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INTRODUCTION – The Autophagic Pathways in Cellular Homeostasis 

1 THE AUTOPHAGIC PATHWAYS IN CELLULAR HOMEOSTASIS  

 

1.1 Autophagy: Concept and Cellular Functions 

 

The teƌŵ ͞autophagǇ͟ ;fƌoŵ the Gƌeek foƌ self-eating) was first encountered in the early 1960ties and 

is tightlǇ liŶked to ChƌistiaŶ de Duǀe’s disĐoǀeƌǇ of the lǇsosoŵe teŶ Ǉeaƌs ďefoƌe (de Duve et al., 

1955). The Belgian scientist was indeed the one who named this process (de Duve C, Ciba Foundation 

Symposium: Lysosome; Little, Brown, 1963) describing the digestion of intracellular content as a 

ĐoŶtƌast to ͞ heteƌophagǇ͟, ǁhiĐh is the lǇsosoŵal degƌadatioŶ of ŵateƌial oƌigiŶatiŶg fƌoŵ outside the 

cell. As a matter of fact, the degradation of intracellular structures had been observed first by Sam L. 

Clark  in kidney cells from new born mice and by Alex Novikoff in starved liver cells (Clark, 1957; 

Novikoff et al., 1956). Later on, Antti Arstila and Benjamin Trump identified by electron microscopy 

that those structures displayed a double membrane and that they seemed to deliver cytoplasmic 

content to lysosomes for degradation (Arstila and Trump, 1968). Those were the findings that 

launched the autophagy era that has been growing and evolving for over five decades.  

Years of research on autophagy have allowed to grasp the importance of this process for cellular 

homeostasis. The first investigations on the subject revealed the role of autophagy in cell metabolism. 

The fact that treatment by glucagon seemed to increase autophagic bodies as shown in liver cells by 

Thomas P. Ashfold and Keith R. Porter (Ashford and Porter, 1962), De Duve (Deter and de Duve, 1967) 

and others gave the first hint in that direction. Glucagon was at that time suspected to be involved in 

protein catabolism, which was skillfully demonstrated later by Micheal R. Charlton and colleagues 

(Charlton et al., 1996).  Furthermore the studies by Ulrich Pfeifer showed that insulin, also a metabolic 

hormone, contrary to glucagon was able to inhibit the formation of autophagic vesicles. This and the 

fact that autophagy seemed to be induced by nutrient deprivation (Mortimore and Ward, 1976) and 

more specifically controlled by the concentration ofcertain amino acids,  led to the definite conclusion 

that autophagy was a catabolic process involved in protein turnover (Mortimore et al., 1983) (Seglen 

et al., 1980). As already mentioned and often seen by electron microscopy, further studies revealed 

that autophagy was also responsible for the recycling of organelles like mitochondria, linking this 

mechanism once more to metabolic functions. Over the years, it became more and more evident that 

autophagy is an integral cell survival mechanism, conserved among eukaryotes. Autophagy can be 

induced by starvation, stress or through the activation of certain receptors depending on the tissue 

and cell type. It provides the cell with new building blocks through the degradation of macromolecules 
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like long-lived proteins, and allows to maintain cellular homeostasis by eliminating dysfunctional or 

superfluous organelles.  

In addition to the studies on rat liver cells, the use of other models such as yeast (Saccharomyces 

cerevisiae, Pichia pastoris)  (reviewed in Ohsumi, 2014), Caenorhabditis elegans (Jenzer et al., 2015) 

or Drosophila (Nagy et al., 2015) allowed to shed light on the molecular mechanisms and the functions 

of this process. Moreover, it became clear throughout the years that the first observations made by 

De Duve, Clark, Ashfold and others belonged to a phenomenon that we now call macroautophagy and 

that co-exists in vertebrates with two other forms of autophagy: microautophagy and chaperone-

mediated autophagy (CMA) that will be briefly detailed and illustrated below (Fig 1). 

 

 

Figure 1: Overview of three types of autophagy. 

 

 

 

(1) Microautophagy:  Cytosolic content is directly engulfed into the lysosome by lysosomal membrane 

invagination. (2) Chaperone-mediated autophagy (CMA): The cytosolic chaperone protein HSPA8 and its 

co-chaperones bind to the substrate protein through recognition of the consensus sequence KFERQ. The 

substrate-chaperone complex is recognized by a lysosomal membrane receptor LAMP-2A. The substrate 

protein is then unfolded and translocated across the lysosomal membrane and gets degraded in the 

lysosome. (3) Macroautophagy: Cytosolic material is sequestered by expanding membranes (phagophores) 

forming a double-membrane vesicle, the autophagosome. The autophagosome fuses with the lysosome 

which leads to degradation of the content by lysosomal hydrolases. HSPA8: Heat shock protein family A 

(Hsp70) member 8; LAMP-2A: Lysosome-associated membrane protein type 2A. 
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1.2 Microautophagy 

 

Microautophagy is a cellular process which was described  in 1966 by Christian De Duve as well, while 

reporting the different functions of the lysosomes (Duve and Wattiaux, 1966). He was indeed referring 

to this mechanism different from the other autophagic observations because it did not lead to the 

formation of a specific vesicle but rather induced the engulfment of the cytosolic content for 

degradation through direct invagination of the lysosome membrane.  

In contrast to the other two types of autophagy (macroautophagy and CMA), research on 

microautophagy remains scarce. Nevertheless studies on yeast (S. cerevisiae, P. pastoris), centered on 

the observation of the vacuoles (the yeast functional equivalent of lysosomes from animal eukaryotes), 

have allowed to make some advances on the subject and to establish the existence of two types of 

microautophagy, either nonselective (NSM) or selective (SM) as reviewed by Mijalijca and colleagues 

(Dalibor Mijaljica, 2011) (Fig 2).   

In NSM a degradation of soluble cytoplasmic material without any specificity can be witnessed. 

AŶdƌeas MeǇeƌ’s teaŵ ǁas iŶdeed aďle to ideŶtify four kinetic stages leading to the invagination and 

the suďseƋueŶt ďuddiŶg of the ǀaĐuolaƌ ŵeŵďƌaŶe iŶto its oǁŶ luŵeŶ, also Đalled ͞iŶǀeƌted ďuddiŶg͟ 

(Kunz et al., 2004). Using different pharmacological inhibitors and cooling technics, they were able to 

dissect those stages in vitro after vacuole isolation from yeast (Fig 2). In summary, they established 

that the first three stages are dependent on vacuolar ATPases and require a constant supply in lipids 

and membrane to allow the formation and maintenance of a pit-like or tubular structure in the vacuole. 

The fourth stage is the actual uptake of cytosolic soluble constituents and their release into the lumen. 

It also appears that the interplay of two protein complexes localized at the vacuolar membrane, TOR 

(target of rapamycin) and EGO (exit from rapamycin-induced growth arrest), regulate this process 

(Dubouloz et al., 2005).  Thus the mechanisms around non-selective microautophagy-like 

phenomenon, in yeast, seem to become clearer. It is also triggered by stress factors like starvation or 

by pharmacological agents such as rapamycin, also known to induce macroautophagy.  

In selective microautophagy, it appears that the specific degradation of organelles can be triggered 

either because the organelles in question are dysfunctional, or to reduce their number. This 

degradation of mitochondria is called micromitophagy and seems to be induced by the alteration of 

iron homeostasis (Nowikovsky et al., 2007). The degradation of peroxisomes (micropixophagy) and 

nucleus (micronucleophagy or piecemeal microautophagy of the nucleus (PMN)) have also been 

observed in P. Pastoris (Ano et al., 2005) and S. cerevisiae respectively (Roberts, 2003) and are reviewed in 

Mijaljica et al (Dalibor Mijaljica, 2011). 
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As already mentioned, microautophagy in mammalian cells has not been very well characterized yet and has 

mostly been observed by electron microscopy. 

But a recent study has shown that a microautophagy-like process was involved in late endosome multivesicular 

bodies (MVBs) biogenesis in a mammalian system. The authors propose that cytosolic proteins are delivered to 

late endosomes and that some of these proteins are recognized by the chaperone protein HSPA8 (formerly called 

Hsc70) through the KFERQ peptide motif, suggesting a specific cargo recognition, originally associated to 

chaperone-mediated autophagy (CMA) that will be discussed below. Even though contrary to CMA it is a LAMP-

2A independent mechanism, it requires the endosomal sorting complexes required for transport (ESCRT) I and II 

for the formation of vesicles in which the proteins get trapped. Whether HSPA8 gets also internalized however 

remains to be clarified (Sahu et al., 2011).  

 

 

 

Figure 2: Microautophagy. 

In yeast lysosomal degradation via microautophagy is a 4 step process starting with invagination of the 

vacuole to from a pit-like structure (I) leading to engulfment of cytosolic content (II-III) and finally 

degradation (IV). Microautophagy depends on the EGO complex which is negatively regulated by TOR in a 

nutrient rich environment. EGO regulates bulk microautophagy as well as SM such as piecemeal 

microautophagy of the nucleus (PMN) or micromitophagy (degradation of mitochondria). Mammalien cells 

also undergoe bulk microautophagy and SM. SM depends on the recognition of the substrate proteins by 

HSPA8 via the KFERQ motif and on the presence of ESCRTI/II for the invagination process. EGO: Exit from 

rapamycin-induced growth arrest; ESCRT: Endosomal sorting complex required for transport 
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1.3 Chaperone-Mediated Autophagy 

 

Out of the three types of autophagy, chaperone-mediated autophagy was discovered last. At that 

time most scientists in that field thought that macroautophagy randomly targeted cytosolic content 

for degradation. Thus they had overseen CMA as it was the first selective form of autophagy to be 

described. This discovery can be attributed to James Fred Dice and his team. They observed when 

following the fate of radiolabeled proteins after microinjection in serum-deprived fibroblasts, that 

some of those proteins underwent lysosomal degradation while others remained unaffected (Neff et 

al., 1981). The search for an explanation for this differential degradation led to the identification, after 

enzymatic fragmentation of ribonuclease A (RNase A), of a pentapeptide motif, the KFERQ motif 

(Backer et al., 1983). This motif was shown to direct RNase A to lysosomal degradation. The 

development of an antibody raised against the KFERQ motif allowed them to isolate proteins 

specifically containing that motif. They observed that by microinjecting these proteins in starved 

fibroblasts, they were degraded 5 times faster than those without the KFERQ motif. A few years later, 

DiĐe’s laďoƌatoƌǇ disĐoǀeƌed that this ŵotif ǁas a taƌget seƋueŶĐe foƌ a ϳϬ-kilodalton heat shock 

protein HSPA8 (heat shock protein family A (Hsp70) member 8 ) and that this chaperone protein was 

indispensable for the translocation of the proteins into the lysosome (Chiang et al., 1989). Around the 

same period Erwin Knecht, who was also working on lysosomal proteolysis had come to the same 

conclusion while studying the degradation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 

namely that there had to be a selective degradation of proteins in the lysosomes (Aniento et al., 1993). 

The two laboratories soon noticed that they were probably studying the same protein degradation 

pathway and started working together to dissect the mechanisms behind this specific proteolysis 

(Cuervo et al., 1995). The collaboration of these pioneers in selective autophagy turned out to be a 

major breakthrough for chaperone mediated autophagy (CMA), a term which was actually proposed 

around the years 2000 (Cuervo and Dice, 2000). 

Extensive studies of CMA identified only in mammalian cells so far, have allowed to establish the 

molecular process step by step, as well as the regulation and functions of this mechanism. Like the 

other types of autophagy, CMA is induced by nutrient deprivation in order to provide the cell with 

amino acids for the synthesis of de novo proteins or to generate energy. Another function of CMA is 

the degradation of short-lived proteins like obsolete enzymes or the removal of damaged proteins 

resulting from oxidative events (Kiffin et al., 2004). Aggregated proteins fall also in the category of 

macromolecules that can be eliminated through CMA (Sattler and Mayer, 2000). CMA has also been 

described to be involved in the peptide generation for presentation by antigen presenting cells (APCs) 

(Uytterhoeven et al., 2015; Zhou et al., 2005). This process has been extensively studied in the liver. 
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Schneider and colleagues generated a mouse model with a conditional knock-out of LAMP-2A in liver 

cells in order tho study the role of CMA in vivo. CMA invalidation in those cells led subsequently to a 

disturbed lipid metabolism and to a fatty liver suggesting that CMA participates in metabolic liver 

functions (Schneider et al., 2014). CMA has also been investigated in other cell types such as T 

lǇŵphoĐǇtes foƌ iŶstaŶĐe. FeƌŶaŶdo MaĐiaŶ’s teaŵ demonstrated in fact that upon TCR engagement 

CMA is activated and LAMP-2A upregulated. In vitro and in vivo invalidation of CMA through knock-

down and T cell specific deletion of LAMP-2A resulted in reduced activation and immune response 

against bacterial infection. Moreover they showed that CMA as well as LAMP-2A expression decrease 

with age in T cells as does their responsiveness to TCR stimulation. Restoring LAMP-2A expression in 

old T cells led to an improved activation-induced reponse. These results show the importance of CMA 

in T cell responses and indicate that modulating this process could be beneficial to dodge age-related 

T cell senescence (Valdor et al., 2014). In many studies CMA has also been shown to be reduced in 

age-related disorders such as neurodegeneration or metabolic pathologies. Hence using CMA as a 

therapeutic target could be beneficial in the process of finding new cures against those disorder. 

As already mentioned, protein degradation by CMA requires the recognition of a KFERQ or a KFERQ-

like motif (Fig 3). In fact it has been established that it is mostly the distribution of the charges that 

matters for protein recognition by a chaperone complex containing HSPA8. After binding the protein 

destined for degradation, the complex formed with the chaperone is targeted to the lysosome where 

it binds to the lysosome-associated membrane protein type 2A (LAMP-2A).  This consequently induces 

the multimerization of LAMP-2A, which at the same time interacts with another chaperone protein, 

Hsp90, localized at the luminal side of the lysosomal membrane. Hsp90 and the glial fibrillary acidic 

protein (GFAP) are responsible for the stabilization of multimerized LAMP-2A. In order to cross the 

lysosomal membrane, the protein targeted for degradation has to be unfolded, a process that is 

mediated by HSPA8 and the co-chaperones forming the complex (Cuervo and Wong, 2014). Ultimately 

the substrate protein helped by luminal HSPA8 enters the lysosome where it gets degraded. The 

degradation of one single protein at a time is actually a specificity of this pathway. Once this purpose 

is fulfilled HSPA8 contributes to LAMP-2A multimer disassembly. Monomeric LAMP-2A gets then 

dissociated from the lysosomal membrane by cathepsin A through cleavage of the transmembrane 

domain (Kaushik et al., 2011).  

Even though knowledge about CMA has been growing fast, some questions still remain. It is for 

example not well understood yet how exactly the internalization of the substrate protein occurs or 

why LAMP-2A multimerization is relevant for this process. Thus more studies are needed to answer 

those questions but also to understand the role of CMA relative to each cell type, since it differs 

depending on the cell studied.  
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Figure 3: CMA Step by step. 

(1) HSPA8/Co-chaperones recognize the KFERQ motif and bind the substrate protein; (2) binding of 

substrate-chaperone complex to LAMP-2A; (3) unfolding of the substrate; LAMP-2A multimerization 

stabilized by Hsp90; (4) transmembrane domain of LAMP-2A multimer stabilized by GFAP, substrate 

translocation mediated by lysosomal HSPA8 and (5) degradation of substrate protein in the lysosome; (6) 

disassembly of LAMP-2A multimer mediated by HSPA8, migration to the lipid microdomain where LAMP-

2A gets cleaved by CathA and finally degraded by lysosomal proteases. HSPA8: Heat shock protein family A 

(Hsp70) member 8; LAMP-2A: Lysosome-associated membrane protein type 2A; GFAP: Glial fibrillary 

acidic protein;  Hsp90: Heat-shock protein of 90 kDa; lys: Lysosome, CathA: Cathepsin A 

 

1.4 Macroautophagy  

 

Macroautophagy, most probably the first type of autophagy that De Duve and others observed, is the 

best characterized type of autophagy so far. As in the rest of this manuscript, it is often simply 

abbreviated by autophagy. Same as for micro- and chaperone-mediated autophagy, it is a cell 

starvation-induced mechanism, and is necessary for protein and organelle turnover. Autophagy, has 

also been shown to be important in cellular development (Levine and Klionsky, 2004) and 

differentiation. Thus it is not surprising that autophagy seems to play a key role in physiopathology, 

like during neurodegenerative, metabolic and autoimmune diseases or cancer. Even though this 

process has mostly been associated to survival mechanisms in stress conditions, in some cases it has 

been shown to induce cell death in a process termed autophagic cell death or type II programmed cell 

death. This type of non-apoptitic cell death has been shown to take place in conditions where 

autophagy levels were very high or when the apoptotic pathways were somehow impaired as 
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demonstrated by Shimizu and colleagues with their Bax/Bak-deficient mouse embryonic fibroblasts 

(MEFs). These cells were in fact unable to undergo classical apoptosis induced by etoposide, but died 

anyway through autophagy induction (Shimizu et al., 2004). Indeed, inhibiting autophagy also 

inhibited cell death which led to the conclusion that this phenomenon was dependent on the 

autophagic machinery.  

In physiological conditions, the autophagic process appears to be mainly a pro-survival mechanism, 

but plays numerous other roles. In contrast to the two other types of autophagy described above, 

macroautophagy requires the formation of double membrane vesicles called autophagosomes, that 

fuse with lysosomes and enable the degradation of the cytosolic content captured inside.  Another 

feature of this mechanism is the multi-step process that involves specific proteins encoded by genes 

designated as autophagy-related genes (Atg). The discovery of those atg was made through genetic 

studies carried out on yeast, and to which Yoshinori Ohsumi and his colleagues were central 

contributors. The yeast vacuole, identified as the equivalent to lysosomes in mammalian cells (Jones, 

2002), was found to endure drastic morphological changes when the yeasts were to be starved 

(Takeshige et al., 1992). Ohsuŵi’s laboratory was the first to report an autophagic degradation in yeast 

vacuoles after vesicle formation in the cytosol. Soon after, they identified the first apg (for autophagy) 

gene, apg1, using autophagy-defective mutants and utilizing their survival capacities in nutrient 

deprived conditions as read-out  (Tsukada and Ohsumi, 1993). The screen of those mutants and the 

studies by other research teams  led to the characterization of autophagy essential genes (Ohsumi, 

2014). Apg were then labelled Atg, as their products can also be involved in non-autophagic processes. 

Hence, over thirty Atgs have been identified in yeast so far, and for most of them, the homologues in 

higher eukaryotes are known as well (Pyo et al., 2012).  

 The discovery of Atg and thus of Atg proteins, launched the research aiming at understanding and 

establishing in details the molecular mechanisms underlying the autophagic process. The knowledge 

in this field has indeed been growing exponentially these last two decades, leading to the identification 

of the different stages involved in the autophagosome formation: initiation or nucleation, elongation 

of the phagophores, sequestration of the cytosolic content, maturation of the autophagosome, fusion 

with lysosomes and finally degradation of the content. All these stages and their functions/roles, as 

well as the protein complexes involved, will be taken under scrutiny below, focusing specifically on the 

events taking place in mammalian cells. EǀeŶ though it ǁoŶ’t ďe detailed iŶ this ŵaŶusĐƌipt the yeast 

has been and still is a remarkable tool to study autophagy, since the complexes and the mechanisms 

involved in this process have firstly been described in this organism before being investigated in higher 

eukaryotes.   
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1.4.1 From Initiation to Degradation: Dissection of the autophagic machinery 

 

Initiation (Fig 6) 

The initiation or nucleation process consists in the formation of a flat organelle called phagophore or 

isolation membrane. One main interrogation that has not been answered clearly yet is the origin of 

the membranes forming this structure and leading eventually to the formation of the double 

membrane of the autophagosome. There is evidence suggesting two sources, the first being that 

diverse organelles such as the endoplasmic reticulum (ER), mitochondria, the Golgi apparatus, and 

even the cytoplasmic membrane give birth to the double membrane forming the pre-autophagosomal 

structures. On the other hand it has been suggested that the membrane could originate from the 

omegasome, an omega-shaped membrane structure from the phosphatidylinositol-3-phosphate 

(PtdIns3P)-enriched ER subdomains (Axe et al., 2008). Most evidence points to the omegasome as the 

main source for the membranes, although it may vary according to the type of autophagy induced and 

the nature of the triggering signals. The proteins mainly required in the initial steps of the 

autophagosome formation are called core ATG proteins.  They are organized in complexes, starting 

with the Unc-51-like kinase (ULK) complex composed of ULK1/2, the focal adhesion kinase [FAK] family-

interacting protein of 200 kDa (FIP200), ATG13 (Ganley et al., 2009) and finally ATG101 (Hosokawa et 

al., 2009a, 2009b; Mercer et al., 2009). All the proteins forming this complex are associated in a stable 

conformation independent from the nutritional status of the cell. Furthermore, the ULK1/2 complex is 

negatively regulated by the activity of the mammalian target of rapamycin (mTOR) in the so-called 

mTOR-dependent autophagy (Yang and Klionsky, 2010). mTOR activation initiates anabolic events 

necessary for cell growth and proliferation. Thus mTOR depends on sufficient nutrient and growth 

factors (GF) to catalize these events. Insulin for instance binds its receptor of tyrosine kinase (RTK) 

which leads to the activation of the phosphoinositide 3 kinase (PI3K)/AKT (also known as the protein 

kinase B) signaling pathway. Subsequent phosphorylation of the tuberous sclerosis complex 1 and 2 

(TSC1/2) by AKT inbibits its association to Ras homologue enriched in brain (Rheb) GTPase (Fig 4). Free 

Rheb can then activate mTOR that inhibits the induction of autophagy by binding and phosphorylating 

ULK1 as well as ATG13 (Kim and Guan, 2015). In contrast AMP-activated protein kinase (AMPK), 

activated by high AMP/ATP ratios, can initiate autophagy through ULK1 complex direct activation or 

indirectly via mTOR inhibition. As reported by Kim and colleagues, further sequential phosphorylation 

events are required in this process. In a nutrient-deprived environment, AMPK gets activated and 

phosphorylates TSC2 leading to the association of this complex to Rheb. AMPK also phosphorylates a 

component of the mTORC1 complex, the regulatory-associated protein of mTOR (Raptor) and thus 

hinders the activation of mTORC1 complex. AMPK also directly inhibits ULK1 complex, by 

phosphorylating two ULK1 serines  (Kim et al., 2011).  
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Figure 4: Insulin mediated Class I PI3K/AKT pathway. 

Insulin binding to its RTK activates the PI3K. Activated PI3K is then able to phosphorylate PIP
2 

to PIP
3

 
which 

accumulates and leads to the recruitment of PDK1 and AKT. AKT requires phosphorylation by PDK1 to be 

activated. AKT can then phosphorylate the complex TSC1/TSC2 thus inhibiting their interaction with Rheb. 

Free Rheb binds and activates mTOR leading to autophagy inhibition. RTK: Receptor tyrosine kinase; 

PDK1: 3-phosphoinositide dependent protein kinase-1; TSC1/2: Tuberous sclerosis; PIP2: 

phosphatidylinositol 4,5,-biphosphate, PIP3: Phosphatidylinositol 3,4,5-triphosphate; 

 

Thus the ULK complex is able to sense nutrient starvation indirectly, through AMPK and mTOR 

activities. After ULK1 activation, the complex is relocalized to the isolation membrane, where it 

contributes to the regulation of another major player in the initiation process, the Beclin1-VPS34-

VPS15 (vacuolar protein sorting, VPS) complex. One of its members, Beclin 1, has been initially 

discovered to be a tumor suppressing gene frequently underexpressed in ovarian, breast and prostate 

cancer (Aita et al., 1999), suggesting a role for autophagy in cancer development, subject that will be 

discussed in section 2.2. According to many studies  this complex displays a kinase activity responsible 
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for the phosphorylation of phosphatidylinositol (PI) to produce phosphatidylinositol 3 phosphate 

(PI3P) (reviewed in Russell et al., 2014). Hence this complex is termed class III phosphatidylinositol 3-

kinase (class III PI3K) complex. PI3P seems to be involved in the stabilization of ULK1 at the omegasome 

but also contributes to the binding of other proteins necessary for the formation of the 

autophagosome, such as the double FYVE containing protein 1 (DFCP1) (Axe et al., 2008; Karanasios 

et al., 2013).  The VPS34 complex can be associated to three other proteins: ATG14L, the UV resistance 

associated gene protein (UVRAG) and to Rubicon (RUN domain and cysteine-rich domain 

containing, Beclin 1-interacting protein) (Fig 7).  Even though those proteins bind specifically to 

Beclin1, it is seemingly never at the same time and they are required for different tasks. ATG14L is 

essential for the relocalization of the complex to the isolation membrane and more specifically to the 

omegasome (Fan et al., 2011; Matsunaga et al., 2010). When UVRAG is associated to the complex it 

has been suggested that it enhances the PI3K activity. Rubicon binding on the other hand has an 

inhibitory effect, since it decreases the PI3 kinase activity and thus prevents autophagosome formation 

(Zhong et al., 2009). When in another conformation, Beclin1 is also able to bind the activating molecule 

in Beclin1-related autophagy 1 (AMBRA1). The latter protein interacts with the dynein motor complex. 

It induces autophagy upon release from the complex, by directing the ULK1 complex to the ER (Di 

Bartolomeo et al., 2010). Beclin1-interacting proteins also comprise Bcl-2 (B cell lymphoma 2), which 

same as Rubicon negatively regulates autophagy when both proteins are bound (Pattingre et al., 

2005). Interestingly, Bcl2 also displays anti-apoptotic properties (Bcl-2 and Bcl-xl) when associated to 

Bax and Bak on mitochondria. This highlights the tight interplays between autophagy and apoptosis, 

and the homeostatic role of Beclin1 to that respect. 
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Figure 5: An overview of the autophagic machinery from initiationto elongation. 

 

 

 (1) Detailed here the initiation step controlled by the ULK1 complex (ULK1 ATG13, FIP200 and ATG101). 

In nutrient rich conditions mTORC1complex interacts with ULK1 and inactivates the complex by 

phosphorylating ULK1 and ATG13. Under starvation conditions, mTORC1 is inactivated by AMPK leading to 

the phosphorylation of ULK1 by AMPK and its subsequent activation. (2) Then ULK1 phosphorylates ATG13 

and FIP200 and consequently induces Beclin 1 dissociation from Bcl-2 which initiates autophagosome 

nucleation. ATG9A also requires the phosphorylation by ULK1 to be activated and furnishes the membranes 

for the formation of the phagophores during the nucleation step which takes place at the omegasome, a 

structure generated from the ER. This process requires the PIK3CIII complex (Beclin1, VPS34, VPS15 and 

ATG14L). PI3P produced by VPS34 recruits DFCP1 and WIPI to the isolation membrane. (3) For the 

elongation process two ubiquitin-like conjugation systems are required. The ATG5-ATG12 and LC3-PE 

conjugation systems (blue boxes). (4) The ATG12-ATG5 conjugates form a multimeric complex with 

ATG16L1 through ATG7 and ATG10, E1 and E2-like enzymes respectively. The formed ATG12-

ATG5/ATG16L1 conjugate undergoes dimerization and gets recruited to the phagophores by WIPI. (5) In 

the second system LC3-I is generated from pro-LC3 by the ATG4 protease. Then, through ATG7, ATG3 (E2-

like enzyme), and the ATG12-ATG5/ATG16L1 complex (acts as an E3-like enzyme), LC3 gets conjugated to 

the phospholipid phosphatidylethanolamine (PE) to form LC3-II. LC3-II localizes to the growing membranes 

and the ATG12-ATG5/ATG16L1 conjugates are released from the membranes during the formation of the 

autophagosome. Cytosolic content is captured while membranes are elongating. 

ULK1: Unc-51-like kinase 1; mTOR: mammalian target of rapamycin; AMPK: AMP-activated protein kinase; 

PI3P: Phosphatidylinositol triphosphate; DFCP1: double FYVE containing protein 1, WIPI: WD-repeat PI3P 

effector protein 
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The generation of the phagophore membrane per se is mediated by ATG9A. This ATG is ubiquitously 

expressed and localized to the Golgi apparatus and late endosomes and cycles from one to the other 

(Feng et al., 2014). Upon autophagy induction by starvation, ATG9A gets phosphorylated by ULK1 

which induces its recruitment to the phagophore (Papinski et al., 2014) and contributes to phagophore 

expansion by feeding lipids to the growing isolation membrane (Yamamoto et al., 2012; Zavodszky et 

al., 2013). One particular characteristic of this protein is that, with the vacuole membrane protein 1 

(VMP1), it is the only known transmembrane ATG protein identified so far. VMP1 has mainly been 

found associated to the ER membrane and has recently been shown to recruit Beclin1 to the 

phagophore. VMP1 thus regulates PI3K CIII complex activation (Molejon et al., 2013).  

Elongation – Sequestration (Fig 5) 

The elongation step following initiation is mainly mediated by two ubiquitin-like conjugation systems. 

During this step the phagophore grows and at the same time, cytoplasmic material gets engulfed into 

the forming autophagosome. 

The ATG7 ubiquitin-like conjugation system is composed of three key proteins: ATG5, ATG12 and 

ATG16L1. In order to build this system, ATG12 has to be conjugated to ATG5 and this is achieved 

through the combined actions of the E1 ubiquitin-like ligase, ATG7 and the E2 ubiquitin-like ligase, 

ATG10. First ATG12 gets activated by ATG7 at the C-terminal glycine residue in an ATP dependent 

manner, subsequently inducing the formation of an ATG12-ATG7 thioester intermediate followed by 

the transfer of ATG12 to ATG10 to also form a thioester intermediate. Then the conjugation to ATG5 

gets established through the covalent attachment of the C-teƌŵiŶal glǇĐiŶe of ATGϭϮ to ATGϱ’s lǇsiŶe 

at position 130 (Mizushima et al., 2002). The newly formed ATG12-ATG5 conjugates can then bind the 

ATG16L1 protein in a non-covalent manner, which in turn induces the homodimerization of this 

complex resulting in an 800kDa conjugate. The WD-repeat PI3P effector protein (WIPI) recuited by 

PI3P, interacts with ATG16L1 and facilitates the recruitement of the conjugate to the nucleation site 

(Dooley et al., 2014). The conjugate ATG12-ATG5/ATG16L1 localizes at the growing autophagosome 

uŶtil it’s ĐoŵpletelǇ foƌŵed aŶd theŶ dissoĐiates fƌoŵ it (Mizushima et al., 2003).  
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Figure 6: The essential roles of UVRAG and and the PIK3CIII complex in autophagy. 

 

The second ubiquitin-like conjugation system is involved in the elongation of the autophagosomal 

membrane. This system requires the lipidation of the microtubule-associated-protein 1 light chain 3 

;MAPϭLCϯ oƌ LCϯͿ aŶd its paƌalogues ďeloŶgiŶg to the GABARAP faŵilǇ ;γ-amino-butyric acid receptor-

associated protein), GABARAPL1, and to the GATE family (Golgi-associated ATPase enhancer), GATE-

16. Mammalian LC3 family is composed by different isoforms which are LC3A, LC3B and LC3C in human, 

the most abundant being LC3B. While the LC3 family proteins are important for the elongation step, 

the GABARAP/GATE family is rather needed for autophagosome maturation (Weidberg et al., 2010). 

LC3 is generally localized in the cytosol where it undergoes a number of posttranscriptional 

modifications, the first being its processing from pro-LC3 to LC3-I mediated by ATG4, a cysteine 

protease also present through different isoforms in mammalian cells (ATG4A-D also called Autophagin 

1-4). The most active isoform, ATG4B (Autophagin 1) catalyzes the cleavage at the C-terminal region 

of pro-LC3 after a glycine residue. It has recently been reported that upon autophagy induction, ATG4B 

requires phosphorylation for proper function (Yang et al., 2015). In any case, the glycine residue at the 

C-terminus of LC3-I constitutes the lipidation site where phosphatidylethanolamine (PE) will be 

conjugated to LC3-I to form LC3-PE, also called LC3-II. This action is mediated as previously for the 

ATG5-ATG12/ATG16L1 conjugation, by an E1 and E2 ubiquitin-like catalytic system composed of ATG7, 

and ATG3 an E2-like conjugation enzyme. ATG12-ATG5/ATG16L1 complex in this second conjugation 

system allows the binding of the PE to LC3-I through its E3 like ligation enzyme activity. As 
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demonstrated by Fujita and colleagues, ATG16L1 acts like a scaffold protein that transfers LC3 from 

ATG3 to PE (Fujita et al., 2008). Consequently this lipidated form of LC3 can be integrated both in- and 

outside of the elongating double membrane. While other proteins attached to the autophagosomal 

membrane end-up dissociating from it in the initial steps of autophagy, LC3-II is the only protein that 

remains there from initiation on until content degradation. Hence this protein is commonly used as an 

autophagic marker. One must however remember that LC3 is partially degraded after autophagosome 

fusion with the lysosomes. Even though the precise function of LC3-II has not been very well 

determined yet, it has been suggested, with help of liposomes, to be involved in the hemifusion of the 

autophagosome (Nakatogawa et al., 2007). Nevertheless LC3-II has been shown to be a major player 

in cargo recognition in collaboration with sequestosome proteins (see sections 1.4.3 and 3.1.1) 

Maturation and Degradation (Fig 7) 

Maturation begins once the autophagosome is fully formed and the cytoplasmic content is 

sequestered inside. This step leads to the fusion of the autophagosome with the lysosomes and 

subsequently to the formation of the autolysosome. Many proteins and complexes are involved in the 

establishment of this process. 

UVRAG, involved in phagophore generation through its interaction with the Beclin1-VPS34-VPS15 

complex, also plays an important role in the autophagosome maturation process. This complex actually 

localizes both in endosomes and autophagosomes. UVRAG interacts with a tethering complex (the 

homotypic fusion and protein-sorting/class C vacuole protein-sorting (HOPS/class C Vps), composed of 

VPS16, VPS33 and VPS39 among other proteins) independent of Beclin1 (Fig 6). Liang and colleagues 

show that UVRAG accelerates endosomal trafficking which leads to an increased autophagic flux.  

Furthermore knock-down of UVRAG by small interfering ribonucleic acid (siRNA) in HeLa cells 

substantially reduces the colocalization of VPS16 with the GFP-LC3 fusion protein, suggesting an 

UVRAG-dependent recruitment of the HOPS/class C Vps to the autophagosome (Liang et al., 2008). 

Tethering complexes are in fact essential in fusion processes since they mediate the coupling of Rab 

GTPase activation and soluble N-ethylmaleimide-sensitive factor attachment protein receptors 

(SNARES) assembly. One element of the HOPS/class C Vps complex, humain VPS39 activates such a 

GTPase, namely Rab7 (Liang et al., 2008). As a matter of fact, Rab7 is one other major key player in 

this maturation process. This small GTPase usually involved in late endosomal trafficking has been 

identified as an important mediator of autophagosome fusion with the lysosomes. In fact it has been 

shown that Rab7 down-regulation in cardiomyocytes resulted in the accumulation of autophagosomes 

followed by apoptosis, demonstrating the role of this protein in autophagosome maturation rather 

than in the initiation. It also highlights the requirement of a complete autophagic flux for the 
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maintenance of cellular integrity in that context. Rab7 actually plays two roles in this process, first 

mediating the autophagosome transport along the microtubules from the periphery to the 

microtubule organization center (MTOC), the concentration site of the lysosomes. Secondly Rab7 

favors the autophagosome/lysosome fusion. The HOPS complex discussed earlier, seems also to be 

able to bind Rab7 and to participate both in trafficking and fusion by tethering the lysosome to the 

autophagosome (Balderhaar and Ungermann, 2013; Pawelec et al., 2010). 

UVRAG can also be associated to Rubicon and, as already mentioned, this Beclin1-VPS15-VPS34-

UVRAG-Rubicon complex has an inhibitory function towards autophagy (Fig 6). It has been recently 

proven that Rubicon binds UVRAG and interacts with VPS34 via its RUN-domain and thus inhibits VPS34 

lipid kinase activity by blocking UVRAG mediated VPS34 activation. Rubicon is also able to bind Rab7 

and to inactivate its capacity to mediate autophagosome/lysosome fusion (Sun et al., 2011).  

The endosomal sorting complexes required for transport (ESCRT complexes 0, I, II and III) are important 

actors in autophagosomes maturation and are able to interact with Rab7 as well. Their primary role is 

to participate in endocytosis and in multivesicular bodies (MVBs) biogenesis. MVBs are late endosomes 

containing intraluminal vesicles that can fuse with autophagosomes in certain circumstances (e.g. 

starvation). The fusion of late endosomes with autophagosomes forms a structure called amphisome, 

prior to the fusion with lysosomes. Interestingly the ESCRT complexes have been shown to mediate 

this fusion. Impairments of their function is associated to autophagy dysregulations in 

neurodegenerative diseases. It has been suggested that the ESCRT complex II could interact with Rab-

interacting lysosomal protein (RLIP), inducing the recruitment of Rab7 and thus priming the fusion 

process (Wang and Hong, 2006). Of note, the HOPS complex also interacts with ESCRT complexes 

(Pryor and Luzio, 2009).  

Other Rab GTPases have been shown to be involved in fusion mechanisms. The Protein Rab11 for 

example, is required for the fusion of autophagosomes with multi-vesicular bodies (MVBs) as well.  

As clearly established, the fusion process is essential for autophagosome maturation and in fact one 

particular protein family is specialized in catalyzing this process, the SNARE family mentioned 

previously. Their purpose is to create an opening in the membrane of two adjacent vesicles so that 

they can fuse.  SNARE proteins share a signature sequence of about 60 residues. They often contain a 

transmembrane domain and tend to be present in opposing membranes destined to fuse (Gerber and 

Südhof, 2002). The proteins present in each SNARE complex, usually composed of four SNARE proteins 

forming an alpha helix bundle, depend on the vesicles that need to fuse. The SNAREs Vit1b, VAMP7, 

VAMP8 and SYNTAXIN17 have been shown to mediate autophagosome/lysosome fusion, in particular 

in the context of pathogen elimination by xenophagy (see section 3.1.1) (Furuta et al., 2010). It has 

also been demonstrated that SYNTAXIN17 interacts with tethering complex HOPS (Kim et al., 2001). 
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Pryor and Luzio proposed a fusion model involving the interaction of SYNTAXIN17 with the tethering 

complexes HOPS and Rab7. They suggested that HOPS might block SYNTAXIN17 from mediating 

membrane pairing. After replacement of Rab5 by Rab7 at the endosomal membrane, it would induce 

the recruitment of VPS39 and VPS41, two members of the HOPS complex. VPS39 would then activate 

Rab7 through its guanine-exchange-factor (GEF) activity and lead to the dissociation of SYNTAXIN17 

from HOPS complex, thus allowing trans-SNARE pairing and fusion of opposed membranes (Pryor and 

Luzio, 2009). 

One other feature of the maturation process is the vesicular microtubule trafficking which has been 

shown to be a very important component of the autophagic process. The cytoskeleton is composed of 

four major constituents: actin filaments, microtubules, intermediary filaments and septin. All of them 

play a role at different autophagic stages with the microtubules being the ones mainly involved in 

autophagosome maturation. Autophagosome transport along the microtubules towards the MTOC 

ƌeƋuiƌes the ŵotoƌ pƌoteiŶ dǇŶeiŶ. IŶ a ŵouse ŵodel foƌ HuŶtiŶgtoŶ’s disease, dǇŶeiŶ ŵutatioŶ 

through deletion of the dynein heavy chain1 gene (Dnch1) actually blocks protein aggregate 

degradation and thus mediates the development of neurodegenerative diseases (Ravikumar et al., 

2005). Studies have shown that dynein is linked to the autophagosomes through its binding to LC3 

family proteins as their name (Microtubule-Associated-Protein) already indicates. Another protein that 

has emerged as an important player in autophagy maturation is the histone deacetylase-6 (HDAC6). 

Lee and colleagues report that HDAC6 mediates the fusion of autophagosomes with lysosomes 

through actin remodeling. This protein is known to regulate microtubule-dependent transport. 

Interestingly the authors observed that HDAC6 recruits an actin-remodeling factor, cortactin, at the 

site of protein aggregates (Lee et al., 2010b). HDAC6-defecient MEFs accumulate double-membrane 

structures containing multivesicular bodies, protein aggregates and have furthermore low levels of 

cortactin indicative of its role in autophagosome/lysosome fusion in order to mediate protein 

clearance.  However inducing starvation in the absence of HDAC6 did not disturb autophagosome 

maturation suggesting that this protein is mostly required for quality control basal autophagy (see 

section 1.4.3).  

All in all, many proteins and complexes are required for the maturation process which is differentially 

regulated depending on vesicles that need to fuse even though the order in which the molecular events 

take plaĐe doesŶ’t seem to have been clearly identified yet. To sum up the events, it can be said that 

once the autophagosome is formed it needs to be transported along the microtubules to the MTOC 

where it comes in contact with the lysosomes or endosomes leading subsequently to their fusion and 

the formation of the autolysosome (Longatti and Tooze, 2009; Metcalf and Isaacs, 2010).  
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Figure 7: Schematic representation of endosome, autophagsome maturation and fusion with 

lysosomes. 

 

 

 

 

 

 

 

 (1) Rab5 is attached to the surface of an early endosome. UVRAG interacts with the tethering complex 

HOPS/C-Vps and mediates endosomal maturation by replacing Rab5 with Rab7 and by activating Rab7. (2) 

The same complex integrates Rab7 into the membranes of autophagosomes where Rab7 interacts with LC3-

II. (3) Starvation promotes the binding of FYCO1 to kinesin and to Rab7 at the membrane of the lysosome 

while the RILP-dynein complex binds to Rab7 at the autophagosome, a process which requires the 

intervention of the ESCRT II complex. These interactions provide means to regulate the bidirectional 

movement of lysosomes and autophagosomes along microtubules towards one another and the MTOC. RILP-

Rab7 interaction is further controlled by the UVRAG–HOPS/C-Vps complex which also regulates the fusion 

process (white square) by tethering the MVB/autophagosome and lysosome/autophagosome to one 

another. The SNARE complex (VAMP8, VAMP7, Vit1b and SYNTAXIN17) promotes the fusion of the 

lysosomes with the autophagosome. SYNTAXIN17 (purple) interacts with two proteins of the HOPS complex, 

Vps39 and Vps41 (not depicted). UVRAG: UV-resistance associated gene protein; FYCO1: FYVE and coiled-

coil (CC) domain–containing protein 1; ESCRT: Endosomal sorting complex required for transport; HOPS/C-

Vps: Homotypic fusion and sorting/Class C vacuole protein-sorting; MTOC: Microtubule organization center; 

RILP: Rab-interacting lysosomal protein. 
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1.4.2 Non-canonical Autophagy 

 

The formation of the autophagosomes requires the activation of various ATG proteins described 

above. It has however been shown that the autophagosome can be assembled independently of some 

of the components of the conventional autophagic machinery. This process termed non-canonical 

autophagy will be discussed here. 

ATG5/ATG7-independent autophagy  

ATG5 and ATG7 are essential for autophagy because of their requirement for the ubiquitin-like 

conjugation systems during elongation.  Nevertheless some evidence of autophagosome formation 

and content degradation independent of both proteins has emerged. “higeoŵi “hiŵizu’s team has 

reported the formation of double-membrane structures as well as LAMP-2 postive vesicules in MEFs 

lacking either ATG5 or ATG7. Those cells had been treated with etoposide, a cytotoxic stressor, or had 

been starved. Comparing etoposide treated cells, they observed accumulation of double-membrane 

structures at 12h and less LAMP-2 positive vesicules while at 18h it was the reversed situation 

suggesting the formation of autophagosomes that fuse with lysosomes to form autolysosomes. 

Rapamycin treatment however did not induce autophagy in the Atg5-/- MEFs, suggesting that non-

canonical autophagy induction might not depend on the classical mTOR-related stimulus. Moreover, 

LC3-II seemed to be missing from these autophagic vesicles, while ULK1, FIP200, Belcin1 and Vps34 

were shown to be important for the initiation of this alternative autophagic pathway.  Silencing of 

Atg12 and Atg16L1 oŶ the otheƌ haŶd didŶ’t affeĐt autophagosoŵe geŶeƌatioŶ, iŶdiĐatiŶg that the 

ubiquitin-like conjugation systems might be dispensable. They also observed a colocalization of 

autolysosome marker LAMP-2 with trans-Golgi apparatus markers as well as Rab9, a GTPase implicated 

in late endosome to trans-Golgi trafficking indicating the involvement of all of these components in 

this pathway (Nishida et al., 2009). 

Beclin1-PI3K-independent 

The Beclin1-PI3K complex in association with ATG14L is involved in autophagosome generation and 

regulates its maturation when bound to UVRAG or UVRAG-Rubicon. Nevertheless, it has been 

demonstrated that the autolysosome generation does not necessarily rely on this complex, depending 

on the stimulus used to trigger autophagy.  

Using a SH-SY5Y neuronal cell line treated with a neurotoxin, 1-methyl-4-phenylpyridinium (MPP+, 

used to elicit mitochondria-targeted injury), Zu and colleagues noticed a strong increase in autophagic 

vacuole formation. But attempts to inhibit this process in those cells using pharmacological inhibitors 

of class III PI3K (wortmannin and 3-methyl-adenine) did not exhibit any effect on autophagosome 
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generation, suggesting the involvement of non-canonical autophagy in their formation. This was 

confirmed with Beclin1 silencing experiments. Indeed, the authors still observed the presence of 

autophagic vesicles after treatment with MPP+(Zhu et al., 2007). 

Another case where Beclin1-independent autophagy was demonstrated, stood after treatment of a 

human breast cancer cell line with pro-apoptotic agents or Resveratrol (Res), in the hope to trigger 

autophagic cell death. Scarlatti and colleagues observed in Beclin 1 or VPS34 knocked-down cells an 

accumulation of LC3-II by western blot, upon treatment with Res as well as an increase in GFP-LC3 

puncta. This was indicative that autophagy induction in this context was both Beclin1 and VPS34 

independent. This process was however ATG7 dependent (Scarlatti et al., 2008). Furthermore the use 

of another autophagy promoter molecule, C2-ceramide required the expression of the three proteins 

demonstrating once more the non-canonical autophagy can be triggered by certain stimulus only. 

IŶ a ƌeĐeŶt aŶd elegaŶt studǇ ďǇ Guido Kƌoeŵeƌ’s teaŵ, it was shown that fatty acids (FAs) were able 

to induce the formation of autophagosomes as well. Depending on the FAs saturation, the authors 

could either trigger canonical or non-canonical autophagy. They treated a human osteosarcoma cell 

line with palmitate (saturated) or oleate (unsaturated) and they noticed that while palmitate triggers 

the usual autophagic pathway, oleate activates an unconventional degradation process. Niso-Santano 

and colleagues observed that oleate-induced autophagy is Beclin1-independent and requires an intact 

Golgi-apparatus both in vitro and in vivo (Niso-Santano et al., 2015). Nevertheless, the physiological 

relevance of this discovery as well as the detailed molecular mechanisms of this non-canonical 

autophagy still need to be addressed.  

ULK1  

The induction of autophagy in an ULK1-independent way has also been investigated. This phenomenon 

was observed in glucose-starved MEFs. There is indeed converging data demonstrating that 

autophagosome formation triggered through metabolic stress does not necessarily require AMPK 

activation nor mTOR inhibition. This suggests that non-canonical autophagy can be independent of the 

AMPK/mTOR/ULK1 axis (Cheong et al., 2011).  

Bcl-2/JNK regulated autophagy 

Autophagy can in fact be regulated by elements other than AMPK and mTOR and in that regard can be 

considered as unconventional. As briefly discussed in section 1.4.1 Bcl-2 negatively regulates 

autophagy by binding Beclin1.  For a long time the exact mechanisms of this regulation were however 

poorly understood since most studies were mainly focused on the AMPK/mTOR autophagy regulation 

axis. Beth LeǀiŶe’s teaŵ ǁas among the first to show that in starvation conditions Bcl-2 required 
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multiple phosphorylation by c-Jun N-terminal protein kinase 1 (JNK1) to dissociate from Beclin1 leading 

to autophagy activation (Wei et al., 2008). This requirement was further confirmed by the fact that 

viral Bcl-2 (vBcl-ϮͿ fƌoŵ Kaposi’s sarcoma associated herpesvirus (KSHV) lacks those phosphorylation 

sites. Hence vBcl-2 cannot be dissociated from Beclin1 and the virus escapes degradation by inhibiting 

autophagy (E et al., 2009).  

Shimizu and colleagues suggest however that JNK can only be activated to induce autophagic cell death 

but not in starvation conditions which would promote cell survival (Shimizu et al., 2010).  

LC3-associated phagocytosis 

LC3-associated phagocytosis (LAP) is a non-canonical type of autophagy that has been shown to take 

place in macrophages, neutrophils and dendritic cells (DCs) (Liu et al., 2015). This process participates 

in the elimination of extracellular bacteria, apoptotic bodies or immune complexes through 

phagocytosis. Same as for canonical autophagy, LAP requires the recruitment of Beclin 1, class III PI3K 

activity as well as the two ubiquitin-like conjugation systems since deletion of ATG7 and ATG5 haven 

been associated to reduced LAP. Contrary to canonical autophagy, LC3-II gets integrated into a single 

membrane vesicle and not in a double membrane. Moreover, LAP induction is independent from ULK1 

complex activation. 

This process is triggered by some pathogen recognition receptors (PRRs) such as toll-like receptors 

(TLRs) or Dectin-ϭ ;ƌeĐogŶitioŶ of β-glucan on fungal walls). The signaling lymphocytic activation 

molecule family 1 (SLAM), a gram negative bacteria sensor has also been suggested to induce LAP, but 

the evidence linking this receptor to this process still need to be delivered. Nevertheless LAP is clearly 

involved in enhanced pathogen and dead cell clearance as well as in antigen presentation linking innate 

and adaptive immunity.  

IŶ faĐt Douglas GƌeeŶ’s teaŵ deŵoŶstƌated that phagoĐǇtosis of dead Đells iŶduĐes the ƌeĐƌuitŵeŶt of 

LC3 to the phagosomes and that the presence of that protein is important to accelerate phagosome 

maturation as well as the clearance of their cargo (Martinez et al., 2011). LAP has also been shown to 

promote major histocompatibility complex (MHC) class II antigen presentation triggered by Dectin1 

(Ma et al., 2012) (reviewed by Mehta et al., 2014) (see section 3.2.1). Furthermore LAP seems to be 

iŵpoƌtaŶt iŶ ŵeĐhaŶisŵs ŵediatiŶg the fusioŶ of phagosoŵes aŶd lǇsosoŵes iŶ ƌespoŶse to FĐγ-

ƌeĐeptoƌs ;FĐγRsͿ sigŶaliŶg. Those ƌeĐeptoƌs aƌe aďle to seŶse iŵŵuŶe Đoŵpleǆes ;ICͿ aŶd lead to a 

type I IFN response in a TLR9-dependent manner. Henault and colleagues observed indeed that in 

Atg7-deficient pDCs stimulated by DNA-IC, this process was impaired while in Ulk1-deficient pDCs, 

incapable of undergoing conventional autophagy but still competent for LAP, secretion of IFN-α Đould 

be induced. Same as for dead cell clearance, continuous DNA sensing has been shown to be one of the 
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features leading to autoimmunity, thus the studies mentioned above demonstrate that targeting LAP 

could possibly lead to improvement in autoimmune diseases such as SLE (see section 4.3.1) (Henault 

et al., 2012).  

Membrane re-organisation during bacterial replication 

The nature of the proteins forming the autophagic membrane can change during the sequestration of 

a pathogen as it is the case in xenophagy (see section 3.1.1). This feature was investigated during an 

infection by Brucella abortus a bacteria mediating brucellosis. Upon entry in the cell, the bacteria 

iniates the formation of a vacuole, the Brucella-containing vacuole (BCV), that travels in the early 

stages of infection to the ER where it starts its replication. Starr and colleagues discovered that after 

ER replication, the BCV displayed autophagic features such as a double membrane. These autophagic 

BCVs (aBCVs) were however not positive for LC3 but were revealed to depend on ULK1, Beclin1 and 

ATG14L, while independent of the two conjugation systems ATG5-ATG12/ATG16L1 and LC3-PE. The 

authors were able to show that Brucella requires a non-conventional autophagic machinery for 

completion of its replication cycle and cell to cell infection  (Starr et al., 2012). 

 

1.4.3 Selective Autophagy 

 

For many years after its discovery, autophagy was thought to be non-specific. It is true that when the 

autophagic membranes grow they can randomly enclose cytosolic material. It has however become 

evident that there is a specific targeting of some proteins, cell structures and organelles to the 

autophagosome. As already mentioned at the beginning of this chapter, studies on yeast have allowed 

to better understand the autophagic processes on a functional as well as molecular level. Selective 

autophagy makes no exception to that respect as it was first described in yeast under the form of the 

cytoplasm to vacuole targeting (Cvt) pathway. Cvt is responsible for the transport of the aggregated 

hydrolases like aminopeptidase I (ApI) from the cytosol to the yeast vacuole (Lynch-Day and Klionsky, 

2010). Thereby using the Cvt pathway as a model has contributed to important advances in the 

understanding of selective autophagy in mammalian cells.  
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1.4.3.1 Autophagy receptors and adaptor proteins 

 

Selective autophagy has been shown to be driven by several receptors and adaptor proteins. In the 

recent years some of these proteins have been identified and studied in order to establish their exact 

functions. (Fig 8) 

p62/SQSTM1 

The first autophagic receptor to be described was the polyubiquitin-binding protein p62 also called 

sequestosome 1 (SQSTM1). It ǁas shoǁŶ to ďiŶd huŶtiŶgtiŶ ;a pƌoteiŶ iŶǀolǀed iŶ HuŶtiŶgtoŶ’s disease 

development) aggregates, that can be degraded via autophagy (Bjørkøy et al., 2005). It is now 

established that p62 possesses a C-terminal ubiquitin binding UBA (ubiquitin associated) domain. 

Moreover p62/SQSTM1 contains an LC3-interacting region (LIR), necessary to bind LC3 in a non-

covalent manner and  to mediate cargo degradation by autophagy (Stolz et al., 2014). p62 is 

constitutively bound to LC3, thus associated to the membrane, and is continuously degraded in the 

autolysosome. Hence this protein gets used as a marker for autophagic flux. Its decrease is namely 

correlated to an enhanced autophagic activity while its increase indicates inhibited autophagic flux. 

Since p62 recognizes ubiquitin (Ub) motifs, it has been suggested that it could be involved in pexophagy 

and mitophagy, specific degradation through autophagy of peroxisomes and mitochondria 

respectively. These mechanisms will be discussed later. As a matter of fact, peroxisomes are 

dependent on p62 for degradation while in  mitochondria, it has been shown that their depolarization 

induces the ubiquitination of outer mitochondrial membrane (OMM) proteins like mitofusins or VDAC 

(voltage-dependent anion channel; Rogov et al., 2014). 

HDAC6 

Another protein mentioned before (see section 1.4.1- Maturation) that can be considered as an 

autophagy adaptor protein is HDAC6. HDAC6 preferentially recognizes K63-linked Ub motifs of 

aggregated proteins and mediates their dynein-transport along the microtubules to a structure called 

aggresome, that gets degraded by autophagy (Kawaguchi et al., 2003). But ĐoŶtƌaƌǇ to pϲϮ it doesŶ’t 

possess a LIR domain. Hence it has been suggested that HDAC6 and p62 work in collaboration. HDAC6 

delivers the suďstƌates at the degƌadatioŶ site ǁheƌe pϲϮ fiŶishes ͞the joď͟ ďǇ ƌeĐƌuitiŶg the 

autophagic machinery (reviewed in Lamark et al., 2012). 

NBR1 

Neighbor of BRAC1 gene 1 (NBR1) shares structural and functional similarities with p62. It possesses 

both a UBA as well as a LIR domain and can also interact with p62 to form an oligomer. Hence NBR1 is 
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also involved in Ub-positive protein aggregate clearance through the autophagic machinery, in an LC3-

dependent manner with or without being associated to p62 (Kirkin et al., 2009). NBR1 has been 

identified as a receptor for the targeting of peroxisomes to the autophagosomes as well (Deosaran et 

al., 2013). 

Optineurin (OPTN) 

OPTN is implicated in various cellular functions. This protein has indeed been identified among other 

functions, as a major regulator of membrane trafficking, protein secretion and cell division (Kachaner 

et al., 2012). During autophagy, it has been observed to be able to bind, via its C-terminal domain, 

aggregated proteins both in an Ub-dependent and -independent manner (Korac et al., 2013). 

Nevertheless, binding to LC3 via the LIR domain is required for cargo degradation in the autolysosome. 

Other than aggrephagy, OPTN is able to promote xenophagy, the degradation of microorganisms by 

autophagy. Philipp Wild and his colleagues showed that when phosphorylated by TANK binding kinase 

1 (TBK1) OPTN binding to LC3 was enhanced and that it seemed to promote de degradation of Ub-

coated Salmonella enterica (Wild et al., 2011).  

NDP52 

Nuclear dot protein of 52KD (NDP52) is also a xenophagy receptor. One specific feature of this protein 

is its specific binding to LC3C through a non-canonical LIR motif (von Muhlinen et al., 2012). The 

interaction of both proteins seems essential for anti-bacterial defense since their absence leads to a 

significant increase of Salmonella thyphimurium intracellular invasion (Weidberg et al., 2010). 

ALFY 

Autophagy-linked FYVE protein is a scaffold protein binding ATG5, p62 and PI3P. Like several 

autophagy receptor/adaptor proteins discovered so far, ALFY is involved in aggrephagy through the 

recognition of Ub motifs of aggregated proteins. Actually it has been suggested that ALFY and p62 may 

be mediating the degradation of Ub misfolded nuclear proteins via autophagy. How exactly this 

phenomenon takes place is net fully understood yet (Isakson et al., 2013). 

The proteins listed above are only a few of the known autophagy-adaptors but the list has been 

expanding and others may be discovered in the next years. As pointed out above most of these 

proteins are involved in aggrephagy but can also mediate specific organelle or even pathogen 

degradation. 
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Figure 8: Schematic overview of autophagy receptor/adaptor protein and their targets. 

 

 

1.4.3.2 Macromolecules and organelle specific degradation  

 

Aggrephagy: 

Aggrephagy is the specific degradation of aggregated proteins trough the autophagic pathway. In order 

for this process to take place, misfolded and/or dysfunctional proteins will associate to form a structure 

called aggresome. These proteins constituted into an aggresome are ubiquitinated. But so are the 

proteins destined for proteasome degradation, which is another Ub-degradation system in the cell. So 

ǁhat poiŶts a pƌoteiŶ’s fate to a lǇsosoŵal degƌadatioŶ ǀia autophagǇ ƌatheƌ thaŶ to the uďiƋuitiŶ 

proteasome degradation system (UPS)? The UPS specifically targets small and soluble 

polyubiquitinated proteins (linked together through the lysine at position 48 (K48)) while insoluble, 

unfolded, aggregated proteins will be directed to the autophagosome for degradation. This process 

can also take place when the UPS or even CMA are deficient, acting as a compensatory mechanism for 

cellular quality control (Lamark and Johansen, 2010; Lamark et al., 2012). 

Aside ubiquitinated proteins, the aggresome is composed of intermediate filaments (vimentin or 

keratin) and has been shown to be localized in proximity of the MTOC. The aggresome formation also 

(1) The autophagy receptors NBR1, p62, Nix and Optn with their ubiquitin associated domain (UBA, white 

square) bind ubiquitinylated targets and the LC3-interacting region (LIR, white circle) to tether the targets 

to LC3-II at the growing phagophore. (2) Sequential interaction of HDAC6 and p62. HDAC6 binds 

ubiquitinylated aggregates and delivers them at the aggresome and p62 mediates the delivery to the 

autophagosome for degradation. (3) NDP52 recognizes Ub
+ 

bacteria and binds specifically to LC3C. (4) ALFY 

binds Ub
+
 aggregated proteins or misfolded proteins and interacts with the ATG5-ATG12/ATG16L1 

conjugate by binding ATG5. ALFY also binds PI3P and p62. 
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requires a microtubule-dependent transport of protein aggregates which can be mediated either by 

HDAC6 as previously mentioned (Johnston et al., 1998), by BCL2-associated athanogene 3 (BAG3) or 

by carboxy-terminus of Hsc70-interacting protein (CHIP) (Sha et al., 2009). Both BAG3 and CHIP bind 

dynein as well as HSPA8 substrates in order to enable their transport to the aggresome. Contrary to 

HDAC6 substrates, targeting is ubiquitin-independent (reviewed in Lamark et al., 2012). Nevertheless 

the type of proteins forming the aggresome seem determinant for its further degradation by 

autophagic machinery (Wong et al., 2008).  

Aggrephagy is, as already mentioned, mediated by adaptor proteins such as p62, NBR1, Optn or ALFY. 

Dysfunctions or mutations in receptor proteins mediating this process have been shown to lead to 

accumulation of protein aggregates and have thus been associated to several neurodegenerative 

diseases suĐh as HuŶtiŶgtoŶ’s disease, PaƌkiŶsoŶ’s disease oƌ Alzheiŵeƌ’s disease, where misfolded 

pƌoteiŶs like huŶtiŶgtiŶ, α-synuclein or ameloid β ;AβͿ ƌespeĐtiǀelǇ foƌŵ neurotoxic aggregates (Nixon, 

2013).  

To sum up, aggrephagy is an important quality control mechanism allowing the elimination of protein 

aggregates. These aggregates can result from mutations or errors during translations. Other factors 

able to induce protein aggregation can be cell senescence, environmental triggers like temperature 

variations or oxidative stress resulting from reactive oxygen species (ROS) production that alter protein 

folding (Drummond and Wilke, 2008). Even though it is not aggrephagy per se, long-lived protein 

turnover is also selectively mediated by the autophagic machinery in a Ub-p62 dependent mechanism 

(Kim et al., 2008).  

Mitophagy (Fig 9): 

Mitochondria produce a substantial part of the cell energy. They indeed participate in the generation 

of adenosine tri-phosphate (ATP) needed to insure proper cell function. In order to achieve ATP 

production, mitochondria need to breakdown carbohydrates and fatty acids in a process called 

oxidative phosphorylation. By-products of this process are ROS which are released into the cytosol. 

When in excess they can oxidize cellular elements leading to modifications in protein folding or induce 

DNA damages, resulting in oxidative stress subsequently leading to cell death (Circu and Aw, 2010). 

Thus in order to maintain cellular homeostasis, dysfunctional or excess mitochondria need be removed 

from the cell. One way to eliminate those mitochondria is a selective autophagic pathway called 

mitophagy (G Ashrafi, 2013). 

This specific recognition of damaged mitochondria has been shown to be mediated by the PTEN-

induced putative kinase 1 (PINK1)/E3 ubiquitin ligase Parkin pathway. Loss of mitochondrial membrane 

potential induces the recruitment of full-length PINK1 (64 kDa) to the inner mitochondrial membrane, 
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where it cannot be processed to its smaller form (52 kDa) by presenilin associated rhomboid-like 

(PARL) protease, as it happens in healthy mitochondria. PINK1 subsequently accumulates on the outer 

membrane and recruits Parkin from the cytosol to the mitochondrion (Deas et al., 2011; Vives-Bauza 

et al., 2010) (Narendra et al., 2010). How exactly Parkin is recruited is however not very well 

understood yet. It was shown that after its relocalization to the mitochondrial membrane, it acquires 

its active conformation through phosphorylations by PINK1 (Kane et al., 2014; Kondapalli et al., 2012), 

and induces the ubiquitination of mitochondrial proteins. Depending on the ubiquitination site and the 

polyubiquitin chains formed the entire mitochondria will be degraded via mitophagy.  Mitophagy 

induction requires sequential steps starting with proteasomal degradation of small GTPases called 

mitofusins (MFN), necessary for mitochondrial fusion. Studies using Drosophila as a model, 

demonstrated that loss of MFN allows to single-out damaged mitochondria from the functional ones 

(Poole et al., 2010; Ziviani et al., 2010). The second step consists in the ubiquitination of mitochondrial 

proteins by Parkin, preferentially linking the Ub moieties together through the lysines 6, 11 and 63 (K6, 

K11 and K63) (Cunningham et al., 2015; Geisler et al., 2010). These posttranslational modifications 

seem particularly important for the translocase outer mitochondrial (TOM) proteins TOM20 and 

TOM70 as well as for the voltage-dependent anion channel 1 (VDAC1) to allow mitophagy. This was 

actually demonstrated for TOM20 in cultured cells treated with the respiratory chain uncoupling agent 

CCCP. In that case, downregulation of a deubiquitinase protein, USP30, conjugated to the 

overexpression of Parkin, resulted in increased ubiquitination. On the contrary, after overexpression 

of USP30, the reduction of ubiquitination was correlated with decreased mitophagy (Bingol et al., 

2014). Geisler and colleagues reported that Parkin recruits p62 as an adaptor protein for autophagy in 

a Ub-dependent manner (Geisler et al., 2010). They also demonstrated the requirement of VDAC1 as 

a substrate for Parkin-mediated mitophagy through siARN knock-down of VDAC in CCCP treated HeLa 

cells which resulted in defective clearance of mitochondria.  

One cell type particularly sensitive to mitochondrial clearance are erythrocytes. Mature erythrocytes 

are devoid of any kind of organelles, a phenotype they acquire in a 2-3 days maturation process during 

which the organelles are progressively removed. Mitochondrial clearance seems particularly important 

because of erythrocyte’s function as oxygen carrier. In these conditions presence of mitochondria 

would lead to excessive oxidative stress and ROS production and finally to cell death. Consequently it 

has been observed that mitophagy is essential for erythrocyte development. The mitochondrial outer 

membrane protein Nix has emerged as a key player in that process. Nix deficient mice develop indeed 

anemia which has been shown to be associated to poor survival of mitochondria-loaded erythrocytes 

(Schweers et al., 2007). Furthermore inhibiting autophagy in reticulocytes with pharmacological drugs 

results in mitochondrial accumulation and Nix-/- red blood cells form autophagosomes as 
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demonstrated by LC3 staining while co-staining of the mitochondrial cytochrome c oxidase complex IV 

(COX IV) does not show any co-localization contrary to what is observed in WT erythrocytes (Sandoval 

et al., 2008). It appears that Nix interacts with LC3 through a LIR domain and acts as a receptor to 

target mitochondria to the autophagosome but the upstream events still need to be investigated (G 

Ashrafi, 2013). Nevertheless it has been suggested that Nix-mediated mitophagy might not be 

restricted to erythrocytes only but may play a role in other cells as demonstrated by Wen-Xing Ding 

and colleagues who were able to induce Nix-dependent mitophagy in CCCP treated HeLa cells (Ding et 

al., 2010).  

All in all mitophagy mechanisms in most cells require PINK1/Parkin interaction, parkin-mediated 

polyubiquitination of mitochondrial proteins and especially of the TOM proteins and VDAC and finally 

the recruitment of p62 as an adaptor protein (reviewed in Durcan and Fon, 2015). Furthermore it has 

been shown that the PINK1/Parkin pathway has a neuroprotective function and mutations in both 

pƌoteiŶs haǀe ďeeŶ liŶked to PaƌkiŶsoŶ’s disease a ŶeuƌodegeŶeƌatiǀe disoƌdeƌ liŶkiŶg oŶĐe ŵoƌe 

autophagy to neurodegeneration, subject that will be discussed in the second part of this introduction 

(see section 2.1).  

 

Figure 9: Regulation of mitophagy. 

Damaged mitochondria undergo membrane depolarization. In these conditions PARL is not able to process 

PINK1 and the protein accumulates at the outer mitochondrial membrane. PINK1 recruits Parkin which 

mediates the ubiquitinilation of various proteins. The first proteins to be ubiquitinilated are the mitofusins. 

Their subsequent degradation by the proteasome constitutes a signal for mitophagy induction. Parkin 

further ubiquitinilates VDAC1 and the TOM proteins. Autophagy proteins such as p62 or Nix (in 

reticulocytes) get recruited to the mitochondria and mediate the interaction with the phagophores via LC3 

leading in the end to the degradation of the mitochondria by the autophagic machinery. PARL: Presenilin 

associated rhomboid-like; PINK1: PTEN-induced putative kinase 1; VDAC1: Voltage-dependent anion 

channel; TOM: Translocase outer  mitochondrial  
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Pexophagy 

Peroxisomes share some similarities with mitochondria since they ŵetaďolize fattǇ aĐids iŶ a β-

oxidation reaction ending up in generating acetyl coenzyme A (CoA) and hydrogen peroxide (H2O2) 

respectively. But contrary to mitochondria they do not produce energy and they do not possess their 

own DNA either. Thus they have to import all the proteins needed for their proper function. They 

contain up to 50 different enzymes that mediate the oxidative reactions and are considered as 

detoxifying organelles. For mammals this function is particularly important in podocytes in the kidney 

where peroxisomes are responsible for clearing toxic elements from the bloodstream. They are also 

quite abundant in hepatocytes. Moreover peroxisomes are involved in the synthesis of plasmalogens, 

glycerophospholipids predominantly present in the myelin sheath of neurons (Agrawal and 

Subramani, 2016).  

In general, the number of peroxisomes increases in response to intra- and extracellular environmental 

changes. Hence it induces, same as for mitochondria, an increase of ROS production potentially toxic 

for the cell which is why in order to maintain cellular homeostasis, their number has to be regulated 

as well. As a matter of fact, the lack of peroxisome clearance has been associated to diseases like 

peroxisome biogenesis disorders (PBDs), cancer and Alzheimer’s disease among others (Fransen et al., 

2012). 

Hence it is now established that specific degradation of peroxisomes can be achieved through the 

autophagic pathway via a mechanism called pexophagy. In mammalian cells pexophagy has been 

shown to be regulated through the cellular damage sensor Ataxia-telangiectasia mutated (ATM), a 

kinase that activates TSC1/2 in response to elevated ROS, leading subsequently to an inhibition of 

mTOR and thus to the activation of autophagy (Alexander et al., 2010). Moreover ATM and TSC1/2 

have recently been identified as peroxisomal proteins (Zhang et al., 2015). Using mostly HEK293 cells, 

Zhang and colleagues demonstrated indeed that ATM was recruited to the peroxysomal membrane by 

PEX5, a peroxisome import receptor, through direct binding. This leads to PEX5 ubiquitination by ATM, 

resulting in recognition by p62 through its UBA domain and thus targeting the peroxisomes to the 

autophagosome. Another autophagy adaptor protein, NBR1, has also been suggested to promote 

pexophagy in a p62-independent manner (Deosaran et al., 2013). 

Lipophagy 

Lipids are for one part primary components of organelles and cell membranes, and secondly they are 

an essential energy source for the cell. Interestingly, a cell seems to be able to maintain the same lipid 

amount all throughout its life. Those lipid stores, also called lipid droplets (LDs) contain mainly 

triglycerides (TGs) and cholesterol. Energy requirements induce the hydrolysis of triglycerides into free 
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fatty acids (FFAs), a phenomenon further increased in starvation conditions. This conversion from TGs 

to FFAs was long thought to be uniquely mediated by cytosolic hydrolytic enzymes and lipases. The 

discovery of autophagy involvement in this process emerged only recently and was first observed in 

hepatocytes (Singh et al., 2009).  

Lipophagy, specific lysosomal degradation of lipids, has been shown to be associated to the 

maintenance of stable lipid stores (Liu and Czaja, 2013). Both siRNA knock down of Atg5 in hepatocytes 

as well as pharmacological inhibition of autophagy, were associated to an important increase in TGs 

and in the number of LDs. This could also be observed in vivo, in mice with a conditional knock-out of 

Atg7 in hepatocytes. Interestingly those mice demonstrated also a colocalisation of the LDs and LC3-I 

in nutrient deprived hepatocytes linking further autophagy to lipid metabolism (Singh et al., 2009). 

Even though there is clear evidence of lysosomal degradation of LDs, how exactly they are recognized 

by the autophagic machinery is not very well understood yet. Nevertheless it has been shown that 

SNAREs, primarily identified as mediators of LDs fusion (Boström et al., 2007), also play a role in 

autophagosome/lysosome fusion (see section1.4.1-Maturation) (Moreau et al., 2013), suggesting a 

possible link between both pathways. 

Lipophagy seems particularly important in hepatocytes, stellate cells, macrophages, neurons and as 

such its deregulation could be involved in numerous disorders like human liver diseases (alcoholic liver 

disease, nonalcoholic fatty liver disease), atherosclerosis or even obesity (reviewed by Liu and Czaja, 

2013).  

Nucleophagy 

Some components from the nucleus can also be degraded by autophagy. This process has mainly been 

described in yeast and is termed nucleophagy. It can be induced in case of shortage in amino acids or 

by other cell stress signals like DNA damage. Studies have shown that some perinuclear double-

membrane vesicular structures observed in cells, are actually autophagosomes containing nuclear 

material (Park et al., 2009). Moreover a recent study has demonstrated that keratinocytes undergo 

specific nucleophagy during their terminal differentiation in the epidermis, a phenomenon which was 

not observed in undifferentiated keratinocytes. The authors observed in fact double membrane 

structures by electron microscopy as well as colocalization of LC3, LAMP2 and p62 which was 

correlated with miss-shaped nuclei in the granular layer of human skin. They also noticed that 

autophagy was decreased in the keratinocytes of patients suffering from psoriasis, an inflammatory 

skin disease characterized by incomplete terminal skin cell differentiation since organelles including 

the ŶuĐlei aƌeŶ’t pƌopeƌlǇ ƌeŵoǀed thƌough-out the eperdemis establishment (Akinduro et al. 2016). 
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Interestingly, a treatment activating autophagy, like Rapamycin (mTOR inhibitor) could have a 

beneficial effect in this kind of pathologies.  

Even though p62 is shown to act as an adaptor protein for nuclear material recognition, the exact 

molecular mechanisms involved in nucleophagy are not quite clear. There is however some evidence 

implicating Atg39 as a nuclear envelope receptor capable of inducing nucleophagy in yeast, but no 

such demonstration was made in mammalian cells (Mochida et al., 2015). Akinduro and colleagues 

propose that the nuclear material might be recognized because it is damaged, modified or bound to 

heteƌoĐhƌoŵatiŶ pƌoteiŶ ϭα, a marker of genetically inactive, tightly packed DNA. Another model that 

has been suggested, based on observation in fibroblast, is the direct recognition of nuclear membrane 

protein lamin B1 (LMNB1) by LC3.  

Lysophagy 

Same as the other organelles, lysosomes can be damaged (e.g. by siliĐa, ďaĐteƌial toǆiŶs oƌ β-ameloid) 

which as a consequence leads to lysosomal membrane breaks and to the liberation of their content 

into the cytosol. Lysosomes contain many hydrolytic enzymes and among those the cathepsins. Their 

release in the cytosol can activate caspases and thus induce apoptosis. Another consequence of 

cathepsin cytosolic activity can also so be the activation of pro-inflammatory pathways (e.g. NLRP1 

inflammasome). Hence the presence of free lysosomal content can be toxic for the cell and the 

surrounding tissues, which is why those damaged lysosomes need to be quickly removed. Lysophagy, 

the elimination of lysosomes by autophagy, is a process controlled by ubiquitin and involving p62 and 

LC3 for specific recognition. How the ubiquitination process occurs and which other ATG proteins are 

involved still needs to be addressed in future research (Hasegawa et al., 2015; Maejima et al., 2013).   

Reticulophagy 

When unfolded or misfolded proteins accumulate in the ER, it leads to a stress response designated as 

the unfolded protein response (UPR). The UPR has been suggested to initiate selective ER degradation 

through the autophagic machinery in a process called reticulophagy. The link with UPR and autophagy 

was further strengthened by the fact that the C/EBP homologous protein (CHOP) and the activating 

transcription factor 4 (ATF4), activated as a consequence to ER stress, have also been shown to 

regulate Atgs (Yorimitsu and Klionsky, 2007). CHOP initiates ATG5 transcription while ATF4 associates 

with the LC3 promotor region (Rouschop et al., 2010). Moreover CHOP down-regulates Bcl-2 leading 

to ULK1 activation and subsequently to autophagy induction. While investigating the role of autophagy 

in T lymphocytes You-WeŶ He’s teaŵ uŶĐoǀeƌed that iŶǀalidatiŶg Atg7 specifically in T cells leads to 

ER expansion and to increased ER stress markers Grp78 and Grp94 leading to defective Ca2+ signaling. 
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Ca2+ signaling is indeed critical for these cells thus reticulophagy is essential for T cell homeostasis (Jia 

et al., 2011). 

Even though we will not discuss the degradation process of each organelle, it would appear that 

organellophagy is primordial for cell homeostasis and that autophagy might be specific for every single 

organelle. However other than the organellophagies discussed above, ribosome degradation termed 

ribophagy, is the only other organelle specific turnover event that has been described so far (Cebollero 

et al., 2012).  

One main feature of specific organelle and macromolecule degradation through autophagy that should 

be kept in mind is the requirement of Ub and adaptor proteins in order to initiate the process. But ATG 

proteins and molecular mechanisms might differ slightly depending on the autophagic substrate in 

question. Moreover it appears that any dysregulation in this process tends to lead to disruption of 

cellular homeostasis and is subsequently likned to the development of various diseases like 

neurodegenerative, metabolic or inflammatory disorders.      

 

1.4.4 Autophagy-independent roles of Atgs  

 

As already mentioned over 30 Atg genes have been identified so far and it has been established that 

most of them are essential for autophagic functions. Some of them are however involved in other 

pathways and functions. Thereby we will discuss in this part autophagy-independent roles of some 

autophagy key player proteins. (Table 1)  

LC3 

LC3 plays a lead role in autophagy and has been shown to interact via its LIR domain with over 65 

different proteins some of which are not necessarily implicated in the autophagic pathway. This 

suggests that LC3 is involved in many other cellular functions. 

Some of the candidate proteins interacting with LC3 are small GTPases. These enzymes are guanine 

binding proteins divided into five families (Rho, Ran, Ras, Arf and Rab) that are present in the cell in an 

active and inactive form (GTP and GDP-bound respectively). They are essential for various cellular 

functions given that they regulate, among other things, gene expression, cell proliferation or 

cytoskeleton reorganization. Some of the LC3-interacting GTPases are clearly involved in autophagy 

regulation (Rab7, Rab11) (Bento et al., 2013). LC3 interacts trough the LIR with the TBC (Tre2, Bud2 

and Cdc16) domain-containing protein family which are Rab-GTPase inhibitors involved in membrane 

trafficking. They possess a Rab-GTPase-activating protein (GAP) activity which inhances GTP hydrolysis 
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and is thus responsible for the inactivation of Rabs (Subramani and Malhotra, 2013). Popovic and 

colleagues idenfied through a screen that 14 TBC proteins are able to interact with LC3. One of these 

proteins TBC1D5 had even two LIR motifs and was shown to interact in a LIR-dependent mechanism 

with Vps29, an endosomal membrane protein associated to the retromer complex. This interaction is 

necessary in order to mediate retromer transport of transmembrane receptors from the endosome to 

the trans-Golgi network (Popovic et al., 2012). LC3 binding to TBC1D5 displaces however Vps29 which 

redirects the membrane trafficking from the endosome to the autophagosome suggesting that LC3 has 

the ability to reprogram membrane trafficking pathways.  

The lipid-free LC3 form has been shown to be involved in viral replication. As a matter of fact, in a study 

by Reggiori and colleagues, LC3 was found to be associated to the double-membrane vesicles 

generated by coronaviruses and necessary for their replication. They noticed indeed that 

downregulation of LC3, but not autophagy inhibition through Atg7 knock-out, had a negative impact 

on coronavirus infectious capacities, suggesting an autophagy-independent role of LC3 in promoting 

viral replication (Reggiori et al., 2010).   

Another autophagy-independent function of LC3 is the regulation of cytoskeleton remodeling through 

the interaction with a guanine nucleotide exchange factor called AKAP-Lbc (A kinase anchoring protein, 

AKAP). In this process, AKAP-Lbc is responsible for RhoA activation and thus promotes RhoA-

dependent cytoskeleton reorganization. LC3 has been identified as a negative regulator of this 

mechanism and that through the binding to AKAP-Lbc which keeps this protein in an inactive state 

(Baisamy et al., 2009). 

LC3 as well as other ATG proteins (ATG5, ATG4B, ATG7) are essential for polarized lysosomal secretion 

in osteoclasts. This mechanism is important for bone resorption since it mediates polarized release of 

the digestive enzyme cathepsin K (CatK) (DeSelm et al., 2011). In this situation ATG5 and ATG7 are 

required for the orientation of lysosomal secretion. LC3 on the other hand is localized to the plasma 

membrane probably to mediate the fusion with the lysosomes. But the exact mechanisms involved in 

the fusion process and the precise role of LC3 still need to be addressed. It has been hypothesized that 

SNARE proteins such as the vesicle-associated membrane protein 7 (VAMP7), already known to 

mediate fusion processes in lysosomal exocytosis, might also be involved (Moreau et al., 2013).  

There is some evidence of LC3 and ATG2A involvement in lipid droplets (LD) generation   in an 

autophagy-independent manner. Co-staininig of LC3 and lipids in PC12 cell line revealed a co-

localization. Moreover LC3 silencing resulted in defective LDs generation. LC3 localizes at the 

membrane of the LDs and is dependent on the LC3-PE conjugation system (Shibata et al., 2010). As for 

ATG2A usually associated in a complex with ATG18 localized to the autophagic membrane, it is also 
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recruited to LDs and seems required to maintain LD morphology. ATG2A silencing leads in fact to the 

accumulation of enlarged LDs (Velikkakath et al., 2012). 

ATG5-ATG12 

The ATG5-ATG12 conjugate has been shown to be implicated in other cellular processes than 

autophagy. It has indeed been identified as a suppressor of innate antiviral immune signaling. As a 

matter of fact the ATG5-ATG12 conjugate is able to bind two pattern recognition receptors (PRRs) 

involved in viral recognition, retinoic acid inducible gene 1 (RIG1), melanoma differentiation associated 

gene 5 (MDA5) and interferon-beta promoter stimulator 1 (IPS-1). These receptors sense double-

stƌaŶded oƌ ϱ′-phosphorylated immunostimulatory RNA (isRNA) from RNA viruses, like vesicular 

stomatis virus (VSV) or influenza virus. They trigger a signaling cascade through their caspase 

recruitment domains (CARDs) that leads to a strong type 1 interferon (IFN) response supposed to 

inhibit viral replication. ATG5-ATG12 conjugate is able to directly interact with the CARD domain and 

inhibits the type I IFN response. Thus this conjugate favors viral replication which makes it an evasion 

tool for some viruses. Since ATG5-ATG12 binds RIG1, MDA5 and IPS-1 also in absence of any virus, it 

has been suggested that it might act as a break that prevents unnecessary IFN production and as such 

helps to maintain cellular homeostasis (Jounai et al., 2007; Subramani and Malhotra, 2013; Takeshita 

et al., 2008). 

ATG5 has been shown to be involved in IFNγ-induced cell death. This phenomenon is actually mediated 

by ATG5 interaction with the Fas-associated death domain (FADD). ATG5-FADD association triggers the 

formation of a death-inducing signaling complex (DISC) which initiate the signaling cascade resulting 

in cell death. HeLa cells transfected with a GFP-LC3 fusion protein displayed LC3 dots when treated 

with IFNγ ǁhiĐh ǁas Ŷot the Đase ǁheŶ ATG5 expression was down-regulated. Furthermore cells 

transfected with a truncated form of ATG5, unable to interact with ATG12, ǁeƌe ƌesistaŶt to IFNγ-

induced cell death as well, suggesting that the autophagic machinery is required. This led to the 

conclusion that ATG5-FADD interaction actually induces autophagic cell death (Pyo et al., 2005).  

ATG16L1 

ATG16L1 has been shown to regulate an unconventional secretion pathway in neuroendocrine PC12 

cell line, commonly used as a hormone secretion model. It appeared that ATG16L was localized at the 

neurites of these cells and that in interaction with Rab33a, a small GTPase, they  allow neuropeptide Y 

secretion (Ishibashi et al., 2012). 

ATG16L1 is also able to regulate NOD1 and NOD2 driven cytokine response independent of the 

autophagic machinery. It has been shown that ATG16L interacts directly with both PRRs and negatively 
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regulates their response to intracellur pathogens such as Listeria or Shigella by inhibiting activation of 

the adaptor protein RIP2 required for mediating NOD signaling. This further inhibits NF-kB signaling 

and thus inflammatory cytokine production. This mechanism is autophagy-independent as 

demonstrated by the fact that Atg16l1 knock-down but not that of Atg5 resulted in increased pro-

inflammatory cytokine production such as CXCL-1 or IL-8 upon bacterial infection of MEFs or epithelial 

cells. Furthermore truncated form of ATG16L1 lacking the ATG5 –interacting N-terminal region still had 

the capacity to regulate NOD1-NOD2 signaling axis suggesting that autophagy has no role to play in 

this specific process. The ATG16L1T300A ǀaƌiaŶt assoĐiated to CƌohŶ’s disease has ďeeŶ shoǁŶ to ďe 

unable to interact with NOD1 and NOD2 which partly explains the exacerbated inflammatory 

phenotype (discussed in section 4.2.1) (Sorbara et al., 2013). 

 

Table 1: Autophagy-independent roles of Atgs 

LC3 ATG5-ATG12 ATG16L1 

  Cell proliferation, 

cytoskeleton remodeling 

 Interaction with small 
GTPases  

 Interaction with AKAP-Lbc  
(Baisamy et al., 2009) 
 

 Trafficking reprogramming 

 Interaction withTBC15 
(Popovic et al., 2012) 

 

  Promoting viral infection 

  Coronavirus 
(Reggiori et al., 2010) 

 

 Lysosomal secretion in 

osteoclasts 

 Cathepsin K secretion 
(Moreau et al., 2013) 

 Regulation of RIG-1, MDA5, 

IPS-1 mediated type I IFN 

response 

 Interaction with CARD 
domain  
(Jounai et al., 2007) 

 

 IFNγ-induced cell death 

 ATG5 interaction with 
FADD 
(Pyo et al., 2005) 

 

 Lysosomal secretion in 

osteoclasts 

 Cathepsin K secretion 

(Moreau et al., 2013) 

 Regulation of neuropeptide 

secretion 

 Interaction with Rab33a 
(Ishibashi et al., 2012) 

 

 Regulation of NOD1/NOD2 

mediated cytokine response 

 Direct interaction with 
NOD1 and NOD2 

(Sorbara et al., 2013) 
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2 AUTOPHAGY IN HEALTH AND DISEASE 

 

With the growing knowledge about autophagy that has led to identifying the importance of this 

process in cellular homeostasis, it is not surprising that its dysregulation has been associated to various 

diseases, which will be discussed in details here. 

 

2.1 Autophagy in Neurodegenerative Diseases 

 

Neurons are long-lived cells subjected to important trafficking activities and thus displaying a high 

metabolic activity in order to generate the energy intended for this purpose in form of ATP. Neuronal 

proteins are moreover exposed to extensive stress which is why maintenance of efficient quality 

control mechanisms is essential. One of these mechanisms is autophagy. 

Studies aiming at understanding the various causes of neurodegeneration have indeed shown that life 

span of neurons is strongly dependent on autophagy. As a matter of fact, the link between autophagy 

and neurodegenerative diseases was established based on various observations. Cataldo and 

colleagues noticed lǇsosoŵal aďŶoƌŵalities iŶ ďƌaiŶ tissues of eaƌlǇ oŶset Alzheiŵeƌ’s disease patients 

prior to other degenerative signs like brain atrophy for instance (Cataldo et al., 1994). Furthermore 

neurons of patients suffering from a neurodegerative disease were often shown to display important 

accumulations of protein aggregates (Ross and Poirier, 2004). Specific deletion of autophagy in 

neurons under the control of the nestin promoter to drive cre expression, confirmed these 

observations. Mice affected by the deletion exhibited a neurodegenerative phenotype characterized 

by defects in movement coordination, reduced reflexes and loss of neuronal cells as well as  overall 

decreased survival of the mice (Hara et al., 2006; Komatsu et al., 2006). Given these discoveries, 

research in this field has been focused on studying the different neurodegenerative diseases in order 

to establish clearly the various neuronal defects in regard to autophagy. A better understanding of the 

role of the autophagic pathway in neurons could indeed help design new therapeutic targets for 

diseases like aŵǇotƌophiĐ lateƌal sĐleƌosis ;AL“Ϳ, PaƌkiŶsoŶ’s disease ;PDͿ, Alzheiŵeƌ’s diseases ;ADͿ 

and Huntington’s disease ;HDͿ. The advances made so far in some of these disorders affecting the 

nervous system will be discussed below.  

  



 

41 

INTRODUCTION – Autophagy in Health and Disease 

2.1.1 ParkiŶsoŶ’s disease ;PDͿ 

 

PD is a central nervous system disorder affecting the capacity to control movements as a result of an 

important loss of dopamine-producing neurons of the sustancia negra. The first therapies were in fact 

centered on treating patients with dopamine agonists in order to overcome this defect. However, since 

PD is a chronic disease that worsens with age at some point those therapies were not efficient 

anymore. Thus the necessity to find other alternatives for treatment became evident (Savitt et al., 

2006). Other features of this disease have indeed emerged from intensified investigations on the 

cellular and molecular level. Some of them led to the identification of Lewy bodies, neuronal 

cytoplasmic inclusions mainly containing alpha-synuclein aggregates.  This protein was found in excess 

during PD, which seems to strongly contribute to disease development and aggravation. Consequently 

the accumulation of alpha-synuclein has been associated to autophagy inhibition. Alpha-synuclein 

inhibits Rab1 resulting in subsequent aberrant localization of ATG9, impairing phagophore formation 

(Winslow et al., 2010). Hence the aggregation of alpha-synuclein becomes toxic for the neurons. 

Genetic modifications like mutations, gene duplications leading to changes in functions or misfolding 

of this protein, are tightly linked to PD development. Loss-of-function mutations in genes coding for 

PINK1 and Parkin, two proteins crucial for autophagy-mediated mitochondrial turnover, have also 

been linked to PD, and in particular  during juvenile forms of the disease (Geisler et al., 2010) (Kitada 

et al., 1998; Valente et al., 2004). Moreover Parkin is involved in alpha synuclein clearance through 

the autophagic machinery. 

Other mutations in genes coding for VPS35 and Wiskott-Aldrich syndrome protein (WASP) involved in 

endosome recruitment also link autophagy and PD development. VPS35 is a large complex responsible 

for retrograde transport of membranes from the endosomes to the Golgi apparatus, which is why it is 

also called retromer complex. WASP interacts with VPS35 and thus mediates indirectly endosomal 

protein trafficking. Hence VPS35 mutations result in the impairment of this cellular activity. One such 

mutation has been associated to PD and has allowed to uncover a role for WASP in autophagosome 

formation since PD patients with a mutated allele of VPS35 displayed deregulated autophagy. 

Moreover transfection of HeLa cells with the mutated allele and the depletion of WASP in these cell 

resulted in abnormal trafficking of ATG9 leading to autophagy inhibition (Zavodszky et al., 2014). 

The leucine rich repeat kinase 2 (LRRK2) whose mutated forms are very often linked to an autosomal-

dominant inheritance of PD (Singleton et al., 2013), seems to be involved in autophagy regulation. This 

protein possesses a GTPase and kinase domain but its cellular function remains hazy. One study 

suggested an interaction of LRRK2 with Parkin, which seemed to induce an increase in ubiquitinated 

aggragates in the cytoplasm. TheǇ didŶ’t hoǁeǀeƌ disĐuss a possiďle iŵpaĐt oŶ other forms of 
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autophagy (Smith et al., 2005). On the other hand, a more recent study showed that LRRK2 interacts 

with Rab7L1, a homolog of Rab7 suggesting a role of this protein in autophagosome maturation 

(Beilina et al., 2014).  

 

2.1.2 Alzheiŵer’s disease ;ADͿ 

 

Alzheiŵeƌ’s disease, saŵe as PaƌkiŶsoŶ’s disease is a late-onset chronic and progressive 

neurodegenerative disorder. AD progression results in cognitive impairments like dementia and 

massive memory loss.  A characteristic feature of AD is the formation of extracellular amyloid plaques 

in the brain, as a result of both an accumulation of amyloid-β ;AβͿ aŶd hǇpeƌphosphoƌǇlated tau 

protein deposits, forming tangles due to protein misfolding. Consequently the neurons die and the 

brain shrinks. 

The involvement of autophagy in AD was suspected after transmission electron microscope 

observations of neurons from AD patients showed that compared to healthy controls their number of 

autophagosomes was increased. It was first thought that this was due to increased autophagic activity 

ďut it pƌoǀed to aĐtuallǇ ďe the ƌesult of iŵpaiƌed autophagiĐ fluǆ. As a ŵatteƌ of faĐt Ralph NiǆoŶ’s 

team showed recently that a defect in lysosomal acidification caused by presenilin 1 (PS1) mutations 

was behind this accumulation of autophagosomes (Wolfe et al., 2013). PS1 is indeed part of a complex 

iŶǀolǀed iŶ Aβ generation. Its other function, namely the involvement in lysosome acidification, is 

however the source of the observed autophagosome accumulation. Mutated PS1 loses its capacity to 

participate in the N-glycosylation of a subunit of the lysosomal vacuolar H+-ATPase (v-ATPase). As a 

consequence the lysosomes are poorly acidified and as such are not functional and thus cannot 

participate in autophagosome cargo degradation (Cataldo et al., 2004).  AdditioŶallǇ Aβ aĐĐuŵulatioŶ 

has been associated to another gene essential for autophagy, Beclin1. Pickford and colleagues were 

able to show that Beclin1 expression was decreased in brains of AD patients and that down regulation 

of BeĐliŶϭ iŶ a ŵouse ŵodel foƌ AD ƌesulted iŶ aĐĐuŵulatioŶ of Aβ iŶ Ŷeuƌonal cells (Pickford et al., 

2008). 

It has ďeeŶ ƌeĐeŶtlǇ suggested that autophagǇ is iŶǀolǀed iŶ Aβ seĐƌetioŶ. It appeaƌs that speĐifiĐ ATGϳ 

knock-out iŶ ŶeuƌoŶs ƌesults iŶ aĐĐuŵulatioŶ of Aβ as a consequence of a secretion defect. However, 

neurons recover their secretory capacity through a rescue of ATG7 expression by lentivirus 

introduction, confirming a central role for autophagǇ iŶ Aβ seĐƌetioŶ pathǁaǇ (Nilsson et al., 2013). 

This decrease in Beclin1 was observed in non-neuronal cells as well in AD patients. 
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All in all, it appears the autophagy plays a central role in AD pathogenesis. In addition, treatment of AD 

ŵiĐe ŵodels ǁith ƌapaŵǇĐiŶ, a kŶoǁŶ autophagǇ aĐtiǀatoƌ, ƌesulted iŶ Aβ ĐleaƌaŶĐe aŶd iŶ iŵpƌoǀed 

cognitive function. Thus modulating autophagy could be an interesting target for treating AD patients. 

 

2.2 Autophagy and Cancer: A double edged sword 

 

Since the discovery of autophagy in the 60ties, this mechanism has mostly been associated to survival 

mechanism. Cancer research has revealed however that autophagy plays quite a confusing role is this 

field. While in neurodegenerative diseases decreased autophagy clearly plays a role in their 

aggravation, it appears that in cancer it can promote both tumor survival and death. The conditions 

potentially leading to one or the other situation are variable and extremely context dependent. 

 

2.2.1 Autophagy and cancer cell suppression 

 

At steady state, autophagy has been proposed to be involved in tumor suppression by regulating the 

presence of oncogenic proteins in the cell and by eliminating cellular stress-inducing elements such as 

dysfunctional organelles or misfolded proteins. Thus by regulating production of ROS and occurrence 

of inflammatory events, autophagy could  prevent the apparition of oncogenic mutations  (Cenci, 2014; 

Maiuri et al., 2008). 

The description of autophagy as a tumor suppressor results from findings indicating that in some 

cancers such as breast, ovarian or even prostate cancer, Beclin1 was under-expressed. In breast cancer 

for example, deletion of the gene coding for breast cancer 1 (BRCA1) is, as the name of the protein 

indicates, associated to tumor development. It turns out that Beclin1 and BRCA1 are localized in close 

proximity on the same chromosome. Furthermore, the Beclin 1 gene locus is localized into a region 

that has been shown to be frequently monoallelicaly deleted (40-70%) in human breast, ovarian and 

prostate cancer thus Beclin1 is considered as a haploinsufficient tumor suppressor gene. As a matter 

of fact heterozygous deletion of Beclin1 in a mouse model leads to tumorigenesis in some organs like 

the lungs, the liver or the lymph nodes (Qu et al., 2003). The fact that Bcl2 has been shown to be 

overexpressed in breast cancer and to confer a resistance to some anticancer drugs is another hint 

suggesting that loss of Beclin1 mighty be involved in human cancer pathophysiology (Yip and Reed, 

2008). Whether loss or downregulation of Beclin1 is related to autophagy has been addressed in some 

studies and since autophagy was decreased it has been suggested that this might be in favor of 
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carcinogenesis.  Moreover the binding of Bcl-2 to Beclin 1 inhibits autophagy and on the other hand, 

Bcl-2 knockdown has been associated to autophagic cell death induction in leukemia and breast cancer 

cell line, suggesting once again a positive regulation of autophagy in tumor suppression (Akar et al., 

2008). However in some malignant cancers like colorectal cancer or gastric epithelial cancer, Beclin1 

appeared to be mostly upregulated (Ahn et al., 2007). Hence it is difficult to make a definite conclusion 

on whether Beclin1 is a tumor suppressor or not but as often seen in cancer this might be context 

dependent. In Takamura and colleagues’ study for instance mosaic deletion of Atg5 in mice resulted in 

development of liver-localized benign tumors even though the deletion affected other organs like the 

hart, skeletal muscels or the brain (Takamura et al., 2011). Since in the same study they made similar 

observations in Atg7 deficient mice (a mosaic deletion as well) it can be speculated that autophagy 

plays indeed a tumor suppressor role. Because the tumors were begnin it suggests that autophagy 

might be required as a protective mechanism against the establishment of newly formed tumors. In 

regard to the results obtained in Beclin1 deficient mice it can be speculated that tumor formation 

observed in some organs might be linked to a Beclin 1 deficiency but not necessarly to an autophagy 

dependent mechanism since in Atg5/Atg7 mosaic deletion the tumours were localized in a specific 

organ.  

There are other elements pinpointing towards an involvement of autophagy in tumor cell suppression. 

Some of the proteins participating in autophagy induction through inhibition of mTOR signaling like 

TSC1/2 have been described as tumor suppressor genes. On the other hand, PI3K and AKT which 

activate mTOR leading to autophagy inhibition, promote cancer development (reviewed by Levine and 

Kroemer, 2008). Besides p53, the tumor suppressor gene mutated in most cancers also positevely 

regulates autophagic cell death (Levine and Abrams, 2008). Furthermore some molecules used for 

cancer treatment have been shown to induce autophagy. One such example is a small molecule (STP-

62247) used to treat renal cell carcinoma (Turcotte et al., 2008). 

 

2.2.2 Autophagy as a pro-survival pathway for cancer cells 

 

Cancer cells require high metabolic demands that the micro-environment they evolve in does not 

necessarily provide. Thus some tumour cells have been shown to be strongly dependent on autophagy 

for their maintenance and growth. As a matter of fact impairment in autophagy seems to have a 

negative impact on tumor development (Degenhardt et al., 2006). Guo and colleagues demonstrated 

that Atg7 deletion in a mouse model for non-small-cell lung cancer (NSCLC) tumor progression was 

abrogated. It appears that autophagy deficiency led to the accumulation of defective mitochondria 
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which led to the activation of p53-induced cell death of the tumor cells (Guo et al., 2013). Combined 

deletion of p53 and Atg7 in the same model did not lead to resurgence of tumors in the lungs 

suggesting that there is another p53-independent pathway that still inhibits tumor formation. Another 

model of combined deletion of Atg7 and Nerf2 confirmed the requirement of mitophagy to promote 

tumorigenesis by regulating oxidative stress. Nerf2 has a cytoprotective role during hypoxia and its 

deletion combined to Atg7 deficiency did not show any cumulative effect (Strohecker et al., 2013; 

reviewed in White, 2015).  

Some cancer treatments have been shown to be inefficient either because the tumor cells are not 

sensitive to the drug or because they develop a resistance. In some cases this resistance has been 

attributed to an increased autophagy also because some of those drug inhibit mTOR. Another 

illustrating example is the ATP-competitive inhibitor of mTOR kinase activity AZD8055 used in clinical 

trial for colorectal cancer treatment. This molecule has been shown to induce autophagy as a 

cytoprotective mechanisms in a colon cancer cell line (Huang et al., 2011). 

Seeing the role of autophagy in tumor maintenance and chemotherapy resistance, inhibiting this 

process has been considered for therapeutic purposes (reviewed in Yang et al., 2011). As a matter of 

fact drugs like chloroquine or hydroxychloroquine that have been shown to be potent autophagy 

inhibitors are currently in clinical trials as anticancer treatments for renal cell carcinoma, pancreatic 

cancer and breast cancer among many other cancers and preliminary results appear promising (Sui et 

al., 2013).  

Thus how the cancer cell uses autophagy seems to be dependent on the type of tumor in question but 

seems to be regulated in time and space. The general idea is indeed that triggering autophagy in early 

stages of tumor establishment would be beneficial to induce tumor suppression while in late stage 

cancers it could have the reversed effect.   

 

2.3 Autophagy and Aging  

 

Cellular aging is reflected by impaired cellular functions and an increased susceptibility to cell 

apoptosis. These cellular disfunctions are the result of a number of different parameters such as 

progressive genomic instability, telomere shortening, increased mitochondrial dysfunction, 

senescence and cell exhaustion among other factors (López-Otín et al., 2013).  

On the level of the entire mammalian organism, aging has been associated to the development of 

neurodegenerative pathologies, metabolic diseases and cancer. As mentioned previously these 
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disorders have also been linked to dysfunctions of the autophagic machinery. This process has indeed 

been shown to decrease with age in some tissues such as the brain or the skeletal muscle 

(Wohlgemuth et al., 2010). A calorie restricted diet as well as drugs known to induce autophagy like 

spermidine or rapamycin were able to dial back or delay some symptoms in age-related pathologies 

and to prolonge life in some model organisms ranging from C. elegans to primates (Cuervo, 2008; 

Harris and Rubinsztein, 2012). Loss of function mutation of bec-1 (homologue of Beclin1) in C. elegans 

for example led to premature aging. That was also the case when other Atg genes such as atg18, Unc-

51 (ULK1/2) or atg9  were mutated suggesting that autophagy is required for longevity (Tóth et al., 

2008). 

In some tissues however autophagy was found to be increased. Gamerdinger and colleagues found in 

fact that LC3-II was augemented in a cell model of aging, the I90 cells, as demonstrated by western 

blot assays. These cells start displaying characteristics of aging after a limited number of divisions. They 

become senescent and express the aging marker Caveolin. This autophagic increase has been 

associated to the co-chaperone protein Bcl2-associated athanogene (BAG3). The BAG proteins are 

involved in protein quality control mediated by the proteasome. In I90 cells BAG3 was increased while 

the expression of another co-chaperone BAG1 was diminished. Furthermore BAG3 knock-down was 

correlated to the decrease of LC3-II. The authors discovered that BAG1 is replaced by BAG3 in aging 

cells and that BAG3 interacts with p62 to mediate the degradation of accumulating poly-ubiquitinilated 

proteins by the autophagic machinery. It appears that with age, the proteasomal efficacy might be 

decreasing, leading to the autophagy machinery to take-over protein degradation (Gamerdinger et al., 

2009). The Hutchinson-Gilford progeria mouse model for premature aging was also shown to have high 

basal autophagy (Carroll et al., 2013).  

Most evidence so far points towards a protective role of autophagy in aging tissues. Thus autophagy 

seems to mediate prolonged lifespan by contributing to protein quality control, by eliminating 

apoptotic bodies and toxins, in short by maintaining cellular homeostasis. The observed decrease of 

this process during aging seems to be correlated to a reduced sensitivity of metabolic sensors (AMPK) 

to external and internal stimuli. Furthermore inflammatory events become more frequent with age 

and lead to NF-kB activation which has been shown to be inversely correlated to AMPK activation. This 

suggests that finding strategies to maintain autophagy throughout age could contribute to the 

development of new therapies for the treatment of age-related pathologies such as 

neurodegeneration or metabolic disorders. This is indeed an interesting area in autophagy research 

that still requires to be investigated deeper.  
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3 AUTOPHAGY AND IMMUNITY 

 

Autophagy plays an undeniable and essential role in cellular homeostasis. Studying this process in 

different tissues and conditions has allowed to see that it has varied functions depending of the system 

in question. Thereby in innate and adaptive immunity, autophagy has emerged as a key player in 

various mechanisms such as the regulation of pathogen invasion, inflammation and antigen 

presentation.  

 

3.1 Involvement of Autophagy in Innate Immune responses 

 

3.1.1 Autophagy in Pathogen clearance (Xenophagy) 

 

The clearance of pathogens (viruses, bacteria, parasites) through autophagy is termed xenophagy and 

belongs to the selective forms of autophagy. This process has been shown to be involved in the 

degradation of Streptococcus pyogenes also known as group A Streptococcus (GAS). Infection of HeLa 

cells by GAS leads to endocytosis of the bacteria which ends up in the cytosol in LC3 positive 

compartments. Nakagawa and colleagues named these compartments GcAVs, for GAS-containing LC3-

positive autophagosome like vacuoles. They showed that the GcAVs fuse with lysosomes around 4 

hours after infection which was correlated with intracellular decrease of GAS suggesting the 

involvement of autophagy in Streptococcus clearance (Fig 10). Furthermore in ATG5 deficient 

embryonic stem cells (ES cells) and MEFS infected by GAS  there was no detection of those GcAVs and 

inhibiting lysosomal proteases resulted in an increase of intracellular GAS (Nakagawa et al., 2004). The 

study of Salmonella Typhimurium targeting by the autophagic machinery, has also allowed to shed 

some light on the mechanisms of xenophagy and to identify molecular actors involved. It actually 

appears that this mechanism is mediated by autophagy receptors such as NDP52, OPTN or ALFY 

belonging to the SQTSM1/p62-like receptors (SLRs). In case of S. Typhimurium, found in a vacuole 

termed the Salmonella-containing vacuole (SCV) after infecting the cell, autophagy has been suggested 

to target damaged SCVs and to inhibit their growth (Birmingham et al., 2006). The damaged SVCs seem 

to be able to target signature molecules like ubiquitin that would then attract p62 which subsequently 

binds LC3, thus directing the SCVs to the autophagosome (Zheng et al., 2009). Other adaptor proteins 

have been shown to be involved in this process. NDP52 for example is recruited by galectin 8 (Gal8), a 

β-galactoside ďiŶdiŶg leĐtiŶ, ǁhiĐh ƌeĐogŶizes β-galactosides exposed on the membrane of damaged 

SCVs, and thus targets the bacterium to the autophagosome (Thurston et al., 2012) (Fig 10). OPTN on 
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the other hand requires its phosphorylation (on Ser177 in human, Ser187 in mouse) by TBK1 in order to 

be recruited to ubiquitinated Salmonella (Wild et al., 2011).  Consequently ubiquitin as well as 

carbohydrate signals seem to be important to mediate xenophagy. Nevertheless some questions 

remain and still need to be addressed. It is for example not well understood yet if the different SLRs 

get recruited at the same time to the bacteria. Other bacteria like Mycobacterium tuberculosis (Mtb) 

(Gutierrez et al., 2004), Shigella flexneri (Ogawa et al., 2005) and Listeria monocytogenes (Py et al., 

2007) have been shown to be targeted by autophagy in the early phases of infection.  In the case of 

Mtb the causative agent of tuberculosis, autophagy is required to counterbalance the capacity of this 

intracellular bacteria to evade degradation in macrophages by inhibiting phagosome/lysosome fusion. 

Using the zebrafish as a model van der Vaart and collegues discovered that DNA-damage-regulated 

autophagy modulator 1 (DRAM1) was actually required in this process. DRAM1 is a lysosomal protein 

that has been shown to interact with p53 to mediate autophagy and cell death (Crighton et al., 2006). 

They uncovered that upon bacterial infection DRAM1 was upregulated in a myeloid differentiation 

primary response 88 (Myd88)/NF-kB dependent mechanism leading to the production of pro-

inflammatory cytokine IL-ϭβ. The increase of DRAM1 was correlated to an augmented expression of 

p62. Genetic invalidation using morpholinos of either proteins resulted in increased bacterial load 

leading to the bursting of infected macrophages while in WT macrophages the authors observed the 

formation of membranes around the bacteria and reduction of bacterial load. All of this suggesting an 

interplay of DRAM1 and p62 to mediate selective sequestration of mycobacteria in autophagosomes 

and their subsequent degradation (van der Vaart et al., 2014). Further investigations showed that Mtb 

needs to be ubiquitinilated through the STING-pathway in order to be targeted to the autophagosome. 

Furthermore DRAM1 accelarates the fusion of lysosomes and autophagosomes leading to an increased 

autophagic flux. 

All in all, autophagy is able to trap pathogen either directly in the cytosol or in vacuoles to mediate 

their degradation or inhibit bacterial growth. 

 

Other pathogens however use this mechanism to their advantage and avert the autophagic machinery 

to enable their maintenance in the cell. As already mentioned “. Typhimirium’s growth is inhibited by 

autophagy just after infection (infection + 1h) but it has been shown that 4 hours post infection, 

autophagy gets inhibited and thus the bacteria escapes degradation. Even though the mechanism 

involved in that case is not very well understood, it has been proposed that SPI-2 T3SS (Salmonella 

pathogenicity island 2 type 3 secretion system), which through its upregulation, targets mTORC1 to 

the SCVs, and hence inhibits autophagy (Eriksson et al., 2003). Some other bacteria take complete 

advantage of this process from the beginning on. Staphylococcus aureus and Serratia marcescens are 

some of those bacteria that share the capacity to induce the formation of an autophagosome but 
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inhibit its fusion with the lysosomes which makes it possible for them to use the autophagic 

membranes and vacuoles for their replication. S. aureus is indeed able to hijack this pathway first by 

replicating inside the phagosomes and then induce autophagy-dependent cell death as it could be 

demonstrated in Atg5-/- MEFs (Schnaith et al., 2007) (rieviewed in Huang and Brumell, 2014).  

Various studies have also linked viral infection to autophagy induction. In that case autophagy has also 

been reported to play dual roles. It either has an antiviral effect or it favors viral replication (reviewed 

in Chiramel et al., 2013). In Drosophila for example it appears that autophagy induced through the 

inhibition of the PI3K/AKT axis is required for the inhibition of viral replication after vesicular stomatis 

virus (VSV) infection (Shelly et al., 2009). Orvedahl and colleagues demonstrated an antiviral role of 

autophagy as well. They saw that Atg5-deficient neonatal mice were more susceptible to Sindbis (SIN) 

virus infection. The virus accumulated in the absence of autophagy, which led to cell death of infected 

neurons even though replication was not affected by Atg5 deletion suggesting the requirement of 

autophagy for viral clearance (Orvedahl et al., 2010).  As demonstrated by Rabourdin-Combe/Fauƌe’s 

team, infection by measles viruses also induces autophagy after binding the CD46-Cyt1 surface 

receptor. Using a GFP-LC3 HeLa cell line and by dectecting LC3-II by Western blot experiments, they 

showed in fact that autophagosome formation was mediated through CD46-Cyt1 engagement. The 

mRFP-GFP-LC3 fusion protein made it possible for them to distinguish autophagosomes (RFP+ GFP+) 

from autolysosomes (RFP+ GFP-) as the GFP signal is quenched in acidic conditions. Engagement of 

CD46-Cyt1 after measles infection or by an agonist antibody resulted in the formation of punctated 

dots that where mRFP+ and GFP-. They further established that CD46-Cyt1 interacts with Golgi-

associated PDZ and coiled-coil-containing (GOPC) protein which in turn interacts with the Beclin1 

complex and activates autophagy leading to the degradation of the virus (Joubert et al., 2009) (Fig 10).   

The human hepatitis C virus (HCV) however belongs to that category of viruses that exploit the 

autophagic pathway to increase their pathogenicity. While some studies suggest that autophagy might 

be necessary for the initiation of HCV RNA translation (Dreux et al., 2009), others indicate rather a role 

in replication even though the mechanism proposed by one or the other are not quite the same. Sir 

and colleagues reported that HCV inhibits the fusion of autophagosomes with lysosomes while Ke and 

CheŶ’s eǆpeƌiŵeŶts iŶdiĐate a Đoŵplete autophagiĐ fluǆ. The tǁo studies agƌee however that HCV-

induced autophagy is dependent on the unfolded protein response (UPR) related to ER stress (Ke and 

Chen, 2011; Sir et al., 2008). Another interesting example of a virus utilizing autophagy for its 

replication is the Dengue virus (DENV). It appears that this virus regulates lipid metabolism by 

stimulating lipophagy thus leading to the generation FFAs that are use in FAO in mitochondria to 

produce ATP which DENV requires for proper RNA replication (Heaton and Randall, 2010). 
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The effect of the human immunodeficiency virus (HIV), infectious agent of the acquired 

immunodeficiency syndrome (AIDS), has been investigated in various immune cells. In DCs autophagy 

is downregulated upon HIV infection which is specifically due to the viral envelop (Env) protein. 

Furthermore it has been observed that viral particles accumulate in that case, which facilitates trans-

infection of CD4 T cells. In macrophages autophagy initiation is not affected by HIV infection but the 

HIV factor, Nef, binds Beclin1 and inhibits autophagosome maturation. Moreover HIV infection induces 

IL-10 production which leads to autophagy inhibition of uninfected, bystander macrophages. It appears 

that the virus utilizes the autophagic machinery for its early replication but then inhibits this process 

to avoid degradation in the autolysosomes (reviewed by Dinkins et al., 2015). In CD4 T cells Lucile 

Espert and colleagues reported Env-induced autophagy in uninfected bystander CD4 T cells that would 

subsequently lead to apoptosis and immunosuppression (Espert et al., 2006). 

It appears that xenophagy is a complex process affecting every pathogen in its own way. Some 

pathogen will directly be degraded through this pathway or they will try to evade the destructive effect 

of autophagy. Some bacteria/viruses have evolved and developed a third strategy namely to use 

autophagy to increase their replicative and infectious capacity.  
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Figure 10: Examples of pathogens degraded via the autophagic machinery. 

  

 

3.1.2 Autophagy induction by Pattern Recognition Receptors 

 

The pathogens mentioned in the section above can be sensed by the innate immune system through 

receptors called pathogen recognition receptors (PRRs). The PRRs are able to bind microbial-associated 

molecular patterns (MAMPs) and sense danger associated molecular patterns (DAMPs), which leads 

to the activation of cellular defense mechanisms aimed to clear the pathogens/dangers (Beutler, 

2004). The MAMPS can be components of wall or membrane, from bacteria, fungi, parasites but also 

 (1) Mycobacterium tuberculosis (Mtb) is recognized by TLRs that activate the Myd88-dependent NFkB 

pathway. NFkB activates DRAM1 which is able to associate with the phagophore and mediate p62-dependent 

recognition of  Mtb and initiate bacterial degradation. (2) Streptococcus pyogenes (GAS) enters the cytosol into 

vesicles that attract LC3-II to form GAS-containing LC3-positive autophagosome-like vacuoles (GcAVs) that 

fuse with lysosomes leading to S. pyogenes degradation. Other bacteria enter the cell in vesicles that undergoe 

ubiquitinilation when damaged. (3) In case if S. Typhimurium ubuquitin chains are recognized by 

SQTSM1/p62-like receptors (SLR) while NDP52 binds galactine 8 chains directing the bacteria to phagophores 

for degradation. (4) Viruses can also be targeted by autophagy. The measles virus binds the CD46 receptor. 

CD46 interacts with GOPC which in turn is able to attract the PIK3 CIII complex by interacting with Beclin1. 

This leads to the recruitment of the autophagic machinery, the sequestration of the virus into autophagosomes 

and finaly to viral degradation in autolysosomes. TLR: Toll-like receptor; Myd88: Myeloid differentiation 

primary response 88; NFkB: Nuclear factor k B; DRAM1: DNA-damage-regulated autophagy modulator 1; 

NDP52: Nuclear dot protein of 52 kDa 
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nucleic acids. DAMPs are self-encoded molecules resulting from cellular damage like exposure to ROS, 

or mechanical damage for example. PRRs can be expressed both on immune and non-immune cells. 

Their activation usually leads to an inflammatory response that can further prime and orientate an 

adaptive response. 

PRRs have been classified into two categories, the first being transmembrane receptors including 

scavenger receptors, the Toll-like receptors (TLRs) and the C-type lectin receptors (Takeuchi and Akira, 

2010). The second category comprises cytosolic proteins such as nucleotide oligomerization domain 

receptors (NOD)-like receptors (NLRs), retinoic acid-induced gene (RIG)-I-like receptors (RLRs) and the 

pyrin and HIN domain family members (PYHIN) (Cerboni et al., 2013). Most PRRs activate the 

evolutionary conserved host defense mechanisms through signal transduction pathways leading to the 

translocation into the nucleus of mainly three families of transcription factors:  nuclear factor kB (NF-

kB), activator protein 1 (AP-1) and interferon regulatory factor (IRF). 

Some PRRs have been identified as potent autophagy inducers as already mentioned in the context of 

xenophagy. The TLRs were the first PRRs to be linked to autophagy induction. A report showed that 

TLR4 stimulation by lipopolysaccharide (LPS) in a macrophage cell line (RAW264.7) leads to autophagy 

induction (Shi and Kehrl, 2008; Xu et al., 2007). LPS-induced autophagy favors indeed the 

colocalisation of intracellular mycobacteria with the autophagosomes enhancing their clearance. TLR7 

and TLR3 ligands have also been shown to play a role in the activation of the autophagic machinery. 

Delgado and colleagues showed that stimulation of macrophages infected by mycobacteria with TLR7 

agonists, resulted in increased clearance of the pathogen. Even though the bacteria did not express 

any natural ligand of TLR7, Tlr7 knock-down reversed the bacterial load decrease and autophagy 

induction. Atg5 knock-down in macrophages resulted in the same phenotype. These observations 

emphasize the importance of TRLs and autophagy interplay in pathogen clearance (Delgado et al., 

2008).  

Infection by Listeria monocytogenes is another interesting case demonstrating the interaction of PRRs 

and autophagy. This bacteria has been shown to induce autophagy in MEFs, RAW264.7 macrophages 

as well as in bone marrow-derived macrophages. It appears that this induction is dependent on NOD1 

and NOD2 since in Nod1, Nod2 and/or Tlr2-deficient cells, autophagy was reduced upon L. 

monocytogenes infection. These cells were however able to exhibit increased autophagic activity after 

treatment with mTOR inhibitor, rapamycin. Dissection of the mechanisms underlying this process 

revealed the requirement of the NOD2/RIP2 axis and an ERK/NF-kB dependent signaling pathway in 

autophagy induction (Anand et al., 2011). 
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Viral infection is also able to induce autophagy through the activation of PRRs. RIG-I and MDA5 are 

viral sensors belonging to the RLRs.  These receptors signal through IPS-1 to induce NF-kB and IRF3 

activation and to induce subsequent pro-inflammatory and anti-viral cytokine production.  ATG5-

deficient cells over-produce type IFN upon vesicular stomatis virus (VSV) infection in Drosophila. The 

reason being that in absence of autophagy nonfunctional mitochondria accumulate leading thus to 

important ROS production and mitochondrial DNA (mtDNA) release into the cytosol. This stimulus is 

well-known to induce an inflammatory response through the activation of inflammasomes. Hence in 

this case autophagy plays a regulatory role in RLRs signaling (Tal et al., 2009; Orvedahl et al., 2010). 

NLRs are also highly involved in autophagy induction upon bacterial infection. They recognize 

components of the bacterial wall in the cytosol. One such component is muramyldipeptide (MDP). 

Cooney and colleagues stimulated indeed human DCs with MDP and observed that after binding this 

peptidoglycan, NOD2 induces autophagy which is required for antigen presentation. Interestingly this 

ŵeĐhaŶisŵ ǁas defeĐtiǀe iŶ DCs fƌoŵ patieŶts suffeƌiŶg fƌoŵ CƌohŶ’s disease and bearing the risk 

allele Atg16L1T300A (Cooney et al., 2010) suggesting a defective clearance of bacteria a feature that has 

been linked to disease exacerbation.  

 

3.1.3 Autophagy in the regulation of Type I IFN production 

 

Type I interferons (10 IFN-α suďtǇpes, IFN-β, IFN-ε, IFN-κ aŶd IFN-ωͿ aƌe key players in anti-viral 

immune responses. They have also been shown to increase T cell proliferation and display other 

immunomodulatory functions such as the enhancement of histamine release in mast cells or activation 

of NK (natural killer) (Welsh et al., 2012). The secretion of these cytokines has been associated to 

autophagy. Based on the results from a study about the infection strategy of human immune deficiency 

virus (HIV), it seems that upon viral infection, plasmacytoid dendritic cells (pDCs), the main IFN- 

producer, failed to secrete the cytokine when autophagy was inhibited either through knock down of 

ATG7 or pharmacological inhibitors like 3-methyladenine (3-MA) (Zhou et al., 2012). Another virus able 

to induce IFN-α iŶ aŶ autophagǇ-dependent manner is the alpha-herpes virus (HSV). HSV is a dsDNA 

virus that activates the stimulator of IFN gene protein (STING). Viral DNA is however directly sensed by 

cytosolic proteins such as the GMP-AMP (cGAMP) synthetase (cGAS) which produces a second 

messenger cGAMP leading to STING activation and the subsequent production of IFN-α. ĐGA“ has ďeeŶ 

shown to interact with Beclin1 leading to inhibition of cGAMP production. In this case autophagy 

indirectely negatively regulates IFN production and avoids over-activation of the immune system by 

mediating viral DNA degradation via the interaction with cGAS (Liang et al., 2014).   
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Reciprocally, type I IFN are able to induce autophagy. Schmeisser and colleagues demonstrated that 

IFN-α aŶd IFN-β iŶduĐe autophagǇ iŶ some cancer cell lines (Schmeisser et al., 2013).  The exact 

mechanism of autophagy induction in this case is not very well understood yet but it has been 

proposed that type I IFNs mediate mTOR inhibition leading subsequently to autophagy initiation 

(reviewed in Schmeisser et al., 2014). 

 

3.1.4 Autophagy in the regulation of inflammatory responses 

 

The inflammatory response as previously discussed can be triggered either by microorganisms such as 

bacteria, viruses or fungi but also by danger signals as it is the case for ROS or by cytokines. This 

response requires a tight regulation to avoid over-activation of the immune system which can 

otherwise lead to important tissue damage.  

Autophagy has been shown in some cases to be able to regulate this process. Even though as described 

in some situations this process contributes to an increased clearance of pathogens (for example 

infection by M. tuberculosis), it can lead to an aberrant and exacerbated immune response as well as 

to the development of autoimmunity. Nevertheless some studies have reported that autophagy or at 

least components of the autophagic machinery are able to inhibit such responses.   

As ROS producer and possible initiator of apoptosis, mitochondria play a central role in inflammation 

and their dysfunction has often been associated to chronic iŶflaŵŵatoƌǇ disoƌdeƌs suĐh as CƌohŶ’s 

disease or neurodegenerative diseases. Thus control of mitochondrial load through mitophagy appears 

to be necessary in order to limit inflammation. Mitochondria harbour PRRs on their membrane as it is 

the case for RIG-I and MDA5 that participate in pathogen clearance. Inhibiting autophagy has been 

linked to hyperactivity of the immune system towards dsRNA as demonstrated by increased type 1 IFN 

secretion in VSV infected MEFs (Jounai et al., 2007). Secondly autophagy is involved in the recognition 

of cytosolic DNA and mitochondrial DNA (mtDNA) can also be released into the cytosol by 

dysfunctional mitochondrial. In autophagic protein deficient macrophages (Map1lc3b-/- and BCN1+/-) 

cytosolic mtDNA has been shown to stimulate release of pro-inflammatory cytokines IL1-β aŶd IL-18. 

The mtDNA sensor is not known yet but it has been hypothesized that  absent in melanoma 2 (AIM2) 

might be involved (Nakahira et al., 2011).  

ROS also drive production of these proinflammatory cytokines through the activation of the 

intracellular PRR, the NLRP3 inflammasome (Fig 11). This inflammasome participates in innate immune 

regulation by mediating the maturation of caspase1 which is responsible for the clavage of inactive 
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pro-ILϭβ aŶd pƌo-IL-18 into their active forms. Autophagy has in fact been identified as a central player 

in the regulation of the secretion of IL-1β aŶd IL-18. Saitoh and colleagues showed that Atg16L1 

deficient macrophages secrete high levels of IL-ϭβ in response to TLR4 stimulation with 

lipopolysaccharide (LPS). This deregulation was associated to an increased activity of the 

inflammasome (Saitoh et al., 2008). Harris and colleagues also demonstrated that the combination of 

LPS stimulation and autophagy inhibition with pharmacological inhibitors (3-MA and wortmanin) lead 

to secretion of pro-inflammatory cytokines among which IL-ϭβ indicating that inhibiting autophagy 

improves inflammasome activation. On the other hand activating autophagy with rapamycin after 

inflammasome activation led to reduced IL-ϭβ secretion by macrophages and in GFP-LC3 transfected 

macrophages IL-ϭβ was actually found enclosed into LC3 positive vesicles suggesting that this cytokine 

is targeted by autophosomes for degradation (Harris et al., 2011). It appears that autophagy also 

directly targets the NLRP3 inflammasome for degradation in order to regulate the inflammatory 

response. Using GFP-LC3 THP cells (a human monocyte cell line) Kehƌl’s teaŵ gaǀe soŵe eǀideŶĐe iŶ 

that regard, first by demonstrating that inflammasome induction actually triggers autophagy and 

secondly that the inflammasome gets ubiquitinated than targeted by p62 in order to be selectively 

degdraded by the autophagic machinery (Shi et al., 2012).  

Nevertheless studies have shown that inflammasome constituents such as NLRC4, NLRP4, NLRP10 and 

even NLRP3 have the capacity to negatively regulate autophagy by binding Beclin1. For instance in GAS 

infected cells, NRLP4 dissociates from Beclin1 to bind GAS. Free Beclin 1 can then participate in 

autophagy induction (Oh and Lee, 2014). Furthermore NLRP4 can bind Class C Vps which leads to 

inhibition of autophagosome maturation. 

All these elements demonstrate that there is a fine tuned inter-regulation between inflammation, 

inflammasome and autophagy. Thus any disruption at this level can lead to the development of 

inflammatory and even autoimmune disorders.    
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Figure 11: Schematic representation of the regulation of the NLRP3 inflammasome by autophagy. 

 

 

3.2 Involvement of Autophagy in Adaptive Immune responses 

 

In order to mount an appropriate response against external aggressions, higher eukaryotes require the 

crosstalk between innate and adaptive immunity. While the innate immune system recognizes PAMPs 

through the PRRs and initiate pathogen control, complete clearance and long-term protection requires 

adaptive lymphocytes.  Those actors, B and T lymphocytes, express variable antigen receptors, B cell 

receptor (BCR) and a T cell receptor (TCR) respectively which which endow them with the capacity to 

recognize virtually any antigenic motif. It has been suggested that autophagy is integral to the optimal 

functioning of adaptive immunity.  

Aside its role on antigen presentation that will be discussed further, autophagy was described as 

essential for lymphocyte activation and survival, as well as in the differentiation and maintenance of 

their hematopoietic precursors. In fact Katja “iŵoŶ’s teaŵ  deŵoŶstƌated that speĐifiĐ deletioŶ of Atg7 

in hematopoietic stem cells (HSCs) in Vav-Atg7-/- mice resulted in reduced progenitors of multiple 

The inflammasome is composed of the Nod-like receptor protein 3 (NLRP3), the adaptor protein ASC and 

caspase 1 that assemble together to form a multiprotein oligomer.  It can be activated by ROS produced 

by mitochondria or other danger signals (DAMPS). The NLRP3 inflammasome mediates the maturation 

of pro-inflammatory cytokines pro-IL-1Ⱦ into IL-1Ⱦ but also pro-IL-18 into IL-18 (not depicted). 

Ubiquitinilation of NLRP3 leads to p62 binding and thus targets the inflammasome to the phagophore 

for degdradation in the autolysosome. Il-1Ⱦ can also be degraded by the autophagic machinery. This way 

autophagy inhibits exacerbation of an inflammasome-induced pro-inflammatory response.  
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linages in the bone morrow such as NK, B and T cells, as well as in a myeloproliferative phenotype 

leading to development of myeloid malignancies resembling human leukemia (Mortensen et al., 

2011). They also observed a defective clearance of mitochondria, leading to an increased ROS 

production subsequently jeopardizing HSC long-term survival. These results suggested that autophagy 

is essential to maintain HSC functionality ( see section 3.3) (Gurumurthy et al., 2010). 

 

3.2.1 Autophagy in antigen presentation 

 

3.2.1.1 MHC class I antigen presentation 

 

MHC molecules, expressed on the cellular surface bind peptide fragments, from various origins, and 

can present them to cognate T lymphocytes. MHC class I (MHC I) molecules, expressed on all nucleated 

cells, have been shown to present in most cases endogenous peptides to CD8 T cells.  

MHC Đlass I ŵoleĐules aƌe glǇĐopƌoteiŶs Đoŵposed of thƌee alpha doŵaiŶs ;αϭ, αϮ aŶd αϯͿ foƌŵiŶg 

the heavy chain aŶd a β2-ŵiĐƌogloďuliŶ doŵaiŶ, ǁith a Đleft ďetǁeeŶ αϭ aŶd αϮ, desigŶed to ďiŶd a 

specific antigen. These molecules are classically characterized by their capacity to present cytosolic 

peptides, called endogenous peptides, originating from self or intracellular pathogens. Antigen 

processing occurs after protein degradation via the proteasome. The resulting peptides enter into the 

ER, the assembly site of the MHC I molecules, through the transporter associated with antigen 

processing (TAP), where they can be loaded onto the MHC I (Hewitt, 2003). Loaded MHC I molecules 

then travel from the ER to the Golgi apparatus before reaching the plasma membrane via the 

exocytosis pathway and can then present peptides to CD8 T cells.  

Since the peptides presented via MHC I are the result of proteasome processing it appears surprising 

to expect the involvement of autophagy in this process. Indeed, only few studies suggest a direct 

iŵpliĐatioŶ of autophagǇ iŶ MHC I pƌeseŶtatioŶ. MiĐhel DujaƌdiŶs’ teaŵ desĐƌiďed aŶ autophagǇ-

dependent antigen MHC I presentation of endogenous proteins using herpes simplex virus type 1 (HSV-

1) as an infection model in macrophages. They suggest a vacuolar pathway, in contrast to the 

͞ĐlassiĐal͟ pƌoteasoŵal pathway for endogenous antigen presentation (English et al., 2009). On the 

other hand Li and colleagues observed an increase of MHC I presentation in autophagy deficient 

macrophages while MHC I molecules decreased at the cell surface after rapamycin treatment, 

suggesting a negative regulation of MHC I presentation by the autophagic machinery. Their study of 

B16 melanoma cells  showed in contrast that autophagy is involved in the processing of a part of the 

tumor antigens in presence of IFN- which also increases antigen presentation and thus degradation 
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of tumor cells by cytotoxic T lymphocytes (CTLs) (Li et al., 2009). These observations, escpecially the 

one suggesting a vacuolar pathway for MHC-I presentation by macrophages, could link autophagy 

and cross presentation.  

 

3.2.1.2 MHC class II antigen presentation 

 

The implication of autophagy in MHC II presentation is on the other hand better documented than for 

MHC I presentation. Antigen processing in the case of MHC II presentation is in fact dependent on the 

endosomal/lysosomal pathway making the link with autophagy more obvious. (Fig 12) 

Contrary to MHC I, only a little group of cells called professional antigen presenting cells (APCs) express 

MHC II. B cells, DCs and macrophages belong to that category but also thymic epithelial cells 

responsible for the T cell MHC-restricted selections in the thymus (Li et al., 2005). It has however been 

shown that stimulation of other cell types such as endothelial cells, stromal cells from secondary 

lymphoid organs, or fibroblasts can also induce the expression of MHC II molecules. MHC II can also be 

expressed in human activated T cells. 

The canonical pattern for antigen presentation via MHC II involves the endocytosis of exogenous 

proteins that get delivered to the lysosomal/endosomal pathway and degraded by proteases into small 

peptides. Those proteins can also enter the cell through pinocytosis or phagocytosis. At the same time, 

newly synthesized MHC II molecules originating from the ER and associated to a chaperone protein, 

the invariant chain (Ii) inhibiting premature antigen loading, are transported to late 

endosomes/lysosomes. Ii gets cleaved in those compartments, leaving only the so called class-II 

associated invariant chain peptide (CLIP) bound into the groove of the class II molecules. Subsequently 

the MHC II molecules gain access via the endosomal/lysosomal pathway to the class II compartment 

(CIIM) characterized by an acidic environment favoring HLA-DM mediated removal of CLIP and the 

loading of the antigenic peptides onto the MHC II molecules. Finally the peptide-MHC II complexes are 

transported to the cell surface where they interact with CD4 T cells via the TCR, thus initiating the 

appropriate effector immune response (Crotzer and Blum, 2009).  

Since the exogenous proteins are processed through the lysosomal pathway, it has been suggested 

that autophagy as well as CMA could also be involved in the generation of antigenic peptides (Crotzer 

and Blum, 2009; Schmid et al., 2007). MHC II has also been linked to LAP, as already mentioned in a 

previous section (3.1.3). Ma and colleagues demonstrated that the triggering of the anti-fungal 

response through Dectin 1 activation is dependent on LC3. Actually it appears that Dectin 1 induces 
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the recruitment of LC3-II to the phagosomes containing fungi, thus promoting better antigen 

presentation. As a matter of fact the authors demonstrated that LC3-deficient macrophages stimulated 

by ovalbumin-expressing yeast, resulted in reduced activation of OT-II cells which are CD4 T cells 

expressing an OVA specific transgenic TCR. These results and the fact that MCH-II molecules were 

reduced in phagosomes in absence of LC3-II lead them to consider not only the involvement of LAP in 

better antigen presentation but also the implication of LC3 in the recruitment of MHC II molecules (Ma 

et al., 2012). Other studies have shown that LAP induction stabilizes the peptide association with the 

MHC II molecule by allowing a prolonged interaction (Romao et al., 2013). 

Even though MHC II molecules were dedicated first to exogenous antigen presentation, they have also 

been shown to present peptides of endogenous origin. Same as for MHC I cross-presentation in DCs, 

autophagy seems to be highly involved in that process. First evidence of endogenous antigen 

presentation on MHCII to CD4 T cells was given by Jaraquemada and colleagues in the 1990ties with 

help of their studies on antigen processing of vaccine-infected cells (Jaraquemada et al., 1990). The 

involvement of autophagy in this process was however first shown only years later by Paludan and 

colleagues. They demonstrated in an EBV-transformed lymphoblastoid cell line that viral protein 

Epstein Barr nuclear antigen 1 (EBNA 1), upon acidification inhibition accumulates in lysosomes and 

localize to autophagosomes. Moreover autophagy inhibition both through pharmacological inhibitors 

(3-MA) and by autophagy essential gene knock-down (ATG12) resulted in reduced CD4 T cell activation 

by EBV-transformed B cells. In contrast proteasome inhibition had no significant impact on antigen 

presentation and CD8 T cell activation was not affected. These results lead to the conclusion that 

endogenous antigen presentation by MHC II is indeed possible and that it requires the autophagic 

pathway for antigen processing (Paludan et al., 2005). ChƌistiaŶ MüŶz’s teaŵ hypothesized that the 

reason why EBNA-1 processing would occur through the autophagic pathway rather than through the 

proteasome is because this protein has a long half life and autophagy is known to target long-lived 

proteins for degradation. This explains also the loading on MHC II molecules since they seem to 

specifically present peptides from long-lived proteins while MHC I presentation rather centers on short 

lived proteins. Others have since demonstrated the role of autophagy in endogenous peptide MHC II 

presentation as well (Dengjel et al., 2005; Schmid et al., 2007). In mice infected with HSV-1 DCs 

deficient for ATG5 were indeed shown to be unable to prime CD4 T cells (Lee et al., 2010a).  
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Figure 12: Antigen processing and presentation on MHC II molecules 

 

3.3 Lymphocyte Homeostasis and activation 

 

As mentioned in previous sections, autophagy plays an important role in protein and organelle turnover. As such 

it is activated at a basal level in most cells including lymphocytes and is highly involved in the maintenance of 

their homeostasis. As it will be discussed in more details below, lymphocytes depend on autophagy at various 

levels. T cells are described to depend on autophagy for their development as well as for their survival after 

activation and their polarization, while B cell lineage was described to need autophagy for development 

and after for plasma cell differentiation. 

Antigen presentation mediated by MHC II molecules requires the trafficking of the antigen from early 

endosomes to late endosomes/lysosomes where it can be degraded into small peptides. The antigen can 

also be phagocytosed, a process that can be facilitated by activation of TLRs also able to induce LAP. The 

autophagic machinery contributes to the degradation and the loading of the antigen on MHC II molecules. 

Autophagy can also capture cytosolic antigen and direct them to MHC II positive compartments where 

antigen loading occurs. MHC II molecules are generated in the ER and are associated to the invariant chain 

Ii. They migrate from the ER to CIIM where cathepsin S cleaves the Ii chain leaving CLIP in the MHC II 

groove. CLIP is removed by HLA-DM and is replaced by the process antigen. The MHC II/peptide complex 

can then migrate to the cell surfice and present the antigen. MHC II: Major histocompatibility complex II; 

LAP: LC3-associated phagocytosis; TLR: Toll-like receptor; ER: Endoplasmic reticulum; CIIM: Class II 

compartment; HLA-DM: Human leucocyte antigen DM; CLIP: Class-II associated invariant chain peptide 
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The information about the involvement of autophagy in lymphocyte biology were obtained mostly 

using mouse models with a conditional knock-out of the latter process either in T or B cells, or both, or 

by using mouse chimeras. As a matter of fact, eǀeŶ though geŶeƌal deletioŶ of autophagǇ doesŶ’t seeŵ 

to have an impact on normal embryonic development, it is lethal after birth. Using an Atg5 total knock-

out ŵouse ŵodel, Noďoƌu Mizushiŵa’s teaŵ oďseƌǀed that the ŵiĐe died aďout ϭ daǇ afteƌ ďiƌth. I 

appears that the neonates are strongly dependent on autophagy in their first hours of life in order to 

adjust to the drastic environmental changes fƌoŵ the plaĐeŶta to the ͞outside ǁoƌld͟ leadiŶg to 

important requirements in energy but also to a different nutrient intake independent from the 

placenta. The authors suggested that the neonates face the most important starvation period right 

after birth and that the only possibility to overcome this problem and to survive is to use autophagy to 

compensate the lack of essential amino acids and fatty acids (Kuma et al., 2004). Thus the information 

we have today about the in vivo role of autophagy come from tissue or cell type specific autophagy 

knock-out models. 

 

3.3.1 Autophagy in B lymphocyte homeostasis  

 

First investigations about the in vivo role of autophagy go back to the use of Atg5-/- fetal liver 

hematopoietic chimeric mice. The use of chimaeras as demonstrated by Heather Pua and later by 

Miller and colleagues showed that impairment of autophagy has an impact on B cell numbers in 

periphery  (Pua et al., 2007). This decrease was demonstrated to be due to defective transition from 

pro to pre-B cell stage in the bone morrow suggesting the requirement of autophagy in B cell 

development (Miller et al., 2008). The chimaeras were generated by harvesting fetal liver cells from 

Atg5 deficient mice which were then transferred into Rag1-/- mice. Thus it cannot be excluded that 

survival defects observed could be due to an underlying developmental problem of Atg5 total knock-

out from the HSC level before transfer. Indeed autophagy inhibition is detrimental to the generation 

of hematopoietic progenitors (Mortensen et al., 2011). On the other hand only a few mouse models 

with a selective autophagy deletion in B cells have been generated so far. Miller and colleagues used 

a mouse model with a B cell specific Atg5 knock-out under the control of the CD19 cre promoter 

expressed from the late pro-B cell stage on. Surprinsingly, in this model, the authors did not report any 

developmental defect. Moreover, the only B cell population that was impacted in periphery by the lack 

of Atg5 was the B1-b B cell population in the peritoneum suggesting that autophagy plays a minor role 

in B2 B cell development. This contradictory data about the importance of autophagy in B cell 

development could be due to the reported incomplete deletion of several genes using the CD19 
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promoter (Hobeika et al., 2006). Hence in these conditions it might be difficult to draw any conclusion 

on whether or not autophagy has an impact on B cell development.  

Nevertheless this partial deletion was actually exploited by Pengo end colleages to demonstrate that 

autophagy is required for plasma cell (PC) differentiation (Pengo et al, 2013Ϳ. “iŵoŶe CeŶĐi’s teaŵ 

investigated indeed the requirement of autophagy in antibody secreting cells (ASCs) using CD19 cre 

Atg5f/f mice.  They agreed on the fact that autophagy inhibition had no major impact on early mature 

B cell activation and survival. But while quantifying Atg5 expression by qPCR in LPS-defferentiated PCs 

from CD19 cre Atg5f/f mice they noticed an enrichment in Atg5 expressing PCs throughout time. This 

suggests that the leacky promoter confers a selective advantage to autophagy competent PCs.   

Furthermore it appears that once B cells differentiate into plasma cells (PCs) autophagic activity peaks 

up and that in transgenic mice expressing GFP-LC3 autophagy is increased in B cells after LPS 

stimulation. They also observed an increase of LC3 puncta in those cells as well as the upregulation of 

mRNA of various Atgs (Lc3, Atg9, Atg7, Atg4a). LC3-GFP positive vesicles were also increased in PCs 

isolated from the spleen and the bone morrow after immunization with the T-independent (TI) antigen 

NP-Ficoll, suggesting that autophagy is important for PC differentiation. Furthermore the autophagy-

deficient PCs were shown to contain more ER and to secrete a higher amount of immunoglobulins (Ig). 

These results could be explained by the fact that autophagy regulates ER-induced stress through 

reticulophagy. PCs are very active protein producing cells and must regulate tightly ER stress. 

Autophagy indirectly controls in that case Ig secretion, also a source of cellular stress when its 

production is excessive. Moreover autophagy inhibits premature PCs apoptosis by exercising a 

cytoprotective role against ER stress. In vivo experiments performed by immunizing these mice with 

either a T-dependent (TD) or a TI antigen resulted in decreased antigen specific humoral response. 

Restimulation of mice with the same antigen a few months later did not induce a potent response 

either, indicating a functional defect in autophagy incompetent PCs and a requirement of this process 

in long-term immune responses (Pengo et al., 2013). Conway and colleagues who were also using the 

same mouse model to study B cell autophagy came to the same conclusion. They observed a decrease 

in humoral response after TD and TI immunization as well as after parasite infection. However unlike 

Pengo and colleagues, upon LPS stimulation the authors identified an early defect in PC differentiation 

since they detect an impaired upregulation of transcription factors such as Prdm1 and Xbp-1 usually 

upregulated in differentiating PCs (Conway et al., 2013). It is possible that the differences in protocols 

for B cell activation between the two studies explain the discrepencies on the conclusions about the 

precise stage where autophagy is needed for PC survival. One could also argue that early defects in 

Prdm1 and Xbp-1 expression contribute to further survival impairments. Two other studies 

investigated the role of autophagy in long-term humoral responses. They showed that mice with B cell-
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specific Atg7 deletion failed to maintain their memory B cell compartment after immunization with an 

influenza antigen hemagglutinin (HA). HA-specific memory B cells underwent massive cell death. 

Germinal center B cells (GC B) however were not affected by this phenomenon confirming previous 

oďseƌǀatioŶs dƌaǁŶ ďǇ CeŶĐi’s gƌoup. Chen and colleagues uncovered indeed that memory B cells 

could be generated in absence of autophagy. However due to a defective clearance of dysfunctional 

mitochondria, and thus an accumulation of ROS and peroxidized lipids, apoptosis was observed on the 

longterm (Chen et al., 2014, 2015). (Table 2) 

It can appear surprising that autophagy is not required for early B cell activation, considering that 

autophagy in B cells is suspected to be involved in BCR trafficking. The BCR has indeed been shown to 

be localized to autophagosome-like structures. It appears that autophagy is required to translocate 

DNA-containing antigens to TLR9 compartments (Chaturvedi et al., 2008). Ireland and Unanue 

reported concordant observations by demonstrating that upon BCR stimulation, GFP-LC3 colocalized 

with internalized IgM in MHC II positive compartments. They suggested as well that autophagy is 

especially required for the presentation of citrullinated antigens to CD4 T cells (Ireland and Unanue, 

2011). This autophagy could be necessary to modulate B cell activation and under certain 

circumstances, for the recruitment of T cell help via antigen presentation. Moreover presentation of 

citrullinated self-antigens as well as recognition of self-DNA by TLR9 have been associated to the 

development of autoimmune diseases such as rheumatoid arthritis (RA) or systemic lupus 

erythematosus (SLE), suggesting that autophagy could play a role in autoimmunity.  

 

Table 2: Mouse models of B cell specific deletion of autophagy 

Genotype Phenotype 

 
Rag1-/-Atg5-/- fetal liver 

hematopoietic chimeric mice 

(Pua et al. 2007, Miller et al. 

2008) 

 

 

 Reduced B cell numbers in periphery 

 Defective transition from pro- to pre-B cells  

 Requirement of autophagy in development? 

 
Atg5f/f CD19 cre 

(Miller et al. 2008, Pengo et al., 

2013 ; Conway et al., 2013) 

 

 

 Reduced B1-b cell population 

 No impact on early B cell activation and survival 

 CD19 = leaky promotor 

 Defective PC differentiation 

 
Atg7f/f CD19 cre 

(Chen et al., 2014 ; 2015) 

 

 

 Defective maintenance of a memory compartment 
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3.3.2 Autophagy in T lymphocyte homeostasis  

3.3.2.1 Autophagy in T lymphocyte development: From Hematopoietic stem cells to memory T 

cells 

 

Autophagy in T cell education (Fig 13) 

Autophagy has been shown to play crucial roles in T lymphocyte biology at various levels. As a matter 

of fact, starting from the HSC point of view, it has been established that this process is essential for the 

generation of lymphocyte progenitors. This has been demonstrated thanks to the Atg5f/f Vav-cre mice 

as previously mentioned (Mortensen et al., 2011). Beyond the role in HSCs, autophagy has been shown 

to be involved in thymic T cell education. During this process, T cells undergo first positive selection in 

the cortical part of the thymus. This implies that only T cells with sufficient affinity for recognition of 

self MHC/peptide complexes survive while the others die by apoptosis. The second phase of T cell 

education is the counter-selection of T cells with a TCR that strongly binds the MHC associated to a 

self-peptide from a tissue-restricted antigen (TRA) leading subsequently to their apoptosis.  This step, 

termed negative selection is mediated by the medullary thymic and dendritic cells, and is essential to 

limit the amount of self-reactive T cells in the periphery. It thus allows the maintenance of tolerance 

against self-antigens. Thymic epithelial cells (TECs) play a central role in both positive and negative 

selections since they are responsible for the MHC restricted peptide presentation to the T cells. As 

previously discussed autophagy has been shown to be involved in MHC II presentation of endogenous 

antigens. Interestingly, using GFP–LC3 reporter mice Nedjic and colleagues have been able to show 

that TECs, the main players in this process and especially cortical TECs (cTECs), exhibit a high basal 

constitutive autophagic activity (Nedjic et al., 2008). Furthermore after transplantation of nude mice 

with Atg5-deficient thymi, they observed an impact on MHC-II restricted presentation of cTECs to CD4 

T cells, and consequently a disturbed positive selection. Accordingly, this model was characterized by 

the apparition of autoinflammatory events such as colitis and multi organ lymphoid infiltration. The 

possible implication of autophagy in MHC-II restricted peptide presentation in thymic epithelium was 

also suggested by Michiyuki Kasai and colleagues who showed that LC3 molecules colocalize with MHC-

II compartments both in in vitro-established TEC cell lines as well as in thymic cryo-sections (Kasai et 

al., 2009). The hypothesis of autophagy-dependency of TECs for T cell education, has been argued by 

another team since. Suskeree and colleagues saw neither a defect in positive or negative selection nor 

an outbreak of autoimmune events in their mouse model with a conditional knock-out of Atg7 in the 

thymic epithelium. They postulated that the previous conclusions might be somehow farfetched as 

autophagy deficiency impacted all thymic cells and not only TECs (Sukseree et al., 2012). One could 

however still argue that incomplete deletion in this model impaired any major phenotype occurrence. 
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Another study still from Ludgeƌs KleiŶ’s teaŵ, strengthened the idea of direct autophagy implication 

in thymic selection. They showed indeed that in Aire+ medullary TECs (mTECs) presentation of a model 

antigen was autophagy-dependent. They generated therefore a tripartite fusion protein as a model 

antigen composed of the reporter protein GFP, a human C-reactive protein (hCRP) as a traceable CD4 

T cell epitope, and finally LC3 to target the protein to the autophagosome. The resulting fusion protein 

called GCL (for GFP-hGCL-LC3) was designed to be expressed under the control of the autoimmune 

regulator Aire specific to mTECs. Aichinger and colleagues thus demonstrated quite elegantly that 

transplantation of autophagy deficient Aire-GCL thymi resulted in reduced negative selection 

(Aichinger et al., 2013). Furthermore a more recent study using a mouse model with a specific deletion 

of C-type lectin domain 16A (Clec16A) in the thymic epithelium, supports the hypothesis of a major 

role of autophagy in TECs function. Clec16A encodes a protein that has been associated to the 

development of various autoimmune disorders such as type 1 diabetes (TID), “LE, CƌohŶ’s disease (CD) 

and multiple sclerosis (MS) among others and its deletion has been shown to inhibit autophagy. 

Schuster and colleagues made the following observations namely that in their model TEC autophagy 

was indeed impaired. Their mice displayed an increase in thymocytes bearing a low expression of the 

TCR and CD69 suggesting a selection of hyporeactive T lymphocytes. Moreover they saw a decrease in 

the CD4 single positive (SP) T cell population expressing Helios, a transcription factor which is highly 

expressed during negative selection and lower during positive selection. These results were indeed 

indicative of impaired negative selection and of a possible implication of autophagy in this process. To 

test this hypothesis they transduced a cTEC cell line called MJC1 with an LC3 transgene fused with a 

DNA fragment encoding for OVA323–339 peptide. They could thus follow the autophagy-dependent 

presentation of this antigen, as the peptide has first to be processed by autophagy in order to gain 

access to the MHC-II compartment  (Schuster et al., 2015). As the reactivity of CD4 T cells bearing an 

OVA specific TCR (OT-II cells) was reduced in Atg-5 as well as in Clec16A-deficient TECs, they concluded 

that the phenomenon observed was autophagy dependent. In summary all these works indicate that 

autophagy in TECs is indeed essential to constitute MHC-II peptide repertoire, and thus is implicated 

in T cell selection. Hence autophagy impairment in TECs could be an inducer of autoimmune events. 

Autophagy in T cell development and peripheral homeostasis (Table 3) 

The T cell-intrinsic role of autophagy, as for B cell, has been mostly established using conditional knock-

out mouse models. But first of all, Pua and colleagues established that T lymphocytes were indeed 

autophagy competent as they were able to detect both atg specific transcripts (Lc3, Atg5, Beclin1) as 

well as the presence of autophagosomes by transmission electron microscopy. Furthermore they 

showed that the autophagic machinery could be activated either through starvation or through TCR 

activation as demonstrated by LC3 conversion assays by western blot (Pua et al., 2007). Starting from 
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there, autophagy deletion models were generated in order to dissect the role of this process in T cells. 

Thereby the first deletion models have allowed to demonstrate the importance of autophagy in T cell 

development. The use of Atg5 chimaeras as mentioned in the B cell section (3.3.1) gave the first 

indications on a possible relationship between autophagy and T cell development. Pua and colleagues’ 

chimaera model showed indeed a reduction in thymocyte numbers as well as in CD4 and CD8 T cell 

numbers in the periphery with a more marked decrease for CD8 T cells. This decreased was linked to 

survival defects in both T cell subsets in the periphery as it could be noted from splenic CD4 and CD8 

T cells. T cells also failed to optimally respond and survive to a TCR stimulation suggesting the 

requirement of the autophagic machinery for proper T cell function (Pua et al., 2007). As already 

discussed, all these observations could possibly be associated to an autophagy deficiency in early 

hematopoietic progenitors. Consequently the following models used the cre-lox system to delete Atg 

under the control of a T cell-specific promoter. He’s teaŵ geŶeƌated a ŵouse ŵodel ǁith aŶ Atg7 

deficiency in T cells under the control of the proximal Lck promoter (Atg7f/f pLck-cre). They made similar 

observations in regard to thymocyte numbers, with no change in precursor proportions and same as 

in the chimaeras, the T cells displayed defects in survival and function. Since the pLck promoter is active 

from the double negative (DN) stage of T cell development on, they hypothesized that autophagy 

requirements in thymic T cell development is modest compared to what is found in periphery. 

Interestingly they noticed that in comparison to wild type mice (WT) peripheral T cells from the Atg7f/f 

pLck-cre mice contained a significantly higher amount of mitochondria. This is in agreement with the 

increase in ROS production in the absence of autophagy, and the observed massive apoptosis of the T 

cells. In contrast mitochondrial content was similar in thymocytes. Interestingly, when comparing WT 

thymocytes to WT peripheral T cells it appears that the mitochondrial content is much lower in 

periphery, a phenomenon that was hardly observed in the absence of autophagy. This suggests that 

this degradation process is involved in developmental regulation of mitochondrial material in T cells 

(Pua et al., 2009). This was also an indication that metabolic requirements are different from on 

developmental stage to another. One more important observation from this study was that peripheral 

CD8 T cell seemed to be able to tolerate only a low mitochondrial content compared to CD4 T cells, as 

their survival was affected the most in the absence of autophagy. This coincides with the fact that their 

reduction in mitochondria after thymus egress is higher than it is in CD4 T cells in WT mice. Other 

studies using slightly different deletion models came to similar conclusions as well while adding new 

information clarifying a few underlying questions about the relevance of autophagy in T cells. Thereby 

the works by Stephenson and colleagues confirmed the importance of mitophagy for T cell survival 

and also identified a set of genes associated to mitochondria that where downregulated in absence of 

autophagy. They used both an Atg5 and an Atg7 deletion model, in order to ascertain that the 

observations made were surely linked to the autophagic process per se and not to an indirect effect of 
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Atg5 deletion. As a matter of fact Atg5 has been shown to be involved in other autophagy-independent 

mechanisms such as in IFNγ-induced cell death due to the capacity of this protein to interact with FADD 

(see section 1.4.4). 

Furthermore He’s team demonstrated that the ER-content in T cells is developmentally regulated by 

autophagy as well (Jia et al., 2011). In normal conditions, DN thymocytes seem to have a high ER 

content which is rather decreased in DP (double positive) and SP (single positive) thymocytes as well 

as in peripheral T lymphocytes. The decrease is once again more striking in CD8 T cells. Hence Jia and 

colleagues detected an expansion of the ER in autophagy-impaired mature T cells, associated to an 

increase of ER stress markers such as the ER resident molecule protein disulfide isomerase (PDI), ER 

chaperones glucose regulated protein 78 (Grp78), and Grp94. Other than being involved in protein 

folding and transport, the ER is a calcium (Ca2+) storage compartment and seeing that the TCR signaling 

is strongly dependent on Ca2+ (see section 3.3.2.2), the authors wanted to investigate the influence of 

ER expansion on this signaling pathway. They discovered indeed that the Ca2+ influx was decreased 

after stimulation of autophagy deficient T cells and that this was due to an intrinsic defect in ER-content 

regulation independent of mitochondria as they have also been shown to play a role in Ca2+ signaling. 

This requirement for autophagy-dependent ER and mitochondrial homeostasis in T cells was 

established in two different mouse models deficient for Atg7 or Atg3 respectively (Jia and He, 2011). 

In both cases invalidating autophagy was dependent on the proximal Lck-promoter expressed early in 

thymocyte development. Thus the authors speculated that the decreased survival of peripheral T 

lymphocytes was the result of longterm accumulated defects.  This led them to generate a mouse 

model with an Atg3 inducible deletion (Atg3ff ER-cre). With a tamoxifen treatment Jia and colleagues 

menanged to inhibit autophagy in mature T lymphocytes in vitro. When cultured in presence of IL-7, a 

T cell survival factor, the Atg3 deletion did not have an impact on the T cell survival. But starting from 

day 10 on these cells started to display an accumulation of ER and mitochondria over time suggesting 

that autophagy is needed to mediate organelle clearance in order to avoid cell death. These were the 

pioneer studies that allowed to establish both a role of autophagy in T cell development but also in T 

cell organelle homeostasis.  

Interestingly, it was shown by various studies that  autophagy-deficient T cells had an increased 

expression of the cell surface memory marker CD44 (Jia and He, 2011; Jia et al., 2011; Stephenson et 

al., 2009). This phenotype has been associated to T cells undergoing spontaneous proliferation (also 

called homeostatic proliferation) independent of antigen presentation. This phenomenon is usually 

induced to compensate modifications of the immune system that lead to a lymphopenic phenotype as 

it can be the case in some chronic diseases, irradiation or thymectomy. The authors suggested that 

this might be the case in autophagy incompetent T lymphocytes as well (Stephenson et al., 2009).  
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Kovacs and colleagues, introduced another mouse model. Their mice were deficient for Beclin1 with a 

deletion controlled by the CD4 promoter (Beclin1f/f CD4-cre). In addition to the phenotype observed 

in previous models, meaning a reduction of peripheral T cells and massive cell death upon in vitro TCR 

stimulation, the authors noted that these cells displayed an increased expression of cell death related-

proteins such as Bim, pro-caspase 3 and 8. Surprisingly they did not see an increase in mitochondrial 

content contrary to previous descriptions. This firstly suggests that in their model, massive cell death 

was less linked to defective mitophagy but rather to a decreased degradation of cell death-related 

proteins. Secondly it indicates that mitophagy in T cells might be largely Beclin1-independent. 

Furthermore they showed that polarized cells were differentially dependent on autophagy. 

Interestingly TH17 polarized cells were the least susceptible to cell death in the absence of autophagy, 

while TH1, TH2 and unpolarized (TH0) T cells underwent massive apoptosis (Kovacs et al., 2012). In 

vivo experiments revealed that their mouse model was resistant to oligodendrocyte glycoprotein 

(MOG)-induced experimental allergic encephalomyeleitis (EAE). EAE is a mouse model for multiple 

sclerosis and a Th17-associated disorder. This disease is also partly CD8-dependent and since in Beclin1 

deficient T lymphocytes this T cell subset was highly decreased, resistance to EAE might also be linked 

to that phenotype.  As for autophagy in T helper subsets, a pƌeǀious studǇ ďǇ Lu’s gƌoup had also shown 

that upon polarization of CD4 T cells transduced with GFP-LC3 retrovirus, Th2 cells displayed a higher 

autophagic activity compared to Th1 cells, indicative of a polarization-dependent regulation of 

autophagy in T cells (Li et al., 2006). 

In Willinger and Flaǀell’s model, the deletion of Vps34 in T cells led once again to the accumulation of 

mitochondria observed in previous models. This could appear astonishing as Vps34 is associated to 

Beclin1 in the PI3KCIII complex and Beclin1 deletion was reported by Kovacs and collegues to have no 

impact on mitophagy. They suggested that the discrepancies observed concerning mitophagy in the 

various models could be explained by the fact that there are various levels of autophagy regulation in 

T cells, meaning that basal autophagy might be needed for organelle clearance while in activated T 

cells it is required to degrade pro-apoptotic proteins (Willinger and Flavell, 2012). Studying the same 

model Parek and colleagues also discerned new consequences not yet described at that time namely 

a Vps34 requirement for the development of invariant natural killer T cells (iNKT) a subpopulation of T 

cells that recognizes glycolipids in the context of CD1d a non-classical MHC I presentation. They also 

noticed that old mice developed an inflammatory wasting syndrome that they led back to a reduced 

number of Treg cells as well as a deficiency in their capacity to regulate effector T cell expansion in the 

absence of autophagy (Parekh et al., 2013; Bronietzki et al., 2015). 

To sum up these studies, it clearly appears in all of them that autophagy is essential for T cell 

development and even more for peripheral T cell homeostasis and function after activation. It must be 
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said however that all the mouse models had in common the deletion of Atg genes early in T cell 

development which probably exerts an influence on their phenotype in periphery. Moreover since the 

cell numbers were extremely low and T cells were hardly functional in periphery it made in vivo studies 

difficult in these mice models.  

 

 

Figure 13: Role of autophagy for thymic T cell development. 

 

 

(1) cTECs and (2) mTECs responsible for positive and negative T cell selection respectively, display high 

levels of basal autophagy. The autophagic activity is required for presentation of intracellular self-antigens 

on MHC-II and mediate T cell education. In positive selection T cells with a TCR with no or low affinity for 

the MHC-peptide comlpex undergoe apoptosis. On the contrary in negative selection the recognition of self 

peptides results in cell death. (3) Thymic T cells contain high levels of mitochondria and an expanded ER 

which are reduced by the autophagic machinery before exit from the thymus. Peripheral T cells require 

autophagy in order to maintain their homeostasis. 
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Autophagy in memory T cells 

Two recent studies aimed at overcoming the difficulties linked to existing models in order to draw 

conclusions about the in vivo relevance of T cell autophagy in immune response. Katja “iŵoŶ’s teaŵ 

demonstrated the requirement of the autophagic process in CD8 T cell mediated memory responses 

using a mouse model with a T cell specific deletion of Atg7 under the control of the CD4 promotor 

(Atg7f/f CD4-cre). They noticed indeed that even though CD8 T cells were decreased in number and 

proportions (as were CD4 T cells), the mice were still able to generate an early antigen specific CD8 

response after viral infection. But as they followed the response over a longer period of time they 

started to observe an important decrease of the antigen specific CD8 T cells.  Even rechallenging the 

mice revealed to be unsuccessful, suggesting a defect in the establishment of the CD8 memory 

compartment. In order to assess if these observations were in fact due to the CD8 T cell intrinsic 

autophagy deficiency, the authors infected 1:1 (Atg7-/- : WT) bone marrow chimeras with the influenza 

virus. This strategy was meant to exclude factors such as reduced CD4 T cell help, T cell exhaustion or 

lymphopenia that could also possibly lead to a defective CD8 memory pool. These mixed chimeras also 

failed to generate antigen specific memory CD8 T cells even though the frequency of CD8 T cell short-

lived effector and memory precursors were normal and the exhaustion markers PD-1 and TIM-3 were 

not further increased.  The expression of cytokine receptors (IL-ϳRα, IL-ϭϱRαͿ was also unchanged in 

murine cytomegalovirus (MCMV) infected chimeras when compaired to controls. Moreover the 

expression of the transcription factors IRF4 and EOMES, responsible for mediating T cell expansion, 

differentiation and memory CD8 T cell formation respectively, was normal as well. This was indicative 

of a defect in memory CD8 T cell maintenance rather than a failure in forming a memory pool. A 

possible explanation for the defective survival could be that memory CD8 T rely on autophagy to 

maintain mitochondrial homeostasis and thus supporting a proper mitochondrial respiration crucial 

for their survival. Furthermore the differentiation of effector CD8 T cells into memory CD8 T cells is 

accompanied by metabolic changes as the lymphocytes switch from an aerobic glycolysis to 

mitochondrial respiration also called oxidative phosphorylation (discussed in section 3.3.2.2). It 

appears in fact that autophagy deficient memory CD8 T cells accumulate dysfunctional mitochondria, 

display decreased survival and fail to switch to oxidative phosphorylation as demonstrated with the 

staining of glucose transporter 1 (GLUT1). GLUT1 is usually upregulated in effector CD8 T cells and 

downregulated in memory CD8 T cells but in the absence of autophagy, it stays higly expressed 

(Puleston et al., 2014). Puleston and collegues also examined that capacity of their mouse model (Atg7-

/- CD4-cre) to respond to a second challenge with a viral antigen and noted that the recall response 

was significantly decreased suggesting the requirement of autophagy in this process. Interestingly it 

has been shown that autophagy decreases with age. This is in agreement with the fact that older 
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people are more susceptible to infection even when vaccinated. Thus in regard to the results of this 

study, the authors proposed that enhancing autophagy in elderly people could help induce an efficient 

memory response to vaccination. They tested this hypothesis by treating old mice with spermidine, a 

compound naturally expressed in mammals and known to modulate autophagy. They confirmed that 

this polyamine was able to induce autophagy in T cells in an mTOR-independent manner, and found 

that its administration to old mice during vaccination restored strong antigen specific recall responses.  

Rafi Ahŵed’s teaŵ also Đaŵe to the saŵe ĐoŶĐlusioŶ ĐoŶĐeƌŶiŶg the ƌeƋuiƌeŵeŶt of autophagǇ iŶ CDϴ 

memory responses. As a matter of fact they were the first to generate a mouse model with a specific 

deletion of either Atg5 or Atg7 specifically in effector CD8 T cells, under the control of the granzyme B 

promoter only expressed when CD8 T cells are differentiating. With this elegant model they were able 

to go around the lymphopenic phenotype observed in all the previous models. As developmental 

defects can be ruled out, their models is thus very adapted for in vivo functional studies. Xiaojin Xu and 

colleagues examined autophagy activation status of CD8 T cells after viral infection, using different 

approaches such as GFP-LC3 expressing CD8 T cells and by detection of lc3b and p62 transcripts. 

Interestingly, the resulting data indicates that autophagic flux is inhibited during CD8 T cell clonal 

expansion but gets restored during effector function and memory T cell generation. The experiments 

on their transgenic mice on the other hand revealed an important loss of effector CD8 T cells in the 

early stages of infection due to deficient autophagy-dependent metabolic requirements to produce 

certain growth factors that allow them to maintain their survival. Autophagy seems also to be 

necessary to maintain metabolic homeostasis for the transition from effector to memory T cells (Xu et 

al., 2014a).  

Thus, the last ten years of T cell autophagy investigations have allowed to shed some light on the role 

of this process at various stages of T cell development and function. The get-way massage so far is that 

T cells depend on autophagy for their development, for the maintenance of organelle homeostasis in 

periphery before and after activation and for the generation of memory CD8 T cells. However, some 

interrogations still remain because they have not been investigated yet, like the requirement of 

autophagy in T cell homeostasis in the periphery ruling out any developmental problem during thymic 

differentiation inherent to descrbed models. Moreover, the question of the need for autophagy in 

memory CD4 T cells is still unanswered. Finally due to discrepancies from one study to the other, it 

remains uncertain whether autophagy is induced or blocked right after TCR engagement.  
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Table 3: Mouse models of T cell specific autophagy deletion 

Genotype Phenotype Conclusions 

 
Rag1-/-Atg5-/- fetal liver 

hematopoietic chimeric 

mice 

(Pua et al., 2007) 

 

 

 Reduced thymocyte numbers  

 Reduced CD4 and CD8 T cell 
numbers in periphery  

 

 Atg5 required for lymphocyte 
development and function 

 Atg5 plays a role in the 
regulation of lymphocyte 
precursors 

 

 

 

 

Atg7f/f pLck-cre 

(Pua et al., 2009) 

 

 

 Reduced thymocyte numbers 

 Reduced CD4 and CD8 T cell 
proportions in periphery 

 Defective T cell survival and 
function in periphery upon TCR 
stimulation in vitro 

 Increased mitochondrial, ROS 
content in peripheral T cells 
 

 

 Mitochondrial content is 
developmentally controlled by 
autophagy 

 

 

 

 

Atg5f/f  pLck-cre/Atg7f/f 

pLck-cre 

(Stephenson et al., 2009) 

 

 

 

 Slightly Reduced thymocyte 
numbers 

 Reduced CD4 and CD8 T cell 
proportions in the thymus and 
periphery 

 Defective T cell survival and 
function in periphery upon TCR 
stimulation in vitro 

 Increased memory surface 
marker CD44 expression 

 Increased mitochondrial, ROS 
content in peripheral T cells 
 
 

 

 Mitochondrial content in T cell is 
developmentally controlled by 
autophagy 
 

 Establishment that the observed 
phenotype is indeed autophagy-
dependent 

 

 Memory-like phenotype 
probably due to cell exhaustion 
and lymphopenic environment  

 

 

 

 

 

Atg7f/f pLck-cre 

(Jia et al., 2011) 

 

 

 Reduced thymocyte numbers 

 Reduced CD4 and CD8 T cell 

proportions in the thymus and in 

periphery 

 Defective T cell survival and 

function in periphery upon TCR 

stimulation in vitro 

 Increased memory surface 

marker CD44 expression 

 Increased mitochondrial, ROS 

and ER content in peripheral T 

cells 

 

 

 ER content in T cells is 

developmentally controlled by 

autophagy 

 Early autophagy invalidation in T 

Đell deǀelopŵeŶt → iŵpaĐt oŶ 
peripheral T cell functions? 

 

 

 

 

 

Atg3f/f pLck-cre/ Atg3f/f 

ER-cre 

 

 Atg3 deletion in vitro  

 Defective T cell survival and 

function in periphery upon TCR 

stimulation in vitro 

 

 Autophagy is dispensable in early 
T cell activation in presence of a 
survival factor 
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(Jia and He 2011) 

 

 Survival defect ameliorated by 
IL-7 addition 

 Accumulation of  mitochondria 
and ER throughout the culture 
time leading to cell death 
 

 Autophagy is required for 
organelle homeostasis in 
activated cells 

 

 

 

 

 

 

 

 

Beclin1f/f CD4-cre 

(Kovacs et al., 2012) 

 

 

 Normal thymocyte numbers  

 Reduced CD4 T cell proportions  

in periphery 

 Strong reduction in CD8 T cell 
proportions  in periphery 

 Survival defects in vitro upon 
TCR activation 

 T helper polarization  

 TH0,TH1 and TH2 display strong 
survival defects 

 TH17 cells are resistant to 
apoptosis 

 No mitochondria accumulation 

 Increased expression of cell 
death related proteins 

 Mice are Resistant to EAE 
induction 

 

 Mitophagy  Beclin1 
independent? 

 Autophagy differentially 
regulated in T helper subsets 

 Regulation of cell death by 
Beclin1 throught the degradation 
of caspases 

 

 

Vps34f/f CD4-cre 

(Willinger et al., 2012) 

 

 

 Normal thymocyte numbers  

 Reduced T cell proportions  in 

periphery 

 Mitochondria accumulation 
 

 

 Mitophagy required for basal T 
cell homeostasis? 

 Autophagy required for 
degradation of pro-apoptic 
proteins in activated T cells? 

 

 

 

 

Atg7f/f CD4-cre 

(Puleston et al., 2014) 

 

 

 Reduced CD4 and CD8 T cells in 
proportion and in number in 
periphery 

 Intact early antiviral immune 
response 

 Generation of antigen 
specific CD8 T cells  

 Defective memory immune 
response 

 Mitochondria accumulation and 

increased ROS production in 

memory CD8 T cells 

 

 

 Autophagy is required for the 
transition from effector to 
memory CD8 T cells 

 

 

 

Atg5 Granzyme-cre 

(Xu et al., 2014) 

 

 

 Deletion autophagy in effector 
CD8 T cells 

 No difference in proportion of 
effector CD8 T cells post 
activation 

 No proliferation/survival defects 
during CD8 T cell expansion phase 

 Defective survival during 
transition from effector to 
memory CD8 T cells 

 

 Autophagy is dispensable for ealy 
T cell expansion 

 Autophagy is required for CD8 T 
cell effector-memory transition 

 Dynamic regulation of 
autophagy in CD8 T cells 

 Autophagy required for 
generation of lipids metabolites 
to fuel FAO 
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 Dysregulated lipid biosynthetic 
pathways in absence of 
autophagy 

 

 

3.3.2.2 Insights into T lymphocyte activation, their metabolism and the link with autophagy 

 

T cell activation (Figure 14) 

TCR signal transduction takes place upon presentation of a peptide on MHC to the T cells. It induces 

activation of different pathways including the protein kinase C (PKC) pathway, mitogen-activated 

protein (MAP) kinase (MAPK) pathway and the Ca2+ pathway, which lead to transduction of 

tƌaŶsĐƌiptioŶ faĐtoƌs suĐh as ŶuĐleaƌ faĐtoƌ κ B ;NFκBͿ, ŶuĐleaƌ faĐtoƌ of aĐtiǀated T Đells ;NFATͿ aŶd 

activator protein 1 (AP-1) from the cytosol to the nucleus. These transcription factors promote the 

expression of genes responsible for T cell survival, differentiation and function as cytokine production. 

Dissection of the early TCR-induced signals has allowed to establish the numerous events that take 

place after activation. Activation starts with the conformational change of CD4/CD8 co-receptor that 

associates with the bound MHC molecule. This allows bringing the lymphocyte protein tyrosine kinase 

(Lck) associated to CD4 or CD8 cytoplasmic tail, in proximity with the TCR/CD3 complex. This induces 

the phosphorylation of the tyrosine-based activation motifs (ITAMs) localized on the cytosolic zeta 

chain of the TCR/CD3 complex by Lck. Phosphorylated ITAMs become docking sites for the zeta chain 

of T cell receptor associated protein kinase 70kDa (ZAP70), that is further phosphorylated by Lck.  

Activated ZAP70 is now able to phosphorylate the linker of activation of T cells (LAT) making this 

protein a new docking site for adaptor proteins and enzymes such as the inducible tyrosine kinase (ITK) 

and phospholipase Cγϭ ;PLCγϭͿ. As a ƌesult of this pƌoǆiŵitǇ ITK phosphoƌǇlates PLCγϭ ǁhiĐh aĐtiǀates 

its capacity to hydrolyze phosphatidylinositol 4,5,-biphosphate (PIP2), a membrane-bound 

phospholipid, into diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP3). While DAG stays encored 

in the cytoplasmic membrane, IP3 travels to the ER and induces Ca2+ release into the cytosol by binding 

to its receptor on the ER membrane the inositol triphosphate receptor (IP3R). Cytosolic Ca2+ triggers 

the activation of the calcium release-activated channel (CRAC) at the cytoplasmic membrane and the 

subsequent influx of extracellular Ca2+. Accumulating Ca2+ thus binds to calmodulin (CaM) inducing a 

conformational change which makes it possible for CaM to interact with protein phosphatase 

calcineurin. Activated calcineurin can then dysphosphorylate NFAT leading to its translocation into the 

nucleus (Fracchia et al., 2013). NFκB tƌaŶsloĐatioŶ oŶ the other hand is dependent on PKC activation 

by DAG that induces indirectly phosphorylation of inhibitor of NF-κB ;IκBͿ, which is otherwise bound 
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to NFκB aŶd pƌeǀeŶts its aĐĐess to the ŶuĐleus. PKC also mediates the activation of the extracellular 

signal-regulated protein kinase (ERK)/MAPK pathway via the small GTP binding protein Ras. Ras 

induces a phosphorylatyion cascade that starts with Raf, a MAP kinase kinase kinase (MAPKKK), then 

MEK (MAPKK) leading finally to ERK activation.  Activated ERK can phosphorylate the AP-1 components 

Jun and c-Fos in the nucleus leading to the expression of genes involved in survival and differentiation. 

To sum up this simplified overview of the TCR signaling, there is an interconnection of various players 

that allow T cell activation. It must be noted however that TCR signaling alone is not sufficient to induce 

complete activation. As a matter of fact a second messenger is required, namely the activation of co-

stimulation receptor CD28 which activates the PI3K/AKT pathway (Jones et al., 2002). This pathway 

promotes signal transduction that leads to the expression of survival factors such as IL-2 but also by 

regulating a major actor in metabolic pathways, mTORC1 that will be discussed further below. In any 

case mTORC1 gets activated indirectly by AKT since this protein actually inhibits the TSC1/TSC2 

complex leading to liberation of a small GTPase Rheb which is the direct activator of mTORC1. The 

interplay of all these pathways including metabolic pathways, are critical for T cell activation, survival, 

growth, proliferation and differentiation (Abraham and Weiss, 2004).  
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Figure 14: Signaling pathways induced after TCR activation. 

 

T cell metabolism a dynamic process (Fig 15) 

T cell metabolism has been shown to vary depending on the differentiation status of the cell. This 

characteristic is essential in order to provide the cell with the proper energetic demands required for 

differentiation, clonal expansion, survival and cytokine production. Thus the activation of a T cell has 

been shown to induce complete metabolic reprograming dedicated to enhance their proliferative 

capacity, a feature that they actually share with cancer cells (reviewed in Pearce and Pearce, 2013). As 

a matter of fact, while metabolic requirements of naïve T lymphocytes depend on oxidative 

phosphorylation (OXPH), effector T cells rely on aerobic glycolysis also called the Warburg effect. 

Hence the T cells undergo a switch from a catabolic to an anabolic metabolism.  

Early events induced after TCR stimulation by a peptide bound MHC complex lead to conformational 

changes of co-receptor CD4 (or CD8) which induces an interaction with the MHC complex as well as the 

activation of Lck bound to the cytoplasmic tails of CD4 (CD8). Lck phosphorylates ITAM motifs (in blue) in 

the CD3 zeta chain inducing the recruitment of ZAP-70. ZAP70 undergoes a conformational change as well, 

which allows the phosphorylation by Lck. Activated ZAP-70 phosphorylates LAT inducing the recruitment 

of PLC and ITK. PLC is activated through phosphorylation by ITK. Activation of PLC causes the cleavage of 

PIP2 and the release of DAG and IP3. IP3 binds the IP3R receptor at the ER and induces the release of 

Ca
2+

 into the cytosol leading to an increase in intracellular Ca
2+

 levels, which activates the CRAC channel 

at the cytoplasmic membrane and subsequently allows the entry of extracellular Ca
2+

 into the cell. This 

supply in Ca
2+

 activates CaM which in turn activates calcineurin. Calcineurin is directly involved in the 

dephosphorylation and nuclear translocation of NFAT.  DAG on the other hand activates PKC which 

phosphorylates IkB and thus orchestrates the liberation of NF-kB and the transclocation of this 

transcription factor into the nucleus. PKC is also involved in initiating the cascade of other serine-

threonine kinases, including Ras and Raf and MAP kinase kinase (MEK) leading to ERK/MAPK activation. 

This phosphorylation cascade leads to activation of AP1 (composed of Jun and c-Fos).  
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Naïve T cell metabolism 

Naïve T cells depend mainly on glucose, glutamine and fatty acid availability for OXPH, which is a slow 

process but leads to the generation of 36 ATPs from the glycolysis of one mole of glucose as a starting 

product. OXPH takes place in mitochondria and involves the degradation of those macromolecules in 

a catabolic process into intermediate metabolites such as pyruvate, amino acids and fatty acids in order 

to generate acetylCoA which enters the tricarboxylic-acid cycle (TCA cycle). The TCA cycle produces 

nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2) that fuel OXPH 

with protons and electrons required for the phosphorylation process of ADP, aiming to generate the 

end product ATP in an oxygen-dependent reaction (Verbist et al., 2012). Thus OXPH is required for the 

maintenance of cellular homeostasis in resting cells to insure that basic cell functions such as protein 

turnover, membrane integrity or ion transport are not compromised. Glucose uptake is thus an 

important component of OXPH and requires functional glucose transportor 1 (GLUT1) localized at the 

cell membrane and which has been shown to be upregulated upon T cell activation (Macintyre et al., 

2014).   

Effector T cell metabolism 

The Warburg effect on the other hand only allows the generation of 4 ATPs per mole of glucose but is 

much faster due to the fact that the glycolysis process is incomplete and leads to the generation of 

lactate as the major end-product. This metabolic process first described in cancer cells by Otto 

Warburg, is indeed very particular because it does not use oxygen even though oxygen is readily 

available which is why this process is also termed aerobic glycolysis. Furthermore it has been suggested 

that OXPH generates a high amount of ROS susceptible to induce premature senescence or to damage 

DNA that could then lead to apoptosis. This could explain why highly proliferating cells choose aerobic 

glycolysis rather than OXPH (Vander Heiden et al., 2009; Verbist et al., 2012).  Nevertheless contrary 

to anaerobic glycolysis, the mitochondria is still functional and a small amount of pyruvate still gets 

used in the TCA cycle.  

Memory T cell metabolism 

After encounter with an MHC/peptide complex a small part of the activated T cells differentiate into 

memory cells. This cells are characterized by the fact that they are in a resting state but can be quickly 

reactivated upon encounter with the antigen. As such they are phenotypically close to naïve quiescent 

cells and have therefore a similar metabolic profile meaning that they switch back from aerobic 

glycolysis to OXPH. Nevertheless they rely mainly on mitochondrial FAO to meet their energetical 

demands (Verbist et al., 2012).  
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Metabolic checkpoints 

As already mentioned upon activation, T cells require a lot of energy to proliferate rapidly. This goes 

hand in hand with precise transcriptional changes such as the up-regulation of the transcription factors 

c-MǇĐ aŶd the estƌogeŶ ƌelated ƌeĐeptoƌ α ;ERRαͿ that eŶhaŶĐe glǇĐolǇsis aŶd glutaŵiŶolǇsis foƌ de 

novo synthesis of nucleotides while inhibiting fatty acid oxidation (FAO). Hypoxia-iŶduĐiďle faĐtoƌ ϭα 

(HIF-ϭαͿ is aŶotheƌ tƌaŶsĐƌiptioŶ faĐtoƌ that iŶteƌǀeŶes in so-Đalled ͞ŵetaďoliĐ ĐheĐkpoiŶts͟. As 

indicated by its name HIF-ϭα aĐts under hypoxic stress and regulates genes that promote cell survival 

and enhances glucose uptake as well. These are transcriptional check-points but posttranslational 

metabolic check-points have been identified as well. Thus T cell metabolic events depend on cellular 

energy sensors such as the adenosine monophosphate (AMP)-activated protein kinase (AMPK) or 

mTORC1. AMPK gets activated by a high AMP/ATP ratio associated to low energy in the cell as it is the 

case in starvation or hypoxic conditions and favors OXPH, glycolysis and FAO. Activation if this enzyme 

enhances glucose uptake and at the same time inhibits mTORC1 by phosphorylating Raptor one of the 

4 subunits of this protein complex. mTORC1 has been shown to be activated through the PI3K/Akt 

pathway that is induced by growth factors and in case of T cell stimulation by CD28 binding. mTORC1 

activation promotes protein synthesis but also induces up-regulation of HIF-α and c-Myc expression. 

Therefore this complex has generally been shown to be involved in anabolic processes, promoting cell 

growth and proliferation (reviewed in Fernández-Ramos et al., 2016). Thus in T cells mTORC1 rather 

favors aerobic glycolysis and is a very important factor for T cell survival, proliferation and 

differentiation after activation. As a matter of fact, mTORC1 regulates T helper cell polarization (Th1, 

Th2, Th17). AMPK on the other hand promotes naïve and CD8 memory T cell survival through activation 

of FAO (Pearce et al., 2009). 
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T cell metabolism and autophagy 

The hereafter mentioned energy sensors are also important regulators of the autophagic machinery. 

As AMPK inhibits mTORC1 it also activates autophagy since mTORC1 inhibits autophagy by 

phosphorylating ULK1 (Kim et al., 2011). In a low glucose environment, AMPK actually activates the 

tuberous sclerosis complex 1 and 2 (TSC1/2) a negative regulator of mTOR. Since mTOR is not able to 

interact with ULK1, this allows AMPK to gain access to this protein and to phosphorylate two of its 

serines. Activated ULK1 is then able to induce the initiation of the autophagic process. In regard to the 

Figure 15: Schematic representation of metabolic T cell regulation during an immune response. 

Naïve T cells are resting cells and only require oxidative phophorylation (OXPH) to maintain them in a stady 

healthy state. After activation they acquire an effector phenotype and thus a high amount of energy to 

proliferate and differentiate. To respond to these metabolic demands effector T cells undergo metabolic 

reprogramming reflected by the upregulation of AKT, mTOR and transcription factors such as c-Myc, ERRȽ 

and HIF1 resulting in aerobic glycolysis. Memory T cells on the other hand fall back into a resting state and 

use fatty acid oxidation for their maintenance. They upregulate AMPK which induces mTOR downregulation. 

(modified from Verbist et al., 2012). mTOR: mammalian target of rapamycin; HIF1: Hypoxia-inducible factor 1Ƚ; ERRα: Estrogen-related receptor Ƚ,   AMPK: AMP-activated protein kinase 
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convetional regulation of autophagy by mTORC1 and knowing that TCR activation also induces 

autophagy, this pathway should actually be inhibited. Yet mTORC1 activation is indeed essential for T 

cell survival but also differentiation into effector helper T cells. Actually it has been shown that when 

mTOR activity is decreased and AMPK is highly expressed, it directs the T cell fate towards the 

differentiation into regulatory T cells which are dependent on FAO, rather than aerobic glycolysis 

(Michalek et al., 2011). This consequently suggests that autophagy induction in effector T cells might 

be mTOR-independent. There is indeed some evidence supporting this hypothesis as it is the case for 

Thoŵas O’BƌieŶ aŶd colleagues’ studǇ. To suŵŵaƌize iŶ a feǁ ǁoƌds, the authoƌs geŶeƌated a T cell 

specific TSC1 knock-out mouse model which leads to a constitutive mTOR activation. Nevertheless 

autophagy could still be detected in a steady state in T cells and could even be induced in starvation 

conditions ;O’BrieŶ et al., ϮϬϭϭͿ. However a contrasting and surprising discovery by Xiaojin Xu and 

colleagues was that they saw a blockade of the autophagic flux after CD8 T cell activation via the TCR 

which is in total contradiction with the data from previous studies. This would in fact be in aggrement 

with the fact that mTOR is activated in effector T cells and which is usually associated to autophagy 

inhibition. The authors suggest that this specific aspect could have been missed in previous studies due 

to differences that can occur between in vitro and in vivo experiments. It could also be because the 

previous investigators only used one parameter to evaluate autophagic activity, either determination 

of the flux by detection of LC3-II or detection autophagosome accumulation. The observed 

accumulation of LC3-II and the autophagosomes might be the result of a blockade in the autophagic 

flux (Xu et al., 2014). Another interesting study by Araki and colleagues has shown that treatment of 

LCMV-infected mice with rapamycin had a beneficial effect on memory CD8 T cell survival (Araki et al., 

2009). This is indeed in contradiction with the properties of this molecule mainly used as an 

immunosuppressive drug but goes hand in hand with recent findings cited in above sections (3.3.2.1), 

indicating that autophagy plays indeed a role in memory CD8 T cell formation and survival (Puleston 

et al., 2014; Xu et al., 2014a). Autophagy induction in memory CD8 T cells appears indeed to depend 

on mTOR inhibition. It is possible that in early stages of T cell activation might be mTOR-independent 

according to most studies cited above. But the established idea of autophagy induction after TCR 

stimulation has been recently challenged by Xu and collegues. Thus it seems that further investigations 

are required in order to clearify wether or not autophagy is induced and required for T cell activation. 
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4 AUTOPHAGY IN IMMUNE DYSFUNCTIONS  

 

The fact that autophagy plays such an important role in immunity it is to be expected that it might be 

involved in some immune dysregulations. This process has indeed been suggested to be implicated in 

the pathogenesis of various diseases such as inflammatory or metabolic disorders as well as in 

autoimmunity. The link with autophagy and inflammation-associated diseases will only be briefly 

discussed hereafter. This subject has indeed been addressed in more details by our team in a recent 

review which has been added to this manuscript (see Publication 3). 

 

4.1 Autophagy in Inflammation-induced Metabolic Disorders 

 

Disorders such as obesity, type II diabetes (TIID) or heart diseases like atherosclerosis often result from 

a nutritional lifestyle that leads to the development of a so-called metabolic syndrome. A hereditary 

component is however also involved in the disease pathogenesis. People prompt to develop such a 

syndrome accumulate metabolic dysfunctions leading to high blood pressure, high insulin level and 

high cholesterol and triglyceride levels. The resulting disorders mentioned above are also linked to 

inflammatory events that initiate and aggravate the disease (Hotamisligil, 2006). Autophagy has been 

shown to be implicated in both in the initiation of inflammation as well as in cellular metabolic 

functions. Thus this process has been suspected to be involved in the development of these disorders. 

Furthermore autophagy has been shown to decrease with age which is correlated to an increased 

susceptibility to TIID and hart diseases (Cuervo, 2008). 

4.1.1 Obesity 

Autophagy has been shown to regulate lipid droplets turn-over in a process termed lipophagy (see 

section 1.4.3) (Singh et al., 2009, 2012). On the other hand obesity is clearly characterized by an 

abnormal accumulation of fat stores. Moreover results from a study by Kovsan and colleagues showed 

that autophagy was upregulated in adipose tissue from obese people as demonstrated by increased 

expression of Atg5, Lc3a and Lc3b as well as increased autophagic flux. It was however evidenced that 

autophagic activity depends on the type of adipose tissue in question. As a matter of fact autophagy 

was most increased in omental than in subcutaneous adipose tissue (Kovsan et al., 2010). It must be 

noted that expansion of the omental adipose tissue is associated to an increased risk to develop an 

insulin resistance leading to TIID (Bjorndal et al., 2011). 
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 Specific invalidation of Atg7 in a mouse model led to resistance to high fat diet (HFD)-induced obesity. 

The mice also lost weight, had a better sensitivity to insuliŶ aŶd iŶĐƌeased β-oxidation. In the same 

study the authors were able to show that the observed phenotype was actually due to a change in the 

balance between brown (BAT) and white adipose tissue (WAT) in favor of BAT (Zhang et al., 2009). 

WAT adipocytes are responsible for triglyceride storage of and brake-down by mitochondria to 

generate energy in form of ATP while the BAT is mostly dedicated to generate energy in form of heat. 

Thus WAT adipocytes seem to be more dependent on autophagy for their maintenance. All of these 

parameters suggest that autophagy might fuel maintenance of obesity as well as insulin resistance. 

 

4.1.2 Diabetes 

Two types of diabetes can be distinguished. Type I diabetes (TID) results from autoimmune events that 

lead to pancreatic β islets destruction and thus to an impairment in insulin production a hormone 

required to maintain appropriate sugar levels in the blood. As already mentioned obesity and TIID are 

often linked to one another. Type II diabetes is associated to an insulin resistance that leads to high 

blood sugar since glucose cannot be processed properly to generate energy. It also characterized by a 

β Đell dǇsfuŶĐtioŶ aŶd iŶĐƌeased apoptosis. 

Autophagy has been suggested to be implicated in both TID and TIID. However this degradation 

process seems to be differentially regulated in insulin metabolism.  First of all insulin has been shown 

to negatively regulate autophagy by activating mTOR needed for protein synthesis. Additionally  insulin 

also activates protein kinase B which inhibits FoxO3 a transcription factor involved in the regulation of 

Atg gene expression (Mammucari et al., 2007). In contrast it appears that autophagy might be useful 

foƌ β-cell homeostasis in order to maintain structure, mass and function of these cells. Specific knock-

out of Atg7 iŶ β-cells resulted indeed in development of hyperglycemia and in reduced insulin 

production. This could be explained by the fact that β-cell death is increased and insulin granules and 

β cell mass are reduced in these transgenic mice. Furthermore the β cells exhibited mitochondria 

swelling and increased colocalization of p62 and polyubiquitinated proteins (Ebato et al., 2008). It 

appears that ER stress is an important component in diabetes development and that inducing 

autophagy could eventually contribute to the reduction of this feature. This was indeed observed in a 

mouse model for diabetes treated with rapamycin (Bachar-Wikstrom et al., 2013). Interestingly 

autophagǇ iŶǀalidatioŶ iŶ β Đells fƌoŵ a ŵouse ŵodel foƌ oďesitǇ (ob/ob mice) resulted in a TIID-like 

phenotype caused by increased UPR-induced ER stress that led eǀeŶtuallǇ to β Đell death (Quan et al., 

2011). It was demonstrated that iŶ TIID β Đell death Đould also ďe iŶduĐed thƌough aŶ aĐĐuŵulatioŶ of 

intracellular islet amyloid polypeptides (IAPPs) which are co-expressed with insulin. Rivera and 
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colleagues showed that autophagy was required for p62-mediated IAPPs clearance iŶ β Đells (Rivera 

et al., 2014).  

IAPPs as well as high glucose have also been proposed to be implicated in IL-ϭβ ŵediated iŶflaŵŵatioŶ. 

This pro-inflammatory cytokine depends on the activation of the NLR pyrin domain containing 3 

(NRLP3) iŶflaŵŵasoŵe aŶd has ďeeŶ shoǁŶ to ĐoŶtƌiďute to β Đell apoptosis thus to aggravate TIID 

pathogenesis (Masters et al., 2010). IL-ϭβ seeŵs also to pƌoŵote TNFα pƌoduĐtioŶ ďǇ adipoĐǇtes. 

Together these cytokines favor resistance to insulin and their interplay is one explanation of the link 

between TIID and obesity. A study published by Wen and colleagues demonstrated that IL-ϭβ and TNF 

induce insulin resistance by mediating phosphorylation of the insulin receptor-substrate 1 (IRPS1) at 

position 307. This has indeed been shown to inhibit the PI3K/Akt signaling pathway. Since insulin 

resistance has been linked to increased fatty acids availability in the blood with palmitate (PA) being 

the most abundant, they investigated its effect on the inflammasome. The found out that PA could 

indeed activate the inflammasome but that it also led the inhibition of AMPK and thus to decreased 

autophagic activity. These events were also associated to enhanced ROS production by mitochondria 

probably due to defective mitophagy. ROS being also activators of the NLRP3 inflammasome it seems 

that an inflammatory loop maintains the TIID phenotype (Wen et al., 2011). In a more recent study 

the authors used heterozygous mice deficient for Atg7 (Atg7+/-) and noticed that they develop an 

inflammation associated to TIID when crossed with ob/ob mice (Lim et al., 2014). Their findings were 

a break-through in the metabolic field as they demonstrated for the first time the role of autophagy 

on the whole organism rather than in a specific tissue or cell type. Evidence gathered so far from the 

different studies clearly indicate that dysregulated autophagy contributes to  development of TIID in 

obesity which makes it an interesting target for the development of drugs to treat metabolic disorders 

in general and TIID in particular. Furthermore autophagy appears to decrease with age which could 

thus explain the resurgence of those disorders in that regard. 

 

4.2 Autophagy in Autoinflammatory Diseases 

 

4.2.1 Special focus oŶ CrohŶ’s Disease 

CD is charaterized by chronic inflammation that can affect any part of the gastro-intestinal (GI) tract 

but mostly the end of the small intestine. This inflammation is provoked by a dysregulated immune 

system which starts reacting against pathogen invading the GI tract but gets overactivated. The 

exacerbated immune system start recognizing commensal bacteria and the immune response is 

further fueled by inflammatory cytokines leading to injury of the bowel wall.   
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Same as in autoimmune disease,s CD development is favored by an interplay of different factors which 

are environmental (smoking, infections, antibiotics) and genetic. Variants of NOD2 genes have for 

instance been strongly linked to CD (Hugot et al., 2001). Different studies have identified loss of 

function mutations in NOD2 in most CD patients (Vignal et al., 2007). Genome wide association studies 

(GWAS) also revealed a link between some variants of ATG genes and CD development (Rioux et al., 

2007). Single nucleotide polymorphisms were indentified in the ATG16L1 gene region with the 

replacement of a threonine by an alanine at position 300 (T300A) being the most recurant variant 

(Hampe et al., 2007). Further studies lead to the discovery of other variants in other genes essential 

for autophagy function as it was the case for immune-related GTPase M (IRGM) mainly implicated in 

xenophagy in response to mycobacteria and viruses (McCarroll et al., 2008; Parkes et al., 2007). 

Functional studies reveald in fact an interplay of ATG16L1 and NOD2 in association with NOD1 in 

response to invasive bacteria and more precisely to muramyldipeptide (MDP). Another interesting 

discovery was that the risk allele ATG16L1T300A as well as the most prevalent polymorphism for NOD2 

in CD lead to impaired clearance of MDP expressing bacteria through xenophagy. Thus bacteria-

induced autophagy seems to be essential to maintain gut homeostasis and to protect against 

inflammaroty bowel disease (Travassos et al., 2010). McCarroll and colleagues investigated the role of 

IRGM in the autophagic process and how it is involved in CD. They showed that down-regulating IRGM 

in intestinal cells led to reduced clearance of pathogenic adherent-invasive Escherichia coli (AIEC) 

known to colonize the ileum of CD patients. In this case mutations in the IRGM gene region pontentially 

alter the elimination of pathogenic bacteria in CD. In contradiction with these results the analysis of 

one particular IRGM risk allele showed that the mutation induced dedreased binding of IRGM mRNA 

to its target microRNA 196 (miR-196). It appears however that in healthy subjects miR-196 tightly 

regulates IRGM induced xenophagy. In CD, miR-196 is overexpressed which generates a strong 

downregulation of the protective variant of IRGM and thus reduced xenophagy. On the other hand, 

the risk variant increases but is inefficient in pathogen clearance. Hence in CD, IRGM regulation is 

disturbed and pathogenic bacteria accumulate in gut epithelial cells (Brest et al., 2011).   

The pro-inflammatory status in CD was the first human disorder linking dysregulated autophagy to 

inflammation. Further investigations showed that Atg16L1 deficiency resulted in impairment of 

granule secretion by Paneth cells which are specialized epithelial cells that contain antimicrobial 

peptides. Specific invalidation of Atg5 and Atg7 in the intestinal epithelium using the cre-lox system 

under the control of the Villin promoter resulted in an indentical phenotype as for the Atg16L1 

deficiency suggesting that autophagy plays a major role in the maintenance of functional Paneth cells. 

It appears however that these observations were dependent on outside environmental factors. As a 

matter of fact the same transgenic mice did not display any Paneth cell defect in a pathogen free animal 
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facility. Cadwell and colleagues finally identified the CR6 strains of norovirus as the mediators of this 

pheŶotǇpe. Dispite the ǀiƌal iŶfeĐtioŶ aŶd the geŶetiĐ iŶǀalidatioŶ of autophagǇ the ŵiĐe still did’Ŷt 

spontaneously develop colitis indicative of the requirement of additional environmental triggers to 

develop CD like symptoms. Dextran sodium sulphate (DSS) or ER-stress for instance were shown to be 

such triggers favoring intestinal inflammation in mice (Cadwell et al., 2008, 2009). However some 

studies aiming to uncover the role of autophagy in CD patients surprisingly showed that autophagic 

activity was increased in Paneth cells. Further investigations revealed that the observed autophagic 

activity was the result of increased autolysosomal degradation of secretory granules resulting in 

disturbed antimicrobial functions of the Paneth cells (Thachil et al., 2012). On the other hand it has 

been suggested that autophagy might regulate IL-23 secretion a cytokine known to drive chronic 

inflammation (Ciccia et al., 2014). Thus it appears that deregulated rather than reduced autophagy is 

in part responsible for the CD phenotype.   

As indicated previously (see section 3.1.4) Atg16L deficiency leads to increased IL-ϭβ seĐƌetioŶ ǁhiĐh 

was linked to the requirement of autophagy for negative regulation of the inflammasome. Both 

ATG16L1T300A and another Atg16L1 variant (ATG16L1T316A) strongly linked to CD pathogenesis have in 

fact been shown to be responsible for enhanced IL-ϭβ ƌespoŶse to ďaĐteƌial iŶfeĐtion in macrophages 

(Murthy et al., 2014). Thus autophagy serves as a break to inhibit exacerbation of the inflammatory 

ƌespoŶse ĐhaƌaĐteƌistiĐ foƌ CƌohŶ’s disease. However ATG16L1T300A appears to be unable to interact 

with NOD1 and NOD2 which favors inflammation in an autophagy independent mechanism (see 

section 1.4.4). As previously mentioned antigen presentation could also be impacted since Nod 

induced autophagy has been shown to enhance antigen presentation (Sorbara et al., 2013). 

 

4.3 Autophagy and Autoimmunity 

 

The interplay of innate and adaptive immune systems is very efficient in recognizing and eliminating 

infectious agents as well as cancer cells. The efficiency of the adaptive immune system to recognize an 

infinity of antigenic structures, imply the potential recognition of self-antigens. This recognition leads 

to the activation of the immune system after the onset of autoimmune disorders. Autophagy has been 

shown to be tightly linked to both innate and adaptive immunity regulation. Furthermore autophagy 

is regulated by environmental factors and single nucleotide polymorphisms highlighted some Atg 

genes as candidates in autoimmune disorders. Thus it appears quite relevant to think that this process 

is possibly involved in the establishment of autoimmunity. 
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Autophagy in the maintenance and break-down of immune tolerance (Fig 16) 

Autophagy has been shown to be required for T cell negative and positive selections in the thymus. A 

few studies (discussed in section 3.3.2 of this manuscript) have indeed demonstrated autoimmune and 

autoinflammatory events occurring due to an autophagy deficiency in the thymus (Aichinger et al., 

2013; Kasai et al., 2009; Nedjic et al., 2008; Schuster et al., 2015). The results of these studies suggest 

indeed a requirement of autophagy in TEC for appropriate T cell education and thus to maintain 

immune tolerance. The relevance of these observations to human pathologies, if any, remains to be 

determined. 

Given that autophagy seems to play a crucial role in antigen presentation, this process has also been 

considered to be involved in auto-antigen presentation in the periphery, especially in case of 

citrullinated antigens (CAs) as proposed by Ireland and Unanue (Ireland and Unanue, 2011). 

Interestingly CAs are major targets for autoantibodies in rheumatoid arthritis (RA) but have been 

associated to SLE as well. Furthermore neutrophil extracellular traps (NETs), which are chromatin 

structures dedicated to catch and neutralize pathogens, are an important source of CAs when 

undergoing NETosis, a form of danger signal-induced cell death that has been linked to the autophagy 

machinery as well (Khandpur et al., 2013; Pruchniak et al., 2015; Remijsen et al., 2011). Thus 

autophagy could be involved in the release of auto-antigens into the extracellular space which favors 

the induction of systemic auto-immune events 

Considering that autophagy plays an important role in the regulation of the type I IFN response towards 

DNA recognition by PRRs (discussed in section 3.1.4), it is possible to think that autophagy could also 

play role in the breakdown of tolerance at this level. This makes actually sense, since IC-DNA have been 

shown to activate autophagy in a TLR9-dependent manner. These complexes rendered immunogenic 

components from self which leads to autoimmunity when those are recognized. A source of self IC-

DNA can be apoptotic bodies or NETs. Moreover, a defective clearance of those apoptotic bodies has 

been linked to an imparied LAP, non-conventional autophagy described in section 1.4.2 (Henault et 

al., 2012). This suggests that inhibition of autophagy in human SLE leads to the well documented 

deficient efferocytosis favoring autoimmunity. 

Autophagy in pathophysiology of autoimmune diseases: 

Regarding the role of autophagy in the maintenance of cellular homeostasis, in particular for 

lymphocytes, it is plausible that this process might play a role in peripheral tolerance at this level. As a 

matter of fact autophagy deregulation has been associated in some extent to various autoimmune 

disorders.  
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In multiple sclerosis (MS) an inflammatory autoimmune disease of the central nervous system (CNS) 

characterized by dymyelination of axons, T lymphocytes infiltrating lesions have been shown to 

overexpress ATG5 (Alirezaei et al., 2009). Furthermore autophagy deletion in T cells renders mice 

resistant to experimental induced autoimmune encephalomyelitis (EAE), a mouse model for MS 

(Kovacs et al., 2012). Thus in this case autophagy seems to favor the establishment of an autoimmune 

disease. It must be noted however that Kovacs and colleagues’ ŵodel ǁas highlǇ lǇŵphopeŶiĐ, hence 

one must be careful before drawing conclusions in these conditions as the effect observed could also 

be due to limited T cell availability.  

In rheumatoid arthritis (RA) another inflammatory autoimmune disease, autophagy has also been 

proposed to participate in the maintenance of the inflammatory phenotype. RA results in the 

destruction of the cartilage and the joints due to the accumulation of pro-inflammatory cytokine 

producing immune cells as well as fibroblasts, the latter secreting matrix degrading proteases. In this 

context autophagy has been shown to be highly increased in fibroblasts in the pƌeseŶĐe of TNFα, thus 

protecting these cells from ER stress and subsequently prolonging their survival (Connor et al., 2012). 

In addition Lin and colleagues have reported increased autophagy in osteoclasts from RA patients 

related to an increased expression of Beclin 1 and Atg7. Moreover they noticed a reduced bone erosion 

in mice with an Atg7 conditional knock-out iŶ osteoĐlasts eǀeŶ iŶ pƌeseŶĐe of TNFα (Lin et al., 2013), 

suggesting that autophagy might participate in the overactivation of osteoclasts observed during RA. 

In T cells however, autophagy appears to be downregulated in RA patients. These cells also display an 

increased sensitivity to apoptosis as demonstrated by Zhen Yang and colleagues. They were able to 

link these observations to defective upregulation of 6-phosphofructo-2-kinase/fructose-2, 6-

bisphosphatase 3 (PFKFB3) in T cells of RA patients. This protein is involved in the maintenance of the 

Warburg effect in T cells in situations where a strong metabolic activity is required in order to generate 

sufficient energy. RA T cells are constantly activated and require a great amount of energy. The 

defective upregulation of PFKFB3 seems to be correlated to a decreased autophagic activity as well. 

Through LC3-II detection by Western blotting the authors show that autophagy is downregulated in 

RA T cells. They confirmed the link with PFKFB3 deficiency by knocking down this protein in TCR 

stimulated normal T cells. This lead to a decreased detection of LC3 while the overexpression of 

PFKBFP3 induced the reversed phenotype. The absence of autophagy in RA T cells contributes to their 

senescence leading to premature aging of the immune system a feature characteristic of this disease. 

Thus in RA autophagy decrease or increase seems cell dependent, but in one case or the other it 

contributes to disease pathogenesis. 
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Figure 16: Prouved and suspected implication of autophagy in autoimmune disease development. 

 

 

4.3.1 Role of autophagy in Systemic Lupus Erythematosus 

Autophagy has also been shown to be involved in other autoimmune disorders such as SLE. As a matter 

of fact various studies including ours, have reported a dysregulation of this process both in T 

(Alessandri et al., 2012a; Gros et al., 2012a) and B cells of  SLE patients as well as in mouse models for 

SLE (Clarke et al., 2015). In addition, susceptibility loci for ATG5 and DRAM1 have emerged from single 

nucleotide polymorphisms (SNPs) in genome wide association assays (GWAS) (Zhang et al., 2015b; 

Zhou et al., 2011a). 

Environmental and genetic factors are involved in autoimmune disease pathogenesis and can be regulated 

the autophagic machinery. Autophagy has been shown to modulate both innate and adaptive immunity. 

This process regulates cytokine secretion, osteaoclast homeostasis, apoptotic body clearance by 

macrophages as well as DC-mediated antigen presentation. In adaptive immune responses autophagy has 

been linked to the maintenance of T and B cell homeostasis, to B cell antigen presentation and to plasma 

cell survival. The question mark represents the possible involvment of the indicated mechanism in 

autoimmune disease development. RA: Rhumatoïd arthritis, SLE: Systemic lupus erythematousis; MS: 

Multiple sclerosis; NETs: Netrophil extracellular traps, TNFα: Tumor necrosis factor; IFNα: Interferon 

gamma. 
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4.3.1.1 SLE an immunological conundrum 

 

SLE pathophysiology 

SLE is a complex systemic autoimmune syndrome. It can indeed affect several organs. Patients 

suffering from this disease harbor a very polymorphic set of symptoms which vary from one individual 

to another. It mostly affects women (9 women/1 man) in child-bearing age (15-45 years old) and occurs 

in flares, meaning that patients experience periods of remission with no apparent symptoms and 

periods of relapse where the disease is re-activated.  

The most common manifestation of SLE is a skin malar rash which forms a ͞butterfly-like͟ oƌ a ͞ǁolf-

like͟ shape in the face. It is actually thought to be the source of the name given to this disease. Other 

clinical manifestations are arthritis, uveitis, kidney dysfunction, neurologic disorder among other 11 

criteria that have been established by the American College of Rheumatology (ACR) aiming to facilitate 

lupus diagnosis. Four of them are required to ascertain that a patient is actually suffering from SLE 

(reviewed in Tsokos, 2011). 

SLE pathogenesis (Fig 17) 

The symptoms underlying the pathophysiology of SLE result from inflammatory events that take place 

in different organs such as the skin, the kidney, the heart, the lungs and the brain. They can be caused 

by the deposition of immune complexes (ICs) in the organs due to a defect in clearance of apoptotic 

bodies. Apoptotic bodies are indeed an important source of auto-antigens such as double stranded 

DNA (dbDNA), histones as well as constituents of the spliceosome. Defective clearance of apoptotic 

bodies can indeed lead to chronic activation of the innate immune system through constant 

stimulation of PRRs via DAMPs but also increases presentation of autoantigens via the MHC thus 

leading to the activation of autoreactive T cells. Consequently this facilitates the subsequent activation 

of autoreactive B cells that start producing autoantibodies that form ICs responsible for fueling 

inflammation in tissue lesions.  

The lupus-associated inflammation is correlated to an increased production of type I IFN-induced 

genes. Interestingly, IFN-α is produced in response to viral infection mainly by pDCs as a consequence 

of the stimulation of the TLR-7 and 9 by single stranded RNA (sdRNA) and dsDNA respectively. It can 

also be produced after ICs containing TLR-7 and -9 ligands, like self nucleic acids, thus contributing to 

the exacerbation of the disease. Moreover, by inducing DCs maturation, type I IFNs in general favor 

the activation and differentiation of CD4 T cells (reviewed in Meyer, 2009). Mutations in the genes 

encoding for 3’repair exonulease 1 (TREX-1) have been associated to monoallelic SLE development. 

TREX negatively regulates the cytosolic IFN-stimulatory DNA response by degrading dsDNA and ssDNA. 
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TREX deficiency has been shown to be correlated to increased type 1 IFN responses (Crampton et al., 

2014). Supplementary evidence demonstrating the pathogenecity of type 1 IFN was given by the lupus 

mouse model New Zealand Black/White F1 ((NZB/W)F1). These mice are the first generation of the 

crossing between NZB and NZW mice and spontaneously develop autoimmune symptoms similar to 

human SLE around 6 months of age. Treating 9-18 weeks old (NZB/W)F1 mice with IFN-α induced an 

early autoimmune phenotype characterized by detection of anti-dsDNA autoantibodies, proteinuria 

and development of glomerulonephritis with the first symptoms occurring 10 days post-treatment 

(Mathian et al., 2005).  

B Lymphocytes in SLE pathogenesis 

As B cells differentiate into plasma cells that produce antibodies and autoantibodies in an SLE context, 

they have been extensively studied in order to establish their role in peripheral tolerance breakdown. 

In short it appears that lupus B cells are hyperactivated in response to BCR stimulation which leads to 

the increase in calcium flux. Furthermore the stimulation of TLR-7 and 9 by internalized DNA or RNA 

containing complexes, acts in synergy with the BCR signal, amplifying B cell activation. As B cells are 

antigen presenting cells, they could also contribute to T cell activation and thus to subsequent 

inflammation.  

T Lymphocytes in SLE pathogenesis 

T cells are indeed central players in SLE pathogenesis mostly because they are required to activate 

autoreactive B cells. Indeed, the treatment of a lupus-prone  mouse model (NZB/W)F1 with T cell-

depleting antibodies resulted in reduced disease progression and increased survival (Wofsy, 1990). 

Lupus T cells harbor in many cases a special phenotype. Analysis of T cells from SLE patients has shown 

that they are in fact hyperactivated when their TCR gets stimulated. This is apparently due to a 

modification of the TCR/CD3 complex. Contrary to a normal TCR/CD3 complex (see section 3.3.2) the 

ζ ĐhaiŶ is ƌeplaĐed ďǇ the γ ĐhaiŶ of FĐ ƌeĐeptoƌ ;FĐγRͿ ǁhiĐh ƌeĐƌuits the spleeŶ tǇƌosiŶe kiŶase ;“YKͿ 

instead of ZAP70. A consequence of this signalosome modification is an increased Ca2+ flux. 

Downstream of this signal calcium/calmodulin-dependent protein kinase type IV (CAMK4) 

phosphoƌǇlates tƌaŶsĐƌiptioŶ ƌepƌessoƌ ĐAMP ƌespoŶse eleŵeŶt ŵodulatoƌ α ;CREM-αͿ that represses 

IL-2 expression by mediating epigenetic modifications on its promoter while stimulating IL-17 

expression (Hedrich et al., 2011). Thus this partly explains one other characteristic of the lupus disease 

namely a decrease in IL-2 production that has been associated to an impairment in Treg cell survival, 

and a higher susceptibility of effector T cells for apoptosis. Furthermore CREM is suspected to also 

regulate SYK expression in lupus T cells (reviewed in Xu et al., 2012). Lupus T cells display other 

abnormalities such as the increase in mitochondria content as well as augmented mitochondrial 
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membrane potential, increased ROS production and ATP depletion (Nagy et al., 2004; PERL et al., 

2004). These features are also linked to the fact that T cells from lupus patients undergo spontaneous 

apoptosis. This leads to lymphopenia and even necrosis which is a form of death favoring inflammation 

(Emlen et al., 1994). Unlike normal T lymphocytes however they are resistant to activation-induced 

cell death. Additionally an overexpression of the co-stimulation molecule CD40L and the adhesion 

molecule CD44 could be detected. Thereby, an increased expression of CD40L has been associated to 

a better costimulation of autoreactive B cell which express CD40 leading to an enhanced autoimmune 

response. CD44 on the other hand is required for T cell migration to inflammed tissues. In SLE patients 

it could thus favor T cell infiltration into the kidneys subsequently causing the formation of 

inflammatory foci (reviewed in Moulton and Tsokos, 2011). As mentioned earlier, lupus T cells 

overexpress IL-17, a cytokine known to mediate pro-inflammatory responses by favoring the 

expression of cytokines such as IL-6, TNF-α oƌ CXCLϭϴ. Fuƌtheƌŵoƌe T helper subset proportions are 

modified in lupus patients as IL-17 secretion leads to an increase of the Th17 CD4 T cell subpopulation 

(Sha et al., 2009). Their role in this disease is however not overall accepted (reviewed in Martin et al., 

2014). 

All the T cell alterations have not been discussed hereafter but all in all it appears that the T cell biology 

is deeply modified during SLE. If these modifications are the consequences or the results of the 

breakdown of peripheral tolerance is however not very clear. Nevertheless since these cells contribute 

to the maintenance of an autoimmune phenotype by continuously delivering help to autoreactive B 

cells, they appear to be good candidates for potential therapeutic targeting.  

SLE etiology 

SLE is a multifactorial disease which requires both environmental and genetic components to be 

triggered. The environmental risk factors are diverse and have been identified throughout the years as 

triggering, maintaining or exacerbating the disease. One such environmental factor is the exposure to 

excessive ultra-violet (UV) radiations. They can indeed cause DNA damage, induce apoptosis but also 

lead to the secretion of pro-inflammatory cytokines thus favoring an autoimmune reaction. 

Furthermore a possible implication of pathogens mainly viruses in lupus pathogenesis has been 

proposed. Infection by Epstein-Barr virus (EBV) or human cytomegalovirus (hCMV) for instance have 

been associated to lupus development. Some chemical agents such as cigarette smoke, pesticides or 

mercury as well as female hormones (estrogens) have been shown to be important risk factors.  

The genetic component in lupus was mainly suspected because the disease predominantly affects 

women in African and Asian populations. Furthermore twin studies have revealed a 24-35% SLE 

concordance rate in monozygotic twins. Familial aggregation studies have allowed to establish that SLE 
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is indeed a multigenic disorder but also helped identify a number of susceptibility loci. It is however 

the genome wide association assays that have led to the identification of a great number of single 

nucleotide polymorphisms (SNPs) linked to SLE development with about 30 genes clearly associated 

to SLE disease pathogenesis (Ceccarelli et al., 2015; Ramos et al., 2010). Modern genetics as well as 

the use of mouse models have greatly contributed to point out genes that could eventually be involved 

in lupus pathogenesis. The first genes identified to harbor lupus susceptibility alleles were located 

within the human leucocyte antigen (HLA) region. Among those genes mutations in HLA-DR regions 

coding in humans for MHC-II were often described in SLE patients. Mutations in the genes implicated 

in the complement cascade also strongly predispose to SLE development. As a matter of fact complete 

deficiency in C1q or C4 implicated in the classical pathway are the only mutations associated to a 

monogenic lupus. These mutations are however quite rare but seeing the crucial role of these 

molecules in apoptotic body and IC elimination, it demonstrates the importance of clearing the cells 

from such components in order to maintain tolerance against self-antigens (Belot and Cimaz, 2012). 

Other SLE susceptibility loci in genes associated to phagocytosis have also been identified. Some of 

these geŶes ďeloŶg the FĐγ receptor family devoted to recognition of the constant region of antibodies 

when associated into ICs and thus leading to their elimination (Takai, 2002). Mutations in genes 

involved T and B cell development, function or signaling have also been associated to lupus. This is for 

instance the case for IKZF1, STAT4, PTPN22, BLK or LYN. The consequence of these mutations are often 

related to hyperactivation of the lymphocytes which leads to breack-down of tolerance (Crampton et 

al., 2014). 
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4.3.1.2 SLE and autophagy 

 

Genetic links between SLE and autophagy 

As previously discussed autophagy has been shown to be involved in a number of autoimmune 

diseases including SLE (section 4.3). One of the first studies indicating that autophagy might play a role 

in lupus development demonstrated that sera from SLE patients could induce autophagy in a human 

neuroblastoma cell line (Towns et al., 2005). Later on, a GWAS conducted in a Chinese population 

identified a SNPs in the intergenic region between PRDM1 and ATG5 (Gateva et al., 2009; Zhou et al., 

2011a) as associated to SLE development. Common ATG5 variants have been identified by other 

studies within or near the coding region as well as in other ATG such as ATG7 (Pickford et al., 2008; 

Zhang et al., 2015b). An independent study carried out on a northern European population however 

could not demonstrate a genetic link between ATG5 polymorphism and SLE (Järvinen et al., 2012). This 

Figure 17: Modelization of factors leading to SLE pathogenesis. 

(1) The interplay of environmental and genetic factors appears to favor disease development. (2) A set of 

symptoms that can be found in patients suffering from SLE a disorder affecting predomonantly women. (3) 

Overview of immunological events leading to tolerance breakdown. An excess of apoptotic bodies can be 

the source of autoantigens and DAMPs. DAMPs can activate cells from the innate immune system and pDCs 

in particular which leads to IFNȽ secretion and subsequently activate DCs. The adaptive immune system is 

activated by the presentation of autoantigen to autoreative T lymphocytes leading to autoreative B 

lymphocyte activation and differentiation into plasma cell secreting autoantibodies mostly directed againt 

nuclear antigens.The autoantibodies assemble into immune complexes that can deposit in various organs, 

provoking tissue lesions that induce inflammation leading to the symptoms in (2). Tissue lesions represent 

a new source of autoantigen that can stimulate TLRs exacerbating further the autoimmune response 

leanding to disease progression.  DAMPs: Danger-associated molecular patterns; IFNα: Interferon alpha  
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could be explained by the diversities that can be found in the different ethnic populations that could 

drive susceptibility to develop SLE or not. Interestingly a study once again in an Asian population 

described a susceptibility genetic variant to SLE near DRAM1 (damage-regulated autophagy modulator 

A) encoding  a lysosomal membrane protein able to induce autophagy when activated by p53 (Yang et 

al., 2013; Yen Mah et al., 2012) under genotoxic stress. These studies indicate that autophagy could 

constitute a pawn in SLE pathogenesis. 

Autophagy in SLE cellular functions 

On the functional level several cellular dysregulations in SLE have been associated to autophagy. For 

instance ICs recognition leading to the IFN signature by pDCs, one characteristic in SLE, has been shown 

to be autophagy-dependent (see section 1.4.2). Furthermore autophagy has been shown to mediate 

clearance of apoptotic bodies. Thus deficient autophagy could be associated to persisting apoptotic 

bodies susceptible to induce inflammatory responses if various organs but which are alos an important 

source of auto-antigens. All of this elements can lead to tolerance breakdown. Some studies strongly 

suggest the involvement of this process in SLE but wether autophagy is implicated in the development 

or maintenance of the disease still needs to be investigated. Our team and others showed that 

autophagy markers were increased in T cells from lupus patients as well as in mouse models for lupus 

((NZB/W)/F1 and MRLlpr+ mice) at a basal level and even more after activation (Clarke et al., 2015; Gros 

et al., 2012a). Our team demonstrated an upregulation of the autophagic activity in T cells specific to 

SLE patients and lupus-prone mice, that seemed correlated to disease aggravation in mice. It must be 

noted however that our study included only a few patients. These results were confirmed by Clarke 

and colleagues who showed further increased autophagy in lupus B cells a feature that had not been 

observed in previous studies. In addition, PierdoŵiŶiĐi’s teaŵ detected differences in naïve vs memory 

T cells  with autophagic activity being higher in memory T cells both in healthy controls as  well as in 

SLE patients (Alessandri et al., 2012b) which is in agreement with recent studies suggesting that 

autophagy might be important for the maintenance of memory CD8 T cells (Puleston et al., 2014; Xu 

et al., 2014a). Contrary to the studies by Gros, Arnold et al. and Clarke et al., however, the only 

difference they saw when comparing healthy donors to SLE patients was an increase of autophagy in 

naïve cells from SLE patients. Furthermore they observed that sera from SLE patients could induce 

autophagy in normal T cells but that surprisingly lupus T cells were resistant to that stimulus. According 

to the authors, this might be due to a chronic exposure to autoantibodies that could lead to selection 

of autophagy-resistant T cells in SLE but it can be speculated that due to an already high level of 

autophagy in these cells it is possible that it might not be possible to generate more autophagosomes.  
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Autophagy, mTOR and SLE 

The role of autophagy in lupus is further emphasized by the fact that rapamycin, the mTOR inhibitor, 

has been shown to restore normal T cell activation by normalizing calcium signaling thus reducing 

disease activity (Fernandez et al., 2006). This seems surprising as inhibition of mTOR is supposed to 

lead to autophagy induction. Autophagy however seems to favor SLE pathogenesis as indicated by 

some studies cited above. But it can be argued that the observed effect of rapamycin might be due to 

its immunosuppressive effects per se rather than the activation of autophagy. It could also be another 

indication that autophagy induction in T cells is indeed mTOR independent. As a matter of fact while 

autophagy markers are increased in SLE, so is mTOR activation, especially in T cells. It is documented 

that mTOR inhibition leads to an increase in Tregs, which participate in the reduction of exacerbated 

immune responses in SLE but also favors differentiation of CD8 memory T cells (Fernandez and Perl, 

2010). Furthermore in other contexts, rapamycin reduces the pDCs induced pro-inflammatory 

response, inhibits co-stimulation signal as well as graft vs host disease (GVHD). With this in mind it 

appears that the influence of rapamycin on the immune system is widespread. But it has been 

suggested that this might also depend on the dose administrated to the patients (Zhang et al., 2012). 

Nevertheless other drugs used to treat lupus such as chloroquine and hydroxychloroquine have been 

shown to modulate autophagy by blocking the flux. This suggests that inhibiting autophagy could be 

interesting for the design of new lupus treatments. Furthermore there is some evidence of autophagy 

deregulation B cells as well. Clarke and collegues demonstrated using an LC3-specific dye that B cell 

from lupus patients and lupus prone mice displayed a higher autphagic activity and that this process 

was especially required for plasmablast differentiation (Clarke et al., 2015). Since these cells produce 

autoantibodies that are the main feature of this disease autophagy could be specifically targeted to 

eliminate these cells. Recent studies on B cell autophagy have in fact proven a role of this process in 

the maintenance of long-lived plasma cells strengthening further the possible contribution of this 

process in the maintenance of an autoimmune phenotype.  
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The aims of my thesis project: 

 

Prior to the start of my PhD work, our team was able to show that autophagy was upregulated in T 

cells from both systemic lupus erythematosus (SLE) patients and lupus prone mice (MRLlp/lpr , 

(NZB/W)F1) (Gros, Arnold et al., 2012). My PhD research project aimed then at establishing the 

implication of autophagy in T and B lymphocyte function in normal and pathological humoral immune 

responses. For that purpose we generated mice models with a specific invalidation of Atg5 either in B 

or T cells. 

As discussed in the introduction of this manuscript several animal models with specific deletion of 

essential Atg genes in lymphocytes have been generated by other teams. They have allowed to answer 

a number of questions on the role of this process in lymphocyte biology. But until very recently in most 

models autophagy invalidation occurred early during development. Autophagy has been shown to play 

a central role in the generation of hematopoietic progenitor cells. In these conditions it can be 

speculated that the observations made so far on impaired lymphocyte survival upon activation could 

be related to an early developmental defect. Thus we were particularly interested in studying the role 

of autophagy in mature lymphocytes in vivo. As a matter of fact only few investigations have taken an 

interest in in vivo immune responses in absence of autophagy in those cells.  

The first investigations led to the generation of two mice models with a specific deletion in immature 

and mature B cells (Atg5f/- Mb1-cre and Atg5f/- CD21-cre respectively). We were able to show that 

autophagy is dispensable in early B cell development. We further observed that mice with an 

autophagy deficiency in peripheral B cells (Atg5f/- CD21-cre) were still able to generate an antigen 

specific short-rem humoral response. When studying the long-term humoral responses in C57BL/6lpr/lpr 

Atg5f/- CD21 cre autoimmune-prone mice however we noticed that the anti-nuclear IgG response was 

impaired. Thus it appears that in absence of autophagy long-term plasmocyte survival is compromised 

and leads to impaired antibody secretion especially in an autoimmune context. 

My PhD project was especially focused on studying the role of autophagy in T cells with two main 

objectives in mind. First we wanted to establish the role of autophagy in T cell-dependent humoral 

responses, in order to better understand how, when and why this process is important for these cells. 

Secondly we wanted to delineate through which signaling pathway(s) autophagy is induced in T cells 

both in a normal and a lupus context 

To address the first point, we generated transgenic mice deficient for autophagy only in mature T cells. 

We assed T cell function of these mice ex vivo and observed normal CD4 T cell survival and proliferation 

after activation. We immunized our mouse models with a T dependent antigen, Ovalbumin, and we 
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noticed that while the primary and even the secondary immune response was normal in amplitude, 

their long-term humoral response was impaired. This led us to the conclusion that the memory 

response was impacted by the absence of autophagy in T cells. In order to asses if the need of 

autophagy was intrinsic to CD4 memory T cells, we transferred autophagy incompetent CD4 T cells 

from immunized mice into recipient mice which were then immunized with the same antigen. 

Compared to the controls, their memory humoral response was indeed weaker. We moreover showed 

that the absence of autophagy had an impact on memory CD4 T cell survival by inducing a memory 

phenotype in CD4 T cells in vitro. We found that T cells deficient for autophagy had a survival defect 

under long term IL-7 treatment. Hence it seems that autophagy is essential for normal function of 

memory T cells.  

My second concern was to better understand the signaling pathways leading to autophagy induction 

after T cell receptor (TCR) stimulation. We either activated or inhibited the main pathways induced 

after TCR activation, in order to assess their impact on autophagic activity. For the time being we have 

been able to show that the calcium pathway is mainly involved in the induction of this process. This 

led us to think that downstream of the Ca2+ pathway, nuclear factor of activated T cells (NFAT) 

transcription factor might be involved in the regulation of some autophagy-related genes (ATGs). 

However quantitative PCR experiments did not confirm this hypothesis. Thereby we started exploring 

a possible post-transcriptional or post-translational regulation of ATG proteins by the activation of the 

calcium pathway. We focused more specifically on light chain 3 (LC3) levels regulation, since the 

expression of this ATG protein varies the most in our conditions when the Ca2+ pathway is modified. 

Preliminary results obtained using transcriptional and translational pharmacological inhibitors, 

indicate that the regulation might occur at the translational level. We intend to explore further this 

path and would like to identify which actors are involved in this regulation. 

All in all, the studies we have done so far on T and B cells have given new insights into the role of 

autophagy in lymphocytes biology, at different levels of their development and function. Targeting this 

process could be an interesting strategy in chronic inflammatory diseases involving lymphocytes. 
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1 Publication 1 
 

1.1 Forword 

 

Macroautophagy is dispensable for B cell development but required for 

homeostasis and long-term humoral autoimmune responses 

Johan Arnold, Diane Murera, Florant Arbogast, Jean-Daniel Fauny, Sylviane Muller and Frédéric Gros 

 

The aim of this study was to delineate the impact of autophagy in B cell development but also to 

evaluate the importance of this process in B cell mediated humoral responses in an autoimmune 

context. Previously described models proposed that autophagy is involved in early B cell development 

(Miller et al., 2014). Their observations were however based on a chimera mouse model. In this model 

B cells are deficient for autophagy already at the progenitor level which makes it tricky to differentiate 

if the observed survival defects result from autophagy requirements for B cell development or if they 

result from defects accumulated throughout hematopoiesis. Thus the generation of a mouse model 

with a specific deletion early in B cell development (Atg5f/- Mb1-cre) showed that contrary to available 

data autophagy is not required at that stage. Evaluating the role of autophagy in B cell peripheral 

functions was also of great interest especially since we showed that at the developmental level there 

was no specific difference. Thus we generated transgenic mice with a B cell specific autophagy 

invalidation at the mature stage using the Cre-Lox system under the control of the CD21 promotor 

which resulted in Atg5f/- CD21-cre mice. Immunization experiments on these mice revealed that early 

responses are not impaired. Using the same autophagy deletion strategy on mice with an autoimmune 

genetic background (C57B/L6lpr/lpr Atg5f/- CD21-cre) resulted in reduced autoimmune features.  

When we started this study only few data on B cell autophagy were available and the role of autophagy 

in B cell development was not very well established. As for the role in autoimmunity no study had 

taken real interest in the subject in an in vivo context at that time. Hence this works is an important 

contribution in this erea of research. 
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1.2 Autophagy is dispensable for B-cell development but essential for humoral 

autoimmune responses 
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2 Publication 2 
 

2.1 Forword 

 

Autophagy is integral to CD4 T cell memory maintenance  

Diane Murera, Johan Arnold, Florant Arbogast, Sylviane Muller and Frédéric Gros 

 

This work represents the main focus of my thesis and was centered on the role of autophagy in T cell 

function in periphery. At the start of this project the existing data had mainly allowed to establish that 

autophagy was induced upon T cell activation and was required for T cell survival and proliferation. T 

cell autophagy had however barely been investigated  in vivo, mainly because of the functional defects 

observed in vitro in previous models (Jia and He, 2011; Pua et al., 2009; Stephenson et al., 2009). Since 

in those models autophagy was deleted early in T cell thymic development we speculated that the 

observed T cell phenotype could be attributed to autophagy requirements at that stage. Thus we 

generated a mouse model with a specific autophagy deletion in mature T cells (Atg5ff dLck-cre). This 

model has allowed us to verify the accuracy of this hypothesis but also to study the impact of T specific 

autophagy impairment on humoral immune responses. We were able to determine that autophagy 

requirements in CD4 and CD8 T cells are not the same. Unlike CD8 T cells, CD4 T cells were able to 

undergo activation and proliferation in vitro. Furthermore we saw that autophagy is not required for 

early but rather long-term humoral responses. Even though recent data on the involvement of 

autophagy in memory CD8 T cell function has emerged, we demonstrate for the first time the 

requirement of this process for CD4 T cell memory maintenance.    
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2.2 Autophagy is integral to CD4 T cell memory maintenance 

 

Diane Murera1, Johan Arnold1, Florent Arbogast1, Sylviane Muller1,2 and Frédéric Gros1,3 
 
1CNRS, Immunopathology and therapeutic chemistry/Laboratory of excellence MEDALIS, Institut de 
Biologie Moléculaire et Cellulaire, Strasbourg, France 
2 University of Strasbourg Institute for Advanced Study, Strasbourg, France  
3 University of Strasbourg, Strasbourg, France 
* Corresponding author 
 

Abstract 

Autophagy is involved in T cell homeostasis. Previously described mouse models with autophagy 

deletion early in T cell development, led to functional and survival defects in the periphery. We wanted 

to delineate the roles of autophagy in CD4 T cells in the periphery by generating mouse models with 

deletion of autophagy only at a mature stage. In Atg5f/f dLck-cre, the invalidation of autophagy 

impacted CD8 T cell survival but no consequence was observed on CD4 T cell in vitro function at short-

term. Our mouse model, thus suitable for in vivo studies about the role of autophagy in CD4 T cells 

during humoral responses, was then immunized with the T-dependent antigen ovalbumin (OVA). The 

early humoral response ǁasŶ’t significantly different between Atg5f/f dLck-cre and control mice. 

However, immunization at a later time point, showed that autophagy in T cells was required for long-

term antibody production. Autophagy allows late survival of antigen stimulated T cells, as shown by 

adoptive T cell transfer assays in naive mice.  Finally, memory CD4 T cells differentiated in vitro are 

shown to depend on autophagy for their survival, and to regulate their mitochondrial homeostasis. 

Central memory T cells predominantly need autophagy for maintenance. Autophagy in T cells 

constitutes a seducing target to inhibit long-term humoral immunity. Inhibition of autophagy could be 

envisaged to treat systemic autoimmune diseases, by impeding chronic memory autoreactive 

lymphocyte survival, or to improve vaccination efficiency. 
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Introduction 

 

Autophagy is a catabolic process, required to produce energy under several stress signals.  Moreover, 

basal autophagy is important to remove protein aggregates, damaged organelles such as defective 

mitochondria or excess endoplasmic reticulum (ER) in processes respectively called mitophagy and 

reticulophagy. Basal autophagy has been shown to be crucial in long-lived cells such as neurons or 

metabolically active cells such as hepatocytes. Immune cells like T lymphocytes exhibit differential 

energy demands according to their developmental stage or activation status. It is widely accepted that 

naive T cells require glycolysis early after activation, to quickly mobilize energy. In contrast memory T 

cells are long-lived cells, that may use differential energy production systems to survive for months or 

years after the initial activation (1). They are particularly dependent on fatty acid oxidation (FAO) that 

takes place in mitochondria, to generate ATP. Moreover removal of damaged cellular components may 

also require autophagy at long-term. 

Autophagy has been initially shown to play a role in peripheral T cell homeostasis in mouse chimera 

models (2). Thanks to several conditional deletion models, it was shown that autophagy was essential 

for both CD4 and CD8 T cell survival and proper function (3-9). However these models used promoters 

to drive deletion that are active early during T cell differentiation. These models could thus not allow 

to distinguish if functional or survival defects were due to early developmental issues, or consequent 

to real peripheral homeostatic disturbance. One study addressed this issue by deleting with Estrogen 

Receptor-cre promoter the essential autophagy gene Atg3, only after T cells had matured (6). This 

study brought interesting findings about the autophagy requirement for ER homeostasis, several days 

after initial activation. However these experiments were driven in vitro and no integrated immune 

response could be studied. More recently two studies addressed this question in vivo, for CD8 T cells, 

by transfer experiments and conditional deletion models active only at the CD8 T cell effector stage. 

They both concluded that CD8 T cells require autophagy for their survival as memory cells (10, 11), 

creating an interesting parallel to other studies linking autophagy to the survival of other long-lived 

cells like neurons. 

We generated in this work mice with conditional deletion of Atg5, only in mature T cells thanks to the 

use of the distal Lck promoter-driven conditional deletion (12). We report here new findings about the 

role of autophagy in peripheral T cell function, in the absence of any developmental issue. We 

moreover used this model and confirm the essential role for autophagy in memory T cell survival. We 

describe here, in addition to its proven role in CD8 memory maintenance, a role in humoral immunity, 

through the long-term memory CD4 T cell survival. 
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Results 

 

Autophagy is not required for peripheral CD4 T cell homeostasis 

Previous conditional deletion models could not totally resolve the question whether or not autophagy 

was required for mature T cell homeostasis. We thus decided to cross Atg5f/f mice with mice expressing 

CRE recombinase under the control of the distal part of the Lck promoter (dLck-cre), active only in 

mature T cells. We first assessed the efficiency of the deletion. As shown in figure 1A, no ATG5-ATG12 

conjugate was visible by immunoblot in peripheral T cells isolated from Atg5f/f dLck-cre mice, in regard 

to littermates, and to thymocytes from both mice. No conversion from LC3-I to LC3-II was detectable, 

even under protease inhibitor treatment, confirming the efficiency of autophagy invalidation. We then 

investigated the impact of this deletion during T cell development. As shown in Figure 1B and contrary 

to previously described models, no difference in thymic cellularity was found, indicative of an absence 

of developmental deregulations. No difference in the proportions of thymocyte developmental stages 

was detected either (Figure 1C, left). These findings are in accordance with the absence of ATG5 

deletion in the thymus, as proven by immunoblots shown in figure 1A. We then assessed the 

proportions of lymphocyte populations in secondary lymphoid organs. In agreement with previous 

models, we found a decrease in CD8 T cell proportion and number in the spleen (Figures 1B and C right) 

from Atg5f/f dLck-cre mice compared to controls. However, in sharp contrast to all conditional deletions 

reported earlier, we found no difference in CD4 T cell numbers and proportions among other 

populations. This finding was also true in other lymphoid organs like lymph nodes (Figure S1). 

 

Autophagy is dispensable for early CD4 T cell activation 

We then aimed at understanding the decrease of CD8 T cells in Atg5f/f dLck-cre mice compared to 

control mice. We detected in spleens from Atg5f/f dLck-cre mice, an increased cell death only in CD8 T 

cells, and not in CD4 T cells (Figure 2A). Survival defects could thus explain the previously mentioned 

decrease in CD8 T cell number. Thus ATG5 contrary to CD4 T cells is essential for CD8 T cell homeostatic 

survival. We then isolated T cells from Atg5f/f dLck-cre mice to activate them. We first measured 

survival. In all TCR-related stimulations performed, we could not evidence any significant defect in 

survival, in CD8 nor CD4 T cells (Figure 2B). It thus seems that survival defects in CD8 T cells are mainly 

related to homeostasis defects. We then assessed the basal mitochondrial load in isolated T cells, as 

mitophagy was shown to be crucial for T cell homeostasis. First we found that CD4 T cells exhibit a 

higher mitochondrial mass in control T cells, in comparison to CD8 T cells (Figure 2C). Interestingly, we 

reproducibly detected more T cells with a high mitochondrial load, or T cells containing mitochondria 

with decreased membrane potential in CD8 T cells isolated from Atg5f/f dLck-cre mice. This could mean 
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that ATG5 is indeed required after thymus egress, in CD8 T cells and not in CD4 T cells, to reduce 

mitochondrial mass. This could explain the homeostatic defects observed in CD8 T cells deficient for 

ATG5 at the mature stage. Finally we could see a specific functional defect in vitro after three days of 

TCR-related stimulations in CD8 T cells but not in CD4 T cells (Figure 3A and B). This confirms that 

autophagy is required for CD8 T cell homeostasis and function while dispensable for short-term 

survival and activation for CD4 T cells. 

  

CD4 T cell autophagy increases the efficiency of long-term humoral responses 

As CD4 T cells are poorly impacted at early time points by the absence of autophagy in our model, we 

intended to define precisely the role of autophagy in T cells during humoral responses. We immunized 

mice with the T-dependent antigen ovalbumin (OVA), and performed a boost at day 10 as indicated in 

figure 4A. We followed the immune response by sampling blood at several time points during the 

immunization, and 12 weeks after the start of the experiment. We could not detect any difference in 

the titers of anti-OVA antibodies between control mice and mice deficient for autophagy in T cells at 

early time points (Figure 1B). However, from 8 to 12 weeks, we noticed a significantly reduced amount 

of anti-OVA antibodies in mice with Atg5 deficiency in T cells. We then performed a second boost to 

elicit immune memory. We could then observe that the response was weaker in Atg5f/f dLck-cre mice. 

This effect could be due to global immune depression in these mice or early T cell senescence in the 

absence of autophagy in mature T cells. Interestingly, we could not detect any significant decrease of 

gammaglobulinemia in Atg5f/f dLck-cre mice compared to controls arguing against a global 

immunosuppression (Figure 1C). We then immunized young mice and compared the results to the 

ones obtained with mice aged from 20-24 weeks to asses if old mice exhibited a decreased response 

to first challenges (Figure 1D). We could not observe any significant difference between control mice 

and mice with autophagy-deficient T cells, corroborating previously cited results. We could not observe 

either differences immunizing old mice and comparing their production of anti-OVA antibodies to the 

one from young mice, at short-term. These results show that Atg5 deficiency in CD4 T cells does not 

induce early senescence of T cells. They rather suggest a specific effect on the onset of a memory 

immune response. To further show that an intrinsic defect in CD4 T cell memory is the cause of the 

decreased long-term humoral response, we performed transfer experiments with antigen-experienced 

CD4 T cells and B cells in naive mice as shown in Figure 5A. B cells were purified from B6 mice and CD4 

T cells from control or Atg5f/f dLck-cre mice. We first observed an anti-OVA IgG response in naive mice 

transferred with antigen-experienced CD4 T cells (Figure 5B) compared with mice that received naïve 

wild type T cells (not shown). This shows that we are able to transfer memory as IgG are reminiscent 

of a secondary immune response. Interestingly, the anti-OVA IgG response is weaker when naive mice 
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were transferred with autophagy-deficient CD4 T cells before the immunization. In contrast, we 

observed a normal IgM response. These results show that an intrinsic defect in memory CD4 T cell 

compartment impairs the generation of a memory humoral response. 

 

Autophagy is essential for CD4 T cell central memory survival 

We then aimed at understanding at which level autophagy is important for CD4 T cell memory. We 

purified CD4 T cells from control or Atg5f/f dLck-cre mice. We first stimulated them by anti-CD3 and 

anti-CD28 antibodies. In accordance with our previous findings we could not detect any difference in 

terms of survival, in the absence or presence of autophagy in CD4 T cells, in the days following this 

initial activation, if no other survival signal was added (Figure S2). We then aimed at polarizing cells 

with cytokines, and at culturing them during a long period of time, in the presence of IL-7. The latter 

cytokine is known to drive and to maintain a memory phenotype. Interestingly, during the first days 

after activation, the survival rate was irrespective of CD4 T cell genotype (Figure 6A). However, in any 

of the tested Th polarization, we could observe from 21 days on after the start of the culture until the 

end of the experiment a significant decrease in survival of CD4 T cells from Atg5f/f dLck-cre mice (Figure 

6A and B). This decrease was more pronounced in Th2 and Th17 polarized cells. During this experiment, 

we monitored the acquisition of the memory phenotype by CD44 and CD62L staining. We showed 

again that initial activation of CD4 T cells is poorly impacted by the absence of autophagy. In fact, 

considering wild type and littermate cells, the proportion between central memory (CM) and effector 

memory (EM) cells was normal in cells purified from Atg5f/f dLck-cre-mice (Figure 7A and B). However 

after day 21, Atg5-deficient CD4 T cells failed to efficiently maintain a CM phenotype, compared to 

controls, as shown by the stagnation of the CM/EM ratio (Figure 7A, B and C). The results shown here 

for Th0 cells, were also observed for other polarizations with the exception of Th1 cells where 

statistical significance was not reached (Figure S3). We then aimed at understanding the underlying 

defects leading to impaired survival of memory cells in the absence of Atg5. We first observed that 

from day 0 to day 42, CD4 T cells maintain a relatively high load of mitochondria (Figure 8A and B). We 

could also observe a significantly increased population of T cells with « damaged mitochondria », 

meaning cells with depolarized mitochondria, together with a failure to maintain high loads of healthy 

mitochondria (Figure 8A, B and C). This suggests that survival of memory CD4 T cells is indeed 

dependent on the maintenance of a high load of healthy mitochondria, and that they may rely on 

mitophagy for survival. Indeed, when CD4 T cells are deficient for autophagy, T cells exhibit a higher 

levels of malfunctioning mitochondria, which could explain the increase in cell death observed in 

memory CD4 T cells from Atg5f/f dLck-cre mice. 
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Discussion 

 

We generated in this work the first model with T cell deletion in all naive T cells, but only from the 

mature stage on. We could thus bring new information about the precise role for autophagy in T cell 

homeostasis. As a matter of fact, previous models could not exclude a negative impact of autophagy 

deletion during T cell development, leading to the reported acute impaired survival and function. The 

work by Jia et al, used another model to be able to discriminate between developmental defects and 

break in peripheral homeostasis(6). The use of estrogen receptor promoter enabled to describe 

defects during long-term cultures after deletion of Atg3 induced by tamoxifen treatment. However, 

this model did not allow to study the behaviour in vivo of conditionally deleted T cells. We thus report 

here that CD4 T cells are poorly sensitive to autophagy impairment in the mature stage, contrary to 

CD8 T cells. It had been reported previously that mitophagy was a major actor for T cell survival. Indeed, 

thymocytes exhibit a high mitochondrial load. During thymus egress of differentiated cells, mature T 

cells lose a considerable part of their mitochondrial load. Interestingly, we report that this decrease in 

mitochondrial load is stronger in CD8 T cells than in CD4 T cells. It could explain the selective survival 

defect of CD8 T cells in the absence of autophagy. In relation to these findings, we found that in vitro 

CD4 T cell activation, survival and proliferation were not affected by the impairment of autophagy. In 

contrast, CD8 T cells exhibited proliferation defects when autophagy is absent. We can thus conclude 

that autophagy is not required for naive CD4 T cell homeostatic survival and short term activation, 

while naive CD8 T cells require autophagy. 

We then validated our model for in vivo experiments about CD4 T cell-related immunity, as no major 

defect was seen in their basal number and function. In the same line as this assessment, we found that 

autophagy was not required for short-term antibody response against a T-dependent antigen. 

Moreover, gammaglobulinemia was found to be normal in Atg5f/f dLck-cre mice, confirming that no 

major humoral immunosuppression occurs. Interestingly, however, we observed that long-term 

immune response was compromised in the absence of autophagy in CD4 T cells. As we could rule out 

increased senescence of the CD4 T cell compartment with Atg5 deficiency, we hypothesized that 

memory CD4 T cells were selectively impacted by the absence of autophagy. Indeed, we observed that 

antigen experienced CD4 T cells transferred to a naive host were unable to recapitulate the memory 

effect. Moreover, memory CD4 T cells differentiated in vitro from naive cells, exhibited decreased 

survival. This defect was more pronounced in Th2 and Th17 cells, and affected primarily central 

memory T cells. These results are in line with previous reports showing that autophagy was integral to 

memory CD8 T cell survival. Using transfer experiments with autophagy deficient T cells (10), or mouse 

lines with autophagy deletion only at the effector stage(11), it has been previously shown that 
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autophagy allowed the maintenance of the memory CD8 T cell compartment, and was not dispensable 

for influenza memory cytotoxic response. Puleston and colleagues further showed that memory CD8 

T cells required autophagy for limitation of mitochondrial load and generation of reactive oxygen 

species leading to increased apoptosis.  

We report here that memory CD4 T cells also require mitophagy for proper removal of damaged 

mitochondria. We further report that this process seems more important for CM T cell survival than 

for effector cells. Memory T cells have been shown to particularly rely on energy produced by 

mitochondria, such as FAO, for their long term survival. We cannot rule out either an importance of 

proper ER content control by autophagy as suggested by Jia et al.  

In conclusion, we report here the crucial importance of autophagy in CD4 T cell-related immune 

responses. In addition to the previously described role of autophagy in CD8 T cell memory response 

and thus cytotoxic mediated effector responses, we can postulate that optimal antibody responses 

also need autophagy in T cells. These results can also be put in line with the described roles for 

autophagy in memory B cells and plasma cell long-term maintenance (14-18). Thus it appears that 

increasing autophagy could optimize the efficiency of humoral responses at several levels, as it was 

recently shown by “iŵoŶ’s team (10). Moreover, inhibiting autophagy could limit the chronicity of 

systemic autoimmune responses not only at the level of the B cell lineage as recently described (17), 

but also by limiting he persistence of pathogenic autoreactive CD4 T cells. 
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Material and Methods 

 

Mice 

Atg5f/f mice, with a flox sequence flanking exon 3 of Atg5, backcrossed on a C57BL/6 (B6) background, 

were a kind gift from Prof. N Mizushima (13). Atg5f/f mice were crossed with distal Lck (dLck)-cre mice 

for mature T-cell specific deletion (12). In all experiments, Atg5f/f dLck-cre mice with T-cell specific 

deletion of Atg5 were compared with littermates (B6 Atg5f/+ dLck-cre mice or Atg5f/f mice). Mice were 

genotyped for the Atg5 alleles (WT, with constitutive or induced deletion) with the primers A (exons 

3–1), ϱ′-GAATATGAAGGCACACCCCTGAAATG-ϯ′; B (short 2), ϱ′GTACTGCATAATGGTTTAACTCTTGC-ϯ′; C 

(check2), ϱ′-ACAACGTCGAGCACAGCTGCGCAAGG-ϯ′; D (5L2), ϱ′-CAGGGAATGGTGTCTCCCAC-ϯ′ using 

PCR (94 °C (4 min); 35 cycles of 94 °C (30 s), 60 °C (30 s), 72 °C (1 min); 72 °C (5 min)). The cre transgene 

expressed under the control of dLck promoter was detected with primers cre-1 ϱ′-

ATGGTGCCCAAGAAGAAGAG-ϯ′; cre-2 ϱ′-CAGGTGCTGTTGGATGGTCT-ϯ′ using PCR (94 °C (5 min); 35 

cycles of 94 °C (30 s), 58 °C (30 s), 72 °C (1 min); 72 °C (10 min)). Mice were genotyped with the 

REDExtract-N-Amp Tissue PCR Kit (Sigma-Aldrich, St. Louis, MO, USA). All mice were bred and 

maintained in accordance with guidelines of the local Institutional Animal Care and Use Committee 

(CREMEAS). 

 

Real-time PCR 

Total RNA was isolated from 5 × 106 purified T cells using the RNeasy Mini Kit or from 105 cells using 

the RNeasy Micro Kit (Qiagen, Courtabeuf, France, 74103 or 74004) according to the ŵaŶufaĐtuƌeƌ’s 

instructions. After treatment by DNAse (Qiagen, 79254) to remove residual genomic DNA, mRNA was 

retro-transcribed with the Maxima first strand synthesis kit into cDNA (ThermoFisher, Illkirch, France). 

Fifteen nanograms of cDNA were used for real-time PCR (RT-PCR) on StepOne apparatus (Thermo-

Fisher). Briefly, Atg5 and Gapdh cDNAs were amplified using Taqman Gene Expression Assays provided 

by ThermoFisher (Mm00504340_m1 and Mm99999915_g1). Amplicons and probes were designed to 

span two exons, limiting the risk of amplifying residual genomic DNA. Relative Atg5 mRNA 

quantifications were made by defining ȴCT (CT Gapdh− CT Atg5 where CT is 'Cycle Threshold') and 

ȴȴCT ;ȴCT saŵple−ȴCT of one C57BL/6 mouse sample used for each plate) using StepOne software 

(ThermoFisher). Results shown represent 2−ȴȴCT values, where one same control sample is used on each 

plate and arbitrarily equal to 1. 
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Flow cytometry 

Antibodies (Abs) used for flow-cytometry analysis were either purchased from BD Biosciences (Le Pont-

De-Claix, France) or from eBioscience (San Diego, CA, USA). For surface stainings: allophycocyanin 

(APC)-cyanine 7-labelled anti-mouse TCR-β (clone H57-597, BD Biosciences 553139), phycoerythrin 

(PE)-labelled anti-mouse CD62L (clone MEL-14, BD Biosciences 553151), fluorescein isothiocyanate 

(FITC), APC or peridinin chlorophyll (PerCP) cyanine 5.5-labelled anti-mouse B220 (clone RA3-6B2, BD 

Biosciences, 553087, 553092, and 552771), FITC-labelled anti-mouse CDϯε (clone 145-2C11, BD 

Biosciences 553061), APC cyanine7, PE or PerCP cyanine 5.5, APC-labelled anti-mouse CD4 (clone 

GK1.5,552051, eBioscience 12-0041 or clone RM4-5,  BD Biosciences, 550954, 553051), PerCP cyanine 

5.5-labelled anti-mouse CD8 (clone 53-6.7, BD Biosciences, 551162), APC, APC cyanine 7 or FITC-

labelled anti-mouse CD44 ( clone IM7,  BD Biosciences 559250, 103027, 553133), PE-labelled CD127 

(IL-7R, clone A7R43 eBioscience 12-1271-82). For intracellular stainings: PE-labelled anti-mouse IL-4 

(clone BVD4-1D11, BD Biosciences, 554389), PE-labelled anti-mouse IL-17A (clone eBio17B7, 12-7177-

81), FITC-labelled anti-mouse IFN-γ (cone XMG1, BD Biosciences, 554411), Alexa-647-labelled anti-

mouse/human TBET (clone O4-46, BD Biosciences, 561267), PE cyanine7-labelled anti-mouse GATA3 

(clone L50-823, BD Biosciences, 562683), PerCP cyanine 5.5-labelled anti-mouse RORγT (cloneQ31-

378, BD Biosciences, 560405). Splenocytes or lymph node cells were incubated with fluorochrome-

conjugated Abs and with unlabeled rat anti-mouse CD16/CD32 monoclonal Ab (mAb, clone 2.4G2, BD 

Biosciences, 553142) to block Fc receptors, for 15 min at 4 °C in phosphate-buffered saline (PBS) pH 

7.4 containing 2% (v/v) fetal calf serum (FCS). Surface stainings were performed for 15 min at 4° in PBS 

pH 7.4 containing 2% FCS. Intracellular stainings were performed after surface marker labelling using 

the intracellular fixation and permeabilization set from eBioscience (88-8824-00). Cells were incubated 

30 min in the fixation buffer, followed by a 10 min incubation with anti-CD16/32 antibody in buffer 

furnished by supplier and were finally stained for 45 min with antibodies indicated above.  Between 

each step, cells were washed with supplieƌ’s buffer. Mitochondria content and membrane potential 

were measured by incubating cells 15 min at 37 °C in complete medium in the presence of mitotracker 

green and mitotracker deep red (Fisher Scientific, Pittsburgh, PA, USA; M-7514 and M22426) at 1 µM 

each. Cell survival was assessed using FITC or APC-labelled Annexin V (BD Bioscience, 556419, 550475) 

in combination with propidium iodide (PI) at 1µg/mL (Sigma-Aldrich, Saint-Quentin, France; P4170) or 

7-aminoactinomycin D (7-AAD, BD Pharmingen, 559925) following suppliers indications. Data were 

collected on a Gallios flow cytometer (Beckman Coulter, Fullerton, CA, USA) and analysed using FlowJo 

software (FlowJo LLC, Ashland, OR, USA). 
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Western Blot 

The Abs used for Western immunoblotting were specific for ACTB (Santa Cruz Biotechnology, clone C4, 

sc-47778), LC3 (MBL, clone 51–11, ref M115–3) and ATG5 (Rabbit Polyclonal, Novus, NB110-53818). In 

some experiments, lysosomal protease inhibitors E64d and pepstatin A (Sigma-Aldrich, P5318 and 

E8640) were added at 5 µg/mL each. When indicated, cells were stimulated with hamster anti-mouse 

CD3e (5 µg/ml, clone 145-2C11, 55305, BD Pharmingen), hamster anti-mouse CD28 (5 µg/ml, and 

Clone 37.51, 553294, BD Pharmingen), Phorbol-12-myristate 13-acetate (PMA, 50ng/mL, Sigma) or 

ionomycin (1µM, Sigma). To evaluate the autophagosomal membrane load, whole cell proteins were 

extracted from cultured cells using Laemmli buffer (Tris-HCl 125 mM pH 6.8; 2% (w/v) sodium dodecyl 

sulfate (SDS); 10% (v/v) glycerol; 5% (v/v) β-mercaptoethanol). Cell lysates were separated on 4-20% 

gradient gels (Biorad) and then transferred onto a polyvinylidene difluoride membrane. Membranes 

were blocked with PBS containing 0.1% (v/v) Tween 20 (PBS-T) and 3% (w/v) non-fat dry milk for 1h 

and then incubated overnight at 4°C with 1 μg/ŵL anti-LC3 antibody in PBS-T containing 1% non-fat 

dry milk, or for 1h at room temperature with 1µg/ml anti-ATG5 antibody in PBS-T containing 1% non-

fat dry milk. After washing with PBS-T, membranes were incubated for 30 min at room temperature 

with goat anti-mouse IgG antibody (Southern Biotech, Birmingham, Alabama, 1030-05) conjugated to 

horseradish peroxidase (HRP). Signal was detected using enhanced chemiluminescence detection 

reagents (Immobilon Western, Merck Millipore, Darmstadt, Germany, WBKLS0500).  

 

Immunizations 

Eight to twelve week-old mice were injected intraperitoneally (i.p.) on day 1 and 10. A third 

immunization was performed 12 weeks after the first one. Mice were bled on days 5 and 15, on weeks 

8 and 12 + 5 days. Mice were injected with 100 µg OVA (Sigma) in complete FƌeuŶd’s adjuvant (CFA, 

Sigma) for the first injection and with 100 µg OVA in incomplete FƌeuŶd’s adjuvant (IFA, Sigma) for the 

second and third injections. Detection of anti-OVA IgM and IgG was assessed by ELISA. 

 

Antibody detection by ELISA 

IgG, IgM absolute quantities and titers were measured in serum from immunized mice. To measure 

anti-OVA specific antibodies, 96-well ELISA Maxisorp plates (NUNC, Denmark) were coated with OVA 

(10 µg/ml, Sigma) in 50mM sodium carbonate buffer (pH 9.6) over-night at 4°C. The wells were blocked 

with PBS-0,1 % tween 5% (w/v) milk for 1h at 37°C and incubated with diluted sera for 1 h at 37°C. 

HRP-conjugated anti-mouse isotype-specific antibodies (polyclonal antibodies purchased from Jackson 

Immunoresearch) were used as revealing antibodies. Absorbance was measured at 450 nm, after 

revelation with tetramethylbenzidine to the wells, and stop of the reaction by 1M HCl. Titers were 
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determined as the last dilution giving an absorbance equal or superior to 0,2. IgG and IgM absolute 

quantifications were performed using the IgM/IgG quantification kit from Bethyl laboratories following 

ŵaŶufaĐtuƌeƌ’s indications (Bethyl, Montgomery,TX, USA, E90-101/E90-131). IgM/IgG concentration 

of the different samples was evaluated following a standard curve. 

 

Cell isolation and culture  

Spleens were collected from B6, dLck-cre Atg5f/f mice or from littermates. Splenic CD4 or CD8 T cells 

were purified by negative selection. T cells were sorted from spleen cell suspension with the 

Dynabeads untouched mouse CD4 or CD8 cells isolation kit (ThermoFisher Scientific, Illkirch, France, 

respectively 11415D and 11417D).  Cells were >90% pure according to TCRβ+/CD4+/B220- or 

TCRβ+/CDϴα+/B220- population quantifications by cytometry. When indicated, cells were stimulated 

with hamster anti-mouse CDϯε (5 µg/ml, clone 145-2C11, 553057, BD Pharmingen), hamster anti-

mouse CD28 (5 µg/ml, and Clone 37.51, 553294, BD Pharmingen), Phorbol-12-myristate 13-acetate 

(PMA, 50 ng/mL, Sigma) or ionomycin (1 µM, Sigma). For the analysis of proliferation, cells were 

stained with 0,5 µM carboxyflurescein isothiocyanate succinimidyl ester diacetate (CFSE, Sigma) before 

stimulation.  

 

CD4 T cell polarization and long-term culture  

After isolation, splenic CD4 T cells were cultured at 37°C, 5% CO2 in RPMI 1640 medium (Lonza 

BioWhittaker) supplemented with 10% FCS, 10 mg/mL gentamycin (Lonza BioWhittaker), 10 mM 

HEPES (Lonza BioWhittaker) and 0.05 mM β-mercaptoethanol (Lonza BioWhittaker) with the according 

cytokine/antibody cocktail for each T helper cell subset. For the non-polarized condition (Th0), cells 

were only stimulated with anti-mouse CD3 and CD28 (clone 145.2C11, 553057, and Clone 37.51, 

553294) at the same concentration as for previous cell cultures (see cell isolation and cell culture). In 

addition to the anti-CD3/CD28 stimulation, anti-mouse IL-4 (10µg/mL, clone 11B11, 554432) and 

recombinant mouse IL-12 (2ng/mL, p70, 554592) were added for Th1 polarization, anti-mouse IFN-ɣ 

(10µg/mL, clone XMG1.2, 554408) and recombinant mouse IL-4 (15ng/mL, 550067) for Th2 

polarization and finally anti-mouse IL-4, anti-mouse IFN-ɣ, recombinant mouse IL-6 (10ng/mL, 554582) 

and recombinant mouse TGF-βϭ (1 ng/mL, R&D Systems, 7666-MB-005) for Th17 polarization. The cells 

were cultured at a density of 105 cells/well in a 96 well plate for four days. Then, cell polarization was 

assessed by flow cytometry, cell medium was changed and recombinant IL-7 (5 ng/mL, 407-ML-005, 

R&D Systems) was added every 3-4 days and the medium changed every 7 days. The CD4 T cells were 

in culture for 42 days. The majority of cytokines/antibodies used were purchased from BD Biosciences 

except if otherwise specified. 
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Adoptive transfer 

The donor mice (B6, dLck cre Atg5f/f mice or littermates) were immunized with 100 µg OVA/CFA 

injected i.p. Four weeks later, the mice were sacrificed and CD4 T cells were isolated from the spleen 

from each mouse. Memory B cells were isolated from the spleen of one B6 immunized mouse. Positive 

Memory CD4 T cell isolation was accomplished using the CD4 (L3T4) MicroBeads cell isolation kit (130-

049-201; Miltenyi Biotec, Bergisch-Gladbach, Germany) according to the manufactuƌeƌ’s instructions. 

Resulting CD4+/CDϴα-/B220- mouse CD4 T cell preparations were >85% pure (~20% were however 

neither CD8+ nor B220+) as determined by flow cytometry. Memory B Cells were negatively isolated 

using the CD43 (Ly-48) MicroBeads cell isolation kit (130-049-801, Miltenyi) according to 

ŵaŶufaĐtuƌeƌ’s instructions. Resulting CD4- -/B220+ B cells were >90% pure.  The CD4 T cells and 

the B cells were co-injected in recipient B6 mice in the proportion of 2x106/2x106 cells. 7 days after 

adoptive transfer the recipient mice were immunized with 100µg OVA/CFA and 7 days later they were 

bled. Detection of anti-OVA IgM and IgG response was assessed by ELISA. 
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Figures and Legends 

 

 

Figure 1: autophagy is dispensable for CD4 T cell homeostasis 

(A) Thymocytes or peripheral T cells were isolated from spleens of littermate  or Atg5f/f dlck-cre mice. 

Cells were stimulated by 50 ng/mL PMA and 1 µg/mL Ionomycin for 18 hours or not (NS). During the 

last 4 hours of stimulation, cells were treated (+) or not (-) by pepstatin A and E64d. Cell lysates were 

then processed by SDS-PAGE and blotted against ATG5 and LC3. Representative experiment of at least 

three replicates.  

(B) Left: double negative (DN), CD4 single positive (CD4 SP), CD8 single positive (CD8 SP) or double 

positive (DP) cells proportion among thymocytes (n=5 Littermates and n=4 Atg5f/f dlck cre mice). 

Middle: percentages of CD4, CD8 T cells, and B cells among spleen cells (n=13 B6, n=17 littermate and 

n= Atg5f/f dlck-cre mice). Right: absolute CD4 and CD8 T cell number in spleens (n=12 for each 

genotype). Each point represents a measure for one mouse. Littermate (LM) and Atg5f/f dLck cre mice 

are represented and compared by Mann Whitney U Test. *** p<0,001. 

(C) Representative dot plots of thymocytes stained by anti-CD4 and anti-CD8 antibodies (left) and 

spleen cells gated on TCRβ+B220- cells (right) from C57BL/6 (B6), Littermate (LM), Atg5f/f dLck cre mice. 
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Figure 2: Atg5 is necessary for mitochondrial homesostasis in mature CD8 T cells 

(A) Percentage of dead cells measured by Annexing V staining ex vivo from spleen cells isolated from 

littermate (LM) and Atg5f/f dLck-cre mice, after gating on TCRβ+CD4+ cells (left) or TCRβ+CD8+ cells (n=1 

for B6 mice and n=3 for LM and Atg5f/f dlck cre mice). 

(B) percentage of viable cells defined as annexing V-/ PI-, defined after stimulation of purified CD4 (left) 

or CD8 T cells (right) under the indicated conditions (n=4 for each genotype). 

(C) Staining of CD4 (up) or CD8 T cells (low) purified from LM or Atg5f/f dLck-cre mice by mitotracker 

deep red and mitotracker green. Gates could be defined for cells with high load of mitochondria 

(mitotracker deep redhi, mitotracker greenhi), cells with low mitochondrial content (mitotracker deep 

redlow, mitotracker greenlo) and cells with damaged mitochondria (mitotracker greenhi, mitotracker 

deep redlow). On the right, histograms showing results on several experiments of percentages obtained 

as described above (n=4 for each genotype). Littermate (LM) and Atg5f/f dLck-cre mice are represented 

and compared by Mann Whitney U Test. ** p<0,01. * p<0,05 
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Figure 3: Atg5 is dispensable for CD4 T cell activation in vitro 

(A) Evaluation of proliferation monitored by CFSE staining after stimulation by anti-CD3 antibody, a 

combination of anti-CD3 and anti-CD28 antibodies or 50 ng/mL PMA and 1 µg/mL ionomycin. 

Percentages shown indicate CSFElow cells, i.e. cells that have proliferated. 

(B) In the lowest panels, results obtained on several experiments are synthesized in histograms (n=5 

for each genotype). Littermate (LM) and Atg5f/f dLck cre mice are represented and compared by Mann 

Whitney U Test. ** p<0,01. * p<0,05 
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Figure 4: Atg5 is dispensable for CD4 T cell activation in vitro 

(A) Immunization protocol used to show the impact of T cell autophagy on long term humoral 

response. Mice were immunized at day 0 by OVA in CFA and at day 10 with OVA in IFA. Mice were then 

immunized at week 12+1 day with OVA in IFA. Serum were collected at days 5, 15, at week 12 and 

week 12+5 days. 

(B) Longitudinal monitoring of anti-OVA antibody titers measured by ELISA (n=6 B6, n=12 LM and n=14 

Atg5f/f dlck cre mice). 

(C) Total IgG levels measured by ELISA at different time points after the immunization (n=2 B6, n=6 LM 

and n=6 Atg5f/f dlck cre mice). 

(D) Histograms showing results of anti-OVA antibodies measured by ELISA obtained after one 

immunization at day 0 and one boost at day 10. Each point corresponds to a measure for one mouse. 

Titers were measured at day 15. Young mice (8-12 week-old, (n=6 B6, n=12 LM and n=14 Atg5f/f dlck 

cre mice) and old mice (20 to 24 week-old, n=5 B6, n=6 LM and n=6 Atg5f/f dlck cre mice) from different 

genotypes were compared.  
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Figure 5: CD4 T cell autophagy is intrinsically needed for humoral memory  

(A) Transfer experiment protocol that show intrinsic defect in CD4 T cell memory in the absence of 

autophagy. Wild type, littermate or Atg5f/f dLck cre were immunized with OVA in CFA. B cells were 

isolated from wild type mice and CD4 T cells isolated from littermate or Atg5f/f dLck cre mice. B cells 

and CD4 T cells were transferred into naive wild type hosts that were then immunized by OVA in IFA. 

(B) Measurement by ELISA of anti-OVA IgG antibodies in serum, 5 days after immunization of naive 

hosts. Each point represents an individual mesure, histograms stand for means and bars represent 

standard deviation (n=6 transfers with LM T cells and n=7 with Atg5f/f dlck cre T cells). ** p<0,001 by 

Mann Whitney U Test. 
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Figure 6: Autophagy is needed for memory CD4 T cell survival 

CD4 T cells were isolated from indicated genotypes and stimulated by anti-CD3 and anti-CD28 

antibodies for 7 days in the presence of polarizing cytokines to differentiate cells into Th0, Th1, Th2 or 

Th17 cells. 

(A) Longitudinal study of cell viability by flow cytometry measurement of AnnexinV/PI negative cells at 

indicated days for Th0, Th1, Th2, and Th17 cells. 

(B) Results obtained on several individual experiments for cell survival at the end of the protocol, at 

day 42. Each point represents an individual mesure, histograms stand for means and bars represent 

standard deviation. Atg5f/f dLck cre mice are represented and compared by Mann Whitney U Test with 

LM mice (n=8 experiments). *** p<0,001. ** p<0,01 
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Figure 7: Autophagy is needed for central memory CD4 T cell maintenance 

CD4 T cells were isolated from indicated genotypes and stimulated by anti-CD3 and anti-CD28 

antibodies for 7 days in the presence of polarizing cytokines to differentiate cells into Th0, Th1, Th2 or 

Th17 cells. 

(A) At indicated days (0, 7 and 42) cells were stained to detect CD44 and CD62L expression, and 

analysed by flow cytometry. A representative experiment is shown for each genotype (B6, LM and 

Atg5f/f dLck cre). Central memory T cells (CM) were defined as CD44hiCD62Lhi, effector memory T cells 

(EM) were defined as CD44hiCD62Llo and naive cells were defined as as CD44loCD62Lhi. 

(B) Longitudinal study of cell viability by measurement by flow cytometry of the ratio between 

percentages of CM T cells and EM T cells, at indicated days for Th0 cells. 

(C) Results obtained on several individual experiments for cell survival at the end of the protocol, at 

day 42. Each point represents an individual mesure, histograms stand for means and bars represent 

standard deviation. Atg5f/f dLck cre mice are resented and compared by Mann Whitney U Test with LM 

mice (n=7 experiments). * p<0,05 
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Figure 8: Autophagy is needed for mitochondrial homeostasis in memory CD4 T cells 

CD4 T cells were isolated from indicated genotypes and stimulated by anti-CD3 and anti-CD28 

antibodies for 7 days in the presence of polarizing cytokines to differentiate cells into Th0, Th1, Th2 or 

Th17 cells.  

(A) At indicated days (0 and 42), cells were stained by mitotracker deep red and mitotracker green. 

Gates could be defined for cells with high load of mitochondria (mitotracker deep redhi, mitotracker 

greenhi), cells with low mitochondrial content (mitotracker deep redlow, mitotracker greenlo) and cells 

with damaged mitochondria (mitotracker greenhi, mitotracker deep redlow).  A representative 

experiment is shown. 

(B) Longitudinal study of percentages of CD4T cells with high mitochondria content (up) or damaged 

mitochondria (bottom). 

(C) Results obtained on several individual experiments for percentages of CD4T cells with high 

mitochondria content (up) or damaged mitochondria (bottom) at day 42. Each point represents an 

individual mesure, histograms stand for means and bars represent standard deviation. Atg5f/f dLck cre 
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mice are represented and compared by Mann Whitney U Test with LM mice (n=3 experiments). * 

p<0,05 

 

 

Figure S1: Autophagy is dispensable for CD4 T cell homeostasis in lymph nodes. 

Histogƌaŵs shoǁiŶg peƌĐeŶtages of CDϰ ;TCRβ+CD4+), CD8 ;TCRβ+CDϴα+Ϳ aŶd B Đells ;TCRβ-B220+) 

among lymph node cells. C57BL/6 (B6), Littermate (LM), Atg5f/f dLck cre mice. are shown and compared 

by Mann Whitney U Test with LM mice (n=8 experiments) . * p<0,05.  
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Figure S2: Atg5 deletion is equally efficient in CD4 and CD8 T cells from Atg5f/f dLck cre mice 

Histograms showing relative quantities of Atg5 transcripts in isolated CD4 or CD8 T cells according to 

the indicated genotypes: C57BL/6 (B6), Littermate (LM), Atg5f/f dLck cre mice. Means obtained on 

several experiments are shown and bars represent standard deviation (n=3). 
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Figure S3: Autophagy is dispensable survival early after TCR stimulation. 

CD4 T cells were isolated from indicated genotypes and stimulated by anti-CD3 and anti-CD28 

antibodies for 7 days in the presence of polarizing cytokines to differentiate cells into Th0, Th1, Th2 or 

Th17 cells. Longitudinal study of cell viability by measurement by flow cytometry of annexing V 

propidium iodide negative cells at indicated days for Th0 cells (n=2). 

 

 

Figure S4: Autophagy is necessary for polarized memory CD4 T cell survival 

CD4 T cells were isolated from indicated genotypes and stimulated by anti-CD3 and anti-CD28 

antibodies for 7 days in the presence of polarizing cytokines to differentiate cells into Th1, Th2 or Th17 

cells. (A) Longitudinal study of cell viability by measurement by flow cytometry of the ratio between 

percentages of CM T cells and EM T cells, at indicated days for Th1, Th2 and Th17 cells. (B) Results 

obtained on several individual experiments for cell survival at the end of the protocol, at day 42. Each 

point represent an individual measure, histograms stand for means and bars represent standard 

deviation. Atg5f/f dLck-cre mice are resented and compared by Mann Whitney U Test with LM mice 

(n=7 experiments) . ** p<0,01. * p<0,05 
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3 Project 3 
 

3.1 Forword 

 

Signaling pathways inducing autophagy in response to TCR stimulation 

(preliminary results) 

Diane Murera, Johan Arnold, Nico Reusch, Florent Arbogast, Sylviane Muller and Frédéric Gros. 

 

A part of my thesis work was dedicated to the investigation of the pathways that initiate autophagy 

upon TCR activation. This subject was of particular interest since it was poorly understood when I 

started my PhD. The fact that my team and others have uncovered that this process is upregulated in 

a systemic lupus erythematosus (SLE)-context, raised even more the question on the regulation leading 

to these events (Gros et al., 2012; Alessandri et al., 2012; Clarke et al., 2014). Furthermore, autophagy 

has been identified as essential for T cell homeostasis, which regulation is crucial in controlling adaptive 

immunity. Their tolerance breakdown is implicated in the development of autoimmune diseases like 

SLE.  

My work so far has allowed to establish that autophagy induction is mainly mediated by the calcium 

pathway for in vitro TCR-stimulated healthy and pathological T cells. Since inhibiting calcineurin down-

stream of the calcium signaling pathway led to down regulation of LC3-II, we speculated that 

autophagy induction could be regulated by the transcription factor NFAT. Transcription studies 

revealed however rather a downregulation than an upregulation of Atg transcripts, suggesting that the 

process is controlled by other mechanisms. We hypothesized that this process could be translationally 

regulated and in fact inhibition of translation with a pharmacological inhibitor led to blockade of the 

autophagic flux. These results need to be confirmed and this project still requires to be investigated in 

more details. In this part of the manuscript I will discuss the data collected so far and the possible 

perspectives to bring to light the exact mechanisms responsible for autophagy induction in T cells. 
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3.2 Signaling pathways inducing autophagy in response to TCR stimulation 

(preliminary results) 

 

Introduction: 

Macroautophagy more commonly called autophagy, is a catabolic lysosomal degradation process of 

cytoplasmic content. It allows the recovery of metabolites that can be reused in cellular functions and 

degradation of dysfunctional organelles. This process is conserved among eukaryotes and is active in 

every cell at basal levels. It can however be triggered in various conditions such as starvation or through 

activation of cellular receptors. Autophagy has been shown to be highly involved in the regulation of 

the immune system. Autophagy participates in fact in pathogen clearance upon infection, in the 

establishment of inflammatory events as well as in the maintenance of lymphocyte homeostasis. 

In T lymphocytes this process is induced upon TCR stimulation and it has been shown to be important 

for their survival and activation in the periphery as demonstrated by several works (Pua et al., 2007; 

Stephenson et al., 2009; Willinger and Flavell, 2012). Our team was also able to show that T cell 

activation with the pharmacological activators PMA and ionomycin, resulted indeed in increased levels 

of LC3-I into LC3-II both in healthy and lupus prone mice (MRLlpr/lpr and (NZB/W)F1). The increase was 

more pronounced in lupus T cells. The further accumulation of LC3-II in the presence of protease 

inhibitors was reflective of an active autophagic flux in both cases. T cells from SLE patients displayed 

enhanced formation of double membrane vesicles in comparison to T cells from healthy subjects. 

Other teams have also observed an upregulation of the autophagic markers in SLE lymphocytes 

(Alessandri et al., 2012b; Clarke et al., 2015). This and the fact that single nucleotide polymorphisms 

of the core autophagy machinery gene Atg5 were found in a lupus context have led to envisage that 

autophagy could contribute to the maintenance of pathologic T lymphocytes (Zhang et al., 2013, 

2015b; Zhou et al., 2011b). Thus it has raised a number of questions about the mechanisms leading to 

the induction of this process in this specific cell type, and why the increase is more important in an SLE 

context.  

We found that the calcium pathway is the main inducer of LC3-II. This phenomenon is transcription 

independent and translation depedent. It reflects a sustained autophagosome production with 

constant lysosomal degradation.  

Results: 

Autophagy is upregulated both in CD4 and CD8 T cells from lupus-prone MRLlpr/lpr mice. 

As shown by our previous work, autophagy is deregulated in T lymphocytes from SLE patients and 

lupus-prone mice. We wanted to establish if this was the case in both T cell subtypes, which is why we 
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isolated CD4 and CD8 T cells from the spleen, and treated them with pharmacological activators 

phorbol myristyl acetate (PMA or P) and ionomycine (Iono or I), stimulating the protein kinase C (PKC) 

pathway and the calcium pathway respectively. We carried out LC3 conversion immunoblots in order 

to assess the autophagic activity. We observed that the autophagic activity was increased upon 

activation in both cell types (comparison LC3-II detection between condition without (-) and with (+) 

protease inhibitors pepstatin A and E64D). This was the case in control CBA/J mice as well as in MRLlpr/lpr 

mice, with a higher autophagic activity in MRLlpr/lpr CD4 and CD8 T cells. The basal autophagic activity 

in lupus-prone mice was however already higher in comparison to control mice, especially in CD8 T 

cells (Fig 1). 

TCR stimulation induces autophagy in T cells and more intensely in MRLlpr/lpr mice 

We wanted then to investigate if TCR activation by antibodies had the same effect on autophagy. For 

this purpose, we stimulated splenic T cells with both anti-CD3 and anti-CD28 agonist antibodies. Anti-

CD3 activates the TCR while anti-CD28 serves as the co-stimulatory signal required for full T cell 

activation and survival. This resulted in a potent induction of autophagy markers in the case of TCR 

stimulation alone in T cells from CBA/J control mice as well as in MRLlpr/lpr T cells, while co-stimulation  

alone had no or little impact as LC3-II levels remained at the basal level. Co-activation with both anti 

CD3 and anti-CD28 did not have a synergistic effect on LC3-II expression either. The absence of 

increased LC3 detection after anti-CD28 activation could paradoxically be explained by the fact that 

the stimulation results in AKT pathway activation, which leads to mTOR activation a well know 

autophagy inhibitor. This might also be a question of the antibody concentration used, since Botbol 

and colleagues observed an increase in LC3-II when stimulating CD4 T cells with lower anti-CD28 

concentrations (0,5µg/mL) (Botbol et al., 2015). Nevertheless the TCR signal alone seems to be strong 

enough to mediate autophagy induction in our settings. As expected, autophagic activity was way 

higher in lupus T cells suggesting an underlying defect in autophagosome generation and/or 

degradation (Fig 2). 

 

Calcium pathway activation induces autophagy in MRLlpr/lpr T cells.  
TCR stimulation induces various signaling pathways leading to the expression of differentiation, growth 

and survival factors. The main pathways induced upon TCR stimulation are the PKC pathway, the MAPK 

pathway and the calcium pathway. We thus wanted to explore if any of these pathways could possibly 

be the signal to autophagy induction in T cells or if it requires an interplay of the different pathways. 

The pharmacological activators PMA and ionomycin as already mentioned, activate down-stream TCR-

induced signals namely the PKC and the calcium pathways respectively. Since they revealed to be quite 

efficient autophagy inducer when combined we were interested in their effect when used separately 
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to activate splenic T cells. We observed that stimulating the PKC pathway led to conversion of LC3-I 

into LC3-II but that the calcium pathway induction was even more efficient for this purpose, especially 

in lupus T cells (Fig 3). This is in agreement with the fact that the intracellular calcium store has been 

shown to be aberrantly regulated in T lymphocytes of lupus patients and lupus-prone mice. 

Interestingly, the use of EGTA an extracellular calcium chelator had a potent inhibitory effect on the 

autophagic activity of T cells for both mice, confirming further the dominant implication of calcium 

signaling in autophagy activation. Incubating T cells with EGTA resulted indeed in the decrease of LC3-

II in both conditions without and with protease inhibitors in a dose-dependent manner, suggesting 

that the autophagosome generation is affected by the absence of extracellular calcium influx. The 

autophagic flux was however still active as we could see an accumulation of LC3-II in the presence of 

protease inhibitors. The inhibition threshold is lower in CBA/J T cells than in MRLlpr/lpr T cells for which 

a higher concentration of this inhibitor was required to completely block the autophagic activity (Fig 

4A, B). In contrast, inhibition of the PKC pathway by bisindolylemaleimide (BIM) upon TCR stimulation 

with anti-CD3, only resulted in a slightly reduced autophagic flux in T cells from control mice and lupus 

T cells,  suggesting a possible interplay of different pathways in autophagy completion (Fig 5A, B, C).  

Calcineurin inhibition decreases the amount of autophagic structures and autophagic flux in T cells. 

Seeing the impact of EGTA on the autophagic activity we wanted to explore further the calcium 

pathway. As a matter of fact, extracellular calcium influx leads to the activation of the phosphatase 

calcineurin, required to induce translocation of the transcription factor NFAT into the nucleus where 

the latter regulates gene expression. We used a well-known calcineurin inhibitor, cyclosporine A (CsA) 

at different concentrations to establish if previous observations were linked to this pathway in 

particular. We observed an almost complete inhibition of the autophagic activity in CBA/J T cells 

treated with 100ng/mL CsA (Fig 6). In T cells from lupus prone mice, the autophagic activity could still 

be detected at the same concentrations of CsA, but it had more an impact on the flux. Since only high 

concentrations of CsA were required to inhibit autophagy, we verified the viability of the T cells after 

treatment in order to assess that the oďseƌǀed deĐƌease ǁasŶ’t due to Đell toǆiĐitǇ of CsA. EǀeŶ at the 

highest concentrations with protease inhibitors there was no significant increase in pre-apoptotic or 

dead cells in CBA/J and MRLlpr/lpr T cells (not shown). 

Atg expression decreases upon TCR stimulation.  

Since calcineurin directly interacts with the transcription factor NFAT, which is also over activated in T 

cells from SLE patients, we speculated that NFAT could regulate the expression of some Atg.  In lupus 

T cells the enhanced calcium flux leads in fact to increased activation of calmodulin and calcineurin 

and thus to increased translocation of NFAT into the nucleus. We thus decided to investigate first in 

normal T cells from C57BL/6 mice if activating or inhibiting the TCR signal could have an influence on 
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the transcription program of some chosen core Atg (Beclin1, Atg7, Atg5, Maplc3b). Surprisingly we 

predominantly observed a decreased expression of the tested Atg as demonstrated by the kinetic qPCR 

experiments (Fig 7). The gene expressions of Beclin1, Atg5 and Atg7 were evaluated 8h, 21h and 48h 

after activation and were shown to be decreased under every condition except for the stimulation with 

ionomycin. In this case the expression of Beclin1 was slightly increased (1.5-fold) after 21h and 48h 

while for Atg5 the expression went back to the basal levels after 48h stimulation with ionomycin. 

Maplc3b expression was also decreased upon TCR stimulation, while calcineurin abrogated its 

repression (Fig 8). These results are in contradiction with LC3-II protein levels observed by western 

blot, and suggest that the increase of LC3-II is not due to an increase in the transcription of Atgs in 

response to the TCR signaling.  

Autophagy induction is mainly post-transcriptionally regulated.  

Based on the qPCR results we postulated that autophagy might not be transcriptionally regulated but 

might rather depend on other factors and events occurring post-transcriptionally. To establish that we 

decided to use inhibitors of transcription (actinomycin D) and translation (cycloheximide). We 

observed in fact in a preliminary experiment a decrease in the generation of autophagic membranes 

and in the flux in T cells treated with cycloheximide while no effect was seen under actinomycin D 

treatment. If confirmed, these data will indicate that autophagy is post-transcriptionally and possibly 

translationally regulated upon TCR induction (Fig 9). 
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Discussion: 

Our study has allowed to establish that upon TCR engagement, the calcium pathway is required to 

induce autophagy in T cells. This is demonstrated by the fact that stimulating or inhibiting this pathway 

respectively results in an increased or decreased autophagic activity. T cell autophagy has already been 

linked to calcium signalling by the regulation of calcium mobilization via the maintenance of 

endoplasmic reticulum (ER) homeostasis. Jia and colleagues demonstrated in fact that in autophagy 

deficient T cells the ER was expanded leading to increased calcium stores and thus to a defective 

calcium influx (Jia et al., 2011). Furthermore it appears that increased cytosolic calcium leads to 

apoptosis (Zhong et al., 2006). In this context autophagy is required to regulate both ER stress and 

intracellular calcium mobilization. Upon TCR activation the release of these intracellular calcium stores 

is required to mediate the activation of the CRAC channel allowing the entry of extracellular calcium 

into the cell, where it acts as a potent second messenger initiating T cell differentiation, effector 

functions, proliferation and survival. Inversely, the role of calcium as a trigger for autophagy has been 

first investigated in cancer cell lines. When treated with calcium mobilization agents such as ionomycin, 

vitamin D or thapsigargin, several cell lines generated autophagosomes through the activation of 

AMPK (Høyer-Hansen et al., 2007). This was due once again to raised intracellular calcium 

concentration. However, since this phenomenon is tightly linked to ER stress, it is not easily discernible 

if autophagy induction is directly linked to calcium or to ER stress in these conditions. To our knowledge 

no study has been investigating calcium-dependent autophagy induction specifically in T lymphocytes.  

 

An article published recently proposed another way of autophagy induction in CD4 T cells from 

C57BL/6J mice: the ĐoŵŵoŶ γ-chain cytokine receptor signaling pathway (Botbol et al., 2015). The 

authors postulate that cytokines such as IL-2, IL-4, IL-7 and IL-15, ǁhiĐh ďiŶd the ĐoŵŵoŶ γ-chain 

receptors, induce autophagy in different T helper subsets, in a JAK-dependent mechanism. We 

speculate however that the calcium signalling might be upstream of or complementary to this 

mechanism. Furthermore, our studies were performed on healthy as well as lupus-prone MRLlpr/lpr 

mice. It is a well-known fact that the calcium flux is overactivated in lupus T cells. This has been linked 

to the fact that in T cells from lupus patients and lupus prone-mice, the ζ ĐhaiŶs of the TCR/CDϯ 

complex are replaced by the FcRγ chain, leading to the recruitment of the spleen tyrosine kinase (Syk) 

instead of ZAP 70 (Kyttaris et al., 2007; Tsokos et al., 2003). Syk signalling has in fact been associated 

to an enhanced calcium influx. This observation is in agreement with the upregulated autophagic 

activity  previously observed by our team in MRLlpr/lpr mice as well as in lupus patients (Gros et al., 

2012b). We confirmed these results in this study, when the T cells were stimulated with PMA and 

ionomycin.  
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TCR stimulation with anti-CD3 certainly increased the autophagic activity, even more in MRLlpr/lpr T 

cells. However, no major difference of flux in activated T cells between both mice can be evidenced. It 

could be speculated that TCR stimulation leads to an accumulation of autophagic structures due to a 

blockade of lysosomal degradation, as it has been recently proposed by Xu and colleagues (Xu et al., 

2014). This blockade is only partial as demonstrated by our conversion assays of LC3-I to LC3-II assed 

by immunoblotting in normal T cells as well as in lupus T cells. Upon TCR engagement we could still see 

an accumulation of LC3-II in the presence of lysosomal protease inhibitors, meaning that autophagy is 

still being initiated and that some autophagosomes are degraded. The differences between their study 

and ours could be related to the fact that they studied autophagy T cell function in an in vivo context 

while we have been focusing exclusively on in vitro studies so far. Moreover, they suggest that more 

read-outs might be required in order to properly assess the nature of the autophagic activity. Thus it 

would be relevant to inquire in our experiments, if p62 expression is also affected. Other methods like 

electron microscopy morphological studies or quantifications of LC3-GFP dots in transgenic T cells 

could allow to quantify different steps of the autophagy process. In any case, it is possible that TCR 

stimulation leads to a disequilibrium between autophagosome synthesis and degradation. Another 

signal would then be required to lead to the complete process, meaning the autolysosome formation. 

This could be the suƌǀiǀal sigŶal ďƌought ďǇ ĐoŵŵoŶ γ-chain receptor cytokines. This would explain 

why autophagy is poorly required at the first moments of T cell activation as described in part 2. This 

would also propose a mechanism allowing cells that received cytokine signalling to be long-lived, with 

the help of autophagy triggering. IL-7 could be a good candidate for both memory induction and 

autophagy. 

 

Apart of cytokine signalling, calcium seems necessary for the continuation of autophagosome 

generation. This effect seems to be calcineurin dependent. Since the main demonstrated purpose of 

calcineurin is to induce translocation of NFAT into the nucleus where it mediates the transcription of 

numerous genes essential for the function of activated T cells, it seemed logical to suspect an 

implication of this protein in Atg gene expression as well. Establishing the transcription levels of various 

Atg genes, led us however to reject this hypothesis. QPCR kinetic experiments showed that neither 

pharmacological nor anti-CD3-induced T cell activation led to an increased expression of Atg. These 

results go along with former ones in our team that demonstrated a decrease of Map1lc3a in CBA/J and 

MRLlpr/lpr mice upon PMA/ionomycin activation (Gros et al., 2012b) and results by Xu et. al and Botbol 

et al. that showed a decrease in Map1lc3b upon T cell activation (Xu et al., 2014b). Since we see an 

enhancement of the autophagic activity upon TCR stimulation, at least in terms of LC3 protein 

eǆpƌessioŶ, ǁe pƌopose ǀaƌious eǆplaŶatioŶs foƌ these ĐoŶtƌadiĐtoƌǇ oďseƌǀatioŶs ǁhiĐh aƌeŶ’t 

necessarily mutually exclusive. First of all, the decline of Atg expression through TCR activation might 
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be explained by a negative regulation loop upon autophagy induction. The high level of autophagy may 

lead to a self-regulating process in which the expression of several Atg genes is downregulated and 

vice-versa.  

The induction of autophagy through a transcriptional regulation seems unlikely as inhibiting this 

process with actinomycin D does not particularly affect LC3 protein expression. This leads us to 

hypothesize that the upregulation of autophagy is induced post-translationally in a calcium-dependent 

mechanism. This assumption is reinforced by the fact that treatment of T cells with a translation 

inhibitor cycloheximide, cancels the increased autophagic activity induced after TCR engagement. We 

can thus propose that calcium influx after TCR engagement directly leads to autophagosome formation 

and/or to flux inhibition, leading to the observed accumulation of LC3-II. 

In conclusion we agree that various paths need to be explored in order to clearly establish the 

mechanisms leading to autophagy induction upon TCR stimulation. Moreover it will be interesting to 

investigate the differences observed between healthy and pathological T lymphocytes and how this 

influences autophagy and subsequently T cell biology. Interestingly CsA used in our experiments is also 

used to treat lupus patients. Thus understanding the implication of calcineurin and the broadly 

signalling laeding to the activation of autophagy could contribute to a better understanding of the 

function of this drug. The experiments depicted here have allowed to gather preliminary data about 

the possible regulation of autophagy upon TCR activation. Supplementary information is required to 

confirm the results already obtained. The different hypothesis we have proposed here will also need 

to be thoroughly explored in order to determine the mechanism behind TCR-induced autophagy both 

in normal T cells as well as in lupus conditions.  
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Materials and Methods 

 

Mice 

MRLlpr/lpr, , CBA/J and C57BL/6 mice were purchased from Harlan. All mice were bred and maintained 

in accordance with guidelines of the local Institutional Animal Care and Use Committee (CREMEAS). 

 

T cell Isolation and culture 

Splenic T cells were collected from MRLlpr/lpr, CBA/J or C57BL/6,  mice and immediately cultured at 37°C, 

5% CO2 in RPMI 1640 medium (Lonza BioWhittaker) supplemented with 10% FCS, 10 mg/mL 

gentamycin (Lonza BioWhittaker), 10 mM HEPES (Lonza BioWhittaker) and Ϭ.Ϭϱ ŵM β-

mercaptoethanol (Lonza BioWhittaker) at a concentration of 5x106 cells/mL. Splenic T cells were 

purified by negative selection. Briefly, spleen cell suspensions were depleted from monocytes, 

granulocytes, B cells and NK cells using Dynal T cell Negative Isolation Kit (Dynal-Life Technologies, 114-

13D) according to the ŵaŶufaĐtuƌeƌ’s iŶstƌuĐtioŶs. CD3+CD4-CD8- double-negative T cells that are 

frequent in MRLlpr/lpr mice, were discarded by anti-B220 Abs included in the commercial preparation. 

Splenic CD4 or CD8 T cells were purified by negative selection as well with the Dynabeads untouched 

mouse CD4 or CD8 cells isolation kit (Dynal-Life Technologies, respectively 11415D and 11417D). 

Resulting TCR-β+/BϮϮϬ-, TCRβ+/CD4+/B220- or TCRβ+/CD8α+/B220- mouse T cell preparations were 

>90% pure as determined by flow cytometry.  

 

Western Blot 

The Abs used for western immunoblotting were specific for β-actin (Santa Cruz Biotechnology, clone 

C4, sc-47778) and LC3 (MBL, clone 51–11, ref M115–3). In some experiments, lysosomal protease 

inhibitors E64d and pepstatin A (Sigma-Aldrich, P5318 and E8640) were added at 5 mg/mL each. When 

indicated, cells were stimulated with hamster anti-mouse CD3ε (5 µg/ml, clone 145-2C11, 553057, BD 

Pharmingen), hamster anti-mouse CD28 (5 µg/ml, and Clone 37.51, 553294, BD Pharmingen), 50 ng/mL 

PMA (Sigma-Aldrich, P8139) and 1 mM ionomycin (Sigma-Aldrich, I0634). For inhibition experiments 

the following molecules purchased from Sigma-Aldrich and were used at the concentrations indicated 

in the corresponding figures: BIM IV (B3306), EGTA (E3889), Cyclosporin A (30024), Actinomycin D 

(A1410), cycloheximide (C7698). To evaluate the autophagosomal membrane load and monitor 

autophagic flux, whole cell proteins were extracted from cultured cells using Laemmli buffer (TRIS-HCl 

125 mM pH 6.8; 2% (w/v) sodium dodecyl sulfate (SDS); 10% (v/v) glycerol; 5% (v/v) β-

mercaptoethanol). Cell lysates were separated using 4–20% gradient gels (Bio-Rad, Hercules, CA, USA) 

and proteins transferred onto a polyvinylidene difluoride membrane. Membranes were blocked with 
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PBS containing 0.1% (v/v) Tween-20 (PBS-T) and 3% (w/v) non-fat dry milk for 1 h and then incubated 

overnight at 4 °C with 1 μg/ml anti-LC3 Ab in PBS-T containing 1% non-fat dry milk or for 1 h at room 

temperature with 1 μg/ml anti-b-Actin Ab in PBS-T containing 1% non-fat dry milk. After washing with 

PBS-T, membranes were incubated for 30 min at room temperature with goat anti-mouse IgG Ab 

(Southern Biotech, Birmingham, AL, USA; 1030-05) conjugated to horseradish peroxidase (HRP). Signal 

was detected using enhanced chemiluminescence detection reagents (Immobilon Western, Merck 

Millipore, Darmstadt, Germany; WBKLS0500). When indicated LC3-II staining was normalized by 

densitometry to ACTB staining using the ImageJ Software (National Institute for Health, Washington, 

DC, USA). 

 

Real-time PCR 

Total RNA was isolated from 5 × 106 purified T cells using the RNeasy Mini Kit (Qiagen, Courtabeuf, 

FƌaŶĐe, ϳϰϭϬϯͿ aĐĐoƌdiŶg to the ŵaŶufaĐtuƌeƌ’s iŶstƌuĐtioŶs. Afteƌ tƌeatŵeŶt ďǇ DNAse ;QiageŶ, 

79254) to remove residual genomic DNA, mRNA was retro-transcribed with the Maxima first strand 

synthesis kit for cDNA (ThermoFisher, Illkirch, France). Fifteen nanograms of cDNA were used for real-

time PCR (RT-PCR) on StepOne apparatus (Thermo-Fisher). Briefly, Beclin1, Atg5, Atg7 and Gapdh 

cDNAs were amplified using Taqman Gene Expression Assays provided by ThermoFisher 

(Mm01265461m1, Mm00504340_m1, Mm00512209_m1 and Mm99999915_g1). Amplicons and 

probes were designed to span two exons, limiting the risk of amplifying residual genomic DNA. The 

Map1lc3b gene expression was evaluated by SYBR Green using the following primers: forward ϯ’-

CACTGCTCTGTCTTGTGTAGGTTG-ϱ’, ƌeǀeƌse ϯ’-TCGTTGTGCCTTTATTAGTGCATC-ϱ’. 

GAPDH (forward ϯ’-TGACGTGCCGCCTGGAGAAA-ϱ’, reverse ϯ’-AGTGTAGCCCAAGATGCCCTTCAG-ϱ’Ϳ 

was used as a house-keeping gene to normalize the results. Relative Beclin1, Atg5 Atg7 and Map1lc3b 

mRNA quantifications were made by defining ȴCT (CT Gapdh− CT Atg5 where CT is 'Cycle Threshold') 

and ȴȴCT (ȴCT saŵple−ȴCT of one C57BL/6 mouse sample used for each plate) using StepOne software 

(ThermoFisher). Results shown represent 2−ȴȴCT values, where one same control sample is used on each 

plate and arbitrarily equal to 1. 
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Figures and legends: 

 

Figure 1: Autophagy is upregulated both in CD4 and CD8 T cells from lupus prone MRL
lpr/lpr

 mice. 

LC3 conversion was assessed by western immunoblotting. CD4 and CD8 T cells were isolated from 

spleens of control CBA/J and lupus prone MRL
lpr/lpr

 mice and stimulated for 21h with P/I (50ng/mL and 

1 µM). When indicated, cells were treated (+) or not (-) during the last 4h of culture with 5mg/mL 

pepstatin A and 5mg/mL E64D to block protease-mediated lysosomal degradation. Cell lysates were 

resolved by SDS-PAGE, transferred onto PVDF membranes before staining with anti-LC3 antibody (Ab). 

Loading controls were performed by staining actin β-chain. Depicted here a representative 

immunoblot of three experiments with identical results. P=phorbol meristate acetate, I=ionomycine, 

n.s.= no stimulation. 

 

 

 

Figure 2: TCR stimulation induces autophagy in T cells and more intensely in MRL
lpr/lpr 

mice. 

LC3 conversion was assessed by western immunoblotting. T cells were isolated from spleens of 12 

week-old control CBA/J and lupus prone MRL
lpr/lpr

 mice and stimulated for 21h with plate bound anti-

CD3 Ab and/or anti-CD28 Ab. When indicated, cells were treated (+) or not (-) with 5mg/mL pepstatin 

A and 5mg/mL E64D during the last 4h of culture to block protease-mediated lysosomal degradation. 

Cell lysates were resolved by SDS-PAGE, transferred onto PVDF membranes before staining with anti-

LC3 Ab. Loading controls were performed by staining actin β-chain. Depicted here a representative 

immunoblot of three experiments with identical results. n.s.= no stimulation. 
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Figure 3: Calcium pathway activation induces autophagy in MRL
lpr/lpr

 T cells.  

LC3 conversion was assessed by western immunoblotting. T cells were isolated from spleens of 12 

week-old control CBA/J and lupus prone MRL
lpr/lpr

 mice and stimulated for 21h with 50ng/mL PMA or 

1µM ionomycin (Iono) or both (P/I). When indicated, cells were treated (+) or not (-) with 5mg/mL 

pepstatin A and 5mg/mL E64D during the last 4h of culture to block protease-mediated lysosomal 

degradation. Cell lysates were resolved by SDS-PAGE, transferred onto PVDF membranes before 

staining with anti-LC3 Ab. Loading controls were performed by staining actin b-chain. Depicted here a 

representative immunoblot of two experiments with identical results. n.s.= no stimulation 

 

 

  

Figure 4: Chelating extracellular Ca
2+

 during TCR activation decreases the autophagic activity. 

T cells were isolated from the spleen of CBA/J control mice or lupus-prone MRL
lpr/lpr

 mice and activated 

with immobilized anti-CD3 antibodies for 21h. When indicated, different concentrations of the calcium 

chelator EGTA were added to the medium. During the last 4h of culture the cells were treated (+) or 

not (-) with 5µg/ml E64D and 5µg/ml Pepstatin A to block lysosomal protease degradation. 

(A) shows an exemplary Western blot for the staining of LC3 aŶd β-Actin. 

(B) LC3-II-leǀels ǁeƌe eǀaluated ďǇ deŶsitoŵetƌǇ aŶd Ŷoƌŵalized to β-Actin band intensities. Histogram 

bars represent the means of individual experiments with standard errors. (n=2, mice were 12-13 weeks 

old). 
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Figure 5: PKC pathway inhibition blocks the autophagy flux in CBA/J and MRL
lpr/lpr 

mice T cells. 

(A) LC3 conversion was assessed by western immunoblotting. T cells were isolated from spleens of 

control CBA/J and lupus prone MRL
lpr/lpr

 mice and stimulated for 21h with plate bound anti-CD3 Ab and 

the PKC pharmacological inhibitor bisindolylemaleimide IV (BIM), added at the indicated 

concentrations. When indicated, cells were treated (+) or not (-) with 5mg/mL pepstatin A and 5mg/mL 

E64D during the last 4h of culture to block protease-mediated lysosomal degradation. Cell lysates were 

resolved by SDS-PAGE, transferred onto PVDF membranes before staining with anti-LC3 Ab. Loading 

controls were performed by staining actin β-chain. Depicted here a representative immunoblot. 

(B) LC3-II levels were evaluated by densitometry and normalized to β-actin band intensities for at least 

three other independent experiments. 

(C) Autophagic flux measurement consists on a ratio between the values with and without protease 

inhibitors (= autophagic flux). Histogram bars represent the means of individual experiments with 

standard errors. (n=3, mice were 10-13 weeks old).  
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Figure 6: Calcineurin inhibition decreases the amount of autophagic structures and autophagic flux. 

T cells were isolated from the spleen of CBA/J control mice or lupus-prone MRL
lpr/lpr

 mice and were in 

culture for 21h. When indicated cells were activated with immobilized anti-CD3 Ab and with different 

concentrations of Cyclosporin A (CsA) that inhibits the activity of calcineurin. During the last 4h of 

culture the cells were treated with (+) or not (-) 5µg/ml E64D and 5 µg/ml Pepstatin A to block 

lysosomal degradation.  

(A) shows an exemplary WesterŶ ďlot foƌ the staiŶiŶg of LCϯ aŶd β-Actin. 

(B) LC3II-levels were evaluated by densitometry and normalized to β-Actin band intensities.  

(C) Autophagic flux was measured by defining the ratio of LC3-II levels with or without treatment with 

E64D and Pepstatin A. Histogram bars represent the means of individual experiments with standard 

errors. (n=3; mice were 10-13 weeks old). 
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Figure 7: The gene expression of autophagy-related genes decreases upon TCR activation or Ca
2+

 

influx. T cells were isolated from spleens of C57BL/6 mice and were stimulated with immobilized anti-

CD3 agonist antibodies with or without  anti-CD28 agonist antibodies or 50ng/ml PMA, 1µM Iono or 

both (P/I) for 8h, 21h and 48h. RNA was extracted and retrotranscribed into cDNA. Quantitative PCR 

was performed for measurement of Beclin1, Atg5 and Atg7 transcripts and the measurement was 

normalized to Gapdh. mRNA levels are relative to one non-stimulated mouse at the starting point of 

incubation that was arbitrarily set to 1. (n=1, mice were 12 weeks old) 
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Figure 8: Maplc3b gene expression is increased upon inhibition of calcineurin during T cell activation. 

T cells were isolated from spleens of CBA/J and MRL
lpr/lpr

 mice and were stimulated with plate bound 

anti-CD3 agonist antibodies or anti-CD3 antibodies together with 100ng/ml Cyclosporin A (CsA) for 

21h. RNA was extracted and retrotranscribed into cDNA. Quantitative PCR was than performed for 

measurement of Map1lc3b transcripts and the measurement were normalized to Gapdh. mRNA levels 

are relative to one non-stimulated mouse at the starting point of incubation that was arbitrarily set to 

1. (n=1 for 8h, n=2 for 21h, mice were 10-13 weeks old). 

 

 

 

Figure 9: Inhibiting translation blocks autophagosome generation in TCR stimulated T cells. 

LC3 conversion was assessed by western immunoblotting. T cells were isolated from spleens of 

C57BL/6 mice and stimulated for 12h with plate bound anti-CD3 and the pharmacological transcription 

inhibitor Actinomycin D (ActD) or translation inhibitor Cycloheximide, added at the indicated 

concentrations. When indicated, cells were treated (+) or not (-) with 5mg/mL pepstatin A and 5mg/mL 

E64d during the last 4 h of culture to block protease-mediated lysosomal degradation. Cell lysates were 

resolved by SDS-PAGE, transferred onto PVDF membranes before staining with anti-LC3 Ab. Loading 

controls were performed by staining actin β-chain. Depicted here a representative immunoblot. (n=1, 

mouse 12 weeks old).  
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1 Discussion and Perspectives 
 

1.1 Context of the study 

 

Because of its function as a guardian of cellular homeostasis, autophagy is a process essential for the 

survival of eukaryotic cells. Depending on the cell type and environmental triggers, autophagy can 

moreover play various roles. Hence, autophagy has emerged as a central player in the function of the 

immune system seeing that it mediates pathogen clearance, regulates inflammatory responses and 

participates in antigen presentation. Furthermore, autophagy has been shown to be involved in B and 

T lymphocytes homeostasis. These cells are mediators of the adaptive immunity. Their dysfunctions 

have often been associated to autoimmunity. Thus understanding every aspect of their biology 

appears to be crucial in order to delineate the events leading to tolerance break-down. It is with this 

purpose in mind that our team has engaged in investigating the role of autophagy in B and T 

lymphocytes. 

A number of data point in fact towards an involvement of autophagy in autoimmune and 

autoinflammatory disease development. Autophagy has been proposed to shape the T cell repertoire 

by participating in thymic T cell selection. The study by Nedjic and colleagues demonstrated indeed 

that transplanting thymi from Atg5-deficient mice into athymic nude mice, led to development of 

colitis due to a break-down of intestinal immune homeostasis (Nedjic et al., 2008). Moreover 

autophagy appears to be a gatekeeper of inflammatory events because of its capacity to down-

regulate the inflammasome response and type I interferon secretion (Nakahira et al., 2011). 

Considering the role of inflammation in autoimmune disease development, it strengthens the idea of 

this process being implicated in these disorders. It appears from recent studies that the role of 

autophagy in autoimmunity and autoinflammation is complex. While autophagy might seem to play 

ŵostlǇ a pƌoteĐtiǀe ƌole iŶ CƌohŶ’s disease after the identification of Atg16L1 open-reading frame  as 

a susceptibility locus, the role of autophagy is less clear in other disorders like SLE for instance (Murthy 

et al., 2014). SNPs in ATG such as ATG5 and DRAM1 have also been associated to risk factors for SLE 

development and drugs known to induce autophagy such as hydroxychloroquine are routinely used to 

treat this disease (Thomson et al., 2009). On the other hand, rapamycine, that upregulates this process 

have also been shown to be an efficient treatment in clinical trials (Gros and Muller, 2014). The need 

to inhibit autophagy during SLE is in agreement with the fact that autophagy has been shown to be 

increased in some immune cell types in a lupus context. In activated macrophages of lupus patients 

and lupus-prone mice the expression of Atg5, Atg12 and Beclin1 was found to be augmented (Li et al., 

2014). In addition, we and others have observed an upregulation of the autophagic markers in lupus T 
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cells (Alessandri et al., 2012; Gros et al., 2012). Another team identified that autophagy was 

deregulated in B cells as well ((Alessandri et al., 2012b; Clarke et al., 2015; Gros et al., 2012a)). In light 

of these observations it seems that autophagy is a fine-tuned and complex process that can lead to or 

protect from disease pathogenesis in different contexts. Hence studying autophagy in lupus B and T 

lymphocytes is of great interest especially because of the central role of these cells in the break-down 

of immune tolerance at the origin of autoimmunity. Furthermore prior to the first publication on this 

subject by our team (Gros et al., 2012), except for the GWAS, no information was available about the 

role of autophagy in SLE. The results from that first study led the path to further investigations aiming 

to better understand the role of autophagy both in B and T lymphocytes in a normal context as well as 

in pathological conditions.  

Studying autophagy in B cells was of special interest for various reasons. First, as described previously, 

the precise role of autophagy in B cell development remained not totally resolved. Moreover, the 

importance of autophagy in B cell responses, when we started the project, was far from clear. The 

possibility remained that B cells might not require autophagy for their function. Indeed, at the time, 

only few data on the role of this process in B cell biology was available.  In 2008 Watanabe and 

colleagues demonstrated that autophagy could be induced in response to BCR stimulation (Watanabe 

et al., 2008). Another study concluded that autophagy was required for the survival of the B-1a B cell 

subpopulation as well as for the transition from pro- to pre-B cells (Miller et al., 2008). A third study 

ďǇ “usaŶ PieƌĐe’s teaŵ had shoǁŶ that autophagic activity favoured BCR/TLR9 co-signalling. Thereby 

some knowledge gaps needed to be filled especially in terms of autophagy requirements in B cell 

development. Indeed, Milleƌ’s fiŶdiŶgs ǁeƌe ďased oŶ Atg5 deficient chimeras with a possibility that 

the conclusions drawn could be due to an earlier defect in B cell progenitor generation. Furthermore, 

in vivo functional studies on the role of B cell autophagy were clearly missing. This information seemed 

crucial as defects in B cell autophagy were later identified in pathological contexts. It is in this context 

that the project which gave rise to the first publication found in this manuscript. 

 

1.2 Autophagy and long-term humoral immunity  

 

In the first study described in this manuscript we generated three mice models in order to answer the 

following interrogations: 

- Does autophagy play a role in B cell development? 

- Is autophagy required for peripheral B cell function? 

- What is the contribution of B cell autophagy in an autoimmune context? 
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To address all these issues, we generated three mouse models with a specific invalidation of autophagy 

specifically in B cells. In the first model, autophagy was deleted in early phases of B cell development. 

For this purpose, we took advantage of the cre-lox system and deleted Atg5 under the control of the 

Mb1 promoter and obtained Atg5f/- Mb1-cre mice. In order to abrogate autophagy in peripheral 

mature B cells we used the same deletion strategy but with a B cell specific promotor expressed at 

mature stages. The mice obtained were Atg5f/- CD21-cre. Contrary to most studies, we used the Mb1 

promotor to delete autophagy in B cell progenitors, rather than CD19’s oŶe, which has emerged to be 

a leaky promoter leading to incomplete autophagy invalidation, complicating the interpretation of 

some results. The Mb1 promoter revealed to be an efficient inducer of Atg5 deletion, allowing to be 

confident in our further conclusions, about the role of autophagy in B cell development. The 

comparison of their phenotype with the one using CD21 promoter to drive the deletion, helped to 

establish the requirement of the autophagic machinery in B cell development and functions. In both 

models the distribution of B cell subpopulations in secondary lymphoid organs such as the spleen or 

lymph nodes remained unchanged. In terms of B cell absolute numbers however those were reduced 

in the spleen of Atg5f/- Mb1-cre mice. That fact that the Mb1-cre is quite efficient in deleting targeted 

genes might have contributed to this phenotype suggesting the requirement of minimum levels of 

autophagy for B cell survival. Strikingly, no alteration of the transition from pro- to pre-B cell stage in 

the ďoŶe ŵoƌƌoǁ Đould ďe oďseƌǀed. Thus ĐoŶtƌaƌǇ to pƌeǀious oďseƌǀatioŶs autophagǇ doesŶ’t seeŵ 

to be necessary for B-2 B cell development. Peritoneal B-1a B cells were however highly decreased as 

were B-2 cells in Atg5f/- Mb1-cre mice. We conclude that autophagy is strictly required during 

development, for B-1a generation since this defect was not observed in Atg5f- CD21-cre mice. 

However, the survival of B-2 B cells in the peritoneum requires autophagy also after development as 

shown by their diminished number in Atg5f- CD21 cre mice. The lack of autophagy strikingly had no 

impact on splenic B cell function, after BCR activation with or without co-stimulation since they were 

able to proliferate and revealed no major survival defect. Only LPS stimulation supposed to drive B cell 

differentiation into plasmablasts affected B cell survival in both mouse models, indicative of the 

requirement of autophagy in the maintenance of these antibody secreting cells, as suggested by other 

studies published before ours (Cenci, 2014; Pengo et al., 2013). 

As B cell functionality in vitro remained intact and the B-2 B cell compartment was poorly impacted in 

vivo, we performed immunizations of our mice, to inquire after the role of autophagy in humoral 

responses and thus on peripheral B cell function. Except of a defective response IgM response against 

the model antigen OVA, both Atg5f/- Mb1-cre and Atg5f/- CD21-cre mice were able to produce antigen 

specific IgGs in short-term humoral responses. The lack of IgM could be explained by the fact that short 

lived plasma cells cannot be preserved in the absence of autophagy. 
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The fate of long-term responses was addressed in the third model, which harboured an autoimmune-

prone mutation (C57BL/6lpr/lpr). Interestingly, deleting autophagy in these mice (C57BL/6lpr/lpr Atg5f/- 

CD21-cre) had no impact on B cell proportions, showing further the low involvement of this mechanism 

in mature B cell homeostasis. In contrast, even after 6 months, no hypergammaglobulinemia nor IgGs 

directed against dsDNA were detectable, contrary to their controls (C57BL/6lpr/lpr). Moreover, immune 

complex deposition in the kidneys was reduced. These are in fact hallmarks of autoimmunity, that 

were attenuated in the absence of autophagy in B cells, although B cells were not affected. Plasma 

cells in the bone marrow, however, were strongly reduced. All these results suggest that autophagy is 

required for the maintenance of long-term humoral response and for the survival of these long-lived 

cells which is in agreement with our previous in vitro results obtained with LPS stimulated B cells, but 

also ǁith the ǁoƌk ďǇ CeŶĐi’s teaŵ (Pengo et al.2014). According to two other studies by Chen and 

colleagues, autophagy is needed to initiate an efficient memory response which could explain the 

reduced autoimmune response in our experimental settings (Chen et al., 2014, 2015). This last point 

should be addressed in more details. 

In regard to our results and to those of other teams autophagy exerts a minor influence on B cell short 

term functions and thus is not required for primary B cell activation. Indeed, B cells still pass through 

germinal centers, undergo class-switch recombination as demonstrated by the normal secretion of 

antigen specific IgGs (Conway et al., 2013; Pengo et al., 2013). 

It is however possible that autophagy might be participating in early B cell activation in specific 

situations. It has indeed been suggested that upon stimulation, the BCR can be internalized and co-

localize with autophagosome-like structures, as well as LC3 ( Ireland and Unanue, 2011; Chaturvedi et 

al., 2008; Watanabe et al., 2008). This trafficking pathway may have an impact on BCR signalling after 

coactivation with TLRs for example. It could also favour B cell activation through the call for T cell help, 

thanks to MHC presentation. In that case, the nature of the antigen may dictate whether the 

autophagic machinery is required or not. Ireland and Unanue showed for instance that autophagy was 

required for presentation of citrullinated antigens contrary to non citrullinated ones (Ireland and 

Unanue, 2011). Thereby our team has undertaken to investigate if indeed, the nature of the antigen 

matters and has been able to show that autophagy is required for the presentation of particulate BCR 

bound exogenous antigens but not for soluble antigens.  

 

My thesis work was mainly dedicated to the study about the role of autophagy in T cell function. Based 

on the discoveries by our team about the dysregulation of this process in lupus T cells, my research 

was split in two parts. The first project was centred on studying the impact of autophagy in T cell 
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function and the second project aimed at understanding how autophagy is induced upon T cell 

activation. 

For the first part of the investigation on T cell autophagy, we proceeded the same way as for the study 

about the role of autophagy in B cells. As a matter of fact, we generated a mouse model with T cell 

specific Atg5 deletion. Contrary to B cells, the implication of this process in T cell function had been 

already intensively studied. The groups that were interested in the subject, mainly identified the 

requirement of this process for T cell survival and function in periphery. The resulting studies showed 

indeed that autophagy mediated T cell homeostasis by regulating the clearance of excess and/or 

defective mitochondria and by limiting ER expansion. Most mouse models used at that time displayed 

in fact dramatic T cell number decrease in the periphery, and for some, even already in the thymus. 

This was accompanied by massive cell death and defective survival after activation in vitro, as 

mentioned previously, and made these mice unsuitable to study T cell function in vivo. As for most 

models autophagy deletion occurred early in thymus development, we hypothesized that this could 

influence T cell development and lead throughout time to an accumulation of defects, that would 

induce cell death right after T cell activation. Thus with the intention to overcome this obstacle and to 

study the requirement of this process in T cell function in vivo, we used the distal Lck promoter to 

delete Atg5 only in peripheral T lymphocytes.  

Our model (Atg5f/f dLck-cre) displayed no specific decrease in CD4 T cell numbers or proportion and 

did not show any major defect in CD4 T cell survival, contrary to previously described phenotypes 

obtained with other models. In contrast, the phenotype of CD8 T cells was largely reminiscent of the 

other published models. It appears that these cells require autophagy for their peripheral maintenance 

contrary to CD4 T cells. CD8 T cells were reduced in the spleen and the lymph nodes and when the few 

cells left were stimulated in vitro, they failed to proliferate optimally. We were able to detect that their 

load in mitochondria was high when compared to littermate controls, and also that more mitochondria 

showed membrane potential defects. It had been established that mitochondrial content is 

developmentally regulated by autophagy (Pua et al., 2009; Stephenson et al., 2009; Willinger and 

Flavell, 2012) and that when T cells leave the thymus, a reduction in mitochondria is essential for their 

survival in periphery because of the changes in oxygen availability, which is higher in periphery. In 

lymphocytes containing a high load of mitochondria, this could lead to excessive ROS production and 

subsequently to cell death. Considering the impairment in survival and function of the CD8 T cells, it 

suggests that in these cells, the mitochondrial load needs to be tightly controlled even in periphery.   

Nevertheless, CD4 T cells did not require autophagy for proper short-term in vitro functions which led 

us to use our model to study their function in vivo. Thanks to this model we have been able to show 
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that same as for B cells, autophagy is not involved in early T cell mediated humoral responses since the 

mice were able to generate IgM and IgG, directed against the T-dependent antigen OVA, in the same 

proportions as the controls. Long-term immunization however led to decreased humoral responses. 

We postulated that in our conditions the CD4 T cells were not capable to mediate a memory response 

in absence of autophagy. In order to establish that these observations were intrinsic to autophagy-

deficient CD4 T cells and not to a bystander effect due to the reduced CD8 T cells for instance, we 

performed transfer of antigen primed CD4 T cells into recipient mice that we re-immunized with the 

same antigen as the host mice. We noticed that the mice that had been injected with autophagy 

deficient CD4 T cells displayed a reduced memory humoral response. Recreating a memory phenotype 

by in vitro stimulation and polarization of CD4 T cells in the presence of IL-7, resulted in increased cell 

death throughout the culture time. The analysis of their status in mitochondrial load revealed that with 

time there was accumulation of dysfunctional mitochondria which could explain the increase in cell 

death. Memory T cells have been shown to rely on mitochondria to generate energy from FAO, 

necessary for their long-term maintenance (Verbist et al., 2012). Rafi Ahŵed’s gƌoup ǁho shoǁed a 

defect in memory CD8 T cell survival in the absence of autophagy, investigated the metabolic profile 

of the T cells in their model (Atg7f/f Gzmb-cre). They performed metabolomics analysis of LCMV 

infected autophagy deficient CD8 T cells and discovered dysregulations in carnitine shuttle and di-

unsaturated FAO in comparison to wild type CD8 T cells. They proposed that autophagy might be 

required to generate lipid substrates for FAO and in general to maintain metabolic homeostasis 

allowing to mediate the transition from effector CD8 T cells to memory T cells. As a matter of fact, in 

our case autophagy-deficient CD4 T cells failed to undergo the transition from effector memory 

(CD44high CD62Llow) to central memory (CD44hi CD62Lhigh) T cells in vitro. The observed alterations in 

memory CD4 T cell survival are most probably due to a combination of both dysfunctional 

mitochondrial and altered metabolic pathways which are in any case linked to one another. We intend 

to investigate the metabolic profile in our experimental settings as well in order to establish if the 

requirements in metabolites and autophagy are the same as those proposed for CD8 T cells. Studying 

Glut1 expression for instance could be an interesting read-out to evaluate the metabolic state of the 

CD4 T cells. Glut1 being a glucose transporter, its increased expression has been specifically correlated 

to an effector phenotype (Macintyre et al., 2014).  

Long-term cultured autophagy deficient memory CD4 T cells are CD44high and CD62Llow. This specific 

phenotype has been attributed to  T cells undergoing homeostatic proliferation but for in vivo settings 

only since it is due to lymphopenia (Surh and Sprent, 2000). We do not see any difference in our hand 

in terms of CD44 expression ex vivo, with or without autophagy, ruling out increased CD4 T cells 

homeostatic proliferation occurring in our mice. Thus the increased CD44 expression we quantify in 
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vitro may indeed be attributable to an activation-induced memory phenotype.  Even though we were 

able to exclude the possibility of early senescence being the reason for reduced long-term humoral 

ƌespoŶse, ǁe haǀeŶ’t iŶǀestigated this possiďilitǇ in vitro by staining the cells for specific senescence 

markers such as CD57 (Ng et al., 2015).   

Our work so far has allowed to shed some light on some questions that had not been addressed yet by 

other researchers. The generated mouse model has allowed to discriminate between the observations 

that are linked to the role of autophagy in T cell function per se and those that are the consequence of 

accumulated developmental issues. It is now described that autophagy contributes to memory CD8 T 

cell survival. This has only been established recently. When we started the project nothing about the 

role of autophagy in memory T cells was known, yet especially not in in vivo settings, since the models 

used previously were hardly directly suitable for those kind of investigations. Jia and He had however 

given a first hint in this direction as they demonstrated that tamoxifen-induced Atg3 deletion, in vitro, 

had no impact on T cell survival in the presence of IL-7 in short periods of culture showing survival 

defects only after >24 days of culture (Jia and He, 2009).  

CD4 T cell specific requirements for the autophagic machinery had not been investigated yet. In 

consideration of the new findings on memory CD8 T cell biology, it could be suspected that autophagy 

plays here a comparable role since these two T lymphocyte subsets share some similarities. But seeing 

that CD4 and CD8 T cells do not accomplish the same tasks in adaptive immune responses it was 

essential to investigate their status independently from one another. Moreover, as shown by our 

model their need for autophagy diverges in terms of basal homeostasis as demonstrated by the 

increased cell death of the CD8 T cells even though they could develop normally in the thymus and 

autophagy was deleted only in periphery. The findings on the importance of autophagy in memory 

lymphocytes (B cells, CD8 and CD4 T cells) and plasma cells, open compelling perspectives in regard to 

autoimmunity. The maintenance of autoreactive memory T and B cells contributes to the chronicity of 

those pathologies as it is the case for SLE. Thus, reducing autophagy could contribute to the 

amelioration of disease symptoms.  

Modulating autophagy however is a complex matter that needs to be considered with caution.  

Rapamycin for instance is proposed to treat SLE patients (Fernandez et al., 2006). This drug known to 

inhibit mTOR and thus to induce autophagy also favours CD8 T cell differentiation into memory cells 

at least in mice infected with lymphocytic choriomeningitis virus (Araki et al., 2009). While this feature 

is in agreement with our findings about CD4 T cells, it might appear surprising in regard to the effect 

of rapamycin in SLE treatment, that improving the survival of memory T cells does not aggravate the 

disease. This is can probably be explained by the pleiotropic effect of rapamycin as an immune-
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suppressive drug as it limits DC maturation and function and reduces T cell proliferation (Thomson et 

al., 2009). The efficacy of rapamycin in SLE treatment could be autophagy-independent. Moreover, it 

has been recently described that low doses of rapamycin promote memory T cell differentiation and 

can lead to autoimmune symptom exacerbation (Zhang et al., 2012), whereas high doses had the 

opposite effect. It would be interesting to treat lupus-prone mice with different doses of rapamycin 

and follow the progression of the disease, and to correlate it with the autophagy status.  

In any case, knowing the role of memory lymphocytes in the maintenance of an autoimmune 

phenotype, designing new drugs specifically targeting those memory cells could contribute to develop 

fine-tuned treatments that would have decreased side effects since they would affect less early 

adaptive immune responses, unlike immune-suppressive drugs. Autophagy, to that respect is a good 

candidate. Nevertheless, targeting the memory compartment is of course not entirely harmless. This 

could indeed render the patients more susceptible to re-occurring infections. But SLE patients are 

often young and would have the possibility to reconstitute a competent memory compartment after 

treatment. However, in order to evaluate the impact of T cell autophagy in autoimmune settings it 

would require, same as for the B cell study, the generation of transgenic mice with a T cell specific 

autophagy deletion on an autoimmune genetic background. This could give first insights on this 

sensitive matter. 

Another interesting aspect of these discoveries about the role of autophagy in memory lymphocytes 

is that it could help to find new strategies to improve vaccines but also to boost memory responses in 

elderly, as suggested by Puleston and colleagues. The use of spermidine, a naturally occurring 

autophagy inducer, significantly ameliorated the immune responses to vaccination (Puleston et al., 

2015).   

 

1.3 Autophagy and T cell signalling 

 

As already mentioned, the project investigating the signalling pathways leading to autophagy induction 

after T cell activation, was initiated as the continuation of our study that had revealed that autophagy 

is dysregulated in lupus T cells. Thus we wanted to figure out why this process was specifically 

upregulated in a lupus context. We first considered that one of the intrinsic differences between 

normal and autoreactive lupus T cell resides in their signalling capacity. Since the signalling pathways 

leading to autophagy induction in T lymphocytes had been barely studied we undertook to investigate 

this issue in normal and autoimmune conditions in parallel to the work we were doing with the T cell 

specific autophagy-deficient mice.  
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We were able to identify that autophagy markers were mainly induced upon TCR engagement in 

agreement with the literature (Pua et al. 2007). TCR signalling dissection brought to light the 

involvement of the calcium pathway and more precisely, calcineurin in autophagy induction. This 

induction does not seem to be transcriptionally regulated despite that fact that calcineurin activation 

results in NFAT diphosphorylation, and translocation into the nucleus. NFAT regulates a number of 

genes required for T cell activation and differentiation. We thought that NFAT might regulate Atg 

transcription as well. We could not detect any upregulation of any of the Atgs upon TCR activation in 

the quasi totality of the conditions tested. These results need however to be confirmed. Furthermore, 

in order to completely exclude a regulation of autophagy at the transcriptional level it would be 

interesting to down-regulate NFAT or TFEB, the latter being another transcription factor that has been 

shown to depend on calcineurin for its activation as well. The fact that TFEB has been shown to regulate 

not only Atgs, but in general lysosomal activity, makes this transcription factor actually the most 

suitable candidate to be studied in our experimental settings (Medina et al., 2015). Down-regulating 

these proteins by siRNA could allow to see if it leads to a change in the autophagic activity. The results 

would have to be considered carefully because the transcription factors could still have an indirect 

effect on autophagy induction through the regulation of other factors that could have an influence on 

autophagy, such as cytokines for instance. In any case, in our hands, a transcriptional regulation of 

autophagy modulation in response to TCR signalling is unlikely as our first actinomycin D treatments 

did not change the level of autophagic activity in response to TCR stimulation. This last point is in 

aĐĐoƌdaŶĐe ǁith Botďol aŶd Đolleagues’ studǇ (Botbol et al., 2015). It seems thus that calcium-

dependent, post-translational mechanisms govern the modulation of autophagy in response to TCR 

stimulation. 

In lupus T cells the calcium pathway also induces autophagy markers, even more than in control mice. 

The fact that lupus T cells exhibit increased calcium signalling, strengthens even more our hypothesis 

that this pathway is the main responsible for the increase of LC3-II eǆpƌessioŶ. The studǇ ďǇ MaĐiaŶ’s 

teaŵ suggests hoǁeǀeƌ that autophagǇ iŶduĐtioŶ iŶ CDϰ T Đells depeŶds ŵoƌe oŶ ĐoŵŵoŶ γ-chain 

cytokine signalling (Botbol et al., 2015). In the context of lupus T cells, it remains improbable because 

in the case of IL-2, which is one such cytokine, a down-regulation of its secretion is characteristic of 

lupus T cells. This indicates that at least in these cells a different signalling is required. But since this 

disease leads to the accumulation defects in various cells among which aberrant T cell signalling, it 

cannot be excluded that their hypothesis applies to normal T cells but not necessarily to lupus T cells. 

IŶ ƌegaƌd to ŵeŵoƌǇ T Đells, Botďol’s studǇ Đould eǆplaiŶ the desĐƌiďed pheŶoŵeŶoŶ, siŶĐe ĐoŵŵoŶ 

chain-γ ĐǇtokiŶes aƌe iŶǀolǀed iŶ the geŶeƌatioŶ aŶd ŵaiŶteŶaŶĐe of memory T cell. The autophagy 

inducer function of these cells is in fact in agreement with our results and those of others showing that 
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autophagy is important for the survival of memory CD4 and CD8 T cells respectively, particularly in 

response to IL-7 stimulation, which is a cytokine dependent on ĐoŵŵoŶ γ-chain receptor. 

There is however one pathway that we have not discussed yet, the PKC pathway leading to the NF-kB 

activation. Autophagy regulation by NF-kB has been shown to be context-dependent. It can either 

induce or inhibit autophagy (Trocoli and Djavaheri-Mergny, 2011). In our conditions it appears that 

activation of this pathway with PMA, which mimics DAG activity, slightly induces the generation of 

autophagic membranes in T cells from lupus-prone mice. Furthermore, inhibiting this pathway with a 

phaƌŵaĐologiĐal iŶhiďitoƌ led to the ƌeduĐtioŶ of the fluǆ. “iŶĐe iŶ Ŷoƌŵal T Đells ǁe didŶ’t see aŶǇ 

increase of autophagy when activating this pathway, and because in lupus conditions NF-kB signalling 

has been shown to be mainly defective, we speculate that the effect we see could be related to 

aberrant activation, that could lead to secondary raise in intracellular calcium. The reason why 

inhibiting this pathway induces a decreased flux is however unclear.  

Moreover, even though the autophagic membrane load is high upon TCR activation in lupus T cells, as 

shown by increased detection of LC3-II with and without protease inhibitors, it is not the case for the 

overall autophagic activity, meaning the flux. This is an observation which has to be further 

investigated. The hypothesis of a blocked autophagic flux in a lupus context has been suggested by 

PieƌdoŵoŶiĐĐi’s teaŵ. Alessandri and colleagues showed indeed that T cells from lupus patients were 

resistance to serum-mediated autophagy induction and that those T cells had an increased expression 

of negative regulators of autophagy such as B-cell lymphoma 2 (Bcl2), v-akt murine thymoma viral 

oncogene homolog 1 (Akt1) but mostly alpha-synuclein which expression has been shown to inhibit 

autophagosome generation (see section 2.1.1) (Alessandri et al., 2012). More recently Caza and 

colleagues also demonstrated that the autophagic flux might be impacted in lupus T cells. Those cells 

displayed an accumulation of dysfunctional mitochondria due to decreased mitophagy. They identified 

that HRES-1/Rab4, a small GTPase which has been shown to be over-expressed in T cells from lupus 

patients and lupus-prone mice at basal levels, was even more upregulated upon T cell activation and 

that this led to the depletion of dynamin-related protein 1 (Drp1) (Caza et al., 2014). Drp1 resides in 

the cytosol but when translocated to mitochondria this protein initiates mitophagy. Drp1 appears to 

be decreased before onset of lupus symptoms in lupus prone mice and is associated to mitochondria 

accumulation. As for HRES-1/Rab4 it has been shown to increase autophagosome formation while 

inhibiting mitophagy (Talaber et al., 2014). This is in agreement with our observations suggesting that 

the autophagic pathway is activated but fail to mediate organelle degradation. This is a theory that we 

need to investigate in more detail also in regard to calcium signaling. 
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When comparing the deletion model to our results on signalling there seems to be some contradiction. 

On one hand we saw that autophagy was dispensable for CD4 T cell activation in in vitro settings and 

for early humoral responses and on the other hand we see an increased autophagic activity upon TCR 

aĐtiǀatioŶ. The ƋuestioŶs asked iŶ the tǁo studies ĐeƌtaiŶlǇ aƌeŶ’t the saŵe ďut it appeaƌs suƌpƌisiŶg 

that T Đell aĐtiǀatioŶ seeŵs to iŶduĐe autophagǇ ǁhile it doesŶ’t seeŵ to ďe esseŶtial foƌ theiƌ fuŶĐtioŶ. 

It can however be speculated that autophagy might be necessary to progressively remove damaged 

organelles such as mitochondria or ER to prevent accumulation of defects which can later on lead to 

defective maintenance of memory T cells as shown by our study on memory CD4 T cell function as well 

as by the two recent inquisitions on memory CD8 T cells by Puleston et al. and Xu et al. respectively. In 

that regard it is possible that the autophagic flux might be inhibited in early stages of activation, as 

suggested ďǇ Ahŵed’s studǇ aŶd that the TCR sigŶal still leads to autophagosoŵe geŶeƌatioŶ ǁhile 

waiting for a second signal to initiate degradation to respond to energy demands and maintain 

organelle homeostasis at later times. This second signal could indeed be induced through cytokine 

signalling ǁhiĐh ǁould ďe iŶ agƌeeŵeŶt ǁith the oďseƌǀatioŶs ďǇ MaĐiaŶ’s teaŵ ǁho suggested that 

autophagy could be induced by ĐoŵŵoŶ γ-chain cytokines. This stimulation could lead to 

autolysosome formation and to the completion of the process, necessary for future survival. Thus the 

regulation of these events needs to be investigated further. 

 

1.4 General conclusion: autophagy as a therapeutic target 

 

Autophagy is an essential mechanism in cellular maintenance and function and as such it harbours a 

broad role in a vast panel of pathogenesis. Thus it has been suggested that autophagy could serve as 

a therapeutic target in a number of situation, either to be inhibited or to be activated.  

Studies on autophagy have led to better understand the aetiology of some neurodegenerative diseases 

suĐh as Alzheiŵeƌ’s, PaƌkiŶsoŶ’s oƌ HuŶtiŶgtoŶ’s disease. These pathologies aƌe ĐhaƌaĐteƌized ďǇ the 

accumulation of protein aggregates that become toxic for neurons and lead to their death. Autophagy 

is defective in most of those disorders. Moreover, these pathologies usually develop in elderly and 

autophagy has been shown to decrease with age (Carroll et al., 2013). Manipulating this process to 

treat neurodegenerative patients has been proposed, but currently the therapeutic approaches have 

mainly been tested in animal models where they revealed to be quite efficient. These are only some 

pathological conditions where autophagy has been shown to be involved. Because of its dominant role 

in metabolism, autophagy is of course involved in the development of metabolic disorders such as type 

II diabetes or obesity.  
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Even though autophagy was first associated to cell survival, its role appears to be much more complex 

and to be highly dependent on the cell type and the environmental context. Cancer cells illustrate this 

complexity quite well. As mentioned in the introduction, autophagy plays a dual role in tumorigenesis. 

In the first stages of cancer cell development, autophagy according to some studies, contribute to their 

death in an attempt to avoid their persistence. But once the tumors are established they use the 

autophagic machinery to their advantage in order to satisfy the metabolic demands and to decrease 

oxidative stress. Autophagy has also been linked to resistance of tumours to chemotherapy. On the 

other hand, molecules that have been shown to be efficient in some cancer treatments have also been 

shown to induce autophagy. Hence the choice to induce or activate autophagy in cancer treatments 

could indeed be an excellent strategy but has to be specifically adapted to each tumour type and 

probably according to its grade. This duality probably also applies on immune-related pathologies. 

Autophagy participates in pathogen clearance but can also be used by some pathogens for their 

replication. Nevertheless, this process mostly harbours advantages for the immune system since it 

leads to a better response to PRR stimulation and to a more efficient degradation of intracellular 

microbes. Hence in these contexts inducing autophagy could potentially serve to increase the 

efficiency of some drugs already used to treat infectious diseases or even inspire the design of new 

treatments. Furthermore, in consideration of the new observations about the role of autophagy in 

plasma cells, in memory CD8 and CD4 T cells, it gives some new insights on how to ameliorate vaccines 

by increasing the survival of those long-lived cells. Enhancing autophagy on the systemic level could 

contribute to the maintenance of a potent memory adaptive immunity even in older age, as proposed 

by Puleston and colleagues. 

But then again this could possibly lead to other issues. As discussed in the introduction of this 

manuscript and also shown by us and others for SLE, autophagy seems to be upregulated in most 

autoimmune pathologies. In RA, augmented secretion of TNF-α, a featuƌe of this disoƌdeƌ, leads to aŶ 

increased autophagic activity in fibroblasts and osteoclasts (Connor et al., 2012). Atg7 invalidation in 

monocytes or treatment with pharmacological autophagy inhibitors (Bafilomycin A) was shown to 

reduce bone disruption in vitro (Lin et al., 2013). In MS patients, ATG5 expression was found to be 

increased. Furthermore in EAE mice this increase was correlated with disease severity while in Kovacs 

study these mice were resistant to EAE induction when deficient for Beclin 1 in T cells (Alirezaei et al., 

2009; Kovacs et al., 2012). In psoriasis and vitiligo, two autoimmune skin diseases, polymorphisms in 

ATG16L1 and UVRAG respectively have been associated to these pathologies. In T cells from RA 

patients however autophagy was found to be decreased due to the down-regulation of 6-

phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 3 (PFKFB3) wich seems to contribute to disease 

progression. Also in CD decreased autophagy seems to be greatly involved in disease pathogenesis. 



 

169 

DISCUSSION AND PERSPECTIVES 

Thus under certain conditions and for some pathologies, activating autophagy would seem more 

beneficial for the patients even though  requirements for autophagy can varie from one disorders to 

another and even from one cell type to another in the same pathology.  

In light of the discoveries made so far about the role of autophagy in cellular homeostasis and in 

disease pathogenesis, it seems that finding strategies to modulate this process is of great interest but 

has to be extremely fine-tuned. Thus knowing all the players involved and understanding every aspect 

of the autophagic machinery is essential. A lot of knowledge about autophagy has been collected 

during this last decade but many questions still remain, even though the more we research the more 

complex this mechanism appears.  

But as Albert Einstein said: ͞ The important thing is to not stop questioning. Curiosity has its own reason 

for existence. One cannot help but be in awe when he contemplates the mysteries of eternity, of life, of 

the marvelous structure of reality. It is enough if one tries merely to comprehend a little of this mystery 

each day͟. 
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Abstract 

 

Macroautophagy often abbreviated by "autophagy" is an intracellular degradation mechanism linked to 

lysosomal activity. Autophagy is conserved from yeast to mammals and plays a role in the response to energetic 

stress and in organelle homeostasis. Autophagy is also involved in the regulation of immunity, in particular in the 

adaptive immune response, which involves B and T lymphocytes. It was indeed shown that autophagy impacts 

the development of B and T cells as well as the education of T cells in the thymus. Autophagy also modulates 

activation, survival and polarization of T cells. It plays a role in antigen presentation by B cells, and in their TLR-

mediated activation, and thus likely in their initial activation. Finally, autophagy is required for the survival of 

memory lymphocytes and effector cells like antibody-producing plasma cells. Interestingly, autophagy is 

deregulated in several autoimmune pathologies. The modulation of this phenomenon could possibly lead to new 

treatments aiming at limiting lymphocyte activation driving these pathologies. 
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Etude de l’autophagie des lymphocytes dans les réponses normales et autoimmunes 

 

Le terme « autophagie » vient du grec et signifie se manger soi-même. Il a été introduit dans 

les années 1960 par Christian de Duve, un chercheur belge à l’origine de la découverte des 

lysosomes. L’autophagie désigne en effet la digestion du contenu intracellulaire en 

contradiction avec « l’hétérophagie » qui implique une dégradation de matériel extracellulaire 

via le lysosome.  

Depuis les années 60 la recherche sur l’autophagie n’a pas cessé de croître et a permis 

d’identifier l’implication de ce processus dans des fonctions cellulaires diverses et variées. Les 

premières investigations ont surtout montré que l’autophagie joue un rôle important dans le 

métabolisme mais également dans le maintien de l’homéostasie cellulaire. Au fur des années 

il est devenu de plus en plus évident que l’autophagie est effectivement un mécanisme de 

survie étant donné qu’il contribue à l’élimination de protéines agrégées et d’organites 

dysfonctionnelles, protégeant ainsi la cellule de la toxicité cellulaire que de tels matériaux 

pourraient engendrer. De plus dans des conditions de déficit nutritionnel l’autophagie permet 

dans un processus catabolique, la dégradation de macromolécules cytoplasmiques dans le but 

de générer de nouveaux métabolites. 

 En ce qui concerne la mécanistique de ce processus, on distingue trois types d’autophagie : 

la microautophagie, l’autophagie médié par les chaperonnes (CMA) et la macroautophagie. 

Les deux premiers types d’autophagie ont été identifié comme étant impliqué dans 

l’élimination de petits constituants cytosolique par invagination direct du lysosome pour la 

microautophagie et par la reconnaissance spécifique de protéines via un motif peptidique 

KFERQ par un complexe protéique contenant la chaperonne HSPA8 pour la CMA 

respectivement. Néanmoins, la macroautophagie est le mécanisme le plus étudié. De ce fait 

dans la littérature il couramment désigné plus simplement par le terme « autophagie ».  

Des trois types d’autophagies, la macroautophagie est également celle qui est la plus facile à 

identifier étant donné que son initiation conduit à la formation d’une vésicule à double 

membrane appelé autophagosome. En effet la dissection des mécanismes moléculaires a 

abouti à l’identification des différentes étapes nécessaires à la mise en place de ce processus 

mais également à l’isoler les protéines impliquées. Ainsi il a pu être montrer que l’autophagie 



débute par l’initiation suivi par la nucléation conduisant à la formation de structures pré-

autophagiques appelées phagophores. Cette étape est suivie par l’élongation des 

phagophores aboutissant à la formation de l’autophagosome puis leur maturation et leur 

fusion avec les lysosomes. Les protéases lysosomales sont responsables de la dégradation du 

contenu cytsosolique qui a été capturé au préalable pendant la phase d’élongation. L’étape 

finale correspond à la libération du matériel dégradé dans le cytosol. 

 

 

 

L'autophagie joue un rôle indéniable et essentiel dans l'homéostasie cellulaire. Néanmoins, 

l'étude de ce processus dans différents tissus et conditions a permis la mise en évidence de 

variations  dans les fonctions selon les systèmes étudiés. Ainsi dans l'immunité innée et 

adaptative, l'autophagie a émergé comme un acteur clé dans divers mécanismes tels que 

l’élimination de pathogènes, la régulation de l'inflammation et la présentation antigénique. 



 

 

La clairance d’agents pathogènes (virus, bactéries, parasites) par le biais de l'autophagie est 

appelé xénophagy et appartient aux formes sélectives de l'autophagie. Ce processus a par 

exemple été montré comme étant impliqué dans la dégradation de Streptococcus pyogenes 

également connu sous le nom streptocoque du groupe A (GAS). L'infection de cellules HeLa 

par du GAS conduit à l'endocytose des bactéries qui se retrouve dans le cytosol dans des 

compartiments LC3 positif. Nakagawa et ses collègues ont nommé ces compartiments GcAVs, 

pour « GAS-containing LC3-positive autophagosome like vacuoles ». Ainsi ils ont pu montrer 

que les GcAVs fusionnent avec les lysosomes environ 4 heures après l'infection ce qui est 

corrélé avec une diminution intracellulaire de GAS suggérant l'implication de l'autophagie 

dans la clairance de Streptococcus. De plus, dans des cellules souches embryonnaires (cellules 

ES) et des MEFS déficients pour ATG5 infectées par GAS il n'y a pas de détection de ces GcAVs 

et l’inhibition de l’autophagie par les protéases lysosomales ont donné lieu à une 

augmentation de GAS intracellulaire (Nakagawa et al., 2004).  

Dans l'ensemble, l'autophagie est capable de piéger l'agent pathogène soit directement dans 

le cytosol ou dans les vacuoles et d’induire leur dégradation ou d’inhiber la croissance 

bactérienne. 

Cependant, d'autres agents pathogènes utilisent ce mécanisme pour leur avantage et 

détournent la machinerie autophagique afin de permettre leur maintien dans la cellule. 



Staphylococcus aureus et Serratia marcescens, font parties de la catégorie de bactéries qui ont 

la capacité d'induire la formation d'un autophagosome mais inhibent la fusion avec les 

lysosomes, ce qui leur permet d’utiliser ces membranes autophagiques pour leur réplication. 

S. aureus est en effet capable de détourner cette voie, d’abord en se répliquant à l'intérieur 

des phagosomes pour ensuite induire une mort cellulaire dépendante de l’autophagie, comme 

ont pu le montrer Schnaith et collèques dans des MEFs ATG5 - / - (rieviewed dans Huang et 

Brumell, 2014) (Schnaith et al., 2007). 

 

Pour monter une réponse appropriée contre les agressions extérieures, les eucaryotes 

supérieurs exigent la diaphonie entre l'immunité innée et adaptative. Alors que le système 

immunitaire inné reconnaît les PAMP via les PRR et initie le contrôle des pathogènes, la 

clairance totale et la protection à long terme nécessite des lymphocytes. Ces acteurs, les 

lymphocytes B et T, expriment des récepteurs d'antigènes variables, le récepteur des cellule 

B (BCR) et un récepteur des lymphocyte T (TCR) respectivement, qui leur confèrent la capacité 

de reconnaître pratiquement n'importe quel motif antigénique. Il a été suggéré que 

l’autophagie fait partie intégrante de l'immunité adaptative. 

 

 

Étant donné que les peptides présentés par le CMH I sont le résultat du traitement du 

protéasome, il apparaît surprenant d'attendre l'implication de l'autophagie dans ce processus. 

En effet, seules quelques études suggèrent un lien direct entre l’autophagie et la présentation 

antigénique via le  MHC I. Le groupe de Michel Dujardin fait partie de ceux qui ont décrit une 

présentation de protéines endogènes via CMH I dépendant de l’autophagie en utilisant un 

antigène de l'herpès simplex 1 (HSV1) comme modèle d'infection chez les macrophages. Ils 

suggèrent en effet une voie vacuolaire, en contraste à la voie classique protéasomale, pour la 

présentation de l'antigène endogène (English et al., 2009). D'autre part Li et ses collègues ont 

observé une augmentation de la présentation par le CMH I dans des macrophages déficients 

pour l’autophagie ainsi que la diminution des molécules du CMH I à la surface cellulaire après 

le traitement de la rapamycine, ce qui suggère une régulation négative de la présentation par 

le CMH I par la machinerie autophagique. 

 

L'implication de l'autophagie dans la présentation du CMH II est par contre mieux documentée 



que pour le MHC I. Le traitement de l'antigène dans le cas de présentation par le CMH II est 

en effet dépendant de la voie endosomal/lysosomale, ce qui rend le lien avec autophagie plus 

évident. Malgré que les molécules du CMH II soient principalement dédiées à la première 

présentation d’antigènes exogènes, elles se sont aussi révélés présenter des peptides 

d'origine endogène. Pareil que pour la présentation croisée via CMH I dans les DCs, autophagie 

semble être fortement impliqué dans ce processus. La première preuve de la présentation 

d'antigène endogène par le MHC II aux cellules T CD4+ a été donnée par Jaraquemada et ses 

collègues dans les années 1990 grâce à leurs études sur le traitement de l'antigène dans des 

cellules infectées par la vaccine (Jaraquemada et al., 1990). L’implication de l'autophagie dans 

ce processus a cependant été vraiment démontré quelques années plus tard par Paludan et 

ses collègues. Ils ont observé dans une lignée de cellules lymphoblastoïdes transformées par 

EBV, que la protéine virale du virus d’Epstein Barr 1 (EBNA 1), provoque l'inhibition de 

l'acidification des lysosomes, conduisant ainsi à l’accumulation d’autophagosomes. En outre 

l'inhibition de l'autophagie tant par des inhibiteurs pharmacologiques (3-MA) et que par la 

sous-expression d’un gène essentiel de l'autophagie (ATG12) a donné lieu à une baisse de 

l'activation des lymphocytes T CD4 par des cellules B transformées par EBV. En revanche 

l'inhibition du protéasome n'a eu aucun impact significatif sur la présentation de l’antigène et 

l'activation des cellules CD8 T n'a également pas été affectée. Ces résultats ont abouti à la 

conclusion que la présentation d’antigènes endogènes par le CMH II est en effet possible et 

qu'elle nécessite l'autophagie pour le traitement des antigènes (Paludan et al., 2005). 

Comme mentionné dans les sections précédentes, l'autophagie joue un rôle important dans 

le renouvellement des protéines et organites. En tant que tel il est activé à un niveau de base 

dans la plupart des cellules, y compris dans les lymphocytes et est fortement impliquée dans 

le maintien de leur homéostasie.  Les lymphocytes dépendent de l’autophagie à divers 

niveaux. Les cellules T ont été décrites comme dépendente de l'autophagie pour leur 

développement, ainsi que pour leur survie après l'activation et la polarisation, tandis que les 

cellules B semblent avoir besoin de ce processus pour leur développement et pour leur 

maintien après leur différenciation en plasmocytes. 

 

Les informations sur l'implication de l'autophagie dans la biologie des lymphocytes ont été 

obtenus principalement en utilisant des modèles de souris avec une délétion conditionnel de 

ce dernier soit dans les cellules T ou B, ou les deux, ou en utilisant des souris chimériques. En 



effet, la délétion totale de l’autophagie n’a pas d’impact sur le développement embryonnaire, 

mais est létale après la naissance (Kuma et al., 2004). Ainsi, les informations que nous 

possédons aujourd'hui sur le rôle de l'autophagie in vivo proviennent de souris modèles ayant 

subi une délétion de l’autophagie spécifique d’un tissu ou d’un type cellulaire. 

 

 

 

Ces modèles de délétions ont permis de répondre à un certain nombre de questions sur le 

rôle de ce processus dans la biologie des lymphocytes. Mais jusqu'à très récemment 

l'invalidation de l'autophagie dans la plupart des modèles apparaissait au début du 

développement lymphocytaire. Or, il s’est avéré que l’autophagie joue un rôle central dans la 

génération de cellules progénitrices hématopoïétiques. Dans ces conditions, il est possible que 

les observations faites jusqu'à présent sur la survie des lymphocytes soient liés à un défaut 

précoce dans le développement. Ainsi, nous avons été particulièrement intéressés par l'étude 

du rôle de l'autophagie dans les lymphocytes matures in vivo. En effet, seules quelques 

recherches se sont Intéressaient aux réponses immunitaires in vivo en l'absence d'autophagie 

dans ces cellules. 

Nos premières investigations ont conduit à la génération de deux modèles de souris avec une 

délétion spécifique dans des cellules B immatures et matures (Atg5 f/- Mb1-cre et Atg5 f/- 

CD21-cre). Nous avons pu montrer que l'autophagie est dispensable dans le développement 

précoce des cellules B. Nous avons également pu observer que les souris déficientes pour 

l’autophagie dans les cellules B périphériques (Atg5 f/- CD21-cre) étaient encore capables de 

générer une réponse humorale antigène spécifique à court-terme. Cependant lors de l'étude 



des réponses humorales à long-terme dans C57BL/6 lpr/ lpr Atg5 f/- CD21-cre possédant un 

fond génétique autoimmun, nous avons pu remarquer que la réponse IgG anti-ADN double 

brin été détériorée. Ainsi, il apparaît qu'en l'absence d'autophagie, la survie des plasmocytes 

à long terme est compromise et conduit à une diminution de la sécrétion d'anticorps, en 

particulier dans un contexte auto-immun. 

 

 

Mon projet de doctorat a été particulièrement axé sur l'étude du rôle de l'autophagie dans les 

cellules T avec deux principaux objectifs : 

1) Nous avons d'abord voulu établir le rôle de l'autophagie dans les réponses humorales 

T dépendantes, afin de mieux comprendre comment, quand et pourquoi ce processus 

est important pour ces cellules. 

2) Deuxièmement, nous avons voulu délimiter par quelle(s) voie(s) de signalisation 

l’autophagie est induite dans les cellules T, à la fois dans un contexte normal et un 

contexte lupique. 

Pour traiter le premier point, nous avons généré des souris transgéniques déficientes pour 

l'autophagie uniquement dans les cellules T matures. Nous avons évalué la fonction des 

cellules T de ces souris ex vivo et avons pu observer une survie et une prolifération normale 

des lymphocytes T CD4+ après activation. Nous avons immunisé nos modèles de souris avec 

un antigène T dépendant, l'Ovalbumine, et nous avons remarqué que la réponse immunitaire 

primaire et même secondaire était normale en amplitude, mais que la réponse humorale à 

long terme elle été altérée. Ceci nous a amené à la conclusion que la réponse mémoire 



pourrait être affectée par l'absence d'autophagie dans les lymphocytes T. Afin d'évaluer si le 

besoin de l'autophagie était intrinsèque aux cellules T CD4+ mémoires, nous avons transféré 

des cellules T CD4+ incompétentes pour l’autophagie dans des souris receveuses à partir de 

souris hôtes immunisées, qui ont ensuite été immunisées avec le même antigène. 

Par rapport aux contrôles, leur réponse humorale mémoire était en effet plus faible. Nous 

avons par ailleurs montré que l'absence d'autophagie a un impact sur la survie des 

lymphocytes T CD4 de mémoires, en induisant une mémoire dans les cellules T CD4+ in vitro. 

Nous avons constaté qu’à long terme, les cellules T déficientes pour l'autophagie présentaient 

un défaut de survie sous traitement à IL-7. Il semble donc que l'autophagie est essentielle à la 

fonction normale des cellules T mémoires. 

 

 

 

 

 

Ma deuxième préoccupation était de mieux comprendre les voies de signalisation conduisant 

à l'induction de l’autophagie après stimulation du récepteur des cellules T (TCR). Nous avons 

activé ou inhibé les voies principales induites après l'activation du TCR, afin d'évaluer leur 

impact sur l'activité autophagique. Pour le moment nous avons ont pu montrer que la voie du 

calcium est principalement impliquée dans l'induction de ce processus. Cela nous a amené à 



penser qu'en aval de la voie Ca2+, le facteur de transcription nucléaire des cellules T activées 

(NFAT) pourrait être impliqué dans la régulation de certains gènes liés à l'autophagie (les Atg). 

Cependant, les expériences de PCR quantitative n'ont pas confirmé cette hypothèse. Nous 

avons donc commencé à explorer une possible régulation post-transcriptionnelle ou post-

traductionnelle de protéines ATG par l'activation de la voie calcique. Nous nous sommes 

concentrés plus spécifiquement sur la régulation de la protéine de la chaîne légère 3 associé 

aux microtubules (LC3). L'expression de cette protéine ATG varie en effet le plus dans nos 

conditions lorsque la voie Ca2+ est stimulée ou inhibée. 

Les résultats préliminaires obtenus en utilisant des inhibiteurs pharmacologiques de la 

transcription et de la traduction indiquent que la régulation pourrait se produire au niveau de 

la traduction. Nous avons l'intention de poursuivre cette voie dans le but d’identifier les 

acteurs impliqués dans ce règlement. 

 

 

 

 

L’étude du rôle de l’autophagie dans les lymphocytes mémoires dans le maintien d'une 

maladie auto-immune pourraient conduire à la conception de nouveaux médicaments ciblant 

spécifiquement ces cellules mémoires, contribuant ainsi à la mise au point de traitements plus 

précis et diminueraient les effets secondaires.  En effet il semble que l’autophagie n’est pas 

essentielle dans les réponses lymphocytaires précoce, de ce fait inhiber ce processus 



n’affecterait pas leur fonction primaires et secondaires contrairement aux médicaments 

immunosuppresseurs. Autophagie, à cet égard est un bon candidat. Néanmoins, cibler le 

compartiment mémoire n'est bien sûr pas totalement inoffensif. Il est possible en effet que 

les patients soient plus sensibles aux infections à la suite d’un tel traitement. Mais étant donné 

que les patients atteints de lupus sont souvent jeunes et ils auraient la possibilité de 

reconstituer un compartiment mémoire compétent après le traitement. Toutefois, afin 

d'évaluer l'impact de l'autophagie des lymphocytes T dans les paramètres auto-immuns, il 

nécessiterait, comme pour l'étude sur les lymphocytes B, la génération de souris 

transgéniques avec une délétion spécifique de l’autophagie dans les cellules T. Cela pourrait 

donner un premier aperçu sur l’éventuelle implication de l’autophagie au niveau auto-immun. 

Dans un autre contexte, induire l’autophagie pour conduire à l’amélioration de l’efficacité de 

certains vaccins étant donné que cela contribuerait à un maintien des cellules mémoires. 
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Résumé 

L’autophagie est un processus catabolique lié aux lysosomes, essential à la l’homéostasie cellulaire notamment 

dans les lymphocytes. Elle est impliquée dans la pathogenèse de nombreuses maladies et pourrais jouer un rôle 

dans le développement de maladies auto-immunes. Nous avons voulu étudier son rôle in vivo dans les 

lymphocytes B et T. Nous avons généré des souris déficientes en autophagie spécifiquement dans ces cellules 

et montré que l’autophagie n’est pas essentiale au développement des LB, mais que dans un contexte auto-

immun la persistance de plasmocytes et la production d’autoanticorps été diminuée. Cela démontre un rôle de 

l’autophagie dans les réponses à long terme. Les réponses humorales à long-terme T dépendantes sont 

également impactées. De plus des souris transplantées avec des LT CD4+ déficients en autophagie montrent 

une réponse humorale mémoire diminuée. Nous nous sommes également intéressé aux voies de signalisation 

conduisant à l’induction de l’autophagie en réponse à une stimulation du TCR dans des LT normaux et 

pathologiques. Nos résultats préliminaires montrent une implication de la voie calcique. 

Mots clés : Macroautophagie, lymphocytes T et B, mémoire, autoimmunité, lupus, modèles murins  

 

Résumé en anglais 

Autophay is a catobolic lysosomal process essentail for cellular maintenance and fucntion such as lymphocyte 

homeosatsis. The generation of mice models with an Atg5 conditional knock-out in B and T cells respectively, 

have allowed us to study  autophagy  requirements  of  those immune  cells  in  vivo.  We have demonstrated  

that  autophagy  was dispensable for B cell development but that in autoimmune settings B cell autophagy was 

required for the maintenance of long-lived plasma cells and for the production of autoantibodies. In mice 

deficient for autophagy in T cells, long-term tumoral response to a T-dependent antigen is decreased. We also 

showed that in mice adoptively transferred with autophagy deficient CD4 T cells, the antigen specific memory 

humoral immune response was impaired. We also investigated the signaling pathways leading to autophagy 

induction upon TCR stimulation in normal and lupus T cells and showed that the calcium signaling is highly 

involved. 
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