 3.24 (q, 2H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3), 1.18 (t, 3H, J(CH2,CH3) = 

7.3 Hz, -SO2CH2CH3). 

 

1
H-NMR (400 MHz, DMSO-d

6
) 122:  7.08 (d, 1H, J(4,6) = 2.2 Hz, H-C(6)), 7.02 (dd, 

1H, J(3,4) = 8.3 Hz, J(4,6) = 2.2 Hz, H-C(4)), 6.98 (d, 1H, J(3,4) = 8.3 Hz, H-C(3)), 5.25 

(br s, 2H, -NH2), 3.85 (s, 3H, -OCH3), 3.11 (q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 

1.07 (t, 3H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3). 

 

MS (ESI m/z) 205: 437.0 (95 %), 439.0 (100 %) [M + H]
+
. 

 

MS (ESI m/z) 122: 216.1 [M + H]
+
. 
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 Murár, M.; Addová, G.; Boháč, A. Beilstein J. Org. Chem. 2013, 9, 173 – 179. 
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13.3. Project – Salt bridge containing pocket (SBCP) 

13.3.1. Synthesis of p-substituted N,5-diaryloxazol-2-amines 

208, 209 

 

 

Scheme 30. Synthesis of p-substituted N,5-diaryloxazol-2-amines 208, 209. 
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Synthesis of 4-(2-azidoacetyl)benzonitrile (226) 

 

 

 

To a solution of 500 mg (2.23 mmol, 1.00 mol eq) bromoacetophenone 225 in 15 ml of 

acetone, 218 mg (3.35 mmol, 1.50 mol eq) of NaN3 dissolved in 5 ml of H2O was added 

dropwise. The reaction mixture was subsequently stirred at RT for 30 min. After complete 

consumption of the staring material 225 (TLC analysis), the mixture was evaporated. A 

remaining oily material was diluted with 15 ml of EA and extracted with 3 x 5 ml of brine. 

The organic layer was separated, dried by Na2SO4, filtrated and concentrated under 

reduced pressure. The crude product was purified by FLC (cyclohexane / EA = 2 / 1) 

yielding 350 mg (1.88 mmol, 84 %) of 4-(2-azidoacetyl)benzonitrile (226). 

 

Novelty: Synthesis of 226 was described in the literature with 80 % yield. Also its 
1
H-

NMR, 
13

C-NMR, IR and HRMS spectra were published.
141

 

 

M. p.: 129 – 130 °C [cyclohexane / EA]. (lit. M. p.: 127 – 130 °C [Hex / EA]).
141

 Yellow 

crystalline solid material. 

 

 
                                                 
141

 Singh, P. N. D.; Mandel, S. M.; Robinson, R. M.; Zhu, Z.; Franz, R.; Ault, B. S.; Gudmundsdottir, A. D. 

J. Org. Chem. 2003, 68, 7951 – 7960. 
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1
H-NMR (400 MHz, CDCl3): 8.12 (d, 2H, J(2,3) = 8.8 Hz, 2 x H-C(3)), 7.82 (d, 2H, 

J(2,3) = 8.8 Hz, 2 x H-C(2)), 4.57 (s, 2H, -COCH2N3). 

 

Synthesis of 4-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-yl) 

benzonitrile (208) 

 

 

 

A mixture of 100 mg (0.39 mmol, 1.00 mol eq) isothiocyanate 105, 72.4 mg (0.39 mmol, 

1.00 mol eq) of azide 226 and 204 mg (0.78 mmol, 2.00 mol eq) of PPh3 was dissolved 

in 10 ml of dioxane (abs) under Ar. The prepared solution was placed into a preheated 95 

°C oil bath for 1 h. After consumption of the starting material 105 and 226 (TLC analysis), 

the reaction mixture was evaporated and a remaining solid material was dissolved in 15 ml 

of EA and washed with 3 x 5 ml of brine. The organic layer was dried over Na2SO4, 

filtered and evaporated under reduced pressure. The crude product was purified by FLC 

(Hex / EA = 1 / 7) and crystallized from Hex / EA yielding 80.0 mg (0.21 mmol, 54 %) of 

4-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-yl)benzonitrile (208). 

 

Novelty: Synthesis of 208 was described in the literature with 6 % yield.
 
Also its 

1
H-NMR 

and HRMS spectra were published.
6
  

 

M.p.: 240 – 243 °C [Hex / EA]. Pale orange solid material. 
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1
H-NMR (400 MHz, DMSO-d

6
):  9.95 (s, 1H, -NH-), 8.75 (d, 1H, J(A4,A6) = 2.2 Hz, H-

CA(6)), 7.90 (d, 2H, J(2,3) = 8.4 Hz, 2 x H-C(3)), 7.82 (s, 1H, CB(4)), 7.75 (d, 2H, J(2,3) = 

8.4 Hz, 2 x H-C(2)), 7.53 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.2 Hz, H-CA(4)), 7.29 

(d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 3.98 (s, 3H, -OCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.5 

Hz, -SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 7.5 Hz, -SO2CH2CH3). 

 

Synthesis of 4-(2-bromoacetyl)benzamide (227) 

 

 

 

A solution of 100 mg (0.45 mmol, 1.00 mol eq) benzonitrile 225 in 2 ml of CF3COOH 

(TFA) and H2SO4 (conc) mixture (4 / 1) was stirred at 70 °C for 3 h. After complete 

consumption of the starting material 225 (TLC analysis), the reaction was cooled to RT, an 

ice-cold H2O was added and the aq mixture was placed into a freezer for 1 h. A formed 

precipitate was filtered and the obtained solid material dried under reduced pressure (HV) 

yielding 99.0 mg (0.41 mmol, 92 %) of 4-(2-bromoacetyl)benzamide (227). 
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Novelty: Synthesis of 227 was described in the literature with 83 % yield together with its 

MS spectral analysis.
142  

 

M.p.: 175 – 176 °C [TFA / H2SO4 / H2O]. White crystalline solid material. 

 

 

 

1
H-NMR (300 MHz, CDCl3): 8.16 (br s, 1H, -CONH2), 8.07 (d, 2H, J(2,3) = 8.4 Hz, 2 x 

H-C(2)), 8.00 (d, 2H, J(2,3) = 8.4 Hz, 2 x H-C(3)), 7.59 (br s, 1H, -CONH2), 4.98 (s, 2H, -

COCH2Br). 

 

13
C-NMR (150 MHz, DMSO-d6): δ 191.4 (-COCH2Br), 166.9 (-CONH2), 138.6 (C(1)), 

135.9 (C(4)), 128.6 (2 x C(3)), 127.8 (2 x C(2)), 34.1 (-COCH2Br). 

 

FT IR (solid, cm
-1

): 3364 (m), 3162 (m), 2992 (w), 2943 (w), 2115 (w), 2097 (w), 1949 

(w), 1817 (w), 1692 (s), 1655 (s), 1619 (s), 1567 (m), 1504 (m), 1407 (s), 1386 (s), 1302 

(m), 1279 (s), 1195 (s), 1180 (s), 1144 (s), 1127 (m), 997 (s), 840 (s), 796 (s), 758 (s), 690 

(s), 651 (s), 617 (s), 557 (s), 520 (s), 496 (s), 419 (m). 

 

MS (ESI m/z): 242.0 (75 %), 244.0 (70 %) [M + H]
+
. 

 

Anal. calcd for C9H8BrNO2 (242.07): C, 44.66; H, 3.33; N, 5.79; found: C, 44.83; H, 

3.51; N, 5.23. 
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 Courtney, S.; Yarnold, C.; Flanagan, S.; Brace, G.; Barker, J.; Ichinara, O.; Gadoleau, E.; Richardson, A.; 

Kondo, T.; Imagawa, A.; Nakatani, S.; Suzuki, R.; Kouyama, S. Ono Pharmaceutical CO., LTD. 2013, 

WO2013/93484, A1. 
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Synthesis of 4-(2-azidoacetyl)benzamide (228) 

 

 

 

To a solution of 60.0 mg (0.25 mmol, 1.00 mol eq) benzamide 227 in 3 ml of acetone, 24.2 

mg (0.37 mmol, 1.50 mol eq) of NaN3 dissolved in 0.5 ml of H2O was added dropwise. 

The reaction mixture was stirred at RT for 2 h. After the complete consumption of the 

staring material 227 (TLC analysis), the mixture was evaporated. A remaining material 

was dissolved with 10 ml of EA and extracted with 2 x 5 ml of brine. The organic layer 

was separated, dried by Na2SO4, filtered and concentrated under reduced pressure yielding 

46.0 mg (0.23 mmol, 91 %) of 4-(2-azidoacetyl)benzamide (228). 

 

Novelty: Preparation or characterization of 228 has not been described in the literature. 

 

M. p.: 162 – 164 °C (dec) [EA]. Light yellow crystalline solid material. 

 

 

 

1
H-NMR (400 MHz, CDCl3): 8.17 (br s, 1H, -CONH2), 8.00 (s, 4H, 2 x H-C(2), 2 x H-

C(3)),  7.60 (br s, 1H, -CONH2), 4.93 (s, 2H, -COCH2N3). 
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13
C-NMR (100 MHz, DMSO-d6): δ 194.3 (-COCH2N3), 167.0 (-CONH2), 138.7 (C(4)), 

136.2 (C(1)), 2 x 127.9 (2 x C(2) and 2 x C(3)), 54.9 (-COCH2N3). 

 

FT IR (solid, cm
-1

): 3366 (m), 3166 (m), 2973 (w), 2895 (w), 2196 (w), 2095 (s), 1989 

(w), 1827 (w), 1688 (s), 1655 (s), 1621 (s), 1569 (m), 1506 (w), 1407 (s), 1352 (m), 1302 

(m), 1284 (m), 1216 (s), 1184 (s), 1145 (m), 1128 (m), 1005 (s), 960 (w), 905 (s), 855 (s), 

646 (s), 624 (s), 566 (s), 551 (s), 502 (s). 

 

MS (ESI m/z): not detectable in positive / negative mode. 

 

Anal. calcd for C9H8N4O2 (204.19): C, 52.94; H, 3.95; N, 27.44; found: C, 53.22; H, 

4.06; N, 27.32. 

 

Synthesis of 4-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-

yl)benzamide (209) 

 

 

 

A solution of 290 mg (1.13 mmol, 1.00 mol eq) isothiocyanate 105, 230 mg (1.13 mmol, 

1.00 mol eq) of azide 228 and 591 mg (2.25 mmol, 2.00 mol eq) of PPh3 in 10 ml of 

dioxane (abs) was stirred under Ar in the preheated 90°C oil bath for 1 h. After 

consumption of the starting material 105 and 228 (TLC analysis), the reaction mixture was 

evaporated. A remaining solid material was dissolved in the mixture of 10 ml of DMSO 

and 50 ml of EA and washed with 3 x 20 ml of brine. The organic layer was dried over 

Na2SO4, filtered and concentrated under reduced pressure. An obtained solid was purified 

by FLC (gradient: cyclohexane / EA = 1 / 7 to EA to EA / MeOH = 1 / 2) and crystallized 
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from hot acetone yielding 140 mg (0.35 mmol, 31 %) of 4-(2-(5-(ethylsulfonyl)-2-

methoxyphenylamino)oxazol-5-yl)benzamide (209).  

 

Note: The synthesis of 209 could be also performed by hydrolysis of the benzonitrile 208 

using THF / H2SO4, 70 °C, 2 h in the yield of ca 90 %.   

 

Novelty: Synthesis of 209 was described in the literature with 97 % yield (by hydrolysis of 

208) together with its
 1

H-NMR and HRMS spectral analysis.
6
  

 

M.p.: 259 – 261 °C [acetone]. Off-white solid material. 

 

 

 

1
H-NMR (400 MHz, DMSO-d

6
):  9.84 (s, 1H, -NH-), 8.77 (d, 1H, J(A4,A6) = 2.1 Hz, H-

CA(6)), 8.00 (br s, 1H, -CONH2), 7.95 (d, 2H, J(2,3) = 8.4 Hz, 2 x H-C(3)), 7.68 (d, 2H, 

J(2,3) = 8.4 Hz, 2 x H-C(2)), 7.68 (s, 1H, CB(4)), 7.51 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) 

= 2.1 Hz, H-CA(4)), 7.38 (br s, 1H, -CONH2), 7.28 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 

3.98 (s, 3H, -OCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.12 (t, 3H, 

J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3). 
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13.3.2. Synthesis of p-substituted N,5-diaryloxazol-2-amines 

210, 211, 212 

 

 

Scheme 31. Synthesis of p-substituted N,5-diaryloxazol-2-amines 210, 211 and 212. 
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Synthesis of methyl 4-(2-bromoacetyl)benzoate (230) 

 

 

 

To a solution of 1.00 g (5.61 mmol, 1.00 mol eq) acetophenone 229 in 40 ml of THF (abs), 

2.32 g (6.17 mmol, 1.10 mol eq) of trimethylphenylammonium tribromide dissolved in 20 

ml of THF (abs) was added dropwise. The reaction mixture was stirred under Ar at RT for 

3 h. After complete consumption of the starting material 229 (TLC analysis), the reaction 

mixture was concentrated. An obtained solid material was dissolved in 60 ml of EA and 

extracted with 3 x 20 ml of brine. The organic layer was dried over Na2SO4, filtered and 

evaporated under reduced pressure. The crude product was purified by crystallization from 

EtOH yielding 952 mg (3.70 mmol, 66 %) of methyl 4-(2-bromoacetyl)benzoate (230). 

 

Novelty: Synthesis of 230 was described in the literature with 75 % yield together with its
 

1
H-NMR, 

13
C-NMR, IR and HRMS spectra.

143
 

 

M.p.: 132 – 135 °C [EtOH]. (lit. M. p.: 124 °C [pentane / CH2Cl2])
143

 White crystalline 

solid material. 

 

                                                 
143

 Hou, Z.; Nakanishi, I.; Kinoshita, T.; Takei, Y.; Yasue, M.; Misu, R.; Suzuki, Y.; Nakamura, S.; Kure, T.; 
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55, 2899 – 2903. 
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1
H-NMR (400 MHz, CDCl3): 8.15 (d, 2H, J(2,3) = 8.7 Hz, 2 x H-C(3)), 8.04 (d, 2H, 

J(2,3) = 8.7 Hz, 2 x H-C(2)), 4.46 (s, 2H, -COCH2Br), 3.96 (s, 3H, -COOCH3). 

 

Synthesis of methyl 4-(2-azidoacetyl)benzoate (231) 

 

 

 

To a solution of 1.00 g (3.89 mmol, 1.00 mol eq) starting material 230 in 20 ml of acetone, 

379 mg (5.83 mmol, 1.50 mol eq) of NaN3 dissolved in 5 ml of H2O was added. The 

reaction mixture was stirred for 2 h at RT. After consumption of the starting material 230 

(TLC analysis), the reaction mixture was evaporated. A remaining material was dissolved 

in 30 ml of EA and washed with 2 x 10 ml of brine and 1 x 10 ml of H2O. The organic 

layer was dried over Na2SO4, filtered and concentrated under reduced pressure giving 742 

mg (3.39 mmol, 87 %) of crude 4-(2-azidoacetyl)benzoate (231) which was used in the 

next step without further purification. 
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Novelty: Synthesis of 231 was described in the literature with 76 % yield.
144 1

H-NMR
145

 

and IR
146

 spectra were also published. 

 

M.p.: 94 – 96 °C (dec) [EA]. (lit. M. p.: 98 – 101 °C decomp. [petroleum ether])
146

 Light 

yellow crystalline solid material. 

 

 

 

1
H-NMR (600 MHz, CDCl3): 8.15 (d, 2H, J(2,3) = 8.5 Hz, 2 x H-C(3)), 7.96 (d, 2H, 

J(2,3) = 8.5 Hz, 2 x H-C(2)), 4.59 (s, 2H, -COCH2N3), 3.96 (s, 3H, -COOCH3). 

 

Synthesis of methyl 4-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino) 

oxazol-5-yl)benzoate (210) 
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A mixture of 836 mg (3.25 mmol, 1.00 mol eq) isothiocyanate 105, 712 mg (3.25 mmol, 

1.00 mol eq) of azide 231 and 852 mg (3.25 mmol, 1.00 mol eq) of PPh3 in 40 ml of 

dioxane (abs) was stirred under Ar at 90 °C for 3 h. After consumption of the starting 

material 105 and 231 (TLC analysis), the reaction mixture was evaporated. A remaining 

material was dissolved in 40 ml of EA and washed with 2 x 15 ml of brine and 1 x 10 ml of 

H2O. The separated organic layer was dried over Na2SO4, filtered and concentrated under 

reduced pressure. The crude product was purified by FLC (EA + 10 % MeOH) and 

subsequently crystallized from Hex / EA yielding 900 mg (2.16 mmol, 67 %) of methyl 4-

(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-yl)benzoate (210). 

 

Novelty: Preparation or characterization of 210 has not been described in the literature. 

 

M. p.: 219 – 222 °C [EA / MeOH]. Light yellow solid material. 

 

 

 

1
H-NMR (300 MHz, DMSO-d

6
):  9.94 (br s, 1H, -NH-), 8.76 (d, 1H, J(A4,A6) = 2.3 Hz, 

H-CA(6)), 8.01 (d, 2H, J(2,3) = 8.7 Hz, 2 x H-C(3)), 7.76 (s, 1H, CB(4)), 7.74 (d, 2H, J(2,3) 

= 8.7 Hz, 2 x H-C(2)), 7.51 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.3 Hz, H-CA(4)), 7.28 

(d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 3.98 (s, 3H, -OCH3), 3.85 (s, 3H, -COOCH3), 3.21 (q, 

2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.11 (t, 3H, J(CH2,CH3) = 7.4 Hz, -

SO2CH2CH3). 

 

13
C-NMR (75 MHz, DMSO-d6): δ 165.8 (-COOCH3), 156.9 (CB(2)), 151.7 (CA(2)), 143.3 

(CB(5)), 132.1, 130.2, 130.0, 128.5, 127.6, 125.3, 122.7, 122.5, 116.2 (CA(6)), 111.0 

(CA(3)), 56.3 (-OCH3), 52.1 (-COOCH3), 49.8 (-SO2CH2CH3), 7.4 (-SO2CH2CH3). 
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FT IR (solid, cm
-1

): 3419 (w), 2114 (w), 2064 (w), 1714 (m), 1605 (m), 1576 (s), 1523 

(m), 1483 (m), 1459 (w), 1427 (m), 1345 (w), 1302 (m), 1258 (s), 1230 (m), 1179 (m), 

1142 (s), 1122 (s), 1084 (s), 1045 (m), 1020 (m), 965 (m), 947 (m), 912 (w), 894 (w), 854 

(m), 805 (s), 770 (s), 734 (s), 718 (s), 641 (w), 622 (w), 600 (m), 555 (m), 531 (s), 488 (s), 

454 (m). 

 

MS (ESI m/z): 417.0 [M + H]
+
; in negative mode: 415.0 [M - H]

-
. 

 

Anal. calcd for C20H20N2O6S (416.45): C, 57.68; H, 4.84; N, 6.73; found: C, 57.98; H, 

4.43; N, 6.68. 

 

Synthesis of 4-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-yl) 

benzoic acid (211) 

 

 

 

To a suspension of 150 mg (0.36 mmol, 1.00 mol eq) ester 210 in 4 ml of THF, 75.6 mg 

(1.80 mmol, 5.00 mol eq) of LiOH.H2O dissolved in 2 ml of H2O was added. The reaction 

mixture was stirred at 70 °C for 3 h. After complete consumption of the starting material 

210 (TLC analysis), the mixture was concentrated. Obtained aq solution was placed into 

ice bath, acidified to pH = 2 using 2M HCl solution and moved to a fridge for 5 h. A 

precipitated solid material was separated on a Büchner funnel, washed with water and Et2O 

and dried by HV yielding 116 mg (0.29 mmol, 80 %) of 4-(2-(5-(ethylsulfonyl)-2-

methoxyphenylamino)oxazol-5-yl)benzoic acid (211). 

 

Novelty: Preparation or characterization of 211 has not been described in the literature. 
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M. p.: 273 – 278 °C (dec) [H2O]. Grey solid material. 

 

 

 

1
H-NMR (400 MHz, DMSO-d

6
):  12.97 (br s, 1H, -COOH), 9.90 (s, 1H, -NH-), 8.77 (d, 

1H, J(A4,A6) = 2.2 Hz, H-CA(6)), 8.00 (d, 2H, J(2,3) = 8.4 Hz, 2 x H-C(3)), 7.73 (s, 1H, 

CB(4)), 7.72 (d, 2H, J(2,3) = 8.4 Hz, 2 x H-C(2)), 7.52 (dd, 1H, J(A3,A4) = 8.5 Hz, 

J(A4,A6) = 2.2 Hz, H-CA(4)), 7.28 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 3.98 (s, 3H, -

OCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 7.4 

Hz, -SO2CH2CH3). 

 

13
C-NMR (100 MHz, DMSO-d6): δ 166.9 (-COOH), 156.8 (CB(2)), 151.8 (CA(2)), 143.5 

(CB(5)), 131.8, 130.2, 130.1, 128.9, 128.6, 125.0, 122.7, 122.5, 116.2 (CA(6)), 111.0 

(CA(3)), 56.4 (-OCH3), 49.8 (-SO2CH2CH3), 7.4 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3411 (w), 3070 (w), 2656 (w), 2323 (w), 2124 (w), 2086 (w), 1919 

(w), 1685 (s), 1601 (s), 1575 (s), 1524 (m), 1483 (m), 1418 (m), 1356 (w), 1330 (m), 1264 

(s), 1177 (m), 1141 (s), 1121 (s), 1080 (m), 1047 (m), 1014 (m), 950 (w), 917 (w), 893 (w), 

858 (w), 825 (w), 796 (m), 772 (m), 736 (s), 717 (s), 662 (w), 624 (w), 597 (m), 576 (s), 

532 (m), 496 (s), 456 (m). 

 

MS (ESI m/z): 403.0 [M + H]
+
; in negative mode: 401.0 [M - H]

-
. 

 

Anal. calcd for C19H18N2O6S (402.42): C, 56.71; H, 4.51; N, 6.96; found: C, 56.65; H, 

4.55; N, 6.82. 
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Synthesis of N-(benzyloxy)-4-(2-(5-(ethylsulfonyl)-2-methoxyphenyl 

amino)oxazol-5-yl)benzamide (232) 

 

 

 

To a suspension of 100 mg (0.25 mmol, 1.00 mol eq) carboxylic acid 211 in 5 ml of 

CH2Cl2 (abs) at 0 °C, 50.4 mg (0.37 mmol, 1.50 mol eq) of HOBt, 71.5 mg (0.37 mmol, 

1.50 mol eq) of EDC . HCl, 0.1 ml (75.4 mg, 0.75 mmol, 3.00 mol eq) of Et3N (abs) and 

47.6 mg (0.30 mmol, 1.20 mol eq) of BnONH2 . HCl were added gradually. Afterwards the 

reaction mixture was stirred under Ar for 10 min at RT and 24 h at 35 °C. After complete 

consumption of the starting material 211 (TLC analysis), the mixture was concentrated. 

Obtained solid residue was dissolved in 20 ml of CH2Cl2 and extracted with 2 x 5 ml of 10 

% aq solution of citric acid and 2 x 5 ml of saturated aq solution of NaHCO3. The organic 

layer was dried over Na2SO4, filtered and concentrated under reduced pressure. The crude 

product was purified by recrystalization from cyclohexane / EA yielding 100 mg (0.20 

mmol, 79 %) of N-(benzyloxy)-4-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-

yl)benzamide (232). 

 

Novelty: Preparation or characterization of 232 has not been described in the literature. 

 

M. p.: 195 – 197 °C [cyclohexane / EA]. Light grey solid material. 
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1
H-NMR (400 MHz, DMSO-d

6
):  11.81 (br s, 1H, -CONHO-), 9.86 (s, 1H, -NH-), 8.77 

(d, 1H, J(A4,A6) = 2.4 Hz, H-CA(6)), 7.83 (d, 2H, J(2,3) = 8.4 Hz, 2 x H-C(3)), 7.69 (s, 1H, 

CB(4)), 7.69 (d, 2H, J(2,3) = 8.4 Hz, 2 x H-C(2)), 7.52 (dd, 1H, J(A3,A4) = 8.5 Hz, 

J(A4,A6) = 2.4 Hz, H-CA(4)), 7.49 – 7.34 (m, 5H, -CH2C6H5), 7.28 (d, 1H, J(A3,A4) = 8.5 

Hz, H-CA(3)), 4.94 (s, 2H, -CH2C6H5), 3.98 (s, 3H, -OCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.3 

Hz, -SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (100 MHz, DMSO-d6): δ 169.4 (-CONHO-), 156.6 (CB(2)), 151.7 (CA(2)), 

143.5 (CB(5)), 135.9 (CD(1)), 130.7, 130.4, 130.1, 2 x 128.9, 128.6, 128.4, 127.9, 124.4, 

122.6, 122.4, 116.1 (CA(6)), 111.0 (CA(3)), 77.1 (-CH2C6H5), 56.3 (-OCH3), 49.7 (-

SO2CH2CH3), 7.4 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3418 (w), 3220 (w), 2986 (w), 2942 (w), 2123 (w), 1737 (w), 1625 

(s), 1577 (s), 1528 (m), 1482 (m), 1458 (w), 1429 (m), 1308 (s), 1260 (s), 1223 (w), 1198 

(w), 1138 (s), 1122 (s), 1081 (m), 1048 (w), 1020 (s), 969 (w), 950 (w), 915 (w), 892 (w), 

857 (w), 835 (w), 798 (m) , 770 (w), 735 (s), 717 (s), 597 (m), 574 (m), 556 (m), 519 (m), 

482 (s), 451 (m). 

 

MS (ESI m/z): 508.0 [M + H]
+
; in negative mode: 506.0 [M - H]

-
. 

 

Anal. calcd for C26H25N3O6S (507.56): C, 61.53; H, 4.96; N, 8.28; found: C, 61.55; H, 

5.00; N, 8.17. 
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Synthesis of 4-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-yl)-

N-hydroxybenzamide (212) 

 

 

 

A solution of 81.0 mg (0.16 mmol. 1.00 mol eq) benzyl ester 232, 16.9 mg (0.16 mmol, 

1.00 mol eq) of Pd / C (10 % w / w) in 10 ml of MeOH (abs) was stirred under H2 

atmosphere at RT. After 2 h 16.9 mg (0.16 mmol, 1.00 mol eq) of Pd / C (10 % w / w) was 

added and the reaction mixture was stirred for another 2 h. After complete consumption of 

the starting material 232 (TLC analysis), the mixture was filtered. A MeOH filtrate was put 

aside and a solid residue was transferred from a filtration paper to a flask with 20 ml of 

THF (abs). The prepared mixture was stirred under Ar for 20 min at 50 °C and 

immediately filtered. The MeOH filtrate was then combined with THF filtrate and 

evaporated under reduced pressure. The crude product was purified by crystallization from 

cyclohexane / THF yielding 40.0 mg (0.10 mmol, 60 %) of 4-(2-(5-(ethylsulfonyl)-2-

methoxyphenylamino)oxazol-5-yl)-N-hydroxybenzamide (212). 

 

Novelty: Preparation or characterization of 212 has not been described in the literature. 

 

M. p.: 187 – 189 °C (dec) [cyclohexane / THF]. White solid material. 
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1
H-NMR (400 MHz, DMSO-d

6
):  11.25 (br s, 1H, -CONHOH), 9.84 (s, 1H, -NH-), 9.05 

(s br, 1H, -CONHOH), 8.77 (d, 1H, J(A4,A6) = 2.3 Hz, H-CA(6)), 7.83 (d, 2H, J(2,3) = 8.3 

Hz, 2 x H-C(3)), 7.68 (d, 2H, J(2,3) = 8.3 Hz, 2 x H-C(2)), 7.67 (s, 1H, CB(4)), 7.51 (dd, 

1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.3 Hz, H-CA(4)), 7.28 (d, 1H, J(A3,A4) = 8.5 Hz, H-

CA(3)), 3.98 (s, 3H, -OCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.12 (t, 3H, 

J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3). 

 

13
C-NMR (100 MHz, DMSO-d6): δ 163.6 (-CONHOH), 156.5 (CB(2)), 151.7 (CA(2)), 

143.6 (CB(5)), 130.3, 130.1, 128.6, 2 x 127.7, 124.2, 122.6, 122.4, 116.1 (CA(6)), 111.0 

(CA(3)), 56.3 (-OCH3), 49.8 (-SO2CH2CH3), 7.4 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3335 (w), 3216 (w), 2938 (w), 2083 (w), 1577 (s), 1541 (m), 1486 

(m), 1458 (m), 1419 (m), 1348 (w), 1230 (s), 1265 (s), 1226 (w), 1178 (w), 1141 (s), 1123 

(s), 1085 (w), 1044 (w), 1020 (m), 926 (w), 895 (w), 841 (w), 796 (w), 775 (w), 735 (s), 

719 (s), 598 (m), 575 (m), 558 (m), 527 (m), 493 (s), 446 (w). 

 

MS (ESI m/z): 418.0 [M + H]
+
; in negative mode: 416.0 [M - H]

-
. 

 

Anal. calcd for C19H19N3O6S (417.44): C, 54.67; H, 4.59; N, 10.07; found: C, 55.12; H, 

4.91; N, 9.24. 
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13.3.3. Synthesis of m-substituted N,5-diaryloxazol-2-amines 

213, 214 

 

 

Scheme 32. Synthesis of m-substituted N,5-diaryloxazol-2-amines 213, 214. 
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Synthesis of 3-acetylbenzonitrile (233) 

 

 

 

A solution of 254 mg (1.13 mmol, 0.15 mol eq) Pd(OAc)2 and 593 mg (2.26 mmol, 0.30 

mol eq) of PPh3 in 30 ml of DMF (abs) was prepared in a MW tube and stirred at 30 °C for 

1 h. When color of the solution changed from brown to dark red, 1.50 g (7.54 mmol, 1.00 

mol eq) of bromoacetophenone 197 and 1.80 g (15.1 mmol, 2.00 mol eq) of Zn(CN)2 were 

added. The reaction mixture was sealed, placed into a MW reactor and stirred at 140 °C for 

1.5 h. After consumption of the starting material 197 (TLC analysis), the mixture was 

diluted with 50 ml of EA, filtered through a silica pad and extracted with 2 x 20 ml of brine 

and 20 ml of H2O. The organic layer was dried over Na2SO4, filtered and concentrated 

under reduced pressure. The crude product was purified by FLC (Hex / EA = 2 / 1) 

yielding 1.05 g (7.23 mmol, 96 %) of 3-acetylbenzonitrile (233). 

 

Novelty: Synthesis of 233 was described in the literature with 89 % yield.
147 1

H-NMR 
13

C-

NMR, IR and MS spectra were also published.
148

 

 

M.p.: 94 – 96 °C [Hex / EA]. (lit. M. p.: 95 – 97 °C [petroleum ether / EA])
148

 White 

crystalline solid material. 

 

                                                 
147

 Srivastava, R. R.; Collibee, S. E. Tetrahedron Lett. 2004, 45, 8895 – 8897. 
148

 Dutta, U.; Lupton, D. W.; Maiti, D. Org. Lett. 2016, 18, 860 – 863. 
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1
H-NMR (300 MHz, CDCl3): 8.23 (ddd, 1H, J(2,4) = 1.8 Hz, J(2,6) = 1.7 Hz, J(2,5) = 

0.7 Hz, H-C(2)), 8.18 (ddd, 1H, J(4,5) = 8.0 Hz, J(2,4) = 1.8 Hz, J(4,6) = 1.3 Hz, H-C(4)), 

7.85 (ddd, 1H, J(5,6) = 7.8 Hz, J(2,6) = 1.7 Hz, J(4,6) = 1.3 Hz, H-C(6)), 7.62 (ddd, 1H, 

J(4,5) = 8.0 Hz, J(5,6) = 7.8 Hz, J(2,5) = 0.7 Hz, H-C(5)), 2.64 (s, 3H, -COCH3). 

 

Synthesis of 3-(2-bromoacetyl)benzonitrile (234) 

 

 

 

To a solution of 500 mg (3.44 mmol, 1.00 mol eq) benzonitrile 233 in 15 ml of THF (abs), 

1.42 g (3.79 mmol, 1.10 mol eq) of trimethylphenylammonium tribromide dissolved in 10 

ml of THF (abs) was added dropwise. The reaction mixture was stirred at RT under Ar for 

12 h. After consumption of the starting material 233 (TLC analysis), the reaction mixture 

was concentrated, an obtained residual material was dissolved in 30 ml of EA and 

extracted with 2 x 10 ml of brine and 10 ml of H2O. The organic layer was dried over 

Na2SO4, filtered and evaporated under reduced pressure. The crude product was purified 

by crystallization from EtOH yielding 690 mg (3.08 mmol, 90 %) of 3-(2-

bromoacetyl)benzonitrile (234). 
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Novelty: Synthesis of 234 was described in the literature with 78 % yield.
149 1

H-NMR 
13

C-

NMR, IR and MS spectra were also published.
149,150

 

 

M.p.: 68 – 70 °C [EtOH]. (lit. M. p.: 70 – 71 °C [Hex / EA])
149

 White crystalline solid 

material. 

 

 

 

1
H-NMR (300 MHz, DMSO-d6): 8.46 (ddd, 1H, J(2,4) = 2.0 Hz, J(2,6) = 1.7 Hz, J(2,5) 

= 0.6 Hz, H-C(2)), 8.27 (ddd, 1H, J(4,5) = 8.0 Hz, J(2,4) = 2.0 Hz, J(4,6) = 1.2 Hz, H-

C(4)), 8.14 (ddd, 1H, J(5,6) = 7.8 Hz, J(2,6) = 1.7 Hz, J(4,6) = 1.2 Hz, H-C(6)), 7.77 (ddd, 

1H, J(4,5) = 8.0 Hz, J(5,6) = 7.8 Hz, J(2,5) = 0.6 Hz, H-C(5)), 5.00 (s, 2H, -COCH2Br). 

 

Synthesis of 3-(2-azidoacetyl)benzonitrile (235) 

 

 

 

To a solution of 1.50 g (6.69 mmol, 1.00 mol eq) nitrile 234 in 20 ml of acetone, 653 mg 

(10.0 mmol, 1.50 mol eq) of NaN3 dissolved in 5 ml of H2O was added dropwise. The 

reaction mixture was stirred for 3 h at RT. After consumption of the starting material 234 

                                                 
149

 Watson, C. Y.; Whish, W. J. D.; Threadgill, M. D. Bioorg. Med. Chem. 1998, 6, 721 – 734. 
150

 Perez, D. I.; Palomo, V.; Perez, C.; Gil, C.; Dans, P. D.; Luque, F. J.; Conde, S.; Martinez, A. J. Med. 

Chem. 2011, 54, 4042 – 4056. 
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(TLC analysis), the mixture was evaporated. A remaining material was dissolved in 30 ml 

of EA and washed with 2 x 10 ml of brine and 1 x 10 ml of H2O. The organic layer was 

dried over Na2SO4, filtered and concentrated under reduced pressure giving 930 mg (5.00 

mmol, 75 %) of crude 3-(2-azidoacetyl)benzonitrile (235) which was used in the next step 

without further purification. 

 

Novelty: Synthesis of 235 was described in the literature.
6
 The reaction yield and spectra 

of 235 have not been published. 

 

M.p.: 93 – 95 °C (dec) [EA]. (lit. M. p.: 99 – 101 °C [EtOH])
151

 Orange crystalline solid 

material. 

 

 

 

1
H-NMR (300 MHz, DMSO-d6): 8.40 (dd, 1H, J(2,4) = 2.0 Hz, J(2,6) = 1.7 Hz, H-

C(2)), 8.22 (ddd, 1H, J(4,5) = 8.0 Hz, J(2,4) = 2.0 Hz, J(4,6) = 1.1 Hz, H-C(4)), 8.15 (ddd, 

1H, J(5,6) = 7.7 Hz, J(2,6) = 1.7 Hz, J(4,6) = 1.1 Hz, H-C(6)), 7.78 (dd, 1H, J(4,5) = 8.0 

Hz, J(5,6) = 7.7 Hz, H-C(5)), 4.93 (s, 2H, -COCH2N3). 

 

13
C-NMR (75 MHz, DMSO-d6): δ 193.4 (-COCH2N3), 137.0 (C(3)), 135.2 (C(6)), 132.2, 

131.9, 130.2, 118.0 (-CN), 112.1 (C(1)), 55.0 (-COCH2N3). 

 

FT IR (solid, cm
-1

): 3385 (w), 3074 (w), 2965 (w), 2892 (w), 2581 (w), 2376 (w), 2343 

(w), 2281 (w), 2231 (m), 2111 (s), 1996 (w), 1734 (w), 1701 (s), 1597 (m), 1474 (w), 1417 

(m), 1348 (m), 1301 (m), 1240 (s), 1174 (w), 1147 (s), 1102 (m), 1035 (s), 984 (m), 837 

(w), 810 (s), 773 (m), 678 (s), 628 (m), 607 (m), 553 (m), 527 (s), 483 (w), 441 (w). 

                                                 
151

 Brown, D.; Dowell, R.; Hargreaves, R. B.; Main, B. Imperial Chemical Industries PLC 1983, US4423045, 

A1. 
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MS (ESI m/z): not detectable in positive / negative mode. 

 

Anal. calcd for C9H6N4O (186.17): C, 58.06; H, 3.25; N, 30.09; found: C, 58.23; H, 3.32; 

N, 29.95. 

 

Synthesis of 3-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-yl) 

benzonitrile (213) 

 

 

 

A mixture of 809 mg (3.14 mmol, 1.00 mol eq) isothiocyanate 105, 585 mg (3.14 mmol, 

1.00 mol eq) of azide 235 and 824 mg (3.14 mmol, 1.00 mol eq) of PPh3 in 20 ml of 

dioxane (abs) was stirred under Ar at 100 °C for 2 h. After consumption of the starting 

material 105 and 235 (TLC analysis), the reaction mixture was evaporated. A remaining 

solid was dissolved in 30 ml of EA and washed with 2 x 10 ml of brine and 1 x 10 ml of 

H2O. The organic layer was dried over Na2SO4, filtered and concentrated under reduced 

pressure. The crude product was purified by FLC (Hex / EA = 1 / 2) and triturated with 

Hex / EA yielding 450 mg (1.17 mmol, 38 %) of 3-(2-(5-(ethylsulfonyl)-2-

methoxyphenylamino)oxazol-5-yl)benzonitrile (213). 

 

Novelty: Synthesis of 213 was described in the literature in 1 % yield together with its
 1
H-

NMR and HRMS spectral analyses.
6
 

 

M.p.: 156 – 159 °C (dec) [Hex / EA]. Pale yellow solid material. 
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1
H-NMR (300 MHz, DMSO-d

6
):  9.85 (s, 1H, -NH-), 8.76 (d, 1H, J(A4,A6) = 2.3 Hz, H-

CA(6)), 8.06 (dd, 1H, J(C2,C4) = 1.9 Hz, J(C2,C6) = 1.6 Hz, CC(2)), 7.90 (ddd, 1H, J(C4,C5) 

= 7.8 Hz, J(C2,C4) = 1.9 Hz, J(C4,C6) = 1.5 Hz, H-CC(4)), 7.73 (ddd, 1H, J(C5,C6) = 7.7 

Hz, J(C2,C6) = 1.6 Hz, J(C4,C6) = 1.5 Hz, H-CC(6)), 7.73 (s, 1H, CB(4)), 7.65 (dd, 1H, 

J(C4,C5) = 7.8 Hz, J(C5,C6) = 7.7 Hz, H-CC(5)), 7.52 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) 

= 2.3 Hz, H-CA(4)), 7.28 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 3.98 (s, 3H, -OCH3), 3.21 

(q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 7.4 Hz, -

SO2CH2CH3). 

 

Synthesis of 5-(3-(aminomethyl)phenyl)-N-(5-(ethylsulfonyl)-2-methoxy 

phenyl)oxazol-2-amine hydrochloride (214) 

 

 

 

A solution of 100 mg (0.26 mmol, 1.00 mol eq) nitrile 213 and 45.2 mg (0.05 ml) (0.41 

mmol, 1.60 mol eq) of PhSiH3 in 3 ml of toluene (abs) was stirred at RT for 10 min. 

Subsequently 0.05 ml (0.05 mmol, 0.20 mol eq) of 1 M TBAF in THF was added and the 
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reaction mixture was stirred under Ar at 60 °C for 2 h. Afterwards the reaction was cooled 

down to RT, additional 84.7 mg (0.10 ml) (0.78 mmol, 3.00 mol eq) of PhSiH3 and 0.05 ml 

(0.05 mmol, 0.20 mol eq) of 1 M TBAF in THF were added and the reaction was stirred 

under Ar at 60 °C for 2 h. After consumption of the starting material 213 (TLC analysis), 

the reaction mixture was cooled to RT, 1.5 ml (1.50 mmol, 5.70 mol eq) of 1 M HCl in 

MeOH was added and the stirring continued for 1 h. Later the reaction mixture was 

concentrated, 2 ml of 1 M HCl in MeOH and 2 ml of CH2Cl2 were added, for precipitation 

of the product 214, and the mixture was concentrated again. The crude product was 

purified by trituration with acetone yielding 80.0 mg (0.19 mmol, 72 %) of amine 214. 

 

Novelty: Preparation or characterization of 214 has not been described in the literature. 

 

M. p.: 162 – 170 °C (dec) [HCl / MeOH / CH2Cl2]. Pale brown solid material. 

 

 

 

1
H-NMR (400 MHz, DMSO-d

6
):  9.84 (br s, 1H, -NH-), 8.74 (d, 1H, J(A4,A6) = 2.3 Hz, 

H-CA(6)), 8.57 (br s, 3H, -CH2NH2.HCl ), 7.79 (dd, 1H, J(C2,C6) = 2.1 Hz, J(C2,C4) = 1.8 

Hz, H-CC(2)), 7.60 (ddd, 1H, J(C5,C6) = 7.7 Hz, J(C2,C6) = 2.1 Hz, J(C4,C6) = 1.4 Hz, H-

CC(6)), 7.55 (s, 1H, H-CB(4)), 7.52 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.3 Hz, H-

CA(4)), 7.50 (dd, 1H, J(C4,C5) and J(C5,C6) = 7.7 Hz, H-CC(5)), 7.44 (ddd, 1H, J(C4,C5) = 

7.7 Hz, J(C2,C4) = 1.8 Hz, J(C4,C6) = 1.4 Hz, H-CC(4)), 7.29, (d, 1H, J(A3,A4) = 8.5 Hz, H-

CA(3)), 4.04 (q, 2H, J(CH2,NH2.HCl) = 5.8 Hz, -CH2NH2.HCl), 3.98 (s, 3H, -OCH3), 3.21 

(q, 2H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 7.3 Hz, -

SO2CH2CH3). 
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13
C-NMR (100 MHz, DMSO-d

6
): (CB(2)), 151.8 (CA(2)), 143.9 (CB(5)), 135.0 

(CC(3)), 130.2, 129.4, 128.5, 128.0, 127.8, 123.5, 122.7, 2 x 122.5, 116.2 (CA(6)), 111.1 

(CA(3)), 56.4 (-OCH3), 49.8 (-SO2CH2CH3), 42.1 (-CH2NH2 . HCl), 7.4 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 2940 (m), 2617 (w), 2109 (w), 2061 (w), 1999 (w), 1676 (s), 1597 

(m), 1576 (m), 1505 (m), 1457 (w), 1425 (w), 1381 (w), 1302 (m), 1268 (m), 1230 (w), 

1197 (w), 1123 (s), 1087 (m), 1047 (w), 1015 (m), 918 (w), 792 (m), 734 (m), 697 (m), 

593 (w), 557 (w), 520 (m), 490 (s), 443 (m). 

 

MS (ESI m/z): 388.1 [M + H]
+
; in negative mode: 386.0 [M - H]

-
. 

 

Anal. calcd for C19H21N3O4S (387.45): C, 58.90; H, 5.46; N, 10.85; found: C, 60.01; H, 

6.21; N, 9.87. 
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13.3.4. Synthesis of m-substituted N,5-diaryloxazol-2-amines  

215, 216, 217 

 

 

Scheme 33. Synthesis of m-substituted N,5-diaryloxazol-2-amines 215, 216 and 217. 
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Synthesis of methyl 3-(2-bromoacetyl)benzoate (237) 

 

 

 

To a solution of 500 mg (2.81 mmol, 1.00 mol eq) benzoate 236 in 20 ml of THF (abs), 

1.16 g (3.09 mmol, 1.10 mol eq) of trimethylphenylammonium tribromide dissolved in 10 

ml of THF (abs) was added dropwise. The reaction mixture was stirred at RT under Ar for 

3 h. After consumption of the starting material 236 (TLC analysis), the reaction mixture 

was concentrated. An obtained residual material was dissolved in 30 ml of EA and 

extracted with 2 x 10 ml of brine and 10 ml of H2O. The organic layer was dried over 

Na2SO4, filtered and evaporated under reduced pressure. The crude product was purified 

by crystallization from EtOH yielding 550 mg (2.14 mmol, 76 %) of 3-(2-

bromoacetyl)benzoate (237). 

 

Novelty: Synthesis of 237 was described in the literature with 100 % yield.
152 

Its 
1
H-NMR 

and MS spectra were also published.
153

 

 

M.p.: 66 – 67 °C [EtOH]. (lit. M. p.: 68 – 70 °C [MeOH])
154

 White crystalline solid 

material. 

 

                                                 
152

 Suzuki, T.; Muto, N.; Bando, M.; Itoh, Y.; Masaki, A.; Ri, M.; Ota, Y.; Nakagawa, H.; Iida, S.; Shirahige, 

K.; Miyata, N. ChemMedChem 2014, 9, 657 – 664. 
153

 Jones, P.; Muraglia, E.; Ontoria, J. M. Instituto di Ricerche di Biologia Molecolare P. Angeletti S.p.A. 

2007, WO2007/144669, A1. 
154

 Collin, D. T.; Hartley, D.; Jack, D.; Lunts, L. H. C.; Press, J. C.; Ritchie, A. C.; Toon, P. J. Med. Chem. 

1970, 13, 674 – 680. 
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1
H-NMR (400 MHz, CDCl3): 8.61 (ddd, 1H, J(2,4) = 2.0 Hz, J(2,6) = 1.7 Hz, J(2,5) = 

0.4 Hz, H-C(2)), 8.28 (ddd, 1H, J(5,6) = 7.7 Hz, J(2,6) = 1.7 Hz, J(4,6) = 1.4 Hz, H-C(6)), 

8.19 (ddd, 1H, J(4,5) = 7.8 Hz, J(2,4) = 2.0 Hz, J(4,6) = 1.4 Hz, H-C(4)), 7.60 (ddd, 1H, 

J(4,5) = 7.8 Hz, J(5,6) = 7.7 Hz, J(2,5) = 0.4 Hz, H-C(5)), 4.49 (s, 2H, -COCH2Br), 3.97 

(s, 3H, -COOCH3). 

 

Synthesis of methyl 3-(2-azidoacetyl)benzoate (238) 

 

 

 

To a solution of 550 mg (2.14 mmol, 1.00 mol eq) bromide 237 in 10 ml of acetone, 209 

mg (3.21 mmol, 1.50 mol eq) of NaN3 dissolved in 2 ml of H2O was added. The reaction 

mixture was stirred for 2 h at RT. After consumption of the starting material 237 (TLC 

analysis), the mixture was evaporated. A remaining material was dissolved in 15 ml of EA 

and washed with 2 x 5 ml of brine and 5 ml of H2O. The organic layer was dried over 

Na2SO4, filtered and concentrated under reduced pressure giving 340 mg (1.55 mmol, 74 

%) of crude 3-(2-azidoacetyl)benzoate (238) which was used in the next step without 

further purification. 

 

Novelty: Synthesis or characterization of 238 has not been described in the literature. 
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M.p.: 63 – 66 °C [EA]. Yellow crystalline solid material. 

 

 

 

1
H-NMR (400 MHz, CDCl3): 8.52 (dd, 1H, J(2,4) = 1.9 Hz, J(2,6) = 1.7 Hz, H-C(2)), 

8.29 (ddd, 1H, J(5,6) = 7.8 Hz, J(2,6) = 1.7 Hz, J(4,6) = 1.4 Hz, H-C(6)), 8.14 (ddd, 1H, 

J(4,5) = 7.8 Hz, J(2,4) = 1.9 Hz, J(4,6) = 1.4 Hz, H-C(4)), 7.61 (dd, 1H, J(4,5) = J(5,6) = 

7.8 Hz, H-C(5)), 4.61 (s, 2H, -COCH2N3), 3.96 (s, 3H, -COOCH3). 

 

13
C-NMR (150 MHz, CDCl3): δ 192.7 (-COCH2N3), 166.0 (-COOCH3), 135.0, 134.7, 

132.2, 131.2, 129.5, 129.1, 55.2 (-COCH2N3), 52.7 (-COOCH3). 

 

FT IR (solid, cm
-1

): 3070 (w), 2982 (w), 2951 (w), 2908 (w), 2266 (w), 2211 (w), 2150 

(w), 2092 (s), 1929 (w), 1861 (w), 1722 (s), 1692 (s), 1601 (m), 1483 (w), 1465 (w), 1428 

(s), 1345 (w), 1298 (s), 1274 (s), 1206 (s), 1105 (s), 1075 (s), 1037 (s), 973 (s), 917 (s), 

850 (w), 820 (w), 746 (s), 720 (s), 681 (s), 617 (s), 553 (s), 520 (w), 471 (m), 439 (w). 

 

MS (ESI m/z): not detectable in positive / negative mode. 

 

Anal. calcd for C10H9N3O3 (219.20): C, 54.79; H, 4.14; N, 19.17; found: C, 54.90; H, 

4.32; N, 19.15. 
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Synthesis of methyl 3-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino) 

oxazol-5-yl)benzoate (215) 

 

 

 

A solution of 235 mg (0.91 mmol, 1.00 mol eq) isothiocyanate 105, 200 mg (0.91 mmol, 

1.00 mol eq) of azide 238 and 239 mg (0.91 mmol, 1.00 mol eq) of PPh3 in 15 ml of 

dioxane (abs) under Ar was placed into preheated 90 °C oil bath for 3 h. After 

consumption of the starting material 105 and 238 (TLC analysis), the reaction mixture was 

evaporated and an obtained solid material was dissolved in 15 ml of EA and extracted with 

2 x 5 ml of brine and 5 ml of H2O. The organic layer was separated, dried over Na2SO4, 

filtered and evaporated under reduced pressure. The crude product was purified by FLC 

(gradient: Hex / EA = 1 / 3 to 1 / 4 to 1 / 5) and triturated with Hex / EA yielding 220 mg 

(0.53 mmol, 58 %) of methyl 3-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-

yl)benzoate (215). 

 

Novelty: Synthesis or characterization of 215 has not been described in the literature. 

 

M.p.: 204 – 205 °C [Hex / EA]. Off-white solid material. 
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1
H-NMR (300 MHz, DMSO-d

6
):  9.89 (br s, 1H, -NH-), 8.80 (d, 1H, J(A4,A6) = 2.2 Hz, 

H-CA(6)), 8.18 (dd, 1H, J(C2,C4) = 2.0 Hz, J(C2,C6) = 1.6 Hz, CC(2)), 7.91 (ddd, 1H, 

J(C4,C5) = 7.9 Hz, J(C2,C4) = 2.0 Hz, J(C4,C6) = 1.4 Hz, H-CC(4)), 7.86 (ddd, 1H, J(C5,C6) 

= 7.8 Hz, J(C2,C6) = 1.6 Hz, J(C4,C6) = 1.4 Hz, H-CC(6)), 7.68 (s, 1H, CB(4)), 7.60 (dd, 

1H, J(C4,C5) = 7.9 Hz, J(C5,C6) = 7.8 Hz, H-CC(5)), 7.51 (dd, 1H, J(A3,A4) = 8.5 Hz, 

J(A4,A6) = 2.2 Hz, H-CA(4)), 7.27 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 3.99 (s, 3H, -

OCH3), 3.89 (s, 3H, -COOCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.12 (t, 

3H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3). 

 

13
C-NMR (75 MHz, DMSO-d

6
): -COOCH3(CB(2)), 151.6 (CA(2)), 143.2 

(CB(5)), 130.5, 130.1, 129.6, 128.7, 128.4, 127.7, 127.3, 123.6, 122.9, 122.5, 115.9 

(CA(6)), 110.9 (CA(3)), 56.3 (-OCH3), 52.3 (-COOCH3), 49.8 (-SO2CH2CH3), 7.3 (-

SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3418 (w), 3089 (w), 2840 (w), 2211 (w), 2077 (w), 1925 (w), 1723 

(s), 1615 (s), 1579 (s), 1523 (m), 1482 (m), 1459 (m), 1421 (m), 1346 (w), 1302 (m), 1247 

(s), 1221 (m), 1184 (w), 1140 (s), 1122 (s), 1086 (s), 1054 (w), 1039 (w), 1016 (s), 988 

(w), 950 (w), 918 (w), 890 (w), 832 (w), 809 (m), 794 (m), 779 (w), 753 (s), 733 (s), 716 

(s), 681 (m), 657 (w), 623 (w), 600 (w), 553 (m), 529 (s), 511 (w), 488 (s), 470 (s). 

 

MS (ESI m/z): 439.0 [M + Na]
+
; in negative mode: 415.0 [M - H]

-
. 

 

Anal. calcd for C20H20N2O6S (416.45): C, 57.68; H, 4.84; N, 6.73; found: C, 57.45, H, 

4.81; N, 6.68. 
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Synthesis of 3-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-yl) 

benzoic acid (216) 

 

 

 

To a suspension of 100 mg (0.24 mmol, 1.00 mol eq) ester 215 in 2 ml THF, 50.3 mg (1.20 

mmol, 5.00 mol eq) of LiOH.H2O dissolved in 0.5 ml of H2O was added. The reaction 

mixture was stirred at 70 °C for 4 h. After consumption of the starting material 215 (TLC 

analysis), the mixture was concentrated. A residual material was cooled in an ice bath, 

acidified to pH = 2 by 2 M HCl and moved to a fridge for 5 h. A precipitated solid material 

was filtered, washed with water and Et2O and dried by HV yielding 65.0 mg (0.16 mmol, 

97 %) of 3-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-yl)benzoic acid (216). 

 

Novelty: Preparation or characterization of 216 has not been described in the literature. 

 

M. p.: 285 – 288 °C (dec) [H2O]. Light yellow solid material. 
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1
H-NMR (400 MHz, DMSO-d

6
):  13.16 (br s, 1H, -COOH), 9.87 (br s, 1H, -NH-), 8.81 

(d, 1H, J(A4,A6) = 2.3 Hz, H-CA(6)), 8.20 (dd, 1H, J(C2,C4) = 1.8 Hz, J(C2,C6) = 1.7 Hz, 

CC(2)), 7.87 (ddd, 1H, J(C4,C5) = 7.9 Hz, J(C2,C4) = 1.8 Hz, J(C4,C6) = 1.4 Hz, H-CC(4)), 

7.84 (ddd, 1H, J(C5,C6) = 7.9 Hz, J(C2,C6) = 1.7 Hz, J(C4,C6) = 1.4 Hz, H-CC(6)), 7.67 (s, 

1H, CB(4)), 7.57 (dd, 1H, J(C4,C5) = J(C5,C6) = 7.9 Hz, H-CC(5)), 7.50 (dd, 1H, J(A3,A4) = 

8.5 Hz, J(A4,A6) = 2.3 Hz, H-CA(4)), 7.27 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 3.98 (s, 

3H, -OCH3), 3.20 (q, 2H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 

7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (100 MHz, DMSO-d

6
): -COOH(CB(2)), 151.6 (CA(2)), 143.4 

(CB(5)), 131.6, 130.1, 129.4, 128.7, 128.3, 127.9, 126.8, 123.4, 123.3, 122.5, 115.8 

(CA(6)), 110.9 (CA(3)), 56.3 (-OCH3), 49.8 (-SO2CH2CH3), 7.4 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3161 (w), 2986 (w), 2936 (w), 2843 (w), 2604 (w), 2488 (w), 2115 

(w), 1882 (w), 1691 (m), 1625 (m), 1579 (m), 1506 (m), 1455 (w), 1381 (w), 1333 (w), 

1305 (s), 1268 (s), 1233 (m), 1207 (w), 1141 (s), 1122 (s), 1088 (m), 1019 (m), 960 (w), 

926 (w), 844 (w), 809 (m), 755 (m), 718 (s), 699 (m), 678 (m), 622 (w), 596 (w), 574 (w), 

522 (m), 493 (s), 457 (w). 

 

MS (ESI m/z): not detectable in positive mode; in negative mode: 401.0 [M - H]
-
. 

 

Anal. calcd for C19H18N2O6S (402.42): C, 56.71; H, 4.51; N, 6.96; found: C, 57.11; H, 

4.60; N, 6.75. 
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Synthesis of N-(benzyloxy)-3-(2-(5-(ethylsulfonyl)-2-methoxyphenyl 

amino)oxazol-5-yl)benzamide (239) 

 

 

 

To a suspension of 230 mg (0.57 mmol, 1.00 mol eq) carboxylic acid 216 in 15 ml of 

CH2Cl2 (abs) at 0 °C, 116 mg (0.86 mmol, 1.50 mol eq) of HOBt, 192 mg (0.86 mmol, 

1.50 mol eq) of EDC.HCl, 0.2 ml (174 mg, 1.71 mmol, 3.00 mol eq) of Et3N (abs) and 109 

mg (0.69 mmol, 1.20 mol eq) of BnONH2.HCl were added gradually. Afterwards the 

reaction mixture was stirred under Ar for 10 min at RT and 5 h at 35 °C. After complete 

consumption of the starting material 216 (TLC analysis), the mixture was concentrated. An 

obtained solid residue was dissolved in 40 ml of CH2Cl2 and extracted with 2 x 10 ml of 

citric acid (10 % aq solution) and 2 x 10 ml of NaHCO3 (saturated aq solution). The 

organic layer was dried over Na2SO4, filtered and concentrated under reduced pressure. 

The crude product was purified by FLC (EA) yielding 194 mg (0.38 mmol, 67 %) of N-

(benzyloxy)-3-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-yl)benzamide (239). 

 

Novelty: Preparation or characterization of 239 has not been described in the literature. 

 

M. p.: 130 – 133 °C [EA]. Pale grey solid material. 
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1
H-NMR (600 MHz, DMSO-d

6
):  11.86 (s, 1H, -CONH-), 9.83 (s, 1H, -NH-), 8.79 (d, 

1H, J(A4,A6) = 2.1 Hz, H-CA(6)), 8.02 (s, 1H, CC(2)), 7.78 (d, 1H, J(C4,C5) = 8.0 Hz, H-

CC(4)), 7.62 (d, 1H, J(C5,C6) = 7.7 Hz, H-CC(6)), 7.62 (s, 1H, CB(4)), 7.54 (dd, 1H, 

J(C4,C5) = 8.0 Hz, J(C5,C6) = 7.7 Hz, H-CC(5)), 7.51 (dd, 1H, J(A3,A4) = 8.4 Hz, J(A4,A6) 

= 2.1 Hz, H-CA(4)), 7.49 – 7.35 (m, 5H, -CH2C6H5), 7.28 (d, 1H, J(A3,A4) = 8.4 Hz, H-

CA(3)), 4.96 (s, 1H, -CH2C6H5), 3.98 (s, 3H, -OCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.3 Hz, -

SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (150 MHz, DMSO-d

6
): -CONH-(CB(2)), 151.6 (CA(2)), 143.5 

(CB(5)), 135.9 (CD(1)), 133.2 (CC(1)), 130.2, 129.2, 128.9, 128.7, 2 x 128.3, 128.2, 2 x 

125.6, 123.3, 122.5, 121.6, 115.9 (CA(6)), 110.9 (CA(3)), 77.1 (-CH2C6H5), 56.3 (-OCH3), 

49.8 (-SO2CH2CH3), 7.4 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3417 (w), 3256 (w), 3079 (w), 2981 (w), 2936 (w), 2282 (w), 2205 

(w), 2118 (w), 2086 (w), 1987 (w), 1736 (w), 1642 (m), 1616 (s), 1577 (s), 1526 (m), 1480 

(m), 1458 (w), 1430 (m), 1371 (w), 1347 (m), 1301 (s), 1264 (s), 1144 (s), 1123 (s), 1082 

(m), 1038 (m), 1017 (s), 919 (w), 900 (w), 808 (m), 754 (s), 734 (s), 716 (s), 701 (s), 660 

(w), 623 (w), 596 (m), 576 (s), 536 (m), 495 (s), 452 (m). 

 

MS (ESI m/z): 530.0 [M + Na]
+
; in negative mode: 506.0 [M - H]

-
. 

 

Anal. calcd for C26H25N3O6S (507.56): C, 61.53; H, 4.96; N, 8.28; found: C, 62.01; H, 

4.72; N, 7.92. 
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Synthesis of 3-(2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-yl)-

N-hydroxybenzamide (217) 

 

 

 

A suspension of 90.0 mg (0.18 mmol. 1.00 mol eq) hydroxamic ester 239, 18.9 mg (0.18 

mmol, 1.00 mol eq) of Pd / C (10 % w / w) in 10 ml of MeOH (abs) was stirred under H2 

atmosphere at RT for 2 h. Afterwards 18.9 mg (0.18 mmol, 1.00 mol eq) of Pd / C (10 % w 

/ w) was added and the reaction mixture was stirred for another 2 h. After consumption of 

the starting material 239 (TLC analysis), the mixture was filtered, a filtrate was put aside 

and a solid residue was washed with 2 x 10 ml of 50 °C THF (abs). The filtrates were 

combined and evaporated under reduced pressure. The crude product was purified by 

crystallization from cyclohexane / THF yielding 50.0 mg (0.12 mmol, 67 %) of 3-(2-(5-

(ethylsulfonyl)-2-methoxy phenylamino)oxazol-5-yl)-N-hydroxybenzamide (217). 

 

Novelty: Preparation or characterization of 217 has not been described in the literature. 

 

M. p.: 90 – 110 °C (dec) [cyclohexane / THF]. White solid material. 
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1
H-NMR (400 MHz, DMSO-d

6
):  11.29 (br s, 1H, -CONHOH), 9.83 (br s, 1H, -NH-), 

9.11 (br s, 1H, -CONHOH), 8.79 (d, 1H, J(A4,A6) = 2.4 Hz, H-CA(6)), 8.03 (dd, 1H, 

J(C2,C4) = 2.1 Hz, J(C2,C6) = 1.7 Hz, CC(2)), 7.75 (ddd, 1H, J(C4,C5) = 7.8 Hz, J(C2,C4) = 

2.1 Hz, J(C4,C6) = 1.3 Hz, H-CC(4)), 7.63 (ddd, 1H, J(C5,C6) = 7.7 Hz, J(C2,C6) = 1.7 Hz, 

J(C4,C6) = 1.3 Hz, H-CC(6)), 7.61 (s, 1H, CB(4)), 7.52 (dd, 1H, J(C4,C5) = 7.8 Hz, J(C5,C6) 

= 7.7 Hz, H-CC(5)), 7.51 (dd, 1H, J(A3,A4) = 8.6 Hz, J(A4,A6) = 2.4 Hz, H-CA(4)), 7.28 (d, 

1H, J(A3,A4) = 8.6 Hz, H-CA(3)), 3.98 (s, 3H, -OCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.3 Hz, -

SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (100 MHz, DMSO-d

6
): -CONHOH(CB(2)), 151.6 (CA(2)), 

143.6 (CB(5)), 133.6 (CC(1)), 130.1, 129.1, 128.7, 128.1, 125.3, 125.1, 123.2, 122.5, 121.4, 

115.9 (CA(6)), 110.9 (CA(3)), 56.3 (-OCH3), 49.7 (-SO2CH2CH3), 7.4 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3240 (w), 3089 (w), 2979 (w), 2941 (w), 2115, 2088 (w), 1613 (s), 

1573 (s), 1527 (m), 1483 (m), 1458 (w), 1426 (m), 1346 (w), 1301 (m), 1264 (s), 1228 (w), 

1141 (s), 1121 (s), 1084 (m), 1018 (m), 969 (w), 901 (m), 807 (m), 718 (s), 687 (m), 658 

(m), 596 (m), 576 (m), 519 (m), 492 (m). 

 

MS (ESI m/z): 440.0 [M + Na]
+
; in negative mode: 415.9 [M - H]

-
. 

 

Anal. calcd for C19H19N3O6S (417.44): C, 54.67; H, 4.59; N, 10.07; found: C, 54.75; H, 

4.66; N, 9.98. 
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13.3.5. Synthesis of m-substituted N,5-diaryloxazol-2-amines 

218, 219, 220, 221 

 

 

Scheme 34. Synthesis of m-substituted N,5-diaryloxazol-2-amines 218, 219, 220 and 221. 
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Synthesis of 5-(3-(1H-imidazol-2-yl)phenyl)-N-(5-(ethylsulfonyl)-2-

methoxyphenyl)oxazol-2-amine (218) 

 

 

 

A suspension of 175 mg (0.40 mmol, 1.00 mol eq) oxazole 107, 54.5 mg (0.80 mmol, 2.00 

mol eq) of imidazole (240), 4.49 mg (0.02 mmol, 0.05 mol eq) of Pd(OAc)2 and 152 mg 

(0.80 mmol, 2.00 mol eq) of CuI in 8 ml of DMF (abs) was bubbled with Ar for 10 min. 

The reaction mixture was stirred under Ar at 150 °C for 48 h. Afterwards 27.2 mg (0.40 

mmol, 1.00 mol eq) of imidazole (240), 4.49 mg (0.02 mmol, 0.05 mol eq) of Pd(OAc)2 

and 76.2 mg (0.40 mmol, 1.00 mol eq) of CuI was added and the mixture was stirred under 

Ar at 150 °C for another 24 h. After consumption of the starting material 107 (TLC 

analysis), the reaction was diluted with 15 ml of EA, 15 ml of NH4Cl (saturated aq 

solution) adjusted to pH = 8 with NH4OH (aq) was added and the mixture was stirred for 

45 min. Then the layers were separated and the aqueous phase was extracted with 3 x 5 ml 

of EA. The combined organic layer was washed with 3 x 10 ml of brine, dried over 

Na2SO4, filtered and evaporated under reduced pressure. The crude product was purified 

by trituration with Hex / EA yielding 85.0 mg (0.20 mmol, 50 %) of 5-(3-(1H-imidazol-2-

yl)phenyl)-N-(5-(ethylsulfonyl)-2-methoxyphenyl)oxazol-2-amine (218). 

 

Novelty: Preparation or characterization of 218 has not been described in the literature. 

 

M. p.: 136 – 143 °C (dec) [Hex / EA]. Light brown solid material. 
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1
H-NMR (300 MHz, DMSO-d

6
):  12.65 (br s, 1H, -NH- imidazole), 9.79 (br s, 1H, -NH-

), 8.80 (d, 1H, J(A4,A6) = 2.3 Hz, H-CA(6)), 8.27 (s, 1H, H-CC(2)), 7.82 (d, 1H, J(C4,C5) = 

7.5 Hz, H-CC(4)), 7.58 (d, 1H, J(C5,C6) = 7.5 Hz, H-CC(6)), 7.57 (s, 1H, H-CB(4)), 7.51 

(dd, 1H, J(C4,C5) = J(C5,C6) = 7.5 Hz, H-CC(5)), 7.51 (dd, 1H, J(A3,A4) = 8.6 Hz, J(A4,A6) 

= 2.3 Hz, H-CA(4)), 7.28 (d, 1H, J(A3,A4) = 8.6 Hz, H-CA(3)), 7.19 (br s, 2H, H-CD(4) and 

H-CD(5)), 3.99 (s, 3H, -OCH3), 3.21 (q, 2H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3), 1.13 (t, 

3H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (75 MHz, DMSO-d

6
): (CB(2)), 151.6 (CA(2)), 144.2, 144.1, 131.5 

130.2, 129.4, 129.0, 128.8, 128.3, 123.4, 122.7, 122.5, 122.2, 119.3, 115.8 (CA(6)), 110.9 

(CA(3)), 56.3 (-OCH3), 49.8 (-SO2CH2CH3), 7.4 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3423 (w), 3308 (w), 3070 (w), 2986 (w), 2926 (w), 2812 (w), 2325 

(w), 2221 (w), 2114 (w), 2082 (w), 1920 (w), 1731 (w), 1677 (w), 1602 (s), 1572 (s), 1524 

(m), 1490 (m), 1458 (m), 1426 (m), 1375 (w), 1348 (w), 1298 (s), 1265 (s), 1143 (s), 1123 

(s), 1085 (m), 1045 (m), 1015 (m), 976 (w), 917 (w), 890 (w), 793 (m), 751 (m), 733 (s), 

716 (s), 688 (m), 658 (m), 622 (w), 595 (m), 577 (m), 536 (m), 492 (s), 458 (m), 415 (w). 

 

MS (ESI m/z): 425.1 [M + H]
+
; in negative mode 423.0 [M - H]

-
. 

 

Anal. calcd for C21H20N4O4S (424.47): C, 59.42; H, 4.75; N, 13.20; found: C, 59.68; H, 

4.89; N, 12.99. 

 



Experimental part 

271 

Synthesis of N-(5-(ethylsulfonyl)-2-methoxyphenyl)-5-(3-(1-methyl-1H-

imidazol-4-yl)phenyl)oxazol-2-amine (219) 

 

 

 

A suspension of 50.0 mg (0.11 mmol, 1.00 mol eq) oxazole 107, 13.2 mg (0.01 mmol, 0.10 

mol eq) of Pd(PPh3)4 and 73.7 mg (0.23 mmol, 2.00 mol eq) of Bu4NBr in 5 ml of CH3CN 

(abs) prepared in a sealed tube was bubbled by Ar for 10 min. Afterwards 127 mg (0.34, 

3.00 mol eq) of tributylstannane 241 was added and the mixture was stirred at 100 °C for 

15 h. After consumption of the starting material 107 (TLC analysis), the reaction was 

cooled down to RT and diluted with 10 ml of EA. Then 10 ml of KF (saturated aq solution) 

was added and the mixture was stirred for 3 h. The organic layer was separated, washed 

with 10 ml of H2O, dried by Na2SO4, filtered and concentrated under reduced pressure. 

The crude product was purified by trituration with Hex / EA yielding 40.0 mg (0.09 mmol, 

80 %) of N-(5-(ethylsulfonyl)-2-methoxyphenyl)-5-(3-(1-methyl-1H-imidazol-4-yl)phenyl) 

oxazol-2-amine (219). 

 

Novelty: Preparation or characterization of 219 has not been described in the literature. 

 

M. p.: 235 – 236 °C [Hex / EA]. Yellow solid material. 
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1
H-NMR (400 MHz, DMSO-d

6
):  9.76 (s, 1H, -NH-), 8.79 (d, 1H, J(A4,A6) = 2.3 Hz, H-

CA(6)), 7.72 (d, 1H, J(C2,C6) = 2.0 Hz, J(C2,C4) = 1.7 Hz, H-CC(2)), 7.64 (s, 1H, H-CB(4)), 

7.61 (ddd, 1H, J(C5,C6) = 7.9 Hz, J(C2,C6) = 2.0 Hz, J(C4,C6) = 1.4 Hz, H-CC(6)), 7.53 (d, 

1H, J(C5,C6) = 7.9 Hz, J(C4,C5) = 7.7 Hz, H-CC(5)), 7.50 (dd, 1H, J(A3,A4) = 8.5 Hz, 

J(A4,A6) = 2.3 Hz, H-CA(4)), 7.42 (d, 1H, J(D2,D5) = 1.0 Hz, H-CD(2)), 7.41 (ddd, 1H, 

J(C4,C5) = 7.7 Hz, J(C2,C4) = 1.7 Hz, J(C4,C6) = 1.4 Hz, H-CC(4)), 7.28 (d, 1H, J(A3,A4) = 

8.5 Hz, H-CA(3)), 7.12 (d, 1H, J(D2,D5) = 1.0 Hz, H-CD(5)), 3.99 (s, 3H, -OCH3), 3.72 (s, 

3H, -CH3 imidazole), 3.20 (q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.12 (t, 3H, 

J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3). 

 

13
C-NMR (150 MHz, DMSO-d

6
): (CB(2)), 151.5 (CA(2)), 143.9 (CB(5)), 140.0 

(CD(4)), 132.2, 130.6, 130.2, 129.5, 128.7, 128.4, 127.8, 126.5, 123.1, 122.4, 122.0, 121.7, 

115.8 (CA(6)), 110.9 (CA(3)), 56.4 (-OCH3), 49.8 (-SO2CH2CH3), 32.4 (-CH3 imidazole ), 

7.4 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 2945 (w), 2114 (w), 1734 (w), 1611 (m), 1567 (s), 1500 (m), 1458 

(w), 1418 (m), 1376 (w), 1346 (w), 1305 (m), 1267 (m), 1228 (w), 1139 (s), 1123 (s), 1089 

(m), 1046 (m), 1027 (m), 979 (w), 920 (w), 834 (w), 797 (s), 759 (m), 735 (s), 716 (s), 655 

(m), 618 (w), 595 (m), 575 (s), 535 (m), 494 (s), 468 (w), 425 (w). 

 

MS (ESI m/z): not detectable in positive mode; in negative mode 437.0 [M - H]
-
. 

 

Anal. calcd for C22H22N4O4S (438.50): C, 60.26; H, 5.06; N, 12.78; found: C, 60.65; H, 

5.21; N, 12.39. 
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Synthesis of 5-(3-(1H-pyrazol-3-yl)phenyl)-N-(5-(ethylsulfonyl)-2-

methoxyphenyl)oxazol-2-amine (220) 

 

 

 

A suspension of 60.0 mg (0.14 mmol, 1.00 mol eq) oxazole 107, 23.0 mg (0.21, 1.50 mol 

eq) of boronic acid 242 and 15.8 mg (0.01 mmol, 0.10 mol eq) of Pd(PPh3)4 in 5 ml of 

DMF placed in a sealed tube was bubbled by Ar for 10 min. Afterwards a solution of 29.0 

mg (0.27 mmol, 2.00 mol eq) Na2CO3 in 2 ml of H2O was added and the reaction mixture 

was stirred at 100 °C for 15 h. Then the reaction was cooled down to RT, diluted with 10 

ml of EA and extracted with 3 x 5 ml of brine. The organic layer was separated, dried by 

Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified 

by trituration with Hex / EA yielding 52.0 mg (0.12 mmol, 90 %) of 5-(3-(1H-pyrazol-3-

yl)phenyl)-N-(5-(ethylsulfonyl)-2-methoxyphenyl)oxazol-2-amine (220). 

 

Novelty: Preparation or characterization of 220 has not been described in the literature. 

 

M. p.: 220 – 223 °C [Hex / EA]. Off-white solid material. 
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1
H-NMR (300 MHz, DMSO-d

6
):  12.96 (s, 1H, -NH- pyrazole), 9.79 (s, 1H, -NH-), 8.80 

(d, 1H, J(D4,D5) = 1.5 Hz, H-CD(5)), 8.11 (s, 1H, H-CA(6)), 7.82 (s, 1H, H-CC(2)), 7.72 (d, 

1H, J(C5,C6) = 7.2 Hz, H-CC(6)), 7.60 (s, 1H, H-CB(4)), 7.56 (d, 1H, J(C4,C5) = 7.6 Hz, H-

CC(4)), 7.50 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.3 Hz, H-CA(4)), 7.47 (dd, 1H, 

J(C4,C5) = 7.6 Hz, J(C5,C6) = 7.2 Hz, H-CC(5)), 7.27 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 

6.77 (d, 1H, J(D4,D5) = 1.5 Hz, H-CD(4)), 3.99 (s, 3H, -OCH3), 3.21 (q, 2H, J(CH2,CH3) = 

7.3 Hz, -SO2CH2CH3), 1.13 (t, 3H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (150 MHz, DMSO-d

6
): (CB(2)), 151.6 (CA(2)), 149.6 (CD(3)), 144.3 

(CB(5)), 134.5 (CC(3)), 130.1, 130.0, 129.3, 128.8, 128.2, 124.2, 122.6, 122.4, 121.7, 

119.3, 115.7 (CA(6)), 110.9 (CA(3)), 102.0 (CD(4)), 56.3 (-OCH3), 49.8 (-SO2CH2CH3), 7.4 

(-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3414 (w), 3241 (w), 2976 (w), 2936 (w), 2617 (w), 2215 (w), 2116 

(w), 1921 (w), 1734 (w), 1618 (s), 1578 (s), 1526 (m), 1486 (m), 1434 (m), 1346 (w), 1301 

(s), 1265 (s), 1225 (w), 1186 (w), 1142 (s), 1122 (s), 1079 (m), 1044 (m), 1019 (m), 978 

(w), 931 (w), 884 (w), 801 (m), 765 (m), 735 (s), 717 (s), 687 (m), 658 (w), 626 (w), 596 

(w), 576 (m), 533 (m), 492 (s), 454 (m). 

 

MS (ESI m/z): 447.0 [M + Na]
+
; in negative mode 423.0 [M - H]

-
.  

 

Anal. calcd for C21H20N4O4S (424.47): C, 59.42; H, 4.75; N, 13.20; found: C, 60.13; H, 

4.86; N, 13.23. 
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Synthesis of 5-(3-(1H-pyrazol-4-yl)phenyl)-N-(5-(ethylsulfonyl)-2-

methoxyphenyl)oxazol-2-amine (221) 

 

 

 

A suspension of 60.0 mg (0.14 mmol, 1.00 mol eq) oxazole 107, 40.0 mg (0.21, 1.50 mol 

eq) of pinacolboronate 243 and 15.8 mg (0.01 mmol, 0.10 mol eq) of Pd(PPh3)4 in 5 ml of 

DMF placed in a sealed tube was bubbled by Ar for 10 min. Afterwards a solution of 29.0 

mg (0.27 mmol, 2.00 mol eq) Na2CO3 in 2 ml of H2O was added and the reaction mixture 

was stirred at 100 °C for 15 h. Then the reaction was cooled to RT, diluted with 10 ml of 

EA and extracted with 3 x 5 ml of brine. The organic layer was separated, dried by 

Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified 

by trituration with EA yielding 48.0 mg (0.11 mmol, 83 %) of 5-(3-(1H-pyrazol-4-

yl)phenyl)-N-(5-(ethylsulfonyl)-2-methoxy phenyl)oxazol-2-amine (221). 

 

Novelty: Preparation or characterization of 221 has not been described in the literature. 

 

M. p.: 264 – 267 °C [EA]. Pale yellow solid material. 
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1
H-NMR (600 MHz, DMSO-d

6
):  13.01 (br s, 1H, -NH- pyrazole), 9.70 (s, 1H, -NH-), 

8.78 (d, 1H, J(A4,A6) = 2.3 Hz, H-CA(6)), 8.24 (br s, 1H, H-CD(3) or H-CD(5)), 7.99 (br s, 

1H, H-CD(3) or H-CD(5)), 7.85 (dd, 1H, J(C2,C6) = 2.0 Hz, J(C2,C4) = 1.9 Hz, H-CC(2)), 

7.59 (s, 1H, H-CB(4)), 7.53 (ddd, 1H, J(C5,C6) = 7.0 Hz, J(C2,C6) = 2.2 Hz, J(C4,C6) = 1.8 

Hz, H-CC(6)), 7.51 (dd, 1H, J(A3,A4) = 8.8 Hz, J(A4,A6) = 2.3 Hz, H-CA(4)), 7.44 (ddd, 

1H, J(C4,C5) = 7.7 Hz, J(C2,C4) = 1.9 Hz, J(C4,C6) = 1.8 Hz, H-CC(4)), 7.42 (dd, 1H, 

J(C4,C5) = 7.7 Hz, J(C5,C6) = 7.0 Hz, H-CC(5)), 7.28 (d, 1H, J(A3,A4) = 8.8 Hz, H-CA(3)), 

3.99 (s, 1H, -OCH3), 3.22 (q, 2H, J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3), 1.13 (t, 3H, 

J(CH2,CH3) = 7.3 Hz, -SO2CH2CH3). 

 

13
C-NMR (150 MHz, DMSO-d

6
): (CB(2)), 151.5 (CA(2)), 144.4 (CB(5)), 136.3 

(CD(3) or CD(5)), 133.6 (CC(3)), 130.2, 129.5, 128.8, 128.4, 125.7 (CD(3) or CD(5)), 124.2, 

122.6, 122.4, 120.7, 120.3, 119.3, 115.7 (CA(6)), 110.9 (CA(3)), 56.4 (-OCH3), 49.8 (-

SO2CH2CH3), 7.3 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3413 (w), 3102 (w), 3055 (w), 2964 (w), 2323 (w), 2111 (w), 1919 

(w), 1719 (w), 1617 (m), 1576 (s), 1527 (m), 1484 (w), 1430 (m), 1349 (w), 1301 (s), 1262 

(s), 1227 (w), 1141 (s), 1120 (s), 1080 (m), 1047 (m), 1012 (m), 979 (w), 933 (w), 862 (w), 

786 (s), 737 (s), 716 (s), 685 (m), 658 (w), 622 (w), 597 (m), 572 (s), 535 (m), 492 (s), 452 

(m). 

 

MS (ESI m/z): 447.0 [M + Na]
+
; in negative mode 423.0 [M - H]

-
. 
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Anal. calcd for C21H20N4O4S (424.47): C, 59.42; H, 4.75; N, 13.20; found: C, 59.48; H, 

4.87; N, 13.11. 

 

13.3.6. Synthesis of m-substituted N,5-diaryloxazol-2-amine 

coupling precursor 245 

 

 

Scheme 35. Synthesis of m-substituted N,5-diaryloxazol-2-amine coupling precursor 245. 
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Synthesis of N-(5-(ethylsulfonyl)-2-methoxyphenyl)-5-(3-(4,4,5,5-tetra 

methyl-1,3,2-dioxaborolan-2-yl)phenyl)oxazol-2-amine (245) 

 

 

 

A suspension of 50.0 mg (0.11 mmol, 1.00 mol eq) starting material 107, 58.0 mg (0.23, 

2.00 mol eq) of bis(pinacolato)diboron (244) and 56.1 mg (0.57 mmol, 5.00 mol eq) of 

KOAc in 5 ml of toluene (abs) placed in a sealed tube was bubbled by Ar for 10 min. 

Afterwards 4.18 mg (5.72 μmol, 0.05 mol eq) of PdCl2(dppf) was added and the reaction 

mixture was stirred at 90 °C for 24 h. After complete consumption of 107 (TLC analysis), 

the reaction was cooled to RT and evaporated under reduced pressure. A residual solid 

material was purified using FLC (cyclohexane / EA = 2 / 1) yielding 46.0 mg (0.09 mmol, 

84 %) of pinacolboronate 245. 

 

Note: Because of possible sensitivity of 245 it is recommended to place it on a 

chromatographic column dissolved in suitable solvent, not immobilized on SiO2. 

For the removal of traces of the starting material 244 in FLC purified product 245, it is 

recommended to dissolve it in CHCl3 and extract with larger amount of water. 

 

Novelty: Preparation or characterization of 245 has not been described in the literature. 

 

M. p.: 175 – 177 °C [CHCl3]. Off white crystalline solid material. 
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1
H-NMR (600 MHz, DMSO-d

6
):  9.85 (s, 1H, -NH-), 8.82 (d, 1H, J(A4,A6) = 2.2 Hz, H-

CA(6)), 7.92 (s, 1H, H-CC(2)), 7.77 (dd, 1H, J(C5,C6) = 7.9 Hz, J(C4,C6) = 1.1 Hz, H-

CC(6)), 7.58 (dd, 1H, J(C4,C5) = 7.6 Hz, J(C4,C6) = 1.1 Hz, H-CC(4)), 7.58 (s, 1H, H-

CB(4)), 7.49 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.2 Hz, H-CA(4)), 7.46 (dd, 1H, 

J(C5,C6) = 7.9 Hz, J(C4,C5) = 7.6 Hz, H-CC(5)), 7.27 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 

3.99 (s, 3H, -OCH3), 3.20 (q, 2H, -SO2CH2CH3), 1.32 (s, 12H, 4 x -CH3 pinacol), 1.12 (t, 

3H, -SO2CH2CH3). 

 

13
C-NMR (150 MHz, DMSO-d

6
): (CB(2)), 151.5 (CA(2)), 144.0 (CB(5)), 133.3 

(CC(3)), 130.1, 129.2, 128.8, 128.5, 128.3, 127.5, 125.8, 122.5, 122.3, 115.6 (CA(6)), 110.8 

(CA(3)), 83.9 (2 x CD(4)), 56.3 (-OCH3), 49.8 (-SO2CH2CH3), 24.7 (4 x –CH3 pinacol), 7.4 

(-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3426 (m), 3115 (w), 2973 (m), 2938 (w), 2613 (w), 2376 (w), 2121 

(w), 2088 (w), 1880 (w), 1614 (s), 1571 (s), 1523 (m), 1485 (w), 1466 (w), 1430 (m), 1409 

(m), 1381 (w), 1358 (s), 1316 (m), 1296 (s), 1264 (s), 1211 (m), 1139 (s), 1119 (s), 1081 

(m), 1047 (m), 1025 (m), 923 (w), 897 (w), 859 (m), 818 (m), 794 (m), 700 (s), 622 (w), 

580 (m), 529 (m), 490 (m), 467 (m), 427 (s). 

 

MS (ESI m/z): 507.1 [M + Na]
+
; in negative mode 483.0 [M - H]

-
.  

 

Anal. calcd for C24H29BN2O6S (484.37): C, 59.51; H, 6.03; N, 5.78; found: C, 59.60; H, 

6.10; N, 5.80. 
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13.3.7. Synthesis of m-substituted N,5-diaryloxazol-2-amine 

223 

 

 

Scheme 36. Synthesis of m-substituted N,5-diaryloxazol-2-amine 223. 
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Synthesis of 1-(3-ethynylphenyl)ethanone (248) 

 

 

 

A mixture of 1.00 g (5.02 mmol, 1.00 mol eq) acetophenone 197, 987 mg (10.0 mmol, 2.00 

mol eq) of trimethylsilylacetylene (179) and 191 mg (1.00 mmol, 0.20 mol eq) of CuI in 15 

ml of Et3N (abs) was bubbled with Ar for 10 min. Afterwards (0.50 mmol, 0.10 mol eq) of 

Pd(PPh3)4 was added and the reaction mixture was stirred under Ar at RT for 48 h. After 

complete consumption of the starting material 197 (TLC analysis), the mixture was 

evaporated under reduced pressure. A remaining solid material was dissolved in 15 ml of 

EA and extracted with 3 x 5 ml of H2O. An organic layer was separated, dried over 

Na2CO3, filtered and concentrated. An obtained solid was dissolved in a mixture of 20 ml 

of MeOH (abs) and 10 ml of THF (abs), 730 mg (12.6 mmol, 2.50 mol eq) of KF was 

added and the mixture was stirred under Ar at RT overnight. After complete consumption 

of TMS-protected product (TLC analysis), the mixture was evaporated, a remaining 

material was dissolved in 30 ml of EA and extracted with 3 x 10 ml of saturated aq 

solution of NH4Cl. A separated organic layer was dried over Na2SO4, filtered and 

concentrated again. The crude product was purified by FLC (Hex / EA = 9 / 1) yielding 

440 mg (2.98 mmol, 61 %) of 1-(3-ethynylphenyl)ethanone (248). 

 

Novelty: The synthesis of 248 was described in the literature with 93 % yield.
155

 Its 
1
H-

NMR, 
13

C-NMR
156

 and MS
157

 spectra were published. 

 

M. p.: 54 – 55 °C [EA]. (lit. M. p.: 53 – 54 °C [Et2O])
158

 Yellow crystalline solid material. 

                                                 
155

 Bernardon, J. M. Galderma Research and Development S.N.C. 2001, US6689922, B1. 
156

 Dutta, U.; Lupton, D. W.; Maiti, D. Org. Lett. 2016, 18, 860 – 863. 
157

 Fujimura, O.; Fukunaga, K.; Honma, T.; Machida, T. Ube Industries 2009, EP2042506, A1. 
158

 Zimmer, O.; Vollenberg, W.; Seipp, U.; Englberger, W.; Haurand, M.; Bosman, B. J.; Schneider, J. 

Gruenenthal GMBH 1993, US5202349, A1. 
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1
H-NMR (400 MHz, CDCl3):  8.06 (dd, 1H, J(2,6) = 2.0 Hz, J(2,4) = 1.6 Hz, H-C(2)), 

7.93 (ddd, 1H, J(5,6) = 7.9 Hz, J(2,6) = 2.0 Hz, J(4,6) = 1.4 Hz, H-C(6)), 7.67 (ddd, 1H, 

J(4,5) = 7.8 Hz, J(2,4) = 1.6 Hz, J(4,6) = 1.4 Hz, H-C(4)), 7.43 (dd, 1H, J(5,6) = 7.9 Hz, 

J(4,5) = 7.8 Hz, H-C(5)), 3.13 (s, 1H, -C≡CH), 2.60 (s, 3H, -COCH3). 

 

Synthesis of 1-(bromomethyl)-4-methoxybenzene (250) 

 

 

 

To a solution of 2.85 g (10.9 mmol, 1.00 mol eq) PPh3 in 20 ml of CH2Cl2 (abs) under Ar 

at 0 °C, 1.91 g (11.9 mmol, 1.10 mol eq) of Br2 was added dropwise. The reaction mixture 

was stirred at RT for 30 min. Afterwards it was cooled to - 75 °C, a solution of 1.50 g 

(10.9 mmol, 1.00 mol eq) 249 in 15 ml of CH2Cl2 was slowly added and the mixture was 

stirred at RT for 3 h. After consumption of the starting material 249 (TLC analysis), 50 ml 

of 0.1 M solution of Na2S2O3 was added and the mixture was stirred for 10 min. Then 50 

ml of 1 M solution of NaHCO3 was added, an aqueous layer was separated and extracted 

with 2 x 50 ml of CH2Cl2. Organic layers were combined, dried over Na2SO4, filtered and 

concentrated under reduced pressure. The crude product was purified by trituration to 

hexane. After filtration of a remaining solid and complete evaporation of a filtrate (rotavap, 
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HV), 2.00 g (9.95 mmol, 92 %) of 1-(bromomethyl)-4-methoxybenzene (250) was 

obtained. 

 

Novelty: The synthesis of 250 was described in the literature with 100 % yield.
159

 Its 
1
H-

NMR, 
13

C-NMR,
160

 IR and MS
161

 spectra were also published. 

 

Colorless oily material. 

 

 

 

1
H-NMR (400 MHz, CDCl3):  7.33 (d, 2H, J(2,3) = 8.7 Hz, 2 x H-C(2)), 6.87 (d, 2H, 

J(2,3) = 8.7 Hz, 2 x H-C(3)), 4.51 (s, 2H, -CH2Br), 3.81 (s, 3H, -OCH3). 

 

Synthesis of 1-(azidomethyl)-4-methoxybenzene (187) 

 

 

 

A suspension of 1.00 g (4.97 mmol, 1.00 mol eq) starting material 250, 647 mg (9.95 

mmol, 2.00 mol eq) of NaN3 and 17.0 mg (0.10 mmol, 0.02 mol eq) of KI in 20 ml of 

                                                 
159

 Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J. F. Angew. Chem. Int. Ed. 2014, 53, 13835 – 

13839. 
160

 Louafi, F.; Hurvois, J. P.; Chibani, A.; Roisnel, T. J. Org. Chem. 2010, 75, 5721 – 5724. 
161

 Shen, Z. L.; Zhuo, G. L.; Jiang, X. Z. Ind. J. Chem., Sect. B 2002, 41, 2395 – 2398. 
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CH3CN (abs) was refluxed under Ar for 16 h. After consumption of the starting material 

250 (TLC analysis), the reaction mixture was concentrated by rotavap. The temperature of 

the water bath was kept below 30 °C. A residual material was then portioned between 20 

ml of CH2Cl2 and 20 ml of 0.1 M aq solution of Na2SO3 and thoroughly shaken. The 

organic layer was separated, dried over Na2SO4, filtered and evaporated under reduced 

pressure giving 660 mg (1.55 mmol, 74 %) of 1-(azidomethyl)-4-methoxybenzene (187) 

which was used in the next step without further purification. 

 

Novelty: The synthesis of 187 was described in the literature with 100 % yield.
162

 Its 
1
H-

NMR, 
13

C-NMR,
162

 IR and HRMS
163

 spectra were also published. 

 

Pale yellow oily material. 

 

 

 

1
H-NMR (400 MHz, CDCl3):  7.25 (d, 2H, J(2,3) = 8.8 Hz, 2 x H-C(2)), 6.91 (d, 2H, 

J(2,3) = 8.8 Hz, 2 x H-C(3)), 4.27 (s, 2H, -CH2N3), 3.82 (s, 3H, -OCH3). 

  

                                                 
162

 Wünsch, S.; Breit, B. Chem. Eur. J. 2015, 21, 2358 – 2363. 
163

 Suzuki, T.; Ota, Y.; Kasuya, Y.; Mutsuga, M.; Kawamura, Y.; Tsumoto, H.; Nakagawa, H.; Finn, M. G.; 

Miyata, N. Angew. Chem. Int. Ed. 2010, 49, 6817 – 6820. 
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Synthesis of 1-(3-(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)phenyl) 

ethanone (251) 

 

 

 

To a stirred suspension of 200 mg (1.39 mmol, 1.00 mol eq) acetophenone 248 and 249 mg 

(1.53 mmol, 1.10 mol eq) of benzyl azide 187 in 2 ml of CH2Cl2 and 2 ml of H2O, 21.0 mg 

(0.08 mmol, 0.06 mol eq) of CuSO4.5H2O and 41.2 mg (0.21 mmol, 0.15 mol eq) of 

sodium L-ascorbate was added gradually. The reaction mixture was then stirred at RT for 

12 h. After consumption of starting material 248 and 187 (TLC analysis), 10 ml of CH2Cl2 

was added and the mixture was extracted with 2 x 4 ml of brine and 4 ml of H2O. An 

organic layer was separated, dried over Na2SO4, filtered and concentrated under reduced 

pressure. The crude product was purified by FLC (Hex / EA = 1 / 1) yielding 352 mg (1.15 

mmol, 82 %) of 1-(3-(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)phenyl)ethanone (251). 

 

Novelty: Preparation or characterization of 251 has not been described in the literature. 

M. p.: 97 – 98 °C [Hex / EA]. Off white crystalline solid material. 
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1
H-NMR (600 MHz, CDCl3):  8.31 (dd, J(A2,A6) = 2.0 Hz, J(A2,A4) = 1.6 Hz, 1H, H-

CA(2)), 8.06 (ddd, 1H, J(A4,A5) = 8.0 Hz, J(A2,A4) = 1.6 Hz, J(A4,A6) = 1.0 Hz, H-CA(4)), 

7.89 (ddd, 1H, J(A5,A6) = 7.6 Hz, J(A2,A6) = 2.0 Hz, J(A4,A6) = 1.0 Hz, H-CA(6)), 7.70 (s, 

1H, H-CB(5)), 7.51 (dd, 1H, J(A4,A5) = 8.0 Hz, J(A5,A6) = 7.6 Hz, H-CA(5)), 7.29 (d, 1H, 

J(C2,C3) = 8.6 Hz, 2 x H-CC(2)), 6.93 (d, 1H, J(C2,C3) = 8.6 Hz, 2 x H-CC(3)), 5.52 (s, 2H, 

-CH2-), 3.82 (s, 3H, -OCH3), 2.64 (s, 3H, -COCH3). 

 

13
C-NMR (150 MHz, CDCl3): 198.1 (-COCH3), 160.2 (CC(4)), 147.3 (CB(4)), 137.7 

(CA(1)), 131.4, 130.3, 129.9 (2 x CC(2)), 129.3, 128.1, 126.5, 125.5, 119.8, 114.8 (2 x 

CC(3)), 55.5 (-CH2-), 54.1 (-OCH3), 26.9 (-COCH3). 

 

FT IR (solid, cm
-1

): 3352 (w), 3114 (w), 3075 (w), 3002 (w), 2964 (w), 2840 (w), 2286 

(w), 2119 (w), 2082 (w), 1985 (w), 1680 (s), 1609 (s), 1584 (m), 1513 (s), 1431 (m), 1358 

(m), 1306 (w), 1245 (s), 1223 (s), 1179 (s), 1094 (w), 1074 (m), 1050 (m), 1023 (s), 997 

(w), 965 (w), 934 (w), 911 (m), 836 (m), 806 (s), 788 (s), 764 (s), 738 (w), 693 (s), 671 

(m), 626 (w), 588 (s), 555 (s), 518 (s), 443 (w). 

 

MS (ESI m/z): 308.0 [M + H]
+
; in negative mode 386.0 [M + Br]

-
.  

 

Anal. calcd for C18H17N3O2 (307.35): C, 70.34; H, 5.58; N, 13.67; found: C, 70.55; H, 

5.50; N, 13.72. 

 

Synthesis of 2-bromo-1-(3-(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl) 

phenyl)ethanone (252) 
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To a solution of 100 mg (0.33 mmol, 1.00 mol eq) starting material 251 in 5 ml of THF 

(abs), 123 mg (0.33 mmol, 1.00 mol eq) of trimethylphenylammonium tribromide 

dissolved in 5 ml of THF (abs) was added dropwise. The reaction mixture was 

subsequently stirred at RT under Ar for 12 h. After complete consumption of the starting 

material 251 (TLC analysis), the reaction mixture was concentrated. An obtained residual 

material was dissolved in 30 ml of EA and extracted with 2 x 5 ml of brine and 5 ml of 

H2O. The organic layer was dried over Na2SO4, filtered and evaporated under reduced 

pressure. The crude product was purified by trituration with Hex / EA yielding 90.0 mg 

(0.18 mmol, 71 %) of 2-bromo-1-(3-(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)phenyl) 

ethanone (252). 

 

Novelty: Preparation or characterization of 252 has not been described in the literature. 

 

M. p.: 109 – 112 °C [Hex / EA]. White crystalline solid material. 

 

 

 

1
H-NMR (400 MHz, CDCl3):  8.33 (dd, 1H, J(A2,A4) = 1.7 Hz, J(A2,A6) = 2.1 Hz, H-

CA(2)), 8.09 (ddd, 1H, J(A4,A5) = 7.8 Hz, J(A2,A4) = 1.7 Hz, J(A4,A6) = 1.2 Hz, H-CA(4)), 

7.91 (ddd, 1H, J(A5,A6) = 7.8 Hz, J(A2,A6) = 2.1 Hz, J(A4,A6 ) = 1.2 Hz, H-CA(6)), 7.72 (s, 

1H, H-CB(5)), 7.53 (dd, 1H, J(A4,A5) = 7.8 Hz, J(A5,A6) = 7.8 Hz, H-CA(5)), 7.29 (d, 1H, 

J(C2,C3) = 8.6 Hz, 2 x H-CC(2)), 6.92 (d, 1H, J(C2,C3) = 8.6 Hz, 2 x H-CC(3)), 5.52 (s, 2H, 

-CH2-), 4.50 (s, 2H, -COCH2Br), 3.81 (s, 3H, -OCH3). 
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13
C-NMR (100 MHz, CDCl3): 191.3 (-COCH2Br), 160.2 (CC(4)), 146.9 (CB(4)), 134.6 

(CA(1)), 131.7, 131.1, 129.9 (2 x CC(2)), 129.6, 128.6, 126.4, 126.0, 120.0, 114.8 (2 x 

CC(3)), 55.5 (-CH2-), 54.1 (-OCH3), 31.1 (-COCH2Br). 

 

FT IR (solid, cm
-1

): 3121 (w), 3071 (w), 3000 (w), 2952 (w), 2836 (w), 2374 (w), 2194 

(w), 2114 (w), 2082 (w), 1989 (w), 1908 (w), 1698 (s), 1610 (m), 1584 (w), 1549 (w), 

1513 (s), 1459 (w), 1436 (w), 1416 (m), 1386 (w), 1337 (w), 1293 (w), 1247 (s), 1204 (s), 

1172 (s), 1128 (w), 1102 (w), 1077 (m), 1045 (m), 1023 (s), 915 (w), 878 (w), 824 (m), 

794 (s), 765 (s), 725 (w), 682 (s), 618 (s), 550 (s), 517 (m), 494 (w), 456 (w). 

 

MS (ESI m/z): 385.9 (49 %), 388.0 (51 %) [M + H]
+
; in negative mode 385.1 [M - H]

-
.  

 

Anal. calcd for C18H16N3O2 (386.24): C, 55.97; H, 4.18; N, 10.88; found: C, 60.05; H, 

4.24; N, 10.76. 

 

Synthesis of 2-azido-1-(3-(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl) 

phenyl)ethanone (253) 

 

 

 

To a solution of 310 mg (0.80 mmol, 1.00 mol eq) starting material 252 in 10 ml of 

acetone, 57.4 mg (0.88 mmol, 1.10 mol eq) of NaN3 dissolved in 1.5 ml of H2O was added. 

The reaction mixture was stirred for 2 h at RT. After consumption of the starting material 

252 (TLC analysis), the mixture was evaporated. A remaining material was dissolved in 15 

ml of EA and washed with 2 x 5 ml of brine and 5 ml of H2O. The organic layer was dried 

over Na2SO4, filtered and concentrated under reduced pressure. The crude product was 
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purified by FLC (gradient: Hex /EA = 2 / 1 to 1 / 1 to EA) yielding 216 mg (0.62 mmol, 77 

%) of 2-azido-1-(3-(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl)phenyl)ethanone (253). 

 

Novelty: Synthesis or characterization of 253 has not been described in the literature. 

 

M.p.: 95 – 97 °C [Hex / EA]. White solid material. 

 

 

 

1
H-NMR (600 MHz, CDCl3):  8.28 (dd, 1H, J(A2,A4) = 1.6 Hz, J(A2,A6) = 2.0 Hz, H-

CA(2)), 8.08 (ddd, 1H, J(A4,A5) = 7.8 Hz, J(A2,A4) = 1.6 Hz, J(A4,A6) = 1.2 Hz, H-CA(4)), 

7.84 (ddd, 1H, J(A5,A6) = 7.9 Hz, J(A2,A6) = 2.0 Hz, J(A4,A6 ) = 1.2 Hz, H-CA(6)), 7.71 (s, 

1H, H-CB(5)), 7.53 (dd, 1H, J(A5,A6) = 7.9 Hz, J(A4,A5) = 7.8 Hz, H-CA(5)), 7.29 (d, 1H, 

J(C2,C3) = 8.6 Hz, 2 x H-CC(2)), 6.93 (d, 1H, J(C2,C3) = 8.6 Hz, 2 x H-CC(3)), 5.52 (s, 2H, 

-CH2-), 4.61 (s, 2H, -COCH2N3), 3.82 (s, 3H, -OCH3). 

 

13
C-NMR (150 MHz, CDCl3): 193.2 (-COCH2N3), 160.3 (CC(4)), 146.9 (CB(4)), 135.0 

(CA(1)), 131.8, 131.2, 130.0 (2 x CC(2)), 129.7, 127.5, 126.4, 125.1, 119.9, 114.8 (2 x 

CC(3)), 55.5 (-CH2-), 55.2 (-COCH2N3), 54.1 (-OCH3). 

 

FT IR (solid, cm
-1

): 3128 (w), 3067 (w), 2984 (w), 2950 (w), 2883 (w), 2837 (w), 2375 

(w), 2269 (w), 2211 (w), 2142 (w), 2101 (s), 1927 (w), 1890 (w), 1698 (s), 1610 (m), 1585 

(w), 1545 (w), 1513 (m), 1459 (w), 1413 (m), 1336 (w), 1287 (w), 1253 (s), 1216 (s), 1177 

(s), 1130 (w), 1112 (w), 1073 (w), 1046 (w), 1015 (s), 909 (m), 823 (w), 791 (s), 766 (s), 

750 (m), 726 (w), 683 (s), 621 (m), 548 (s), 523 (m), 495 (w), 459 (w). 
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MS (ESI m/z): 349.0 [M + H]
+
; not detectable in negative mode. 

 

Anal. calcd for C18H16N6O2 (348.36): C, 62.06; H, 4.63; N, 24.12; found: C, 62.24; H, 

4.70; N, 24.10. 

 

Synthesis of N-(5-(ethylsulfonyl)-2-methoxyphenyl)-5-(3-(1-(4-methoxy 

benzyl)-1H-1,2,3-triazol-4-yl)phenyl)oxazol-2-amine (254) 

 

 

 

A solution of 74.0 mg (0.29 mmol, 1.00 mol eq) isothiocyanate 105, 100 mg (0.29 mmol, 

1.00 mol eq) of azide 253 and 75.4 mg (0.29 mmol, 1.00 mol eq) of PPh3 in 5 ml of 

dioxane (abs) under Ar was placed into the preheated 100 °C oil bath for 3 h. After 

consumption of the starting material 105 and 253 (TLC analysis), the reaction mixture was 

evaporated and an obtained solid material was dissolved in 15 ml of EA and extracted with 

2 x 5 ml of brine and 5 ml of H2O. The organic layer was separated, dried over Na2SO4, 

filtered and evaporated under reduced pressure. The crude product was purified by 

trituration with Hex / EA yielding 100 mg (0.18 mmol, 64 %) of N-(5-(ethylsulfonyl)-2-

methoxyphenyl)-5-(3-(1-(4-methoxybenzyl)-1H-1,2,3-triazol-4-yl) phenyl)oxazol-2-amine 

(254). 

 

Novelty: Synthesis or characterization of 254 has not been described in the literature. 

 

M.p.: 200 – 202 °C [Hex / EA]. Pale brown solid material. 
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1
H-NMR (600 MHz, DMSO-d

6
):  9.80 (s, 1H, -NH-), 8.79 (d, 1H, J(A4,A6) = 2.2 Hz, H-

CA(6)), 8.63 (s, 1H, H-CD(5)), 8.14 (dd, 1H, J(C2,C4) = 2.0 Hz, J(C2,C6) = 1.6 Hz, H-

CC(2)), 7.73 (ddd, 1H, J(C5,C6) = 7.9 Hz, J(C2,C6) = 1.6 Hz, J(C4,C6) = 1.0 Hz, H-CC(6)), 

7.60 (s, 1H, H-CB(4)), 7.58 (ddd, 1H, J(C4,C5) = 7.9 Hz, J(C2,C4) = 2.0 Hz, J(C4,C6) = 1.0 

Hz, H-CC(4)), 7.50 (dd, 1H, J(A3,A4) = 8.6 Hz, J(A4,A6) = 2.2 Hz, H-CA(4)), 7.50 (dd, 1H, 

J(C4,C5) = 7.9 Hz, J(C5,C6) = 7.9 Hz, H-CC(5)), 7.35 (d, 2H, J(E2,E3) = 8.7 Hz, 2 x H-

CE(2)), 7.27 (d, 1H, J(A3,A4) = 8.6 Hz, H-CA(3)), 6.96 (d, 2H, J(E2,E3) = 8.7 Hz, 2 x H-

CE(3)), 5.59 (s, 2H, -CH2-), 3.98 (s, 3H, -OCH3 phenyl), 3.75 (s, 3H, -OCH3 benzyl), 3.21 

(q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.12 (t, 3H, J(CH2,CH3) = 7.4 Hz, -

SO2CH2CH3). 

 

13
C-NMR (150 MHz, DMSO-d

6
): 159.2 (CE(4)), 156.1 (CB(2)), 151.6 (CA(2)), 146.2 

(CD(4)), 144.0 (CB(5)), 2 x 131.4, 130.1, 129.6 (2 x CE(2)), 128.8, 128.5, 127.8, 124.1, 

122.9, 122.4, 122.2, 121.5, 119.2, 115.8 (CA(6)), 114.2 (2 x CE(3)), 110.9 (CA(3)), 56.3 (-

OCH3 phenyl), 55.2 (-CH2-), 52.7 (-OCH3 benzyl), 49.8 (-SO2CH2CH3), 7.4 (-

SO2CH2CH3). 

  

FT IR (solid, cm
-1

): 3429 (w), 3128 (w), 2976 (w), 2937 (w), 2842 (w), 2240 (w), 2106 

(w), 2085 (w), 1735 (w), 1613 (s), 1580 (s), 1513 (s), 1482 (w), 1456 (w), 1430 (m), 1402 

(w), 1345 (w), 1302 (m), 1250 (s), 1176 (m), 1139 (s), 1121 (s), 1082 (m), 1045 (w), 1024 

(m), 920 (w), 892 (w), 826 (m), 794 (s), 769 (s), 753 (s), 718 (m), 686 (m), 657 (w), 639 

(w), 603 (w), 557 (m), 522 (m), 493 (s), 474 (s), 452 (m). 

 

MS (ESI m/z): 546.0 [M + H]
+
, 568.0 [M + Na]

+
; in negative mode 544.1 [M - H]

-
.  
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Anal. calcd for C28H27N5O5S (545.61): C, 61.64; H, 4.99; N, 12.84; found: C, 61.60; H, 

5.10; N, 12.71. 

 

Synthesis of 5-(3-(1H-1,2,3-triazol-4-yl)phenyl)-N-(5-(ethylsulfonyl)-2-

methoxyphenyl)oxazol-2-amine (223) 

 

 

 

A solution of 100 mg (0.18 mmol, 1.00 mol eq) starting material 254 in 6 ml of CF3COOH 

(TFA) was refluxed under Ar for 27 h. After complete consumption of starting material 

254 (TLC analysis), the reaction mixture was diluted with 3 ml of H2O, placed into an ice 

bath and neutralized using a saturated solution of Na2CO3. The aqueous mixture was then 

extracted with 3 x 10 ml of EA. The separated organic layers were combined, dried over 

Na2SO4, filtered and evaporated under reduced pressure. The crude product was purified 

by trituration with EA or by FLC (CH2Cl2 / EA = 2 / 1) yielding 40.0 mg (0.07 mmol, 51 

%) of 5-(3-(1H-1,2,3-triazol-4-yl)phenyl)-N-(5-(ethylsulfonyl)-2-methoxyphenyl)oxazol-2-

amine (223). 

 

Novelty: Synthesis or characterization of 223 has not been described in the literature. 

 

M.p.: 270 – 273 (dec) °C [EA]. Off white solid material. 
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1
H-NMR (300 MHz, DMSO-d

6
):  15.17 (br s, 1H, -NH- triazole), 9.80 (br s, 1H, -NH-), 

8.80 (d, 1H, J(A4,A6) = 2.3 Hz, H-CA(6)), 8.40 (br s, 1H, H-CD(5)), 8.15 (s, 1H, H-CC(2)), 

7.77 (dd, 1H, J(C5,C6) = 7.6 Hz, J(C4,C6) = 1.2 Hz, H-CC(6)), 7.63 (s, 1H, H-CB(4)), 7.62 

(dd, 1H, J(C4,C5) = 8.0 Hz, J(C4,C6) = 1.2 Hz, H-CC(4)), 7.53 (dd, 1H, J(C4,C5) = 8.0 Hz, 

J(C5,C6) = 7.6 Hz, H-CC(5)), 7.51 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.3 Hz, H-

CA(4)), 7.28 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 3.99 (s, 3H, -OCH3), 3.21 (q, 2H, 

J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.13 (t, 3H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3). 

 

13
C-NMR (150 MHz, DMSO-d

6
): 156.1 (CB(2)), 151.6 (CA(2)), 145.9 (CD(4)), 144.0 

(CB(5)), 131.0, 130.2, 2 x 129.6, 128.8, 128.5, 124.5, 122.9, 122.5, 122.4, 119.6, 115.8 

(CA(6)), 110.9 (CA(3)), 56.3 (-OCH3), 49.8 (-SO2CH2CH3), 7.4 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3403 (w), 3118 (w), 2827 (w), 2137 (w), 1686 (w), 1618 (s), 1577 (s), 

1523 (m), 1486 (m), 1433 (m), 1351 (w), 1300 (m), 1262 (m), 1225 (w), 1141 (s), 1121 (s), 

1081 (m), 1047 (m), 1008 (m), 974 (m), 922 (w), 894 (w), 847 (w), 796 (m), 747 (s), 718 

(s), 685 (m), 658 (w), 627 (w), 597 (m), 571 (s), 518 (m), 494 (s), 454 (m), 421 (w). 

 

MS (ESI m/z): 426.0 [M + H]
+
, 448.0 [M + Na]

+
; in negative mode 424.1 [M - H]

-
.  

 

Anal. calcd for C20H19N5O4S (425.46): C, 56.46; H, 4.50; N, 16.46; found: C, 56.83; H, 

4.86; N, 16.50. 
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13.4. Project – CLK1 inhibition 

13.4.1. Synthesis of CLK1 inhibitor precursor 269 

 

 

Scheme 38. Synthesis of CLK1 inhibitor precursor 269. 
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Synthesis of (E)-ethyl 2-chloro-3-hydroxyacrylate (264) 

 

 

 

A stirred solution of 5.00 g (40.7 mmol, 1.00 mol ekv) ethyl 2-chloroacetate (262) and 3.02 

g (40.7 mmol, 1.00 mol ekv) of ethyl formate (263) in 80 ml of THF (abs) was cooled 

down to – 78 °C under Ar. Subsequently 9.13 g (81.4 mmol, 2.00 mol ekv) of 
t
BuOK in 80 

ml of THF (abs) was added dropwise during 1 h. After the completed addition the reaction 

mixture was stirred at – 78 °C for 1 h and then at 0 °C for additional 3 h. Afterwards at the 

same temperature the pH was adjusted to 2 using 2 M HCl, 30 ml of brine was added and 

the mixture was extracted with 3 x 150 ml of Et2O. The combined organic layers were 

dried with Na2SO4, filtered and concentrated under reduced pressure. Isolated crystals were 

purified using trituration with hexane yielding 4.50 g (29.9 mmol, 73 %) of (E)-ethyl 2-

chloro-3-hydroxyacrylate (264).  

 

Novelty: The synthesis of 264 was described in the literature with 71 % yield.
164

 Its 
1
H-

NMR,
165

 IR
166

 and MS
167

 spectra were also published. 

 

M. p.: 71 – 72 °C [Hex]. (lit. M. p.: 83 – 84 °C [benzene])
165

 Off-white crystalline solid 

material. 

 

                                                 
164

 Hartz, R. A.; Ahuja, V. T.; Rajamani, R.; Dzierba, C. D.; Bronson, J. J.; Macor, J. E. Bristol-Myers Squibb 

Company 2015, WO2015/26574, A1. 
165

 Yoffe, S.T.; Petrovsky, P.V.; Goryunov, Y.I.; Yershova, T.V.; Kabachnik, M.I. Tetrahedron 1972, 28, 

2783 – 2789. 
166

 Noi, R. S. et al. J. Org. Chem. USSR (Eng. Trans.) 1976, 12, 2188 – 2189. 
167

 Turner, W. W.; Arnold, L. D.; Maag, H.; Zlotnick, A. Indiana University Research and Technology 

Corporation; Assembly Biosciences, Inc. 2015, WO2015/138895, A1. 
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1
H-NMR (300 MHz, CDCl3) (enol-keto): 7.78 (br s, 1H, CH(OH)=), 4.27 (q, 2H, 

J(CH2,CH3) = 7.1 Hz, -COOCH2CH3), 1.31 (t, 3H, J(CH2,CH3) = 7.1 Hz, -COOCH2CH3). 

(diketo): 9.51 (d, 1H, J(1,2) = 2.0 Hz, -CHO), 4.75 (d, 1H, J(1,2) = 2.0 Hz, -CH(Cl)-), 

4.33 (q, 2H, J(CH2,CH3) = 7.1 Hz, -COOCH2CH3), 1.33 (t, 3H, J(CH2,CH3) = 7.1 Hz, -

COOCH2CH3). 

 

Synthesis of ethyl 2-aminooxazole-5-carboxylate (265) 

 

 

 

A suspension of 4.48 g (29.8 mmol, 1.00 mol eq) (E)-ethyl 2-chloro-3-hydroxyacrylate 

(264) and 1.79 g (29.8 mmol, 1.00 mol eq) of urea in 40 ml of H2O was stirred at 100 °C 

for 1 h. Then the reaction mixture was cooled down to RT, neutralized by a saturated aq. 

solution of NaHCO3 and extracted with 3 x 50 ml of EA. The combined organic layers 

were dried over Na2SO4, filtered and concentrated under reduced pressure. The crude 

product was purified by FLC (Hex / EA = 1 / 2) yielding 2.40 g (15.4 mmol, 51 %) of ethyl 

2-aminooxazole-5-carboxylate (265). 

Novelty: The synthesis of 265 was described in the literature with 64 % yield together with 

its 
1
H-NMR, 

13
C-NMR and IR spectra were also published.

82
 

 

M. p.: 154 – 155 °C [Hex / EA]. (lit. M. p.: 153 – 154 °C [EA])
82

 Off-white solid material. 
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1
H-NMR (300 MHz, DMSO-d

6
): 7.56 (s, 1H, H-C(4)), 5.54 (br s, 2H, -NH2), 4.20 (q, 

2H, J(CH2,CH3) = 7.1 Hz, -COOCH2CH3), 1.24 (t, 3H, J(CH2,CH3) = 7.1 Hz, -

COOCH2CH3). 

 

Synthesis of ethyl 2-chlorooxazole-5-carboxylate (266) 

 

 

 

A mixture of 1.19 g (8.80 mmol, 1.50 mol eq) CuCl2 (abs) and 1.05 ml (8.80 mmol, 1.50 

mol eq) 
t
BuONO in 30 ml of CH3CN (abs) under Ar was heated to 60 °C. By this 

temperature 920 mg (5.90 mmol, 1.00 mol eq) of ethyl 2-aminooxazole-5-carboxylate 

(265) was added portion wise. Then the temperature was raised to 80 °C and the reaction 

mixture was stirred for 2 h. After the consumption of starting material 265 (TLC analysis) 

the reaction mixture was cooled down to RT and 15 ml of H2O and 8 ml of 2 M HCl was 

added. The mixture was extracted with 3 x 20 ml of EA and the combined organic layers 

were washed with brine, dried over Na2SO4, filtered and concentrated under reduced 

pressure yielding 850 mg (4.80 mmol, 83 %) of ethyl 2-chlorooxazole-5-carboxylate (266).  
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Note: The crude product 266 was prepared in a sufficient purity to be possibly used in the 

next reaction step. More precious purification of 266 can be done using FLC (Hex / EA = 1 

/ 1), however because of its instability, the yield is lowered to approximately 40 %. 

 

Novelty: The synthesis of 266 was described in the literature with 74 % crude yield 

together with its 
1
H-NMR, 

13
C-NMR and IR spectra were also published.

82
 

 

Light yellow oily material. 

 

 

 

1
H-NMR (300 MHz, CDCl3):  7.69 (s, 1H, H-C(4)), 4.39 (q, 2H, J(CH2,CH3) = 7.1 Hz, -

COOCH2CH3), 1.38 (t, 3H, J(CH2,CH3) = 7.1 Hz, -COOCH2CH3). 

 

Synthesis of ethyl 2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazole-

5-carboxylate (267) 

 

 

 

To a suspension of 1.41 g (6.50 mmol, 1.00 mol eq) aniline 122 in 40 ml of 
i
PrOH (abs), 

2.29 g (13.1 mmol, 2.00 mol ekv) of ethyl 2-chlorooxazole-5-carboxylate (266) in 20 ml of 

i
PrOH (abs) was added dropwise and the reaction mixture was stirred under Ar for 5 d at 

RT. After complete consumption of the starting material 122 (TLC analysis), the solvent 
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was evaporated under reduced pressure. The obtained solid material was dissolved in 80 ml 

of EA and extracted with 2 x 20 ml of NaHCO3 (saturated aq solution) and 2 x 20 ml of 

H2O. The separated organic layer was dried by Na2SO4, filtered and concentrated under 

reduced pressure. The crude product was purified by FLC (gradient: Hex / EA = 1 / 2 to 1 / 

3) yielding 1.50 g (4.20 mmol, 65 %) of ethyl 2-(5-(ethylsulfonyl)-2-methoxy phenyl 

amino)oxazole-5-carboxylate (267). 

 

Novelty: The synthesis of 267 was described in the literature with 77 % yield together with 

its 
1
H-NMR, 

13
C-NMR and IR spectra were also published.

82
 

 

M. p.: 107 – 109 °C [Hex / EA]. (lit. M. p.: 141 – 143 °C [Hex / EA])
82

 Pale brown solid 

material. 

 

 

 

1
H-NMR (300 MHz, DMSO-d

6
):  10.31 (s, 1H, -NH-), 8.65 (d, 1H, J(A4,A6) = 2.3 Hz, 

H-CA(6)), 7.87 (s, 1H, H-CB(4)), 7.57 (dd, 1H, J(A3,A4) = 8.6 Hz, J(A4,A6) = 2.3 Hz, H-

CA(4)), 7.28 (d, 1H, J(A3,A4) = 8.6 Hz, H-CA(3)), 4.28 (q, 2H, J(CH2,CH3) = 7.1 Hz, -

COOCH2CH3), 3.94 (s, 3H, -OCH3), 3.20 (q, 2H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 

1.29 (t, 3H, J(CH2,CH3) = 7.1 Hz, -COOCH2CH3), 1.11 (t, 3H, J(CH2,CH3) = 7.4 Hz, -

SO2CH2CH3). 
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Synthesis of (2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazol-5-

yl)methanol (268) 

 

 

 

A solution of 470 mg (1.30 mmol, 1.00 mol eq) ester 267 in of 15 ml of THF (abs) was 

placed into an ice bath. Then 176 mg (4.60 mmol, 3.50 mol eq) of LiAlH4 was added into 

the reaction mixture in seven portions (25.2 mg, 0.70 mmol, 0.50 mol eq) gradually in the 

period of 30 min. After the complete addition of LiAlH4, the reaction mixture was stirred 

under Ar at 0 °C for another 1 h. The reaction was quenched with 15 ml of ice cold NH4Cl 

(saturated aq solution) and stirred for 10 min. The solution was extracted with 3 x 15 ml of 

EA. The combined organic layers were dried over Na2SO4, filtered and concentrated under 

reduced pressure yielding 341 mg (1.10 mmol, 82 %) of (2-(5-(ethylsulfonyl)-2-

methoxyphenylamino)oxazol-5-yl)methanol (268). The crude product 268 was prepared in 

a sufficient purity to be used in the next reaction step. 

 

Note: More precious purification of 268 can be done using FLC (EA + 10 % MeOH). 

Probably because of high polarity of 268 the yield is usually lowered to approximately 60 

%. 

 

Novelty: Synthesis or characterization of 268 has not been described in the literature. 

 

M.p.: 155 – 156 (dec) °C [EA]. Pale yellow solid material. 
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1
H-NMR (300 MHz, DMSO-d

6
):  9.53 (s, 1H, -NH-), 8.74 (d, 1H, J(A4,A6) = 2.3 Hz, H-

CA(6)), 7.46 (dd, 1H, J(A3,A4) = 8.5 Hz, J(A4,A6) = 2.3 Hz, H-CA(4)), 7.23 (d, 1H, 

J(A3,A4) = 8.5 Hz, H-CA(3)), 6.88 (s, 1H, H-CB(4)), 5.22 (t, 1H, J(CH2,OH) = 5.5 Hz, -

CH2OH), 4.38 (d, 2H, J(CH2,OH) = 5.5 Hz, -CH2OH), 3.94 (s, 3H, -OCH3), 3.18 (q, 2H, 

J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3), 1.10 (t, 3H, J(CH2,CH3) = 7.4 Hz, -SO2CH2CH3). 

 

13
C-NMR (75 MHz, DMSO-d

6
): 156.0 (CB(2)), 151.4 (CA(2)), 145.7 (CB(5)), 130.1, 

129.1, 123.3 (CB(4)), 122.0 (CA(4)), 115.5 (CA(6)), 110.7 (CA(3)), 56.2 (-OCH3), 53.2 (-

CH2OH), 49.7 (-SO2CH2CH3), 7.3 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3457 (m), 3205 (w), 2943 (w), 2839 (w), 1621 (m), 1595 (m), 1574 

(s), 1543 (m), 1488 (m), 1461 (s), 1421 (m), 1364 (w), 1291 (s), 1266 (s), 1230 (m), 1220 

(m), 1183 (w), 1148 (m), 1135 (s), 1114 (s), 1084 (s), 1044 (m), 1022 (m), 1009 (s), 992 

(m), 981 (m), 926 (m), 912 (m), 895 (m), 830 (m), 813 (s), 736 (s), 716 (s), 661 (m), 630 

(m). 

 

MS (ESI m/z): 313.1 [M + H]
+
, 335.1 [M + Na]

+
; in negative mode 311.2 [M - H]

-
.  

 

Anal. calcd for C13H16N2O5S (312.34): C, 49.99; H, 5.16; N, 8.97; found: C, 50.19; H, 

5.04; N, 9.15. 
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Synthesis of 2-(5-(ethylsulfonyl)-2-methoxyphenylamino)oxazole-5-

carbaldehyde (269) 

 

 

 

Into a solution of 180 mg (0.60 mmol, 1.00 mol eq) alcohol 268 in 12 ml of CH2Cl2 (abs), 

251 mg (2.90 mmol, 5.00 mol eq) of MnO2 (activated, Merck) was added and the reaction 

mixture was refluxed under Ar for 12 h. Afterwards another 376 mg (4.30 mmol, 7.50 mol 

eq) of MnO2 was added into the reaction mixture in three portions (125 mg, 1.50 mmol, 

2.50 mol eq) gradually in the period of 4 h. After complete consumption of the starting 

material 268 (TLC analysis), the reaction mixture was cooled down to RT, filtered through 

a silica pad and concentrated under reduced pressure. The crude product was purified by 

FLC (EA) yielding 100 mg (0.30 mmol, 56 %) of 2-(5-(ethylsulfonyl)-2-methoxyphenyl 

amino)oxazole-5-carbaldehyde (269). 

 

Novelty: Synthesis or characterization of 269 has not been described in the literature. 

 

M.p.: 138 – 139 °C [EA]. Pale yellow solid material. 
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1
H-NMR (300 MHz, CDCl3):  9.55 (s, 1H, -CHO), 8.88 (d, 1H, J(A4,A6) = 2.2 Hz, H-

CA(6)), 8.08 (br s, 1H, -NH-), 7.77 (s, 1H, H-CB(4)), 7.65 (dd, 1H, J(A3,A4) = 8.5 Hz, 

J(A4,A6) = 2.2 Hz, H-CA(4)), 7.04 (d, 1H, J(A3,A4) = 8.5 Hz, H-CA(3)), 4.02 (s, 3H, -

OCH3), 3.16 (q, 2H, J(CH2,CH3) = 7.5 Hz, -SO2CH2CH3), 1.30 (t, 3H, J(CH2,CH3) = 7.5 

Hz, -SO2CH2CH3). 

 

13
C-NMR (75 MHz, CDCl3):  174.4 (-CHO), 158.8 (CB(2)), 151.6 (CA(2)), 145.2 

(CB(5)), 140.3 (CB(4)), 131.3 (CA(1)), 127.1 (CA(5)), 124.9 (CA(4)), 117.4 (CA(6)), 110.3 

(CA(3)), 56.8 (-OCH3), 50.9 (-SO2CH2CH3), 7.7 (-SO2CH2CH3). 

 

FT IR (solid, cm
-1

): 3563 (w), 3399 (w), 3096 (w), 2944 (w), 2846 (w), 1656 (s), 1606 (s), 

1567 (s), 1519 (m), 1493 (m), 1448 (w), 1426 (m), 1305 (m), 1383 (m), 1348 (w), 1318 

(w), 1292 (m), 1265 (s), 1228 (w), 1198 (m), 1158 (m), 1144 (s), 1120 (s), 1084 (s), 1048 

(m), 1024 (s), 978 (m), 916 (m), 891 (w), 817 (m), 802 (m), 762 (s), 735 (s), 720 (s), 661 

(m). 

 

MS (ESI m/z): 311.1 [M + H]
+
, 333.0 [M + Na]

+
; in negative mode 309.2 [M - H]

-
. 

 

Anal. calcd for C13H14N2O5S (310.33): C, 50.31; H, 4.55; N, 9.03; found: C, 50.51; H, 

4.27; N, 9.22. 
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14. Characterization of the prepared compounds  

 

Compound Identity Purity 
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105  √ √ √          √       

198  √ √ √          √       

106  √ √ √          √       

107  √ √ √          √       

2  √ √ √          √       

189 √  √ √ √  √ √ √     √ √ √     

190 √  √ √ √  √ √ √     √ √ √     

191 √  √ √ √ A √ √ √     √ √ √     

192  √ √ √          √       

203  √ √ √          √       

204 √  √ √ √ A √ √ √  √   √ √ √     

206 √  √ √ √ A √ √ √     √ √ √     

207 √  √ √ √ A √ √ √     √ √ √     

205 √  √ √    √      √       

226 √  √ √          √       

208 √  √ √          √       

227 √  √ √ √  √ √ √     √ √ √     

228  √ √ √ √  √  √     √ √ √     

A – COSY, HSQC 
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Compound Identity Purity 
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209  √ √ √          √       

230  √ √ √          √       

231  √ √ √          √       

210 √  √ √ √  √ √ √     √ √ √     

211 √  √ √ √  √ √ √     √ √ √     

232 √  √ √ √  √ √ √     √ √ √     

212 √  √ √ √  √ √ √     √ √ √     

233  √ √ √          √       

234  √ √ √          √       

235  √ √ √ √  √  √     √ √ √     

213  √ √ √          √       

214 √  √ √ √  √ √ √     √ √ √     

237  √ √ √          √       

238 √  √ √ √  √  √     √ √ √     

215 √  √ √ √  √ √ √     √ √ √     

216 √  √ √ √  √ √ √     √ √ √     

239 √  √ √ √  √ √ √     √ √ √     

217 √  √ √ √  √ √ √     √ √ √     

218 √  √ √ √  √ √ √     √ √ √     

219 √  √ √ √  √ √ √     √ √ √     
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Compound Identity Purity 
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220 √  √ √ √  √ √ √     √ √ √     

221 √  √ √ √  √ √ √     √ √ √     

245 √  √ √ √  √ √ √     √ √ √     

248  √ √ √          √       

250  √  √          √       

187  √  √          √       

251 √  √ √ √  √ √ √     √ √ √     

252 √  √ √ √  √ √ √     √ √ √     

253 √  √ √ √  √ √ √     √ √ √     

254 √  √ √ √  √ √ √     √ √ √     

223 √  √ √ √  √ √ √     √ √ √     

264  √ √ √          √       

265  √ √ √          √       

266  √  √          √       

267  √ √ √          √       

268 √  √ √ √  √ √ √     √ √ √     

269 √  √ √ √  √ √ √     √ √ √     
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a b s t r a c t

Background: Inhibitors of CLK protein kinases suppress cell growth and induce apoptosis by modulating
pre-mRNA splicing in cancer. CLK family kinases are also involved in alternative splicing and RNA pro-
cessing in Duchenne muscular dystrophy, Alzheimer's disease, HIV-1, and influenza virus. Small inhibitors
are valuable tools for better understanding the molecular mechanisms of splicing and may serve as seeds
for a novel class of therapeutics.
Achievements: Here we describe a discovery of four novel CLK1 inhibitors possessing N-aryloxazol-2-
amine skeleton. Their activity against CLK1 (IC50: 20, 30, 40 and 80 nM) and some other CMGC ki-
nases, predicted CLK binding poses, synthesis and physico-chemical characteristics are also stated.
Additionally analysis of all PDB available CLK structures and interactions of their ligands was performed.
There are only few powerful dual CLK/VEGFR inhibitors known in the literature. We proposed that our
inhibitors have similar binding places and interactions in CLK1, 3 and VEGFR2 TK mostly due to the joint
N-aryloxazol-2-amine pharmacophoric fragment. One of our N-aryloxazol-2-amines already proved a
good activity against both VEGFR2 and CLK1 enzymes (23/80 nM, resp). We proposed that the presented
class of compounds has a potential to be developed in dual VEGFR2/CLK clinical compounds with pro-
spective synergy to treat cancer.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Alternative splicing is a regulated process during the gene
expression that greatly increases the biodiversity of proteins and
allows the human genome to direct the synthesis of many more
proteins (50e100 000) than would be expected from human
20 000 protein-coding genes [1]. There is a growing recognition of
the importance of protein kinases in the control of alternative
splicing. Splicing requires reversible phosphorylation of serine/
arginine-rich (SR) proteins in eukaryotic mRNA. These phosphor-
ylation events are dependent on SR proteins and cdc2-like kinase

(CLK) families [2]. The CLKs are an evolutionarily conserved group
belonging to the CMGC Ser/Thr protein kinase family from Human
Kinome [3,4] (for CMGC part see supplementary material (chapter:
CLKs in the Human Kinome). CLKs are primarily localized to the
cytoplasm and nucleus [5]. CLKs are part of LAMMER PK family
possessing identity of the motif “EHLAMMERILG” in their kinase
subdomain (see supplementary material: chapter Superimposed
CLKs with marked LAMMER subdomain). This motif was reported to
be essential for kinase activity [6]. CLKs (CDC2-like or LAMMER
kinases) are dual specific kinases that have been shown to auto-
phosphorylate on serine, threonine and tyrosine residues and
phosphorylate exogenous substrates on serine and threonine resi-
dues. The CLK family kinases are found in diverse species, from
yeast to human. A critical role of the CLK family kinases is the
regulation of mRNA splicing. CLK have shown to interact with, and
phosphorylate, serine- and arginine-rich (SR) proteins [7,8]. SR
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proteins are splicing factors that regulate the assembly of the
spliceosome, a macromolecular complex where RNA splicing oc-
curs in nucleus [9]. CLKs can co-exist as full-length catalytically
active and alternatively-spliced truncated inactive forms [10]. The
CLK family consists of four isoforms CLK1-4 exhibiting the typical
protein kinase fold (see supplementary material: chapter Graphical
abstract). CLK1-4 isoforms possess different length of amino acids
(AAs) chain: Clk1 (484 AAs), Clk2 (499 AAs), Clk3 (638 AAs), Clk4
(481 AAs) [11]. CLK1 regulates its own splicing [12]. CLKs inhibitors
suppress cell growth and induce apoptosis by modulating pre-
mRNA splicing in cancer [13]. CLK family kinases are also
involved in alternative splicing and RNA processing in Duchenne
muscular dystrophy, Alzheimer's disease, HIV-1, and influenza virus
[14]. CLK1 is involved in the pathophysiology of Alzheimer's disease,
hence the inhibition of CLK1 can be used as a therapeutic strategy
for it [9]. CLK1 in the host cells is responsible for alternative splicing
of the M2 gene of influenza virus during influenza infection and
replication. Therefore CLK1 inhibitors may have potential in anti-
influenza drug screening [15]. CLK1 has been shown to interact
and phosphorylate other protein kinases as well as protein phos-
phatases [12]. Human CLK2 links cell cycle progression, apoptosis
and telomere length regulation [16]. CLK2 acts as a suppressor of
hepatic gluconeogenesis and glucose output [17]. CLK2 is overex-
pressed in breast tumours. Downregulation of CLK2 inhibits breast
cancer growth [18]. CLK3 is a protein kinase with a non-conserved

N-terminal domain.
CLK small molecule inhibitors are valuable tools for better un-

derstanding the molecular mechanisms of splicing and may serve
as seeds for a novel class of therapeutics [2,14].

The limitations of many mono-kinase inhibitors can be over-
come by agents with multi-target action by increasing their po-
tency, due to the synergistic effect. A review was published in 2015
about the most recent examples of multi-kinase inhibitors [19].
Some dual inhibitors for distanced kinases CLK1 and CK1 were
developed recently based on pyrido[30, 20:4, 5]thieno[3, 2-d]pyr-
imidin-4-amine skeleton [20].

2. Results and discussion

2.1. Analysis of hu-CLKs structures in PDB

With the aim to perform docking experiments we analysed CLKs
structures in the PDB database [21]. Currently, there are 8 X-ray
structures of human CLK1-3: two hu-CLK3 proteins and six CLK1-3/
ligand complexes. No structure of hu-CLK4 was published. Ac-
cording to our analysis, all CLK structures in PDB are in an active
DFG-IN kinase conformation (Table 1).

2.2. Analysis of hu-CLKs PDB ligand interactions

To understand the ligand/CLK bindings, interactions diagrams of
all inhibitors (2�V25, DBQ, DKI, NR9 and 3RA) from PDB hu-CLK
complexes were composed. The ligand structures on diagrams are
drawn uniformly according their positions in an Africa-like kinase
perspective [26]. Some biological activities of CLK PDB inhibitors
are listed too [27]. The data for all CLKs PDB ligands can be found in
supplementary material (chapter: Analysis of hu-CLKs PDB ligand
interactions). Here we present an example of analysis for ligand V25
from both complexes CLK1 (PDB: 2VAG) and CLK3 (PDB: 2WU7).
(Fig. 1).

2.2.1. (E)-Ethyl 3-(2-amino-1-cyanovinyl)-6,7-dichloro-1-methyl-
1H-indole-2-carboxylate (V25) in complex with hu-CLK1 and 3

For compound V25 [SciFinder CAS: 1354037-26-5; Reaxys RRN:
21739116] the following IC50 activities were described in the liter-
ature: hu-CLK1 (19.7 nM), hu-CLK3 (530 nM) and hu-DYRK1A
(55.2 nM) [27].

2.3. Interaction diagrams

See Fig. 1.

Table 1
hu-CLK structures published in PDB database.

Protein structurea Kinase/ligand complex structurea

hu-CLK1b none PDB: 2VAG (V25; IC50 ¼ 19.7 nM;
2007, 1.80 Å, diphosphorylated
kinase) [22]
PDB: 1Z57 (DBQ;c 2005, 1.70 Å) [2]

hu-CLK2b none PDB: 3NR9 (NR9; 2010, 2.89 Å) [23]
hu-CLK3b PDB: 2EU9 (2005,

1.53 Å) [2]
PDB: 2EXE (2005,
2.35 Å,
phosphorylated) [24],e

PDB: 3RAW (3RA;d 2011, 2.09 Å) [25]
PDB: 2WU6 (DKI; IC50 ¼ 29.2 nM;
2009, 1.92 Å) [22]
PDB: 2WU7 (V25; IC50 ¼ 530 nM;
2009, 2.25 Å) [22]

hu-CLK4 none none

a The data are described in the following order: PDB: code (ligand code, it's ac-
tivity; year of deposition in PDB DB; X-ray resolution; notes, if any).

b All CLK kinase structures in PDB are in an active DFG-IN conformation: DFG
fragment (Asp-Phe-Gly triade and their isoform specific primary sequence numbers:
325e327 (hu-CLK1), 327e329 (hu-CLK2), 320e322 (hu-CLK3).

c Also known as 10Z-Hymenialdisine.
d Also known as leucettine (L41).
e This is an incomplete structure of CLK3.

Fig. 1. The structure and intermolecular interactions of V25 determined in hu-CLK1 and 3 complexes.
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2.4. CLKs inhibitors

In order to know how many inhibitors exist, CLKs abbreviations
and synonyms [28] were collected and used to search biological
active CLK compounds in the Reaxys DB [27]. The search resulted in
the amount of inhibitors depicted for each kinase in parenthesis:
CLK1 (176), CLK2 (108), CLK3 (84), CLK4 (261). By combining the
above hit sets, we found 388 known compounds connected with
CLKs activities.

2.5. Clinical drugs as CLKs inhibitors

There are only few clinical drugs able to inhibit CLK kinases. The
drugs CLK activities were mostly determined by searching their
side effects [29] by screening pharmaceutical compounds against
456 human kinases (Kinome scan). The determined drug CLK af-
finities are as follows: CLK1 (sunitinib KD ¼ 22 nM, bosutinib
KD¼ 600 nM, nilotinib KD¼ 2100 nM); CLK2 (sunitinib KD¼ 20 nM,
ruxolitinib KD ¼ 460 nM, bosutinib KD ¼ 1700 nM); CLK3 (bosutinib
KD ¼ 300 nM); CLK4 (sunitinib KD ¼ 29 nM, ruxolitinib
KD ¼ 1700 nM, imatinib KD ¼ 2100 nM). The above drugs were
developed for different primary target(s) as CLKs. From them only
sunitinib was developed against VEGFR2 TK. The dual CLK and
VEGFR2 activities of sunitnib are interesting because both CLKs and
VEGFR2 inhibitors are important as potential anticancer drugs.

2.6. VEGFR2 TK drugs

VEGFR2 TK (also named as KDR kinase) is an important receptor

for VEGF signalling. VEGF is a key mediator of angiogenesis in
cancer [30]. Similarly as for CLKs above we identified 6299 active
compounds against VEGFR1-3 in Reaxys DB. Within recent ten
years pharmaceutical companies produced nine approved anti-
cancer drugs inhibiting VEGFR2 TK [31]. Their structures, year of
approval and name of owning pharma company are published in
supplementary material (chapter: A list of VEGFR2 approved drugs).

2.7. Synthesis of CLK1 inhibitors 6, 10, 21 and 29

CLK1 inhibitors 6, 10, 21 and 29 and their intermediates were
prepared according the procedures depicted on Schemes 1e4.
Synthetic details, characterisation and figures of spectra of all
compounds are stated in supplementary material (chapter: Sup-
plementary Experimental).

2.8. Biological screening

Compounds 6, 10, 21 and 29 previously developed to inhibit
VEGFR2 TK were screened on eleventh protein kinases by radio-
metric protein kinase assay in 10 semi-logarithmic concentrations
on a panel of eleventh protein kinases: CDK2/CyclinA (cyclin-
dependant kinase); CDK5/p25; CDK9/CyclinT; PIM1 (proto-onco-
gene serine/threonine-protein kinase); DYRK1A (dual specificity
tyrosine-phosphorylation-regulated kinase); GSK3a/b (glycogen
synthase kinase); GSK3; CLK1 (CDC2-like or LAMMER family dual
specificity protein kinase); CK1d/ε (caseine kinase 1); CK1; HASPIN
(haploid germ cell-specific nuclear protein kinase); AURKB (Aurora
kinase B); RIPK3 (receptor-interacting serine/threonine-protein

Scheme 1. Synthetic pathway to final naphthalenyloxazolamine 6.

Scheme 2. Synthetic pathway to required benzothiophenyloxazolamine 10.

M. Mur�ar et al. / European Journal of Medicinal Chemistry 126 (2017) 754e761756



kinase) and TLK (tousled-like kinase). The IC50 activities were ob-
tained by Dr. St�ephane Bach and Thomas Robert (Station Biologique
de Roscoff, Place Georges Teissier, CS 90074, 29688 Roscoff cedex,
France). All compounds 6, 10, 21 and 29 were showed to be
powerful CLK1 inhibitors. The results are given in Fig. 2. (see also
the Supplementary material chapter Biological activity assay)
Compound 29 was screened likewise on VEGFR2 TK activity.

Surprisingly, this compound performed dual VEGFR2/CLK1 kinase
activity even though VEGFR2 is not relative kinase to CLKs and
belongs to distant TK subgroup in the Human Kinome [4].

2.9. Predicted CLK1 inhibitors binding poses

In order to find binding poses for CLK1 inhibitors (6, 10, 21 and

Scheme 3. Synthesis of final styryloxazolamine 21.

Scheme 4. Synthetic pathway to aminooxazolephenylacetonitrile 29.
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29), docking experiments [32] on seven CLK proteins from PDB DB
were performed. An incomplete 2EXE structure of CLK3 was
excluded (Table 1). Most of the PDB CLK proteins showed to be
unfavourable for docking experiments due to their inappropriate
kinase conformation. Only the kinase variant from hu-CLK3
(2WU6) significantly outperformed the other models by docking
scores and predicted poses for all ligands (6, 10, 21 and 29). As can
be seen from ligands superimpositions especially the poses of their
joint N-aryloxazole-2-amine parts were almost identical (Fig. 3).

Themost active inhibitor 6 (IC50¼ 20 nM)was predicted to form
three hydrogen bonds (HBs) with two amino acids Leu239 and
Asn242 (both from a kinase hinge region) and one ligand specific

HB between -OMe group and Lys186. Moreover, N-aryloxazole-2-
amine ligands showed their poses and binding interactions to be
similar in both hu-CLK3 (2WU6) and VEGFR-2 TK (1Y6A) (Figs. 4
and 7).

As mentioned above, both available CLK1 (1Z57, 2VAG) were not
suitable for docking of our CLK1 inhibitors. In order to investigate
problematic amino acid residues predicted CLK3 (2WU6)/(6, 10, 21
and 29) complexes were aligned with both CLK1 protein con-
formers. Then we could recognise that the most important unfav-
ourable ligand interactions in CLK1 (2VAG) were between an amino
group of N-aryloxazol-2-amines and too closely located carbonyl
group of Leu244 from a hinge region. Due to the above repulsion
the structures (6, 10, 21 and 29) could not be stabilized in good
position in CLK1 (2VAG) (Fig. 5). In cases of 6 and 29 also some
steric clashes with Phe172 were seen but they disappeared after a
problematic ligand group rotation.

In the other CLK1 (1Z57) conformer, the most important
unfavourable interactions were identified between the oxygen
from -SO2Et group of the ligand and too close positioned carbox-
ylate oxygen from a hinge Asp250. This interaction could not be
eliminated by simple changing the conformation of -SO2Et group.
The problematic Asp250 in CLK1 (1Z57) is replaced by Glu245 in
CLK3 (2WU6). Even though positions of Asp250 and Glu245 are
similar, the problematic carboxylate in larger Glu245 is folded out
of the -SO2Et ligand group excluding so unfavourable interactions
in CLK3 compared to CLK1 (Fig. 6). Similarly as in CLK1 (2VAG) also
in CLK1 (1Z57) the inhibitors 6 and 29 possess some clashes also
with Phe172. (see Table 2).

To conclude the above observation, a different conformation of
CLK1 kinase will be required to find the correct binding poses for N-
aryloxazole-2-amine ligands with respect to their CLK1 activity.
Therefore we aligned CLK1 proteins (1Z57, 2VAG) with 6/CLK3
(2WU6) complex. In order to enable improved ligand docking to
CLK1 the geometry minimization was carried out on both CLK1
(1Z57, 2VAG) conformers with ligand 6 from CLK3 (2WU6) com-
plex. This approach resulted in CLK1 optimized protein models
(1Z57opt, 2VAGopt) with significantly improved performance to
give docked CLK1 inhibitors (6, 10, 21 and 29) positioned to keep
essential hinge hydrogen bonds and docking scores that followed
their IC50 values. Thesemodels will be used for further CLK1 ligands
development. (see supplementary material, chapter: Predicted in-
hibitors binding poses in CLK1 optimized protein).

2.10. N-aryloxazole-2-amines in VEGFR2 and CLK

Compound 29 inhibits both kinases VEGFR2 (IC50 ¼ 23 nM) and
CLK1 (IC50 ¼ 80 nM). The reason for a dual kinase activity of 29 can
be explained by its similar binding pose and interactions in each
kinase where the pair of hinge amino acid residues (Cys917/Asn921
in VEGFR2; Leu239/Asn242 in CLK3 or Leu244/Ser247 in CLK1)
fixes a pharmacophoric N-arylooxazole-2-amine group in an ATP
binding pocket. The interaction diagrams for ligands AAZ/VEGFR2
and 6/CLK3 were composed. (Fig. 7).

2.11. Dual VEGFR/CLK active compounds

With aim to determine the amount of dual VEGFR/CLK in-
hibitors an intersection between previously found 388 CLKs in-
hibitors and 6299 VEGFRs TKIs in Reaxys DB was performed. This
experiment resulted in 85 dual modulators with activities mostly
determined between 1 and 10 mM concentrations. Many of duals
were uncovered by searching target-off activities through Kinome
scan for another biomacromolecule against that compounds were
primarily developed. As we have seen, the activities of many of
them were not very important or they were unbalanced for both

Fig. 2. Novel hu-CLK1 inhibitors 6, 10, 21, 29 and their biological activities determined
against some CMGC protein kinases together with VEGFR2 TK activity for 29.

Fig. 3. The superimposed poses of inhibitors 6, 10, 21 and 29 from aligned complexes
obtained after ligands docking in CLK3 (2WU6) protein conformer.
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Fig. 4. Interactions of AAZ in VEGFR2 TK (1Y6A) and 6 in CLK3 (2WU6) to demonstrate similar binding interactions of N-aryloxazol-2-amine in both kinases.

Fig. 5. In the left: the predicted pose of inhibitor 6 in CLK3 (2WU6) showing two hydrogen bonds (1.7 and 1.8 Å, in blue) with a hinge Leu239. In the right: Inhibitor 6 positioned in
CLK-1 (2VAG) possessing unfavourable interactions with Leu244 (2.06 Å electrostatic repulsion, 1.4 Å steric clash, both in red). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 6. A complex 6/CLK3 (2WU6), obtained after docking, was aligned with CLK1 (1Z57) kinase. A hinge Glu245 from CLK3 (2WU6) is replaced by Asp250 (yellow) in CLK1 (1Z57)
and forms unfavourable interaction with oxygen from -SO2Et group of 6. Observed strong electrostatic repulsion (1.7 Å, red) is hindering ligand 6 to be docked in CLK1 (1Z57) in an
appropriate position. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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kinases. A list of Reaxys codes (RRN) for 85 dual inhibitors are given
in supplementary material (chapter: Reaxys RRN codes of 85 com-
pounds possessing dual VEGFR/CLK activities). Among 85 structures
there are about 7 with more balanced CLKs/VEGFRs activities (RRN:
18647647, 20385666, 20278959, 22546881, 20385602, 21237166
and 22449988.). One structure, a triazole-staurosporine like com-
pound (RRN: 18647647, CAS: [1359754-81-6]) possess sub-
micromolar bivalent activities to VEGFR2 and CLK2 (200/350 nM,
resp.) [33]. We found also that sunitinib (RRN: 15426924, [CAS:
341031-54-7]) a multi-targeted tyrosine kinase ligand (PDGF,
VEGFR2 TK) has strong ability to inhibit CLKs. KD affinities for
sunitinib are listed here: CLK1 (22 nM) CLK2 (20 nM), CLK4 (29 nM)
[29]. There are only few powerful and activity balanced dual
VEGFR2/CLKs inhibitors described in the literature. Such com-
pounds could be advantageous for the development of clinical
drugs treating tumours by two VEGFR2 and CLKs independent
pathways. From this point of view N-aryloxazol-2-amine CLK1 in-
hibitors (6,10, 21 and 29) previously designed as VEGFR2 TKIs seem
to be a good starting point for such development.

3. Conclusions

Four novel N-aryloxazol-2-amine CLK1 inhibitors (6, 10, 21 and
29) were identified and their ATP binding poses in CLK kinase were
predicted. Compound 29 has comparable activity for CLK1 and
VEGFR2 TK. The observed dual inhibition of 29 was explained by
similar binding interactions of its pharmacophoric N-(5-(ethyl-
sulfonyl)-2-methoxyphenyl)oxazol-2-amine fragment that has
joint affinities to CLK1 and VEGFR2 kinases via hinge amino acid

residues HBs. We found that there are only few dual VEGFR/CLK
inhibitors with comparable and strong activities on both targets.
Such dual kinase compounds could be advantageous for develop-
ment of clinical compounds targeting tumours by two independent
and synergy pathways. Therefore presented N-aryloxazole-2-
amine CLK1 inhibitors (6, 10, 21 and 29) can be used in the
further study of the molecular mechanisms of splicing and seem to
be also good seeds for development a novel class of VEGFR2/CLKs
dual kinase therapeutics.

4. Experimental

The syntheses of biologically active compounds 6, 10, 21 and 29
and their intermediates are described in the Supplementary
material (chapter: Supplementary Experimental).
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Quinoides and VEGFR2 TKIs influence the fate of
hepatocellular carcinoma and its cancer stem
cells†‡
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Peter Šramel,de Andrej Boháč*de and Rengul Cetin-Atalay*f

Bioactivities of quinoides 1–5 and VEGFR2 TKIs 6–10 in hepatocellular cancer (HCC) and cancer stem cells

(HCSCs) were studied. The compounds exhibited IC50 values in μM concentrations in HCC cells. Quinoide

3 was able to eradicate cancer stem cells, similar to the action of the stem cell inhibitor DAPT. However,

the more cytotoxic VEFGR TKIs (IC50: 0.4–3.0 μM) including sorafenib, which is the only FDA approved drug

for the treatment of HCC, enriched the hepatocellular cancer stem cell population by 2–3 fold after treat-

ment. An aggressiveness factor (AF) was proposed to quantify the characteristics of drug candidates for

their ability to eradicate the CSC subpopulation. Considering the tumour heterogeneity and marker positive

cancer stem cell like subpopulation enrichment upon treatments in patients, this study emphasises the im-

portance of the chemotherapeutic agent choice acting differentially on all the subpopulations including

marker-positive CSCs.

Introduction

Hepatocellular carcinoma (HCC) is the sixth most frequent
and second most deadly cancer worldwide.1 HCC patients are
resistant to chemotherapy and radiotherapy, because conven-
tional therapies can only reduce the bulk of the tumour mass
but are unable to restrain tumour regrowth and relapse. HCC
is a highly heterogeneous tumour in terms of morphology
and clinical outcome.2 The enrichment of cancer stem cells is
one of the main reasons behind failure in treatment of HCC
patients. Sorafenib (6), a multi-kinase inhibitor acting on
VEGFR2-TK and also the only FDA approved drug for the
treatment of HCC patients, inhibits proliferation and migra-
tion of tumour cells and angiogenesis. Recently, it has been
reported that many patients develop resistance to sorafenib.
This was explained by the enrichment of cancer stem cells
that have the capacity to self-renew, differentiate into cancer

cells and acquire resistance to chemotherapy in most of the
cancer types.3,4 Hence, it is crucial to develop novel drugs
against the differentiated cancer cells as well as liver cancer
stem cells in order to successfully eradicate liver cancer. Liver
cancer stem cells could be identified and isolated by several
surface markers including CD133, CD90, CD44, CD13,
EpCAM, OV-6, CD24, DLK1 and ICAM-1.5 Cells that carry one
or two of these markers were shown to possess CSC features.

The epithelial–mesenchymal transition (EMT) is a critical
step for stemness. In this study, we have selected liver cancer
cell lines with different phenotypic properties based on their
genotypes. Huh7 and Hep3B cells are known to have epithe-
lial features (well-differentiated), whereas Mahlavu and SNU-
475 cells were characterized as mesenchymal-like (poorly-dif-
ferentiated) cells.6 Huh7 and Hep3B cells express genes asso-
ciated with epithelial like properties. These cells express the
HCC marker AFP along with the epithelial marker E-
cadherin, while Mahlavu and SNU-475 cells don't express AFP
and E-cadherin genes while they express high levels of
vimentin protein.6 Furthermore, Huh7 and Hep3B cells have
normal migratory properties, but Mahlavu and SNU-475 cells
have high migratory properties which may be due to their dif-
ferential PI3K/Akt pathway activities. It was shown that
Mahlavu and SNU-475 cells have constitutively active Akt pro-
tein due to loss of the PTEN tumor suppressor.7 Current
studies and clinical trials focus on the anti-CSC compounds
targeting extracellular mediators or cell surface molecules as
well as molecules involved in EMT and metastasis.8 Thus, it
is crucial to define which marker is efficient to detect and
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analyse cancer stem cell markers in each cell line, which we
studied by flow cytometry.

Quinones and quinone-like compounds seem to be prom-
ising candidates against cancer stem cells; however, they are
mainly organotoxic. It has been reported that minor changes
in the side chains of the quinone structure can lead to a
strong variation in the biological toxicity;9–11 thus,
modelization of various quinoid derivatives with strong in-
hibitory activity and low toxicity is conceivable. Therefore, we
prepared a series of quinoides, 1–5 (Fig. 1), and evaluated
their activities in different HCC cell lines and their cancer
stem cell (HCSC) population (Tables 1, 2A and B and Fig. 5).
Furthermore, VEGFR2 TKIs 6–10 (Fig. 2) were also screened
in HCC cell lines (Tables 1 and 2A). Compound 6 is sorafenib
tosylate (Nexavar®), and compound 9 was developed by
GlaxoSmithKline as a drug candidate to inhibit VEGFR2 TK.
Compounds 7, 8 and 10 were designed by Biomagi, Ltd. to
modulate VEGFR2 TK activity.

Results and discussion
Chemistry

Compounds 1, 2a and 2b were prepared according to our pre-
vious work starting from commercially available
2-methylhydroquinone (S1) (Scheme 1).12

Compounds 3 and 5 were prepared (Scheme 2) according
to Carreño's procedure with slight modifications (see the
ESI‡).13–15

The new quinoide 4 was obtained from vanillin (S7) in
very good overall yield using the sequence depicted in
Scheme 3.

VEGFR2 TKI 6 was obtained from Bayer Inc. Synthesis of 7
was described by Lintnerová et al.16 Compound 9 was pre-
pared according the procedure described by Harris et al.17

Novel compounds 8 and 10 were synthesized using the se-
quence depicted in Scheme 4 (see also the ESI‡).

Biological evaluation

Bioactivities of quinoides and VEGFR2-TKs in HCC cells.
NCI-SRB assay was initially performed to define the inhibi-
tory concentrations (IC50 values) of compounds in HCC cell
lines Huh7, Hep3B, and Mahlavu. Results have shown that al-
most all compounds (except for 5) had IC50 values in μM con-
centrations for all cell lines (Table 1). DAPT (γ-secretase in-
hibitor) was used as a control for CSC inhibition.

Expression of cancer stem cell markers in HCC cell lines.
CSC marker expression varies among cell lines of HCC, since

Fig. 1 The structures of tested quinoides 1–5.

Table 1 Screening of quinoides 1–5 and VEGFR2-TKIs 6–10 in HCC cell
lines

Compound

IC50 (μM)a

Huh7 Hep3B Mahlavu

1 7.0 ± 0.8 12.0 ± 1.7 18.3 ± 0.8
2a 8.0 ± 0.9 5.5 ± 1.8 14.5 ± 1.3
2b 5.5 ± 0.4 4.3 ± 0.7 11.6 ± 0.2
3 20.0 ± 1.7 17.4 ± 2.1 31.3 ± 0.3
4 10.6 ± 2.0 9.9 ± 2.3 11.3 ± 0.6
5 Ni Ni Ni
6 1.6 ± 0.8 1.5 ± 0.3 0.7 ± 0.4
7 2.8 ± 1.3 2.0 ± 0.9 3.0 ± 0.5
8 1.7 ± 0.7 2.1 ± 0.3 0.8 ± 0.5
9 1.5 ± 0.7 0.7 ± 0.1 1.2 ± 0.4
10 0.4 ± 0.3 0.9 ± 0.3 1.1 ± 0.7
DAPT 5.0 ± 1.2 5.0 ± 2.0 5.0 ± 1.5

a Experiments were performed in triplicate; Ni: no growth inhibition.

Table 2 IC50 values and AF factors of quinoides 1–5 and VEGFR2-TKIs
6–10 in (A) Huh7 and Hep3B epithelial cells and of quinoides 1–5 in (B)
Mahlavu (MV) and SNU-475 (S-475) mesenchymal cells

Fig. 2 VEGFR2 TKIs 6–10 used in this study and their origin and
VEGFR2 IC50 activities that were obtained through a commercial
service in Germany (www.proqinase.com).
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liver CSCs exist heterogeneously and these features determine
the characteristics of the cancer (tumourigenicity and meta-
static tendency). It has previously been reported that the epi-
thelial cell adhesion molecule (EpCAM) and CD133 express-
ing cells are more likely to execute epithelial features,
whereas CD90 expressing cells are more likely to be mesen-
chymal.18,19 Expression of these markers in HCC cell lines
was analyzed using flow cytometry. It was shown that CSCs of
Huh7 cells could be identified by CD133 and EpCAM positiv-
ity (20–30%). CSCs of Mahlavu and SNU-475 could be identi-
fied by CD90 positivity (0.2–0.6%) (Fig. 3).

As stated above, the EMT is critical for cancer cell
stemness. Huh7 and Hep3B cells carry epithelial features,
whereas Mahlavu and SNU-475 cells carry migratory
mesenchymal-like properties.6,7 Furthermore, Huh7 and
Hep3B cells differ in their p53 gene status: Huh7 cells express
p53ĲY220S), but Hep3B cells are null for the TP53 gene. There-

fore, the expression of mutant p53 causes differential activa-
tion of the β-catenin protein and its downstream mesenchy-
mal proteins such as E-cadherin, vimentin, snail and slug.
The significantly higher expression of β-catenin20 due to the
lack of p53 protein in Hep3B cells correlates with the higher
expression of EpCAM and CD133 markers in this cell (Fig. 3).

Effects of quinoides and VEGFR2-TKIs on hepatocellular
cancer stem cells (HCSCs). It is essential to discover novel
compounds that were able to alter the enrichment of the CSC

Fig. 3 Flow cytometry analysis of HCC cell lines indicating the
positivity of HCC cell lines for cancer stem cell markers CD133,
EpCAM and CD90. Top row: IgG isotype controls, middle row: cells
stained for CD133 and EpCAM markers, bottom row: cells stained for
CD90.

Scheme 1 Preparation of quinones 1, 2a and 2b from
2-methylhydroquinone (S1).

Scheme 2 Syntheses of quinones 3 and 5 from 1,4-
dimethoxybenzene.

Scheme 3 Synthesis of compound 4.

Scheme 4 Syntheses of 8 and 10.
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population as well as the cancer cells. For this reason, com-
pounds 1–10 that were initially tested against HCC cell lines
were further studied to determine the changes in the CSC
marker positivity of Huh7 cells. Cells that were killed by the
treatment were discarded, and the remaining cells were used
in flow cytometry analyses. Interestingly, some of the com-
pounds were able to reduce the percentage of CSC popula-
tion, while some had the adverse effect on Huh7 cells that
enriched the CSC subpopulation (Fig. 4). It was observed that
unlike VEGFR2-TKIs, some of the quinoides were able to at-
tenuate the CSC side population in Huh7 cells.

Due to the distinct dispersion of CD90 cells, we decided to
include SNU-475 cells for testing the anti-HCSC activities of
quinoides. Therefore, we also determined the bioactivities of
quinoides in SNU475 cells. The IC50 values were 5.5 ± 1.4, 10.5
± 1.5, 6.1 ± 2.0, 0.3 ± 1.2, 9.0 ± 2.1, and 0.6 ± 1.1 μM for com-
pounds 1, 2a, 2b, 3, 4, and DAPT, respectively. No growth inhi-
bition was observed for compound 5 (Fig. 5 and Table 2B).

Although compounds 6–10 were stronger HCC inhibiting
agents as quinoides 1–5, they caused enrichment of Huh7
HCSCs in the rest of the HCC after treatment. Therefore, the
positive cytotoxic effect of 6–10 was discredited by their abil-
ity to leave the HCC residue fraction after treatment enriched
with aggressive HCSC cells that are highly susceptible to dis-
ease relapse and that acquired drug resistance frequently ob-
served after HCC treatment in clinics.

Further analyses were carried out on Hep3B, Mahlavu and
SNU-475 cells to test whether the same effect could be ob-
served in other HCC cell lines as well. Among all compounds
tested, 3 was able to attenuate the CSCs especially in
mesenchymal-like cells, surpassing the efficacy of the stem

cell inhibitor, DAPT (Fig. 5). Altogether, the results have
shown that compound 3 is potentially capable of impairing
the cancer stem cells in HCC cells with a mechanism not yet
discovered.

On the other hand, treatments of cells with VEGFR2-TKIs
6–10 were shown to enrich the cancer stem cell population of
Huh7 and Hep3B cells at about 1.7–2.9 times as opposed to
the effect of DAPT (Fig. 4 and Table 2A).

Conclusions

There is only one literature report describing macrocyclic
benzoquinone herbimycin A [CAS: 70563-58-5, BRN: 4834067]
that inhibits (61–78%) human bone marrow mesenchymal
stem cells at 1–5 μM concentration.21 We present here for the
first time the screening of benzoquinone compounds in
CSCs. One of the achievements of our pivotal study is identi-
fication of quinoide 3 as an exceptional compound to treat
HCSCs. Although its mechanism is not yet known, we hy-
pothesize different behaviours of screened quinoides 1–5
based on their structural differences, benzoquinone reactivity
and general medicinal chemistry knowledge. All quinoides
1–5 possess a chemically reactive benzoquinone fragment
that can likely be an irreversible inhibitor binding to a bio-
logical target e.g. by the Michael reaction with a cysteine
amino acid residue. The most active quinoide 3 in Mahlavu
and SNU-475 is the one that misses most of substitutions on
its benzoquinone skeleton compared to the other tested
quinoides. The steric and electronic properties of 3 could be
a reason why quinoide 3 is the most active one included
(Fig. 5). In the case of the SNU-475 tumour, there are three
active quinoides (1, 2a and 3); therefore, other mechanismĲs)
can also be included. As could be seen, all VEGFR2 TKIs 6–10
are cytotoxic to HCC cell lines (IC50 = 3.0–0.4 μM, Table 1),
and at the same time, they are less toxic towards HCSCs since
it was observed that cancer stem cells were enriched up to 3
times after treatment (Fig. 5 and Table 2A). The most syner-
gic case would be to identify cytotoxic compounds for both
HCCs and HCSCs. The results obtained by screening of
VEGFR2 TKIs can deliver two positive consequences: i)
VEGFR2 TKIs can be used to enrich the % of stem cells in
the final fraction before stem cell isolation for research pur-
poses. Moreover, such stem cells can remember VEGFR2 TKI
treatment and can be used for the development of the next
generation of inhibitors. ii) It is obvious that experimental
compounds can be differently cytotoxic towards heteroge-
neous tumour cells. Their different influence on CSCs should
be quantified separately because of its practical meaning.

In cancer therapeutics, it is important to identify treat-
ment regimens against cancer stem cells as well as tumor
cells, because patients suffer from relapse or incomplete re-
covery after treatment if it fails to eliminate CSCs. The per-
centage of DMSO treated cells in flow cytometry analysis rep-
resents the initial CSC marker positivity of the cells before
treatment (Fig. 4) Thus, we suggest that once the cells were
treated with a compound, the number of cells with marker

Fig. 4 Expression of stem cell markers CD133 and EpCAM in Huh7
cells treated with (A) quinoides 1–5 and (B) VEGFR2-TKIs 6–10 as
shown by flow cytometry analysis.
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positivity can be compared with the DMSO control in order
to define the fold change in the percentage of cancer stem
cells. Since only the cells that stay alive after treatment are
analyzed (see methods), it is important to emphasize the den-
sity of the cancer stem cells before and after treatment.
Therefore, the compounds that cause a decrease or enrich-
ment in cancer stem cell population can be quantified simply
by normalizing the treated cell population by DMSO controls.

Here, we suggest the aggressiveness factor (AF), a new
characteristic quantifying the risk for certain compounds to
be able to develop a more aggressive disease: AF (exp. cmpd.)
= [(total number of CSCs after exp. cmpd. treatment)/(total
number of CSCs before treatment)].

The low AF value is an indication for the quality of a drug
candidate toward cancer cells. Such molecules don't possess
drug resistance or induce more aggressive tumours (Table 2). AF

Fig. 5 Flow cytometry analysis of HCC cell lines after 72 hours of treatment with quinoides 1–5. (A) Huh7, (B) Hep3B, (C) Mahlavu, and (D) SNU-
475. Cancer stem cells were defined by their positivity for CSC markers, CD133 together with EpCAM, or CD90. Each treatment was compared to
its corresponding DMSO control to define the changes in percentage of double positive population. DAPT is used as positive control for CSC
inhibition. The bar graphs indicate the fold change in positivity for markers between DMSO control and experimental groups.

MedChemComm Research Article

Pu
bl

is
he

d 
on

 0
7 

O
ct

ob
er

 2
01

6.
 D

ow
nl

oa
de

d 
by

 M
id

dl
e 

E
as

t T
ec

hn
ic

al
 U

ni
ve

rs
ity

 (
O

rt
a 

D
og

u 
T

ek
ni

k 
U

) 
on

 2
6/

10
/2

01
6 

14
:2

7:
06

. 
View Article Online

http://dx.doi.org/10.1039/C6MD00392C


Med. Chem. Commun. This journal is © The Royal Society of Chemistry 2016

reflects the fold increase of CSCs that survived the compound
treatment independently of the shrinkage of the tumour itself.

The compounds with AF values below 1 can be regarded as
molecules which reduce the cancer stem cell population,
whereas AF values above 1 signify molecules that enrich the
cancer stem cell population. Thus, the usage of AF values de-
fines the success or failure of the compounds in affecting
cancer cells toward cancer stem cell population.

Cancer stem cell-like subpopulations carry behaviors such
as higher tumor-forming and metastasis capacities along
with resistance to antitumor drugs which allows tumors to
survive and relapse.8 The analysis of the action of the chemo-
therapeutics that deplete the CSC-like population by the fol-
lowing surface markers may enumerate the qualities of the
compounds and may allow one to assess their differential ac-
tion. Our results represent parallel findings with sorafenib
(6) and other compounds and allow comparative analysis of
the compounds toward cancer stem cell marker positive cell
populations. The AF concept introduced in this study clearly
demonstrates the differential action of the compounds.

It is known that patients used to develop resistance to-
wards sorafenib (6). This is consistent with our data with
sorafenib (6) having an AF value that is 2 fold higher com-
pared to that of the DMSO control while maintaining good
cytotoxicity through the low IC50 values (Table 2A). However,
the known CSC inhibitor (DAPT) has low AF values and its
IC50 is much higher than that for sorafenib (6). Furthermore,
while quinoide 5 does not possess cytotoxic actions (for each
HCC line) and 3 has high IC50 values against Huh7, Hep3B
or MV (Mahlavu) cells, they both significantly reduce the CSC
marker positive subpopulations in mesenchymal Mahlavu
and SNU-475 cells (Tables 2A and B).

The normalized aggressiveness factor allows selection of
promising experimental compounds possessing lower proba-
bility to form aggressive tumours in comparison to a particu-
lar drug with known clinical behaviour. The methodology can
serve as a simple and valuable tool for pre-clinical screening.

Experimental section
Syntheses of compounds 1–10

The syntheses and physicochemical properties of prepared
organic compounds 1–10 can be found in the ESI.‡

Cell culture

Huh7 and Mahlavu, human hepatocellular carcinoma (HCC)
cell lines, were maintained in Dulbecco's modified Eagle's
medium (DMEM) (Invitrogen/GIBCO), supplemented with
10% fetal bovine serum (FBS) (Invitrogen/GIBCO) and 0.1
mM nonessential amino acid, whereas SNU-475 cells were
maintained in RPMI (Invitrogen/GIBCO), supplemented 10%
fetal bovine serum (FBS) and 2 mM L-glutamine. Both media
contained 100 units per mL penicillin and 100 units per mL
streptomycin. Cells were grown at 37 °C in a humidified incu-
bator under 5% CO2.

NCI-60 sulforhodamine B (SRB) cytotoxicity assay

Huh7 and Hep3B (2000 cells per well), SNU-475 (1000 cells
per well) and Mahlavu (1000 cells per well) cells were inocu-
lated into 96-well plates (150 μl per well). After 24 hours, mol-
ecules of interest and DMSO control were applied in concen-
trations of 40 μM to 2.5 μM in serial dilutions. After 72 h of
treatment, cells were fixed with cold 10% (w/v) trichloroacetic
acid (MERCK) for an hour. Then, the wells were washed with
ddH2O and dried. 50 μl of 0.4% SRB dye (Sigma-Aldrich) was
applied to each well and incubated at room temperature for
10 min. Each well was washed with 1% acetic acid and left
for air-drying. SRB dye was solubilised using 100 μl per well
10 mM Tris-Base solution, and the absorbance was measured
at 515 nm. The experiment was performed in triplicate, and
the absorbance values were normalized to DMSO controls.

Flow cytometry

HCC cells are inoculated into 100 mm2 culture dishes (100
000–200000 cells). 24 hours later, cells were treated with the
compounds (IC100 conc.) for 72 hours. Dead cells that no lon-
ger remained attached to the surface of the culture plates
were discarded through vacuum aspiration and cells that
remained attached were collected to be fixed with 4% para-
formaldehyde for 30 minutes. Huh7 and Hep3B cells were
stained for cancer stem cell markers using anti-CD133/1
(AC133)–biotin (Miltenyi, 130-090-664), anti-biotin–PE
(Miltenyi, 130-090-756), and anti-EpCAM–FITC (Miltenyi, 130-
080-301), whereas Mahlavu and SNU-475 cells were stained
using anti-CD90–FITC (Miltenyi, 130-095-403). For isotype
controls, mouse IgG1 isotype control–FITC conjugate
(Miltenyi, 130-092-213) and mouse IgG1 isotype control anti-
body–biotin conjugate (Miltenyi, 130-093-018) were used.
Staining of cells was performed according to the manufac-
turer's protocol. Cells were analyzed using the BD Accuri C6
Flow Cytometer and Software (BD Biosciences). The same
staining procedure was applied for the analysis of HCC cells
in order to determine the CSC marker positivity.
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